1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "cds/archiveHeapLoader.hpp" 27 #include "cds/cdsConfig.hpp" 28 #include "cds/heapShared.hpp" 29 #include "classfile/classLoader.hpp" 30 #include "classfile/classLoaderData.inline.hpp" 31 #include "classfile/classLoaderDataGraph.inline.hpp" 32 #include "classfile/javaClasses.inline.hpp" 33 #include "classfile/moduleEntry.hpp" 34 #include "classfile/systemDictionary.hpp" 35 #include "classfile/systemDictionaryShared.hpp" 36 #include "classfile/vmClasses.hpp" 37 #include "classfile/vmSymbols.hpp" 38 #include "gc/shared/collectedHeap.inline.hpp" 39 #include "jvm_io.h" 40 #include "logging/log.hpp" 41 #include "memory/metadataFactory.hpp" 42 #include "memory/metaspaceClosure.hpp" 43 #include "memory/oopFactory.hpp" 44 #include "memory/resourceArea.hpp" 45 #include "memory/universe.hpp" 46 #include "oops/compressedOops.inline.hpp" 47 #include "oops/instanceKlass.hpp" 48 #include "oops/klass.inline.hpp" 49 #include "oops/objArrayKlass.hpp" 50 #include "oops/oop.inline.hpp" 51 #include "oops/oopHandle.inline.hpp" 52 #include "prims/jvmtiExport.hpp" 53 #include "runtime/atomic.hpp" 54 #include "runtime/handles.inline.hpp" 55 #include "runtime/perfData.hpp" 56 #include "utilities/macros.hpp" 57 #include "utilities/powerOfTwo.hpp" 58 #include "utilities/rotate_bits.hpp" 59 #include "utilities/stack.inline.hpp" 60 61 void Klass::set_java_mirror(Handle m) { 62 assert(!m.is_null(), "New mirror should never be null."); 63 assert(_java_mirror.is_empty(), "should only be used to initialize mirror"); 64 _java_mirror = class_loader_data()->add_handle(m); 65 } 66 67 bool Klass::is_cloneable() const { 68 return _access_flags.is_cloneable_fast() || 69 is_subtype_of(vmClasses::Cloneable_klass()); 70 } 71 72 void Klass::set_is_cloneable() { 73 if (name() == vmSymbols::java_lang_invoke_MemberName()) { 74 assert(is_final(), "no subclasses allowed"); 75 // MemberName cloning should not be intrinsified and always happen in JVM_Clone. 76 } else if (is_instance_klass() && InstanceKlass::cast(this)->reference_type() != REF_NONE) { 77 // Reference cloning should not be intrinsified and always happen in JVM_Clone. 78 } else { 79 _access_flags.set_is_cloneable_fast(); 80 } 81 } 82 83 uint8_t Klass::compute_hash_slot(Symbol* n) { 84 uint hash_code; 85 // Special cases for the two superclasses of all Array instances. 86 // Code elsewhere assumes, for all instances of ArrayKlass, that 87 // these two interfaces will be in this order. 88 89 // We ensure there are some empty slots in the hash table between 90 // these two very common interfaces because if they were adjacent 91 // (e.g. Slots 0 and 1), then any other class which hashed to 0 or 1 92 // would result in a probe length of 3. 93 if (n == vmSymbols::java_lang_Cloneable()) { 94 hash_code = 0; 95 } else if (n == vmSymbols::java_io_Serializable()) { 96 hash_code = SECONDARY_SUPERS_TABLE_SIZE / 2; 97 } else { 98 auto s = (const jbyte*) n->bytes(); 99 hash_code = java_lang_String::hash_code(s, n->utf8_length()); 100 // We use String::hash_code here (rather than e.g. 101 // Symbol::identity_hash()) in order to have a hash code that 102 // does not change from run to run. We want that because the 103 // hash value for a secondary superclass appears in generated 104 // code as a constant. 105 106 // This constant is magic: see Knuth, "Fibonacci Hashing". 107 constexpr uint multiplier 108 = 2654435769; // (uint)(((u8)1 << 32) / ((1 + sqrt(5)) / 2 )) 109 constexpr uint hash_shift = sizeof(hash_code) * 8 - 6; 110 // The leading bits of the least significant half of the product. 111 hash_code = (hash_code * multiplier) >> hash_shift; 112 113 if (StressSecondarySupers) { 114 // Generate many hash collisions in order to stress-test the 115 // linear search fallback. 116 hash_code = hash_code % 3; 117 hash_code = hash_code * (SECONDARY_SUPERS_TABLE_SIZE / 3); 118 } 119 } 120 121 return (hash_code & SECONDARY_SUPERS_TABLE_MASK); 122 } 123 124 void Klass::set_name(Symbol* n) { 125 _name = n; 126 127 if (_name != nullptr) { 128 _name->increment_refcount(); 129 } 130 131 if (UseSecondarySupersTable) { 132 elapsedTimer selftime; 133 selftime.start(); 134 135 _hash_slot = compute_hash_slot(n); 136 assert(_hash_slot < SECONDARY_SUPERS_TABLE_SIZE, "required"); 137 138 selftime.stop(); 139 if (UsePerfData) { 140 ClassLoader::perf_secondary_hash_time()->inc(selftime.ticks()); 141 } 142 } 143 144 if (CDSConfig::is_dumping_archive() && is_instance_klass()) { 145 SystemDictionaryShared::init_dumptime_info(InstanceKlass::cast(this)); 146 } 147 } 148 149 bool Klass::is_subclass_of(const Klass* k) const { 150 // Run up the super chain and check 151 if (this == k) return true; 152 153 Klass* t = const_cast<Klass*>(this)->super(); 154 155 while (t != nullptr) { 156 if (t == k) return true; 157 t = t->super(); 158 } 159 return false; 160 } 161 162 void Klass::release_C_heap_structures(bool release_constant_pool) { 163 if (_name != nullptr) _name->decrement_refcount(); 164 } 165 166 bool Klass::search_secondary_supers(Klass* k) const { 167 // Put some extra logic here out-of-line, before the search proper. 168 // This cuts down the size of the inline method. 169 170 // This is necessary, since I am never in my own secondary_super list. 171 if (this == k) 172 return true; 173 // Scan the array-of-objects for a match 174 int cnt = secondary_supers()->length(); 175 for (int i = 0; i < cnt; i++) { 176 if (secondary_supers()->at(i) == k) { 177 ((Klass*)this)->set_secondary_super_cache(k); 178 return true; 179 } 180 } 181 return false; 182 } 183 184 // Return self, except for abstract classes with exactly 1 185 // implementor. Then return the 1 concrete implementation. 