1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "cds/archiveHeapLoader.hpp"
  27 #include "cds/cdsConfig.hpp"
  28 #include "cds/heapShared.hpp"
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/classLoaderData.inline.hpp"
  31 #include "classfile/classLoaderDataGraph.inline.hpp"
  32 #include "classfile/javaClasses.inline.hpp"
  33 #include "classfile/moduleEntry.hpp"
  34 #include "classfile/systemDictionary.hpp"
  35 #include "classfile/systemDictionaryShared.hpp"
  36 #include "classfile/vmClasses.hpp"
  37 #include "classfile/vmSymbols.hpp"
  38 #include "gc/shared/collectedHeap.inline.hpp"
  39 #include "jvm_io.h"
  40 #include "logging/log.hpp"
  41 #include "memory/metadataFactory.hpp"
  42 #include "memory/metaspaceClosure.hpp"
  43 #include "memory/oopFactory.hpp"
  44 #include "memory/resourceArea.hpp"
  45 #include "memory/universe.hpp"
  46 #include "oops/compressedKlass.inline.hpp"
  47 #include "oops/compressedOops.inline.hpp"
  48 #include "oops/instanceKlass.hpp"
  49 #include "oops/klass.inline.hpp"
  50 #include "oops/objArrayKlass.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/oopHandle.inline.hpp"
  53 #include "prims/jvmtiExport.hpp"
  54 #include "runtime/atomic.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/perfData.hpp"
  57 #include "utilities/macros.hpp"
  58 #include "utilities/numberSeq.hpp"
  59 #include "utilities/powerOfTwo.hpp"
  60 #include "utilities/rotate_bits.hpp"
  61 #include "utilities/stack.inline.hpp"
  62 
  63 void Klass::set_java_mirror(Handle m) {
  64   assert(!m.is_null(), "New mirror should never be null.");
  65   assert(_java_mirror.is_empty(), "should only be used to initialize mirror");
  66   _java_mirror = class_loader_data()->add_handle(m);
  67 }
  68 
  69 bool Klass::is_cloneable() const {
  70   return _misc_flags.is_cloneable_fast() ||
  71          is_subtype_of(vmClasses::Cloneable_klass());
  72 }
  73 
  74 void Klass::set_is_cloneable() {
  75   if (name() == vmSymbols::java_lang_invoke_MemberName()) {
  76     assert(is_final(), "no subclasses allowed");
  77     // MemberName cloning should not be intrinsified and always happen in JVM_Clone.
  78   } else if (is_instance_klass() && InstanceKlass::cast(this)->reference_type() != REF_NONE) {
  79     // Reference cloning should not be intrinsified and always happen in JVM_Clone.
  80   } else {
  81     _misc_flags.set_is_cloneable_fast(true);
  82   }
  83 }
  84 
  85 uint8_t Klass::compute_hash_slot(Symbol* n) {
  86   uint hash_code;
  87   // Special cases for the two superclasses of all Array instances.
  88   // Code elsewhere assumes, for all instances of ArrayKlass, that
  89   // these two interfaces will be in this order.
  90 
  91   // We ensure there are some empty slots in the hash table between
  92   // these two very common interfaces because if they were adjacent
  93   // (e.g. Slots 0 and 1), then any other class which hashed to 0 or 1
  94   // would result in a probe length of 3.
  95   if (n == vmSymbols::java_lang_Cloneable()) {
  96     hash_code = 0;
  97   } else if (n == vmSymbols::java_io_Serializable()) {
  98     hash_code = SECONDARY_SUPERS_TABLE_SIZE / 2;
  99   } else {
 100     auto s = (const jbyte*) n->bytes();
 101     hash_code = java_lang_String::hash_code(s, n->utf8_length());
 102     // We use String::hash_code here (rather than e.g.
 103     // Symbol::identity_hash()) in order to have a hash code that
 104     // does not change from run to run. We want that because the
 105     // hash value for a secondary superclass appears in generated
 106     // code as a constant.
 107 
 108     // This constant is magic: see Knuth, "Fibonacci Hashing".
 109     constexpr uint multiplier
 110       = 2654435769; // (uint)(((u8)1 << 32) / ((1 + sqrt(5)) / 2 ))
 111     constexpr uint hash_shift = sizeof(hash_code) * 8 - 6;
 112     // The leading bits of the least significant half of the product.
 113     hash_code = (hash_code * multiplier) >> hash_shift;
 114 
 115     if (StressSecondarySupers) {
 116       // Generate many hash collisions in order to stress-test the
 117       // linear search fallback.
 118       hash_code = hash_code % 3;
 119       hash_code = hash_code * (SECONDARY_SUPERS_TABLE_SIZE / 3);
 120     }
 121   }
 122 
 123   return (hash_code & SECONDARY_SUPERS_TABLE_MASK);
 124 }
 125 
 126 void Klass::set_name(Symbol* n) {
 127   _name = n;
 128 
 129   if (_name != nullptr) {
 130     _name->increment_refcount();
 131   }
 132 
 133   {
 134     elapsedTimer selftime;
 135     selftime.start();
 136 
 137     _hash_slot = compute_hash_slot(n);
 138     assert(_hash_slot < SECONDARY_SUPERS_TABLE_SIZE, "required");
 139 
 140     selftime.stop();
 141     if (UsePerfData) {
 142       ClassLoader::perf_secondary_hash_time()->inc(selftime.ticks());
 143     }
 144   }
 145 
 146   if (CDSConfig::is_dumping_archive() && is_instance_klass()) {
 147     SystemDictionaryShared::init_dumptime_info(InstanceKlass::cast(this));
 148   }
 149 }
 150 
 151 bool Klass::is_subclass_of(const Klass* k) const {
 152   // Run up the super chain and check
 153   if (this == k) return true;
 154 
 155   Klass* t = const_cast<Klass*>(this)->super();
 156 
 157   while (t != nullptr) {
 158     if (t == k) return true;
 159     t = t->super();
 160   }
 161   return false;
 162 }
 163 
 164 void Klass::release_C_heap_structures(bool release_constant_pool) {
 165   if (_name != nullptr) _name->decrement_refcount();
 166 }
 167 
 168 bool Klass::linear_search_secondary_supers(const Klass* k) const {
 169   // Scan the array-of-objects for a match
 170   // FIXME: We could do something smarter here, maybe a vectorized
 171   // comparison or a binary search, but is that worth any added
 172   // complexity?
 173   int cnt = secondary_supers()->length();
 174   for (int i = 0; i < cnt; i++) {
 175     if (secondary_supers()->at(i) == k) {
 176       return true;
 177     }
 178   }
 179   return false;
 180 }
 181 
 182 // Given a secondary superklass k, an initial array index, and an
 183 // occupancy bitmap rotated such that Bit 1 is the next bit to test,
 184 // search for k.
 185 bool Klass::fallback_search_secondary_supers(const Klass* k, int index, uintx rotated_bitmap) const {
 186   // Once the occupancy bitmap is almost full, it's faster to use a
 187   // linear search.
