1 /* 2 * Copyright (c) 2015, 2020, Red Hat, Inc. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP 26 #define SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP 27 28 #include "gc/shenandoah/shenandoahHeap.hpp" 29 30 #include "classfile/javaClasses.inline.hpp" 31 #include "gc/shared/markBitMap.inline.hpp" 32 #include "gc/shared/threadLocalAllocBuffer.inline.hpp" 33 #include "gc/shared/continuationGCSupport.inline.hpp" 34 #include "gc/shared/suspendibleThreadSet.hpp" 35 #include "gc/shared/tlab_globals.hpp" 36 #include "gc/shenandoah/shenandoahAsserts.hpp" 37 #include "gc/shenandoah/shenandoahBarrierSet.inline.hpp" 38 #include "gc/shenandoah/shenandoahCollectionSet.inline.hpp" 39 #include "gc/shenandoah/shenandoahForwarding.inline.hpp" 40 #include "gc/shenandoah/shenandoahWorkGroup.hpp" 41 #include "gc/shenandoah/shenandoahHeapRegionSet.inline.hpp" 42 #include "gc/shenandoah/shenandoahHeapRegion.inline.hpp" 43 #include "gc/shenandoah/shenandoahControlThread.hpp" 44 #include "gc/shenandoah/shenandoahMarkingContext.inline.hpp" 45 #include "gc/shenandoah/shenandoahObjectUtils.inline.hpp" 46 #include "gc/shenandoah/shenandoahThreadLocalData.hpp" 47 #include "oops/compressedOops.inline.hpp" 48 #include "oops/oop.inline.hpp" 49 #include "runtime/atomic.hpp" 50 #include "runtime/javaThread.hpp" 51 #include "runtime/prefetch.inline.hpp" 52 #include "utilities/copy.hpp" 53 #include "utilities/globalDefinitions.hpp" 54 55 inline ShenandoahHeap* ShenandoahHeap::heap() { 56 return named_heap<ShenandoahHeap>(CollectedHeap::Shenandoah); 57 } 58 59 inline ShenandoahHeapRegion* ShenandoahRegionIterator::next() { 60 size_t new_index = Atomic::add(&_index, (size_t) 1, memory_order_relaxed); 61 // get_region() provides the bounds-check and returns null on OOB. 62 return _heap->get_region(new_index - 1); 63 } 64 65 inline bool ShenandoahHeap::has_forwarded_objects() const { 66 return _gc_state.is_set(HAS_FORWARDED); 67 } 68 69 inline WorkerThreads* ShenandoahHeap::workers() const { 70 return _workers; 71 } 72 73 inline WorkerThreads* ShenandoahHeap::safepoint_workers() { 74 return _safepoint_workers; 75 } 76 77 inline size_t ShenandoahHeap::heap_region_index_containing(const void* addr) const { 78 uintptr_t region_start = ((uintptr_t) addr); 79 uintptr_t index = (region_start - (uintptr_t) base()) >> ShenandoahHeapRegion::region_size_bytes_shift(); 80 assert(index < num_regions(), "Region index is in bounds: " PTR_FORMAT, p2i(addr)); 81 return index; 82 } 83 84 inline ShenandoahHeapRegion* ShenandoahHeap::heap_region_containing(const void* addr) const { 85 size_t index = heap_region_index_containing(addr); 86 ShenandoahHeapRegion* const result = get_region(index); 87 assert(addr >= result->bottom() && addr < result->end(), "Heap region contains the address: " PTR_FORMAT, p2i(addr)); 88 return result; 89 } 90 91 inline void ShenandoahHeap::enter_evacuation(Thread* t) { 92 _oom_evac_handler.enter_evacuation(t); 93 } 94 95 inline void ShenandoahHeap::leave_evacuation(Thread* t) { 96 _oom_evac_handler.leave_evacuation(t); 97 } 98 99 template <class T> 100 inline void ShenandoahHeap::update_with_forwarded(T* p) { 101 T o = RawAccess<>::oop_load(p); 102 if (!CompressedOops::is_null(o)) { 103 oop obj = CompressedOops::decode_not_null(o); 104 if (in_collection_set(obj)) { 105 // Corner case: when evacuation fails, there are objects in collection 106 // set that are not really forwarded. We can still go and try and update them 107 // (uselessly) to simplify the common path. 108 shenandoah_assert_forwarded_except(p, obj, cancelled_gc()); 109 oop fwd = ShenandoahBarrierSet::resolve_forwarded_not_null(obj); 110 shenandoah_assert_not_in_cset_except(p, fwd, cancelled_gc()); 111 112 // Unconditionally store the update: no concurrent updates expected. 