1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "ci/ciReplay.hpp" 29 #include "classfile/javaClasses.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compilationFailureInfo.hpp" 33 #include "compiler/compilationMemoryStatistic.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/compileLog.hpp" 36 #include "compiler/compilerOracle.hpp" 37 #include "compiler/compiler_globals.hpp" 38 #include "compiler/disassembler.hpp" 39 #include "compiler/oopMap.hpp" 40 #include "gc/shared/barrierSet.hpp" 41 #include "gc/shared/c2/barrierSetC2.hpp" 42 #include "jfr/jfrEvents.hpp" 43 #include "jvm_io.h" 44 #include "memory/allocation.hpp" 45 #include "memory/resourceArea.hpp" 46 #include "opto/addnode.hpp" 47 #include "opto/block.hpp" 48 #include "opto/c2compiler.hpp" 49 #include "opto/callGenerator.hpp" 50 #include "opto/callnode.hpp" 51 #include "opto/castnode.hpp" 52 #include "opto/cfgnode.hpp" 53 #include "opto/chaitin.hpp" 54 #include "opto/compile.hpp" 55 #include "opto/connode.hpp" 56 #include "opto/convertnode.hpp" 57 #include "opto/divnode.hpp" 58 #include "opto/escape.hpp" 59 #include "opto/idealGraphPrinter.hpp" 60 #include "opto/locknode.hpp" 61 #include "opto/loopnode.hpp" 62 #include "opto/machnode.hpp" 63 #include "opto/macro.hpp" 64 #include "opto/matcher.hpp" 65 #include "opto/mathexactnode.hpp" 66 #include "opto/memnode.hpp" 67 #include "opto/mulnode.hpp" 68 #include "opto/narrowptrnode.hpp" 69 #include "opto/node.hpp" 70 #include "opto/opcodes.hpp" 71 #include "opto/output.hpp" 72 #include "opto/parse.hpp" 73 #include "opto/phaseX.hpp" 74 #include "opto/rootnode.hpp" 75 #include "opto/runtime.hpp" 76 #include "opto/stringopts.hpp" 77 #include "opto/type.hpp" 78 #include "opto/vector.hpp" 79 #include "opto/vectornode.hpp" 80 #include "runtime/globals_extension.hpp" 81 #include "runtime/sharedRuntime.hpp" 82 #include "runtime/signature.hpp" 83 #include "runtime/stubRoutines.hpp" 84 #include "runtime/timer.hpp" 85 #include "utilities/align.hpp" 86 #include "utilities/copy.hpp" 87 #include "utilities/macros.hpp" 88 #include "utilities/resourceHash.hpp" 89 90 // -------------------- Compile::mach_constant_base_node ----------------------- 91 // Constant table base node singleton. 92 MachConstantBaseNode* Compile::mach_constant_base_node() { 93 if (_mach_constant_base_node == nullptr) { 94 _mach_constant_base_node = new MachConstantBaseNode(); 95 _mach_constant_base_node->add_req(C->root()); 96 } 97 return _mach_constant_base_node; 98 } 99 100 101 /// Support for intrinsics. 102 103 // Return the index at which m must be inserted (or already exists). 104 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 105 class IntrinsicDescPair { 106 private: 107 ciMethod* _m; 108 bool _is_virtual; 109 public: 110 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 111 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 112 ciMethod* m= elt->method(); 113 ciMethod* key_m = key->_m; 114 if (key_m < m) return -1; 115 else if (key_m > m) return 1; 116 else { 117 bool is_virtual = elt->is_virtual(); 118 bool key_virtual = key->_is_virtual; 119 if (key_virtual < is_virtual) return -1; 120 else if (key_virtual > is_virtual) return 1; 121 else return 0; 122 } 123 } 124 }; 125 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 126 #ifdef ASSERT 127 for (int i = 1; i < _intrinsics.length(); i++) { 128 CallGenerator* cg1 = _intrinsics.at(i-1); 129 CallGenerator* cg2 = _intrinsics.at(i); 130 assert(cg1->method() != cg2->method() 131 ? cg1->method() < cg2->method() 132 : cg1->is_virtual() < cg2->is_virtual(), 133 "compiler intrinsics list must stay sorted"); 134 } 135 #endif 136 IntrinsicDescPair pair(m, is_virtual); 137 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 138 } 139 140 void Compile::register_intrinsic(CallGenerator* cg) { 141 bool found = false; 142 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 143 assert(!found, "registering twice"); 144 _intrinsics.insert_before(index, cg); 145 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 146 } 147 148 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 149 assert(m->is_loaded(), "don't try this on unloaded methods"); 150 if (_intrinsics.length() > 0) { 151 bool found = false; 152 int index = intrinsic_insertion_index(m, is_virtual, found); 153 if (found) { 154 return _intrinsics.at(index); 155 } 156 } 157 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 158 if (m->intrinsic_id() != vmIntrinsics::_none && 159 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 160 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 161 if (cg != nullptr) { 162 // Save it for next time: 163 register_intrinsic(cg); 164 return cg; 165 } else { 166 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 167 } 168 } 169 return nullptr; 170 } 171 172 // Compile::make_vm_intrinsic is defined in library_call.cpp. 173 174 #ifndef PRODUCT 175 // statistics gathering... 176 177 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 178 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 179 180 inline int as_int(vmIntrinsics::ID id) { 181 return vmIntrinsics::as_int(id); 182 } 183 184 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 185 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 186 int oflags = _intrinsic_hist_flags[as_int(id)]; 187 assert(flags != 0, "what happened?"); 188 if (is_virtual) { 189 flags |= _intrinsic_virtual; 190 } 191 bool changed = (flags != oflags); 192 if ((flags & _intrinsic_worked) != 0) { 193 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 194 if (count == 1) { 195 changed = true; // first time 196 } 197 // increment the overall count also: 198 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 199 } 200 if (changed) { 201 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 202 // Something changed about the intrinsic's virtuality. 203 if ((flags & _intrinsic_virtual) != 0) { 204 // This is the first use of this intrinsic as a virtual call. 205 if (oflags != 0) { 206 // We already saw it as a non-virtual, so note both cases. 207 flags |= _intrinsic_both; 208 } 209 } else if ((oflags & _intrinsic_both) == 0) { 210 // This is the first use of this intrinsic as a non-virtual 211 flags |= _intrinsic_both; 212 } 213 } 214 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 215 } 216 // update the overall flags also: 217 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 218 return changed; 219 } 220 221 static char* format_flags(int flags, char* buf) { 222 buf[0] = 0; 223 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 224 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 225 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 226 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 227 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 228 if (buf[0] == 0) strcat(buf, ","); 229 assert(buf[0] == ',', "must be"); 230 return &buf[1]; 231 } 232 233 void Compile::print_intrinsic_statistics() { 234 char flagsbuf[100]; 235 ttyLocker ttyl; 236 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 237 tty->print_cr("Compiler intrinsic usage:"); 238 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 239 if (total == 0) total = 1; // avoid div0 in case of no successes 240 #define PRINT_STAT_LINE(name, c, f) \ 241 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 242 for (auto id : EnumRange<vmIntrinsicID>{}) { 243 int flags = _intrinsic_hist_flags[as_int(id)]; 244 juint count = _intrinsic_hist_count[as_int(id)]; 245 if ((flags | count) != 0) { 246 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 247 } 248 } 249 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 250 if (xtty != nullptr) xtty->tail("statistics"); 251 } 252 253 void Compile::print_statistics() { 254 { ttyLocker ttyl; 255 if (xtty != nullptr) xtty->head("statistics type='opto'"); 256 Parse::print_statistics(); 257 PhaseStringOpts::print_statistics(); 258 PhaseCCP::print_statistics(); 259 PhaseRegAlloc::print_statistics(); 260 PhaseOutput::print_statistics(); 261 PhasePeephole::print_statistics(); 262 PhaseIdealLoop::print_statistics(); 263 ConnectionGraph::print_statistics(); 264 PhaseMacroExpand::print_statistics(); 265 if (xtty != nullptr) xtty->tail("statistics"); 266 } 267 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 268 // put this under its own <statistics> element. 269 print_intrinsic_statistics(); 270 } 271 } 272 #endif //PRODUCT 273 274 void Compile::gvn_replace_by(Node* n, Node* nn) { 275 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 276 Node* use = n->last_out(i); 277 bool is_in_table = initial_gvn()->hash_delete(use); 278 uint uses_found = 0; 279 for (uint j = 0; j < use->len(); j++) { 280 if (use->in(j) == n) { 281 if (j < use->req()) 282 use->set_req(j, nn); 283 else 284 use->set_prec(j, nn); 285 uses_found++; 286 } 287 } 288 if (is_in_table) { 289 // reinsert into table 290 initial_gvn()->hash_find_insert(use); 291 } 292 record_for_igvn(use); 293 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist); 294 i -= uses_found; // we deleted 1 or more copies of this edge 295 } 296 } 297 298 299 // Identify all nodes that are reachable from below, useful. 300 // Use breadth-first pass that records state in a Unique_Node_List, 301 // recursive traversal is slower. 302 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 303 int estimated_worklist_size = live_nodes(); 304 useful.map( estimated_worklist_size, nullptr ); // preallocate space 305 306 // Initialize worklist 307 if (root() != nullptr) { useful.push(root()); } 308 // If 'top' is cached, declare it useful to preserve cached node 309 if (cached_top_node()) { useful.push(cached_top_node()); } 310 311 // Push all useful nodes onto the list, breadthfirst 312 for( uint next = 0; next < useful.size(); ++next ) { 313 assert( next < unique(), "Unique useful nodes < total nodes"); 314 Node *n = useful.at(next); 315 uint max = n->len(); 316 for( uint i = 0; i < max; ++i ) { 317 Node *m = n->in(i); 318 if (not_a_node(m)) continue; 319 useful.push(m); 320 } 321 } 322 } 323 324 // Update dead_node_list with any missing dead nodes using useful 325 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 326 void Compile::update_dead_node_list(Unique_Node_List &useful) { 327 uint max_idx = unique(); 328 VectorSet& useful_node_set = useful.member_set(); 329 330 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 331 // If node with index node_idx is not in useful set, 332 // mark it as dead in dead node list. 333 if (!useful_node_set.test(node_idx)) { 334 record_dead_node(node_idx); 335 } 336 } 337 } 338 339 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 340 int shift = 0; 341 for (int i = 0; i < inlines->length(); i++) { 342 CallGenerator* cg = inlines->at(i); 343 if (useful.member(cg->call_node())) { 344 if (shift > 0) { 345 inlines->at_put(i - shift, cg); 346 } 347 } else { 348 shift++; // skip over the dead element 349 } 350 } 351 if (shift > 0) { 352 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 353 } 354 } 355 356 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 357 assert(dead != nullptr && dead->is_Call(), "sanity"); 358 int found = 0; 359 for (int i = 0; i < inlines->length(); i++) { 360 if (inlines->at(i)->call_node() == dead) { 361 inlines->remove_at(i); 362 found++; 363 NOT_DEBUG( break; ) // elements are unique, so exit early 364 } 365 } 366 assert(found <= 1, "not unique"); 367 } 368 369 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)> 370 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) { 371 for (int i = node_list.length() - 1; i >= 0; i--) { 372 N* node = node_list.at(i); 373 if (!useful.member(node)) { 374 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 375 } 376 } 377 } 378 379 void Compile::remove_useless_node(Node* dead) { 380 remove_modified_node(dead); 381 382 // Constant node that has no out-edges and has only one in-edge from 383 // root is usually dead. However, sometimes reshaping walk makes 384 // it reachable by adding use edges. So, we will NOT count Con nodes 385 // as dead to be conservative about the dead node count at any 386 // given time. 387 if (!dead->is_Con()) { 388 record_dead_node(dead->_idx); 389 } 390 if (dead->is_macro()) { 391 remove_macro_node(dead); 392 } 393 if (dead->is_expensive()) { 394 remove_expensive_node(dead); 395 } 396 if (dead->Opcode() == Op_Opaque4) { 397 remove_template_assertion_predicate_opaq(dead); 398 } 399 if (dead->is_ParsePredicate()) { 400 remove_parse_predicate(dead->as_ParsePredicate()); 401 } 402 if (dead->for_post_loop_opts_igvn()) { 403 remove_from_post_loop_opts_igvn(dead); 404 } 405 if (dead->is_Call()) { 406 remove_useless_late_inlines( &_late_inlines, dead); 407 remove_useless_late_inlines( &_string_late_inlines, dead); 408 remove_useless_late_inlines( &_boxing_late_inlines, dead); 409 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 410 411 if (dead->is_CallStaticJava()) { 412 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 413 } 414 } 415 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 416 bs->unregister_potential_barrier_node(dead); 417 } 418 419 // Disconnect all useless nodes by disconnecting those at the boundary. 420 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist) { 421 uint next = 0; 422 while (next < useful.size()) { 423 Node *n = useful.at(next++); 424 if (n->is_SafePoint()) { 425 // We're done with a parsing phase. Replaced nodes are not valid 426 // beyond that point. 427 n->as_SafePoint()->delete_replaced_nodes(); 428 } 429 // Use raw traversal of out edges since this code removes out edges 430 int max = n->outcnt(); 431 for (int j = 0; j < max; ++j) { 432 Node* child = n->raw_out(j); 433 if (!useful.member(child)) { 434 assert(!child->is_top() || child != top(), 435 "If top is cached in Compile object it is in useful list"); 436 // Only need to remove this out-edge to the useless node 437 n->raw_del_out(j); 438 --j; 439 --max; 440 } 441 } 442 if (n->outcnt() == 1 && n->has_special_unique_user()) { 443 assert(useful.member(n->unique_out()), "do not push a useless node"); 444 worklist.push(n->unique_out()); 445 } 446 } 447 448 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 449 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes 450 remove_useless_nodes(_template_assertion_predicate_opaqs, useful); // remove useless Assertion Predicate opaque nodes 451 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 452 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 453 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 454 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 455 #ifdef ASSERT 456 if (_modified_nodes != nullptr) { 457 _modified_nodes->remove_useless_nodes(useful.member_set()); 458 } 459 #endif 460 461 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 462 bs->eliminate_useless_gc_barriers(useful, this); 463 // clean up the late inline lists 464 remove_useless_late_inlines( &_late_inlines, useful); 465 remove_useless_late_inlines( &_string_late_inlines, useful); 466 remove_useless_late_inlines( &_boxing_late_inlines, useful); 467 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 468 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 469 } 470 471 // ============================================================================ 472 //------------------------------CompileWrapper--------------------------------- 473 class CompileWrapper : public StackObj { 474 Compile *const _compile; 475 public: 476 CompileWrapper(Compile* compile); 477 478 ~CompileWrapper(); 479 }; 480 481 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 482 // the Compile* pointer is stored in the current ciEnv: 483 ciEnv* env = compile->env(); 484 assert(env == ciEnv::current(), "must already be a ciEnv active"); 485 assert(env->compiler_data() == nullptr, "compile already active?"); 486 env->set_compiler_data(compile); 487 assert(compile == Compile::current(), "sanity"); 488 489 compile->set_type_dict(nullptr); 490 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 491 compile->clone_map().set_clone_idx(0); 492 compile->set_type_last_size(0); 493 compile->set_last_tf(nullptr, nullptr); 494 compile->set_indexSet_arena(nullptr); 495 compile->set_indexSet_free_block_list(nullptr); 496 compile->init_type_arena(); 497 Type::Initialize(compile); 498 _compile->begin_method(); 499 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 500 } 501 CompileWrapper::~CompileWrapper() { 502 // simulate crash during compilation 503 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 504 505 _compile->end_method(); 506 _compile->env()->set_compiler_data(nullptr); 507 } 508 509 510 //----------------------------print_compile_messages--------------------------- 511 void Compile::print_compile_messages() { 512 #ifndef PRODUCT 513 // Check if recompiling 514 if (!subsume_loads() && PrintOpto) { 515 // Recompiling without allowing machine instructions to subsume loads 516 tty->print_cr("*********************************************************"); 517 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 518 tty->print_cr("*********************************************************"); 519 } 520 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 521 // Recompiling without escape analysis 522 tty->print_cr("*********************************************************"); 523 tty->print_cr("** Bailout: Recompile without escape analysis **"); 524 tty->print_cr("*********************************************************"); 525 } 526 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 527 // Recompiling without iterative escape analysis 528 tty->print_cr("*********************************************************"); 529 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 530 tty->print_cr("*********************************************************"); 531 } 532 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) { 533 // Recompiling without reducing allocation merges 534 tty->print_cr("*********************************************************"); 535 tty->print_cr("** Bailout: Recompile without reduce allocation merges **"); 536 tty->print_cr("*********************************************************"); 537 } 538 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 539 // Recompiling without boxing elimination 540 tty->print_cr("*********************************************************"); 541 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 542 tty->print_cr("*********************************************************"); 543 } 544 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 545 // Recompiling without locks coarsening 546 tty->print_cr("*********************************************************"); 547 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 548 tty->print_cr("*********************************************************"); 549 } 550 if (env()->break_at_compile()) { 551 // Open the debugger when compiling this method. 552 tty->print("### Breaking when compiling: "); 553 method()->print_short_name(); 554 tty->cr(); 555 BREAKPOINT; 556 } 557 558 if( PrintOpto ) { 559 if (is_osr_compilation()) { 560 tty->print("[OSR]%3d", _compile_id); 561 } else { 562 tty->print("%3d", _compile_id); 563 } 564 } 565 #endif 566 } 567 568 #ifndef PRODUCT 569 void Compile::print_ideal_ir(const char* phase_name) { 570 // keep the following output all in one block 571 // This output goes directly to the tty, not the compiler log. 572 // To enable tools to match it up with the compilation activity, 573 // be sure to tag this tty output with the compile ID. 574 575 // Node dumping can cause a safepoint, which can break the tty lock. 576 // Buffer all node dumps, so that all safepoints happen before we lock. 577 ResourceMark rm; 578 stringStream ss; 579 580 if (_output == nullptr) { 581 ss.print_cr("AFTER: %s", phase_name); 582 // Print out all nodes in ascending order of index. 583 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 584 } else { 585 // Dump the node blockwise if we have a scheduling 586 _output->print_scheduling(&ss); 587 } 588 589 // Check that the lock is not broken by a safepoint. 590 NoSafepointVerifier nsv; 591 ttyLocker ttyl; 592 if (xtty != nullptr) { 593 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 594 compile_id(), 595 is_osr_compilation() ? " compile_kind='osr'" : "", 596 phase_name); 597 } 598 599 tty->print("%s", ss.as_string()); 600 601 if (xtty != nullptr) { 602 xtty->tail("ideal"); 603 } 604 } 605 #endif 606 607 // ============================================================================ 608 //------------------------------Compile standard------------------------------- 609 610 // Compile a method. entry_bci is -1 for normal compilations and indicates 611 // the continuation bci for on stack replacement. 612 613 614 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci, 615 Options options, DirectiveSet* directive) 616 : Phase(Compiler), 617 _compile_id(ci_env->compile_id()), 618 _options(options), 619 _method(target), 620 _entry_bci(osr_bci), 621 _ilt(nullptr), 622 _stub_function(nullptr), 623 _stub_name(nullptr), 624 _stub_entry_point(nullptr), 625 _max_node_limit(MaxNodeLimit), 626 _post_loop_opts_phase(false), 627 _allow_macro_nodes(true), 628 _inlining_progress(false), 629 _inlining_incrementally(false), 630 _do_cleanup(false), 631 _has_reserved_stack_access(target->has_reserved_stack_access()), 632 #ifndef PRODUCT 633 _igv_idx(0), 634 _trace_opto_output(directive->TraceOptoOutputOption), 635 #endif 636 _has_method_handle_invokes(false), 637 _clinit_barrier_on_entry(false), 638 _stress_seed(0), 639 _comp_arena(mtCompiler), 640 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 641 _env(ci_env), 642 _directive(directive), 643 _log(ci_env->log()), 644 _first_failure_details(nullptr), 645 _intrinsics (comp_arena(), 0, 0, nullptr), 646 _macro_nodes (comp_arena(), 8, 0, nullptr), 647 _parse_predicates (comp_arena(), 8, 0, nullptr), 648 _template_assertion_predicate_opaqs (comp_arena(), 8, 0, nullptr), 649 _expensive_nodes (comp_arena(), 8, 0, nullptr), 650 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 651 _unstable_if_traps (comp_arena(), 8, 0, nullptr), 652 _coarsened_locks (comp_arena(), 8, 0, nullptr), 653 _congraph(nullptr), 654 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 655 _unique(0), 656 _dead_node_count(0), 657 _dead_node_list(comp_arena()), 658 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 659 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 660 _node_arena(&_node_arena_one), 661 _mach_constant_base_node(nullptr), 662 _Compile_types(mtCompiler), 663 _initial_gvn(nullptr), 664 _igvn_worklist(nullptr), 665 _types(nullptr), 666 _node_hash(nullptr), 667 _late_inlines(comp_arena(), 2, 0, nullptr), 668 _string_late_inlines(comp_arena(), 2, 0, nullptr), 669 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 670 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 671 _late_inlines_pos(0), 672 _number_of_mh_late_inlines(0), 673 _oom(false), 674 _print_inlining_stream(new (mtCompiler) stringStream()), 675 _print_inlining_list(nullptr), 676 _print_inlining_idx(0), 677 _print_inlining_output(nullptr), 678 _replay_inline_data(nullptr), 679 _java_calls(0), 680 _inner_loops(0), 681 _interpreter_frame_size(0), 682 _output(nullptr) 683 #ifndef PRODUCT 684 , _in_dump_cnt(0) 685 #endif 686 { 687 C = this; 688 CompileWrapper cw(this); 689 690 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 691 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 692 693 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 694 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 695 // We can always print a disassembly, either abstract (hex dump) or 696 // with the help of a suitable hsdis library. Thus, we should not 697 // couple print_assembly and print_opto_assembly controls. 