 188   if (secondary_supers()->length() > SECONDARY_SUPERS_TABLE_SIZE - 2) {
 189     return linear_search_secondary_supers(k);
 190   }
 191 
 192   // This is conventional linear probing, but instead of terminating
 193   // when a null entry is found in the table, we maintain a bitmap
 194   // in which a 0 indicates missing entries.
 195 
 196   precond((int)population_count(rotated_bitmap) == secondary_supers()->length());
 197 
 198   // The check for secondary_supers()->length() <= SECONDARY_SUPERS_TABLE_SIZE - 2
 199   // at the start of this function guarantees there are 0s in the
 200   // bitmap, so this loop eventually terminates.
 201   while ((rotated_bitmap & 2) != 0) {
 202     if (++index == secondary_supers()->length()) {
 203       index = 0;
 204     }
 205     if (secondary_supers()->at(index) == k) {
 206       return true;
 207     }
 208     rotated_bitmap = rotate_right(rotated_bitmap, 1);
 209   }
 210   return false;
 211 }
 212 
 213 // Return self, except for abstract classes with exactly 1
 214 // implementor.  Then return the 1 concrete implementation.
 215 Klass *Klass::up_cast_abstract() {
 216   Klass *r = this;
 217   while( r->is_abstract() ) {   // Receiver is abstract?
 218     Klass *s = r->subklass();   // Check for exactly 1 subklass
 219     if (s == nullptr || s->next_sibling() != nullptr) // Oops; wrong count; give up
 220       return this;              // Return 'this' as a no-progress flag
 221     r = s;                    // Loop till find concrete class
 222   }
 223   return r;                   // Return the 1 concrete class
 224 }
 225 
 226 // Find LCA in class hierarchy
 227 Klass *Klass::LCA( Klass *k2 ) {
 228   Klass *k1 = this;
 229   while( 1 ) {
 230     if( k1->is_subtype_of(k2) ) return k2;
 231     if( k2->is_subtype_of(k1) ) return k1;
 232     k1 = k1->super();
 233     k2 = k2->super();
 234   }
 235 }
 236 
 237 
 238 void Klass::check_valid_for_instantiation(bool throwError, TRAPS) {
 239   ResourceMark rm(THREAD);
 240   THROW_MSG(throwError ? vmSymbols::java_lang_InstantiationError()
 241             : vmSymbols::java_lang_InstantiationException(), external_name());
 242 }
 243 
 244 
 245 void Klass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) {
 246   ResourceMark rm(THREAD);
 247   assert(s != nullptr, "Throw NPE!");
 248   THROW_MSG(vmSymbols::java_lang_ArrayStoreException(),
 249             err_msg("arraycopy: source type %s is not an array", s->klass()->external_name()));
 250 }
 251 
 252 
 253 void Klass::initialize(TRAPS) {
 254   ShouldNotReachHere();
 255 }
 256 
 257 Klass* Klass::find_field(Symbol* name, Symbol* sig, fieldDescriptor* fd) const {
 258 #ifdef ASSERT
 259   tty->print_cr("Error: find_field called on a klass oop."
 260                 " Likely error: reflection method does not correctly"
 261                 " wrap return value in a mirror object.");
 262 #endif
 263   ShouldNotReachHere();
 264   return nullptr;
 265 }
 266 
 267 Method* Klass::uncached_lookup_method(const Symbol* name, const Symbol* signature,
 268                                       OverpassLookupMode overpass_mode,
 269                                       PrivateLookupMode private_mode) const {
 270 #ifdef ASSERT
 271   tty->print_cr("Error: uncached_lookup_method called on a klass oop."
 272                 " Likely error: reflection method does not correctly"
 273                 " wrap return value in a mirror object.");
 274 #endif
 275   ShouldNotReachHere();
 276   return nullptr;
 277 }
 278 
 279 static markWord make_prototype(const Klass* kls) {
 280   markWord prototype = markWord::prototype();
 281 #ifdef _LP64
 282   if (UseCompactObjectHeaders) {
 283     // With compact object headers, the narrow Klass ID is part of the mark word.
 284     // We therfore seed the mark word with the narrow Klass ID.
 285     // Note that only those Klass that can be instantiated have a narrow Klass ID.
 286     // For those who don't, we leave the klass bits empty and assert if someone
 287     // tries to use those.
 288     const narrowKlass nk = CompressedKlassPointers::is_encodable(kls) ?
 289         CompressedKlassPointers::encode(const_cast<Klass*>(kls)) : 0;
 290     prototype = prototype.set_narrow_klass(nk);
 291   }
 292 #endif
 293   return prototype;
 294 }
 295 
 296 Klass::Klass() : _kind(UnknownKlassKind) {
 297   assert(CDSConfig::is_dumping_static_archive() || CDSConfig::is_using_archive(), "only for cds");
 298 }
 299 
 300 // "Normal" instantiation is preceded by a MetaspaceObj allocation
 301 // which zeros out memory - calloc equivalent.
 302 // The constructor is also used from CppVtableCloner,
 303 // which doesn't zero out the memory before calling the constructor.
 304 Klass::Klass(KlassKind kind) : _kind(kind),
 305                                _prototype_header(make_prototype(this)),
 306                                _shared_class_path_index(-1) {
 307   CDS_ONLY(_shared_class_flags = 0;)
 308   CDS_JAVA_HEAP_ONLY(_archived_mirror_index = -1;)
 309   _primary_supers[0] = this;
 310   set_super_check_offset(in_bytes(primary_supers_offset()));
 311 }
 312 
 313 jint Klass::array_layout_helper(BasicType etype) {
 314   assert(etype >= T_BOOLEAN && etype <= T_OBJECT, "valid etype");
 315   // Note that T_ARRAY is not allowed here.
 316   int  hsize = arrayOopDesc::base_offset_in_bytes(etype);
 317   int  esize = type2aelembytes(etype);
 318   bool isobj = (etype == T_OBJECT);
 319   int  tag   =  isobj ? _lh_array_tag_obj_value : _lh_array_tag_type_value;
 320   int lh = array_layout_helper(tag, hsize, etype, exact_log2(esize));
 321 
 322   assert(lh < (int)_lh_neutral_value, "must look like an array layout");
 323   assert(layout_helper_is_array(lh), "correct kind");
 324   assert(layout_helper_is_objArray(lh) == isobj, "correct kind");
 325   assert(layout_helper_is_typeArray(lh) == !isobj, "correct kind");
 326   assert(layout_helper_header_size(lh) == hsize, "correct decode");
 327   assert(layout_helper_element_type(lh) == etype, "correct decode");
 328   assert(1 << layout_helper_log2_element_size(lh) == esize, "correct decode");
 329 
 330   return lh;
 331 }
 332 
 333 bool Klass::can_be_primary_super_slow() const {
 334   if (super() == nullptr)
 335     return true;
 336   else if (super()->super_depth() >= primary_super_limit()-1)
 337     return false;
 338   else
 339     return true;
 340 }
 341 
 342 void Klass::set_secondary_supers(Array<Klass*>* secondaries, uintx bitmap) {
 343 #ifdef ASSERT
 344   if (secondaries != nullptr) {
 345     uintx real_bitmap = compute_secondary_supers_bitmap(secondaries);
 346     assert(bitmap == real_bitmap, "must be");
 347     assert(secondaries->length() >= (int)population_count(bitmap), "must be");
 348   }
 349 #endif
 350   _secondary_supers_bitmap = bitmap;
 351   _secondary_supers = secondaries;
 352 
 353   if (secondaries != nullptr) {
 354     LogMessage(class, load) msg;
 355     NonInterleavingLogStream log {LogLevel::Debug, msg};
 356     if (log.is_enabled()) {
 357       ResourceMark rm;
 358       log.print_cr("set_secondary_supers: hash_slot: %d; klass: %s", hash_slot(), external_name());
 359       print_secondary_supers_on(&log);
 360     }
 361   }
 362 }
 363 
 364 // Hashed secondary superclasses
 365 //
 366 // We use a compressed 64-entry hash table with linear probing. We
 367 // start by creating a hash table in the usual way, followed by a pass
 368 // that removes all the null entries. To indicate which entries would
 369 // have been null we use a bitmap that contains a 1 in each position
 370 // where an entry is present, 0 otherwise. This bitmap also serves as
 371 // a kind of Bloom filter, which in many cases allows us quickly to
 372 // eliminate the possibility that something is a member of a set of
 373 // secondaries.
