1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "asm/macroAssembler.hpp"
26 #include "asm/macroAssembler.inline.hpp"
27 #include "ci/ciReplay.hpp"
28 #include "classfile/javaClasses.hpp"
29 #include "code/aotCodeCache.hpp"
30 #include "code/exceptionHandlerTable.hpp"
31 #include "code/nmethod.hpp"
32 #include "compiler/compilationFailureInfo.hpp"
33 #include "compiler/compilationMemoryStatistic.hpp"
34 #include "compiler/compileBroker.hpp"
35 #include "compiler/compileLog.hpp"
36 #include "compiler/compiler_globals.hpp"
37 #include "compiler/compilerDefinitions.hpp"
38 #include "compiler/compilerOracle.hpp"
39 #include "compiler/disassembler.hpp"
40 #include "compiler/oopMap.hpp"
41 #include "gc/shared/barrierSet.hpp"
42 #include "gc/shared/c2/barrierSetC2.hpp"
43 #include "jfr/jfrEvents.hpp"
44 #include "jvm_io.h"
45 #include "memory/allocation.hpp"
46 #include "memory/arena.hpp"
47 #include "memory/resourceArea.hpp"
48 #include "opto/addnode.hpp"
49 #include "opto/block.hpp"
50 #include "opto/c2compiler.hpp"
51 #include "opto/callGenerator.hpp"
52 #include "opto/callnode.hpp"
53 #include "opto/castnode.hpp"
54 #include "opto/cfgnode.hpp"
55 #include "opto/chaitin.hpp"
56 #include "opto/compile.hpp"
57 #include "opto/connode.hpp"
58 #include "opto/convertnode.hpp"
59 #include "opto/divnode.hpp"
60 #include "opto/escape.hpp"
61 #include "opto/idealGraphPrinter.hpp"
62 #include "opto/locknode.hpp"
63 #include "opto/loopnode.hpp"
64 #include "opto/machnode.hpp"
65 #include "opto/macro.hpp"
66 #include "opto/matcher.hpp"
67 #include "opto/mathexactnode.hpp"
68 #include "opto/memnode.hpp"
69 #include "opto/mulnode.hpp"
70 #include "opto/narrowptrnode.hpp"
71 #include "opto/node.hpp"
72 #include "opto/opaquenode.hpp"
73 #include "opto/opcodes.hpp"
74 #include "opto/output.hpp"
75 #include "opto/parse.hpp"
76 #include "opto/phaseX.hpp"
77 #include "opto/rootnode.hpp"
78 #include "opto/runtime.hpp"
79 #include "opto/stringopts.hpp"
80 #include "opto/type.hpp"
81 #include "opto/vector.hpp"
82 #include "opto/vectornode.hpp"
83 #include "runtime/globals_extension.hpp"
84 #include "runtime/sharedRuntime.hpp"
85 #include "runtime/signature.hpp"
86 #include "runtime/stubRoutines.hpp"
87 #include "runtime/timer.hpp"
88 #include "utilities/align.hpp"
89 #include "utilities/copy.hpp"
90 #include "utilities/macros.hpp"
91 #include "utilities/resourceHash.hpp"
92
93 // -------------------- Compile::mach_constant_base_node -----------------------
94 // Constant table base node singleton.
95 MachConstantBaseNode* Compile::mach_constant_base_node() {
96 if (_mach_constant_base_node == nullptr) {
97 _mach_constant_base_node = new MachConstantBaseNode();
98 _mach_constant_base_node->add_req(C->root());
99 }
100 return _mach_constant_base_node;
101 }
102
103
104 /// Support for intrinsics.
105
106 // Return the index at which m must be inserted (or already exists).
107 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
108 class IntrinsicDescPair {
109 private:
110 ciMethod* _m;
111 bool _is_virtual;
112 public:
113 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
114 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
115 ciMethod* m= elt->method();
116 ciMethod* key_m = key->_m;
117 if (key_m < m) return -1;
118 else if (key_m > m) return 1;
119 else {
120 bool is_virtual = elt->is_virtual();
121 bool key_virtual = key->_is_virtual;
122 if (key_virtual < is_virtual) return -1;
123 else if (key_virtual > is_virtual) return 1;
124 else return 0;
125 }
126 }
127 };
128 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
129 #ifdef ASSERT
130 for (int i = 1; i < _intrinsics.length(); i++) {
131 CallGenerator* cg1 = _intrinsics.at(i-1);
132 CallGenerator* cg2 = _intrinsics.at(i);
133 assert(cg1->method() != cg2->method()
134 ? cg1->method() < cg2->method()
135 : cg1->is_virtual() < cg2->is_virtual(),
136 "compiler intrinsics list must stay sorted");
137 }
138 #endif
139 IntrinsicDescPair pair(m, is_virtual);
140 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
141 }
142
143 void Compile::register_intrinsic(CallGenerator* cg) {
144 bool found = false;
145 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
146 assert(!found, "registering twice");
147 _intrinsics.insert_before(index, cg);
148 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
149 }
150
151 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
152 assert(m->is_loaded(), "don't try this on unloaded methods");
153 if (_intrinsics.length() > 0) {
154 bool found = false;
155 int index = intrinsic_insertion_index(m, is_virtual, found);
156 if (found) {
157 return _intrinsics.at(index);
158 }
159 }
160 // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
161 if (m->intrinsic_id() != vmIntrinsics::_none &&
162 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
163 CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
164 if (cg != nullptr) {
165 // Save it for next time:
166 register_intrinsic(cg);
167 return cg;
168 } else {
169 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
170 }
171 }
172 return nullptr;
173 }
174
175 // Compile::make_vm_intrinsic is defined in library_call.cpp.
176
177 #ifndef PRODUCT
178 // statistics gathering...
179
180 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0};
181 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0};
182
183 inline int as_int(vmIntrinsics::ID id) {
184 return vmIntrinsics::as_int(id);
185 }
186
187 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
188 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
189 int oflags = _intrinsic_hist_flags[as_int(id)];
190 assert(flags != 0, "what happened?");
191 if (is_virtual) {
192 flags |= _intrinsic_virtual;
193 }
194 bool changed = (flags != oflags);
195 if ((flags & _intrinsic_worked) != 0) {
196 juint count = (_intrinsic_hist_count[as_int(id)] += 1);
197 if (count == 1) {
198 changed = true; // first time
199 }
200 // increment the overall count also:
201 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1;
202 }
203 if (changed) {
204 if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
205 // Something changed about the intrinsic's virtuality.
206 if ((flags & _intrinsic_virtual) != 0) {
207 // This is the first use of this intrinsic as a virtual call.
208 if (oflags != 0) {
209 // We already saw it as a non-virtual, so note both cases.
210 flags |= _intrinsic_both;
211 }
212 } else if ((oflags & _intrinsic_both) == 0) {
213 // This is the first use of this intrinsic as a non-virtual
214 flags |= _intrinsic_both;
215 }
216 }
217 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags);
218 }
219 // update the overall flags also:
220 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags;
221 return changed;
222 }
223
224 static char* format_flags(int flags, char* buf) {
225 buf[0] = 0;
226 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked");
227 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed");
228 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled");
229 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual");
230 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual");
231 if (buf[0] == 0) strcat(buf, ",");
232 assert(buf[0] == ',', "must be");
233 return &buf[1];
234 }
235
236 void Compile::print_intrinsic_statistics() {
237 char flagsbuf[100];
238 ttyLocker ttyl;
239 if (xtty != nullptr) xtty->head("statistics type='intrinsic'");
240 tty->print_cr("Compiler intrinsic usage:");
241 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)];
242 if (total == 0) total = 1; // avoid div0 in case of no successes
243 #define PRINT_STAT_LINE(name, c, f) \
244 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
245 for (auto id : EnumRange<vmIntrinsicID>{}) {
246 int flags = _intrinsic_hist_flags[as_int(id)];
247 juint count = _intrinsic_hist_count[as_int(id)];
248 if ((flags | count) != 0) {
249 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
250 }
251 }
252 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf));
253 if (xtty != nullptr) xtty->tail("statistics");
254 }
255
256 void Compile::print_statistics() {
257 { ttyLocker ttyl;
258 if (xtty != nullptr) xtty->head("statistics type='opto'");
259 Parse::print_statistics();
260 PhaseStringOpts::print_statistics();
261 PhaseCCP::print_statistics();
262 PhaseRegAlloc::print_statistics();
263 PhaseOutput::print_statistics();
264 PhasePeephole::print_statistics();
265 PhaseIdealLoop::print_statistics();
266 ConnectionGraph::print_statistics();
267 PhaseMacroExpand::print_statistics();
268 if (xtty != nullptr) xtty->tail("statistics");
269 }
270 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) {
271 // put this under its own <statistics> element.
272 print_intrinsic_statistics();
273 }
274 }
275 #endif //PRODUCT
276
277 void Compile::gvn_replace_by(Node* n, Node* nn) {
278 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
279 Node* use = n->last_out(i);
280 bool is_in_table = initial_gvn()->hash_delete(use);
281 uint uses_found = 0;
282 for (uint j = 0; j < use->len(); j++) {
283 if (use->in(j) == n) {
284 if (j < use->req())
285 use->set_req(j, nn);
286 else
287 use->set_prec(j, nn);
288 uses_found++;
289 }
290 }
291 if (is_in_table) {
292 // reinsert into table
293 initial_gvn()->hash_find_insert(use);
294 }
295 record_for_igvn(use);
296 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist);
297 i -= uses_found; // we deleted 1 or more copies of this edge
298 }
299 }
300
301
302 // Identify all nodes that are reachable from below, useful.
303 // Use breadth-first pass that records state in a Unique_Node_List,
304 // recursive traversal is slower.
305 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
306 int estimated_worklist_size = live_nodes();
307 useful.map( estimated_worklist_size, nullptr ); // preallocate space
308
309 // Initialize worklist
310 if (root() != nullptr) { useful.push(root()); }
311 // If 'top' is cached, declare it useful to preserve cached node
312 if (cached_top_node()) { useful.push(cached_top_node()); }
313
314 // Push all useful nodes onto the list, breadthfirst
315 for( uint next = 0; next < useful.size(); ++next ) {
316 assert( next < unique(), "Unique useful nodes < total nodes");
317 Node *n = useful.at(next);
318 uint max = n->len();
319 for( uint i = 0; i < max; ++i ) {
320 Node *m = n->in(i);
321 if (not_a_node(m)) continue;
322 useful.push(m);
323 }
324 }
325 }
326
327 // Update dead_node_list with any missing dead nodes using useful
328 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
329 void Compile::update_dead_node_list(Unique_Node_List &useful) {
330 uint max_idx = unique();
331 VectorSet& useful_node_set = useful.member_set();
332
333 for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
334 // If node with index node_idx is not in useful set,
335 // mark it as dead in dead node list.
336 if (!useful_node_set.test(node_idx)) {
337 record_dead_node(node_idx);
338 }
339 }
340 }
341
342 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
343 int shift = 0;
344 for (int i = 0; i < inlines->length(); i++) {
345 CallGenerator* cg = inlines->at(i);
346 if (useful.member(cg->call_node())) {
347 if (shift > 0) {
348 inlines->at_put(i - shift, cg);
349 }
350 } else {
351 shift++; // skip over the dead element
352 }
353 }
354 if (shift > 0) {
355 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array
356 }
357 }
358
359 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) {
360 assert(dead != nullptr && dead->is_Call(), "sanity");
361 int found = 0;
362 for (int i = 0; i < inlines->length(); i++) {
363 if (inlines->at(i)->call_node() == dead) {
364 inlines->remove_at(i);
365 found++;
366 NOT_DEBUG( break; ) // elements are unique, so exit early
367 }
368 }
369 assert(found <= 1, "not unique");
370 }
371
372 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)>
373 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) {
374 for (int i = node_list.length() - 1; i >= 0; i--) {
375 N* node = node_list.at(i);
376 if (!useful.member(node)) {
377 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
378 }
379 }
380 }
381
382 void Compile::remove_useless_node(Node* dead) {
383 remove_modified_node(dead);
384
385 // Constant node that has no out-edges and has only one in-edge from
386 // root is usually dead. However, sometimes reshaping walk makes
387 // it reachable by adding use edges. So, we will NOT count Con nodes
388 // as dead to be conservative about the dead node count at any
389 // given time.
390 if (!dead->is_Con()) {
391 record_dead_node(dead->_idx);
392 }
393 if (dead->is_macro()) {
394 remove_macro_node(dead);
395 }
396 if (dead->is_expensive()) {
397 remove_expensive_node(dead);
398 }
399 if (dead->is_OpaqueTemplateAssertionPredicate()) {
400 remove_template_assertion_predicate_opaque(dead->as_OpaqueTemplateAssertionPredicate());
401 }
402 if (dead->is_ParsePredicate()) {
403 remove_parse_predicate(dead->as_ParsePredicate());
404 }
405 if (dead->for_post_loop_opts_igvn()) {
406 remove_from_post_loop_opts_igvn(dead);
407 }
408 if (dead->for_merge_stores_igvn()) {
409 remove_from_merge_stores_igvn(dead);
410 }
411 if (dead->is_Call()) {
412 remove_useless_late_inlines( &_late_inlines, dead);
413 remove_useless_late_inlines( &_string_late_inlines, dead);
414 remove_useless_late_inlines( &_boxing_late_inlines, dead);
415 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead);
416
417 if (dead->is_CallStaticJava()) {
418 remove_unstable_if_trap(dead->as_CallStaticJava(), false);
419 }
420 }
421 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
422 bs->unregister_potential_barrier_node(dead);
423 }
424
425 // Disconnect all useless nodes by disconnecting those at the boundary.
426 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints) {
427 uint next = 0;
428 while (next < useful.size()) {
429 Node *n = useful.at(next++);
430 if (n->is_SafePoint()) {
431 // We're done with a parsing phase. Replaced nodes are not valid
432 // beyond that point.
433 n->as_SafePoint()->delete_replaced_nodes();
434 }
435 // Use raw traversal of out edges since this code removes out edges
436 int max = n->outcnt();
437 for (int j = 0; j < max; ++j) {
438 Node* child = n->raw_out(j);
439 if (!useful.member(child)) {
440 assert(!child->is_top() || child != top(),
441 "If top is cached in Compile object it is in useful list");
442 // Only need to remove this out-edge to the useless node
443 n->raw_del_out(j);
444 --j;
445 --max;
446 if (child->is_data_proj_of_pure_function(n)) {
447 worklist.push(n);
448 }
449 }
450 }
451 if (n->outcnt() == 1 && n->has_special_unique_user()) {
452 assert(useful.member(n->unique_out()), "do not push a useless node");
453 worklist.push(n->unique_out());
454 }
455 }
456
457 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes
458 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes
459 // Remove useless Template Assertion Predicate opaque nodes
460 remove_useless_nodes(_template_assertion_predicate_opaques, useful);
461 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes
462 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass
463 remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass
464 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps
465 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes
466 #ifdef ASSERT
467 if (_modified_nodes != nullptr) {
468 _modified_nodes->remove_useless_nodes(useful.member_set());
469 }
470 #endif
471
472 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
473 bs->eliminate_useless_gc_barriers(useful, this);
474 // clean up the late inline lists
475 remove_useless_late_inlines( &_late_inlines, useful);
476 remove_useless_late_inlines( &_string_late_inlines, useful);
477 remove_useless_late_inlines( &_boxing_late_inlines, useful);
478 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful);
479 DEBUG_ONLY(verify_graph_edges(true /*check for no_dead_code*/, root_and_safepoints);)
480 }
481
482 // ============================================================================
483 //------------------------------CompileWrapper---------------------------------
484 class CompileWrapper : public StackObj {
485 Compile *const _compile;
486 public:
487 CompileWrapper(Compile* compile);
488
489 ~CompileWrapper();
490 };
491
492 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
493 // the Compile* pointer is stored in the current ciEnv:
494 ciEnv* env = compile->env();
495 assert(env == ciEnv::current(), "must already be a ciEnv active");
496 assert(env->compiler_data() == nullptr, "compile already active?");
497 env->set_compiler_data(compile);
498 assert(compile == Compile::current(), "sanity");
499
500 compile->set_type_dict(nullptr);
501 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
502 compile->clone_map().set_clone_idx(0);
503 compile->set_type_last_size(0);
504 compile->set_last_tf(nullptr, nullptr);
505 compile->set_indexSet_arena(nullptr);
506 compile->set_indexSet_free_block_list(nullptr);
507 compile->init_type_arena();
508 Type::Initialize(compile);
509 _compile->begin_method();
510 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
511 }
512 CompileWrapper::~CompileWrapper() {
513 // simulate crash during compilation
514 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned");
515
516 _compile->end_method();
517 _compile->env()->set_compiler_data(nullptr);
518 }
519
520
521 //----------------------------print_compile_messages---------------------------
522 void Compile::print_compile_messages() {
523 #ifndef PRODUCT
524 // Check if recompiling
525 if (!subsume_loads() && PrintOpto) {
526 // Recompiling without allowing machine instructions to subsume loads
527 tty->print_cr("*********************************************************");
528 tty->print_cr("** Bailout: Recompile without subsuming loads **");
529 tty->print_cr("*********************************************************");
530 }
531 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) {
532 // Recompiling without escape analysis
533 tty->print_cr("*********************************************************");
534 tty->print_cr("** Bailout: Recompile without escape analysis **");
535 tty->print_cr("*********************************************************");
536 }
537 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) {
538 // Recompiling without iterative escape analysis
539 tty->print_cr("*********************************************************");
540 tty->print_cr("** Bailout: Recompile without iterative escape analysis**");
541 tty->print_cr("*********************************************************");
542 }
543 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) {
544 // Recompiling without reducing allocation merges
545 tty->print_cr("*********************************************************");
546 tty->print_cr("** Bailout: Recompile without reduce allocation merges **");
547 tty->print_cr("*********************************************************");
548 }
549 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) {
550 // Recompiling without boxing elimination
551 tty->print_cr("*********************************************************");
552 tty->print_cr("** Bailout: Recompile without boxing elimination **");
553 tty->print_cr("*********************************************************");
554 }
555 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) {
556 // Recompiling without locks coarsening
557 tty->print_cr("*********************************************************");
558 tty->print_cr("** Bailout: Recompile without locks coarsening **");
559 tty->print_cr("*********************************************************");
560 }
561 if (env()->break_at_compile()) {
562 // Open the debugger when compiling this method.
563 tty->print("### Breaking when compiling: ");
564 method()->print_short_name();
565 tty->cr();
566 BREAKPOINT;
567 }
568
569 if( PrintOpto ) {
570 if (is_osr_compilation()) {
571 tty->print("[OSR]%3d", _compile_id);
572 } else {
573 tty->print("%3d", _compile_id);
574 }
575 }
576 #endif
577 }
578
579 #ifndef PRODUCT
580 void Compile::print_phase(const char* phase_name) {
581 tty->print_cr("%u.\t%s", ++_phase_counter, phase_name);
582 }
583
584 void Compile::print_ideal_ir(const char* phase_name) {
585 // keep the following output all in one block
586 // This output goes directly to the tty, not the compiler log.
587 // To enable tools to match it up with the compilation activity,
588 // be sure to tag this tty output with the compile ID.
589
590 // Node dumping can cause a safepoint, which can break the tty lock.
591 // Buffer all node dumps, so that all safepoints happen before we lock.
592 ResourceMark rm;
593 stringStream ss;
594
595 if (_output == nullptr) {
596 ss.print_cr("AFTER: %s", phase_name);
597 // Print out all nodes in ascending order of index.
598 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss);
599 } else {
600 // Dump the node blockwise if we have a scheduling
601 _output->print_scheduling(&ss);
602 }
603
604 // Check that the lock is not broken by a safepoint.
605 NoSafepointVerifier nsv;
606 ttyLocker ttyl;
607 if (xtty != nullptr) {
608 xtty->head("ideal compile_id='%d'%s compile_phase='%s'",
609 compile_id(),
610 is_osr_compilation() ? " compile_kind='osr'" : "",
611 phase_name);
612 }
613
614 tty->print("%s", ss.as_string());
615
616 if (xtty != nullptr) {
617 xtty->tail("ideal");
618 }
619 }
620 #endif
621
622 // ============================================================================
623 //------------------------------Compile standard-------------------------------
624
625 // Compile a method. entry_bci is -1 for normal compilations and indicates
626 // the continuation bci for on stack replacement.
627
628
629 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci,
630 Options options, DirectiveSet* directive)
631 : Phase(Compiler),
632 _compile_id(ci_env->compile_id()),
633 _options(options),
634 _method(target),
635 _entry_bci(osr_bci),
636 _ilt(nullptr),
637 _stub_function(nullptr),
638 _stub_name(nullptr),
639 _stub_id(StubId::NO_STUBID),
640 _stub_entry_point(nullptr),
641 _max_node_limit(MaxNodeLimit),
642 _post_loop_opts_phase(false),
643 _merge_stores_phase(false),
644 _allow_macro_nodes(true),
645 _inlining_progress(false),
646 _inlining_incrementally(false),
647 _do_cleanup(false),
648 _has_reserved_stack_access(target->has_reserved_stack_access()),
649 #ifndef PRODUCT
650 _igv_idx(0),
651 _trace_opto_output(directive->TraceOptoOutputOption),
652 #endif
653 _has_method_handle_invokes(false),
654 _clinit_barrier_on_entry(false),
655 _stress_seed(0),
656 _comp_arena(mtCompiler, Arena::Tag::tag_comp),
657 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
658 _env(ci_env),
659 _directive(directive),
660 _log(ci_env->log()),
661 _first_failure_details(nullptr),
662 _intrinsics(comp_arena(), 0, 0, nullptr),
663 _macro_nodes(comp_arena(), 8, 0, nullptr),
664 _parse_predicates(comp_arena(), 8, 0, nullptr),
665 _template_assertion_predicate_opaques(comp_arena(), 8, 0, nullptr),
666 _expensive_nodes(comp_arena(), 8, 0, nullptr),
667 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
668 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr),
669 _unstable_if_traps(comp_arena(), 8, 0, nullptr),
670 _coarsened_locks(comp_arena(), 8, 0, nullptr),
671 _congraph(nullptr),
672 NOT_PRODUCT(_igv_printer(nullptr) COMMA)
673 _unique(0),
674 _dead_node_count(0),
675 _dead_node_list(comp_arena()),
676 _node_arena_one(mtCompiler, Arena::Tag::tag_node),
677 _node_arena_two(mtCompiler, Arena::Tag::tag_node),
678 _node_arena(&_node_arena_one),
679 _mach_constant_base_node(nullptr),
680 _Compile_types(mtCompiler, Arena::Tag::tag_type),
681 _initial_gvn(nullptr),
682 _igvn_worklist(nullptr),
683 _types(nullptr),
684 _node_hash(nullptr),
685 _late_inlines(comp_arena(), 2, 0, nullptr),
686 _string_late_inlines(comp_arena(), 2, 0, nullptr),
687 _boxing_late_inlines(comp_arena(), 2, 0, nullptr),
688 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr),
689 _late_inlines_pos(0),
690 _number_of_mh_late_inlines(0),
691 _oom(false),
692 _replay_inline_data(nullptr),
693 _inline_printer(this),
694 _java_calls(0),
695 _inner_loops(0),
696 _interpreter_frame_size(0),
697 _output(nullptr)
698 #ifndef PRODUCT
699 ,
700 _in_dump_cnt(0)
701 #endif
702 {
703 C = this;
704 CompileWrapper cw(this);
705
706 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
707 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false);
708
709 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
710 bool print_opto_assembly = directive->PrintOptoAssemblyOption;
711 // We can always print a disassembly, either abstract (hex dump) or
712 // with the help of a suitable hsdis library. Thus, we should not
713 // couple print_assembly and print_opto_assembly controls.
