1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "ci/ciReplay.hpp" 29 #include "classfile/javaClasses.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compileBroker.hpp" 33 #include "compiler/compileLog.hpp" 34 #include "compiler/disassembler.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/shared/barrierSet.hpp" 37 #include "gc/shared/c2/barrierSetC2.hpp" 38 #include "jfr/jfrEvents.hpp" 39 #include "jvm_io.h" 40 #include "memory/allocation.hpp" 41 #include "memory/resourceArea.hpp" 42 #include "opto/addnode.hpp" 43 #include "opto/block.hpp" 44 #include "opto/c2compiler.hpp" 45 #include "opto/callGenerator.hpp" 46 #include "opto/callnode.hpp" 47 #include "opto/castnode.hpp" 48 #include "opto/cfgnode.hpp" 49 #include "opto/chaitin.hpp" 50 #include "opto/compile.hpp" 51 #include "opto/connode.hpp" 52 #include "opto/convertnode.hpp" 53 #include "opto/divnode.hpp" 54 #include "opto/escape.hpp" 55 #include "opto/idealGraphPrinter.hpp" 56 #include "opto/loopnode.hpp" 57 #include "opto/machnode.hpp" 58 #include "opto/macro.hpp" 59 #include "opto/matcher.hpp" 60 #include "opto/mathexactnode.hpp" 61 #include "opto/memnode.hpp" 62 #include "opto/mulnode.hpp" 63 #include "opto/narrowptrnode.hpp" 64 #include "opto/node.hpp" 65 #include "opto/opcodes.hpp" 66 #include "opto/output.hpp" 67 #include "opto/parse.hpp" 68 #include "opto/phaseX.hpp" 69 #include "opto/rootnode.hpp" 70 #include "opto/runtime.hpp" 71 #include "opto/stringopts.hpp" 72 #include "opto/type.hpp" 73 #include "opto/vector.hpp" 74 #include "opto/vectornode.hpp" 75 #include "runtime/globals_extension.hpp" 76 #include "runtime/sharedRuntime.hpp" 77 #include "runtime/signature.hpp" 78 #include "runtime/stubRoutines.hpp" 79 #include "runtime/timer.hpp" 80 #include "utilities/align.hpp" 81 #include "utilities/copy.hpp" 82 #include "utilities/macros.hpp" 83 #include "utilities/resourceHash.hpp" 84 85 // -------------------- Compile::mach_constant_base_node ----------------------- 86 // Constant table base node singleton. 87 MachConstantBaseNode* Compile::mach_constant_base_node() { 88 if (_mach_constant_base_node == nullptr) { 89 _mach_constant_base_node = new MachConstantBaseNode(); 90 _mach_constant_base_node->add_req(C->root()); 91 } 92 return _mach_constant_base_node; 93 } 94 95 96 /// Support for intrinsics. 97 98 // Return the index at which m must be inserted (or already exists). 99 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 100 class IntrinsicDescPair { 101 private: 102 ciMethod* _m; 103 bool _is_virtual; 104 public: 105 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 106 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 107 ciMethod* m= elt->method(); 108 ciMethod* key_m = key->_m; 109 if (key_m < m) return -1; 110 else if (key_m > m) return 1; 111 else { 112 bool is_virtual = elt->is_virtual(); 113 bool key_virtual = key->_is_virtual; 114 if (key_virtual < is_virtual) return -1; 115 else if (key_virtual > is_virtual) return 1; 116 else return 0; 117 } 118 } 119 }; 120 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 121 #ifdef ASSERT 122 for (int i = 1; i < _intrinsics.length(); i++) { 123 CallGenerator* cg1 = _intrinsics.at(i-1); 124 CallGenerator* cg2 = _intrinsics.at(i); 125 assert(cg1->method() != cg2->method() 126 ? cg1->method() < cg2->method() 127 : cg1->is_virtual() < cg2->is_virtual(), 128 "compiler intrinsics list must stay sorted"); 129 } 130 #endif 131 IntrinsicDescPair pair(m, is_virtual); 132 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 133 } 134 135 void Compile::register_intrinsic(CallGenerator* cg) { 136 bool found = false; 137 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 138 assert(!found, "registering twice"); 139 _intrinsics.insert_before(index, cg); 140 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 141 } 142 143 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 144 assert(m->is_loaded(), "don't try this on unloaded methods"); 145 if (_intrinsics.length() > 0) { 146 bool found = false; 147 int index = intrinsic_insertion_index(m, is_virtual, found); 148 if (found) { 149 return _intrinsics.at(index); 150 } 151 } 152 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 153 if (m->intrinsic_id() != vmIntrinsics::_none && 154 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 155 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 156 if (cg != nullptr) { 157 // Save it for next time: 158 register_intrinsic(cg); 159 return cg; 160 } else { 161 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 162 } 163 } 164 return nullptr; 165 } 166 167 // Compile::make_vm_intrinsic is defined in library_call.cpp. 168 169 #ifndef PRODUCT 170 // statistics gathering... 171 172 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 173 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 174 175 inline int as_int(vmIntrinsics::ID id) { 176 return vmIntrinsics::as_int(id); 177 } 178 179 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 180 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 181 int oflags = _intrinsic_hist_flags[as_int(id)]; 182 assert(flags != 0, "what happened?"); 183 if (is_virtual) { 184 flags |= _intrinsic_virtual; 185 } 186 bool changed = (flags != oflags); 187 if ((flags & _intrinsic_worked) != 0) { 188 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 189 if (count == 1) { 190 changed = true; // first time 191 } 192 // increment the overall count also: 193 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 194 } 195 if (changed) { 196 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 197 // Something changed about the intrinsic's virtuality. 198 if ((flags & _intrinsic_virtual) != 0) { 199 // This is the first use of this intrinsic as a virtual call. 200 if (oflags != 0) { 201 // We already saw it as a non-virtual, so note both cases. 202 flags |= _intrinsic_both; 203 } 204 } else if ((oflags & _intrinsic_both) == 0) { 205 // This is the first use of this intrinsic as a non-virtual 206 flags |= _intrinsic_both; 207 } 208 } 209 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 210 } 211 // update the overall flags also: 212 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 213 return changed; 214 } 215 216 static char* format_flags(int flags, char* buf) { 217 buf[0] = 0; 218 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 219 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 220 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 221 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 222 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 223 if (buf[0] == 0) strcat(buf, ","); 224 assert(buf[0] == ',', "must be"); 225 return &buf[1]; 226 } 227 228 void Compile::print_intrinsic_statistics() { 229 char flagsbuf[100]; 230 ttyLocker ttyl; 231 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 232 tty->print_cr("Compiler intrinsic usage:"); 233 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 234 if (total == 0) total = 1; // avoid div0 in case of no successes 235 #define PRINT_STAT_LINE(name, c, f) \ 236 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 237 for (auto id : EnumRange<vmIntrinsicID>{}) { 238 int flags = _intrinsic_hist_flags[as_int(id)]; 239 juint count = _intrinsic_hist_count[as_int(id)]; 240 if ((flags | count) != 0) { 241 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 242 } 243 } 244 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 245 if (xtty != nullptr) xtty->tail("statistics"); 246 } 247 248 void Compile::print_statistics() { 249 { ttyLocker ttyl; 250 if (xtty != nullptr) xtty->head("statistics type='opto'"); 251 Parse::print_statistics(); 252 PhaseStringOpts::print_statistics(); 253 PhaseCCP::print_statistics(); 254 PhaseRegAlloc::print_statistics(); 255 PhaseOutput::print_statistics(); 256 PhasePeephole::print_statistics(); 257 PhaseIdealLoop::print_statistics(); 258 ConnectionGraph::print_statistics(); 259 PhaseMacroExpand::print_statistics(); 260 if (xtty != nullptr) xtty->tail("statistics"); 261 } 262 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 263 // put this under its own <statistics> element. 264 print_intrinsic_statistics(); 265 } 266 } 267 #endif //PRODUCT 268 269 void Compile::gvn_replace_by(Node* n, Node* nn) { 270 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 271 Node* use = n->last_out(i); 272 bool is_in_table = initial_gvn()->hash_delete(use); 273 uint uses_found = 0; 274 for (uint j = 0; j < use->len(); j++) { 275 if (use->in(j) == n) { 276 if (j < use->req()) 277 use->set_req(j, nn); 278 else 279 use->set_prec(j, nn); 280 uses_found++; 281 } 282 } 283 if (is_in_table) { 284 // reinsert into table 285 initial_gvn()->hash_find_insert(use); 286 } 287 record_for_igvn(use); 288 i -= uses_found; // we deleted 1 or more copies of this edge 289 } 290 } 291 292 293 // Identify all nodes that are reachable from below, useful. 294 // Use breadth-first pass that records state in a Unique_Node_List, 295 // recursive traversal is slower. 296 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 297 int estimated_worklist_size = live_nodes(); 298 useful.map( estimated_worklist_size, nullptr ); // preallocate space 299 300 // Initialize worklist 301 if (root() != nullptr) { useful.push(root()); } 302 // If 'top' is cached, declare it useful to preserve cached node 303 if (cached_top_node()) { useful.push(cached_top_node()); } 304 305 // Push all useful nodes onto the list, breadthfirst 306 for( uint next = 0; next < useful.size(); ++next ) { 307 assert( next < unique(), "Unique useful nodes < total nodes"); 308 Node *n = useful.at(next); 309 uint max = n->len(); 310 for( uint i = 0; i < max; ++i ) { 311 Node *m = n->in(i); 312 if (not_a_node(m)) continue; 313 useful.push(m); 314 } 315 } 316 } 317 318 // Update dead_node_list with any missing dead nodes using useful 319 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 320 void Compile::update_dead_node_list(Unique_Node_List &useful) { 321 uint max_idx = unique(); 322 VectorSet& useful_node_set = useful.member_set(); 323 324 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 325 // If node with index node_idx is not in useful set, 326 // mark it as dead in dead node list. 327 if (!useful_node_set.test(node_idx)) { 328 record_dead_node(node_idx); 329 } 330 } 331 } 332 333 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 334 int shift = 0; 335 for (int i = 0; i < inlines->length(); i++) { 336 CallGenerator* cg = inlines->at(i); 337 if (useful.member(cg->call_node())) { 338 if (shift > 0) { 339 inlines->at_put(i - shift, cg); 340 } 341 } else { 342 shift++; // skip over the dead element 343 } 344 } 345 if (shift > 0) { 346 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 347 } 348 } 349 350 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 351 assert(dead != nullptr && dead->is_Call(), "sanity"); 352 int found = 0; 353 for (int i = 0; i < inlines->length(); i++) { 354 if (inlines->at(i)->call_node() == dead) { 355 inlines->remove_at(i); 356 found++; 357 NOT_DEBUG( break; ) // elements are unique, so exit early 358 } 359 } 360 assert(found <= 1, "not unique"); 361 } 362 363 void Compile::remove_useless_nodes(GrowableArray<Node*>& node_list, Unique_Node_List& useful) { 364 for (int i = node_list.length() - 1; i >= 0; i--) { 365 Node* n = node_list.at(i); 366 if (!useful.member(n)) { 367 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 368 } 369 } 370 } 371 372 void Compile::remove_useless_node(Node* dead) { 373 remove_modified_node(dead); 374 375 // Constant node that has no out-edges and has only one in-edge from 376 // root is usually dead. However, sometimes reshaping walk makes 377 // it reachable by adding use edges. So, we will NOT count Con nodes 378 // as dead to be conservative about the dead node count at any 379 // given time. 380 if (!dead->is_Con()) { 381 record_dead_node(dead->_idx); 382 } 383 if (dead->is_macro()) { 384 remove_macro_node(dead); 385 } 386 if (dead->is_expensive()) { 387 remove_expensive_node(dead); 388 } 389 if (dead->Opcode() == Op_Opaque4) { 390 remove_skeleton_predicate_opaq(dead); 391 } 392 if (dead->for_post_loop_opts_igvn()) { 393 remove_from_post_loop_opts_igvn(dead); 394 } 395 if (dead->is_Call()) { 396 remove_useless_late_inlines( &_late_inlines, dead); 397 remove_useless_late_inlines( &_string_late_inlines, dead); 398 remove_useless_late_inlines( &_boxing_late_inlines, dead); 399 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 400 401 if (dead->is_CallStaticJava()) { 402 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 403 } 404 } 405 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 406 bs->unregister_potential_barrier_node(dead); 407 } 408 409 // Disconnect all useless nodes by disconnecting those at the boundary. 410 void Compile::disconnect_useless_nodes(Unique_Node_List &useful, Unique_Node_List* worklist) { 411 uint next = 0; 412 while (next < useful.size()) { 413 Node *n = useful.at(next++); 414 if (n->is_SafePoint()) { 415 // We're done with a parsing phase. Replaced nodes are not valid 416 // beyond that point. 417 n->as_SafePoint()->delete_replaced_nodes(); 418 } 419 // Use raw traversal of out edges since this code removes out edges 420 int max = n->outcnt(); 421 for (int j = 0; j < max; ++j) { 422 Node* child = n->raw_out(j); 423 if (!useful.member(child)) { 424 assert(!child->is_top() || child != top(), 425 "If top is cached in Compile object it is in useful list"); 426 // Only need to remove this out-edge to the useless node 427 n->raw_del_out(j); 428 --j; 429 --max; 430 } 431 } 432 if (n->outcnt() == 1 && n->has_special_unique_user()) { 433 worklist->push(n->unique_out()); 434 } 435 } 436 437 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 438 remove_useless_nodes(_predicate_opaqs, useful); // remove useless predicate opaque nodes 439 remove_useless_nodes(_skeleton_predicate_opaqs, useful); 440 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 441 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 442 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 443 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 444 #ifdef ASSERT 445 if (_modified_nodes != nullptr) { 446 _modified_nodes->remove_useless_nodes(useful.member_set()); 447 } 448 #endif 449 450 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 451 bs->eliminate_useless_gc_barriers(useful, this); 452 // clean up the late inline lists 453 remove_useless_late_inlines( &_late_inlines, useful); 454 remove_useless_late_inlines( &_string_late_inlines, useful); 455 remove_useless_late_inlines( &_boxing_late_inlines, useful); 456 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 457 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 458 } 459 460 // ============================================================================ 461 //------------------------------CompileWrapper--------------------------------- 462 class CompileWrapper : public StackObj { 463 Compile *const _compile; 464 public: 465 CompileWrapper(Compile* compile); 466 467 ~CompileWrapper(); 468 }; 469 470 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 471 // the Compile* pointer is stored in the current ciEnv: 472 ciEnv* env = compile->env(); 473 assert(env == ciEnv::current(), "must already be a ciEnv active"); 474 assert(env->compiler_data() == nullptr, "compile already active?"); 475 env->set_compiler_data(compile); 476 assert(compile == Compile::current(), "sanity"); 477 478 compile->set_type_dict(nullptr); 479 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 480 compile->clone_map().set_clone_idx(0); 481 compile->set_type_last_size(0); 482 compile->set_last_tf(nullptr, nullptr); 483 compile->set_indexSet_arena(nullptr); 484 compile->set_indexSet_free_block_list(nullptr); 485 compile->init_type_arena(); 486 Type::Initialize(compile); 487 _compile->begin_method(); 488 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 489 } 490 CompileWrapper::~CompileWrapper() { 491 // simulate crash during compilation 492 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 493 494 _compile->end_method(); 495 _compile->env()->set_compiler_data(nullptr); 496 } 497 498 499 //----------------------------print_compile_messages--------------------------- 500 void Compile::print_compile_messages() { 501 #ifndef PRODUCT 502 // Check if recompiling 503 if (!subsume_loads() && PrintOpto) { 504 // Recompiling without allowing machine instructions to subsume loads 505 tty->print_cr("*********************************************************"); 506 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 507 tty->print_cr("*********************************************************"); 508 } 509 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 510 // Recompiling without escape analysis 511 tty->print_cr("*********************************************************"); 512 tty->print_cr("** Bailout: Recompile without escape analysis **"); 513 tty->print_cr("*********************************************************"); 514 } 515 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 516 // Recompiling without iterative escape analysis 517 tty->print_cr("*********************************************************"); 518 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 519 tty->print_cr("*********************************************************"); 520 } 521 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 522 // Recompiling without boxing elimination 523 tty->print_cr("*********************************************************"); 524 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 525 tty->print_cr("*********************************************************"); 526 } 527 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 528 // Recompiling without locks coarsening 529 tty->print_cr("*********************************************************"); 530 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 531 tty->print_cr("*********************************************************"); 532 } 533 if (env()->break_at_compile()) { 534 // Open the debugger when compiling this method. 535 tty->print("### Breaking when compiling: "); 536 method()->print_short_name(); 537 tty->cr(); 538 BREAKPOINT; 539 } 540 541 if( PrintOpto ) { 542 if (is_osr_compilation()) { 543 tty->print("[OSR]%3d", _compile_id); 544 } else { 545 tty->print("%3d", _compile_id); 546 } 547 } 548 #endif 549 } 550 551 #ifndef PRODUCT 552 void Compile::print_ideal_ir(const char* phase_name) { 553 ttyLocker ttyl; 554 // keep the following output all in one block 555 // This output goes directly to the tty, not the compiler log. 556 // To enable tools to match it up with the compilation activity, 557 // be sure to tag this tty output with the compile ID. 558 if (xtty != nullptr) { 559 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 560 compile_id(), 561 is_osr_compilation() ? " compile_kind='osr'" : "", 562 phase_name); 563 } 564 if (_output == nullptr) { 565 tty->print_cr("AFTER: %s", phase_name); 566 // Print out all nodes in ascending order of index. 567 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$"); 568 } else { 569 // Dump the node blockwise if we have a scheduling 570 _output->print_scheduling(); 571 } 572 573 if (xtty != nullptr) { 574 xtty->tail("ideal"); 575 } 576 } 577 #endif 578 579 // ============================================================================ 580 //------------------------------Compile standard------------------------------- 581 debug_only( int Compile::_debug_idx = 100000; ) 582 583 // Compile a method. entry_bci is -1 for normal compilations and indicates 584 // the continuation bci for on stack replacement. 585 586 587 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci, 588 Options options, DirectiveSet* directive) 589 : Phase(Compiler), 590 _compile_id(ci_env->compile_id()), 591 _options(options), 592 _method(target), 593 _entry_bci(osr_bci), 594 _ilt(nullptr), 595 _stub_function(nullptr), 596 _stub_name(nullptr), 597 _stub_entry_point(nullptr), 598 _max_node_limit(MaxNodeLimit), 599 _post_loop_opts_phase(false), 600 _inlining_progress(false), 601 _inlining_incrementally(false), 602 _do_cleanup(false), 603 _has_reserved_stack_access(target->has_reserved_stack_access()), 604 #ifndef PRODUCT 605 _igv_idx(0), 606 _trace_opto_output(directive->TraceOptoOutputOption), 607 #endif 608 _has_method_handle_invokes(false), 609 _clinit_barrier_on_entry(false), 610 _stress_seed(0), 611 _comp_arena(mtCompiler), 612 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 613 _env(ci_env), 614 _directive(directive), 615 _log(ci_env->log()), 616 _failure_reason(nullptr), 617 _intrinsics (comp_arena(), 0, 0, nullptr), 618 _macro_nodes (comp_arena(), 8, 0, nullptr), 619 _predicate_opaqs (comp_arena(), 8, 0, nullptr), 620 _skeleton_predicate_opaqs (comp_arena(), 8, 0, nullptr), 621 _expensive_nodes (comp_arena(), 8, 0, nullptr), 622 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 623 _unstable_if_traps (comp_arena(), 8, 0, nullptr), 624 _coarsened_locks (comp_arena(), 8, 0, nullptr), 625 _congraph(nullptr), 626 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 627 _dead_node_list(comp_arena()), 628 _dead_node_count(0), 629 _node_arena(mtCompiler), 630 _old_arena(mtCompiler), 631 _mach_constant_base_node(nullptr), 632 _Compile_types(mtCompiler), 633 _initial_gvn(nullptr), 634 _for_igvn(nullptr), 635 _late_inlines(comp_arena(), 2, 0, nullptr), 636 _string_late_inlines(comp_arena(), 2, 0, nullptr), 637 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 638 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 639 _late_inlines_pos(0), 640 _number_of_mh_late_inlines(0), 641 _print_inlining_stream(new (mtCompiler) stringStream()), 642 _print_inlining_list(nullptr), 643 _print_inlining_idx(0), 644 _print_inlining_output(nullptr), 645 _replay_inline_data(nullptr), 646 _java_calls(0), 647 _inner_loops(0), 648 _interpreter_frame_size(0), 649 _output(nullptr) 650 #ifndef PRODUCT 651 , _in_dump_cnt(0) 652 #endif 653 { 654 C = this; 655 CompileWrapper cw(this); 656 657 if (CITimeVerbose) { 658 tty->print(" "); 659 target->holder()->name()->print(); 660 tty->print("."); 661 target->print_short_name(); 662 tty->print(" "); 663 } 664 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 665 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 666 667 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 668 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 669 // We can always print a disassembly, either abstract (hex dump) or 670 // with the help of a suitable hsdis library. Thus, we should not 671 // couple print_assembly and print_opto_assembly controls. 