 374 uintx Klass::hash_secondary_supers(Array<Klass*>* secondaries, bool rewrite) {
 375   const int length = secondaries->length();
 376 
 377   if (length == 0) {
 378     return SECONDARY_SUPERS_BITMAP_EMPTY;
 379   }
 380 
 381   if (length == 1) {
 382     int hash_slot = secondaries->at(0)->hash_slot();
 383     return uintx(1) << hash_slot;
 384   }
 385 
 386   // Invariant: _secondary_supers.length >= population_count(_secondary_supers_bitmap)
 387 
 388   // Don't attempt to hash a table that's completely full, because in
 389   // the case of an absent interface linear probing would not
 390   // terminate.
 391   if (length >= SECONDARY_SUPERS_TABLE_SIZE) {
 392     return SECONDARY_SUPERS_BITMAP_FULL;
 393   }
 394 
 395   {
 396     PerfTraceTime ptt(ClassLoader::perf_secondary_hash_time());
 397 
 398     ResourceMark rm;
 399     uintx bitmap = SECONDARY_SUPERS_BITMAP_EMPTY;
 400     auto hashed_secondaries = new GrowableArray<Klass*>(SECONDARY_SUPERS_TABLE_SIZE,
 401                                                         SECONDARY_SUPERS_TABLE_SIZE, nullptr);
 402 
 403     for (int j = 0; j < length; j++) {
 404       Klass* k = secondaries->at(j);
 405       hash_insert(k, hashed_secondaries, bitmap);
 406     }
 407 
 408     // Pack the hashed secondaries array by copying it into the
 409     // secondaries array, sans nulls, if modification is allowed.
 410     // Otherwise, validate the order.
 411     int i = 0;
 412     for (int slot = 0; slot < SECONDARY_SUPERS_TABLE_SIZE; slot++) {
 413       bool has_element = ((bitmap >> slot) & 1) != 0;
 414       assert(has_element == (hashed_secondaries->at(slot) != nullptr), "");
 415       if (has_element) {
 416         Klass* k = hashed_secondaries->at(slot);
 417         if (rewrite) {
 418           secondaries->at_put(i, k);
 419         } else if (secondaries->at(i) != k) {
 420           assert(false, "broken secondary supers hash table");
 421           return SECONDARY_SUPERS_BITMAP_FULL;
 422         }
 423         i++;
 424       }
 425     }
 426     assert(i == secondaries->length(), "mismatch");
 427     postcond((int)population_count(bitmap) == secondaries->length());
 428 
 429     return bitmap;
 430   }
 431 }
 432 
 433 void Klass::hash_insert(Klass* klass, GrowableArray<Klass*>* secondaries, uintx& bitmap) {
 434   assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, "");
 435 
 436   int dist = 0;
 437   for (int slot = klass->hash_slot(); true; slot = (slot + 1) & SECONDARY_SUPERS_TABLE_MASK) {
 438     Klass* existing = secondaries->at(slot);
 439     assert(((bitmap >> slot) & 1) == (existing != nullptr), "mismatch");
 440     if (existing == nullptr) { // no conflict
 441       secondaries->at_put(slot, klass);
 442       bitmap |= uintx(1) << slot;
 443       assert(bitmap != SECONDARY_SUPERS_BITMAP_FULL, "");
 444       return;
 445     } else {
 446       // Use Robin Hood hashing to minimize the worst case search.
 447       // Also, every permutation of the insertion sequence produces
 448       // the same final Robin Hood hash table, provided that a
 449       // consistent tie breaker is used.
 450       int existing_dist = (slot - existing->hash_slot()) & SECONDARY_SUPERS_TABLE_MASK;
 451       if (existing_dist < dist
 452           // This tie breaker ensures that the hash order is maintained.
 453           || ((existing_dist == dist)
 454               && (uintptr_t(existing) < uintptr_t(klass)))) {
 455         Klass* tmp = secondaries->at(slot);
 456         secondaries->at_put(slot, klass);
 457         klass = tmp;
 458         dist = existing_dist;
 459       }
 460       ++dist;
 461     }
 462   }
 463 }
 464 
 465 Array<Klass*>* Klass::pack_secondary_supers(ClassLoaderData* loader_data,
 466                                             GrowableArray<Klass*>* primaries,
 467                                             GrowableArray<Klass*>* secondaries,
 468                                             uintx& bitmap, TRAPS) {
 469   int new_length = primaries->length() + secondaries->length();
 470   Array<Klass*>* secondary_supers = MetadataFactory::new_array<Klass*>(loader_data, new_length, CHECK_NULL);
 471 
 472   // Combine the two arrays into a metadata object to pack the array.
 473   // The primaries are added in the reverse order, then the secondaries.
 474   int fill_p = primaries->length();
 475   for (int j = 0; j < fill_p; j++) {
 476     secondary_supers->at_put(j, primaries->pop());  // add primaries in reverse order.
 477   }
 478   for( int j = 0; j < secondaries->length(); j++ ) {
 479     secondary_supers->at_put(j+fill_p, secondaries->at(j));  // add secondaries on the end.
 480   }
 481 #ifdef ASSERT
 482   // We must not copy any null placeholders left over from bootstrap.