714 // But: always print opto and regular assembly on compile command 'print'.
715 bool print_assembly = directive->PrintAssemblyOption;
716 set_print_assembly(print_opto_assembly || print_assembly);
717 #else
718 set_print_assembly(false); // must initialize.
719 #endif
720
721 #ifndef PRODUCT
722 set_parsed_irreducible_loop(false);
723 #endif
724
725 if (directive->ReplayInlineOption) {
726 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
727 }
728 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
729 set_print_intrinsics(directive->PrintIntrinsicsOption);
730 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
731
732 if (ProfileTraps) {
733 // Make sure the method being compiled gets its own MDO,
734 // so we can at least track the decompile_count().
735 method()->ensure_method_data();
736 }
737
738 if (StressLCM || StressGCM || StressIGVN || StressCCP ||
739 StressIncrementalInlining || StressMacroExpansion ||
740 StressMacroElimination || StressUnstableIfTraps ||
741 StressBailout || StressLoopPeeling) {
742 initialize_stress_seed(directive);
743 }
744
745 Init(/*do_aliasing=*/ true);
746
747 print_compile_messages();
748
749 _ilt = InlineTree::build_inline_tree_root();
750
751 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
752 assert(num_alias_types() >= AliasIdxRaw, "");
753
754 #define MINIMUM_NODE_HASH 1023
755
756 // GVN that will be run immediately on new nodes
757 uint estimated_size = method()->code_size()*4+64;
758 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
759 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
760 _types = new (comp_arena()) Type_Array(comp_arena());
761 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size);
762 PhaseGVN gvn;
763 set_initial_gvn(&gvn);
764
765 { // Scope for timing the parser
766 TracePhase tp(_t_parser);
767
768 // Put top into the hash table ASAP.
769 initial_gvn()->transform(top());
770
771 // Set up tf(), start(), and find a CallGenerator.
772 CallGenerator* cg = nullptr;
773 if (is_osr_compilation()) {
774 const TypeTuple *domain = StartOSRNode::osr_domain();
775 const TypeTuple *range = TypeTuple::make_range(method()->signature());
776 init_tf(TypeFunc::make(domain, range));
777 StartNode* s = new StartOSRNode(root(), domain);
778 initial_gvn()->set_type_bottom(s);
779 verify_start(s);
780 cg = CallGenerator::for_osr(method(), entry_bci());
781 } else {
782 // Normal case.
783 init_tf(TypeFunc::make(method()));
784 StartNode* s = new StartNode(root(), tf()->domain());
785 initial_gvn()->set_type_bottom(s);
786 verify_start(s);
787 float past_uses = method()->interpreter_invocation_count();
788 float expected_uses = past_uses;
789 cg = CallGenerator::for_inline(method(), expected_uses);
790 }
791 if (failing()) return;
792 if (cg == nullptr) {
793 const char* reason = InlineTree::check_can_parse(method());
794 assert(reason != nullptr, "expect reason for parse failure");
795 stringStream ss;
796 ss.print("cannot parse method: %s", reason);
797 record_method_not_compilable(ss.as_string());
798 return;
799 }
800
801 gvn.set_type(root(), root()->bottom_type());
802
803 JVMState* jvms = build_start_state(start(), tf());
804 if ((jvms = cg->generate(jvms)) == nullptr) {
805 assert(failure_reason() != nullptr, "expect reason for parse failure");
806 stringStream ss;
807 ss.print("method parse failed: %s", failure_reason());
808 record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true));
809 return;
810 }
811 GraphKit kit(jvms);
812
813 if (!kit.stopped()) {
814 // Accept return values, and transfer control we know not where.
815 // This is done by a special, unique ReturnNode bound to root.
816 return_values(kit.jvms());
817 }
818
819 if (kit.has_exceptions()) {
820 // Any exceptions that escape from this call must be rethrown
821 // to whatever caller is dynamically above us on the stack.
822 // This is done by a special, unique RethrowNode bound to root.
823 rethrow_exceptions(kit.transfer_exceptions_into_jvms());
824 }
825
826 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
827
828 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
829 inline_string_calls(true);
830 }
831
832 if (failing()) return;
833
834 // Remove clutter produced by parsing.
835 if (!failing()) {
836 ResourceMark rm;
837 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
838 }
839 }
840
841 // Note: Large methods are capped off in do_one_bytecode().
842 if (failing()) return;
843
844 // After parsing, node notes are no longer automagic.
845 // They must be propagated by register_new_node_with_optimizer(),
846 // clone(), or the like.
847 set_default_node_notes(nullptr);
848
849 #ifndef PRODUCT
850 if (should_print_igv(1)) {
851 _igv_printer->print_inlining();
852 }
853 #endif
854
855 if (failing()) return;
856 NOT_PRODUCT( verify_graph_edges(); )
857
858 // Now optimize
859 Optimize();
860 if (failing()) return;
861 NOT_PRODUCT( verify_graph_edges(); )
862
863 #ifndef PRODUCT
864 if (should_print_ideal()) {
865 print_ideal_ir("print_ideal");
866 }
867 #endif
868
869 #ifdef ASSERT
870 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
871 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
872 #endif
873
874 // Dump compilation data to replay it.
875 if (directive->DumpReplayOption) {
876 env()->dump_replay_data(_compile_id);
877 }
878 if (directive->DumpInlineOption && (ilt() != nullptr)) {
879 env()->dump_inline_data(_compile_id);
880 }
881
882 // Now that we know the size of all the monitors we can add a fixed slot
883 // for the original deopt pc.
884 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);
885 set_fixed_slots(next_slot);
886
887 // Compute when to use implicit null checks. Used by matching trap based
888 // nodes and NullCheck optimization.
889 set_allowed_deopt_reasons();
890
891 // Now generate code
892 Code_Gen();
893 }
894
895 //------------------------------Compile----------------------------------------
896 // Compile a runtime stub
897 Compile::Compile(ciEnv* ci_env,
898 TypeFunc_generator generator,
899 address stub_function,
900 const char* stub_name,
901 StubId stub_id,
902 int is_fancy_jump,
903 bool pass_tls,
904 bool return_pc,
905 DirectiveSet* directive)
906 : Phase(Compiler),
907 _compile_id(0),
908 _options(Options::for_runtime_stub()),
909 _method(nullptr),
910 _entry_bci(InvocationEntryBci),
911 _stub_function(stub_function),
912 _stub_name(stub_name),
913 _stub_id(stub_id),
914 _stub_entry_point(nullptr),
915 _max_node_limit(MaxNodeLimit),
916 _post_loop_opts_phase(false),
917 _merge_stores_phase(false),
918 _allow_macro_nodes(true),
919 _inlining_progress(false),
920 _inlining_incrementally(false),
921 _has_reserved_stack_access(false),
922 #ifndef PRODUCT
923 _igv_idx(0),
924 _trace_opto_output(directive->TraceOptoOutputOption),
925 #endif
926 _has_method_handle_invokes(false),
927 _clinit_barrier_on_entry(false),
928 _stress_seed(0),
929 _comp_arena(mtCompiler, Arena::Tag::tag_comp),
930 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
931 _env(ci_env),
932 _directive(directive),
933 _log(ci_env->log()),
934 _first_failure_details(nullptr),
935 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
936 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr),
937 _congraph(nullptr),
938 NOT_PRODUCT(_igv_printer(nullptr) COMMA)
939 _unique(0),
940 _dead_node_count(0),
941 _dead_node_list(comp_arena()),
942 _node_arena_one(mtCompiler, Arena::Tag::tag_node),
943 _node_arena_two(mtCompiler, Arena::Tag::tag_node),
944 _node_arena(&_node_arena_one),
945 _mach_constant_base_node(nullptr),
946 _Compile_types(mtCompiler, Arena::Tag::tag_type),
947 _initial_gvn(nullptr),
948 _igvn_worklist(nullptr),
949 _types(nullptr),
950 _node_hash(nullptr),
951 _number_of_mh_late_inlines(0),
952 _oom(false),
953 _replay_inline_data(nullptr),
954 _inline_printer(this),
955 _java_calls(0),
956 _inner_loops(0),
957 _interpreter_frame_size(0),
958 _output(nullptr),
959 #ifndef PRODUCT
960 _in_dump_cnt(0),
961 #endif
962 _allowed_reasons(0) {
963 C = this;
964
965 // try to reuse an existing stub
966 {
967 BlobId blob_id = StubInfo::blob(_stub_id);
968 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::C2Blob, blob_id);
969 if (blob != nullptr) {
970 RuntimeStub* rs = blob->as_runtime_stub();
971 _stub_entry_point = rs->entry_point();
972 return;
973 }
974 }
975
976 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false);
977 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false);
978
979 #ifndef PRODUCT
980 set_print_assembly(PrintFrameConverterAssembly);
981 set_parsed_irreducible_loop(false);
982 #else
983 set_print_assembly(false); // Must initialize.
984 #endif
985 set_has_irreducible_loop(false); // no loops
986
987 CompileWrapper cw(this);
988 Init(/*do_aliasing=*/ false);
989 init_tf((*generator)());
990
991 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
992 _types = new (comp_arena()) Type_Array(comp_arena());
993 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255);
994
995 if (StressLCM || StressGCM || StressBailout) {
996 initialize_stress_seed(directive);
997 }
998
999 {
1000 PhaseGVN gvn;
1001 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively
1002 gvn.transform(top());
1003
1004 GraphKit kit;
1005 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1006 }
1007
1008 NOT_PRODUCT( verify_graph_edges(); )
1009
1010 Code_Gen();
1011 }
1012
1013 Compile::~Compile() {
1014 delete _first_failure_details;
1015 };
1016
1017 //------------------------------Init-------------------------------------------
1018 // Prepare for a single compilation
1019 void Compile::Init(bool aliasing) {
1020 _do_aliasing = aliasing;
1021 _unique = 0;
1022 _regalloc = nullptr;
1023
1024 _tf = nullptr; // filled in later
1025 _top = nullptr; // cached later
1026 _matcher = nullptr; // filled in later
1027 _cfg = nullptr; // filled in later
1028
1029 _node_note_array = nullptr;
1030 _default_node_notes = nullptr;
1031 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize()
1032
1033 _immutable_memory = nullptr; // filled in at first inquiry
1034
1035 #ifdef ASSERT
1036 _phase_optimize_finished = false;
1037 _phase_verify_ideal_loop = false;
1038 _exception_backedge = false;
1039 _type_verify = nullptr;
1040 #endif
1041
1042 // Globally visible Nodes
1043 // First set TOP to null to give safe behavior during creation of RootNode
1044 set_cached_top_node(nullptr);
1045 set_root(new RootNode());
1046 // Now that you have a Root to point to, create the real TOP
1047 set_cached_top_node( new ConNode(Type::TOP) );
1048 set_recent_alloc(nullptr, nullptr);
1049
1050 // Create Debug Information Recorder to record scopes, oopmaps, etc.
1051 env()->set_oop_recorder(new OopRecorder(env()->arena()));
1052 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1053 env()->set_dependencies(new Dependencies(env()));
1054
1055 _fixed_slots = 0;
1056 set_has_split_ifs(false);
1057 set_has_loops(false); // first approximation
1058 set_has_stringbuilder(false);
1059 set_has_boxed_value(false);
1060 _trap_can_recompile = false; // no traps emitted yet
1061 _major_progress = true; // start out assuming good things will happen
1062 set_has_unsafe_access(false);
1063 set_max_vector_size(0);
1064 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers
1065 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1066 set_decompile_count(0);
1067
1068 #ifndef PRODUCT
1069 _phase_counter = 0;
1070 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter));
1071 #endif
1072
1073 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1074 _loop_opts_cnt = LoopOptsCount;
1075 set_do_inlining(Inline);
1076 set_max_inline_size(MaxInlineSize);
1077 set_freq_inline_size(FreqInlineSize);
1078 set_do_scheduling(OptoScheduling);
1079
1080 set_do_vector_loop(false);
1081 set_has_monitors(false);
1082 set_has_scoped_access(false);
1083
1084 if (AllowVectorizeOnDemand) {
1085 if (has_method() && _directive->VectorizeOption) {
1086 set_do_vector_loop(true);
1087 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());})
1088 } else if (has_method() && method()->name() != nullptr &&
1089 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1090 set_do_vector_loop(true);
1091 }
1092 }
1093 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1094 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());})
1095
1096 _max_node_limit = _directive->MaxNodeLimitOption;
1097
1098 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) {
1099 set_clinit_barrier_on_entry(true);
1100 }
1101 if (debug_info()->recording_non_safepoints()) {
1102 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1103 (comp_arena(), 8, 0, nullptr));
1104 set_default_node_notes(Node_Notes::make(this));
1105 }
1106
1107 const int grow_ats = 16;
1108 _max_alias_types = grow_ats;
1109 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1110 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats);
1111 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1112 {
1113 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i];
1114 }
1115 // Initialize the first few types.
1116 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr);
1117 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1118 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1119 _num_alias_types = AliasIdxRaw+1;
1120 // Zero out the alias type cache.
1121 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1122 // A null adr_type hits in the cache right away. Preload the right answer.
1123 probe_alias_cache(nullptr)->_index = AliasIdxTop;
1124 }
1125
1126 #ifdef ASSERT
1127 // Verify that the current StartNode is valid.
1128 void Compile::verify_start(StartNode* s) const {
1129 assert(failing_internal() || s == start(), "should be StartNode");
1130 }
1131 #endif
1132
1133 /**
1134 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1135 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1136 * the ideal graph.
1137 */
1138 StartNode* Compile::start() const {
1139 assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason());
1140 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1141 Node* start = root()->fast_out(i);
1142 if (start->is_Start()) {
1143 return start->as_Start();
1144 }
1145 }
1146 fatal("Did not find Start node!");
1147 return nullptr;
1148 }
1149
1150 //-------------------------------immutable_memory-------------------------------------
1151 // Access immutable memory
1152 Node* Compile::immutable_memory() {
1153 if (_immutable_memory != nullptr) {
1154 return _immutable_memory;
1155 }
1156 StartNode* s = start();
1157 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1158 Node *p = s->fast_out(i);
1159 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1160 _immutable_memory = p;
1161 return _immutable_memory;
1162 }
1163 }
1164 ShouldNotReachHere();
1165 return nullptr;
1166 }
1167
1168 //----------------------set_cached_top_node------------------------------------
1169 // Install the cached top node, and make sure Node::is_top works correctly.
1170 void Compile::set_cached_top_node(Node* tn) {
1171 if (tn != nullptr) verify_top(tn);
1172 Node* old_top = _top;
1173 _top = tn;
1174 // Calling Node::setup_is_top allows the nodes the chance to adjust
1175 // their _out arrays.
1176 if (_top != nullptr) _top->setup_is_top();
1177 if (old_top != nullptr) old_top->setup_is_top();
1178 assert(_top == nullptr || top()->is_top(), "");
1179 }
1180
1181 #ifdef ASSERT
1182 uint Compile::count_live_nodes_by_graph_walk() {
1183 Unique_Node_List useful(comp_arena());
1184 // Get useful node list by walking the graph.
1185 identify_useful_nodes(useful);
1186 return useful.size();
1187 }
1188
1189 void Compile::print_missing_nodes() {
1190
1191 // Return if CompileLog is null and PrintIdealNodeCount is false.
1192 if ((_log == nullptr) && (! PrintIdealNodeCount)) {
1193 return;
1194 }
1195
1196 // This is an expensive function. It is executed only when the user
1197 // specifies VerifyIdealNodeCount option or otherwise knows the
1198 // additional work that needs to be done to identify reachable nodes
1199 // by walking the flow graph and find the missing ones using
1200 // _dead_node_list.
1201
1202 Unique_Node_List useful(comp_arena());
1203 // Get useful node list by walking the graph.
1204 identify_useful_nodes(useful);
1205
1206 uint l_nodes = C->live_nodes();
1207 uint l_nodes_by_walk = useful.size();
1208
1209 if (l_nodes != l_nodes_by_walk) {
1210 if (_log != nullptr) {
1211 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1212 _log->stamp();
1213 _log->end_head();
1214 }
1215 VectorSet& useful_member_set = useful.member_set();
1216 int last_idx = l_nodes_by_walk;
1217 for (int i = 0; i < last_idx; i++) {
1218 if (useful_member_set.test(i)) {
1219 if (_dead_node_list.test(i)) {
1220 if (_log != nullptr) {
1221 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1222 }
1223 if (PrintIdealNodeCount) {
1224 // Print the log message to tty
1225 tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1226 useful.at(i)->dump();
1227 }
1228 }
1229 }
1230 else if (! _dead_node_list.test(i)) {
1231 if (_log != nullptr) {
1232 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1233 }
1234 if (PrintIdealNodeCount) {
1235 // Print the log message to tty
1236 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1237 }
1238 }
1239 }
1240 if (_log != nullptr) {
1241 _log->tail("mismatched_nodes");
1242 }
1243 }
1244 }
1245 void Compile::record_modified_node(Node* n) {
1246 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) {
1247 _modified_nodes->push(n);
1248 }
1249 }
1250
1251 void Compile::remove_modified_node(Node* n) {
1252 if (_modified_nodes != nullptr) {
1253 _modified_nodes->remove(n);
1254 }
1255 }
1256 #endif
1257
1258 #ifndef PRODUCT
1259 void Compile::verify_top(Node* tn) const {
1260 if (tn != nullptr) {
1261 assert(tn->is_Con(), "top node must be a constant");
1262 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1263 assert(tn->in(0) != nullptr, "must have live top node");
1264 }
1265 }
1266 #endif
1267
1268
1269 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1270
1271 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1272 guarantee(arr != nullptr, "");
1273 int num_blocks = arr->length();
1274 if (grow_by < num_blocks) grow_by = num_blocks;
1275 int num_notes = grow_by * _node_notes_block_size;
1276 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1277 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1278 while (num_notes > 0) {
1279 arr->append(notes);
1280 notes += _node_notes_block_size;
1281 num_notes -= _node_notes_block_size;
1282 }
1283 assert(num_notes == 0, "exact multiple, please");
1284 }
1285
1286 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1287 if (source == nullptr || dest == nullptr) return false;
1288
1289 if (dest->is_Con())
1290 return false; // Do not push debug info onto constants.
1291
1292 #ifdef ASSERT
1293 // Leave a bread crumb trail pointing to the original node:
1294 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) {
1295 dest->set_debug_orig(source);
1296 }
1297 #endif
1298
1299 if (node_note_array() == nullptr)
1300 return false; // Not collecting any notes now.
1301
1302 // This is a copy onto a pre-existing node, which may already have notes.
1303 // If both nodes have notes, do not overwrite any pre-existing notes.
1304 Node_Notes* source_notes = node_notes_at(source->_idx);
1305 if (source_notes == nullptr || source_notes->is_clear()) return false;
1306 Node_Notes* dest_notes = node_notes_at(dest->_idx);
1307 if (dest_notes == nullptr || dest_notes->is_clear()) {
1308 return set_node_notes_at(dest->_idx, source_notes);
1309 }
1310
1311 Node_Notes merged_notes = (*source_notes);
1312 // The order of operations here ensures that dest notes will win...
1313 merged_notes.update_from(dest_notes);
1314 return set_node_notes_at(dest->_idx, &merged_notes);
1315 }
1316
1317
1318 //--------------------------allow_range_check_smearing-------------------------
1319 // Gating condition for coalescing similar range checks.
1320 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1321 // single covering check that is at least as strong as any of them.
1322 // If the optimization succeeds, the simplified (strengthened) range check
1323 // will always succeed. If it fails, we will deopt, and then give up
1324 // on the optimization.
1325 bool Compile::allow_range_check_smearing() const {
1326 // If this method has already thrown a range-check,
1327 // assume it was because we already tried range smearing
1328 // and it failed.
1329 uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1330 return !already_trapped;
1331 }
1332
1333
1334 //------------------------------flatten_alias_type-----------------------------
1335 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1336 assert(do_aliasing(), "Aliasing should be enabled");
1337 int offset = tj->offset();
1338 TypePtr::PTR ptr = tj->ptr();
1339
1340 // Known instance (scalarizable allocation) alias only with itself.
1341 bool is_known_inst = tj->isa_oopptr() != nullptr &&
1342 tj->is_oopptr()->is_known_instance();
1343
1344 // Process weird unsafe references.
1345 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1346 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops");
1347 assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1348 tj = TypeOopPtr::BOTTOM;
1349 ptr = tj->ptr();
1350 offset = tj->offset();
1351 }
1352
1353 // Array pointers need some flattening
1354 const TypeAryPtr* ta = tj->isa_aryptr();
1355 if (ta && ta->is_stable()) {
1356 // Erase stability property for alias analysis.
1357 tj = ta = ta->cast_to_stable(false);
1358 }
1359 if( ta && is_known_inst ) {
1360 if ( offset != Type::OffsetBot &&
1361 offset > arrayOopDesc::length_offset_in_bytes() ) {
1362 offset = Type::OffsetBot; // Flatten constant access into array body only
1363 tj = ta = ta->
1364 remove_speculative()->
1365 cast_to_ptr_type(ptr)->
1366 with_offset(offset);
1367 }
1368 } else if (ta) {
1369 // For arrays indexed by constant indices, we flatten the alias
1370 // space to include all of the array body. Only the header, klass
1371 // and array length can be accessed un-aliased.
1372 if( offset != Type::OffsetBot ) {
1373 if( ta->const_oop() ) { // MethodData* or Method*
1374 offset = Type::OffsetBot; // Flatten constant access into array body
1375 tj = ta = ta->
1376 remove_speculative()->
1377 cast_to_ptr_type(ptr)->
1378 cast_to_exactness(false)->
1379 with_offset(offset);
1380 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1381 // range is OK as-is.
