1 /*
   2  * Copyright (c) 2002, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/threadLocalAllocBuffer.inline.hpp"
  30 #include "gc/shared/tlab_globals.hpp"
  31 #include "interpreter/bytecodeHistogram.hpp"
  32 #include "interpreter/zero/bytecodeInterpreter.inline.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/interpreterRuntime.hpp"
  35 #include "jvm_io.h"
  36 #include "logging/log.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "memory/universe.hpp"
  39 #include "oops/constantPool.inline.hpp"
  40 #include "oops/cpCache.inline.hpp"
  41 #include "oops/instanceKlass.inline.hpp"
  42 #include "oops/klass.inline.hpp"
  43 #include "oops/method.inline.hpp"
  44 #include "oops/methodCounters.hpp"
  45 #include "oops/objArrayKlass.hpp"
  46 #include "oops/objArrayOop.inline.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "oops/resolvedFieldEntry.hpp"
  49 #include "oops/resolvedIndyEntry.hpp"
  50 #include "oops/typeArrayOop.inline.hpp"
  51 #include "prims/jvmtiExport.hpp"
  52 #include "prims/jvmtiThreadState.hpp"
  53 #include "runtime/arguments.hpp"
  54 #include "runtime/atomic.hpp"
  55 #include "runtime/frame.inline.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/interfaceSupport.inline.hpp"
  58 #include "runtime/orderAccess.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "utilities/debug.hpp"
  62 #include "utilities/exceptions.hpp"
  63 #include "utilities/macros.hpp"
  64 
  65 /*
  66  * USELABELS - If using GCC, then use labels for the opcode dispatching
  67  * rather -then a switch statement. This improves performance because it
  68  * gives us the opportunity to have the instructions that calculate the
  69  * next opcode to jump to be intermixed with the rest of the instructions
  70  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  71  */
  72 #undef USELABELS
  73 #ifdef __GNUC__
  74 /*
  75    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  76    don't use the computed goto approach.
  77 */
  78 #ifndef ASSERT
  79 #define USELABELS
  80 #endif
  81 #endif
  82 
  83 #undef CASE
  84 #ifdef USELABELS
  85 #define CASE(opcode) opc ## opcode
  86 #define DEFAULT opc_default
  87 #else
  88 #define CASE(opcode) case Bytecodes:: opcode
  89 #define DEFAULT default
  90 #endif
  91 
  92 /*
  93  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
  94  * opcode before going back to the top of the while loop, rather then having
  95  * the top of the while loop handle it. This provides a better opportunity
  96  * for instruction scheduling. Some compilers just do this prefetch
  97  * automatically. Some actually end up with worse performance if you
  98  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
  99  */
 100 #undef PREFETCH_OPCCODE
 101 #define PREFETCH_OPCCODE
 102 
 103 JRT_ENTRY(void, at_safepoint(JavaThread* current)) {}
 104 JRT_END
 105 
 106 /*
 107   Interpreter safepoint: it is expected that the interpreter will have no live
 108   handles of its own creation live at an interpreter safepoint. Therefore we
 109   run a HandleMarkCleaner and trash all handles allocated in the call chain
 110   since the JavaCalls::call_helper invocation that initiated the chain.
 111   There really shouldn't be any handles remaining to trash but this is cheap
 112   in relation to a safepoint.
 113 */
 114 #define RETURN_SAFEPOINT                                    \
 115     if (SafepointMechanism::should_process(THREAD)) {       \
 116       CALL_VM(at_safepoint(THREAD), handle_exception);      \
 117     }
 118 
 119 /*
 120  * VM_JAVA_ERROR - Macro for throwing a java exception from
 121  * the interpreter loop. Should really be a CALL_VM but there
 122  * is no entry point to do the transition to vm so we just
 123  * do it by hand here.
 124  */
 125 #define VM_JAVA_ERROR_NO_JUMP(name, msg)                                          \
 126     DECACHE_STATE();                                                              \
 127     SET_LAST_JAVA_FRAME();                                                        \
 128     {                                                                             \
 129        ThreadInVMfromJava trans(THREAD);                                          \
 130        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 131     }                                                                             \
 132     RESET_LAST_JAVA_FRAME();                                                      \
 133     CACHE_STATE();
 134 
 135 // Normal throw of a java error.
 136 #define VM_JAVA_ERROR(name, msg)                                     \
 137     VM_JAVA_ERROR_NO_JUMP(name, msg)                                 \
 138     goto handle_exception;
 139 
 140 #ifdef PRODUCT
 141 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 142 #else
 143 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                            \
 144 {                                                                                      \
 145     if (PrintBytecodeHistogram) {                                                      \
 146       BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                         \
 147     }                                                                                  \
 148     if (CountBytecodes || TraceBytecodes || StopInterpreterAt > 0) {                   \
 149       BytecodeCounter::_counter_value++;                                               \
 150       if (StopInterpreterAt == BytecodeCounter::_counter_value) {                      \
 151         os::breakpoint();                                                              \
 152       }                                                                                \
 153       if (TraceBytecodes) {                                                            \
 154         CALL_VM((void)InterpreterRuntime::trace_bytecode(THREAD, 0,                    \
 155                                           topOfStack[Interpreter::expr_index_at(1)],   \
 156                                           topOfStack[Interpreter::expr_index_at(2)]),  \
 157                                           handle_exception);                           \
 158       }                                                                                \
 159     }                                                                                  \
 160 }
 161 #endif
 162 
 163 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 164 #if INCLUDE_JVMTI
 165 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 166    incremented. JvmtiExport::at_single_stepping_point() may cause a
 167    breakpoint opcode to get inserted at the current PC to allow the
 168    debugger to coalesce single-step events.
 169 
 170    As a result if we call at_single_stepping_point() we refetch opcode
 171    to get the current opcode. This will override any other prefetching
 172    that might have occurred.
 173 */
 174 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                        \
 175 {                                                                            \
 176     if (JVMTI_ENABLED && JvmtiExport::should_post_single_step()) {           \
 177       DECACHE_STATE();                                                       \
 178       SET_LAST_JAVA_FRAME();                                                 \
 179       ThreadInVMfromJava trans(THREAD);                                      \
 180       JvmtiExport::at_single_stepping_point(THREAD,                          \
 181                                            istate->method(),                 \
 182                                            pc);                              \
 183       RESET_LAST_JAVA_FRAME();                                               \
 184       CACHE_STATE();                                                         \
 185       if (THREAD->has_pending_popframe() &&                                  \
 186         !THREAD->pop_frame_in_process()) {                                   \
 187         goto handle_Pop_Frame;                                               \
 188       }                                                                      \
 189       if (THREAD->jvmti_thread_state() &&                                    \
 190           THREAD->jvmti_thread_state()->is_earlyret_pending()) {             \
 191         goto handle_Early_Return;                                            \
 192       }                                                                      \
 193       opcode = *pc;                                                          \
 194    }                                                                         \
 195 }
 196 #else
 197 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 198 #endif // INCLUDE_JVMTI
 199 
 200 /*
 201  * CONTINUE - Macro for executing the next opcode.
 202  */
 203 #undef CONTINUE
 204 #ifdef USELABELS
 205 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 206 // initialization (which is is the initialization of the table pointer...)
 207 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 208 #define CONTINUE {                              \
 209         opcode = *pc;                           \
 210         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 211         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 212         DISPATCH(opcode);                       \
 213     }
 214 #else
 215 #ifdef PREFETCH_OPCCODE
 216 #define CONTINUE {                              \
 217         opcode = *pc;                           \
 218         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 219         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 220         continue;                               \
 221     }
 222 #else
 223 #define CONTINUE {                              \
 224         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 225         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 226         continue;                               \
 227     }
 228 #endif
 229 #endif
 230 
 231 
 232 #define UPDATE_PC(opsize) {pc += opsize; }
 233 /*
 234  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 235  */
 236 #undef UPDATE_PC_AND_TOS
 237 #define UPDATE_PC_AND_TOS(opsize, stack) \
 238     {pc += opsize; MORE_STACK(stack); }
 239 
 240 /*
 241  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 242  * and executing the next opcode. It's somewhat similar to the combination
 243  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 244  */
 245 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 246 #ifdef USELABELS
 247 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 248         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 249         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 250         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 251         DISPATCH(opcode);                                       \
 252     }
 253 
 254 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 255         pc += opsize; opcode = *pc;                             \
 256         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 257         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 258         DISPATCH(opcode);                                       \
 259     }
 260 #else
 261 #ifdef PREFETCH_OPCCODE
 262 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 263         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 264         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 265         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 266         goto do_continue;                                       \
 267     }
 268 
 269 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 270         pc += opsize; opcode = *pc;                             \
 271         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 272         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 273         goto do_continue;                                       \
 274     }
 275 #else
 276 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 277         pc += opsize; MORE_STACK(stack);                \
 278         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 279         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 280         goto do_continue;                               \
 281     }
 282 
 283 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 284         pc += opsize;                                   \
 285         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 286         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 287         goto do_continue;                               \
 288     }
 289 #endif /* PREFETCH_OPCCODE */
 290 #endif /* USELABELS */
 291 
 292 // About to call a new method, update the save the adjusted pc and return to frame manager
 293 #define UPDATE_PC_AND_RETURN(opsize)  \
 294    DECACHE_TOS();                     \
 295    istate->set_bcp(pc+opsize);        \
 296    return;
 297 
 298 #define REWRITE_AT_PC(val) \
 299     *pc = val;
 300 
 301 #define METHOD istate->method()
 302 #define GET_METHOD_COUNTERS(res)
 303 #define DO_BACKEDGE_CHECKS(skip, branch_pc)
 304 
 305 /*
 306  * For those opcodes that need to have a GC point on a backwards branch
 307  */
 308 
 309 /*
 310  * Macros for caching and flushing the interpreter state. Some local
 311  * variables need to be flushed out to the frame before we do certain
 312  * things (like pushing frames or becoming gc safe) and some need to
 313  * be recached later (like after popping a frame). We could use one
 314  * macro to cache or decache everything, but this would be less then
 315  * optimal because we don't always need to cache or decache everything
 316  * because some things we know are already cached or decached.
 317  */
 318 #undef DECACHE_TOS
 319 #undef CACHE_TOS
 320 #undef CACHE_PREV_TOS
 321 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 322 
 323 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 324 
 325 #undef DECACHE_PC
 326 #undef CACHE_PC
 327 #define DECACHE_PC()    istate->set_bcp(pc);
 328 #define CACHE_PC()      pc = istate->bcp();
 329 #define CACHE_CP()      cp = istate->constants();
 330 #define CACHE_LOCALS()  locals = istate->locals();
 331 #undef CACHE_FRAME
 332 #define CACHE_FRAME()
 333 
 334 // BCI() returns the current bytecode-index.
 335 #undef  BCI
 336 #define BCI()           ((int)(intptr_t)(pc - (intptr_t)istate->method()->code_base()))
 337 
 338 /*
 339  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 340  * passed is a null ref.
 341  * On some architectures/platforms it should be possible to do this implicitly
 342  */
 343 #undef CHECK_NULL
 344 #define CHECK_NULL(obj_)                                                                         \
 345         if ((obj_) == nullptr) {                                                                    \
 346           VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), nullptr);                      \
 347         }                                                                                        \
 348         VERIFY_OOP(obj_)
 349 
 350 #define VMdoubleConstZero() 0.0
 351 #define VMdoubleConstOne() 1.0
 352 #define VMlongConstZero() (max_jlong-max_jlong)
 353 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 354 
 355 /*
 356  * Alignment
 357  */
 358 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 359 
 360 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 361 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 362 
 363 // Reload interpreter state after calling the VM or a possible GC
 364 #define CACHE_STATE()   \
 365         CACHE_TOS();    \
 366         CACHE_PC();     \
 367         CACHE_CP();     \
 368         CACHE_LOCALS();
 369 
 370 // Call the VM with last java frame only.
 371 #define CALL_VM_NAKED_LJF(func)                                    \
 372         DECACHE_STATE();                                           \
 373         SET_LAST_JAVA_FRAME();                                     \
 374         func;                                                      \
 375         RESET_LAST_JAVA_FRAME();                                   \
 376         CACHE_STATE();
 377 
 378 // Call the VM. Don't check for pending exceptions.
 379 #define CALL_VM_NOCHECK(func)                                      \
 380         CALL_VM_NAKED_LJF(func)                                    \
 381         if (THREAD->has_pending_popframe() &&                      \
 382             !THREAD->pop_frame_in_process()) {                     \
 383           goto handle_Pop_Frame;                                   \
 384         }                                                          \
 385         if (THREAD->jvmti_thread_state() &&                        \
 386             THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
 387           goto handle_Early_Return;                                \
 388         }
 389 
 390 // Call the VM and check for pending exceptions
 391 #define CALL_VM(func, label) {                                     \
 392           CALL_VM_NOCHECK(func);                                   \
 393           if (THREAD->has_pending_exception()) goto label;         \
 394         }
 395 
 396 #define MAYBE_POST_FIELD_ACCESS(obj) {                              \
 397   if (JVMTI_ENABLED) {                                              \
 398     int* count_addr;                                                \
 399     /* Check to see if a field modification watch has been set */   \
 400     /* before we take the time to call into the VM. */              \
 401     count_addr = (int*)JvmtiExport::get_field_access_count_addr();  \
 402     if (*count_addr > 0) {                                          \
 403       oop target;                                                   \
 404       if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {       \
 405         target = nullptr;                                              \
 406       } else {                                                      \
 407         target = obj;                                               \
 408       }                                                             \
 409       CALL_VM(InterpreterRuntime::post_field_access(THREAD,         \
 410                                   target, entry),                   \
 411                                   handle_exception);                \
 412     }                                                               \
 413   }                                                                 \
 414 }
 415 
 416 #define MAYBE_POST_FIELD_MODIFICATION(obj) {                        \
 417   if (JVMTI_ENABLED) {                                              \
 418     int* count_addr;                                                \
 419     /* Check to see if a field modification watch has been set */   \
 420     /* before we take the time to call into the VM.            */   \
 421     count_addr = (int*)JvmtiExport::get_field_modification_count_addr(); \
 422     if (*count_addr > 0) {                                          \
 423       oop target;                                                   \
 424       if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {       \
 425         target = nullptr;                                              \
 426       } else {                                                      \
 427         target = obj;                                               \
 428       }                                                             \
 429       CALL_VM(InterpreterRuntime::post_field_modification(THREAD,   \
 430                                   target, entry,                    \
 431                                   (jvalue*)STACK_SLOT(-1)),         \
 432                                   handle_exception);                \
 433     }                                                               \
 434   }                                                                 \
 435 }
 436 
 437 static inline int fast_get_type(TosState tos) {
 438   switch (tos) {
 439     case ztos:
 440     case btos: return Bytecodes::_fast_bgetfield;
 441     case ctos: return Bytecodes::_fast_cgetfield;
 442     case stos: return Bytecodes::_fast_sgetfield;
 443     case itos: return Bytecodes::_fast_igetfield;
 444     case ltos: return Bytecodes::_fast_lgetfield;
 445     case ftos: return Bytecodes::_fast_fgetfield;
 446     case dtos: return Bytecodes::_fast_dgetfield;
 447     case atos: return Bytecodes::_fast_agetfield;
 448     default:
 449       ShouldNotReachHere();
 450       return -1;
 451   }
 452 }
 453 
 454 static inline int fast_put_type(TosState tos) {
 455   switch (tos) {
 456     case ztos: return Bytecodes::_fast_zputfield;
 457     case btos: return Bytecodes::_fast_bputfield;
 458     case ctos: return Bytecodes::_fast_cputfield;
 459     case stos: return Bytecodes::_fast_sputfield;
 460     case itos: return Bytecodes::_fast_iputfield;
 461     case ltos: return Bytecodes::_fast_lputfield;
 462     case ftos: return Bytecodes::_fast_fputfield;
 463     case dtos: return Bytecodes::_fast_dputfield;
 464     case atos: return Bytecodes::_fast_aputfield;
 465     default:
 466       ShouldNotReachHere();
 467       return -1;
 468   }
 469 }
 470 
 471 /*
 472  * BytecodeInterpreter::run(interpreterState istate)
 473  *
 474  * The real deal. This is where byte codes actually get interpreted.
