1 /*
   2  * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/c2/barrierSetC2.hpp"
  38 #include "jfr/jfrEvents.hpp"
  39 #include "jvm_io.h"
  40 #include "memory/allocation.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "opto/addnode.hpp"
  43 #include "opto/block.hpp"
  44 #include "opto/c2compiler.hpp"
  45 #include "opto/callGenerator.hpp"
  46 #include "opto/callnode.hpp"
  47 #include "opto/castnode.hpp"
  48 #include "opto/cfgnode.hpp"
  49 #include "opto/chaitin.hpp"
  50 #include "opto/compile.hpp"
  51 #include "opto/connode.hpp"
  52 #include "opto/convertnode.hpp"
  53 #include "opto/divnode.hpp"
  54 #include "opto/escape.hpp"
  55 #include "opto/idealGraphPrinter.hpp"
  56 #include "opto/loopnode.hpp"
  57 #include "opto/machnode.hpp"
  58 #include "opto/macro.hpp"
  59 #include "opto/matcher.hpp"
  60 #include "opto/mathexactnode.hpp"
  61 #include "opto/memnode.hpp"
  62 #include "opto/mulnode.hpp"
  63 #include "opto/narrowptrnode.hpp"
  64 #include "opto/node.hpp"
  65 #include "opto/opcodes.hpp"
  66 #include "opto/output.hpp"
  67 #include "opto/parse.hpp"
  68 #include "opto/phaseX.hpp"
  69 #include "opto/rootnode.hpp"
  70 #include "opto/runtime.hpp"
  71 #include "opto/stringopts.hpp"
  72 #include "opto/type.hpp"
  73 #include "opto/vector.hpp"
  74 #include "opto/vectornode.hpp"
  75 #include "runtime/globals_extension.hpp"
  76 #include "runtime/sharedRuntime.hpp"
  77 #include "runtime/signature.hpp"
  78 #include "runtime/stubRoutines.hpp"
  79 #include "runtime/timer.hpp"
  80 #include "utilities/align.hpp"
  81 #include "utilities/copy.hpp"
  82 #include "utilities/macros.hpp"
  83 #include "utilities/resourceHash.hpp"
  84 
  85 // -------------------- Compile::mach_constant_base_node -----------------------
  86 // Constant table base node singleton.
  87 MachConstantBaseNode* Compile::mach_constant_base_node() {
  88   if (_mach_constant_base_node == NULL) {
  89     _mach_constant_base_node = new MachConstantBaseNode();
  90     _mach_constant_base_node->add_req(C->root());
  91   }
  92   return _mach_constant_base_node;
  93 }
  94 
  95 
  96 /// Support for intrinsics.
  97 
  98 // Return the index at which m must be inserted (or already exists).
  99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 100 class IntrinsicDescPair {
 101  private:
 102   ciMethod* _m;
 103   bool _is_virtual;
 104  public:
 105   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 106   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 107     ciMethod* m= elt->method();
 108     ciMethod* key_m = key->_m;
 109     if (key_m < m)      return -1;
 110     else if (key_m > m) return 1;
 111     else {
 112       bool is_virtual = elt->is_virtual();
 113       bool key_virtual = key->_is_virtual;
 114       if (key_virtual < is_virtual)      return -1;
 115       else if (key_virtual > is_virtual) return 1;
 116       else                               return 0;
 117     }
 118   }
 119 };
 120 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 121 #ifdef ASSERT
 122   for (int i = 1; i < _intrinsics.length(); i++) {
 123     CallGenerator* cg1 = _intrinsics.at(i-1);
 124     CallGenerator* cg2 = _intrinsics.at(i);
 125     assert(cg1->method() != cg2->method()
 126            ? cg1->method()     < cg2->method()
 127            : cg1->is_virtual() < cg2->is_virtual(),
 128            "compiler intrinsics list must stay sorted");
 129   }
 130 #endif
 131   IntrinsicDescPair pair(m, is_virtual);
 132   return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 133 }
 134 
 135 void Compile::register_intrinsic(CallGenerator* cg) {
 136   bool found = false;
 137   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 138   assert(!found, "registering twice");
 139   _intrinsics.insert_before(index, cg);
 140   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 141 }
 142 
 143 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 144   assert(m->is_loaded(), "don't try this on unloaded methods");
 145   if (_intrinsics.length() > 0) {
 146     bool found = false;
 147     int index = intrinsic_insertion_index(m, is_virtual, found);
 148      if (found) {
 149       return _intrinsics.at(index);
 150     }
 151   }
 152   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 153   if (m->intrinsic_id() != vmIntrinsics::_none &&
 154       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 155     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 156     if (cg != NULL) {
 157       // Save it for next time:
 158       register_intrinsic(cg);
 159       return cg;
 160     } else {
 161       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 162     }
 163   }
 164   return NULL;
 165 }
 166 
 167 // Compile::make_vm_intrinsic is defined in library_call.cpp.
 168 
 169 #ifndef PRODUCT
 170 // statistics gathering...
 171 
 172 juint  Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0};
 173 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0};
 174 
 175 inline int as_int(vmIntrinsics::ID id) {
 176   return vmIntrinsics::as_int(id);
 177 }
 178 
 179 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 180   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 181   int oflags = _intrinsic_hist_flags[as_int(id)];
 182   assert(flags != 0, "what happened?");
 183   if (is_virtual) {
 184     flags |= _intrinsic_virtual;
 185   }
 186   bool changed = (flags != oflags);
 187   if ((flags & _intrinsic_worked) != 0) {
 188     juint count = (_intrinsic_hist_count[as_int(id)] += 1);
 189     if (count == 1) {
 190       changed = true;           // first time
 191     }
 192     // increment the overall count also:
 193     _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1;
 194   }
 195   if (changed) {
 196     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 197       // Something changed about the intrinsic's virtuality.
 198       if ((flags & _intrinsic_virtual) != 0) {
 199         // This is the first use of this intrinsic as a virtual call.
 200         if (oflags != 0) {
 201           // We already saw it as a non-virtual, so note both cases.
 202           flags |= _intrinsic_both;
 203         }
 204       } else if ((oflags & _intrinsic_both) == 0) {
 205         // This is the first use of this intrinsic as a non-virtual
 206         flags |= _intrinsic_both;
 207       }
 208     }
 209     _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags);
 210   }
 211   // update the overall flags also:
 212   _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags;
 213   return changed;
 214 }
 215 
 216 static char* format_flags(int flags, char* buf) {
 217   buf[0] = 0;
 218   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 219   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 220   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 221   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 222   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 223   if (buf[0] == 0)  strcat(buf, ",");
 224   assert(buf[0] == ',', "must be");
 225   return &buf[1];
 226 }
 227 
 228 void Compile::print_intrinsic_statistics() {
 229   char flagsbuf[100];
 230   ttyLocker ttyl;
 231   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 232   tty->print_cr("Compiler intrinsic usage:");
 233   juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)];
 234   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 235   #define PRINT_STAT_LINE(name, c, f) \
 236     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 237   for (auto id : EnumRange<vmIntrinsicID>{}) {
 238     int   flags = _intrinsic_hist_flags[as_int(id)];
 239     juint count = _intrinsic_hist_count[as_int(id)];
 240     if ((flags | count) != 0) {
 241       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 242     }
 243   }
 244   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf));
 245   if (xtty != NULL)  xtty->tail("statistics");
 246 }
 247 
 248 void Compile::print_statistics() {
 249   { ttyLocker ttyl;
 250     if (xtty != NULL)  xtty->head("statistics type='opto'");
 251     Parse::print_statistics();
 252     PhaseStringOpts::print_statistics();
 253     PhaseCCP::print_statistics();
 254     PhaseRegAlloc::print_statistics();
 255     PhaseOutput::print_statistics();
 256     PhasePeephole::print_statistics();
 257     PhaseIdealLoop::print_statistics();
 258     ConnectionGraph::print_statistics();
 259     PhaseMacroExpand::print_statistics();
 260     if (xtty != NULL)  xtty->tail("statistics");
 261   }
 262   if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) {
 263     // put this under its own <statistics> element.
 264     print_intrinsic_statistics();
 265   }
 266 }
 267 #endif //PRODUCT
 268 
 269 void Compile::gvn_replace_by(Node* n, Node* nn) {
 270   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 271     Node* use = n->last_out(i);
 272     bool is_in_table = initial_gvn()->hash_delete(use);
 273     uint uses_found = 0;
 274     for (uint j = 0; j < use->len(); j++) {
 275       if (use->in(j) == n) {
 276         if (j < use->req())
 277           use->set_req(j, nn);
 278         else
 279           use->set_prec(j, nn);
 280         uses_found++;
 281       }
 282     }
 283     if (is_in_table) {
 284       // reinsert into table
 285       initial_gvn()->hash_find_insert(use);
 286     }
 287     record_for_igvn(use);
 288     i -= uses_found;    // we deleted 1 or more copies of this edge
 289   }
 290 }
 291 
 292 
 293 // Identify all nodes that are reachable from below, useful.
 294 // Use breadth-first pass that records state in a Unique_Node_List,
 295 // recursive traversal is slower.
 296 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 297   int estimated_worklist_size = live_nodes();
 298   useful.map( estimated_worklist_size, NULL );  // preallocate space
 299 
 300   // Initialize worklist
 301   if (root() != NULL)     { useful.push(root()); }
 302   // If 'top' is cached, declare it useful to preserve cached node
 303   if( cached_top_node() ) { useful.push(cached_top_node()); }
 304 
 305   // Push all useful nodes onto the list, breadthfirst
 306   for( uint next = 0; next < useful.size(); ++next ) {
 307     assert( next < unique(), "Unique useful nodes < total nodes");
 308     Node *n  = useful.at(next);
 309     uint max = n->len();
 310     for( uint i = 0; i < max; ++i ) {
 311       Node *m = n->in(i);
 312       if (not_a_node(m))  continue;
 313       useful.push(m);
 314     }
 315   }
 316 }
 317 
 318 // Update dead_node_list with any missing dead nodes using useful
 319 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 320 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 321   uint max_idx = unique();
 322   VectorSet& useful_node_set = useful.member_set();
 323 
 324   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 325     // If node with index node_idx is not in useful set,
 326     // mark it as dead in dead node list.
 327     if (!useful_node_set.test(node_idx)) {
 328       record_dead_node(node_idx);
 329     }
 330   }
 331 }
 332 
 333 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 334   int shift = 0;
 335   for (int i = 0; i < inlines->length(); i++) {
 336     CallGenerator* cg = inlines->at(i);
 337     if (useful.member(cg->call_node())) {
 338       if (shift > 0) {
 339         inlines->at_put(i - shift, cg);
 340       }
 341     } else {
 342       shift++; // skip over the dead element
 343     }
 344   }
 345   if (shift > 0) {
 346     inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array
 347   }
 348 }
 349 
 350 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) {
 351   assert(dead != NULL && dead->is_Call(), "sanity");
 352   int found = 0;
 353   for (int i = 0; i < inlines->length(); i++) {
 354     if (inlines->at(i)->call_node() == dead) {
 355       inlines->remove_at(i);
 356       found++;
 357       NOT_DEBUG( break; ) // elements are unique, so exit early
 358     }
 359   }
 360   assert(found <= 1, "not unique");
 361 }
 362 
 363 void Compile::remove_useless_nodes(GrowableArray<Node*>& node_list, Unique_Node_List& useful) {
 364   for (int i = node_list.length() - 1; i >= 0; i--) {
 365     Node* n = node_list.at(i);
 366     if (!useful.member(n)) {
 367       node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
 368     }
 369   }
 370 }
 371 
 372 void Compile::remove_useless_node(Node* dead) {
 373   remove_modified_node(dead);
 374 
 375   // Constant node that has no out-edges and has only one in-edge from
 376   // root is usually dead. However, sometimes reshaping walk makes
 377   // it reachable by adding use edges. So, we will NOT count Con nodes
 378   // as dead to be conservative about the dead node count at any
 379   // given time.
 380   if (!dead->is_Con()) {
 381     record_dead_node(dead->_idx);
 382   }
 383   if (dead->is_macro()) {
 384     remove_macro_node(dead);
 385   }
 386   if (dead->is_expensive()) {
 387     remove_expensive_node(dead);
 388   }
 389   if (dead->Opcode() == Op_Opaque4) {
 390     remove_skeleton_predicate_opaq(dead);
 391   }
 392   if (dead->for_post_loop_opts_igvn()) {
 393     remove_from_post_loop_opts_igvn(dead);
 394   }
 395   if (dead->is_Call()) {
 396     remove_useless_late_inlines(                &_late_inlines, dead);
 397     remove_useless_late_inlines(         &_string_late_inlines, dead);
 398     remove_useless_late_inlines(         &_boxing_late_inlines, dead);
 399     remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead);
 400 
 401     if (dead->is_CallStaticJava()) {
 402       remove_unstable_if_trap(dead->as_CallStaticJava(), false);
 403     }
 404   }
 405   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 406   bs->unregister_potential_barrier_node(dead);
 407 }
 408 
 409 // Disconnect all useless nodes by disconnecting those at the boundary.
 410 void Compile::disconnect_useless_nodes(Unique_Node_List &useful, Unique_Node_List* worklist) {
 411   uint next = 0;
 412   while (next < useful.size()) {
 413     Node *n = useful.at(next++);
 414     if (n->is_SafePoint()) {
 415       // We're done with a parsing phase. Replaced nodes are not valid
 416       // beyond that point.
 417       n->as_SafePoint()->delete_replaced_nodes();
 418     }
 419     // Use raw traversal of out edges since this code removes out edges
 420     int max = n->outcnt();
 421     for (int j = 0; j < max; ++j) {
 422       Node* child = n->raw_out(j);
 423       if (!useful.member(child)) {
 424         assert(!child->is_top() || child != top(),
 425                "If top is cached in Compile object it is in useful list");
 426         // Only need to remove this out-edge to the useless node
 427         n->raw_del_out(j);
 428         --j;
 429         --max;
 430       }
 431     }
 432     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 433       worklist->push(n->unique_out());
 434     }
 435   }
 436 
 437   remove_useless_nodes(_macro_nodes,        useful); // remove useless macro nodes
 438   remove_useless_nodes(_predicate_opaqs,    useful); // remove useless predicate opaque nodes
 439   remove_useless_nodes(_skeleton_predicate_opaqs, useful);
 440   remove_useless_nodes(_expensive_nodes,    useful); // remove useless expensive nodes
 441   remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass
 442   remove_useless_unstable_if_traps(useful);          // remove useless unstable_if traps
 443   remove_useless_coarsened_locks(useful);            // remove useless coarsened locks nodes
 444 #ifdef ASSERT
 445   if (_modified_nodes != NULL) {
 446     _modified_nodes->remove_useless_nodes(useful.member_set());
 447   }
 448 #endif
 449 
 450   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 451   bs->eliminate_useless_gc_barriers(useful, this);
 452   // clean up the late inline lists
 453   remove_useless_late_inlines(                &_late_inlines, useful);
 454   remove_useless_late_inlines(         &_string_late_inlines, useful);
 455   remove_useless_late_inlines(         &_boxing_late_inlines, useful);
 456   remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful);
 457   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 458 }
 459 
 460 // ============================================================================
 461 //------------------------------CompileWrapper---------------------------------
 462 class CompileWrapper : public StackObj {
 463   Compile *const _compile;
 464  public:
 465   CompileWrapper(Compile* compile);
 466 
 467   ~CompileWrapper();
 468 };
 469 
 470 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 471   // the Compile* pointer is stored in the current ciEnv:
 472   ciEnv* env = compile->env();
 473   assert(env == ciEnv::current(), "must already be a ciEnv active");
 474   assert(env->compiler_data() == NULL, "compile already active?");
 475   env->set_compiler_data(compile);
 476   assert(compile == Compile::current(), "sanity");
 477 
 478   compile->set_type_dict(NULL);
 479   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 480   compile->clone_map().set_clone_idx(0);
 481   compile->set_type_last_size(0);
 482   compile->set_last_tf(NULL, NULL);
 483   compile->set_indexSet_arena(NULL);
 484   compile->set_indexSet_free_block_list(NULL);
 485   compile->init_type_arena();
 486   Type::Initialize(compile);
 487   _compile->begin_method();
 488   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 489 }
 490 CompileWrapper::~CompileWrapper() {
 491   // simulate crash during compilation
 492   assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned");
 493 
 494   _compile->end_method();
 495   _compile->env()->set_compiler_data(NULL);
 496 }
 497 
 498 
 499 //----------------------------print_compile_messages---------------------------
 500 void Compile::print_compile_messages() {
 501 #ifndef PRODUCT
 502   // Check if recompiling
 503   if (!subsume_loads() && PrintOpto) {
 504     // Recompiling without allowing machine instructions to subsume loads
 505     tty->print_cr("*********************************************************");
 506     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 507     tty->print_cr("*********************************************************");
 508   }
 509   if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) {
 510     // Recompiling without escape analysis
 511     tty->print_cr("*********************************************************");
 512     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 513     tty->print_cr("*********************************************************");
 514   }
 515   if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) {
 516     // Recompiling without iterative escape analysis
 517     tty->print_cr("*********************************************************");
 518     tty->print_cr("** Bailout: Recompile without iterative escape analysis**");
 519     tty->print_cr("*********************************************************");
 520   }
 521   if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) {
 522     // Recompiling without boxing elimination
 523     tty->print_cr("*********************************************************");
 524     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 525     tty->print_cr("*********************************************************");
 526   }
 527   if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) {
 528     // Recompiling without locks coarsening
 529     tty->print_cr("*********************************************************");
 530     tty->print_cr("** Bailout: Recompile without locks coarsening         **");
 531     tty->print_cr("*********************************************************");
 532   }
 533   if (env()->break_at_compile()) {
 534     // Open the debugger when compiling this method.
 535     tty->print("### Breaking when compiling: ");
 536     method()->print_short_name();
 537     tty->cr();
 538     BREAKPOINT;
 539   }
 540 
 541   if( PrintOpto ) {
 542     if (is_osr_compilation()) {
 543       tty->print("[OSR]%3d", _compile_id);
 544     } else {
 545       tty->print("%3d", _compile_id);
 546     }
 547   }
 548 #endif
 549 }
 550 
 551 #ifndef PRODUCT
 552 void Compile::print_ideal_ir(const char* phase_name) {
 553   ttyLocker ttyl;
 554   // keep the following output all in one block
 555   // This output goes directly to the tty, not the compiler log.
 556   // To enable tools to match it up with the compilation activity,
 557   // be sure to tag this tty output with the compile ID.
 558   if (xtty != NULL) {
 559     xtty->head("ideal compile_id='%d'%s compile_phase='%s'",
 560                compile_id(),
 561                is_osr_compilation() ? " compile_kind='osr'" : "",
 562                phase_name);
 563   }
 564   if (_output == nullptr) {
 565     tty->print_cr("AFTER: %s", phase_name);
 566     // Print out all nodes in ascending order of index.
 567     root()->dump_bfs(MaxNodeLimit, nullptr, "+S$");
 568   } else {
 569     // Dump the node blockwise if we have a scheduling
 570     _output->print_scheduling();
 571   }
 572 
 573   if (xtty != NULL) {
 574     xtty->tail("ideal");
 575   }
 576 }
 577 #endif
 578 
 579 // ============================================================================
 580 //------------------------------Compile standard-------------------------------
 581 debug_only( int Compile::_debug_idx = 100000; )
 582 
 583 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 584 // the continuation bci for on stack replacement.
 585 
 586 
 587 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci,
 588                   Options options, DirectiveSet* directive)
 589                 : Phase(Compiler),
 590                   _compile_id(ci_env->compile_id()),
 591                   _options(options),
 592                   _method(target),
 593                   _entry_bci(osr_bci),
 594                   _ilt(NULL),
 595                   _stub_function(NULL),
 596                   _stub_name(NULL),
 597                   _stub_entry_point(NULL),
 598                   _max_node_limit(MaxNodeLimit),
 599                   _post_loop_opts_phase(false),
 600                   _inlining_progress(false),
 601                   _inlining_incrementally(false),
 602                   _do_cleanup(false),
 603                   _has_reserved_stack_access(target->has_reserved_stack_access()),
 604 #ifndef PRODUCT
 605                   _igv_idx(0),
 606                   _trace_opto_output(directive->TraceOptoOutputOption),
 607 #endif
 608                   _has_method_handle_invokes(false),
 609                   _clinit_barrier_on_entry(false),
 610                   _stress_seed(0),
 611                   _comp_arena(mtCompiler),
 612                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 613                   _env(ci_env),
 614                   _directive(directive),
 615                   _log(ci_env->log()),
 616                   _failure_reason(NULL),
 617                   _intrinsics        (comp_arena(), 0, 0, NULL),
 618                   _macro_nodes       (comp_arena(), 8, 0, NULL),
 619                   _predicate_opaqs   (comp_arena(), 8, 0, NULL),
 620                   _skeleton_predicate_opaqs (comp_arena(), 8, 0, NULL),
 621                   _expensive_nodes   (comp_arena(), 8, 0, NULL),
 622                   _for_post_loop_igvn(comp_arena(), 8, 0, NULL),
 623                   _unstable_if_traps (comp_arena(), 8, 0, NULL),
 624                   _coarsened_locks   (comp_arena(), 8, 0, NULL),
 625                   _congraph(NULL),
 626                   NOT_PRODUCT(_igv_printer(NULL) COMMA)
 627                   _dead_node_list(comp_arena()),
 628                   _dead_node_count(0),
 629                   _node_arena(mtCompiler),
 630                   _old_arena(mtCompiler),
 631                   _mach_constant_base_node(NULL),
 632                   _Compile_types(mtCompiler),
 633                   _initial_gvn(NULL),
 634                   _for_igvn(NULL),
 635                   _late_inlines(comp_arena(), 2, 0, NULL),
 636                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 637                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 638                   _vector_reboxing_late_inlines(comp_arena(), 2, 0, NULL),
 639                   _late_inlines_pos(0),
 640                   _number_of_mh_late_inlines(0),
 641                   _print_inlining_stream(new (mtCompiler) stringStream()),
 642                   _print_inlining_list(NULL),
 643                   _print_inlining_idx(0),
 644                   _print_inlining_output(NULL),
 645                   _replay_inline_data(NULL),
 646                   _java_calls(0),
 647                   _inner_loops(0),
 648                   _interpreter_frame_size(0),
 649                   _output(NULL)
 650 #ifndef PRODUCT
 651                   , _in_dump_cnt(0)
 652 #endif
 653 {
 654   C = this;
 655   CompileWrapper cw(this);
 656 
 657   if (CITimeVerbose) {
 658     tty->print(" ");
 659     target->holder()->name()->print();
 660     tty->print(".");
 661     target->print_short_name();
 662     tty->print("  ");
 663   }
 664   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 665   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 666 
 667 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
 668   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 669   // We can always print a disassembly, either abstract (hex dump) or
 670   // with the help of a suitable hsdis library. Thus, we should not
 671   // couple print_assembly and print_opto_assembly controls.