 483   for (int j = 0; j < secondary_supers->length(); j++) {
 484     assert(secondary_supers->at(j) != nullptr, "correct bootstrapping order");
 485   }
 486 #endif
 487 
 488   bitmap = hash_secondary_supers(secondary_supers, /*rewrite=*/true); // rewrites freshly allocated array
 489   return secondary_supers;
 490 }
 491 
 492 uintx Klass::compute_secondary_supers_bitmap(Array<Klass*>* secondary_supers) {
 493   return hash_secondary_supers(secondary_supers, /*rewrite=*/false); // no rewrites allowed
 494 }
 495 
 496 uint8_t Klass::compute_home_slot(Klass* k, uintx bitmap) {
 497   uint8_t hash = k->hash_slot();
 498   if (hash > 0) {
 499     return population_count(bitmap << (SECONDARY_SUPERS_TABLE_SIZE - hash));
 500   }
 501   return 0;
 502 }
 503 
 504 
 505 void Klass::initialize_supers(Klass* k, Array<InstanceKlass*>* transitive_interfaces, TRAPS) {
 506   if (k == nullptr) {
 507     set_super(nullptr);
 508     _primary_supers[0] = this;
 509     assert(super_depth() == 0, "Object must already be initialized properly");
 510   } else if (k != super() || k == vmClasses::Object_klass()) {
 511     assert(super() == nullptr || super() == vmClasses::Object_klass(),
 512            "initialize this only once to a non-trivial value");
 513     set_super(k);
 514     Klass* sup = k;
 515     int sup_depth = sup->super_depth();
 516     juint my_depth  = MIN2(sup_depth + 1, (int)primary_super_limit());
 517     if (!can_be_primary_super_slow())
 518       my_depth = primary_super_limit();
 519     for (juint i = 0; i < my_depth; i++) {
 520       _primary_supers[i] = sup->_primary_supers[i];
 521     }
 522     Klass* *super_check_cell;
 523     if (my_depth < primary_super_limit()) {
 524       _primary_supers[my_depth] = this;
 525       super_check_cell = &_primary_supers[my_depth];
 526     } else {
 527       // Overflow of the primary_supers array forces me to be secondary.
 528       super_check_cell = &_secondary_super_cache;
 529     }
 530     set_super_check_offset(u4((address)super_check_cell - (address) this));
 531 
 532 #ifdef ASSERT
 533     {
 534       juint j = super_depth();
 535       assert(j == my_depth, "computed accessor gets right answer");
 536       Klass* t = this;
 537       while (!t->can_be_primary_super()) {
 538         t = t->super();
 539         j = t->super_depth();
 540       }
 541       for (juint j1 = j+1; j1 < primary_super_limit(); j1++) {
 542         assert(primary_super_of_depth(j1) == nullptr, "super list padding");
 543       }
 544       while (t != nullptr) {
 545         assert(primary_super_of_depth(j) == t, "super list initialization");
 546         t = t->super();
 547         --j;
 548       }
 549       assert(j == (juint)-1, "correct depth count");
 550     }
 551 #endif
 552   }
 553 
 554   if (secondary_supers() == nullptr) {
 555 
 556     // Now compute the list of secondary supertypes.
 557     // Secondaries can occasionally be on the super chain,
 558     // if the inline "_primary_supers" array overflows.
 559     int extras = 0;
 560     Klass* p;
 561     for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) {
 562       ++extras;
 563     }
 564 
 565     ResourceMark rm(THREAD);  // need to reclaim GrowableArrays allocated below
 566 
 567     // Compute the "real" non-extra secondaries.
 568     GrowableArray<Klass*>* secondaries = compute_secondary_supers(extras, transitive_interfaces);
 569     if (secondaries == nullptr) {
 570       // secondary_supers set by compute_secondary_supers
 571       return;
 572     }
 573 
 574     GrowableArray<Klass*>* primaries = new GrowableArray<Klass*>(extras);
 575 
 576     for (p = super(); !(p == nullptr || p->can_be_primary_super()); p = p->super()) {
 577       int i;                    // Scan for overflow primaries being duplicates of 2nd'arys
 578 
 579       // This happens frequently for very deeply nested arrays: the
 580       // primary superclass chain overflows into the secondary.  The
 581       // secondary list contains the element_klass's secondaries with
 582       // an extra array dimension added.  If the element_klass's
 583       // secondary list already contains some primary overflows, they
 584       // (with the extra level of array-ness) will collide with the
 585       // normal primary superclass overflows.
 586       for( i = 0; i < secondaries->length(); i++ ) {
 587         if( secondaries->at(i) == p )
 588           break;
 589       }
 590       if( i < secondaries->length() )
 591         continue;               // It's a dup, don't put it in
 592       primaries->push(p);
 593     }
 594     // Combine the two arrays into a metadata object to pack the array.
 595     uintx bitmap = 0;
 596     Array<Klass*>* s2 = pack_secondary_supers(class_loader_data(), primaries, secondaries, bitmap, CHECK);
 597     set_secondary_supers(s2, bitmap);
 598   }
 599 }
 600 
 601 GrowableArray<Klass*>* Klass::compute_secondary_supers(int num_extra_slots,
 602                                                        Array<InstanceKlass*>* transitive_interfaces) {
 603   assert(num_extra_slots == 0, "override for complex klasses");
 604   assert(transitive_interfaces == nullptr, "sanity");
 605   set_secondary_supers(Universe::the_empty_klass_array(), Universe::the_empty_klass_bitmap());
 606   return nullptr;
 607 }
 608 
 609 
 610 // superklass links
 611 InstanceKlass* Klass::superklass() const {
 612   assert(super() == nullptr || super()->is_instance_klass(), "must be instance klass");
 613   return _super == nullptr ? nullptr : InstanceKlass::cast(_super);
 614 }
 615 
 616 // subklass links.  Used by the compiler (and vtable initialization)
 617 // May be cleaned concurrently, so must use the Compile_lock.
 618 // The log parameter is for clean_weak_klass_links to report unlinked classes.
 619 Klass* Klass::subklass(bool log) const {
 620   // Need load_acquire on the _subklass, because it races with inserts that
 621   // publishes freshly initialized data.
 622   for (Klass* chain = Atomic::load_acquire(&_subklass);
 623        chain != nullptr;
 624        // Do not need load_acquire on _next_sibling, because inserts never
 625        // create _next_sibling edges to dead data.
 626        chain = Atomic::load(&chain->_next_sibling))
 627   {
 628     if (chain->is_loader_alive()) {
 629       return chain;
 630     } else if (log) {
 631       if (log_is_enabled(Trace, class, unload)) {
 632         ResourceMark rm;
 633         log_trace(class, unload)("unlinking class (subclass): %s", chain->external_name());
 634       }
 635     }
 636   }
 637   return nullptr;
 638 }
 639 
 640 Klass* Klass::next_sibling(bool log) const {
 641   // Do not need load_acquire on _next_sibling, because inserts never
 642   // create _next_sibling edges to dead data.
 643   for (Klass* chain = Atomic::load(&_next_sibling);
 644        chain != nullptr;
 645        chain = Atomic::load(&chain->_next_sibling)) {
 646     // Only return alive klass, there may be stale klass
 647     // in this chain if cleaned concurrently.
 648     if (chain->is_loader_alive()) {
 649       return chain;
 650     } else if (log) {
 651       if (log_is_enabled(Trace, class, unload)) {
 652         ResourceMark rm;
 653         log_trace(class, unload)("unlinking class (sibling): %s", chain->external_name());
 654       }
 655     }
 656   }
 657   return nullptr;
 658 }
 659 
 660 void Klass::set_subklass(Klass* s) {
 661   assert(s != this, "sanity check");
 662   Atomic::release_store(&_subklass, s);
 663 }
 664 
 665 void Klass::set_next_sibling(Klass* s) {
 666   assert(s != this, "sanity check");
 667   // Does not need release semantics. If used by cleanup, it will link to
 668   // already safely published data, and if used by inserts, will be published
 669   // safely using cmpxchg.