113 RawAccess<IS_NOT_NULL>::oop_store(p, fwd); 114 } 115 } 116 } 117 118 template <class T> 119 inline void ShenandoahHeap::conc_update_with_forwarded(T* p) { 120 T o = RawAccess<>::oop_load(p); 121 if (!CompressedOops::is_null(o)) { 122 oop obj = CompressedOops::decode_not_null(o); 123 if (in_collection_set(obj)) { 124 // Corner case: when evacuation fails, there are objects in collection 125 // set that are not really forwarded. We can still go and try CAS-update them 126 // (uselessly) to simplify the common path. 127 shenandoah_assert_forwarded_except(p, obj, cancelled_gc()); 128 oop fwd = ShenandoahBarrierSet::resolve_forwarded_not_null(obj); 129 shenandoah_assert_not_in_cset_except(p, fwd, cancelled_gc()); 130 131 // Sanity check: we should not be updating the cset regions themselves, 132 // unless we are recovering from the evacuation failure. 133 shenandoah_assert_not_in_cset_loc_except(p, !is_in(p) || cancelled_gc()); 134 135 // Either we succeed in updating the reference, or something else gets in our way. 136 // We don't care if that is another concurrent GC update, or another mutator update. 137 atomic_update_oop(fwd, p, obj); 138 } 139 } 140 } 141 142 // Atomic updates of heap location. This is only expected to work with updating the same 143 // logical object with its forwardee. The reason why we need stronger-than-relaxed memory 144 // ordering has to do with coordination with GC barriers and mutator accesses. 145 // 146 // In essence, stronger CAS access is required to maintain the transitive chains that mutator 147 // accesses build by themselves. To illustrate this point, consider the following example. 148 // 149 // Suppose "o" is the object that has a field "x" and the reference to "o" is stored 150 // to field at "addr", which happens to be Java volatile field. Normally, the accesses to volatile 151 // field at "addr" would be matched with release/acquire barriers. This changes when GC moves 152 // the object under mutator feet. 153 // 154 // Thread 1 (Java) 155 // // --- previous access starts here 156 // ... 157 // T1.1: store(&o.x, 1, mo_relaxed) 158 // T1.2: store(&addr, o, mo_release) // volatile store 159 // 160 // // --- new access starts here 161 // // LRB: copy and install the new copy to fwdptr 162 // T1.3: var copy = copy(o) 163 // T1.4: cas(&fwd, t, copy, mo_release) // pointer-mediated publication 164 // <access continues> 165 // 166 // Thread 2 (GC updater) 167 // T2.1: var f = load(&fwd, mo_{consume|acquire}) // pointer-mediated acquisition 168 // T2.2: cas(&addr, o, f, mo_release) // this method 169 // 170 // Thread 3 (Java) 171 // T3.1: var o = load(&addr, mo_acquire) // volatile read 172 // T3.2: if (o != null) 173 // T3.3: var r = load(&o.x, mo_relaxed) 174 // 175 // r is guaranteed to contain "1". 176 // 177 // Without GC involvement, there is synchronizes-with edge from T1.2 to T3.1, 178 // which guarantees this. With GC involvement, when LRB copies the object and 179 // another thread updates the reference to it, we need to have the transitive edge 180 // from T1.4 to T2.1 (that one is guaranteed by forwarding accesses), plus the edge 181 // from T2.2 to T3.1 (which is brought by this CAS). 182 // 183 // Note that we do not need to "acquire" in these methods, because we do not read the 184 // failure witnesses contents on any path, and "release" is enough. 