 475  * Basically it's a big while loop that iterates until we return from
 476  * the method passed in.
 477  */
 478 
 479 // Instantiate variants of the method for future linking.
 480 template void BytecodeInterpreter::run<false, false>(interpreterState istate);
 481 template void BytecodeInterpreter::run<false,  true>(interpreterState istate);
 482 template void BytecodeInterpreter::run< true, false>(interpreterState istate);
 483 template void BytecodeInterpreter::run< true,  true>(interpreterState istate);
 484 
 485 template<bool JVMTI_ENABLED, bool REWRITE_BYTECODES>
 486 void BytecodeInterpreter::run(interpreterState istate) {
 487   intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 488   address          pc = istate->bcp();
 489   jubyte opcode;
 490   intptr_t*        locals = istate->locals();
 491   ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
 492 #ifdef LOTS_OF_REGS
 493   JavaThread*      THREAD = istate->thread();
 494 #else
 495 #undef THREAD
 496 #define THREAD istate->thread()
 497 #endif
 498 
 499 #ifdef ASSERT
 500   assert(labs(istate->stack_base() - istate->stack_limit()) == (istate->method()->max_stack() + 1),
 501          "Bad stack limit");
 502   /* QQQ this should be a stack method so we don't know actual direction */
 503   assert(topOfStack >= istate->stack_limit() && topOfStack < istate->stack_base(),
 504          "Stack top out of range");
 505 
 506   // Verify linkages.
 507   interpreterState l = istate;
 508   do {
 509     assert(l == l->_self_link, "bad link");
 510     l = l->_prev_link;
 511   } while (l != nullptr);
 512   // Screwups with stack management usually cause us to overwrite istate
 513   // save a copy so we can verify it.
 514   interpreterState orig = istate;
 515 #endif
 516 
 517 #ifdef USELABELS
 518   const static void* const opclabels_data[256] = {
 519 /* 0x00 */ &&opc_nop,           &&opc_aconst_null,      &&opc_iconst_m1,      &&opc_iconst_0,
 520 /* 0x04 */ &&opc_iconst_1,      &&opc_iconst_2,         &&opc_iconst_3,       &&opc_iconst_4,
 521 /* 0x08 */ &&opc_iconst_5,      &&opc_lconst_0,         &&opc_lconst_1,       &&opc_fconst_0,
 522 /* 0x0C */ &&opc_fconst_1,      &&opc_fconst_2,         &&opc_dconst_0,       &&opc_dconst_1,
 523 
 524 /* 0x10 */ &&opc_bipush,        &&opc_sipush,           &&opc_ldc,            &&opc_ldc_w,
 525 /* 0x14 */ &&opc_ldc2_w,        &&opc_iload,            &&opc_lload,          &&opc_fload,
 526 /* 0x18 */ &&opc_dload,         &&opc_aload,            &&opc_iload_0,        &&opc_iload_1,
 527 /* 0x1C */ &&opc_iload_2,       &&opc_iload_3,          &&opc_lload_0,        &&opc_lload_1,
 528 
 529 /* 0x20 */ &&opc_lload_2,       &&opc_lload_3,          &&opc_fload_0,        &&opc_fload_1,
 530 /* 0x24 */ &&opc_fload_2,       &&opc_fload_3,          &&opc_dload_0,        &&opc_dload_1,
 531 /* 0x28 */ &&opc_dload_2,       &&opc_dload_3,          &&opc_aload_0,        &&opc_aload_1,
 532 /* 0x2C */ &&opc_aload_2,       &&opc_aload_3,          &&opc_iaload,         &&opc_laload,
 533 
 534 /* 0x30 */ &&opc_faload,        &&opc_daload,           &&opc_aaload,         &&opc_baload,
 535 /* 0x34 */ &&opc_caload,        &&opc_saload,           &&opc_istore,         &&opc_lstore,
 536 /* 0x38 */ &&opc_fstore,        &&opc_dstore,           &&opc_astore,         &&opc_istore_0,
 537 /* 0x3C */ &&opc_istore_1,      &&opc_istore_2,         &&opc_istore_3,       &&opc_lstore_0,
 538 
 539 /* 0x40 */ &&opc_lstore_1,      &&opc_lstore_2,         &&opc_lstore_3,       &&opc_fstore_0,
 540 /* 0x44 */ &&opc_fstore_1,      &&opc_fstore_2,         &&opc_fstore_3,       &&opc_dstore_0,
 541 /* 0x48 */ &&opc_dstore_1,      &&opc_dstore_2,         &&opc_dstore_3,       &&opc_astore_0,
 542 /* 0x4C */ &&opc_astore_1,      &&opc_astore_2,         &&opc_astore_3,       &&opc_iastore,
 543 
 544 /* 0x50 */ &&opc_lastore,       &&opc_fastore,          &&opc_dastore,        &&opc_aastore,
 545 /* 0x54 */ &&opc_bastore,       &&opc_castore,          &&opc_sastore,        &&opc_pop,
 546 /* 0x58 */ &&opc_pop2,          &&opc_dup,              &&opc_dup_x1,         &&opc_dup_x2,
 547 /* 0x5C */ &&opc_dup2,          &&opc_dup2_x1,          &&opc_dup2_x2,        &&opc_swap,
 548 
 549 /* 0x60 */ &&opc_iadd,          &&opc_ladd,             &&opc_fadd,           &&opc_dadd,
 550 /* 0x64 */ &&opc_isub,          &&opc_lsub,             &&opc_fsub,           &&opc_dsub,
 551 /* 0x68 */ &&opc_imul,          &&opc_lmul,             &&opc_fmul,           &&opc_dmul,
 552 /* 0x6C */ &&opc_idiv,          &&opc_ldiv,             &&opc_fdiv,           &&opc_ddiv,
 553 
 554 /* 0x70 */ &&opc_irem,          &&opc_lrem,             &&opc_frem,           &&opc_drem,
 555 /* 0x74 */ &&opc_ineg,          &&opc_lneg,             &&opc_fneg,           &&opc_dneg,
 556 /* 0x78 */ &&opc_ishl,          &&opc_lshl,             &&opc_ishr,           &&opc_lshr,
 557 /* 0x7C */ &&opc_iushr,         &&opc_lushr,            &&opc_iand,           &&opc_land,
 558 
 559 /* 0x80 */ &&opc_ior,           &&opc_lor,              &&opc_ixor,           &&opc_lxor,
 560 /* 0x84 */ &&opc_iinc,          &&opc_i2l,              &&opc_i2f,            &&opc_i2d,
 561 /* 0x88 */ &&opc_l2i,           &&opc_l2f,              &&opc_l2d,            &&opc_f2i,
 562 /* 0x8C */ &&opc_f2l,           &&opc_f2d,              &&opc_d2i,            &&opc_d2l,
 563 
 564 /* 0x90 */ &&opc_d2f,           &&opc_i2b,              &&opc_i2c,            &&opc_i2s,
 565 /* 0x94 */ &&opc_lcmp,          &&opc_fcmpl,            &&opc_fcmpg,          &&opc_dcmpl,
 566 /* 0x98 */ &&opc_dcmpg,         &&opc_ifeq,             &&opc_ifne,           &&opc_iflt,
 567 /* 0x9C */ &&opc_ifge,          &&opc_ifgt,             &&opc_ifle,           &&opc_if_icmpeq,
 568 
 569 /* 0xA0 */ &&opc_if_icmpne,     &&opc_if_icmplt,        &&opc_if_icmpge,      &&opc_if_icmpgt,
 570 /* 0xA4 */ &&opc_if_icmple,     &&opc_if_acmpeq,        &&opc_if_acmpne,      &&opc_goto,
 571 /* 0xA8 */ &&opc_jsr,           &&opc_ret,              &&opc_tableswitch,    &&opc_lookupswitch,
 572 /* 0xAC */ &&opc_ireturn,       &&opc_lreturn,          &&opc_freturn,        &&opc_dreturn,
 573 
 574 /* 0xB0 */ &&opc_areturn,       &&opc_return,           &&opc_getstatic,      &&opc_putstatic,
 575 /* 0xB4 */ &&opc_getfield,      &&opc_putfield,         &&opc_invokevirtual,  &&opc_invokespecial,
 576 /* 0xB8 */ &&opc_invokestatic,  &&opc_invokeinterface,  &&opc_invokedynamic,  &&opc_new,
 577 /* 0xBC */ &&opc_newarray,      &&opc_anewarray,        &&opc_arraylength,    &&opc_athrow,
 578 
 579 /* 0xC0 */ &&opc_checkcast,     &&opc_instanceof,       &&opc_monitorenter,   &&opc_monitorexit,
 580 /* 0xC4 */ &&opc_wide,          &&opc_multianewarray,   &&opc_ifnull,         &&opc_ifnonnull,
 581 /* 0xC8 */ &&opc_goto_w,        &&opc_jsr_w,            &&opc_breakpoint,     &&opc_fast_agetfield,
 582 /* 0xCC */ &&opc_fast_bgetfield,&&opc_fast_cgetfield,   &&opc_fast_dgetfield, &&opc_fast_fgetfield,
 583 
 584 /* 0xD0 */ &&opc_fast_igetfield,&&opc_fast_lgetfield,   &&opc_fast_sgetfield, &&opc_fast_aputfield,
 585 /* 0xD4 */ &&opc_fast_bputfield,&&opc_fast_zputfield,   &&opc_fast_cputfield, &&opc_fast_dputfield,
 586 /* 0xD8 */ &&opc_fast_fputfield,&&opc_fast_iputfield,   &&opc_fast_lputfield, &&opc_fast_sputfield,
 587 /* 0xDC */ &&opc_fast_aload_0,  &&opc_fast_iaccess_0,   &&opc_fast_aaccess_0, &&opc_fast_faccess_0,
 588 
 589 /* 0xE0 */ &&opc_fast_iload,    &&opc_fast_iload2,      &&opc_fast_icaload,   &&opc_fast_invokevfinal,
 590 /* 0xE4 */ &&opc_default,       &&opc_default,          &&opc_fast_aldc,      &&opc_fast_aldc_w,
 591 /* 0xE8 */ &&opc_return_register_finalizer,
 592                                 &&opc_invokehandle,     &&opc_nofast_getfield,&&opc_nofast_putfield,
 593 /* 0xEC */ &&opc_nofast_aload_0,&&opc_nofast_iload,     &&opc_default,        &&opc_default,
 594 
 595 /* 0xF0 */ &&opc_default,       &&opc_default,          &&opc_default,        &&opc_default,
 596 /* 0xF4 */ &&opc_default,       &&opc_default,          &&opc_default,        &&opc_default,
 597 /* 0xF8 */ &&opc_default,       &&opc_default,          &&opc_default,        &&opc_default,
 598 /* 0xFC */ &&opc_default,       &&opc_default,          &&opc_default,        &&opc_default
 599   };
 600   uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 601 #endif /* USELABELS */
 602 
 603   switch (istate->msg()) {
 604     case initialize: {
 605       ShouldNotCallThis();
 606       return;
 607     }
 608     case method_entry: {
 609       THREAD->set_do_not_unlock_if_synchronized(true);
 610 
 611       // Lock method if synchronized.
 612       if (METHOD->is_synchronized()) {
 613         // oop rcvr = locals[0].j.r;
 614         oop rcvr;
 615         if (METHOD->is_static()) {
 616           rcvr = METHOD->constants()->pool_holder()->java_mirror();
 617         } else {
 618           rcvr = LOCALS_OBJECT(0);
 619           VERIFY_OOP(rcvr);
 620         }
 621 
 622         // The initial monitor is ours for the taking.
 623         BasicObjectLock* mon = &istate->monitor_base()[-1];
 624         mon->set_obj(rcvr);
 625 
 626         // Traditional lightweight locking.
 627         markWord displaced = rcvr->mark().set_unlocked();
 628         mon->lock()->set_displaced_header(displaced);
 629         bool call_vm = (LockingMode == LM_MONITOR);
 630         bool inc_monitor_count = true;
 631         if (call_vm || rcvr->cas_set_mark(markWord::from_pointer(mon), displaced) != displaced) {
 632           // Is it simple recursive case?
 633           if (!call_vm && THREAD->is_lock_owned((address) displaced.clear_lock_bits().to_pointer())) {
 634             mon->lock()->set_displaced_header(markWord::from_pointer(nullptr));
 635           } else {
 636             inc_monitor_count = false;
 637             CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 638           }
 639         }
 640         if (inc_monitor_count) {
 641           THREAD->inc_held_monitor_count();
 642         }
 643       }
 644       THREAD->set_do_not_unlock_if_synchronized(false);
 645 
 646       // Notify jvmti.
 647       // Whenever JVMTI puts a thread in interp_only_mode, method
 648       // entry/exit events are sent for that thread to track stack depth.
 649       if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) {
 650         CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 651                 handle_exception);
 652       }
 653 
 654       goto run;
 655     }
 656 
 657     case popping_frame: {
 658       // returned from a java call to pop the frame, restart the call
 659       // clear the message so we don't confuse ourselves later
 660       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 661       istate->set_msg(no_request);
 662       THREAD->clr_pop_frame_in_process();
 663       goto run;
 664     }
 665 
 666     case method_resume: {
 667       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 668         // resume
 669         os::breakpoint();
 670       }
 671       // returned from a java call, continue executing.
 672       if (THREAD->has_pending_popframe() && !THREAD->pop_frame_in_process()) {
 673         goto handle_Pop_Frame;
 674       }
 675       if (THREAD->jvmti_thread_state() &&
 676           THREAD->jvmti_thread_state()->is_earlyret_pending()) {
 677         goto handle_Early_Return;
 678       }
 679 
 680       if (THREAD->has_pending_exception()) goto handle_exception;
 681       // Update the pc by the saved amount of the invoke bytecode size
 682       UPDATE_PC(istate->bcp_advance());
 683       goto run;
 684     }
 685 
 686     case deopt_resume2: {
 687       // Returned from an opcode that will reexecute. Deopt was
 688       // a result of a PopFrame request.
 689       //
 690       goto run;
 691     }
 692 
 693     case deopt_resume: {
 694       // Returned from an opcode that has completed. The stack has
 695       // the result all we need to do is skip across the bytecode
 696       // and continue (assuming there is no exception pending)
 697       //
 698       // compute continuation length
 699       //
 700       // Note: it is possible to deopt at a return_register_finalizer opcode
 701       // because this requires entering the vm to do the registering. While the
 702       // opcode is complete we can't advance because there are no more opcodes
 703       // much like trying to deopt at a poll return. In that has we simply
 704       // get out of here
 705       //
 706       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
 707         // this will do the right thing even if an exception is pending.