 672   // But: always print opto and regular assembly on compile command 'print'.
 673   bool print_assembly = directive->PrintAssemblyOption;
 674   set_print_assembly(print_opto_assembly || print_assembly);
 675 #else
 676   set_print_assembly(false); // must initialize.
 677 #endif
 678 
 679 #ifndef PRODUCT
 680   set_parsed_irreducible_loop(false);
 681 
 682   if (directive->ReplayInlineOption) {
 683     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 684   }
 685 #endif
 686   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 687   set_print_intrinsics(directive->PrintIntrinsicsOption);
 688   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 689 
 690   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 691     // Make sure the method being compiled gets its own MDO,
 692     // so we can at least track the decompile_count().
 693     // Need MDO to record RTM code generation state.
 694     method()->ensure_method_data();
 695   }
 696 
 697   Init(/*do_aliasing=*/ true);
 698 
 699   print_compile_messages();
 700 
 701   _ilt = InlineTree::build_inline_tree_root();
 702 
 703   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 704   assert(num_alias_types() >= AliasIdxRaw, "");
 705 
 706 #define MINIMUM_NODE_HASH  1023
 707   // Node list that Iterative GVN will start with
 708   Unique_Node_List for_igvn(comp_arena());
 709   set_for_igvn(&for_igvn);
 710 
 711   // GVN that will be run immediately on new nodes
 712   uint estimated_size = method()->code_size()*4+64;
 713   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 714   PhaseGVN gvn(node_arena(), estimated_size);
 715   set_initial_gvn(&gvn);
 716 
 717   print_inlining_init();
 718   { // Scope for timing the parser
 719     TracePhase tp("parse", &timers[_t_parser]);
 720 
 721     // Put top into the hash table ASAP.
 722     initial_gvn()->transform_no_reclaim(top());
 723 
 724     // Set up tf(), start(), and find a CallGenerator.
 725     CallGenerator* cg = NULL;
 726     if (is_osr_compilation()) {
 727       const TypeTuple *domain = StartOSRNode::osr_domain();
 728       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 729       init_tf(TypeFunc::make(domain, range));
 730       StartNode* s = new StartOSRNode(root(), domain);
 731       initial_gvn()->set_type_bottom(s);
 732       init_start(s);
 733       cg = CallGenerator::for_osr(method(), entry_bci());
 734     } else {
 735       // Normal case.
 736       init_tf(TypeFunc::make(method()));
 737       StartNode* s = new StartNode(root(), tf()->domain());
 738       initial_gvn()->set_type_bottom(s);
 739       init_start(s);
 740       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 741         // With java.lang.ref.reference.get() we must go through the
 742         // intrinsic - even when get() is the root
 743         // method of the compile - so that, if necessary, the value in
 744         // the referent field of the reference object gets recorded by
 745         // the pre-barrier code.
 746         cg = find_intrinsic(method(), false);
 747       }
 748       if (cg == NULL) {
 749         float past_uses = method()->interpreter_invocation_count();
 750         float expected_uses = past_uses;
 751         cg = CallGenerator::for_inline(method(), expected_uses);
 752       }
 753     }
 754     if (failing())  return;
 755     if (cg == NULL) {
 756       record_method_not_compilable("cannot parse method");
 757       return;
 758     }
 759     JVMState* jvms = build_start_state(start(), tf());
 760     if ((jvms = cg->generate(jvms)) == NULL) {
 761       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 762         record_method_not_compilable("method parse failed");
 763       }
 764       return;
 765     }
 766     GraphKit kit(jvms);
 767 
 768     if (!kit.stopped()) {
 769       // Accept return values, and transfer control we know not where.
 770       // This is done by a special, unique ReturnNode bound to root.
 771       return_values(kit.jvms());
 772     }
 773 
 774     if (kit.has_exceptions()) {
 775       // Any exceptions that escape from this call must be rethrown
 776       // to whatever caller is dynamically above us on the stack.
 777       // This is done by a special, unique RethrowNode bound to root.
 778       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 779     }
 780 
 781     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 782 
 783     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 784       inline_string_calls(true);
 785     }
 786 
 787     if (failing())  return;
 788 
 789     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 790 
 791     // Remove clutter produced by parsing.
 792     if (!failing()) {
 793       ResourceMark rm;
 794       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 795     }
 796   }
 797 
 798   // Note:  Large methods are capped off in do_one_bytecode().
 799   if (failing())  return;
 800 
 801   // After parsing, node notes are no longer automagic.
 802   // They must be propagated by register_new_node_with_optimizer(),
 803   // clone(), or the like.
 804   set_default_node_notes(NULL);
 805 
 806 #ifndef PRODUCT
 807   if (should_print_igv(1)) {
 808     _igv_printer->print_inlining();
 809   }
 810 #endif
 811 
 812   if (failing())  return;
 813   NOT_PRODUCT( verify_graph_edges(); )
 814 
 815   // If any phase is randomized for stress testing, seed random number
 816   // generation and log the seed for repeatability.
 817   if (StressLCM || StressGCM || StressIGVN || StressCCP) {
 818     if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && RepeatCompilation)) {
 819       _stress_seed = static_cast<uint>(Ticks::now().nanoseconds());
 820       FLAG_SET_ERGO(StressSeed, _stress_seed);
 821     } else {
 822       _stress_seed = StressSeed;
 823     }
 824     if (_log != NULL) {
 825       _log->elem("stress_test seed='%u'", _stress_seed);
 826     }
 827   }
 828 
 829   // Now optimize
 830   Optimize();
 831   if (failing())  return;
 832   NOT_PRODUCT( verify_graph_edges(); )
 833 
 834 #ifndef PRODUCT
 835   if (should_print_ideal()) {
 836     print_ideal_ir("print_ideal");
 837   }
 838 #endif
 839 
 840 #ifdef ASSERT
 841   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 842   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 843 #endif
 844 
 845   // Dump compilation data to replay it.
 846   if (directive->DumpReplayOption) {
 847     env()->dump_replay_data(_compile_id);
 848   }
 849   if (directive->DumpInlineOption && (ilt() != NULL)) {
 850     env()->dump_inline_data(_compile_id);
 851   }
 852 
 853   // Now that we know the size of all the monitors we can add a fixed slot
 854   // for the original deopt pc.
 855   int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);
 856   set_fixed_slots(next_slot);
 857 
 858   // Compute when to use implicit null checks. Used by matching trap based
 859   // nodes and NullCheck optimization.
 860   set_allowed_deopt_reasons();
 861 
 862   // Now generate code
 863   Code_Gen();
 864 }
 865 
 866 //------------------------------Compile----------------------------------------
 867 // Compile a runtime stub
 868 Compile::Compile( ciEnv* ci_env,
 869                   TypeFunc_generator generator,
 870                   address stub_function,
 871                   const char *stub_name,
 872                   int is_fancy_jump,
 873                   bool pass_tls,
 874                   bool return_pc,
 875                   DirectiveSet* directive)
 876   : Phase(Compiler),
 877     _compile_id(0),
 878     _options(Options::for_runtime_stub()),
 879     _method(NULL),
 880     _entry_bci(InvocationEntryBci),
 881     _stub_function(stub_function),
 882     _stub_name(stub_name),
 883     _stub_entry_point(NULL),
 884     _max_node_limit(MaxNodeLimit),
 885     _post_loop_opts_phase(false),
 886     _inlining_progress(false),
 887     _inlining_incrementally(false),
 888     _has_reserved_stack_access(false),
 889 #ifndef PRODUCT
 890     _igv_idx(0),
 891     _trace_opto_output(directive->TraceOptoOutputOption),
 892 #endif
 893     _has_method_handle_invokes(false),
 894     _clinit_barrier_on_entry(false),
 895     _stress_seed(0),
 896     _comp_arena(mtCompiler),
 897     _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 898     _env(ci_env),
 899     _directive(directive),
 900     _log(ci_env->log()),
 901     _failure_reason(NULL),
 902     _congraph(NULL),
 903     NOT_PRODUCT(_igv_printer(NULL) COMMA)
 904     _dead_node_list(comp_arena()),
 905     _dead_node_count(0),
 906     _node_arena(mtCompiler),
 907     _old_arena(mtCompiler),
 908     _mach_constant_base_node(NULL),
 909     _Compile_types(mtCompiler),
 910     _initial_gvn(NULL),
 911     _for_igvn(NULL),
 912     _number_of_mh_late_inlines(0),
 913     _print_inlining_stream(new (mtCompiler) stringStream()),
 914     _print_inlining_list(NULL),
 915     _print_inlining_idx(0),
 916     _print_inlining_output(NULL),
 917     _replay_inline_data(NULL),
 918     _java_calls(0),
 919     _inner_loops(0),
 920     _interpreter_frame_size(0),
 921     _output(NULL),
 922 #ifndef PRODUCT
 923     _in_dump_cnt(0),
 924 #endif
 925     _allowed_reasons(0) {
 926   C = this;
 927 
 928   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
 929   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
 930 
 931 #ifndef PRODUCT
 932   set_print_assembly(PrintFrameConverterAssembly);
 933   set_parsed_irreducible_loop(false);
 934 #else
 935   set_print_assembly(false); // Must initialize.
 936 #endif
 937   set_has_irreducible_loop(false); // no loops
 938 
 939   CompileWrapper cw(this);
 940   Init(/*do_aliasing=*/ false);
 941   init_tf((*generator)());
 942 
 943   {
 944     // The following is a dummy for the sake of GraphKit::gen_stub
 945     Unique_Node_List for_igvn(comp_arena());
 946     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 947     PhaseGVN gvn(Thread::current()->resource_area(),255);
 948     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 949     gvn.transform_no_reclaim(top());
 950 
 951     GraphKit kit;
 952     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 953   }
 954 
 955   NOT_PRODUCT( verify_graph_edges(); )
 956 
 957   Code_Gen();
 958 }
 959 
 960 //------------------------------Init-------------------------------------------
 961 // Prepare for a single compilation
 962 void Compile::Init(bool aliasing) {
 963   _do_aliasing = aliasing;
 964   _unique  = 0;
 965   _regalloc = NULL;
 966 
 967   _tf      = NULL;  // filled in later
 968   _top     = NULL;  // cached later
 969   _matcher = NULL;  // filled in later
 970   _cfg     = NULL;  // filled in later
 971 
 972   IA32_ONLY( set_24_bit_selection_and_mode(true, false); )
 973 
 974   _node_note_array = NULL;
 975   _default_node_notes = NULL;
 976   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
 977 
 978   _immutable_memory = NULL; // filled in at first inquiry
 979 
 980   // Globally visible Nodes
 981   // First set TOP to NULL to give safe behavior during creation of RootNode
 982   set_cached_top_node(NULL);
 983   set_root(new RootNode());
 984   // Now that you have a Root to point to, create the real TOP
 985   set_cached_top_node( new ConNode(Type::TOP) );
 986   set_recent_alloc(NULL, NULL);
 987 
 988   // Create Debug Information Recorder to record scopes, oopmaps, etc.
 989   env()->set_oop_recorder(new OopRecorder(env()->arena()));
 990   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
 991   env()->set_dependencies(new Dependencies(env()));
 992 
 993   _fixed_slots = 0;
 994   set_has_split_ifs(false);
 995   set_has_loops(false); // first approximation
 996   set_has_stringbuilder(false);
 997   set_has_boxed_value(false);
 998   _trap_can_recompile = false;  // no traps emitted yet
 999   _major_progress = true; // start out assuming good things will happen
1000   set_has_unsafe_access(false);
1001   set_max_vector_size(0);
1002   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1003   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1004   set_decompile_count(0);
1005 
1006   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1007   _loop_opts_cnt = LoopOptsCount;
1008   set_do_inlining(Inline);
1009   set_max_inline_size(MaxInlineSize);
1010   set_freq_inline_size(FreqInlineSize);
1011   set_do_scheduling(OptoScheduling);
1012 
1013   set_do_vector_loop(false);
1014   set_has_monitors(false);
1015   reset_max_monitors();
1016 
1017   if (AllowVectorizeOnDemand) {
1018     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1019       set_do_vector_loop(true);
1020       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1021     } else if (has_method() && method()->name() != 0 &&
1022                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1023       set_do_vector_loop(true);
1024     }
1025   }
1026   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1027   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1028 
1029   set_rtm_state(NoRTM); // No RTM lock eliding by default
1030   _max_node_limit = _directive->MaxNodeLimitOption;
1031 
1032 #if INCLUDE_RTM_OPT
1033   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1034     int rtm_state = method()->method_data()->rtm_state();
1035     if (method_has_option(CompileCommand::NoRTMLockEliding) || ((rtm_state & NoRTM) != 0)) {
1036       // Don't generate RTM lock eliding code.
1037       set_rtm_state(NoRTM);
1038     } else if (method_has_option(CompileCommand::UseRTMLockEliding) || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1039       // Generate RTM lock eliding code without abort ratio calculation code.
1040       set_rtm_state(UseRTM);
1041     } else if (UseRTMDeopt) {
1042       // Generate RTM lock eliding code and include abort ratio calculation
1043       // code if UseRTMDeopt is on.
1044       set_rtm_state(ProfileRTM);
1045     }
1046   }
1047 #endif
1048   if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) {
1049     set_clinit_barrier_on_entry(true);
1050   }
1051   if (debug_info()->recording_non_safepoints()) {
1052     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1053                         (comp_arena(), 8, 0, NULL));
1054     set_default_node_notes(Node_Notes::make(this));
1055   }
1056 
1057   const int grow_ats = 16;
1058   _max_alias_types = grow_ats;
1059   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1060   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1061   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1062   {
1063     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1064   }
1065   // Initialize the first few types.
1066   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1067   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1068   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1069   _num_alias_types = AliasIdxRaw+1;
1070   // Zero out the alias type cache.
1071   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1072   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1073   probe_alias_cache(NULL)->_index = AliasIdxTop;
1074 
1075 #ifdef ASSERT
1076   _type_verify_symmetry = true;
1077   _phase_optimize_finished = false;
1078   _exception_backedge = false;
1079 #endif
1080 }
1081 
1082 //---------------------------init_start----------------------------------------
1083 // Install the StartNode on this compile object.
1084 void Compile::init_start(StartNode* s) {
1085   if (failing())
1086     return; // already failing
1087   assert(s == start(), "");
1088 }
1089 
1090 /**
1091  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1092  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1093  * the ideal graph.
1094  */
1095 StartNode* Compile::start() const {
1096   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1097   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1098     Node* start = root()->fast_out(i);
1099     if (start->is_Start()) {
1100       return start->as_Start();
1101     }
1102   }
1103   fatal("Did not find Start node!");
1104   return NULL;
1105 }
1106 
1107 //-------------------------------immutable_memory-------------------------------------
1108 // Access immutable memory
1109 Node* Compile::immutable_memory() {
1110   if (_immutable_memory != NULL) {
1111     return _immutable_memory;
1112   }
1113   StartNode* s = start();
1114   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1115     Node *p = s->fast_out(i);
1116     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1117       _immutable_memory = p;
1118       return _immutable_memory;
1119     }
1120   }
1121   ShouldNotReachHere();
1122   return NULL;
1123 }
1124 
1125 //----------------------set_cached_top_node------------------------------------
1126 // Install the cached top node, and make sure Node::is_top works correctly.
1127 void Compile::set_cached_top_node(Node* tn) {
1128   if (tn != NULL)  verify_top(tn);
1129   Node* old_top = _top;
1130   _top = tn;
1131   // Calling Node::setup_is_top allows the nodes the chance to adjust
1132   // their _out arrays.
1133   if (_top != NULL)     _top->setup_is_top();
1134   if (old_top != NULL)  old_top->setup_is_top();
1135   assert(_top == NULL || top()->is_top(), "");
1136 }
1137 
1138 #ifdef ASSERT
1139 uint Compile::count_live_nodes_by_graph_walk() {
1140   Unique_Node_List useful(comp_arena());
1141   // Get useful node list by walking the graph.
1142   identify_useful_nodes(useful);
1143   return useful.size();
1144 }
1145 
1146 void Compile::print_missing_nodes() {
1147 
1148   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1149   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1150     return;
1151   }
1152 
1153   // This is an expensive function. It is executed only when the user
1154   // specifies VerifyIdealNodeCount option or otherwise knows the
1155   // additional work that needs to be done to identify reachable nodes
1156   // by walking the flow graph and find the missing ones using
1157   // _dead_node_list.
1158 
1159   Unique_Node_List useful(comp_arena());
1160   // Get useful node list by walking the graph.
1161   identify_useful_nodes(useful);
1162 
1163   uint l_nodes = C->live_nodes();
1164   uint l_nodes_by_walk = useful.size();
1165 
1166   if (l_nodes != l_nodes_by_walk) {
1167     if (_log != NULL) {
1168       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1169       _log->stamp();
1170       _log->end_head();
1171     }
1172     VectorSet& useful_member_set = useful.member_set();
1173     int last_idx = l_nodes_by_walk;
1174     for (int i = 0; i < last_idx; i++) {
1175       if (useful_member_set.test(i)) {
1176         if (_dead_node_list.test(i)) {
1177           if (_log != NULL) {
1178             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1179           }
1180           if (PrintIdealNodeCount) {
1181             // Print the log message to tty
1182               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1183               useful.at(i)->dump();
1184           }
1185         }
1186       }
1187       else if (! _dead_node_list.test(i)) {
1188         if (_log != NULL) {
1189           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1190         }
1191         if (PrintIdealNodeCount) {
1192           // Print the log message to tty
1193           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1194         }
1195       }
1196     }
1197     if (_log != NULL) {
1198       _log->tail("mismatched_nodes");
1199     }
1200   }
1201 }
1202 void Compile::record_modified_node(Node* n) {
1203   if (_modified_nodes != NULL && !_inlining_incrementally && !n->is_Con()) {
1204     _modified_nodes->push(n);
1205   }
1206 }
1207 
1208 void Compile::remove_modified_node(Node* n) {
1209   if (_modified_nodes != NULL) {
1210     _modified_nodes->remove(n);
1211   }
1212 }
1213 #endif
1214 
1215 #ifndef PRODUCT
1216 void Compile::verify_top(Node* tn) const {
1217   if (tn != NULL) {
1218     assert(tn->is_Con(), "top node must be a constant");
1219     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1220     assert(tn->in(0) != NULL, "must have live top node");
1221   }
1222 }
1223 #endif
1224 
1225 
1226 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1227 
1228 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1229   guarantee(arr != NULL, "");
1230   int num_blocks = arr->length();
1231   if (grow_by < num_blocks)  grow_by = num_blocks;
1232   int num_notes = grow_by * _node_notes_block_size;
1233   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1234   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1235   while (num_notes > 0) {
1236     arr->append(notes);
1237     notes     += _node_notes_block_size;
1238     num_notes -= _node_notes_block_size;
1239   }
1240   assert(num_notes == 0, "exact multiple, please");
1241 }
1242 
1243 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1244   if (source == NULL || dest == NULL)  return false;
1245 
1246   if (dest->is_Con())
1247     return false;               // Do not push debug info onto constants.
1248 
1249 #ifdef ASSERT
1250   // Leave a bread crumb trail pointing to the original node:
1251   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1252     dest->set_debug_orig(source);
1253   }
1254 #endif
1255 
1256   if (node_note_array() == NULL)
1257     return false;               // Not collecting any notes now.
1258 
1259   // This is a copy onto a pre-existing node, which may already have notes.
1260   // If both nodes have notes, do not overwrite any pre-existing notes.
1261   Node_Notes* source_notes = node_notes_at(source->_idx);
1262   if (source_notes == NULL || source_notes->is_clear())  return false;
1263   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1264   if (dest_notes == NULL || dest_notes->is_clear()) {
1265     return set_node_notes_at(dest->_idx, source_notes);
1266   }
1267 
1268   Node_Notes merged_notes = (*source_notes);
1269   // The order of operations here ensures that dest notes will win...