672 // But: always print opto and regular assembly on compile command 'print'. 673 bool print_assembly = directive->PrintAssemblyOption; 674 set_print_assembly(print_opto_assembly || print_assembly); 675 #else 676 set_print_assembly(false); // must initialize. 677 #endif 678 679 #ifndef PRODUCT 680 set_parsed_irreducible_loop(false); 681 682 if (directive->ReplayInlineOption) { 683 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 684 } 685 #endif 686 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 687 set_print_intrinsics(directive->PrintIntrinsicsOption); 688 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 689 690 if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) { 691 // Make sure the method being compiled gets its own MDO, 692 // so we can at least track the decompile_count(). 693 // Need MDO to record RTM code generation state. 694 method()->ensure_method_data(); 695 } 696 697 Init(/*do_aliasing=*/ true); 698 699 print_compile_messages(); 700 701 _ilt = InlineTree::build_inline_tree_root(); 702 703 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 704 assert(num_alias_types() >= AliasIdxRaw, ""); 705 706 #define MINIMUM_NODE_HASH 1023 707 // Node list that Iterative GVN will start with 708 Unique_Node_List for_igvn(comp_arena()); 709 set_for_igvn(&for_igvn); 710 711 // GVN that will be run immediately on new nodes 712 uint estimated_size = method()->code_size()*4+64; 713 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 714 PhaseGVN gvn(node_arena(), estimated_size); 715 set_initial_gvn(&gvn); 716 717 print_inlining_init(); 718 { // Scope for timing the parser 719 TracePhase tp("parse", &timers[_t_parser]); 720 721 // Put top into the hash table ASAP. 722 initial_gvn()->transform_no_reclaim(top()); 723 724 // Set up tf(), start(), and find a CallGenerator. 725 CallGenerator* cg = nullptr; 726 if (is_osr_compilation()) { 727 const TypeTuple *domain = StartOSRNode::osr_domain(); 728 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 729 init_tf(TypeFunc::make(domain, range)); 730 StartNode* s = new StartOSRNode(root(), domain); 731 initial_gvn()->set_type_bottom(s); 732 init_start(s); 733 cg = CallGenerator::for_osr(method(), entry_bci()); 734 } else { 735 // Normal case. 736 init_tf(TypeFunc::make(method())); 737 StartNode* s = new StartNode(root(), tf()->domain()); 738 initial_gvn()->set_type_bottom(s); 739 init_start(s); 740 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 741 // With java.lang.ref.reference.get() we must go through the 742 // intrinsic - even when get() is the root 743 // method of the compile - so that, if necessary, the value in 744 // the referent field of the reference object gets recorded by 745 // the pre-barrier code. 746 cg = find_intrinsic(method(), false); 747 } 748 if (cg == nullptr) { 749 float past_uses = method()->interpreter_invocation_count(); 750 float expected_uses = past_uses; 751 cg = CallGenerator::for_inline(method(), expected_uses); 752 } 753 } 754 if (failing()) return; 755 if (cg == nullptr) { 756 const char* reason = InlineTree::check_can_parse(method()); 757 assert(reason != nullptr, "expect reason for parse failure"); 758 stringStream ss; 759 ss.print("cannot parse method: %s", reason); 760 record_method_not_compilable(ss.as_string()); 761 return; 762 } 763 764 gvn.set_type(root(), root()->bottom_type()); 765 766 JVMState* jvms = build_start_state(start(), tf()); 767 if ((jvms = cg->generate(jvms)) == nullptr) { 768 if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) { 769 assert(failure_reason() != nullptr, "expect reason for parse failure"); 770 stringStream ss; 771 ss.print("method parse failed: %s", failure_reason()); 772 record_method_not_compilable(ss.as_string()); 773 } 774 return; 775 } 776 GraphKit kit(jvms); 777 778 if (!kit.stopped()) { 779 // Accept return values, and transfer control we know not where. 780 // This is done by a special, unique ReturnNode bound to root. 781 return_values(kit.jvms()); 782 } 783 784 if (kit.has_exceptions()) { 785 // Any exceptions that escape from this call must be rethrown 786 // to whatever caller is dynamically above us on the stack. 787 // This is done by a special, unique RethrowNode bound to root. 788 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 789 } 790 791 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 792 793 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 794 inline_string_calls(true); 795 } 796 797 if (failing()) return; 798 799 print_method(PHASE_BEFORE_REMOVEUSELESS, 3); 800 801 // Remove clutter produced by parsing. 802 if (!failing()) { 803 ResourceMark rm; 804 PhaseRemoveUseless pru(initial_gvn(), &for_igvn); 805 } 806 } 807 808 // Note: Large methods are capped off in do_one_bytecode(). 809 if (failing()) return; 810 811 // After parsing, node notes are no longer automagic. 812 // They must be propagated by register_new_node_with_optimizer(), 813 // clone(), or the like. 814 set_default_node_notes(nullptr); 815 816 #ifndef PRODUCT 817 if (should_print_igv(1)) { 818 _igv_printer->print_inlining(); 819 } 820 #endif 821 822 if (failing()) return; 823 NOT_PRODUCT( verify_graph_edges(); ) 824 825 // If any phase is randomized for stress testing, seed random number 826 // generation and log the seed for repeatability. 827 if (StressLCM || StressGCM || StressIGVN || StressCCP) { 828 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && RepeatCompilation)) { 829 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 830 FLAG_SET_ERGO(StressSeed, _stress_seed); 831 } else { 832 _stress_seed = StressSeed; 833 } 834 if (_log != nullptr) { 835 _log->elem("stress_test seed='%u'", _stress_seed); 836 } 837 } 838 839 // Now optimize 840 Optimize(); 841 if (failing()) return; 842 NOT_PRODUCT( verify_graph_edges(); ) 843 844 #ifndef PRODUCT 845 if (should_print_ideal()) { 846 print_ideal_ir("print_ideal"); 847 } 848 #endif 849 850 #ifdef ASSERT 851 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 852 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 853 #endif 854 855 // Dump compilation data to replay it. 856 if (directive->DumpReplayOption) { 857 env()->dump_replay_data(_compile_id); 858 } 859 if (directive->DumpInlineOption && (ilt() != nullptr)) { 860 env()->dump_inline_data(_compile_id); 861 } 862 863 // Now that we know the size of all the monitors we can add a fixed slot 864 // for the original deopt pc. 865 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 866 set_fixed_slots(next_slot); 867 868 // Compute when to use implicit null checks. Used by matching trap based 869 // nodes and NullCheck optimization. 870 set_allowed_deopt_reasons(); 871 872 // Now generate code 873 Code_Gen(); 874 } 875 876 //------------------------------Compile---------------------------------------- 877 // Compile a runtime stub 878 Compile::Compile( ciEnv* ci_env, 879 TypeFunc_generator generator, 880 address stub_function, 881 const char *stub_name, 882 int is_fancy_jump, 883 bool pass_tls, 884 bool return_pc, 885 DirectiveSet* directive) 886 : Phase(Compiler), 887 _compile_id(0), 888 _options(Options::for_runtime_stub()), 889 _method(nullptr), 890 _entry_bci(InvocationEntryBci), 891 _stub_function(stub_function), 892 _stub_name(stub_name), 893 _stub_entry_point(nullptr), 894 _max_node_limit(MaxNodeLimit), 895 _post_loop_opts_phase(false), 896 _inlining_progress(false), 897 _inlining_incrementally(false), 898 _has_reserved_stack_access(false), 899 #ifndef PRODUCT 900 _igv_idx(0), 901 _trace_opto_output(directive->TraceOptoOutputOption), 902 #endif 903 _has_method_handle_invokes(false), 904 _clinit_barrier_on_entry(false), 905 _stress_seed(0), 906 _comp_arena(mtCompiler), 907 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 908 _env(ci_env), 909 _directive(directive), 910 _log(ci_env->log()), 911 _failure_reason(nullptr), 912 _congraph(nullptr), 913 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 914 _dead_node_list(comp_arena()), 915 _dead_node_count(0), 916 _node_arena(mtCompiler), 917 _old_arena(mtCompiler), 918 _mach_constant_base_node(nullptr), 919 _Compile_types(mtCompiler), 920 _initial_gvn(nullptr), 921 _for_igvn(nullptr), 922 _number_of_mh_late_inlines(0), 923 _print_inlining_stream(new (mtCompiler) stringStream()), 924 _print_inlining_list(nullptr), 925 _print_inlining_idx(0), 926 _print_inlining_output(nullptr), 927 _replay_inline_data(nullptr), 928 _java_calls(0), 929 _inner_loops(0), 930 _interpreter_frame_size(0), 931 _output(nullptr), 932 #ifndef PRODUCT 933 _in_dump_cnt(0), 934 #endif 935 _allowed_reasons(0) { 936 C = this; 937 938 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 939 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 940 941 #ifndef PRODUCT 942 set_print_assembly(PrintFrameConverterAssembly); 943 set_parsed_irreducible_loop(false); 944 #else 945 set_print_assembly(false); // Must initialize. 946 #endif 947 set_has_irreducible_loop(false); // no loops 948 949 CompileWrapper cw(this); 950 Init(/*do_aliasing=*/ false); 951 init_tf((*generator)()); 952 953 { 954 // The following is a dummy for the sake of GraphKit::gen_stub 955 Unique_Node_List for_igvn(comp_arena()); 956 set_for_igvn(&for_igvn); // not used, but some GraphKit guys push on this 957 PhaseGVN gvn(Thread::current()->resource_area(),255); 958 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 959 gvn.transform_no_reclaim(top()); 960 961 GraphKit kit; 962 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 963 } 964 965 NOT_PRODUCT( verify_graph_edges(); ) 966 967 Code_Gen(); 968 } 969 970 //------------------------------Init------------------------------------------- 971 // Prepare for a single compilation 972 void Compile::Init(bool aliasing) { 973 _do_aliasing = aliasing; 974 _unique = 0; 975 _regalloc = nullptr; 976 977 _tf = nullptr; // filled in later 978 _top = nullptr; // cached later 979 _matcher = nullptr; // filled in later 980 _cfg = nullptr; // filled in later 981 982 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 983 984 _node_note_array = nullptr; 985 _default_node_notes = nullptr; 986 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 987 988 _immutable_memory = nullptr; // filled in at first inquiry 989 990 #ifdef ASSERT 991 _phase_optimize_finished = false; 992 _exception_backedge = false; 993 _type_verify = nullptr; 994 #endif 995 996 // Globally visible Nodes 997 // First set TOP to null to give safe behavior during creation of RootNode 998 set_cached_top_node(nullptr); 999 set_root(new RootNode()); 1000 // Now that you have a Root to point to, create the real TOP 1001 set_cached_top_node( new ConNode(Type::TOP) ); 1002 set_recent_alloc(nullptr, nullptr); 1003 1004 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1005 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1006 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1007 env()->set_dependencies(new Dependencies(env())); 1008 1009 _fixed_slots = 0; 1010 set_has_split_ifs(false); 1011 set_has_loops(false); // first approximation 1012 set_has_stringbuilder(false); 1013 set_has_boxed_value(false); 1014 _trap_can_recompile = false; // no traps emitted yet 1015 _major_progress = true; // start out assuming good things will happen 1016 set_has_unsafe_access(false); 1017 set_max_vector_size(0); 1018 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1019 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1020 set_decompile_count(0); 1021 1022 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1023 _loop_opts_cnt = LoopOptsCount; 1024 set_do_inlining(Inline); 1025 set_max_inline_size(MaxInlineSize); 1026 set_freq_inline_size(FreqInlineSize); 1027 set_do_scheduling(OptoScheduling); 1028 1029 set_do_vector_loop(false); 1030 set_has_monitors(false); 1031 1032 if (AllowVectorizeOnDemand) { 1033 if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) { 1034 set_do_vector_loop(true); 1035 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1036 } else if (has_method() && method()->name() != 0 && 1037 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1038 set_do_vector_loop(true); 1039 } 1040 } 1041 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1042 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1043 1044 set_rtm_state(NoRTM); // No RTM lock eliding by default 1045 _max_node_limit = _directive->MaxNodeLimitOption; 1046 1047 #if INCLUDE_RTM_OPT 1048 if (UseRTMLocking && has_method() && (method()->method_data_or_null() != nullptr)) { 1049 int rtm_state = method()->method_data()->rtm_state(); 1050 if (method_has_option(CompileCommand::NoRTMLockEliding) || ((rtm_state & NoRTM) != 0)) { 1051 // Don't generate RTM lock eliding code. 1052 set_rtm_state(NoRTM); 1053 } else if (method_has_option(CompileCommand::UseRTMLockEliding) || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) { 1054 // Generate RTM lock eliding code without abort ratio calculation code. 1055 set_rtm_state(UseRTM); 1056 } else if (UseRTMDeopt) { 1057 // Generate RTM lock eliding code and include abort ratio calculation 1058 // code if UseRTMDeopt is on. 1059 set_rtm_state(ProfileRTM); 1060 } 1061 } 1062 #endif 1063 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) { 1064 set_clinit_barrier_on_entry(true); 1065 } 1066 if (debug_info()->recording_non_safepoints()) { 1067 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1068 (comp_arena(), 8, 0, nullptr)); 1069 set_default_node_notes(Node_Notes::make(this)); 1070 } 1071 1072 const int grow_ats = 16; 1073 _max_alias_types = grow_ats; 1074 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1075 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1076 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1077 { 1078 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1079 } 1080 // Initialize the first few types. 1081 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1082 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1083 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1084 _num_alias_types = AliasIdxRaw+1; 1085 // Zero out the alias type cache. 1086 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1087 // A null adr_type hits in the cache right away. Preload the right answer. 1088 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1089 } 1090 1091 //---------------------------init_start---------------------------------------- 1092 // Install the StartNode on this compile object. 1093 void Compile::init_start(StartNode* s) { 1094 if (failing()) 1095 return; // already failing 1096 assert(s == start(), ""); 1097 } 1098 1099 /** 1100 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1101 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1102 * the ideal graph. 1103 */ 1104 StartNode* Compile::start() const { 1105 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason()); 1106 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1107 Node* start = root()->fast_out(i); 1108 if (start->is_Start()) { 1109 return start->as_Start(); 1110 } 1111 } 1112 fatal("Did not find Start node!"); 1113 return nullptr; 1114 } 1115 1116 //-------------------------------immutable_memory------------------------------------- 1117 // Access immutable memory 1118 Node* Compile::immutable_memory() { 1119 if (_immutable_memory != nullptr) { 1120 return _immutable_memory; 1121 } 1122 StartNode* s = start(); 1123 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1124 Node *p = s->fast_out(i); 1125 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1126 _immutable_memory = p; 1127 return _immutable_memory; 1128 } 1129 } 1130 ShouldNotReachHere(); 1131 return nullptr; 1132 } 1133 1134 //----------------------set_cached_top_node------------------------------------ 1135 // Install the cached top node, and make sure Node::is_top works correctly. 1136 void Compile::set_cached_top_node(Node* tn) { 1137 if (tn != nullptr) verify_top(tn); 1138 Node* old_top = _top; 1139 _top = tn; 1140 // Calling Node::setup_is_top allows the nodes the chance to adjust 1141 // their _out arrays. 1142 if (_top != nullptr) _top->setup_is_top(); 1143 if (old_top != nullptr) old_top->setup_is_top(); 1144 assert(_top == nullptr || top()->is_top(), ""); 1145 } 1146 1147 #ifdef ASSERT 1148 uint Compile::count_live_nodes_by_graph_walk() { 1149 Unique_Node_List useful(comp_arena()); 1150 // Get useful node list by walking the graph. 1151 identify_useful_nodes(useful); 1152 return useful.size(); 1153 } 1154 1155 void Compile::print_missing_nodes() { 1156 1157 // Return if CompileLog is null and PrintIdealNodeCount is false. 1158 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1159 return; 1160 } 1161 1162 // This is an expensive function. It is executed only when the user 1163 // specifies VerifyIdealNodeCount option or otherwise knows the 1164 // additional work that needs to be done to identify reachable nodes 1165 // by walking the flow graph and find the missing ones using 1166 // _dead_node_list. 1167 1168 Unique_Node_List useful(comp_arena()); 1169 // Get useful node list by walking the graph. 1170 identify_useful_nodes(useful); 1171 1172 uint l_nodes = C->live_nodes(); 1173 uint l_nodes_by_walk = useful.size(); 1174 1175 if (l_nodes != l_nodes_by_walk) { 1176 if (_log != nullptr) { 1177 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1178 _log->stamp(); 1179 _log->end_head(); 1180 } 1181 VectorSet& useful_member_set = useful.member_set(); 1182 int last_idx = l_nodes_by_walk; 1183 for (int i = 0; i < last_idx; i++) { 1184 if (useful_member_set.test(i)) { 1185 if (_dead_node_list.test(i)) { 1186 if (_log != nullptr) { 1187 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1188 } 1189 if (PrintIdealNodeCount) { 1190 // Print the log message to tty 1191 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1192 useful.at(i)->dump(); 1193 } 1194 } 1195 } 1196 else if (! _dead_node_list.test(i)) { 1197 if (_log != nullptr) { 1198 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1199 } 1200 if (PrintIdealNodeCount) { 1201 // Print the log message to tty 1202 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1203 } 1204 } 1205 } 1206 if (_log != nullptr) { 1207 _log->tail("mismatched_nodes"); 1208 } 1209 } 1210 } 1211 void Compile::record_modified_node(Node* n) { 1212 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1213 _modified_nodes->push(n); 1214 } 1215 } 1216 1217 void Compile::remove_modified_node(Node* n) { 1218 if (_modified_nodes != nullptr) { 1219 _modified_nodes->remove(n); 1220 } 1221 } 1222 #endif 1223 1224 #ifndef PRODUCT 1225 void Compile::verify_top(Node* tn) const { 1226 if (tn != nullptr) { 1227 assert(tn->is_Con(), "top node must be a constant"); 1228 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1229 assert(tn->in(0) != nullptr, "must have live top node"); 1230 } 1231 } 1232 #endif 1233 1234 1235 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1236 1237 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1238 guarantee(arr != nullptr, ""); 1239 int num_blocks = arr->length(); 1240 if (grow_by < num_blocks) grow_by = num_blocks; 1241 int num_notes = grow_by * _node_notes_block_size; 1242 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1243 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1244 while (num_notes > 0) { 1245 arr->append(notes); 1246 notes += _node_notes_block_size; 1247 num_notes -= _node_notes_block_size; 1248 } 1249 assert(num_notes == 0, "exact multiple, please"); 1250 } 1251 1252 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1253 if (source == nullptr || dest == nullptr) return false; 1254 1255 if (dest->is_Con()) 1256 return false; // Do not push debug info onto constants. 1257 1258 #ifdef ASSERT 1259 // Leave a bread crumb trail pointing to the original node: 1260 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1261 dest->set_debug_orig(source); 1262 } 1263 #endif 1264 1265 if (node_note_array() == nullptr) 1266 return false; // Not collecting any notes now. 1267 1268 // This is a copy onto a pre-existing node, which may already have notes. 1269 // If both nodes have notes, do not overwrite any pre-existing notes. 1270 Node_Notes* source_notes = node_notes_at(source->_idx); 1271 if (source_notes == nullptr || source_notes->is_clear()) return false; 1272 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1273 if (dest_notes == nullptr || dest_notes->is_clear()) { 1274 return set_node_notes_at(dest->_idx, source_notes); 1275 } 1276 1277 Node_Notes merged_notes = (*source_notes); 1278 // The order of operations here ensures that dest notes will win... 1279 merged_notes.update_from(dest_notes); 1280 return set_node_notes_at(dest->_idx, &merged_notes); 1281 } 1282 1283 1284 //--------------------------allow_range_check_smearing------------------------- 1285 // Gating condition for coalescing similar range checks. 1286 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1287 // single covering check that is at least as strong as any of them. 1288 // If the optimization succeeds, the simplified (strengthened) range check 1289 // will always succeed. If it fails, we will deopt, and then give up 1290 // on the optimization. 1291 bool Compile::allow_range_check_smearing() const { 1292 // If this method has already thrown a range-check, 1293 // assume it was because we already tried range smearing 1294 // and it failed. 1295 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1296 return !already_trapped; 1297 } 1298 1299 1300 //------------------------------flatten_alias_type----------------------------- 1301 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1302 assert(do_aliasing(), "Aliasing should be enabled"); 1303 int offset = tj->offset(); 1304 TypePtr::PTR ptr = tj->ptr(); 1305 1306 // Known instance (scalarizable allocation) alias only with itself. 