185 // 186 187 inline void ShenandoahHeap::atomic_update_oop(oop update, oop* addr, oop compare) { 188 assert(is_aligned(addr, HeapWordSize), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 189 Atomic::cmpxchg(addr, compare, update, memory_order_release); 190 } 191 192 inline void ShenandoahHeap::atomic_update_oop(oop update, narrowOop* addr, narrowOop compare) { 193 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 194 narrowOop u = CompressedOops::encode(update); 195 Atomic::cmpxchg(addr, compare, u, memory_order_release); 196 } 197 198 inline void ShenandoahHeap::atomic_update_oop(oop update, narrowOop* addr, oop compare) { 199 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 200 narrowOop c = CompressedOops::encode(compare); 201 narrowOop u = CompressedOops::encode(update); 202 Atomic::cmpxchg(addr, c, u, memory_order_release); 203 } 204 205 inline bool ShenandoahHeap::atomic_update_oop_check(oop update, oop* addr, oop compare) { 206 assert(is_aligned(addr, HeapWordSize), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 207 return (oop) Atomic::cmpxchg(addr, compare, update, memory_order_release) == compare; 208 } 209 210 inline bool ShenandoahHeap::atomic_update_oop_check(oop update, narrowOop* addr, narrowOop compare) { 211 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 212 narrowOop u = CompressedOops::encode(update); 213 return (narrowOop) Atomic::cmpxchg(addr, compare, u, memory_order_release) == compare; 214 } 215 216 inline bool ShenandoahHeap::atomic_update_oop_check(oop update, narrowOop* addr, oop compare) { 217 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 218 narrowOop c = CompressedOops::encode(compare); 219 narrowOop u = CompressedOops::encode(update); 220 return CompressedOops::decode(Atomic::cmpxchg(addr, c, u, memory_order_release)) == compare; 221 } 222 223 // The memory ordering discussion above does not apply for methods that store nulls: 224 // then, there is no transitive reads in mutator (as we see nulls), and we can do 225 // relaxed memory ordering there. 226 227 inline void ShenandoahHeap::atomic_clear_oop(oop* addr, oop compare) { 228 assert(is_aligned(addr, HeapWordSize), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 229 Atomic::cmpxchg(addr, compare, oop(), memory_order_relaxed); 230 } 231 232 inline void ShenandoahHeap::atomic_clear_oop(narrowOop* addr, oop compare) { 233 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 234 narrowOop cmp = CompressedOops::encode(compare); 235 Atomic::cmpxchg(addr, cmp, narrowOop(), memory_order_relaxed); 236 } 237 238 inline void ShenandoahHeap::atomic_clear_oop(narrowOop* addr, narrowOop compare) { 239 assert(is_aligned(addr, sizeof(narrowOop)), "Address should be aligned: " PTR_FORMAT, p2i(addr)); 240 Atomic::cmpxchg(addr, compare, narrowOop(), memory_order_relaxed); 241 } 242 243 inline bool ShenandoahHeap::cancelled_gc() const { 244 return _cancelled_gc.get() == CANCELLED; 245 } 246 247 inline bool ShenandoahHeap::check_cancelled_gc_and_yield(bool sts_active) { 248 if (sts_active && ShenandoahSuspendibleWorkers && !cancelled_gc()) { 249 if (SuspendibleThreadSet::should_yield()) { 250 SuspendibleThreadSet::yield(); 251 } 252 } 253 return cancelled_gc(); 254 } 255 256 inline void ShenandoahHeap::clear_cancelled_gc() { 257 _cancelled_gc.set(CANCELLABLE); 258 _oom_evac_handler.clear(); 259 } 260 261 inline HeapWord* ShenandoahHeap::allocate_from_gclab(Thread* thread, size_t size) { 262 assert(UseTLAB, "TLABs should be enabled"); 263 264 PLAB* gclab = ShenandoahThreadLocalData::gclab(thread); 265 if (gclab == nullptr) { 266 assert(!thread->is_Java_thread() && !thread->is_Worker_thread(), 267 "Performance: thread should have GCLAB: %s", thread->name()); 268 // No GCLABs in this thread, fallback to shared allocation 269 return nullptr; 270 } 271 HeapWord* obj = gclab->allocate(size); 272 if (obj != nullptr) { 273 return obj; 274 } 275 // Otherwise... 