1270   merged_notes.update_from(dest_notes);
1271   return set_node_notes_at(dest->_idx, &merged_notes);
1272 }
1273 
1274 
1275 //--------------------------allow_range_check_smearing-------------------------
1276 // Gating condition for coalescing similar range checks.
1277 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1278 // single covering check that is at least as strong as any of them.
1279 // If the optimization succeeds, the simplified (strengthened) range check
1280 // will always succeed.  If it fails, we will deopt, and then give up
1281 // on the optimization.
1282 bool Compile::allow_range_check_smearing() const {
1283   // If this method has already thrown a range-check,
1284   // assume it was because we already tried range smearing
1285   // and it failed.
1286   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1287   return !already_trapped;
1288 }
1289 
1290 
1291 //------------------------------flatten_alias_type-----------------------------
1292 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1293   assert(do_aliasing(), "Aliasing should be enabled");
1294   int offset = tj->offset();
1295   TypePtr::PTR ptr = tj->ptr();
1296 
1297   // Known instance (scalarizable allocation) alias only with itself.
1298   bool is_known_inst = tj->isa_oopptr() != NULL &&
1299                        tj->is_oopptr()->is_known_instance();
1300 
1301   // Process weird unsafe references.
1302   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1303     assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops");
1304     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1305     tj = TypeOopPtr::BOTTOM;
1306     ptr = tj->ptr();
1307     offset = tj->offset();
1308   }
1309 
1310   // Array pointers need some flattening
1311   const TypeAryPtr* ta = tj->isa_aryptr();
1312   if (ta && ta->is_stable()) {
1313     // Erase stability property for alias analysis.
1314     tj = ta = ta->cast_to_stable(false);
1315   }
1316   if( ta && is_known_inst ) {
1317     if ( offset != Type::OffsetBot &&
1318          offset > arrayOopDesc::length_offset_in_bytes() ) {
1319       offset = Type::OffsetBot; // Flatten constant access into array body only
1320       tj = ta = ta->
1321               remove_speculative()->
1322               cast_to_ptr_type(ptr)->
1323               with_offset(offset);
1324     }
1325   } else if (ta) {
1326     // For arrays indexed by constant indices, we flatten the alias
1327     // space to include all of the array body.  Only the header, klass
1328     // and array length can be accessed un-aliased.
1329     if( offset != Type::OffsetBot ) {
1330       if( ta->const_oop() ) { // MethodData* or Method*
1331         offset = Type::OffsetBot;   // Flatten constant access into array body
1332         tj = ta = ta->
1333                 remove_speculative()->
1334                 cast_to_ptr_type(ptr)->
1335                 cast_to_exactness(false)->
1336                 with_offset(offset);
1337       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1338         // range is OK as-is.
1339         tj = ta = TypeAryPtr::RANGE;
1340       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1341         tj = TypeInstPtr::KLASS; // all klass loads look alike
1342         ta = TypeAryPtr::RANGE; // generic ignored junk
1343         ptr = TypePtr::BotPTR;
1344       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1345         tj = TypeInstPtr::MARK;
1346         ta = TypeAryPtr::RANGE; // generic ignored junk
1347         ptr = TypePtr::BotPTR;
1348       } else {                  // Random constant offset into array body
1349         offset = Type::OffsetBot;   // Flatten constant access into array body
1350         tj = ta = ta->
1351                 remove_speculative()->
1352                 cast_to_ptr_type(ptr)->
1353                 cast_to_exactness(false)->
1354                 with_offset(offset);
1355       }
1356     }
1357     // Arrays of fixed size alias with arrays of unknown size.
1358     if (ta->size() != TypeInt::POS) {
1359       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1360       tj = ta = ta->
1361               remove_speculative()->
1362               cast_to_ptr_type(ptr)->
1363               with_ary(tary)->
1364               cast_to_exactness(false);
1365     }
1366     // Arrays of known objects become arrays of unknown objects.
1367     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1368       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1369       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1370     }
1371     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1372       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1373       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1374     }
1375     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1376     // cannot be distinguished by bytecode alone.
1377     if (ta->elem() == TypeInt::BOOL) {
1378       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1379       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1380       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1381     }
1382     // During the 2nd round of IterGVN, NotNull castings are removed.
1383     // Make sure the Bottom and NotNull variants alias the same.
1384     // Also, make sure exact and non-exact variants alias the same.
1385     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1386       tj = ta = ta->
1387               remove_speculative()->
1388               cast_to_ptr_type(TypePtr::BotPTR)->
1389               cast_to_exactness(false)->
1390               with_offset(offset);
1391     }
1392   }
1393 
1394   // Oop pointers need some flattening
1395   const TypeInstPtr *to = tj->isa_instptr();
1396   if (to && to != TypeOopPtr::BOTTOM) {
1397     ciInstanceKlass* ik = to->instance_klass();
1398     if( ptr == TypePtr::Constant ) {
1399       if (ik != ciEnv::current()->Class_klass() ||
1400           offset < ik->layout_helper_size_in_bytes()) {
1401         // No constant oop pointers (such as Strings); they alias with
1402         // unknown strings.
1403         assert(!is_known_inst, "not scalarizable allocation");
1404         tj = to = to->
1405                 cast_to_instance_id(TypeOopPtr::InstanceBot)->
1406                 remove_speculative()->
1407                 cast_to_ptr_type(TypePtr::BotPTR)->
1408                 cast_to_exactness(false);
1409       }
1410     } else if( is_known_inst ) {
1411       tj = to; // Keep NotNull and klass_is_exact for instance type
1412     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1413       // During the 2nd round of IterGVN, NotNull castings are removed.
1414       // Make sure the Bottom and NotNull variants alias the same.
1415       // Also, make sure exact and non-exact variants alias the same.
1416       tj = to = to->
1417               remove_speculative()->
1418               cast_to_instance_id(TypeOopPtr::InstanceBot)->
1419               cast_to_ptr_type(TypePtr::BotPTR)->
1420               cast_to_exactness(false);
1421     }
1422     if (to->speculative() != NULL) {
1423       tj = to = to->remove_speculative();
1424     }
1425     // Canonicalize the holder of this field
1426     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1427       // First handle header references such as a LoadKlassNode, even if the
1428       // object's klass is unloaded at compile time (4965979).
1429       if (!is_known_inst) { // Do it only for non-instance types
1430         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1431       }
1432     } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) {
1433       // Static fields are in the space above the normal instance
1434       // fields in the java.lang.Class instance.
1435       if (ik != ciEnv::current()->Class_klass()) {
1436         to = NULL;
1437         tj = TypeOopPtr::BOTTOM;
1438         offset = tj->offset();
1439       }
1440     } else {
1441       ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset);
1442       assert(offset < canonical_holder->layout_helper_size_in_bytes(), "");
1443       if (!ik->equals(canonical_holder) || tj->offset() != offset) {
1444         if( is_known_inst ) {
1445           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1446         } else {
1447           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1448         }
1449       }
1450     }
1451   }
1452 
1453   // Klass pointers to object array klasses need some flattening
1454   const TypeKlassPtr *tk = tj->isa_klassptr();
1455   if( tk ) {
1456     // If we are referencing a field within a Klass, we need
1457     // to assume the worst case of an Object.  Both exact and
1458     // inexact types must flatten to the same alias class so
1459     // use NotNull as the PTR.
1460     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1461       tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull,
1462                                        env()->Object_klass(),
1463                                        offset);
1464     }
1465 
1466     if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) {
1467       ciKlass* k = ciObjArrayKlass::make(env()->Object_klass());
1468       if (!k || !k->is_loaded()) {                  // Only fails for some -Xcomp runs
1469         tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset);
1470       } else {
1471         tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset);
1472       }
1473     }
1474 
1475     // Check for precise loads from the primary supertype array and force them
1476     // to the supertype cache alias index.  Check for generic array loads from
1477     // the primary supertype array and also force them to the supertype cache
1478     // alias index.  Since the same load can reach both, we need to merge
1479     // these 2 disparate memories into the same alias class.  Since the
1480     // primary supertype array is read-only, there's no chance of confusion
1481     // where we bypass an array load and an array store.
1482     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1483     if (offset == Type::OffsetBot ||
1484         (offset >= primary_supers_offset &&
1485          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1486         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1487       offset = in_bytes(Klass::secondary_super_cache_offset());
1488       tj = tk = tk->with_offset(offset);
1489     }
1490   }
1491 
1492   // Flatten all Raw pointers together.
1493   if (tj->base() == Type::RawPtr)
1494     tj = TypeRawPtr::BOTTOM;
1495 
1496   if (tj->base() == Type::AnyPtr)
1497     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1498 
1499   offset = tj->offset();
1500   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1501 
1502   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1503           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1504           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1505           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1506           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1507           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1508           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr),
1509           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1510   assert( tj->ptr() != TypePtr::TopPTR &&
1511           tj->ptr() != TypePtr::AnyNull &&
1512           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1513 //    assert( tj->ptr() != TypePtr::Constant ||
1514 //            tj->base() == Type::RawPtr ||
1515 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1516 
1517   return tj;
1518 }
1519 
1520 void Compile::AliasType::Init(int i, const TypePtr* at) {
1521   assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index");
1522   _index = i;
1523   _adr_type = at;
1524   _field = NULL;
1525   _element = NULL;
1526   _is_rewritable = true; // default
1527   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1528   if (atoop != NULL && atoop->is_known_instance()) {
1529     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1530     _general_index = Compile::current()->get_alias_index(gt);
1531   } else {
1532     _general_index = 0;
1533   }
1534 }
1535 
1536 BasicType Compile::AliasType::basic_type() const {
1537   if (element() != NULL) {
1538     const Type* element = adr_type()->is_aryptr()->elem();
1539     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1540   } if (field() != NULL) {
1541     return field()->layout_type();
1542   } else {
1543     return T_ILLEGAL; // unknown
1544   }
1545 }
1546 
1547 //---------------------------------print_on------------------------------------
1548 #ifndef PRODUCT
1549 void Compile::AliasType::print_on(outputStream* st) {
1550   if (index() < 10)
1551         st->print("@ <%d> ", index());
1552   else  st->print("@ <%d>",  index());
1553   st->print(is_rewritable() ? "   " : " RO");
1554   int offset = adr_type()->offset();
1555   if (offset == Type::OffsetBot)
1556         st->print(" +any");
1557   else  st->print(" +%-3d", offset);
1558   st->print(" in ");
1559   adr_type()->dump_on(st);
1560   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1561   if (field() != NULL && tjp) {
1562     if (tjp->is_instptr()->instance_klass()  != field()->holder() ||
1563         tjp->offset() != field()->offset_in_bytes()) {
1564       st->print(" != ");
1565       field()->print();
1566       st->print(" ***");
1567     }
1568   }
1569 }
1570 
1571 void print_alias_types() {
1572   Compile* C = Compile::current();
1573   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1574   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1575     C->alias_type(idx)->print_on(tty);
1576     tty->cr();
1577   }
1578 }
1579 #endif
1580 
1581 
1582 //----------------------------probe_alias_cache--------------------------------
1583 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1584   intptr_t key = (intptr_t) adr_type;
1585   key ^= key >> logAliasCacheSize;
1586   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1587 }
1588 
1589 
1590 //-----------------------------grow_alias_types--------------------------------
1591 void Compile::grow_alias_types() {
1592   const int old_ats  = _max_alias_types; // how many before?
1593   const int new_ats  = old_ats;          // how many more?
1594   const int grow_ats = old_ats+new_ats;  // how many now?
1595   _max_alias_types = grow_ats;
1596   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1597   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1598   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1599   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1600 }
1601 
1602 
1603 //--------------------------------find_alias_type------------------------------
1604 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1605   if (!do_aliasing()) {
1606     return alias_type(AliasIdxBot);
1607   }
1608 
1609   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1610   if (ace->_adr_type == adr_type) {
1611     return alias_type(ace->_index);
1612   }
1613 
1614   // Handle special cases.
1615   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1616   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1617 
1618   // Do it the slow way.
1619   const TypePtr* flat = flatten_alias_type(adr_type);
1620 
1621 #ifdef ASSERT
1622   {
1623     ResourceMark rm;
1624     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1625            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1626     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1627            Type::str(adr_type));
1628     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1629       const TypeOopPtr* foop = flat->is_oopptr();
1630       // Scalarizable allocations have exact klass always.
1631       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1632       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1633       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1634              Type::str(foop), Type::str(xoop));
1635     }
1636   }
1637 #endif
1638 
1639   int idx = AliasIdxTop;
1640   for (int i = 0; i < num_alias_types(); i++) {
1641     if (alias_type(i)->adr_type() == flat) {
1642       idx = i;
1643       break;
1644     }
1645   }
1646 
1647   if (idx == AliasIdxTop) {
1648     if (no_create)  return NULL;
1649     // Grow the array if necessary.
1650     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1651     // Add a new alias type.
1652     idx = _num_alias_types++;
1653     _alias_types[idx]->Init(idx, flat);
1654     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1655     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1656     if (flat->isa_instptr()) {
1657       if (flat->offset() == java_lang_Class::klass_offset()
1658           && flat->is_instptr()->instance_klass() == env()->Class_klass())
1659         alias_type(idx)->set_rewritable(false);
1660     }
1661     if (flat->isa_aryptr()) {
1662 #ifdef ASSERT
1663       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1664       // (T_BYTE has the weakest alignment and size restrictions...)
1665       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1666 #endif
1667       if (flat->offset() == TypePtr::OffsetBot) {
1668         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1669       }
1670     }
1671     if (flat->isa_klassptr()) {
1672       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1673         alias_type(idx)->set_rewritable(false);
1674       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1675         alias_type(idx)->set_rewritable(false);
1676       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1677         alias_type(idx)->set_rewritable(false);
1678       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1679         alias_type(idx)->set_rewritable(false);
1680       if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
1681         alias_type(idx)->set_rewritable(false);
1682     }
1683     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1684     // but the base pointer type is not distinctive enough to identify
1685     // references into JavaThread.)
1686 
1687     // Check for final fields.
1688     const TypeInstPtr* tinst = flat->isa_instptr();
1689     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1690       ciField* field;
1691       if (tinst->const_oop() != NULL &&
1692           tinst->instance_klass() == ciEnv::current()->Class_klass() &&
1693           tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) {
1694         // static field
1695         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1696         field = k->get_field_by_offset(tinst->offset(), true);
1697       } else {
1698         ciInstanceKlass *k = tinst->instance_klass();
1699         field = k->get_field_by_offset(tinst->offset(), false);
1700       }
1701       assert(field == NULL ||
1702              original_field == NULL ||
1703              (field->holder() == original_field->holder() &&
1704               field->offset() == original_field->offset() &&
1705               field->is_static() == original_field->is_static()), "wrong field?");
1706       // Set field() and is_rewritable() attributes.
1707       if (field != NULL)  alias_type(idx)->set_field(field);
1708     }
1709   }
1710 
1711   // Fill the cache for next time.
1712   ace->_adr_type = adr_type;
1713   ace->_index    = idx;
1714   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1715 
1716   // Might as well try to fill the cache for the flattened version, too.
1717   AliasCacheEntry* face = probe_alias_cache(flat);
1718   if (face->_adr_type == NULL) {
1719     face->_adr_type = flat;
1720     face->_index    = idx;
1721     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1722   }
1723 
1724   return alias_type(idx);
1725 }
1726 
1727 
1728 Compile::AliasType* Compile::alias_type(ciField* field) {
1729   const TypeOopPtr* t;
1730   if (field->is_static())
1731     t = TypeInstPtr::make(field->holder()->java_mirror());
1732   else
1733     t = TypeOopPtr::make_from_klass_raw(field->holder());
1734   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1735   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1736   return atp;
1737 }
1738 
1739 
1740 //------------------------------have_alias_type--------------------------------
1741 bool Compile::have_alias_type(const TypePtr* adr_type) {
1742   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1743   if (ace->_adr_type == adr_type) {
1744     return true;
1745   }
1746 
1747   // Handle special cases.
1748   if (adr_type == NULL)             return true;
1749   if (adr_type == TypePtr::BOTTOM)  return true;
1750 
1751   return find_alias_type(adr_type, true, NULL) != NULL;
1752 }
1753 
1754 //-----------------------------must_alias--------------------------------------
1755 // True if all values of the given address type are in the given alias category.
1756 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1757   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1758   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1759   if (alias_idx == AliasIdxTop)         return false; // the empty category
1760   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1761 
1762   // the only remaining possible overlap is identity
1763   int adr_idx = get_alias_index(adr_type);
1764   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1765   assert(adr_idx == alias_idx ||
1766          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1767           && adr_type                       != TypeOopPtr::BOTTOM),
1768          "should not be testing for overlap with an unsafe pointer");
1769   return adr_idx == alias_idx;
1770 }
1771 
1772 //------------------------------can_alias--------------------------------------
1773 // True if any values of the given address type are in the given alias category.
1774 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1775   if (alias_idx == AliasIdxTop)         return false; // the empty category
1776   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1777   // Known instance doesn't alias with bottom memory
1778   if (alias_idx == AliasIdxBot)         return !adr_type->is_known_instance();                   // the universal category
1779   if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins
1780 
1781   // the only remaining possible overlap is identity
1782   int adr_idx = get_alias_index(adr_type);
1783   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1784   return adr_idx == alias_idx;
1785 }
1786 
1787 //---------------------cleanup_loop_predicates-----------------------
1788 // Remove the opaque nodes that protect the predicates so that all unused
1789 // checks and uncommon_traps will be eliminated from the ideal graph
1790 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1791   if (predicate_count()==0) return;
1792   for (int i = predicate_count(); i > 0; i--) {
1793     Node * n = predicate_opaque1_node(i-1);
1794     assert(n->Opcode() == Op_Opaque1, "must be");
1795     igvn.replace_node(n, n->in(1));
1796   }
1797   assert(predicate_count()==0, "should be clean!");
1798 }
1799 
1800 void Compile::record_for_post_loop_opts_igvn(Node* n) {
1801   if (!n->for_post_loop_opts_igvn()) {
1802     assert(!_for_post_loop_igvn.contains(n), "duplicate");
1803     n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1804     _for_post_loop_igvn.append(n);
1805   }
1806 }
1807 
1808 void Compile::remove_from_post_loop_opts_igvn(Node* n) {
1809   n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1810   _for_post_loop_igvn.remove(n);
1811 }
1812 
1813 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) {
1814   // Verify that all previous optimizations produced a valid graph
1815   // at least to this point, even if no loop optimizations were done.
1816   PhaseIdealLoop::verify(igvn);
1817 
1818   C->set_post_loop_opts_phase(); // no more loop opts allowed
1819 
1820   assert(!C->major_progress(), "not cleared");
1821 
1822   if (_for_post_loop_igvn.length() > 0) {
1823     while (_for_post_loop_igvn.length() > 0) {
1824       Node* n = _for_post_loop_igvn.pop();
1825       n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1826       igvn._worklist.push(n);
1827     }
1828     igvn.optimize();
1829     assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed");
1830 
1831     // Sometimes IGVN sets major progress (e.g., when processing loop nodes).
1832     if (C->major_progress()) {
1833       C->clear_major_progress(); // ensure that major progress is now clear
1834     }
1835   }
1836 }
1837 
1838 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) {
1839   if (OptimizeUnstableIf) {
1840     _unstable_if_traps.append(trap);
1841   }
1842 }
1843 
1844 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) {
1845   for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) {
1846     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1847     Node* n = trap->uncommon_trap();
1848     if (!useful.member(n)) {
1849       _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
1850     }
1851   }
1852 }
1853 
1854 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead
1855 // or fold-compares case. Return true if succeed or not found.
1856 //
1857 // In rare cases, the found trap has been processed. It is too late to delete it. Return
1858 // false and ask fold-compares to yield.
1859 //
1860 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused
1861 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path
1862 // when deoptimization does happen.
1863 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) {
1864   for (int i = 0; i < _unstable_if_traps.length(); ++i) {
1865     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1866     if (trap->uncommon_trap() == unc) {
1867       if (yield && trap->modified()) {
1868         return false;
1869       }
1870       _unstable_if_traps.delete_at(i);
1871       break;
1872     }
1873   }
1874   return true;
1875 }
1876 
1877 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path.
1878 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering.
1879 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) {
1880   for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) {
1881     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1882     CallStaticJavaNode* unc = trap->uncommon_trap();
1883     int next_bci = trap->next_bci();
1884     bool modified = trap->modified();
1885 
1886     if (next_bci != -1 && !modified) {
1887       assert(!_dead_node_list.test(unc->_idx), "changing a dead node!");
1888       JVMState* jvms = unc->jvms();
1889       ciMethod* method = jvms->method();
1890       ciBytecodeStream iter(method);
1891 
1892       iter.force_bci(jvms->bci());
1893       assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if");
1894       Bytecodes::Code c = iter.cur_bc();
1895       Node* lhs = nullptr;
1896       Node* rhs = nullptr;
1897       if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) {
1898         lhs = unc->peek_operand(0);
1899         rhs = unc->peek_operand(1);
1900       } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) {
1901         lhs = unc->peek_operand(0);
1902       }
1903 
1904       ResourceMark rm;
1905       const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci);
1906       assert(live_locals.is_valid(), "broken liveness info");
1907       int len = (int)live_locals.size();
1908 
1909       for (int i = 0; i < len; i++) {
1910         Node* local = unc->local(jvms, i);
1911         // kill local using the liveness of next_bci.
1912         // give up when the local looks like an operand to secure reexecution.
