1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "cds/archiveHeapLoader.hpp"
26 #include "cds/cdsConfig.hpp"
27 #include "cds/heapShared.hpp"
28 #include "classfile/classLoader.hpp"
29 #include "classfile/classLoaderData.inline.hpp"
30 #include "classfile/classLoaderDataGraph.inline.hpp"
31 #include "classfile/javaClasses.inline.hpp"
32 #include "classfile/moduleEntry.hpp"
33 #include "classfile/systemDictionary.hpp"
34 #include "classfile/systemDictionaryShared.hpp"
35 #include "classfile/vmClasses.hpp"
36 #include "classfile/vmSymbols.hpp"
37 #include "gc/shared/collectedHeap.inline.hpp"
38 #include "jvm_io.h"
39 #include "logging/log.hpp"
40 #include "memory/metadataFactory.hpp"
41 #include "memory/metaspaceClosure.hpp"
42 #include "memory/oopFactory.hpp"
43 #include "memory/resourceArea.hpp"
44 #include "memory/universe.hpp"
45 #include "oops/compressedKlass.inline.hpp"
46 #include "oops/compressedOops.inline.hpp"
47 #include "oops/instanceKlass.hpp"
48 #include "oops/klass.inline.hpp"
49 #include "oops/objArrayKlass.hpp"
50 #include "oops/oop.inline.hpp"
51 #include "oops/oopHandle.inline.hpp"
52 #include "prims/jvmtiExport.hpp"
53 #include "runtime/atomic.hpp"
54 #include "runtime/handles.inline.hpp"
55 #include "runtime/perfData.hpp"
56 #include "utilities/macros.hpp"
57 #include "utilities/numberSeq.hpp"
58 #include "utilities/powerOfTwo.hpp"
59 #include "utilities/rotate_bits.hpp"
60 #include "utilities/stack.inline.hpp"
61
62 void Klass::set_java_mirror(Handle m) {
63 assert(!m.is_null(), "New mirror should never be null.");
64 assert(_java_mirror.is_empty(), "should only be used to initialize mirror");
65 _java_mirror = class_loader_data()->add_handle(m);
66 }
67
68 bool Klass::is_cloneable() const {
69 return _misc_flags.is_cloneable_fast() ||
70 is_subtype_of(vmClasses::Cloneable_klass());
71 }
72
73 void Klass::set_is_cloneable() {
74 if (name() == vmSymbols::java_lang_invoke_MemberName()) {
75 assert(is_final(), "no subclasses allowed");
76 // MemberName cloning should not be intrinsified and always happen in JVM_Clone.
77 } else if (is_instance_klass() && InstanceKlass::cast(this)->reference_type() != REF_NONE) {
78 // Reference cloning should not be intrinsified and always happen in JVM_Clone.
79 } else {
80 _misc_flags.set_is_cloneable_fast(true);
81 }
82 }
83
84 uint8_t Klass::compute_hash_slot(Symbol* n) {
85 uint hash_code;
86 // Special cases for the two superclasses of all Array instances.
87 // Code elsewhere assumes, for all instances of ArrayKlass, that
88 // these two interfaces will be in this order.
89
90 // We ensure there are some empty slots in the hash table between
91 // these two very common interfaces because if they were adjacent
92 // (e.g. Slots 0 and 1), then any other class which hashed to 0 or 1
93 // would result in a probe length of 3.
94 if (n == vmSymbols::java_lang_Cloneable()) {
95 hash_code = 0;
96 } else if (n == vmSymbols::java_io_Serializable()) {
97 hash_code = SECONDARY_SUPERS_TABLE_SIZE / 2;
98 } else {
99 auto s = (const jbyte*) n->bytes();
100 hash_code = java_lang_String::hash_code(s, n->utf8_length());
101 // We use String::hash_code here (rather than e.g.
102 // Symbol::identity_hash()) in order to have a hash code that
103 // does not change from run to run. We want that because the
104 // hash value for a secondary superclass appears in generated
105 // code as a constant.
106
107 // This constant is magic: see Knuth, "Fibonacci Hashing".
108 constexpr uint multiplier
109 = 2654435769; // (uint)(((u8)1 << 32) / ((1 + sqrt(5)) / 2 ))
110 constexpr uint hash_shift = sizeof(hash_code) * 8 - 6;
111 // The leading bits of the least significant half of the product.
112 hash_code = (hash_code * multiplier) >> hash_shift;
113
114 if (StressSecondarySupers) {
115 // Generate many hash collisions in order to stress-test the
116 // linear search fallback.
117 hash_code = hash_code % 3;
118 hash_code = hash_code * (SECONDARY_SUPERS_TABLE_SIZE / 3);
119 }
120 }
121
122 return (hash_code & SECONDARY_SUPERS_TABLE_MASK);
123 }
124
125 void Klass::set_name(Symbol* n) {
126 _name = n;
127
128 if (_name != nullptr) {
129 _name->increment_refcount();
130 }
131
132 {
133 elapsedTimer selftime;
134 selftime.start();
135
136 _hash_slot = compute_hash_slot(n);
137 assert(_hash_slot < SECONDARY_SUPERS_TABLE_SIZE, "required");
138
139 selftime.stop();
140 if (UsePerfData) {
141 ClassLoader::perf_secondary_hash_time()->inc(selftime.ticks());
142 }
143 }
144
145 if (CDSConfig::is_dumping_archive() && is_instance_klass()) {
146 SystemDictionaryShared::init_dumptime_info(InstanceKlass::cast(this));
147 }
148 }
149
150 bool Klass::is_subclass_of(const Klass* k) const {
151 // Run up the super chain and check
152 if (this == k) return true;
153
154 Klass* t = const_cast<Klass*>(this)->super();
155
156 while (t != nullptr) {
157 if (t == k) return true;
158 t = t->super();
159 }
160 return false;
161 }
162
163 void Klass::release_C_heap_structures(bool release_constant_pool) {
164 if (_name != nullptr) _name->decrement_refcount();
165 }
166
167 bool Klass::linear_search_secondary_supers(const Klass* k) const {
168 // Scan the array-of-objects for a match
169 // FIXME: We could do something smarter here, maybe a vectorized
170 // comparison or a binary search, but is that worth any added
171 // complexity?
172 int cnt = secondary_supers()->length();
173 for (int i = 0; i < cnt; i++) {
174 if (secondary_supers()->at(i) == k) {
175 return true;
176 }
177 }
178 return false;
179 }
180
181 // Given a secondary superklass k, an initial array index, and an
182 // occupancy bitmap rotated such that Bit 1 is the next bit to test,
183 // search for k.
184 bool Klass::fallback_search_secondary_supers(const Klass* k, int index, uintx rotated_bitmap) const {
185 // Once the occupancy bitmap is almost full, it's faster to use a
186 // linear search.