276 return allocate_from_gclab_slow(thread, size); 277 } 278 279 inline oop ShenandoahHeap::evacuate_object(oop p, Thread* thread) { 280 if (ShenandoahThreadLocalData::is_oom_during_evac(Thread::current())) { 281 // This thread went through the OOM during evac protocol and it is safe to return 282 // the forward pointer. It must not attempt to evacuate any more. 283 return ShenandoahBarrierSet::resolve_forwarded(p); 284 } 285 286 assert(ShenandoahThreadLocalData::is_evac_allowed(thread), "must be enclosed in oom-evac scope"); 287 288 size_t size = ShenandoahObjectUtils::size(p); 289 290 assert(!heap_region_containing(p)->is_humongous(), "never evacuate humongous objects"); 291 292 bool alloc_from_gclab = true; 293 HeapWord* copy = nullptr; 294 295 #ifdef ASSERT 296 if (ShenandoahOOMDuringEvacALot && 297 (os::random() & 1) == 0) { // Simulate OOM every ~2nd slow-path call 298 copy = nullptr; 299 } else { 300 #endif 301 if (UseTLAB) { 302 copy = allocate_from_gclab(thread, size); 303 } 304 if (copy == nullptr) { 305 ShenandoahAllocRequest req = ShenandoahAllocRequest::for_shared_gc(size); 306 copy = allocate_memory(req); 307 alloc_from_gclab = false; 308 } 309 #ifdef ASSERT 310 } 311 #endif 312 313 if (copy == nullptr) { 314 control_thread()->handle_alloc_failure_evac(size); 315 316 _oom_evac_handler.handle_out_of_memory_during_evacuation(); 317 318 return ShenandoahBarrierSet::resolve_forwarded(p); 319 } 320 321 // Copy the object: 322 Copy::aligned_disjoint_words(cast_from_oop<HeapWord*>(p), copy, size); 323 324 // Try to install the new forwarding pointer. 325 oop copy_val = cast_to_oop(copy); 326 if (!copy_val->mark().is_marked()) { 327 // If we copied a mark-word that indicates 'forwarded' state, then 328 // another thread beat us, and this new copy will never be published. 329 // ContinuationGCSupport would get a corrupt Klass* in that case, 330 // so don't even attempt it. 331 ContinuationGCSupport::relativize_stack_chunk(copy_val); 332 } 333 oop result = ShenandoahForwarding::try_update_forwardee(p, copy_val); 334 if (result == copy_val) { 335 // Successfully evacuated. Our copy is now the public one! 336 shenandoah_assert_correct(nullptr, copy_val); 337 return copy_val; 338 } else { 339 // Failed to evacuate. We need to deal with the object that is left behind. Since this 340 // new allocation is certainly after TAMS, it will be considered live in the next cycle. 341 // But if it happens to contain references to evacuated regions, those references would 342 // not get updated for this stale copy during this cycle, and we will crash while scanning 343 // it the next cycle. 344 // 345 // For GCLAB allocations, it is enough to rollback the allocation ptr. Either the next 346 // object will overwrite this stale copy, or the filler object on LAB retirement will 347 // do this. For non-GCLAB allocations, we have no way to retract the allocation, and 348 // have to explicitly overwrite the copy with the filler object. With that overwrite, 349 // we have to keep the fwdptr initialized and pointing to our (stale) copy. 350 if (alloc_from_gclab) { 351 ShenandoahThreadLocalData::gclab(thread)->undo_allocation(copy, size); 352 } else { 353 fill_with_object(copy, size); 354 shenandoah_assert_correct(nullptr, copy_val); 355 } 356 shenandoah_assert_correct(nullptr, result); 357 return result; 358 } 359 } 360 361 inline bool ShenandoahHeap::requires_marking(const void* entry) const { 362 oop obj = cast_to_oop(entry); 363 return !