698 // But: always print opto and regular assembly on compile command 'print'. 699 bool print_assembly = directive->PrintAssemblyOption; 700 set_print_assembly(print_opto_assembly || print_assembly); 701 #else 702 set_print_assembly(false); // must initialize. 703 #endif 704 705 #ifndef PRODUCT 706 set_parsed_irreducible_loop(false); 707 #endif 708 709 if (directive->ReplayInlineOption) { 710 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 711 } 712 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 713 set_print_intrinsics(directive->PrintIntrinsicsOption); 714 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 715 716 if (ProfileTraps) { 717 // Make sure the method being compiled gets its own MDO, 718 // so we can at least track the decompile_count(). 719 method()->ensure_method_data(); 720 } 721 722 Init(/*do_aliasing=*/ true); 723 724 print_compile_messages(); 725 726 _ilt = InlineTree::build_inline_tree_root(); 727 728 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 729 assert(num_alias_types() >= AliasIdxRaw, ""); 730 731 #define MINIMUM_NODE_HASH 1023 732 733 // GVN that will be run immediately on new nodes 734 uint estimated_size = method()->code_size()*4+64; 735 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 736 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 737 _types = new (comp_arena()) Type_Array(comp_arena()); 738 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 739 PhaseGVN gvn; 740 set_initial_gvn(&gvn); 741 742 print_inlining_init(); 743 { // Scope for timing the parser 744 TracePhase tp("parse", &timers[_t_parser]); 745 746 // Put top into the hash table ASAP. 747 initial_gvn()->transform(top()); 748 749 // Set up tf(), start(), and find a CallGenerator. 750 CallGenerator* cg = nullptr; 751 if (is_osr_compilation()) { 752 const TypeTuple *domain = StartOSRNode::osr_domain(); 753 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 754 init_tf(TypeFunc::make(domain, range)); 755 StartNode* s = new StartOSRNode(root(), domain); 756 initial_gvn()->set_type_bottom(s); 757 init_start(s); 758 cg = CallGenerator::for_osr(method(), entry_bci()); 759 } else { 760 // Normal case. 761 init_tf(TypeFunc::make(method())); 762 StartNode* s = new StartNode(root(), tf()->domain()); 763 initial_gvn()->set_type_bottom(s); 764 init_start(s); 765 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 766 // With java.lang.ref.reference.get() we must go through the 767 // intrinsic - even when get() is the root 768 // method of the compile - so that, if necessary, the value in 769 // the referent field of the reference object gets recorded by 770 // the pre-barrier code. 771 cg = find_intrinsic(method(), false); 772 } 773 if (cg == nullptr) { 774 float past_uses = method()->interpreter_invocation_count(); 775 float expected_uses = past_uses; 776 cg = CallGenerator::for_inline(method(), expected_uses); 777 } 778 } 779 if (failing()) return; 780 if (cg == nullptr) { 781 const char* reason = InlineTree::check_can_parse(method()); 782 assert(reason != nullptr, "expect reason for parse failure"); 783 stringStream ss; 784 ss.print("cannot parse method: %s", reason); 785 record_method_not_compilable(ss.as_string()); 786 return; 787 } 788 789 gvn.set_type(root(), root()->bottom_type()); 790 791 JVMState* jvms = build_start_state(start(), tf()); 792 if ((jvms = cg->generate(jvms)) == nullptr) { 793 assert(failure_reason() != nullptr, "expect reason for parse failure"); 794 stringStream ss; 795 ss.print("method parse failed: %s", failure_reason()); 796 record_method_not_compilable(ss.as_string()); 797 return; 798 } 799 GraphKit kit(jvms); 800 801 if (!kit.stopped()) { 802 // Accept return values, and transfer control we know not where. 803 // This is done by a special, unique ReturnNode bound to root. 804 return_values(kit.jvms()); 805 } 806 807 if (kit.has_exceptions()) { 808 // Any exceptions that escape from this call must be rethrown 809 // to whatever caller is dynamically above us on the stack. 810 // This is done by a special, unique RethrowNode bound to root. 811 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 812 } 813 814 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 815 816 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 817 inline_string_calls(true); 818 } 819 820 if (failing()) return; 821 822 // Remove clutter produced by parsing. 823 if (!failing()) { 824 ResourceMark rm; 825 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 826 } 827 } 828 829 // Note: Large methods are capped off in do_one_bytecode(). 830 if (failing()) return; 831 832 // After parsing, node notes are no longer automagic. 833 // They must be propagated by register_new_node_with_optimizer(), 834 // clone(), or the like. 835 set_default_node_notes(nullptr); 836 837 #ifndef PRODUCT 838 if (should_print_igv(1)) { 839 _igv_printer->print_inlining(); 840 } 841 #endif 842 843 if (failing()) return; 844 NOT_PRODUCT( verify_graph_edges(); ) 845 846 if (StressLCM || StressGCM || StressIGVN || StressCCP || 847 StressIncrementalInlining || StressMacroExpansion) { 848 initialize_stress_seed(directive); 849 } 850 851 // Now optimize 852 Optimize(); 853 if (failing()) return; 854 NOT_PRODUCT( verify_graph_edges(); ) 855 856 #ifndef PRODUCT 857 if (should_print_ideal()) { 858 print_ideal_ir("print_ideal"); 859 } 860 #endif 861 862 #ifdef ASSERT 863 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 864 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 865 #endif 866 867 // Dump compilation data to replay it. 868 if (directive->DumpReplayOption) { 869 env()->dump_replay_data(_compile_id); 870 } 871 if (directive->DumpInlineOption && (ilt() != nullptr)) { 872 env()->dump_inline_data(_compile_id); 873 } 874 875 // Now that we know the size of all the monitors we can add a fixed slot 876 // for the original deopt pc. 877 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 878 set_fixed_slots(next_slot); 879 880 // Compute when to use implicit null checks. Used by matching trap based 881 // nodes and NullCheck optimization. 882 set_allowed_deopt_reasons(); 883 884 // Now generate code 885 Code_Gen(); 886 } 887 888 //------------------------------Compile---------------------------------------- 889 // Compile a runtime stub 890 Compile::Compile( ciEnv* ci_env, 891 TypeFunc_generator generator, 892 address stub_function, 893 const char *stub_name, 894 int is_fancy_jump, 895 bool pass_tls, 896 bool return_pc, 897 DirectiveSet* directive) 898 : Phase(Compiler), 899 _compile_id(0), 900 _options(Options::for_runtime_stub()), 901 _method(nullptr), 902 _entry_bci(InvocationEntryBci), 903 _stub_function(stub_function), 904 _stub_name(stub_name), 905 _stub_entry_point(nullptr), 906 _max_node_limit(MaxNodeLimit), 907 _post_loop_opts_phase(false), 908 _allow_macro_nodes(true), 909 _inlining_progress(false), 910 _inlining_incrementally(false), 911 _has_reserved_stack_access(false), 912 #ifndef PRODUCT 913 _igv_idx(0), 914 _trace_opto_output(directive->TraceOptoOutputOption), 915 #endif 916 _has_method_handle_invokes(false), 917 _clinit_barrier_on_entry(false), 918 _stress_seed(0), 919 _comp_arena(mtCompiler), 920 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 921 _env(ci_env), 922 _directive(directive), 923 _log(ci_env->log()), 924 _first_failure_details(nullptr), 925 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 926 _congraph(nullptr), 927 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 928 _unique(0), 929 _dead_node_count(0), 930 _dead_node_list(comp_arena()), 931 _node_arena_one(mtCompiler), 932 _node_arena_two(mtCompiler), 933 _node_arena(&_node_arena_one), 934 _mach_constant_base_node(nullptr), 935 _Compile_types(mtCompiler), 936 _initial_gvn(nullptr), 937 _igvn_worklist(nullptr), 938 _types(nullptr), 939 _node_hash(nullptr), 940 _number_of_mh_late_inlines(0), 941 _oom(false), 942 _print_inlining_stream(new (mtCompiler) stringStream()), 943 _print_inlining_list(nullptr), 944 _print_inlining_idx(0), 945 _print_inlining_output(nullptr), 946 _replay_inline_data(nullptr), 947 _java_calls(0), 948 _inner_loops(0), 949 _interpreter_frame_size(0), 950 _output(nullptr), 951 #ifndef PRODUCT 952 _in_dump_cnt(0), 953 #endif 954 _allowed_reasons(0) { 955 C = this; 956 957 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 958 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 959 960 #ifndef PRODUCT 961 set_print_assembly(PrintFrameConverterAssembly); 962 set_parsed_irreducible_loop(false); 963 #else 964 set_print_assembly(false); // Must initialize. 965 #endif 966 set_has_irreducible_loop(false); // no loops 967 968 CompileWrapper cw(this); 969 Init(/*do_aliasing=*/ false); 970 init_tf((*generator)()); 971 972 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 973 _types = new (comp_arena()) Type_Array(comp_arena()); 974 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 975 976 if (StressLCM || StressGCM) { 977 initialize_stress_seed(directive); 978 } 979 980 { 981 PhaseGVN gvn; 982 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 983 gvn.transform(top()); 984 985 GraphKit kit; 986 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 987 } 988 989 NOT_PRODUCT( verify_graph_edges(); ) 990 991 Code_Gen(); 992 } 993 994 Compile::~Compile() { 995 delete _print_inlining_stream; 996 delete _first_failure_details; 997 }; 998 999 //------------------------------Init------------------------------------------- 1000 // Prepare for a single compilation 1001 void Compile::Init(bool aliasing) { 1002 _do_aliasing = aliasing; 1003 _unique = 0; 1004 _regalloc = nullptr; 1005 1006 _tf = nullptr; // filled in later 1007 _top = nullptr; // cached later 1008 _matcher = nullptr; // filled in later 1009 _cfg = nullptr; // filled in later 1010 1011 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 1012 1013 _node_note_array = nullptr; 1014 _default_node_notes = nullptr; 1015 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 1016 1017 _immutable_memory = nullptr; // filled in at first inquiry 1018 1019 #ifdef ASSERT 1020 _phase_optimize_finished = false; 1021 _exception_backedge = false; 1022 _type_verify = nullptr; 1023 #endif 1024 1025 // Globally visible Nodes 1026 // First set TOP to null to give safe behavior during creation of RootNode 1027 set_cached_top_node(nullptr); 1028 set_root(new RootNode()); 1029 // Now that you have a Root to point to, create the real TOP 1030 set_cached_top_node( new ConNode(Type::TOP) ); 1031 set_recent_alloc(nullptr, nullptr); 1032 1033 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1034 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1035 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1036 env()->set_dependencies(new Dependencies(env())); 1037 1038 _fixed_slots = 0; 1039 set_has_split_ifs(false); 1040 set_has_loops(false); // first approximation 1041 set_has_stringbuilder(false); 1042 set_has_boxed_value(false); 1043 _trap_can_recompile = false; // no traps emitted yet 1044 _major_progress = true; // start out assuming good things will happen 1045 set_has_unsafe_access(false); 1046 set_max_vector_size(0); 1047 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1048 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1049 set_decompile_count(0); 1050 1051 #ifndef PRODUCT 1052 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter)); 1053 #endif 1054 1055 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1056 _loop_opts_cnt = LoopOptsCount; 1057 set_do_inlining(Inline); 1058 set_max_inline_size(MaxInlineSize); 1059 set_freq_inline_size(FreqInlineSize); 1060 set_do_scheduling(OptoScheduling); 1061 1062 set_do_vector_loop(false); 1063 set_has_monitors(false); 1064 1065 if (AllowVectorizeOnDemand) { 1066 if (has_method() && _directive->VectorizeOption) { 1067 set_do_vector_loop(true); 1068 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1069 } else if (has_method() && method()->name() != 0 && 1070 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1071 set_do_vector_loop(true); 1072 } 1073 } 1074 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1075 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1076 1077 _max_node_limit = _directive->MaxNodeLimitOption; 1078 1079 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) { 1080 set_clinit_barrier_on_entry(true); 1081 } 1082 if (debug_info()->recording_non_safepoints()) { 1083 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1084 (comp_arena(), 8, 0, nullptr)); 1085 set_default_node_notes(Node_Notes::make(this)); 1086 } 1087 1088 const int grow_ats = 16; 1089 _max_alias_types = grow_ats; 1090 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1091 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1092 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1093 { 1094 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1095 } 1096 // Initialize the first few types. 1097 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1098 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1099 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1100 _num_alias_types = AliasIdxRaw+1; 1101 // Zero out the alias type cache. 1102 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1103 // A null adr_type hits in the cache right away. Preload the right answer. 1104 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1105 } 1106 1107 //---------------------------init_start---------------------------------------- 1108 // Install the StartNode on this compile object. 1109 void Compile::init_start(StartNode* s) { 1110 if (failing()) 1111 return; // already failing 1112 assert(s == start(), ""); 1113 } 1114 1115 /** 1116 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1117 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1118 * the ideal graph. 1119 */ 1120 StartNode* Compile::start() const { 1121 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason()); 1122 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1123 Node* start = root()->fast_out(i); 1124 if (start->is_Start()) { 1125 return start->as_Start(); 1126 } 1127 } 1128 fatal("Did not find Start node!"); 1129 return nullptr; 1130 } 1131 1132 //-------------------------------immutable_memory------------------------------------- 1133 // Access immutable memory 1134 Node* Compile::immutable_memory() { 1135 if (_immutable_memory != nullptr) { 1136 return _immutable_memory; 1137 } 1138 StartNode* s = start(); 1139 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1140 Node *p = s->fast_out(i); 1141 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1142 _immutable_memory = p; 1143 return _immutable_memory; 1144 } 1145 } 1146 ShouldNotReachHere(); 1147 return nullptr; 1148 } 1149 1150 //----------------------set_cached_top_node------------------------------------ 1151 // Install the cached top node, and make sure Node::is_top works correctly. 1152 void Compile::set_cached_top_node(Node* tn) { 1153 if (tn != nullptr) verify_top(tn); 1154 Node* old_top = _top; 1155 _top = tn; 1156 // Calling Node::setup_is_top allows the nodes the chance to adjust 1157 // their _out arrays. 1158 if (_top != nullptr) _top->setup_is_top(); 1159 if (old_top != nullptr) old_top->setup_is_top(); 1160 assert(_top == nullptr || top()->is_top(), ""); 1161 } 1162 1163 #ifdef ASSERT 1164 uint Compile::count_live_nodes_by_graph_walk() { 1165 Unique_Node_List useful(comp_arena()); 1166 // Get useful node list by walking the graph. 1167 identify_useful_nodes(useful); 1168 return useful.size(); 1169 } 1170 1171 void Compile::print_missing_nodes() { 1172 1173 // Return if CompileLog is null and PrintIdealNodeCount is false. 1174 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1175 return; 1176 } 1177 1178 // This is an expensive function. It is executed only when the user 1179 // specifies VerifyIdealNodeCount option or otherwise knows the 1180 // additional work that needs to be done to identify reachable nodes 1181 // by walking the flow graph and find the missing ones using 1182 // _dead_node_list. 1183 1184 Unique_Node_List useful(comp_arena()); 1185 // Get useful node list by walking the graph. 1186 identify_useful_nodes(useful); 1187 1188 uint l_nodes = C->live_nodes(); 1189 uint l_nodes_by_walk = useful.size(); 1190 1191 if (l_nodes != l_nodes_by_walk) { 1192 if (_log != nullptr) { 1193 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1194 _log->stamp(); 1195 _log->end_head(); 1196 } 1197 VectorSet& useful_member_set = useful.member_set(); 1198 int last_idx = l_nodes_by_walk; 1199 for (int i = 0; i < last_idx; i++) { 1200 if (useful_member_set.test(i)) { 1201 if (_dead_node_list.test(i)) { 1202 if (_log != nullptr) { 1203 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1204 } 1205 if (PrintIdealNodeCount) { 1206 // Print the log message to tty 1207 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1208 useful.at(i)->dump(); 1209 } 1210 } 1211 } 1212 else if (! _dead_node_list.test(i)) { 1213 if (_log != nullptr) { 1214 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1215 } 1216 if (PrintIdealNodeCount) { 1217 // Print the log message to tty 1218 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1219 } 1220 } 1221 } 1222 if (_log != nullptr) { 1223 _log->tail("mismatched_nodes"); 1224 } 1225 } 1226 } 1227 void Compile::record_modified_node(Node* n) { 1228 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1229 _modified_nodes->push(n); 1230 } 1231 } 1232 1233 void Compile::remove_modified_node(Node* n) { 1234 if (_modified_nodes != nullptr) { 1235 _modified_nodes->remove(n); 1236 } 1237 } 1238 #endif 1239 1240 #ifndef PRODUCT 1241 void Compile::verify_top(Node* tn) const { 1242 if (tn != nullptr) { 1243 assert(tn->is_Con(), "top node must be a constant"); 1244 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1245 assert(tn->in(0) != nullptr, "must have live top node"); 1246 } 1247 } 1248 #endif 1249 1250 1251 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1252 1253 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1254 guarantee(arr != nullptr, ""); 1255 int num_blocks = arr->length(); 1256 if (grow_by < num_blocks) grow_by = num_blocks; 1257 int num_notes = grow_by * _node_notes_block_size; 1258 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1259 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1260 while (num_notes > 0) { 1261 arr->append(notes); 1262 notes += _node_notes_block_size; 1263 num_notes -= _node_notes_block_size; 1264 } 1265 assert(num_notes == 0, "exact multiple, please"); 1266 } 1267 1268 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1269 if (source == nullptr || dest == nullptr) return false; 1270 1271 if (dest->is_Con()) 1272 return false; // Do not push debug info onto constants. 1273 1274 #ifdef ASSERT 1275 // Leave a bread crumb trail pointing to the original node: 1276 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1277 dest->set_debug_orig(source); 1278 } 1279 #endif 1280 1281 if (node_note_array() == nullptr) 1282 return false; // Not collecting any notes now. 1283 1284 // This is a copy onto a pre-existing node, which may already have notes. 1285 // If both nodes have notes, do not overwrite any pre-existing notes. 1286 Node_Notes* source_notes = node_notes_at(source->_idx); 1287 if (source_notes == nullptr || source_notes->is_clear()) return false; 1288 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1289 if (dest_notes == nullptr || dest_notes->is_clear()) { 1290 return set_node_notes_at(dest->_idx, source_notes); 1291 } 1292 1293 Node_Notes merged_notes = (*source_notes); 1294 // The order of operations here ensures that dest notes will win... 1295 merged_notes.update_from(dest_notes); 1296 return set_node_notes_at(dest->_idx, &merged_notes); 1297 } 1298 1299 1300 //--------------------------allow_range_check_smearing------------------------- 1301 // Gating condition for coalescing similar range checks. 1302 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1303 // single covering check that is at least as strong as any of them. 1304 // If the optimization succeeds, the simplified (strengthened) range check 1305 // will always succeed. If it fails, we will deopt, and then give up 1306 // on the optimization. 1307 bool Compile::allow_range_check_smearing() const { 1308 // If this method has already thrown a range-check, 1309 // assume it was because we already tried range smearing 1310 // and it failed. 1311 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1312 return !already_trapped; 1313 } 1314 1315 1316 //------------------------------flatten_alias_type----------------------------- 1317 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1318 assert(do_aliasing(), "Aliasing should be enabled"); 1319 int offset = tj->offset(); 1320 TypePtr::PTR ptr = tj->ptr(); 1321 1322 // Known instance (scalarizable allocation) alias only with itself. 1323 bool is_known_inst = tj->isa_oopptr() != nullptr && 1324 tj->is_oopptr()->is_known_instance(); 1325 1326 // Process weird unsafe references. 1327 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1328 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1329 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1330 tj = TypeOopPtr::BOTTOM; 1331 ptr = tj->ptr(); 1332 offset = tj->offset(); 1333 } 1334 1335 // Array pointers need some flattening 1336 const TypeAryPtr* ta = tj->isa_aryptr(); 1337 if (ta && ta->is_stable()) { 1338 // Erase stability property for alias analysis. 1339 tj = ta = ta->cast_to_stable(false); 1340 } 1341 if( ta && is_known_inst ) { 1342 if ( offset != Type::OffsetBot && 1343 offset > arrayOopDesc::length_offset_in_bytes() ) { 1344 offset = Type::OffsetBot; // Flatten constant access into array body only 1345 tj = ta = ta-> 1346 remove_speculative()-> 1347 cast_to_ptr_type(ptr)-> 1348 with_offset(offset); 1349 } 1350 } else if (ta) { 1351 // For arrays indexed by constant indices, we flatten the alias 1352 // space to include all of the array body. Only the header, klass 1353 // and array length can be accessed un-aliased. 