186 Klass *Klass::up_cast_abstract() { 187 Klass *r = this; 188 while( r->is_abstract() ) { // Receiver is abstract? 189 Klass *s = r->subklass(); // Check for exactly 1 subklass 190 if (s == nullptr || s->next_sibling() != nullptr) // Oops; wrong count; give up 191 return this; // Return 'this' as a no-progress flag 192 r = s; // Loop till find concrete class 193 } 194 return r; // Return the 1 concrete class 195 } 196 197 // Find LCA in class hierarchy 198 Klass *Klass::LCA( Klass *k2 ) { 199 Klass *k1 = this; 200 while( 1 ) { 201 if( k1->is_subtype_of(k2) ) return k2; 202 if( k2->is_subtype_of(k1) ) return k1; 203 k1 = k1->super(); 204 k2 = k2->super(); 205 } 206 } 207 208 209 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) { 210 ResourceMark rm(THREAD); 211 THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError() 212 : vmSymbols::java_lang_InstantiationException(), external_name()); 213 } 214 215 216 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) { 217 ResourceMark rm(THREAD); 218 assert(s != nullptr, "Throw NPE!"); 219 THROW_MSG(vmSymbols::java_lang_ArrayStoreException(), 220 err_msg("arraycopy: source type %s is not an array", s->klass()->external_name())); 221 } 222 223 224 void Klass::initialize(TRAPS) { 225 ShouldNotReachHere(); 226 } 227 228 Klass* Klass::find_field(Symbol* name, Symbol* sig, fieldDescriptor* fd) const { 229 #ifdef ASSERT 230 tty->print_cr("Error: find_field called on a klass oop." 231 " Likely error: reflection method does not correctly" 232 " wrap return value in a mirror object."); 233 #endif 234 ShouldNotReachHere(); 235 return nullptr; 236 } 237 238 Method* Klass::uncached_lookup_method(const Symbol* name, const Symbol* signature, 239 OverpassLookupMode overpass_mode, 240 PrivateLookupMode private_mode) const { 241 #ifdef ASSERT 242 tty->print_cr("Error: uncached_lookup_method called on a klass oop." 243 " Likely error: reflection method does not correctly" 244 " wrap return value in a mirror object."); 245 #endif 246 ShouldNotReachHere(); 247 return nullptr; 248 } 249 250 void* Klass::operator new(size_t size, ClassLoaderData* loader_data, size_t word_size, TRAPS) throw() { 251 return Metaspace::allocate(loader_data, word_size, MetaspaceObj::ClassType, THREAD); 252 } 253 254 static markWord make_prototype(Klass* kls) { 255 markWord prototype = markWord::prototype(); 256 #ifdef _LP64 257 if (UseCompactObjectHeaders) { 258 prototype = prototype.set_klass(kls); 259 } 260 #endif 261 return prototype; 262 } 263 264 Klass::Klass() : _kind(UnknownKlassKind) { 265 assert(CDSConfig::is_dumping_static_archive() || CDSConfig::is_using_archive(), "only for cds"); 266 } 267 268 // "Normal" instantiation is preceded by a MetaspaceObj allocation 269 // which zeros out memory - calloc equivalent. 270 // The constructor is also used from CppVtableCloner, 271 // which doesn't zero out the memory before calling the constructor. 272 Klass::Klass(KlassKind kind) : _kind(kind), 273 _prototype_header(make_prototype(this)), 274 _shared_class_path_index(-1) { 275 CDS_ONLY(_shared_class_flags = 0;) 276 CDS_JAVA_HEAP_ONLY(_archived_mirror_index = -1;) 277 _primary_supers[0] = this; 278 set_super_check_offset(in_bytes(primary_supers_offset())); 279 } 280 281 jint Klass::array_layout_helper(BasicType etype) { 282 assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype"); 283 // Note that T_ARRAY is not allowed here. 284 int hsize = arrayOopDesc::base_offset_in_bytes(etype); 285 int esize = type2aelembytes(etype); 286 bool isobj = (etype == T_OBJECT); 287 int tag = isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value; 288 int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize)); 289 290 assert(lh < (int)_lh_neutral_value, "must look like an array layout"); 291 assert(layout_helper_is_array(lh), "correct kind"); 292 assert(layout_helper_is_objArray(lh) == isobj, "correct kind"); 293 assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind"); 294 assert(layout_helper_header_size(lh) == hsize, "correct decode"); 295 assert(layout_helper_element_type(lh) == etype, "correct decode"); 296 assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode"); 297 298 return lh; 299 } 300 301 bool Klass::can_be_primary_super_slow() const { 302 if (super() == nullptr) 303 return true; 304 else if (super()->super_depth() >= primary_super_limit()-1) 305 return false; 306 else 307 return true; 308 } 309 310 void Klass::set_secondary_supers(Array<Klass*>* secondaries) { 311 assert(!UseSecondarySupersTable || secondaries == nullptr, ""); 312 set_secondary_supers(secondaries, SECONDARY_SUPERS_BITMAP_EMPTY); 313 } 314 315 void Klass::set_secondary_supers(Array<Klass*>* secondaries, uintx bitmap) { 316 #ifdef ASSERT 317 if (UseSecondarySupersTable && secondaries != nullptr) { 318 uintx real_bitmap = compute_secondary_supers_bitmap(secondaries); 319 assert(bitmap == real_bitmap, "must be"); 320 } 321 #endif 322 _bitmap = bitmap; 323 _secondary_supers = secondaries; 324 325 if (secondaries != nullptr) { 326 LogMessage(class, load) msg; 327 NonInterleavingLogStream log {LogLevel::Debug, msg}; 328 if (log.is_enabled()) { 329 ResourceMark rm; 330 log.print_cr("set_secondary_supers: hash_slot: %d; klass: %s", hash_slot(), external_name()); 331 print_secondary_supers_on(&log); 332 } 333 } 334 } 335 336 // Hashed secondary superclasses 337 // 338 // We use a compressed 64-entry hash table with linear probing. We 339 // start by creating a hash table in the usual way, followed by a pass 340 // that removes all the null entries. To indicate which entries would 341 // have been null we use a bitmap that contains a 1 in each position 342 // where an entry is present, 0 otherwise. This bitmap also serves as 343 // a kind of Bloom filter, which in many cases allows us quickly to 344 // eliminate the possibility that something is a member of a set of 345 // secondaries. 