1913         if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) {
1914           uint idx = jvms->locoff() + i;
1915 #ifdef ASSERT
1916           if (Verbose) {
1917             tty->print("[unstable_if] kill local#%d: ", idx);
1918             local->dump();
1919             tty->cr();
1920           }
1921 #endif
1922           igvn.replace_input_of(unc, idx, top());
1923           modified = true;
1924         }
1925       }
1926     }
1927 
1928     // keep the mondified trap for late query
1929     if (modified) {
1930       trap->set_modified();
1931     } else {
1932       _unstable_if_traps.delete_at(i);
1933     }
1934   }
1935   igvn.optimize();
1936 }
1937 
1938 // StringOpts and late inlining of string methods
1939 void Compile::inline_string_calls(bool parse_time) {
1940   {
1941     // remove useless nodes to make the usage analysis simpler
1942     ResourceMark rm;
1943     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1944   }
1945 
1946   {
1947     ResourceMark rm;
1948     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1949     PhaseStringOpts pso(initial_gvn());
1950     print_method(PHASE_AFTER_STRINGOPTS, 3);
1951   }
1952 
1953   // now inline anything that we skipped the first time around
1954   if (!parse_time) {
1955     _late_inlines_pos = _late_inlines.length();
1956   }
1957 
1958   while (_string_late_inlines.length() > 0) {
1959     CallGenerator* cg = _string_late_inlines.pop();
1960     cg->do_late_inline();
1961     if (failing())  return;
1962   }
1963   _string_late_inlines.trunc_to(0);
1964 }
1965 
1966 // Late inlining of boxing methods
1967 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1968   if (_boxing_late_inlines.length() > 0) {
1969     assert(has_boxed_value(), "inconsistent");
1970 
1971     PhaseGVN* gvn = initial_gvn();
1972     set_inlining_incrementally(true);
1973 
1974     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1975     for_igvn()->clear();
1976     gvn->replace_with(&igvn);
1977 
1978     _late_inlines_pos = _late_inlines.length();
1979 
1980     while (_boxing_late_inlines.length() > 0) {
1981       CallGenerator* cg = _boxing_late_inlines.pop();
1982       cg->do_late_inline();
1983       if (failing())  return;
1984     }
1985     _boxing_late_inlines.trunc_to(0);
1986 
1987     inline_incrementally_cleanup(igvn);
1988 
1989     set_inlining_incrementally(false);
1990   }
1991 }
1992 
1993 bool Compile::inline_incrementally_one() {
1994   assert(IncrementalInline, "incremental inlining should be on");
1995 
1996   TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
1997 
1998   set_inlining_progress(false);
1999   set_do_cleanup(false);
2000 
2001   for (int i = 0; i < _late_inlines.length(); i++) {
2002     _late_inlines_pos = i+1;
2003     CallGenerator* cg = _late_inlines.at(i);
2004     bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline();
2005     if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call
2006       cg->do_late_inline();
2007       assert(_late_inlines.at(i) == cg, "no insertions before current position allowed");
2008       if (failing()) {
2009         return false;
2010       } else if (inlining_progress()) {
2011         _late_inlines_pos = i+1; // restore the position in case new elements were inserted
2012         print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node());
2013         break; // process one call site at a time
2014       }
2015     } else {
2016       // Ignore late inline direct calls when inlining is not allowed.
2017       // They are left in the late inline list when node budget is exhausted until the list is fully drained.
2018     }
2019   }
2020   // Remove processed elements.
2021   _late_inlines.remove_till(_late_inlines_pos);
2022   _late_inlines_pos = 0;
2023 
2024   assert(inlining_progress() || _late_inlines.length() == 0, "no progress");
2025 
2026   bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2027 
2028   set_inlining_progress(false);
2029   set_do_cleanup(false);
2030 
2031   bool force_cleanup = directive()->IncrementalInlineForceCleanupOption;
2032   return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup;
2033 }
2034 
2035 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2036   {
2037     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2038     ResourceMark rm;
2039     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2040   }
2041   {
2042     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2043     igvn = PhaseIterGVN(initial_gvn());
2044     igvn.optimize();
2045   }
2046   print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3);
2047 }
2048 
2049 // Perform incremental inlining until bound on number of live nodes is reached
2050 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2051   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2052 
2053   set_inlining_incrementally(true);
2054   uint low_live_nodes = 0;
2055 
2056   while (_late_inlines.length() > 0) {
2057     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2058       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2059         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2060         // PhaseIdealLoop is expensive so we only try it once we are
2061         // out of live nodes and we only try it again if the previous
2062         // helped got the number of nodes down significantly
2063         PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2064         if (failing())  return;
2065         low_live_nodes = live_nodes();
2066         _major_progress = true;
2067       }
2068 
2069       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2070         bool do_print_inlining = print_inlining() || print_intrinsics();
2071         if (do_print_inlining || log() != NULL) {
2072           // Print inlining message for candidates that we couldn't inline for lack of space.
2073           for (int i = 0; i < _late_inlines.length(); i++) {
2074             CallGenerator* cg = _late_inlines.at(i);
2075             const char* msg = "live nodes > LiveNodeCountInliningCutoff";
2076             if (do_print_inlining) {
2077               cg->print_inlining_late(msg);
2078             }
2079             log_late_inline_failure(cg, msg);
2080           }
2081         }
2082         break; // finish
2083       }
2084     }
2085 
2086     for_igvn()->clear();
2087     initial_gvn()->replace_with(&igvn);
2088 
2089     while (inline_incrementally_one()) {
2090       assert(!failing(), "inconsistent");
2091     }
2092     if (failing())  return;
2093 
2094     inline_incrementally_cleanup(igvn);
2095 
2096     print_method(PHASE_INCREMENTAL_INLINE_STEP, 3);
2097 
2098     if (failing())  return;
2099 
2100     if (_late_inlines.length() == 0) {
2101       break; // no more progress
2102     }
2103   }
2104   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2105 
2106   if (_string_late_inlines.length() > 0) {
2107     assert(has_stringbuilder(), "inconsistent");
2108     for_igvn()->clear();
2109     initial_gvn()->replace_with(&igvn);
2110 
2111     inline_string_calls(false);
2112 
2113     if (failing())  return;
2114 
2115     inline_incrementally_cleanup(igvn);
2116   }
2117 
2118   set_inlining_incrementally(false);
2119 }
2120 
2121 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) {
2122   // "inlining_incrementally() == false" is used to signal that no inlining is allowed
2123   // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details).
2124   // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == NULL"
2125   // as if "inlining_incrementally() == true" were set.
2126   assert(inlining_incrementally() == false, "not allowed");
2127   assert(_modified_nodes == NULL, "not allowed");
2128   assert(_late_inlines.length() > 0, "sanity");
2129 
2130   while (_late_inlines.length() > 0) {
2131     for_igvn()->clear();
2132     initial_gvn()->replace_with(&igvn);
2133 
2134     while (inline_incrementally_one()) {
2135       assert(!failing(), "inconsistent");
2136     }
2137     if (failing())  return;
2138 
2139     inline_incrementally_cleanup(igvn);
2140   }
2141 }
2142 
2143 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2144   if (_loop_opts_cnt > 0) {
2145     while (major_progress() && (_loop_opts_cnt > 0)) {
2146       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2147       PhaseIdealLoop::optimize(igvn, mode);
2148       _loop_opts_cnt--;
2149       if (failing())  return false;
2150       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2151     }
2152   }
2153   return true;
2154 }
2155 
2156 // Remove edges from "root" to each SafePoint at a backward branch.
2157 // They were inserted during parsing (see add_safepoint()) to make
2158 // infinite loops without calls or exceptions visible to root, i.e.,
2159 // useful.
2160 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2161   Node *r = root();
2162   if (r != NULL) {
2163     for (uint i = r->req(); i < r->len(); ++i) {
2164       Node *n = r->in(i);
2165       if (n != NULL && n->is_SafePoint()) {
2166         r->rm_prec(i);
2167         if (n->outcnt() == 0) {
2168           igvn.remove_dead_node(n);
2169         }
2170         --i;
2171       }
2172     }
2173     // Parsing may have added top inputs to the root node (Path
2174     // leading to the Halt node proven dead). Make sure we get a
2175     // chance to clean them up.
2176     igvn._worklist.push(r);
2177     igvn.optimize();
2178   }
2179 }
2180 
2181 //------------------------------Optimize---------------------------------------
2182 // Given a graph, optimize it.
2183 void Compile::Optimize() {
2184   TracePhase tp("optimizer", &timers[_t_optimizer]);
2185 
2186 #ifndef PRODUCT
2187   if (env()->break_at_compile()) {
2188     BREAKPOINT;
2189   }
2190 
2191 #endif
2192 
2193   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2194 #ifdef ASSERT
2195   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2196 #endif
2197 
2198   ResourceMark rm;
2199 
2200   print_inlining_reinit();
2201 
2202   NOT_PRODUCT( verify_graph_edges(); )
2203 
2204   print_method(PHASE_AFTER_PARSING, 1);
2205 
2206  {
2207   // Iterative Global Value Numbering, including ideal transforms
2208   // Initialize IterGVN with types and values from parse-time GVN
2209   PhaseIterGVN igvn(initial_gvn());
2210 #ifdef ASSERT
2211   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2212 #endif
2213   {
2214     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2215     igvn.optimize();
2216   }
2217 
2218   if (failing())  return;
2219 
2220   print_method(PHASE_ITER_GVN1, 2);
2221 
2222   process_for_unstable_if_traps(igvn);
2223 
2224   inline_incrementally(igvn);
2225 
2226   print_method(PHASE_INCREMENTAL_INLINE, 2);
2227 
2228   if (failing())  return;
2229 
2230   if (eliminate_boxing()) {
2231     // Inline valueOf() methods now.
2232     inline_boxing_calls(igvn);
2233 
2234     if (AlwaysIncrementalInline) {
2235       inline_incrementally(igvn);
2236     }
2237 
2238     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2239 
2240     if (failing())  return;
2241   }
2242 
2243   // Remove the speculative part of types and clean up the graph from
2244   // the extra CastPP nodes whose only purpose is to carry them. Do
2245   // that early so that optimizations are not disrupted by the extra
2246   // CastPP nodes.
2247   remove_speculative_types(igvn);
2248 
2249   // No more new expensive nodes will be added to the list from here
2250   // so keep only the actual candidates for optimizations.
2251   cleanup_expensive_nodes(igvn);
2252 
2253   assert(EnableVectorSupport || !has_vbox_nodes(), "sanity");
2254   if (EnableVectorSupport && has_vbox_nodes()) {
2255     TracePhase tp("", &timers[_t_vector]);
2256     PhaseVector pv(igvn);
2257     pv.optimize_vector_boxes();
2258 
2259     print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2);
2260   }
2261   assert(!has_vbox_nodes(), "sanity");
2262 
2263   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2264     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2265     initial_gvn()->replace_with(&igvn);
2266     Unique_Node_List* old_worklist = for_igvn();
2267     old_worklist->clear();
2268     Unique_Node_List new_worklist(C->comp_arena());
2269     {
2270       ResourceMark rm;
2271       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2272     }
2273     Unique_Node_List* save_for_igvn = for_igvn();
2274     set_for_igvn(&new_worklist);
2275     igvn = PhaseIterGVN(initial_gvn());
2276     igvn.optimize();
2277     set_for_igvn(old_worklist); // new_worklist is dead beyond this point
2278   }
2279 
2280   // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop
2281   // safepoints
2282   remove_root_to_sfpts_edges(igvn);
2283 
2284   // Perform escape analysis
2285   if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) {
2286     if (has_loops()) {
2287       // Cleanup graph (remove dead nodes).
2288       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2289       PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
2290       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2291       if (failing())  return;
2292     }
2293     bool progress;
2294     do {
2295       ConnectionGraph::do_analysis(this, &igvn);
2296 
2297       if (failing())  return;
2298 
2299       int mcount = macro_count(); // Record number of allocations and locks before IGVN
2300 
2301       // Optimize out fields loads from scalar replaceable allocations.
2302       igvn.optimize();
2303       print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2304 
2305       if (failing())  return;
2306 
2307       if (congraph() != NULL && macro_count() > 0) {
2308         TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2309         PhaseMacroExpand mexp(igvn);
2310         mexp.eliminate_macro_nodes();
2311         igvn.set_delay_transform(false);
2312 
2313         igvn.optimize();
2314         print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2315 
2316         if (failing())  return;
2317       }
2318       progress = do_iterative_escape_analysis() &&
2319                  (macro_count() < mcount) &&
2320                  ConnectionGraph::has_candidates(this);
2321       // Try again if candidates exist and made progress
2322       // by removing some allocations and/or locks.
2323     } while (progress);
2324   }
2325 
2326   // Loop transforms on the ideal graph.  Range Check Elimination,
2327   // peeling, unrolling, etc.
2328 
2329   // Set loop opts counter
2330   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2331     {
2332       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2333       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2334       _loop_opts_cnt--;
2335       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2336       if (failing())  return;
2337     }
2338     // Loop opts pass if partial peeling occurred in previous pass
2339     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2340       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2341       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2342       _loop_opts_cnt--;
2343       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2344       if (failing())  return;
2345     }
2346     // Loop opts pass for loop-unrolling before CCP
2347     if(major_progress() && (_loop_opts_cnt > 0)) {
2348       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2349       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2350       _loop_opts_cnt--;
2351       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2352     }
2353     if (!failing()) {
2354       // Verify that last round of loop opts produced a valid graph
2355       PhaseIdealLoop::verify(igvn);
2356     }
2357   }
2358   if (failing())  return;
2359 
2360   // Conditional Constant Propagation;
2361   PhaseCCP ccp( &igvn );
2362   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2363   {
2364     TracePhase tp("ccp", &timers[_t_ccp]);
2365     ccp.do_transform();
2366   }
2367   print_method(PHASE_CCP1, 2);
2368 
2369   assert( true, "Break here to ccp.dump_old2new_map()");
2370 
2371   // Iterative Global Value Numbering, including ideal transforms
2372   {
2373     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2374     igvn = ccp;
2375     igvn.optimize();
2376   }
2377   print_method(PHASE_ITER_GVN2, 2);
2378 
2379   if (failing())  return;
2380 
2381   // Loop transforms on the ideal graph.  Range Check Elimination,
2382   // peeling, unrolling, etc.
2383   if (!optimize_loops(igvn, LoopOptsDefault)) {
2384     return;
2385   }
2386 
2387   if (failing())  return;
2388 
2389   C->clear_major_progress(); // ensure that major progress is now clear
2390 
2391   process_for_post_loop_opts_igvn(igvn);
2392 
2393 #ifdef ASSERT
2394   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2395 #endif
2396 
2397   {
2398     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2399     PhaseMacroExpand  mex(igvn);
2400     if (mex.expand_macro_nodes()) {
2401       assert(failing(), "must bail out w/ explicit message");
2402       return;
2403     }
2404     print_method(PHASE_MACRO_EXPANSION, 2);
2405   }
2406 
2407   {
2408     TracePhase tp("barrierExpand", &timers[_t_barrierExpand]);
2409     if (bs->expand_barriers(this, igvn)) {
2410       assert(failing(), "must bail out w/ explicit message");
2411       return;
2412     }
2413     print_method(PHASE_BARRIER_EXPANSION, 2);
2414   }
2415 
2416   if (C->max_vector_size() > 0) {
2417     C->optimize_logic_cones(igvn);
2418     igvn.optimize();
2419   }
2420 
2421   DEBUG_ONLY( _modified_nodes = NULL; )
2422 
2423   assert(igvn._worklist.size() == 0, "not empty");
2424 
2425   assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty");
2426 
2427   if (_late_inlines.length() > 0) {
2428     // More opportunities to optimize virtual and MH calls.
2429     // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option.
2430     process_late_inline_calls_no_inline(igvn);
2431   }
2432  } // (End scope of igvn; run destructor if necessary for asserts.)
2433 
2434  check_no_dead_use();
2435 
2436  process_print_inlining();
2437 
2438  // A method with only infinite loops has no edges entering loops from root
2439  {
2440    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2441    if (final_graph_reshaping()) {
2442      assert(failing(), "must bail out w/ explicit message");
2443      return;
2444    }
2445  }
2446 
2447  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2448  DEBUG_ONLY(set_phase_optimize_finished();)
2449 }
2450 
2451 #ifdef ASSERT
2452 void Compile::check_no_dead_use() const {
2453   ResourceMark rm;
2454   Unique_Node_List wq;
2455   wq.push(root());
2456   for (uint i = 0; i < wq.size(); ++i) {
2457     Node* n = wq.at(i);
2458     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
2459       Node* u = n->fast_out(j);
2460       if (u->outcnt() == 0 && !u->is_Con()) {
2461         u->dump();
2462         fatal("no reachable node should have no use");
2463       }
2464       wq.push(u);
2465     }
2466   }
2467 }
2468 #endif
2469 
2470 void Compile::inline_vector_reboxing_calls() {
2471   if (C->_vector_reboxing_late_inlines.length() > 0) {
2472     _late_inlines_pos = C->_late_inlines.length();
2473     while (_vector_reboxing_late_inlines.length() > 0) {
2474       CallGenerator* cg = _vector_reboxing_late_inlines.pop();
2475       cg->do_late_inline();
2476       if (failing())  return;
2477       print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node());
2478     }
2479     _vector_reboxing_late_inlines.trunc_to(0);
2480   }
2481 }
2482 
2483 bool Compile::has_vbox_nodes() {
2484   if (C->_vector_reboxing_late_inlines.length() > 0) {
2485     return true;
2486   }
2487   for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) {
2488     Node * n = C->macro_node(macro_idx);
2489     assert(n->is_macro(), "only macro nodes expected here");
2490     if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) {
2491       return true;
2492     }
2493   }
2494   return false;
2495 }
2496 
2497 //---------------------------- Bitwise operation packing optimization ---------------------------
2498 
2499 static bool is_vector_unary_bitwise_op(Node* n) {
2500   return n->Opcode() == Op_XorV &&
2501          VectorNode::is_vector_bitwise_not_pattern(n);
2502 }
2503 
2504 static bool is_vector_binary_bitwise_op(Node* n) {
2505   switch (n->Opcode()) {
2506     case Op_AndV:
2507     case Op_OrV:
2508       return true;
2509 
2510     case Op_XorV:
2511       return !is_vector_unary_bitwise_op(n);
2512 
2513     default:
2514       return false;
2515   }
2516 }
2517 
2518 static bool is_vector_ternary_bitwise_op(Node* n) {
2519   return n->Opcode() == Op_MacroLogicV;
2520 }
2521 
2522 static bool is_vector_bitwise_op(Node* n) {
2523   return is_vector_unary_bitwise_op(n)  ||
2524          is_vector_binary_bitwise_op(n) ||
2525          is_vector_ternary_bitwise_op(n);
2526 }
2527 
2528 static bool is_vector_bitwise_cone_root(Node* n) {
2529   if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) {
2530     return false;
2531   }
2532   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2533     if (is_vector_bitwise_op(n->fast_out(i))) {
2534       return false;
2535     }
2536   }
2537   return true;
2538 }
2539 
2540 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) {
2541   uint cnt = 0;
2542   if (is_vector_bitwise_op(n)) {
2543     uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req();
2544     if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2545       for (uint i = 1; i < inp_cnt; i++) {
2546         Node* in = n->in(i);
2547         bool skip = VectorNode::is_all_ones_vector(in);
2548         if (!skip && !inputs.member(in)) {
2549           inputs.push(in);
2550           cnt++;
2551         }
2552       }
2553       assert(cnt <= 1, "not unary");
2554     } else {
2555       uint last_req = inp_cnt;
2556       if (is_vector_ternary_bitwise_op(n)) {
2557         last_req = inp_cnt - 1; // skip last input
2558       }
2559       for (uint i = 1; i < last_req; i++) {
2560         Node* def = n->in(i);
2561         if (!inputs.member(def)) {
2562           inputs.push(def);
2563           cnt++;
2564         }
2565       }
2566     }
2567   } else { // not a bitwise operations
2568     if (!inputs.member(n)) {
2569       inputs.push(n);
2570       cnt++;
2571     }
2572   }
2573   return cnt;
2574 }
2575 
2576 void Compile::collect_logic_cone_roots(Unique_Node_List& list) {
2577   Unique_Node_List useful_nodes;
2578   C->identify_useful_nodes(useful_nodes);
2579 
2580   for (uint i = 0; i < useful_nodes.size(); i++) {
2581     Node* n = useful_nodes.at(i);
2582     if (is_vector_bitwise_cone_root(n)) {
2583       list.push(n);
2584     }
2585   }
2586 }
2587 
2588 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn,
2589                                     const TypeVect* vt,
2590                                     Unique_Node_List& partition,
2591                                     Unique_Node_List& inputs) {
2592   assert(partition.size() == 2 || partition.size() == 3, "not supported");
2593   assert(inputs.size()    == 2 || inputs.size()    == 3, "not supported");
2594   assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported");
2595 
2596   Node* in1 = inputs.at(0);
2597   Node* in2 = inputs.at(1);
2598   Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2);
2599 
2600   uint func = compute_truth_table(partition, inputs);
2601 
2602   Node* pn = partition.at(partition.size() - 1);
2603   Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : NULL;
2604   return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt));
2605 }
2606 
2607 static uint extract_bit(uint func, uint pos) {
2608   return (func & (1 << pos)) >> pos;
2609 }
2610 
2611 //
2612 //  A macro logic node represents a truth table. It has 4 inputs,
2613 //  First three inputs corresponds to 3 columns of a truth table
2614 //  and fourth input captures the logic function.