1382 tj = ta = TypeAryPtr::RANGE;
1383 } else if( offset == Type::klass_offset() ) {
1384 tj = TypeInstPtr::KLASS; // all klass loads look alike
1385 ta = TypeAryPtr::RANGE; // generic ignored junk
1386 ptr = TypePtr::BotPTR;
1387 } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1388 tj = TypeInstPtr::MARK;
1389 ta = TypeAryPtr::RANGE; // generic ignored junk
1390 ptr = TypePtr::BotPTR;
1391 } else { // Random constant offset into array body
1392 offset = Type::OffsetBot; // Flatten constant access into array body
1393 tj = ta = ta->
1394 remove_speculative()->
1395 cast_to_ptr_type(ptr)->
1396 cast_to_exactness(false)->
1397 with_offset(offset);
1398 }
1399 }
1400 // Arrays of fixed size alias with arrays of unknown size.
1401 if (ta->size() != TypeInt::POS) {
1402 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1403 tj = ta = ta->
1404 remove_speculative()->
1405 cast_to_ptr_type(ptr)->
1406 with_ary(tary)->
1407 cast_to_exactness(false);
1408 }
1409 // Arrays of known objects become arrays of unknown objects.
1410 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1411 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1412 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1413 }
1414 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1415 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1416 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1417 }
1418 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1419 // cannot be distinguished by bytecode alone.
1420 if (ta->elem() == TypeInt::BOOL) {
1421 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1422 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1423 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1424 }
1425 // During the 2nd round of IterGVN, NotNull castings are removed.
1426 // Make sure the Bottom and NotNull variants alias the same.
1427 // Also, make sure exact and non-exact variants alias the same.
1428 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) {
1429 tj = ta = ta->
1430 remove_speculative()->
1431 cast_to_ptr_type(TypePtr::BotPTR)->
1432 cast_to_exactness(false)->
1433 with_offset(offset);
1434 }
1435 }
1436
1437 // Oop pointers need some flattening
1438 const TypeInstPtr *to = tj->isa_instptr();
1439 if (to && to != TypeOopPtr::BOTTOM) {
1440 ciInstanceKlass* ik = to->instance_klass();
1441 if( ptr == TypePtr::Constant ) {
1442 if (ik != ciEnv::current()->Class_klass() ||
1443 offset < ik->layout_helper_size_in_bytes()) {
1444 // No constant oop pointers (such as Strings); they alias with
1445 // unknown strings.
1446 assert(!is_known_inst, "not scalarizable allocation");
1447 tj = to = to->
1448 cast_to_instance_id(TypeOopPtr::InstanceBot)->
1449 remove_speculative()->
1450 cast_to_ptr_type(TypePtr::BotPTR)->
1451 cast_to_exactness(false);
1452 }
1453 } else if( is_known_inst ) {
1454 tj = to; // Keep NotNull and klass_is_exact for instance type
1455 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1456 // During the 2nd round of IterGVN, NotNull castings are removed.
1457 // Make sure the Bottom and NotNull variants alias the same.
1458 // Also, make sure exact and non-exact variants alias the same.
1459 tj = to = to->
1460 remove_speculative()->
1461 cast_to_instance_id(TypeOopPtr::InstanceBot)->
1462 cast_to_ptr_type(TypePtr::BotPTR)->
1463 cast_to_exactness(false);
1464 }
1465 if (to->speculative() != nullptr) {
1466 tj = to = to->remove_speculative();
1467 }
1468 // Canonicalize the holder of this field
1469 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1470 // First handle header references such as a LoadKlassNode, even if the
1471 // object's klass is unloaded at compile time (4965979).
1472 if (!is_known_inst) { // Do it only for non-instance types
1473 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset);
1474 }
1475 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) {
1476 // Static fields are in the space above the normal instance
1477 // fields in the java.lang.Class instance.
1478 if (ik != ciEnv::current()->Class_klass()) {
1479 to = nullptr;
1480 tj = TypeOopPtr::BOTTOM;
1481 offset = tj->offset();
1482 }
1483 } else {
1484 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset);
1485 assert(offset < canonical_holder->layout_helper_size_in_bytes(), "");
1486 assert(tj->offset() == offset, "no change to offset expected");
1487 bool xk = to->klass_is_exact();
1488 int instance_id = to->instance_id();
1489
1490 // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder
1491 // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only
1492 // its interfaces are included.
1493 if (xk && ik->equals(canonical_holder)) {
1494 assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type");
1495 } else {
1496 assert(xk || !is_known_inst, "Known instance should be exact type");
1497 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id);
1498 }
1499 }
1500 }
1501
1502 // Klass pointers to object array klasses need some flattening
1503 const TypeKlassPtr *tk = tj->isa_klassptr();
1504 if( tk ) {
1505 // If we are referencing a field within a Klass, we need
1506 // to assume the worst case of an Object. Both exact and
1507 // inexact types must flatten to the same alias class so
1508 // use NotNull as the PTR.
1509 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1510 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull,
1511 env()->Object_klass(),
1512 offset);
1513 }
1514
1515 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) {
1516 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass());
1517 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs
1518 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset);
1519 } else {
1520 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset);
1521 }
1522 }
1523
1524 // Check for precise loads from the primary supertype array and force them
1525 // to the supertype cache alias index. Check for generic array loads from
1526 // the primary supertype array and also force them to the supertype cache
1527 // alias index. Since the same load can reach both, we need to merge
1528 // these 2 disparate memories into the same alias class. Since the
1529 // primary supertype array is read-only, there's no chance of confusion
1530 // where we bypass an array load and an array store.
1531 int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1532 if (offset == Type::OffsetBot ||
1533 (offset >= primary_supers_offset &&
1534 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1535 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1536 offset = in_bytes(Klass::secondary_super_cache_offset());
1537 tj = tk = tk->with_offset(offset);
1538 }
1539 }
1540
1541 // Flatten all Raw pointers together.
1542 if (tj->base() == Type::RawPtr)
1543 tj = TypeRawPtr::BOTTOM;
1544
1545 if (tj->base() == Type::AnyPtr)
1546 tj = TypePtr::BOTTOM; // An error, which the caller must check for.
1547
1548 offset = tj->offset();
1549 assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1550
1551 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1552 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1553 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1554 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1555 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1556 (offset == Type::klass_offset() && tj->base() == Type::AryPtr) ||
1557 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr),
1558 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1559 assert( tj->ptr() != TypePtr::TopPTR &&
1560 tj->ptr() != TypePtr::AnyNull &&
1561 tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1562 // assert( tj->ptr() != TypePtr::Constant ||
1563 // tj->base() == Type::RawPtr ||
1564 // tj->base() == Type::KlassPtr, "No constant oop addresses" );
1565
1566 return tj;
1567 }
1568
1569 void Compile::AliasType::Init(int i, const TypePtr* at) {
1570 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index");
1571 _index = i;
1572 _adr_type = at;
1573 _field = nullptr;
1574 _element = nullptr;
1575 _is_rewritable = true; // default
1576 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr;
1577 if (atoop != nullptr && atoop->is_known_instance()) {
1578 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1579 _general_index = Compile::current()->get_alias_index(gt);
1580 } else {
1581 _general_index = 0;
1582 }
1583 }
1584
1585 BasicType Compile::AliasType::basic_type() const {
1586 if (element() != nullptr) {
1587 const Type* element = adr_type()->is_aryptr()->elem();
1588 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1589 } if (field() != nullptr) {
1590 return field()->layout_type();
1591 } else {
1592 return T_ILLEGAL; // unknown
1593 }
1594 }
1595
1596 //---------------------------------print_on------------------------------------
1597 #ifndef PRODUCT
1598 void Compile::AliasType::print_on(outputStream* st) {
1599 if (index() < 10)
1600 st->print("@ <%d> ", index());
1601 else st->print("@ <%d>", index());
1602 st->print(is_rewritable() ? " " : " RO");
1603 int offset = adr_type()->offset();
1604 if (offset == Type::OffsetBot)
1605 st->print(" +any");
1606 else st->print(" +%-3d", offset);
1607 st->print(" in ");
1608 adr_type()->dump_on(st);
1609 const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1610 if (field() != nullptr && tjp) {
1611 if (tjp->is_instptr()->instance_klass() != field()->holder() ||
1612 tjp->offset() != field()->offset_in_bytes()) {
1613 st->print(" != ");
1614 field()->print();
1615 st->print(" ***");
1616 }
1617 }
1618 }
1619
1620 void print_alias_types() {
1621 Compile* C = Compile::current();
1622 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1623 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1624 C->alias_type(idx)->print_on(tty);
1625 tty->cr();
1626 }
1627 }
1628 #endif
1629
1630
1631 //----------------------------probe_alias_cache--------------------------------
1632 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1633 intptr_t key = (intptr_t) adr_type;
1634 key ^= key >> logAliasCacheSize;
1635 return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1636 }
1637
1638
1639 //-----------------------------grow_alias_types--------------------------------
1640 void Compile::grow_alias_types() {
1641 const int old_ats = _max_alias_types; // how many before?
1642 const int new_ats = old_ats; // how many more?
1643 const int grow_ats = old_ats+new_ats; // how many now?
1644 _max_alias_types = grow_ats;
1645 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1646 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1647 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1648 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i];
1649 }
1650
1651
1652 //--------------------------------find_alias_type------------------------------
1653 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1654 if (!do_aliasing()) {
1655 return alias_type(AliasIdxBot);
1656 }
1657
1658 AliasCacheEntry* ace = probe_alias_cache(adr_type);
1659 if (ace->_adr_type == adr_type) {
1660 return alias_type(ace->_index);
1661 }
1662
1663 // Handle special cases.
1664 if (adr_type == nullptr) return alias_type(AliasIdxTop);
1665 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot);
1666
1667 // Do it the slow way.
1668 const TypePtr* flat = flatten_alias_type(adr_type);
1669
1670 #ifdef ASSERT
1671 {
1672 ResourceMark rm;
1673 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1674 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1675 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1676 Type::str(adr_type));
1677 if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1678 const TypeOopPtr* foop = flat->is_oopptr();
1679 // Scalarizable allocations have exact klass always.
1680 bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1681 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1682 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1683 Type::str(foop), Type::str(xoop));
1684 }
1685 }
1686 #endif
1687
1688 int idx = AliasIdxTop;
1689 for (int i = 0; i < num_alias_types(); i++) {
1690 if (alias_type(i)->adr_type() == flat) {
1691 idx = i;
1692 break;
1693 }
1694 }
1695
1696 if (idx == AliasIdxTop) {
1697 if (no_create) return nullptr;
1698 // Grow the array if necessary.
1699 if (_num_alias_types == _max_alias_types) grow_alias_types();
1700 // Add a new alias type.
1701 idx = _num_alias_types++;
1702 _alias_types[idx]->Init(idx, flat);
1703 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false);
1704 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false);
1705 if (flat->isa_instptr()) {
1706 if (flat->offset() == java_lang_Class::klass_offset()
1707 && flat->is_instptr()->instance_klass() == env()->Class_klass())
1708 alias_type(idx)->set_rewritable(false);
1709 }
1710 if (flat->isa_aryptr()) {
1711 #ifdef ASSERT
1712 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1713 // (T_BYTE has the weakest alignment and size restrictions...)
1714 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1715 #endif
1716 if (flat->offset() == TypePtr::OffsetBot) {
1717 alias_type(idx)->set_element(flat->is_aryptr()->elem());
1718 }
1719 }
1720 if (flat->isa_klassptr()) {
1721 if (UseCompactObjectHeaders) {
1722 if (flat->offset() == in_bytes(Klass::prototype_header_offset()))
1723 alias_type(idx)->set_rewritable(false);
1724 }
1725 if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1726 alias_type(idx)->set_rewritable(false);
1727 if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1728 alias_type(idx)->set_rewritable(false);
1729 if (flat->offset() == in_bytes(Klass::misc_flags_offset()))
1730 alias_type(idx)->set_rewritable(false);
1731 if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1732 alias_type(idx)->set_rewritable(false);
1733 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
1734 alias_type(idx)->set_rewritable(false);
1735 }
1736 // %%% (We would like to finalize JavaThread::threadObj_offset(),
1737 // but the base pointer type is not distinctive enough to identify
1738 // references into JavaThread.)
1739
1740 // Check for final fields.
1741 const TypeInstPtr* tinst = flat->isa_instptr();
1742 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1743 ciField* field;
1744 if (tinst->const_oop() != nullptr &&
1745 tinst->instance_klass() == ciEnv::current()->Class_klass() &&
1746 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) {
1747 // static field
1748 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1749 field = k->get_field_by_offset(tinst->offset(), true);
1750 } else {
1751 ciInstanceKlass *k = tinst->instance_klass();
1752 field = k->get_field_by_offset(tinst->offset(), false);
1753 }
1754 assert(field == nullptr ||
1755 original_field == nullptr ||
1756 (field->holder() == original_field->holder() &&
1757 field->offset_in_bytes() == original_field->offset_in_bytes() &&
1758 field->is_static() == original_field->is_static()), "wrong field?");
1759 // Set field() and is_rewritable() attributes.
1760 if (field != nullptr) alias_type(idx)->set_field(field);
1761 }
1762 }
1763
1764 // Fill the cache for next time.
1765 ace->_adr_type = adr_type;
1766 ace->_index = idx;
1767 assert(alias_type(adr_type) == alias_type(idx), "type must be installed");
1768
1769 // Might as well try to fill the cache for the flattened version, too.
1770 AliasCacheEntry* face = probe_alias_cache(flat);
1771 if (face->_adr_type == nullptr) {
1772 face->_adr_type = flat;
1773 face->_index = idx;
1774 assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1775 }
1776
1777 return alias_type(idx);
1778 }
1779
1780
1781 Compile::AliasType* Compile::alias_type(ciField* field) {
1782 const TypeOopPtr* t;
1783 if (field->is_static())
1784 t = TypeInstPtr::make(field->holder()->java_mirror());
1785 else
1786 t = TypeOopPtr::make_from_klass_raw(field->holder());
1787 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1788 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1789 return atp;
1790 }
1791
1792
1793 //------------------------------have_alias_type--------------------------------
1794 bool Compile::have_alias_type(const TypePtr* adr_type) {
1795 AliasCacheEntry* ace = probe_alias_cache(adr_type);
1796 if (ace->_adr_type == adr_type) {
1797 return true;
1798 }
1799
1800 // Handle special cases.
1801 if (adr_type == nullptr) return true;
1802 if (adr_type == TypePtr::BOTTOM) return true;
1803
1804 return find_alias_type(adr_type, true, nullptr) != nullptr;
1805 }
1806
1807 //-----------------------------must_alias--------------------------------------
1808 // True if all values of the given address type are in the given alias category.
1809 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1810 if (alias_idx == AliasIdxBot) return true; // the universal category
1811 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP
1812 if (alias_idx == AliasIdxTop) return false; // the empty category
1813 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1814
1815 // the only remaining possible overlap is identity
1816 int adr_idx = get_alias_index(adr_type);
1817 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1818 assert(adr_idx == alias_idx ||
1819 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1820 && adr_type != TypeOopPtr::BOTTOM),
1821 "should not be testing for overlap with an unsafe pointer");
1822 return adr_idx == alias_idx;
1823 }
1824
1825 //------------------------------can_alias--------------------------------------
1826 // True if any values of the given address type are in the given alias category.
1827 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1828 if (alias_idx == AliasIdxTop) return false; // the empty category
1829 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP
1830 // Known instance doesn't alias with bottom memory
1831 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category
1832 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins
1833
1834 // the only remaining possible overlap is identity
1835 int adr_idx = get_alias_index(adr_type);
1836 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1837 return adr_idx == alias_idx;
1838 }
1839
1840 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their
1841 // uncommon traps if no Runtime Predicates were created from the Parse Predicates.
1842 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) {
1843 if (parse_predicate_count() == 0) {
1844 return;
1845 }
1846 for (int i = 0; i < parse_predicate_count(); i++) {
1847 ParsePredicateNode* parse_predicate = _parse_predicates.at(i);
1848 parse_predicate->mark_useless(igvn);
1849 }
1850 _parse_predicates.clear();
1851 }
1852
1853 void Compile::record_for_post_loop_opts_igvn(Node* n) {
1854 if (!n->for_post_loop_opts_igvn()) {
1855 assert(!_for_post_loop_igvn.contains(n), "duplicate");
1856 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1857 _for_post_loop_igvn.append(n);
1858 }
1859 }
1860
1861 void Compile::remove_from_post_loop_opts_igvn(Node* n) {
1862 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1863 _for_post_loop_igvn.remove(n);
1864 }
1865
1866 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) {
1867 // Verify that all previous optimizations produced a valid graph
1868 // at least to this point, even if no loop optimizations were done.
1869 PhaseIdealLoop::verify(igvn);
1870
1871 if (has_loops() || _loop_opts_cnt > 0) {
1872 print_method(PHASE_AFTER_LOOP_OPTS, 2);
1873 }
1874 C->set_post_loop_opts_phase(); // no more loop opts allowed
1875
1876 assert(!C->major_progress(), "not cleared");
1877
1878 if (_for_post_loop_igvn.length() > 0) {
1879 while (_for_post_loop_igvn.length() > 0) {
1880 Node* n = _for_post_loop_igvn.pop();
1881 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1882 igvn._worklist.push(n);
1883 }
1884 igvn.optimize();
1885 if (failing()) return;
1886 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed");
1887 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now");
1888
1889 // Sometimes IGVN sets major progress (e.g., when processing loop nodes).
1890 if (C->major_progress()) {
1891 C->clear_major_progress(); // ensure that major progress is now clear
1892 }
1893 }
1894 }
1895
1896 void Compile::record_for_merge_stores_igvn(Node* n) {
1897 if (!n->for_merge_stores_igvn()) {
1898 assert(!_for_merge_stores_igvn.contains(n), "duplicate");
1899 n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1900 _for_merge_stores_igvn.append(n);
1901 }
1902 }
1903
1904 void Compile::remove_from_merge_stores_igvn(Node* n) {
1905 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1906 _for_merge_stores_igvn.remove(n);
1907 }
1908
1909 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during
1910 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between
1911 // the stores, and we merge the wrong sequence of stores.
1912 // Example:
1913 // StoreI RangeCheck StoreI StoreI RangeCheck StoreI
1914 // Apply MergeStores:
1915 // StoreI RangeCheck [ StoreL ] RangeCheck StoreI
1916 // Remove more RangeChecks:
1917 // StoreI [ StoreL ] StoreI
1918 // But now it would have been better to do this instead:
1919 // [ StoreL ] [ StoreL ]
1920 //
1921 // Note: we allow stores to merge in this dedicated IGVN round, and any later IGVN round,
1922 // since we never unset _merge_stores_phase.
1923 void Compile::process_for_merge_stores_igvn(PhaseIterGVN& igvn) {
1924 C->set_merge_stores_phase();
1925
1926 if (_for_merge_stores_igvn.length() > 0) {
1927 while (_for_merge_stores_igvn.length() > 0) {
1928 Node* n = _for_merge_stores_igvn.pop();
1929 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn);
1930 igvn._worklist.push(n);
1931 }
1932 igvn.optimize();
1933 if (failing()) return;
1934 assert(_for_merge_stores_igvn.length() == 0, "no more delayed nodes allowed");
1935 print_method(PHASE_AFTER_MERGE_STORES, 3);
1936 }
1937 }
1938
1939 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) {
1940 if (OptimizeUnstableIf) {
1941 _unstable_if_traps.append(trap);
1942 }
1943 }
1944
1945 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) {
1946 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) {
1947 UnstableIfTrap* trap = _unstable_if_traps.at(i);
1948 Node* n = trap->uncommon_trap();
1949 if (!useful.member(n)) {
1950 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
1951 }
1952 }
1953 }
1954
1955 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead
1956 // or fold-compares case. Return true if succeed or not found.
1957 //
1958 // In rare cases, the found trap has been processed. It is too late to delete it. Return
1959 // false and ask fold-compares to yield.
1960 //
1961 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused
1962 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path
1963 // when deoptimization does happen.
1964 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) {
1965 for (int i = 0; i < _unstable_if_traps.length(); ++i) {
1966 UnstableIfTrap* trap = _unstable_if_traps.at(i);
1967 if (trap->uncommon_trap() == unc) {
1968 if (yield && trap->modified()) {
1969 return false;
1970 }
1971 _unstable_if_traps.delete_at(i);
1972 break;
1973 }
1974 }
1975 return true;
1976 }
1977
1978 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path.
1979 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering.
1980 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) {
1981 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) {
1982 UnstableIfTrap* trap = _unstable_if_traps.at(i);
1983 CallStaticJavaNode* unc = trap->uncommon_trap();
1984 int next_bci = trap->next_bci();
1985 bool modified = trap->modified();
1986
1987 if (next_bci != -1 && !modified) {
1988 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!");
1989 JVMState* jvms = unc->jvms();
1990 ciMethod* method = jvms->method();
1991 ciBytecodeStream iter(method);
1992
1993 iter.force_bci(jvms->bci());
1994 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if");
1995 Bytecodes::Code c = iter.cur_bc();
1996 Node* lhs = nullptr;
1997 Node* rhs = nullptr;
1998 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) {
1999 lhs = unc->peek_operand(0);
2000 rhs = unc->peek_operand(1);
2001 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) {
2002 lhs = unc->peek_operand(0);
2003 }
2004
2005 ResourceMark rm;
2006 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci);
2007 assert(live_locals.is_valid(), "broken liveness info");
2008 int len = (int)live_locals.size();
2009
2010 for (int i = 0; i < len; i++) {
2011 Node* local = unc->local(jvms, i);
2012 // kill local using the liveness of next_bci.
2013 // give up when the local looks like an operand to secure reexecution.