1354 if( offset != Type::OffsetBot ) { 1355 if( ta->const_oop() ) { // MethodData* or Method* 1356 offset = Type::OffsetBot; // Flatten constant access into array body 1357 tj = ta = ta-> 1358 remove_speculative()-> 1359 cast_to_ptr_type(ptr)-> 1360 cast_to_exactness(false)-> 1361 with_offset(offset); 1362 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1363 // range is OK as-is. 1364 tj = ta = TypeAryPtr::RANGE; 1365 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1366 tj = TypeInstPtr::KLASS; // all klass loads look alike 1367 ta = TypeAryPtr::RANGE; // generic ignored junk 1368 ptr = TypePtr::BotPTR; 1369 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1370 tj = TypeInstPtr::MARK; 1371 ta = TypeAryPtr::RANGE; // generic ignored junk 1372 ptr = TypePtr::BotPTR; 1373 } else { // Random constant offset into array body 1374 offset = Type::OffsetBot; // Flatten constant access into array body 1375 tj = ta = ta-> 1376 remove_speculative()-> 1377 cast_to_ptr_type(ptr)-> 1378 cast_to_exactness(false)-> 1379 with_offset(offset); 1380 } 1381 } 1382 // Arrays of fixed size alias with arrays of unknown size. 1383 if (ta->size() != TypeInt::POS) { 1384 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1385 tj = ta = ta-> 1386 remove_speculative()-> 1387 cast_to_ptr_type(ptr)-> 1388 with_ary(tary)-> 1389 cast_to_exactness(false); 1390 } 1391 // Arrays of known objects become arrays of unknown objects. 1392 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1393 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1394 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1395 } 1396 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1397 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1398 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1399 } 1400 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1401 // cannot be distinguished by bytecode alone. 1402 if (ta->elem() == TypeInt::BOOL) { 1403 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1404 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1405 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1406 } 1407 // During the 2nd round of IterGVN, NotNull castings are removed. 1408 // Make sure the Bottom and NotNull variants alias the same. 1409 // Also, make sure exact and non-exact variants alias the same. 1410 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1411 tj = ta = ta-> 1412 remove_speculative()-> 1413 cast_to_ptr_type(TypePtr::BotPTR)-> 1414 cast_to_exactness(false)-> 1415 with_offset(offset); 1416 } 1417 } 1418 1419 // Oop pointers need some flattening 1420 const TypeInstPtr *to = tj->isa_instptr(); 1421 if (to && to != TypeOopPtr::BOTTOM) { 1422 ciInstanceKlass* ik = to->instance_klass(); 1423 if( ptr == TypePtr::Constant ) { 1424 if (ik != ciEnv::current()->Class_klass() || 1425 offset < ik->layout_helper_size_in_bytes()) { 1426 // No constant oop pointers (such as Strings); they alias with 1427 // unknown strings. 1428 assert(!is_known_inst, "not scalarizable allocation"); 1429 tj = to = to-> 1430 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1431 remove_speculative()-> 1432 cast_to_ptr_type(TypePtr::BotPTR)-> 1433 cast_to_exactness(false); 1434 } 1435 } else if( is_known_inst ) { 1436 tj = to; // Keep NotNull and klass_is_exact for instance type 1437 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1438 // During the 2nd round of IterGVN, NotNull castings are removed. 1439 // Make sure the Bottom and NotNull variants alias the same. 1440 // Also, make sure exact and non-exact variants alias the same. 1441 tj = to = to-> 1442 remove_speculative()-> 1443 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1444 cast_to_ptr_type(TypePtr::BotPTR)-> 1445 cast_to_exactness(false); 1446 } 1447 if (to->speculative() != nullptr) { 1448 tj = to = to->remove_speculative(); 1449 } 1450 // Canonicalize the holder of this field 1451 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1452 // First handle header references such as a LoadKlassNode, even if the 1453 // object's klass is unloaded at compile time (4965979). 1454 if (!is_known_inst) { // Do it only for non-instance types 1455 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset); 1456 } 1457 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1458 // Static fields are in the space above the normal instance 1459 // fields in the java.lang.Class instance. 1460 if (ik != ciEnv::current()->Class_klass()) { 1461 to = nullptr; 1462 tj = TypeOopPtr::BOTTOM; 1463 offset = tj->offset(); 1464 } 1465 } else { 1466 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1467 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1468 if (!ik->equals(canonical_holder) || tj->offset() != offset) { 1469 if( is_known_inst ) { 1470 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, nullptr, offset, to->instance_id()); 1471 } else { 1472 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, nullptr, offset); 1473 } 1474 } 1475 } 1476 } 1477 1478 // Klass pointers to object array klasses need some flattening 1479 const TypeKlassPtr *tk = tj->isa_klassptr(); 1480 if( tk ) { 1481 // If we are referencing a field within a Klass, we need 1482 // to assume the worst case of an Object. Both exact and 1483 // inexact types must flatten to the same alias class so 1484 // use NotNull as the PTR. 1485 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1486 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1487 env()->Object_klass(), 1488 offset); 1489 } 1490 1491 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1492 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1493 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1494 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset); 1495 } else { 1496 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset); 1497 } 1498 } 1499 1500 // Check for precise loads from the primary supertype array and force them 1501 // to the supertype cache alias index. Check for generic array loads from 1502 // the primary supertype array and also force them to the supertype cache 1503 // alias index. Since the same load can reach both, we need to merge 1504 // these 2 disparate memories into the same alias class. Since the 1505 // primary supertype array is read-only, there's no chance of confusion 1506 // where we bypass an array load and an array store. 1507 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1508 if (offset == Type::OffsetBot || 1509 (offset >= primary_supers_offset && 1510 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1511 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1512 offset = in_bytes(Klass::secondary_super_cache_offset()); 1513 tj = tk = tk->with_offset(offset); 1514 } 1515 } 1516 1517 // Flatten all Raw pointers together. 1518 if (tj->base() == Type::RawPtr) 1519 tj = TypeRawPtr::BOTTOM; 1520 1521 if (tj->base() == Type::AnyPtr) 1522 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1523 1524 offset = tj->offset(); 1525 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1526 1527 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1528 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1529 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1530 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1531 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1532 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1533 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1534 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1535 assert( tj->ptr() != TypePtr::TopPTR && 1536 tj->ptr() != TypePtr::AnyNull && 1537 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1538 // assert( tj->ptr() != TypePtr::Constant || 1539 // tj->base() == Type::RawPtr || 1540 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1541 1542 return tj; 1543 } 1544 1545 void Compile::AliasType::Init(int i, const TypePtr* at) { 1546 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1547 _index = i; 1548 _adr_type = at; 1549 _field = nullptr; 1550 _element = nullptr; 1551 _is_rewritable = true; // default 1552 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1553 if (atoop != nullptr && atoop->is_known_instance()) { 1554 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1555 _general_index = Compile::current()->get_alias_index(gt); 1556 } else { 1557 _general_index = 0; 1558 } 1559 } 1560 1561 BasicType Compile::AliasType::basic_type() const { 1562 if (element() != nullptr) { 1563 const Type* element = adr_type()->is_aryptr()->elem(); 1564 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1565 } if (field() != nullptr) { 1566 return field()->layout_type(); 1567 } else { 1568 return T_ILLEGAL; // unknown 1569 } 1570 } 1571 1572 //---------------------------------print_on------------------------------------ 1573 #ifndef PRODUCT 1574 void Compile::AliasType::print_on(outputStream* st) { 1575 if (index() < 10) 1576 st->print("@ <%d> ", index()); 1577 else st->print("@ <%d>", index()); 1578 st->print(is_rewritable() ? " " : " RO"); 1579 int offset = adr_type()->offset(); 1580 if (offset == Type::OffsetBot) 1581 st->print(" +any"); 1582 else st->print(" +%-3d", offset); 1583 st->print(" in "); 1584 adr_type()->dump_on(st); 1585 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1586 if (field() != nullptr && tjp) { 1587 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1588 tjp->offset() != field()->offset_in_bytes()) { 1589 st->print(" != "); 1590 field()->print(); 1591 st->print(" ***"); 1592 } 1593 } 1594 } 1595 1596 void print_alias_types() { 1597 Compile* C = Compile::current(); 1598 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1599 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1600 C->alias_type(idx)->print_on(tty); 1601 tty->cr(); 1602 } 1603 } 1604 #endif 1605 1606 1607 //----------------------------probe_alias_cache-------------------------------- 1608 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1609 intptr_t key = (intptr_t) adr_type; 1610 key ^= key >> logAliasCacheSize; 1611 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1612 } 1613 1614 1615 //-----------------------------grow_alias_types-------------------------------- 1616 void Compile::grow_alias_types() { 1617 const int old_ats = _max_alias_types; // how many before? 1618 const int new_ats = old_ats; // how many more? 1619 const int grow_ats = old_ats+new_ats; // how many now? 1620 _max_alias_types = grow_ats; 1621 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1622 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1623 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1624 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1625 } 1626 1627 1628 //--------------------------------find_alias_type------------------------------ 1629 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1630 if (!do_aliasing()) { 1631 return alias_type(AliasIdxBot); 1632 } 1633 1634 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1635 if (ace->_adr_type == adr_type) { 1636 return alias_type(ace->_index); 1637 } 1638 1639 // Handle special cases. 1640 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1641 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1642 1643 // Do it the slow way. 1644 const TypePtr* flat = flatten_alias_type(adr_type); 1645 1646 #ifdef ASSERT 1647 { 1648 ResourceMark rm; 1649 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1650 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1651 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1652 Type::str(adr_type)); 1653 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1654 const TypeOopPtr* foop = flat->is_oopptr(); 1655 // Scalarizable allocations have exact klass always. 1656 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1657 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1658 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1659 Type::str(foop), Type::str(xoop)); 1660 } 1661 } 1662 #endif 1663 1664 int idx = AliasIdxTop; 1665 for (int i = 0; i < num_alias_types(); i++) { 1666 if (alias_type(i)->adr_type() == flat) { 1667 idx = i; 1668 break; 1669 } 1670 } 1671 1672 if (idx == AliasIdxTop) { 1673 if (no_create) return nullptr; 1674 // Grow the array if necessary. 1675 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1676 // Add a new alias type. 1677 idx = _num_alias_types++; 1678 _alias_types[idx]->Init(idx, flat); 1679 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1680 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1681 if (flat->isa_instptr()) { 1682 if (flat->offset() == java_lang_Class::klass_offset() 1683 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1684 alias_type(idx)->set_rewritable(false); 1685 } 1686 if (flat->isa_aryptr()) { 1687 #ifdef ASSERT 1688 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1689 // (T_BYTE has the weakest alignment and size restrictions...) 1690 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1691 #endif 1692 if (flat->offset() == TypePtr::OffsetBot) { 1693 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1694 } 1695 } 1696 if (flat->isa_klassptr()) { 1697 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1698 alias_type(idx)->set_rewritable(false); 1699 if (flat->offset() == in_bytes(Klass::modifier_flags_offset())) 1700 alias_type(idx)->set_rewritable(false); 1701 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1702 alias_type(idx)->set_rewritable(false); 1703 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1704 alias_type(idx)->set_rewritable(false); 1705 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1706 alias_type(idx)->set_rewritable(false); 1707 } 1708 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1709 // but the base pointer type is not distinctive enough to identify 1710 // references into JavaThread.) 1711 1712 // Check for final fields. 1713 const TypeInstPtr* tinst = flat->isa_instptr(); 1714 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1715 ciField* field; 1716 if (tinst->const_oop() != nullptr && 1717 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1718 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1719 // static field 1720 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1721 field = k->get_field_by_offset(tinst->offset(), true); 1722 } else { 1723 ciInstanceKlass *k = tinst->instance_klass(); 1724 field = k->get_field_by_offset(tinst->offset(), false); 1725 } 1726 assert(field == nullptr || 1727 original_field == nullptr || 1728 (field->holder() == original_field->holder() && 1729 field->offset_in_bytes() == original_field->offset_in_bytes() && 1730 field->is_static() == original_field->is_static()), "wrong field?"); 1731 // Set field() and is_rewritable() attributes. 1732 if (field != nullptr) alias_type(idx)->set_field(field); 1733 } 1734 } 1735 1736 // Fill the cache for next time. 1737 ace->_adr_type = adr_type; 1738 ace->_index = idx; 1739 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1740 1741 // Might as well try to fill the cache for the flattened version, too. 1742 AliasCacheEntry* face = probe_alias_cache(flat); 1743 if (face->_adr_type == nullptr) { 1744 face->_adr_type = flat; 1745 face->_index = idx; 1746 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1747 } 1748 1749 return alias_type(idx); 1750 } 1751 1752 1753 Compile::AliasType* Compile::alias_type(ciField* field) { 1754 const TypeOopPtr* t; 1755 if (field->is_static()) 1756 t = TypeInstPtr::make(field->holder()->java_mirror()); 1757 else 1758 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1759 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1760 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1761 return atp; 1762 } 1763 1764 1765 //------------------------------have_alias_type-------------------------------- 1766 bool Compile::have_alias_type(const TypePtr* adr_type) { 1767 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1768 if (ace->_adr_type == adr_type) { 1769 return true; 1770 } 1771 1772 // Handle special cases. 1773 if (adr_type == nullptr) return true; 1774 if (adr_type == TypePtr::BOTTOM) return true; 1775 1776 return find_alias_type(adr_type, true, nullptr) != nullptr; 1777 } 1778 1779 //-----------------------------must_alias-------------------------------------- 1780 // True if all values of the given address type are in the given alias category. 1781 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1782 if (alias_idx == AliasIdxBot) return true; // the universal category 1783 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1784 if (alias_idx == AliasIdxTop) return false; // the empty category 1785 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1786 1787 // the only remaining possible overlap is identity 1788 int adr_idx = get_alias_index(adr_type); 1789 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1790 assert(adr_idx == alias_idx || 1791 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1792 && adr_type != TypeOopPtr::BOTTOM), 1793 "should not be testing for overlap with an unsafe pointer"); 1794 return adr_idx == alias_idx; 1795 } 1796 1797 //------------------------------can_alias-------------------------------------- 1798 // True if any values of the given address type are in the given alias category. 1799 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1800 if (alias_idx == AliasIdxTop) return false; // the empty category 1801 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1802 // Known instance doesn't alias with bottom memory 1803 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1804 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1805 1806 // the only remaining possible overlap is identity 1807 int adr_idx = get_alias_index(adr_type); 1808 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1809 return adr_idx == alias_idx; 1810 } 1811 1812 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their 1813 // uncommon traps if no Runtime Predicates were created from the Parse Predicates. 1814 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) { 1815 if (parse_predicate_count() == 0) { 1816 return; 1817 } 1818 for (int i = 0; i < parse_predicate_count(); i++) { 1819 ParsePredicateNode* parse_predicate = _parse_predicates.at(i); 1820 parse_predicate->mark_useless(); 1821 igvn._worklist.push(parse_predicate); 1822 } 1823 _parse_predicates.clear(); 1824 } 1825 1826 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1827 if (!n->for_post_loop_opts_igvn()) { 1828 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1829 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1830 _for_post_loop_igvn.append(n); 1831 } 1832 } 1833 1834 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1835 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1836 _for_post_loop_igvn.remove(n); 1837 } 1838 1839 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1840 // Verify that all previous optimizations produced a valid graph 1841 // at least to this point, even if no loop optimizations were done. 1842 PhaseIdealLoop::verify(igvn); 1843 1844 C->set_post_loop_opts_phase(); // no more loop opts allowed 1845 1846 assert(!C->major_progress(), "not cleared"); 1847 1848 if (_for_post_loop_igvn.length() > 0) { 1849 while (_for_post_loop_igvn.length() > 0) { 1850 Node* n = _for_post_loop_igvn.pop(); 1851 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1852 igvn._worklist.push(n); 1853 } 1854 igvn.optimize(); 1855 if (failing()) return; 1856 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1857 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now"); 1858 1859 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1860 if (C->major_progress()) { 1861 C->clear_major_progress(); // ensure that major progress is now clear 1862 } 1863 } 1864 } 1865 1866 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 1867 if (OptimizeUnstableIf) { 1868 _unstable_if_traps.append(trap); 1869 } 1870 } 1871 1872 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 1873 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 1874 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1875 Node* n = trap->uncommon_trap(); 1876 if (!useful.member(n)) { 1877 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 1878 } 1879 } 1880 } 1881 1882 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 1883 // or fold-compares case. Return true if succeed or not found. 1884 // 1885 // In rare cases, the found trap has been processed. It is too late to delete it. Return 1886 // false and ask fold-compares to yield. 1887 // 1888 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 1889 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 1890 // when deoptimization does happen. 1891 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 1892 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 1893 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1894 if (trap->uncommon_trap() == unc) { 1895 if (yield && trap->modified()) { 1896 return false; 1897 } 1898 _unstable_if_traps.delete_at(i); 1899 break; 1900 } 1901 } 1902 return true; 1903 } 1904 1905 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 1906 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 1907 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 1908 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 1909 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1910 CallStaticJavaNode* unc = trap->uncommon_trap(); 1911 int next_bci = trap->next_bci(); 1912 bool modified = trap->modified(); 1913 1914 if (next_bci != -1 && !modified) { 1915 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 1916 JVMState* jvms = unc->jvms(); 1917 ciMethod* method = jvms->method(); 1918 ciBytecodeStream iter(method); 1919 1920 iter.force_bci(jvms->bci()); 1921 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 1922 Bytecodes::Code c = iter.cur_bc(); 1923 Node* lhs = nullptr; 1924 Node* rhs = nullptr; 1925 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 1926 lhs = unc->peek_operand(0); 1927 rhs = unc->peek_operand(1); 1928 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 1929 lhs = unc->peek_operand(0); 1930 } 1931 1932 ResourceMark rm; 1933 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 1934 assert(live_locals.is_valid(), "broken liveness info"); 1935 int len = (int)live_locals.size(); 1936 1937 for (int i = 0; i < len; i++) { 1938 Node* local = unc->local(jvms, i); 1939 // kill local using the liveness of next_bci. 1940 // give up when the local looks like an operand to secure reexecution. 