2615 //
2616 //  eg.  fn = (in1 AND in2) OR in3;
2617 //
2618 //      MacroNode(in1,in2,in3,fn)
2619 //
2620 //  -----------------
2621 //  in1 in2 in3  fn
2622 //  -----------------
2623 //  0    0   0    0
2624 //  0    0   1    1
2625 //  0    1   0    0
2626 //  0    1   1    1
2627 //  1    0   0    0
2628 //  1    0   1    1
2629 //  1    1   0    1
2630 //  1    1   1    1
2631 //
2632 
2633 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) {
2634   int res = 0;
2635   for (int i = 0; i < 8; i++) {
2636     int bit1 = extract_bit(in1, i);
2637     int bit2 = extract_bit(in2, i);
2638     int bit3 = extract_bit(in3, i);
2639 
2640     int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3);
2641     int func_bit = extract_bit(func, func_bit_pos);
2642 
2643     res |= func_bit << i;
2644   }
2645   return res;
2646 }
2647 
2648 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) {
2649   assert(n != NULL, "");
2650   assert(eval_map.contains(n), "absent");
2651   return *(eval_map.get(n));
2652 }
2653 
2654 static void eval_operands(Node* n,
2655                           uint& func1, uint& func2, uint& func3,
2656                           ResourceHashtable<Node*,uint>& eval_map) {
2657   assert(is_vector_bitwise_op(n), "");
2658 
2659   if (is_vector_unary_bitwise_op(n)) {
2660     Node* opnd = n->in(1);
2661     if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) {
2662       opnd = n->in(2);
2663     }
2664     func1 = eval_operand(opnd, eval_map);
2665   } else if (is_vector_binary_bitwise_op(n)) {
2666     func1 = eval_operand(n->in(1), eval_map);
2667     func2 = eval_operand(n->in(2), eval_map);
2668   } else {
2669     assert(is_vector_ternary_bitwise_op(n), "unknown operation");
2670     func1 = eval_operand(n->in(1), eval_map);
2671     func2 = eval_operand(n->in(2), eval_map);
2672     func3 = eval_operand(n->in(3), eval_map);
2673   }
2674 }
2675 
2676 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) {
2677   assert(inputs.size() <= 3, "sanity");
2678   ResourceMark rm;
2679   uint res = 0;
2680   ResourceHashtable<Node*,uint> eval_map;
2681 
2682   // Populate precomputed functions for inputs.
2683   // Each input corresponds to one column of 3 input truth-table.
2684   uint input_funcs[] = { 0xAA,   // (_, _, c) -> c
2685                          0xCC,   // (_, b, _) -> b
2686                          0xF0 }; // (a, _, _) -> a
2687   for (uint i = 0; i < inputs.size(); i++) {
2688     eval_map.put(inputs.at(i), input_funcs[2-i]);
2689   }
2690 
2691   for (uint i = 0; i < partition.size(); i++) {
2692     Node* n = partition.at(i);
2693 
2694     uint func1 = 0, func2 = 0, func3 = 0;
2695     eval_operands(n, func1, func2, func3, eval_map);
2696 
2697     switch (n->Opcode()) {
2698       case Op_OrV:
2699         assert(func3 == 0, "not binary");
2700         res = func1 | func2;
2701         break;
2702       case Op_AndV:
2703         assert(func3 == 0, "not binary");
2704         res = func1 & func2;
2705         break;
2706       case Op_XorV:
2707         if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2708           assert(func2 == 0 && func3 == 0, "not unary");
2709           res = (~func1) & 0xFF;
2710         } else {
2711           assert(func3 == 0, "not binary");
2712           res = func1 ^ func2;
2713         }
2714         break;
2715       case Op_MacroLogicV:
2716         // Ordering of inputs may change during evaluation of sub-tree
2717         // containing MacroLogic node as a child node, thus a re-evaluation
2718         // makes sure that function is evaluated in context of current
2719         // inputs.
2720         res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3);
2721         break;
2722 
2723       default: assert(false, "not supported: %s", n->Name());
2724     }
2725     assert(res <= 0xFF, "invalid");
2726     eval_map.put(n, res);
2727   }
2728   return res;
2729 }
2730 
2731 // Criteria under which nodes gets packed into a macro logic node:-
2732 //  1) Parent and both child nodes are all unmasked or masked with
2733 //     same predicates.
2734 //  2) Masked parent can be packed with left child if it is predicated
2735 //     and both have same predicates.
2736 //  3) Masked parent can be packed with right child if its un-predicated
2737 //     or has matching predication condition.
2738 //  4) An unmasked parent can be packed with an unmasked child.
2739 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
2740   assert(partition.size() == 0, "not empty");
2741   assert(inputs.size() == 0, "not empty");
2742   if (is_vector_ternary_bitwise_op(n)) {
2743     return false;
2744   }
2745 
2746   bool is_unary_op = is_vector_unary_bitwise_op(n);
2747   if (is_unary_op) {
2748     assert(collect_unique_inputs(n, inputs) == 1, "not unary");
2749     return false; // too few inputs
2750   }
2751 
2752   bool pack_left_child = true;
2753   bool pack_right_child = true;
2754 
2755   bool left_child_LOP = is_vector_bitwise_op(n->in(1));
2756   bool right_child_LOP = is_vector_bitwise_op(n->in(2));
2757 
2758   int left_child_input_cnt = 0;
2759   int right_child_input_cnt = 0;
2760 
2761   bool parent_is_predicated = n->is_predicated_vector();
2762   bool left_child_predicated = n->in(1)->is_predicated_vector();
2763   bool right_child_predicated = n->in(2)->is_predicated_vector();
2764 
2765   Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : NULL;
2766   Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : NULL;
2767   Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : NULL;
2768 
2769   do {
2770     if (pack_left_child && left_child_LOP &&
2771         ((!parent_is_predicated && !left_child_predicated) ||
2772         ((parent_is_predicated && left_child_predicated &&
2773           parent_pred == left_child_pred)))) {
2774        partition.push(n->in(1));
2775        left_child_input_cnt = collect_unique_inputs(n->in(1), inputs);
2776     } else {
2777        inputs.push(n->in(1));
2778        left_child_input_cnt = 1;
2779     }
2780 
2781     if (pack_right_child && right_child_LOP &&
2782         (!right_child_predicated ||
2783          (right_child_predicated && parent_is_predicated &&
2784           parent_pred == right_child_pred))) {
2785        partition.push(n->in(2));
2786        right_child_input_cnt = collect_unique_inputs(n->in(2), inputs);
2787     } else {
2788        inputs.push(n->in(2));
2789        right_child_input_cnt = 1;
2790     }
2791 
2792     if (inputs.size() > 3) {
2793       assert(partition.size() > 0, "");
2794       inputs.clear();
2795       partition.clear();
2796       if (left_child_input_cnt > right_child_input_cnt) {
2797         pack_left_child = false;
2798       } else {
2799         pack_right_child = false;
2800       }
2801     } else {
2802       break;
2803     }
2804   } while(true);
2805 
2806   if(partition.size()) {
2807     partition.push(n);
2808   }
2809 
2810   return (partition.size() == 2 || partition.size() == 3) &&
2811          (inputs.size()    == 2 || inputs.size()    == 3);
2812 }
2813 
2814 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) {
2815   assert(is_vector_bitwise_op(n), "not a root");
2816 
2817   visited.set(n->_idx);
2818 
2819   // 1) Do a DFS walk over the logic cone.
2820   for (uint i = 1; i < n->req(); i++) {
2821     Node* in = n->in(i);
2822     if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) {
2823       process_logic_cone_root(igvn, in, visited);
2824     }
2825   }
2826 
2827   // 2) Bottom up traversal: Merge node[s] with
2828   // the parent to form macro logic node.
2829   Unique_Node_List partition;
2830   Unique_Node_List inputs;
2831   if (compute_logic_cone(n, partition, inputs)) {
2832     const TypeVect* vt = n->bottom_type()->is_vect();
2833     Node* pn = partition.at(partition.size() - 1);
2834     Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : NULL;
2835     if (mask == NULL ||
2836         Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) {
2837       Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs);
2838 #ifdef ASSERT
2839       if (TraceNewVectors) {
2840         tty->print("new Vector node: ");
2841         macro_logic->dump();
2842       }
2843 #endif
2844       igvn.replace_node(n, macro_logic);
2845     }
2846   }
2847 }
2848 
2849 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) {
2850   ResourceMark rm;
2851   if (Matcher::match_rule_supported(Op_MacroLogicV)) {
2852     Unique_Node_List list;
2853     collect_logic_cone_roots(list);
2854 
2855     while (list.size() > 0) {
2856       Node* n = list.pop();
2857       const TypeVect* vt = n->bottom_type()->is_vect();
2858       bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type());
2859       if (supported) {
2860         VectorSet visited(comp_arena());
2861         process_logic_cone_root(igvn, n, visited);
2862       }
2863     }
2864   }
2865 }
2866 
2867 //------------------------------Code_Gen---------------------------------------
2868 // Given a graph, generate code for it
2869 void Compile::Code_Gen() {
2870   if (failing()) {
2871     return;
2872   }
2873 
2874   // Perform instruction selection.  You might think we could reclaim Matcher
2875   // memory PDQ, but actually the Matcher is used in generating spill code.
2876   // Internals of the Matcher (including some VectorSets) must remain live
2877   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2878   // set a bit in reclaimed memory.
2879 
2880   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2881   // nodes.  Mapping is only valid at the root of each matched subtree.
2882   NOT_PRODUCT( verify_graph_edges(); )
2883 
2884   Matcher matcher;
2885   _matcher = &matcher;
2886   {
2887     TracePhase tp("matcher", &timers[_t_matcher]);
2888     matcher.match();
2889     if (failing()) {
2890       return;
2891     }
2892   }
2893   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2894   // nodes.  Mapping is only valid at the root of each matched subtree.
2895   NOT_PRODUCT( verify_graph_edges(); )
2896 
2897   // If you have too many nodes, or if matching has failed, bail out
2898   check_node_count(0, "out of nodes matching instructions");
2899   if (failing()) {
2900     return;
2901   }
2902 
2903   print_method(PHASE_MATCHING, 2);
2904 
2905   // Build a proper-looking CFG
2906   PhaseCFG cfg(node_arena(), root(), matcher);
2907   _cfg = &cfg;
2908   {
2909     TracePhase tp("scheduler", &timers[_t_scheduler]);
2910     bool success = cfg.do_global_code_motion();
2911     if (!success) {
2912       return;
2913     }
2914 
2915     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2916     NOT_PRODUCT( verify_graph_edges(); )
2917     cfg.verify();
2918   }
2919 
2920   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2921   _regalloc = &regalloc;
2922   {
2923     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2924     // Perform register allocation.  After Chaitin, use-def chains are
2925     // no longer accurate (at spill code) and so must be ignored.
2926     // Node->LRG->reg mappings are still accurate.
2927     _regalloc->Register_Allocate();
2928 
2929     // Bail out if the allocator builds too many nodes
2930     if (failing()) {
2931       return;
2932     }
2933   }
2934 
2935   // Prior to register allocation we kept empty basic blocks in case the
2936   // the allocator needed a place to spill.  After register allocation we
2937   // are not adding any new instructions.  If any basic block is empty, we
2938   // can now safely remove it.
2939   {
2940     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2941     cfg.remove_empty_blocks();
2942     if (do_freq_based_layout()) {
2943       PhaseBlockLayout layout(cfg);
2944     } else {
2945       cfg.set_loop_alignment();
2946     }
2947     cfg.fixup_flow();
2948     cfg.remove_unreachable_blocks();
2949     cfg.verify_dominator_tree();
2950   }
2951 
2952   // Apply peephole optimizations
2953   if( OptoPeephole ) {
2954     TracePhase tp("peephole", &timers[_t_peephole]);
2955     PhasePeephole peep( _regalloc, cfg);
2956     peep.do_transform();
2957   }
2958 
2959   // Do late expand if CPU requires this.
2960   if (Matcher::require_postalloc_expand) {
2961     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2962     cfg.postalloc_expand(_regalloc);
2963   }
2964 
2965   // Convert Nodes to instruction bits in a buffer
2966   {
2967     TracePhase tp("output", &timers[_t_output]);
2968     PhaseOutput output;
2969     output.Output();
2970     if (failing())  return;
2971     output.install();
2972   }
2973 
2974   print_method(PHASE_FINAL_CODE, 1);
2975 
2976   // He's dead, Jim.
2977   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2978   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2979 }
2980 
2981 //------------------------------Final_Reshape_Counts---------------------------
2982 // This class defines counters to help identify when a method
2983 // may/must be executed using hardware with only 24-bit precision.
2984 struct Final_Reshape_Counts : public StackObj {
2985   int  _call_count;             // count non-inlined 'common' calls
2986   int  _float_count;            // count float ops requiring 24-bit precision
2987   int  _double_count;           // count double ops requiring more precision
2988   int  _java_call_count;        // count non-inlined 'java' calls
2989   int  _inner_loop_count;       // count loops which need alignment
2990   VectorSet _visited;           // Visitation flags
2991   Node_List _tests;             // Set of IfNodes & PCTableNodes
2992 
2993   Final_Reshape_Counts() :
2994     _call_count(0), _float_count(0), _double_count(0),
2995     _java_call_count(0), _inner_loop_count(0) { }
2996 
2997   void inc_call_count  () { _call_count  ++; }
2998   void inc_float_count () { _float_count ++; }
2999   void inc_double_count() { _double_count++; }
3000   void inc_java_call_count() { _java_call_count++; }
3001   void inc_inner_loop_count() { _inner_loop_count++; }
3002 
3003   int  get_call_count  () const { return _call_count  ; }
3004   int  get_float_count () const { return _float_count ; }
3005   int  get_double_count() const { return _double_count; }
3006   int  get_java_call_count() const { return _java_call_count; }
3007   int  get_inner_loop_count() const { return _inner_loop_count; }
3008 };
3009 
3010 // Eliminate trivially redundant StoreCMs and accumulate their
3011 // precedence edges.
3012 void Compile::eliminate_redundant_card_marks(Node* n) {
3013   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
3014   if (n->in(MemNode::Address)->outcnt() > 1) {
3015     // There are multiple users of the same address so it might be
3016     // possible to eliminate some of the StoreCMs
3017     Node* mem = n->in(MemNode::Memory);
3018     Node* adr = n->in(MemNode::Address);
3019     Node* val = n->in(MemNode::ValueIn);
3020     Node* prev = n;
3021     bool done = false;
3022     // Walk the chain of StoreCMs eliminating ones that match.  As
3023     // long as it's a chain of single users then the optimization is
3024     // safe.  Eliminating partially redundant StoreCMs would require
3025     // cloning copies down the other paths.
3026     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
3027       if (adr == mem->in(MemNode::Address) &&
3028           val == mem->in(MemNode::ValueIn)) {
3029         // redundant StoreCM
3030         if (mem->req() > MemNode::OopStore) {
3031           // Hasn't been processed by this code yet.
3032           n->add_prec(mem->in(MemNode::OopStore));
3033         } else {
3034           // Already converted to precedence edge
3035           for (uint i = mem->req(); i < mem->len(); i++) {
3036             // Accumulate any precedence edges
3037             if (mem->in(i) != NULL) {
3038               n->add_prec(mem->in(i));
3039             }
3040           }
3041           // Everything above this point has been processed.
3042           done = true;
3043         }
3044         // Eliminate the previous StoreCM
3045         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
3046         assert(mem->outcnt() == 0, "should be dead");
3047         mem->disconnect_inputs(this);
3048       } else {
3049         prev = mem;
3050       }
3051       mem = prev->in(MemNode::Memory);
3052     }
3053   }
3054 }
3055 
3056 //------------------------------final_graph_reshaping_impl----------------------
3057 // Implement items 1-5 from final_graph_reshaping below.
3058 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3059 
3060   if ( n->outcnt() == 0 ) return; // dead node
3061   uint nop = n->Opcode();
3062 
3063   // Check for 2-input instruction with "last use" on right input.
3064   // Swap to left input.  Implements item (2).
3065   if( n->req() == 3 &&          // two-input instruction
3066       n->in(1)->outcnt() > 1 && // left use is NOT a last use
3067       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
3068       n->in(2)->outcnt() == 1 &&// right use IS a last use
3069       !n->in(2)->is_Con() ) {   // right use is not a constant
3070     // Check for commutative opcode
3071     switch( nop ) {
3072     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
3073     case Op_MaxI:  case Op_MaxL:  case Op_MaxF:  case Op_MaxD:
3074     case Op_MinI:  case Op_MinL:  case Op_MinF:  case Op_MinD:
3075     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
3076     case Op_AndL:  case Op_XorL:  case Op_OrL:
3077     case Op_AndI:  case Op_XorI:  case Op_OrI: {
3078       // Move "last use" input to left by swapping inputs
3079       n->swap_edges(1, 2);
3080       break;
3081     }
3082     default:
3083       break;
3084     }
3085   }
3086 
3087 #ifdef ASSERT
3088   if( n->is_Mem() ) {
3089     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
3090     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
3091             // oop will be recorded in oop map if load crosses safepoint
3092             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
3093                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
3094             "raw memory operations should have control edge");
3095   }
3096   if (n->is_MemBar()) {
3097     MemBarNode* mb = n->as_MemBar();
3098     if (mb->trailing_store() || mb->trailing_load_store()) {
3099       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
3100       Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent));
3101       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
3102              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
3103     } else if (mb->leading()) {
3104       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
3105     }
3106   }
3107 #endif
3108   // Count FPU ops and common calls, implements item (3)
3109   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes);
3110   if (!gc_handled) {
3111     final_graph_reshaping_main_switch(n, frc, nop, dead_nodes);
3112   }
3113 
3114   // Collect CFG split points
3115   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3116     frc._tests.push(n);
3117   }
3118 }
3119 
3120 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) {
3121   switch( nop ) {
3122   // Count all float operations that may use FPU
3123   case Op_AddF:
3124   case Op_SubF:
3125   case Op_MulF:
3126   case Op_DivF:
3127   case Op_NegF:
3128   case Op_ModF:
3129   case Op_ConvI2F:
3130   case Op_ConF:
3131   case Op_CmpF:
3132   case Op_CmpF3:
3133   case Op_StoreF:
3134   case Op_LoadF:
3135   // case Op_ConvL2F: // longs are split into 32-bit halves
3136     frc.inc_float_count();
3137     break;
3138 
3139   case Op_ConvF2D:
3140   case Op_ConvD2F:
3141     frc.inc_float_count();
3142     frc.inc_double_count();
3143     break;
3144 
3145   // Count all double operations that may use FPU
3146   case Op_AddD:
3147   case Op_SubD:
3148   case Op_MulD:
3149   case Op_DivD:
3150   case Op_NegD:
3151   case Op_ModD:
3152   case Op_ConvI2D:
3153   case Op_ConvD2I:
3154   // case Op_ConvL2D: // handled by leaf call
3155   // case Op_ConvD2L: // handled by leaf call
3156   case Op_ConD:
3157   case Op_CmpD:
3158   case Op_CmpD3:
3159   case Op_StoreD:
3160   case Op_LoadD:
3161   case Op_LoadD_unaligned:
3162     frc.inc_double_count();
3163     break;
3164   case Op_Opaque1:              // Remove Opaque Nodes before matching
3165   case Op_Opaque3:
3166     n->subsume_by(n->in(1), this);
3167     break;
3168   case Op_CallStaticJava:
3169   case Op_CallJava:
3170   case Op_CallDynamicJava:
3171     frc.inc_java_call_count(); // Count java call site;
3172   case Op_CallRuntime:
3173   case Op_CallLeaf:
3174   case Op_CallLeafVector:
3175   case Op_CallLeafNoFP: {
3176     assert (n->is_Call(), "");
3177     CallNode *call = n->as_Call();
3178     // Count call sites where the FP mode bit would have to be flipped.
3179     // Do not count uncommon runtime calls:
3180     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
3181     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
3182     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
3183       frc.inc_call_count();   // Count the call site
3184     } else {                  // See if uncommon argument is shared
3185       Node *n = call->in(TypeFunc::Parms);
3186       int nop = n->Opcode();
3187       // Clone shared simple arguments to uncommon calls, item (1).