2014 if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) {
2015 uint idx = jvms->locoff() + i;
2016 #ifdef ASSERT
2017 if (PrintOpto && Verbose) {
2018 tty->print("[unstable_if] kill local#%d: ", idx);
2019 local->dump();
2020 tty->cr();
2021 }
2022 #endif
2023 igvn.replace_input_of(unc, idx, top());
2024 modified = true;
2025 }
2026 }
2027 }
2028
2029 // keep the mondified trap for late query
2030 if (modified) {
2031 trap->set_modified();
2032 } else {
2033 _unstable_if_traps.delete_at(i);
2034 }
2035 }
2036 igvn.optimize();
2037 }
2038
2039 // StringOpts and late inlining of string methods
2040 void Compile::inline_string_calls(bool parse_time) {
2041 {
2042 // remove useless nodes to make the usage analysis simpler
2043 ResourceMark rm;
2044 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2045 }
2046
2047 {
2048 ResourceMark rm;
2049 print_method(PHASE_BEFORE_STRINGOPTS, 3);
2050 PhaseStringOpts pso(initial_gvn());
2051 print_method(PHASE_AFTER_STRINGOPTS, 3);
2052 }
2053
2054 // now inline anything that we skipped the first time around
2055 if (!parse_time) {
2056 _late_inlines_pos = _late_inlines.length();
2057 }
2058
2059 while (_string_late_inlines.length() > 0) {
2060 CallGenerator* cg = _string_late_inlines.pop();
2061 cg->do_late_inline();
2062 if (failing()) return;
2063 }
2064 _string_late_inlines.trunc_to(0);
2065 }
2066
2067 // Late inlining of boxing methods
2068 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2069 if (_boxing_late_inlines.length() > 0) {
2070 assert(has_boxed_value(), "inconsistent");
2071
2072 set_inlining_incrementally(true);
2073
2074 igvn_worklist()->ensure_empty(); // should be done with igvn
2075
2076 _late_inlines_pos = _late_inlines.length();
2077
2078 while (_boxing_late_inlines.length() > 0) {
2079 CallGenerator* cg = _boxing_late_inlines.pop();
2080 cg->do_late_inline();
2081 if (failing()) return;
2082 }
2083 _boxing_late_inlines.trunc_to(0);
2084
2085 inline_incrementally_cleanup(igvn);
2086
2087 set_inlining_incrementally(false);
2088 }
2089 }
2090
2091 bool Compile::inline_incrementally_one() {
2092 assert(IncrementalInline, "incremental inlining should be on");
2093
2094 TracePhase tp(_t_incrInline_inline);
2095
2096 set_inlining_progress(false);
2097 set_do_cleanup(false);
2098
2099 for (int i = 0; i < _late_inlines.length(); i++) {
2100 _late_inlines_pos = i+1;
2101 CallGenerator* cg = _late_inlines.at(i);
2102 bool is_scheduled_for_igvn_before = C->igvn_worklist()->member(cg->call_node());
2103 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline();
2104 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call
2105 cg->do_late_inline();
2106 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed");
2107 if (failing()) {
2108 return false;
2109 } else if (inlining_progress()) {
2110 _late_inlines_pos = i+1; // restore the position in case new elements were inserted
2111 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node());
2112 break; // process one call site at a time
2113 } else {
2114 bool is_scheduled_for_igvn_after = C->igvn_worklist()->member(cg->call_node());
2115 if (!is_scheduled_for_igvn_before && is_scheduled_for_igvn_after) {
2116 // Avoid potential infinite loop if node already in the IGVN list
2117 assert(false, "scheduled for IGVN during inlining attempt");
2118 } else {
2119 // Ensure call node has not disappeared from IGVN worklist during a failed inlining attempt
2120 assert(!is_scheduled_for_igvn_before || is_scheduled_for_igvn_after, "call node removed from IGVN list during inlining pass");
2121 cg->call_node()->set_generator(cg);
2122 }
2123 }
2124 } else {
2125 // Ignore late inline direct calls when inlining is not allowed.
2126 // They are left in the late inline list when node budget is exhausted until the list is fully drained.
2127 }
2128 }
2129 // Remove processed elements.
2130 _late_inlines.remove_till(_late_inlines_pos);
2131 _late_inlines_pos = 0;
2132
2133 assert(inlining_progress() || _late_inlines.length() == 0, "no progress");
2134
2135 bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2136
2137 set_inlining_progress(false);
2138 set_do_cleanup(false);
2139
2140 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption;
2141 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup;
2142 }
2143
2144 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2145 {
2146 TracePhase tp(_t_incrInline_pru);
2147 ResourceMark rm;
2148 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2149 }
2150 {
2151 TracePhase tp(_t_incrInline_igvn);
2152 igvn.reset_from_gvn(initial_gvn());
2153 igvn.optimize();
2154 if (failing()) return;
2155 }
2156 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3);
2157 }
2158
2159 // Perform incremental inlining until bound on number of live nodes is reached
2160 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2161 TracePhase tp(_t_incrInline);
2162
2163 set_inlining_incrementally(true);
2164 uint low_live_nodes = 0;
2165
2166 while (_late_inlines.length() > 0) {
2167 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2168 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2169 TracePhase tp(_t_incrInline_ideal);
2170 // PhaseIdealLoop is expensive so we only try it once we are
2171 // out of live nodes and we only try it again if the previous
2172 // helped got the number of nodes down significantly
2173 PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2174 if (failing()) return;
2175 low_live_nodes = live_nodes();
2176 _major_progress = true;
2177 }
2178
2179 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2180 bool do_print_inlining = print_inlining() || print_intrinsics();
2181 if (do_print_inlining || log() != nullptr) {
2182 // Print inlining message for candidates that we couldn't inline for lack of space.
2183 for (int i = 0; i < _late_inlines.length(); i++) {
2184 CallGenerator* cg = _late_inlines.at(i);
2185 const char* msg = "live nodes > LiveNodeCountInliningCutoff";
2186 if (do_print_inlining) {
2187 inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, msg);
2188 }
2189 log_late_inline_failure(cg, msg);
2190 }
2191 }
2192 break; // finish
2193 }
2194 }
2195
2196 igvn_worklist()->ensure_empty(); // should be done with igvn
2197
2198 while (inline_incrementally_one()) {
2199 assert(!failing_internal() || failure_is_artificial(), "inconsistent");
2200 }
2201 if (failing()) return;
2202
2203 inline_incrementally_cleanup(igvn);
2204
2205 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3);
2206
2207 if (failing()) return;
2208
2209 if (_late_inlines.length() == 0) {
2210 break; // no more progress
2211 }
2212 }
2213
2214 igvn_worklist()->ensure_empty(); // should be done with igvn
2215
2216 if (_string_late_inlines.length() > 0) {
2217 assert(has_stringbuilder(), "inconsistent");
2218
2219 inline_string_calls(false);
2220
2221 if (failing()) return;
2222
2223 inline_incrementally_cleanup(igvn);
2224 }
2225
2226 set_inlining_incrementally(false);
2227 }
2228
2229 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) {
2230 // "inlining_incrementally() == false" is used to signal that no inlining is allowed
2231 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details).
2232 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr"
2233 // as if "inlining_incrementally() == true" were set.
2234 assert(inlining_incrementally() == false, "not allowed");
2235 assert(_modified_nodes == nullptr, "not allowed");
2236 assert(_late_inlines.length() > 0, "sanity");
2237
2238 while (_late_inlines.length() > 0) {
2239 igvn_worklist()->ensure_empty(); // should be done with igvn
2240
2241 while (inline_incrementally_one()) {
2242 assert(!failing_internal() || failure_is_artificial(), "inconsistent");
2243 }
2244 if (failing()) return;
2245
2246 inline_incrementally_cleanup(igvn);
2247 }
2248 }
2249
2250 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2251 if (_loop_opts_cnt > 0) {
2252 while (major_progress() && (_loop_opts_cnt > 0)) {
2253 TracePhase tp(_t_idealLoop);
2254 PhaseIdealLoop::optimize(igvn, mode);
2255 _loop_opts_cnt--;
2256 if (failing()) return false;
2257 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2258 }
2259 }
2260 return true;
2261 }
2262
2263 // Remove edges from "root" to each SafePoint at a backward branch.
2264 // They were inserted during parsing (see add_safepoint()) to make
2265 // infinite loops without calls or exceptions visible to root, i.e.,
2266 // useful.
2267 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2268 Node *r = root();
2269 if (r != nullptr) {
2270 for (uint i = r->req(); i < r->len(); ++i) {
2271 Node *n = r->in(i);
2272 if (n != nullptr && n->is_SafePoint()) {
2273 r->rm_prec(i);
2274 if (n->outcnt() == 0) {
2275 igvn.remove_dead_node(n);
2276 }
2277 --i;
2278 }
2279 }
2280 // Parsing may have added top inputs to the root node (Path
2281 // leading to the Halt node proven dead). Make sure we get a
2282 // chance to clean them up.
2283 igvn._worklist.push(r);
2284 igvn.optimize();
2285 }
2286 }
2287
2288 //------------------------------Optimize---------------------------------------
2289 // Given a graph, optimize it.
2290 void Compile::Optimize() {
2291 TracePhase tp(_t_optimizer);
2292
2293 #ifndef PRODUCT
2294 if (env()->break_at_compile()) {
2295 BREAKPOINT;
2296 }
2297
2298 #endif
2299
2300 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2301 #ifdef ASSERT
2302 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2303 #endif
2304
2305 ResourceMark rm;
2306
2307 NOT_PRODUCT( verify_graph_edges(); )
2308
2309 print_method(PHASE_AFTER_PARSING, 1);
2310
2311 {
2312 // Iterative Global Value Numbering, including ideal transforms
2313 // Initialize IterGVN with types and values from parse-time GVN
2314 PhaseIterGVN igvn(initial_gvn());
2315 #ifdef ASSERT
2316 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2317 #endif
2318 {
2319 TracePhase tp(_t_iterGVN);
2320 igvn.optimize();
2321 }
2322
2323 if (failing()) return;
2324
2325 print_method(PHASE_ITER_GVN1, 2);
2326
2327 process_for_unstable_if_traps(igvn);
2328
2329 if (failing()) return;
2330
2331 inline_incrementally(igvn);
2332
2333 print_method(PHASE_INCREMENTAL_INLINE, 2);
2334
2335 if (failing()) return;
2336
2337 if (eliminate_boxing()) {
2338 // Inline valueOf() methods now.
2339 inline_boxing_calls(igvn);
2340
2341 if (failing()) return;
2342
2343 if (AlwaysIncrementalInline || StressIncrementalInlining) {
2344 inline_incrementally(igvn);
2345 }
2346
2347 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2348
2349 if (failing()) return;
2350 }
2351
2352 // Remove the speculative part of types and clean up the graph from
2353 // the extra CastPP nodes whose only purpose is to carry them. Do
2354 // that early so that optimizations are not disrupted by the extra
2355 // CastPP nodes.
2356 remove_speculative_types(igvn);
2357
2358 if (failing()) return;
2359
2360 // No more new expensive nodes will be added to the list from here
2361 // so keep only the actual candidates for optimizations.
2362 cleanup_expensive_nodes(igvn);
2363
2364 if (failing()) return;
2365
2366 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity");
2367 if (EnableVectorSupport && has_vbox_nodes()) {
2368 TracePhase tp(_t_vector);
2369 PhaseVector pv(igvn);
2370 pv.optimize_vector_boxes();
2371 if (failing()) return;
2372 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2);
2373 }
2374 assert(!has_vbox_nodes(), "sanity");
2375
2376 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2377 Compile::TracePhase tp(_t_renumberLive);
2378 igvn_worklist()->ensure_empty(); // should be done with igvn
2379 {
2380 ResourceMark rm;
2381 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist());
2382 }
2383 igvn.reset_from_gvn(initial_gvn());
2384 igvn.optimize();
2385 if (failing()) return;
2386 }
2387
2388 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop
2389 // safepoints
2390 remove_root_to_sfpts_edges(igvn);
2391
2392 if (failing()) return;
2393
2394 if (has_loops()) {
2395 print_method(PHASE_BEFORE_LOOP_OPTS, 2);
2396 }
2397
2398 // Perform escape analysis
2399 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) {
2400 if (has_loops()) {
2401 // Cleanup graph (remove dead nodes).
2402 TracePhase tp(_t_idealLoop);
2403 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
2404 if (failing()) return;
2405 }
2406 bool progress;
2407 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2408 do {
2409 ConnectionGraph::do_analysis(this, &igvn);
2410
2411 if (failing()) return;
2412
2413 int mcount = macro_count(); // Record number of allocations and locks before IGVN
2414
2415 // Optimize out fields loads from scalar replaceable allocations.
2416 igvn.optimize();
2417 print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2418
2419 if (failing()) return;
2420
2421 if (congraph() != nullptr && macro_count() > 0) {
2422 TracePhase tp(_t_macroEliminate);
2423 PhaseMacroExpand mexp(igvn);
2424 mexp.eliminate_macro_nodes();
2425 if (failing()) return;
2426 print_method(PHASE_AFTER_MACRO_ELIMINATION, 2);
2427
2428 igvn.set_delay_transform(false);
2429 igvn.optimize();
2430 if (failing()) return;
2431
2432 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2433 }
2434
2435 ConnectionGraph::verify_ram_nodes(this, root());
2436 if (failing()) return;
2437
2438 progress = do_iterative_escape_analysis() &&
2439 (macro_count() < mcount) &&
2440 ConnectionGraph::has_candidates(this);
2441 // Try again if candidates exist and made progress
2442 // by removing some allocations and/or locks.
2443 } while (progress);
2444 }
2445
2446 // Loop transforms on the ideal graph. Range Check Elimination,
2447 // peeling, unrolling, etc.
2448
2449 // Set loop opts counter
2450 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2451 {
2452 TracePhase tp(_t_idealLoop);
2453 PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2454 _loop_opts_cnt--;
2455 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2456 if (failing()) return;
2457 }
2458 // Loop opts pass if partial peeling occurred in previous pass
2459 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2460 TracePhase tp(_t_idealLoop);
2461 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2462 _loop_opts_cnt--;
2463 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2464 if (failing()) return;
2465 }
2466 // Loop opts pass for loop-unrolling before CCP
2467 if(major_progress() && (_loop_opts_cnt > 0)) {
2468 TracePhase tp(_t_idealLoop);
2469 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2470 _loop_opts_cnt--;
2471 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2472 }
2473 if (!failing()) {
2474 // Verify that last round of loop opts produced a valid graph
2475 PhaseIdealLoop::verify(igvn);
2476 }
2477 }
2478 if (failing()) return;
2479
2480 // Conditional Constant Propagation;
2481 print_method(PHASE_BEFORE_CCP1, 2);
2482 PhaseCCP ccp( &igvn );
2483 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2484 {
2485 TracePhase tp(_t_ccp);
2486 ccp.do_transform();
2487 }
2488 print_method(PHASE_CCP1, 2);
2489
2490 assert( true, "Break here to ccp.dump_old2new_map()");
2491
2492 // Iterative Global Value Numbering, including ideal transforms
2493 {
2494 TracePhase tp(_t_iterGVN2);
2495 igvn.reset_from_igvn(&ccp);
2496 igvn.optimize();
2497 }
2498 print_method(PHASE_ITER_GVN2, 2);
2499
2500 if (failing()) return;
2501
2502 // Loop transforms on the ideal graph. Range Check Elimination,
2503 // peeling, unrolling, etc.
2504 if (!optimize_loops(igvn, LoopOptsDefault)) {
2505 return;
2506 }
2507
2508 if (failing()) return;
2509
2510 C->clear_major_progress(); // ensure that major progress is now clear
2511
2512 process_for_post_loop_opts_igvn(igvn);
2513
2514 process_for_merge_stores_igvn(igvn);
2515
2516 if (failing()) return;
2517
2518 #ifdef ASSERT
2519 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2520 #endif
2521
2522 {
2523 TracePhase tp(_t_macroExpand);
2524 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3);
2525 PhaseMacroExpand mex(igvn);
2526 // Do not allow new macro nodes once we start to eliminate and expand
2527 C->reset_allow_macro_nodes();
2528 // Last attempt to eliminate macro nodes before expand
2529 mex.eliminate_macro_nodes();
2530 if (failing()) {
2531 return;
2532 }
2533 mex.eliminate_opaque_looplimit_macro_nodes();
2534 if (failing()) {
2535 return;
2536 }
2537 print_method(PHASE_AFTER_MACRO_ELIMINATION, 2);
2538 if (mex.expand_macro_nodes()) {
2539 assert(failing(), "must bail out w/ explicit message");
2540 return;
2541 }
2542 print_method(PHASE_AFTER_MACRO_EXPANSION, 2);
2543 }
2544
2545 {
2546 TracePhase tp(_t_barrierExpand);
2547 if (bs->expand_barriers(this, igvn)) {
2548 assert(failing(), "must bail out w/ explicit message");
2549 return;
2550 }
2551 print_method(PHASE_BARRIER_EXPANSION, 2);
2552 }
2553
2554 if (C->max_vector_size() > 0) {
2555 C->optimize_logic_cones(igvn);
2556 igvn.optimize();
2557 if (failing()) return;
2558 }
2559
2560 DEBUG_ONLY( _modified_nodes = nullptr; )
2561
2562 assert(igvn._worklist.size() == 0, "not empty");
2563
2564 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty");
2565
2566 if (_late_inlines.length() > 0) {
2567 // More opportunities to optimize virtual and MH calls.
2568 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option.
2569 process_late_inline_calls_no_inline(igvn);
2570 if (failing()) return;
2571 }
2572 } // (End scope of igvn; run destructor if necessary for asserts.)
2573
2574 check_no_dead_use();
2575
2576 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have
2577 // to remove hashes to unlock nodes for modifications.
2578 C->node_hash()->clear();
2579
2580 // A method with only infinite loops has no edges entering loops from root
2581 {
2582 TracePhase tp(_t_graphReshaping);
2583 if (final_graph_reshaping()) {
2584 assert(failing(), "must bail out w/ explicit message");
2585 return;
2586 }
2587 }
2588
2589 print_method(PHASE_OPTIMIZE_FINISHED, 2);
2590 DEBUG_ONLY(set_phase_optimize_finished();)
2591 }
2592
2593 #ifdef ASSERT
2594 void Compile::check_no_dead_use() const {
2595 ResourceMark rm;
2596 Unique_Node_List wq;
2597 wq.push(root());
2598 for (uint i = 0; i < wq.size(); ++i) {
2599 Node* n = wq.at(i);
2600 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
2601 Node* u = n->fast_out(j);
2602 if (u->outcnt() == 0 && !u->is_Con()) {
2603 u->dump();
2604 fatal("no reachable node should have no use");
2605 }
2606 wq.push(u);
2607 }
2608 }
2609 }
2610 #endif
2611
2612 void Compile::inline_vector_reboxing_calls() {
2613 if (C->_vector_reboxing_late_inlines.length() > 0) {
2614 _late_inlines_pos = C->_late_inlines.length();
2615 while (_vector_reboxing_late_inlines.length() > 0) {
2616 CallGenerator* cg = _vector_reboxing_late_inlines.pop();
2617 cg->do_late_inline();
2618 if (failing()) return;
2619 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node());
2620 }
2621 _vector_reboxing_late_inlines.trunc_to(0);
2622 }
2623 }
2624
2625 bool Compile::has_vbox_nodes() {
2626 if (C->_vector_reboxing_late_inlines.length() > 0) {
2627 return true;
2628 }
2629 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) {
2630 Node * n = C->macro_node(macro_idx);
2631 assert(n->is_macro(), "only macro nodes expected here");
2632 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) {
2633 return true;
2634 }
2635 }
2636 return false;
2637 }
2638
2639 //---------------------------- Bitwise operation packing optimization ---------------------------
2640
2641 static bool is_vector_unary_bitwise_op(Node* n) {
2642 return n->Opcode() == Op_XorV &&
2643 VectorNode::is_vector_bitwise_not_pattern(n);
2644 }
2645
2646 static bool is_vector_binary_bitwise_op(Node* n) {
2647 switch (n->Opcode()) {
2648 case Op_AndV:
2649 case Op_OrV:
2650 return true;
2651
2652 case Op_XorV:
2653 return !is_vector_unary_bitwise_op(n);
2654
2655 default:
2656 return false;
2657 }
2658 }
2659
2660 static bool is_vector_ternary_bitwise_op(Node* n) {
2661 return n->Opcode() == Op_MacroLogicV;
2662 }
2663
2664 static bool is_vector_bitwise_op(Node* n) {
2665 return is_vector_unary_bitwise_op(n) ||
2666 is_vector_binary_bitwise_op(n) ||
2667 is_vector_ternary_bitwise_op(n);
2668 }
2669
2670 static bool is_vector_bitwise_cone_root(Node* n) {
2671 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) {
2672 return false;
2673 }
2674 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2675 if (is_vector_bitwise_op(n->fast_out(i))) {
2676 return false;
2677 }
2678 }
2679 return true;
2680 }
2681
2682 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) {
2683 uint cnt = 0;
2684 if (is_vector_bitwise_op(n)) {
2685 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req();
2686 if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2687 for (uint i = 1; i < inp_cnt; i++) {
2688 Node* in = n->in(i);
2689 bool skip = VectorNode::is_all_ones_vector(in);
2690 if (!skip && !inputs.member(in)) {
2691 inputs.push(in);
2692 cnt++;
2693 }
2694 }
2695 assert(cnt <= 1, "not unary");
2696 } else {
2697 uint last_req = inp_cnt;
2698 if (is_vector_ternary_bitwise_op(n)) {
2699 last_req = inp_cnt - 1; // skip last input
2700 }
2701 for (uint i = 1; i < last_req; i++) {
2702 Node* def = n->in(i);
2703 if (!inputs.member(def)) {
2704 inputs.push(def);
2705 cnt++;
2706 }
2707 }
2708 }
2709 } else { // not a bitwise operations
2710 if (!inputs.member(n)) {
2711 inputs.push(n);
2712 cnt++;
2713 }
2714 }
2715 return cnt;
2716 }
2717
2718 void Compile::collect_logic_cone_roots(Unique_Node_List& list) {
2719 Unique_Node_List useful_nodes;
2720 C->identify_useful_nodes(useful_nodes);
2721
2722 for (uint i = 0; i < useful_nodes.size(); i++) {
2723 Node* n = useful_nodes.at(i);
2724 if (is_vector_bitwise_cone_root(n)) {
2725 list.push(n);
2726 }
2727 }
2728 }
2729
2730 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn,
2731 const TypeVect* vt,
2732 Unique_Node_List& partition,
2733 Unique_Node_List& inputs) {
2734 assert(partition.size() == 2 || partition.size() == 3, "not supported");
2735 assert(inputs.size() == 2 || inputs.size() == 3, "not supported");
2736 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported");
2737
2738 Node* in1 = inputs.at(0);
2739 Node* in2 = inputs.at(1);
2740 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2);
2741
2742 uint func = compute_truth_table(partition, inputs);
2743
2744 Node* pn = partition.at(partition.size() - 1);
2745 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2746 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt));
2747 }
2748
2749 static uint extract_bit(uint func, uint pos) {
2750 return (func & (1 << pos)) >> pos;
2751 }
2752
2753 //
2754 // A macro logic node represents a truth table. It has 4 inputs,
2755 // First three inputs corresponds to 3 columns of a truth table
2756 // and fourth input captures the logic function.