346 uintx Klass::hash_secondary_supers(Array<Klass*>* secondaries, bool rewrite) { 347 const int length = secondaries->length(); 348 349 if (length == 0) { 350 return SECONDARY_SUPERS_BITMAP_EMPTY; 351 } 352 353 if (length == 1) { 354 int hash_slot = secondaries->at(0)->hash_slot(); 355 return uintx(1) << hash_slot; 356 } 357 358 // For performance reasons we don't use a hashed table unless there 359 // are at least two empty slots in it. If there were only one empty 360 // slot it'd take a long time to create the table and the resulting 361 // search would be no faster than linear probing. 362 if (length > SECONDARY_SUPERS_TABLE_SIZE - 2) { 363 return SECONDARY_SUPERS_BITMAP_FULL; 364 } 365 366 { 367 PerfTraceTime ptt(ClassLoader::perf_secondary_hash_time()); 368 369 ResourceMark rm; 370 uintx bitmap = SECONDARY_SUPERS_BITMAP_EMPTY; 371 auto hashed_secondaries = new GrowableArray<Klass*>(SECONDARY_SUPERS_TABLE_SIZE, 372 SECONDARY_SUPERS_TABLE_SIZE, nullptr); 373 374 for (int j = 0; j < length; j++) { 375 Klass* k = secondaries->at(j); 376 hash_insert(k, hashed_secondaries, bitmap); 377 } 378 379 // Pack the hashed secondaries array by copying it into the 380 // secondaries array, sans nulls, if modification is allowed. 381 // Otherwise, validate the order. 382 int i = 0; 383 for (int slot = 0; slot < SECONDARY_SUPERS_TABLE_SIZE; slot++) { 384 bool has_element = ((bitmap >> slot) & 1) != 0; 385 assert(has_element == (hashed_secondaries->at(slot) != nullptr), ""); 386 if (has_element) { 387 Klass* k = hashed_secondaries->at(slot); 388 if (rewrite) { 389 secondaries->at_put(i, k); 390 } else if (secondaries->at(i) != k) { 391 assert(false, "broken secondary supers hash table"); 392 return SECONDARY_SUPERS_BITMAP_FULL; 393 } 394 i++; 395 } 396 } 397 assert(i == secondaries->length(), "mismatch"); 398 399 return bitmap; 400 } 401 } 402 403 void Klass::hash_insert(Klass* klass, GrowableArray<Klass*>* secondaries, uintx& bitmap) { 404 assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, ""); 405 406 int dist = 0; 407 for (int slot = klass->hash_slot(); true; slot = (slot + 1) & SECONDARY_SUPERS_TABLE_MASK) { 408 Klass* existing = secondaries->at(slot); 409 assert(((bitmap >> slot) & 1) == (existing != nullptr), "mismatch"); 410 if (existing == nullptr) { // no conflict 411 secondaries->at_put(slot, klass); 412 bitmap |= uintx(1) << slot; 413 assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, ""); 414 return; 415 } else { 416 // Use Robin Hood hashing to minimize the worst case search. 417 // Also, every permutation of the insertion sequence produces 418 // the same final Robin Hood hash table, provided that a 419 // consistent tie breaker is used. 420 int existing_dist = (slot - existing->hash_slot()) & SECONDARY_SUPERS_TABLE_MASK; 421 if (existing_dist < dist 422 // This tie breaker ensures that the hash order is maintained. 423 || ((existing_dist == dist) 424 && (uintptr_t(existing) < uintptr_t(klass)))) { 425 Klass* tmp = secondaries->at(slot); 426 secondaries->at_put(slot, klass); 427 klass = tmp; 428 dist = existing_dist; 429 } 430 ++dist; 431 } 432 } 433 } 434 435 Array<Klass*>* Klass::pack_secondary_supers(ClassLoaderData* loader_data, 436 GrowableArray<Klass*>* primaries, 437 GrowableArray<Klass*>* secondaries, 438 uintx& bitmap, TRAPS) { 439 int new_length = primaries->length() + secondaries->length(); 440 Array<Klass*>* secondary_supers = MetadataFactory::new_array<Klass*>(loader_data, new_length, CHECK_NULL); 441 442 // Combine the two arrays into a metadata object to pack the array. 443 // The primaries are added in the reverse order, then the secondaries. 444 int fill_p = primaries->length(); 445 for (int j = 0; j < fill_p; j++) { 446 secondary_supers->at_put(j, primaries->pop()); // add primaries in reverse order. 447 } 448 for( int j = 0; j < secondaries->length(); j++ ) { 449 secondary_supers->at_put(j+fill_p, secondaries->at(j)); // add secondaries on the end. 450 } 451 #ifdef ASSERT 452 // We must not copy any null placeholders left over from bootstrap. 453 for (int j = 0; j < secondary_supers->length(); j++) { 454 assert(secondary_supers->at(j) != nullptr, "correct bootstrapping order"); 455 } 456 #endif 457 458 if (UseSecondarySupersTable) { 459 bitmap = hash_secondary_supers(secondary_supers, /*rewrite=*/true); // rewrites freshly allocated array 460 } else { 461 bitmap = SECONDARY_SUPERS_BITMAP_EMPTY; 462 } 463 return secondary_supers; 464 } 465 466 uintx Klass::compute_secondary_supers_bitmap(Array<Klass*>* secondary_supers) { 467 return hash_secondary_supers(secondary_supers, /*rewrite=*/false); // no rewrites allowed 468 } 469 470 uint8_t Klass::compute_home_slot(Klass* k, uintx bitmap) { 471 uint8_t hash = k->hash_slot(); 472 if (hash > 0) { 473 return population_count(bitmap << (SECONDARY_SUPERS_TABLE_SIZE - hash)); 474 } 475 return 0; 476 } 477 478 479 void Klass::initialize_supers(Klass* k, Array<InstanceKlass*>* transitive_interfaces, TRAPS) { 480 if (k == nullptr) { 481 set_super(nullptr); 482 _primary_supers[0] = this; 483 assert(super_depth() == 0, "Object must already be initialized properly"); 484 } else if (k != super() || k == vmClasses::Object_klass()) { 485 assert(super() == nullptr || super() == vmClasses::Object_klass(), 486 "initialize this only once to a non-trivial value"); 487 set_super(k); 488 Klass* sup = k; 489 int sup_depth = sup->super_depth(); 490 juint my_depth = MIN2(sup_depth + 1, (int)primary_super_limit()); 491 if (!can_be_primary_super_slow()) 492 my_depth = primary_super_limit(); 493 for (juint i = 0; i < my_depth; i++) { 494 _primary_supers[i] = sup->_primary_supers[i]; 495 } 496 Klass* *super_check_cell; 497 if (my_depth < primary_super_limit()) { 498 _primary_supers[my_depth] = this; 499 super_check_cell = &_primary_supers[my_depth]; 500 } else { 501 // Overflow of the primary_supers array forces me to be secondary. 