1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "cds/archiveHeapLoader.hpp" 27 #include "cds/cdsConfig.hpp" 28 #include "cds/heapShared.hpp" 29 #include "classfile/classLoader.hpp" 30 #include "classfile/classLoaderData.inline.hpp" 31 #include "classfile/classLoaderDataGraph.inline.hpp" 32 #include "classfile/javaClasses.inline.hpp" 33 #include "classfile/moduleEntry.hpp" 34 #include "classfile/systemDictionary.hpp" 35 #include "classfile/systemDictionaryShared.hpp" 36 #include "classfile/vmClasses.hpp" 37 #include "classfile/vmSymbols.hpp" 38 #include "gc/shared/collectedHeap.inline.hpp" 39 #include "jvm_io.h" 40 #include "logging/log.hpp" 41 #include "memory/metadataFactory.hpp" 42 #include "memory/metaspaceClosure.hpp" 43 #include "memory/oopFactory.hpp" 44 #include "memory/resourceArea.hpp" 45 #include "memory/universe.hpp" 46 #include "oops/compressedOops.inline.hpp" 47 #include "oops/instanceKlass.hpp" 48 #include "oops/klass.inline.hpp" 49 #include "oops/objArrayKlass.hpp" 50 #include "oops/oop.inline.hpp" 51 #include "oops/oopHandle.inline.hpp" 52 #include "prims/jvmtiExport.hpp" 53 #include "runtime/atomic.hpp" 54 #include "runtime/handles.inline.hpp" 55 #include "runtime/perfData.hpp" 56 #include "utilities/macros.hpp" 57 #include "utilities/powerOfTwo.hpp" 58 #include "utilities/rotate_bits.hpp" 59 #include "utilities/stack.inline.hpp" 60 61 void Klass::set_java_mirror(Handle m) { 62 assert(!m.is_null(), "New mirror should never be null."); 63 assert(_java_mirror.is_empty(), "should only be used to initialize mirror"); 64 _java_mirror = class_loader_data()->add_handle(m); 65 } 66 67 bool Klass::is_cloneable() const { 68 return _access_flags.is_cloneable_fast() || 69 is_subtype_of(vmClasses::Cloneable_klass()); 70 } 71 72 void Klass::set_is_cloneable() { 73 if (name() == vmSymbols::java_lang_invoke_MemberName()) { 74 assert(is_final(), "no subclasses allowed"); 75 // MemberName cloning should not be intrinsified and always happen in JVM_Clone. 76 } else if (is_instance_klass() && InstanceKlass::cast(this)->reference_type() != REF_NONE) { 77 // Reference cloning should not be intrinsified and always happen in JVM_Clone. 78 } else { 79 _access_flags.set_is_cloneable_fast(); 80 } 81 } 82 83 uint8_t Klass::compute_hash_slot(Symbol* n) { 84 uint hash_code; 85 // Special cases for the two superclasses of all Array instances. 86 // Code elsewhere assumes, for all instances of ArrayKlass, that 87 // these two interfaces will be in this order. 88 89 // We ensure there are some empty slots in the hash table between 90 // these two very common interfaces because if they were adjacent 91 // (e.g. Slots 0 and 1), then any other class which hashed to 0 or 1 92 // would result in a probe length of 3. 93 if (n == vmSymbols::java_lang_Cloneable()) { 94 hash_code = 0; 95 } else if (n == vmSymbols::java_io_Serializable()) { 96 hash_code = SECONDARY_SUPERS_TABLE_SIZE / 2; 97 } else { 98 auto s = (const jbyte*) n->bytes(); 99 hash_code = java_lang_String::hash_code(s, n->utf8_length()); 100 // We use String::hash_code here (rather than e.g. 101 // Symbol::identity_hash()) in order to have a hash code that 102 // does not change from run to run. We want that because the 103 // hash value for a secondary superclass appears in generated 104 // code as a constant. 105 106 // This constant is magic: see Knuth, "Fibonacci Hashing". 107 constexpr uint multiplier 108 = 2654435769; // (uint)(((u8)1 << 32) / ((1 + sqrt(5)) / 2 )) 109 constexpr uint hash_shift = sizeof(hash_code) * 8 - 6; 110 // The leading bits of the least significant half of the product. 111 hash_code = (hash_code * multiplier) >> hash_shift; 112 113 if (StressSecondarySupers) { 114 // Generate many hash collisions in order to stress-test the 115 // linear search fallback. 116 hash_code = hash_code % 3; 117 hash_code = hash_code * (SECONDARY_SUPERS_TABLE_SIZE / 3); 118 } 119 } 120 121 return (hash_code & SECONDARY_SUPERS_TABLE_MASK); 122 } 123 124 void Klass::set_name(Symbol* n) { 125 _name = n; 126 127 if (_name != nullptr) { 128 _name->increment_refcount(); 129 } 130 131 if (UseSecondarySupersTable) { 132 elapsedTimer selftime; 133 selftime.start(); 134 135 _hash_slot = compute_hash_slot(n); 136 assert(_hash_slot < SECONDARY_SUPERS_TABLE_SIZE, "required"); 137 138 selftime.stop(); 139 if (UsePerfData) { 140 ClassLoader::perf_secondary_hash_time()->inc(selftime.ticks()); 141 } 142 } 143 144 if (CDSConfig::is_dumping_archive() && is_instance_klass()) { 145 SystemDictionaryShared::init_dumptime_info(InstanceKlass::cast(this)); 146 } 147 } 148 149 bool Klass::is_subclass_of(const Klass* k) const { 150 // Run up the super chain and check 151 if (this == k) return true; 152 153 Klass* t = const_cast<Klass*>(this)->super(); 154 155 while (t != nullptr) { 156 if (t == k) return true; 157 t = t->super(); 158 } 159 return false; 160 } 161 162 void Klass::release_C_heap_structures(bool release_constant_pool) { 163 if (_name != nullptr) _name->decrement_refcount(); 164 } 165 166 bool Klass::search_secondary_supers(Klass* k) const { 167 // Put some extra logic here out-of-line, before the search proper. 168 // This cuts down the size of the inline method. 169 170 // This is necessary, since I am never in my own secondary_super list. 171 if (this == k) 172 return true; 173 // Scan the array-of-objects for a match 174 int cnt = secondary_supers()->length(); 175 for (int i = 0; i < cnt; i++) { 176 if (secondary_supers()->at(i) == k) { 177 ((Klass*)this)->set_secondary_super_cache(k); 178 return true; 179 } 180 } 181 return false; 182 } 183 184 // Return self, except for abstract classes with exactly 1 185 // implementor. Then return the 1 concrete implementation. 