2757 //
2758 // eg. fn = (in1 AND in2) OR in3;
2759 //
2760 // MacroNode(in1,in2,in3,fn)
2761 //
2762 // -----------------
2763 // in1 in2 in3 fn
2764 // -----------------
2765 // 0 0 0 0
2766 // 0 0 1 1
2767 // 0 1 0 0
2768 // 0 1 1 1
2769 // 1 0 0 0
2770 // 1 0 1 1
2771 // 1 1 0 1
2772 // 1 1 1 1
2773 //
2774
2775 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) {
2776 int res = 0;
2777 for (int i = 0; i < 8; i++) {
2778 int bit1 = extract_bit(in1, i);
2779 int bit2 = extract_bit(in2, i);
2780 int bit3 = extract_bit(in3, i);
2781
2782 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3);
2783 int func_bit = extract_bit(func, func_bit_pos);
2784
2785 res |= func_bit << i;
2786 }
2787 return res;
2788 }
2789
2790 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) {
2791 assert(n != nullptr, "");
2792 assert(eval_map.contains(n), "absent");
2793 return *(eval_map.get(n));
2794 }
2795
2796 static void eval_operands(Node* n,
2797 uint& func1, uint& func2, uint& func3,
2798 ResourceHashtable<Node*,uint>& eval_map) {
2799 assert(is_vector_bitwise_op(n), "");
2800
2801 if (is_vector_unary_bitwise_op(n)) {
2802 Node* opnd = n->in(1);
2803 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) {
2804 opnd = n->in(2);
2805 }
2806 func1 = eval_operand(opnd, eval_map);
2807 } else if (is_vector_binary_bitwise_op(n)) {
2808 func1 = eval_operand(n->in(1), eval_map);
2809 func2 = eval_operand(n->in(2), eval_map);
2810 } else {
2811 assert(is_vector_ternary_bitwise_op(n), "unknown operation");
2812 func1 = eval_operand(n->in(1), eval_map);
2813 func2 = eval_operand(n->in(2), eval_map);
2814 func3 = eval_operand(n->in(3), eval_map);
2815 }
2816 }
2817
2818 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) {
2819 assert(inputs.size() <= 3, "sanity");
2820 ResourceMark rm;
2821 uint res = 0;
2822 ResourceHashtable<Node*,uint> eval_map;
2823
2824 // Populate precomputed functions for inputs.
2825 // Each input corresponds to one column of 3 input truth-table.
2826 uint input_funcs[] = { 0xAA, // (_, _, c) -> c
2827 0xCC, // (_, b, _) -> b
2828 0xF0 }; // (a, _, _) -> a
2829 for (uint i = 0; i < inputs.size(); i++) {
2830 eval_map.put(inputs.at(i), input_funcs[2-i]);
2831 }
2832
2833 for (uint i = 0; i < partition.size(); i++) {
2834 Node* n = partition.at(i);
2835
2836 uint func1 = 0, func2 = 0, func3 = 0;
2837 eval_operands(n, func1, func2, func3, eval_map);
2838
2839 switch (n->Opcode()) {
2840 case Op_OrV:
2841 assert(func3 == 0, "not binary");
2842 res = func1 | func2;
2843 break;
2844 case Op_AndV:
2845 assert(func3 == 0, "not binary");
2846 res = func1 & func2;
2847 break;
2848 case Op_XorV:
2849 if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2850 assert(func2 == 0 && func3 == 0, "not unary");
2851 res = (~func1) & 0xFF;
2852 } else {
2853 assert(func3 == 0, "not binary");
2854 res = func1 ^ func2;
2855 }
2856 break;
2857 case Op_MacroLogicV:
2858 // Ordering of inputs may change during evaluation of sub-tree
2859 // containing MacroLogic node as a child node, thus a re-evaluation
2860 // makes sure that function is evaluated in context of current
2861 // inputs.
2862 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3);
2863 break;
2864
2865 default: assert(false, "not supported: %s", n->Name());
2866 }
2867 assert(res <= 0xFF, "invalid");
2868 eval_map.put(n, res);
2869 }
2870 return res;
2871 }
2872
2873 // Criteria under which nodes gets packed into a macro logic node:-
2874 // 1) Parent and both child nodes are all unmasked or masked with
2875 // same predicates.
2876 // 2) Masked parent can be packed with left child if it is predicated
2877 // and both have same predicates.
2878 // 3) Masked parent can be packed with right child if its un-predicated
2879 // or has matching predication condition.
2880 // 4) An unmasked parent can be packed with an unmasked child.
2881 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
2882 assert(partition.size() == 0, "not empty");
2883 assert(inputs.size() == 0, "not empty");
2884 if (is_vector_ternary_bitwise_op(n)) {
2885 return false;
2886 }
2887
2888 bool is_unary_op = is_vector_unary_bitwise_op(n);
2889 if (is_unary_op) {
2890 assert(collect_unique_inputs(n, inputs) == 1, "not unary");
2891 return false; // too few inputs
2892 }
2893
2894 bool pack_left_child = true;
2895 bool pack_right_child = true;
2896
2897 bool left_child_LOP = is_vector_bitwise_op(n->in(1));
2898 bool right_child_LOP = is_vector_bitwise_op(n->in(2));
2899
2900 int left_child_input_cnt = 0;
2901 int right_child_input_cnt = 0;
2902
2903 bool parent_is_predicated = n->is_predicated_vector();
2904 bool left_child_predicated = n->in(1)->is_predicated_vector();
2905 bool right_child_predicated = n->in(2)->is_predicated_vector();
2906
2907 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr;
2908 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2909 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2910
2911 do {
2912 if (pack_left_child && left_child_LOP &&
2913 ((!parent_is_predicated && !left_child_predicated) ||
2914 ((parent_is_predicated && left_child_predicated &&
2915 parent_pred == left_child_pred)))) {
2916 partition.push(n->in(1));
2917 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs);
2918 } else {
2919 inputs.push(n->in(1));
2920 left_child_input_cnt = 1;
2921 }
2922
2923 if (pack_right_child && right_child_LOP &&
2924 (!right_child_predicated ||
2925 (right_child_predicated && parent_is_predicated &&
2926 parent_pred == right_child_pred))) {
2927 partition.push(n->in(2));
2928 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs);
2929 } else {
2930 inputs.push(n->in(2));
2931 right_child_input_cnt = 1;
2932 }
2933
2934 if (inputs.size() > 3) {
2935 assert(partition.size() > 0, "");
2936 inputs.clear();
2937 partition.clear();
2938 if (left_child_input_cnt > right_child_input_cnt) {
2939 pack_left_child = false;
2940 } else {
2941 pack_right_child = false;
2942 }
2943 } else {
2944 break;
2945 }
2946 } while(true);
2947
2948 if(partition.size()) {
2949 partition.push(n);
2950 }
2951
2952 return (partition.size() == 2 || partition.size() == 3) &&
2953 (inputs.size() == 2 || inputs.size() == 3);
2954 }
2955
2956 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) {
2957 assert(is_vector_bitwise_op(n), "not a root");
2958
2959 visited.set(n->_idx);
2960
2961 // 1) Do a DFS walk over the logic cone.
2962 for (uint i = 1; i < n->req(); i++) {
2963 Node* in = n->in(i);
2964 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) {
2965 process_logic_cone_root(igvn, in, visited);
2966 }
2967 }
2968
2969 // 2) Bottom up traversal: Merge node[s] with
2970 // the parent to form macro logic node.
2971 Unique_Node_List partition;
2972 Unique_Node_List inputs;
2973 if (compute_logic_cone(n, partition, inputs)) {
2974 const TypeVect* vt = n->bottom_type()->is_vect();
2975 Node* pn = partition.at(partition.size() - 1);
2976 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2977 if (mask == nullptr ||
2978 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) {
2979 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs);
2980 VectorNode::trace_new_vector(macro_logic, "MacroLogic");
2981 igvn.replace_node(n, macro_logic);
2982 }
2983 }
2984 }
2985
2986 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) {
2987 ResourceMark rm;
2988 if (Matcher::match_rule_supported(Op_MacroLogicV)) {
2989 Unique_Node_List list;
2990 collect_logic_cone_roots(list);
2991
2992 while (list.size() > 0) {
2993 Node* n = list.pop();
2994 const TypeVect* vt = n->bottom_type()->is_vect();
2995 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type());
2996 if (supported) {
2997 VectorSet visited(comp_arena());
2998 process_logic_cone_root(igvn, n, visited);
2999 }
3000 }
3001 }
3002 }
3003
3004 //------------------------------Code_Gen---------------------------------------
3005 // Given a graph, generate code for it
3006 void Compile::Code_Gen() {
3007 if (failing()) {
3008 return;
3009 }
3010
3011 // Perform instruction selection. You might think we could reclaim Matcher
3012 // memory PDQ, but actually the Matcher is used in generating spill code.
3013 // Internals of the Matcher (including some VectorSets) must remain live
3014 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
3015 // set a bit in reclaimed memory.
3016
3017 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
3018 // nodes. Mapping is only valid at the root of each matched subtree.
3019 NOT_PRODUCT( verify_graph_edges(); )
3020
3021 Matcher matcher;
3022 _matcher = &matcher;
3023 {
3024 TracePhase tp(_t_matcher);
3025 matcher.match();
3026 if (failing()) {
3027 return;
3028 }
3029 }
3030 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
3031 // nodes. Mapping is only valid at the root of each matched subtree.
3032 NOT_PRODUCT( verify_graph_edges(); )
3033
3034 // If you have too many nodes, or if matching has failed, bail out
3035 check_node_count(0, "out of nodes matching instructions");
3036 if (failing()) {
3037 return;
3038 }
3039
3040 print_method(PHASE_MATCHING, 2);
3041
3042 // Build a proper-looking CFG
3043 PhaseCFG cfg(node_arena(), root(), matcher);
3044 if (failing()) {
3045 return;
3046 }
3047 _cfg = &cfg;
3048 {
3049 TracePhase tp(_t_scheduler);
3050 bool success = cfg.do_global_code_motion();
3051 if (!success) {
3052 return;
3053 }
3054
3055 print_method(PHASE_GLOBAL_CODE_MOTION, 2);
3056 NOT_PRODUCT( verify_graph_edges(); )
3057 cfg.verify();
3058 if (failing()) {
3059 return;
3060 }
3061 }
3062
3063 PhaseChaitin regalloc(unique(), cfg, matcher, false);
3064 _regalloc = ®alloc;
3065 {
3066 TracePhase tp(_t_registerAllocation);
3067 // Perform register allocation. After Chaitin, use-def chains are
3068 // no longer accurate (at spill code) and so must be ignored.
3069 // Node->LRG->reg mappings are still accurate.
3070 _regalloc->Register_Allocate();
3071
3072 // Bail out if the allocator builds too many nodes
3073 if (failing()) {
3074 return;
3075 }
3076
3077 print_method(PHASE_REGISTER_ALLOCATION, 2);
3078 }
3079
3080 // Prior to register allocation we kept empty basic blocks in case the
3081 // the allocator needed a place to spill. After register allocation we
3082 // are not adding any new instructions. If any basic block is empty, we
3083 // can now safely remove it.
3084 {
3085 TracePhase tp(_t_blockOrdering);
3086 cfg.remove_empty_blocks();
3087 if (do_freq_based_layout()) {
3088 PhaseBlockLayout layout(cfg);
3089 } else {
3090 cfg.set_loop_alignment();
3091 }
3092 cfg.fixup_flow();
3093 cfg.remove_unreachable_blocks();
3094 cfg.verify_dominator_tree();
3095 print_method(PHASE_BLOCK_ORDERING, 3);
3096 }
3097
3098 // Apply peephole optimizations
3099 if( OptoPeephole ) {
3100 TracePhase tp(_t_peephole);
3101 PhasePeephole peep( _regalloc, cfg);
3102 peep.do_transform();
3103 print_method(PHASE_PEEPHOLE, 3);
3104 }
3105
3106 // Do late expand if CPU requires this.
3107 if (Matcher::require_postalloc_expand) {
3108 TracePhase tp(_t_postalloc_expand);
3109 cfg.postalloc_expand(_regalloc);
3110 print_method(PHASE_POSTALLOC_EXPAND, 3);
3111 }
3112
3113 #ifdef ASSERT
3114 {
3115 CompilationMemoryStatistic::do_test_allocations();
3116 if (failing()) return;
3117 }
3118 #endif
3119
3120 // Convert Nodes to instruction bits in a buffer
3121 {
3122 TracePhase tp(_t_output);
3123 PhaseOutput output;
3124 output.Output();
3125 if (failing()) return;
3126 output.install();
3127 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here
3128 }
3129
3130 // He's dead, Jim.
3131 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef);
3132 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
3133 }
3134
3135 //------------------------------Final_Reshape_Counts---------------------------
3136 // This class defines counters to help identify when a method
3137 // may/must be executed using hardware with only 24-bit precision.
3138 struct Final_Reshape_Counts : public StackObj {
3139 int _call_count; // count non-inlined 'common' calls
3140 int _float_count; // count float ops requiring 24-bit precision
3141 int _double_count; // count double ops requiring more precision
3142 int _java_call_count; // count non-inlined 'java' calls
3143 int _inner_loop_count; // count loops which need alignment
3144 VectorSet _visited; // Visitation flags
3145 Node_List _tests; // Set of IfNodes & PCTableNodes
3146
3147 Final_Reshape_Counts() :
3148 _call_count(0), _float_count(0), _double_count(0),
3149 _java_call_count(0), _inner_loop_count(0) { }
3150
3151 void inc_call_count () { _call_count ++; }
3152 void inc_float_count () { _float_count ++; }
3153 void inc_double_count() { _double_count++; }
3154 void inc_java_call_count() { _java_call_count++; }
3155 void inc_inner_loop_count() { _inner_loop_count++; }
3156
3157 int get_call_count () const { return _call_count ; }
3158 int get_float_count () const { return _float_count ; }
3159 int get_double_count() const { return _double_count; }
3160 int get_java_call_count() const { return _java_call_count; }
3161 int get_inner_loop_count() const { return _inner_loop_count; }
3162 };
3163
3164 //------------------------------final_graph_reshaping_impl----------------------
3165 // Implement items 1-5 from final_graph_reshaping below.
3166 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3167
3168 if ( n->outcnt() == 0 ) return; // dead node
3169 uint nop = n->Opcode();
3170
3171 // Check for 2-input instruction with "last use" on right input.
3172 // Swap to left input. Implements item (2).
3173 if( n->req() == 3 && // two-input instruction
3174 n->in(1)->outcnt() > 1 && // left use is NOT a last use
3175 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
3176 n->in(2)->outcnt() == 1 &&// right use IS a last use
3177 !n->in(2)->is_Con() ) { // right use is not a constant
3178 // Check for commutative opcode
3179 switch( nop ) {
3180 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL:
3181 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD:
3182 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD:
3183 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL:
3184 case Op_AndL: case Op_XorL: case Op_OrL:
3185 case Op_AndI: case Op_XorI: case Op_OrI: {
3186 // Move "last use" input to left by swapping inputs
3187 n->swap_edges(1, 2);
3188 break;
3189 }
3190 default:
3191 break;
3192 }
3193 }
3194
3195 #ifdef ASSERT
3196 if( n->is_Mem() ) {
3197 int alias_idx = get_alias_index(n->as_Mem()->adr_type());
3198 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw ||
3199 // oop will be recorded in oop map if load crosses safepoint
3200 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
3201 LoadNode::is_immutable_value(n->in(MemNode::Address)))),
3202 "raw memory operations should have control edge");
3203 }
3204 if (n->is_MemBar()) {
3205 MemBarNode* mb = n->as_MemBar();
3206 if (mb->trailing_store() || mb->trailing_load_store()) {
3207 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
3208 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent));
3209 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
3210 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
3211 } else if (mb->leading()) {
3212 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
3213 }
3214 }
3215 #endif
3216 // Count FPU ops and common calls, implements item (3)
3217 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes);
3218 if (!gc_handled) {
3219 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes);
3220 }
3221
3222 // Collect CFG split points
3223 if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3224 frc._tests.push(n);
3225 }
3226 }
3227
3228 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) {
3229 if (!UseDivMod) {
3230 return;
3231 }
3232
3233 // Check if "a % b" and "a / b" both exist
3234 Node* d = n->find_similar(Op_DivIL(bt, is_unsigned));
3235 if (d == nullptr) {
3236 return;
3237 }
3238
3239 // Replace them with a fused divmod if supported
3240 if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) {
3241 DivModNode* divmod = DivModNode::make(n, bt, is_unsigned);
3242 // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero.
3243 // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the
3244 // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency
3245 // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the
3246 // DivMod node so the dependency is not lost.
3247 divmod->add_prec_from(n);
3248 divmod->add_prec_from(d);
3249 d->subsume_by(divmod->div_proj(), this);
3250 n->subsume_by(divmod->mod_proj(), this);
3251 } else {
3252 // Replace "a % b" with "a - ((a / b) * b)"
3253 Node* mult = MulNode::make(d, d->in(2), bt);
3254 Node* sub = SubNode::make(d->in(1), mult, bt);
3255 n->subsume_by(sub, this);
3256 }
3257 }
3258
3259 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) {
3260 switch( nop ) {
3261 // Count all float operations that may use FPU
3262 case Op_AddF:
3263 case Op_SubF:
3264 case Op_MulF:
3265 case Op_DivF:
3266 case Op_NegF:
3267 case Op_ModF:
3268 case Op_ConvI2F:
3269 case Op_ConF:
3270 case Op_CmpF:
3271 case Op_CmpF3:
3272 case Op_StoreF:
3273 case Op_LoadF:
3274 // case Op_ConvL2F: // longs are split into 32-bit halves
3275 frc.inc_float_count();
3276 break;
3277
3278 case Op_ConvF2D:
3279 case Op_ConvD2F:
3280 frc.inc_float_count();
3281 frc.inc_double_count();
3282 break;
3283
3284 // Count all double operations that may use FPU
3285 case Op_AddD:
3286 case Op_SubD:
3287 case Op_MulD:
3288 case Op_DivD:
3289 case Op_NegD:
3290 case Op_ModD:
3291 case Op_ConvI2D:
3292 case Op_ConvD2I:
3293 // case Op_ConvL2D: // handled by leaf call
3294 // case Op_ConvD2L: // handled by leaf call
3295 case Op_ConD:
3296 case Op_CmpD:
3297 case Op_CmpD3:
3298 case Op_StoreD:
3299 case Op_LoadD:
3300 case Op_LoadD_unaligned:
3301 frc.inc_double_count();
3302 break;
3303 case Op_Opaque1: // Remove Opaque Nodes before matching
3304 n->subsume_by(n->in(1), this);
3305 break;
3306 case Op_CallStaticJava:
3307 case Op_CallJava:
3308 case Op_CallDynamicJava:
3309 frc.inc_java_call_count(); // Count java call site;
3310 case Op_CallRuntime:
3311 case Op_CallLeaf:
3312 case Op_CallLeafVector:
3313 case Op_CallLeafNoFP: {
3314 assert (n->is_Call(), "");
3315 CallNode *call = n->as_Call();
3316 // Count call sites where the FP mode bit would have to be flipped.
3317 // Do not count uncommon runtime calls:
3318 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
3319 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
3320 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
3321 frc.inc_call_count(); // Count the call site
3322 } else { // See if uncommon argument is shared
3323 Node *n = call->in(TypeFunc::Parms);
3324 int nop = n->Opcode();
3325 // Clone shared simple arguments to uncommon calls, item (1).
3326 if (n->outcnt() > 1 &&
3327 !n->is_Proj() &&
3328 nop != Op_CreateEx &&
3329 nop != Op_CheckCastPP &&
3330 nop != Op_DecodeN &&
3331 nop != Op_DecodeNKlass &&
3332 !n->is_Mem() &&
3333 !n->is_Phi()) {
3334 Node *x = n->clone();
3335 call->set_req(TypeFunc::Parms, x);
3336 }
3337 }
3338 break;
3339 }
3340 case Op_StoreB:
3341 case Op_StoreC:
3342 case Op_StoreI:
3343 case Op_StoreL:
3344 case Op_CompareAndSwapB:
3345 case Op_CompareAndSwapS:
3346 case Op_CompareAndSwapI:
3347 case Op_CompareAndSwapL:
3348 case Op_CompareAndSwapP:
3349 case Op_CompareAndSwapN:
3350 case Op_WeakCompareAndSwapB:
3351 case Op_WeakCompareAndSwapS:
3352 case Op_WeakCompareAndSwapI:
3353 case Op_WeakCompareAndSwapL:
3354 case Op_WeakCompareAndSwapP:
3355 case Op_WeakCompareAndSwapN:
3356 case Op_CompareAndExchangeB:
3357 case Op_CompareAndExchangeS:
3358 case Op_CompareAndExchangeI:
3359 case Op_CompareAndExchangeL:
3360 case Op_CompareAndExchangeP:
3361 case Op_CompareAndExchangeN:
3362 case Op_GetAndAddS:
3363 case Op_GetAndAddB:
3364 case Op_GetAndAddI:
3365 case Op_GetAndAddL:
3366 case Op_GetAndSetS:
3367 case Op_GetAndSetB:
3368 case Op_GetAndSetI:
3369 case Op_GetAndSetL:
3370 case Op_GetAndSetP:
3371 case Op_GetAndSetN:
3372 case Op_StoreP:
3373 case Op_StoreN:
3374 case Op_StoreNKlass:
3375 case Op_LoadB:
3376 case Op_LoadUB:
3377 case Op_LoadUS:
3378 case Op_LoadI:
3379 case Op_LoadKlass:
3380 case Op_LoadNKlass:
3381 case Op_LoadL:
3382 case Op_LoadL_unaligned:
3383 case Op_LoadP:
3384 case Op_LoadN:
3385 case Op_LoadRange:
3386 case Op_LoadS:
3387 break;
3388
3389 case Op_AddP: { // Assert sane base pointers
3390 Node *addp = n->in(AddPNode::Address);
3391 assert( !addp->is_AddP() ||
3392 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3393 addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3394 "Base pointers must match (addp %u)", addp->_idx );
3395 #ifdef _LP64
3396 if ((UseCompressedOops || UseCompressedClassPointers) &&
3397 addp->Opcode() == Op_ConP &&
3398 addp == n->in(AddPNode::Base) &&
3399 n->in(AddPNode::Offset)->is_Con()) {
3400 // If the transformation of ConP to ConN+DecodeN is beneficial depends
3401 // on the platform and on the compressed oops mode.
3402 // Use addressing with narrow klass to load with offset on x86.
3403 // Some platforms can use the constant pool to load ConP.
3404 // Do this transformation here since IGVN will convert ConN back to ConP.