1307 bool is_known_inst = tj->isa_oopptr() != nullptr && 1308 tj->is_oopptr()->is_known_instance(); 1309 1310 // Process weird unsafe references. 1311 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1312 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1313 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1314 tj = TypeOopPtr::BOTTOM; 1315 ptr = tj->ptr(); 1316 offset = tj->offset(); 1317 } 1318 1319 // Array pointers need some flattening 1320 const TypeAryPtr* ta = tj->isa_aryptr(); 1321 if (ta && ta->is_stable()) { 1322 // Erase stability property for alias analysis. 1323 tj = ta = ta->cast_to_stable(false); 1324 } 1325 if( ta && is_known_inst ) { 1326 if ( offset != Type::OffsetBot && 1327 offset > arrayOopDesc::length_offset_in_bytes() ) { 1328 offset = Type::OffsetBot; // Flatten constant access into array body only 1329 tj = ta = ta-> 1330 remove_speculative()-> 1331 cast_to_ptr_type(ptr)-> 1332 with_offset(offset); 1333 } 1334 } else if (ta) { 1335 // For arrays indexed by constant indices, we flatten the alias 1336 // space to include all of the array body. Only the header, klass 1337 // and array length can be accessed un-aliased. 1338 if( offset != Type::OffsetBot ) { 1339 if( ta->const_oop() ) { // MethodData* or Method* 1340 offset = Type::OffsetBot; // Flatten constant access into array body 1341 tj = ta = ta-> 1342 remove_speculative()-> 1343 cast_to_ptr_type(ptr)-> 1344 cast_to_exactness(false)-> 1345 with_offset(offset); 1346 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1347 // range is OK as-is. 1348 tj = ta = TypeAryPtr::RANGE; 1349 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1350 tj = TypeInstPtr::KLASS; // all klass loads look alike 1351 ta = TypeAryPtr::RANGE; // generic ignored junk 1352 ptr = TypePtr::BotPTR; 1353 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1354 tj = TypeInstPtr::MARK; 1355 ta = TypeAryPtr::RANGE; // generic ignored junk 1356 ptr = TypePtr::BotPTR; 1357 } else { // Random constant offset into array body 1358 offset = Type::OffsetBot; // Flatten constant access into array body 1359 tj = ta = ta-> 1360 remove_speculative()-> 1361 cast_to_ptr_type(ptr)-> 1362 cast_to_exactness(false)-> 1363 with_offset(offset); 1364 } 1365 } 1366 // Arrays of fixed size alias with arrays of unknown size. 1367 if (ta->size() != TypeInt::POS) { 1368 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1369 tj = ta = ta-> 1370 remove_speculative()-> 1371 cast_to_ptr_type(ptr)-> 1372 with_ary(tary)-> 1373 cast_to_exactness(false); 1374 } 1375 // Arrays of known objects become arrays of unknown objects. 1376 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1377 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1378 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1379 } 1380 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1381 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1382 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1383 } 1384 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1385 // cannot be distinguished by bytecode alone. 1386 if (ta->elem() == TypeInt::BOOL) { 1387 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1388 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1389 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1390 } 1391 // During the 2nd round of IterGVN, NotNull castings are removed. 1392 // Make sure the Bottom and NotNull variants alias the same. 1393 // Also, make sure exact and non-exact variants alias the same. 1394 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1395 tj = ta = ta-> 1396 remove_speculative()-> 1397 cast_to_ptr_type(TypePtr::BotPTR)-> 1398 cast_to_exactness(false)-> 1399 with_offset(offset); 1400 } 1401 } 1402 1403 // Oop pointers need some flattening 1404 const TypeInstPtr *to = tj->isa_instptr(); 1405 if (to && to != TypeOopPtr::BOTTOM) { 1406 ciInstanceKlass* ik = to->instance_klass(); 1407 if( ptr == TypePtr::Constant ) { 1408 if (ik != ciEnv::current()->Class_klass() || 1409 offset < ik->layout_helper_size_in_bytes()) { 1410 // No constant oop pointers (such as Strings); they alias with 1411 // unknown strings. 1412 assert(!is_known_inst, "not scalarizable allocation"); 1413 tj = to = to-> 1414 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1415 remove_speculative()-> 1416 cast_to_ptr_type(TypePtr::BotPTR)-> 1417 cast_to_exactness(false); 1418 } 1419 } else if( is_known_inst ) { 1420 tj = to; // Keep NotNull and klass_is_exact for instance type 1421 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1422 // During the 2nd round of IterGVN, NotNull castings are removed. 1423 // Make sure the Bottom and NotNull variants alias the same. 1424 // Also, make sure exact and non-exact variants alias the same. 1425 tj = to = to-> 1426 remove_speculative()-> 1427 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1428 cast_to_ptr_type(TypePtr::BotPTR)-> 1429 cast_to_exactness(false); 1430 } 1431 if (to->speculative() != nullptr) { 1432 tj = to = to->remove_speculative(); 1433 } 1434 // Canonicalize the holder of this field 1435 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1436 // First handle header references such as a LoadKlassNode, even if the 1437 // object's klass is unloaded at compile time (4965979). 1438 if (!is_known_inst) { // Do it only for non-instance types 1439 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset); 1440 } 1441 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1442 // Static fields are in the space above the normal instance 1443 // fields in the java.lang.Class instance. 1444 if (ik != ciEnv::current()->Class_klass()) { 1445 to = nullptr; 1446 tj = TypeOopPtr::BOTTOM; 1447 offset = tj->offset(); 1448 } 1449 } else { 1450 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1451 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1452 if (!ik->equals(canonical_holder) || tj->offset() != offset) { 1453 if( is_known_inst ) { 1454 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, nullptr, offset, to->instance_id()); 1455 } else { 1456 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, nullptr, offset); 1457 } 1458 } 1459 } 1460 } 1461 1462 // Klass pointers to object array klasses need some flattening 1463 const TypeKlassPtr *tk = tj->isa_klassptr(); 1464 if( tk ) { 1465 // If we are referencing a field within a Klass, we need 1466 // to assume the worst case of an Object. Both exact and 1467 // inexact types must flatten to the same alias class so 1468 // use NotNull as the PTR. 1469 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1470 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1471 env()->Object_klass(), 1472 offset); 1473 } 1474 1475 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1476 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1477 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1478 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset); 1479 } else { 1480 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset); 1481 } 1482 } 1483 1484 // Check for precise loads from the primary supertype array and force them 1485 // to the supertype cache alias index. Check for generic array loads from 1486 // the primary supertype array and also force them to the supertype cache 1487 // alias index. Since the same load can reach both, we need to merge 1488 // these 2 disparate memories into the same alias class. Since the 1489 // primary supertype array is read-only, there's no chance of confusion 1490 // where we bypass an array load and an array store. 1491 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1492 if (offset == Type::OffsetBot || 1493 (offset >= primary_supers_offset && 1494 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1495 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1496 offset = in_bytes(Klass::secondary_super_cache_offset()); 1497 tj = tk = tk->with_offset(offset); 1498 } 1499 } 1500 1501 // Flatten all Raw pointers together. 1502 if (tj->base() == Type::RawPtr) 1503 tj = TypeRawPtr::BOTTOM; 1504 1505 if (tj->base() == Type::AnyPtr) 1506 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1507 1508 offset = tj->offset(); 1509 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1510 1511 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1512 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1513 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1514 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1515 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1516 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1517 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1518 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1519 assert( tj->ptr() != TypePtr::TopPTR && 1520 tj->ptr() != TypePtr::AnyNull && 1521 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1522 // assert( tj->ptr() != TypePtr::Constant || 1523 // tj->base() == Type::RawPtr || 1524 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1525 1526 return tj; 1527 } 1528 1529 void Compile::AliasType::Init(int i, const TypePtr* at) { 1530 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1531 _index = i; 1532 _adr_type = at; 1533 _field = nullptr; 1534 _element = nullptr; 1535 _is_rewritable = true; // default 1536 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1537 if (atoop != nullptr && atoop->is_known_instance()) { 1538 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1539 _general_index = Compile::current()->get_alias_index(gt); 1540 } else { 1541 _general_index = 0; 1542 } 1543 } 1544 1545 BasicType Compile::AliasType::basic_type() const { 1546 if (element() != nullptr) { 1547 const Type* element = adr_type()->is_aryptr()->elem(); 1548 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1549 } if (field() != nullptr) { 1550 return field()->layout_type(); 1551 } else { 1552 return T_ILLEGAL; // unknown 1553 } 1554 } 1555 1556 //---------------------------------print_on------------------------------------ 1557 #ifndef PRODUCT 1558 void Compile::AliasType::print_on(outputStream* st) { 1559 if (index() < 10) 1560 st->print("@ <%d> ", index()); 1561 else st->print("@ <%d>", index()); 1562 st->print(is_rewritable() ? " " : " RO"); 1563 int offset = adr_type()->offset(); 1564 if (offset == Type::OffsetBot) 1565 st->print(" +any"); 1566 else st->print(" +%-3d", offset); 1567 st->print(" in "); 1568 adr_type()->dump_on(st); 1569 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1570 if (field() != nullptr && tjp) { 1571 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1572 tjp->offset() != field()->offset_in_bytes()) { 1573 st->print(" != "); 1574 field()->print(); 1575 st->print(" ***"); 1576 } 1577 } 1578 } 1579 1580 void print_alias_types() { 1581 Compile* C = Compile::current(); 1582 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1583 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1584 C->alias_type(idx)->print_on(tty); 1585 tty->cr(); 1586 } 1587 } 1588 #endif 1589 1590 1591 //----------------------------probe_alias_cache-------------------------------- 1592 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1593 intptr_t key = (intptr_t) adr_type; 1594 key ^= key >> logAliasCacheSize; 1595 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1596 } 1597 1598 1599 //-----------------------------grow_alias_types-------------------------------- 1600 void Compile::grow_alias_types() { 1601 const int old_ats = _max_alias_types; // how many before? 1602 const int new_ats = old_ats; // how many more? 1603 const int grow_ats = old_ats+new_ats; // how many now? 1604 _max_alias_types = grow_ats; 1605 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1606 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1607 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1608 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1609 } 1610 1611 1612 //--------------------------------find_alias_type------------------------------ 1613 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1614 if (!do_aliasing()) { 1615 return alias_type(AliasIdxBot); 1616 } 1617 1618 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1619 if (ace->_adr_type == adr_type) { 1620 return alias_type(ace->_index); 1621 } 1622 1623 // Handle special cases. 1624 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1625 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1626 1627 // Do it the slow way. 1628 const TypePtr* flat = flatten_alias_type(adr_type); 1629 1630 #ifdef ASSERT 1631 { 1632 ResourceMark rm; 1633 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1634 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1635 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1636 Type::str(adr_type)); 1637 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1638 const TypeOopPtr* foop = flat->is_oopptr(); 1639 // Scalarizable allocations have exact klass always. 1640 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1641 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1642 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1643 Type::str(foop), Type::str(xoop)); 1644 } 1645 } 1646 #endif 1647 1648 int idx = AliasIdxTop; 1649 for (int i = 0; i < num_alias_types(); i++) { 1650 if (alias_type(i)->adr_type() == flat) { 1651 idx = i; 1652 break; 1653 } 1654 } 1655 1656 if (idx == AliasIdxTop) { 1657 if (no_create) return nullptr; 1658 // Grow the array if necessary. 1659 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1660 // Add a new alias type. 1661 idx = _num_alias_types++; 1662 _alias_types[idx]->Init(idx, flat); 1663 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1664 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1665 if (flat->isa_instptr()) { 1666 if (flat->offset() == java_lang_Class::klass_offset() 1667 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1668 alias_type(idx)->set_rewritable(false); 1669 } 1670 if (flat->isa_aryptr()) { 1671 #ifdef ASSERT 1672 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1673 // (T_BYTE has the weakest alignment and size restrictions...) 1674 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1675 #endif 1676 if (flat->offset() == TypePtr::OffsetBot) { 1677 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1678 } 1679 } 1680 if (flat->isa_klassptr()) { 1681 if (UseCompactObjectHeaders) { 1682 if (flat->offset() == in_bytes(Klass::prototype_header_offset())) 1683 alias_type(idx)->set_rewritable(false); 1684 } 1685 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1686 alias_type(idx)->set_rewritable(false); 1687 if (flat->offset() == in_bytes(Klass::modifier_flags_offset())) 1688 alias_type(idx)->set_rewritable(false); 1689 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1690 alias_type(idx)->set_rewritable(false); 1691 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1692 alias_type(idx)->set_rewritable(false); 1693 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1694 alias_type(idx)->set_rewritable(false); 1695 } 1696 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1697 // but the base pointer type is not distinctive enough to identify 1698 // references into JavaThread.) 1699 1700 // Check for final fields. 1701 const TypeInstPtr* tinst = flat->isa_instptr(); 1702 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1703 ciField* field; 1704 if (tinst->const_oop() != nullptr && 1705 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1706 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1707 // static field 1708 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1709 field = k->get_field_by_offset(tinst->offset(), true); 1710 } else { 1711 ciInstanceKlass *k = tinst->instance_klass(); 1712 field = k->get_field_by_offset(tinst->offset(), false); 1713 } 1714 assert(field == nullptr || 1715 original_field == nullptr || 1716 (field->holder() == original_field->holder() && 1717 field->offset_in_bytes() == original_field->offset_in_bytes() && 1718 field->is_static() == original_field->is_static()), "wrong field?"); 1719 // Set field() and is_rewritable() attributes. 1720 if (field != nullptr) alias_type(idx)->set_field(field); 1721 } 1722 } 1723 1724 // Fill the cache for next time. 1725 ace->_adr_type = adr_type; 1726 ace->_index = idx; 1727 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1728 1729 // Might as well try to fill the cache for the flattened version, too. 1730 AliasCacheEntry* face = probe_alias_cache(flat); 1731 if (face->_adr_type == nullptr) { 1732 face->_adr_type = flat; 1733 face->_index = idx; 1734 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1735 } 1736 1737 return alias_type(idx); 1738 } 1739 1740 1741 Compile::AliasType* Compile::alias_type(ciField* field) { 1742 const TypeOopPtr* t; 1743 if (field->is_static()) 1744 t = TypeInstPtr::make(field->holder()->java_mirror()); 1745 else 1746 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1747 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1748 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1749 return atp; 1750 } 1751 1752 1753 //------------------------------have_alias_type-------------------------------- 1754 bool Compile::have_alias_type(const TypePtr* adr_type) { 1755 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1756 if (ace->_adr_type == adr_type) { 1757 return true; 1758 } 1759 1760 // Handle special cases. 1761 if (adr_type == nullptr) return true; 1762 if (adr_type == TypePtr::BOTTOM) return true; 1763 1764 return find_alias_type(adr_type, true, nullptr) != nullptr; 1765 } 1766 1767 //-----------------------------must_alias-------------------------------------- 1768 // True if all values of the given address type are in the given alias category. 1769 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1770 if (alias_idx == AliasIdxBot) return true; // the universal category 1771 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1772 if (alias_idx == AliasIdxTop) return false; // the empty category 1773 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1774 1775 // the only remaining possible overlap is identity 1776 int adr_idx = get_alias_index(adr_type); 1777 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1778 assert(adr_idx == alias_idx || 1779 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1780 && adr_type != TypeOopPtr::BOTTOM), 1781 "should not be testing for overlap with an unsafe pointer"); 1782 return adr_idx == alias_idx; 1783 } 1784 1785 //------------------------------can_alias-------------------------------------- 1786 // True if any values of the given address type are in the given alias category. 1787 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1788 if (alias_idx == AliasIdxTop) return false; // the empty category 1789 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1790 // Known instance doesn't alias with bottom memory 1791 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1792 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1793 1794 // the only remaining possible overlap is identity 1795 int adr_idx = get_alias_index(adr_type); 1796 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1797 return adr_idx == alias_idx; 1798 } 1799 1800 //---------------------cleanup_loop_predicates----------------------- 1801 // Remove the opaque nodes that protect the predicates so that all unused 1802 // checks and uncommon_traps will be eliminated from the ideal graph 1803 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) { 1804 if (predicate_count()==0) return; 1805 for (int i = predicate_count(); i > 0; i--) { 1806 Node * n = predicate_opaque1_node(i-1); 1807 assert(n->Opcode() == Op_Opaque1, "must be"); 1808 igvn.replace_node(n, n->in(1)); 1809 } 1810 assert(predicate_count()==0, "should be clean!"); 1811 } 1812 1813 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1814 if (!n->for_post_loop_opts_igvn()) { 1815 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1816 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1817 _for_post_loop_igvn.append(n); 1818 } 1819 } 1820 1821 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1822 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1823 _for_post_loop_igvn.remove(n); 1824 } 1825 1826 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1827 // Verify that all previous optimizations produced a valid graph 1828 // at least to this point, even if no loop optimizations were done. 1829 PhaseIdealLoop::verify(igvn); 1830 1831 C->set_post_loop_opts_phase(); // no more loop opts allowed 1832 1833 assert(!C->major_progress(), "not cleared"); 1834 1835 if (_for_post_loop_igvn.length() > 0) { 1836 while (_for_post_loop_igvn.length() > 0) { 1837 Node* n = _for_post_loop_igvn.pop(); 1838 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1839 igvn._worklist.push(n); 1840 } 1841 igvn.optimize(); 1842 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1843 1844 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1845 if (C->major_progress()) { 1846 C->clear_major_progress(); // ensure that major progress is now clear 1847 } 1848 } 1849 } 1850 1851 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 1852 if (OptimizeUnstableIf) { 1853 _unstable_if_traps.append(trap); 1854 } 1855 } 1856 1857 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 1858 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 1859 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1860 Node* n = trap->uncommon_trap(); 1861 if (!useful.member(n)) { 1862 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 1863 } 1864 } 1865 } 1866 1867 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 1868 // or fold-compares case. Return true if succeed or not found. 1869 // 1870 // In rare cases, the found trap has been processed. It is too late to delete it. Return 1871 // false and ask fold-compares to yield. 1872 // 1873 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 1874 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 1875 // when deoptimization does happen. 