502 super_check_cell = &_secondary_super_cache; 503 } 504 set_super_check_offset(u4((address)super_check_cell - (address) this)); 505 506 #ifdef ASSERT 507 { 508 juint j = super_depth(); 509 assert(j == my_depth, "computed accessor gets right answer"); 510 Klass* t = this; 511 while (!t->can_be_primary_super()) { 512 t = t->super(); 513 j = t->super_depth(); 514 } 515 for (juint j1 = j+1; j1 < primary_super_limit(); j1++) { 516 assert(primary_super_of_depth(j1) == nullptr, "super list padding"); 517 } 518 while (t != nullptr) { 519 assert(primary_super_of_depth(j) == t, "super list initialization"); 520 t = t->super(); 521 --j; 522 } 523 assert(j == (juint)-1, "correct depth count"); 524 } 525 #endif 526 } 527 528 if (secondary_supers() == nullptr) { 529 530 // Now compute the list of secondary supertypes. 531 // Secondaries can occasionally be on the super chain, 532 // if the inline "_primary_supers" array overflows. 533 int extras = 0; 534 Klass* p; 535 for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) { 536 ++extras; 537 } 538 539 ResourceMark rm(THREAD); // need to reclaim GrowableArrays allocated below 540 541 // Compute the "real" non-extra secondaries. 542 GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras, transitive_interfaces); 543 if (secondaries == nullptr) { 544 // secondary_supers set by compute_secondary_supers 545 return; 546 } 547 548 GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras); 549 550 for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) { 551 int i; // Scan for overflow primaries being duplicates of 2nd'arys 552 553 // This happens frequently for very deeply nested arrays: the 554 // primary superclass chain overflows into the secondary. The 555 // secondary list contains the element_klass's secondaries with 556 // an extra array dimension added. If the element_klass's 557 // secondary list already contains some primary overflows, they 558 // (with the extra level of array-ness) will collide with the 559 // normal primary superclass overflows. 560 for( i = 0; i < secondaries->length(); i++ ) { 561 if( secondaries->at(i) == p ) 562 break; 563 } 564 if( i < secondaries->length() ) 565 continue; // It's a dup, don't put it in 566 primaries->push(p); 567 } 568 // Combine the two arrays into a metadata object to pack the array. 569 uintx bitmap = 0; 570 Array<Klass*>* s2 = pack_secondary_supers(class_loader_data(), primaries, secondaries, bitmap, CHECK); 571 set_secondary_supers(s2, bitmap); 572 } 573 } 574 575 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots, 576 Array<InstanceKlass*>* transitive_interfaces) { 577 assert(num_extra_slots == 0, "override for complex klasses"); 578 assert(transitive_interfaces == nullptr, "sanity"); 579 set_secondary_supers(Universe::the_empty_klass_array(), Universe::the_empty_klass_bitmap()); 580 return nullptr; 581 } 582 583 584 // superklass links 585 InstanceKlass* Klass::superklass() const { 586 assert(super() == nullptr || super()->is_instance_klass(), "must be instance klass"); 587 return _super == nullptr ? nullptr : InstanceKlass::cast(_super); 588 } 589 590 // subklass links. Used by the compiler (and vtable initialization) 591 // May be cleaned concurrently, so must use the Compile_lock. 592 // The log parameter is for clean_weak_klass_links to report unlinked classes. 593 Klass* Klass::subklass(bool log) const { 594 // Need load_acquire on the _subklass, because it races with inserts that 595 // publishes freshly initialized data. 596 for (Klass* chain = Atomic::load_acquire(&_subklass); 597 chain != nullptr; 598 // Do not need load_acquire on _next_sibling, because inserts never 599 // create _next_sibling edges to dead data. 600 chain = Atomic::load(&chain->_next_sibling)) 601 { 602 if (chain->is_loader_alive()) { 603 return chain; 604 } else if (log) { 605 if (log_is_enabled(Trace, class, unload)) { 606 ResourceMark rm; 607 log_trace(class, unload)("unlinking class (subclass): %s", chain->external_name()); 608 } 609 } 610 } 611 return nullptr; 612 } 613 614 Klass* Klass::next_sibling(bool log) const { 615 // Do not need load_acquire on _next_sibling, because inserts never 616 // create _next_sibling edges to dead data. 617 for (Klass* chain = Atomic::load(&_next_sibling); 618 chain != nullptr; 619 chain = Atomic::load(&chain->_next_sibling)) { 620 // Only return alive klass, there may be stale klass 621 // in this chain if cleaned concurrently. 622 if (chain->is_loader_alive()) { 623 return chain; 624 } else if (log) { 625 if (log_is_enabled(Trace, class, unload)) { 626 ResourceMark rm; 627 log_trace(class, unload)("unlinking class (sibling): %s", chain->external_name()); 628 } 629 } 630 } 631 return nullptr; 632 } 633 634 void Klass::set_subklass(Klass* s) { 635 assert(s != this, "sanity check"); 636 Atomic::release_store(&_subklass, s); 637 } 638 639 void Klass::set_next_sibling(Klass* s) { 640 assert(s != this, "sanity check"); 641 // Does not need release semantics. If used by cleanup, it will link to 642 // already safely published data, and if used by inserts, will be published 643 // safely using cmpxchg. 