3188       if (n->outcnt() > 1 &&
3189           !n->is_Proj() &&
3190           nop != Op_CreateEx &&
3191           nop != Op_CheckCastPP &&
3192           nop != Op_DecodeN &&
3193           nop != Op_DecodeNKlass &&
3194           !n->is_Mem() &&
3195           !n->is_Phi()) {
3196         Node *x = n->clone();
3197         call->set_req(TypeFunc::Parms, x);
3198       }
3199     }
3200     break;
3201   }
3202 
3203   case Op_StoreCM:
3204     {
3205       // Convert OopStore dependence into precedence edge
3206       Node* prec = n->in(MemNode::OopStore);
3207       n->del_req(MemNode::OopStore);
3208       n->add_prec(prec);
3209       eliminate_redundant_card_marks(n);
3210     }
3211 
3212     // fall through
3213 
3214   case Op_StoreB:
3215   case Op_StoreC:
3216   case Op_StoreI:
3217   case Op_StoreL:
3218   case Op_CompareAndSwapB:
3219   case Op_CompareAndSwapS:
3220   case Op_CompareAndSwapI:
3221   case Op_CompareAndSwapL:
3222   case Op_CompareAndSwapP:
3223   case Op_CompareAndSwapN:
3224   case Op_WeakCompareAndSwapB:
3225   case Op_WeakCompareAndSwapS:
3226   case Op_WeakCompareAndSwapI:
3227   case Op_WeakCompareAndSwapL:
3228   case Op_WeakCompareAndSwapP:
3229   case Op_WeakCompareAndSwapN:
3230   case Op_CompareAndExchangeB:
3231   case Op_CompareAndExchangeS:
3232   case Op_CompareAndExchangeI:
3233   case Op_CompareAndExchangeL:
3234   case Op_CompareAndExchangeP:
3235   case Op_CompareAndExchangeN:
3236   case Op_GetAndAddS:
3237   case Op_GetAndAddB:
3238   case Op_GetAndAddI:
3239   case Op_GetAndAddL:
3240   case Op_GetAndSetS:
3241   case Op_GetAndSetB:
3242   case Op_GetAndSetI:
3243   case Op_GetAndSetL:
3244   case Op_GetAndSetP:
3245   case Op_GetAndSetN:
3246   case Op_StoreP:
3247   case Op_StoreN:
3248   case Op_StoreNKlass:
3249   case Op_LoadB:
3250   case Op_LoadUB:
3251   case Op_LoadUS:
3252   case Op_LoadI:
3253   case Op_LoadKlass:
3254   case Op_LoadNKlass:
3255   case Op_LoadL:
3256   case Op_LoadL_unaligned:
3257   case Op_LoadP:
3258   case Op_LoadN:
3259   case Op_LoadRange:
3260   case Op_LoadS:
3261     break;
3262 
3263   case Op_AddP: {               // Assert sane base pointers
3264     Node *addp = n->in(AddPNode::Address);
3265     assert( !addp->is_AddP() ||
3266             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3267             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3268             "Base pointers must match (addp %u)", addp->_idx );
3269 #ifdef _LP64
3270     if ((UseCompressedOops || UseCompressedClassPointers) &&
3271         addp->Opcode() == Op_ConP &&
3272         addp == n->in(AddPNode::Base) &&
3273         n->in(AddPNode::Offset)->is_Con()) {
3274       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3275       // on the platform and on the compressed oops mode.
3276       // Use addressing with narrow klass to load with offset on x86.
3277       // Some platforms can use the constant pool to load ConP.
3278       // Do this transformation here since IGVN will convert ConN back to ConP.
3279       const Type* t = addp->bottom_type();
3280       bool is_oop   = t->isa_oopptr() != NULL;
3281       bool is_klass = t->isa_klassptr() != NULL;
3282 
3283       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
3284           (is_klass && Matcher::const_klass_prefer_decode())) {
3285         Node* nn = NULL;
3286 
3287         int op = is_oop ? Op_ConN : Op_ConNKlass;
3288 
3289         // Look for existing ConN node of the same exact type.
3290         Node* r  = root();
3291         uint cnt = r->outcnt();
3292         for (uint i = 0; i < cnt; i++) {
3293           Node* m = r->raw_out(i);
3294           if (m!= NULL && m->Opcode() == op &&
3295               m->bottom_type()->make_ptr() == t) {
3296             nn = m;
3297             break;
3298           }
3299         }
3300         if (nn != NULL) {
3301           // Decode a narrow oop to match address
3302           // [R12 + narrow_oop_reg<<3 + offset]
3303           if (is_oop) {
3304             nn = new DecodeNNode(nn, t);
3305           } else {
3306             nn = new DecodeNKlassNode(nn, t);
3307           }
3308           // Check for succeeding AddP which uses the same Base.
3309           // Otherwise we will run into the assertion above when visiting that guy.
3310           for (uint i = 0; i < n->outcnt(); ++i) {
3311             Node *out_i = n->raw_out(i);
3312             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3313               out_i->set_req(AddPNode::Base, nn);
3314 #ifdef ASSERT
3315               for (uint j = 0; j < out_i->outcnt(); ++j) {
3316                 Node *out_j = out_i->raw_out(j);
3317                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3318                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3319               }
3320 #endif
3321             }
3322           }
3323           n->set_req(AddPNode::Base, nn);
3324           n->set_req(AddPNode::Address, nn);
3325           if (addp->outcnt() == 0) {
3326             addp->disconnect_inputs(this);
3327           }
3328         }
3329       }
3330     }
3331 #endif
3332     break;
3333   }
3334 
3335   case Op_CastPP: {
3336     // Remove CastPP nodes to gain more freedom during scheduling but
3337     // keep the dependency they encode as control or precedence edges
3338     // (if control is set already) on memory operations. Some CastPP
3339     // nodes don't have a control (don't carry a dependency): skip
3340     // those.
3341     if (n->in(0) != NULL) {
3342       ResourceMark rm;
3343       Unique_Node_List wq;
3344       wq.push(n);
3345       for (uint next = 0; next < wq.size(); ++next) {
3346         Node *m = wq.at(next);
3347         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3348           Node* use = m->fast_out(i);
3349           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3350             use->ensure_control_or_add_prec(n->in(0));
3351           } else {
3352             switch(use->Opcode()) {
3353             case Op_AddP:
3354             case Op_DecodeN:
3355             case Op_DecodeNKlass:
3356             case Op_CheckCastPP:
3357             case Op_CastPP:
3358               wq.push(use);
3359               break;
3360             }
3361           }
3362         }
3363       }
3364     }
3365     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3366     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3367       Node* in1 = n->in(1);
3368       const Type* t = n->bottom_type();
3369       Node* new_in1 = in1->clone();
3370       new_in1->as_DecodeN()->set_type(t);
3371 
3372       if (!Matcher::narrow_oop_use_complex_address()) {
3373         //
3374         // x86, ARM and friends can handle 2 adds in addressing mode
3375         // and Matcher can fold a DecodeN node into address by using
3376         // a narrow oop directly and do implicit NULL check in address:
3377         //
3378         // [R12 + narrow_oop_reg<<3 + offset]
3379         // NullCheck narrow_oop_reg
3380         //
3381         // On other platforms (Sparc) we have to keep new DecodeN node and
3382         // use it to do implicit NULL check in address:
3383         //
3384         // decode_not_null narrow_oop_reg, base_reg
3385         // [base_reg + offset]
3386         // NullCheck base_reg
3387         //
3388         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3389         // to keep the information to which NULL check the new DecodeN node
3390         // corresponds to use it as value in implicit_null_check().
3391         //
3392         new_in1->set_req(0, n->in(0));
3393       }
3394 
3395       n->subsume_by(new_in1, this);
3396       if (in1->outcnt() == 0) {
3397         in1->disconnect_inputs(this);
3398       }
3399     } else {
3400       n->subsume_by(n->in(1), this);
3401       if (n->outcnt() == 0) {
3402         n->disconnect_inputs(this);
3403       }
3404     }
3405     break;
3406   }
3407 #ifdef _LP64
3408   case Op_CmpP:
3409     // Do this transformation here to preserve CmpPNode::sub() and
3410     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3411     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3412       Node* in1 = n->in(1);
3413       Node* in2 = n->in(2);
3414       if (!in1->is_DecodeNarrowPtr()) {
3415         in2 = in1;
3416         in1 = n->in(2);
3417       }
3418       assert(in1->is_DecodeNarrowPtr(), "sanity");
3419 
3420       Node* new_in2 = NULL;
3421       if (in2->is_DecodeNarrowPtr()) {
3422         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3423         new_in2 = in2->in(1);
3424       } else if (in2->Opcode() == Op_ConP) {
3425         const Type* t = in2->bottom_type();
3426         if (t == TypePtr::NULL_PTR) {
3427           assert(in1->is_DecodeN(), "compare klass to null?");
3428           // Don't convert CmpP null check into CmpN if compressed
3429           // oops implicit null check is not generated.
3430           // This will allow to generate normal oop implicit null check.
3431           if (Matcher::gen_narrow_oop_implicit_null_checks())
3432             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3433           //
3434           // This transformation together with CastPP transformation above
3435           // will generated code for implicit NULL checks for compressed oops.
3436           //
3437           // The original code after Optimize()
3438           //
3439           //    LoadN memory, narrow_oop_reg
3440           //    decode narrow_oop_reg, base_reg
3441           //    CmpP base_reg, NULL
3442           //    CastPP base_reg // NotNull
3443           //    Load [base_reg + offset], val_reg
3444           //
3445           // after these transformations will be
3446           //
3447           //    LoadN memory, narrow_oop_reg
3448           //    CmpN narrow_oop_reg, NULL
3449           //    decode_not_null narrow_oop_reg, base_reg
3450           //    Load [base_reg + offset], val_reg
3451           //
3452           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3453           // since narrow oops can be used in debug info now (see the code in
3454           // final_graph_reshaping_walk()).
3455           //
3456           // At the end the code will be matched to
3457           // on x86:
3458           //
3459           //    Load_narrow_oop memory, narrow_oop_reg
3460           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3461           //    NullCheck narrow_oop_reg
3462           //
3463           // and on sparc:
3464           //
3465           //    Load_narrow_oop memory, narrow_oop_reg
3466           //    decode_not_null narrow_oop_reg, base_reg
3467           //    Load [base_reg + offset], val_reg
3468           //    NullCheck base_reg
3469           //
3470         } else if (t->isa_oopptr()) {
3471           new_in2 = ConNode::make(t->make_narrowoop());
3472         } else if (t->isa_klassptr()) {
3473           new_in2 = ConNode::make(t->make_narrowklass());
3474         }
3475       }
3476       if (new_in2 != NULL) {
3477         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3478         n->subsume_by(cmpN, this);
3479         if (in1->outcnt() == 0) {
3480           in1->disconnect_inputs(this);
3481         }
3482         if (in2->outcnt() == 0) {
3483           in2->disconnect_inputs(this);
3484         }
3485       }
3486     }
3487     break;
3488 
3489   case Op_DecodeN:
3490   case Op_DecodeNKlass:
3491     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3492     // DecodeN could be pinned when it can't be fold into
3493     // an address expression, see the code for Op_CastPP above.
3494     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3495     break;
3496 
3497   case Op_EncodeP:
3498   case Op_EncodePKlass: {
3499     Node* in1 = n->in(1);
3500     if (in1->is_DecodeNarrowPtr()) {
3501       n->subsume_by(in1->in(1), this);
3502     } else if (in1->Opcode() == Op_ConP) {
3503       const Type* t = in1->bottom_type();
3504       if (t == TypePtr::NULL_PTR) {
3505         assert(t->isa_oopptr(), "null klass?");
3506         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3507       } else if (t->isa_oopptr()) {
3508         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3509       } else if (t->isa_klassptr()) {
3510         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3511       }
3512     }
3513     if (in1->outcnt() == 0) {
3514       in1->disconnect_inputs(this);
3515     }
3516     break;
3517   }
3518 
3519   case Op_Proj: {
3520     if (OptimizeStringConcat || IncrementalInline) {
3521       ProjNode* proj = n->as_Proj();
3522       if (proj->_is_io_use) {
3523         assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, "");
3524         // Separate projections were used for the exception path which
3525         // are normally removed by a late inline.  If it wasn't inlined
3526         // then they will hang around and should just be replaced with
3527         // the original one. Merge them.
3528         Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/);
3529         if (non_io_proj  != NULL) {
3530           proj->subsume_by(non_io_proj , this);
3531         }
3532       }
3533     }
3534     break;
3535   }
3536 
3537   case Op_Phi:
3538     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3539       // The EncodeP optimization may create Phi with the same edges
3540       // for all paths. It is not handled well by Register Allocator.
3541       Node* unique_in = n->in(1);
3542       assert(unique_in != NULL, "");
3543       uint cnt = n->req();
3544       for (uint i = 2; i < cnt; i++) {
3545         Node* m = n->in(i);
3546         assert(m != NULL, "");
3547         if (unique_in != m)
3548           unique_in = NULL;
3549       }
3550       if (unique_in != NULL) {
3551         n->subsume_by(unique_in, this);
3552       }
3553     }
3554     break;
3555 
3556 #endif
3557 
3558 #ifdef ASSERT
3559   case Op_CastII:
3560     // Verify that all range check dependent CastII nodes were removed.
3561     if (n->isa_CastII()->has_range_check()) {
3562       n->dump(3);
3563       assert(false, "Range check dependent CastII node was not removed");
3564     }
3565     break;
3566 #endif
3567 
3568   case Op_ModI:
3569     if (UseDivMod) {
3570       // Check if a%b and a/b both exist
3571       Node* d = n->find_similar(Op_DivI);
3572       if (d) {
3573         // Replace them with a fused divmod if supported
3574         if (Matcher::has_match_rule(Op_DivModI)) {
3575           DivModINode* divmod = DivModINode::make(n);
3576           d->subsume_by(divmod->div_proj(), this);
3577           n->subsume_by(divmod->mod_proj(), this);
3578         } else {
3579           // replace a%b with a-((a/b)*b)
3580           Node* mult = new MulINode(d, d->in(2));
3581           Node* sub  = new SubINode(d->in(1), mult);
3582           n->subsume_by(sub, this);
3583         }
3584       }
3585     }
3586     break;
3587 
3588   case Op_ModL:
3589     if (UseDivMod) {
3590       // Check if a%b and a/b both exist
3591       Node* d = n->find_similar(Op_DivL);
3592       if (d) {
3593         // Replace them with a fused divmod if supported
3594         if (Matcher::has_match_rule(Op_DivModL)) {
3595           DivModLNode* divmod = DivModLNode::make(n);
3596           d->subsume_by(divmod->div_proj(), this);
3597           n->subsume_by(divmod->mod_proj(), this);
3598         } else {
3599           // replace a%b with a-((a/b)*b)
3600           Node* mult = new MulLNode(d, d->in(2));
3601           Node* sub  = new SubLNode(d->in(1), mult);
3602           n->subsume_by(sub, this);
3603         }
3604       }
3605     }
3606     break;
3607 
3608   case Op_UModI:
3609     if (UseDivMod) {
3610       // Check if a%b and a/b both exist
3611       Node* d = n->find_similar(Op_UDivI);
3612       if (d) {
3613         // Replace them with a fused unsigned divmod if supported
3614         if (Matcher::has_match_rule(Op_UDivModI)) {
3615           UDivModINode* divmod = UDivModINode::make(n);
3616           d->subsume_by(divmod->div_proj(), this);
3617           n->subsume_by(divmod->mod_proj(), this);
3618         } else {
3619           // replace a%b with a-((a/b)*b)
3620           Node* mult = new MulINode(d, d->in(2));
3621           Node* sub  = new SubINode(d->in(1), mult);
3622           n->subsume_by(sub, this);
3623         }
3624       }
3625     }
3626     break;
3627 
3628   case Op_UModL:
3629     if (UseDivMod) {
3630       // Check if a%b and a/b both exist
3631       Node* d = n->find_similar(Op_UDivL);
3632       if (d) {
3633         // Replace them with a fused unsigned divmod if supported
3634         if (Matcher::has_match_rule(Op_UDivModL)) {
3635           UDivModLNode* divmod = UDivModLNode::make(n);
3636           d->subsume_by(divmod->div_proj(), this);
3637           n->subsume_by(divmod->mod_proj(), this);
3638         } else {
3639           // replace a%b with a-((a/b)*b)
3640           Node* mult = new MulLNode(d, d->in(2));
3641           Node* sub  = new SubLNode(d->in(1), mult);
3642           n->subsume_by(sub, this);
3643         }
3644       }
3645     }
3646     break;
3647 
3648   case Op_LoadVector:
3649   case Op_StoreVector:
3650   case Op_LoadVectorGather:
3651   case Op_StoreVectorScatter:
3652   case Op_LoadVectorGatherMasked:
3653   case Op_StoreVectorScatterMasked:
3654   case Op_VectorCmpMasked:
3655   case Op_VectorMaskGen:
3656   case Op_LoadVectorMasked:
3657   case Op_StoreVectorMasked:
3658     break;
3659 
3660   case Op_AddReductionVI:
3661   case Op_AddReductionVL:
3662   case Op_AddReductionVF:
3663   case Op_AddReductionVD:
3664   case Op_MulReductionVI:
3665   case Op_MulReductionVL:
3666   case Op_MulReductionVF:
3667   case Op_MulReductionVD:
3668   case Op_MinReductionV:
3669   case Op_MaxReductionV:
3670   case Op_AndReductionV:
3671   case Op_OrReductionV:
3672   case Op_XorReductionV:
3673     break;
3674 
3675   case Op_PackB:
3676   case Op_PackS:
3677   case Op_PackI:
3678   case Op_PackF:
3679   case Op_PackL:
3680   case Op_PackD:
3681     if (n->req()-1 > 2) {
3682       // Replace many operand PackNodes with a binary tree for matching
3683       PackNode* p = (PackNode*) n;
3684       Node* btp = p->binary_tree_pack(1, n->req());
3685       n->subsume_by(btp, this);
3686     }
3687     break;
3688   case Op_Loop:
3689     assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop");
3690   case Op_CountedLoop:
3691   case Op_LongCountedLoop:
3692   case Op_OuterStripMinedLoop:
3693     if (n->as_Loop()->is_inner_loop()) {
3694       frc.inc_inner_loop_count();
3695     }
3696     n->as_Loop()->verify_strip_mined(0);
3697     break;
3698   case Op_LShiftI:
3699   case Op_RShiftI:
3700   case Op_URShiftI:
3701   case Op_LShiftL:
3702   case Op_RShiftL:
3703   case Op_URShiftL:
3704     if (Matcher::need_masked_shift_count) {
3705       // The cpu's shift instructions don't restrict the count to the
3706       // lower 5/6 bits. We need to do the masking ourselves.
3707       Node* in2 = n->in(2);
3708       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3709       const TypeInt* t = in2->find_int_type();
3710       if (t != NULL && t->is_con()) {
3711         juint shift = t->get_con();
3712         if (shift > mask) { // Unsigned cmp
3713           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3714         }
3715       } else {
3716         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3717           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3718           n->set_req(2, shift);
3719         }
3720       }
3721       if (in2->outcnt() == 0) { // Remove dead node
3722         in2->disconnect_inputs(this);
3723       }
3724     }
3725     break;
3726   case Op_MemBarStoreStore:
3727   case Op_MemBarRelease:
3728     // Break the link with AllocateNode: it is no longer useful and
3729     // confuses register allocation.
3730     if (n->req() > MemBarNode::Precedent) {
3731       n->set_req(MemBarNode::Precedent, top());
3732     }
3733     break;
3734   case Op_MemBarAcquire: {
3735     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3736       // At parse time, the trailing MemBarAcquire for a volatile load
3737       // is created with an edge to the load. After optimizations,
3738       // that input may be a chain of Phis. If those phis have no
3739       // other use, then the MemBarAcquire keeps them alive and
3740       // register allocation can be confused.
3741       dead_nodes.push(n->in(MemBarNode::Precedent));
3742       n->set_req(MemBarNode::Precedent, top());
3743     }
3744     break;
3745   }
3746   case Op_Blackhole:
3747     break;
3748   case Op_RangeCheck: {
3749     RangeCheckNode* rc = n->as_RangeCheck();
3750     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3751     n->subsume_by(iff, this);
3752     frc._tests.push(iff);
3753     break;
3754   }
3755   case Op_ConvI2L: {
3756     if (!Matcher::convi2l_type_required) {
3757       // Code generation on some platforms doesn't need accurate
3758       // ConvI2L types. Widening the type can help remove redundant
3759       // address computations.
3760       n->as_Type()->set_type(TypeLong::INT);
3761       ResourceMark rm;
3762       Unique_Node_List wq;
3763       wq.push(n);
3764       for (uint next = 0; next < wq.size(); next++) {
3765         Node *m = wq.at(next);
3766 
3767         for(;;) {
3768           // Loop over all nodes with identical inputs edges as m
3769           Node* k = m->find_similar(m->Opcode());
3770           if (k == NULL) {
3771             break;
3772           }
3773           // Push their uses so we get a chance to remove node made
3774           // redundant
3775           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3776             Node* u = k->fast_out(i);
3777             if (u->Opcode() == Op_LShiftL ||
3778                 u->Opcode() == Op_AddL ||
3779                 u->Opcode() == Op_SubL ||
3780                 u->Opcode() == Op_AddP) {
3781               wq.push(u);
3782             }
3783           }
3784           // Replace all nodes with identical edges as m with m
3785           k->subsume_by(m, this);
3786         }
3787       }
3788     }
3789     break;
3790   }
3791   case Op_CmpUL: {
3792     if (!Matcher::has_match_rule(Op_CmpUL)) {
3793       // No support for unsigned long comparisons
3794       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3795       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3796       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3797       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3798       Node* andl = new AndLNode(orl, remove_sign_mask);
3799       Node* cmp = new CmpLNode(andl, n->in(2));
3800       n->subsume_by(cmp, this);
3801     }
3802     break;
3803   }
3804   default:
3805     assert(!n->is_Call(), "");
3806     assert(!n->is_Mem(), "");
3807     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3808     break;
3809   }
3810 }
3811 
3812 //------------------------------final_graph_reshaping_walk---------------------
3813 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3814 // requires that the walk visits a node's inputs before visiting the node.
3815 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3816   Unique_Node_List sfpt;
3817 
3818   frc._visited.set(root->_idx); // first, mark node as visited
3819   uint cnt = root->req();
3820   Node *n = root;
3821   uint  i = 0;
3822   while (true) {
3823     if (i < cnt) {
3824       // Place all non-visited non-null inputs onto stack
3825       Node* m = n->in(i);
3826       ++i;
3827       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3828         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3829           // compute worst case interpreter size in case of a deoptimization
3830           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3831 
3832           sfpt.push(m);
3833         }
3834         cnt = m->req();
3835         nstack.push(n, i); // put on stack parent and next input's index
3836         n = m;
3837         i = 0;
3838       }
3839     } else {
3840       // Now do post-visit work
3841       final_graph_reshaping_impl(n, frc, dead_nodes);
3842       if (nstack.is_empty())
3843         break;             // finished
3844       n = nstack.node();   // Get node from stack
3845       cnt = n->req();
3846       i = nstack.index();
3847       nstack.pop();        // Shift to the next node on stack
3848     }
3849   }
3850 
3851   // Skip next transformation if compressed oops are not used.