1876 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 1877 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 1878 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1879 if (trap->uncommon_trap() == unc) { 1880 if (yield && trap->modified()) { 1881 return false; 1882 } 1883 _unstable_if_traps.delete_at(i); 1884 break; 1885 } 1886 } 1887 return true; 1888 } 1889 1890 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 1891 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 1892 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 1893 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 1894 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1895 CallStaticJavaNode* unc = trap->uncommon_trap(); 1896 int next_bci = trap->next_bci(); 1897 bool modified = trap->modified(); 1898 1899 if (next_bci != -1 && !modified) { 1900 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 1901 JVMState* jvms = unc->jvms(); 1902 ciMethod* method = jvms->method(); 1903 ciBytecodeStream iter(method); 1904 1905 iter.force_bci(jvms->bci()); 1906 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 1907 Bytecodes::Code c = iter.cur_bc(); 1908 Node* lhs = nullptr; 1909 Node* rhs = nullptr; 1910 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 1911 lhs = unc->peek_operand(0); 1912 rhs = unc->peek_operand(1); 1913 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 1914 lhs = unc->peek_operand(0); 1915 } 1916 1917 ResourceMark rm; 1918 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 1919 assert(live_locals.is_valid(), "broken liveness info"); 1920 int len = (int)live_locals.size(); 1921 1922 for (int i = 0; i < len; i++) { 1923 Node* local = unc->local(jvms, i); 1924 // kill local using the liveness of next_bci. 1925 // give up when the local looks like an operand to secure reexecution. 1926 if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) { 1927 uint idx = jvms->locoff() + i; 1928 #ifdef ASSERT 1929 if (Verbose) { 1930 tty->print("[unstable_if] kill local#%d: ", idx); 1931 local->dump(); 1932 tty->cr(); 1933 } 1934 #endif 1935 igvn.replace_input_of(unc, idx, top()); 1936 modified = true; 1937 } 1938 } 1939 } 1940 1941 // keep the mondified trap for late query 1942 if (modified) { 1943 trap->set_modified(); 1944 } else { 1945 _unstable_if_traps.delete_at(i); 1946 } 1947 } 1948 igvn.optimize(); 1949 } 1950 1951 // StringOpts and late inlining of string methods 1952 void Compile::inline_string_calls(bool parse_time) { 1953 { 1954 // remove useless nodes to make the usage analysis simpler 1955 ResourceMark rm; 1956 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 1957 } 1958 1959 { 1960 ResourceMark rm; 1961 print_method(PHASE_BEFORE_STRINGOPTS, 3); 1962 PhaseStringOpts pso(initial_gvn()); 1963 print_method(PHASE_AFTER_STRINGOPTS, 3); 1964 } 1965 1966 // now inline anything that we skipped the first time around 1967 if (!parse_time) { 1968 _late_inlines_pos = _late_inlines.length(); 1969 } 1970 1971 while (_string_late_inlines.length() > 0) { 1972 CallGenerator* cg = _string_late_inlines.pop(); 1973 cg->do_late_inline(); 1974 if (failing()) return; 1975 } 1976 _string_late_inlines.trunc_to(0); 1977 } 1978 1979 // Late inlining of boxing methods 1980 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 1981 if (_boxing_late_inlines.length() > 0) { 1982 assert(has_boxed_value(), "inconsistent"); 1983 1984 PhaseGVN* gvn = initial_gvn(); 1985 set_inlining_incrementally(true); 1986 1987 assert( igvn._worklist.size() == 0, "should be done with igvn" ); 1988 for_igvn()->clear(); 1989 gvn->replace_with(&igvn); 1990 1991 _late_inlines_pos = _late_inlines.length(); 1992 1993 while (_boxing_late_inlines.length() > 0) { 1994 CallGenerator* cg = _boxing_late_inlines.pop(); 1995 cg->do_late_inline(); 1996 if (failing()) return; 1997 } 1998 _boxing_late_inlines.trunc_to(0); 1999 2000 inline_incrementally_cleanup(igvn); 2001 2002 set_inlining_incrementally(false); 2003 } 2004 } 2005 2006 bool Compile::inline_incrementally_one() { 2007 assert(IncrementalInline, "incremental inlining should be on"); 2008 2009 TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]); 2010 2011 set_inlining_progress(false); 2012 set_do_cleanup(false); 2013 2014 for (int i = 0; i < _late_inlines.length(); i++) { 2015 _late_inlines_pos = i+1; 2016 CallGenerator* cg = _late_inlines.at(i); 2017 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2018 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2019 cg->do_late_inline(); 2020 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2021 if (failing()) { 2022 return false; 2023 } else if (inlining_progress()) { 2024 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2025 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2026 break; // process one call site at a time 2027 } 2028 } else { 2029 // Ignore late inline direct calls when inlining is not allowed. 2030 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2031 } 2032 } 2033 // Remove processed elements. 2034 _late_inlines.remove_till(_late_inlines_pos); 2035 _late_inlines_pos = 0; 2036 2037 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2038 2039 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2040 2041 set_inlining_progress(false); 2042 set_do_cleanup(false); 2043 2044 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2045 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2046 } 2047 2048 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2049 { 2050 TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]); 2051 ResourceMark rm; 2052 PhaseRemoveUseless pru(initial_gvn(), for_igvn()); 2053 } 2054 { 2055 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]); 2056 igvn = PhaseIterGVN(initial_gvn()); 2057 igvn.optimize(); 2058 } 2059 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2060 } 2061 2062 // Perform incremental inlining until bound on number of live nodes is reached 2063 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2064 TracePhase tp("incrementalInline", &timers[_t_incrInline]); 2065 2066 set_inlining_incrementally(true); 2067 uint low_live_nodes = 0; 2068 2069 while (_late_inlines.length() > 0) { 2070 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2071 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2072 TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]); 2073 // PhaseIdealLoop is expensive so we only try it once we are 2074 // out of live nodes and we only try it again if the previous 2075 // helped got the number of nodes down significantly 2076 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2077 if (failing()) return; 2078 low_live_nodes = live_nodes(); 2079 _major_progress = true; 2080 } 2081 2082 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2083 bool do_print_inlining = print_inlining() || print_intrinsics(); 2084 if (do_print_inlining || log() != nullptr) { 2085 // Print inlining message for candidates that we couldn't inline for lack of space. 2086 for (int i = 0; i < _late_inlines.length(); i++) { 2087 CallGenerator* cg = _late_inlines.at(i); 2088 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2089 if (do_print_inlining) { 2090 cg->print_inlining_late(msg); 2091 } 2092 log_late_inline_failure(cg, msg); 2093 } 2094 } 2095 break; // finish 2096 } 2097 } 2098 2099 for_igvn()->clear(); 2100 initial_gvn()->replace_with(&igvn); 2101 2102 while (inline_incrementally_one()) { 2103 assert(!failing(), "inconsistent"); 2104 } 2105 if (failing()) return; 2106 2107 inline_incrementally_cleanup(igvn); 2108 2109 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2110 2111 if (failing()) return; 2112 2113 if (_late_inlines.length() == 0) { 2114 break; // no more progress 2115 } 2116 } 2117 assert( igvn._worklist.size() == 0, "should be done with igvn" ); 2118 2119 if (_string_late_inlines.length() > 0) { 2120 assert(has_stringbuilder(), "inconsistent"); 2121 for_igvn()->clear(); 2122 initial_gvn()->replace_with(&igvn); 2123 2124 inline_string_calls(false); 2125 2126 if (failing()) return; 2127 2128 inline_incrementally_cleanup(igvn); 2129 } 2130 2131 set_inlining_incrementally(false); 2132 } 2133 2134 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2135 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2136 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2137 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2138 // as if "inlining_incrementally() == true" were set. 2139 assert(inlining_incrementally() == false, "not allowed"); 2140 assert(_modified_nodes == nullptr, "not allowed"); 2141 assert(_late_inlines.length() > 0, "sanity"); 2142 2143 while (_late_inlines.length() > 0) { 2144 for_igvn()->clear(); 2145 initial_gvn()->replace_with(&igvn); 2146 2147 while (inline_incrementally_one()) { 2148 assert(!failing(), "inconsistent"); 2149 } 2150 if (failing()) return; 2151 2152 inline_incrementally_cleanup(igvn); 2153 } 2154 } 2155 2156 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2157 if (_loop_opts_cnt > 0) { 2158 while (major_progress() && (_loop_opts_cnt > 0)) { 2159 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2160 PhaseIdealLoop::optimize(igvn, mode); 2161 _loop_opts_cnt--; 2162 if (failing()) return false; 2163 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2164 } 2165 } 2166 return true; 2167 } 2168 2169 // Remove edges from "root" to each SafePoint at a backward branch. 2170 // They were inserted during parsing (see add_safepoint()) to make 2171 // infinite loops without calls or exceptions visible to root, i.e., 2172 // useful. 2173 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2174 Node *r = root(); 2175 if (r != nullptr) { 2176 for (uint i = r->req(); i < r->len(); ++i) { 2177 Node *n = r->in(i); 2178 if (n != nullptr && n->is_SafePoint()) { 2179 r->rm_prec(i); 2180 if (n->outcnt() == 0) { 2181 igvn.remove_dead_node(n); 2182 } 2183 --i; 2184 } 2185 } 2186 // Parsing may have added top inputs to the root node (Path 2187 // leading to the Halt node proven dead). Make sure we get a 2188 // chance to clean them up. 2189 igvn._worklist.push(r); 2190 igvn.optimize(); 2191 } 2192 } 2193 2194 //------------------------------Optimize--------------------------------------- 2195 // Given a graph, optimize it. 2196 void Compile::Optimize() { 2197 TracePhase tp("optimizer", &timers[_t_optimizer]); 2198 2199 #ifndef PRODUCT 2200 if (env()->break_at_compile()) { 2201 BREAKPOINT; 2202 } 2203 2204 #endif 2205 2206 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2207 #ifdef ASSERT 2208 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2209 #endif 2210 2211 ResourceMark rm; 2212 2213 print_inlining_reinit(); 2214 2215 NOT_PRODUCT( verify_graph_edges(); ) 2216 2217 print_method(PHASE_AFTER_PARSING, 1); 2218 2219 { 2220 // Iterative Global Value Numbering, including ideal transforms 2221 // Initialize IterGVN with types and values from parse-time GVN 2222 PhaseIterGVN igvn(initial_gvn()); 2223 #ifdef ASSERT 2224 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2225 #endif 2226 { 2227 TracePhase tp("iterGVN", &timers[_t_iterGVN]); 2228 igvn.optimize(); 2229 } 2230 2231 if (failing()) return; 2232 2233 print_method(PHASE_ITER_GVN1, 2); 2234 2235 process_for_unstable_if_traps(igvn); 2236 2237 inline_incrementally(igvn); 2238 2239 print_method(PHASE_INCREMENTAL_INLINE, 2); 2240 2241 if (failing()) return; 2242 2243 if (eliminate_boxing()) { 2244 // Inline valueOf() methods now. 2245 inline_boxing_calls(igvn); 2246 2247 if (AlwaysIncrementalInline) { 2248 inline_incrementally(igvn); 2249 } 2250 2251 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2252 2253 if (failing()) return; 2254 } 2255 2256 // Remove the speculative part of types and clean up the graph from 2257 // the extra CastPP nodes whose only purpose is to carry them. Do 2258 // that early so that optimizations are not disrupted by the extra 2259 // CastPP nodes. 2260 remove_speculative_types(igvn); 2261 2262 // No more new expensive nodes will be added to the list from here 2263 // so keep only the actual candidates for optimizations. 2264 cleanup_expensive_nodes(igvn); 2265 2266 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2267 if (EnableVectorSupport && has_vbox_nodes()) { 2268 TracePhase tp("", &timers[_t_vector]); 2269 PhaseVector pv(igvn); 2270 pv.optimize_vector_boxes(); 2271 2272 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2273 } 2274 assert(!has_vbox_nodes(), "sanity"); 2275 2276 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2277 Compile::TracePhase tp("", &timers[_t_renumberLive]); 2278 initial_gvn()->replace_with(&igvn); 2279 Unique_Node_List* old_worklist = for_igvn(); 2280 old_worklist->clear(); 2281 Unique_Node_List new_worklist(C->comp_arena()); 2282 { 2283 ResourceMark rm; 2284 PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist); 2285 } 2286 Unique_Node_List* save_for_igvn = for_igvn(); 2287 set_for_igvn(&new_worklist); 2288 igvn = PhaseIterGVN(initial_gvn()); 2289 igvn.optimize(); 2290 set_for_igvn(old_worklist); // new_worklist is dead beyond this point 2291 } 2292 2293 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2294 // safepoints 2295 remove_root_to_sfpts_edges(igvn); 2296 2297 // Perform escape analysis 2298 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2299 if (has_loops()) { 2300 // Cleanup graph (remove dead nodes). 2301 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2302 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2303 if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2304 if (failing()) return; 2305 } 2306 bool progress; 2307 do { 2308 ConnectionGraph::do_analysis(this, &igvn); 2309 2310 if (failing()) return; 2311 2312 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2313 2314 // Optimize out fields loads from scalar replaceable allocations. 2315 igvn.optimize(); 2316 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2317 2318 if (failing()) return; 2319 2320 if (congraph() != nullptr && macro_count() > 0) { 2321 TracePhase tp("macroEliminate", &timers[_t_macroEliminate]); 2322 PhaseMacroExpand mexp(igvn); 2323 mexp.eliminate_macro_nodes(); 2324 igvn.set_delay_transform(false); 2325 2326 igvn.optimize(); 2327 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2328 2329 if (failing()) return; 2330 } 2331 progress = do_iterative_escape_analysis() && 2332 (macro_count() < mcount) && 2333 ConnectionGraph::has_candidates(this); 2334 // Try again if candidates exist and made progress 2335 // by removing some allocations and/or locks. 2336 } while (progress); 2337 } 2338 2339 // Loop transforms on the ideal graph. Range Check Elimination, 2340 // peeling, unrolling, etc. 2341 2342 // Set loop opts counter 2343 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2344 { 2345 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2346 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2347 _loop_opts_cnt--; 2348 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2349 if (failing()) return; 2350 } 2351 // Loop opts pass if partial peeling occurred in previous pass 2352 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2353 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2354 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2355 _loop_opts_cnt--; 2356 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2357 if (failing()) return; 2358 } 2359 // Loop opts pass for loop-unrolling before CCP 2360 if(major_progress() && (_loop_opts_cnt > 0)) { 2361 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2362 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2363 _loop_opts_cnt--; 2364 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2365 } 2366 if (!failing()) { 2367 // Verify that last round of loop opts produced a valid graph 2368 PhaseIdealLoop::verify(igvn); 2369 } 2370 } 2371 if (failing()) return; 2372 2373 // Conditional Constant Propagation; 2374 PhaseCCP ccp( &igvn ); 2375 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2376 { 2377 TracePhase tp("ccp", &timers[_t_ccp]); 2378 ccp.do_transform(); 2379 } 2380 print_method(PHASE_CCP1, 2); 2381 2382 assert( true, "Break here to ccp.dump_old2new_map()"); 2383 2384 // Iterative Global Value Numbering, including ideal transforms 2385 { 2386 TracePhase tp("iterGVN2", &timers[_t_iterGVN2]); 2387 igvn = ccp; 2388 igvn.optimize(); 2389 } 2390 print_method(PHASE_ITER_GVN2, 2); 2391 2392 if (failing()) return; 2393 2394 // Loop transforms on the ideal graph. Range Check Elimination, 2395 // peeling, unrolling, etc. 2396 if (!optimize_loops(igvn, LoopOptsDefault)) { 2397 return; 2398 } 2399 2400 if (failing()) return; 2401 2402 C->clear_major_progress(); // ensure that major progress is now clear 2403 2404 process_for_post_loop_opts_igvn(igvn); 2405 2406 #ifdef ASSERT 2407 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2408 #endif 2409 2410 { 2411 TracePhase tp("macroExpand", &timers[_t_macroExpand]); 2412 PhaseMacroExpand mex(igvn); 2413 if (mex.expand_macro_nodes()) { 2414 assert(failing(), "must bail out w/ explicit message"); 2415 return; 2416 } 2417 print_method(PHASE_MACRO_EXPANSION, 2); 2418 } 2419 2420 { 2421 TracePhase tp("barrierExpand", &timers[_t_barrierExpand]); 2422 if (bs->expand_barriers(this, igvn)) { 2423 assert(failing(), "must bail out w/ explicit message"); 2424 return; 2425 } 2426 print_method(PHASE_BARRIER_EXPANSION, 2); 2427 } 2428 2429 if (C->max_vector_size() > 0) { 2430 C->optimize_logic_cones(igvn); 2431 igvn.optimize(); 2432 } 2433 2434 DEBUG_ONLY( _modified_nodes = nullptr; ) 2435 2436 assert(igvn._worklist.size() == 0, "not empty"); 2437 2438 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2439 2440 if (_late_inlines.length() > 0) { 2441 // More opportunities to optimize virtual and MH calls. 2442 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2443 process_late_inline_calls_no_inline(igvn); 2444 } 2445 } // (End scope of igvn; run destructor if necessary for asserts.) 2446 2447 check_no_dead_use(); 2448 2449 process_print_inlining(); 2450 2451 // A method with only infinite loops has no edges entering loops from root 2452 { 2453 TracePhase tp("graphReshape", &timers[_t_graphReshaping]); 2454 if (final_graph_reshaping()) { 2455 assert(failing(), "must bail out w/ explicit message"); 2456 return; 2457 } 2458 } 2459 2460 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2461 DEBUG_ONLY(set_phase_optimize_finished();) 2462 } 2463 2464 #ifdef ASSERT 2465 void Compile::check_no_dead_use() const { 2466 ResourceMark rm; 2467 Unique_Node_List wq; 2468 wq.push(root()); 2469 for (uint i = 0; i < wq.size(); ++i) { 2470 Node* n = wq.at(i); 2471 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2472 Node* u = n->fast_out(j); 2473 if (u->outcnt() == 0 && !u->is_Con()) { 2474 u->dump(); 2475 fatal("no reachable node should have no use"); 2476 } 2477 wq.push(u); 2478 } 2479 } 2480 } 2481 #endif 2482 2483 void Compile::inline_vector_reboxing_calls() { 2484 if (C->_vector_reboxing_late_inlines.length() > 0) { 2485 _late_inlines_pos = C->_late_inlines.length(); 2486 while (_vector_reboxing_late_inlines.length() > 0) { 2487 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2488 cg->do_late_inline(); 2489 if (failing()) return; 2490 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 2491 } 2492 _vector_reboxing_late_inlines.trunc_to(0); 2493 } 2494 } 2495 2496 bool Compile::has_vbox_nodes() { 2497 if (C->_vector_reboxing_late_inlines.length() > 0) { 2498 return true; 2499 } 2500 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2501 Node * n = C->macro_node(macro_idx); 2502 assert(n->is_macro(), "only macro nodes expected here"); 2503 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2504 return true; 2505 } 2506 } 2507 return false; 2508 } 2509 2510 //---------------------------- Bitwise operation packing optimization --------------------------- 2511 2512 static bool is_vector_unary_bitwise_op(Node* n) { 2513 return n->Opcode() == Op_XorV && 2514 VectorNode::is_vector_bitwise_not_pattern(n); 2515 } 2516 2517 static bool is_vector_binary_bitwise_op(Node* n) { 2518 switch (n->Opcode()) { 2519 case Op_AndV: 2520 case Op_OrV: 2521 return true; 2522 2523 case Op_XorV: 2524 return !is_vector_unary_bitwise_op(n); 2525 2526 default: 2527 return false; 2528 } 2529 } 2530 2531 static bool is_vector_ternary_bitwise_op(Node* n) { 2532 return n->Opcode() == Op_MacroLogicV; 2533 } 2534 2535 static bool is_vector_bitwise_op(Node* n) { 2536 return is_vector_unary_bitwise_op(n) || 2537 is_vector_binary_bitwise_op(n) || 2538 is_vector_ternary_bitwise_op(n); 2539 } 2540 2541 static bool is_vector_bitwise_cone_root(Node* n) { 2542 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 2543 return false; 2544 } 2545 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2546 if (is_vector_bitwise_op(n->fast_out(i))) { 2547 return false; 2548 } 2549 } 2550 return true; 2551 } 2552 2553 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 2554 uint cnt = 0; 2555 if (is_vector_bitwise_op(n)) { 2556 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 2557 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2558 for (uint i = 1; i < inp_cnt; i++) { 2559 Node* in = n->in(i); 2560 bool skip = VectorNode::is_all_ones_vector(in); 2561 if (!skip && !inputs.member(in)) { 2562 inputs.push(in); 2563 cnt++; 2564 } 2565 } 2566 assert(cnt <= 1, "not unary"); 2567 } else { 2568 uint last_req = inp_cnt; 2569 if (is_vector_ternary_bitwise_op(n)) { 2570 last_req = inp_cnt - 1; // skip last input 2571 } 2572 for (uint i = 1; i < last_req; i++) { 2573 Node* def = n->in(i); 2574 if (!inputs.member(def)) { 2575 inputs.push(def); 2576 cnt++; 2577 } 2578 } 2579 } 2580 } else { // not a bitwise operations 2581 if (!inputs.member(n)) { 2582 inputs.push(n); 2583 cnt++; 2584 } 2585 } 2586 return cnt; 2587 } 2588 2589 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2590 Unique_Node_List useful_nodes; 2591 C->identify_useful_nodes(useful_nodes); 2592 2593 for (uint i = 0; i < useful_nodes.size(); i++) { 2594 Node* n = useful_nodes.at(i); 2595 if (is_vector_bitwise_cone_root(n)) { 2596 list.push(n); 2597 } 2598 } 2599 } 2600 2601 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2602 const TypeVect* vt, 2603 Unique_Node_List& partition, 2604 Unique_Node_List& inputs) { 2605 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2606 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2607 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2608 2609 Node* in1 = inputs.at(0); 2610 Node* in2 = inputs.at(1); 2611 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2612 2613 uint func = compute_truth_table(partition, inputs); 2614 2615 Node* pn = partition.at(partition.size() - 1); 2616 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2617 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 2618 } 2619 2620 static uint extract_bit(uint func, uint pos) { 2621 return (func & (1 << pos)) >> pos; 2622 } 2623 2624 // 2625 // A macro logic node represents a truth table. It has 4 inputs, 2626 // First three inputs corresponds to 3 columns of a truth table 2627 // and fourth input captures the logic function. 