_marking_context->is_marked_strong(obj); 364 } 365 366 inline bool ShenandoahHeap::in_collection_set(oop p) const { 367 assert(collection_set() != nullptr, "Sanity"); 368 return collection_set()->is_in(p); 369 } 370 371 inline bool ShenandoahHeap::in_collection_set_loc(void* p) const { 372 assert(collection_set() != nullptr, "Sanity"); 373 return collection_set()->is_in_loc(p); 374 } 375 376 inline bool ShenandoahHeap::is_stable() const { 377 return _gc_state.is_clear(); 378 } 379 380 inline bool ShenandoahHeap::is_idle() const { 381 return _gc_state.is_unset(MARKING | EVACUATION | UPDATEREFS); 382 } 383 384 inline bool ShenandoahHeap::is_concurrent_mark_in_progress() const { 385 return _gc_state.is_set(MARKING); 386 } 387 388 inline bool ShenandoahHeap::is_evacuation_in_progress() const { 389 return _gc_state.is_set(EVACUATION); 390 } 391 392 inline bool ShenandoahHeap::is_gc_in_progress_mask(uint mask) const { 393 return _gc_state.is_set(mask); 394 } 395 396 inline bool ShenandoahHeap::is_degenerated_gc_in_progress() const { 397 return _degenerated_gc_in_progress.is_set(); 398 } 399 400 inline bool ShenandoahHeap::is_full_gc_in_progress() const { 401 return _full_gc_in_progress.is_set(); 402 } 403 404 inline bool ShenandoahHeap::is_full_gc_move_in_progress() const { 405 return _full_gc_move_in_progress.is_set(); 406 } 407 408 inline bool ShenandoahHeap::is_update_refs_in_progress() const { 409 return _gc_state.is_set(UPDATEREFS); 410 } 411 412 inline bool ShenandoahHeap::is_stw_gc_in_progress() const { 413 return is_full_gc_in_progress() || is_degenerated_gc_in_progress(); 414 } 415 416 inline bool ShenandoahHeap::is_concurrent_strong_root_in_progress() const { 417 return _concurrent_strong_root_in_progress.is_set(); 418 } 419 420 inline bool ShenandoahHeap::is_concurrent_weak_root_in_progress() const { 421 return _gc_state.is_set(WEAK_ROOTS); 422 } 423 424 template<class T> 425 inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl) { 426 marked_object_iterate(region, cl, region->top()); 427 } 428 429 template<class T> 430 inline void ShenandoahHeap::marked_object_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* limit) { 431 assert(! region->is_humongous_continuation(), "no humongous continuation regions here"); 432 433 ShenandoahMarkingContext* const ctx = complete_marking_context(); 434 assert(ctx->is_complete(), "sanity"); 435 436 HeapWord* tams = ctx->top_at_mark_start(region); 437 438 size_t skip_bitmap_delta = 1; 439 HeapWord* start = region->bottom(); 440 HeapWord* end = MIN2(tams, region->end()); 441 442 // Step 1. Scan below the TAMS based on bitmap data. 443 HeapWord* limit_bitmap = MIN2(limit, tams); 444 445 // Try to scan the initial candidate. If the candidate is above the TAMS, it would 446 // fail the subsequent "< limit_bitmap" checks, and fall through to Step 2. 447 HeapWord* cb = ctx->get_next_marked_addr(start, end); 448 449 intx dist = ShenandoahMarkScanPrefetch; 450 if (dist > 0) { 451 // Batched scan that prefetches the oop data, anticipating the access to 452 // either header, oop field, or forwarding pointer. Not that we cannot 453 // touch anything in oop, while it still being prefetched to get enough 454 // time for prefetch to work. This is why we try to scan the bitmap linearly, 455 // disregarding the object size. However, since we know forwarding pointer 456 // precedes the object, we can skip over it. Once we cannot trust the bitmap, 457 // there is no point for prefetching the oop contents, as oop->size() will 458 // touch it prematurely. 459 460 // No variable-length arrays in standard C++, have enough slots to fit 461 // the prefetch distance. 