644 Atomic::store(&_next_sibling, s); 645 } 646 647 void Klass::append_to_sibling_list() { 648 if (Universe::is_fully_initialized()) { 649 assert_locked_or_safepoint(Compile_lock); 650 } 651 debug_only(verify();) 652 // add ourselves to superklass' subklass list 653 InstanceKlass* super = superklass(); 654 if (super == nullptr) return; // special case: class Object 655 assert((!super->is_interface() // interfaces cannot be supers 656 && (super->superklass() == nullptr || !is_interface())), 657 "an interface can only be a subklass of Object"); 658 659 // Make sure there is no stale subklass head 660 super->clean_subklass(); 661 662 for (;;) { 663 Klass* prev_first_subklass = Atomic::load_acquire(&_super->_subklass); 664 if (prev_first_subklass != nullptr) { 665 // set our sibling to be the superklass' previous first subklass 666 assert(prev_first_subklass->is_loader_alive(), "May not attach not alive klasses"); 667 set_next_sibling(prev_first_subklass); 668 } 669 // Note that the prev_first_subklass is always alive, meaning no sibling_next links 670 // are ever created to not alive klasses. This is an important invariant of the lock-free 671 // cleaning protocol, that allows us to safely unlink dead klasses from the sibling list. 672 if (Atomic::cmpxchg(&super->_subklass, prev_first_subklass, this) == prev_first_subklass) { 673 return; 674 } 675 } 676 debug_only(verify();) 677 } 678 679 void Klass::clean_subklass() { 680 for (;;) { 681 // Need load_acquire, due to contending with concurrent inserts 682 Klass* subklass = Atomic::load_acquire(&_subklass); 683 if (subklass == nullptr || subklass->is_loader_alive()) { 684 return; 685 } 686 // Try to fix _subklass until it points at something not dead. 687 Atomic::cmpxchg(&_subklass, subklass, subklass->next_sibling()); 688 } 689 } 690 691 void Klass::clean_weak_klass_links(bool unloading_occurred, bool clean_alive_klasses) { 692 if (!ClassUnloading || !unloading_occurred) { 693 return; 694 } 695 696 Klass* root = vmClasses::Object_klass(); 697 Stack<Klass*, mtGC> stack; 698 699 stack.push(root); 700 while (!stack.is_empty()) { 701 Klass* current = stack.pop(); 702 703 assert(current->is_loader_alive(), "just checking, this should be live"); 704 705 // Find and set the first alive subklass 706 Klass* sub = current->subklass(true); 707 current->clean_subklass(); 708 if (sub != nullptr) { 709 stack.push(sub); 710 } 711 712 // Find and set the first alive sibling 713 Klass* sibling = current->next_sibling(true); 714 current->set_next_sibling(sibling); 715 if (sibling != nullptr) { 716 stack.push(sibling); 717 } 718 719 // Clean the implementors list and method data. 720 if (clean_alive_klasses && current->is_instance_klass()) { 721 InstanceKlass* ik = InstanceKlass::cast(current); 722 ik->clean_weak_instanceklass_links(); 723 724 // JVMTI RedefineClasses creates previous versions that are not in 725 // the class hierarchy, so process them here. 726 while ((ik = ik->previous_versions()) != nullptr) { 727 ik->clean_weak_instanceklass_links(); 728 } 729 } 730 } 731 } 732 733 void Klass::metaspace_pointers_do(MetaspaceClosure* it) { 734 if (log_is_enabled(Trace, cds)) { 735 ResourceMark rm; 736 log_trace(cds)("Iter(Klass): %p (%s)", this, external_name()); 737 } 738 739 it->push(&_name); 740 it->push(&_secondary_supers); 741 for (int i = 0; i < _primary_super_limit; i++) { 742 it->push(&_primary_supers[i]); 743 } 744 it->push(&_super); 745 if (!CDSConfig::is_dumping_archive()) { 746 // If dumping archive, these may point to excluded classes. There's no need 747 // to follow these pointers anyway, as they will be set to null in 748 // remove_unshareable_info(). 749 it->push((Klass**)&_subklass); 750 it->push((Klass**)&_next_sibling); 751 it->push(&_next_link); 752 } 753 754 vtableEntry* vt = start_of_vtable(); 755 for (int i=0; i<vtable_length(); i++) { 756 it->push(vt[i].method_addr()); 757 } 758 } 759 760 #if INCLUDE_CDS 761 void Klass::remove_unshareable_info() { 762 assert(CDSConfig::is_dumping_archive(), 763 "only called during CDS dump time"); 764 JFR_ONLY(REMOVE_ID(this);) 765 if (log_is_enabled(Trace, cds, unshareable)) { 766 ResourceMark rm; 767 log_trace(cds, unshareable)("remove: %s", external_name()); 768 } 769 770 // _secondary_super_cache may be updated by an is_subtype_of() call 771 // while ArchiveBuilder is copying metaspace objects. Let's reset it to 772 // null and let it be repopulated at runtime. 773 set_secondary_super_cache(nullptr); 774 775 set_subklass(nullptr); 776 set_next_sibling(nullptr); 777 set_next_link(nullptr); 778 779 // Null out class_loader_data because we don't share that yet. 780 set_class_loader_data(nullptr); 781 set_is_shared(); 782 783 // FIXME: validation in Klass::hash_secondary_supers() may fail for shared klasses. 784 // Even though the bitmaps always match, the canonical order of elements in the table 785 // is not guaranteed to stay the same (see tie breaker during Robin Hood hashing in Klass::hash_insert). 786 //assert(compute_secondary_supers_bitmap(secondary_supers()) == _bitmap, "broken table"); 787 } 788 789 void Klass::remove_java_mirror() { 790 assert(CDSConfig::is_dumping_archive(), "sanity"); 791 if (log_is_enabled(Trace, cds, unshareable)) { 792 ResourceMark rm; 793 log_trace(cds, unshareable)("remove java_mirror: %s", external_name()); 794 } 795 // Just null out the mirror. The class_loader_data() no longer exists. 