186 Klass *Klass::up_cast_abstract() { 187 Klass *r = this; 188 while( r->is_abstract() ) { // Receiver is abstract? 189 Klass *s = r->subklass(); // Check for exactly 1 subklass 190 if (s == nullptr || s->next_sibling() != nullptr) // Oops; wrong count; give up 191 return this; // Return 'this' as a no-progress flag 192 r = s; // Loop till find concrete class 193 } 194 return r; // Return the 1 concrete class 195 } 196 197 // Find LCA in class hierarchy 198 Klass *Klass::LCA( Klass *k2 ) { 199 Klass *k1 = this; 200 while( 1 ) { 201 if( k1->is_subtype_of(k2) ) return k2; 202 if( k2->is_subtype_of(k1) ) return k1; 203 k1 = k1->super(); 204 k2 = k2->super(); 205 } 206 } 207 208 209 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) { 210 ResourceMark rm(THREAD); 211 THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError() 212 : vmSymbols::java_lang_InstantiationException(), external_name()); 213 } 214 215 216 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) { 217 ResourceMark rm(THREAD); 218 assert(s != nullptr, "Throw NPE!"); 219 THROW_MSG(vmSymbols::java_lang_ArrayStoreException(), 220 err_msg("arraycopy: source type %s is not an array", s->klass()->external_name())); 221 } 222 223 224 void Klass::initialize(TRAPS) { 225 ShouldNotReachHere(); 226 } 227 228 Klass* Klass::find_field(Symbol* name, Symbol* sig, fieldDescriptor* fd) const { 229 #ifdef ASSERT 230 tty->print_cr("Error: find_field called on a klass oop." 231 " Likely error: reflection method does not correctly" 232 " wrap return value in a mirror object."); 233 #endif 234 ShouldNotReachHere(); 235 return nullptr; 236 } 237 238 Method* Klass::uncached_lookup_method(const Symbol* name, const Symbol* signature, 239 OverpassLookupMode overpass_mode, 240 PrivateLookupMode private_mode) const { 241 #ifdef ASSERT 242 tty->print_cr("Error: uncached_lookup_method called on a klass oop." 243 " Likely error: reflection method does not correctly" 244 " wrap return value in a mirror object."); 245 #endif 246 ShouldNotReachHere(); 247 return nullptr; 248 } 249 250 void* Klass::operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, TRAPS) throw() { 251 return Metaspace::allocate(loader_data, word_size, MetaspaceObj::ClassType, THREAD); 252 } 253 254 Klass::Klass() : _kind(UnknownKlassKind) { 255 assert(CDSConfig::is_dumping_static_archive() || CDSConfig::is_using_archive(), "only for cds"); 256 } 257 258 // "Normal" instantiation is preceded by a MetaspaceObj allocation 259 // which zeros out memory - calloc equivalent. 260 // The constructor is also used from CppVtableCloner, 261 // which doesn't zero out the memory before calling the constructor. 262 Klass::Klass(KlassKind kind) : _kind(kind), 263 _shared_class_path_index(-1) { 264 CDS_ONLY(_shared_class_flags = 0;) 265 CDS_JAVA_HEAP_ONLY(_archived_mirror_index = -1;) 266 _primary_supers[0] = this; 267 set_super_check_offset(in_bytes(primary_supers_offset())); 268 } 269 270 jint Klass::array_layout_helper(BasicType etype) { 271 assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype"); 272 // Note that T_ARRAY is not allowed here. 273 int hsize = arrayOopDesc::base_offset_in_bytes(etype); 274 int esize = type2aelembytes(etype); 275 bool isobj = (etype == T_OBJECT); 276 int tag = isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value; 277 int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize)); 278 279 assert(lh < (int)_lh_neutral_value, "must look like an array layout"); 280 assert(layout_helper_is_array(lh), "correct kind"); 281 assert(layout_helper_is_objArray(lh) == isobj, "correct kind"); 282 assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind"); 283 assert(layout_helper_header_size(lh) == hsize, "correct decode"); 284 assert(layout_helper_element_type(lh) == etype, "correct decode"); 285 assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode"); 286 287 return lh; 288 } 289 290 bool Klass::can_be_primary_super_slow() const { 291 if (super() == nullptr) 292 return true; 293 else if (super()->super_depth() >= primary_super_limit()-1) 294 return false; 295 else 296 return true; 297 } 298 299 void Klass::set_secondary_supers(Array<Klass*>* secondaries) { 300 assert(!UseSecondarySupersTable || secondaries == nullptr, ""); 301 set_secondary_supers(secondaries, SECONDARY_SUPERS_BITMAP_EMPTY); 302 } 303 304 void Klass::set_secondary_supers(Array<Klass*>* secondaries, uintx bitmap) { 305 #ifdef ASSERT 306 if (UseSecondarySupersTable && secondaries != nullptr) { 307 uintx real_bitmap = compute_secondary_supers_bitmap(secondaries); 308 assert(bitmap == real_bitmap, "must be"); 309 } 310 #endif 311 _bitmap = bitmap; 312 _secondary_supers = secondaries; 313 314 if (secondaries != nullptr) { 315 LogMessage(class, load) msg; 316 NonInterleavingLogStream log {LogLevel::Debug, msg}; 317 if (log.is_enabled()) { 318 ResourceMark rm; 319 log.print_cr("set_secondary_supers: hash_slot: %d; klass: %s", hash_slot(), external_name()); 320 print_secondary_supers_on(&log); 321 } 322 } 323 } 324 325 // Hashed secondary superclasses 326 // 327 // We use a compressed 64-entry hash table with linear probing. We 328 // start by creating a hash table in the usual way, followed by a pass 329 // that removes all the null entries. To indicate which entries would 330 // have been null we use a bitmap that contains a 1 in each position 331 // where an entry is present, 0 otherwise. This bitmap also serves as 332 // a kind of Bloom filter, which in many cases allows us quickly to 333 // eliminate the possibility that something is a member of a set of 334 // secondaries. 