462 static const int SLOT_COUNT = 256; 463 guarantee(dist <= SLOT_COUNT, "adjust slot count"); 464 HeapWord* slots[SLOT_COUNT]; 465 466 int avail; 467 do { 468 avail = 0; 469 for (int c = 0; (c < dist) && (cb < limit_bitmap); c++) { 470 Prefetch::read(cb, oopDesc::mark_offset_in_bytes()); 471 slots[avail++] = cb; 472 cb += skip_bitmap_delta; 473 if (cb < limit_bitmap) { 474 cb = ctx->get_next_marked_addr(cb, limit_bitmap); 475 } 476 } 477 478 for (int c = 0; c < avail; c++) { 479 assert (slots[c] < tams, "only objects below TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(tams)); 480 assert (slots[c] < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(slots[c]), p2i(limit)); 481 oop obj = cast_to_oop(slots[c]); 482 assert(oopDesc::is_oop(obj), "sanity"); 483 assert(ctx->is_marked(obj), "object expected to be marked"); 484 cl->do_object(obj); 485 } 486 } while (avail > 0); 487 } else { 488 while (cb < limit_bitmap) { 489 assert (cb < tams, "only objects below TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(tams)); 490 assert (cb < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cb), p2i(limit)); 491 oop obj = cast_to_oop(cb); 492 assert(oopDesc::is_oop(obj), "sanity"); 493 assert(ctx->is_marked(obj), "object expected to be marked"); 494 cl->do_object(obj); 495 cb += skip_bitmap_delta; 496 if (cb < limit_bitmap) { 497 cb = ctx->get_next_marked_addr(cb, limit_bitmap); 498 } 499 } 500 } 501 502 // Step 2. Accurate size-based traversal, happens past the TAMS. 503 // This restarts the scan at TAMS, which makes sure we traverse all objects, 504 // regardless of what happened at Step 1. 505 HeapWord* cs = tams; 506 while (cs < limit) { 507 assert (cs >= tams, "only objects past TAMS here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(tams)); 508 assert (cs < limit, "only objects below limit here: " PTR_FORMAT " (" PTR_FORMAT ")", p2i(cs), p2i(limit)); 509 oop obj = cast_to_oop(cs); 510 assert(oopDesc::is_oop(obj), "sanity"); 511 assert(ctx->is_marked(obj), "object expected to be marked"); 512 size_t size = ShenandoahObjectUtils::size(obj); 513 cl->do_object(obj); 514 cs += size; 515 } 516 } 517 518 template <class T> 519 class ShenandoahObjectToOopClosure : public ObjectClosure { 520 T* _cl; 521 public: 522 ShenandoahObjectToOopClosure(T* cl) : _cl(cl) {} 523 524 void do_object(oop obj) { 525 obj->oop_iterate(_cl); 526 } 527 }; 528 529 template <class T> 530 class ShenandoahObjectToOopBoundedClosure : public ObjectClosure { 531 T* _cl; 532 MemRegion _bounds; 533 public: 534 ShenandoahObjectToOopBoundedClosure(T* cl, HeapWord* bottom, HeapWord* top) : 535 _cl(cl), _bounds(bottom, top) {} 536 537 void do_object(oop obj) { 538 obj->oop_iterate(_cl, _bounds); 539 } 540 }; 541 542 template<class T> 543 inline void ShenandoahHeap::marked_object_oop_iterate(ShenandoahHeapRegion* region, T* cl, HeapWord* top) { 544 if (region->is_humongous()) { 545 HeapWord* bottom = region->bottom(); 546 if (top > bottom) { 547 region = region->humongous_start_region(); 548 ShenandoahObjectToOopBoundedClosure<T> objs(cl, bottom, top); 549 marked_object_iterate(region, &objs); 550 } 551 } else { 552 ShenandoahObjectToOopClosure<T> objs(cl); 553 marked_object_iterate(region, &objs, top); 554 } 555 } 556 557 inline ShenandoahHeapRegion* ShenandoahHeap::get_region(size_t region_idx) const { 558 if (region_idx < _num_regions) { 559 return _regions[region_idx]; 560 } else { 561 return nullptr; 562 } 563 } 564 565 inline void ShenandoahHeap::mark_complete_marking_context() { 566 _marking_context->mark_complete(); 567 } 568 569 inline void ShenandoahHeap::mark_incomplete_marking_context() { 570 _marking_context->mark_incomplete(); 571 } 572 573 inline ShenandoahMarkingContext* ShenandoahHeap::complete_marking_context() const { 574 assert (_marking_context->is_complete()," sanity"); 575 return _marking_context; 576 } 577 578 inline ShenandoahMarkingContext* ShenandoahHeap::marking_context() const { 579 return _marking_context; 580 } 581 582 #endif // SHARE_GC_SHENANDOAH_SHENANDOAHHEAP_INLINE_HPP