796 clear_java_mirror_handle(); 797 } 798 799 void Klass::restore_unshareable_info(ClassLoaderData* loader_data, Handle protection_domain, TRAPS) { 800 assert(is_klass(), "ensure C++ vtable is restored"); 801 assert(is_shared(), "must be set"); 802 JFR_ONLY(RESTORE_ID(this);) 803 if (log_is_enabled(Trace, cds, unshareable)) { 804 ResourceMark rm(THREAD); 805 oop class_loader = loader_data->class_loader(); 806 log_trace(cds, unshareable)("restore: %s with class loader: %s", external_name(), 807 class_loader != nullptr ? class_loader->klass()->external_name() : "boot"); 808 } 809 810 // If an exception happened during CDS restore, some of these fields may already be 811 // set. We leave the class on the CLD list, even if incomplete so that we don't 812 // modify the CLD list outside a safepoint. 813 if (class_loader_data() == nullptr) { 814 set_class_loader_data(loader_data); 815 816 // Add to class loader list first before creating the mirror 817 // (same order as class file parsing) 818 loader_data->add_class(this); 819 } 820 821 Handle loader(THREAD, loader_data->class_loader()); 822 ModuleEntry* module_entry = nullptr; 823 Klass* k = this; 824 if (k->is_objArray_klass()) { 825 k = ObjArrayKlass::cast(k)->bottom_klass(); 826 } 827 // Obtain klass' module. 828 if (k->is_instance_klass()) { 829 InstanceKlass* ik = (InstanceKlass*) k; 830 module_entry = ik->module(); 831 } else { 832 module_entry = ModuleEntryTable::javabase_moduleEntry(); 833 } 834 // Obtain java.lang.Module, if available 835 Handle module_handle(THREAD, ((module_entry != nullptr) ? module_entry->module() : (oop)nullptr)); 836 837 if (this->has_archived_mirror_index()) { 838 ResourceMark rm(THREAD); 839 log_debug(cds, mirror)("%s has raw archived mirror", external_name()); 840 if (ArchiveHeapLoader::is_in_use()) { 841 bool present = java_lang_Class::restore_archived_mirror(this, loader, module_handle, 842 protection_domain, 843 CHECK); 844 if (present) { 845 return; 846 } 847 } 848 849 // No archived mirror data 850 log_debug(cds, mirror)("No archived mirror data for %s", external_name()); 851 clear_java_mirror_handle(); 852 this->clear_archived_mirror_index(); 853 } 854 855 // Only recreate it if not present. A previous attempt to restore may have 856 // gotten an OOM later but keep the mirror if it was created. 857 if (java_mirror() == nullptr) { 858 ResourceMark rm(THREAD); 859 log_trace(cds, mirror)("Recreate mirror for %s", external_name()); 860 java_lang_Class::create_mirror(this, loader, module_handle, protection_domain, Handle(), CHECK); 861 } 862 } 863 #endif // INCLUDE_CDS 864 865 #if INCLUDE_CDS_JAVA_HEAP 866 oop Klass::archived_java_mirror() { 867 assert(has_archived_mirror_index(), "must have archived mirror"); 868 return HeapShared::get_root(_archived_mirror_index); 869 } 870 871 void Klass::clear_archived_mirror_index() { 872 if (_archived_mirror_index >= 0) { 873 HeapShared::clear_root(_archived_mirror_index); 874 } 875 _archived_mirror_index = -1; 876 } 877 878 // No GC barrier 879 void Klass::set_archived_java_mirror(int mirror_index) { 880 assert(CDSConfig::is_dumping_heap(), "sanity"); 881 _archived_mirror_index = mirror_index; 882 } 883 #endif // INCLUDE_CDS_JAVA_HEAP 884 885 void Klass::check_array_allocation_length(int length, int max_length, TRAPS) { 886 if (length > max_length) { 887 if (!THREAD->is_in_internal_oome_mark()) { 888 report_java_out_of_memory("Requested array size exceeds VM limit"); 889 JvmtiExport::post_array_size_exhausted(); 890 THROW_OOP(Universe::out_of_memory_error_array_size()); 891 } else { 892 THROW_OOP(Universe::out_of_memory_error_java_heap_without_backtrace()); 893 } 894 } else if (length < 0) { 895 THROW_MSG(vmSymbols::java_lang_NegativeArraySizeException(), err_msg("%d", length)); 896 } 897 } 898 899 // Replace the last '+' char with '/'. 900 static char* convert_hidden_name_to_java(Symbol* name) { 901 size_t name_len = name->utf8_length(); 902 char* result = NEW_RESOURCE_ARRAY(char, name_len + 1); 903 name->as_klass_external_name(result, (int)name_len + 1); 904 for (int index = (int)name_len; index > 0; index--) { 905 if (result[index] == '+') { 906 result[index] = JVM_SIGNATURE_SLASH; 907 break; 908 } 909 } 910 return result; 911 } 912 913 // In product mode, this function doesn't have virtual function calls so 914 // there might be some performance advantage to handling InstanceKlass here. 915 const char* Klass::external_name() const { 916 if (is_instance_klass()) { 917 const InstanceKlass* ik = static_cast<const InstanceKlass*>(this); 918 if (ik->is_hidden()) { 919 char* result = convert_hidden_name_to_java(name()); 920 return result; 921 } 922 } else if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) { 923 char* result = convert_hidden_name_to_java(name()); 924 return result; 925 } 926 if (name() == nullptr) return "<unknown>"; 927 return name()->as_klass_external_name(); 928 } 929 930 const char* Klass::signature_name() const { 931 if (name() == nullptr) return "<unknown>"; 932 if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) { 933 size_t name_len = name()->utf8_length(); 934 char* result = NEW_RESOURCE_ARRAY(char, name_len + 1); 935 name()->as_C_string(result, (int)name_len + 1); 936 for (int index = (int)name_len; index > 0; index--) { 937 if (result[index] == '+') { 938 result[index] = JVM_SIGNATURE_DOT; 939 break; 940 } 941 } 942 return result; 943 } 944 return name()->as_C_string(); 945 } 946 947 const char* Klass::external_kind() const { 948 if (is_interface()) return "interface"; 949 if (is_abstract()) return "abstract class"; 950 return "class"; 951 } 952 953 // Unless overridden, jvmti_class_status has no flags set. 954 jint Klass::jvmti_class_status() const { 955 return 0; 956 } 957 958 959 // Printing 960 961 void Klass::print_on(outputStream* st) const { 962 ResourceMark rm; 963 // print title 964 st->print("%s", internal_name()); 965 print_address_on(st); 966 st->cr(); 967 } 968 969 #define BULLET " - " 970 