 670   Atomic::store(&_next_sibling, s);
 671 }
 672 
 673 void Klass::append_to_sibling_list() {
 674   if (Universe::is_fully_initialized()) {
 675     assert_locked_or_safepoint(Compile_lock);
 676   }
 677   debug_only(verify();)
 678   // add ourselves to superklass' subklass list
 679   InstanceKlass* super = superklass();
 680   if (super == nullptr) return;     // special case: class Object
 681   assert((!super->is_interface()    // interfaces cannot be supers
 682           && (super->superklass() == nullptr || !is_interface())),
 683          "an interface can only be a subklass of Object");
 684 
 685   // Make sure there is no stale subklass head
 686   super->clean_subklass();
 687 
 688   for (;;) {
 689     Klass* prev_first_subklass = Atomic::load_acquire(&_super->_subklass);
 690     if (prev_first_subklass != nullptr) {
 691       // set our sibling to be the superklass' previous first subklass
 692       assert(prev_first_subklass->is_loader_alive(), "May not attach not alive klasses");
 693       set_next_sibling(prev_first_subklass);
 694     }
 695     // Note that the prev_first_subklass is always alive, meaning no sibling_next links
 696     // are ever created to not alive klasses. This is an important invariant of the lock-free
 697     // cleaning protocol, that allows us to safely unlink dead klasses from the sibling list.
 698     if (Atomic::cmpxchg(&super->_subklass, prev_first_subklass, this) == prev_first_subklass) {
 699       return;
 700     }
 701   }
 702   debug_only(verify();)
 703 }
 704 
 705 void Klass::clean_subklass() {
 706   for (;;) {
 707     // Need load_acquire, due to contending with concurrent inserts
 708     Klass* subklass = Atomic::load_acquire(&_subklass);
 709     if (subklass == nullptr || subklass->is_loader_alive()) {
 710       return;
 711     }
 712     // Try to fix _subklass until it points at something not dead.
 713     Atomic::cmpxchg(&_subklass, subklass, subklass->next_sibling());
 714   }
 715 }
 716 
 717 void Klass::clean_weak_klass_links(bool unloading_occurred, bool clean_alive_klasses) {
 718   if (!ClassUnloading || !unloading_occurred) {
 719     return;
 720   }
 721 
 722   Klass* root = vmClasses::Object_klass();
 723   Stack<Klass*, mtGC> stack;
 724 
 725   stack.push(root);
 726   while (!stack.is_empty()) {
 727     Klass* current = stack.pop();
 728 
 729     assert(current->is_loader_alive(), "just checking, this should be live");
 730 
 731     // Find and set the first alive subklass
 732     Klass* sub = current->subklass(true);
 733     current->clean_subklass();
 734     if (sub != nullptr) {
 735       stack.push(sub);
 736     }
 737 
 738     // Find and set the first alive sibling
 739     Klass* sibling = current->next_sibling(true);
 740     current->set_next_sibling(sibling);
 741     if (sibling != nullptr) {
 742       stack.push(sibling);
 743     }
 744 
 745     // Clean the implementors list and method data.
 746     if (clean_alive_klasses && current->is_instance_klass()) {
 747       InstanceKlass* ik = InstanceKlass::cast(current);
 748       ik->clean_weak_instanceklass_links();
 749 
 750       // JVMTI RedefineClasses creates previous versions that are not in
 751       // the class hierarchy, so process them here.
 752       while ((ik = ik->previous_versions()) != nullptr) {
 753         ik->clean_weak_instanceklass_links();
 754       }
 755     }
 756   }
 757 }
 758 
 759 void Klass::metaspace_pointers_do(MetaspaceClosure* it) {
 760   if (log_is_enabled(Trace, cds)) {
 761     ResourceMark rm;
 762     log_trace(cds)("Iter(Klass): %p (%s)", this, external_name());
 763   }
 764 
 765   it->push(&_name);
 766   it->push(&_secondary_supers);
 767   for (int i = 0; i < _primary_super_limit; i++) {
 768     it->push(&_primary_supers[i]);
 769   }
 770   it->push(&_super);
 771   if (!CDSConfig::is_dumping_archive()) {
 772     // If dumping archive, these may point to excluded classes. There's no need
 773     // to follow these pointers anyway, as they will be set to null in
 774     // remove_unshareable_info().
 775     it->push((Klass**)&_subklass);
 776     it->push((Klass**)&_next_sibling);
 777     it->push(&_next_link);
 778   }
 779 
 780   vtableEntry* vt = start_of_vtable();
 781   for (int i=0; i<vtable_length(); i++) {
 782     it->push(vt[i].method_addr());
 783   }
 784 }
 785 
 786 #if INCLUDE_CDS
 787 void Klass::remove_unshareable_info() {
 788   assert(CDSConfig::is_dumping_archive(),
 789           "only called during CDS dump time");
 790   JFR_ONLY(REMOVE_ID(this);)
 791   if (log_is_enabled(Trace, cds, unshareable)) {
 792     ResourceMark rm;
 793     log_trace(cds, unshareable)("remove: %s", external_name());
 794   }
 795 
 796   // _secondary_super_cache may be updated by an is_subtype_of() call
 797   // while ArchiveBuilder is copying metaspace objects. Let's reset it to
 798   // null and let it be repopulated at runtime.
 799   set_secondary_super_cache(nullptr);
 800 
 801   set_subklass(nullptr);
 802   set_next_sibling(nullptr);
 803   set_next_link(nullptr);
 804 
 805   // Null out class_loader_data because we don't share that yet.
 806   set_class_loader_data(nullptr);
 807   set_is_shared();
 808 
 809   // FIXME: validation in Klass::hash_secondary_supers() may fail for shared klasses.
 810   // Even though the bitmaps always match, the canonical order of elements in the table
 811   // is not guaranteed to stay the same (see tie breaker during Robin Hood hashing in Klass::hash_insert).
 812   //assert(compute_secondary_supers_bitmap(secondary_supers()) == _secondary_supers_bitmap, "broken table");
 813 }
 814 
 815 void Klass::remove_java_mirror() {
 816   assert(CDSConfig::is_dumping_archive(), "sanity");
 817   if (log_is_enabled(Trace, cds, unshareable)) {
 818     ResourceMark rm;
 819     log_trace(cds, unshareable)("remove java_mirror: %s", external_name());
 820   }
 821   // Just null out the mirror.  The class_loader_data() no longer exists.