 708         goto handle_return;
 709       }
 710       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
 711       if (THREAD->has_pending_exception()) goto handle_exception;
 712       goto run;
 713     }
 714     case got_monitors: {
 715       // continue locking now that we have a monitor to use
 716       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 717       oop lockee = STACK_OBJECT(-1);
 718       VERIFY_OOP(lockee);
 719       // derefing's lockee ought to provoke implicit null check
 720       // find a free monitor
 721       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 722       assert(entry->obj() == nullptr, "Frame manager didn't allocate the monitor");
 723       entry->set_obj(lockee);
 724 
 725       // traditional lightweight locking
 726       markWord displaced = lockee->mark().set_unlocked();
 727       entry->lock()->set_displaced_header(displaced);
 728       bool call_vm = (LockingMode == LM_MONITOR);
 729       bool inc_monitor_count = true;
 730       if (call_vm || lockee->cas_set_mark(markWord::from_pointer(entry), displaced) != displaced) {
 731         // Is it simple recursive case?
 732         if (!call_vm && THREAD->is_lock_owned((address) displaced.clear_lock_bits().to_pointer())) {
 733           entry->lock()->set_displaced_header(markWord::from_pointer(nullptr));
 734         } else {
 735           inc_monitor_count = false;
 736           CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 737         }
 738       }
 739       if (inc_monitor_count) {
 740         THREAD->inc_held_monitor_count();
 741       }
 742       UPDATE_PC_AND_TOS(1, -1);
 743       goto run;
 744     }
 745     default: {
 746       fatal("Unexpected message from frame manager");
 747     }
 748   }
 749 
 750 run:
 751 
 752   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 753   DEBUGGER_SINGLE_STEP_NOTIFY();
 754 #ifdef PREFETCH_OPCCODE
 755   opcode = *pc;  /* prefetch first opcode */
 756 #endif
 757 
 758 #ifndef USELABELS
 759   while (1)
 760 #endif
 761   {
 762 #ifndef PREFETCH_OPCCODE
 763       opcode = *pc;
 764 #endif
 765       // Seems like this happens twice per opcode. At worst this is only
 766       // need at entry to the loop.
 767       // DEBUGGER_SINGLE_STEP_NOTIFY();
 768       /* Using this labels avoids double breakpoints when quickening and
 769        * when returning from transition frames.
 770        */
 771   opcode_switch:
 772       assert(istate == orig, "Corrupted istate");
 773       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
 774       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
 775       assert(topOfStack < istate->stack_base(), "Stack underrun");
 776 
 777 #ifdef USELABELS
 778       DISPATCH(opcode);
 779 #else
 780       switch (opcode)
 781 #endif
 782       {
 783       CASE(_nop):
 784           UPDATE_PC_AND_CONTINUE(1);
 785 
 786           /* Push miscellaneous constants onto the stack. */
 787 
 788       CASE(_aconst_null):
 789           SET_STACK_OBJECT(nullptr, 0);
 790           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
 791 
 792 #undef  OPC_CONST_n
 793 #define OPC_CONST_n(opcode, const_type, value)                          \
 794       CASE(opcode):                                                     \
 795           SET_STACK_ ## const_type(value, 0);                           \
 796           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
 797 
 798           OPC_CONST_n(_iconst_m1,   INT,       -1);
 799           OPC_CONST_n(_iconst_0,    INT,        0);
 800           OPC_CONST_n(_iconst_1,    INT,        1);
 801           OPC_CONST_n(_iconst_2,    INT,        2);
 802           OPC_CONST_n(_iconst_3,    INT,        3);
 803           OPC_CONST_n(_iconst_4,    INT,        4);
 804           OPC_CONST_n(_iconst_5,    INT,        5);
 805           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
 806           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
 807           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
 808 
 809 #undef  OPC_CONST2_n
 810 #define OPC_CONST2_n(opcname, value, key, kind)                         \
 811       CASE(_##opcname):                                                 \
 812       {                                                                 \
 813           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
 814           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
 815       }
 816          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
 817          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
 818          OPC_CONST2_n(lconst_0, Zero, long, LONG);
 819          OPC_CONST2_n(lconst_1, One,  long, LONG);
 820 
 821          /* Load constant from constant pool: */
 822 
 823           /* Push a 1-byte signed integer value onto the stack. */
 824       CASE(_bipush):
 825           SET_STACK_INT((jbyte)(pc[1]), 0);
 826           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
 827 
 828           /* Push a 2-byte signed integer constant onto the stack. */
 829       CASE(_sipush):
 830           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
 831           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
 832 
 833           /* load from local variable */
 834 
 835       CASE(_aload):
 836           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
 837           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
 838           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
 839 
 840       CASE(_iload):
 841       {
 842         if (REWRITE_BYTECODES) {
 843           // Attempt to rewrite iload, iload -> fast_iload2
 844           //                    iload, caload -> fast_icaload
 845           // Normal iloads will be rewritten to fast_iload to avoid checking again.
 846           switch (*(pc + 2)) {
 847             case Bytecodes::_fast_iload:
 848               REWRITE_AT_PC(Bytecodes::_fast_iload2);
 849               break;
 850             case Bytecodes::_caload:
 851               REWRITE_AT_PC(Bytecodes::_fast_icaload);
 852               break;
 853             case Bytecodes::_iload:
 854               // Wait until rewritten to _fast_iload.
 855               break;
 856             default:
 857               // Last iload in a (potential) series, don't check again.
 858               REWRITE_AT_PC(Bytecodes::_fast_iload);
 859           }
 860         }
 861         // Normal iload handling.
 862         SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
 863         UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
 864       }
 865 
 866       CASE(_nofast_iload):
 867       {
 868         // Normal, non-rewritable iload handling.
 869         SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
 870         UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
 871       }
 872 
 873       CASE(_fast_iload):
 874       CASE(_fload):
 875           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
 876           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
 877 
 878       CASE(_fast_iload2):
 879           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
 880           SET_STACK_SLOT(LOCALS_SLOT(pc[3]), 1);
 881           UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
 882 
 883       CASE(_lload):
 884           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
 885           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
 886 
 887       CASE(_dload):
 888           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
 889           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
 890 
 891 #undef  OPC_LOAD_n
 892 #define OPC_LOAD_n(num)                                                 \
 893       CASE(_iload_##num):                                               \
 894       CASE(_fload_##num):                                               \
 895           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
 896           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
 897                                                                         \
 898       CASE(_lload_##num):                                               \
 899           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
 900           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
 901       CASE(_dload_##num):                                               \
 902           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
 903           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
 904 
 905       OPC_LOAD_n(0);
 906       OPC_LOAD_n(1);
 907       OPC_LOAD_n(2);
 908       OPC_LOAD_n(3);
 909 
 910 #undef  OPC_ALOAD_n
 911 #define OPC_ALOAD_n(num)                                                \
 912       CASE(_aload_##num): {                                             \
 913           oop obj = LOCALS_OBJECT(num);                                 \
 914           VERIFY_OOP(obj);                                              \
 915           SET_STACK_OBJECT(obj, 0);                                     \
 916           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
 917       }
 918 
 919       CASE(_aload_0):
 920       {
 921         /* Maybe rewrite if following bytecode is one of the supported _fast_Xgetfield bytecodes. */
 922         if (REWRITE_BYTECODES) {
 923           switch (*(pc + 1)) {
 924             case Bytecodes::_fast_agetfield:
 925               REWRITE_AT_PC(Bytecodes::_fast_aaccess_0);
 926               break;
 927             case Bytecodes::_fast_fgetfield:
 928               REWRITE_AT_PC(Bytecodes::_fast_faccess_0);
 929               break;
 930             case Bytecodes::_fast_igetfield:
 931               REWRITE_AT_PC(Bytecodes::_fast_iaccess_0);
 932               break;
 933             case Bytecodes::_getfield:
 934             case Bytecodes::_nofast_getfield: {
 935               /* Otherwise, do nothing here, wait until/if it gets rewritten to _fast_Xgetfield.
 936                * Unfortunately, this punishes volatile field access, because it never gets
 937                * rewritten. */
 938               break;
 939             }
 940             default:
 941               REWRITE_AT_PC(Bytecodes::_fast_aload_0);
 942               break;
 943           }
 944         }
 945         // Normal aload_0 handling.
 946         VERIFY_OOP(LOCALS_OBJECT(0));
 947         SET_STACK_OBJECT(LOCALS_OBJECT(0), 0);
 948         UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
 949       }
 950 
 951       CASE(_nofast_aload_0):
 952       {
 953         // Normal, non-rewritable aload_0 handling.
 954         VERIFY_OOP(LOCALS_OBJECT(0));
 955         SET_STACK_OBJECT(LOCALS_OBJECT(0), 0);
 956         UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
 957       }
 958 
 959       OPC_ALOAD_n(1);
 960       OPC_ALOAD_n(2);
 961       OPC_ALOAD_n(3);
 962 
 963           /* store to a local variable */
 964 
 965       CASE(_astore):
 966           astore(topOfStack, -1, locals, pc[1]);
 967           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
 968 
 969       CASE(_istore):
 970       CASE(_fstore):
 971           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
 972           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
 973 
 974       CASE(_lstore):
 975           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
 976           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
 977 
 978       CASE(_dstore):
 979           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
 980           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
 981 
 982       CASE(_wide): {
 983           uint16_t reg = Bytes::get_Java_u2(pc + 2);
 984 
 985           opcode = pc[1];
 986 
 987           // Wide and it's sub-bytecode are counted as separate instructions. If we
 988           // don't account for this here, the bytecode trace skips the next bytecode.
 989           DO_UPDATE_INSTRUCTION_COUNT(opcode);
 990 
 991           switch(opcode) {
 992               case Bytecodes::_aload:
 993                   VERIFY_OOP(LOCALS_OBJECT(reg));
 994                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
 995                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
 996 
 997               case Bytecodes::_iload:
 998               case Bytecodes::_fload:
 999                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1000                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1001 
1002               case Bytecodes::_lload:
1003                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1004                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1005 
1006               case Bytecodes::_dload:
1007                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1008                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1009 
1010               case Bytecodes::_astore:
1011                   astore(topOfStack, -1, locals, reg);
1012                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1013 
1014               case Bytecodes::_istore:
1015               case Bytecodes::_fstore:
1016                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1017                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1018 
1019               case Bytecodes::_lstore:
1020                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1021                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1022 
1023               case Bytecodes::_dstore:
1024                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1025                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1026 
1027               case Bytecodes::_iinc: {
1028                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1029                   // Be nice to see what this generates.... QQQ
1030                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1031                   UPDATE_PC_AND_CONTINUE(6);
1032               }
1033               case Bytecodes::_ret:
1034                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1035                   UPDATE_PC_AND_CONTINUE(0);
1036               default:
1037                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode");
1038           }
1039       }
1040 
1041 
1042 #undef  OPC_STORE_n
1043 #define OPC_STORE_n(num)                                                \
1044       CASE(_astore_##num):                                              \
1045           astore(topOfStack, -1, locals, num);                          \
1046           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1047       CASE(_istore_##num):                                              \
1048       CASE(_fstore_##num):                                              \
1049           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1050           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1051 
1052           OPC_STORE_n(0);
1053           OPC_STORE_n(1);
1054           OPC_STORE_n(2);
1055           OPC_STORE_n(3);
1056 
1057 #undef  OPC_DSTORE_n
1058 #define OPC_DSTORE_n(num)                                               \
1059       CASE(_dstore_##num):                                              \
1060           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1061           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1062       CASE(_lstore_##num):                                              \
1063           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1064           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1065 
1066           OPC_DSTORE_n(0);
1067           OPC_DSTORE_n(1);
1068           OPC_DSTORE_n(2);
1069           OPC_DSTORE_n(3);
1070 
1071           /* stack pop, dup, and insert opcodes */
1072 
1073 
1074       CASE(_pop):                /* Discard the top item on the stack */
1075           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1076 
1077 
1078       CASE(_pop2):               /* Discard the top 2 items on the stack */
1079           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1080 
1081 
1082       CASE(_dup):               /* Duplicate the top item on the stack */
1083           dup(topOfStack);
1084           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1085 
1086       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1087           dup2(topOfStack);
1088           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1089 
1090       CASE(_dup_x1):    /* insert top word two down */
1091           dup_x1(topOfStack);
1092           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1093 
1094       CASE(_dup_x2):    /* insert top word three down  */
1095           dup_x2(topOfStack);
1096           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1097 
1098       CASE(_dup2_x1):   /* insert top 2 slots three down */
1099           dup2_x1(topOfStack);
1100           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1101 
1102       CASE(_dup2_x2):   /* insert top 2 slots four down */
1103           dup2_x2(topOfStack);
1104           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1105 
1106       CASE(_swap): {        /* swap top two elements on the stack */
1107           swap(topOfStack);
1108           UPDATE_PC_AND_CONTINUE(1);
1109       }
1110 
1111           /* Perform various binary integer operations */
1112 
1113 #undef  OPC_INT_BINARY
1114 #define OPC_INT_BINARY(opcname, opname, test)                           \
1115       CASE(_i##opcname):                                                \
1116           if (test && (STACK_INT(-1) == 0)) {                           \
1117               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1118                             "/ by zero");                               \
1119           }                                                             \
1120           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1121                                       STACK_INT(-1)),                   \
1122                                       -2);                              \
1123           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1124       CASE(_l##opcname):                                                \
1125       {                                                                 \
1126           if (test) {                                                   \
1127             jlong l1 = STACK_LONG(-1);                                  \
1128             if (VMlongEqz(l1)) {                                        \
1129               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1130                             "/ by long zero");                          \
1131             }                                                           \
1132           }                                                             \
1133           /* First long at (-1,-2) next long at (-3,-4) */              \
1134           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1135                                         STACK_LONG(-1)),                \
1136                                         -3);                            \
1137           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1138       }
1139 
1140       OPC_INT_BINARY(add, Add, 0);
1141       OPC_INT_BINARY(sub, Sub, 0);
1142       OPC_INT_BINARY(mul, Mul, 0);
1143       OPC_INT_BINARY(and, And, 0);
1144       OPC_INT_BINARY(or,  Or,  0);
1145       OPC_INT_BINARY(xor, Xor, 0);
1146       OPC_INT_BINARY(div, Div, 1);
1147       OPC_INT_BINARY(rem, Rem, 1);
1148 
1149 
1150       /* Perform various binary floating number operations */
1151       /* On some machine/platforms/compilers div zero check can be implicit */
1152 
1153 #undef  OPC_FLOAT_BINARY
1154 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1155       CASE(_d##opcname): {                                                 \
1156           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1157                                             STACK_DOUBLE(-1)),             \
1158                                             -3);                           \
1159           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1160       }                                                                    \
1161       CASE(_f##opcname):                                                   \
1162           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1163                                           STACK_FLOAT(-1)),                \
1164                                           -2);                             \
1165           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1166 
1167 
1168      OPC_FLOAT_BINARY(add, Add);
1169      OPC_FLOAT_BINARY(sub, Sub);
1170      OPC_FLOAT_BINARY(mul, Mul);
1171      OPC_FLOAT_BINARY(div, Div);
1172      OPC_FLOAT_BINARY(rem, Rem);
1173 
1174       /* Shift operations
1175        * Shift left int and long: ishl, lshl
1176        * Logical shift right int and long w/zero extension: iushr, lushr
1177        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1178        */
1179 
1180 #undef  OPC_SHIFT_BINARY
1181 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1182       CASE(_i##opcname):                                                \
1183          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1184                                      STACK_INT(-1)),                    \
1185                                      -2);                               \