187 if (secondary_supers()->length() > SECONDARY_SUPERS_TABLE_SIZE - 2) {
188 return linear_search_secondary_supers(k);
189 }
190
191 // This is conventional linear probing, but instead of terminating
192 // when a null entry is found in the table, we maintain a bitmap
193 // in which a 0 indicates missing entries.
194
195 precond((int)population_count(rotated_bitmap) == secondary_supers()->length());
196
197 // The check for secondary_supers()->length() <= SECONDARY_SUPERS_TABLE_SIZE - 2
198 // at the start of this function guarantees there are 0s in the
199 // bitmap, so this loop eventually terminates.
200 while ((rotated_bitmap & 2) != 0) {
201 if (++index == secondary_supers()->length()) {
202 index = 0;
203 }
204 if (secondary_supers()->at(index) == k) {
205 return true;
206 }
207 rotated_bitmap = rotate_right(rotated_bitmap, 1);
208 }
209 return false;
210 }
211
212 // Return self, except for abstract classes with exactly 1
213 // implementor. Then return the 1 concrete implementation.
214 Klass *Klass::up_cast_abstract() {
215 Klass *r = this;
216 while( r->is_abstract() ) { // Receiver is abstract?
217 Klass *s = r->subklass(); // Check for exactly 1 subklass
218 if (s == nullptr || s->next_sibling() != nullptr) // Oops; wrong count; give up
219 return this; // Return 'this' as a no-progress flag
220 r = s; // Loop till find concrete class
221 }
222 return r; // Return the 1 concrete class
223 }
224
225 // Find LCA in class hierarchy
226 Klass *Klass::LCA( Klass *k2 ) {
227 Klass *k1 = this;
228 while( 1 ) {
229 if( k1->is_subtype_of(k2) ) return k2;
230 if( k2->is_subtype_of(k1) ) return k1;
231 k1 = k1->super();
232 k2 = k2->super();
233 }
234 }
235
236
237 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
238 ResourceMark rm(THREAD);
239 THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
240 : vmSymbols::java_lang_InstantiationException(), external_name());
241 }
242
243
244 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
245 ResourceMark rm(THREAD);
246 assert(s != nullptr, "Throw NPE!");
247 THROW_MSG(vmSymbols::java_lang_ArrayStoreException(),
248 err_msg("arraycopy: source type %s is not an array", s->klass()->external_name()));
249 }
250
251
252 void Klass::initialize(TRAPS) {
253 ShouldNotReachHere();
254 }
255
256 Klass* Klass::find_field(Symbol* name, Symbol* sig, fieldDescriptor* fd) const {
257 #ifdef ASSERT
258 tty->print_cr("Error: find_field called on a klass oop."
259 " Likely error: reflection method does not correctly"
260 " wrap return value in a mirror object.");
261 #endif
262 ShouldNotReachHere();
263 return nullptr;
264 }
265
266 Method* Klass::uncached_lookup_method(const Symbol* name, const Symbol* signature,
267 OverpassLookupMode overpass_mode,
268 PrivateLookupMode private_mode) const {
269 #ifdef ASSERT
270 tty->print_cr("Error: uncached_lookup_method called on a klass oop."
271 " Likely error: reflection method does not correctly"
272 " wrap return value in a mirror object.");
273 #endif
274 ShouldNotReachHere();
275 return nullptr;
276 }
277
278 static markWord make_prototype(const Klass* kls) {
279 markWord prototype = markWord::prototype();
280 #ifdef _LP64
281 if (UseCompactObjectHeaders) {
282 // With compact object headers, the narrow Klass ID is part of the mark word.
283 // We therfore seed the mark word with the narrow Klass ID.
284 // Note that only those Klass that can be instantiated have a narrow Klass ID.
285 // For those who don't, we leave the klass bits empty and assert if someone
286 // tries to use those.
287 const narrowKlass nk = CompressedKlassPointers::is_encodable(kls) ?
288 CompressedKlassPointers::encode(const_cast<Klass*>(kls)) : 0;
289 prototype = prototype.set_narrow_klass(nk);
290 }
291 #endif
292 return prototype;
293 }
294
295 Klass::Klass() : _kind(UnknownKlassKind) {
296 assert(CDSConfig::is_dumping_static_archive() || CDSConfig::is_using_archive(), "only for cds");
297 }
298
299 // "Normal" instantiation is preceded by a MetaspaceObj allocation
300 // which zeros out memory - calloc equivalent.
301 // The constructor is also used from CppVtableCloner,
302 // which doesn't zero out the memory before calling the constructor.
303 Klass::Klass(KlassKind kind) : _kind(kind),
304 _prototype_header(make_prototype(this)),
305 _shared_class_path_index(-1) {
306 CDS_ONLY(_shared_class_flags = 0;)
307 CDS_JAVA_HEAP_ONLY(_archived_mirror_index = -1;)
308 _primary_supers[0] = this;
309 set_super_check_offset(in_bytes(primary_supers_offset()));
310 }
311
312 jint Klass::array_layout_helper(BasicType etype) {
313 assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
314 // Note that T_ARRAY is not allowed here.
315 int hsize = arrayOopDesc::base_offset_in_bytes(etype);
316 int esize = type2aelembytes(etype);
317 bool isobj = (etype == T_OBJECT);
318 int tag = isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
319 int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
320
321 assert(lh < (int)_lh_neutral_value, "must look like an array layout");
322 assert(layout_helper_is_array(lh), "correct kind");
323 assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
324 assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
325 assert(layout_helper_header_size(lh) == hsize, "correct decode");
326 assert(layout_helper_element_type(lh) == etype, "correct decode");
327 assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
328
329 return lh;
330 }
331
332 int Klass::modifier_flags() const {
333 int mods = java_lang_Class::modifiers(java_mirror());
334 assert(mods == compute_modifier_flags(), "should be same");
335 return mods;
336 }
337
338 bool Klass::can_be_primary_super_slow() const {
339 if (super() == nullptr)
340 return true;
341 else if (super()->super_depth() >= primary_super_limit()-1)
342 return false;
343 else
344 return true;
345 }
346
347 void Klass::set_secondary_supers(Array<Klass*>* secondaries, uintx bitmap) {
348 #ifdef ASSERT
349 if (secondaries != nullptr) {
350 uintx real_bitmap = compute_secondary_supers_bitmap(secondaries);
351 assert(bitmap == real_bitmap, "must be");
352 assert(secondaries->length() >= (int)population_count(bitmap), "must be");
353 }
354 #endif
355 _secondary_supers_bitmap = bitmap;
356 _secondary_supers = secondaries;
357
358 if (secondaries != nullptr) {
359 LogMessage(class, load) msg;
360 NonInterleavingLogStream log {LogLevel::Debug, msg};
361 if (log.is_enabled()) {
362 ResourceMark rm;
363 log.print_cr("set_secondary_supers: hash_slot: %d; klass: %s", hash_slot(), external_name());
364 print_secondary_supers_on(&log);
365 }
366 }
367 }
368
369 // Hashed secondary superclasses
370 //
371 // We use a compressed 64-entry hash table with linear probing. We
372 // start by creating a hash table in the usual way, followed by a pass
373 // that removes all the null entries. To indicate which entries would
374 // have been null we use a bitmap that contains a 1 in each position
375 // where an entry is present, 0 otherwise. This bitmap also serves as
376 // a kind of Bloom filter, which in many cases allows us quickly to
377 // eliminate the possibility that something is a member of a set of
378 // secondaries.