3405 const Type* t = addp->bottom_type();
3406 bool is_oop = t->isa_oopptr() != nullptr;
3407 bool is_klass = t->isa_klassptr() != nullptr;
3408
3409 if ((is_oop && UseCompressedOops && Matcher::const_oop_prefer_decode() ) ||
3410 (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() &&
3411 t->isa_klassptr()->exact_klass()->is_in_encoding_range())) {
3412 Node* nn = nullptr;
3413
3414 int op = is_oop ? Op_ConN : Op_ConNKlass;
3415
3416 // Look for existing ConN node of the same exact type.
3417 Node* r = root();
3418 uint cnt = r->outcnt();
3419 for (uint i = 0; i < cnt; i++) {
3420 Node* m = r->raw_out(i);
3421 if (m!= nullptr && m->Opcode() == op &&
3422 m->bottom_type()->make_ptr() == t) {
3423 nn = m;
3424 break;
3425 }
3426 }
3427 if (nn != nullptr) {
3428 // Decode a narrow oop to match address
3429 // [R12 + narrow_oop_reg<<3 + offset]
3430 if (is_oop) {
3431 nn = new DecodeNNode(nn, t);
3432 } else {
3433 nn = new DecodeNKlassNode(nn, t);
3434 }
3435 // Check for succeeding AddP which uses the same Base.
3436 // Otherwise we will run into the assertion above when visiting that guy.
3437 for (uint i = 0; i < n->outcnt(); ++i) {
3438 Node *out_i = n->raw_out(i);
3439 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3440 out_i->set_req(AddPNode::Base, nn);
3441 #ifdef ASSERT
3442 for (uint j = 0; j < out_i->outcnt(); ++j) {
3443 Node *out_j = out_i->raw_out(j);
3444 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3445 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3446 }
3447 #endif
3448 }
3449 }
3450 n->set_req(AddPNode::Base, nn);
3451 n->set_req(AddPNode::Address, nn);
3452 if (addp->outcnt() == 0) {
3453 addp->disconnect_inputs(this);
3454 }
3455 }
3456 }
3457 }
3458 #endif
3459 break;
3460 }
3461
3462 case Op_CastPP: {
3463 // Remove CastPP nodes to gain more freedom during scheduling but
3464 // keep the dependency they encode as control or precedence edges
3465 // (if control is set already) on memory operations. Some CastPP
3466 // nodes don't have a control (don't carry a dependency): skip
3467 // those.
3468 if (n->in(0) != nullptr) {
3469 ResourceMark rm;
3470 Unique_Node_List wq;
3471 wq.push(n);
3472 for (uint next = 0; next < wq.size(); ++next) {
3473 Node *m = wq.at(next);
3474 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3475 Node* use = m->fast_out(i);
3476 if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3477 use->ensure_control_or_add_prec(n->in(0));
3478 } else {
3479 switch(use->Opcode()) {
3480 case Op_AddP:
3481 case Op_DecodeN:
3482 case Op_DecodeNKlass:
3483 case Op_CheckCastPP:
3484 case Op_CastPP:
3485 wq.push(use);
3486 break;
3487 }
3488 }
3489 }
3490 }
3491 }
3492 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3493 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3494 Node* in1 = n->in(1);
3495 const Type* t = n->bottom_type();
3496 Node* new_in1 = in1->clone();
3497 new_in1->as_DecodeN()->set_type(t);
3498
3499 if (!Matcher::narrow_oop_use_complex_address()) {
3500 //
3501 // x86, ARM and friends can handle 2 adds in addressing mode
3502 // and Matcher can fold a DecodeN node into address by using
3503 // a narrow oop directly and do implicit null check in address:
3504 //
3505 // [R12 + narrow_oop_reg<<3 + offset]
3506 // NullCheck narrow_oop_reg
3507 //
3508 // On other platforms (Sparc) we have to keep new DecodeN node and
3509 // use it to do implicit null check in address:
3510 //
3511 // decode_not_null narrow_oop_reg, base_reg
3512 // [base_reg + offset]
3513 // NullCheck base_reg
3514 //
3515 // Pin the new DecodeN node to non-null path on these platform (Sparc)
3516 // to keep the information to which null check the new DecodeN node
3517 // corresponds to use it as value in implicit_null_check().
3518 //
3519 new_in1->set_req(0, n->in(0));
3520 }
3521
3522 n->subsume_by(new_in1, this);
3523 if (in1->outcnt() == 0) {
3524 in1->disconnect_inputs(this);
3525 }
3526 } else {
3527 n->subsume_by(n->in(1), this);
3528 if (n->outcnt() == 0) {
3529 n->disconnect_inputs(this);
3530 }
3531 }
3532 break;
3533 }
3534 case Op_CastII: {
3535 n->as_CastII()->remove_range_check_cast(this);
3536 break;
3537 }
3538 #ifdef _LP64
3539 case Op_CmpP:
3540 // Do this transformation here to preserve CmpPNode::sub() and
3541 // other TypePtr related Ideal optimizations (for example, ptr nullness).
3542 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3543 Node* in1 = n->in(1);
3544 Node* in2 = n->in(2);
3545 if (!in1->is_DecodeNarrowPtr()) {
3546 in2 = in1;
3547 in1 = n->in(2);
3548 }
3549 assert(in1->is_DecodeNarrowPtr(), "sanity");
3550
3551 Node* new_in2 = nullptr;
3552 if (in2->is_DecodeNarrowPtr()) {
3553 assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3554 new_in2 = in2->in(1);
3555 } else if (in2->Opcode() == Op_ConP) {
3556 const Type* t = in2->bottom_type();
3557 if (t == TypePtr::NULL_PTR) {
3558 assert(in1->is_DecodeN(), "compare klass to null?");
3559 // Don't convert CmpP null check into CmpN if compressed
3560 // oops implicit null check is not generated.
3561 // This will allow to generate normal oop implicit null check.
3562 if (Matcher::gen_narrow_oop_implicit_null_checks())
3563 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3564 //
3565 // This transformation together with CastPP transformation above
3566 // will generated code for implicit null checks for compressed oops.
3567 //
3568 // The original code after Optimize()
3569 //
3570 // LoadN memory, narrow_oop_reg
3571 // decode narrow_oop_reg, base_reg
3572 // CmpP base_reg, nullptr
3573 // CastPP base_reg // NotNull
3574 // Load [base_reg + offset], val_reg
3575 //
3576 // after these transformations will be
3577 //
3578 // LoadN memory, narrow_oop_reg
3579 // CmpN narrow_oop_reg, nullptr
3580 // decode_not_null narrow_oop_reg, base_reg
3581 // Load [base_reg + offset], val_reg
3582 //
3583 // and the uncommon path (== nullptr) will use narrow_oop_reg directly
3584 // since narrow oops can be used in debug info now (see the code in
3585 // final_graph_reshaping_walk()).
3586 //
3587 // At the end the code will be matched to
3588 // on x86:
3589 //
3590 // Load_narrow_oop memory, narrow_oop_reg
3591 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3592 // NullCheck narrow_oop_reg
3593 //
3594 // and on sparc:
3595 //
3596 // Load_narrow_oop memory, narrow_oop_reg
3597 // decode_not_null narrow_oop_reg, base_reg
3598 // Load [base_reg + offset], val_reg
3599 // NullCheck base_reg
3600 //
3601 } else if (t->isa_oopptr()) {
3602 new_in2 = ConNode::make(t->make_narrowoop());
3603 } else if (t->isa_klassptr()) {
3604 new_in2 = ConNode::make(t->make_narrowklass());
3605 }
3606 }
3607 if (new_in2 != nullptr) {
3608 Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3609 n->subsume_by(cmpN, this);
3610 if (in1->outcnt() == 0) {
3611 in1->disconnect_inputs(this);
3612 }
3613 if (in2->outcnt() == 0) {
3614 in2->disconnect_inputs(this);
3615 }
3616 }
3617 }
3618 break;
3619
3620 case Op_DecodeN:
3621 case Op_DecodeNKlass:
3622 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3623 // DecodeN could be pinned when it can't be fold into
3624 // an address expression, see the code for Op_CastPP above.
3625 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3626 break;
3627
3628 case Op_EncodeP:
3629 case Op_EncodePKlass: {
3630 Node* in1 = n->in(1);
3631 if (in1->is_DecodeNarrowPtr()) {
3632 n->subsume_by(in1->in(1), this);
3633 } else if (in1->Opcode() == Op_ConP) {
3634 const Type* t = in1->bottom_type();
3635 if (t == TypePtr::NULL_PTR) {
3636 assert(t->isa_oopptr(), "null klass?");
3637 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3638 } else if (t->isa_oopptr()) {
3639 n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3640 } else if (t->isa_klassptr()) {
3641 n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3642 }
3643 }
3644 if (in1->outcnt() == 0) {
3645 in1->disconnect_inputs(this);
3646 }
3647 break;
3648 }
3649
3650 case Op_Proj: {
3651 if (OptimizeStringConcat || IncrementalInline) {
3652 ProjNode* proj = n->as_Proj();
3653 if (proj->_is_io_use) {
3654 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, "");
3655 // Separate projections were used for the exception path which
3656 // are normally removed by a late inline. If it wasn't inlined
3657 // then they will hang around and should just be replaced with
3658 // the original one. Merge them.
3659 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/);
3660 if (non_io_proj != nullptr) {
3661 proj->subsume_by(non_io_proj , this);
3662 }
3663 }
3664 }
3665 break;
3666 }
3667
3668 case Op_Phi:
3669 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3670 // The EncodeP optimization may create Phi with the same edges
3671 // for all paths. It is not handled well by Register Allocator.
3672 Node* unique_in = n->in(1);
3673 assert(unique_in != nullptr, "");
3674 uint cnt = n->req();
3675 for (uint i = 2; i < cnt; i++) {
3676 Node* m = n->in(i);
3677 assert(m != nullptr, "");
3678 if (unique_in != m)
3679 unique_in = nullptr;
3680 }
3681 if (unique_in != nullptr) {
3682 n->subsume_by(unique_in, this);
3683 }
3684 }
3685 break;
3686
3687 #endif
3688
3689 case Op_ModI:
3690 handle_div_mod_op(n, T_INT, false);
3691 break;
3692
3693 case Op_ModL:
3694 handle_div_mod_op(n, T_LONG, false);
3695 break;
3696
3697 case Op_UModI:
3698 handle_div_mod_op(n, T_INT, true);
3699 break;
3700
3701 case Op_UModL:
3702 handle_div_mod_op(n, T_LONG, true);
3703 break;
3704
3705 case Op_LoadVector:
3706 case Op_StoreVector:
3707 #ifdef ASSERT
3708 // Add VerifyVectorAlignment node between adr and load / store.
3709 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) {
3710 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() :
3711 n->as_StoreVector()->must_verify_alignment();
3712 if (must_verify_alignment) {
3713 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() :
3714 n->as_StoreVector()->memory_size();
3715 // The memory access should be aligned to the vector width in bytes.
3716 // However, the underlying array is possibly less well aligned, but at least
3717 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in
3718 // a loop we can expect at least the following alignment:
3719 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes);
3720 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range");
3721 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2");
3722 // Create mask from alignment. e.g. 0b1000 -> 0b0111
3723 jlong mask = guaranteed_alignment - 1;
3724 Node* mask_con = ConLNode::make(mask);
3725 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con);
3726 n->set_req(MemNode::Address, va);
3727 }
3728 }
3729 #endif
3730 break;
3731
3732 case Op_LoadVectorGather:
3733 case Op_StoreVectorScatter:
3734 case Op_LoadVectorGatherMasked:
3735 case Op_StoreVectorScatterMasked:
3736 case Op_VectorCmpMasked:
3737 case Op_VectorMaskGen:
3738 case Op_LoadVectorMasked:
3739 case Op_StoreVectorMasked:
3740 break;
3741
3742 case Op_AddReductionVI:
3743 case Op_AddReductionVL:
3744 case Op_AddReductionVF:
3745 case Op_AddReductionVD:
3746 case Op_MulReductionVI:
3747 case Op_MulReductionVL:
3748 case Op_MulReductionVF:
3749 case Op_MulReductionVD:
3750 case Op_MinReductionV:
3751 case Op_MaxReductionV:
3752 case Op_AndReductionV:
3753 case Op_OrReductionV:
3754 case Op_XorReductionV:
3755 break;
3756
3757 case Op_PackB:
3758 case Op_PackS:
3759 case Op_PackI:
3760 case Op_PackF:
3761 case Op_PackL:
3762 case Op_PackD:
3763 if (n->req()-1 > 2) {
3764 // Replace many operand PackNodes with a binary tree for matching
3765 PackNode* p = (PackNode*) n;
3766 Node* btp = p->binary_tree_pack(1, n->req());
3767 n->subsume_by(btp, this);
3768 }
3769 break;
3770 case Op_Loop:
3771 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop");
3772 case Op_CountedLoop:
3773 case Op_LongCountedLoop:
3774 case Op_OuterStripMinedLoop:
3775 if (n->as_Loop()->is_inner_loop()) {
3776 frc.inc_inner_loop_count();
3777 }
3778 n->as_Loop()->verify_strip_mined(0);
3779 break;
3780 case Op_LShiftI:
3781 case Op_RShiftI:
3782 case Op_URShiftI:
3783 case Op_LShiftL:
3784 case Op_RShiftL:
3785 case Op_URShiftL:
3786 if (Matcher::need_masked_shift_count) {
3787 // The cpu's shift instructions don't restrict the count to the
3788 // lower 5/6 bits. We need to do the masking ourselves.
3789 Node* in2 = n->in(2);
3790 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3791 const TypeInt* t = in2->find_int_type();
3792 if (t != nullptr && t->is_con()) {
3793 juint shift = t->get_con();
3794 if (shift > mask) { // Unsigned cmp
3795 n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3796 }
3797 } else {
3798 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) {
3799 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3800 n->set_req(2, shift);
3801 }
3802 }
3803 if (in2->outcnt() == 0) { // Remove dead node
3804 in2->disconnect_inputs(this);
3805 }
3806 }
3807 break;
3808 case Op_MemBarStoreStore:
3809 case Op_MemBarRelease:
3810 // Break the link with AllocateNode: it is no longer useful and
3811 // confuses register allocation.
3812 if (n->req() > MemBarNode::Precedent) {
3813 n->set_req(MemBarNode::Precedent, top());
3814 }
3815 break;
3816 case Op_MemBarAcquire: {
3817 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3818 // At parse time, the trailing MemBarAcquire for a volatile load
3819 // is created with an edge to the load. After optimizations,
3820 // that input may be a chain of Phis. If those phis have no
3821 // other use, then the MemBarAcquire keeps them alive and
3822 // register allocation can be confused.
3823 dead_nodes.push(n->in(MemBarNode::Precedent));
3824 n->set_req(MemBarNode::Precedent, top());
3825 }
3826 break;
3827 }
3828 case Op_Blackhole:
3829 break;
3830 case Op_RangeCheck: {
3831 RangeCheckNode* rc = n->as_RangeCheck();
3832 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3833 n->subsume_by(iff, this);
3834 frc._tests.push(iff);
3835 break;
3836 }
3837 case Op_ConvI2L: {
3838 if (!Matcher::convi2l_type_required) {
3839 // Code generation on some platforms doesn't need accurate
3840 // ConvI2L types. Widening the type can help remove redundant
3841 // address computations.
3842 n->as_Type()->set_type(TypeLong::INT);
3843 ResourceMark rm;
3844 Unique_Node_List wq;
3845 wq.push(n);
3846 for (uint next = 0; next < wq.size(); next++) {
3847 Node *m = wq.at(next);
3848
3849 for(;;) {
3850 // Loop over all nodes with identical inputs edges as m
3851 Node* k = m->find_similar(m->Opcode());
3852 if (k == nullptr) {
3853 break;
3854 }
3855 // Push their uses so we get a chance to remove node made
3856 // redundant
3857 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3858 Node* u = k->fast_out(i);
3859 if (u->Opcode() == Op_LShiftL ||
3860 u->Opcode() == Op_AddL ||
3861 u->Opcode() == Op_SubL ||
3862 u->Opcode() == Op_AddP) {
3863 wq.push(u);
3864 }
3865 }
3866 // Replace all nodes with identical edges as m with m
3867 k->subsume_by(m, this);
3868 }
3869 }
3870 }
3871 break;
3872 }
3873 case Op_CmpUL: {
3874 if (!Matcher::has_match_rule(Op_CmpUL)) {
3875 // No support for unsigned long comparisons
3876 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3877 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3878 Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3879 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3880 Node* andl = new AndLNode(orl, remove_sign_mask);
3881 Node* cmp = new CmpLNode(andl, n->in(2));
3882 n->subsume_by(cmp, this);
3883 }
3884 break;
3885 }
3886 #ifdef ASSERT
3887 case Op_ConNKlass: {
3888 const TypePtr* tp = n->as_Type()->type()->make_ptr();
3889 ciKlass* klass = tp->is_klassptr()->exact_klass();
3890 assert(klass->is_in_encoding_range(), "klass cannot be compressed");
3891 break;
3892 }
3893 #endif
3894 default:
3895 assert(!n->is_Call(), "");
3896 assert(!n->is_Mem(), "");
3897 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3898 break;
3899 }
3900 }
3901
3902 //------------------------------final_graph_reshaping_walk---------------------
3903 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3904 // requires that the walk visits a node's inputs before visiting the node.
3905 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3906 Unique_Node_List sfpt;
3907
3908 frc._visited.set(root->_idx); // first, mark node as visited
3909 uint cnt = root->req();
3910 Node *n = root;
3911 uint i = 0;
3912 while (true) {
3913 if (i < cnt) {
3914 // Place all non-visited non-null inputs onto stack
3915 Node* m = n->in(i);
3916 ++i;
3917 if (m != nullptr && !frc._visited.test_set(m->_idx)) {
3918 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) {
3919 // compute worst case interpreter size in case of a deoptimization
3920 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3921
3922 sfpt.push(m);
3923 }
3924 cnt = m->req();
3925 nstack.push(n, i); // put on stack parent and next input's index
3926 n = m;
3927 i = 0;
3928 }
3929 } else {
3930 // Now do post-visit work
3931 final_graph_reshaping_impl(n, frc, dead_nodes);
3932 if (nstack.is_empty())
3933 break; // finished
3934 n = nstack.node(); // Get node from stack
3935 cnt = n->req();
3936 i = nstack.index();
3937 nstack.pop(); // Shift to the next node on stack
3938 }
3939 }
3940
3941 // Skip next transformation if compressed oops are not used.
3942 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3943 (!UseCompressedOops && !UseCompressedClassPointers))
3944 return;
3945
3946 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3947 // It could be done for an uncommon traps or any safepoints/calls
3948 // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3949 while (sfpt.size() > 0) {
3950 n = sfpt.pop();
3951 JVMState *jvms = n->as_SafePoint()->jvms();
3952 assert(jvms != nullptr, "sanity");
3953 int start = jvms->debug_start();
3954 int end = n->req();
3955 bool is_uncommon = (n->is_CallStaticJava() &&
3956 n->as_CallStaticJava()->uncommon_trap_request() != 0);
3957 for (int j = start; j < end; j++) {
3958 Node* in = n->in(j);
3959 if (in->is_DecodeNarrowPtr()) {
3960 bool safe_to_skip = true;
3961 if (!is_uncommon ) {
3962 // Is it safe to skip?
3963 for (uint i = 0; i < in->outcnt(); i++) {
3964 Node* u = in->raw_out(i);
3965 if (!u->is_SafePoint() ||
3966 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3967 safe_to_skip = false;
3968 }
3969 }
3970 }
3971 if (safe_to_skip) {
3972 n->set_req(j, in->in(1));
3973 }
3974 if (in->outcnt() == 0) {
3975 in->disconnect_inputs(this);
3976 }
3977 }
3978 }
3979 }
3980 }
3981
3982 //------------------------------final_graph_reshaping--------------------------
3983 // Final Graph Reshaping.
3984 //
3985 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3986 // and not commoned up and forced early. Must come after regular
3987 // optimizations to avoid GVN undoing the cloning. Clone constant
3988 // inputs to Loop Phis; these will be split by the allocator anyways.
3989 // Remove Opaque nodes.
3990 // (2) Move last-uses by commutative operations to the left input to encourage
3991 // Intel update-in-place two-address operations and better register usage
3992 // on RISCs. Must come after regular optimizations to avoid GVN Ideal
3993 // calls canonicalizing them back.
3994 // (3) Count the number of double-precision FP ops, single-precision FP ops
3995 // and call sites. On Intel, we can get correct rounding either by
3996 // forcing singles to memory (requires extra stores and loads after each
3997 // FP bytecode) or we can set a rounding mode bit (requires setting and
3998 // clearing the mode bit around call sites). The mode bit is only used
3999 // if the relative frequency of single FP ops to calls is low enough.
4000 // This is a key transform for SPEC mpeg_audio.
4001 // (4) Detect infinite loops; blobs of code reachable from above but not
4002 // below. Several of the Code_Gen algorithms fail on such code shapes,
4003 // so we simply bail out. Happens a lot in ZKM.jar, but also happens
4004 // from time to time in other codes (such as -Xcomp finalizer loops, etc).
4005 // Detection is by looking for IfNodes where only 1 projection is
4006 // reachable from below or CatchNodes missing some targets.
4007 // (5) Assert for insane oop offsets in debug mode.
4008
4009 bool Compile::final_graph_reshaping() {
4010 // an infinite loop may have been eliminated by the optimizer,
4011 // in which case the graph will be empty.
4012 if (root()->req() == 1) {
4013 // Do not compile method that is only a trivial infinite loop,
4014 // since the content of the loop may have been eliminated.
4015 record_method_not_compilable("trivial infinite loop");
4016 return true;
4017 }
4018
4019 // Expensive nodes have their control input set to prevent the GVN
4020 // from freely commoning them. There's no GVN beyond this point so
4021 // no need to keep the control input. We want the expensive nodes to
4022 // be freely moved to the least frequent code path by gcm.
4023 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
4024 for (int i = 0; i < expensive_count(); i++) {
4025 _expensive_nodes.at(i)->set_req(0, nullptr);
4026 }
4027
4028 Final_Reshape_Counts frc;
4029
4030 // Visit everybody reachable!
4031 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
4032 Node_Stack nstack(live_nodes() >> 1);
4033 Unique_Node_List dead_nodes;
4034 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes);
4035
4036 // Check for unreachable (from below) code (i.e., infinite loops).
4037 for( uint i = 0; i < frc._tests.size(); i++ ) {
4038 MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
4039 // Get number of CFG targets.
4040 // Note that PCTables include exception targets after calls.
4041 uint required_outcnt = n->required_outcnt();
4042 if (n->outcnt() != required_outcnt) {
4043 // Check for a few special cases. Rethrow Nodes never take the
4044 // 'fall-thru' path, so expected kids is 1 less.