2628 // 2629 // eg. fn = (in1 AND in2) OR in3; 2630 // 2631 // MacroNode(in1,in2,in3,fn) 2632 // 2633 // ----------------- 2634 // in1 in2 in3 fn 2635 // ----------------- 2636 // 0 0 0 0 2637 // 0 0 1 1 2638 // 0 1 0 0 2639 // 0 1 1 1 2640 // 1 0 0 0 2641 // 1 0 1 1 2642 // 1 1 0 1 2643 // 1 1 1 1 2644 // 2645 2646 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2647 int res = 0; 2648 for (int i = 0; i < 8; i++) { 2649 int bit1 = extract_bit(in1, i); 2650 int bit2 = extract_bit(in2, i); 2651 int bit3 = extract_bit(in3, i); 2652 2653 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2654 int func_bit = extract_bit(func, func_bit_pos); 2655 2656 res |= func_bit << i; 2657 } 2658 return res; 2659 } 2660 2661 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 2662 assert(n != nullptr, ""); 2663 assert(eval_map.contains(n), "absent"); 2664 return *(eval_map.get(n)); 2665 } 2666 2667 static void eval_operands(Node* n, 2668 uint& func1, uint& func2, uint& func3, 2669 ResourceHashtable<Node*,uint>& eval_map) { 2670 assert(is_vector_bitwise_op(n), ""); 2671 2672 if (is_vector_unary_bitwise_op(n)) { 2673 Node* opnd = n->in(1); 2674 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 2675 opnd = n->in(2); 2676 } 2677 func1 = eval_operand(opnd, eval_map); 2678 } else if (is_vector_binary_bitwise_op(n)) { 2679 func1 = eval_operand(n->in(1), eval_map); 2680 func2 = eval_operand(n->in(2), eval_map); 2681 } else { 2682 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 2683 func1 = eval_operand(n->in(1), eval_map); 2684 func2 = eval_operand(n->in(2), eval_map); 2685 func3 = eval_operand(n->in(3), eval_map); 2686 } 2687 } 2688 2689 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2690 assert(inputs.size() <= 3, "sanity"); 2691 ResourceMark rm; 2692 uint res = 0; 2693 ResourceHashtable<Node*,uint> eval_map; 2694 2695 // Populate precomputed functions for inputs. 2696 // Each input corresponds to one column of 3 input truth-table. 2697 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 2698 0xCC, // (_, b, _) -> b 2699 0xF0 }; // (a, _, _) -> a 2700 for (uint i = 0; i < inputs.size(); i++) { 2701 eval_map.put(inputs.at(i), input_funcs[2-i]); 2702 } 2703 2704 for (uint i = 0; i < partition.size(); i++) { 2705 Node* n = partition.at(i); 2706 2707 uint func1 = 0, func2 = 0, func3 = 0; 2708 eval_operands(n, func1, func2, func3, eval_map); 2709 2710 switch (n->Opcode()) { 2711 case Op_OrV: 2712 assert(func3 == 0, "not binary"); 2713 res = func1 | func2; 2714 break; 2715 case Op_AndV: 2716 assert(func3 == 0, "not binary"); 2717 res = func1 & func2; 2718 break; 2719 case Op_XorV: 2720 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2721 assert(func2 == 0 && func3 == 0, "not unary"); 2722 res = (~func1) & 0xFF; 2723 } else { 2724 assert(func3 == 0, "not binary"); 2725 res = func1 ^ func2; 2726 } 2727 break; 2728 case Op_MacroLogicV: 2729 // Ordering of inputs may change during evaluation of sub-tree 2730 // containing MacroLogic node as a child node, thus a re-evaluation 2731 // makes sure that function is evaluated in context of current 2732 // inputs. 2733 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2734 break; 2735 2736 default: assert(false, "not supported: %s", n->Name()); 2737 } 2738 assert(res <= 0xFF, "invalid"); 2739 eval_map.put(n, res); 2740 } 2741 return res; 2742 } 2743 2744 // Criteria under which nodes gets packed into a macro logic node:- 2745 // 1) Parent and both child nodes are all unmasked or masked with 2746 // same predicates. 2747 // 2) Masked parent can be packed with left child if it is predicated 2748 // and both have same predicates. 2749 // 3) Masked parent can be packed with right child if its un-predicated 2750 // or has matching predication condition. 2751 // 4) An unmasked parent can be packed with an unmasked child. 2752 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2753 assert(partition.size() == 0, "not empty"); 2754 assert(inputs.size() == 0, "not empty"); 2755 if (is_vector_ternary_bitwise_op(n)) { 2756 return false; 2757 } 2758 2759 bool is_unary_op = is_vector_unary_bitwise_op(n); 2760 if (is_unary_op) { 2761 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 2762 return false; // too few inputs 2763 } 2764 2765 bool pack_left_child = true; 2766 bool pack_right_child = true; 2767 2768 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 2769 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 2770 2771 int left_child_input_cnt = 0; 2772 int right_child_input_cnt = 0; 2773 2774 bool parent_is_predicated = n->is_predicated_vector(); 2775 bool left_child_predicated = n->in(1)->is_predicated_vector(); 2776 bool right_child_predicated = n->in(2)->is_predicated_vector(); 2777 2778 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 2779 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2780 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2781 2782 do { 2783 if (pack_left_child && left_child_LOP && 2784 ((!parent_is_predicated && !left_child_predicated) || 2785 ((parent_is_predicated && left_child_predicated && 2786 parent_pred == left_child_pred)))) { 2787 partition.push(n->in(1)); 2788 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 2789 } else { 2790 inputs.push(n->in(1)); 2791 left_child_input_cnt = 1; 2792 } 2793 2794 if (pack_right_child && right_child_LOP && 2795 (!right_child_predicated || 2796 (right_child_predicated && parent_is_predicated && 2797 parent_pred == right_child_pred))) { 2798 partition.push(n->in(2)); 2799 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 2800 } else { 2801 inputs.push(n->in(2)); 2802 right_child_input_cnt = 1; 2803 } 2804 2805 if (inputs.size() > 3) { 2806 assert(partition.size() > 0, ""); 2807 inputs.clear(); 2808 partition.clear(); 2809 if (left_child_input_cnt > right_child_input_cnt) { 2810 pack_left_child = false; 2811 } else { 2812 pack_right_child = false; 2813 } 2814 } else { 2815 break; 2816 } 2817 } while(true); 2818 2819 if(partition.size()) { 2820 partition.push(n); 2821 } 2822 2823 return (partition.size() == 2 || partition.size() == 3) && 2824 (inputs.size() == 2 || inputs.size() == 3); 2825 } 2826 2827 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2828 assert(is_vector_bitwise_op(n), "not a root"); 2829 2830 visited.set(n->_idx); 2831 2832 // 1) Do a DFS walk over the logic cone. 2833 for (uint i = 1; i < n->req(); i++) { 2834 Node* in = n->in(i); 2835 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2836 process_logic_cone_root(igvn, in, visited); 2837 } 2838 } 2839 2840 // 2) Bottom up traversal: Merge node[s] with 2841 // the parent to form macro logic node. 2842 Unique_Node_List partition; 2843 Unique_Node_List inputs; 2844 if (compute_logic_cone(n, partition, inputs)) { 2845 const TypeVect* vt = n->bottom_type()->is_vect(); 2846 Node* pn = partition.at(partition.size() - 1); 2847 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2848 if (mask == nullptr || 2849 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 2850 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2851 #ifdef ASSERT 2852 if (TraceNewVectors) { 2853 tty->print("new Vector node: "); 2854 macro_logic->dump(); 2855 } 2856 #endif 2857 igvn.replace_node(n, macro_logic); 2858 } 2859 } 2860 } 2861 2862 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2863 ResourceMark rm; 2864 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 2865 Unique_Node_List list; 2866 collect_logic_cone_roots(list); 2867 2868 while (list.size() > 0) { 2869 Node* n = list.pop(); 2870 const TypeVect* vt = n->bottom_type()->is_vect(); 2871 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 2872 if (supported) { 2873 VectorSet visited(comp_arena()); 2874 process_logic_cone_root(igvn, n, visited); 2875 } 2876 } 2877 } 2878 } 2879 2880 //------------------------------Code_Gen--------------------------------------- 2881 // Given a graph, generate code for it 2882 void Compile::Code_Gen() { 2883 if (failing()) { 2884 return; 2885 } 2886 2887 // Perform instruction selection. You might think we could reclaim Matcher 2888 // memory PDQ, but actually the Matcher is used in generating spill code. 2889 // Internals of the Matcher (including some VectorSets) must remain live 2890 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2891 // set a bit in reclaimed memory. 2892 2893 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2894 // nodes. Mapping is only valid at the root of each matched subtree. 2895 NOT_PRODUCT( verify_graph_edges(); ) 2896 2897 Matcher matcher; 2898 _matcher = &matcher; 2899 { 2900 TracePhase tp("matcher", &timers[_t_matcher]); 2901 matcher.match(); 2902 if (failing()) { 2903 return; 2904 } 2905 } 2906 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2907 // nodes. Mapping is only valid at the root of each matched subtree. 2908 NOT_PRODUCT( verify_graph_edges(); ) 2909 2910 // If you have too many nodes, or if matching has failed, bail out 2911 check_node_count(0, "out of nodes matching instructions"); 2912 if (failing()) { 2913 return; 2914 } 2915 2916 print_method(PHASE_MATCHING, 2); 2917 2918 // Build a proper-looking CFG 2919 PhaseCFG cfg(node_arena(), root(), matcher); 2920 _cfg = &cfg; 2921 { 2922 TracePhase tp("scheduler", &timers[_t_scheduler]); 2923 bool success = cfg.do_global_code_motion(); 2924 if (!success) { 2925 return; 2926 } 2927 2928 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 2929 NOT_PRODUCT( verify_graph_edges(); ) 2930 cfg.verify(); 2931 } 2932 2933 PhaseChaitin regalloc(unique(), cfg, matcher, false); 2934 _regalloc = ®alloc; 2935 { 2936 TracePhase tp("regalloc", &timers[_t_registerAllocation]); 2937 // Perform register allocation. After Chaitin, use-def chains are 2938 // no longer accurate (at spill code) and so must be ignored. 2939 // Node->LRG->reg mappings are still accurate. 2940 _regalloc->Register_Allocate(); 2941 2942 // Bail out if the allocator builds too many nodes 2943 if (failing()) { 2944 return; 2945 } 2946 } 2947 2948 // Prior to register allocation we kept empty basic blocks in case the 2949 // the allocator needed a place to spill. After register allocation we 2950 // are not adding any new instructions. If any basic block is empty, we 2951 // can now safely remove it. 2952 { 2953 TracePhase tp("blockOrdering", &timers[_t_blockOrdering]); 2954 cfg.remove_empty_blocks(); 2955 if (do_freq_based_layout()) { 2956 PhaseBlockLayout layout(cfg); 2957 } else { 2958 cfg.set_loop_alignment(); 2959 } 2960 cfg.fixup_flow(); 2961 cfg.remove_unreachable_blocks(); 2962 cfg.verify_dominator_tree(); 2963 } 2964 2965 // Apply peephole optimizations 2966 if( OptoPeephole ) { 2967 TracePhase tp("peephole", &timers[_t_peephole]); 2968 PhasePeephole peep( _regalloc, cfg); 2969 peep.do_transform(); 2970 } 2971 2972 // Do late expand if CPU requires this. 2973 if (Matcher::require_postalloc_expand) { 2974 TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]); 2975 cfg.postalloc_expand(_regalloc); 2976 } 2977 2978 // Convert Nodes to instruction bits in a buffer 2979 { 2980 TracePhase tp("output", &timers[_t_output]); 2981 PhaseOutput output; 2982 output.Output(); 2983 if (failing()) return; 2984 output.install(); 2985 } 2986 2987 print_method(PHASE_FINAL_CODE, 1); 2988 2989 // He's dead, Jim. 2990 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 2991 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 2992 } 2993 2994 //------------------------------Final_Reshape_Counts--------------------------- 2995 // This class defines counters to help identify when a method 2996 // may/must be executed using hardware with only 24-bit precision. 2997 struct Final_Reshape_Counts : public StackObj { 2998 int _call_count; // count non-inlined 'common' calls 2999 int _float_count; // count float ops requiring 24-bit precision 3000 int _double_count; // count double ops requiring more precision 3001 int _java_call_count; // count non-inlined 'java' calls 3002 int _inner_loop_count; // count loops which need alignment 3003 VectorSet _visited; // Visitation flags 3004 Node_List _tests; // Set of IfNodes & PCTableNodes 3005 3006 Final_Reshape_Counts() : 3007 _call_count(0), _float_count(0), _double_count(0), 3008 _java_call_count(0), _inner_loop_count(0) { } 3009 3010 void inc_call_count () { _call_count ++; } 3011 void inc_float_count () { _float_count ++; } 3012 void inc_double_count() { _double_count++; } 3013 void inc_java_call_count() { _java_call_count++; } 3014 void inc_inner_loop_count() { _inner_loop_count++; } 3015 3016 int get_call_count () const { return _call_count ; } 3017 int get_float_count () const { return _float_count ; } 3018 int get_double_count() const { return _double_count; } 3019 int get_java_call_count() const { return _java_call_count; } 3020 int get_inner_loop_count() const { return _inner_loop_count; } 3021 }; 3022 3023 // Eliminate trivially redundant StoreCMs and accumulate their 3024 // precedence edges. 3025 void Compile::eliminate_redundant_card_marks(Node* n) { 3026 assert(n->Opcode() == Op_StoreCM, "expected StoreCM"); 3027 if (n->in(MemNode::Address)->outcnt() > 1) { 3028 // There are multiple users of the same address so it might be 3029 // possible to eliminate some of the StoreCMs 3030 Node* mem = n->in(MemNode::Memory); 3031 Node* adr = n->in(MemNode::Address); 3032 Node* val = n->in(MemNode::ValueIn); 3033 Node* prev = n; 3034 bool done = false; 3035 // Walk the chain of StoreCMs eliminating ones that match. As 3036 // long as it's a chain of single users then the optimization is 3037 // safe. Eliminating partially redundant StoreCMs would require 3038 // cloning copies down the other paths. 3039 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) { 3040 if (adr == mem->in(MemNode::Address) && 3041 val == mem->in(MemNode::ValueIn)) { 3042 // redundant StoreCM 3043 if (mem->req() > MemNode::OopStore) { 3044 // Hasn't been processed by this code yet. 3045 n->add_prec(mem->in(MemNode::OopStore)); 3046 } else { 3047 // Already converted to precedence edge 3048 for (uint i = mem->req(); i < mem->len(); i++) { 3049 // Accumulate any precedence edges 3050 if (mem->in(i) != nullptr) { 3051 n->add_prec(mem->in(i)); 3052 } 3053 } 3054 // Everything above this point has been processed. 3055 done = true; 3056 } 3057 // Eliminate the previous StoreCM 3058 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory)); 3059 assert(mem->outcnt() == 0, "should be dead"); 3060 mem->disconnect_inputs(this); 3061 } else { 3062 prev = mem; 3063 } 3064 mem = prev->in(MemNode::Memory); 3065 } 3066 } 3067 } 3068 3069 //------------------------------final_graph_reshaping_impl---------------------- 3070 // Implement items 1-5 from final_graph_reshaping below. 3071 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3072 3073 if ( n->outcnt() == 0 ) return; // dead node 3074 uint nop = n->Opcode(); 3075 3076 // Check for 2-input instruction with "last use" on right input. 3077 // Swap to left input. Implements item (2). 3078 if( n->req() == 3 && // two-input instruction 3079 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3080 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3081 n->in(2)->outcnt() == 1 &&// right use IS a last use 3082 !n->in(2)->is_Con() ) { // right use is not a constant 3083 // Check for commutative opcode 3084 switch( nop ) { 3085 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3086 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3087 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3088 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3089 case Op_AndL: case Op_XorL: case Op_OrL: 3090 case Op_AndI: case Op_XorI: case Op_OrI: { 3091 // Move "last use" input to left by swapping inputs 3092 n->swap_edges(1, 2); 3093 break; 3094 } 3095 default: 3096 break; 3097 } 3098 } 3099 3100 #ifdef ASSERT 3101 if( n->is_Mem() ) { 3102 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3103 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3104 // oop will be recorded in oop map if load crosses safepoint 3105 n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3106 LoadNode::is_immutable_value(n->in(MemNode::Address))), 3107 "raw memory operations should have control edge"); 3108 } 3109 if (n->is_MemBar()) { 3110 MemBarNode* mb = n->as_MemBar(); 3111 if (mb->trailing_store() || mb->trailing_load_store()) { 3112 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3113 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3114 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3115 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3116 } else if (mb->leading()) { 3117 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3118 } 3119 } 3120 #endif 3121 // Count FPU ops and common calls, implements item (3) 3122 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3123 if (!gc_handled) { 3124 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3125 } 3126 3127 // Collect CFG split points 3128 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3129 frc._tests.push(n); 3130 } 3131 } 3132 3133 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3134 switch( nop ) { 3135 // Count all float operations that may use FPU 3136 case Op_AddF: 3137 case Op_SubF: 3138 case Op_MulF: 3139 case Op_DivF: 3140 case Op_NegF: 3141 case Op_ModF: 3142 case Op_ConvI2F: 3143 case Op_ConF: 3144 case Op_CmpF: 3145 case Op_CmpF3: 3146 case Op_StoreF: 3147 case Op_LoadF: 3148 // case Op_ConvL2F: // longs are split into 32-bit halves 3149 frc.inc_float_count(); 3150 break; 3151 3152 case Op_ConvF2D: 3153 case Op_ConvD2F: 3154 frc.inc_float_count(); 3155 frc.inc_double_count(); 3156 break; 3157 3158 // Count all double operations that may use FPU 3159 case Op_AddD: 3160 case Op_SubD: 3161 case Op_MulD: 3162 case Op_DivD: 3163 case Op_NegD: 3164 case Op_ModD: 3165 case Op_ConvI2D: 3166 case Op_ConvD2I: 3167 // case Op_ConvL2D: // handled by leaf call 3168 // case Op_ConvD2L: // handled by leaf call 3169 case Op_ConD: 3170 case Op_CmpD: 3171 case Op_CmpD3: 3172 case Op_StoreD: 3173 case Op_LoadD: 3174 case Op_LoadD_unaligned: 3175 frc.inc_double_count(); 3176 break; 3177 case Op_Opaque1: // Remove Opaque Nodes before matching 3178 case Op_Opaque3: 3179 n->subsume_by(n->in(1), this); 3180 break; 3181 case Op_CallStaticJava: 3182 case Op_CallJava: 3183 case Op_CallDynamicJava: 3184 frc.inc_java_call_count(); // Count java call site; 3185 case Op_CallRuntime: 3186 case Op_CallLeaf: 3187 case Op_CallLeafVector: 3188 case Op_CallLeafNoFP: { 3189 assert (n->is_Call(), ""); 3190 CallNode *call = n->as_Call(); 3191 // Count call sites where the FP mode bit would have to be flipped. 3192 // Do not count uncommon runtime calls: 3193 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3194 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3195 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3196 frc.inc_call_count(); // Count the call site 3197 } else { // See if uncommon argument is shared 3198 Node *n = call->in(TypeFunc::Parms); 3199 int nop = n->Opcode(); 3200 // Clone shared simple arguments to uncommon calls, item (1). 3201 if (n->outcnt() > 1 && 3202 !n->is_Proj() && 3203 nop != Op_CreateEx && 3204 nop != Op_CheckCastPP && 3205 nop != Op_DecodeN && 3206 nop != Op_DecodeNKlass && 3207 !n->is_Mem() && 3208 !n->is_Phi()) { 3209 Node *x = n->clone(); 3210 call->set_req(TypeFunc::Parms, x); 3211 } 3212 } 3213 break; 3214 } 3215 3216 case Op_StoreCM: 3217 { 3218 // Convert OopStore dependence into precedence edge 3219 Node* prec = n->in(MemNode::OopStore); 3220 n->del_req(MemNode::OopStore); 3221 n->add_prec(prec); 3222 eliminate_redundant_card_marks(n); 3223 } 3224 3225 // fall through 3226 3227 case Op_StoreB: 3228 case Op_StoreC: 3229 case Op_StoreI: 3230 case Op_StoreL: 3231 case Op_CompareAndSwapB: 3232 case Op_CompareAndSwapS: 3233 case Op_CompareAndSwapI: 3234 case Op_CompareAndSwapL: 3235 case Op_CompareAndSwapP: 3236 case Op_CompareAndSwapN: 3237 case Op_WeakCompareAndSwapB: 3238 case Op_WeakCompareAndSwapS: 3239 case Op_WeakCompareAndSwapI: 3240 case Op_WeakCompareAndSwapL: 3241 case Op_WeakCompareAndSwapP: 3242 case Op_WeakCompareAndSwapN: 3243 case Op_CompareAndExchangeB: 3244 case Op_CompareAndExchangeS: 3245 case Op_CompareAndExchangeI: 3246 case Op_CompareAndExchangeL: 3247 case Op_CompareAndExchangeP: 3248 case Op_CompareAndExchangeN: 3249 case Op_GetAndAddS: 3250 case Op_GetAndAddB: 3251 case Op_GetAndAddI: 3252 case Op_GetAndAddL: 3253 case Op_GetAndSetS: 3254 case Op_GetAndSetB: 3255 case Op_GetAndSetI: 3256 case Op_GetAndSetL: 3257 case Op_GetAndSetP: 3258 case Op_GetAndSetN: 3259 case Op_StoreP: 3260 case Op_StoreN: 3261 case Op_StoreNKlass: 3262 case Op_LoadB: 3263 case Op_LoadUB: 3264 case Op_LoadUS: 3265 case Op_LoadI: 3266 case Op_LoadKlass: 3267 case Op_LoadNKlass: 3268 case Op_LoadL: 3269 case Op_LoadL_unaligned: 3270 case Op_LoadP: 3271 case Op_LoadN: 3272 case Op_LoadRange: 3273 case Op_LoadS: 3274 break; 3275 3276 case Op_AddP: { // Assert sane base pointers 3277 Node *addp = n->in(AddPNode::Address); 3278 assert( !addp->is_AddP() || 3279 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3280 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3281 "Base pointers must match (addp %u)", addp->_idx ); 3282 #ifdef _LP64 3283 if ((UseCompressedOops || UseCompressedClassPointers) && 3284 addp->Opcode() == Op_ConP && 3285 addp == n->in(AddPNode::Base) && 3286 n->in(AddPNode::Offset)->is_Con()) { 3287 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3288 // on the platform and on the compressed oops mode. 3289 // Use addressing with narrow klass to load with offset on x86. 