3852   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3853       (!UseCompressedOops && !UseCompressedClassPointers))
3854     return;
3855 
3856   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3857   // It could be done for an uncommon traps or any safepoints/calls
3858   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3859   while (sfpt.size() > 0) {
3860     n = sfpt.pop();
3861     JVMState *jvms = n->as_SafePoint()->jvms();
3862     assert(jvms != NULL, "sanity");
3863     int start = jvms->debug_start();
3864     int end   = n->req();
3865     bool is_uncommon = (n->is_CallStaticJava() &&
3866                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3867     for (int j = start; j < end; j++) {
3868       Node* in = n->in(j);
3869       if (in->is_DecodeNarrowPtr()) {
3870         bool safe_to_skip = true;
3871         if (!is_uncommon ) {
3872           // Is it safe to skip?
3873           for (uint i = 0; i < in->outcnt(); i++) {
3874             Node* u = in->raw_out(i);
3875             if (!u->is_SafePoint() ||
3876                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3877               safe_to_skip = false;
3878             }
3879           }
3880         }
3881         if (safe_to_skip) {
3882           n->set_req(j, in->in(1));
3883         }
3884         if (in->outcnt() == 0) {
3885           in->disconnect_inputs(this);
3886         }
3887       }
3888     }
3889   }
3890 }
3891 
3892 //------------------------------final_graph_reshaping--------------------------
3893 // Final Graph Reshaping.
3894 //
3895 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3896 //     and not commoned up and forced early.  Must come after regular
3897 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3898 //     inputs to Loop Phis; these will be split by the allocator anyways.
3899 //     Remove Opaque nodes.
3900 // (2) Move last-uses by commutative operations to the left input to encourage
3901 //     Intel update-in-place two-address operations and better register usage
3902 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3903 //     calls canonicalizing them back.
3904 // (3) Count the number of double-precision FP ops, single-precision FP ops
3905 //     and call sites.  On Intel, we can get correct rounding either by
3906 //     forcing singles to memory (requires extra stores and loads after each
3907 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3908 //     clearing the mode bit around call sites).  The mode bit is only used
3909 //     if the relative frequency of single FP ops to calls is low enough.
3910 //     This is a key transform for SPEC mpeg_audio.
3911 // (4) Detect infinite loops; blobs of code reachable from above but not
3912 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3913 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3914 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3915 //     Detection is by looking for IfNodes where only 1 projection is
3916 //     reachable from below or CatchNodes missing some targets.
3917 // (5) Assert for insane oop offsets in debug mode.
3918 
3919 bool Compile::final_graph_reshaping() {
3920   // an infinite loop may have been eliminated by the optimizer,
3921   // in which case the graph will be empty.
3922   if (root()->req() == 1) {
3923     record_method_not_compilable("trivial infinite loop");
3924     return true;
3925   }
3926 
3927   // Expensive nodes have their control input set to prevent the GVN
3928   // from freely commoning them. There's no GVN beyond this point so
3929   // no need to keep the control input. We want the expensive nodes to
3930   // be freely moved to the least frequent code path by gcm.
3931   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3932   for (int i = 0; i < expensive_count(); i++) {
3933     _expensive_nodes.at(i)->set_req(0, NULL);
3934   }
3935 
3936   Final_Reshape_Counts frc;
3937 
3938   // Visit everybody reachable!
3939   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3940   Node_Stack nstack(live_nodes() >> 1);
3941   Unique_Node_List dead_nodes;
3942   final_graph_reshaping_walk(nstack, root(), frc, dead_nodes);
3943 
3944   // Check for unreachable (from below) code (i.e., infinite loops).
3945   for( uint i = 0; i < frc._tests.size(); i++ ) {
3946     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3947     // Get number of CFG targets.
3948     // Note that PCTables include exception targets after calls.
3949     uint required_outcnt = n->required_outcnt();
3950     if (n->outcnt() != required_outcnt) {
3951       // Check for a few special cases.  Rethrow Nodes never take the
3952       // 'fall-thru' path, so expected kids is 1 less.
3953       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3954         if (n->in(0)->in(0)->is_Call()) {
3955           CallNode* call = n->in(0)->in(0)->as_Call();
3956           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3957             required_outcnt--;      // Rethrow always has 1 less kid
3958           } else if (call->req() > TypeFunc::Parms &&
3959                      call->is_CallDynamicJava()) {
3960             // Check for null receiver. In such case, the optimizer has
3961             // detected that the virtual call will always result in a null
3962             // pointer exception. The fall-through projection of this CatchNode
3963             // will not be populated.
3964             Node* arg0 = call->in(TypeFunc::Parms);
3965             if (arg0->is_Type() &&
3966                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3967               required_outcnt--;
3968             }
3969           } else if (call->entry_point() == OptoRuntime::new_array_Java() ||
3970                      call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
3971             // Check for illegal array length. In such case, the optimizer has
3972             // detected that the allocation attempt will always result in an
3973             // exception. There is no fall-through projection of this CatchNode .
3974             assert(call->is_CallStaticJava(), "static call expected");
3975             assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
3976             uint valid_length_test_input = call->req() - 1;
3977             Node* valid_length_test = call->in(valid_length_test_input);
3978             call->del_req(valid_length_test_input);
3979             if (valid_length_test->find_int_con(1) == 0) {
3980               required_outcnt--;
3981             }
3982             dead_nodes.push(valid_length_test);
3983             assert(n->outcnt() == required_outcnt, "malformed control flow");
3984             continue;
3985           }
3986         }
3987       }
3988       // Recheck with a better notion of 'required_outcnt'
3989       if (n->outcnt() != required_outcnt) {
3990         record_method_not_compilable("malformed control flow");
3991         return true;            // Not all targets reachable!
3992       }
3993     } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) {
3994       CallNode* call = n->in(0)->in(0)->as_Call();
3995       if (call->entry_point() == OptoRuntime::new_array_Java() ||
3996           call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
3997         assert(call->is_CallStaticJava(), "static call expected");
3998         assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
3999         uint valid_length_test_input = call->req() - 1;
4000         dead_nodes.push(call->in(valid_length_test_input));
4001         call->del_req(valid_length_test_input); // valid length test useless now
4002       }
4003     }
4004     // Check that I actually visited all kids.  Unreached kids
4005     // must be infinite loops.
4006     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
4007       if (!frc._visited.test(n->fast_out(j)->_idx)) {
4008         record_method_not_compilable("infinite loop");
4009         return true;            // Found unvisited kid; must be unreach
4010       }
4011 
4012     // Here so verification code in final_graph_reshaping_walk()
4013     // always see an OuterStripMinedLoopEnd
4014     if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) {
4015       IfNode* init_iff = n->as_If();
4016       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
4017       n->subsume_by(iff, this);
4018     }
4019   }
4020 
4021   while (dead_nodes.size() > 0) {
4022     Node* m = dead_nodes.pop();
4023     if (m->outcnt() == 0 && m != top()) {
4024       for (uint j = 0; j < m->req(); j++) {
4025         Node* in = m->in(j);
4026         if (in != NULL) {
4027           dead_nodes.push(in);
4028         }
4029       }
4030       m->disconnect_inputs(this);
4031     }
4032   }
4033 
4034 #ifdef IA32
4035   // If original bytecodes contained a mixture of floats and doubles
4036   // check if the optimizer has made it homogeneous, item (3).
4037   if (UseSSE == 0 &&
4038       frc.get_float_count() > 32 &&
4039       frc.get_double_count() == 0 &&
4040       (10 * frc.get_call_count() < frc.get_float_count()) ) {
4041     set_24_bit_selection_and_mode(false, true);
4042   }
4043 #endif // IA32
4044 
4045   set_java_calls(frc.get_java_call_count());
4046   set_inner_loops(frc.get_inner_loop_count());
4047 
4048   // No infinite loops, no reason to bail out.
4049   return false;
4050 }
4051 
4052 //-----------------------------too_many_traps----------------------------------
4053 // Report if there are too many traps at the current method and bci.
4054 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
4055 bool Compile::too_many_traps(ciMethod* method,
4056                              int bci,
4057                              Deoptimization::DeoptReason reason) {
4058   ciMethodData* md = method->method_data();
4059   if (md->is_empty()) {
4060     // Assume the trap has not occurred, or that it occurred only
4061     // because of a transient condition during start-up in the interpreter.
4062     return false;
4063   }
4064   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
4065   if (md->has_trap_at(bci, m, reason) != 0) {
4066     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
4067     // Also, if there are multiple reasons, or if there is no per-BCI record,
4068     // assume the worst.
4069     if (log())
4070       log()->elem("observe trap='%s' count='%d'",
4071                   Deoptimization::trap_reason_name(reason),
4072                   md->trap_count(reason));
4073     return true;
4074   } else {
4075     // Ignore method/bci and see if there have been too many globally.
4076     return too_many_traps(reason, md);
4077   }
4078 }
4079 
4080 // Less-accurate variant which does not require a method and bci.
4081 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
4082                              ciMethodData* logmd) {
4083   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
4084     // Too many traps globally.
4085     // Note that we use cumulative trap_count, not just md->trap_count.
4086     if (log()) {
4087       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
4088       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
4089                   Deoptimization::trap_reason_name(reason),
4090                   mcount, trap_count(reason));
4091     }
4092     return true;
4093   } else {
4094     // The coast is clear.
4095     return false;
4096   }
4097 }
4098 
4099 //--------------------------too_many_recompiles--------------------------------
4100 // Report if there are too many recompiles at the current method and bci.
4101 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
4102 // Is not eager to return true, since this will cause the compiler to use
4103 // Action_none for a trap point, to avoid too many recompilations.
4104 bool Compile::too_many_recompiles(ciMethod* method,
4105                                   int bci,
4106                                   Deoptimization::DeoptReason reason) {
4107   ciMethodData* md = method->method_data();
4108   if (md->is_empty()) {
4109     // Assume the trap has not occurred, or that it occurred only
4110     // because of a transient condition during start-up in the interpreter.
4111     return false;
4112   }
4113   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
4114   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
4115   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
4116   Deoptimization::DeoptReason per_bc_reason
4117     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
4118   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
4119   if ((per_bc_reason == Deoptimization::Reason_none
4120        || md->has_trap_at(bci, m, reason) != 0)
4121       // The trap frequency measure we care about is the recompile count:
4122       && md->trap_recompiled_at(bci, m)
4123       && md->overflow_recompile_count() >= bc_cutoff) {
4124     // Do not emit a trap here if it has already caused recompilations.
4125     // Also, if there are multiple reasons, or if there is no per-BCI record,
4126     // assume the worst.
4127     if (log())
4128       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
4129                   Deoptimization::trap_reason_name(reason),
4130                   md->trap_count(reason),
4131                   md->overflow_recompile_count());
4132     return true;
4133   } else if (trap_count(reason) != 0
4134              && decompile_count() >= m_cutoff) {
4135     // Too many recompiles globally, and we have seen this sort of trap.
4136     // Use cumulative decompile_count, not just md->decompile_count.
4137     if (log())
4138       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
4139                   Deoptimization::trap_reason_name(reason),
4140                   md->trap_count(reason), trap_count(reason),
4141                   md->decompile_count(), decompile_count());
4142     return true;
4143   } else {
4144     // The coast is clear.
4145     return false;
4146   }
4147 }
4148 
4149 // Compute when not to trap. Used by matching trap based nodes and
4150 // NullCheck optimization.
4151 void Compile::set_allowed_deopt_reasons() {
4152   _allowed_reasons = 0;
4153   if (is_method_compilation()) {
4154     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
4155       assert(rs < BitsPerInt, "recode bit map");
4156       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
4157         _allowed_reasons |= nth_bit(rs);
4158       }
4159     }
4160   }
4161 }
4162 
4163 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
4164   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
4165 }
4166 
4167 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
4168   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
4169 }
4170 
4171 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
4172   if (holder->is_initialized()) {
4173     return false;
4174   }
4175   if (holder->is_being_initialized()) {
4176     if (accessing_method->holder() == holder) {
4177       // Access inside a class. The barrier can be elided when access happens in <clinit>,
4178       // <init>, or a static method. In all those cases, there was an initialization
4179       // barrier on the holder klass passed.
4180       if (accessing_method->is_static_initializer() ||
4181           accessing_method->is_object_initializer() ||
4182           accessing_method->is_static()) {
4183         return false;
4184       }
4185     } else if (accessing_method->holder()->is_subclass_of(holder)) {
4186       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
4187       // In case of <init> or a static method, the barrier is on the subclass is not enough:
4188       // child class can become fully initialized while its parent class is still being initialized.
4189       if (accessing_method->is_static_initializer()) {
4190         return false;
4191       }
4192     }
4193     ciMethod* root = method(); // the root method of compilation
4194     if (root != accessing_method) {
4195       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
4196     }
4197   }
4198   return true;
4199 }
4200 
4201 #ifndef PRODUCT
4202 //------------------------------verify_bidirectional_edges---------------------
4203 // For each input edge to a node (ie - for each Use-Def edge), verify that
4204 // there is a corresponding Def-Use edge.
4205 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) {
4206   // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc
4207   uint stack_size = live_nodes() >> 4;
4208   Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize));
4209   nstack.push(_root);
4210 
4211   while (nstack.size() > 0) {
4212     Node* n = nstack.pop();
4213     if (visited.member(n)) {
4214       continue;
4215     }
4216     visited.push(n);
4217 
4218     // Walk over all input edges, checking for correspondence
4219     uint length = n->len();
4220     for (uint i = 0; i < length; i++) {
4221       Node* in = n->in(i);
4222       if (in != NULL && !visited.member(in)) {
4223         nstack.push(in); // Put it on stack
4224       }
4225       if (in != NULL && !in->is_top()) {
4226         // Count instances of `next`
4227         int cnt = 0;
4228         for (uint idx = 0; idx < in->_outcnt; idx++) {
4229           if (in->_out[idx] == n) {
4230             cnt++;
4231           }
4232         }
4233         assert(cnt > 0, "Failed to find Def-Use edge.");
4234         // Check for duplicate edges
4235         // walk the input array downcounting the input edges to n
4236         for (uint j = 0; j < length; j++) {
4237           if (n->in(j) == in) {
4238             cnt--;
4239           }
4240         }
4241         assert(cnt == 0, "Mismatched edge count.");
4242       } else if (in == NULL) {
4243         assert(i == 0 || i >= n->req() ||
4244                n->is_Region() || n->is_Phi() || n->is_ArrayCopy() ||
4245                (n->is_Unlock() && i == (n->req() - 1)) ||
4246                (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion
4247               "only region, phi, arraycopy, unlock or membar nodes have null data edges");
4248       } else {
4249         assert(in->is_top(), "sanity");
4250         // Nothing to check.
4251       }
4252     }
4253   }
4254 }
4255 
4256 //------------------------------verify_graph_edges---------------------------
4257 // Walk the Graph and verify that there is a one-to-one correspondence
4258 // between Use-Def edges and Def-Use edges in the graph.
4259 void Compile::verify_graph_edges(bool no_dead_code) {
4260   if (VerifyGraphEdges) {
4261     Unique_Node_List visited;
4262 
4263     // Call graph walk to check edges
4264     verify_bidirectional_edges(visited);
4265     if (no_dead_code) {
4266       // Now make sure that no visited node is used by an unvisited node.
4267       bool dead_nodes = false;
4268       Unique_Node_List checked;
4269       while (visited.size() > 0) {
4270         Node* n = visited.pop();
4271         checked.push(n);
4272         for (uint i = 0; i < n->outcnt(); i++) {
4273           Node* use = n->raw_out(i);
4274           if (checked.member(use))  continue;  // already checked
4275           if (visited.member(use))  continue;  // already in the graph
4276           if (use->is_Con())        continue;  // a dead ConNode is OK
4277           // At this point, we have found a dead node which is DU-reachable.
4278           if (!dead_nodes) {
4279             tty->print_cr("*** Dead nodes reachable via DU edges:");
4280             dead_nodes = true;
4281           }
4282           use->dump(2);
4283           tty->print_cr("---");
4284           checked.push(use);  // No repeats; pretend it is now checked.
4285         }
4286       }
4287       assert(!dead_nodes, "using nodes must be reachable from root");
4288     }
4289   }
4290 }
4291 #endif
4292 
4293 // The Compile object keeps track of failure reasons separately from the ciEnv.
4294 // This is required because there is not quite a 1-1 relation between the
4295 // ciEnv and its compilation task and the Compile object.  Note that one
4296 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
4297 // to backtrack and retry without subsuming loads.  Other than this backtracking
4298 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
4299 // by the logic in C2Compiler.
4300 void Compile::record_failure(const char* reason) {
4301   if (log() != NULL) {
4302     log()->elem("failure reason='%s' phase='compile'", reason);
4303   }
4304   if (_failure_reason == NULL) {
4305     // Record the first failure reason.
4306     _failure_reason = reason;
4307   }
4308 
4309   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
4310     C->print_method(PHASE_FAILURE, 1);
4311   }
4312   _root = NULL;  // flush the graph, too
4313 }
4314 
4315 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
4316   : TraceTime(name, accumulator, CITime, CITimeVerbose),
4317     _phase_name(name), _dolog(CITimeVerbose)
4318 {
4319   if (_dolog) {
4320     C = Compile::current();
4321     _log = C->log();
4322   } else {
4323     C = NULL;
4324     _log = NULL;
4325   }
4326   if (_log != NULL) {
4327     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
4328     _log->stamp();
4329     _log->end_head();
4330   }
4331 }
4332 
4333 Compile::TracePhase::~TracePhase() {
4334 
4335   C = Compile::current();
4336   if (_dolog) {
4337     _log = C->log();
4338   } else {
4339     _log = NULL;
4340   }
4341 
4342 #ifdef ASSERT
4343   if (PrintIdealNodeCount) {
4344     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
4345                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
4346   }
4347 
4348   if (VerifyIdealNodeCount) {
4349     Compile::current()->print_missing_nodes();
4350   }
4351 #endif
4352 
4353   if (_log != NULL) {
4354     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
4355   }
4356 }
4357 
4358 //----------------------------static_subtype_check-----------------------------
4359 // Shortcut important common cases when superklass is exact:
4360 // (0) superklass is java.lang.Object (can occur in reflective code)
4361 // (1) subklass is already limited to a subtype of superklass => always ok
4362 // (2) subklass does not overlap with superklass => always fail
4363 // (3) superklass has NO subtypes and we can check with a simple compare.
4364 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk) {
4365   if (StressReflectiveCode) {
4366     return SSC_full_test;       // Let caller generate the general case.
4367   }
4368 
4369   if (subk->is_java_subtype_of(superk)) {
4370     return SSC_always_true; // (0) and (1)  this test cannot fail
4371   }
4372 
4373   if (!subk->maybe_java_subtype_of(superk)) {
4374     return SSC_always_false; // (2) true path dead; no dynamic test needed
4375   }
4376 
4377   const Type* superelem = superk;
4378   if (superk->isa_aryklassptr()) {
4379     int ignored;
4380     superelem = superk->is_aryklassptr()->base_element_type(ignored);
4381   }
4382 
4383   if (superelem->isa_instklassptr()) {
4384     ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass();
4385     if (!ik->has_subklass()) {
4386       if (!ik->is_final()) {
4387         // Add a dependency if there is a chance of a later subclass.
4388         dependencies()->assert_leaf_type(ik);
4389       }
4390       if (!superk->maybe_java_subtype_of(subk)) {
4391         return SSC_always_false;
4392       }
4393       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4394     }
4395   } else {
4396     // A primitive array type has no subtypes.
4397     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4398   }
4399 
4400   return SSC_full_test;
4401 }
4402 
4403 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4404 #ifdef _LP64
4405   // The scaled index operand to AddP must be a clean 64-bit value.
4406   // Java allows a 32-bit int to be incremented to a negative
4407   // value, which appears in a 64-bit register as a large
4408   // positive number.  Using that large positive number as an
4409   // operand in pointer arithmetic has bad consequences.
4410   // On the other hand, 32-bit overflow is rare, and the possibility
4411   // can often be excluded, if we annotate the ConvI2L node with
4412   // a type assertion that its value is known to be a small positive
4413   // number.  (The prior range check has ensured this.)
4414   // This assertion is used by ConvI2LNode::Ideal.
4415   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4416   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4417   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4418   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4419 #endif
4420   return idx;
4421 }
4422 
4423 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4424 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) {
4425   if (ctrl != NULL) {
4426     // Express control dependency by a CastII node with a narrow type.
4427     value = new CastIINode(value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */);
4428     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4429     // node from floating above the range check during loop optimizations. Otherwise, the
4430     // ConvI2L node may be eliminated independently of the range check, causing the data path
4431     // to become TOP while the control path is still there (although it's unreachable).
4432     value->set_req(0, ctrl);
4433     value = phase->transform(value);
4434   }
4435   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4436   return phase->transform(new ConvI2LNode(value, ltype));
4437 }
4438 
4439 // The message about the current inlining is accumulated in
4440 // _print_inlining_stream and transferred into the _print_inlining_list
4441 // once we know whether inlining succeeds or not. For regular
4442 // inlining, messages are appended to the buffer pointed by
4443 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4444 // a new buffer is added after _print_inlining_idx in the list. This
4445 // way we can update the inlining message for late inlining call site
4446 // when the inlining is attempted again.