971 // Caller needs ResourceMark 972 void Klass::oop_print_on(oop obj, outputStream* st) { 973 // print title 974 st->print_cr("%s ", internal_name()); 975 obj->print_address_on(st); 976 977 if (WizardMode) { 978 // print header 979 obj->mark().print_on(st); 980 st->cr(); 981 if (UseCompactObjectHeaders) { 982 st->print(BULLET"prototype_header: " INTPTR_FORMAT, _prototype_header.value()); 983 st->cr(); 984 } 985 } 986 987 // print class 988 st->print(BULLET"klass: "); 989 obj->klass()->print_value_on(st); 990 st->cr(); 991 } 992 993 void Klass::oop_print_value_on(oop obj, outputStream* st) { 994 // print title 995 ResourceMark rm; // Cannot print in debug mode without this 996 st->print("%s", internal_name()); 997 obj->print_address_on(st); 998 } 999 1000 // Verification 1001 1002 void Klass::verify_on(outputStream* st) { 1003 1004 // This can be expensive, but it is worth checking that this klass is actually 1005 // in the CLD graph but not in production. 1006 assert(Metaspace::contains((address)this), "Should be"); 1007 1008 guarantee(this->is_klass(),"should be klass"); 1009 1010 if (super() != nullptr) { 1011 guarantee(super()->is_klass(), "should be klass"); 1012 } 1013 if (secondary_super_cache() != nullptr) { 1014 Klass* ko = secondary_super_cache(); 1015 guarantee(ko->is_klass(), "should be klass"); 1016 } 1017 for ( uint i = 0; i < primary_super_limit(); i++ ) { 1018 Klass* ko = _primary_supers[i]; 1019 if (ko != nullptr) { 1020 guarantee(ko->is_klass(), "should be klass"); 1021 } 1022 } 1023 1024 if (java_mirror_no_keepalive() != nullptr) { 1025 guarantee(java_lang_Class::is_instance(java_mirror_no_keepalive()), "should be instance"); 1026 } 1027 } 1028 1029 void Klass::oop_verify_on(oop obj, outputStream* st) { 1030 guarantee(oopDesc::is_oop(obj), "should be oop"); 1031 guarantee(obj->klass()->is_klass(), "klass field is not a klass"); 1032 } 1033 1034 bool Klass::is_valid(Klass* k) { 1035 if (!is_aligned(k, sizeof(MetaWord))) return false; 1036 if ((size_t)k < os::min_page_size()) return false; 1037 1038 if (!os::is_readable_range(k, k + 1)) return false; 1039 if (!Metaspace::contains(k)) return false; 1040 1041 if (!Symbol::is_valid(k->name())) return false; 1042 return ClassLoaderDataGraph::is_valid(k->class_loader_data()); 1043 } 1044 1045 Method* Klass::method_at_vtable(int index) { 1046 #ifndef PRODUCT 1047 assert(index >= 0, "valid vtable index"); 1048 if (DebugVtables) { 1049 verify_vtable_index(index); 1050 } 1051 #endif 1052 return start_of_vtable()[index].method(); 1053 } 1054 1055 1056 #ifndef PRODUCT 1057 1058 bool Klass::verify_vtable_index(int i) { 1059 int limit = vtable_length()/vtableEntry::size(); 1060 assert(i >= 0 && i < limit, "index %d out of bounds %d", i, limit); 1061 return true; 1062 } 1063 1064 #endif // PRODUCT 1065 1066 // Caller needs ResourceMark 1067 // joint_in_module_of_loader provides an optimization if 2 classes are in 1068 // the same module to succinctly print out relevant information about their 1069 // module name and class loader's name_and_id for error messages. 1070 // Format: 1071 // <fully-qualified-external-class-name1> and <fully-qualified-external-class-name2> 1072 // are in module <module-name>[@<version>] 1073 // of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>] 1074 const char* Klass::joint_in_module_of_loader(const Klass* class2, bool include_parent_loader) const { 1075 assert(module() == class2->module(), "classes do not have the same module"); 1076 const char* class1_name = external_name(); 1077 size_t len = strlen(class1_name) + 1; 1078 1079 const char* class2_description = class2->class_in_module_of_loader(true, include_parent_loader); 1080 len += strlen(class2_description); 1081 1082 len += strlen(" and "); 1083 1084 char* joint_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len); 1085 1086 // Just return the FQN if error when allocating string 1087 if (joint_description == nullptr) { 1088 return class1_name; 1089 } 1090 1091 jio_snprintf(joint_description, len, "%s and %s", 1092 class1_name, 1093 class2_description); 1094 1095 return joint_description; 1096 } 1097 1098 // Caller needs ResourceMark 1099 // class_in_module_of_loader provides a standard way to include 1100 // relevant information about a class, such as its module name as 1101 // well as its class loader's name_and_id, in error messages and logging. 1102 // Format: 1103 // <fully-qualified-external-class-name> is in module <module-name>[@<version>] 1104 // of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>] 1105 const char* Klass::class_in_module_of_loader(bool use_are, bool include_parent_loader) const { 1106 // 1. fully qualified external name of class 1107 const char* klass_name = external_name(); 1108 size_t len = strlen(klass_name) + 1; 1109 1110 // 2. module name + @version 1111 const char* module_name = ""; 1112 const char* version = ""; 1113 bool has_version = false; 1114 bool module_is_named = false; 1115 const char* module_name_phrase = ""; 1116 const Klass* bottom_klass = is_objArray_klass() ? 