4045 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
4046 if (n->in(0)->in(0)->is_Call()) {
4047 CallNode* call = n->in(0)->in(0)->as_Call();
4048 if (call->entry_point() == OptoRuntime::rethrow_stub()) {
4049 required_outcnt--; // Rethrow always has 1 less kid
4050 } else if (call->req() > TypeFunc::Parms &&
4051 call->is_CallDynamicJava()) {
4052 // Check for null receiver. In such case, the optimizer has
4053 // detected that the virtual call will always result in a null
4054 // pointer exception. The fall-through projection of this CatchNode
4055 // will not be populated.
4056 Node* arg0 = call->in(TypeFunc::Parms);
4057 if (arg0->is_Type() &&
4058 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
4059 required_outcnt--;
4060 }
4061 } else if (call->entry_point() == OptoRuntime::new_array_Java() ||
4062 call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
4063 // Check for illegal array length. In such case, the optimizer has
4064 // detected that the allocation attempt will always result in an
4065 // exception. There is no fall-through projection of this CatchNode .
4066 assert(call->is_CallStaticJava(), "static call expected");
4067 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4068 uint valid_length_test_input = call->req() - 1;
4069 Node* valid_length_test = call->in(valid_length_test_input);
4070 call->del_req(valid_length_test_input);
4071 if (valid_length_test->find_int_con(1) == 0) {
4072 required_outcnt--;
4073 }
4074 dead_nodes.push(valid_length_test);
4075 assert(n->outcnt() == required_outcnt, "malformed control flow");
4076 continue;
4077 }
4078 }
4079 }
4080
4081 // Recheck with a better notion of 'required_outcnt'
4082 if (n->outcnt() != required_outcnt) {
4083 record_method_not_compilable("malformed control flow");
4084 return true; // Not all targets reachable!
4085 }
4086 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) {
4087 CallNode* call = n->in(0)->in(0)->as_Call();
4088 if (call->entry_point() == OptoRuntime::new_array_Java() ||
4089 call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
4090 assert(call->is_CallStaticJava(), "static call expected");
4091 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4092 uint valid_length_test_input = call->req() - 1;
4093 dead_nodes.push(call->in(valid_length_test_input));
4094 call->del_req(valid_length_test_input); // valid length test useless now
4095 }
4096 }
4097 // Check that I actually visited all kids. Unreached kids
4098 // must be infinite loops.
4099 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
4100 if (!frc._visited.test(n->fast_out(j)->_idx)) {
4101 record_method_not_compilable("infinite loop");
4102 return true; // Found unvisited kid; must be unreach
4103 }
4104
4105 // Here so verification code in final_graph_reshaping_walk()
4106 // always see an OuterStripMinedLoopEnd
4107 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) {
4108 IfNode* init_iff = n->as_If();
4109 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
4110 n->subsume_by(iff, this);
4111 }
4112 }
4113
4114 while (dead_nodes.size() > 0) {
4115 Node* m = dead_nodes.pop();
4116 if (m->outcnt() == 0 && m != top()) {
4117 for (uint j = 0; j < m->req(); j++) {
4118 Node* in = m->in(j);
4119 if (in != nullptr) {
4120 dead_nodes.push(in);
4121 }
4122 }
4123 m->disconnect_inputs(this);
4124 }
4125 }
4126
4127 set_java_calls(frc.get_java_call_count());
4128 set_inner_loops(frc.get_inner_loop_count());
4129
4130 // No infinite loops, no reason to bail out.
4131 return false;
4132 }
4133
4134 //-----------------------------too_many_traps----------------------------------
4135 // Report if there are too many traps at the current method and bci.
4136 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
4137 bool Compile::too_many_traps(ciMethod* method,
4138 int bci,
4139 Deoptimization::DeoptReason reason) {
4140 ciMethodData* md = method->method_data();
4141 if (md->is_empty()) {
4142 // Assume the trap has not occurred, or that it occurred only
4143 // because of a transient condition during start-up in the interpreter.
4144 return false;
4145 }
4146 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4147 if (md->has_trap_at(bci, m, reason) != 0) {
4148 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
4149 // Also, if there are multiple reasons, or if there is no per-BCI record,
4150 // assume the worst.
4151 if (log())
4152 log()->elem("observe trap='%s' count='%d'",
4153 Deoptimization::trap_reason_name(reason),
4154 md->trap_count(reason));
4155 return true;
4156 } else {
4157 // Ignore method/bci and see if there have been too many globally.
4158 return too_many_traps(reason, md);
4159 }
4160 }
4161
4162 // Less-accurate variant which does not require a method and bci.
4163 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
4164 ciMethodData* logmd) {
4165 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
4166 // Too many traps globally.
4167 // Note that we use cumulative trap_count, not just md->trap_count.
4168 if (log()) {
4169 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason);
4170 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
4171 Deoptimization::trap_reason_name(reason),
4172 mcount, trap_count(reason));
4173 }
4174 return true;
4175 } else {
4176 // The coast is clear.
4177 return false;
4178 }
4179 }
4180
4181 //--------------------------too_many_recompiles--------------------------------
4182 // Report if there are too many recompiles at the current method and bci.
4183 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
4184 // Is not eager to return true, since this will cause the compiler to use
4185 // Action_none for a trap point, to avoid too many recompilations.
4186 bool Compile::too_many_recompiles(ciMethod* method,
4187 int bci,
4188 Deoptimization::DeoptReason reason) {
4189 ciMethodData* md = method->method_data();
4190 if (md->is_empty()) {
4191 // Assume the trap has not occurred, or that it occurred only
4192 // because of a transient condition during start-up in the interpreter.
4193 return false;
4194 }
4195 // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
4196 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
4197 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero
4198 Deoptimization::DeoptReason per_bc_reason
4199 = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
4200 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4201 if ((per_bc_reason == Deoptimization::Reason_none
4202 || md->has_trap_at(bci, m, reason) != 0)
4203 // The trap frequency measure we care about is the recompile count:
4204 && md->trap_recompiled_at(bci, m)
4205 && md->overflow_recompile_count() >= bc_cutoff) {
4206 // Do not emit a trap here if it has already caused recompilations.
4207 // Also, if there are multiple reasons, or if there is no per-BCI record,
4208 // assume the worst.
4209 if (log())
4210 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
4211 Deoptimization::trap_reason_name(reason),
4212 md->trap_count(reason),
4213 md->overflow_recompile_count());
4214 return true;
4215 } else if (trap_count(reason) != 0
4216 && decompile_count() >= m_cutoff) {
4217 // Too many recompiles globally, and we have seen this sort of trap.
4218 // Use cumulative decompile_count, not just md->decompile_count.
4219 if (log())
4220 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
4221 Deoptimization::trap_reason_name(reason),
4222 md->trap_count(reason), trap_count(reason),
4223 md->decompile_count(), decompile_count());
4224 return true;
4225 } else {
4226 // The coast is clear.
4227 return false;
4228 }
4229 }
4230
4231 // Compute when not to trap. Used by matching trap based nodes and
4232 // NullCheck optimization.
4233 void Compile::set_allowed_deopt_reasons() {
4234 _allowed_reasons = 0;
4235 if (is_method_compilation()) {
4236 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
4237 assert(rs < BitsPerInt, "recode bit map");
4238 if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
4239 _allowed_reasons |= nth_bit(rs);
4240 }
4241 }
4242 }
4243 }
4244
4245 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
4246 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
4247 }
4248
4249 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
4250 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
4251 }
4252
4253 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
4254 if (holder->is_initialized()) {
4255 return false;
4256 }
4257 if (holder->is_being_initialized()) {
4258 if (accessing_method->holder() == holder) {
4259 // Access inside a class. The barrier can be elided when access happens in <clinit>,
4260 // <init>, or a static method. In all those cases, there was an initialization
4261 // barrier on the holder klass passed.
4262 if (accessing_method->is_static_initializer() ||
4263 accessing_method->is_object_initializer() ||
4264 accessing_method->is_static()) {
4265 return false;
4266 }
4267 } else if (accessing_method->holder()->is_subclass_of(holder)) {
4268 // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
4269 // In case of <init> or a static method, the barrier is on the subclass is not enough:
4270 // child class can become fully initialized while its parent class is still being initialized.
4271 if (accessing_method->is_static_initializer()) {
4272 return false;
4273 }
4274 }
4275 ciMethod* root = method(); // the root method of compilation
4276 if (root != accessing_method) {
4277 return needs_clinit_barrier(holder, root); // check access in the context of compilation root
4278 }
4279 }
4280 return true;
4281 }
4282
4283 #ifndef PRODUCT
4284 //------------------------------verify_bidirectional_edges---------------------
4285 // For each input edge to a node (ie - for each Use-Def edge), verify that
4286 // there is a corresponding Def-Use edge.
4287 void Compile::verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints) const {
4288 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc
4289 uint stack_size = live_nodes() >> 4;
4290 Node_List nstack(MAX2(stack_size, (uint) OptoNodeListSize));
4291 if (root_and_safepoints != nullptr) {
4292 assert(root_and_safepoints->member(_root), "root is not in root_and_safepoints");
4293 for (uint i = 0, limit = root_and_safepoints->size(); i < limit; i++) {
4294 Node* root_or_safepoint = root_and_safepoints->at(i);
4295 // If the node is a safepoint, let's check if it still has a control input
4296 // Lack of control input signifies that this node was killed by CCP or
4297 // recursively by remove_globally_dead_node and it shouldn't be a starting
4298 // point.
4299 if (!root_or_safepoint->is_SafePoint() || root_or_safepoint->in(0) != nullptr) {
4300 nstack.push(root_or_safepoint);
4301 }
4302 }
4303 } else {
4304 nstack.push(_root);
4305 }
4306
4307 while (nstack.size() > 0) {
4308 Node* n = nstack.pop();
4309 if (visited.member(n)) {
4310 continue;
4311 }
4312 visited.push(n);
4313
4314 // Walk over all input edges, checking for correspondence
4315 uint length = n->len();
4316 for (uint i = 0; i < length; i++) {
4317 Node* in = n->in(i);
4318 if (in != nullptr && !visited.member(in)) {
4319 nstack.push(in); // Put it on stack
4320 }
4321 if (in != nullptr && !in->is_top()) {
4322 // Count instances of `next`
4323 int cnt = 0;
4324 for (uint idx = 0; idx < in->_outcnt; idx++) {
4325 if (in->_out[idx] == n) {
4326 cnt++;
4327 }
4328 }
4329 assert(cnt > 0, "Failed to find Def-Use edge.");
4330 // Check for duplicate edges
4331 // walk the input array downcounting the input edges to n
4332 for (uint j = 0; j < length; j++) {
4333 if (n->in(j) == in) {
4334 cnt--;
4335 }
4336 }
4337 assert(cnt == 0, "Mismatched edge count.");
4338 } else if (in == nullptr) {
4339 assert(i == 0 || i >= n->req() ||
4340 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() ||
4341 (n->is_Unlock() && i == (n->req() - 1)) ||
4342 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion
4343 "only region, phi, arraycopy, unlock or membar nodes have null data edges");
4344 } else {
4345 assert(in->is_top(), "sanity");
4346 // Nothing to check.
4347 }
4348 }
4349 }
4350 }
4351
4352 //------------------------------verify_graph_edges---------------------------
4353 // Walk the Graph and verify that there is a one-to-one correspondence
4354 // between Use-Def edges and Def-Use edges in the graph.
4355 void Compile::verify_graph_edges(bool no_dead_code, const Unique_Node_List* root_and_safepoints) const {
4356 if (VerifyGraphEdges) {
4357 Unique_Node_List visited;
4358
4359 // Call graph walk to check edges
4360 verify_bidirectional_edges(visited, root_and_safepoints);
4361 if (no_dead_code) {
4362 // Now make sure that no visited node is used by an unvisited node.
4363 bool dead_nodes = false;
4364 Unique_Node_List checked;
4365 while (visited.size() > 0) {
4366 Node* n = visited.pop();
4367 checked.push(n);
4368 for (uint i = 0; i < n->outcnt(); i++) {
4369 Node* use = n->raw_out(i);
4370 if (checked.member(use)) continue; // already checked
4371 if (visited.member(use)) continue; // already in the graph
4372 if (use->is_Con()) continue; // a dead ConNode is OK
4373 // At this point, we have found a dead node which is DU-reachable.
4374 if (!dead_nodes) {
4375 tty->print_cr("*** Dead nodes reachable via DU edges:");
4376 dead_nodes = true;
4377 }
4378 use->dump(2);
4379 tty->print_cr("---");
4380 checked.push(use); // No repeats; pretend it is now checked.
4381 }
4382 }
4383 assert(!dead_nodes, "using nodes must be reachable from root");
4384 }
4385 }
4386 }
4387 #endif
4388
4389 // The Compile object keeps track of failure reasons separately from the ciEnv.
4390 // This is required because there is not quite a 1-1 relation between the
4391 // ciEnv and its compilation task and the Compile object. Note that one
4392 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
4393 // to backtrack and retry without subsuming loads. Other than this backtracking
4394 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
4395 // by the logic in C2Compiler.
4396 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) {
4397 if (log() != nullptr) {
4398 log()->elem("failure reason='%s' phase='compile'", reason);
4399 }
4400 if (_failure_reason.get() == nullptr) {
4401 // Record the first failure reason.
4402 _failure_reason.set(reason);
4403 if (CaptureBailoutInformation) {
4404 _first_failure_details = new CompilationFailureInfo(reason);
4405 }
4406 } else {
4407 assert(!StressBailout || allow_multiple_failures, "should have handled previous failure.");
4408 }
4409
4410 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
4411 C->print_method(PHASE_FAILURE, 1);
4412 }
4413 _root = nullptr; // flush the graph, too
4414 }
4415
4416 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id)
4417 : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose),
4418 _compile(Compile::current()),
4419 _log(nullptr),
4420 _dolog(CITimeVerbose)
4421 {
4422 assert(_compile != nullptr, "sanity check");
4423 assert(id != PhaseTraceId::_t_none, "Don't use none");
4424 if (_dolog) {
4425 _log = _compile->log();
4426 }
4427 if (_log != nullptr) {
4428 _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes());
4429 _log->stamp();
4430 _log->end_head();
4431 }
4432
4433 // Inform memory statistic, if enabled
4434 if (CompilationMemoryStatistic::enabled()) {
4435 CompilationMemoryStatistic::on_phase_start((int)id, name);
4436 }
4437 }
4438
4439 Compile::TracePhase::TracePhase(PhaseTraceId id)
4440 : TracePhase(Phase::get_phase_trace_id_text(id), id) {}
4441
4442 Compile::TracePhase::~TracePhase() {
4443
4444 // Inform memory statistic, if enabled
4445 if (CompilationMemoryStatistic::enabled()) {
4446 CompilationMemoryStatistic::on_phase_end();
4447 }
4448
4449 if (_compile->failing_internal()) {
4450 if (_log != nullptr) {
4451 _log->done("phase");
4452 }
4453 return; // timing code, not stressing bailouts.
4454 }
4455 #ifdef ASSERT
4456 if (PrintIdealNodeCount) {
4457 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
4458 phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk());
4459 }
4460
4461 if (VerifyIdealNodeCount) {
4462 _compile->print_missing_nodes();
4463 }
4464 #endif
4465
4466 if (_log != nullptr) {
4467 _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes());
4468 }
4469 }
4470
4471 //----------------------------static_subtype_check-----------------------------
4472 // Shortcut important common cases when superklass is exact:
4473 // (0) superklass is java.lang.Object (can occur in reflective code)
4474 // (1) subklass is already limited to a subtype of superklass => always ok
4475 // (2) subklass does not overlap with superklass => always fail
4476 // (3) superklass has NO subtypes and we can check with a simple compare.
4477 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) {
4478 if (skip) {
4479 return SSC_full_test; // Let caller generate the general case.
4480 }
4481
4482 if (subk->is_java_subtype_of(superk)) {
4483 return SSC_always_true; // (0) and (1) this test cannot fail
4484 }
4485
4486 if (!subk->maybe_java_subtype_of(superk)) {
4487 return SSC_always_false; // (2) true path dead; no dynamic test needed
4488 }
4489
4490 const Type* superelem = superk;
4491 if (superk->isa_aryklassptr()) {
4492 int ignored;
4493 superelem = superk->is_aryklassptr()->base_element_type(ignored);
4494 }
4495
4496 if (superelem->isa_instklassptr()) {
4497 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass();
4498 if (!ik->has_subklass()) {
4499 if (!ik->is_final()) {
4500 // Add a dependency if there is a chance of a later subclass.
4501 dependencies()->assert_leaf_type(ik);
4502 }
4503 if (!superk->maybe_java_subtype_of(subk)) {
4504 return SSC_always_false;
4505 }
4506 return SSC_easy_test; // (3) caller can do a simple ptr comparison
4507 }
4508 } else {
4509 // A primitive array type has no subtypes.
4510 return SSC_easy_test; // (3) caller can do a simple ptr comparison
4511 }
4512
4513 return SSC_full_test;
4514 }
4515
4516 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4517 #ifdef _LP64
4518 // The scaled index operand to AddP must be a clean 64-bit value.
4519 // Java allows a 32-bit int to be incremented to a negative
4520 // value, which appears in a 64-bit register as a large
4521 // positive number. Using that large positive number as an
4522 // operand in pointer arithmetic has bad consequences.
4523 // On the other hand, 32-bit overflow is rare, and the possibility
4524 // can often be excluded, if we annotate the ConvI2L node with
4525 // a type assertion that its value is known to be a small positive
4526 // number. (The prior range check has ensured this.)
4527 // This assertion is used by ConvI2LNode::Ideal.
4528 int index_max = max_jint - 1; // array size is max_jint, index is one less
4529 if (sizetype != nullptr && sizetype->_hi > 0) {
4530 index_max = sizetype->_hi - 1;
4531 }
4532 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4533 idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4534 #endif
4535 return idx;
4536 }
4537
4538 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4539 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) {
4540 if (ctrl != nullptr) {
4541 // Express control dependency by a CastII node with a narrow type.
4542 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4543 // node from floating above the range check during loop optimizations. Otherwise, the
4544 // ConvI2L node may be eliminated independently of the range check, causing the data path
4545 // to become TOP while the control path is still there (although it's unreachable).
4546 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */);
4547 value = phase->transform(value);
4548 }
4549 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4550 return phase->transform(new ConvI2LNode(value, ltype));
4551 }
4552
4553 void Compile::dump_print_inlining() {
4554 inline_printer()->print_on(tty);
4555 }
4556
4557 void Compile::log_late_inline(CallGenerator* cg) {
4558 if (log() != nullptr) {
4559 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4560 cg->unique_id());
4561 JVMState* p = cg->call_node()->jvms();
4562 while (p != nullptr) {
4563 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4564 p = p->caller();
4565 }
4566 log()->tail("late_inline");
4567 }
4568 }
4569
4570 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4571 log_late_inline(cg);
4572 if (log() != nullptr) {
4573 log()->inline_fail(msg);
4574 }
4575 }
4576
4577 void Compile::log_inline_id(CallGenerator* cg) {
4578 if (log() != nullptr) {
4579 // The LogCompilation tool needs a unique way to identify late
4580 // inline call sites. This id must be unique for this call site in
4581 // this compilation. Try to have it unique across compilations as
4582 // well because it can be convenient when grepping through the log
4583 // file.
4584 // Distinguish OSR compilations from others in case CICountOSR is
4585 // on.
4586 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4587 cg->set_unique_id(id);
4588 log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4589 }
4590 }
4591
4592 void Compile::log_inline_failure(const char* msg) {
4593 if (C->log() != nullptr) {
4594 C->log()->inline_fail(msg);
4595 }
4596 }
4597
4598
4599 // Dump inlining replay data to the stream.
4600 // Don't change thread state and acquire any locks.
4601 void Compile::dump_inline_data(outputStream* out) {
4602 InlineTree* inl_tree = ilt();
4603 if (inl_tree != nullptr) {
4604 out->print(" inline %d", inl_tree->count());
4605 inl_tree->dump_replay_data(out);
4606 }
4607 }
4608
4609 void Compile::dump_inline_data_reduced(outputStream* out) {
4610 assert(ReplayReduce, "");
4611
4612 InlineTree* inl_tree = ilt();
4613 if (inl_tree == nullptr) {
4614 return;
4615 }
4616 // Enable iterative replay file reduction
4617 // Output "compile" lines for depth 1 subtrees,
4618 // simulating that those trees were compiled
4619 // instead of inlined.
4620 for (int i = 0; i < inl_tree->subtrees().length(); ++i) {
4621 InlineTree* sub = inl_tree->subtrees().at(i);
4622 if (sub->inline_level() != 1) {
4623 continue;
4624 }
4625
4626 ciMethod* method = sub->method();
4627 int entry_bci = -1;
4628 int comp_level = env()->task()->comp_level();
4629 out->print("compile ");
4630 method->dump_name_as_ascii(out);
4631 out->print(" %d %d", entry_bci, comp_level);
4632 out->print(" inline %d", sub->count());
4633 sub->dump_replay_data(out, -1);
4634 out->cr();
4635 }
4636 }
4637
4638 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4639 if (n1->Opcode() < n2->Opcode()) return -1;
4640 else if (n1->Opcode() > n2->Opcode()) return 1;
4641
4642 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4643 for (uint i = 1; i < n1->req(); i++) {
4644 if (n1->in(i) < n2->in(i)) return -1;
4645 else if (n1->in(i) > n2->in(i)) return 1;
4646 }
4647
4648 return 0;
4649 }
4650
4651 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4652 Node* n1 = *n1p;
4653 Node* n2 = *n2p;
4654
4655 return cmp_expensive_nodes(n1, n2);
4656 }
4657
4658 void Compile::sort_expensive_nodes() {
4659 if (!expensive_nodes_sorted()) {
4660 _expensive_nodes.sort(cmp_expensive_nodes);
4661 }
4662 }
4663
4664 bool Compile::expensive_nodes_sorted() const {
4665 for (int i = 1; i < _expensive_nodes.length(); i++) {
4666 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) {
4667 return false;
4668 }
4669 }
4670 return true;
4671 }
4672
4673 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4674 if (_expensive_nodes.length() == 0) {
4675 return false;
4676 }
4677
4678 assert(OptimizeExpensiveOps, "optimization off?");
4679
4680 // Take this opportunity to remove dead nodes from the list
4681 int j = 0;
4682 for (int i = 0; i < _expensive_nodes.length(); i++) {
4683 Node* n = _expensive_nodes.at(i);
4684 if (!n->is_unreachable(igvn)) {
4685 assert(n->is_expensive(), "should be expensive");
4686 _expensive_nodes.at_put(j, n);
4687 j++;
4688 }
4689 }
4690 _expensive_nodes.trunc_to(j);
4691
4692 // Then sort the list so that similar nodes are next to each other
4693 // and check for at least two nodes of identical kind with same data
4694 // inputs.