379 uintx Klass::hash_secondary_supers(Array<Klass*>* secondaries, bool rewrite) {
380 const int length = secondaries->length();
381
382 if (length == 0) {
383 return SECONDARY_SUPERS_BITMAP_EMPTY;
384 }
385
386 if (length == 1) {
387 int hash_slot = secondaries->at(0)->hash_slot();
388 return uintx(1) << hash_slot;
389 }
390
391 // Invariant: _secondary_supers.length >= population_count(_secondary_supers_bitmap)
392
393 // Don't attempt to hash a table that's completely full, because in
394 // the case of an absent interface linear probing would not
395 // terminate.
396 if (length >= SECONDARY_SUPERS_TABLE_SIZE) {
397 return SECONDARY_SUPERS_BITMAP_FULL;
398 }
399
400 {
401 PerfTraceTime ptt(ClassLoader::perf_secondary_hash_time());
402
403 ResourceMark rm;
404 uintx bitmap = SECONDARY_SUPERS_BITMAP_EMPTY;
405 auto hashed_secondaries = new GrowableArray<Klass*>(SECONDARY_SUPERS_TABLE_SIZE,
406 SECONDARY_SUPERS_TABLE_SIZE, nullptr);
407
408 for (int j = 0; j < length; j++) {
409 Klass* k = secondaries->at(j);
410 hash_insert(k, hashed_secondaries, bitmap);
411 }
412
413 // Pack the hashed secondaries array by copying it into the
414 // secondaries array, sans nulls, if modification is allowed.
415 // Otherwise, validate the order.
416 int i = 0;
417 for (int slot = 0; slot < SECONDARY_SUPERS_TABLE_SIZE; slot++) {
418 bool has_element = ((bitmap >> slot) & 1) != 0;
419 assert(has_element == (hashed_secondaries->at(slot) != nullptr), "");
420 if (has_element) {
421 Klass* k = hashed_secondaries->at(slot);
422 if (rewrite) {
423 secondaries->at_put(i, k);
424 } else if (secondaries->at(i) != k) {
425 assert(false, "broken secondary supers hash table");
426 return SECONDARY_SUPERS_BITMAP_FULL;
427 }
428 i++;
429 }
430 }
431 assert(i == secondaries->length(), "mismatch");
432 postcond((int)population_count(bitmap) == secondaries->length());
433
434 return bitmap;
435 }
436 }
437
438 void Klass::hash_insert(Klass* klass, GrowableArray<Klass*>* secondaries, uintx& bitmap) {
439 assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, "");
440
441 int dist = 0;
442 for (int slot = klass->hash_slot(); true; slot = (slot + 1) & SECONDARY_SUPERS_TABLE_MASK) {
443 Klass* existing = secondaries->at(slot);
444 assert(((bitmap >> slot) & 1) == (existing != nullptr), "mismatch");
445 if (existing == nullptr) { // no conflict
446 secondaries->at_put(slot, klass);
447 bitmap |= uintx(1) << slot;
448 assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, "");
449 return;
450 } else {
451 // Use Robin Hood hashing to minimize the worst case search.
452 // Also, every permutation of the insertion sequence produces
453 // the same final Robin Hood hash table, provided that a
454 // consistent tie breaker is used.
455 int existing_dist = (slot - existing->hash_slot()) & SECONDARY_SUPERS_TABLE_MASK;
456 if (existing_dist < dist
457 // This tie breaker ensures that the hash order is maintained.
458 || ((existing_dist == dist)
459 && (uintptr_t(existing) < uintptr_t(klass)))) {
460 Klass* tmp = secondaries->at(slot);
461 secondaries->at_put(slot, klass);
462 klass = tmp;
463 dist = existing_dist;
464 }
465 ++dist;
466 }
467 }
468 }
469
470 Array<Klass*>* Klass::pack_secondary_supers(ClassLoaderData* loader_data,
471 GrowableArray<Klass*>* primaries,
472 GrowableArray<Klass*>* secondaries,
473 uintx& bitmap, TRAPS) {
474 int new_length = primaries->length() + secondaries->length();
475 Array<Klass*>* secondary_supers = MetadataFactory::new_array<Klass*>(loader_data, new_length, CHECK_NULL);
476
477 // Combine the two arrays into a metadata object to pack the array.
478 // The primaries are added in the reverse order, then the secondaries.
479 int fill_p = primaries->length();
480 for (int j = 0; j < fill_p; j++) {
481 secondary_supers->at_put(j, primaries->pop()); // add primaries in reverse order.
482 }
483 for( int j = 0; j < secondaries->length(); j++ ) {
484 secondary_supers->at_put(j+fill_p, secondaries->at(j)); // add secondaries on the end.
485 }
486 #ifdef ASSERT
487 // We must not copy any null placeholders left over from bootstrap.
488 for (int j = 0; j < secondary_supers->length(); j++) {
489 assert(secondary_supers->at(j) != nullptr, "correct bootstrapping order");
490 }
491 #endif
492
493 bitmap = hash_secondary_supers(secondary_supers, /*rewrite=*/true); // rewrites freshly allocated array
494 return secondary_supers;
495 }
496
497 uintx Klass::compute_secondary_supers_bitmap(Array<Klass*>* secondary_supers) {
498 return hash_secondary_supers(secondary_supers, /*rewrite=*/false); // no rewrites allowed
499 }
500
501 uint8_t Klass::compute_home_slot(Klass* k, uintx bitmap) {
502 uint8_t hash = k->hash_slot();
503 if (hash > 0) {
504 return population_count(bitmap << (SECONDARY_SUPERS_TABLE_SIZE - hash));
505 }
506 return 0;
507 }
508
509
510 void Klass::initialize_supers(Klass* k, Array<InstanceKlass*>* transitive_interfaces, TRAPS) {
511 if (k == nullptr) {
512 set_super(nullptr);
513 _primary_supers[0] = this;
514 assert(super_depth() == 0, "Object must already be initialized properly");
515 } else if (k != super() || k == vmClasses::Object_klass()) {
516 assert(super() == nullptr || super() == vmClasses::Object_klass(),
517 "initialize this only once to a non-trivial value");
518 set_super(k);
519 Klass* sup = k;
520 int sup_depth = sup->super_depth();
521 juint my_depth = MIN2(sup_depth + 1, (int)primary_super_limit());
522 if (!can_be_primary_super_slow())
523 my_depth = primary_super_limit();
524 for (juint i = 0; i < my_depth; i++) {
525 _primary_supers[i] = sup->_primary_supers[i];
526 }
527 Klass* *super_check_cell;
528 if (my_depth < primary_super_limit()) {
529 _primary_supers[my_depth] = this;
530 super_check_cell = &_primary_supers[my_depth];
531 } else {
532 // Overflow of the primary_supers array forces me to be secondary.