 822   clear_java_mirror_handle();
 823 }
 824 
 825 void Klass::restore_unshareable_info(ClassLoaderData* loader_data, Handle protection_domain, TRAPS) {
 826   assert(is_klass(), "ensure C++ vtable is restored");
 827   assert(is_shared(), "must be set");
 828   assert(secondary_supers()->length() >= (int)population_count(_secondary_supers_bitmap), "must be");
 829   JFR_ONLY(RESTORE_ID(this);)
 830   if (log_is_enabled(Trace, cds, unshareable)) {
 831     ResourceMark rm(THREAD);
 832     oop class_loader = loader_data->class_loader();
 833     log_trace(cds, unshareable)("restore: %s with class loader: %s", external_name(),
 834       class_loader != nullptr ? class_loader->klass()->external_name() : "boot");
 835   }
 836 
 837   // If an exception happened during CDS restore, some of these fields may already be
 838   // set.  We leave the class on the CLD list, even if incomplete so that we don't
 839   // modify the CLD list outside a safepoint.
 840   if (class_loader_data() == nullptr) {
 841     set_class_loader_data(loader_data);
 842 
 843     // Add to class loader list first before creating the mirror
 844     // (same order as class file parsing)
 845     loader_data->add_class(this);
 846   }
 847 
 848   Handle loader(THREAD, loader_data->class_loader());
 849   ModuleEntry* module_entry = nullptr;
 850   Klass* k = this;
 851   if (k->is_objArray_klass()) {
 852     k = ObjArrayKlass::cast(k)->bottom_klass();
 853   }
 854   // Obtain klass' module.
 855   if (k->is_instance_klass()) {
 856     InstanceKlass* ik = (InstanceKlass*) k;
 857     module_entry = ik->module();
 858   } else {
 859     module_entry = ModuleEntryTable::javabase_moduleEntry();
 860   }
 861   // Obtain java.lang.Module, if available
 862   Handle module_handle(THREAD, ((module_entry != nullptr) ? module_entry->module() : (oop)nullptr));
 863 
 864   if (this->has_archived_mirror_index()) {
 865     ResourceMark rm(THREAD);
 866     log_debug(cds, mirror)("%s has raw archived mirror", external_name());
 867     if (ArchiveHeapLoader::is_in_use()) {
 868       bool present = java_lang_Class::restore_archived_mirror(this, loader, module_handle,
 869                                                               protection_domain,
 870                                                               CHECK);
 871       if (present) {
 872         return;
 873       }
 874     }
 875 
 876     // No archived mirror data
 877     log_debug(cds, mirror)("No archived mirror data for %s", external_name());
 878     clear_java_mirror_handle();
 879     this->clear_archived_mirror_index();
 880   }
 881 
 882   // Only recreate it if not present.  A previous attempt to restore may have
 883   // gotten an OOM later but keep the mirror if it was created.
 884   if (java_mirror() == nullptr) {
 885     ResourceMark rm(THREAD);
 886     log_trace(cds, mirror)("Recreate mirror for %s", external_name());
 887     java_lang_Class::create_mirror(this, loader, module_handle, protection_domain, Handle(), CHECK);
 888   }
 889 }
 890 #endif // INCLUDE_CDS
 891 
 892 #if INCLUDE_CDS_JAVA_HEAP
 893 oop Klass::archived_java_mirror() {
 894   assert(has_archived_mirror_index(), "must have archived mirror");
 895   return HeapShared::get_root(_archived_mirror_index);
 896 }
 897 
 898 void Klass::clear_archived_mirror_index() {
 899   if (_archived_mirror_index >= 0) {
 900     HeapShared::clear_root(_archived_mirror_index);
 901   }
 902   _archived_mirror_index = -1;
 903 }
 904 
 905 // No GC barrier
 906 void Klass::set_archived_java_mirror(int mirror_index) {
 907   assert(CDSConfig::is_dumping_heap(), "sanity");
 908   _archived_mirror_index = mirror_index;
 909 }
 910 #endif // INCLUDE_CDS_JAVA_HEAP
 911 
 912 void Klass::check_array_allocation_length(int length, int max_length, TRAPS) {
 913   if (length > max_length) {
 914     if (!THREAD->is_in_internal_oome_mark()) {
 915       report_java_out_of_memory("Requested array size exceeds VM limit");
 916       JvmtiExport::post_array_size_exhausted();
 917       THROW_OOP(Universe::out_of_memory_error_array_size());
 918     } else {
 919       THROW_OOP(Universe::out_of_memory_error_java_heap_without_backtrace());
 920     }
 921   } else if (length < 0) {
 922     THROW_MSG(vmSymbols::java_lang_NegativeArraySizeException(), err_msg("%d", length));
 923   }
 924 }
 925 
 926 // Replace the last '+' char with '/'.
 927 static char* convert_hidden_name_to_java(Symbol* name) {
 928   size_t name_len = name->utf8_length();
 929   char* result = NEW_RESOURCE_ARRAY(char, name_len + 1);
 930   name->as_klass_external_name(result, (int)name_len + 1);
 931   for (int index = (int)name_len; index > 0; index--) {
 932     if (result[index] == '+') {
 933       result[index] = JVM_SIGNATURE_SLASH;
 934       break;
 935     }
 936   }
 937   return result;
 938 }
 939 
 940 // In product mode, this function doesn't have virtual function calls so
 941 // there might be some performance advantage to handling InstanceKlass here.
 942 const char* Klass::external_name() const {
 943   if (is_instance_klass()) {
 944     const InstanceKlass* ik = static_cast<const InstanceKlass*>(this);
 945     if (ik->is_hidden()) {
 946       char* result = convert_hidden_name_to_java(name());
 947       return result;
 948     }
 949   } else if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) {
 950     char* result = convert_hidden_name_to_java(name());
 951     return result;
 952   }
 953   if (name() == nullptr)  return "<unknown>";
 954   return name()->as_klass_external_name();
 955 }
 956 
 957 const char* Klass::signature_name() const {
 958   if (name() == nullptr)  return "<unknown>";
 959   if (is_objArray_klass() && ObjArrayKlass::cast(this)->bottom_klass()->is_hidden()) {
 960     size_t name_len = name()->utf8_length();
 961     char* result = NEW_RESOURCE_ARRAY(char, name_len + 1);
 962     name()->as_C_string(result, (int)name_len + 1);
 963     for (int index = (int)name_len; index > 0; index--) {
 964       if (result[index] == '+') {
 965         result[index] = JVM_SIGNATURE_DOT;
 966         break;
 967       }
 968     }
 969     return result;
 970   }
 971   return name()->as_C_string();
 972 }
 973 
 974 const char* Klass::external_kind() const {
 975   if (is_interface()) return "interface";
 976   if (is_abstract()) return "abstract class";
 977   return "class";
 978 }
 979 
 980 // Unless overridden, jvmti_class_status has no flags set.