1941 if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) { 1942 uint idx = jvms->locoff() + i; 1943 #ifdef ASSERT 1944 if (PrintOpto && Verbose) { 1945 tty->print("[unstable_if] kill local#%d: ", idx); 1946 local->dump(); 1947 tty->cr(); 1948 } 1949 #endif 1950 igvn.replace_input_of(unc, idx, top()); 1951 modified = true; 1952 } 1953 } 1954 } 1955 1956 // keep the mondified trap for late query 1957 if (modified) { 1958 trap->set_modified(); 1959 } else { 1960 _unstable_if_traps.delete_at(i); 1961 } 1962 } 1963 igvn.optimize(); 1964 } 1965 1966 // StringOpts and late inlining of string methods 1967 void Compile::inline_string_calls(bool parse_time) { 1968 { 1969 // remove useless nodes to make the usage analysis simpler 1970 ResourceMark rm; 1971 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 1972 } 1973 1974 { 1975 ResourceMark rm; 1976 print_method(PHASE_BEFORE_STRINGOPTS, 3); 1977 PhaseStringOpts pso(initial_gvn()); 1978 print_method(PHASE_AFTER_STRINGOPTS, 3); 1979 } 1980 1981 // now inline anything that we skipped the first time around 1982 if (!parse_time) { 1983 _late_inlines_pos = _late_inlines.length(); 1984 } 1985 1986 while (_string_late_inlines.length() > 0) { 1987 CallGenerator* cg = _string_late_inlines.pop(); 1988 cg->do_late_inline(); 1989 if (failing()) return; 1990 } 1991 _string_late_inlines.trunc_to(0); 1992 } 1993 1994 // Late inlining of boxing methods 1995 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 1996 if (_boxing_late_inlines.length() > 0) { 1997 assert(has_boxed_value(), "inconsistent"); 1998 1999 set_inlining_incrementally(true); 2000 2001 igvn_worklist()->ensure_empty(); // should be done with igvn 2002 2003 _late_inlines_pos = _late_inlines.length(); 2004 2005 while (_boxing_late_inlines.length() > 0) { 2006 CallGenerator* cg = _boxing_late_inlines.pop(); 2007 cg->do_late_inline(); 2008 if (failing()) return; 2009 } 2010 _boxing_late_inlines.trunc_to(0); 2011 2012 inline_incrementally_cleanup(igvn); 2013 2014 set_inlining_incrementally(false); 2015 } 2016 } 2017 2018 bool Compile::inline_incrementally_one() { 2019 assert(IncrementalInline, "incremental inlining should be on"); 2020 2021 TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]); 2022 2023 set_inlining_progress(false); 2024 set_do_cleanup(false); 2025 2026 for (int i = 0; i < _late_inlines.length(); i++) { 2027 _late_inlines_pos = i+1; 2028 CallGenerator* cg = _late_inlines.at(i); 2029 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2030 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2031 cg->do_late_inline(); 2032 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2033 if (failing()) { 2034 return false; 2035 } else if (inlining_progress()) { 2036 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2037 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2038 break; // process one call site at a time 2039 } 2040 } else { 2041 // Ignore late inline direct calls when inlining is not allowed. 2042 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2043 } 2044 } 2045 // Remove processed elements. 2046 _late_inlines.remove_till(_late_inlines_pos); 2047 _late_inlines_pos = 0; 2048 2049 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2050 2051 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2052 2053 set_inlining_progress(false); 2054 set_do_cleanup(false); 2055 2056 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2057 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2058 } 2059 2060 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2061 { 2062 TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]); 2063 ResourceMark rm; 2064 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2065 } 2066 { 2067 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]); 2068 igvn.reset_from_gvn(initial_gvn()); 2069 igvn.optimize(); 2070 if (failing()) return; 2071 } 2072 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2073 } 2074 2075 // Perform incremental inlining until bound on number of live nodes is reached 2076 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2077 TracePhase tp("incrementalInline", &timers[_t_incrInline]); 2078 2079 set_inlining_incrementally(true); 2080 uint low_live_nodes = 0; 2081 2082 while (_late_inlines.length() > 0) { 2083 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2084 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2085 TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]); 2086 // PhaseIdealLoop is expensive so we only try it once we are 2087 // out of live nodes and we only try it again if the previous 2088 // helped got the number of nodes down significantly 2089 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2090 if (failing()) return; 2091 low_live_nodes = live_nodes(); 2092 _major_progress = true; 2093 } 2094 2095 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2096 bool do_print_inlining = print_inlining() || print_intrinsics(); 2097 if (do_print_inlining || log() != nullptr) { 2098 // Print inlining message for candidates that we couldn't inline for lack of space. 2099 for (int i = 0; i < _late_inlines.length(); i++) { 2100 CallGenerator* cg = _late_inlines.at(i); 2101 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2102 if (do_print_inlining) { 2103 cg->print_inlining_late(InliningResult::FAILURE, msg); 2104 } 2105 log_late_inline_failure(cg, msg); 2106 } 2107 } 2108 break; // finish 2109 } 2110 } 2111 2112 igvn_worklist()->ensure_empty(); // should be done with igvn 2113 2114 while (inline_incrementally_one()) { 2115 assert(!failing(), "inconsistent"); 2116 } 2117 if (failing()) return; 2118 2119 inline_incrementally_cleanup(igvn); 2120 2121 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2122 2123 if (failing()) return; 2124 2125 if (_late_inlines.length() == 0) { 2126 break; // no more progress 2127 } 2128 } 2129 2130 igvn_worklist()->ensure_empty(); // should be done with igvn 2131 2132 if (_string_late_inlines.length() > 0) { 2133 assert(has_stringbuilder(), "inconsistent"); 2134 2135 inline_string_calls(false); 2136 2137 if (failing()) return; 2138 2139 inline_incrementally_cleanup(igvn); 2140 } 2141 2142 set_inlining_incrementally(false); 2143 } 2144 2145 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2146 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2147 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2148 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2149 // as if "inlining_incrementally() == true" were set. 2150 assert(inlining_incrementally() == false, "not allowed"); 2151 assert(_modified_nodes == nullptr, "not allowed"); 2152 assert(_late_inlines.length() > 0, "sanity"); 2153 2154 while (_late_inlines.length() > 0) { 2155 igvn_worklist()->ensure_empty(); // should be done with igvn 2156 2157 while (inline_incrementally_one()) { 2158 assert(!failing(), "inconsistent"); 2159 } 2160 if (failing()) return; 2161 2162 inline_incrementally_cleanup(igvn); 2163 } 2164 } 2165 2166 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2167 if (_loop_opts_cnt > 0) { 2168 while (major_progress() && (_loop_opts_cnt > 0)) { 2169 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2170 PhaseIdealLoop::optimize(igvn, mode); 2171 _loop_opts_cnt--; 2172 if (failing()) return false; 2173 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2174 } 2175 } 2176 return true; 2177 } 2178 2179 // Remove edges from "root" to each SafePoint at a backward branch. 2180 // They were inserted during parsing (see add_safepoint()) to make 2181 // infinite loops without calls or exceptions visible to root, i.e., 2182 // useful. 2183 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2184 Node *r = root(); 2185 if (r != nullptr) { 2186 for (uint i = r->req(); i < r->len(); ++i) { 2187 Node *n = r->in(i); 2188 if (n != nullptr && n->is_SafePoint()) { 2189 r->rm_prec(i); 2190 if (n->outcnt() == 0) { 2191 igvn.remove_dead_node(n); 2192 } 2193 --i; 2194 } 2195 } 2196 // Parsing may have added top inputs to the root node (Path 2197 // leading to the Halt node proven dead). Make sure we get a 2198 // chance to clean them up. 2199 igvn._worklist.push(r); 2200 igvn.optimize(); 2201 } 2202 } 2203 2204 //------------------------------Optimize--------------------------------------- 2205 // Given a graph, optimize it. 2206 void Compile::Optimize() { 2207 TracePhase tp("optimizer", &timers[_t_optimizer]); 2208 2209 #ifndef PRODUCT 2210 if (env()->break_at_compile()) { 2211 BREAKPOINT; 2212 } 2213 2214 #endif 2215 2216 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2217 #ifdef ASSERT 2218 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2219 #endif 2220 2221 ResourceMark rm; 2222 2223 print_inlining_reinit(); 2224 2225 NOT_PRODUCT( verify_graph_edges(); ) 2226 2227 print_method(PHASE_AFTER_PARSING, 1); 2228 2229 { 2230 // Iterative Global Value Numbering, including ideal transforms 2231 // Initialize IterGVN with types and values from parse-time GVN 2232 PhaseIterGVN igvn(initial_gvn()); 2233 #ifdef ASSERT 2234 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2235 #endif 2236 { 2237 TracePhase tp("iterGVN", &timers[_t_iterGVN]); 2238 igvn.optimize(); 2239 } 2240 2241 if (failing()) return; 2242 2243 print_method(PHASE_ITER_GVN1, 2); 2244 2245 process_for_unstable_if_traps(igvn); 2246 2247 if (failing()) return; 2248 2249 inline_incrementally(igvn); 2250 2251 print_method(PHASE_INCREMENTAL_INLINE, 2); 2252 2253 if (failing()) return; 2254 2255 if (eliminate_boxing()) { 2256 // Inline valueOf() methods now. 2257 inline_boxing_calls(igvn); 2258 2259 if (failing()) return; 2260 2261 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2262 inline_incrementally(igvn); 2263 } 2264 2265 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2266 2267 if (failing()) return; 2268 } 2269 2270 // Remove the speculative part of types and clean up the graph from 2271 // the extra CastPP nodes whose only purpose is to carry them. Do 2272 // that early so that optimizations are not disrupted by the extra 2273 // CastPP nodes. 2274 remove_speculative_types(igvn); 2275 2276 if (failing()) return; 2277 2278 // No more new expensive nodes will be added to the list from here 2279 // so keep only the actual candidates for optimizations. 2280 cleanup_expensive_nodes(igvn); 2281 2282 if (failing()) return; 2283 2284 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2285 if (EnableVectorSupport && has_vbox_nodes()) { 2286 TracePhase tp("", &timers[_t_vector]); 2287 PhaseVector pv(igvn); 2288 pv.optimize_vector_boxes(); 2289 if (failing()) return; 2290 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2291 } 2292 assert(!has_vbox_nodes(), "sanity"); 2293 2294 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2295 Compile::TracePhase tp("", &timers[_t_renumberLive]); 2296 igvn_worklist()->ensure_empty(); // should be done with igvn 2297 { 2298 ResourceMark rm; 2299 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2300 } 2301 igvn.reset_from_gvn(initial_gvn()); 2302 igvn.optimize(); 2303 if (failing()) return; 2304 } 2305 2306 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2307 // safepoints 2308 remove_root_to_sfpts_edges(igvn); 2309 2310 if (failing()) return; 2311 2312 // Perform escape analysis 2313 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2314 if (has_loops()) { 2315 // Cleanup graph (remove dead nodes). 2316 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2317 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2318 if (failing()) return; 2319 } 2320 bool progress; 2321 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2322 do { 2323 ConnectionGraph::do_analysis(this, &igvn); 2324 2325 if (failing()) return; 2326 2327 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2328 2329 // Optimize out fields loads from scalar replaceable allocations. 2330 igvn.optimize(); 2331 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2332 2333 if (failing()) return; 2334 2335 if (congraph() != nullptr && macro_count() > 0) { 2336 TracePhase tp("macroEliminate", &timers[_t_macroEliminate]); 2337 PhaseMacroExpand mexp(igvn); 2338 mexp.eliminate_macro_nodes(); 2339 if (failing()) return; 2340 2341 igvn.set_delay_transform(false); 2342 igvn.optimize(); 2343 if (failing()) return; 2344 2345 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2346 } 2347 2348 ConnectionGraph::verify_ram_nodes(this, root()); 2349 if (failing()) return; 2350 2351 progress = do_iterative_escape_analysis() && 2352 (macro_count() < mcount) && 2353 ConnectionGraph::has_candidates(this); 2354 // Try again if candidates exist and made progress 2355 // by removing some allocations and/or locks. 2356 } while (progress); 2357 } 2358 2359 // Loop transforms on the ideal graph. Range Check Elimination, 2360 // peeling, unrolling, etc. 2361 2362 // Set loop opts counter 2363 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2364 { 2365 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2366 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2367 _loop_opts_cnt--; 2368 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2369 if (failing()) return; 2370 } 2371 // Loop opts pass if partial peeling occurred in previous pass 2372 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2373 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2374 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2375 _loop_opts_cnt--; 2376 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2377 if (failing()) return; 2378 } 2379 // Loop opts pass for loop-unrolling before CCP 2380 if(major_progress() && (_loop_opts_cnt > 0)) { 2381 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2382 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2383 _loop_opts_cnt--; 2384 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2385 } 2386 if (!failing()) { 2387 // Verify that last round of loop opts produced a valid graph 2388 PhaseIdealLoop::verify(igvn); 2389 } 2390 } 2391 if (failing()) return; 2392 2393 // Conditional Constant Propagation; 2394 print_method(PHASE_BEFORE_CCP1, 2); 2395 PhaseCCP ccp( &igvn ); 2396 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2397 { 2398 TracePhase tp("ccp", &timers[_t_ccp]); 2399 ccp.do_transform(); 2400 } 2401 print_method(PHASE_CCP1, 2); 2402 2403 assert( true, "Break here to ccp.dump_old2new_map()"); 2404 2405 // Iterative Global Value Numbering, including ideal transforms 2406 { 2407 TracePhase tp("iterGVN2", &timers[_t_iterGVN2]); 2408 igvn.reset_from_igvn(&ccp); 2409 igvn.optimize(); 2410 } 2411 print_method(PHASE_ITER_GVN2, 2); 2412 2413 if (failing()) return; 2414 2415 // Loop transforms on the ideal graph. Range Check Elimination, 2416 // peeling, unrolling, etc. 2417 if (!optimize_loops(igvn, LoopOptsDefault)) { 2418 return; 2419 } 2420 2421 if (failing()) return; 2422 2423 C->clear_major_progress(); // ensure that major progress is now clear 2424 2425 process_for_post_loop_opts_igvn(igvn); 2426 2427 if (failing()) return; 2428 2429 #ifdef ASSERT 2430 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2431 #endif 2432 2433 { 2434 TracePhase tp("macroExpand", &timers[_t_macroExpand]); 2435 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3); 2436 PhaseMacroExpand mex(igvn); 2437 if (mex.expand_macro_nodes()) { 2438 assert(failing(), "must bail out w/ explicit message"); 2439 return; 2440 } 2441 print_method(PHASE_AFTER_MACRO_EXPANSION, 2); 2442 } 2443 2444 { 2445 TracePhase tp("barrierExpand", &timers[_t_barrierExpand]); 2446 if (bs->expand_barriers(this, igvn)) { 2447 assert(failing(), "must bail out w/ explicit message"); 2448 return; 2449 } 2450 print_method(PHASE_BARRIER_EXPANSION, 2); 2451 } 2452 2453 if (C->max_vector_size() > 0) { 2454 C->optimize_logic_cones(igvn); 2455 igvn.optimize(); 2456 if (failing()) return; 2457 } 2458 2459 DEBUG_ONLY( _modified_nodes = nullptr; ) 2460 2461 assert(igvn._worklist.size() == 0, "not empty"); 2462 2463 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2464 2465 if (_late_inlines.length() > 0) { 2466 // More opportunities to optimize virtual and MH calls. 2467 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2468 process_late_inline_calls_no_inline(igvn); 2469 if (failing()) return; 2470 } 2471 } // (End scope of igvn; run destructor if necessary for asserts.) 2472 2473 check_no_dead_use(); 2474 2475 process_print_inlining(); 2476 2477 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 2478 // to remove hashes to unlock nodes for modifications. 2479 C->node_hash()->clear(); 2480 2481 // A method with only infinite loops has no edges entering loops from root 2482 { 2483 TracePhase tp("graphReshape", &timers[_t_graphReshaping]); 2484 if (final_graph_reshaping()) { 2485 assert(failing(), "must bail out w/ explicit message"); 2486 return; 2487 } 2488 } 2489 2490 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2491 DEBUG_ONLY(set_phase_optimize_finished();) 2492 } 2493 2494 #ifdef ASSERT 2495 void Compile::check_no_dead_use() const { 2496 ResourceMark rm; 2497 Unique_Node_List wq; 2498 wq.push(root()); 2499 for (uint i = 0; i < wq.size(); ++i) { 2500 Node* n = wq.at(i); 2501 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2502 Node* u = n->fast_out(j); 2503 if (u->outcnt() == 0 && !u->is_Con()) { 2504 u->dump(); 2505 fatal("no reachable node should have no use"); 2506 } 2507 wq.push(u); 2508 } 2509 } 2510 } 2511 #endif 2512 2513 void Compile::inline_vector_reboxing_calls() { 2514 if (C->_vector_reboxing_late_inlines.length() > 0) { 2515 _late_inlines_pos = C->_late_inlines.length(); 2516 while (_vector_reboxing_late_inlines.length() > 0) { 2517 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2518 cg->do_late_inline(); 2519 if (failing()) return; 2520 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 2521 } 2522 _vector_reboxing_late_inlines.trunc_to(0); 2523 } 2524 } 2525 2526 bool Compile::has_vbox_nodes() { 2527 if (C->_vector_reboxing_late_inlines.length() > 0) { 2528 return true; 2529 } 2530 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2531 Node * n = C->macro_node(macro_idx); 2532 assert(n->is_macro(), "only macro nodes expected here"); 2533 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2534 return true; 2535 } 2536 } 2537 return false; 2538 } 2539 2540 //---------------------------- Bitwise operation packing optimization --------------------------- 2541 2542 static bool is_vector_unary_bitwise_op(Node* n) { 2543 return n->Opcode() == Op_XorV && 2544 VectorNode::is_vector_bitwise_not_pattern(n); 2545 } 2546 2547 static bool is_vector_binary_bitwise_op(Node* n) { 2548 switch (n->Opcode()) { 2549 case Op_AndV: 2550 case Op_OrV: 2551 return true; 2552 2553 case Op_XorV: 2554 return !is_vector_unary_bitwise_op(n); 2555 2556 default: 2557 return false; 2558 } 2559 } 2560 2561 static bool is_vector_ternary_bitwise_op(Node* n) { 2562 return n->Opcode() == Op_MacroLogicV; 2563 } 2564 2565 static bool is_vector_bitwise_op(Node* n) { 2566 return is_vector_unary_bitwise_op(n) || 2567 is_vector_binary_bitwise_op(n) || 2568 is_vector_ternary_bitwise_op(n); 2569 } 2570 2571 static bool is_vector_bitwise_cone_root(Node* n) { 2572 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 2573 return false; 2574 } 2575 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2576 if (is_vector_bitwise_op(n->fast_out(i))) { 2577 return false; 2578 } 2579 } 2580 return true; 2581 } 2582 2583 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 2584 uint cnt = 0; 2585 if (is_vector_bitwise_op(n)) { 2586 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 2587 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2588 for (uint i = 1; i < inp_cnt; i++) { 2589 Node* in = n->in(i); 2590 bool skip = VectorNode::is_all_ones_vector(in); 2591 if (!skip && !inputs.member(in)) { 2592 inputs.push(in); 2593 cnt++; 2594 } 2595 } 2596 assert(cnt <= 1, "not unary"); 2597 } else { 2598 uint last_req = inp_cnt; 2599 if (is_vector_ternary_bitwise_op(n)) { 2600 last_req = inp_cnt - 1; // skip last input 2601 } 2602 for (uint i = 1; i < last_req; i++) { 2603 Node* def = n->in(i); 2604 if (!inputs.member(def)) { 2605 inputs.push(def); 2606 cnt++; 2607 } 2608 } 2609 } 2610 } else { // not a bitwise operations 2611 if (!inputs.member(n)) { 2612 inputs.push(n); 2613 cnt++; 2614 } 2615 } 2616 return cnt; 2617 } 2618 2619 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2620 Unique_Node_List useful_nodes; 2621 C->identify_useful_nodes(useful_nodes); 2622 2623 for (uint i = 0; i < useful_nodes.size(); i++) { 2624 Node* n = useful_nodes.at(i); 2625 if (is_vector_bitwise_cone_root(n)) { 2626 list.push(n); 2627 } 2628 } 2629 } 2630 2631 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2632 const TypeVect* vt, 2633 Unique_Node_List& partition, 2634 Unique_Node_List& inputs) { 2635 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2636 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2637 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2638 2639 Node* in1 = inputs.at(0); 2640 Node* in2 = inputs.at(1); 2641 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2642 2643 uint func = compute_truth_table(partition, inputs); 2644 2645 Node* pn = partition.at(partition.size() - 1); 2646 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2647 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 2648 } 2649 2650 static uint extract_bit(uint func, uint pos) { 2651 return (func & (1 << pos)) >> pos; 2652 } 2653 2654 // 2655 // A macro logic node represents a truth table. It has 4 inputs, 2656 // First three inputs corresponds to 3 columns of a truth table 2657 // and fourth input captures the logic function. 2658 // 2659 // eg. fn = (in1 AND in2) OR in3; 2660 // 2661 // MacroNode(in1,in2,in3,fn) 2662 // 2663 // ----------------- 2664 // in1 in2 in3 fn 2665 // ----------------- 2666 // 0 0 0 0 2667 // 0 0 1 1 2668 // 0 1 0 0 2669 // 0 1 1 1 2670 // 1 0 0 0 2671 // 1 0 1 1 2672 // 1 1 0 1 2673 // 1 1 1 1 2674 // 2675 2676 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2677 int res = 0; 2678 for (int i = 0; i < 8; i++) { 2679 int bit1 = extract_bit(in1, i); 2680 int bit2 = extract_bit(in2, i); 2681 int bit3 = extract_bit(in3, i); 2682 2683 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2684 int func_bit = extract_bit(func, func_bit_pos); 2685 2686 res |= func_bit << i; 2687 } 2688 return res; 2689 } 2690 2691 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 2692 assert(n != nullptr, ""); 2693 assert(eval_map.contains(n), "absent"); 2694 return *(eval_map.get(n)); 2695 } 2696 2697 static void eval_operands(Node* n, 2698 uint& func1, uint& func2, uint& func3, 2699 ResourceHashtable<Node*,uint>& eval_map) { 2700 assert(is_vector_bitwise_op(n), ""); 2701 2702 if (is_vector_unary_bitwise_op(n)) { 2703 Node* opnd = n->in(1); 2704 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 2705 opnd = n->in(2); 2706 } 2707 func1 = eval_operand(opnd, eval_map); 2708 } else if (is_vector_binary_bitwise_op(n)) { 2709 func1 = eval_operand(n->in(1), eval_map); 2710 func2 = eval_operand(n->in(2), eval_map); 2711 } else { 2712 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 2713 func1 = eval_operand(n->in(1), eval_map); 2714 func2 = eval_operand(n->in(2), eval_map); 2715 func3 = eval_operand(n->in(3), eval_map); 2716 } 2717 } 2718 2719 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2720 assert(inputs.size() <= 3, "sanity"); 2721 ResourceMark rm; 2722 uint res = 0; 2723 ResourceHashtable<Node*,uint> eval_map; 2724 2725 // Populate precomputed functions for inputs. 