1186          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1187       CASE(_l##opcname):                                                \
1188       {                                                                 \
1189          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1190                                        STACK_INT(-1)),                  \
1191                                        -2);                             \
1192          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1193       }
1194 
1195       OPC_SHIFT_BINARY(shl, Shl);
1196       OPC_SHIFT_BINARY(shr, Shr);
1197       OPC_SHIFT_BINARY(ushr, Ushr);
1198 
1199      /* Increment local variable by constant */
1200       CASE(_iinc):
1201       {
1202           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1203           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1204           UPDATE_PC_AND_CONTINUE(3);
1205       }
1206 
1207      /* negate the value on the top of the stack */
1208 
1209       CASE(_ineg):
1210          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1211          UPDATE_PC_AND_CONTINUE(1);
1212 
1213       CASE(_fneg):
1214          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1215          UPDATE_PC_AND_CONTINUE(1);
1216 
1217       CASE(_lneg):
1218       {
1219          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1220          UPDATE_PC_AND_CONTINUE(1);
1221       }
1222 
1223       CASE(_dneg):
1224       {
1225          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1226          UPDATE_PC_AND_CONTINUE(1);
1227       }
1228 
1229       /* Conversion operations */
1230 
1231       CASE(_i2f):       /* convert top of stack int to float */
1232          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1233          UPDATE_PC_AND_CONTINUE(1);
1234 
1235       CASE(_i2l):       /* convert top of stack int to long */
1236       {
1237           // this is ugly QQQ
1238           jlong r = VMint2Long(STACK_INT(-1));
1239           MORE_STACK(-1); // Pop
1240           SET_STACK_LONG(r, 1);
1241 
1242           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1243       }
1244 
1245       CASE(_i2d):       /* convert top of stack int to double */
1246       {
1247           // this is ugly QQQ (why cast to jlong?? )
1248           jdouble r = (jlong)STACK_INT(-1);
1249           MORE_STACK(-1); // Pop
1250           SET_STACK_DOUBLE(r, 1);
1251 
1252           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1253       }
1254 
1255       CASE(_l2i):       /* convert top of stack long to int */
1256       {
1257           jint r = VMlong2Int(STACK_LONG(-1));
1258           MORE_STACK(-2); // Pop
1259           SET_STACK_INT(r, 0);
1260           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1261       }
1262 
1263       CASE(_l2f):   /* convert top of stack long to float */
1264       {
1265           jlong r = STACK_LONG(-1);
1266           MORE_STACK(-2); // Pop
1267           SET_STACK_FLOAT(VMlong2Float(r), 0);
1268           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1269       }
1270 
1271       CASE(_l2d):       /* convert top of stack long to double */
1272       {
1273           jlong r = STACK_LONG(-1);
1274           MORE_STACK(-2); // Pop
1275           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1276           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1277       }
1278 
1279       CASE(_f2i):  /* Convert top of stack float to int */
1280           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1281           UPDATE_PC_AND_CONTINUE(1);
1282 
1283       CASE(_f2l):  /* convert top of stack float to long */
1284       {
1285           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1286           MORE_STACK(-1); // POP
1287           SET_STACK_LONG(r, 1);
1288           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1289       }
1290 
1291       CASE(_f2d):  /* convert top of stack float to double */
1292       {
1293           jfloat f;
1294           jdouble r;
1295           f = STACK_FLOAT(-1);
1296           r = (jdouble) f;
1297           MORE_STACK(-1); // POP
1298           SET_STACK_DOUBLE(r, 1);
1299           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1300       }
1301 
1302       CASE(_d2i): /* convert top of stack double to int */
1303       {
1304           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1305           MORE_STACK(-2);
1306           SET_STACK_INT(r1, 0);
1307           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1308       }
1309 
1310       CASE(_d2f): /* convert top of stack double to float */
1311       {
1312           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1313           MORE_STACK(-2);
1314           SET_STACK_FLOAT(r1, 0);
1315           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1316       }
1317 
1318       CASE(_d2l): /* convert top of stack double to long */
1319       {
1320           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1321           MORE_STACK(-2);
1322           SET_STACK_LONG(r1, 1);
1323           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1324       }
1325 
1326       CASE(_i2b):
1327           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1328           UPDATE_PC_AND_CONTINUE(1);
1329 
1330       CASE(_i2c):
1331           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1332           UPDATE_PC_AND_CONTINUE(1);
1333 
1334       CASE(_i2s):
1335           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1336           UPDATE_PC_AND_CONTINUE(1);
1337 
1338       /* comparison operators */
1339 
1340 
1341 #define COMPARISON_OP(name, comparison)                                      \
1342       CASE(_if_icmp##name): {                                                \
1343           int skip = (STACK_INT(-2) comparison STACK_INT(-1))                \
1344                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1345           address branch_pc = pc;                                            \
1346           UPDATE_PC_AND_TOS(skip, -2);                                       \
1347           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1348           CONTINUE;                                                          \
1349       }                                                                      \
1350       CASE(_if##name): {                                                     \
1351           int skip = (STACK_INT(-1) comparison 0)                            \
1352                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1353           address branch_pc = pc;                                            \
1354           UPDATE_PC_AND_TOS(skip, -1);                                       \
1355           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1356           CONTINUE;                                                          \
1357       }
1358 
1359 #define COMPARISON_OP2(name, comparison)                                     \
1360       COMPARISON_OP(name, comparison)                                        \
1361       CASE(_if_acmp##name): {                                                \
1362           int skip = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1))          \
1363                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1364           address branch_pc = pc;                                            \
1365           UPDATE_PC_AND_TOS(skip, -2);                                       \
1366           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1367           CONTINUE;                                                          \
1368       }
1369 
1370 #define NULL_COMPARISON_NOT_OP(name)                                         \
1371       CASE(_if##name): {                                                     \
1372           int skip = (!(STACK_OBJECT(-1) == nullptr))                           \
1373                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1374           address branch_pc = pc;                                            \
1375           UPDATE_PC_AND_TOS(skip, -1);                                       \
1376           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1377           CONTINUE;                                                          \
1378       }
1379 
1380 #define NULL_COMPARISON_OP(name)                                             \
1381       CASE(_if##name): {                                                     \
1382           int skip = ((STACK_OBJECT(-1) == nullptr))                            \
1383                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1384           address branch_pc = pc;                                            \
1385           UPDATE_PC_AND_TOS(skip, -1);                                       \
1386           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1387           CONTINUE;                                                          \
1388       }
1389       COMPARISON_OP(lt, <);
1390       COMPARISON_OP(gt, >);
1391       COMPARISON_OP(le, <=);
1392       COMPARISON_OP(ge, >=);
1393       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1394       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1395       NULL_COMPARISON_OP(null);
1396       NULL_COMPARISON_NOT_OP(nonnull);
1397 
1398       /* Goto pc at specified offset in switch table. */
1399 
1400       CASE(_tableswitch): {
1401           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1402           int32_t  key  = STACK_INT(-1);
1403           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1404           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1405           int32_t  skip;
1406           key -= low;
1407           if (((uint32_t) key > (uint32_t)(high - low))) {
1408             skip = Bytes::get_Java_u4((address)&lpc[0]);
1409           } else {
1410             skip = Bytes::get_Java_u4((address)&lpc[key + 3]);
1411           }
1412           // Does this really need a full backedge check (osr)?
1413           address branch_pc = pc;
1414           UPDATE_PC_AND_TOS(skip, -1);
1415           DO_BACKEDGE_CHECKS(skip, branch_pc);
1416           CONTINUE;
1417       }
1418 
1419       /* Goto pc whose table entry matches specified key. */
1420 
1421       CASE(_lookupswitch): {
1422           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1423           int32_t  key  = STACK_INT(-1);
1424           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1425           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1426           while (--npairs >= 0) {
1427             lpc += 2;
1428             if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1429               skip = Bytes::get_Java_u4((address)&lpc[1]);
1430               break;
1431             }
1432           }
1433           address branch_pc = pc;
1434           UPDATE_PC_AND_TOS(skip, -1);
1435           DO_BACKEDGE_CHECKS(skip, branch_pc);
1436           CONTINUE;
1437       }
1438 
1439       CASE(_fcmpl):
1440       CASE(_fcmpg):
1441       {
1442           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1443                                         STACK_FLOAT(-1),
1444                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1445                         -2);
1446           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1447       }
1448 
1449       CASE(_dcmpl):
1450       CASE(_dcmpg):
1451       {
1452           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1453                                   STACK_DOUBLE(-1),
1454                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1455           MORE_STACK(-4); // Pop
1456           SET_STACK_INT(r, 0);
1457           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1458       }
1459 
1460       CASE(_lcmp):
1461       {
1462           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1463           MORE_STACK(-4);
1464           SET_STACK_INT(r, 0);
1465           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1466       }
1467 
1468 
1469       /* Return from a method */
1470 
1471       CASE(_areturn):
1472       CASE(_ireturn):
1473       CASE(_freturn):
1474       CASE(_lreturn):
1475       CASE(_dreturn):
1476       CASE(_return): {
1477           // Allow a safepoint before returning to frame manager.
1478           RETURN_SAFEPOINT;
1479           goto handle_return;
1480       }
1481 
1482       CASE(_return_register_finalizer): {
1483           oop rcvr = LOCALS_OBJECT(0);
1484           VERIFY_OOP(rcvr);
1485           if (rcvr->klass()->has_finalizer()) {
1486             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1487           }
1488           goto handle_return;
1489       }
1490 
1491       /* Array access byte-codes */
1492 
1493 #define ARRAY_INDEX_CHECK(arrObj, index)                                       \
1494       /* Two integers, the additional message, and the null-terminator */      \
1495       char message[2 * jintAsStringSize + 33];                                 \
1496       CHECK_NULL(arrObj);                                                      \
1497       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1498           jio_snprintf(message, sizeof(message),                               \
1499                   "Index %d out of bounds for length %d",                      \
1500                   index, arrObj->length());                                    \
1501           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1502                         message);                                              \
1503       }
1504 
1505       /* Every array access byte-code starts out like this */
1506 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1507 #define ARRAY_INTRO(arrayOff)                                                  \
1508       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1509       jint     index  = STACK_INT(arrayOff + 1);                               \
1510       ARRAY_INDEX_CHECK(arrObj, index)
1511 
1512       /* 32-bit loads. These handle conversion from < 32-bit types */
1513 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1514       {                                                                               \
1515           ARRAY_INTRO(-2);                                                            \
1516           (void)extra;                                                                \
1517           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1518                            -2);                                                       \
1519           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1520       }
1521 
1522       /* 64-bit loads */
1523 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1524       {                                                                                    \
1525           ARRAY_INTRO(-2);                                                                 \
1526           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1527           (void)extra;                                                                     \
1528           UPDATE_PC_AND_CONTINUE(1);                                                       \
1529       }
1530 
1531       CASE(_iaload):
1532           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1533       CASE(_faload):
1534           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1535       CASE(_aaload): {
1536           ARRAY_INTRO(-2);
1537           SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1538           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1539       }
1540       CASE(_baload):
1541           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1542       CASE(_caload):
1543           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1544       CASE(_saload):
1545           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1546       CASE(_laload):
1547           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1548       CASE(_daload):
1549           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1550 
1551       CASE(_fast_icaload): {
1552           // Custom fast access for iload,caload pair.
1553           arrayOop arrObj = (arrayOop) STACK_OBJECT(-1);
1554           jint index = LOCALS_INT(pc[1]);
1555           ARRAY_INDEX_CHECK(arrObj, index);
1556           SET_STACK_INT(*(jchar *)(((address) arrObj->base(T_CHAR)) + index * sizeof(jchar)), -1);
1557           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 0);
1558       }
1559 
1560       /* 32-bit stores. These handle conversion to < 32-bit types */
1561 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1562       {                                                                              \
1563           ARRAY_INTRO(-3);                                                           \
1564           (void)extra;                                                               \
1565           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1566           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1567       }
1568 
1569       /* 64-bit stores */
1570 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1571       {                                                                              \
1572           ARRAY_INTRO(-4);                                                           \
1573           (void)extra;                                                               \
1574           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1575           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1576       }
1577 
1578       CASE(_iastore):
1579           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1580       CASE(_fastore):
1581           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1582       /*
1583        * This one looks different because of the assignability check
1584        */
1585       CASE(_aastore): {
1586           oop rhsObject = STACK_OBJECT(-1);
1587           VERIFY_OOP(rhsObject);
1588           ARRAY_INTRO( -3);
1589           // arrObj, index are set
1590           if (rhsObject != nullptr) {
1591             /* Check assignability of rhsObject into arrObj */
1592             Klass* rhsKlass = rhsObject->klass(); // EBX (subclass)
1593             Klass* elemKlass = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1594             //
1595             // Check for compatibility. This check must not GC!!
1596             // Seems way more expensive now that we must dispatch
1597             //
1598             if (rhsKlass != elemKlass && !rhsKlass->is_subtype_of(elemKlass)) { // ebx->is...
1599               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "");
1600             }
1601           }
1602           ((objArrayOop) arrObj)->obj_at_put(index, rhsObject);
1603           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1604       }
1605       CASE(_bastore): {
1606           ARRAY_INTRO(-3);
1607           int item = STACK_INT(-1);
1608           // if it is a T_BOOLEAN array, mask the stored value to 0/1
1609           if (arrObj->klass() == Universe::boolArrayKlassObj()) {
1610             item &= 1;
1611           } else {
1612             assert(arrObj->klass() == Universe::byteArrayKlassObj(),
1613                    "should be byte array otherwise");
1614           }
1615           ((typeArrayOop)arrObj)->byte_at_put(index, item);
1616           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1617       }
1618       CASE(_castore):
1619           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1620       CASE(_sastore):
1621           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1622       CASE(_lastore):
1623           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1624       CASE(_dastore):
1625           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1626 
1627       CASE(_arraylength):
1628       {
1629           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1630           CHECK_NULL(ary);
1631           SET_STACK_INT(ary->length(), -1);
1632           UPDATE_PC_AND_CONTINUE(1);
1633       }
1634 
1635       /* monitorenter and monitorexit for locking/unlocking an object */
1636 
1637       CASE(_monitorenter): {
1638         oop lockee = STACK_OBJECT(-1);
1639         // derefing's lockee ought to provoke implicit null check
1640         CHECK_NULL(lockee);
1641         // find a free monitor or one already allocated for this object
1642         // if we find a matching object then we need a new monitor
1643         // since this is recursive enter
1644         BasicObjectLock* limit = istate->monitor_base();
1645         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1646         BasicObjectLock* entry = nullptr;
1647         while (most_recent != limit ) {
1648           if (most_recent->obj() == nullptr) entry = most_recent;
1649           else if (most_recent->obj() == lockee) break;
1650           most_recent++;
1651         }
1652         if (entry != nullptr) {
1653           entry->set_obj(lockee);
1654 
1655           // traditional lightweight locking
1656           markWord displaced = lockee->mark().set_unlocked();
1657           entry->lock()->set_displaced_header(displaced);
1658           bool call_vm = (LockingMode == LM_MONITOR);
1659           bool inc_monitor_count = true;
1660           if (call_vm || lockee->cas_set_mark(markWord::from_pointer(entry), displaced) != displaced) {
1661             // Is it simple recursive case?