3290 // Some platforms can use the constant pool to load ConP. 3291 // Do this transformation here since IGVN will convert ConN back to ConP. 3292 const Type* t = addp->bottom_type(); 3293 bool is_oop = t->isa_oopptr() != nullptr; 3294 bool is_klass = t->isa_klassptr() != nullptr; 3295 3296 if ((is_oop && Matcher::const_oop_prefer_decode() ) || 3297 (is_klass && Matcher::const_klass_prefer_decode())) { 3298 Node* nn = nullptr; 3299 3300 int op = is_oop ? Op_ConN : Op_ConNKlass; 3301 3302 // Look for existing ConN node of the same exact type. 3303 Node* r = root(); 3304 uint cnt = r->outcnt(); 3305 for (uint i = 0; i < cnt; i++) { 3306 Node* m = r->raw_out(i); 3307 if (m!= nullptr && m->Opcode() == op && 3308 m->bottom_type()->make_ptr() == t) { 3309 nn = m; 3310 break; 3311 } 3312 } 3313 if (nn != nullptr) { 3314 // Decode a narrow oop to match address 3315 // [R12 + narrow_oop_reg<<3 + offset] 3316 if (is_oop) { 3317 nn = new DecodeNNode(nn, t); 3318 } else { 3319 nn = new DecodeNKlassNode(nn, t); 3320 } 3321 // Check for succeeding AddP which uses the same Base. 3322 // Otherwise we will run into the assertion above when visiting that guy. 3323 for (uint i = 0; i < n->outcnt(); ++i) { 3324 Node *out_i = n->raw_out(i); 3325 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3326 out_i->set_req(AddPNode::Base, nn); 3327 #ifdef ASSERT 3328 for (uint j = 0; j < out_i->outcnt(); ++j) { 3329 Node *out_j = out_i->raw_out(j); 3330 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3331 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3332 } 3333 #endif 3334 } 3335 } 3336 n->set_req(AddPNode::Base, nn); 3337 n->set_req(AddPNode::Address, nn); 3338 if (addp->outcnt() == 0) { 3339 addp->disconnect_inputs(this); 3340 } 3341 } 3342 } 3343 } 3344 #endif 3345 break; 3346 } 3347 3348 case Op_CastPP: { 3349 // Remove CastPP nodes to gain more freedom during scheduling but 3350 // keep the dependency they encode as control or precedence edges 3351 // (if control is set already) on memory operations. Some CastPP 3352 // nodes don't have a control (don't carry a dependency): skip 3353 // those. 3354 if (n->in(0) != nullptr) { 3355 ResourceMark rm; 3356 Unique_Node_List wq; 3357 wq.push(n); 3358 for (uint next = 0; next < wq.size(); ++next) { 3359 Node *m = wq.at(next); 3360 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3361 Node* use = m->fast_out(i); 3362 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3363 use->ensure_control_or_add_prec(n->in(0)); 3364 } else { 3365 switch(use->Opcode()) { 3366 case Op_AddP: 3367 case Op_DecodeN: 3368 case Op_DecodeNKlass: 3369 case Op_CheckCastPP: 3370 case Op_CastPP: 3371 wq.push(use); 3372 break; 3373 } 3374 } 3375 } 3376 } 3377 } 3378 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3379 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3380 Node* in1 = n->in(1); 3381 const Type* t = n->bottom_type(); 3382 Node* new_in1 = in1->clone(); 3383 new_in1->as_DecodeN()->set_type(t); 3384 3385 if (!Matcher::narrow_oop_use_complex_address()) { 3386 // 3387 // x86, ARM and friends can handle 2 adds in addressing mode 3388 // and Matcher can fold a DecodeN node into address by using 3389 // a narrow oop directly and do implicit null check in address: 3390 // 3391 // [R12 + narrow_oop_reg<<3 + offset] 3392 // NullCheck narrow_oop_reg 3393 // 3394 // On other platforms (Sparc) we have to keep new DecodeN node and 3395 // use it to do implicit null check in address: 3396 // 3397 // decode_not_null narrow_oop_reg, base_reg 3398 // [base_reg + offset] 3399 // NullCheck base_reg 3400 // 3401 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3402 // to keep the information to which null check the new DecodeN node 3403 // corresponds to use it as value in implicit_null_check(). 3404 // 3405 new_in1->set_req(0, n->in(0)); 3406 } 3407 3408 n->subsume_by(new_in1, this); 3409 if (in1->outcnt() == 0) { 3410 in1->disconnect_inputs(this); 3411 } 3412 } else { 3413 n->subsume_by(n->in(1), this); 3414 if (n->outcnt() == 0) { 3415 n->disconnect_inputs(this); 3416 } 3417 } 3418 break; 3419 } 3420 #ifdef _LP64 3421 case Op_CmpP: 3422 // Do this transformation here to preserve CmpPNode::sub() and 3423 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3424 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3425 Node* in1 = n->in(1); 3426 Node* in2 = n->in(2); 3427 if (!in1->is_DecodeNarrowPtr()) { 3428 in2 = in1; 3429 in1 = n->in(2); 3430 } 3431 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3432 3433 Node* new_in2 = nullptr; 3434 if (in2->is_DecodeNarrowPtr()) { 3435 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3436 new_in2 = in2->in(1); 3437 } else if (in2->Opcode() == Op_ConP) { 3438 const Type* t = in2->bottom_type(); 3439 if (t == TypePtr::NULL_PTR) { 3440 assert(in1->is_DecodeN(), "compare klass to null?"); 3441 // Don't convert CmpP null check into CmpN if compressed 3442 // oops implicit null check is not generated. 3443 // This will allow to generate normal oop implicit null check. 3444 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3445 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3446 // 3447 // This transformation together with CastPP transformation above 3448 // will generated code for implicit null checks for compressed oops. 3449 // 3450 // The original code after Optimize() 3451 // 3452 // LoadN memory, narrow_oop_reg 3453 // decode narrow_oop_reg, base_reg 3454 // CmpP base_reg, nullptr 3455 // CastPP base_reg // NotNull 3456 // Load [base_reg + offset], val_reg 3457 // 3458 // after these transformations will be 3459 // 3460 // LoadN memory, narrow_oop_reg 3461 // CmpN narrow_oop_reg, nullptr 3462 // decode_not_null narrow_oop_reg, base_reg 3463 // Load [base_reg + offset], val_reg 3464 // 3465 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 3466 // since narrow oops can be used in debug info now (see the code in 3467 // final_graph_reshaping_walk()). 3468 // 3469 // At the end the code will be matched to 3470 // on x86: 3471 // 3472 // Load_narrow_oop memory, narrow_oop_reg 3473 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3474 // NullCheck narrow_oop_reg 3475 // 3476 // and on sparc: 3477 // 3478 // Load_narrow_oop memory, narrow_oop_reg 3479 // decode_not_null narrow_oop_reg, base_reg 3480 // Load [base_reg + offset], val_reg 3481 // NullCheck base_reg 3482 // 3483 } else if (t->isa_oopptr()) { 3484 new_in2 = ConNode::make(t->make_narrowoop()); 3485 } else if (t->isa_klassptr()) { 3486 new_in2 = ConNode::make(t->make_narrowklass()); 3487 } 3488 } 3489 if (new_in2 != nullptr) { 3490 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3491 n->subsume_by(cmpN, this); 3492 if (in1->outcnt() == 0) { 3493 in1->disconnect_inputs(this); 3494 } 3495 if (in2->outcnt() == 0) { 3496 in2->disconnect_inputs(this); 3497 } 3498 } 3499 } 3500 break; 3501 3502 case Op_DecodeN: 3503 case Op_DecodeNKlass: 3504 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3505 // DecodeN could be pinned when it can't be fold into 3506 // an address expression, see the code for Op_CastPP above. 3507 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3508 break; 3509 3510 case Op_EncodeP: 3511 case Op_EncodePKlass: { 3512 Node* in1 = n->in(1); 3513 if (in1->is_DecodeNarrowPtr()) { 3514 n->subsume_by(in1->in(1), this); 3515 } else if (in1->Opcode() == Op_ConP) { 3516 const Type* t = in1->bottom_type(); 3517 if (t == TypePtr::NULL_PTR) { 3518 assert(t->isa_oopptr(), "null klass?"); 3519 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3520 } else if (t->isa_oopptr()) { 3521 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3522 } else if (t->isa_klassptr()) { 3523 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3524 } 3525 } 3526 if (in1->outcnt() == 0) { 3527 in1->disconnect_inputs(this); 3528 } 3529 break; 3530 } 3531 3532 case Op_Proj: { 3533 if (OptimizeStringConcat || IncrementalInline) { 3534 ProjNode* proj = n->as_Proj(); 3535 if (proj->_is_io_use) { 3536 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 3537 // Separate projections were used for the exception path which 3538 // are normally removed by a late inline. If it wasn't inlined 3539 // then they will hang around and should just be replaced with 3540 // the original one. Merge them. 3541 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 3542 if (non_io_proj != nullptr) { 3543 proj->subsume_by(non_io_proj , this); 3544 } 3545 } 3546 } 3547 break; 3548 } 3549 3550 case Op_Phi: 3551 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3552 // The EncodeP optimization may create Phi with the same edges 3553 // for all paths. It is not handled well by Register Allocator. 3554 Node* unique_in = n->in(1); 3555 assert(unique_in != nullptr, ""); 3556 uint cnt = n->req(); 3557 for (uint i = 2; i < cnt; i++) { 3558 Node* m = n->in(i); 3559 assert(m != nullptr, ""); 3560 if (unique_in != m) 3561 unique_in = nullptr; 3562 } 3563 if (unique_in != nullptr) { 3564 n->subsume_by(unique_in, this); 3565 } 3566 } 3567 break; 3568 3569 #endif 3570 3571 #ifdef ASSERT 3572 case Op_CastII: 3573 // Verify that all range check dependent CastII nodes were removed. 3574 if (n->isa_CastII()->has_range_check()) { 3575 n->dump(3); 3576 assert(false, "Range check dependent CastII node was not removed"); 3577 } 3578 break; 3579 #endif 3580 3581 case Op_ModI: 3582 if (UseDivMod) { 3583 // Check if a%b and a/b both exist 3584 Node* d = n->find_similar(Op_DivI); 3585 if (d) { 3586 // Replace them with a fused divmod if supported 3587 if (Matcher::has_match_rule(Op_DivModI)) { 3588 DivModINode* divmod = DivModINode::make(n); 3589 d->subsume_by(divmod->div_proj(), this); 3590 n->subsume_by(divmod->mod_proj(), this); 3591 } else { 3592 // replace a%b with a-((a/b)*b) 3593 Node* mult = new MulINode(d, d->in(2)); 3594 Node* sub = new SubINode(d->in(1), mult); 3595 n->subsume_by(sub, this); 3596 } 3597 } 3598 } 3599 break; 3600 3601 case Op_ModL: 3602 if (UseDivMod) { 3603 // Check if a%b and a/b both exist 3604 Node* d = n->find_similar(Op_DivL); 3605 if (d) { 3606 // Replace them with a fused divmod if supported 3607 if (Matcher::has_match_rule(Op_DivModL)) { 3608 DivModLNode* divmod = DivModLNode::make(n); 3609 d->subsume_by(divmod->div_proj(), this); 3610 n->subsume_by(divmod->mod_proj(), this); 3611 } else { 3612 // replace a%b with a-((a/b)*b) 3613 Node* mult = new MulLNode(d, d->in(2)); 3614 Node* sub = new SubLNode(d->in(1), mult); 3615 n->subsume_by(sub, this); 3616 } 3617 } 3618 } 3619 break; 3620 3621 case Op_UModI: 3622 if (UseDivMod) { 3623 // Check if a%b and a/b both exist 3624 Node* d = n->find_similar(Op_UDivI); 3625 if (d) { 3626 // Replace them with a fused unsigned divmod if supported 3627 if (Matcher::has_match_rule(Op_UDivModI)) { 3628 UDivModINode* divmod = UDivModINode::make(n); 3629 d->subsume_by(divmod->div_proj(), this); 3630 n->subsume_by(divmod->mod_proj(), this); 3631 } else { 3632 // replace a%b with a-((a/b)*b) 3633 Node* mult = new MulINode(d, d->in(2)); 3634 Node* sub = new SubINode(d->in(1), mult); 3635 n->subsume_by(sub, this); 3636 } 3637 } 3638 } 3639 break; 3640 3641 case Op_UModL: 3642 if (UseDivMod) { 3643 // Check if a%b and a/b both exist 3644 Node* d = n->find_similar(Op_UDivL); 3645 if (d) { 3646 // Replace them with a fused unsigned divmod if supported 3647 if (Matcher::has_match_rule(Op_UDivModL)) { 3648 UDivModLNode* divmod = UDivModLNode::make(n); 3649 d->subsume_by(divmod->div_proj(), this); 3650 n->subsume_by(divmod->mod_proj(), this); 3651 } else { 3652 // replace a%b with a-((a/b)*b) 3653 Node* mult = new MulLNode(d, d->in(2)); 3654 Node* sub = new SubLNode(d->in(1), mult); 3655 n->subsume_by(sub, this); 3656 } 3657 } 3658 } 3659 break; 3660 3661 case Op_LoadVector: 3662 case Op_StoreVector: 3663 case Op_LoadVectorGather: 3664 case Op_StoreVectorScatter: 3665 case Op_LoadVectorGatherMasked: 3666 case Op_StoreVectorScatterMasked: 3667 case Op_VectorCmpMasked: 3668 case Op_VectorMaskGen: 3669 case Op_LoadVectorMasked: 3670 case Op_StoreVectorMasked: 3671 break; 3672 3673 case Op_AddReductionVI: 3674 case Op_AddReductionVL: 3675 case Op_AddReductionVF: 3676 case Op_AddReductionVD: 3677 case Op_MulReductionVI: 3678 case Op_MulReductionVL: 3679 case Op_MulReductionVF: 3680 case Op_MulReductionVD: 3681 case Op_MinReductionV: 3682 case Op_MaxReductionV: 3683 case Op_AndReductionV: 3684 case Op_OrReductionV: 3685 case Op_XorReductionV: 3686 break; 3687 3688 case Op_PackB: 3689 case Op_PackS: 3690 case Op_PackI: 3691 case Op_PackF: 3692 case Op_PackL: 3693 case Op_PackD: 3694 if (n->req()-1 > 2) { 3695 // Replace many operand PackNodes with a binary tree for matching 3696 PackNode* p = (PackNode*) n; 3697 Node* btp = p->binary_tree_pack(1, n->req()); 3698 n->subsume_by(btp, this); 3699 } 3700 break; 3701 case Op_Loop: 3702 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 3703 case Op_CountedLoop: 3704 case Op_LongCountedLoop: 3705 case Op_OuterStripMinedLoop: 3706 if (n->as_Loop()->is_inner_loop()) { 3707 frc.inc_inner_loop_count(); 3708 } 3709 n->as_Loop()->verify_strip_mined(0); 3710 break; 3711 case Op_LShiftI: 3712 case Op_RShiftI: 3713 case Op_URShiftI: 3714 case Op_LShiftL: 3715 case Op_RShiftL: 3716 case Op_URShiftL: 3717 if (Matcher::need_masked_shift_count) { 3718 // The cpu's shift instructions don't restrict the count to the 3719 // lower 5/6 bits. We need to do the masking ourselves. 3720 Node* in2 = n->in(2); 3721 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3722 const TypeInt* t = in2->find_int_type(); 3723 if (t != nullptr && t->is_con()) { 3724 juint shift = t->get_con(); 3725 if (shift > mask) { // Unsigned cmp 3726 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3727 } 3728 } else { 3729 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 3730 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3731 n->set_req(2, shift); 3732 } 3733 } 3734 if (in2->outcnt() == 0) { // Remove dead node 3735 in2->disconnect_inputs(this); 3736 } 3737 } 3738 break; 3739 case Op_MemBarStoreStore: 3740 case Op_MemBarRelease: 3741 // Break the link with AllocateNode: it is no longer useful and 3742 // confuses register allocation. 3743 if (n->req() > MemBarNode::Precedent) { 3744 n->set_req(MemBarNode::Precedent, top()); 3745 } 3746 break; 3747 case Op_MemBarAcquire: { 3748 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3749 // At parse time, the trailing MemBarAcquire for a volatile load 3750 // is created with an edge to the load. After optimizations, 3751 // that input may be a chain of Phis. If those phis have no 3752 // other use, then the MemBarAcquire keeps them alive and 3753 // register allocation can be confused. 3754 dead_nodes.push(n->in(MemBarNode::Precedent)); 3755 n->set_req(MemBarNode::Precedent, top()); 3756 } 3757 break; 3758 } 3759 case Op_Blackhole: 3760 break; 3761 case Op_RangeCheck: { 3762 RangeCheckNode* rc = n->as_RangeCheck(); 3763 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3764 n->subsume_by(iff, this); 3765 frc._tests.push(iff); 3766 break; 3767 } 3768 case Op_ConvI2L: { 3769 if (!Matcher::convi2l_type_required) { 3770 // Code generation on some platforms doesn't need accurate 3771 // ConvI2L types. Widening the type can help remove redundant 3772 // address computations. 3773 n->as_Type()->set_type(TypeLong::INT); 3774 ResourceMark rm; 3775 Unique_Node_List wq; 3776 wq.push(n); 3777 for (uint next = 0; next < wq.size(); next++) { 3778 Node *m = wq.at(next); 3779 3780 for(;;) { 3781 // Loop over all nodes with identical inputs edges as m 3782 Node* k = m->find_similar(m->Opcode()); 3783 if (k == nullptr) { 3784 break; 3785 } 3786 // Push their uses so we get a chance to remove node made 3787 // redundant 3788 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3789 Node* u = k->fast_out(i); 3790 if (u->Opcode() == Op_LShiftL || 3791 u->Opcode() == Op_AddL || 3792 u->Opcode() == Op_SubL || 3793 u->Opcode() == Op_AddP) { 3794 wq.push(u); 3795 } 3796 } 3797 // Replace all nodes with identical edges as m with m 3798 k->subsume_by(m, this); 3799 } 3800 } 3801 } 3802 break; 3803 } 3804 case Op_CmpUL: { 3805 if (!Matcher::has_match_rule(Op_CmpUL)) { 3806 // No support for unsigned long comparisons 3807 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3808 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3809 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3810 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3811 Node* andl = new AndLNode(orl, remove_sign_mask); 3812 Node* cmp = new CmpLNode(andl, n->in(2)); 3813 n->subsume_by(cmp, this); 3814 } 3815 break; 3816 } 3817 default: 3818 assert(!n->is_Call(), ""); 3819 assert(!n->is_Mem(), ""); 3820 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3821 break; 3822 } 3823 } 3824 3825 //------------------------------final_graph_reshaping_walk--------------------- 3826 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3827 // requires that the walk visits a node's inputs before visiting the node. 3828 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3829 Unique_Node_List sfpt; 3830 3831 frc._visited.set(root->_idx); // first, mark node as visited 3832 uint cnt = root->req(); 3833 Node *n = root; 3834 uint i = 0; 3835 while (true) { 3836 if (i < cnt) { 3837 // Place all non-visited non-null inputs onto stack 3838 Node* m = n->in(i); 3839 ++i; 3840 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 3841 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 3842 // compute worst case interpreter size in case of a deoptimization 3843 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3844 3845 sfpt.push(m); 3846 } 3847 cnt = m->req(); 3848 nstack.push(n, i); // put on stack parent and next input's index 3849 n = m; 3850 i = 0; 3851 } 3852 } else { 3853 // Now do post-visit work 3854 final_graph_reshaping_impl(n, frc, dead_nodes); 3855 if (nstack.is_empty()) 3856 break; // finished 3857 n = nstack.node(); // Get node from stack 3858 cnt = n->req(); 3859 i = nstack.index(); 3860 nstack.pop(); // Shift to the next node on stack 3861 } 3862 } 3863 3864 // Skip next transformation if compressed oops are not used. 3865 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3866 (!UseCompressedOops && !UseCompressedClassPointers)) 3867 return; 3868 3869 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3870 // It could be done for an uncommon traps or any safepoints/calls 3871 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3872 while (sfpt.size() > 0) { 3873 n = sfpt.pop(); 3874 JVMState *jvms = n->as_SafePoint()->jvms(); 3875 assert(jvms != nullptr, "sanity"); 3876 int start = jvms->debug_start(); 3877 int end = n->req(); 3878 bool is_uncommon = (n->is_CallStaticJava() && 3879 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3880 for (int j = start; j < end; j++) { 3881 Node* in = n->in(j); 3882 if (in->is_DecodeNarrowPtr()) { 3883 bool safe_to_skip = true; 3884 if (!is_uncommon ) { 3885 // Is it safe to skip? 3886 for (uint i = 0; i < in->outcnt(); i++) { 3887 Node* u = in->raw_out(i); 3888 if (!u->is_SafePoint() || 3889 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3890 safe_to_skip = false; 3891 } 3892 } 3893 } 3894 if (safe_to_skip) { 3895 n->set_req(j, in->in(1)); 3896 } 3897 if (in->outcnt() == 0) { 3898 in->disconnect_inputs(this); 3899 } 3900 } 3901 } 3902 } 3903 } 3904 3905 //------------------------------final_graph_reshaping-------------------------- 3906 // Final Graph Reshaping. 3907 // 3908 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3909 // and not commoned up and forced early. Must come after regular 3910 // optimizations to avoid GVN undoing the cloning. Clone constant 3911 // inputs to Loop Phis; these will be split by the allocator anyways. 3912 // Remove Opaque nodes. 3913 // (2) Move last-uses by commutative operations to the left input to encourage 3914 // Intel update-in-place two-address operations and better register usage 3915 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3916 // calls canonicalizing them back. 3917 // (3) Count the number of double-precision FP ops, single-precision FP ops 3918 // and call sites. On Intel, we can get correct rounding either by 3919 // forcing singles to memory (requires extra stores and loads after each 3920 // FP bytecode) or we can set a rounding mode bit (requires setting and 3921 // clearing the mode bit around call sites). The mode bit is only used 3922 // if the relative frequency of single FP ops to calls is low enough. 3923 // This is a key transform for SPEC mpeg_audio. 3924 // (4) Detect infinite loops; blobs of code reachable from above but not 3925 // below. Several of the Code_Gen algorithms fail on such code shapes, 3926 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3927 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3928 // Detection is by looking for IfNodes where only 1 projection is 3929 // reachable from below or CatchNodes missing some targets. 3930 // (5) Assert for insane oop offsets in debug mode. 3931 3932 bool Compile::final_graph_reshaping() { 3933 // an infinite loop may have been eliminated by the optimizer, 3934 // in which case the graph will be empty. 3935 if (root()->req() == 1) { 3936 // Do not compile method that is only a trivial infinite loop, 3937 // since the content of the loop may have been eliminated. 3938 record_method_not_compilable("trivial infinite loop"); 3939 return true; 3940 } 3941 3942 // Expensive nodes have their control input set to prevent the GVN 3943 // from freely commoning them. There's no GVN beyond this point so 3944 // no need to keep the control input. We want the expensive nodes to 3945 // be freely moved to the least frequent code path by gcm. 3946 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 3947 for (int i = 0; i < expensive_count(); i++) { 3948 _expensive_nodes.at(i)->set_req(0, nullptr); 3949 } 3950 3951 Final_Reshape_Counts frc; 3952 3953 // Visit everybody reachable! 3954 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 3955 Node_Stack nstack(live_nodes() >> 1); 3956 Unique_Node_List dead_nodes; 3957 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 3958 3959 // Check for unreachable (from below) code (i.e., infinite loops). 