 981 jint Klass::jvmti_class_status() const {
 982   return 0;
 983 }
 984 
 985 
 986 // Printing
 987 
 988 void Klass::print_on(outputStream* st) const {
 989   ResourceMark rm;
 990   // print title
 991   st->print("%s", internal_name());
 992   print_address_on(st);
 993   st->cr();
 994 }
 995 
 996 #define BULLET  " - "
 997 
 998 // Caller needs ResourceMark
 999 void Klass::oop_print_on(oop obj, outputStream* st) {
1000   // print title
1001   st->print_cr("%s ", internal_name());
1002   obj->print_address_on(st);
1003 
1004   if (WizardMode) {
1005      // print header
1006      obj->mark().print_on(st);
1007      st->cr();
1008      if (UseCompactObjectHeaders) {
1009        st->print(BULLET"prototype_header: " INTPTR_FORMAT, _prototype_header.value());
1010        st->cr();
1011      }
1012   }
1013 
1014   // print class
1015   st->print(BULLET"klass: ");
1016   obj->klass()->print_value_on(st);
1017   st->print(BULLET"flags: "); _misc_flags.print_on(st); st->cr();
1018   st->cr();
1019 }
1020 
1021 void Klass::oop_print_value_on(oop obj, outputStream* st) {
1022   // print title
1023   ResourceMark rm;              // Cannot print in debug mode without this
1024   st->print("%s", internal_name());
1025   obj->print_address_on(st);
1026 }
1027 
1028 // Verification
1029 
1030 void Klass::verify_on(outputStream* st) {
1031 
1032   // This can be expensive, but it is worth checking that this klass is actually
1033   // in the CLD graph but not in production.
1034 #ifdef ASSERT
1035   if (UseCompressedClassPointers && needs_narrow_id()) {
1036     // Stricter checks for both correct alignment and placement
1037     CompressedKlassPointers::check_encodable(this);
1038   } else {
1039     assert(Metaspace::contains((address)this), "Should be");
1040   }
1041 #endif // ASSERT
1042 
1043   guarantee(this->is_klass(),"should be klass");
1044 
1045   if (super() != nullptr) {
1046     guarantee(super()->is_klass(), "should be klass");
1047   }
1048   if (secondary_super_cache() != nullptr) {
1049     Klass* ko = secondary_super_cache();
1050     guarantee(ko->is_klass(), "should be klass");
1051   }
1052   for ( uint i = 0; i < primary_super_limit(); i++ ) {
1053     Klass* ko = _primary_supers[i];
1054     if (ko != nullptr) {
1055       guarantee(ko->is_klass(), "should be klass");
1056     }
1057   }
1058 
1059   if (java_mirror_no_keepalive() != nullptr) {
1060     guarantee(java_lang_Class::is_instance(java_mirror_no_keepalive()), "should be instance");
1061   }
1062 }
1063 
1064 void Klass::oop_verify_on(oop obj, outputStream* st) {
1065   guarantee(oopDesc::is_oop(obj),  "should be oop");
1066   guarantee(obj->klass()->is_klass(), "klass field is not a klass");
1067 }
1068 
1069 // Note: this function is called with an address that may or may not be a Klass.
1070 // The point is not to assert it is but to check if it could be.
1071 bool Klass::is_valid(Klass* k) {
1072   if (!is_aligned(k, sizeof(MetaWord))) return false;
1073   if ((size_t)k < os::min_page_size()) return false;
1074 
1075   if (!os::is_readable_range(k, k + 1)) return false;
1076   if (!Metaspace::contains(k)) return false;
1077 
1078   if (!Symbol::is_valid(k->name())) return false;
1079   return ClassLoaderDataGraph::is_valid(k->class_loader_data());
1080 }
1081 
1082 Method* Klass::method_at_vtable(int index)  {
1083 #ifndef PRODUCT
1084   assert(index >= 0, "valid vtable index");
1085   if (DebugVtables) {
1086     verify_vtable_index(index);
1087   }
1088 #endif
1089   return start_of_vtable()[index].method();
1090 }
1091 
1092 
1093 #ifndef PRODUCT
1094 
1095 bool Klass::verify_vtable_index(int i) {
1096   int limit = vtable_length()/vtableEntry::size();
1097   assert(i >= 0 && i < limit, "index %d out of bounds %d", i, limit);
1098   return true;
1099 }
1100 
1101 #endif // PRODUCT
1102 
1103 // Caller needs ResourceMark
1104 // joint_in_module_of_loader provides an optimization if 2 classes are in
1105 // the same module to succinctly print out relevant information about their
1106 // module name and class loader's name_and_id for error messages.
1107 // Format:
1108 //   <fully-qualified-external-class-name1> and <fully-qualified-external-class-name2>
1109 //                      are in module <module-name>[@<version>]
1110 //                      of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>]
1111 const char* Klass::joint_in_module_of_loader(const Klass* class2, bool include_parent_loader) const {
1112   assert(module() == class2->module(), "classes do not have the same module");
1113   const char* class1_name = external_name();
1114   size_t len = strlen(class1_name) + 1;
1115 
1116   const char* class2_description = class2->class_in_module_of_loader(true, include_parent_loader);
1117   len += strlen(class2_description);
1118 
1119   len += strlen(" and ");
1120 
1121   char* joint_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len);
1122 
1123   // Just return the FQN if error when allocating string
1124   if (joint_description == nullptr) {
1125     return class1_name;
1126   }
1127 
1128   jio_snprintf(joint_description, len, "%s and %s",
1129                class1_name,
1130                class2_description);
1131 
1132   return joint_description;
1133 }
1134 
1135 // Caller needs ResourceMark
1136 // class_in_module_of_loader provides a standard way to include
1137 // relevant information about a class, such as its module name as
1138 // well as its class loader's name_and_id, in error messages and logging.
1139 // Format:
1140 //   <fully-qualified-external-class-name> is in module <module-name>[@<version>]
1141 //                                         of loader <loader-name_and_id>[, parent loader <parent-loader-name_and_id>]
1142 const char* Klass::class_in_module_of_loader(bool use_are, bool include_parent_loader) const {
1143   // 1. fully qualified external name of class
1144   const char* klass_name = external_name();
1145   size_t len = strlen(klass_name) + 1;
1146 
1147   // 2. module name + @version
1148   const char* module_name = "";
1149   const char* version = "";
1150   bool has_version = false;
1151   bool module_is_named = false;
1152   const char* module_name_phrase = "";
1153   const Klass* bottom_klass = is_objArray_klass() ?
1154                                 ObjArrayKlass::cast(this)->bottom_klass() : this;
1155   if (bottom_klass->is_instance_klass()) {
1156     ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1157     if (module->is_named()) {
1158       module_is_named = true;
1159       module_name_phrase = "module ";
1160       module_name = module->name()->as_C_string();
1161       len += strlen(module_name);
1162       // Use version if exists and is not a jdk module
1163       if (module->should_show_version()) {
1164         has_version = true;
1165         version = module->version()->as_C_string();
1166         // Include stlen(version) + 1 for the "@"
1167         len += strlen(version) + 1;
1168       }
1169     } else {
1170       module_name = UNNAMED_MODULE;
1171       len += UNNAMED_MODULE_LEN;
1172     }
1173   } else {
1174     // klass is an array of primitives, module is java.base
1175     module_is_named = true;
1176     module_name_phrase = "module ";
1177     module_name = JAVA_BASE_NAME;
1178     len += JAVA_BASE_NAME_LEN;
1179   }
1180 
1181   // 3. class loader's name_and_id
1182   ClassLoaderData* cld = class_loader_data();
1183   assert(cld != nullptr, "class_loader_data should not be null");
1184   const char* loader_name_and_id = cld->loader_name_and_id();
1185   len += strlen(loader_name_and_id);
1186 
1187   // 4. include parent loader information
1188   const char* parent_loader_phrase = "";
1189   const char* parent_loader_name_and_id = "";
1190   if (include_parent_loader &&
1191       !cld->is_builtin_class_loader_data()) {
1192     oop parent_loader = java_lang_ClassLoader::parent(class_loader());
1193     ClassLoaderData *parent_cld = ClassLoaderData::class_loader_data_or_null(parent_loader);
1194     // The parent loader's ClassLoaderData could be null if it is
1195     // a delegating class loader that has never defined a class.