533 super_check_cell = &_secondary_super_cache;
534 }
535 set_super_check_offset(u4((address)super_check_cell - (address) this));
536
537 #ifdef ASSERT
538 {
539 juint j = super_depth();
540 assert(j == my_depth, "computed accessor gets right answer");
541 Klass* t = this;
542 while (!t->can_be_primary_super()) {
543 t = t->super();
544 j = t->super_depth();
545 }
546 for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
547 assert(primary_super_of_depth(j1) == nullptr, "super list padding");
548 }
549 while (t != nullptr) {
550 assert(primary_super_of_depth(j) == t, "super list initialization");
551 t = t->super();
552 --j;
553 }
554 assert(j == (juint)-1, "correct depth count");
555 }
556 #endif
557 }
558
559 if (secondary_supers() == nullptr) {
560
561 // Now compute the list of secondary supertypes.
562 // Secondaries can occasionally be on the super chain,
563 // if the inline "_primary_supers" array overflows.
564 int extras = 0;
565 Klass* p;
566 for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) {
567 ++extras;
568 }
569
570 ResourceMark rm(THREAD); // need to reclaim GrowableArrays allocated below
571
572 // Compute the "real" non-extra secondaries.
573 GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras, transitive_interfaces);
574 if (secondaries == nullptr) {
575 // secondary_supers set by compute_secondary_supers
576 return;
577 }
578
579 GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);
580
581 for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) {
582 int i; // Scan for overflow primaries being duplicates of 2nd'arys
583
584 // This happens frequently for very deeply nested arrays: the
585 // primary superclass chain overflows into the secondary. The
586 // secondary list contains the element_klass's secondaries with
587 // an extra array dimension added. If the element_klass's
588 // secondary list already contains some primary overflows, they
589 // (with the extra level of array-ness) will collide with the
590 // normal primary superclass overflows.
591 for( i = 0; i < secondaries->length(); i++ ) {
592 if( secondaries->at(i) == p )
593 break;
594 }
595 if( i < secondaries->length() )
596 continue; // It's a dup, don't put it in
597 primaries->push(p);
598 }
599 // Combine the two arrays into a metadata object to pack the array.
600 uintx bitmap = 0;
601 Array<Klass*>* s2 = pack_secondary_supers(class_loader_data(), primaries, secondaries, bitmap, CHECK);
602 set_secondary_supers(s2, bitmap);
603 }
604 }
605
606 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots,
607 Array<InstanceKlass*>* transitive_interfaces) {
608 assert(num_extra_slots == 0, "override for complex klasses");
609 assert(transitive_interfaces == nullptr, "sanity");
610 set_secondary_supers(Universe::the_empty_klass_array(), Universe::the_empty_klass_bitmap());
611 return nullptr;
612 }
613
614
615 // superklass links
616 InstanceKlass* Klass::superklass() const {
617 assert(super() == nullptr || super()->is_instance_klass(), "must be instance klass");
618 return _super == nullptr ? nullptr : InstanceKlass::cast(_super);
619 }
620
621 // subklass links. Used by the compiler (and vtable initialization)
622 // May be cleaned concurrently, so must use the Compile_lock.
623 // The log parameter is for clean_weak_klass_links to report unlinked classes.
624 Klass* Klass::subklass(bool log) const {
625 // Need load_acquire on the _subklass, because it races with inserts that
626 // publishes freshly initialized data.
627 for (Klass* chain = Atomic::load_acquire(&_subklass);
628 chain != nullptr;
629 // Do not need load_acquire on _next_sibling, because inserts never
630 // create _next_sibling edges to dead data.
631 chain = Atomic::load(&chain->_next_sibling))
632 {
633 if (chain->is_loader_alive()) {
634 return chain;
635 } else if (log) {
636 if (log_is_enabled(Trace, class, unload)) {
637 ResourceMark rm;
638 log_trace(class, unload)("unlinking class (subclass): %s", chain->external_name());
639 }
640 }
641 }
642 return nullptr;
643 }
644
645 Klass* Klass::next_sibling(bool log) const {
646 // Do not need load_acquire on _next_sibling, because inserts never
647 // create _next_sibling edges to dead data.
648 for (Klass* chain = Atomic::load(&_next_sibling);
649 chain != nullptr;
650 chain = Atomic::load(&chain->_next_sibling)) {
651 // Only return alive klass, there may be stale klass
652 // in this chain if cleaned concurrently.
653 if (chain->is_loader_alive()) {
654 return chain;
655 } else if (log) {
656 if (log_is_enabled(Trace, class, unload)) {
657 ResourceMark rm;
658 log_trace(class, unload)("unlinking class (sibling): %s", chain->external_name());
659 }
660 }
661 }
662 return nullptr;
663 }
664
665 void Klass::set_subklass(Klass* s) {
666 assert(s != this, "sanity check");
667 Atomic::release_store(&_subklass, s);
668 }
669
670 void Klass::set_next_sibling(Klass* s) {
671 assert(s != this, "sanity check");
672 // Does not need release semantics. If used by cleanup, it will link to
673 // already safely published data, and if used by inserts, will be published
674 // safely using cmpxchg.
675 Atomic::store(&_next_sibling, s);
676 }
677
678 void Klass::append_to_sibling_list() {
679 if (Universe::is_fully_initialized()) {
680 assert_locked_or_safepoint(Compile_lock);
681 }
682 DEBUG_ONLY(verify();)
683 // add ourselves to superklass' subklass list
684 InstanceKlass* super = superklass();
685 if (super == nullptr) return; // special case: class Object
686 assert((!super->is_interface() // interfaces cannot be supers
687 && (super->superklass() == nullptr || !is_interface())),
688 "an interface can only be a subklass of Object");
689
690 // Make sure there is no stale subklass head
691 super->clean_subklass();
692
693 for (;;) {
694 Klass* prev_first_subklass = Atomic::load_acquire(&_super->_subklass);
695 if (prev_first_subklass != nullptr) {
696 // set our sibling to be the superklass' previous first subklass
697 assert(prev_first_subklass->is_loader_alive(), "May not attach not alive klasses");
698 set_next_sibling(prev_first_subklass);
699 }
700 // Note that the prev_first_subklass is always alive, meaning no sibling_next links
701 // are ever created to not alive klasses. This is an important invariant of the lock-free
702 // cleaning protocol, that allows us to safely unlink dead klasses from the sibling list.