3960 for( uint i = 0; i < frc._tests.size(); i++ ) { 3961 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 3962 // Get number of CFG targets. 3963 // Note that PCTables include exception targets after calls. 3964 uint required_outcnt = n->required_outcnt(); 3965 if (n->outcnt() != required_outcnt) { 3966 // Check for a few special cases. Rethrow Nodes never take the 3967 // 'fall-thru' path, so expected kids is 1 less. 3968 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 3969 if (n->in(0)->in(0)->is_Call()) { 3970 CallNode* call = n->in(0)->in(0)->as_Call(); 3971 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 3972 required_outcnt--; // Rethrow always has 1 less kid 3973 } else if (call->req() > TypeFunc::Parms && 3974 call->is_CallDynamicJava()) { 3975 // Check for null receiver. In such case, the optimizer has 3976 // detected that the virtual call will always result in a null 3977 // pointer exception. The fall-through projection of this CatchNode 3978 // will not be populated. 3979 Node* arg0 = call->in(TypeFunc::Parms); 3980 if (arg0->is_Type() && 3981 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 3982 required_outcnt--; 3983 } 3984 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 3985 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 3986 // Check for illegal array length. In such case, the optimizer has 3987 // detected that the allocation attempt will always result in an 3988 // exception. There is no fall-through projection of this CatchNode . 3989 assert(call->is_CallStaticJava(), "static call expected"); 3990 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 3991 uint valid_length_test_input = call->req() - 1; 3992 Node* valid_length_test = call->in(valid_length_test_input); 3993 call->del_req(valid_length_test_input); 3994 if (valid_length_test->find_int_con(1) == 0) { 3995 required_outcnt--; 3996 } 3997 dead_nodes.push(valid_length_test); 3998 assert(n->outcnt() == required_outcnt, "malformed control flow"); 3999 continue; 4000 } 4001 } 4002 } 4003 4004 // Recheck with a better notion of 'required_outcnt' 4005 if (n->outcnt() != required_outcnt) { 4006 DEBUG_ONLY( n->dump_bfs(1, 0, "-"); ); 4007 assert(false, "malformed control flow"); 4008 record_method_not_compilable("malformed control flow"); 4009 return true; // Not all targets reachable! 4010 } 4011 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 4012 CallNode* call = n->in(0)->in(0)->as_Call(); 4013 if (call->entry_point() == OptoRuntime::new_array_Java() || 4014 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4015 assert(call->is_CallStaticJava(), "static call expected"); 4016 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4017 uint valid_length_test_input = call->req() - 1; 4018 dead_nodes.push(call->in(valid_length_test_input)); 4019 call->del_req(valid_length_test_input); // valid length test useless now 4020 } 4021 } 4022 // Check that I actually visited all kids. Unreached kids 4023 // must be infinite loops. 4024 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4025 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4026 record_method_not_compilable("infinite loop"); 4027 return true; // Found unvisited kid; must be unreach 4028 } 4029 4030 // Here so verification code in final_graph_reshaping_walk() 4031 // always see an OuterStripMinedLoopEnd 4032 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4033 IfNode* init_iff = n->as_If(); 4034 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4035 n->subsume_by(iff, this); 4036 } 4037 } 4038 4039 while (dead_nodes.size() > 0) { 4040 Node* m = dead_nodes.pop(); 4041 if (m->outcnt() == 0 && m != top()) { 4042 for (uint j = 0; j < m->req(); j++) { 4043 Node* in = m->in(j); 4044 if (in != nullptr) { 4045 dead_nodes.push(in); 4046 } 4047 } 4048 m->disconnect_inputs(this); 4049 } 4050 } 4051 4052 #ifdef IA32 4053 // If original bytecodes contained a mixture of floats and doubles 4054 // check if the optimizer has made it homogeneous, item (3). 4055 if (UseSSE == 0 && 4056 frc.get_float_count() > 32 && 4057 frc.get_double_count() == 0 && 4058 (10 * frc.get_call_count() < frc.get_float_count()) ) { 4059 set_24_bit_selection_and_mode(false, true); 4060 } 4061 #endif // IA32 4062 4063 set_java_calls(frc.get_java_call_count()); 4064 set_inner_loops(frc.get_inner_loop_count()); 4065 4066 // No infinite loops, no reason to bail out. 4067 return false; 4068 } 4069 4070 //-----------------------------too_many_traps---------------------------------- 4071 // Report if there are too many traps at the current method and bci. 4072 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4073 bool Compile::too_many_traps(ciMethod* method, 4074 int bci, 4075 Deoptimization::DeoptReason reason) { 4076 ciMethodData* md = method->method_data(); 4077 if (md->is_empty()) { 4078 // Assume the trap has not occurred, or that it occurred only 4079 // because of a transient condition during start-up in the interpreter. 4080 return false; 4081 } 4082 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4083 if (md->has_trap_at(bci, m, reason) != 0) { 4084 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4085 // Also, if there are multiple reasons, or if there is no per-BCI record, 4086 // assume the worst. 4087 if (log()) 4088 log()->elem("observe trap='%s' count='%d'", 4089 Deoptimization::trap_reason_name(reason), 4090 md->trap_count(reason)); 4091 return true; 4092 } else { 4093 // Ignore method/bci and see if there have been too many globally. 4094 return too_many_traps(reason, md); 4095 } 4096 } 4097 4098 // Less-accurate variant which does not require a method and bci. 4099 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4100 ciMethodData* logmd) { 4101 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4102 // Too many traps globally. 4103 // Note that we use cumulative trap_count, not just md->trap_count. 4104 if (log()) { 4105 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4106 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4107 Deoptimization::trap_reason_name(reason), 4108 mcount, trap_count(reason)); 4109 } 4110 return true; 4111 } else { 4112 // The coast is clear. 4113 return false; 4114 } 4115 } 4116 4117 //--------------------------too_many_recompiles-------------------------------- 4118 // Report if there are too many recompiles at the current method and bci. 4119 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4120 // Is not eager to return true, since this will cause the compiler to use 4121 // Action_none for a trap point, to avoid too many recompilations. 4122 bool Compile::too_many_recompiles(ciMethod* method, 4123 int bci, 4124 Deoptimization::DeoptReason reason) { 4125 ciMethodData* md = method->method_data(); 4126 if (md->is_empty()) { 4127 // Assume the trap has not occurred, or that it occurred only 4128 // because of a transient condition during start-up in the interpreter. 4129 return false; 4130 } 4131 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4132 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4133 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4134 Deoptimization::DeoptReason per_bc_reason 4135 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4136 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4137 if ((per_bc_reason == Deoptimization::Reason_none 4138 || md->has_trap_at(bci, m, reason) != 0) 4139 // The trap frequency measure we care about is the recompile count: 4140 && md->trap_recompiled_at(bci, m) 4141 && md->overflow_recompile_count() >= bc_cutoff) { 4142 // Do not emit a trap here if it has already caused recompilations. 4143 // Also, if there are multiple reasons, or if there is no per-BCI record, 4144 // assume the worst. 4145 if (log()) 4146 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4147 Deoptimization::trap_reason_name(reason), 4148 md->trap_count(reason), 4149 md->overflow_recompile_count()); 4150 return true; 4151 } else if (trap_count(reason) != 0 4152 && decompile_count() >= m_cutoff) { 4153 // Too many recompiles globally, and we have seen this sort of trap. 4154 // Use cumulative decompile_count, not just md->decompile_count. 4155 if (log()) 4156 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4157 Deoptimization::trap_reason_name(reason), 4158 md->trap_count(reason), trap_count(reason), 4159 md->decompile_count(), decompile_count()); 4160 return true; 4161 } else { 4162 // The coast is clear. 4163 return false; 4164 } 4165 } 4166 4167 // Compute when not to trap. Used by matching trap based nodes and 4168 // NullCheck optimization. 4169 void Compile::set_allowed_deopt_reasons() { 4170 _allowed_reasons = 0; 4171 if (is_method_compilation()) { 4172 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4173 assert(rs < BitsPerInt, "recode bit map"); 4174 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4175 _allowed_reasons |= nth_bit(rs); 4176 } 4177 } 4178 } 4179 } 4180 4181 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4182 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4183 } 4184 4185 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4186 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4187 } 4188 4189 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4190 if (holder->is_initialized()) { 4191 return false; 4192 } 4193 if (holder->is_being_initialized()) { 4194 if (accessing_method->holder() == holder) { 4195 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4196 // <init>, or a static method. In all those cases, there was an initialization 4197 // barrier on the holder klass passed. 4198 if (accessing_method->is_static_initializer() || 4199 accessing_method->is_object_initializer() || 4200 accessing_method->is_static()) { 4201 return false; 4202 } 4203 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4204 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4205 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4206 // child class can become fully initialized while its parent class is still being initialized. 4207 if (accessing_method->is_static_initializer()) { 4208 return false; 4209 } 4210 } 4211 ciMethod* root = method(); // the root method of compilation 4212 if (root != accessing_method) { 4213 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4214 } 4215 } 4216 return true; 4217 } 4218 4219 #ifndef PRODUCT 4220 //------------------------------verify_bidirectional_edges--------------------- 4221 // For each input edge to a node (ie - for each Use-Def edge), verify that 4222 // there is a corresponding Def-Use edge. 4223 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) { 4224 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4225 uint stack_size = live_nodes() >> 4; 4226 Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize)); 4227 nstack.push(_root); 4228 4229 while (nstack.size() > 0) { 4230 Node* n = nstack.pop(); 4231 if (visited.member(n)) { 4232 continue; 4233 } 4234 visited.push(n); 4235 4236 // Walk over all input edges, checking for correspondence 4237 uint length = n->len(); 4238 for (uint i = 0; i < length; i++) { 4239 Node* in = n->in(i); 4240 if (in != nullptr && !visited.member(in)) { 4241 nstack.push(in); // Put it on stack 4242 } 4243 if (in != nullptr && !in->is_top()) { 4244 // Count instances of `next` 4245 int cnt = 0; 4246 for (uint idx = 0; idx < in->_outcnt; idx++) { 4247 if (in->_out[idx] == n) { 4248 cnt++; 4249 } 4250 } 4251 assert(cnt > 0, "Failed to find Def-Use edge."); 4252 // Check for duplicate edges 4253 // walk the input array downcounting the input edges to n 4254 for (uint j = 0; j < length; j++) { 4255 if (n->in(j) == in) { 4256 cnt--; 4257 } 4258 } 4259 assert(cnt == 0, "Mismatched edge count."); 4260 } else if (in == nullptr) { 4261 assert(i == 0 || i >= n->req() || 4262 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4263 (n->is_Unlock() && i == (n->req() - 1)) || 4264 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4265 "only region, phi, arraycopy, unlock or membar nodes have null data edges"); 4266 } else { 4267 assert(in->is_top(), "sanity"); 4268 // Nothing to check. 4269 } 4270 } 4271 } 4272 } 4273 4274 //------------------------------verify_graph_edges--------------------------- 4275 // Walk the Graph and verify that there is a one-to-one correspondence 4276 // between Use-Def edges and Def-Use edges in the graph. 4277 void Compile::verify_graph_edges(bool no_dead_code) { 4278 if (VerifyGraphEdges) { 4279 Unique_Node_List visited; 4280 4281 // Call graph walk to check edges 4282 verify_bidirectional_edges(visited); 4283 if (no_dead_code) { 4284 // Now make sure that no visited node is used by an unvisited node. 4285 bool dead_nodes = false; 4286 Unique_Node_List checked; 4287 while (visited.size() > 0) { 4288 Node* n = visited.pop(); 4289 checked.push(n); 4290 for (uint i = 0; i < n->outcnt(); i++) { 4291 Node* use = n->raw_out(i); 4292 if (checked.member(use)) continue; // already checked 4293 if (visited.member(use)) continue; // already in the graph 4294 if (use->is_Con()) continue; // a dead ConNode is OK 4295 // At this point, we have found a dead node which is DU-reachable. 4296 if (!dead_nodes) { 4297 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4298 dead_nodes = true; 4299 } 4300 use->dump(2); 4301 tty->print_cr("---"); 4302 checked.push(use); // No repeats; pretend it is now checked. 4303 } 4304 } 4305 assert(!dead_nodes, "using nodes must be reachable from root"); 4306 } 4307 } 4308 } 4309 #endif 4310 4311 // The Compile object keeps track of failure reasons separately from the ciEnv. 4312 // This is required because there is not quite a 1-1 relation between the 4313 // ciEnv and its compilation task and the Compile object. Note that one 4314 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4315 // to backtrack and retry without subsuming loads. Other than this backtracking 4316 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4317 // by the logic in C2Compiler. 4318 void Compile::record_failure(const char* reason) { 4319 if (log() != nullptr) { 4320 log()->elem("failure reason='%s' phase='compile'", reason); 4321 } 4322 if (_failure_reason == nullptr) { 4323 // Record the first failure reason. 4324 _failure_reason = reason; 4325 } 4326 4327 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4328 C->print_method(PHASE_FAILURE, 1); 4329 } 4330 _root = nullptr; // flush the graph, too 4331 } 4332 4333 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator) 4334 : TraceTime(name, accumulator, CITime, CITimeVerbose), 4335 _phase_name(name), _dolog(CITimeVerbose) 4336 { 4337 if (_dolog) { 4338 C = Compile::current(); 4339 _log = C->log(); 4340 } else { 4341 C = nullptr; 4342 _log = nullptr; 4343 } 4344 if (_log != nullptr) { 4345 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 4346 _log->stamp(); 4347 _log->end_head(); 4348 } 4349 } 4350 4351 Compile::TracePhase::~TracePhase() { 4352 4353 C = Compile::current(); 4354 if (_dolog) { 4355 _log = C->log(); 4356 } else { 4357 _log = nullptr; 4358 } 4359 4360 #ifdef ASSERT 4361 if (PrintIdealNodeCount) { 4362 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4363 _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk()); 4364 } 4365 4366 if (VerifyIdealNodeCount) { 4367 Compile::current()->print_missing_nodes(); 4368 } 4369 #endif 4370 4371 if (_log != nullptr) { 4372 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes()); 4373 } 4374 } 4375 4376 //----------------------------static_subtype_check----------------------------- 4377 // Shortcut important common cases when superklass is exact: 4378 // (0) superklass is java.lang.Object (can occur in reflective code) 4379 // (1) subklass is already limited to a subtype of superklass => always ok 4380 // (2) subklass does not overlap with superklass => always fail 4381 // (3) superklass has NO subtypes and we can check with a simple compare. 4382 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4383 if (skip) { 4384 return SSC_full_test; // Let caller generate the general case. 4385 } 4386 4387 if (subk->is_java_subtype_of(superk)) { 4388 return SSC_always_true; // (0) and (1) this test cannot fail 4389 } 4390 4391 if (!subk->maybe_java_subtype_of(superk)) { 4392 return SSC_always_false; // (2) true path dead; no dynamic test needed 4393 } 4394 4395 const Type* superelem = superk; 4396 if (superk->isa_aryklassptr()) { 4397 int ignored; 4398 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4399 } 4400 4401 if (superelem->isa_instklassptr()) { 4402 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4403 if (!ik->has_subklass()) { 4404 if (!ik->is_final()) { 4405 // Add a dependency if there is a chance of a later subclass. 4406 dependencies()->assert_leaf_type(ik); 4407 } 4408 if (!superk->maybe_java_subtype_of(subk)) { 4409 return SSC_always_false; 4410 } 4411 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4412 } 4413 } else { 4414 // A primitive array type has no subtypes. 4415 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4416 } 4417 4418 return SSC_full_test; 4419 } 4420 4421 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4422 #ifdef _LP64 4423 // The scaled index operand to AddP must be a clean 64-bit value. 4424 // Java allows a 32-bit int to be incremented to a negative 4425 // value, which appears in a 64-bit register as a large 4426 // positive number. Using that large positive number as an 4427 // operand in pointer arithmetic has bad consequences. 4428 // On the other hand, 32-bit overflow is rare, and the possibility 4429 // can often be excluded, if we annotate the ConvI2L node with 4430 // a type assertion that its value is known to be a small positive 4431 // number. (The prior range check has ensured this.) 4432 // This assertion is used by ConvI2LNode::Ideal. 4433 int index_max = max_jint - 1; // array size is max_jint, index is one less 4434 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 4435 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4436 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4437 #endif 4438 return idx; 4439 } 4440 4441 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4442 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4443 if (ctrl != nullptr) { 4444 // Express control dependency by a CastII node with a narrow type. 4445 value = new CastIINode(value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4446 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4447 // node from floating above the range check during loop optimizations. Otherwise, the 4448 // ConvI2L node may be eliminated independently of the range check, causing the data path 4449 // to become TOP while the control path is still there (although it's unreachable). 4450 value->set_req(0, ctrl); 4451 value = phase->transform(value); 4452 } 4453 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4454 return phase->transform(new ConvI2LNode(value, ltype)); 4455 } 4456 4457 // The message about the current inlining is accumulated in 4458 // _print_inlining_stream and transferred into the _print_inlining_list 4459 // once we know whether inlining succeeds or not. For regular 4460 // inlining, messages are appended to the buffer pointed by 4461 // _print_inlining_idx in the _print_inlining_list. For late inlining, 4462 // a new buffer is added after _print_inlining_idx in the list. This 4463 // way we can update the inlining message for late inlining call site 4464 // when the inlining is attempted again. 4465 void Compile::print_inlining_init() { 4466 if (print_inlining() || print_intrinsics()) { 4467 // print_inlining_init is actually called several times. 4468 print_inlining_reset(); 4469 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer*>(comp_arena(), 1, 1, new PrintInliningBuffer()); 4470 } 4471 } 4472 4473 void Compile::print_inlining_reinit() { 4474 if (print_inlining() || print_intrinsics()) { 4475 print_inlining_reset(); 4476 } 4477 } 4478 4479 void Compile::print_inlining_reset() { 4480 _print_inlining_stream->reset(); 4481 } 4482 4483 void Compile::print_inlining_commit() { 4484 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 4485 // Transfer the message from _print_inlining_stream to the current 4486 // _print_inlining_list buffer and clear _print_inlining_stream. 4487 _print_inlining_list->at(_print_inlining_idx)->ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size()); 4488 print_inlining_reset(); 4489 } 4490 4491 void Compile::print_inlining_push() { 4492 // Add new buffer to the _print_inlining_list at current position 4493 _print_inlining_idx++; 4494 _print_inlining_list->insert_before(_print_inlining_idx, new PrintInliningBuffer()); 4495 } 4496 4497 Compile::PrintInliningBuffer* Compile::print_inlining_current() { 4498 return _print_inlining_list->at(_print_inlining_idx); 4499 } 4500 4501 void Compile::print_inlining_update(CallGenerator* cg) { 4502 if (print_inlining() || print_intrinsics()) { 4503 if (cg->is_late_inline()) { 4504 if (print_inlining_current()->cg() != cg && 4505 (print_inlining_current()->cg() != nullptr || 4506 print_inlining_current()->ss()->size() != 0)) { 4507 print_inlining_push(); 4508 } 4509 print_inlining_commit(); 4510 print_inlining_current()->set_cg(cg); 4511 } else { 4512 if (print_inlining_current()->cg() != nullptr) { 4513 print_inlining_push(); 4514 } 4515 print_inlining_commit(); 4516 } 4517 } 4518 } 4519 4520 void Compile::print_inlining_move_to(CallGenerator* cg) { 4521 // We resume inlining at a late inlining call site. Locate the 4522 // corresponding inlining buffer so that we can update it. 4523 if (print_inlining() || print_intrinsics()) { 4524 for (int i = 0; i < _print_inlining_list->length(); i++) { 4525 if (_print_inlining_list->at(i)->cg() == cg) { 4526 _print_inlining_idx = i; 4527 return; 4528 } 4529 } 4530 ShouldNotReachHere(); 4531 } 4532 } 4533 4534 void Compile::print_inlining_update_delayed(CallGenerator* cg) { 4535 if (print_inlining() || print_intrinsics()) { 4536 assert(_print_inlining_stream->size() > 0, "missing inlining msg"); 4537 assert(print_inlining_current()->cg() == cg, "wrong entry"); 4538 // replace message with new message 4539 _print_inlining_list->at_put(_print_inlining_idx, new PrintInliningBuffer()); 4540 print_inlining_commit(); 4541 print_inlining_current()->set_cg(cg); 4542 } 4543 } 4544 4545 void Compile::print_inlining_assert_ready() { 4546 assert(!