1117 ObjArrayKlass::cast(this)->bottom_klass() : this; 1118 if (bottom_klass->is_instance_klass()) { 1119 ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module(); 1120 if (module->is_named()) { 1121 module_is_named = true; 1122 module_name_phrase = "module "; 1123 module_name = module->name()->as_C_string(); 1124 len += strlen(module_name); 1125 // Use version if exists and is not a jdk module 1126 if (module->should_show_version()) { 1127 has_version = true; 1128 version = module->version()->as_C_string(); 1129 // Include stlen(version) + 1 for the "@" 1130 len += strlen(version) + 1; 1131 } 1132 } else { 1133 module_name = UNNAMED_MODULE; 1134 len += UNNAMED_MODULE_LEN; 1135 } 1136 } else { 1137 // klass is an array of primitives, module is java.base 1138 module_is_named = true; 1139 module_name_phrase = "module "; 1140 module_name = JAVA_BASE_NAME; 1141 len += JAVA_BASE_NAME_LEN; 1142 } 1143 1144 // 3. class loader's name_and_id 1145 ClassLoaderData* cld = class_loader_data(); 1146 assert(cld != nullptr, "class_loader_data should not be null"); 1147 const char* loader_name_and_id = cld->loader_name_and_id(); 1148 len += strlen(loader_name_and_id); 1149 1150 // 4. include parent loader information 1151 const char* parent_loader_phrase = ""; 1152 const char* parent_loader_name_and_id = ""; 1153 if (include_parent_loader && 1154 !cld->is_builtin_class_loader_data()) { 1155 oop parent_loader = java_lang_ClassLoader::parent(class_loader()); 1156 ClassLoaderData *parent_cld = ClassLoaderData::class_loader_data_or_null(parent_loader); 1157 // The parent loader's ClassLoaderData could be null if it is 1158 // a delegating class loader that has never defined a class. 1159 // In this case the loader's name must be obtained via the parent loader's oop. 1160 if (parent_cld == nullptr) { 1161 oop cl_name_and_id = java_lang_ClassLoader::nameAndId(parent_loader); 1162 if (cl_name_and_id != nullptr) { 1163 parent_loader_name_and_id = java_lang_String::as_utf8_string(cl_name_and_id); 1164 } 1165 } else { 1166 parent_loader_name_and_id = parent_cld->loader_name_and_id(); 1167 } 1168 parent_loader_phrase = ", parent loader "; 1169 len += strlen(parent_loader_phrase) + strlen(parent_loader_name_and_id); 1170 } 1171 1172 // Start to construct final full class description string 1173 len += ((use_are) ? strlen(" are in ") : strlen(" is in ")); 1174 len += strlen(module_name_phrase) + strlen(" of loader "); 1175 1176 char* class_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len); 1177 1178 // Just return the FQN if error when allocating string 1179 if (class_description == nullptr) { 1180 return klass_name; 1181 } 1182 1183 jio_snprintf(class_description, len, "%s %s in %s%s%s%s of loader %s%s%s", 1184 klass_name, 1185 (use_are) ? "are" : "is", 1186 module_name_phrase, 1187 module_name, 1188 (has_version) ? "@" : "", 1189 (has_version) ? version : "", 1190 loader_name_and_id, 1191 parent_loader_phrase, 1192 parent_loader_name_and_id); 1193 1194 return class_description; 1195 } 1196 1197 class LookupStats : StackObj { 1198 private: 1199 uint _no_of_samples; 1200 uint _worst; 1201 uint _worst_count; 1202 uint _average; 1203 uint _best; 1204 uint _best_count; 1205 public: 1206 LookupStats() : _no_of_samples(0), _worst(0), _worst_count(0), _average(0), _best(INT_MAX), _best_count(0) {} 1207 1208 ~LookupStats() { 1209 assert(_best <= _worst || _no_of_samples == 0, "sanity"); 1210 } 1211 1212 void sample(uint value) { 1213 ++_no_of_samples; 1214 _average += value; 1215 1216 if (_worst < value) { 1217 _worst = value; 1218 _worst_count = 1; 1219 } else if (_worst == value) { 1220 ++_worst_count; 1221 } 1222 1223 if (_best > value) { 1224 _best = value; 1225 _best_count = 1; 1226 } else if (_best == value) { 1227 ++_best_count; 1228 } 1229 } 1230 1231 void print_on(outputStream* st) const { 1232 st->print("best: %2d (%4.1f%%)", _best, (100.0 * _best_count) / _no_of_samples); 1233 if (_best_count < _no_of_samples) { 1234 st->print("; average: %4.1f; worst: %2d (%4.1f%%)", 1235 (1.0 * _average) / _no_of_samples, 1236 _worst, (100.0 * _worst_count) / _no_of_samples); 1237 } 1238 } 1239 }; 1240 1241 static void print_positive_lookup_stats(Array<Klass*>* secondary_supers, uintx bitmap, outputStream* st) { 1242 int num_of_supers = secondary_supers->length(); 1243 1244 LookupStats s; 1245 for (int i = 0; i < num_of_supers; i++) { 1246 Klass* secondary_super = secondary_supers->at(i); 1247 int home_slot = Klass::compute_home_slot(secondary_super, bitmap); 1248 uint score = 1 + ((i - home_slot) & Klass::SECONDARY_SUPERS_TABLE_MASK); 1249 s.sample(score); 1250 } 1251 st->print("positive_lookup: "); s.print_on(st); 1252 } 1253 1254 static uint compute_distance_to_nearest_zero(int slot, uintx bitmap) { 1255 assert(~bitmap != 0, "no zeroes"); 1256 uintx start = rotate_right(bitmap, slot); 1257 return count_trailing_zeros(~start); 1258 } 1259 1260 static void print_negative_lookup_stats(uintx bitmap, outputStream* st) { 1261 LookupStats s; 1262 for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) { 1263 uint score = compute_distance_to_nearest_zero(slot, bitmap); 1264 s.sample(score); 1265 } 1266 st->print("negative_lookup: "); s.print_on(st); 1267 } 1268 1269 void Klass::print_secondary_supers_on(outputStream* st) const { 1270 if (secondary_supers() != nullptr) { 1271 if (UseSecondarySupersTable) { 1272 st->print(" - "); st->print("%d elements;", _secondary_supers->length()); 1273 st->print_cr(" bitmap: " UINTX_FORMAT_X_0 ";", _bitmap); 1274 if (_bitmap != SECONDARY_SUPERS_BITMAP_EMPTY && 1275 _bitmap != SECONDARY_SUPERS_BITMAP_FULL) { 1276 st->print(" - "); print_positive_lookup_stats(secondary_supers(), _bitmap, st); st->cr(); 1277 st->print(" - "); print_negative_lookup_stats(_bitmap, st); st->cr(); 1278 } 1279 } 1280 } else { 1281 st->print("null"); 1282 } 1283 } 1284 1285 void Klass::on_secondary_supers_verification_failure(Klass* super, Klass* sub, bool linear_result, bool table_result, const char* msg) { 1286 ResourceMark rm; 1287 super->print(); 1288 sub->print(); 1289 fatal("%s: %s implements %s: is_subtype_of: %d; linear_search: %d; table_lookup: %d", 1290 msg, sub->external_name(), super->external_name(), 1291 sub->is_subtype_of(super), linear_result, table_result); 1292 }