2726 // Each input corresponds to one column of 3 input truth-table. 2727 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 2728 0xCC, // (_, b, _) -> b 2729 0xF0 }; // (a, _, _) -> a 2730 for (uint i = 0; i < inputs.size(); i++) { 2731 eval_map.put(inputs.at(i), input_funcs[2-i]); 2732 } 2733 2734 for (uint i = 0; i < partition.size(); i++) { 2735 Node* n = partition.at(i); 2736 2737 uint func1 = 0, func2 = 0, func3 = 0; 2738 eval_operands(n, func1, func2, func3, eval_map); 2739 2740 switch (n->Opcode()) { 2741 case Op_OrV: 2742 assert(func3 == 0, "not binary"); 2743 res = func1 | func2; 2744 break; 2745 case Op_AndV: 2746 assert(func3 == 0, "not binary"); 2747 res = func1 & func2; 2748 break; 2749 case Op_XorV: 2750 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2751 assert(func2 == 0 && func3 == 0, "not unary"); 2752 res = (~func1) & 0xFF; 2753 } else { 2754 assert(func3 == 0, "not binary"); 2755 res = func1 ^ func2; 2756 } 2757 break; 2758 case Op_MacroLogicV: 2759 // Ordering of inputs may change during evaluation of sub-tree 2760 // containing MacroLogic node as a child node, thus a re-evaluation 2761 // makes sure that function is evaluated in context of current 2762 // inputs. 2763 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2764 break; 2765 2766 default: assert(false, "not supported: %s", n->Name()); 2767 } 2768 assert(res <= 0xFF, "invalid"); 2769 eval_map.put(n, res); 2770 } 2771 return res; 2772 } 2773 2774 // Criteria under which nodes gets packed into a macro logic node:- 2775 // 1) Parent and both child nodes are all unmasked or masked with 2776 // same predicates. 2777 // 2) Masked parent can be packed with left child if it is predicated 2778 // and both have same predicates. 2779 // 3) Masked parent can be packed with right child if its un-predicated 2780 // or has matching predication condition. 2781 // 4) An unmasked parent can be packed with an unmasked child. 2782 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2783 assert(partition.size() == 0, "not empty"); 2784 assert(inputs.size() == 0, "not empty"); 2785 if (is_vector_ternary_bitwise_op(n)) { 2786 return false; 2787 } 2788 2789 bool is_unary_op = is_vector_unary_bitwise_op(n); 2790 if (is_unary_op) { 2791 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 2792 return false; // too few inputs 2793 } 2794 2795 bool pack_left_child = true; 2796 bool pack_right_child = true; 2797 2798 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 2799 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 2800 2801 int left_child_input_cnt = 0; 2802 int right_child_input_cnt = 0; 2803 2804 bool parent_is_predicated = n->is_predicated_vector(); 2805 bool left_child_predicated = n->in(1)->is_predicated_vector(); 2806 bool right_child_predicated = n->in(2)->is_predicated_vector(); 2807 2808 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 2809 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2810 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2811 2812 do { 2813 if (pack_left_child && left_child_LOP && 2814 ((!parent_is_predicated && !left_child_predicated) || 2815 ((parent_is_predicated && left_child_predicated && 2816 parent_pred == left_child_pred)))) { 2817 partition.push(n->in(1)); 2818 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 2819 } else { 2820 inputs.push(n->in(1)); 2821 left_child_input_cnt = 1; 2822 } 2823 2824 if (pack_right_child && right_child_LOP && 2825 (!right_child_predicated || 2826 (right_child_predicated && parent_is_predicated && 2827 parent_pred == right_child_pred))) { 2828 partition.push(n->in(2)); 2829 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 2830 } else { 2831 inputs.push(n->in(2)); 2832 right_child_input_cnt = 1; 2833 } 2834 2835 if (inputs.size() > 3) { 2836 assert(partition.size() > 0, ""); 2837 inputs.clear(); 2838 partition.clear(); 2839 if (left_child_input_cnt > right_child_input_cnt) { 2840 pack_left_child = false; 2841 } else { 2842 pack_right_child = false; 2843 } 2844 } else { 2845 break; 2846 } 2847 } while(true); 2848 2849 if(partition.size()) { 2850 partition.push(n); 2851 } 2852 2853 return (partition.size() == 2 || partition.size() == 3) && 2854 (inputs.size() == 2 || inputs.size() == 3); 2855 } 2856 2857 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2858 assert(is_vector_bitwise_op(n), "not a root"); 2859 2860 visited.set(n->_idx); 2861 2862 // 1) Do a DFS walk over the logic cone. 2863 for (uint i = 1; i < n->req(); i++) { 2864 Node* in = n->in(i); 2865 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2866 process_logic_cone_root(igvn, in, visited); 2867 } 2868 } 2869 2870 // 2) Bottom up traversal: Merge node[s] with 2871 // the parent to form macro logic node. 2872 Unique_Node_List partition; 2873 Unique_Node_List inputs; 2874 if (compute_logic_cone(n, partition, inputs)) { 2875 const TypeVect* vt = n->bottom_type()->is_vect(); 2876 Node* pn = partition.at(partition.size() - 1); 2877 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2878 if (mask == nullptr || 2879 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 2880 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2881 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 2882 igvn.replace_node(n, macro_logic); 2883 } 2884 } 2885 } 2886 2887 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2888 ResourceMark rm; 2889 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 2890 Unique_Node_List list; 2891 collect_logic_cone_roots(list); 2892 2893 while (list.size() > 0) { 2894 Node* n = list.pop(); 2895 const TypeVect* vt = n->bottom_type()->is_vect(); 2896 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 2897 if (supported) { 2898 VectorSet visited(comp_arena()); 2899 process_logic_cone_root(igvn, n, visited); 2900 } 2901 } 2902 } 2903 } 2904 2905 //------------------------------Code_Gen--------------------------------------- 2906 // Given a graph, generate code for it 2907 void Compile::Code_Gen() { 2908 if (failing()) { 2909 return; 2910 } 2911 2912 // Perform instruction selection. You might think we could reclaim Matcher 2913 // memory PDQ, but actually the Matcher is used in generating spill code. 2914 // Internals of the Matcher (including some VectorSets) must remain live 2915 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2916 // set a bit in reclaimed memory. 2917 2918 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2919 // nodes. Mapping is only valid at the root of each matched subtree. 2920 NOT_PRODUCT( verify_graph_edges(); ) 2921 2922 Matcher matcher; 2923 _matcher = &matcher; 2924 { 2925 TracePhase tp("matcher", &timers[_t_matcher]); 2926 matcher.match(); 2927 if (failing()) { 2928 return; 2929 } 2930 } 2931 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2932 // nodes. Mapping is only valid at the root of each matched subtree. 2933 NOT_PRODUCT( verify_graph_edges(); ) 2934 2935 // If you have too many nodes, or if matching has failed, bail out 2936 check_node_count(0, "out of nodes matching instructions"); 2937 if (failing()) { 2938 return; 2939 } 2940 2941 print_method(PHASE_MATCHING, 2); 2942 2943 // Build a proper-looking CFG 2944 PhaseCFG cfg(node_arena(), root(), matcher); 2945 _cfg = &cfg; 2946 { 2947 TracePhase tp("scheduler", &timers[_t_scheduler]); 2948 bool success = cfg.do_global_code_motion(); 2949 if (!success) { 2950 return; 2951 } 2952 2953 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 2954 NOT_PRODUCT( verify_graph_edges(); ) 2955 cfg.verify(); 2956 } 2957 2958 PhaseChaitin regalloc(unique(), cfg, matcher, false); 2959 _regalloc = ®alloc; 2960 { 2961 TracePhase tp("regalloc", &timers[_t_registerAllocation]); 2962 // Perform register allocation. After Chaitin, use-def chains are 2963 // no longer accurate (at spill code) and so must be ignored. 2964 // Node->LRG->reg mappings are still accurate. 2965 _regalloc->Register_Allocate(); 2966 2967 // Bail out if the allocator builds too many nodes 2968 if (failing()) { 2969 return; 2970 } 2971 2972 print_method(PHASE_REGISTER_ALLOCATION, 2); 2973 } 2974 2975 // Prior to register allocation we kept empty basic blocks in case the 2976 // the allocator needed a place to spill. After register allocation we 2977 // are not adding any new instructions. If any basic block is empty, we 2978 // can now safely remove it. 2979 { 2980 TracePhase tp("blockOrdering", &timers[_t_blockOrdering]); 2981 cfg.remove_empty_blocks(); 2982 if (do_freq_based_layout()) { 2983 PhaseBlockLayout layout(cfg); 2984 } else { 2985 cfg.set_loop_alignment(); 2986 } 2987 cfg.fixup_flow(); 2988 cfg.remove_unreachable_blocks(); 2989 cfg.verify_dominator_tree(); 2990 print_method(PHASE_BLOCK_ORDERING, 3); 2991 } 2992 2993 // Apply peephole optimizations 2994 if( OptoPeephole ) { 2995 TracePhase tp("peephole", &timers[_t_peephole]); 2996 PhasePeephole peep( _regalloc, cfg); 2997 peep.do_transform(); 2998 print_method(PHASE_PEEPHOLE, 3); 2999 } 3000 3001 // Do late expand if CPU requires this. 3002 if (Matcher::require_postalloc_expand) { 3003 TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]); 3004 cfg.postalloc_expand(_regalloc); 3005 print_method(PHASE_POSTALLOC_EXPAND, 3); 3006 } 3007 3008 // Convert Nodes to instruction bits in a buffer 3009 { 3010 TracePhase tp("output", &timers[_t_output]); 3011 PhaseOutput output; 3012 output.Output(); 3013 if (failing()) return; 3014 output.install(); 3015 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here 3016 } 3017 3018 // He's dead, Jim. 3019 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3020 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3021 } 3022 3023 //------------------------------Final_Reshape_Counts--------------------------- 3024 // This class defines counters to help identify when a method 3025 // may/must be executed using hardware with only 24-bit precision. 3026 struct Final_Reshape_Counts : public StackObj { 3027 int _call_count; // count non-inlined 'common' calls 3028 int _float_count; // count float ops requiring 24-bit precision 3029 int _double_count; // count double ops requiring more precision 3030 int _java_call_count; // count non-inlined 'java' calls 3031 int _inner_loop_count; // count loops which need alignment 3032 VectorSet _visited; // Visitation flags 3033 Node_List _tests; // Set of IfNodes & PCTableNodes 3034 3035 Final_Reshape_Counts() : 3036 _call_count(0), _float_count(0), _double_count(0), 3037 _java_call_count(0), _inner_loop_count(0) { } 3038 3039 void inc_call_count () { _call_count ++; } 3040 void inc_float_count () { _float_count ++; } 3041 void inc_double_count() { _double_count++; } 3042 void inc_java_call_count() { _java_call_count++; } 3043 void inc_inner_loop_count() { _inner_loop_count++; } 3044 3045 int get_call_count () const { return _call_count ; } 3046 int get_float_count () const { return _float_count ; } 3047 int get_double_count() const { return _double_count; } 3048 int get_java_call_count() const { return _java_call_count; } 3049 int get_inner_loop_count() const { return _inner_loop_count; } 3050 }; 3051 3052 // Eliminate trivially redundant StoreCMs and accumulate their 3053 // precedence edges. 3054 void Compile::eliminate_redundant_card_marks(Node* n) { 3055 assert(n->Opcode() == Op_StoreCM, "expected StoreCM"); 3056 if (n->in(MemNode::Address)->outcnt() > 1) { 3057 // There are multiple users of the same address so it might be 3058 // possible to eliminate some of the StoreCMs 3059 Node* mem = n->in(MemNode::Memory); 3060 Node* adr = n->in(MemNode::Address); 3061 Node* val = n->in(MemNode::ValueIn); 3062 Node* prev = n; 3063 bool done = false; 3064 // Walk the chain of StoreCMs eliminating ones that match. As 3065 // long as it's a chain of single users then the optimization is 3066 // safe. Eliminating partially redundant StoreCMs would require 3067 // cloning copies down the other paths. 3068 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) { 3069 if (adr == mem->in(MemNode::Address) && 3070 val == mem->in(MemNode::ValueIn)) { 3071 // redundant StoreCM 3072 if (mem->req() > MemNode::OopStore) { 3073 // Hasn't been processed by this code yet. 3074 n->add_prec(mem->in(MemNode::OopStore)); 3075 } else { 3076 // Already converted to precedence edge 3077 for (uint i = mem->req(); i < mem->len(); i++) { 3078 // Accumulate any precedence edges 3079 if (mem->in(i) != nullptr) { 3080 n->add_prec(mem->in(i)); 3081 } 3082 } 3083 // Everything above this point has been processed. 3084 done = true; 3085 } 3086 // Eliminate the previous StoreCM 3087 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory)); 3088 assert(mem->outcnt() == 0, "should be dead"); 3089 mem->disconnect_inputs(this); 3090 } else { 3091 prev = mem; 3092 } 3093 mem = prev->in(MemNode::Memory); 3094 } 3095 } 3096 } 3097 3098 //------------------------------final_graph_reshaping_impl---------------------- 3099 // Implement items 1-5 from final_graph_reshaping below. 3100 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3101 3102 if ( n->outcnt() == 0 ) return; // dead node 3103 uint nop = n->Opcode(); 3104 3105 // Check for 2-input instruction with "last use" on right input. 3106 // Swap to left input. Implements item (2). 3107 if( n->req() == 3 && // two-input instruction 3108 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3109 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3110 n->in(2)->outcnt() == 1 &&// right use IS a last use 3111 !n->in(2)->is_Con() ) { // right use is not a constant 3112 // Check for commutative opcode 3113 switch( nop ) { 3114 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3115 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3116 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3117 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3118 case Op_AndL: case Op_XorL: case Op_OrL: 3119 case Op_AndI: case Op_XorI: case Op_OrI: { 3120 // Move "last use" input to left by swapping inputs 3121 n->swap_edges(1, 2); 3122 break; 3123 } 3124 default: 3125 break; 3126 } 3127 } 3128 3129 #ifdef ASSERT 3130 if( n->is_Mem() ) { 3131 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3132 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3133 // oop will be recorded in oop map if load crosses safepoint 3134 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3135 LoadNode::is_immutable_value(n->in(MemNode::Address)))), 3136 "raw memory operations should have control edge"); 3137 } 3138 if (n->is_MemBar()) { 3139 MemBarNode* mb = n->as_MemBar(); 3140 if (mb->trailing_store() || mb->trailing_load_store()) { 3141 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3142 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3143 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3144 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3145 } else if (mb->leading()) { 3146 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3147 } 3148 } 3149 #endif 3150 // Count FPU ops and common calls, implements item (3) 3151 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3152 if (!gc_handled) { 3153 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3154 } 3155 3156 // Collect CFG split points 3157 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3158 frc._tests.push(n); 3159 } 3160 } 3161 3162 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3163 switch( nop ) { 3164 // Count all float operations that may use FPU 3165 case Op_AddF: 3166 case Op_SubF: 3167 case Op_MulF: 3168 case Op_DivF: 3169 case Op_NegF: 3170 case Op_ModF: 3171 case Op_ConvI2F: 3172 case Op_ConF: 3173 case Op_CmpF: 3174 case Op_CmpF3: 3175 case Op_StoreF: 3176 case Op_LoadF: 3177 // case Op_ConvL2F: // longs are split into 32-bit halves 3178 frc.inc_float_count(); 3179 break; 3180 3181 case Op_ConvF2D: 3182 case Op_ConvD2F: 3183 frc.inc_float_count(); 3184 frc.inc_double_count(); 3185 break; 3186 3187 // Count all double operations that may use FPU 3188 case Op_AddD: 3189 case Op_SubD: 3190 case Op_MulD: 3191 case Op_DivD: 3192 case Op_NegD: 3193 case Op_ModD: 3194 case Op_ConvI2D: 3195 case Op_ConvD2I: 3196 // case Op_ConvL2D: // handled by leaf call 3197 // case Op_ConvD2L: // handled by leaf call 3198 case Op_ConD: 3199 case Op_CmpD: 3200 case Op_CmpD3: 3201 case Op_StoreD: 3202 case Op_LoadD: 3203 case Op_LoadD_unaligned: 3204 frc.inc_double_count(); 3205 break; 3206 case Op_Opaque1: // Remove Opaque Nodes before matching 3207 n->subsume_by(n->in(1), this); 3208 break; 3209 case Op_CallStaticJava: 3210 case Op_CallJava: 3211 case Op_CallDynamicJava: 3212 frc.inc_java_call_count(); // Count java call site; 3213 case Op_CallRuntime: 3214 case Op_CallLeaf: 3215 case Op_CallLeafVector: 3216 case Op_CallLeafNoFP: { 3217 assert (n->is_Call(), ""); 3218 CallNode *call = n->as_Call(); 3219 // Count call sites where the FP mode bit would have to be flipped. 3220 // Do not count uncommon runtime calls: 3221 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3222 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3223 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3224 frc.inc_call_count(); // Count the call site 3225 } else { // See if uncommon argument is shared 3226 Node *n = call->in(TypeFunc::Parms); 3227 int nop = n->Opcode(); 3228 // Clone shared simple arguments to uncommon calls, item (1). 3229 if (n->outcnt() > 1 && 3230 !n->is_Proj() && 3231 nop != Op_CreateEx && 3232 nop != Op_CheckCastPP && 3233 nop != Op_DecodeN && 3234 nop != Op_DecodeNKlass && 3235 !n->is_Mem() && 3236 !n->is_Phi()) { 3237 Node *x = n->clone(); 3238 call->set_req(TypeFunc::Parms, x); 3239 } 3240 } 3241 break; 3242 } 3243 3244 case Op_StoreCM: 3245 { 3246 // Convert OopStore dependence into precedence edge 3247 Node* prec = n->in(MemNode::OopStore); 3248 n->del_req(MemNode::OopStore); 3249 n->add_prec(prec); 3250 eliminate_redundant_card_marks(n); 3251 } 3252 3253 // fall through 3254 3255 case Op_StoreB: 3256 case Op_StoreC: 3257 case Op_StoreI: 3258 case Op_StoreL: 3259 case Op_CompareAndSwapB: 3260 case Op_CompareAndSwapS: 3261 case Op_CompareAndSwapI: 3262 case Op_CompareAndSwapL: 3263 case Op_CompareAndSwapP: 3264 case Op_CompareAndSwapN: 3265 case Op_WeakCompareAndSwapB: 3266 case Op_WeakCompareAndSwapS: 3267 case Op_WeakCompareAndSwapI: 3268 case Op_WeakCompareAndSwapL: 3269 case Op_WeakCompareAndSwapP: 3270 case Op_WeakCompareAndSwapN: 3271 case Op_CompareAndExchangeB: 3272 case Op_CompareAndExchangeS: 3273 case Op_CompareAndExchangeI: 3274 case Op_CompareAndExchangeL: 3275 case Op_CompareAndExchangeP: 3276 case Op_CompareAndExchangeN: 3277 case Op_GetAndAddS: 3278 case Op_GetAndAddB: 3279 case Op_GetAndAddI: 3280 case Op_GetAndAddL: 3281 case Op_GetAndSetS: 3282 case Op_GetAndSetB: 3283 case Op_GetAndSetI: 3284 case Op_GetAndSetL: 3285 case Op_GetAndSetP: 3286 case Op_GetAndSetN: 3287 case Op_StoreP: 3288 case Op_StoreN: 3289 case Op_StoreNKlass: 3290 case Op_LoadB: 3291 case Op_LoadUB: 3292 case Op_LoadUS: 3293 case Op_LoadI: 3294 case Op_LoadKlass: 3295 case Op_LoadNKlass: 3296 case Op_LoadL: 3297 case Op_LoadL_unaligned: 3298 case Op_LoadP: 3299 case Op_LoadN: 3300 case Op_LoadRange: 3301 case Op_LoadS: 3302 break; 3303 3304 case Op_AddP: { // Assert sane base pointers 3305 Node *addp = n->in(AddPNode::Address); 3306 assert( !addp->is_AddP() || 3307 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3308 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3309 "Base pointers must match (addp %u)", addp->_idx ); 3310 #ifdef _LP64 3311 if ((UseCompressedOops || UseCompressedClassPointers) && 3312 addp->Opcode() == Op_ConP && 3313 addp == n->in(AddPNode::Base) && 3314 n->in(AddPNode::Offset)->is_Con()) { 3315 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3316 // on the platform and on the compressed oops mode. 3317 // Use addressing with narrow klass to load with offset on x86. 3318 // Some platforms can use the constant pool to load ConP. 3319 // Do this transformation here since IGVN will convert ConN back to ConP. 3320 const Type* t = addp->bottom_type(); 3321 bool is_oop = t->isa_oopptr() != nullptr; 3322 bool is_klass = t->isa_klassptr() != nullptr; 3323 3324 if ((is_oop && Matcher::const_oop_prefer_decode() ) || 3325 (is_klass && Matcher::const_klass_prefer_decode())) { 3326 Node* nn = nullptr; 3327 3328 int op = is_oop ? Op_ConN : Op_ConNKlass; 3329 3330 // Look for existing ConN node of the same exact type. 3331 Node* r = root(); 3332 uint cnt = r->outcnt(); 3333 for (uint i = 0; i < cnt; i++) { 3334 Node* m = r->raw_out(i); 3335 if (m!= nullptr && m->Opcode() == op && 3336 m->bottom_type()->make_ptr() == t) { 3337 nn = m; 3338 break; 3339 } 3340 } 3341 if (nn != nullptr) { 3342 // Decode a narrow oop to match address 3343 // [R12 + narrow_oop_reg<<3 + offset] 3344 if (is_oop) { 3345 nn = new DecodeNNode(nn, t); 3346 } else { 3347 nn = new DecodeNKlassNode(nn, t); 3348 } 3349 // Check for succeeding AddP which uses the same Base. 3350 // Otherwise we will run into the assertion above when visiting that guy. 3351 for (uint i = 0; i < n->outcnt(); ++i) { 3352 Node *out_i = n->raw_out(i); 3353 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3354 out_i->set_req(AddPNode::Base, nn); 3355 #ifdef ASSERT 3356 for (uint j = 0; j < out_i->outcnt(); ++j) { 3357 Node *out_j = out_i->raw_out(j); 3358 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3359 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3360 } 3361 #endif 3362 } 3363 } 3364 n->set_req(AddPNode::Base, nn); 3365 n->set_req(AddPNode::Address, nn); 3366 if (addp->outcnt() == 0) { 3367 addp->disconnect_inputs(this); 3368 } 3369 } 3370 } 3371 } 3372 #endif 3373 break; 3374 } 3375 3376 case Op_CastPP: { 3377 // Remove CastPP nodes to gain more freedom during scheduling but 3378 // keep the dependency they encode as control or precedence edges 3379 // (if control is set already) on memory operations. Some CastPP 3380 // nodes don't have a control (don't carry a dependency): skip 3381 // those. 