335 uintx Klass::hash_secondary_supers(Array<Klass*>* secondaries, bool rewrite) { 336 const int length = secondaries->length(); 337 338 if (length == 0) { 339 return SECONDARY_SUPERS_BITMAP_EMPTY; 340 } 341 342 if (length == 1) { 343 int hash_slot = secondaries->at(0)->hash_slot(); 344 return uintx(1) << hash_slot; 345 } 346 347 // For performance reasons we don't use a hashed table unless there 348 // are at least two empty slots in it. If there were only one empty 349 // slot it'd take a long time to create the table and the resulting 350 // search would be no faster than linear probing. 351 if (length > SECONDARY_SUPERS_TABLE_SIZE - 2) { 352 return SECONDARY_SUPERS_BITMAP_FULL; 353 } 354 355 { 356 PerfTraceTime ptt(ClassLoader::perf_secondary_hash_time()); 357 358 ResourceMark rm; 359 uintx bitmap = SECONDARY_SUPERS_BITMAP_EMPTY; 360 auto hashed_secondaries = new GrowableArray<Klass*>(SECONDARY_SUPERS_TABLE_SIZE, 361 SECONDARY_SUPERS_TABLE_SIZE, nullptr); 362 363 for (int j = 0; j < length; j++) { 364 Klass* k = secondaries->at(j); 365 hash_insert(k, hashed_secondaries, bitmap); 366 } 367 368 // Pack the hashed secondaries array by copying it into the 369 // secondaries array, sans nulls, if modification is allowed. 370 // Otherwise, validate the order. 371 int i = 0; 372 for (int slot = 0; slot < SECONDARY_SUPERS_TABLE_SIZE; slot++) { 373 bool has_element = ((bitmap >> slot) & 1) != 0; 374 assert(has_element == (hashed_secondaries->at(slot) != nullptr), ""); 375 if (has_element) { 376 Klass* k = hashed_secondaries->at(slot); 377 if (rewrite) { 378 secondaries->at_put(i, k); 379 } else if (secondaries->at(i) != k) { 380 assert(false, "broken secondary supers hash table"); 381 return SECONDARY_SUPERS_BITMAP_FULL; 382 } 383 i++; 384 } 385 } 386 assert(i == secondaries->length(), "mismatch"); 387 388 return bitmap; 389 } 390 } 391 392 void Klass::hash_insert(Klass* klass, GrowableArray<Klass*>* secondaries, uintx& bitmap) { 393 assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, ""); 394 395 int dist = 0; 396 for (int slot = klass->hash_slot(); true; slot = (slot + 1) & SECONDARY_SUPERS_TABLE_MASK) { 397 Klass* existing = secondaries->at(slot); 398 assert(((bitmap >> slot) & 1) == (existing != nullptr), "mismatch"); 399 if (existing == nullptr) { // no conflict 400 secondaries->at_put(slot, klass); 401 bitmap |= uintx(1) << slot; 402 assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, ""); 403 return; 404 } else { 405 // Use Robin Hood hashing to minimize the worst case search. 406 // Also, every permutation of the insertion sequence produces 407 // the same final Robin Hood hash table, provided that a 408 // consistent tie breaker is used. 409 int existing_dist = (slot - existing->hash_slot()) & SECONDARY_SUPERS_TABLE_MASK; 410 if (existing_dist < dist 411 // This tie breaker ensures that the hash order is maintained. 412 || ((existing_dist == dist) 413 && (uintptr_t(existing) < uintptr_t(klass)))) { 414 Klass* tmp = secondaries->at(slot); 415 secondaries->at_put(slot, klass); 416 klass = tmp; 417 dist = existing_dist; 418 } 419 ++dist; 420 } 421 } 422 } 423 424 Array<Klass*>* Klass::pack_secondary_supers(ClassLoaderData* loader_data, 425 GrowableArray<Klass*>* primaries, 426 GrowableArray<Klass*>* secondaries, 427 uintx& bitmap, TRAPS) { 428 int new_length = primaries->length() + secondaries->length(); 429 Array<Klass*>* secondary_supers = MetadataFactory::new_array<Klass*>(loader_data, new_length, CHECK_NULL); 430 431 // Combine the two arrays into a metadata object to pack the array. 432 // The primaries are added in the reverse order, then the secondaries. 433 int fill_p = primaries->length(); 434 for (int j = 0; j < fill_p; j++) { 435 secondary_supers->at_put(j, primaries->pop()); // add primaries in reverse order. 436 } 437 for( int j = 0; j < secondaries->length(); j++ ) { 438 secondary_supers->at_put(j+fill_p, secondaries->at(j)); // add secondaries on the end. 439 } 440 #ifdef ASSERT 441 // We must not copy any null placeholders left over from bootstrap. 442 for (int j = 0; j < secondary_supers->length(); j++) { 443 assert(secondary_supers->at(j) != nullptr, "correct bootstrapping order"); 444 } 445 #endif 446 447 if (UseSecondarySupersTable) { 448 bitmap = hash_secondary_supers(secondary_supers, /*rewrite=*/true); // rewrites freshly allocated array 449 } else { 450 bitmap = SECONDARY_SUPERS_BITMAP_EMPTY; 451 } 452 return secondary_supers; 453 } 454 455 uintx Klass::compute_secondary_supers_bitmap(Array<Klass*>* secondary_supers) { 456 return hash_secondary_supers(secondary_supers, /*rewrite=*/false); // no rewrites allowed 457 } 458 459 uint8_t Klass::compute_home_slot(Klass* k, uintx bitmap) { 460 uint8_t hash = k->hash_slot(); 461 if (hash > 0) { 462 return population_count(bitmap << (SECONDARY_SUPERS_TABLE_SIZE - hash)); 463 } 464 return 0; 465 } 466 467 468 void Klass::initialize_supers(Klass* k, Array<InstanceKlass*>* transitive_interfaces, TRAPS) { 469 if (k == nullptr) { 470 set_super(nullptr); 471 _primary_supers[0] = this; 472 assert(super_depth() == 0, "Object must already be initialized properly"); 473 } else if (k != super() || k == vmClasses::Object_klass()) { 474 assert(super() == nullptr || super() == vmClasses::Object_klass(), 475 "initialize this only once to a non-trivial value"); 476 set_super(k); 477 Klass* sup = k; 478 int sup_depth = sup->super_depth(); 479 juint my_depth = MIN2(sup_depth + 1, (int)primary_super_limit()); 480 if (!can_be_primary_super_slow()) 481 my_depth = primary_super_limit(); 482 for (juint i = 0; i < my_depth; i++) { 483 _primary_supers[i] = sup->_primary_supers[i]; 484 } 485 Klass* *super_check_cell; 486 if (my_depth < primary_super_limit()) { 487 _primary_supers[my_depth] = this; 488 super_check_cell = &_primary_supers[my_depth]; 489 } else { 490 // Overflow of the primary_supers array forces me to be secondary. 