703 if (Atomic::cmpxchg(&super->_subklass, prev_first_subklass, this) == prev_first_subklass) {
704 return;
705 }
706 }
707 DEBUG_ONLY(verify();)
708 }
709
710 void Klass::clean_subklass() {
711 for (;;) {
712 // Need load_acquire, due to contending with concurrent inserts
713 Klass* subklass = Atomic::load_acquire(&_subklass);
714 if (subklass == nullptr || subklass->is_loader_alive()) {
715 return;
716 }
717 // Try to fix _subklass until it points at something not dead.
718 Atomic::cmpxchg(&_subklass, subklass, subklass->next_sibling());
719 }
720 }
721
722 void Klass::clean_weak_klass_links(bool unloading_occurred, bool clean_alive_klasses) {
723 if (!ClassUnloading || !unloading_occurred) {
724 return;
725 }
726
727 Klass* root = vmClasses::Object_klass();
728 Stack<Klass*, mtGC> stack;
729
730 stack.push(root);
731 while (!stack.is_empty()) {
732 Klass* current = stack.pop();
733
734 assert(current->is_loader_alive(), "just checking, this should be live");
735
736 // Find and set the first alive subklass
737 Klass* sub = current->subklass(true);
738 current->clean_subklass();
739 if (sub != nullptr) {
740 stack.push(sub);
741 }
742
743 // Find and set the first alive sibling
744 Klass* sibling = current->next_sibling(true);
745 current->set_next_sibling(sibling);
746 if (sibling != nullptr) {
747 stack.push(sibling);
748 }
749
750 // Clean the implementors list and method data.
751 if (clean_alive_klasses && current->is_instance_klass()) {
752 InstanceKlass* ik = InstanceKlass::cast(current);
753 clean_weak_instanceklass_links(ik);
754 }
755 }
756 }
757
758 void Klass::clean_weak_instanceklass_links(InstanceKlass* ik) {
759 ik->clean_weak_instanceklass_links();
760 // JVMTI RedefineClasses creates previous versions that are not in
761 // the class hierarchy, so process them here.
762 while ((ik = ik->previous_versions()) != nullptr) {
763 ik->clean_weak_instanceklass_links();
764 }
765 }
766
767 void Klass::metaspace_pointers_do(MetaspaceClosure* it) {
768 if (log_is_enabled(Trace, aot)) {
769 ResourceMark rm;
770 log_trace(aot)("Iter(Klass): %p (%s)", this, external_name());
771 }
772
773 it->push(&_name);
774 it->push(&_secondary_supers);
775 for (int i = 0; i < _primary_super_limit; i++) {
776 it->push(&_primary_supers[i]);
777 }
778 it->push(&_super);
779 if (!CDSConfig::is_dumping_archive()) {
780 // If dumping archive, these may point to excluded classes. There's no need
781 // to follow these pointers anyway, as they will be set to null in
782 // remove_unshareable_info().
783 it->push((Klass**)&_subklass);
784 it->push((Klass**)&_next_sibling);
785 it->push(&_next_link);
786 }
787
788 vtableEntry* vt = start_of_vtable();
789 for (int i=0; i<vtable_length(); i++) {
790 it->push(vt[i].method_addr());
791 }
792 }
793
794 #if INCLUDE_CDS
795 void Klass::remove_unshareable_info() {
796 assert(CDSConfig::is_dumping_archive(),
797 "only called during CDS dump time");
798 JFR_ONLY(REMOVE_ID(this);)
799 if (log_is_enabled(Trace, aot, unshareable)) {
800 ResourceMark rm;
801 log_trace(aot, unshareable)("remove: %s", external_name());
802 }
803
804 // _secondary_super_cache may be updated by an is_subtype_of() call
805 // while ArchiveBuilder is copying metaspace objects. Let's reset it to
806 // null and let it be repopulated at runtime.
807 set_secondary_super_cache(nullptr);
808
809 set_subklass(nullptr);
810 set_next_sibling(nullptr);
811 set_next_link(nullptr);
812
813 // Null out class_loader_data because we don't share that yet.
814 set_class_loader_data(nullptr);
815 set_is_shared();
816
817 if (CDSConfig::is_dumping_classic_static_archive()) {
818 // "Classic" static archives are required to have deterministic contents.
819 // The elements in _secondary_supers are addresses in the ArchiveBuilder
820 // output buffer, so they should have deterministic values. If we rehash
821 // _secondary_supers, its elements will appear in a deterministic order.
822 //
823 // Note that the bitmap is guaranteed to be deterministic, regardless of the
824 // actual addresses of the elements in _secondary_supers. So rehashing shouldn't
825 // change it.
826 uintx bitmap = hash_secondary_supers(secondary_supers(), true);
827 assert(bitmap == _secondary_supers_bitmap, "bitmap should not be changed due to rehashing");
828 }
829 }
830
831 void Klass::remove_java_mirror() {
832 assert(CDSConfig::is_dumping_archive(), "sanity");
833 if (log_is_enabled(Trace, aot, unshareable)) {
834 ResourceMark rm;
835 log_trace(aot, unshareable)("remove java_mirror: %s", external_name());
836 }
837
838 #if INCLUDE_CDS_JAVA_HEAP
839 _archived_mirror_index = -1;
840 if (CDSConfig::is_dumping_heap()) {
841 Klass* src_k = ArchiveBuilder::current()->get_source_addr(this);
842 oop orig_mirror = src_k->java_mirror();
843 if (orig_mirror == nullptr) {
844 assert(CDSConfig::is_dumping_final_static_archive(), "sanity");
845 if (is_instance_klass()) {
846 assert(InstanceKlass::cast(this)->defined_by_other_loaders(), "sanity");
847 } else {
848 precond(is_objArray_klass());
849 Klass *k = ObjArrayKlass::cast(this)->bottom_klass();
850 precond(k->is_instance_klass());
851 assert(InstanceKlass::cast(k)->defined_by_other_loaders(), "sanity");
852 }
853 } else {
854 oop scratch_mirror = HeapShared::scratch_java_mirror(orig_mirror);
855 if (scratch_mirror != nullptr) {
856 _archived_mirror_index = HeapShared::append_root(scratch_mirror);
857 }
858 }
859 }
860 #endif
861
862 // Just null out the mirror. The class_loader_data() no longer exists.