1662             if (!call_vm && THREAD->is_lock_owned((address) displaced.clear_lock_bits().to_pointer())) {
1663               entry->lock()->set_displaced_header(markWord::from_pointer(nullptr));
1664             } else {
1665               inc_monitor_count = false;
1666               CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1667             }
1668           }
1669           if (inc_monitor_count) {
1670             THREAD->inc_held_monitor_count();
1671           }
1672           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1673         } else {
1674           istate->set_msg(more_monitors);
1675           UPDATE_PC_AND_RETURN(0); // Re-execute
1676         }
1677       }
1678 
1679       CASE(_monitorexit): {
1680         oop lockee = STACK_OBJECT(-1);
1681         CHECK_NULL(lockee);
1682         // derefing's lockee ought to provoke implicit null check
1683         // find our monitor slot
1684         BasicObjectLock* limit = istate->monitor_base();
1685         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1686         while (most_recent != limit ) {
1687           if ((most_recent)->obj() == lockee) {
1688             BasicLock* lock = most_recent->lock();
1689             markWord header = lock->displaced_header();
1690             most_recent->set_obj(nullptr);
1691 
1692             // If it isn't recursive we either must swap old header or call the runtime
1693             bool dec_monitor_count = true;
1694             bool call_vm = (LockingMode == LM_MONITOR);
1695             if (header.to_pointer() != nullptr || call_vm) {
1696               markWord old_header = markWord::encode(lock);
1697               if (call_vm || lockee->cas_set_mark(header, old_header) != old_header) {
1698                 // restore object for the slow case
1699                 most_recent->set_obj(lockee);
1700                 dec_monitor_count = false;
1701                 InterpreterRuntime::monitorexit(most_recent);
1702               }
1703             }
1704             if (dec_monitor_count) {
1705               THREAD->dec_held_monitor_count();
1706             }
1707             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1708           }
1709           most_recent++;
1710         }
1711         // Need to throw illegal monitor state exception
1712         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1713         ShouldNotReachHere();
1714       }
1715 
1716       /* All of the non-quick opcodes. */
1717 
1718       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1719        *  constant pool index in the instruction.
1720        */
1721       CASE(_getfield):
1722       CASE(_nofast_getfield):
1723       CASE(_getstatic):
1724         {
1725           u2 index;
1726           index = Bytes::get_native_u2(pc+1);
1727           ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
1728 
1729           // QQQ Need to make this as inlined as possible. Probably need to
1730           // split all the bytecode cases out so c++ compiler has a chance
1731           // for constant prop to fold everything possible away.
1732 
1733           // Interpreter runtime does not expect "nofast" opcodes,
1734           // prepare the vanilla opcode for it.
1735           Bytecodes::Code code = (Bytecodes::Code)opcode;
1736           if (code == Bytecodes::_nofast_getfield) {
1737             code = Bytecodes::_getfield;
1738           }
1739 
1740           if (!entry->is_resolved(code)) {
1741             CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, code),
1742                     handle_exception);
1743             entry = cp->resolved_field_entry_at(index);
1744           }
1745 
1746           oop obj;
1747           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1748             Klass* k = entry->field_holder();
1749             obj = k->java_mirror();
1750             MORE_STACK(1);  // Assume single slot push
1751           } else {
1752             obj = STACK_OBJECT(-1);
1753             CHECK_NULL(obj);
1754             // Check if we can rewrite non-volatile _getfield to one of the _fast_Xgetfield.
1755             if (REWRITE_BYTECODES && !entry->is_volatile() &&
1756                   ((Bytecodes::Code)opcode != Bytecodes::_nofast_getfield)) {
1757               // Rewrite current BC to _fast_Xgetfield.
1758               REWRITE_AT_PC(fast_get_type((TosState)(entry->tos_state())));
1759             }
1760           }
1761 
1762           MAYBE_POST_FIELD_ACCESS(obj);
1763 
1764           //
1765           // Now store the result on the stack
1766           //
1767           TosState tos_type = (TosState)(entry->tos_state());
1768           int field_offset = entry->field_offset();
1769           if (entry->is_volatile()) {
1770             if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
1771               OrderAccess::fence();
1772             }
1773             switch (tos_type) {
1774               case btos:
1775               case ztos:
1776                 SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
1777                 break;
1778               case ctos:
1779                 SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
1780                 break;
1781               case stos:
1782                 SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
1783                 break;
1784               case itos:
1785                 SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
1786                 break;
1787               case ftos:
1788                 SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
1789                 break;
1790               case ltos:
1791                 SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
1792                 MORE_STACK(1);
1793                 break;
1794               case dtos:
1795                 SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
1796                 MORE_STACK(1);
1797                 break;
1798               case atos: {
1799                 oop val = obj->obj_field_acquire(field_offset);
1800                 VERIFY_OOP(val);
1801                 SET_STACK_OBJECT(val, -1);
1802                 break;
1803               }
1804               default:
1805                 ShouldNotReachHere();
1806             }
1807           } else {
1808             switch (tos_type) {
1809               case btos:
1810               case ztos:
1811                 SET_STACK_INT(obj->byte_field(field_offset), -1);
1812                 break;
1813               case ctos:
1814                 SET_STACK_INT(obj->char_field(field_offset), -1);
1815                 break;
1816               case stos:
1817                 SET_STACK_INT(obj->short_field(field_offset), -1);
1818                 break;
1819               case itos:
1820                 SET_STACK_INT(obj->int_field(field_offset), -1);
1821                 break;
1822               case ftos:
1823                 SET_STACK_FLOAT(obj->float_field(field_offset), -1);
1824                 break;
1825               case ltos:
1826                 SET_STACK_LONG(obj->long_field(field_offset), 0);
1827                 MORE_STACK(1);
1828                 break;
1829               case dtos:
1830                 SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
1831                 MORE_STACK(1);
1832                 break;
1833               case atos: {
1834                 oop val = obj->obj_field(field_offset);
1835                 VERIFY_OOP(val);
1836                 SET_STACK_OBJECT(val, -1);
1837                 break;
1838               }
1839               default:
1840                 ShouldNotReachHere();
1841             }
1842           }
1843 
1844           UPDATE_PC_AND_CONTINUE(3);
1845         }
1846 
1847       CASE(_putfield):
1848       CASE(_nofast_putfield):
1849       CASE(_putstatic):
1850         {
1851           u2 index = Bytes::get_native_u2(pc+1);
1852           ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
1853 
1854           // Interpreter runtime does not expect "nofast" opcodes,
1855           // prepare the vanilla opcode for it.
1856           Bytecodes::Code code = (Bytecodes::Code)opcode;
1857           if (code == Bytecodes::_nofast_putfield) {
1858             code = Bytecodes::_putfield;
1859           }
1860 
1861           if (!entry->is_resolved(code)) {
1862             CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, code),
1863                     handle_exception);
1864             entry = cp->resolved_field_entry_at(index);
1865           }
1866 
1867           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
1868           // out so c++ compiler has a chance for constant prop to fold everything possible away.
1869 
1870           oop obj;
1871           int count;
1872           TosState tos_type = (TosState)(entry->tos_state());
1873 
1874           count = -1;
1875           if (tos_type == ltos || tos_type == dtos) {
1876             --count;
1877           }
1878           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
1879             Klass* k = entry->field_holder();
1880             obj = k->java_mirror();
1881           } else {
1882             --count;
1883             obj = STACK_OBJECT(count);
1884             CHECK_NULL(obj);
1885 
1886             // Check if we can rewrite non-volatile _putfield to one of the _fast_Xputfield.
1887             if (REWRITE_BYTECODES && !entry->is_volatile() &&
1888                   ((Bytecodes::Code)opcode != Bytecodes::_nofast_putfield)) {
1889               // Rewrite current BC to _fast_Xputfield.
1890               REWRITE_AT_PC(fast_put_type((TosState)(entry->tos_state())));
1891             }
1892           }
1893 
1894           MAYBE_POST_FIELD_MODIFICATION(obj);
1895 
1896           //
1897           // Now store the result
1898           //
1899           int field_offset = entry->field_offset();
1900           if (entry->is_volatile()) {
1901             switch (tos_type) {
1902               case ztos:
1903                 obj->release_byte_field_put(field_offset, (STACK_INT(-1) & 1)); // only store LSB
1904                 break;
1905               case btos:
1906                 obj->release_byte_field_put(field_offset, STACK_INT(-1));
1907                 break;
1908               case ctos:
1909                 obj->release_char_field_put(field_offset, STACK_INT(-1));
1910                 break;
1911               case stos:
1912                 obj->release_short_field_put(field_offset, STACK_INT(-1));
1913                 break;
1914               case itos:
1915                 obj->release_int_field_put(field_offset, STACK_INT(-1));
1916                 break;
1917               case ftos:
1918                 obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
1919                 break;
1920               case ltos:
1921                 obj->release_long_field_put(field_offset, STACK_LONG(-1));
1922                 break;
1923               case dtos:
1924                 obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
1925                 break;
1926               case atos: {
1927                 oop val = STACK_OBJECT(-1);
1928                 VERIFY_OOP(val);
1929                 obj->release_obj_field_put(field_offset, val);
1930                 break;
1931               }
1932               default:
1933                 ShouldNotReachHere();
1934             }
1935             OrderAccess::storeload();
1936           } else {
1937             switch (tos_type) {
1938               case ztos:
1939                 obj->byte_field_put(field_offset, (STACK_INT(-1) & 1)); // only store LSB
1940                 break;
1941               case btos:
1942                 obj->byte_field_put(field_offset, STACK_INT(-1));
1943                 break;
1944               case ctos:
1945                 obj->char_field_put(field_offset, STACK_INT(-1));
1946                 break;
1947               case stos:
1948                 obj->short_field_put(field_offset, STACK_INT(-1));
1949                 break;
1950               case itos:
1951                 obj->int_field_put(field_offset, STACK_INT(-1));
1952                 break;
1953               case ftos:
1954                 obj->float_field_put(field_offset, STACK_FLOAT(-1));
1955                 break;
1956               case ltos:
1957                 obj->long_field_put(field_offset, STACK_LONG(-1));
1958                 break;
1959               case dtos:
1960                 obj->double_field_put(field_offset, STACK_DOUBLE(-1));
1961                 break;
1962               case atos: {
1963                 oop val = STACK_OBJECT(-1);
1964                 VERIFY_OOP(val);
1965                 obj->obj_field_put(field_offset, val);
1966                 break;
1967               }
1968               default:
1969                 ShouldNotReachHere();
1970             }
1971           }
1972 
1973           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
1974         }
1975 
1976       CASE(_new): {
1977         u2 index = Bytes::get_Java_u2(pc+1);
1978 
1979         // Attempt TLAB allocation first.
1980         //
1981         // To do this, we need to make sure:
1982         //   - klass is initialized
1983         //   - klass can be fastpath allocated (e.g. does not have finalizer)
1984         //   - TLAB accepts the allocation
1985         ConstantPool* constants = istate->method()->constants();
1986         if (UseTLAB && !constants->tag_at(index).is_unresolved_klass()) {
1987           Klass* entry = constants->resolved_klass_at(index);
1988           InstanceKlass* ik = InstanceKlass::cast(entry);
1989           if (ik->is_initialized() && ik->can_be_fastpath_allocated()) {
1990             size_t obj_size = ik->size_helper();
1991             HeapWord* result = THREAD->tlab().allocate(obj_size);
1992             if (result != nullptr) {
1993               // Initialize object field block:
1994               //   - if TLAB is pre-zeroed, we can skip this path
1995               //   - in debug mode, ThreadLocalAllocBuffer::allocate mangles
1996               //     this area, and we still need to initialize it
1997               if (DEBUG_ONLY(true ||) !ZeroTLAB) {
1998                 size_t hdr_size = oopDesc::header_size();
1999                 Copy::fill_to_words(result + hdr_size, obj_size - hdr_size, 0);
2000               }
2001 
2002               // Initialize header, mirrors MemAllocator.
2003 #ifdef _LP64
2004               oopDesc::release_set_mark(result, ik->prototype_header());
2005 #else
2006               oopDesc::set_mark(result, markWord::prototype());
2007               oopDesc::release_set_klass(result, ik);
2008 #endif
2009               oop obj = cast_to_oop(result);
2010 
2011               // Must prevent reordering of stores for object initialization
2012               // with stores that publish the new object.
2013               OrderAccess::storestore();
2014               SET_STACK_OBJECT(obj, 0);
2015               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2016             }
2017           }
2018         }
2019         // Slow case allocation
2020         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2021                 handle_exception);
2022         // Must prevent reordering of stores for object initialization
2023         // with stores that publish the new object.
2024         OrderAccess::storestore();
2025         SET_STACK_OBJECT(THREAD->vm_result(), 0);
2026         THREAD->set_vm_result(nullptr);
2027         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2028       }
2029       CASE(_anewarray): {
2030         u2 index = Bytes::get_Java_u2(pc+1);
2031         jint size = STACK_INT(-1);
2032         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2033                 handle_exception);
2034         // Must prevent reordering of stores for object initialization
2035         // with stores that publish the new object.
2036         OrderAccess::storestore();
2037         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2038         THREAD->set_vm_result(nullptr);
2039         UPDATE_PC_AND_CONTINUE(3);
2040       }
2041       CASE(_multianewarray): {
2042         jint dims = *(pc+3);
2043         jint size = STACK_INT(-1);
2044         // stack grows down, dimensions are up!
2045         jint *dimarray =
2046                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2047                                       Interpreter::stackElementWords-1];
2048         //adjust pointer to start of stack element
2049         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2050                 handle_exception);
2051         // Must prevent reordering of stores for object initialization
2052         // with stores that publish the new object.
2053         OrderAccess::storestore();
2054         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2055         THREAD->set_vm_result(nullptr);
2056         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2057       }
2058       CASE(_checkcast):
2059           if (STACK_OBJECT(-1) != nullptr) {
2060             VERIFY_OOP(STACK_OBJECT(-1));
2061             u2 index = Bytes::get_Java_u2(pc+1);
2062             // Constant pool may have actual klass or unresolved klass. If it is
2063             // unresolved we must resolve it.
2064             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2065               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2066             }
2067             Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index);
2068             Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx
2069             //
2070             // Check for compatibility. This check must not GC!!
2071             // Seems way more expensive now that we must dispatch.
2072             //
2073             if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) {
2074               ResourceMark rm(THREAD);
2075               char* message = SharedRuntime::generate_class_cast_message(
2076                 objKlass, klassOf);
2077               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message);
2078             }
2079           }
2080           UPDATE_PC_AND_CONTINUE(3);
2081 
2082       CASE(_instanceof):
2083           if (STACK_OBJECT(-1) == nullptr) {
2084             SET_STACK_INT(0, -1);
2085           } else {
2086             VERIFY_OOP(STACK_OBJECT(-1));
2087             u2 index = Bytes::get_Java_u2(pc+1);
2088             // Constant pool may have actual klass or unresolved klass. If it is
2089             // unresolved we must resolve it.
2090             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2091               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2092             }
2093             Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index);
2094             Klass* objKlass = STACK_OBJECT(-1)->klass();
2095             //
2096             // Check for compatibility. This check must not GC!!
2097             // Seems way more expensive now that we must dispatch.