491 super_check_cell = &_secondary_super_cache; 492 } 493 set_super_check_offset(u4((address)super_check_cell - (address) this)); 494 495 #ifdef ASSERT 496 { 497 juint j = super_depth(); 498 assert(j == my_depth, "computed accessor gets right answer"); 499 Klass* t = this; 500 while (!t->can_be_primary_super()) { 501 t = t->super(); 502 j = t->super_depth(); 503 } 504 for (juint j1 = j+1; j1 < primary_super_limit(); j1++) { 505 assert(primary_super_of_depth(j1) == nullptr, "super list padding"); 506 } 507 while (t != nullptr) { 508 assert(primary_super_of_depth(j) == t, "super list initialization"); 509 t = t->super(); 510 --j; 511 } 512 assert(j == (juint)-1, "correct depth count"); 513 } 514 #endif 515 } 516 517 if (secondary_supers() == nullptr) { 518 519 // Now compute the list of secondary supertypes. 520 // Secondaries can occasionally be on the super chain, 521 // if the inline "_primary_supers" array overflows. 522 int extras = 0; 523 Klass* p; 524 for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) { 525 ++extras; 526 } 527 528 ResourceMark rm(THREAD); // need to reclaim GrowableArrays allocated below 529 530 // Compute the "real" non-extra secondaries. 531 GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras, transitive_interfaces); 532 if (secondaries == nullptr) { 533 // secondary_supers set by compute_secondary_supers 534 return; 535 } 536 537 GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras); 538 539 for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) { 540 int i; // Scan for overflow primaries being duplicates of 2nd'arys 541 542 // This happens frequently for very deeply nested arrays: the 543 // primary superclass chain overflows into the secondary. The 544 // secondary list contains the element_klass's secondaries with 545 // an extra array dimension added. If the element_klass's 546 // secondary list already contains some primary overflows, they 547 // (with the extra level of array-ness) will collide with the 548 // normal primary superclass overflows. 549 for( i = 0; i < secondaries->length(); i++ ) { 550 if( secondaries->at(i) == p ) 551 break; 552 } 553 if( i < secondaries->length() ) 554 continue; // It's a dup, don't put it in 555 primaries->push(p); 556 } 557 // Combine the two arrays into a metadata object to pack the array. 558 uintx bitmap = 0; 559 Array<Klass*>* s2 = pack_secondary_supers(class_loader_data(), primaries, secondaries, bitmap, CHECK); 560 set_secondary_supers(s2, bitmap); 561 } 562 } 563 564 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots, 565 Array<InstanceKlass*>* transitive_interfaces) { 566 assert(num_extra_slots == 0, "override for complex klasses"); 567 assert(transitive_interfaces == nullptr, "sanity"); 568 set_secondary_supers(Universe::the_empty_klass_array(), Universe::the_empty_klass_bitmap()); 569 return nullptr; 570 } 571 572 573 // superklass links 574 InstanceKlass* Klass::superklass() const { 575 assert(super() == nullptr || super()->is_instance_klass(), "must be instance klass"); 576 return _super == nullptr ? nullptr : InstanceKlass::cast(_super); 577 } 578 579 // subklass links. Used by the compiler (and vtable initialization) 580 // May be cleaned concurrently, so must use the Compile_lock. 581 // The log parameter is for clean_weak_klass_links to report unlinked classes. 582 Klass* Klass::subklass(bool log) const { 583 // Need load_acquire on the _subklass, because it races with inserts that 584 // publishes freshly initialized data. 585 for (Klass* chain = Atomic::load_acquire(&_subklass); 586 chain != nullptr; 587 // Do not need load_acquire on _next_sibling, because inserts never 588 // create _next_sibling edges to dead data. 589 chain = Atomic::load(&chain->_next_sibling)) 590 { 591 if (chain->is_loader_alive()) { 592 return chain; 593 } else if (log) { 594 if (log_is_enabled(Trace, class, unload)) { 595 ResourceMark rm; 596 log_trace(class, unload)("unlinking class (subclass): %s", chain->external_name()); 597 } 598 } 599 } 600 return nullptr; 601 } 602 603 Klass* Klass::next_sibling(bool log) const { 604 // Do not need load_acquire on _next_sibling, because inserts never 605 // create _next_sibling edges to dead data. 606 for (Klass* chain = Atomic::load(&_next_sibling); 607 chain != nullptr; 608 chain = Atomic::load(&chain->_next_sibling)) { 609 // Only return alive klass, there may be stale klass 610 // in this chain if cleaned concurrently. 611 if (chain->is_loader_alive()) { 612 return chain; 613 } else if (log) { 614 if (log_is_enabled(Trace, class, unload)) { 615 ResourceMark rm; 616 log_trace(class, unload)("unlinking class (sibling): %s", chain->external_name()); 617 } 618 } 619 } 620 return nullptr; 621 } 622 623 void Klass::set_subklass(Klass* s) { 624 assert(s != this, "sanity check"); 625 Atomic::release_store(&_subklass, s); 626 } 627 628 void Klass::set_next_sibling(Klass* s) { 629 assert(s != this, "sanity check"); 630 // Does not need release semantics. If used by cleanup, it will link to 631 // already safely published data, and if used by inserts, will be published 632 // safely using cmpxchg. 