863 clear_java_mirror_handle();
864 }
865
866 void Klass::restore_unshareable_info(ClassLoaderData* loader_data, Handle protection_domain, TRAPS) {
867 assert(is_klass(), "ensure C++ vtable is restored");
868 assert(is_shared(), "must be set");
869 assert(secondary_supers()->length() >= (int)population_count(_secondary_supers_bitmap), "must be");
870 JFR_ONLY(RESTORE_ID(this);)
871 if (log_is_enabled(Trace, aot, unshareable)) {
872 ResourceMark rm(THREAD);
873 oop class_loader = loader_data->class_loader();
874 log_trace(aot, unshareable)("restore: %s with class loader: %s", external_name(),
875 class_loader != nullptr ? class_loader->klass()->external_name() : "boot");
876 }
877
878 // If an exception happened during CDS restore, some of these fields may already be
879 // set. We leave the class on the CLD list, even if incomplete so that we don't
880 // modify the CLD list outside a safepoint.
881 if (class_loader_data() == nullptr) {
882 set_class_loader_data(loader_data);
883
884 // Add to class loader list first before creating the mirror
885 // (same order as class file parsing)
886 loader_data->add_class(this);
887 }
888
889 Handle loader(THREAD, loader_data->class_loader());
890 ModuleEntry* module_entry = nullptr;
891 Klass* k = this;
892 if (k->is_objArray_klass()) {
893 k = ObjArrayKlass::cast(k)->bottom_klass();
894 }
895 // Obtain klass' module.
896 if (k->is_instance_klass()) {
897 InstanceKlass* ik = (InstanceKlass*) k;
898 module_entry = ik->module();
899 } else {
900 module_entry = ModuleEntryTable::javabase_moduleEntry();
901 }
902 // Obtain java.lang.Module, if available
903 Handle module_handle(THREAD, ((module_entry != nullptr) ? module_entry->module_oop() : (oop)nullptr));
904
905 if (this->has_archived_mirror_index()) {
906 ResourceMark rm(THREAD);
907 log_debug(aot, mirror)("%s has raw archived mirror", external_name());
908 if (ArchiveHeapLoader::is_in_use()) {
909 bool present = java_lang_Class::restore_archived_mirror(this, loader, module_handle,
910 protection_domain,
911 CHECK);
912 if (present) {
913 return;
914 }
915 }
916
917 // No archived mirror data
918 log_debug(aot, mirror)("No archived mirror data for %s", external_name());
919 clear_java_mirror_handle();
920 this->clear_archived_mirror_index();
921 }
922
923 // Only recreate it if not present. A previous attempt to restore may have
924 // gotten an OOM later but keep the mirror if it was created.
925 if (java_mirror() == nullptr) {
926 ResourceMark rm(THREAD);
927 log_trace(aot, mirror)("Recreate mirror for %s", external_name());
928 java_lang_Class::create_mirror(this, loader, module_handle, protection_domain, Handle(), CHECK);
929 }
930 }
931 #endif // INCLUDE_CDS
932
933 #if INCLUDE_CDS_JAVA_HEAP
934 oop Klass::archived_java_mirror() {
935 assert(has_archived_mirror_index(), "must have archived mirror");
936 return HeapShared::get_root(_archived_mirror_index);
937 }
938
939 void Klass::clear_archived_mirror_index() {
940 if (_archived_mirror_index >= 0) {
941 HeapShared::clear_root(_archived_mirror_index);
942 }
943 _archived_mirror_index = -1;
944 }
945 #endif // INCLUDE_CDS_JAVA_HEAP
946
947 void Klass::check_array_allocation_length(int length, int max_length, TRAPS) {
948 if (length > max_length) {
949 if (!THREAD->is_in_internal_oome_mark()) {
950 report_java_out_of_memory("Requested array size exceeds VM limit");
951 JvmtiExport::post_array_size_exhausted();
952 THROW_OOP(Universe::out_of_memory_error_array_size());
953 } else {
954 THROW_OOP(Universe::out_of_memory_error_java_heap_without_backtrace());
955 }
956 } else if (length < 0) {
957 THROW_MSG(vmSymbols::java_lang_NegativeArraySizeException(), err_msg("%d", length));
958 }
959 }
960
961 // Replace the last '+' char with '/'.
962 static char* convert_hidden_name_to_java(Symbol* name) {
963 size_t name_len = name->utf8_length();
964 char* result = NEW_RESOURCE_ARRAY(char, name_len + 1);
965 name->as_klass_external_name(result, (int)name_len + 1);
966 for (int index = (int)name_len; index > 0; index--) {
967 if (result[index] == '+') {
968 result[index] = JVM_SIGNATURE_SLASH;
969 break;
970 }
971 }
972 return result;
973 }
974
975 // In product mode, this function doesn't have virtual function calls so
976 // there might be some performance advantage to handling InstanceKlass here.
977 const char* Klass::external_name() const {
978 if (is_instance_klass()) {
979 const InstanceKlass* ik = static_cast<const InstanceKlass*>(this);
980 if (ik->is_hidden()) {
981 char* result = convert_hidden_name_to_java(name());
982 return result;
983 }
984 } else if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) {
985 char* result = convert_hidden_name_to_java(name());
986 return result;
987 }
988 if (name() == nullptr) return "<unknown>";
989 return name()->as_klass_external_name();
990 }
991
992 const char* Klass::signature_name() const {
993 if (name() == nullptr) return "<unknown>";
994 if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) {
995 size_t name_len = name()->utf8_length();
996 char* result = NEW_RESOURCE_ARRAY(char, name_len + 1);
997 name()->as_C_string(result, (int)name_len + 1);
998 for (int index = (int)name_len; index > 0; index--) {
999 if (result[index] == '+') {
1000 result[index] = JVM_SIGNATURE_DOT;
1001 break;
1002 }
1003 }
1004 return result;
1005 }
1006 return name()->as_C_string();
1007 }
1008
1009 const char* Klass::external_kind() const {
1010 if (is_interface()) return "interface";
1011 if (is_abstract()) return "abstract class";
1012 return "class";
1013 }
1014
1015 // Unless overridden, jvmti_class_status has no flags set.
1016 jint Klass::jvmti_class_status() const {
1017 return 0;
1018 }
1019
1020
1021 // Printing
1022
1023 void Klass::print_on(outputStream* st) const {
1024 ResourceMark rm;
1025 // print title
1026 st->print("%s", internal_name());
1027 print_address_on(st);
1028 st->cr();
1029 }
1030
1031 #define BULLET " - "
1032
1033 // Caller needs ResourceMark
1034 void Klass::oop_print_on(oop obj, outputStream* st) {
1035 // print title
1036 st->print_cr("%s ", internal_name());
1037 obj->print_address_on(st);
1038
1039 if (WizardMode) {
1040 // print header
1041 obj->mark().print_on(st);
1042 st->cr();
1043 if (UseCompactObjectHeaders) {
1044 st->print(BULLET"prototype_header: " INTPTR_FORMAT, _prototype_header.value());
1045 st->cr();
1046 }
1047 }
1048
1049 // print class
1050 st->print(BULLET"klass: ");
1051 obj->klass()->print_value_on(st);
1052 st->print(BULLET"flags: "); _misc_flags.print_on(st); st->cr();
1053 st->cr();
1054 }
1055
1056 void Klass::oop_print_value_on(oop obj, outputStream* st) {
1057 // print title
1058 ResourceMark rm; // Cannot print in debug mode without this
1059 st->print("%s", internal_name());
1060 obj->print_address_on(st);
1061 }
1062
1063 // Verification
1064
1065 void Klass::verify_on(outputStream* st) {
1066
1067 // This can be expensive, but it is worth checking that this klass is actually
1068 // in the CLD graph but not in production.