3382 if (n->in(0) != nullptr) { 3383 ResourceMark rm; 3384 Unique_Node_List wq; 3385 wq.push(n); 3386 for (uint next = 0; next < wq.size(); ++next) { 3387 Node *m = wq.at(next); 3388 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3389 Node* use = m->fast_out(i); 3390 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3391 use->ensure_control_or_add_prec(n->in(0)); 3392 } else { 3393 switch(use->Opcode()) { 3394 case Op_AddP: 3395 case Op_DecodeN: 3396 case Op_DecodeNKlass: 3397 case Op_CheckCastPP: 3398 case Op_CastPP: 3399 wq.push(use); 3400 break; 3401 } 3402 } 3403 } 3404 } 3405 } 3406 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3407 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3408 Node* in1 = n->in(1); 3409 const Type* t = n->bottom_type(); 3410 Node* new_in1 = in1->clone(); 3411 new_in1->as_DecodeN()->set_type(t); 3412 3413 if (!Matcher::narrow_oop_use_complex_address()) { 3414 // 3415 // x86, ARM and friends can handle 2 adds in addressing mode 3416 // and Matcher can fold a DecodeN node into address by using 3417 // a narrow oop directly and do implicit null check in address: 3418 // 3419 // [R12 + narrow_oop_reg<<3 + offset] 3420 // NullCheck narrow_oop_reg 3421 // 3422 // On other platforms (Sparc) we have to keep new DecodeN node and 3423 // use it to do implicit null check in address: 3424 // 3425 // decode_not_null narrow_oop_reg, base_reg 3426 // [base_reg + offset] 3427 // NullCheck base_reg 3428 // 3429 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3430 // to keep the information to which null check the new DecodeN node 3431 // corresponds to use it as value in implicit_null_check(). 3432 // 3433 new_in1->set_req(0, n->in(0)); 3434 } 3435 3436 n->subsume_by(new_in1, this); 3437 if (in1->outcnt() == 0) { 3438 in1->disconnect_inputs(this); 3439 } 3440 } else { 3441 n->subsume_by(n->in(1), this); 3442 if (n->outcnt() == 0) { 3443 n->disconnect_inputs(this); 3444 } 3445 } 3446 break; 3447 } 3448 #ifdef _LP64 3449 case Op_CmpP: 3450 // Do this transformation here to preserve CmpPNode::sub() and 3451 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3452 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3453 Node* in1 = n->in(1); 3454 Node* in2 = n->in(2); 3455 if (!in1->is_DecodeNarrowPtr()) { 3456 in2 = in1; 3457 in1 = n->in(2); 3458 } 3459 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3460 3461 Node* new_in2 = nullptr; 3462 if (in2->is_DecodeNarrowPtr()) { 3463 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3464 new_in2 = in2->in(1); 3465 } else if (in2->Opcode() == Op_ConP) { 3466 const Type* t = in2->bottom_type(); 3467 if (t == TypePtr::NULL_PTR) { 3468 assert(in1->is_DecodeN(), "compare klass to null?"); 3469 // Don't convert CmpP null check into CmpN if compressed 3470 // oops implicit null check is not generated. 3471 // This will allow to generate normal oop implicit null check. 3472 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3473 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3474 // 3475 // This transformation together with CastPP transformation above 3476 // will generated code for implicit null checks for compressed oops. 3477 // 3478 // The original code after Optimize() 3479 // 3480 // LoadN memory, narrow_oop_reg 3481 // decode narrow_oop_reg, base_reg 3482 // CmpP base_reg, nullptr 3483 // CastPP base_reg // NotNull 3484 // Load [base_reg + offset], val_reg 3485 // 3486 // after these transformations will be 3487 // 3488 // LoadN memory, narrow_oop_reg 3489 // CmpN narrow_oop_reg, nullptr 3490 // decode_not_null narrow_oop_reg, base_reg 3491 // Load [base_reg + offset], val_reg 3492 // 3493 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 3494 // since narrow oops can be used in debug info now (see the code in 3495 // final_graph_reshaping_walk()). 3496 // 3497 // At the end the code will be matched to 3498 // on x86: 3499 // 3500 // Load_narrow_oop memory, narrow_oop_reg 3501 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3502 // NullCheck narrow_oop_reg 3503 // 3504 // and on sparc: 3505 // 3506 // Load_narrow_oop memory, narrow_oop_reg 3507 // decode_not_null narrow_oop_reg, base_reg 3508 // Load [base_reg + offset], val_reg 3509 // NullCheck base_reg 3510 // 3511 } else if (t->isa_oopptr()) { 3512 new_in2 = ConNode::make(t->make_narrowoop()); 3513 } else if (t->isa_klassptr()) { 3514 new_in2 = ConNode::make(t->make_narrowklass()); 3515 } 3516 } 3517 if (new_in2 != nullptr) { 3518 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3519 n->subsume_by(cmpN, this); 3520 if (in1->outcnt() == 0) { 3521 in1->disconnect_inputs(this); 3522 } 3523 if (in2->outcnt() == 0) { 3524 in2->disconnect_inputs(this); 3525 } 3526 } 3527 } 3528 break; 3529 3530 case Op_DecodeN: 3531 case Op_DecodeNKlass: 3532 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3533 // DecodeN could be pinned when it can't be fold into 3534 // an address expression, see the code for Op_CastPP above. 3535 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3536 break; 3537 3538 case Op_EncodeP: 3539 case Op_EncodePKlass: { 3540 Node* in1 = n->in(1); 3541 if (in1->is_DecodeNarrowPtr()) { 3542 n->subsume_by(in1->in(1), this); 3543 } else if (in1->Opcode() == Op_ConP) { 3544 const Type* t = in1->bottom_type(); 3545 if (t == TypePtr::NULL_PTR) { 3546 assert(t->isa_oopptr(), "null klass?"); 3547 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3548 } else if (t->isa_oopptr()) { 3549 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3550 } else if (t->isa_klassptr()) { 3551 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3552 } 3553 } 3554 if (in1->outcnt() == 0) { 3555 in1->disconnect_inputs(this); 3556 } 3557 break; 3558 } 3559 3560 case Op_Proj: { 3561 if (OptimizeStringConcat || IncrementalInline) { 3562 ProjNode* proj = n->as_Proj(); 3563 if (proj->_is_io_use) { 3564 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 3565 // Separate projections were used for the exception path which 3566 // are normally removed by a late inline. If it wasn't inlined 3567 // then they will hang around and should just be replaced with 3568 // the original one. Merge them. 3569 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 3570 if (non_io_proj != nullptr) { 3571 proj->subsume_by(non_io_proj , this); 3572 } 3573 } 3574 } 3575 break; 3576 } 3577 3578 case Op_Phi: 3579 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3580 // The EncodeP optimization may create Phi with the same edges 3581 // for all paths. It is not handled well by Register Allocator. 3582 Node* unique_in = n->in(1); 3583 assert(unique_in != nullptr, ""); 3584 uint cnt = n->req(); 3585 for (uint i = 2; i < cnt; i++) { 3586 Node* m = n->in(i); 3587 assert(m != nullptr, ""); 3588 if (unique_in != m) 3589 unique_in = nullptr; 3590 } 3591 if (unique_in != nullptr) { 3592 n->subsume_by(unique_in, this); 3593 } 3594 } 3595 break; 3596 3597 #endif 3598 3599 #ifdef ASSERT 3600 case Op_CastII: 3601 // Verify that all range check dependent CastII nodes were removed. 3602 if (n->isa_CastII()->has_range_check()) { 3603 n->dump(3); 3604 assert(false, "Range check dependent CastII node was not removed"); 3605 } 3606 break; 3607 #endif 3608 3609 case Op_ModI: 3610 if (UseDivMod) { 3611 // Check if a%b and a/b both exist 3612 Node* d = n->find_similar(Op_DivI); 3613 if (d) { 3614 // Replace them with a fused divmod if supported 3615 if (Matcher::has_match_rule(Op_DivModI)) { 3616 DivModINode* divmod = DivModINode::make(n); 3617 d->subsume_by(divmod->div_proj(), this); 3618 n->subsume_by(divmod->mod_proj(), this); 3619 } else { 3620 // replace a%b with a-((a/b)*b) 3621 Node* mult = new MulINode(d, d->in(2)); 3622 Node* sub = new SubINode(d->in(1), mult); 3623 n->subsume_by(sub, this); 3624 } 3625 } 3626 } 3627 break; 3628 3629 case Op_ModL: 3630 if (UseDivMod) { 3631 // Check if a%b and a/b both exist 3632 Node* d = n->find_similar(Op_DivL); 3633 if (d) { 3634 // Replace them with a fused divmod if supported 3635 if (Matcher::has_match_rule(Op_DivModL)) { 3636 DivModLNode* divmod = DivModLNode::make(n); 3637 d->subsume_by(divmod->div_proj(), this); 3638 n->subsume_by(divmod->mod_proj(), this); 3639 } else { 3640 // replace a%b with a-((a/b)*b) 3641 Node* mult = new MulLNode(d, d->in(2)); 3642 Node* sub = new SubLNode(d->in(1), mult); 3643 n->subsume_by(sub, this); 3644 } 3645 } 3646 } 3647 break; 3648 3649 case Op_UModI: 3650 if (UseDivMod) { 3651 // Check if a%b and a/b both exist 3652 Node* d = n->find_similar(Op_UDivI); 3653 if (d) { 3654 // Replace them with a fused unsigned divmod if supported 3655 if (Matcher::has_match_rule(Op_UDivModI)) { 3656 UDivModINode* divmod = UDivModINode::make(n); 3657 d->subsume_by(divmod->div_proj(), this); 3658 n->subsume_by(divmod->mod_proj(), this); 3659 } else { 3660 // replace a%b with a-((a/b)*b) 3661 Node* mult = new MulINode(d, d->in(2)); 3662 Node* sub = new SubINode(d->in(1), mult); 3663 n->subsume_by(sub, this); 3664 } 3665 } 3666 } 3667 break; 3668 3669 case Op_UModL: 3670 if (UseDivMod) { 3671 // Check if a%b and a/b both exist 3672 Node* d = n->find_similar(Op_UDivL); 3673 if (d) { 3674 // Replace them with a fused unsigned divmod if supported 3675 if (Matcher::has_match_rule(Op_UDivModL)) { 3676 UDivModLNode* divmod = UDivModLNode::make(n); 3677 d->subsume_by(divmod->div_proj(), this); 3678 n->subsume_by(divmod->mod_proj(), this); 3679 } else { 3680 // replace a%b with a-((a/b)*b) 3681 Node* mult = new MulLNode(d, d->in(2)); 3682 Node* sub = new SubLNode(d->in(1), mult); 3683 n->subsume_by(sub, this); 3684 } 3685 } 3686 } 3687 break; 3688 3689 case Op_LoadVector: 3690 case Op_StoreVector: 3691 #ifdef ASSERT 3692 // Add VerifyVectorAlignment node between adr and load / store. 3693 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) { 3694 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() : 3695 n->as_StoreVector()->must_verify_alignment(); 3696 if (must_verify_alignment) { 3697 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() : 3698 n->as_StoreVector()->memory_size(); 3699 // The memory access should be aligned to the vector width in bytes. 3700 // However, the underlying array is possibly less well aligned, but at least 3701 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in 3702 // a loop we can expect at least the following alignment: 3703 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes); 3704 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range"); 3705 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2"); 3706 // Create mask from alignment. e.g. 0b1000 -> 0b0111 3707 jlong mask = guaranteed_alignment - 1; 3708 Node* mask_con = ConLNode::make(mask); 3709 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con); 3710 n->set_req(MemNode::Address, va); 3711 } 3712 } 3713 #endif 3714 break; 3715 3716 case Op_LoadVectorGather: 3717 case Op_StoreVectorScatter: 3718 case Op_LoadVectorGatherMasked: 3719 case Op_StoreVectorScatterMasked: 3720 case Op_VectorCmpMasked: 3721 case Op_VectorMaskGen: 3722 case Op_LoadVectorMasked: 3723 case Op_StoreVectorMasked: 3724 break; 3725 3726 case Op_AddReductionVI: 3727 case Op_AddReductionVL: 3728 case Op_AddReductionVF: 3729 case Op_AddReductionVD: 3730 case Op_MulReductionVI: 3731 case Op_MulReductionVL: 3732 case Op_MulReductionVF: 3733 case Op_MulReductionVD: 3734 case Op_MinReductionV: 3735 case Op_MaxReductionV: 3736 case Op_AndReductionV: 3737 case Op_OrReductionV: 3738 case Op_XorReductionV: 3739 break; 3740 3741 case Op_PackB: 3742 case Op_PackS: 3743 case Op_PackI: 3744 case Op_PackF: 3745 case Op_PackL: 3746 case Op_PackD: 3747 if (n->req()-1 > 2) { 3748 // Replace many operand PackNodes with a binary tree for matching 3749 PackNode* p = (PackNode*) n; 3750 Node* btp = p->binary_tree_pack(1, n->req()); 3751 n->subsume_by(btp, this); 3752 } 3753 break; 3754 case Op_Loop: 3755 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 3756 case Op_CountedLoop: 3757 case Op_LongCountedLoop: 3758 case Op_OuterStripMinedLoop: 3759 if (n->as_Loop()->is_inner_loop()) { 3760 frc.inc_inner_loop_count(); 3761 } 3762 n->as_Loop()->verify_strip_mined(0); 3763 break; 3764 case Op_LShiftI: 3765 case Op_RShiftI: 3766 case Op_URShiftI: 3767 case Op_LShiftL: 3768 case Op_RShiftL: 3769 case Op_URShiftL: 3770 if (Matcher::need_masked_shift_count) { 3771 // The cpu's shift instructions don't restrict the count to the 3772 // lower 5/6 bits. We need to do the masking ourselves. 3773 Node* in2 = n->in(2); 3774 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3775 const TypeInt* t = in2->find_int_type(); 3776 if (t != nullptr && t->is_con()) { 3777 juint shift = t->get_con(); 3778 if (shift > mask) { // Unsigned cmp 3779 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3780 } 3781 } else { 3782 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 3783 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3784 n->set_req(2, shift); 3785 } 3786 } 3787 if (in2->outcnt() == 0) { // Remove dead node 3788 in2->disconnect_inputs(this); 3789 } 3790 } 3791 break; 3792 case Op_MemBarStoreStore: 3793 case Op_MemBarRelease: 3794 // Break the link with AllocateNode: it is no longer useful and 3795 // confuses register allocation. 3796 if (n->req() > MemBarNode::Precedent) { 3797 n->set_req(MemBarNode::Precedent, top()); 3798 } 3799 break; 3800 case Op_MemBarAcquire: { 3801 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3802 // At parse time, the trailing MemBarAcquire for a volatile load 3803 // is created with an edge to the load. After optimizations, 3804 // that input may be a chain of Phis. If those phis have no 3805 // other use, then the MemBarAcquire keeps them alive and 3806 // register allocation can be confused. 3807 dead_nodes.push(n->in(MemBarNode::Precedent)); 3808 n->set_req(MemBarNode::Precedent, top()); 3809 } 3810 break; 3811 } 3812 case Op_Blackhole: 3813 break; 3814 case Op_RangeCheck: { 3815 RangeCheckNode* rc = n->as_RangeCheck(); 3816 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3817 n->subsume_by(iff, this); 3818 frc._tests.push(iff); 3819 break; 3820 } 3821 case Op_ConvI2L: { 3822 if (!Matcher::convi2l_type_required) { 3823 // Code generation on some platforms doesn't need accurate 3824 // ConvI2L types. Widening the type can help remove redundant 3825 // address computations. 3826 n->as_Type()->set_type(TypeLong::INT); 3827 ResourceMark rm; 3828 Unique_Node_List wq; 3829 wq.push(n); 3830 for (uint next = 0; next < wq.size(); next++) { 3831 Node *m = wq.at(next); 3832 3833 for(;;) { 3834 // Loop over all nodes with identical inputs edges as m 3835 Node* k = m->find_similar(m->Opcode()); 3836 if (k == nullptr) { 3837 break; 3838 } 3839 // Push their uses so we get a chance to remove node made 3840 // redundant 3841 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3842 Node* u = k->fast_out(i); 3843 if (u->Opcode() == Op_LShiftL || 3844 u->Opcode() == Op_AddL || 3845 u->Opcode() == Op_SubL || 3846 u->Opcode() == Op_AddP) { 3847 wq.push(u); 3848 } 3849 } 3850 // Replace all nodes with identical edges as m with m 3851 k->subsume_by(m, this); 3852 } 3853 } 3854 } 3855 break; 3856 } 3857 case Op_CmpUL: { 3858 if (!Matcher::has_match_rule(Op_CmpUL)) { 3859 // No support for unsigned long comparisons 3860 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3861 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3862 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3863 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3864 Node* andl = new AndLNode(orl, remove_sign_mask); 3865 Node* cmp = new CmpLNode(andl, n->in(2)); 3866 n->subsume_by(cmp, this); 3867 } 3868 break; 3869 } 3870 default: 3871 assert(!n->is_Call(), ""); 3872 assert(!n->is_Mem(), ""); 3873 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3874 break; 3875 } 3876 } 3877 3878 //------------------------------final_graph_reshaping_walk--------------------- 3879 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3880 // requires that the walk visits a node's inputs before visiting the node. 3881 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3882 Unique_Node_List sfpt; 3883 3884 frc._visited.set(root->_idx); // first, mark node as visited 3885 uint cnt = root->req(); 3886 Node *n = root; 3887 uint i = 0; 3888 while (true) { 3889 if (i < cnt) { 3890 // Place all non-visited non-null inputs onto stack 3891 Node* m = n->in(i); 3892 ++i; 3893 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 3894 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 3895 // compute worst case interpreter size in case of a deoptimization 3896 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3897 3898 sfpt.push(m); 3899 } 3900 cnt = m->req(); 3901 nstack.push(n, i); // put on stack parent and next input's index 3902 n = m; 3903 i = 0; 3904 } 3905 } else { 3906 // Now do post-visit work 3907 final_graph_reshaping_impl(n, frc, dead_nodes); 3908 if (nstack.is_empty()) 3909 break; // finished 3910 n = nstack.node(); // Get node from stack 3911 cnt = n->req(); 3912 i = nstack.index(); 3913 nstack.pop(); // Shift to the next node on stack 3914 } 3915 } 3916 3917 // Skip next transformation if compressed oops are not used. 3918 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3919 (!UseCompressedOops && !UseCompressedClassPointers)) 3920 return; 3921 3922 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3923 // It could be done for an uncommon traps or any safepoints/calls 3924 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3925 while (sfpt.size() > 0) { 3926 n = sfpt.pop(); 3927 JVMState *jvms = n->as_SafePoint()->jvms(); 3928 assert(jvms != nullptr, "sanity"); 3929 int start = jvms->debug_start(); 3930 int end = n->req(); 3931 bool is_uncommon = (n->is_CallStaticJava() && 3932 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3933 for (int j = start; j < end; j++) { 3934 Node* in = n->in(j); 3935 if (in->is_DecodeNarrowPtr()) { 3936 bool safe_to_skip = true; 3937 if (!is_uncommon ) { 3938 // Is it safe to skip? 3939 for (uint i = 0; i < in->outcnt(); i++) { 3940 Node* u = in->raw_out(i); 3941 if (!u->is_SafePoint() || 3942 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3943 safe_to_skip = false; 3944 } 3945 } 3946 } 3947 if (safe_to_skip) { 3948 n->set_req(j, in->in(1)); 3949 } 3950 if (in->outcnt() == 0) { 3951 in->disconnect_inputs(this); 3952 } 3953 } 3954 } 3955 } 3956 } 3957 3958 //------------------------------final_graph_reshaping-------------------------- 3959 // Final Graph Reshaping. 3960 // 3961 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3962 // and not commoned up and forced early. Must come after regular 3963 // optimizations to avoid GVN undoing the cloning. Clone constant 3964 // inputs to Loop Phis; these will be split by the allocator anyways. 3965 // Remove Opaque nodes. 3966 // (2) Move last-uses by commutative operations to the left input to encourage 3967 // Intel update-in-place two-address operations and better register usage 3968 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3969 // calls canonicalizing them back. 3970 // (3) Count the number of double-precision FP ops, single-precision FP ops 3971 // and call sites. On Intel, we can get correct rounding either by 3972 // forcing singles to memory (requires extra stores and loads after each 3973 // FP bytecode) or we can set a rounding mode bit (requires setting and 3974 // clearing the mode bit around call sites). The mode bit is only used 3975 // if the relative frequency of single FP ops to calls is low enough. 3976 // This is a key transform for SPEC mpeg_audio. 3977 // (4) Detect infinite loops; blobs of code reachable from above but not 3978 // below. Several of the Code_Gen algorithms fail on such code shapes, 3979 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3980 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3981 // Detection is by looking for IfNodes where only 1 projection is 3982 // reachable from below or CatchNodes missing some targets. 3983 // (5) Assert for insane oop offsets in debug mode. 3984 3985 bool Compile::final_graph_reshaping() { 3986 // an infinite loop may have been eliminated by the optimizer, 3987 // in which case the graph will be empty. 3988 if (root()->req() == 1) { 3989 // Do not compile method that is only a trivial infinite loop, 3990 // since the content of the loop may have been eliminated. 3991 record_method_not_compilable("trivial infinite loop"); 3992 return true; 3993 } 3994 3995 // Expensive nodes have their control input set to prevent the GVN 3996 // from freely commoning them. There's no GVN beyond this point so 3997 // no need to keep the control input. We want the expensive nodes to 3998 // be freely moved to the least frequent code path by gcm. 3999 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 4000 for (int i = 0; i < expensive_count(); i++) { 4001 _expensive_nodes.at(i)->set_req(0, nullptr); 4002 } 4003 4004 Final_Reshape_Counts frc; 4005 4006 // Visit everybody reachable! 4007 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 4008 Node_Stack nstack(live_nodes() >> 1); 4009 Unique_Node_List dead_nodes; 4010 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 4011 4012 // Check for unreachable (from below) code (i.e., infinite loops). 4013 for( uint i = 0; i < frc._tests.size(); i++ ) { 4014 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 4015 // Get number of CFG targets. 4016 // Note that PCTables include exception targets after calls. 4017 uint required_outcnt = n->required_outcnt(); 4018 if (n->outcnt() != required_outcnt) { 4019 // Check for a few special cases. Rethrow Nodes never take the 4020 // 'fall-thru' path, so expected kids is 1 less. 4021 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 4022 if (n->in(0)->in(0)->is_Call()) { 4023 CallNode* call = n->in(0)->in(0)->as_Call(); 4024 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 4025 required_outcnt--; // Rethrow always has 1 less kid 4026 } else if (call->req() > TypeFunc::Parms && 4027 call->is_CallDynamicJava()) { 4028 // Check for null receiver. In such case, the optimizer has 4029 // detected that the virtual call will always result in a null 4030 // pointer exception. The fall-through projection of this CatchNode 4031 // will not be populated. 4032 Node* arg0 = call->in(TypeFunc::Parms); 4033 if (arg0->is_Type() && 4034 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 4035 required_outcnt--; 4036 } 4037 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 4038 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4039 // Check for illegal array length. In such case, the optimizer has 4040 // detected that the allocation attempt will always result in an 4041 // exception. There is no fall-through projection of this CatchNode . 