633 Atomic::store(&_next_sibling, s); 634 } 635 636 void Klass::append_to_sibling_list() { 637 if (Universe::is_fully_initialized()) { 638 assert_locked_or_safepoint(Compile_lock); 639 } 640 debug_only(verify();) 641 // add ourselves to superklass' subklass list 642 InstanceKlass* super = superklass(); 643 if (super == nullptr) return; // special case: class Object 644 assert((!super->is_interface() // interfaces cannot be supers 645 && (super->superklass() == nullptr || !is_interface())), 646 "an interface can only be a subklass of Object"); 647 648 // Make sure there is no stale subklass head 649 super->clean_subklass(); 650 651 for (;;) { 652 Klass* prev_first_subklass = Atomic::load_acquire(&_super->_subklass); 653 if (prev_first_subklass != nullptr) { 654 // set our sibling to be the superklass' previous first subklass 655 assert(prev_first_subklass->is_loader_alive(), "May not attach not alive klasses"); 656 set_next_sibling(prev_first_subklass); 657 } 658 // Note that the prev_first_subklass is always alive, meaning no sibling_next links 659 // are ever created to not alive klasses. This is an important invariant of the lock-free 660 // cleaning protocol, that allows us to safely unlink dead klasses from the sibling list. 661 if (Atomic::cmpxchg(&super->_subklass, prev_first_subklass, this) == prev_first_subklass) { 662 return; 663 } 664 } 665 debug_only(verify();) 666 } 667 668 void Klass::clean_subklass() { 669 for (;;) { 670 // Need load_acquire, due to contending with concurrent inserts 671 Klass* subklass = Atomic::load_acquire(&_subklass); 672 if (subklass == nullptr || subklass->is_loader_alive()) { 673 return; 674 } 675 // Try to fix _subklass until it points at something not dead. 676 Atomic::cmpxchg(&_subklass, subklass, subklass->next_sibling()); 677 } 678 } 679 680 void Klass::clean_weak_klass_links(bool unloading_occurred, bool clean_alive_klasses) { 681 if (!ClassUnloading || !unloading_occurred) { 682 return; 683 } 684 685 Klass* root = vmClasses::Object_klass(); 686 Stack<Klass*, mtGC> stack; 687 688 stack.push(root); 689 while (!stack.is_empty()) { 690 Klass* current = stack.pop(); 691 692 assert(current->is_loader_alive(), "just checking, this should be live"); 693 694 // Find and set the first alive subklass 695 Klass* sub = current->subklass(true); 696 current->clean_subklass(); 697 if (sub != nullptr) { 698 stack.push(sub); 699 } 700 701 // Find and set the first alive sibling 702 Klass* sibling = current->next_sibling(true); 703 current->set_next_sibling(sibling); 704 if (sibling != nullptr) { 705 stack.push(sibling); 706 } 707 708 // Clean the implementors list and method data. 709 if (clean_alive_klasses && current->is_instance_klass()) { 710 InstanceKlass* ik = InstanceKlass::cast(current); 711 ik->clean_weak_instanceklass_links(); 712 713 // JVMTI RedefineClasses creates previous versions that are not in 714 // the class hierarchy, so process them here. 715 while ((ik = ik->previous_versions()) != nullptr) { 716 ik->clean_weak_instanceklass_links(); 717 } 718 } 719 } 720 } 721 722 void Klass::metaspace_pointers_do(MetaspaceClosure* it) { 723 if (log_is_enabled(Trace, cds)) { 724 ResourceMark rm; 725 log_trace(cds)("Iter(Klass): %p (%s)", this, external_name()); 726 } 727 728 it->push(&_name); 729 it->push(&_secondary_supers); 730 for (int i = 0; i < _primary_super_limit; i++) { 731 it->push(&_primary_supers[i]); 732 } 733 it->push(&_super); 734 if (!CDSConfig::is_dumping_archive()) { 735 // If dumping archive, these may point to excluded classes. There's no need 736 // to follow these pointers anyway, as they will be set to null in 737 // remove_unshareable_info(). 738 it->push((Klass**)&_subklass); 739 it->push((Klass**)&_next_sibling); 740 it->push(&_next_link); 741 } 742 743 vtableEntry* vt = start_of_vtable(); 744 for (int i=0; i<vtable_length(); i++) { 745 it->push(vt[i].method_addr()); 746 } 747 } 748 749 #if INCLUDE_CDS 750 void Klass::remove_unshareable_info() { 751 assert(CDSConfig::is_dumping_archive(), 752 "only called during CDS dump time"); 753 JFR_ONLY(REMOVE_ID(this);) 754 if (log_is_enabled(Trace, cds, unshareable)) { 755 ResourceMark rm; 756 log_trace(cds, unshareable)("remove: %s", external_name()); 757 } 758 759 // _secondary_super_cache may be updated by an is_subtype_of() call 760 // while ArchiveBuilder is copying metaspace objects. Let's reset it to 761 // null and let it be repopulated at runtime. 762 set_secondary_super_cache(nullptr); 763 764 set_subklass(nullptr); 765 set_next_sibling(nullptr); 766 set_next_link(nullptr); 767 768 // Null out class_loader_data because we don't share that yet. 769 set_class_loader_data(nullptr); 770 set_is_shared(); 771 772 // FIXME: validation in Klass::hash_secondary_supers() may fail for shared klasses. 773 // Even though the bitmaps always match, the canonical order of elements in the table 774 // is not guaranteed to stay the same (see tie breaker during Robin Hood hashing in Klass::hash_insert). 775 //assert(compute_secondary_supers_bitmap(secondary_supers()) == _bitmap, "broken table"); 776 } 777 778 void Klass::remove_java_mirror() { 779 assert(CDSConfig::is_dumping_archive(), "sanity"); 780 if (log_is_enabled(Trace, cds, unshareable)) { 781 ResourceMark rm; 782 log_trace(cds, unshareable)("remove java_mirror: %s", external_name()); 783 } 784 // Just null out the mirror. The class_loader_data() no longer exists. 