1069 #ifdef ASSERT
1070 if (UseCompressedClassPointers && needs_narrow_id()) {
1071 // Stricter checks for both correct alignment and placement
1072 CompressedKlassPointers::check_encodable(this);
1073 } else {
1074 assert(Metaspace::contains((address)this), "Should be");
1075 }
1076 #endif // ASSERT
1077
1078 guarantee(this->is_klass(),"should be klass");
1079
1080 if (super() != nullptr) {
1081 guarantee(super()->is_klass(), "should be klass");
1082 }
1083 if (secondary_super_cache() != nullptr) {
1084 Klass* ko = secondary_super_cache();
1085 guarantee(ko->is_klass(), "should be klass");
1086 }
1087 for ( uint i = 0; i < primary_super_limit(); i++ ) {
1088 Klass* ko = _primary_supers[i];
1089 if (ko != nullptr) {
1090 guarantee(ko->is_klass(), "should be klass");
1091 }
1092 }
1093
1094 if (java_mirror_no_keepalive() != nullptr) {
1095 guarantee(java_lang_Class::is_instance(java_mirror_no_keepalive()), "should be instance");
1096 }
1097 }
1098
1099 void Klass::oop_verify_on(oop obj, outputStream* st) {
1100 guarantee(oopDesc::is_oop(obj), "should be oop");
1101 guarantee(obj->klass()->is_klass(), "klass field is not a klass");
1102 }
1103
1104 // Note: this function is called with an address that may or may not be a Klass.
1105 // The point is not to assert it is but to check if it could be.
1106 bool Klass::is_valid(Klass* k) {
1107 if (!is_aligned(k, sizeof(MetaWord))) return false;
1108 if ((size_t)k < os::min_page_size()) return false;
1109
1110 if (!os::is_readable_range(k, k + 1)) return false;
1111 if (!Metaspace::contains(k)) return false;
1112
1113 if (!Symbol::is_valid(k->name())) return false;
1114 return ClassLoaderDataGraph::is_valid(k->class_loader_data());
1115 }
1116
1117 Method* Klass::method_at_vtable(int index) {
1118 #ifndef PRODUCT
1119 assert(index >= 0, "valid vtable index");
1120 if (DebugVtables) {
1121 verify_vtable_index(index);
1122 }
1123 #endif
1124 return start_of_vtable()[index].method();
1125 }
1126
1127
1128 #ifndef PRODUCT
1129
1130 bool Klass::verify_vtable_index(int i) {
1131 int limit = vtable_length()/vtableEntry::size();
1132 assert(i >= 0 && i < limit, "index %d out of bounds %d", i, limit);
1133 return true;
1134 }
1135
1136 #endif // PRODUCT
1137
1138 // Caller needs ResourceMark
1139 // joint_in_module_of_loader provides an optimization if 2 classes are in
1140 // the same module to succinctly print out relevant information about their
1141 // module name and class loader's name_and_id for error messages.
1142 // Format:
1143 // <fully-qualified-external-class-name1> and <fully-qualified-external-class-name2>
1144 // are in module <module-name>[@<version>]
1145 // of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>]
1146 const char* Klass::joint_in_module_of_loader(const Klass* class2, bool include_parent_loader) const {
1147 assert(module() == class2->module(), "classes do not have the same module");
1148 const char* class1_name = external_name();
1149 size_t len = strlen(class1_name) + 1;
1150
1151 const char* class2_description = class2->class_in_module_of_loader(true, include_parent_loader);
1152 len += strlen(class2_description);
1153
1154 len += strlen(" and ");
1155
1156 char* joint_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len);
1157
1158 // Just return the FQN if error when allocating string
1159 if (joint_description == nullptr) {
1160 return class1_name;
1161 }
1162
1163 jio_snprintf(joint_description, len, "%s and %s",
1164 class1_name,
1165 class2_description);
1166
1167 return joint_description;
1168 }
1169
1170 // Caller needs ResourceMark
1171 // class_in_module_of_loader provides a standard way to include
1172 // relevant information about a class, such as its module name as
1173 // well as its class loader's name_and_id, in error messages and logging.
1174 // Format:
1175 // <fully-qualified-external-class-name> is in module <module-name>[@<version>]
1176 // of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>]
1177 const char* Klass::class_in_module_of_loader(bool use_are, bool include_parent_loader) const {
1178 // 1. fully qualified external name of class
1179 const char* klass_name = external_name();
1180 size_t len = strlen(klass_name) + 1;
1181
1182 // 2. module name + @version
1183 const char* module_name = "";
1184 const char* version = "";
1185 bool has_version = false;
1186 bool module_is_named = false;
1187 const char* module_name_phrase = "";
1188 const Klass* bottom_klass = is_objArray_klass() ?
1189 ObjArrayKlass::cast(this)->bottom_klass() : this;
1190 if (bottom_klass->is_instance_klass()) {
1191 ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1192 if (module->is_named()) {
1193 module_is_named = true;
1194 module_name_phrase = "module ";
1195 module_name = module->name()->as_C_string();
1196 len += strlen(module_name);
1197 // Use version if exists and is not a jdk module
1198 if (module->should_show_version()) {
1199 has_version = true;
1200 version = module->version()->as_C_string();
1201 // Include stlen(version) + 1 for the "@"
1202 len += strlen(version) + 1;
1203 }
1204 } else {
1205 module_name = UNNAMED_MODULE;
1206 len += UNNAMED_MODULE_LEN;
1207 }
1208 } else {
1209 // klass is an array of primitives, module is java.base
1210 module_is_named = true;
1211 module_name_phrase = "module ";
1212 module_name = JAVA_BASE_NAME;
1213 len += JAVA_BASE_NAME_LEN;
1214 }
1215
1216 // 3. class loader's name_and_id
1217 ClassLoaderData* cld = class_loader_data();
1218 assert(cld != nullptr, "class_loader_data should not be null");
1219 const char* loader_name_and_id = cld->loader_name_and_id();
1220 len += strlen(loader_name_and_id);
1221
1222 // 4. include parent loader information
1223 const char* parent_loader_phrase = "";
1224 const char* parent_loader_name_and_id = "";
1225 if (include_parent_loader &&
1226 !cld->is_builtin_class_loader_data()) {
1227 oop parent_loader = java_lang_ClassLoader::parent(class_loader());
1228 ClassLoaderData *parent_cld = ClassLoaderData::class_loader_data_or_null(parent_loader);
1229 // The parent loader's ClassLoaderData could be null if it is
1230 // a delegating class loader that has never defined a class.