2098             //
2099             if ( objKlass == klassOf || objKlass->is_subtype_of(klassOf)) {
2100               SET_STACK_INT(1, -1);
2101             } else {
2102               SET_STACK_INT(0, -1);
2103             }
2104           }
2105           UPDATE_PC_AND_CONTINUE(3);
2106 
2107       CASE(_ldc_w):
2108       CASE(_ldc):
2109         {
2110           u2 index;
2111           bool wide = false;
2112           int incr = 2; // frequent case
2113           if (opcode == Bytecodes::_ldc) {
2114             index = pc[1];
2115           } else {
2116             index = Bytes::get_Java_u2(pc+1);
2117             incr = 3;
2118             wide = true;
2119           }
2120 
2121           ConstantPool* constants = METHOD->constants();
2122           switch (constants->tag_at(index).value()) {
2123           case JVM_CONSTANT_Integer:
2124             SET_STACK_INT(constants->int_at(index), 0);
2125             break;
2126 
2127           case JVM_CONSTANT_Float:
2128             SET_STACK_FLOAT(constants->float_at(index), 0);
2129             break;
2130 
2131           case JVM_CONSTANT_String:
2132             {
2133               oop result = constants->resolved_reference_at(index);
2134               if (result == nullptr) {
2135                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2136                 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2137                 THREAD->set_vm_result(nullptr);
2138               } else {
2139                 VERIFY_OOP(result);
2140                 SET_STACK_OBJECT(result, 0);
2141               }
2142             break;
2143             }
2144 
2145           case JVM_CONSTANT_Class:
2146             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2147             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2148             break;
2149 
2150           case JVM_CONSTANT_UnresolvedClass:
2151           case JVM_CONSTANT_UnresolvedClassInError:
2152             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2153             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2154             THREAD->set_vm_result(nullptr);
2155             break;
2156 
2157           case JVM_CONSTANT_Dynamic:
2158           case JVM_CONSTANT_DynamicInError:
2159             {
2160               CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2161               oop result = THREAD->vm_result();
2162               VERIFY_OOP(result);
2163 
2164               jvalue value;
2165               BasicType type = java_lang_boxing_object::get_value(result, &value);
2166               switch (type) {
2167               case T_FLOAT:   SET_STACK_FLOAT(value.f, 0); break;
2168               case T_INT:     SET_STACK_INT(value.i, 0); break;
2169               case T_SHORT:   SET_STACK_INT(value.s, 0); break;
2170               case T_BYTE:    SET_STACK_INT(value.b, 0); break;
2171               case T_CHAR:    SET_STACK_INT(value.c, 0); break;
2172               case T_BOOLEAN: SET_STACK_INT(value.z, 0); break;
2173               default:  ShouldNotReachHere();
2174               }
2175 
2176               break;
2177             }
2178 
2179           default:  ShouldNotReachHere();
2180           }
2181           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2182         }
2183 
2184       CASE(_ldc2_w):
2185         {
2186           u2 index = Bytes::get_Java_u2(pc+1);
2187 
2188           ConstantPool* constants = METHOD->constants();
2189           switch (constants->tag_at(index).value()) {
2190 
2191           case JVM_CONSTANT_Long:
2192              SET_STACK_LONG(constants->long_at(index), 1);
2193             break;
2194 
2195           case JVM_CONSTANT_Double:
2196              SET_STACK_DOUBLE(constants->double_at(index), 1);
2197             break;
2198 
2199           case JVM_CONSTANT_Dynamic:
2200           case JVM_CONSTANT_DynamicInError:
2201             {
2202               CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2203               oop result = THREAD->vm_result();
2204               VERIFY_OOP(result);
2205 
2206               jvalue value;
2207               BasicType type = java_lang_boxing_object::get_value(result, &value);
2208               switch (type) {
2209               case T_DOUBLE: SET_STACK_DOUBLE(value.d, 1); break;
2210               case T_LONG:   SET_STACK_LONG(value.j, 1); break;
2211               default:  ShouldNotReachHere();
2212               }
2213 
2214               break;
2215             }
2216 
2217           default:  ShouldNotReachHere();
2218           }
2219           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2220         }
2221 
2222       CASE(_fast_aldc_w):
2223       CASE(_fast_aldc): {
2224         u2 index;
2225         int incr;
2226         if (opcode == Bytecodes::_fast_aldc) {
2227           index = pc[1];
2228           incr = 2;
2229         } else {
2230           index = Bytes::get_native_u2(pc+1);
2231           incr = 3;
2232         }
2233 
2234         // We are resolved if the resolved_references array contains a non-null object (CallSite, etc.)
2235         // This kind of CP cache entry does not need to match the flags byte, because
2236         // there is a 1-1 relation between bytecode type and CP entry type.
2237         ConstantPool* constants = METHOD->constants();
2238         oop result = constants->resolved_reference_at(index);
2239         if (result == nullptr) {
2240           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2241                   handle_exception);
2242           result = THREAD->vm_result();
2243         }
2244         if (result == Universe::the_null_sentinel())
2245           result = nullptr;
2246 
2247         VERIFY_OOP(result);
2248         SET_STACK_OBJECT(result, 0);
2249         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2250       }
2251 
2252       CASE(_invokedynamic): {
2253         u4 index = cp->constant_pool()->decode_invokedynamic_index(Bytes::get_native_u4(pc+1)); // index is originally negative
2254         ResolvedIndyEntry* indy_info = cp->resolved_indy_entry_at(index);
2255         if (!indy_info->is_resolved()) {
2256           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2257                   handle_exception);
2258           indy_info = cp->resolved_indy_entry_at(index); // get resolved entry
2259         }
2260         Method* method = indy_info->method();
2261         if (VerifyOops) method->verify();
2262 
2263         if (indy_info->has_appendix()) {
2264           constantPoolHandle cp(THREAD, METHOD->constants());
2265           SET_STACK_OBJECT(cp->resolved_reference_from_indy(index), 0);
2266           MORE_STACK(1);
2267         }
2268 
2269         istate->set_msg(call_method);
2270         istate->set_callee(method);
2271         istate->set_callee_entry_point(method->from_interpreted_entry());
2272         istate->set_bcp_advance(5);
2273 
2274         UPDATE_PC_AND_RETURN(0); // I'll be back...
2275       }
2276 
2277       CASE(_invokehandle): {
2278 
2279         u2 index = Bytes::get_native_u2(pc+1);
2280         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2281 
2282         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2283           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2284                   handle_exception);
2285           cache = cp->entry_at(index);
2286         }
2287 
2288         Method* method = cache->f1_as_method();
2289         if (VerifyOops) method->verify();
2290 
2291         if (cache->has_appendix()) {
2292           constantPoolHandle cp(THREAD, METHOD->constants());
2293           SET_STACK_OBJECT(cache->appendix_if_resolved(cp), 0);
2294           MORE_STACK(1);
2295         }
2296 
2297         istate->set_msg(call_method);
2298         istate->set_callee(method);
2299         istate->set_callee_entry_point(method->from_interpreted_entry());
2300         istate->set_bcp_advance(3);
2301 
2302         UPDATE_PC_AND_RETURN(0); // I'll be back...
2303       }
2304 
2305       CASE(_invokeinterface): {
2306         u2 index = Bytes::get_native_u2(pc+1);
2307 
2308         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2309         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2310 
2311         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2312         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2313           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2314                   handle_exception);
2315           cache = cp->entry_at(index);
2316         }
2317 
2318         istate->set_msg(call_method);
2319 
2320         // Special case of invokeinterface called for virtual method of
2321         // java.lang.Object.  See cpCache.cpp for details.
2322         Method* callee = nullptr;
2323         if (cache->is_forced_virtual()) {
2324           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2325           if (cache->is_vfinal()) {
2326             callee = cache->f2_as_vfinal_method();
2327           } else {
2328             // Get receiver.
2329             int parms = cache->parameter_size();
2330             // Same comments as invokevirtual apply here.
2331             oop rcvr = STACK_OBJECT(-parms);
2332             VERIFY_OOP(rcvr);
2333             Klass* rcvrKlass = rcvr->klass();
2334             callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2335           }
2336         } else if (cache->is_vfinal()) {
2337           // private interface method invocations
2338           //
2339           // Ensure receiver class actually implements
2340           // the resolved interface class. The link resolver
2341           // does this, but only for the first time this
2342           // interface is being called.
2343           int parms = cache->parameter_size();
2344           oop rcvr = STACK_OBJECT(-parms);
2345           CHECK_NULL(rcvr);
2346           Klass* recv_klass = rcvr->klass();
2347           Klass* resolved_klass = cache->f1_as_klass();
2348           if (!recv_klass->is_subtype_of(resolved_klass)) {
2349             ResourceMark rm(THREAD);
2350             char buf[200];
2351             jio_snprintf(buf, sizeof(buf), "Class %s does not implement the requested interface %s",
2352               recv_klass->external_name(),
2353               resolved_klass->external_name());
2354             VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), buf);
2355           }
2356           callee = cache->f2_as_vfinal_method();
2357         }
2358         if (callee != nullptr) {
2359           istate->set_callee(callee);
2360           istate->set_callee_entry_point(callee->from_interpreted_entry());
2361           if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) {
2362             istate->set_callee_entry_point(callee->interpreter_entry());
2363           }
2364           istate->set_bcp_advance(5);
2365           UPDATE_PC_AND_RETURN(0); // I'll be back...
2366         }
2367 
2368         // this could definitely be cleaned up QQQ
2369         Method *interface_method = cache->f2_as_interface_method();
2370         InstanceKlass* iclass = interface_method->method_holder();
2371 
2372         // get receiver
2373         int parms = cache->parameter_size();
2374         oop rcvr = STACK_OBJECT(-parms);
2375         CHECK_NULL(rcvr);
2376         InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2377 
2378         // Receiver subtype check against resolved interface klass (REFC).
2379         {
2380           Klass* refc = cache->f1_as_klass();
2381           itableOffsetEntry* scan;
2382           for (scan = (itableOffsetEntry*) int2->start_of_itable();
2383                scan->interface_klass() != nullptr;
2384                scan++) {
2385             if (scan->interface_klass() == refc) {
2386               break;
2387             }
2388           }
2389           // Check that the entry is non-null.  A null entry means
2390           // that the receiver class doesn't implement the
2391           // interface, and wasn't the same as when the caller was
2392           // compiled.
2393           if (scan->interface_klass() == nullptr) {
2394             VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "");
2395           }
2396         }
2397 
2398         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2399         int i;
2400         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2401           if (ki->interface_klass() == iclass) break;
2402         }
2403         // If the interface isn't found, this class doesn't implement this
2404         // interface. The link resolver checks this but only for the first
2405         // time this interface is called.
2406         if (i == int2->itable_length()) {
2407           CALL_VM(InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose(THREAD, rcvr->klass(), iclass),
2408                   handle_exception);
2409         }
2410         int mindex = interface_method->itable_index();
2411 
2412         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2413         callee = im[mindex].method();
2414         if (callee == nullptr) {
2415           CALL_VM(InterpreterRuntime::throw_AbstractMethodErrorVerbose(THREAD, rcvr->klass(), interface_method),
2416                   handle_exception);
2417         }
2418 
2419         istate->set_callee(callee);
2420         istate->set_callee_entry_point(callee->from_interpreted_entry());
2421         if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) {
2422           istate->set_callee_entry_point(callee->interpreter_entry());
2423         }
2424         istate->set_bcp_advance(5);
2425         UPDATE_PC_AND_RETURN(0); // I'll be back...
2426       }
2427 
2428       CASE(_invokevirtual):
2429       CASE(_invokespecial):
2430       CASE(_invokestatic): {
2431         u2 index = Bytes::get_native_u2(pc+1);
2432 
2433         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2434         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2435         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2436 
2437         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2438           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2439                   handle_exception);
2440           cache = cp->entry_at(index);
2441         }
2442 
2443         istate->set_msg(call_method);
2444         {
2445           Method* callee;
2446           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2447             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2448             if (cache->is_vfinal()) {
2449               callee = cache->f2_as_vfinal_method();
2450               if (REWRITE_BYTECODES && !UseSharedSpaces && !Arguments::is_dumping_archive()) {
2451                 // Rewrite to _fast_invokevfinal.
2452                 REWRITE_AT_PC(Bytecodes::_fast_invokevfinal);
2453               }
2454             } else {
2455               // get receiver
2456               int parms = cache->parameter_size();
2457               // this works but needs a resourcemark and seems to create a vtable on every call:
2458               // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2459               //
2460               // this fails with an assert
2461               // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2462               // but this works
2463               oop rcvr = STACK_OBJECT(-parms);
2464               VERIFY_OOP(rcvr);
2465               Klass* rcvrKlass = rcvr->klass();
2466               /*
2467                 Executing this code in java.lang.String:
2468                     public String(char value[]) {
2469                           this.count = value.length;
2470                           this.value = (char[])value.clone();
2471                      }
2472 
2473                  a find on rcvr->klass() reports:
2474                  {type array char}{type array class}
2475                   - klass: {other class}
2476 
2477                   but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2478                   because rcvr->klass()->is_instance_klass() == 0
2479                   However it seems to have a vtable in the right location. Huh?
2480                   Because vtables have the same offset for ArrayKlass and InstanceKlass.
2481               */
2482               callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2483             }
2484           } else {
2485             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2486               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2487             }
2488             callee = cache->f1_as_method();
2489           }
2490 
2491           istate->set_callee(callee);
2492           istate->set_callee_entry_point(callee->from_interpreted_entry());
2493           if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) {
2494             istate->set_callee_entry_point(callee->interpreter_entry());
2495           }
2496           istate->set_bcp_advance(3);
2497           UPDATE_PC_AND_RETURN(0); // I'll be back...
2498         }
2499       }
2500 
2501       /* Allocate memory for a new java object. */
2502 
2503       CASE(_newarray): {
2504         BasicType atype = (BasicType) *(pc+1);
2505         jint size = STACK_INT(-1);
2506         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2507                 handle_exception);
2508         // Must prevent reordering of stores for object initialization
2509         // with stores that publish the new object.
2510         OrderAccess::storestore();
2511         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2512         THREAD->set_vm_result(nullptr);
2513 
2514         UPDATE_PC_AND_CONTINUE(2);
2515       }
2516 
2517       /* Throw an exception. */
2518 
2519       CASE(_athrow): {
2520           oop except_oop = STACK_OBJECT(-1);
2521           CHECK_NULL(except_oop);
2522           // set pending_exception so we use common code
2523           THREAD->set_pending_exception(except_oop, nullptr, 0);
2524           goto handle_exception;
2525       }
2526 
2527       /* goto and jsr. They are exactly the same except jsr pushes
2528        * the address of the next instruction first.