785 clear_java_mirror_handle(); 786 } 787 788 void Klass::restore_unshareable_info(ClassLoaderData* loader_data, Handle protection_domain, TRAPS) { 789 assert(is_klass(), "ensure C++ vtable is restored"); 790 assert(is_shared(), "must be set"); 791 JFR_ONLY(RESTORE_ID(this);) 792 if (log_is_enabled(Trace, cds, unshareable)) { 793 ResourceMark rm(THREAD); 794 oop class_loader = loader_data->class_loader(); 795 log_trace(cds, unshareable)("restore: %s with class loader: %s", external_name(), 796 class_loader != nullptr ? class_loader->klass()->external_name() : "boot"); 797 } 798 799 // If an exception happened during CDS restore, some of these fields may already be 800 // set. We leave the class on the CLD list, even if incomplete so that we don't 801 // modify the CLD list outside a safepoint. 802 if (class_loader_data() == nullptr) { 803 set_class_loader_data(loader_data); 804 805 // Add to class loader list first before creating the mirror 806 // (same order as class file parsing) 807 loader_data->add_class(this); 808 } 809 810 Handle loader(THREAD, loader_data->class_loader()); 811 ModuleEntry* module_entry = nullptr; 812 Klass* k = this; 813 if (k->is_objArray_klass()) { 814 k = ObjArrayKlass::cast(k)->bottom_klass(); 815 } 816 // Obtain klass' module. 817 if (k->is_instance_klass()) { 818 InstanceKlass* ik = (InstanceKlass*) k; 819 module_entry = ik->module(); 820 } else { 821 module_entry = ModuleEntryTable::javabase_moduleEntry(); 822 } 823 // Obtain java.lang.Module, if available 824 Handle module_handle(THREAD, ((module_entry != nullptr) ? module_entry->module() : (oop)nullptr)); 825 826 if (this->has_archived_mirror_index()) { 827 ResourceMark rm(THREAD); 828 log_debug(cds, mirror)("%s has raw archived mirror", external_name()); 829 if (ArchiveHeapLoader::is_in_use()) { 830 bool present = java_lang_Class::restore_archived_mirror(this, loader, module_handle, 831 protection_domain, 832 CHECK); 833 if (present) { 834 return; 835 } 836 } 837 838 // No archived mirror data 839 log_debug(cds, mirror)("No archived mirror data for %s", external_name()); 840 clear_java_mirror_handle(); 841 this->clear_archived_mirror_index(); 842 } 843 844 // Only recreate it if not present. A previous attempt to restore may have 845 // gotten an OOM later but keep the mirror if it was created. 846 if (java_mirror() == nullptr) { 847 ResourceMark rm(THREAD); 848 log_trace(cds, mirror)("Recreate mirror for %s", external_name()); 849 java_lang_Class::create_mirror(this, loader, module_handle, protection_domain, Handle(), CHECK); 850 } 851 } 852 #endif // INCLUDE_CDS 853 854 #if INCLUDE_CDS_JAVA_HEAP 855 oop Klass::archived_java_mirror() { 856 assert(has_archived_mirror_index(), "must have archived mirror"); 857 return HeapShared::get_root(_archived_mirror_index); 858 } 859 860 void Klass::clear_archived_mirror_index() { 861 if (_archived_mirror_index >= 0) { 862 HeapShared::clear_root(_archived_mirror_index); 863 } 864 _archived_mirror_index = -1; 865 } 866 867 // No GC barrier 868 void Klass::set_archived_java_mirror(int mirror_index) { 869 assert(CDSConfig::is_dumping_heap(), "sanity"); 870 _archived_mirror_index = mirror_index; 871 } 872 #endif // INCLUDE_CDS_JAVA_HEAP 873 874 void Klass::check_array_allocation_length(int length, int max_length, TRAPS) { 875 if (length > max_length) { 876 if (!THREAD->is_in_internal_oome_mark()) { 877 report_java_out_of_memory("Requested array size exceeds VM limit"); 878 JvmtiExport::post_array_size_exhausted(); 879 THROW_OOP(Universe::out_of_memory_error_array_size()); 880 } else { 881 THROW_OOP(Universe::out_of_memory_error_java_heap_without_backtrace()); 882 } 883 } else if (length < 0) { 884 THROW_MSG(vmSymbols::java_lang_NegativeArraySizeException(), err_msg("%d", length)); 885 } 886 } 887 888 // Replace the last '+' char with '/'. 889 static char* convert_hidden_name_to_java(Symbol* name) { 890 size_t name_len = name->utf8_length(); 891 char* result = NEW_RESOURCE_ARRAY(char, name_len + 1); 892 name->as_klass_external_name(result, (int)name_len + 1); 893 for (int index = (int)name_len; index > 0; index--) { 894 if (result[index] == '+') { 895 result[index] = JVM_SIGNATURE_SLASH; 896 break; 897 } 898 } 899 return result; 900 } 901 902 // In product mode, this function doesn't have virtual function calls so 903 // there might be some performance advantage to handling InstanceKlass here. 904 const char* Klass::external_name() const { 905 if (is_instance_klass()) { 906 const InstanceKlass* ik = static_cast<const InstanceKlass*>(this); 907 if (ik->is_hidden()) { 908 char* result = convert_hidden_name_to_java(name()); 909 return result; 910 } 911 } else if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) { 912 char* result = convert_hidden_name_to_java(name()); 913 return result; 914 } 915 if (name() == nullptr) return "<unknown>"; 916 return name()->as_klass_external_name(); 917 } 918 919 const char* Klass::signature_name() const { 920 if (name() == nullptr) return "<unknown>"; 921 if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) { 922 size_t name_len = name()->utf8_length(); 923 char* result = NEW_RESOURCE_ARRAY(char, name_len + 1); 924 name()->as_C_string(result, (int)name_len + 1); 925 for (int index = (int)name_len; index > 0; index--) { 926 if (result[index] == '+') { 927 result[index] = JVM_SIGNATURE_DOT; 928 break; 929 } 930 } 931 return result; 932 } 933 return name()->as_C_string(); 934 } 935 936 const char* Klass::external_kind() const { 937 if (is_interface()) return "interface"; 938 if (is_abstract()) return "abstract class"; 939 return "class"; 940 } 941 942 // Unless overridden, jvmti_class_status has no flags set. 943 jint Klass::jvmti_class_status() const { 944 return 0; 945 } 946 947 948 // Printing 949 950 void Klass::print_on(outputStream* st) const { 951 ResourceMark rm; 952 // print title 953 st->print("%s", internal_name()); 954 print_address_on(st); 955 st->cr(); 