1196     // In this case the loader's name must be obtained via the parent loader's oop.
1197     if (parent_cld == nullptr) {
1198       oop cl_name_and_id = java_lang_ClassLoader::nameAndId(parent_loader);
1199       if (cl_name_and_id != nullptr) {
1200         parent_loader_name_and_id = java_lang_String::as_utf8_string(cl_name_and_id);
1201       }
1202     } else {
1203       parent_loader_name_and_id = parent_cld->loader_name_and_id();
1204     }
1205     parent_loader_phrase = ", parent loader ";
1206     len += strlen(parent_loader_phrase) + strlen(parent_loader_name_and_id);
1207   }
1208 
1209   // Start to construct final full class description string
1210   len += ((use_are) ? strlen(" are in ") : strlen(" is in "));
1211   len += strlen(module_name_phrase) + strlen(" of loader ");
1212 
1213   char* class_description = NEW_RESOURCE_ARRAY_RETURN_NULL(char, len);
1214 
1215   // Just return the FQN if error when allocating string
1216   if (class_description == nullptr) {
1217     return klass_name;
1218   }
1219 
1220   jio_snprintf(class_description, len, "%s %s in %s%s%s%s of loader %s%s%s",
1221                klass_name,
1222                (use_are) ? "are" : "is",
1223                module_name_phrase,
1224                module_name,
1225                (has_version) ? "@" : "",
1226                (has_version) ? version : "",
1227                loader_name_and_id,
1228                parent_loader_phrase,
1229                parent_loader_name_and_id);
1230 
1231   return class_description;
1232 }
1233 
1234 class LookupStats : StackObj {
1235  private:
1236   uint _no_of_samples;
1237   uint _worst;
1238   uint _worst_count;
1239   uint _average;
1240   uint _best;
1241   uint _best_count;
1242  public:
1243   LookupStats() : _no_of_samples(0), _worst(0), _worst_count(0), _average(0), _best(INT_MAX), _best_count(0) {}
1244 
1245   ~LookupStats() {
1246     assert(_best <= _worst || _no_of_samples == 0, "sanity");
1247   }
1248 
1249   void sample(uint value) {
1250     ++_no_of_samples;
1251     _average += value;
1252 
1253     if (_worst < value) {
1254       _worst = value;
1255       _worst_count = 1;
1256     } else if (_worst == value) {
1257       ++_worst_count;
1258     }
1259 
1260     if (_best > value) {
1261       _best = value;
1262       _best_count = 1;
1263     } else if (_best == value) {
1264       ++_best_count;
1265     }
1266   }
1267 
1268   void print_on(outputStream* st) const {
1269     st->print("best: %2d (%4.1f%%)", _best, (100.0 * _best_count) / _no_of_samples);
1270     if (_best_count < _no_of_samples) {
1271       st->print("; average: %4.1f; worst: %2d (%4.1f%%)",
1272                 (1.0 * _average) / _no_of_samples,
1273                 _worst, (100.0 * _worst_count) / _no_of_samples);
1274     }
1275   }
1276 };
1277 
1278 static void print_positive_lookup_stats(Array<Klass*>* secondary_supers, uintx bitmap, outputStream* st) {
1279   int num_of_supers = secondary_supers->length();
1280 
1281   LookupStats s;
1282   for (int i = 0; i < num_of_supers; i++) {
1283     Klass* secondary_super = secondary_supers->at(i);
1284     int home_slot = Klass::compute_home_slot(secondary_super, bitmap);
1285     uint score = 1 + ((i - home_slot) & Klass::SECONDARY_SUPERS_TABLE_MASK);
1286     s.sample(score);
1287   }
1288   st->print("positive_lookup: "); s.print_on(st);
1289 }
1290 
1291 static uint compute_distance_to_nearest_zero(int slot, uintx bitmap) {
1292   assert(~bitmap != 0, "no zeroes");
1293   uintx start = rotate_right(bitmap, slot);
1294   return count_trailing_zeros(~start);
1295 }
1296 
1297 static void print_negative_lookup_stats(uintx bitmap, outputStream* st) {
1298   LookupStats s;
1299   for (int slot = 0; slot < Klass::SECONDARY_SUPERS_TABLE_SIZE; slot++) {
1300     uint score = compute_distance_to_nearest_zero(slot, bitmap);
1301     s.sample(score);
1302   }
1303   st->print("negative_lookup: "); s.print_on(st);
1304 }
1305 
1306 void Klass::print_secondary_supers_on(outputStream* st) const {
1307   if (secondary_supers() != nullptr) {
1308     st->print("  - "); st->print("%d elements;", _secondary_supers->length());
1309     st->print_cr(" bitmap: " UINTX_FORMAT_X_0 ";", _secondary_supers_bitmap);
1310     if (_secondary_supers_bitmap != SECONDARY_SUPERS_BITMAP_EMPTY &&
1311         _secondary_supers_bitmap != SECONDARY_SUPERS_BITMAP_FULL) {
1312       st->print("  - "); print_positive_lookup_stats(secondary_supers(),
1313                                                      _secondary_supers_bitmap, st); st->cr();
1314       st->print("  - "); print_negative_lookup_stats(_secondary_supers_bitmap, st); st->cr();
1315     }
1316   } else {
1317     st->print("null");
1318   }
1319 }
1320 
1321 void Klass::on_secondary_supers_verification_failure(Klass* super, Klass* sub, bool linear_result, bool table_result, const char* msg) {
1322   ResourceMark rm;
1323   super->print();
1324   sub->print();
1325   fatal("%s: %s implements %s: linear_search: %d; table_lookup: %d",
1326         msg, sub->external_name(), super->external_name(), linear_result, table_result);
1327 }
1328 
1329 static int expanded = 0;
1330 static int not_expanded = 0;
1331 static NumberSeq seq = NumberSeq();
1332 
1333 bool Klass::expand_for_hash(oop obj) const {
1334   assert(UseCompactObjectHeaders, "only with compact i-hash");
1335   assert((size_t)hash_offset_in_bytes(obj) <= (obj->base_size_given_klass(obj->mark(), this) * HeapWordSize), "hash offset must be eq or lt base size: hash offset: %d, base size: " SIZE_FORMAT, hash_offset_in_bytes(obj), obj->base_size_given_klass(obj->mark(), this) * HeapWordSize);
1336   return obj->base_size_given_klass(obj->mark(), this) * HeapWordSize - hash_offset_in_bytes(obj) < (int)sizeof(uint32_t);
1337 }