2529        */
2530 
2531       CASE(_jsr): {
2532           /* push bytecode index on stack */
2533           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2534           MORE_STACK(1);
2535           /* FALL THROUGH */
2536       }
2537 
2538       CASE(_goto):
2539       {
2540           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2541           address branch_pc = pc;
2542           UPDATE_PC(offset);
2543           DO_BACKEDGE_CHECKS(offset, branch_pc);
2544           CONTINUE;
2545       }
2546 
2547       CASE(_jsr_w): {
2548           /* push return address on the stack */
2549           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2550           MORE_STACK(1);
2551           /* FALL THROUGH */
2552       }
2553 
2554       CASE(_goto_w):
2555       {
2556           int32_t offset = Bytes::get_Java_u4(pc + 1);
2557           address branch_pc = pc;
2558           UPDATE_PC(offset);
2559           DO_BACKEDGE_CHECKS(offset, branch_pc);
2560           CONTINUE;
2561       }
2562 
2563       /* return from a jsr or jsr_w */
2564 
2565       CASE(_ret): {
2566           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2567           UPDATE_PC_AND_CONTINUE(0);
2568       }
2569 
2570       /* debugger breakpoint */
2571 
2572       CASE(_breakpoint): {
2573           Bytecodes::Code original_bytecode;
2574           DECACHE_STATE();
2575           SET_LAST_JAVA_FRAME();
2576           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2577                               METHOD, pc);
2578           RESET_LAST_JAVA_FRAME();
2579           CACHE_STATE();
2580           if (THREAD->has_pending_exception()) goto handle_exception;
2581             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2582                                                     handle_exception);
2583 
2584           opcode = (jubyte)original_bytecode;
2585           goto opcode_switch;
2586       }
2587 
2588       CASE(_fast_agetfield): {
2589         u2 index = Bytes::get_native_u2(pc+1);
2590         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2591         int field_offset = entry->field_offset();
2592 
2593         oop obj = STACK_OBJECT(-1);
2594         CHECK_NULL(obj);
2595 
2596         MAYBE_POST_FIELD_ACCESS(obj);
2597 
2598         VERIFY_OOP(obj->obj_field(field_offset));
2599         SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
2600         UPDATE_PC_AND_CONTINUE(3);
2601       }
2602 
2603       CASE(_fast_bgetfield): {
2604         u2 index = Bytes::get_native_u2(pc+1);
2605         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2606         int field_offset = entry->field_offset();
2607 
2608         oop obj = STACK_OBJECT(-1);
2609         CHECK_NULL(obj);
2610 
2611         MAYBE_POST_FIELD_ACCESS(obj);
2612 
2613         SET_STACK_INT(obj->byte_field(field_offset), -1);
2614         UPDATE_PC_AND_CONTINUE(3);
2615       }
2616 
2617       CASE(_fast_cgetfield): {
2618         u2 index = Bytes::get_native_u2(pc+1);
2619         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2620         int field_offset = entry->field_offset();
2621 
2622         oop obj = STACK_OBJECT(-1);
2623         CHECK_NULL(obj);
2624 
2625         MAYBE_POST_FIELD_ACCESS(obj);
2626 
2627         SET_STACK_INT(obj->char_field(field_offset), -1);
2628         UPDATE_PC_AND_CONTINUE(3);
2629       }
2630 
2631       CASE(_fast_dgetfield): {
2632         u2 index = Bytes::get_native_u2(pc+1);
2633         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2634         int field_offset = entry->field_offset();
2635 
2636         oop obj = STACK_OBJECT(-1);
2637         CHECK_NULL(obj);
2638 
2639         MAYBE_POST_FIELD_ACCESS(obj);
2640 
2641         SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
2642         MORE_STACK(1);
2643         UPDATE_PC_AND_CONTINUE(3);
2644       }
2645 
2646       CASE(_fast_fgetfield): {
2647         u2 index = Bytes::get_native_u2(pc+1);
2648         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2649         int field_offset = entry->field_offset();
2650 
2651         oop obj = STACK_OBJECT(-1);
2652         CHECK_NULL(obj);
2653 
2654         MAYBE_POST_FIELD_ACCESS(obj);
2655 
2656         SET_STACK_FLOAT(obj->float_field(field_offset), -1);
2657         UPDATE_PC_AND_CONTINUE(3);
2658       }
2659 
2660       CASE(_fast_igetfield): {
2661         u2 index = Bytes::get_native_u2(pc+1);
2662         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2663         int field_offset = entry->field_offset();
2664 
2665         oop obj = STACK_OBJECT(-1);
2666         CHECK_NULL(obj);
2667 
2668         MAYBE_POST_FIELD_ACCESS(obj);
2669 
2670         SET_STACK_INT(obj->int_field(field_offset), -1);
2671         UPDATE_PC_AND_CONTINUE(3);
2672       }
2673 
2674       CASE(_fast_lgetfield): {
2675         u2 index = Bytes::get_native_u2(pc+1);
2676         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2677         int field_offset = entry->field_offset();
2678 
2679         oop obj = STACK_OBJECT(-1);
2680         CHECK_NULL(obj);
2681 
2682         MAYBE_POST_FIELD_ACCESS(obj);
2683 
2684         SET_STACK_LONG(obj->long_field(field_offset), 0);
2685         MORE_STACK(1);
2686         UPDATE_PC_AND_CONTINUE(3);
2687       }
2688 
2689       CASE(_fast_sgetfield): {
2690         u2 index = Bytes::get_native_u2(pc+1);
2691         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2692         int field_offset = entry->field_offset();
2693 
2694         oop obj = STACK_OBJECT(-1);
2695         CHECK_NULL(obj);
2696 
2697         MAYBE_POST_FIELD_ACCESS(obj);
2698 
2699         SET_STACK_INT(obj->short_field(field_offset), -1);
2700         UPDATE_PC_AND_CONTINUE(3);
2701       }
2702 
2703       CASE(_fast_aputfield): {
2704         u2 index = Bytes::get_native_u2(pc+1);
2705         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2706 
2707         oop obj = STACK_OBJECT(-2);
2708         CHECK_NULL(obj);
2709 
2710         MAYBE_POST_FIELD_MODIFICATION(obj);
2711 
2712         int field_offset = entry->field_offset();
2713         obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2714 
2715         UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2716       }
2717 
2718       CASE(_fast_bputfield): {
2719         u2 index = Bytes::get_native_u2(pc+1);
2720         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2721 
2722         oop obj = STACK_OBJECT(-2);
2723         CHECK_NULL(obj);
2724 
2725         MAYBE_POST_FIELD_MODIFICATION(obj);
2726 
2727         int field_offset = entry->field_offset();
2728         obj->byte_field_put(field_offset, STACK_INT(-1));
2729 
2730         UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2731       }
2732 
2733       CASE(_fast_zputfield): {
2734         u2 index = Bytes::get_native_u2(pc+1);
2735         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2736 
2737         oop obj = STACK_OBJECT(-2);
2738         CHECK_NULL(obj);
2739 
2740         MAYBE_POST_FIELD_MODIFICATION(obj);
2741 
2742         int field_offset = entry->field_offset();
2743         obj->byte_field_put(field_offset, (STACK_INT(-1) & 1)); // only store LSB
2744 
2745         UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2746       }
2747 
2748       CASE(_fast_cputfield): {
2749         u2 index = Bytes::get_native_u2(pc+1);
2750         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2751 
2752         oop obj = STACK_OBJECT(-2);
2753         CHECK_NULL(obj);
2754 
2755         MAYBE_POST_FIELD_MODIFICATION(obj);
2756 
2757         int field_offset = entry->field_offset();
2758         obj->char_field_put(field_offset, STACK_INT(-1));
2759 
2760         UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2761       }
2762 
2763       CASE(_fast_dputfield): {
2764         u2 index = Bytes::get_native_u2(pc+1);
2765         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2766 
2767         oop obj = STACK_OBJECT(-3);
2768         CHECK_NULL(obj);
2769 
2770         MAYBE_POST_FIELD_MODIFICATION(obj);
2771 
2772         int field_offset = entry->field_offset();
2773         obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2774 
2775         UPDATE_PC_AND_TOS_AND_CONTINUE(3, -3);
2776       }
2777 
2778       CASE(_fast_fputfield): {
2779         u2 index = Bytes::get_native_u2(pc+1);
2780         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2781 
2782         oop obj = STACK_OBJECT(-2);
2783         CHECK_NULL(obj);
2784 
2785         MAYBE_POST_FIELD_MODIFICATION(obj);
2786 
2787         int field_offset = entry->field_offset();
2788         obj->float_field_put(field_offset, STACK_FLOAT(-1));
2789 
2790         UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2791       }
2792 
2793       CASE(_fast_iputfield): {
2794         u2 index = Bytes::get_native_u2(pc+1);
2795         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2796 
2797         oop obj = STACK_OBJECT(-2);
2798         CHECK_NULL(obj);
2799 
2800         MAYBE_POST_FIELD_MODIFICATION(obj);
2801 
2802         int field_offset = entry->field_offset();
2803         obj->int_field_put(field_offset, STACK_INT(-1));
2804 
2805         UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2806       }
2807 
2808       CASE(_fast_lputfield): {
2809         u2 index = Bytes::get_native_u2(pc+1);
2810         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2811 
2812         oop obj = STACK_OBJECT(-3);
2813         CHECK_NULL(obj);
2814 
2815         MAYBE_POST_FIELD_MODIFICATION(obj);
2816 
2817         int field_offset = entry->field_offset();
2818         obj->long_field_put(field_offset, STACK_LONG(-1));
2819 
2820         UPDATE_PC_AND_TOS_AND_CONTINUE(3, -3);
2821       }
2822 
2823       CASE(_fast_sputfield): {
2824         u2 index = Bytes::get_native_u2(pc+1);
2825         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2826 
2827         oop obj = STACK_OBJECT(-2);
2828         CHECK_NULL(obj);
2829 
2830         MAYBE_POST_FIELD_MODIFICATION(obj);
2831 
2832         int field_offset = entry->field_offset();
2833         obj->short_field_put(field_offset, STACK_INT(-1));
2834 
2835         UPDATE_PC_AND_TOS_AND_CONTINUE(3, -2);
2836       }
2837 
2838       CASE(_fast_aload_0): {
2839         oop obj = LOCALS_OBJECT(0);
2840         VERIFY_OOP(obj);
2841         SET_STACK_OBJECT(obj, 0);
2842         UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
2843       }
2844 
2845       CASE(_fast_aaccess_0): {
2846         u2 index = Bytes::get_native_u2(pc+2);
2847         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2848         int field_offset = entry->field_offset();
2849 
2850         oop obj = LOCALS_OBJECT(0);
2851         CHECK_NULL(obj);
2852         VERIFY_OOP(obj);
2853 
2854         MAYBE_POST_FIELD_ACCESS(obj);
2855 
2856         VERIFY_OOP(obj->obj_field(field_offset));
2857         SET_STACK_OBJECT(obj->obj_field(field_offset), 0);
2858         UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
2859       }
2860 
2861       CASE(_fast_iaccess_0): {
2862         u2 index = Bytes::get_native_u2(pc+2);
2863         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2864         int field_offset = entry->field_offset();
2865 
2866         oop obj = LOCALS_OBJECT(0);
2867         CHECK_NULL(obj);
2868         VERIFY_OOP(obj);
2869 
2870         MAYBE_POST_FIELD_ACCESS(obj);
2871 
2872         SET_STACK_INT(obj->int_field(field_offset), 0);
2873         UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
2874       }
2875 
2876       CASE(_fast_faccess_0): {
2877         u2 index = Bytes::get_native_u2(pc+2);
2878         ResolvedFieldEntry* entry = cp->resolved_field_entry_at(index);
2879         int field_offset = entry->field_offset();
2880 
2881         oop obj = LOCALS_OBJECT(0);
2882         CHECK_NULL(obj);
2883         VERIFY_OOP(obj);
2884 
2885         MAYBE_POST_FIELD_ACCESS(obj);
2886 
2887         SET_STACK_FLOAT(obj->float_field(field_offset), 0);
2888         UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
2889       }
2890 
2891       CASE(_fast_invokevfinal): {
2892         u2 index = Bytes::get_native_u2(pc+1);
2893         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2894 
2895         assert(cache->is_resolved(Bytecodes::_invokevirtual), "Should be resolved before rewriting");
2896 
2897         istate->set_msg(call_method);
2898 
2899         CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2900         Method* callee = cache->f2_as_vfinal_method();
2901         istate->set_callee(callee);
2902         if (JVMTI_ENABLED && THREAD->is_interp_only_mode()) {
2903           istate->set_callee_entry_point(callee->interpreter_entry());
2904         } else {
2905           istate->set_callee_entry_point(callee->from_interpreted_entry());
2906         }
2907         istate->set_bcp_advance(3);
2908         UPDATE_PC_AND_RETURN(0);
2909       }
2910 
2911       DEFAULT:
2912           fatal("Unimplemented opcode %d = %s", opcode,
2913                 Bytecodes::name((Bytecodes::Code)opcode));
2914           goto finish;
2915 
2916       } /* switch(opc) */
2917 
2918 
2919 #ifdef USELABELS
2920     check_for_exception:
2921 #endif
2922     {
2923       if (!THREAD->has_pending_exception()) {
2924         CONTINUE;
2925       }
2926       /* We will be gcsafe soon, so flush our state. */
2927       DECACHE_PC();
2928       goto handle_exception;
2929     }
2930   do_continue: ;
2931 
2932   } /* while (1) interpreter loop */
2933 
2934 
2935   // An exception exists in the thread state see whether this activation can handle it
2936   handle_exception: {
2937 
2938     HandleMarkCleaner __hmc(THREAD);
2939     Handle except_oop(THREAD, THREAD->pending_exception());
2940     // Prevent any subsequent HandleMarkCleaner in the VM
2941     // from freeing the except_oop handle.
2942     HandleMark __hm(THREAD);
2943 
2944     THREAD->clear_pending_exception();
2945     assert(except_oop() != nullptr, "No exception to process");
2946     intptr_t continuation_bci;
2947     // expression stack is emptied
2948     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2949     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2950             handle_exception);
2951 
2952     except_oop = Handle(THREAD, THREAD->vm_result());
2953     THREAD->set_vm_result(nullptr);
2954     if (continuation_bci >= 0) {
2955       // Place exception on top of stack
2956       SET_STACK_OBJECT(except_oop(), 0);
2957       MORE_STACK(1);
2958       pc = METHOD->code_base() + continuation_bci;
2959       if (log_is_enabled(Info, exceptions)) {
2960         ResourceMark rm(THREAD);
2961         stringStream tempst;
2962         tempst.print("interpreter method <%s>\n"
2963                      " at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2964                      METHOD->print_value_string(),
2965                      (int)(istate->bcp() - METHOD->code_base()),
2966                      (int)continuation_bci, p2i(THREAD));
2967         Exceptions::log_exception(except_oop, tempst.as_string());
2968       }
2969       // for AbortVMOnException flag
2970       Exceptions::debug_check_abort(except_oop);
2971       goto run;
2972     }
2973     if (log_is_enabled(Info, exceptions)) {
2974       ResourceMark rm;
2975       stringStream tempst;
2976       tempst.print("interpreter method <%s>\n"
2977              " at bci %d, unwinding for thread " INTPTR_FORMAT,
2978              METHOD->print_value_string(),
2979              (int)(istate->bcp() - METHOD->code_base()),
2980              p2i(THREAD));
2981       Exceptions::log_exception(except_oop, tempst.as_string());
2982     }
2983     // for AbortVMOnException flag
2984     Exceptions::debug_check_abort(except_oop);
2985 
2986     // No handler in this activation, unwind and try again
2987     THREAD->set_pending_exception(except_oop(), nullptr, 0);
2988     goto handle_return;
2989   }  // handle_exception:
2990 
2991   // Return from an interpreter invocation with the result of the interpretation
2992   // on the top of the Java Stack (or a pending exception)
2993 
2994   handle_Pop_Frame: {
2995 
2996     // We don't really do anything special here except we must be aware
2997     // that we can get here without ever locking the method (if sync).
2998     // Also we skip the notification of the exit.
2999 
3000     istate->set_msg(popping_frame);
3001     // Clear pending so while the pop is in process
3002     // we don't start another one if a call_vm is done.
3003     THREAD->clear_popframe_condition();
3004     // Let interpreter (only) see the we're in the process of popping a frame
3005     THREAD->set_pop_frame_in_process();
3006 
3007     goto handle_return;
3008 
3009   } // handle_Pop_Frame
3010 
3011   // ForceEarlyReturn ends a method, and returns to the caller with a return value
3012   // given by the invoker of the early return.