956 } 957 958 #define BULLET " - " 959 960 // Caller needs ResourceMark 961 void Klass::oop_print_on(oop obj, outputStream* st) { 962 // print title 963 st->print_cr("%s ", internal_name()); 964 obj->print_address_on(st); 965 966 if (WizardMode) { 967 // print header 968 obj->mark().print_on(st); 969 st->cr(); 970 } 971 972 // print class 973 st->print(BULLET"klass: "); 974 obj->klass()->print_value_on(st); 975 st->cr(); 976 } 977 978 void Klass::oop_print_value_on(oop obj, outputStream* st) { 979 // print title 980 ResourceMark rm; // Cannot print in debug mode without this 981 st->print("%s", internal_name()); 982 obj->print_address_on(st); 983 } 984 985 // Verification 986 987 void Klass::verify_on(outputStream* st) { 988 989 // This can be expensive, but it is worth checking that this klass is actually 990 // in the CLD graph but not in production. 991 assert(Metaspace::contains((address)this), "Should be"); 992 993 guarantee(this->is_klass(),"should be klass"); 994 995 if (super() != nullptr) { 996 guarantee(super()->is_klass(), "should be klass"); 997 } 998 if (secondary_super_cache() != nullptr) { 999 Klass* ko = secondary_super_cache(); 1000 guarantee(ko->is_klass(), "should be klass"); 1001 } 1002 for ( uint i = 0; i < primary_super_limit(); i++ ) { 1003 Klass* ko = _primary_supers[i]; 1004 if (ko != nullptr) { 1005 guarantee(ko->is_klass(), "should be klass"); 1006 } 1007 } 1008 1009 if (java_mirror_no_keepalive() != nullptr) { 1010 guarantee(java_lang_Class::is_instance(java_mirror_no_keepalive()), "should be instance"); 1011 } 1012 } 1013 1014 void Klass::oop_verify_on(oop obj, outputStream* st) { 1015 guarantee(oopDesc::is_oop(obj), "should be oop"); 1016 guarantee(obj->klass()->is_klass(), "klass field is not a klass"); 1017 } 1018 1019 bool Klass::is_valid(Klass* k) { 1020 if (!is_aligned(k, sizeof(MetaWord))) return false; 1021 if ((size_t)k < os::min_page_size()) return false; 1022 1023 if (!os::is_readable_range(k, k + 1)) return false; 1024 if (!Metaspace::contains(k)) return false; 1025 1026 if (!Symbol::is_valid(k->name())) return false; 1027 return ClassLoaderDataGraph::is_valid(k->class_loader_data()); 1028 } 1029 1030 Method* Klass::method_at_vtable(int index) { 1031 #ifndef PRODUCT 1032 assert(index >= 0, "valid vtable index"); 1033 if (DebugVtables) { 1034 verify_vtable_index(index); 1035 } 1036 #endif 1037 return start_of_vtable()[index].method(); 1038 } 1039 1040 1041 #ifndef PRODUCT 1042 1043 bool Klass::verify_vtable_index(int i) { 1044 int limit = vtable_length()/vtableEntry::size(); 1045 assert(i >= 0 && i < limit, "index %d out of bounds %d", i, limit); 1046 return true; 1047 } 1048 1049 #endif // PRODUCT 1050 1051 // Caller needs ResourceMark 1052 // joint_in_module_of_loader provides an optimization if 2 classes are in 1053 // the same module to succinctly print out relevant information about their 1054 // module name and class loader's name_and_id for error messages. 1055 // Format: 1056 // <fully-qualified-external-class-name1> and <fully-qualified-external-class-name2> 1057 // are in module <module-name>[@<version>] 1058 // of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>] 1059 const char* Klass::joint_in_module_of_loader(const Klass* class2, bool include_parent_loader) const { 1060 assert(module() == class2->module(), "classes do not have the same module"); 1061 const char* class1_name = external_name(); 1062 size_t len = strlen(class1_name) + 1; 1063 1064 const char* class2_description = class2->class_in_module_of_loader(true, include_parent_loader); 1065 len += strlen(class2_description); 1066 1067 len += strlen(" and "); 1068 1069 char* joint_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len); 1070 1071 // Just return the FQN if error when allocating string 1072 if (joint_description == nullptr) { 1073 return class1_name; 1074 } 1075 1076 jio_snprintf(joint_description, len, "%s and %s", 1077 class1_name, 1078 class2_description); 1079 1080 return joint_description; 1081 } 1082 1083 // Caller needs ResourceMark 1084 // class_in_module_of_loader provides a standard way to include 1085 // relevant information about a class, such as its module name as 1086 // well as its class loader's name_and_id, in error messages and logging. 1087 // Format: 1088 // <fully-qualified-external-class-name> is in module <module-name>[@<version>] 1089 // of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>] 1090 const char* Klass::class_in_module_of_loader(bool use_are, bool include_parent_loader) const { 1091 // 1. fully qualified external name of class 1092 const char* klass_name = external_name(); 1093 size_t len = strlen(klass_name) + 1; 1094 1095 // 2. module name + @version 1096 const char* module_name = ""; 1097 const char* version = ""; 1098 bool has_version = false; 1099 bool module_is_named = false; 1100 const char* module_name_phrase = ""; 1101 const Klass* bottom_klass = is_objArray_klass() ? 