4042 assert(call->is_CallStaticJava(), "static call expected"); 4043 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4044 uint valid_length_test_input = call->req() - 1; 4045 Node* valid_length_test = call->in(valid_length_test_input); 4046 call->del_req(valid_length_test_input); 4047 if (valid_length_test->find_int_con(1) == 0) { 4048 required_outcnt--; 4049 } 4050 dead_nodes.push(valid_length_test); 4051 assert(n->outcnt() == required_outcnt, "malformed control flow"); 4052 continue; 4053 } 4054 } 4055 } 4056 4057 // Recheck with a better notion of 'required_outcnt' 4058 if (n->outcnt() != required_outcnt) { 4059 record_method_not_compilable("malformed control flow"); 4060 return true; // Not all targets reachable! 4061 } 4062 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 4063 CallNode* call = n->in(0)->in(0)->as_Call(); 4064 if (call->entry_point() == OptoRuntime::new_array_Java() || 4065 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4066 assert(call->is_CallStaticJava(), "static call expected"); 4067 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4068 uint valid_length_test_input = call->req() - 1; 4069 dead_nodes.push(call->in(valid_length_test_input)); 4070 call->del_req(valid_length_test_input); // valid length test useless now 4071 } 4072 } 4073 // Check that I actually visited all kids. Unreached kids 4074 // must be infinite loops. 4075 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4076 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4077 record_method_not_compilable("infinite loop"); 4078 return true; // Found unvisited kid; must be unreach 4079 } 4080 4081 // Here so verification code in final_graph_reshaping_walk() 4082 // always see an OuterStripMinedLoopEnd 4083 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4084 IfNode* init_iff = n->as_If(); 4085 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4086 n->subsume_by(iff, this); 4087 } 4088 } 4089 4090 while (dead_nodes.size() > 0) { 4091 Node* m = dead_nodes.pop(); 4092 if (m->outcnt() == 0 && m != top()) { 4093 for (uint j = 0; j < m->req(); j++) { 4094 Node* in = m->in(j); 4095 if (in != nullptr) { 4096 dead_nodes.push(in); 4097 } 4098 } 4099 m->disconnect_inputs(this); 4100 } 4101 } 4102 4103 #ifdef IA32 4104 // If original bytecodes contained a mixture of floats and doubles 4105 // check if the optimizer has made it homogeneous, item (3). 4106 if (UseSSE == 0 && 4107 frc.get_float_count() > 32 && 4108 frc.get_double_count() == 0 && 4109 (10 * frc.get_call_count() < frc.get_float_count()) ) { 4110 set_24_bit_selection_and_mode(false, true); 4111 } 4112 #endif // IA32 4113 4114 set_java_calls(frc.get_java_call_count()); 4115 set_inner_loops(frc.get_inner_loop_count()); 4116 4117 // No infinite loops, no reason to bail out. 4118 return false; 4119 } 4120 4121 //-----------------------------too_many_traps---------------------------------- 4122 // Report if there are too many traps at the current method and bci. 4123 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4124 bool Compile::too_many_traps(ciMethod* method, 4125 int bci, 4126 Deoptimization::DeoptReason reason) { 4127 ciMethodData* md = method->method_data(); 4128 if (md->is_empty()) { 4129 // Assume the trap has not occurred, or that it occurred only 4130 // because of a transient condition during start-up in the interpreter. 4131 return false; 4132 } 4133 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4134 if (md->has_trap_at(bci, m, reason) != 0) { 4135 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4136 // Also, if there are multiple reasons, or if there is no per-BCI record, 4137 // assume the worst. 4138 if (log()) 4139 log()->elem("observe trap='%s' count='%d'", 4140 Deoptimization::trap_reason_name(reason), 4141 md->trap_count(reason)); 4142 return true; 4143 } else { 4144 // Ignore method/bci and see if there have been too many globally. 4145 return too_many_traps(reason, md); 4146 } 4147 } 4148 4149 // Less-accurate variant which does not require a method and bci. 4150 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4151 ciMethodData* logmd) { 4152 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4153 // Too many traps globally. 4154 // Note that we use cumulative trap_count, not just md->trap_count. 4155 if (log()) { 4156 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4157 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4158 Deoptimization::trap_reason_name(reason), 4159 mcount, trap_count(reason)); 4160 } 4161 return true; 4162 } else { 4163 // The coast is clear. 4164 return false; 4165 } 4166 } 4167 4168 //--------------------------too_many_recompiles-------------------------------- 4169 // Report if there are too many recompiles at the current method and bci. 4170 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4171 // Is not eager to return true, since this will cause the compiler to use 4172 // Action_none for a trap point, to avoid too many recompilations. 4173 bool Compile::too_many_recompiles(ciMethod* method, 4174 int bci, 4175 Deoptimization::DeoptReason reason) { 4176 ciMethodData* md = method->method_data(); 4177 if (md->is_empty()) { 4178 // Assume the trap has not occurred, or that it occurred only 4179 // because of a transient condition during start-up in the interpreter. 4180 return false; 4181 } 4182 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4183 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4184 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4185 Deoptimization::DeoptReason per_bc_reason 4186 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4187 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4188 if ((per_bc_reason == Deoptimization::Reason_none 4189 || md->has_trap_at(bci, m, reason) != 0) 4190 // The trap frequency measure we care about is the recompile count: 4191 && md->trap_recompiled_at(bci, m) 4192 && md->overflow_recompile_count() >= bc_cutoff) { 4193 // Do not emit a trap here if it has already caused recompilations. 4194 // Also, if there are multiple reasons, or if there is no per-BCI record, 4195 // assume the worst. 4196 if (log()) 4197 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4198 Deoptimization::trap_reason_name(reason), 4199 md->trap_count(reason), 4200 md->overflow_recompile_count()); 4201 return true; 4202 } else if (trap_count(reason) != 0 4203 && decompile_count() >= m_cutoff) { 4204 // Too many recompiles globally, and we have seen this sort of trap. 4205 // Use cumulative decompile_count, not just md->decompile_count. 4206 if (log()) 4207 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4208 Deoptimization::trap_reason_name(reason), 4209 md->trap_count(reason), trap_count(reason), 4210 md->decompile_count(), decompile_count()); 4211 return true; 4212 } else { 4213 // The coast is clear. 4214 return false; 4215 } 4216 } 4217 4218 // Compute when not to trap. Used by matching trap based nodes and 4219 // NullCheck optimization. 4220 void Compile::set_allowed_deopt_reasons() { 4221 _allowed_reasons = 0; 4222 if (is_method_compilation()) { 4223 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4224 assert(rs < BitsPerInt, "recode bit map"); 4225 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4226 _allowed_reasons |= nth_bit(rs); 4227 } 4228 } 4229 } 4230 } 4231 4232 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4233 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4234 } 4235 4236 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4237 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4238 } 4239 4240 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4241 if (holder->is_initialized()) { 4242 return false; 4243 } 4244 if (holder->is_being_initialized()) { 4245 if (accessing_method->holder() == holder) { 4246 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4247 // <init>, or a static method. In all those cases, there was an initialization 4248 // barrier on the holder klass passed. 4249 if (accessing_method->is_static_initializer() || 4250 accessing_method->is_object_initializer() || 4251 accessing_method->is_static()) { 4252 return false; 4253 } 4254 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4255 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4256 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4257 // child class can become fully initialized while its parent class is still being initialized. 4258 if (accessing_method->is_static_initializer()) { 4259 return false; 4260 } 4261 } 4262 ciMethod* root = method(); // the root method of compilation 4263 if (root != accessing_method) { 4264 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4265 } 4266 } 4267 return true; 4268 } 4269 4270 #ifndef PRODUCT 4271 //------------------------------verify_bidirectional_edges--------------------- 4272 // For each input edge to a node (ie - for each Use-Def edge), verify that 4273 // there is a corresponding Def-Use edge. 4274 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) { 4275 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4276 uint stack_size = live_nodes() >> 4; 4277 Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize)); 4278 nstack.push(_root); 4279 4280 while (nstack.size() > 0) { 4281 Node* n = nstack.pop(); 4282 if (visited.member(n)) { 4283 continue; 4284 } 4285 visited.push(n); 4286 4287 // Walk over all input edges, checking for correspondence 4288 uint length = n->len(); 4289 for (uint i = 0; i < length; i++) { 4290 Node* in = n->in(i); 4291 if (in != nullptr && !visited.member(in)) { 4292 nstack.push(in); // Put it on stack 4293 } 4294 if (in != nullptr && !in->is_top()) { 4295 // Count instances of `next` 4296 int cnt = 0; 4297 for (uint idx = 0; idx < in->_outcnt; idx++) { 4298 if (in->_out[idx] == n) { 4299 cnt++; 4300 } 4301 } 4302 assert(cnt > 0, "Failed to find Def-Use edge."); 4303 // Check for duplicate edges 4304 // walk the input array downcounting the input edges to n 4305 for (uint j = 0; j < length; j++) { 4306 if (n->in(j) == in) { 4307 cnt--; 4308 } 4309 } 4310 assert(cnt == 0, "Mismatched edge count."); 4311 } else if (in == nullptr) { 4312 assert(i == 0 || i >= n->req() || 4313 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4314 (n->is_Unlock() && i == (n->req() - 1)) || 4315 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4316 "only region, phi, arraycopy, unlock or membar nodes have null data edges"); 4317 } else { 4318 assert(in->is_top(), "sanity"); 4319 // Nothing to check. 4320 } 4321 } 4322 } 4323 } 4324 4325 //------------------------------verify_graph_edges--------------------------- 4326 // Walk the Graph and verify that there is a one-to-one correspondence 4327 // between Use-Def edges and Def-Use edges in the graph. 4328 void Compile::verify_graph_edges(bool no_dead_code) { 4329 if (VerifyGraphEdges) { 4330 Unique_Node_List visited; 4331 4332 // Call graph walk to check edges 4333 verify_bidirectional_edges(visited); 4334 if (no_dead_code) { 4335 // Now make sure that no visited node is used by an unvisited node. 4336 bool dead_nodes = false; 4337 Unique_Node_List checked; 4338 while (visited.size() > 0) { 4339 Node* n = visited.pop(); 4340 checked.push(n); 4341 for (uint i = 0; i < n->outcnt(); i++) { 4342 Node* use = n->raw_out(i); 4343 if (checked.member(use)) continue; // already checked 4344 if (visited.member(use)) continue; // already in the graph 4345 if (use->is_Con()) continue; // a dead ConNode is OK 4346 // At this point, we have found a dead node which is DU-reachable. 4347 if (!dead_nodes) { 4348 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4349 dead_nodes = true; 4350 } 4351 use->dump(2); 4352 tty->print_cr("---"); 4353 checked.push(use); // No repeats; pretend it is now checked. 4354 } 4355 } 4356 assert(!dead_nodes, "using nodes must be reachable from root"); 4357 } 4358 } 4359 } 4360 #endif 4361 4362 // The Compile object keeps track of failure reasons separately from the ciEnv. 4363 // This is required because there is not quite a 1-1 relation between the 4364 // ciEnv and its compilation task and the Compile object. Note that one 4365 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4366 // to backtrack and retry without subsuming loads. Other than this backtracking 4367 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4368 // by the logic in C2Compiler. 4369 void Compile::record_failure(const char* reason) { 4370 if (log() != nullptr) { 4371 log()->elem("failure reason='%s' phase='compile'", reason); 4372 } 4373 if (_failure_reason.get() == nullptr) { 4374 // Record the first failure reason. 4375 _failure_reason.set(reason); 4376 if (CaptureBailoutInformation) { 4377 _first_failure_details = new CompilationFailureInfo(reason); 4378 } 4379 } 4380 4381 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4382 C->print_method(PHASE_FAILURE, 1); 4383 } 4384 _root = nullptr; // flush the graph, too 4385 } 4386 4387 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator) 4388 : TraceTime(name, accumulator, CITime, CITimeVerbose), 4389 _compile(Compile::current()), 4390 _log(nullptr), 4391 _phase_name(name), 4392 _dolog(CITimeVerbose) 4393 { 4394 assert(_compile != nullptr, "sanity check"); 4395 if (_dolog) { 4396 _log = _compile->log(); 4397 } 4398 if (_log != nullptr) { 4399 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, _compile->unique(), _compile->live_nodes()); 4400 _log->stamp(); 4401 _log->end_head(); 4402 } 4403 } 4404 4405 Compile::TracePhase::~TracePhase() { 4406 if (_compile->failing()) return; 4407 #ifdef ASSERT 4408 if (PrintIdealNodeCount) { 4409 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4410 _phase_name, _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk()); 4411 } 4412 4413 if (VerifyIdealNodeCount) { 4414 _compile->print_missing_nodes(); 4415 } 4416 #endif 4417 4418 if (_log != nullptr) { 4419 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, _compile->unique(), _compile->live_nodes()); 4420 } 4421 } 4422 4423 //----------------------------static_subtype_check----------------------------- 4424 // Shortcut important common cases when superklass is exact: 4425 // (0) superklass is java.lang.Object (can occur in reflective code) 4426 // (1) subklass is already limited to a subtype of superklass => always ok 4427 // (2) subklass does not overlap with superklass => always fail 4428 // (3) superklass has NO subtypes and we can check with a simple compare. 4429 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4430 if (skip) { 4431 return SSC_full_test; // Let caller generate the general case. 4432 } 4433 4434 if (subk->is_java_subtype_of(superk)) { 4435 return SSC_always_true; // (0) and (1) this test cannot fail 4436 } 4437 4438 if (!subk->maybe_java_subtype_of(superk)) { 4439 return SSC_always_false; // (2) true path dead; no dynamic test needed 4440 } 4441 4442 const Type* superelem = superk; 4443 if (superk->isa_aryklassptr()) { 4444 int ignored; 4445 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4446 } 4447 4448 if (superelem->isa_instklassptr()) { 4449 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4450 if (!ik->has_subklass()) { 4451 if (!ik->is_final()) { 4452 // Add a dependency if there is a chance of a later subclass. 4453 dependencies()->assert_leaf_type(ik); 4454 } 4455 if (!superk->maybe_java_subtype_of(subk)) { 4456 return SSC_always_false; 4457 } 4458 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4459 } 4460 } else { 4461 // A primitive array type has no subtypes. 4462 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4463 } 4464 4465 return SSC_full_test; 4466 } 4467 4468 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4469 #ifdef _LP64 4470 // The scaled index operand to AddP must be a clean 64-bit value. 4471 // Java allows a 32-bit int to be incremented to a negative 4472 // value, which appears in a 64-bit register as a large 4473 // positive number. Using that large positive number as an 4474 // operand in pointer arithmetic has bad consequences. 4475 // On the other hand, 32-bit overflow is rare, and the possibility 4476 // can often be excluded, if we annotate the ConvI2L node with 4477 // a type assertion that its value is known to be a small positive 4478 // number. (The prior range check has ensured this.) 4479 // This assertion is used by ConvI2LNode::Ideal. 4480 int index_max = max_jint - 1; // array size is max_jint, index is one less 4481 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 4482 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4483 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4484 #endif 4485 return idx; 4486 } 4487 4488 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4489 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4490 if (ctrl != nullptr) { 4491 // Express control dependency by a CastII node with a narrow type. 4492 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4493 // node from floating above the range check during loop optimizations. Otherwise, the 4494 // ConvI2L node may be eliminated independently of the range check, causing the data path 4495 // to become TOP while the control path is still there (although it's unreachable). 4496 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4497 value = phase->transform(value); 4498 } 4499 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4500 return phase->transform(new ConvI2LNode(value, ltype)); 4501 } 4502 4503 // The message about the current inlining is accumulated in 4504 // _print_inlining_stream and transferred into the _print_inlining_list 4505 // once we know whether inlining succeeds or not. For regular 4506 // inlining, messages are appended to the buffer pointed by 4507 // _print_inlining_idx in the _print_inlining_list. For late inlining, 4508 // a new buffer is added after _print_inlining_idx in the list. This 4509 // way we can update the inlining message for late inlining call site 4510 // when the inlining is attempted again. 4511 void Compile::print_inlining_init() { 4512 if (print_inlining() || print_intrinsics()) { 4513 // print_inlining_init is actually called several times. 4514 print_inlining_reset(); 4515 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer*>(comp_arena(), 1, 1, new PrintInliningBuffer()); 4516 } 4517 } 4518 4519 void Compile::print_inlining_reinit() { 4520 if (print_inlining() || print_intrinsics()) { 4521 print_inlining_reset(); 4522 } 4523 } 4524 4525 void Compile::print_inlining_reset() { 4526 _print_inlining_stream->reset(); 4527 } 4528 4529 void Compile::print_inlining_commit() { 4530 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 4531 // Transfer the message from _print_inlining_stream to the current 4532 // _print_inlining_list buffer and clear _print_inlining_stream. 4533 _print_inlining_list->at(_print_inlining_idx)->ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size()); 4534 print_inlining_reset(); 4535 } 4536 4537 void Compile::print_inlining_push() { 4538 // Add new buffer to the _print_inlining_list at current position 4539 _print_inlining_idx++; 4540 _print_inlining_list->insert_before(_print_inlining_idx, new PrintInliningBuffer()); 4541 } 4542 4543 Compile::PrintInliningBuffer* Compile::print_inlining_current() { 4544 return _print_inlining_list->at(_print_inlining_idx); 4545 } 4546 4547 void Compile::print_inlining_update(CallGenerator* cg) { 4548 if (print_inlining() || print_intrinsics()) { 4549 if (cg->is_late_inline()) { 4550 if (print_inlining_current()->cg() != cg && 4551 (print_inlining_current()->cg() != nullptr || 4552 print_inlining_current()->ss()->size() != 0)) { 4553 print_inlining_push(); 4554 } 4555 print_inlining_commit(); 4556 print_inlining_current()->set_cg(cg); 4557 } else { 4558 if (print_inlining_current()->cg() != nullptr) { 4559 print_inlining_push(); 4560 } 4561 print_inlining_commit(); 4562 } 4563 } 4564 } 4565 4566 void Compile::print_inlining_move_to(CallGenerator* cg) { 4567 // We resume inlining at a late inlining call site. Locate the 4568 // corresponding inlining buffer so that we can update it. 4569 if (print_inlining() || print_intrinsics()) { 4570 for (int i = 0; i < _print_inlining_list->length(); i++) { 4571 if (_print_inlining_list->at(i)->cg() == cg) { 4572 _print_inlining_idx = i; 4573 return; 4574 } 4575 } 4576 ShouldNotReachHere(); 4577 } 4578 } 4579 4580 void Compile::print_inlining_update_delayed(CallGenerator* cg) { 4581 if (print_inlining() || print_intrinsics()) { 4582 assert(_print_inlining_stream->size() > 0, "missing inlining msg"); 4583 assert(print_inlining_current()->cg() == cg, "wrong entry"); 4584 // replace message with new message 4585 _print_inlining_list->at_put(_print_inlining_idx, new PrintInliningBuffer()); 4586 print_inlining_commit(); 4587 print_inlining_current()->set_cg(cg); 4588 } 4589 } 4590 4591 void Compile::print_inlining_assert_ready() { 4592 assert(!_print_inlining || _print_inlining_stream->size() == 0, "losing data"); 4593 } 4594 4595 void Compile::process_print_inlining() { 4596 assert(_late_inlines.length() == 0, "not drained yet"); 4597 if (print_inlining() || print_intrinsics()) { 4598 ResourceMark rm; 4599 stringStream ss; 4600 assert(_print_inlining_list != nullptr, "process_print_inlining should be called only once."); 4601 for (int i = 0; i < _print_inlining_list->length(); i++) { 4602 PrintInliningBuffer* pib = _print_inlining_list->at(i); 4603 ss.print("%s", pib->ss()->freeze()); 4604 delete pib; 4605 DEBUG_ONLY(_print_inlining_list->at_put(i, nullptr)); 4606 } 4607 // Reset _print_inlining_list, it only contains destructed objects. 4608 // It is on the arena, so it will be freed when the arena is reset. 4609 _print_inlining_list = nullptr; 4610 // _print_inlining_stream won't be used anymore, either. 4611 print_inlining_reset(); 4612 size_t end = ss.size(); 4613 _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1); 4614 strncpy(_print_inlining_output, ss.freeze(), end+1); 4615 _print_inlining_output[end] = 0; 4616 } 4617 } 4618 4619 void Compile::dump_print_inlining() { 4620 if (_print_inlining_output != nullptr) { 4621 tty->print_raw(_print_inlining_output); 4622 } 4623 } 4624 4625 void Compile::log_late_inline(CallGenerator* cg) { 4626 if (log() != nullptr) { 4627 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4628 cg->unique_id()); 4629 JVMState* p = cg->call_node()->jvms(); 4630 while (p != nullptr) { 4631 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4632 p = p->caller(); 4633 } 4634 log()->tail("late_inline"); 4635 } 4636 } 4637 4638 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4639 log_late_inline(cg); 4640 if (log() != nullptr) { 4641 log()->inline_fail(msg); 4642 } 4643 } 4644 4645 void Compile::log_inline_id(CallGenerator* cg) { 4646 if (log() != nullptr) { 4647 // The LogCompilation tool needs a unique way to identify late 4648 // inline call sites. This id must be unique for this call site in 4649 // this compilation. Try to have it unique across compilations as 4650 // well because it can be convenient when grepping through the log 4651 // file. 4652 // Distinguish OSR compilations from others in case CICountOSR is 4653 // on. 4654 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4655 cg->set_unique_id(id); 4656 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4657 } 4658 } 4659 4660 void Compile::log_inline_failure(const char* msg) { 4661 if (C->log() != nullptr) { 4662 C->log()->inline_fail(msg); 4663 } 4664 } 4665 4666 4667 // Dump inlining replay data to the stream. 