1231 // In this case the loader's name must be obtained via the parent loader's oop.
1232 if (parent_cld == nullptr) {
1233 oop cl_name_and_id = java_lang_ClassLoader::nameAndId(parent_loader);
1234 if (cl_name_and_id != nullptr) {
1235 parent_loader_name_and_id = java_lang_String::as_utf8_string(cl_name_and_id);
1236 }
1237 } else {
1238 parent_loader_name_and_id = parent_cld->loader_name_and_id();
1239 }
1240 parent_loader_phrase = ", parent loader ";
1241 len += strlen(parent_loader_phrase) + strlen(parent_loader_name_and_id);
1242 }
1243
1244 // Start to construct final full class description string
1245 len += ((use_are) ? strlen(" are in ") : strlen(" is in "));
1246 len += strlen(module_name_phrase) + strlen(" of loader ");
1247
1248 char* class_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len);
1249
1250 // Just return the FQN if error when allocating string
1251 if (class_description == nullptr) {
1252 return klass_name;
1253 }
1254
1255 jio_snprintf(class_description, len, "%s %s in %s%s%s%s of loader %s%s%s",
1256 klass_name,
1257 (use_are) ? "are" : "is",
1258 module_name_phrase,
1259 module_name,
1260 (has_version) ? "@" : "",
1261 (has_version) ? version : "",
1262 loader_name_and_id,
1263 parent_loader_phrase,
1264 parent_loader_name_and_id);
1265
1266 return class_description;
1267 }
1268
1269 class LookupStats : StackObj {
1270 private:
1271 uint _no_of_samples;
1272 uint _worst;
1273 uint _worst_count;
1274 uint _average;
1275 uint _best;
1276 uint _best_count;
1277 public:
1278 LookupStats() : _no_of_samples(0), _worst(0), _worst_count(0), _average(0), _best(INT_MAX), _best_count(0) {}
1279
1280 ~LookupStats() {
1281 assert(_best <= _worst || _no_of_samples == 0, "sanity");
1282 }
1283
1284 void sample(uint value) {
1285 ++_no_of_samples;
1286 _average += value;
1287
1288 if (_worst < value) {
1289 _worst = value;
1290 _worst_count = 1;
1291 } else if (_worst == value) {
1292 ++_worst_count;
1293 }
1294
1295 if (_best > value) {
1296 _best = value;
1297 _best_count = 1;
1298 } else if (_best == value) {
1299 ++_best_count;
1300 }
1301 }
1302
1303 void print_on(outputStream* st) const {
1304 st->print("best: %2d (%4.1f%%)", _best, (100.0 * _best_count) / _no_of_samples);
1305 if (_best_count < _no_of_samples) {
1306 st->print("; average: %4.1f; worst: %2d (%4.1f%%)",
1307 (1.0 * _average) / _no_of_samples,
1308 _worst, (100.0 * _worst_count) / _no_of_samples);
1309 }
1310 }
1311 };
1312
1313 static void print_positive_lookup_stats(Array<Klass*>* secondary_supers, uintx bitmap, outputStream* st) {
1314 int num_of_supers = secondary_supers->length();
1315
1316 LookupStats s;
1317 for (int i = 0; i < num_of_supers; i++) {
1318 Klass* secondary_super = secondary_supers->at(i);
1319 int home_slot = Klass::compute_home_slot(secondary_super, bitmap);
1320 uint score = 1 + ((i - home_slot) & Klass::SECONDARY_SUPERS_TABLE_MASK);
1321 s.sample(score);
1322 }
1323 st->print("positive_lookup: "); s.print_on(st);
1324 }
1325
1326 static uint compute_distance_to_nearest_zero(int slot, uintx bitmap) {
1327 assert(~bitmap != 0, "no zeroes");
1328 uintx start = rotate_right(bitmap, slot);
1329 return count_trailing_zeros(~start);
1330 }
1331
1332 static void print_negative_lookup_stats(uintx bitmap, outputStream* st) {
1333 LookupStats s;
1334 for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) {
1335 uint score = compute_distance_to_nearest_zero(slot, bitmap);
1336 s.sample(score);
1337 }
1338 st->print("negative_lookup: "); s.print_on(st);
1339 }
1340
1341 void Klass::print_secondary_supers_on(outputStream* st) const {
1342 if (secondary_supers() != nullptr) {
1343 st->print(" - "); st->print("%d elements;", _secondary_supers->length());
1344 st->print_cr(" bitmap: " UINTX_FORMAT_X_0, _secondary_supers_bitmap);
1345 if (_secondary_supers_bitmap != SECONDARY_SUPERS_BITMAP_EMPTY &&
1346 _secondary_supers_bitmap != SECONDARY_SUPERS_BITMAP_FULL) {
1347 st->print(" - "); print_positive_lookup_stats(secondary_supers(),
1348 _secondary_supers_bitmap, st); st->cr();
1349 st->print(" - "); print_negative_lookup_stats(_secondary_supers_bitmap, st); st->cr();
1350 }
1351 } else {
1352 st->print("null");
1353 }
1354 }
1355
1356 void Klass::on_secondary_supers_verification_failure(Klass* super, Klass* sub, bool linear_result, bool table_result, const char* msg) {
1357 ResourceMark rm;
1358 super->print();
1359 sub->print();
1360 fatal("%s: %s implements %s: linear_search: %d; table_lookup: %d",
1361 msg, sub->external_name(), super->external_name(), linear_result, table_result);
1362 }
1363
1364 static int expanded = 0;
1365 static int not_expanded = 0;
1366 static NumberSeq seq = NumberSeq();
1367
1368 bool Klass::expand_for_hash(oop obj, markWord m) const {
1369 assert(UseCompactObjectHeaders, "only with compact i-hash");
1370 {
1371 ResourceMark rm;
1372 assert((size_t)hash_offset_in_bytes(obj,m ) <= (obj->base_size_given_klass(m, this) * HeapWordSize), "hash offset must be eq or lt base size: hash offset: %d, base size: %zu, class-name: %s", hash_offset_in_bytes(obj, m), obj->base_size_given_klass(m, this) * HeapWordSize, external_name());
1373 }
1374 return obj->base_size_given_klass(m, this) * HeapWordSize - hash_offset_in_bytes(obj, m) < (int)sizeof(uint32_t);
1375 }