_print_inlining || _print_inlining_stream->size() == 0, "losing data"); 4547 } 4548 4549 void Compile::process_print_inlining() { 4550 assert(_late_inlines.length() == 0, "not drained yet"); 4551 if (print_inlining() || print_intrinsics()) { 4552 ResourceMark rm; 4553 stringStream ss; 4554 assert(_print_inlining_list != nullptr, "process_print_inlining should be called only once."); 4555 for (int i = 0; i < _print_inlining_list->length(); i++) { 4556 PrintInliningBuffer* pib = _print_inlining_list->at(i); 4557 ss.print("%s", pib->ss()->freeze()); 4558 delete pib; 4559 DEBUG_ONLY(_print_inlining_list->at_put(i, nullptr)); 4560 } 4561 // Reset _print_inlining_list, it only contains destructed objects. 4562 // It is on the arena, so it will be freed when the arena is reset. 4563 _print_inlining_list = nullptr; 4564 // _print_inlining_stream won't be used anymore, either. 4565 print_inlining_reset(); 4566 size_t end = ss.size(); 4567 _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1); 4568 strncpy(_print_inlining_output, ss.freeze(), end+1); 4569 _print_inlining_output[end] = 0; 4570 } 4571 } 4572 4573 void Compile::dump_print_inlining() { 4574 if (_print_inlining_output != nullptr) { 4575 tty->print_raw(_print_inlining_output); 4576 } 4577 } 4578 4579 void Compile::log_late_inline(CallGenerator* cg) { 4580 if (log() != nullptr) { 4581 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4582 cg->unique_id()); 4583 JVMState* p = cg->call_node()->jvms(); 4584 while (p != nullptr) { 4585 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4586 p = p->caller(); 4587 } 4588 log()->tail("late_inline"); 4589 } 4590 } 4591 4592 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4593 log_late_inline(cg); 4594 if (log() != nullptr) { 4595 log()->inline_fail(msg); 4596 } 4597 } 4598 4599 void Compile::log_inline_id(CallGenerator* cg) { 4600 if (log() != nullptr) { 4601 // The LogCompilation tool needs a unique way to identify late 4602 // inline call sites. This id must be unique for this call site in 4603 // this compilation. Try to have it unique across compilations as 4604 // well because it can be convenient when grepping through the log 4605 // file. 4606 // Distinguish OSR compilations from others in case CICountOSR is 4607 // on. 4608 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4609 cg->set_unique_id(id); 4610 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4611 } 4612 } 4613 4614 void Compile::log_inline_failure(const char* msg) { 4615 if (C->log() != nullptr) { 4616 C->log()->inline_fail(msg); 4617 } 4618 } 4619 4620 4621 // Dump inlining replay data to the stream. 4622 // Don't change thread state and acquire any locks. 4623 void Compile::dump_inline_data(outputStream* out) { 4624 InlineTree* inl_tree = ilt(); 4625 if (inl_tree != nullptr) { 4626 out->print(" inline %d", inl_tree->count()); 4627 inl_tree->dump_replay_data(out); 4628 } 4629 } 4630 4631 void Compile::dump_inline_data_reduced(outputStream* out) { 4632 assert(ReplayReduce, ""); 4633 4634 InlineTree* inl_tree = ilt(); 4635 if (inl_tree == nullptr) { 4636 return; 4637 } 4638 // Enable iterative replay file reduction 4639 // Output "compile" lines for depth 1 subtrees, 4640 // simulating that those trees were compiled 4641 // instead of inlined. 4642 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 4643 InlineTree* sub = inl_tree->subtrees().at(i); 4644 if (sub->inline_level() != 1) { 4645 continue; 4646 } 4647 4648 ciMethod* method = sub->method(); 4649 int entry_bci = -1; 4650 int comp_level = env()->task()->comp_level(); 4651 out->print("compile "); 4652 method->dump_name_as_ascii(out); 4653 out->print(" %d %d", entry_bci, comp_level); 4654 out->print(" inline %d", sub->count()); 4655 sub->dump_replay_data(out, -1); 4656 out->cr(); 4657 } 4658 } 4659 4660 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4661 if (n1->Opcode() < n2->Opcode()) return -1; 4662 else if (n1->Opcode() > n2->Opcode()) return 1; 4663 4664 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4665 for (uint i = 1; i < n1->req(); i++) { 4666 if (n1->in(i) < n2->in(i)) return -1; 4667 else if (n1->in(i) > n2->in(i)) return 1; 4668 } 4669 4670 return 0; 4671 } 4672 4673 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4674 Node* n1 = *n1p; 4675 Node* n2 = *n2p; 4676 4677 return cmp_expensive_nodes(n1, n2); 4678 } 4679 4680 void Compile::sort_expensive_nodes() { 4681 if (!expensive_nodes_sorted()) { 4682 _expensive_nodes.sort(cmp_expensive_nodes); 4683 } 4684 } 4685 4686 bool Compile::expensive_nodes_sorted() const { 4687 for (int i = 1; i < _expensive_nodes.length(); i++) { 4688 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 4689 return false; 4690 } 4691 } 4692 return true; 4693 } 4694 4695 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4696 if (_expensive_nodes.length() == 0) { 4697 return false; 4698 } 4699 4700 assert(OptimizeExpensiveOps, "optimization off?"); 4701 4702 // Take this opportunity to remove dead nodes from the list 4703 int j = 0; 4704 for (int i = 0; i < _expensive_nodes.length(); i++) { 4705 Node* n = _expensive_nodes.at(i); 4706 if (!n->is_unreachable(igvn)) { 4707 assert(n->is_expensive(), "should be expensive"); 4708 _expensive_nodes.at_put(j, n); 4709 j++; 4710 } 4711 } 4712 _expensive_nodes.trunc_to(j); 4713 4714 // Then sort the list so that similar nodes are next to each other 4715 // and check for at least two nodes of identical kind with same data 4716 // inputs. 4717 sort_expensive_nodes(); 4718 4719 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 4720 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 4721 return true; 4722 } 4723 } 4724 4725 return false; 4726 } 4727 4728 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4729 if (_expensive_nodes.length() == 0) { 4730 return; 4731 } 4732 4733 assert(OptimizeExpensiveOps, "optimization off?"); 4734 4735 // Sort to bring similar nodes next to each other and clear the 4736 // control input of nodes for which there's only a single copy. 4737 sort_expensive_nodes(); 4738 4739 int j = 0; 4740 int identical = 0; 4741 int i = 0; 4742 bool modified = false; 4743 for (; i < _expensive_nodes.length()-1; i++) { 4744 assert(j <= i, "can't write beyond current index"); 4745 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 4746 identical++; 4747 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4748 continue; 4749 } 4750 if (identical > 0) { 4751 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4752 identical = 0; 4753 } else { 4754 Node* n = _expensive_nodes.at(i); 4755 igvn.replace_input_of(n, 0, nullptr); 4756 igvn.hash_insert(n); 4757 modified = true; 4758 } 4759 } 4760 if (identical > 0) { 4761 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4762 } else if (_expensive_nodes.length() >= 1) { 4763 Node* n = _expensive_nodes.at(i); 4764 igvn.replace_input_of(n, 0, nullptr); 4765 igvn.hash_insert(n); 4766 modified = true; 4767 } 4768 _expensive_nodes.trunc_to(j); 4769 if (modified) { 4770 igvn.optimize(); 4771 } 4772 } 4773 4774 void Compile::add_expensive_node(Node * n) { 4775 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 4776 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4777 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4778 if (OptimizeExpensiveOps) { 4779 _expensive_nodes.append(n); 4780 } else { 4781 // Clear control input and let IGVN optimize expensive nodes if 4782 // OptimizeExpensiveOps is off. 4783 n->set_req(0, nullptr); 4784 } 4785 } 4786 4787 /** 4788 * Track coarsened Lock and Unlock nodes. 4789 */ 4790 4791 class Lock_List : public Node_List { 4792 uint _origin_cnt; 4793 public: 4794 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 4795 uint origin_cnt() const { return _origin_cnt; } 4796 }; 4797 4798 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 4799 int length = locks.length(); 4800 if (length > 0) { 4801 // Have to keep this list until locks elimination during Macro nodes elimination. 4802 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 4803 for (int i = 0; i < length; i++) { 4804 AbstractLockNode* lock = locks.at(i); 4805 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 4806 locks_list->push(lock); 4807 } 4808 _coarsened_locks.append(locks_list); 4809 } 4810 } 4811 4812 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 4813 int count = coarsened_count(); 4814 for (int i = 0; i < count; i++) { 4815 Node_List* locks_list = _coarsened_locks.at(i); 4816 for (uint j = 0; j < locks_list->size(); j++) { 4817 Node* lock = locks_list->at(j); 4818 assert(lock->is_AbstractLock(), "sanity"); 4819 if (!useful.member(lock)) { 4820 locks_list->yank(lock); 4821 } 4822 } 4823 } 4824 } 4825 4826 void Compile::remove_coarsened_lock(Node* n) { 4827 if (n->is_AbstractLock()) { 4828 int count = coarsened_count(); 4829 for (int i = 0; i < count; i++) { 4830 Node_List* locks_list = _coarsened_locks.at(i); 4831 locks_list->yank(n); 4832 } 4833 } 4834 } 4835 4836 bool Compile::coarsened_locks_consistent() { 4837 int count = coarsened_count(); 4838 for (int i = 0; i < count; i++) { 4839 bool unbalanced = false; 4840 bool modified = false; // track locks kind modifications 4841 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 4842 uint size = locks_list->size(); 4843 if (size == 0) { 4844 unbalanced = false; // All locks were eliminated - good 4845 } else if (size != locks_list->origin_cnt()) { 4846 unbalanced = true; // Some locks were removed from list 4847 } else { 4848 for (uint j = 0; j < size; j++) { 4849 Node* lock = locks_list->at(j); 4850 // All nodes in group should have the same state (modified or not) 4851 if (!lock->as_AbstractLock()->is_coarsened()) { 4852 if (j == 0) { 4853 // first on list was modified, the rest should be too for consistency 4854 modified = true; 4855 } else if (!modified) { 4856 // this lock was modified but previous locks on the list were not 4857 unbalanced = true; 4858 break; 4859 } 4860 } else if (modified) { 4861 // previous locks on list were modified but not this lock 4862 unbalanced = true; 4863 break; 4864 } 4865 } 4866 } 4867 if (unbalanced) { 4868 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 4869 #ifdef ASSERT 4870 if (PrintEliminateLocks) { 4871 tty->print_cr("=== unbalanced coarsened locks ==="); 4872 for (uint l = 0; l < size; l++) { 4873 locks_list->at(l)->dump(); 4874 } 4875 } 4876 #endif 4877 record_failure(C2Compiler::retry_no_locks_coarsening()); 4878 return false; 4879 } 4880 } 4881 return true; 4882 } 4883 4884 /** 4885 * Remove the speculative part of types and clean up the graph 4886 */ 4887 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4888 if (UseTypeSpeculation) { 4889 Unique_Node_List worklist; 4890 worklist.push(root()); 4891 int modified = 0; 4892 // Go over all type nodes that carry a speculative type, drop the 4893 // speculative part of the type and enqueue the node for an igvn 4894 // which may optimize it out. 4895 for (uint next = 0; next < worklist.size(); ++next) { 4896 Node *n = worklist.at(next); 4897 if (n->is_Type()) { 4898 TypeNode* tn = n->as_Type(); 4899 const Type* t = tn->type(); 4900 const Type* t_no_spec = t->remove_speculative(); 4901 if (t_no_spec != t) { 4902 bool in_hash = igvn.hash_delete(n); 4903 assert(in_hash, "node should be in igvn hash table"); 4904 tn->set_type(t_no_spec); 4905 igvn.hash_insert(n); 4906 igvn._worklist.push(n); // give it a chance to go away 4907 modified++; 4908 } 4909 } 4910 // Iterate over outs - endless loops is unreachable from below 4911 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4912 Node *m = n->fast_out(i); 4913 if (not_a_node(m)) { 4914 continue; 4915 } 4916 worklist.push(m); 4917 } 4918 } 4919 // Drop the speculative part of all types in the igvn's type table 4920 igvn.remove_speculative_types(); 4921 if (modified > 0) { 4922 igvn.optimize(); 4923 } 4924 #ifdef ASSERT 4925 // Verify that after the IGVN is over no speculative type has resurfaced 4926 worklist.clear(); 4927 worklist.push(root()); 4928 for (uint next = 0; next < worklist.size(); ++next) { 4929 Node *n = worklist.at(next); 4930 const Type* t = igvn.type_or_null(n); 4931 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 4932 if (n->is_Type()) { 4933 t = n->as_Type()->type(); 4934 assert(t == t->remove_speculative(), "no more speculative types"); 4935 } 4936 // Iterate over outs - endless loops is unreachable from below 4937 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4938 Node *m = n->fast_out(i); 4939 if (not_a_node(m)) { 4940 continue; 4941 } 4942 worklist.push(m); 4943 } 4944 } 4945 igvn.check_no_speculative_types(); 4946 #endif 4947 } 4948 } 4949 4950 // Auxiliary methods to support randomized stressing/fuzzing. 4951 4952 int Compile::random() { 4953 _stress_seed = os::next_random(_stress_seed); 4954 return static_cast<int>(_stress_seed); 4955 } 4956 4957 // This method can be called the arbitrary number of times, with current count 4958 // as the argument. The logic allows selecting a single candidate from the 4959 // running list of candidates as follows: 4960 // int count = 0; 4961 // Cand* selected = null; 4962 // while(cand = cand->next()) { 4963 // if (randomized_select(++count)) { 4964 // selected = cand; 4965 // } 4966 // } 4967 // 4968 // Including count equalizes the chances any candidate is "selected". 4969 // This is useful when we don't have the complete list of candidates to choose 4970 // from uniformly. In this case, we need to adjust the randomicity of the 4971 // selection, or else we will end up biasing the selection towards the latter 4972 // candidates. 4973 // 4974 // Quick back-envelope calculation shows that for the list of n candidates 4975 // the equal probability for the candidate to persist as "best" can be 4976 // achieved by replacing it with "next" k-th candidate with the probability 4977 // of 1/k. It can be easily shown that by the end of the run, the 4978 // probability for any candidate is converged to 1/n, thus giving the 4979 // uniform distribution among all the candidates. 4980 // 4981 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 4982 #define RANDOMIZED_DOMAIN_POW 29 4983 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 4984 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 4985 bool Compile::randomized_select(int count) { 4986 assert(count > 0, "only positive"); 4987 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 4988 } 4989 4990 CloneMap& Compile::clone_map() { return _clone_map; } 4991 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 4992 4993 void NodeCloneInfo::dump() const { 4994 tty->print(" {%d:%d} ", idx(), gen()); 4995 } 4996 4997 void CloneMap::clone(Node* old, Node* nnn, int gen) { 4998 uint64_t val = value(old->_idx); 4999 NodeCloneInfo cio(val); 5000 assert(val != 0, "old node should be in the map"); 5001 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5002 insert(nnn->_idx, cin.get()); 5003 #ifndef PRODUCT 5004 if (is_debug()) { 5005 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5006 } 5007 #endif 5008 } 5009 5010 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5011 NodeCloneInfo cio(value(old->_idx)); 5012 if (cio.get() == 0) { 5013 cio.set(old->_idx, 0); 5014 insert(old->_idx, cio.get()); 5015 #ifndef PRODUCT 5016 if (is_debug()) { 5017 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5018 } 5019 #endif 5020 } 5021 clone(old, nnn, gen); 5022 } 5023 5024 int CloneMap::max_gen() const { 5025 int g = 0; 5026 DictI di(_dict); 5027 for(; di.test(); ++di) { 5028 int t = gen(di._key); 5029 if (g < t) { 5030 g = t; 5031 #ifndef PRODUCT 5032 if (is_debug()) { 5033 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5034 } 5035 #endif 5036 } 5037 } 5038 return g; 5039 } 5040 5041 void CloneMap::dump(node_idx_t key) const { 5042 uint64_t val = value(key); 5043 if (val != 0) { 5044 NodeCloneInfo ni(val); 5045 ni.dump(); 5046 } 5047 } 5048 5049 // Move Allocate nodes to the start of the list 5050 void Compile::sort_macro_nodes() { 5051 int count = macro_count(); 5052 int allocates = 0; 5053 for (int i = 0; i < count; i++) { 5054 Node* n = macro_node(i); 5055 if (n->is_Allocate()) { 5056 if (i != allocates) { 5057 Node* tmp = macro_node(allocates); 5058 _macro_nodes.at_put(allocates, n); 5059 _macro_nodes.at_put(i, tmp); 5060 } 5061 allocates++; 5062 } 5063 } 5064 } 5065 5066 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5067 EventCompilerPhase event; 5068 if (event.should_commit()) { 5069 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5070 } 5071 #ifndef PRODUCT 5072 ResourceMark rm; 5073 stringStream ss; 5074 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5075 if (n != nullptr) { 5076 ss.print(": %d %s ", n->_idx, NodeClassNames[n->Opcode()]); 5077 } 5078 5079 const char* name = ss.as_string(); 5080 if (should_print_igv(level)) { 5081 _igv_printer->print_method(name, level); 5082 } 5083 if (should_print_phase(cpt)) { 5084 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5085 } 5086 #endif 5087 C->_latest_stage_start_counter.stamp(); 5088 } 5089 5090 // Only used from CompileWrapper 5091 void Compile::begin_method() { 5092 #ifndef PRODUCT 5093 if (_method != nullptr && should_print_igv(1)) { 5094 _igv_printer->begin_method(); 5095 } 5096 #endif 5097 C->_latest_stage_start_counter.stamp(); 5098 } 5099 5100 // Only used from CompileWrapper 5101 void Compile::end_method() { 5102 EventCompilerPhase event; 5103 if (event.should_commit()) { 5104 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5105 } 5106 5107 #ifndef PRODUCT 5108 if (_method != nullptr && should_print_igv(1)) { 5109 _igv_printer->end_method(); 5110 } 5111 #endif 5112 } 5113 5114 bool Compile::should_print_phase(CompilerPhaseType cpt) { 5115 #ifndef PRODUCT 5116 if ((_directive->ideal_phase_mask() & CompilerPhaseTypeHelper::to_bitmask(cpt)) != 0) { 5117 return true; 5118 } 5119 #endif 5120 return false; 5121 } 5122 5123 bool Compile::should_print_igv(int level) { 5124 #ifndef PRODUCT 5125 if (PrintIdealGraphLevel < 0) { // disabled by the user 5126 return false; 5127 } 5128 5129 bool need = directive()->IGVPrintLevelOption >= level; 5130 if (need && !_igv_printer) { 5131 _igv_printer = IdealGraphPrinter::printer(); 5132 _igv_printer->set_compile(this); 5133 } 5134 return need; 5135 #else 5136 return false; 5137 #endif 5138 } 5139 5140 #ifndef PRODUCT 5141 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5142 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5143 5144 // Called from debugger. Prints method to the default file with the default phase name. 5145 // This works regardless of any Ideal Graph Visualizer flags set or not. 5146 void igv_print() { 5147 Compile::current()->igv_print_method_to_file(); 5148 } 5149 5150 // Same as igv_print() above but with a specified phase name. 5151 void igv_print(const char* phase_name) { 5152 Compile::current()->igv_print_method_to_file(phase_name); 5153 } 5154 5155 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5156 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5157 // This works regardless of any Ideal Graph Visualizer flags set or not. 5158 void igv_print(bool network) { 5159 if (network) { 5160 Compile::current()->igv_print_method_to_network(); 5161 } else { 5162 Compile::current()->igv_print_method_to_file(); 5163 } 5164 } 5165 5166 // Same as igv_print(bool network) above but with a specified phase name. 5167 void igv_print(bool network, const char* phase_name) { 5168 if (network) { 5169 Compile::current()->igv_print_method_to_network(phase_name); 5170 } else { 5171 Compile::current()->igv_print_method_to_file(phase_name); 5172 } 5173 } 5174 5175 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5176 void igv_print_default() { 5177 Compile::current()->print_method(PHASE_DEBUG, 0); 5178 } 5179 5180 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5181 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5182 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5183 void igv_append() { 5184 Compile::current()->igv_print_method_to_file("Debug", true); 5185 } 5186 5187 // Same as igv_append() above but with a specified phase name. 5188 void igv_append(const char* phase_name) { 5189 Compile::current()->igv_print_method_to_file(phase_name, true); 5190 } 5191 5192 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 5193 const char* file_name = "custom_debug.xml"; 5194 if (_debug_file_printer == nullptr) { 5195 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5196 } else { 5197 _debug_file_printer->update_compiled_method(C->method()); 5198 } 5199 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5200 _debug_file_printer->print(phase_name, (Node*)C->root()); 5201 } 5202 5203 void Compile::igv_print_method_to_network(const char* phase_name) { 5204 if (_debug_network_printer == nullptr) { 5205 _debug_network_printer = new IdealGraphPrinter(C); 5206 } else { 5207 _debug_network_printer->update_compiled_method(C->method()); 5208 } 5209 tty->print_cr("Method printed over network stream to IGV"); 5210 _debug_network_printer->print(phase_name, (Node*)C->root()); 5211 } 5212 #endif 5213 5214 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5215 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5216 return value; 5217 } 5218 Node* result = nullptr; 5219 if (bt == T_BYTE) { 5220 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5221 result = new RShiftINode(result, phase->intcon(24)); 5222 } else if (bt == T_BOOLEAN) { 5223 result = new AndINode(value, phase->intcon(0xFF)); 5224 } else if (bt == T_CHAR) { 5225 result = new AndINode(value,phase->intcon(0xFFFF)); 5226 } else { 5227 assert(bt == T_SHORT, "unexpected narrow type"); 5228 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5229 result = new RShiftINode(result, phase->intcon(16)); 5230 } 5231 if (transform_res) { 5232 result = phase->transform(result); 5233 } 5234 return result; 5235 } 5236