1102 ObjArrayKlass::cast(this)->bottom_klass() : this; 1103 if (bottom_klass->is_instance_klass()) { 1104 ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module(); 1105 if (module->is_named()) { 1106 module_is_named = true; 1107 module_name_phrase = "module "; 1108 module_name = module->name()->as_C_string(); 1109 len += strlen(module_name); 1110 // Use version if exists and is not a jdk module 1111 if (module->should_show_version()) { 1112 has_version = true; 1113 version = module->version()->as_C_string(); 1114 // Include stlen(version) + 1 for the "@" 1115 len += strlen(version) + 1; 1116 } 1117 } else { 1118 module_name = UNNAMED_MODULE; 1119 len += UNNAMED_MODULE_LEN; 1120 } 1121 } else { 1122 // klass is an array of primitives, module is java.base 1123 module_is_named = true; 1124 module_name_phrase = "module "; 1125 module_name = JAVA_BASE_NAME; 1126 len += JAVA_BASE_NAME_LEN; 1127 } 1128 1129 // 3. class loader's name_and_id 1130 ClassLoaderData* cld = class_loader_data(); 1131 assert(cld != nullptr, "class_loader_data should not be null"); 1132 const char* loader_name_and_id = cld->loader_name_and_id(); 1133 len += strlen(loader_name_and_id); 1134 1135 // 4. include parent loader information 1136 const char* parent_loader_phrase = ""; 1137 const char* parent_loader_name_and_id = ""; 1138 if (include_parent_loader && 1139 !cld->is_builtin_class_loader_data()) { 1140 oop parent_loader = java_lang_ClassLoader::parent(class_loader()); 1141 ClassLoaderData *parent_cld = ClassLoaderData::class_loader_data_or_null(parent_loader); 1142 // The parent loader's ClassLoaderData could be null if it is 1143 // a delegating class loader that has never defined a class. 1144 // In this case the loader's name must be obtained via the parent loader's oop. 1145 if (parent_cld == nullptr) { 1146 oop cl_name_and_id = java_lang_ClassLoader::nameAndId(parent_loader); 1147 if (cl_name_and_id != nullptr) { 1148 parent_loader_name_and_id = java_lang_String::as_utf8_string(cl_name_and_id); 1149 } 1150 } else { 1151 parent_loader_name_and_id = parent_cld->loader_name_and_id(); 1152 } 1153 parent_loader_phrase = ", parent loader "; 1154 len += strlen(parent_loader_phrase) + strlen(parent_loader_name_and_id); 1155 } 1156 1157 // Start to construct final full class description string 1158 len += ((use_are) ? strlen(" are in ") : strlen(" is in ")); 1159 len += strlen(module_name_phrase) + strlen(" of loader "); 1160 1161 char* class_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len); 1162 1163 // Just return the FQN if error when allocating string 1164 if (class_description == nullptr) { 1165 return klass_name; 1166 } 1167 1168 jio_snprintf(class_description, len, "%s %s in %s%s%s%s of loader %s%s%s", 1169 klass_name, 1170 (use_are) ? "are" : "is", 1171 module_name_phrase, 1172 module_name, 1173 (has_version) ? "@" : "", 1174 (has_version) ? version : "", 1175 loader_name_and_id, 1176 parent_loader_phrase, 1177 parent_loader_name_and_id); 1178 1179 return class_description; 1180 } 1181 1182 class LookupStats : StackObj { 1183 private: 1184 uint _no_of_samples; 1185 uint _worst; 1186 uint _worst_count; 1187 uint _average; 1188 uint _best; 1189 uint _best_count; 1190 public: 1191 LookupStats() : _no_of_samples(0), _worst(0), _worst_count(0), _average(0), _best(INT_MAX), _best_count(0) {} 1192 1193 ~LookupStats() { 1194 assert(_best <= _worst || _no_of_samples == 0, "sanity"); 1195 } 1196 1197 void sample(uint value) { 1198 ++_no_of_samples; 1199 _average += value; 1200 1201 if (_worst < value) { 1202 _worst = value; 1203 _worst_count = 1; 1204 } else if (_worst == value) { 1205 ++_worst_count; 1206 } 1207 1208 if (_best > value) { 1209 _best = value; 1210 _best_count = 1; 1211 } else if (_best == value) { 1212 ++_best_count; 1213 } 1214 } 1215 1216 void print_on(outputStream* st) const { 1217 st->print("best: %2d (%4.1f%%)", _best, (100.0 * _best_count) / _no_of_samples); 1218 if (_best_count < _no_of_samples) { 1219 st->print("; average: %4.1f; worst: %2d (%4.1f%%)", 1220 (1.0 * _average) / _no_of_samples, 1221 _worst, (100.0 * _worst_count) / _no_of_samples); 1222 } 1223 } 1224 }; 1225 1226 static void print_positive_lookup_stats(Array<Klass*>* secondary_supers, uintx bitmap, outputStream* st) { 1227 int num_of_supers = secondary_supers->length(); 1228 1229 LookupStats s; 1230 for (int i = 0; i < num_of_supers; i++) { 1231 Klass* secondary_super = secondary_supers->at(i); 1232 int home_slot = Klass::compute_home_slot(secondary_super, bitmap); 1233 uint score = 1 + ((i - home_slot) & Klass::SECONDARY_SUPERS_TABLE_MASK); 1234 s.sample(score); 1235 } 1236 st->print("positive_lookup: "); s.print_on(st); 1237 } 1238 1239 static uint compute_distance_to_nearest_zero(int slot, uintx bitmap) { 1240 assert(~bitmap != 0, "no zeroes"); 1241 uintx start = rotate_right(bitmap, slot); 1242 return count_trailing_zeros(~start); 1243 } 1244 1245 static void print_negative_lookup_stats(uintx bitmap, outputStream* st) { 1246 LookupStats s; 1247 for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) { 1248 uint score = compute_distance_to_nearest_zero(slot, bitmap); 1249 s.sample(score); 1250 } 1251 st->print("negative_lookup: "); s.print_on(st); 1252 } 1253 1254 void Klass::print_secondary_supers_on(outputStream* st) const { 1255 if (secondary_supers() != nullptr) { 1256 if (UseSecondarySupersTable) { 1257 st->print(" - "); st->print("%d elements;", _secondary_supers->length()); 1258 st->print_cr(" bitmap: " UINTX_FORMAT_X_0 ";", _bitmap); 1259 if (_bitmap != SECONDARY_SUPERS_BITMAP_EMPTY && 1260 _bitmap != SECONDARY_SUPERS_BITMAP_FULL) { 1261 st->print(" - "); print_positive_lookup_stats(secondary_supers(), _bitmap, st); st->cr(); 1262 st->print(" - "); print_negative_lookup_stats(_bitmap, st); st->cr(); 1263 } 1264 } 1265 } else { 1266 st->print("null"); 1267 } 1268 } 1269 1270 void Klass::on_secondary_supers_verification_failure(Klass* super, Klass* sub, bool linear_result, bool table_result, const char* msg) { 1271 ResourceMark rm; 1272 super->print(); 1273 sub->print(); 1274 fatal("%s: %s implements %s: is_subtype_of: %d; linear_search: %d; table_lookup: %d", 1275 msg, sub->external_name(), super->external_name(), 1276 sub->is_subtype_of(super), linear_result, table_result); 1277 }