4695 sort_expensive_nodes();
4696
4697 for (int i = 0; i < _expensive_nodes.length()-1; i++) {
4698 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) {
4699 return true;
4700 }
4701 }
4702
4703 return false;
4704 }
4705
4706 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4707 if (_expensive_nodes.length() == 0) {
4708 return;
4709 }
4710
4711 assert(OptimizeExpensiveOps, "optimization off?");
4712
4713 // Sort to bring similar nodes next to each other and clear the
4714 // control input of nodes for which there's only a single copy.
4715 sort_expensive_nodes();
4716
4717 int j = 0;
4718 int identical = 0;
4719 int i = 0;
4720 bool modified = false;
4721 for (; i < _expensive_nodes.length()-1; i++) {
4722 assert(j <= i, "can't write beyond current index");
4723 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) {
4724 identical++;
4725 _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4726 continue;
4727 }
4728 if (identical > 0) {
4729 _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4730 identical = 0;
4731 } else {
4732 Node* n = _expensive_nodes.at(i);
4733 igvn.replace_input_of(n, 0, nullptr);
4734 igvn.hash_insert(n);
4735 modified = true;
4736 }
4737 }
4738 if (identical > 0) {
4739 _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4740 } else if (_expensive_nodes.length() >= 1) {
4741 Node* n = _expensive_nodes.at(i);
4742 igvn.replace_input_of(n, 0, nullptr);
4743 igvn.hash_insert(n);
4744 modified = true;
4745 }
4746 _expensive_nodes.trunc_to(j);
4747 if (modified) {
4748 igvn.optimize();
4749 }
4750 }
4751
4752 void Compile::add_expensive_node(Node * n) {
4753 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list");
4754 assert(n->is_expensive(), "expensive nodes with non-null control here only");
4755 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4756 if (OptimizeExpensiveOps) {
4757 _expensive_nodes.append(n);
4758 } else {
4759 // Clear control input and let IGVN optimize expensive nodes if
4760 // OptimizeExpensiveOps is off.
4761 n->set_req(0, nullptr);
4762 }
4763 }
4764
4765 /**
4766 * Track coarsened Lock and Unlock nodes.
4767 */
4768
4769 class Lock_List : public Node_List {
4770 uint _origin_cnt;
4771 public:
4772 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {}
4773 uint origin_cnt() const { return _origin_cnt; }
4774 };
4775
4776 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) {
4777 int length = locks.length();
4778 if (length > 0) {
4779 // Have to keep this list until locks elimination during Macro nodes elimination.
4780 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length);
4781 AbstractLockNode* alock = locks.at(0);
4782 BoxLockNode* box = alock->box_node()->as_BoxLock();
4783 for (int i = 0; i < length; i++) {
4784 AbstractLockNode* lock = locks.at(i);
4785 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx);
4786 locks_list->push(lock);
4787 BoxLockNode* this_box = lock->box_node()->as_BoxLock();
4788 if (this_box != box) {
4789 // Locking regions (BoxLock) could be Unbalanced here:
4790 // - its coarsened locks were eliminated in earlier
4791 // macro nodes elimination followed by loop unroll
4792 // - it is OSR locking region (no Lock node)
4793 // Preserve Unbalanced status in such cases.
4794 if (!this_box->is_unbalanced()) {
4795 this_box->set_coarsened();
4796 }
4797 if (!box->is_unbalanced()) {
4798 box->set_coarsened();
4799 }
4800 }
4801 }
4802 _coarsened_locks.append(locks_list);
4803 }
4804 }
4805
4806 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) {
4807 int count = coarsened_count();
4808 for (int i = 0; i < count; i++) {
4809 Node_List* locks_list = _coarsened_locks.at(i);
4810 for (uint j = 0; j < locks_list->size(); j++) {
4811 Node* lock = locks_list->at(j);
4812 assert(lock->is_AbstractLock(), "sanity");
4813 if (!useful.member(lock)) {
4814 locks_list->yank(lock);
4815 }
4816 }
4817 }
4818 }
4819
4820 void Compile::remove_coarsened_lock(Node* n) {
4821 if (n->is_AbstractLock()) {
4822 int count = coarsened_count();
4823 for (int i = 0; i < count; i++) {
4824 Node_List* locks_list = _coarsened_locks.at(i);
4825 locks_list->yank(n);
4826 }
4827 }
4828 }
4829
4830 bool Compile::coarsened_locks_consistent() {
4831 int count = coarsened_count();
4832 for (int i = 0; i < count; i++) {
4833 bool unbalanced = false;
4834 bool modified = false; // track locks kind modifications
4835 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i);
4836 uint size = locks_list->size();
4837 if (size == 0) {
4838 unbalanced = false; // All locks were eliminated - good
4839 } else if (size != locks_list->origin_cnt()) {
4840 unbalanced = true; // Some locks were removed from list
4841 } else {
4842 for (uint j = 0; j < size; j++) {
4843 Node* lock = locks_list->at(j);
4844 // All nodes in group should have the same state (modified or not)
4845 if (!lock->as_AbstractLock()->is_coarsened()) {
4846 if (j == 0) {
4847 // first on list was modified, the rest should be too for consistency
4848 modified = true;
4849 } else if (!modified) {
4850 // this lock was modified but previous locks on the list were not
4851 unbalanced = true;
4852 break;
4853 }
4854 } else if (modified) {
4855 // previous locks on list were modified but not this lock
4856 unbalanced = true;
4857 break;
4858 }
4859 }
4860 }
4861 if (unbalanced) {
4862 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified
4863 #ifdef ASSERT
4864 if (PrintEliminateLocks) {
4865 tty->print_cr("=== unbalanced coarsened locks ===");
4866 for (uint l = 0; l < size; l++) {
4867 locks_list->at(l)->dump();
4868 }
4869 }
4870 #endif
4871 record_failure(C2Compiler::retry_no_locks_coarsening());
4872 return false;
4873 }
4874 }
4875 return true;
4876 }
4877
4878 // Mark locking regions (identified by BoxLockNode) as unbalanced if
4879 // locks coarsening optimization removed Lock/Unlock nodes from them.
4880 // Such regions become unbalanced because coarsening only removes part
4881 // of Lock/Unlock nodes in region. As result we can't execute other
4882 // locks elimination optimizations which assume all code paths have
4883 // corresponding pair of Lock/Unlock nodes - they are balanced.
4884 void Compile::mark_unbalanced_boxes() const {
4885 int count = coarsened_count();
4886 for (int i = 0; i < count; i++) {
4887 Node_List* locks_list = _coarsened_locks.at(i);
4888 uint size = locks_list->size();
4889 if (size > 0) {
4890 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock();
4891 BoxLockNode* box = alock->box_node()->as_BoxLock();
4892 if (alock->is_coarsened()) {
4893 // coarsened_locks_consistent(), which is called before this method, verifies
4894 // that the rest of Lock/Unlock nodes on locks_list are also coarsened.
4895 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4896 for (uint j = 1; j < size; j++) {
4897 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here");
4898 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock();
4899 if (box != this_box) {
4900 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4901 box->set_unbalanced();
4902 this_box->set_unbalanced();
4903 }
4904 }
4905 }
4906 }
4907 }
4908 }
4909
4910 /**
4911 * Remove the speculative part of types and clean up the graph
4912 */
4913 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4914 if (UseTypeSpeculation) {
4915 Unique_Node_List worklist;
4916 worklist.push(root());
4917 int modified = 0;
4918 // Go over all type nodes that carry a speculative type, drop the
4919 // speculative part of the type and enqueue the node for an igvn
4920 // which may optimize it out.
4921 for (uint next = 0; next < worklist.size(); ++next) {
4922 Node *n = worklist.at(next);
4923 if (n->is_Type()) {
4924 TypeNode* tn = n->as_Type();
4925 const Type* t = tn->type();
4926 const Type* t_no_spec = t->remove_speculative();
4927 if (t_no_spec != t) {
4928 bool in_hash = igvn.hash_delete(n);
4929 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table");
4930 tn->set_type(t_no_spec);
4931 igvn.hash_insert(n);
4932 igvn._worklist.push(n); // give it a chance to go away
4933 modified++;
4934 }
4935 }
4936 // Iterate over outs - endless loops is unreachable from below
4937 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4938 Node *m = n->fast_out(i);
4939 if (not_a_node(m)) {
4940 continue;
4941 }
4942 worklist.push(m);
4943 }
4944 }
4945 // Drop the speculative part of all types in the igvn's type table
4946 igvn.remove_speculative_types();
4947 if (modified > 0) {
4948 igvn.optimize();
4949 if (failing()) return;
4950 }
4951 #ifdef ASSERT
4952 // Verify that after the IGVN is over no speculative type has resurfaced
4953 worklist.clear();
4954 worklist.push(root());
4955 for (uint next = 0; next < worklist.size(); ++next) {
4956 Node *n = worklist.at(next);
4957 const Type* t = igvn.type_or_null(n);
4958 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types");
4959 if (n->is_Type()) {
4960 t = n->as_Type()->type();
4961 assert(t == t->remove_speculative(), "no more speculative types");
4962 }
4963 // Iterate over outs - endless loops is unreachable from below
4964 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4965 Node *m = n->fast_out(i);
4966 if (not_a_node(m)) {
4967 continue;
4968 }
4969 worklist.push(m);
4970 }
4971 }
4972 igvn.check_no_speculative_types();
4973 #endif
4974 }
4975 }
4976
4977 // Auxiliary methods to support randomized stressing/fuzzing.
4978
4979 void Compile::initialize_stress_seed(const DirectiveSet* directive) {
4980 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) {
4981 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds());
4982 FLAG_SET_ERGO(StressSeed, _stress_seed);
4983 } else {
4984 _stress_seed = StressSeed;
4985 }
4986 if (_log != nullptr) {
4987 _log->elem("stress_test seed='%u'", _stress_seed);
4988 }
4989 }
4990
4991 int Compile::random() {
4992 _stress_seed = os::next_random(_stress_seed);
4993 return static_cast<int>(_stress_seed);
4994 }
4995
4996 // This method can be called the arbitrary number of times, with current count
4997 // as the argument. The logic allows selecting a single candidate from the
4998 // running list of candidates as follows:
4999 // int count = 0;
5000 // Cand* selected = null;
5001 // while(cand = cand->next()) {
5002 // if (randomized_select(++count)) {
5003 // selected = cand;
5004 // }
5005 // }
5006 //
5007 // Including count equalizes the chances any candidate is "selected".
5008 // This is useful when we don't have the complete list of candidates to choose
5009 // from uniformly. In this case, we need to adjust the randomicity of the
5010 // selection, or else we will end up biasing the selection towards the latter
5011 // candidates.
5012 //
5013 // Quick back-envelope calculation shows that for the list of n candidates
5014 // the equal probability for the candidate to persist as "best" can be
5015 // achieved by replacing it with "next" k-th candidate with the probability
5016 // of 1/k. It can be easily shown that by the end of the run, the
5017 // probability for any candidate is converged to 1/n, thus giving the
5018 // uniform distribution among all the candidates.
5019 //
5020 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
5021 #define RANDOMIZED_DOMAIN_POW 29
5022 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
5023 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
5024 bool Compile::randomized_select(int count) {
5025 assert(count > 0, "only positive");
5026 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
5027 }
5028
5029 #ifdef ASSERT
5030 // Failures are geometrically distributed with probability 1/StressBailoutMean.
5031 bool Compile::fail_randomly() {
5032 if ((random() % StressBailoutMean) != 0) {
5033 return false;
5034 }
5035 record_failure("StressBailout");
5036 return true;
5037 }
5038
5039 bool Compile::failure_is_artificial() {
5040 return C->failure_reason_is("StressBailout");
5041 }
5042 #endif
5043
5044 CloneMap& Compile::clone_map() { return _clone_map; }
5045 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; }
5046
5047 void NodeCloneInfo::dump_on(outputStream* st) const {
5048 st->print(" {%d:%d} ", idx(), gen());
5049 }
5050
5051 void CloneMap::clone(Node* old, Node* nnn, int gen) {
5052 uint64_t val = value(old->_idx);
5053 NodeCloneInfo cio(val);
5054 assert(val != 0, "old node should be in the map");
5055 NodeCloneInfo cin(cio.idx(), gen + cio.gen());
5056 insert(nnn->_idx, cin.get());
5057 #ifndef PRODUCT
5058 if (is_debug()) {
5059 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
5060 }
5061 #endif
5062 }
5063
5064 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
5065 NodeCloneInfo cio(value(old->_idx));
5066 if (cio.get() == 0) {
5067 cio.set(old->_idx, 0);
5068 insert(old->_idx, cio.get());
5069 #ifndef PRODUCT
5070 if (is_debug()) {
5071 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
5072 }
5073 #endif
5074 }
5075 clone(old, nnn, gen);
5076 }
5077
5078 int CloneMap::max_gen() const {
5079 int g = 0;
5080 DictI di(_dict);
5081 for(; di.test(); ++di) {
5082 int t = gen(di._key);
5083 if (g < t) {
5084 g = t;
5085 #ifndef PRODUCT
5086 if (is_debug()) {
5087 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
5088 }
5089 #endif
5090 }
5091 }
5092 return g;
5093 }
5094
5095 void CloneMap::dump(node_idx_t key, outputStream* st) const {
5096 uint64_t val = value(key);
5097 if (val != 0) {
5098 NodeCloneInfo ni(val);
5099 ni.dump_on(st);
5100 }
5101 }
5102
5103 void Compile::shuffle_macro_nodes() {
5104 if (_macro_nodes.length() < 2) {
5105 return;
5106 }
5107 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) {
5108 uint j = C->random() % (i + 1);
5109 swap(_macro_nodes.at(i), _macro_nodes.at(j));
5110 }
5111 }
5112
5113 // Move Allocate nodes to the start of the list
5114 void Compile::sort_macro_nodes() {
5115 int count = macro_count();
5116 int allocates = 0;
5117 for (int i = 0; i < count; i++) {
5118 Node* n = macro_node(i);
5119 if (n->is_Allocate()) {
5120 if (i != allocates) {
5121 Node* tmp = macro_node(allocates);
5122 _macro_nodes.at_put(allocates, n);
5123 _macro_nodes.at_put(i, tmp);
5124 }
5125 allocates++;
5126 }
5127 }
5128 }
5129
5130 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) {
5131 if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code.
5132 EventCompilerPhase event(UNTIMED);
5133 if (event.should_commit()) {
5134 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level);
5135 }
5136 #ifndef PRODUCT
5137 ResourceMark rm;
5138 stringStream ss;
5139 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt));
5140 int iter = ++_igv_phase_iter[cpt];
5141 if (iter > 1) {
5142 ss.print(" %d", iter);
5143 }
5144 if (n != nullptr) {
5145 ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]);
5146 if (n->is_Call()) {
5147 CallNode* call = n->as_Call();
5148 if (call->_name != nullptr) {
5149 // E.g. uncommon traps etc.
5150 ss.print(" - %s", call->_name);
5151 } else if (call->is_CallJava()) {
5152 CallJavaNode* call_java = call->as_CallJava();
5153 if (call_java->method() != nullptr) {
5154 ss.print(" -");
5155 call_java->method()->print_short_name(&ss);
5156 }
5157 }
5158 }
5159 }
5160
5161 const char* name = ss.as_string();
5162 if (should_print_igv(level)) {
5163 _igv_printer->print_graph(name);
5164 }
5165 if (should_print_phase(level)) {
5166 print_phase(name);
5167 }
5168 if (should_print_ideal_phase(cpt)) {
5169 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt));
5170 }
5171 #endif
5172 C->_latest_stage_start_counter.stamp();
5173 }
5174
5175 // Only used from CompileWrapper
5176 void Compile::begin_method() {
5177 #ifndef PRODUCT
5178 if (_method != nullptr && should_print_igv(1)) {
5179 _igv_printer->begin_method();
5180 }
5181 #endif
5182 C->_latest_stage_start_counter.stamp();
5183 }
5184
5185 // Only used from CompileWrapper
5186 void Compile::end_method() {
5187 EventCompilerPhase event(UNTIMED);
5188 if (event.should_commit()) {
5189 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1);
5190 }
5191
5192 #ifndef PRODUCT
5193 if (_method != nullptr && should_print_igv(1)) {
5194 _igv_printer->end_method();
5195 }
5196 #endif
5197 }
5198
5199 #ifndef PRODUCT
5200 bool Compile::should_print_phase(const int level) const {
5201 return PrintPhaseLevel > 0 && directive()->PhasePrintLevelOption >= level &&
5202 _method != nullptr; // Do not print phases for stubs.
5203 }
5204
5205 bool Compile::should_print_ideal_phase(CompilerPhaseType cpt) const {
5206 return _directive->should_print_ideal_phase(cpt);
5207 }
5208
5209 void Compile::init_igv() {
5210 if (_igv_printer == nullptr) {
5211 _igv_printer = IdealGraphPrinter::printer();
5212 _igv_printer->set_compile(this);
5213 }
5214 }
5215
5216 bool Compile::should_print_igv(const int level) {
5217 PRODUCT_RETURN_(return false;);
5218
5219 if (PrintIdealGraphLevel < 0) { // disabled by the user
5220 return false;
5221 }
5222
5223 bool need = directive()->IGVPrintLevelOption >= level;
5224 if (need) {
5225 Compile::init_igv();
5226 }
5227 return need;
5228 }
5229
5230 IdealGraphPrinter* Compile::_debug_file_printer = nullptr;
5231 IdealGraphPrinter* Compile::_debug_network_printer = nullptr;
5232
5233 // Called from debugger. Prints method to the default file with the default phase name.
5234 // This works regardless of any Ideal Graph Visualizer flags set or not.
5235 // Use in debugger (gdb/rr): p igv_print($sp, $fp, $pc).
5236 void igv_print(void* sp, void* fp, void* pc) {
5237 frame fr(sp, fp, pc);
5238 Compile::current()->igv_print_method_to_file(nullptr, false, &fr);
5239 }
5240
5241 // Same as igv_print() above but with a specified phase name.
5242 void igv_print(const char* phase_name, void* sp, void* fp, void* pc) {
5243 frame fr(sp, fp, pc);
5244 Compile::current()->igv_print_method_to_file(phase_name, false, &fr);
5245 }
5246
5247 // Called from debugger. Prints method with the default phase name to the default network or the one specified with
5248 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument.
5249 // This works regardless of any Ideal Graph Visualizer flags set or not.
5250 // Use in debugger (gdb/rr): p igv_print(true, $sp, $fp, $pc).
5251 void igv_print(bool network, void* sp, void* fp, void* pc) {
5252 frame fr(sp, fp, pc);
5253 if (network) {
5254 Compile::current()->igv_print_method_to_network(nullptr, &fr);
5255 } else {
5256 Compile::current()->igv_print_method_to_file(nullptr, false, &fr);
5257 }
5258 }
5259
5260 // Same as igv_print(bool network, ...) above but with a specified phase name.
5261 // Use in debugger (gdb/rr): p igv_print(true, "MyPhase", $sp, $fp, $pc).
5262 void igv_print(bool network, const char* phase_name, void* sp, void* fp, void* pc) {
5263 frame fr(sp, fp, pc);
5264 if (network) {
5265 Compile::current()->igv_print_method_to_network(phase_name, &fr);
5266 } else {
5267 Compile::current()->igv_print_method_to_file(phase_name, false, &fr);
5268 }
5269 }
5270
5271 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set.
5272 void igv_print_default() {
5273 Compile::current()->print_method(PHASE_DEBUG, 0);
5274 }
5275
5276 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay.
5277 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow
5278 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not.
5279 // Use in debugger (gdb/rr): p igv_append($sp, $fp, $pc).
5280 void igv_append(void* sp, void* fp, void* pc) {
5281 frame fr(sp, fp, pc);
5282 Compile::current()->igv_print_method_to_file(nullptr, true, &fr);
5283 }
5284
5285 // Same as igv_append(...) above but with a specified phase name.
5286 // Use in debugger (gdb/rr): p igv_append("MyPhase", $sp, $fp, $pc).
5287 void igv_append(const char* phase_name, void* sp, void* fp, void* pc) {
5288 frame fr(sp, fp, pc);
5289 Compile::current()->igv_print_method_to_file(phase_name, true, &fr);
5290 }
5291
5292 void Compile::igv_print_method_to_file(const char* phase_name, bool append, const frame* fr) {
5293 const char* file_name = "custom_debug.xml";
5294 if (_debug_file_printer == nullptr) {
5295 _debug_file_printer = new IdealGraphPrinter(C, file_name, append);
5296 } else {
5297 _debug_file_printer->update_compiled_method(C->method());
5298 }
5299 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name);
5300 _debug_file_printer->print_graph(phase_name, fr);
5301 }
5302
5303 void Compile::igv_print_method_to_network(const char* phase_name, const frame* fr) {
5304 ResourceMark rm;
5305 GrowableArray<const Node*> empty_list;
5306 igv_print_graph_to_network(phase_name, empty_list, fr);
5307 }
5308
5309 void Compile::igv_print_graph_to_network(const char* name, GrowableArray<const Node*>& visible_nodes, const frame* fr) {
5310 if (_debug_network_printer == nullptr) {
5311 _debug_network_printer = new IdealGraphPrinter(C);
5312 } else {
5313 _debug_network_printer->update_compiled_method(C->method());
5314 }
5315 tty->print_cr("Method printed over network stream to IGV");
5316 _debug_network_printer->print(name, C->root(), visible_nodes, fr);
5317 }
5318 #endif // !PRODUCT
5319
5320 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) {
5321 if (type != nullptr && phase->type(value)->higher_equal(type)) {
5322 return value;
5323 }
5324 Node* result = nullptr;
5325 if (bt == T_BYTE) {
5326 result = phase->transform(new LShiftINode(value, phase->intcon(24)));
5327 result = new RShiftINode(result, phase->intcon(24));
5328 } else if (bt == T_BOOLEAN) {
5329 result = new AndINode(value, phase->intcon(0xFF));
5330 } else if (bt == T_CHAR) {
5331 result = new AndINode(value,phase->intcon(0xFFFF));
5332 } else {
5333 assert(bt == T_SHORT, "unexpected narrow type");
5334 result = phase->transform(new LShiftINode(value, phase->intcon(16)));
5335 result = new RShiftINode(result, phase->intcon(16));
5336 }
5337 if (transform_res) {
5338 result = phase->transform(result);
5339 }
5340 return result;
5341 }
5342
5343 void Compile::record_method_not_compilable_oom() {
5344 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit());
5345 }