3013   handle_Early_Return: {
3014 
3015     istate->set_msg(early_return);
3016 
3017     // Clear expression stack.
3018     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
3019 
3020     JvmtiThreadState *ts = THREAD->jvmti_thread_state();
3021 
3022     // Push the value to be returned.
3023     switch (istate->method()->result_type()) {
3024       case T_BOOLEAN:
3025       case T_SHORT:
3026       case T_BYTE:
3027       case T_CHAR:
3028       case T_INT:
3029         SET_STACK_INT(ts->earlyret_value().i, 0);
3030         MORE_STACK(1);
3031         break;
3032       case T_LONG:
3033         SET_STACK_LONG(ts->earlyret_value().j, 1);
3034         MORE_STACK(2);
3035         break;
3036       case T_FLOAT:
3037         SET_STACK_FLOAT(ts->earlyret_value().f, 0);
3038         MORE_STACK(1);
3039         break;
3040       case T_DOUBLE:
3041         SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
3042         MORE_STACK(2);
3043         break;
3044       case T_ARRAY:
3045       case T_OBJECT:
3046         SET_STACK_OBJECT(ts->earlyret_oop(), 0);
3047         MORE_STACK(1);
3048         break;
3049       default:
3050         ShouldNotReachHere();
3051     }
3052 
3053     ts->clr_earlyret_value();
3054     ts->set_earlyret_oop(nullptr);
3055     ts->clr_earlyret_pending();
3056 
3057     // Fall through to handle_return.
3058 
3059   } // handle_Early_Return
3060 
3061   handle_return: {
3062     // A storestore barrier is required to order initialization of
3063     // final fields with publishing the reference to the object that
3064     // holds the field. Without the barrier the value of final fields
3065     // can be observed to change.
3066     OrderAccess::storestore();
3067 
3068     DECACHE_STATE();
3069 
3070     bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
3071     bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
3072     Handle original_exception(THREAD, THREAD->pending_exception());
3073     Handle illegal_state_oop(THREAD, nullptr);
3074 
3075     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
3076     // in any following VM entries from freeing our live handles, but illegal_state_oop
3077     // isn't really allocated yet and so doesn't become live until later and
3078     // in unpredictable places. Instead we must protect the places where we enter the
3079     // VM. It would be much simpler (and safer) if we could allocate a real handle with
3080     // a null oop in it and then overwrite the oop later as needed. This isn't
3081     // unfortunately isn't possible.
3082 
3083     if (THREAD->has_pending_exception()) {
3084       THREAD->clear_pending_exception();
3085     }
3086 
3087     //
3088     // As far as we are concerned we have returned. If we have a pending exception
3089     // that will be returned as this invocation's result. However if we get any
3090     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
3091     // will be our final result (i.e. monitor exception trumps a pending exception).
3092     //
3093 
3094     // If we never locked the method (or really passed the point where we would have),
3095     // there is no need to unlock it (or look for other monitors), since that
3096     // could not have happened.
3097 
3098     if (THREAD->do_not_unlock_if_synchronized()) {
3099 
3100       // Never locked, reset the flag now because obviously any caller must
3101       // have passed their point of locking for us to have gotten here.
3102 
3103       THREAD->set_do_not_unlock_if_synchronized(false);
3104     } else {
3105       // At this point we consider that we have returned. We now check that the
3106       // locks were properly block structured. If we find that they were not
3107       // used properly we will return with an illegal monitor exception.
3108       // The exception is checked by the caller not the callee since this
3109       // checking is considered to be part of the invocation and therefore
3110       // in the callers scope (JVM spec 8.13).
3111       //
3112       // Another weird thing to watch for is if the method was locked
3113       // recursively and then not exited properly. This means we must
3114       // examine all the entries in reverse time(and stack) order and
3115       // unlock as we find them. If we find the method monitor before
3116       // we are at the initial entry then we should throw an exception.
3117       // It is not clear the template based interpreter does this
3118       // correctly
3119 
3120       BasicObjectLock* base = istate->monitor_base();
3121       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
3122       bool method_unlock_needed = METHOD->is_synchronized();
3123       // We know the initial monitor was used for the method don't check that
3124       // slot in the loop
3125       if (method_unlock_needed) base--;
3126 
3127       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
3128       while (end < base) {
3129         oop lockee = end->obj();
3130         if (lockee != nullptr) {
3131           BasicLock* lock = end->lock();
3132           markWord header = lock->displaced_header();
3133           end->set_obj(nullptr);
3134 
3135           // If it isn't recursive we either must swap old header or call the runtime
3136           bool dec_monitor_count = true;
3137           if (header.to_pointer() != nullptr) {
3138             markWord old_header = markWord::encode(lock);
3139             if (lockee->cas_set_mark(header, old_header) != old_header) {
3140               // restore object for the slow case
3141               end->set_obj(lockee);
3142               dec_monitor_count = false;
3143               InterpreterRuntime::monitorexit(end);
3144             }
3145           }
3146           if (dec_monitor_count) {
3147             THREAD->dec_held_monitor_count();
3148           }
3149 
3150           // One error is plenty
3151           if (illegal_state_oop() == nullptr && !suppress_error) {
3152             {
3153               // Prevent any HandleMarkCleaner from freeing our live handles
3154               HandleMark __hm(THREAD);
3155               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3156             }
3157             assert(THREAD->has_pending_exception(), "Lost our exception!");
3158             illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3159             THREAD->clear_pending_exception();
3160           }
3161         }
3162         end++;
3163       }
3164       // Unlock the method if needed
3165       if (method_unlock_needed) {
3166         if (base->obj() == nullptr) {
3167           // The method is already unlocked this is not good.
3168           if (illegal_state_oop() == nullptr && !suppress_error) {
3169             {
3170               // Prevent any HandleMarkCleaner from freeing our live handles
3171               HandleMark __hm(THREAD);
3172               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3173             }
3174             assert(THREAD->has_pending_exception(), "Lost our exception!");
3175             illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3176             THREAD->clear_pending_exception();
3177           }
3178         } else {
3179           //
3180           // The initial monitor is always used for the method
3181           // However if that slot is no longer the oop for the method it was unlocked
3182           // and reused by something that wasn't unlocked!
3183           //
3184           // deopt can come in with rcvr dead because c2 knows
3185           // its value is preserved in the monitor. So we can't use locals[0] at all
3186           // and must use first monitor slot.
3187           //
3188           oop rcvr = base->obj();
3189           if (rcvr == nullptr) {
3190             if (!suppress_error) {
3191               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "");
3192               illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3193               THREAD->clear_pending_exception();
3194             }
3195           } else if (LockingMode == LM_MONITOR) {
3196             InterpreterRuntime::monitorexit(base);
3197             if (THREAD->has_pending_exception()) {
3198               if (!suppress_error) illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3199               THREAD->clear_pending_exception();
3200             }
3201           } else {
3202             BasicLock* lock = base->lock();
3203             markWord header = lock->displaced_header();
3204             base->set_obj(nullptr);
3205 
3206             // If it isn't recursive we either must swap old header or call the runtime
3207             bool dec_monitor_count = true;
3208             if (header.to_pointer() != nullptr) {
3209               markWord old_header = markWord::encode(lock);
3210               if (rcvr->cas_set_mark(header, old_header) != old_header) {
3211                 // restore object for the slow case
3212                 base->set_obj(rcvr);
3213                 dec_monitor_count = false;
3214                 InterpreterRuntime::monitorexit(base);
3215                 if (THREAD->has_pending_exception()) {
3216                   if (!suppress_error) illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3217                   THREAD->clear_pending_exception();
3218                 }
3219               }
3220             }
3221             if (dec_monitor_count) {
3222               THREAD->dec_held_monitor_count();
3223             }
3224           }
3225         }
3226       }
3227     }
3228     // Clear the do_not_unlock flag now.
3229     THREAD->set_do_not_unlock_if_synchronized(false);
3230 
3231     //
3232     // Notify jvmti/jvmdi
3233     //
3234     // NOTE: we do not notify a method_exit if we have a pending exception,
3235     // including an exception we generate for unlocking checks.  In the former
3236     // case, JVMDI has already been notified by our call for the exception handler
3237     // and in both cases as far as JVMDI is concerned we have already returned.
3238     // If we notify it again JVMDI will be all confused about how many frames
3239     // are still on the stack (4340444).
3240     //
3241     // NOTE Further! It turns out the JVMTI spec in fact expects to see
3242     // method_exit events whenever we leave an activation unless it was done
3243     // for popframe. This is nothing like jvmdi. However we are passing the
3244     // tests at the moment (apparently because they are jvmdi based) so rather
3245     // than change this code and possibly fail tests we will leave it alone
3246     // (with this note) in anticipation of changing the vm and the tests
3247     // simultaneously.
3248 
3249     suppress_exit_event = suppress_exit_event || illegal_state_oop() != nullptr;
3250 
3251     // Whenever JVMTI puts a thread in interp_only_mode, method
3252     // entry/exit events are sent for that thread to track stack depth.
3253 
3254     if (JVMTI_ENABLED && !suppress_exit_event && THREAD->is_interp_only_mode()) {
3255       // Prevent any HandleMarkCleaner from freeing our live handles
3256       HandleMark __hm(THREAD);
3257       CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3258     }
3259 
3260     //
3261     // See if we are returning any exception
3262     // A pending exception that was pending prior to a possible popping frame
3263     // overrides the popping frame.
3264     //
3265     assert(!suppress_error || (suppress_error && illegal_state_oop() == nullptr), "Error was not suppressed");
3266     if (illegal_state_oop() != nullptr || original_exception() != nullptr) {
3267       // Inform the frame manager we have no result.
3268       istate->set_msg(throwing_exception);
3269       if (illegal_state_oop() != nullptr)
3270         THREAD->set_pending_exception(illegal_state_oop(), nullptr, 0);
3271       else
3272         THREAD->set_pending_exception(original_exception(), nullptr, 0);
3273       UPDATE_PC_AND_RETURN(0);
3274     }
3275 
3276     if (istate->msg() == popping_frame) {
3277       // Make it simpler on the assembly code and set the message for the frame pop.
3278       // returns
3279       if (istate->prev() == nullptr) {
3280         // We must be returning to a deoptimized frame (because popframe only happens between
3281         // two interpreted frames). We need to save the current arguments in C heap so that
3282         // the deoptimized frame when it restarts can copy the arguments to its expression
3283         // stack and re-execute the call. We also have to notify deoptimization that this
3284         // has occurred and to pick the preserved args copy them to the deoptimized frame's
3285         // java expression stack. Yuck.
3286         //
3287         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3288                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3289         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3290       }
3291     } else {
3292       istate->set_msg(return_from_method);
3293     }
3294 
3295     // Normal return
3296     // Advance the pc and return to frame manager
3297     UPDATE_PC_AND_RETURN(1);
3298   } /* handle_return: */
3299 
3300 // This is really a fatal error return
3301 
3302 finish:
3303   DECACHE_TOS();
3304   DECACHE_PC();
3305 
3306   return;
3307 }
3308 
3309 // This constructor should only be used to construct the object to signal
3310 // interpreter initialization. All other instances should be created by
3311 // the frame manager.
3312 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3313   if (msg != initialize) ShouldNotReachHere();
3314   _msg = msg;
3315   _self_link = this;
3316   _prev_link = nullptr;
3317 }
3318 
3319 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
3320                           intptr_t* locals, int locals_offset) {
3321   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3322   locals[Interpreter::local_index_at(-locals_offset)] = value;
3323 }
3324 
3325 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3326                                    int to_offset) {
3327   tos[Interpreter::expr_index_at(-to_offset)] =
3328                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3329 }
3330 
3331 void BytecodeInterpreter::dup(intptr_t *tos) {
3332   copy_stack_slot(tos, -1, 0);
3333 }
3334 
3335 void BytecodeInterpreter::dup2(intptr_t *tos) {
3336   copy_stack_slot(tos, -2, 0);
3337   copy_stack_slot(tos, -1, 1);
3338 }
3339 
3340 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3341   /* insert top word two down */
3342   copy_stack_slot(tos, -1, 0);
3343   copy_stack_slot(tos, -2, -1);
3344   copy_stack_slot(tos, 0, -2);
3345 }
3346 
3347 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3348   /* insert top word three down  */
3349   copy_stack_slot(tos, -1, 0);
3350   copy_stack_slot(tos, -2, -1);
3351   copy_stack_slot(tos, -3, -2);
3352   copy_stack_slot(tos, 0, -3);
3353 }
3354 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3355   /* insert top 2 slots three down */
3356   copy_stack_slot(tos, -1, 1);
3357   copy_stack_slot(tos, -2, 0);
3358   copy_stack_slot(tos, -3, -1);
3359   copy_stack_slot(tos, 1, -2);
3360   copy_stack_slot(tos, 0, -3);
3361 }
3362 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3363   /* insert top 2 slots four down */
3364   copy_stack_slot(tos, -1, 1);
3365   copy_stack_slot(tos, -2, 0);
3366   copy_stack_slot(tos, -3, -1);
3367   copy_stack_slot(tos, -4, -2);
3368   copy_stack_slot(tos, 1, -3);
3369   copy_stack_slot(tos, 0, -4);
3370 }
3371 
3372 
3373 void BytecodeInterpreter::swap(intptr_t *tos) {
3374   // swap top two elements
3375   intptr_t val = tos[Interpreter::expr_index_at(1)];
3376   // Copy -2 entry to -1
3377   copy_stack_slot(tos, -2, -1);
3378   // Store saved -1 entry into -2
3379   tos[Interpreter::expr_index_at(2)] = val;
3380 }
3381 // --------------------------------------------------------------------------------
3382 // Non-product code
3383 #ifndef PRODUCT
3384 
3385 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3386   switch (msg) {
3387      case BytecodeInterpreter::no_request:  return("no_request");
3388      case BytecodeInterpreter::initialize:  return("initialize");
3389      // status message to C++ interpreter
3390      case BytecodeInterpreter::method_entry:  return("method_entry");
3391      case BytecodeInterpreter::method_resume:  return("method_resume");
3392      case BytecodeInterpreter::got_monitors:  return("got_monitors");
3393      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3394      // requests to frame manager from C++ interpreter
3395      case BytecodeInterpreter::call_method:  return("call_method");
3396      case BytecodeInterpreter::return_from_method:  return("return_from_method");
3397      case BytecodeInterpreter::more_monitors:  return("more_monitors");
3398      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3399      case BytecodeInterpreter::popping_frame:  return("popping_frame");
3400      case BytecodeInterpreter::do_osr:  return("do_osr");
3401      // deopt
3402      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3403      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3404      default: return("BAD MSG");
3405   }
3406 }
3407 void
3408 BytecodeInterpreter::print() {
3409   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3410   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3411   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3412   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3413   {
3414     ResourceMark rm;
3415     char *method_name = _method->name_and_sig_as_C_string();
3416     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3417   }
3418   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3419   tty->print_cr("msg: %s", C_msg(this->_msg));
3420   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3421   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3422   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3423   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3424   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3425   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3426   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) p2i(this->_oop_temp));
3427   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3428   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3429   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3430   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3431 }
3432 
3433 extern "C" {
3434   void PI(uintptr_t arg) {
3435     ((BytecodeInterpreter*)arg)->print();
3436   }
3437 }
3438 #endif // PRODUCT