4668 // Don't change thread state and acquire any locks. 4669 void Compile::dump_inline_data(outputStream* out) { 4670 InlineTree* inl_tree = ilt(); 4671 if (inl_tree != nullptr) { 4672 out->print(" inline %d", inl_tree->count()); 4673 inl_tree->dump_replay_data(out); 4674 } 4675 } 4676 4677 void Compile::dump_inline_data_reduced(outputStream* out) { 4678 assert(ReplayReduce, ""); 4679 4680 InlineTree* inl_tree = ilt(); 4681 if (inl_tree == nullptr) { 4682 return; 4683 } 4684 // Enable iterative replay file reduction 4685 // Output "compile" lines for depth 1 subtrees, 4686 // simulating that those trees were compiled 4687 // instead of inlined. 4688 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 4689 InlineTree* sub = inl_tree->subtrees().at(i); 4690 if (sub->inline_level() != 1) { 4691 continue; 4692 } 4693 4694 ciMethod* method = sub->method(); 4695 int entry_bci = -1; 4696 int comp_level = env()->task()->comp_level(); 4697 out->print("compile "); 4698 method->dump_name_as_ascii(out); 4699 out->print(" %d %d", entry_bci, comp_level); 4700 out->print(" inline %d", sub->count()); 4701 sub->dump_replay_data(out, -1); 4702 out->cr(); 4703 } 4704 } 4705 4706 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4707 if (n1->Opcode() < n2->Opcode()) return -1; 4708 else if (n1->Opcode() > n2->Opcode()) return 1; 4709 4710 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4711 for (uint i = 1; i < n1->req(); i++) { 4712 if (n1->in(i) < n2->in(i)) return -1; 4713 else if (n1->in(i) > n2->in(i)) return 1; 4714 } 4715 4716 return 0; 4717 } 4718 4719 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4720 Node* n1 = *n1p; 4721 Node* n2 = *n2p; 4722 4723 return cmp_expensive_nodes(n1, n2); 4724 } 4725 4726 void Compile::sort_expensive_nodes() { 4727 if (!expensive_nodes_sorted()) { 4728 _expensive_nodes.sort(cmp_expensive_nodes); 4729 } 4730 } 4731 4732 bool Compile::expensive_nodes_sorted() const { 4733 for (int i = 1; i < _expensive_nodes.length(); i++) { 4734 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 4735 return false; 4736 } 4737 } 4738 return true; 4739 } 4740 4741 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4742 if (_expensive_nodes.length() == 0) { 4743 return false; 4744 } 4745 4746 assert(OptimizeExpensiveOps, "optimization off?"); 4747 4748 // Take this opportunity to remove dead nodes from the list 4749 int j = 0; 4750 for (int i = 0; i < _expensive_nodes.length(); i++) { 4751 Node* n = _expensive_nodes.at(i); 4752 if (!n->is_unreachable(igvn)) { 4753 assert(n->is_expensive(), "should be expensive"); 4754 _expensive_nodes.at_put(j, n); 4755 j++; 4756 } 4757 } 4758 _expensive_nodes.trunc_to(j); 4759 4760 // Then sort the list so that similar nodes are next to each other 4761 // and check for at least two nodes of identical kind with same data 4762 // inputs. 4763 sort_expensive_nodes(); 4764 4765 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 4766 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 4767 return true; 4768 } 4769 } 4770 4771 return false; 4772 } 4773 4774 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4775 if (_expensive_nodes.length() == 0) { 4776 return; 4777 } 4778 4779 assert(OptimizeExpensiveOps, "optimization off?"); 4780 4781 // Sort to bring similar nodes next to each other and clear the 4782 // control input of nodes for which there's only a single copy. 4783 sort_expensive_nodes(); 4784 4785 int j = 0; 4786 int identical = 0; 4787 int i = 0; 4788 bool modified = false; 4789 for (; i < _expensive_nodes.length()-1; i++) { 4790 assert(j <= i, "can't write beyond current index"); 4791 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 4792 identical++; 4793 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4794 continue; 4795 } 4796 if (identical > 0) { 4797 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4798 identical = 0; 4799 } else { 4800 Node* n = _expensive_nodes.at(i); 4801 igvn.replace_input_of(n, 0, nullptr); 4802 igvn.hash_insert(n); 4803 modified = true; 4804 } 4805 } 4806 if (identical > 0) { 4807 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4808 } else if (_expensive_nodes.length() >= 1) { 4809 Node* n = _expensive_nodes.at(i); 4810 igvn.replace_input_of(n, 0, nullptr); 4811 igvn.hash_insert(n); 4812 modified = true; 4813 } 4814 _expensive_nodes.trunc_to(j); 4815 if (modified) { 4816 igvn.optimize(); 4817 } 4818 } 4819 4820 void Compile::add_expensive_node(Node * n) { 4821 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 4822 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4823 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4824 if (OptimizeExpensiveOps) { 4825 _expensive_nodes.append(n); 4826 } else { 4827 // Clear control input and let IGVN optimize expensive nodes if 4828 // OptimizeExpensiveOps is off. 4829 n->set_req(0, nullptr); 4830 } 4831 } 4832 4833 /** 4834 * Track coarsened Lock and Unlock nodes. 4835 */ 4836 4837 class Lock_List : public Node_List { 4838 uint _origin_cnt; 4839 public: 4840 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 4841 uint origin_cnt() const { return _origin_cnt; } 4842 }; 4843 4844 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 4845 int length = locks.length(); 4846 if (length > 0) { 4847 // Have to keep this list until locks elimination during Macro nodes elimination. 4848 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 4849 AbstractLockNode* alock = locks.at(0); 4850 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4851 for (int i = 0; i < length; i++) { 4852 AbstractLockNode* lock = locks.at(i); 4853 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 4854 locks_list->push(lock); 4855 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 4856 if (this_box != box) { 4857 // Locking regions (BoxLock) could be Unbalanced here: 4858 // - its coarsened locks were eliminated in earlier 4859 // macro nodes elimination followed by loop unroll 4860 // - it is OSR locking region (no Lock node) 4861 // Preserve Unbalanced status in such cases. 4862 if (!this_box->is_unbalanced()) { 4863 this_box->set_coarsened(); 4864 } 4865 if (!box->is_unbalanced()) { 4866 box->set_coarsened(); 4867 } 4868 } 4869 } 4870 _coarsened_locks.append(locks_list); 4871 } 4872 } 4873 4874 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 4875 int count = coarsened_count(); 4876 for (int i = 0; i < count; i++) { 4877 Node_List* locks_list = _coarsened_locks.at(i); 4878 for (uint j = 0; j < locks_list->size(); j++) { 4879 Node* lock = locks_list->at(j); 4880 assert(lock->is_AbstractLock(), "sanity"); 4881 if (!useful.member(lock)) { 4882 locks_list->yank(lock); 4883 } 4884 } 4885 } 4886 } 4887 4888 void Compile::remove_coarsened_lock(Node* n) { 4889 if (n->is_AbstractLock()) { 4890 int count = coarsened_count(); 4891 for (int i = 0; i < count; i++) { 4892 Node_List* locks_list = _coarsened_locks.at(i); 4893 locks_list->yank(n); 4894 } 4895 } 4896 } 4897 4898 bool Compile::coarsened_locks_consistent() { 4899 int count = coarsened_count(); 4900 for (int i = 0; i < count; i++) { 4901 bool unbalanced = false; 4902 bool modified = false; // track locks kind modifications 4903 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 4904 uint size = locks_list->size(); 4905 if (size == 0) { 4906 unbalanced = false; // All locks were eliminated - good 4907 } else if (size != locks_list->origin_cnt()) { 4908 unbalanced = true; // Some locks were removed from list 4909 } else { 4910 for (uint j = 0; j < size; j++) { 4911 Node* lock = locks_list->at(j); 4912 // All nodes in group should have the same state (modified or not) 4913 if (!lock->as_AbstractLock()->is_coarsened()) { 4914 if (j == 0) { 4915 // first on list was modified, the rest should be too for consistency 4916 modified = true; 4917 } else if (!modified) { 4918 // this lock was modified but previous locks on the list were not 4919 unbalanced = true; 4920 break; 4921 } 4922 } else if (modified) { 4923 // previous locks on list were modified but not this lock 4924 unbalanced = true; 4925 break; 4926 } 4927 } 4928 } 4929 if (unbalanced) { 4930 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 4931 #ifdef ASSERT 4932 if (PrintEliminateLocks) { 4933 tty->print_cr("=== unbalanced coarsened locks ==="); 4934 for (uint l = 0; l < size; l++) { 4935 locks_list->at(l)->dump(); 4936 } 4937 } 4938 #endif 4939 record_failure(C2Compiler::retry_no_locks_coarsening()); 4940 return false; 4941 } 4942 } 4943 return true; 4944 } 4945 4946 // Mark locking regions (identified by BoxLockNode) as unbalanced if 4947 // locks coarsening optimization removed Lock/Unlock nodes from them. 4948 // Such regions become unbalanced because coarsening only removes part 4949 // of Lock/Unlock nodes in region. As result we can't execute other 4950 // locks elimination optimizations which assume all code paths have 4951 // corresponding pair of Lock/Unlock nodes - they are balanced. 4952 void Compile::mark_unbalanced_boxes() const { 4953 int count = coarsened_count(); 4954 for (int i = 0; i < count; i++) { 4955 Node_List* locks_list = _coarsened_locks.at(i); 4956 uint size = locks_list->size(); 4957 if (size > 0) { 4958 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 4959 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4960 if (alock->is_coarsened()) { 4961 // coarsened_locks_consistent(), which is called before this method, verifies 4962 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 4963 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4964 for (uint j = 1; j < size; j++) { 4965 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 4966 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 4967 if (box != this_box) { 4968 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4969 box->set_unbalanced(); 4970 this_box->set_unbalanced(); 4971 } 4972 } 4973 } 4974 } 4975 } 4976 } 4977 4978 /** 4979 * Remove the speculative part of types and clean up the graph 4980 */ 4981 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4982 if (UseTypeSpeculation) { 4983 Unique_Node_List worklist; 4984 worklist.push(root()); 4985 int modified = 0; 4986 // Go over all type nodes that carry a speculative type, drop the 4987 // speculative part of the type and enqueue the node for an igvn 4988 // which may optimize it out. 4989 for (uint next = 0; next < worklist.size(); ++next) { 4990 Node *n = worklist.at(next); 4991 if (n->is_Type()) { 4992 TypeNode* tn = n->as_Type(); 4993 const Type* t = tn->type(); 4994 const Type* t_no_spec = t->remove_speculative(); 4995 if (t_no_spec != t) { 4996 bool in_hash = igvn.hash_delete(n); 4997 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 4998 tn->set_type(t_no_spec); 4999 igvn.hash_insert(n); 5000 igvn._worklist.push(n); // give it a chance to go away 5001 modified++; 5002 } 5003 } 5004 // Iterate over outs - endless loops is unreachable from below 5005 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5006 Node *m = n->fast_out(i); 5007 if (not_a_node(m)) { 5008 continue; 5009 } 5010 worklist.push(m); 5011 } 5012 } 5013 // Drop the speculative part of all types in the igvn's type table 5014 igvn.remove_speculative_types(); 5015 if (modified > 0) { 5016 igvn.optimize(); 5017 if (failing()) return; 5018 } 5019 #ifdef ASSERT 5020 // Verify that after the IGVN is over no speculative type has resurfaced 5021 worklist.clear(); 5022 worklist.push(root()); 5023 for (uint next = 0; next < worklist.size(); ++next) { 5024 Node *n = worklist.at(next); 5025 const Type* t = igvn.type_or_null(n); 5026 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 5027 if (n->is_Type()) { 5028 t = n->as_Type()->type(); 5029 assert(t == t->remove_speculative(), "no more speculative types"); 5030 } 5031 // Iterate over outs - endless loops is unreachable from below 5032 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5033 Node *m = n->fast_out(i); 5034 if (not_a_node(m)) { 5035 continue; 5036 } 5037 worklist.push(m); 5038 } 5039 } 5040 igvn.check_no_speculative_types(); 5041 #endif 5042 } 5043 } 5044 5045 // Auxiliary methods to support randomized stressing/fuzzing. 5046 5047 void Compile::initialize_stress_seed(const DirectiveSet* directive) { 5048 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 5049 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 5050 FLAG_SET_ERGO(StressSeed, _stress_seed); 5051 } else { 5052 _stress_seed = StressSeed; 5053 } 5054 if (_log != nullptr) { 5055 _log->elem("stress_test seed='%u'", _stress_seed); 5056 } 5057 } 5058 5059 int Compile::random() { 5060 _stress_seed = os::next_random(_stress_seed); 5061 return static_cast<int>(_stress_seed); 5062 } 5063 5064 // This method can be called the arbitrary number of times, with current count 5065 // as the argument. The logic allows selecting a single candidate from the 5066 // running list of candidates as follows: 5067 // int count = 0; 5068 // Cand* selected = null; 5069 // while(cand = cand->next()) { 5070 // if (randomized_select(++count)) { 5071 // selected = cand; 5072 // } 5073 // } 5074 // 5075 // Including count equalizes the chances any candidate is "selected". 5076 // This is useful when we don't have the complete list of candidates to choose 5077 // from uniformly. In this case, we need to adjust the randomicity of the 5078 // selection, or else we will end up biasing the selection towards the latter 5079 // candidates. 5080 // 5081 // Quick back-envelope calculation shows that for the list of n candidates 5082 // the equal probability for the candidate to persist as "best" can be 5083 // achieved by replacing it with "next" k-th candidate with the probability 5084 // of 1/k. It can be easily shown that by the end of the run, the 5085 // probability for any candidate is converged to 1/n, thus giving the 5086 // uniform distribution among all the candidates. 5087 // 5088 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 5089 #define RANDOMIZED_DOMAIN_POW 29 5090 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 5091 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 5092 bool Compile::randomized_select(int count) { 5093 assert(count > 0, "only positive"); 5094 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 5095 } 5096 5097 CloneMap& Compile::clone_map() { return _clone_map; } 5098 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5099 5100 void NodeCloneInfo::dump_on(outputStream* st) const { 5101 st->print(" {%d:%d} ", idx(), gen()); 5102 } 5103 5104 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5105 uint64_t val = value(old->_idx); 5106 NodeCloneInfo cio(val); 5107 assert(val != 0, "old node should be in the map"); 5108 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5109 insert(nnn->_idx, cin.get()); 5110 #ifndef PRODUCT 5111 if (is_debug()) { 5112 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5113 } 5114 #endif 5115 } 5116 5117 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5118 NodeCloneInfo cio(value(old->_idx)); 5119 if (cio.get() == 0) { 5120 cio.set(old->_idx, 0); 5121 insert(old->_idx, cio.get()); 5122 #ifndef PRODUCT 5123 if (is_debug()) { 5124 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5125 } 5126 #endif 5127 } 5128 clone(old, nnn, gen); 5129 } 5130 5131 int CloneMap::max_gen() const { 5132 int g = 0; 5133 DictI di(_dict); 5134 for(; di.test(); ++di) { 5135 int t = gen(di._key); 5136 if (g < t) { 5137 g = t; 5138 #ifndef PRODUCT 5139 if (is_debug()) { 5140 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5141 } 5142 #endif 5143 } 5144 } 5145 return g; 5146 } 5147 5148 void CloneMap::dump(node_idx_t key, outputStream* st) const { 5149 uint64_t val = value(key); 5150 if (val != 0) { 5151 NodeCloneInfo ni(val); 5152 ni.dump_on(st); 5153 } 5154 } 5155 5156 void Compile::shuffle_macro_nodes() { 5157 if (_macro_nodes.length() < 2) { 5158 return; 5159 } 5160 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) { 5161 uint j = C->random() % (i + 1); 5162 swap(_macro_nodes.at(i), _macro_nodes.at(j)); 5163 } 5164 } 5165 5166 // Move Allocate nodes to the start of the list 5167 void Compile::sort_macro_nodes() { 5168 int count = macro_count(); 5169 int allocates = 0; 5170 for (int i = 0; i < count; i++) { 5171 Node* n = macro_node(i); 5172 if (n->is_Allocate()) { 5173 if (i != allocates) { 5174 Node* tmp = macro_node(allocates); 5175 _macro_nodes.at_put(allocates, n); 5176 _macro_nodes.at_put(i, tmp); 5177 } 5178 allocates++; 5179 } 5180 } 5181 } 5182 5183 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5184 if (failing()) { return; } 5185 EventCompilerPhase event(UNTIMED); 5186 if (event.should_commit()) { 5187 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5188 } 5189 #ifndef PRODUCT 5190 ResourceMark rm; 5191 stringStream ss; 5192 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5193 int iter = ++_igv_phase_iter[cpt]; 5194 if (iter > 1) { 5195 ss.print(" %d", iter); 5196 } 5197 if (n != nullptr) { 5198 ss.print(": %d %s ", n->_idx, NodeClassNames[n->Opcode()]); 5199 } 5200 5201 const char* name = ss.as_string(); 5202 if (should_print_igv(level)) { 5203 _igv_printer->print_method(name, level); 5204 } 5205 if (should_print_phase(cpt)) { 5206 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5207 } 5208 #endif 5209 C->_latest_stage_start_counter.stamp(); 5210 } 5211 5212 // Only used from CompileWrapper 5213 void Compile::begin_method() { 5214 #ifndef PRODUCT 5215 if (_method != nullptr && should_print_igv(1)) { 5216 _igv_printer->begin_method(); 5217 } 5218 #endif 5219 C->_latest_stage_start_counter.stamp(); 5220 } 5221 5222 // Only used from CompileWrapper 5223 void Compile::end_method() { 5224 EventCompilerPhase event(UNTIMED); 5225 if (event.should_commit()) { 5226 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5227 } 5228 5229 #ifndef PRODUCT 5230 if (_method != nullptr && should_print_igv(1)) { 5231 _igv_printer->end_method(); 5232 } 5233 #endif 5234 } 5235 5236 bool Compile::should_print_phase(CompilerPhaseType cpt) { 5237 #ifndef PRODUCT 5238 if (_directive->should_print_phase(cpt)) { 5239 return true; 5240 } 5241 #endif 5242 return false; 5243 } 5244 5245 bool Compile::should_print_igv(const int level) { 5246 #ifndef PRODUCT 5247 if (PrintIdealGraphLevel < 0) { // disabled by the user 5248 return false; 5249 } 5250 5251 bool need = directive()->IGVPrintLevelOption >= level; 5252 if (need && !_igv_printer) { 5253 _igv_printer = IdealGraphPrinter::printer(); 5254 _igv_printer->set_compile(this); 5255 } 5256 return need; 5257 #else 5258 return false; 5259 #endif 5260 } 5261 5262 #ifndef PRODUCT 5263 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5264 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5265 5266 // Called from debugger. Prints method to the default file with the default phase name. 5267 // This works regardless of any Ideal Graph Visualizer flags set or not. 5268 void igv_print() { 5269 Compile::current()->igv_print_method_to_file(); 5270 } 5271 5272 // Same as igv_print() above but with a specified phase name. 5273 void igv_print(const char* phase_name) { 5274 Compile::current()->igv_print_method_to_file(phase_name); 5275 } 5276 5277 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5278 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5279 // This works regardless of any Ideal Graph Visualizer flags set or not. 5280 void igv_print(bool network) { 5281 if (network) { 5282 Compile::current()->igv_print_method_to_network(); 5283 } else { 5284 Compile::current()->igv_print_method_to_file(); 5285 } 5286 } 5287 5288 // Same as igv_print(bool network) above but with a specified phase name. 5289 void igv_print(bool network, const char* phase_name) { 5290 if (network) { 5291 Compile::current()->igv_print_method_to_network(phase_name); 5292 } else { 5293 Compile::current()->igv_print_method_to_file(phase_name); 5294 } 5295 } 5296 5297 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5298 void igv_print_default() { 5299 Compile::current()->print_method(PHASE_DEBUG, 0); 5300 } 5301 5302 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5303 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5304 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5305 void igv_append() { 5306 Compile::current()->igv_print_method_to_file("Debug", true); 5307 } 5308 5309 // Same as igv_append() above but with a specified phase name. 5310 void igv_append(const char* phase_name) { 5311 Compile::current()->igv_print_method_to_file(phase_name, true); 5312 } 5313 5314 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 5315 const char* file_name = "custom_debug.xml"; 5316 if (_debug_file_printer == nullptr) { 5317 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5318 } else { 5319 _debug_file_printer->update_compiled_method(C->method()); 5320 } 5321 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5322 _debug_file_printer->print(phase_name, (Node*)C->root()); 5323 } 5324 5325 void Compile::igv_print_method_to_network(const char* phase_name) { 5326 if (_debug_network_printer == nullptr) { 5327 _debug_network_printer = new IdealGraphPrinter(C); 5328 } else { 5329 _debug_network_printer->update_compiled_method(C->method()); 5330 } 5331 tty->print_cr("Method printed over network stream to IGV"); 5332 _debug_network_printer->print(phase_name, (Node*)C->root()); 5333 } 5334 #endif 5335 5336 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5337 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5338 return value; 5339 } 5340 Node* result = nullptr; 5341 if (bt == T_BYTE) { 5342 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5343 result = new RShiftINode(result, phase->intcon(24)); 5344 } else if (bt == T_BOOLEAN) { 5345 result = new AndINode(value, phase->intcon(0xFF)); 5346 } else if (bt == T_CHAR) { 5347 result = new AndINode(value,phase->intcon(0xFFFF)); 5348 } else { 5349 assert(bt == T_SHORT, "unexpected narrow type"); 5350 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5351 result = new RShiftINode(result, phase->intcon(16)); 5352 } 5353 if (transform_res) { 5354 result = phase->transform(result); 5355 } 5356 return result; 5357 } 5358 5359 void Compile::record_method_not_compilable_oom() { 5360 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit()); 5361 }