4447 void Compile::print_inlining_init() {
4448   if (print_inlining() || print_intrinsics()) {
4449     // print_inlining_init is actually called several times.
4450     print_inlining_reset();
4451     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer*>(comp_arena(), 1, 1, new PrintInliningBuffer());
4452   }
4453 }
4454 
4455 void Compile::print_inlining_reinit() {
4456   if (print_inlining() || print_intrinsics()) {
4457     print_inlining_reset();
4458   }
4459 }
4460 
4461 void Compile::print_inlining_reset() {
4462   _print_inlining_stream->reset();
4463 }
4464 
4465 void Compile::print_inlining_commit() {
4466   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4467   // Transfer the message from _print_inlining_stream to the current
4468   // _print_inlining_list buffer and clear _print_inlining_stream.
4469   _print_inlining_list->at(_print_inlining_idx)->ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size());
4470   print_inlining_reset();
4471 }
4472 
4473 void Compile::print_inlining_push() {
4474   // Add new buffer to the _print_inlining_list at current position
4475   _print_inlining_idx++;
4476   _print_inlining_list->insert_before(_print_inlining_idx, new PrintInliningBuffer());
4477 }
4478 
4479 Compile::PrintInliningBuffer* Compile::print_inlining_current() {
4480   return _print_inlining_list->at(_print_inlining_idx);
4481 }
4482 
4483 void Compile::print_inlining_update(CallGenerator* cg) {
4484   if (print_inlining() || print_intrinsics()) {
4485     if (cg->is_late_inline()) {
4486       if (print_inlining_current()->cg() != cg &&
4487           (print_inlining_current()->cg() != NULL ||
4488            print_inlining_current()->ss()->size() != 0)) {
4489         print_inlining_push();
4490       }
4491       print_inlining_commit();
4492       print_inlining_current()->set_cg(cg);
4493     } else {
4494       if (print_inlining_current()->cg() != NULL) {
4495         print_inlining_push();
4496       }
4497       print_inlining_commit();
4498     }
4499   }
4500 }
4501 
4502 void Compile::print_inlining_move_to(CallGenerator* cg) {
4503   // We resume inlining at a late inlining call site. Locate the
4504   // corresponding inlining buffer so that we can update it.
4505   if (print_inlining() || print_intrinsics()) {
4506     for (int i = 0; i < _print_inlining_list->length(); i++) {
4507       if (_print_inlining_list->at(i)->cg() == cg) {
4508         _print_inlining_idx = i;
4509         return;
4510       }
4511     }
4512     ShouldNotReachHere();
4513   }
4514 }
4515 
4516 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4517   if (print_inlining() || print_intrinsics()) {
4518     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4519     assert(print_inlining_current()->cg() == cg, "wrong entry");
4520     // replace message with new message
4521     _print_inlining_list->at_put(_print_inlining_idx, new PrintInliningBuffer());
4522     print_inlining_commit();
4523     print_inlining_current()->set_cg(cg);
4524   }
4525 }
4526 
4527 void Compile::print_inlining_assert_ready() {
4528   assert(!_print_inlining || _print_inlining_stream->size() == 0, "losing data");
4529 }
4530 
4531 void Compile::process_print_inlining() {
4532   assert(_late_inlines.length() == 0, "not drained yet");
4533   if (print_inlining() || print_intrinsics()) {
4534     ResourceMark rm;
4535     stringStream ss;
4536     assert(_print_inlining_list != NULL, "process_print_inlining should be called only once.");
4537     for (int i = 0; i < _print_inlining_list->length(); i++) {
4538       PrintInliningBuffer* pib = _print_inlining_list->at(i);
4539       ss.print("%s", pib->ss()->freeze());
4540       delete pib;
4541       DEBUG_ONLY(_print_inlining_list->at_put(i, NULL));
4542     }
4543     // Reset _print_inlining_list, it only contains destructed objects.
4544     // It is on the arena, so it will be freed when the arena is reset.
4545     _print_inlining_list = NULL;
4546     // _print_inlining_stream won't be used anymore, either.
4547     print_inlining_reset();
4548     size_t end = ss.size();
4549     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4550     strncpy(_print_inlining_output, ss.freeze(), end+1);
4551     _print_inlining_output[end] = 0;
4552   }
4553 }
4554 
4555 void Compile::dump_print_inlining() {
4556   if (_print_inlining_output != NULL) {
4557     tty->print_raw(_print_inlining_output);
4558   }
4559 }
4560 
4561 void Compile::log_late_inline(CallGenerator* cg) {
4562   if (log() != NULL) {
4563     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4564                 cg->unique_id());
4565     JVMState* p = cg->call_node()->jvms();
4566     while (p != NULL) {
4567       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4568       p = p->caller();
4569     }
4570     log()->tail("late_inline");
4571   }
4572 }
4573 
4574 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4575   log_late_inline(cg);
4576   if (log() != NULL) {
4577     log()->inline_fail(msg);
4578   }
4579 }
4580 
4581 void Compile::log_inline_id(CallGenerator* cg) {
4582   if (log() != NULL) {
4583     // The LogCompilation tool needs a unique way to identify late
4584     // inline call sites. This id must be unique for this call site in
4585     // this compilation. Try to have it unique across compilations as
4586     // well because it can be convenient when grepping through the log
4587     // file.
4588     // Distinguish OSR compilations from others in case CICountOSR is
4589     // on.
4590     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4591     cg->set_unique_id(id);
4592     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4593   }
4594 }
4595 
4596 void Compile::log_inline_failure(const char* msg) {
4597   if (C->log() != NULL) {
4598     C->log()->inline_fail(msg);
4599   }
4600 }
4601 
4602 
4603 // Dump inlining replay data to the stream.
4604 // Don't change thread state and acquire any locks.
4605 void Compile::dump_inline_data(outputStream* out) {
4606   InlineTree* inl_tree = ilt();
4607   if (inl_tree != NULL) {
4608     out->print(" inline %d", inl_tree->count());
4609     inl_tree->dump_replay_data(out);
4610   }
4611 }
4612 
4613 void Compile::dump_inline_data_reduced(outputStream* out) {
4614   assert(ReplayReduce, "");
4615 
4616   InlineTree* inl_tree = ilt();
4617   if (inl_tree == NULL) {
4618     return;
4619   }
4620   // Enable iterative replay file reduction
4621   // Output "compile" lines for depth 1 subtrees,
4622   // simulating that those trees were compiled
4623   // instead of inlined.
4624   for (int i = 0; i < inl_tree->subtrees().length(); ++i) {
4625     InlineTree* sub = inl_tree->subtrees().at(i);
4626     if (sub->inline_level() != 1) {
4627       continue;
4628     }
4629 
4630     ciMethod* method = sub->method();
4631     int entry_bci = -1;
4632     int comp_level = env()->task()->comp_level();
4633     out->print("compile ");
4634     method->dump_name_as_ascii(out);
4635     out->print(" %d %d", entry_bci, comp_level);
4636     out->print(" inline %d", sub->count());
4637     sub->dump_replay_data(out, -1);
4638     out->cr();
4639   }
4640 }
4641 
4642 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4643   if (n1->Opcode() < n2->Opcode())      return -1;
4644   else if (n1->Opcode() > n2->Opcode()) return 1;
4645 
4646   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4647   for (uint i = 1; i < n1->req(); i++) {
4648     if (n1->in(i) < n2->in(i))      return -1;
4649     else if (n1->in(i) > n2->in(i)) return 1;
4650   }
4651 
4652   return 0;
4653 }
4654 
4655 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4656   Node* n1 = *n1p;
4657   Node* n2 = *n2p;
4658 
4659   return cmp_expensive_nodes(n1, n2);
4660 }
4661 
4662 void Compile::sort_expensive_nodes() {
4663   if (!expensive_nodes_sorted()) {
4664     _expensive_nodes.sort(cmp_expensive_nodes);
4665   }
4666 }
4667 
4668 bool Compile::expensive_nodes_sorted() const {
4669   for (int i = 1; i < _expensive_nodes.length(); i++) {
4670     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) {
4671       return false;
4672     }
4673   }
4674   return true;
4675 }
4676 
4677 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4678   if (_expensive_nodes.length() == 0) {
4679     return false;
4680   }
4681 
4682   assert(OptimizeExpensiveOps, "optimization off?");
4683 
4684   // Take this opportunity to remove dead nodes from the list
4685   int j = 0;
4686   for (int i = 0; i < _expensive_nodes.length(); i++) {
4687     Node* n = _expensive_nodes.at(i);
4688     if (!n->is_unreachable(igvn)) {
4689       assert(n->is_expensive(), "should be expensive");
4690       _expensive_nodes.at_put(j, n);
4691       j++;
4692     }
4693   }
4694   _expensive_nodes.trunc_to(j);
4695 
4696   // Then sort the list so that similar nodes are next to each other
4697   // and check for at least two nodes of identical kind with same data
4698   // inputs.
4699   sort_expensive_nodes();
4700 
4701   for (int i = 0; i < _expensive_nodes.length()-1; i++) {
4702     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) {
4703       return true;
4704     }
4705   }
4706 
4707   return false;
4708 }
4709 
4710 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4711   if (_expensive_nodes.length() == 0) {
4712     return;
4713   }
4714 
4715   assert(OptimizeExpensiveOps, "optimization off?");
4716 
4717   // Sort to bring similar nodes next to each other and clear the
4718   // control input of nodes for which there's only a single copy.
4719   sort_expensive_nodes();
4720 
4721   int j = 0;
4722   int identical = 0;
4723   int i = 0;
4724   bool modified = false;
4725   for (; i < _expensive_nodes.length()-1; i++) {
4726     assert(j <= i, "can't write beyond current index");
4727     if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) {
4728       identical++;
4729       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4730       continue;
4731     }
4732     if (identical > 0) {
4733       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4734       identical = 0;
4735     } else {
4736       Node* n = _expensive_nodes.at(i);
4737       igvn.replace_input_of(n, 0, NULL);
4738       igvn.hash_insert(n);
4739       modified = true;
4740     }
4741   }
4742   if (identical > 0) {
4743     _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4744   } else if (_expensive_nodes.length() >= 1) {
4745     Node* n = _expensive_nodes.at(i);
4746     igvn.replace_input_of(n, 0, NULL);
4747     igvn.hash_insert(n);
4748     modified = true;
4749   }
4750   _expensive_nodes.trunc_to(j);
4751   if (modified) {
4752     igvn.optimize();
4753   }
4754 }
4755 
4756 void Compile::add_expensive_node(Node * n) {
4757   assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list");
4758   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4759   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4760   if (OptimizeExpensiveOps) {
4761     _expensive_nodes.append(n);
4762   } else {
4763     // Clear control input and let IGVN optimize expensive nodes if
4764     // OptimizeExpensiveOps is off.
4765     n->set_req(0, NULL);
4766   }
4767 }
4768 
4769 /**
4770  * Track coarsened Lock and Unlock nodes.
4771  */
4772 
4773 class Lock_List : public Node_List {
4774   uint _origin_cnt;
4775 public:
4776   Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {}
4777   uint origin_cnt() const { return _origin_cnt; }
4778 };
4779 
4780 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) {
4781   int length = locks.length();
4782   if (length > 0) {
4783     // Have to keep this list until locks elimination during Macro nodes elimination.
4784     Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length);
4785     for (int i = 0; i < length; i++) {
4786       AbstractLockNode* lock = locks.at(i);
4787       assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx);
4788       locks_list->push(lock);
4789     }
4790     _coarsened_locks.append(locks_list);
4791   }
4792 }
4793 
4794 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) {
4795   int count = coarsened_count();
4796   for (int i = 0; i < count; i++) {
4797     Node_List* locks_list = _coarsened_locks.at(i);
4798     for (uint j = 0; j < locks_list->size(); j++) {
4799       Node* lock = locks_list->at(j);
4800       assert(lock->is_AbstractLock(), "sanity");
4801       if (!useful.member(lock)) {
4802         locks_list->yank(lock);
4803       }
4804     }
4805   }
4806 }
4807 
4808 void Compile::remove_coarsened_lock(Node* n) {
4809   if (n->is_AbstractLock()) {
4810     int count = coarsened_count();
4811     for (int i = 0; i < count; i++) {
4812       Node_List* locks_list = _coarsened_locks.at(i);
4813       locks_list->yank(n);
4814     }
4815   }
4816 }
4817 
4818 bool Compile::coarsened_locks_consistent() {
4819   int count = coarsened_count();
4820   for (int i = 0; i < count; i++) {
4821     bool unbalanced = false;
4822     bool modified = false; // track locks kind modifications
4823     Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i);
4824     uint size = locks_list->size();
4825     if (size == 0) {
4826       unbalanced = false; // All locks were eliminated - good
4827     } else if (size != locks_list->origin_cnt()) {
4828       unbalanced = true; // Some locks were removed from list
4829     } else {
4830       for (uint j = 0; j < size; j++) {
4831         Node* lock = locks_list->at(j);
4832         // All nodes in group should have the same state (modified or not)
4833         if (!lock->as_AbstractLock()->is_coarsened()) {
4834           if (j == 0) {
4835             // first on list was modified, the rest should be too for consistency
4836             modified = true;
4837           } else if (!modified) {
4838             // this lock was modified but previous locks on the list were not
4839             unbalanced = true;
4840             break;
4841           }
4842         } else if (modified) {
4843           // previous locks on list were modified but not this lock
4844           unbalanced = true;
4845           break;
4846         }
4847       }
4848     }
4849     if (unbalanced) {
4850       // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified
4851 #ifdef ASSERT
4852       if (PrintEliminateLocks) {
4853         tty->print_cr("=== unbalanced coarsened locks ===");
4854         for (uint l = 0; l < size; l++) {
4855           locks_list->at(l)->dump();
4856         }
4857       }
4858 #endif
4859       record_failure(C2Compiler::retry_no_locks_coarsening());
4860       return false;
4861     }
4862   }
4863   return true;
4864 }
4865 
4866 /**
4867  * Remove the speculative part of types and clean up the graph
4868  */
4869 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4870   if (UseTypeSpeculation) {
4871     Unique_Node_List worklist;
4872     worklist.push(root());
4873     int modified = 0;
4874     // Go over all type nodes that carry a speculative type, drop the
4875     // speculative part of the type and enqueue the node for an igvn
4876     // which may optimize it out.
4877     for (uint next = 0; next < worklist.size(); ++next) {
4878       Node *n  = worklist.at(next);
4879       if (n->is_Type()) {
4880         TypeNode* tn = n->as_Type();
4881         const Type* t = tn->type();
4882         const Type* t_no_spec = t->remove_speculative();
4883         if (t_no_spec != t) {
4884           bool in_hash = igvn.hash_delete(n);
4885           assert(in_hash, "node should be in igvn hash table");
4886           tn->set_type(t_no_spec);
4887           igvn.hash_insert(n);
4888           igvn._worklist.push(n); // give it a chance to go away
4889           modified++;
4890         }
4891       }
4892       // Iterate over outs - endless loops is unreachable from below
4893       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4894         Node *m = n->fast_out(i);
4895         if (not_a_node(m)) {
4896           continue;
4897         }
4898         worklist.push(m);
4899       }
4900     }
4901     // Drop the speculative part of all types in the igvn's type table
4902     igvn.remove_speculative_types();
4903     if (modified > 0) {
4904       igvn.optimize();
4905     }
4906 #ifdef ASSERT
4907     // Verify that after the IGVN is over no speculative type has resurfaced
4908     worklist.clear();
4909     worklist.push(root());
4910     for (uint next = 0; next < worklist.size(); ++next) {
4911       Node *n  = worklist.at(next);
4912       const Type* t = igvn.type_or_null(n);
4913       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4914       if (n->is_Type()) {
4915         t = n->as_Type()->type();
4916         assert(t == t->remove_speculative(), "no more speculative types");
4917       }
4918       // Iterate over outs - endless loops is unreachable from below
4919       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
4920         Node *m = n->fast_out(i);
4921         if (not_a_node(m)) {
4922           continue;
4923         }
4924         worklist.push(m);
4925       }
4926     }
4927     igvn.check_no_speculative_types();
4928 #endif
4929   }
4930 }
4931 
4932 // Auxiliary methods to support randomized stressing/fuzzing.
4933 
4934 int Compile::random() {
4935   _stress_seed = os::next_random(_stress_seed);
4936   return static_cast<int>(_stress_seed);
4937 }
4938 
4939 // This method can be called the arbitrary number of times, with current count
4940 // as the argument. The logic allows selecting a single candidate from the
4941 // running list of candidates as follows:
4942 //    int count = 0;
4943 //    Cand* selected = null;
4944 //    while(cand = cand->next()) {
4945 //      if (randomized_select(++count)) {
4946 //        selected = cand;
4947 //      }
4948 //    }
4949 //
4950 // Including count equalizes the chances any candidate is "selected".
4951 // This is useful when we don't have the complete list of candidates to choose
4952 // from uniformly. In this case, we need to adjust the randomicity of the
4953 // selection, or else we will end up biasing the selection towards the latter
4954 // candidates.
4955 //
4956 // Quick back-envelope calculation shows that for the list of n candidates
4957 // the equal probability for the candidate to persist as "best" can be
4958 // achieved by replacing it with "next" k-th candidate with the probability
4959 // of 1/k. It can be easily shown that by the end of the run, the
4960 // probability for any candidate is converged to 1/n, thus giving the
4961 // uniform distribution among all the candidates.
4962 //
4963 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4964 #define RANDOMIZED_DOMAIN_POW 29
4965 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4966 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4967 bool Compile::randomized_select(int count) {
4968   assert(count > 0, "only positive");
4969   return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4970 }
4971 
4972 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4973 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4974 
4975 void NodeCloneInfo::dump() const {
4976   tty->print(" {%d:%d} ", idx(), gen());
4977 }
4978 
4979 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4980   uint64_t val = value(old->_idx);
4981   NodeCloneInfo cio(val);
4982   assert(val != 0, "old node should be in the map");
4983   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4984   insert(nnn->_idx, cin.get());
4985 #ifndef PRODUCT
4986   if (is_debug()) {
4987     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4988   }
4989 #endif
4990 }
4991 
4992 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4993   NodeCloneInfo cio(value(old->_idx));
4994   if (cio.get() == 0) {
4995     cio.set(old->_idx, 0);
4996     insert(old->_idx, cio.get());
4997 #ifndef PRODUCT
4998     if (is_debug()) {
4999       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
5000     }
5001 #endif
5002   }
5003   clone(old, nnn, gen);
5004 }
5005 
5006 int CloneMap::max_gen() const {
5007   int g = 0;
5008   DictI di(_dict);
5009   for(; di.test(); ++di) {
5010     int t = gen(di._key);
5011     if (g < t) {
5012       g = t;
5013 #ifndef PRODUCT
5014       if (is_debug()) {
5015         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
5016       }
5017 #endif
5018     }
5019   }
5020   return g;
5021 }
5022 
5023 void CloneMap::dump(node_idx_t key) const {
5024   uint64_t val = value(key);
5025   if (val != 0) {
5026     NodeCloneInfo ni(val);
5027     ni.dump();
5028   }
5029 }
5030 
5031 // Move Allocate nodes to the start of the list
5032 void Compile::sort_macro_nodes() {
5033   int count = macro_count();
5034   int allocates = 0;
5035   for (int i = 0; i < count; i++) {
5036     Node* n = macro_node(i);
5037     if (n->is_Allocate()) {
5038       if (i != allocates) {
5039         Node* tmp = macro_node(allocates);
5040         _macro_nodes.at_put(allocates, n);
5041         _macro_nodes.at_put(i, tmp);
5042       }
5043       allocates++;
5044     }
5045   }
5046 }
5047 
5048 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) {
5049   EventCompilerPhase event;
5050   if (event.should_commit()) {
5051     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level);
5052   }
5053 #ifndef PRODUCT
5054   ResourceMark rm;
5055   stringStream ss;
5056   ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt));
5057   if (n != nullptr) {
5058     ss.print(": %d %s ", n->_idx, NodeClassNames[n->Opcode()]);
5059   }
5060 
5061   const char* name = ss.as_string();
5062   if (should_print_igv(level)) {
5063     _igv_printer->print_method(name, level);
5064   }
5065   if (should_print_phase(cpt)) {
5066     print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt));
5067   }
5068 #endif
5069   C->_latest_stage_start_counter.stamp();
5070 }
5071 
5072 // Only used from CompileWrapper
5073 void Compile::begin_method() {
5074 #ifndef PRODUCT
5075   if (_method != NULL && should_print_igv(1)) {
5076     _igv_printer->begin_method();
5077   }
5078 #endif
5079   C->_latest_stage_start_counter.stamp();
5080 }
5081 
5082 // Only used from CompileWrapper
5083 void Compile::end_method() {
5084   EventCompilerPhase event;
5085   if (event.should_commit()) {
5086     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1);
5087   }
5088 
5089 #ifndef PRODUCT
5090   if (_method != NULL && should_print_igv(1)) {
5091     _igv_printer->end_method();
5092   }
5093 #endif
5094 }
5095 
5096 bool Compile::should_print_phase(CompilerPhaseType cpt) {
5097 #ifndef PRODUCT
5098   if ((_directive->ideal_phase_mask() & CompilerPhaseTypeHelper::to_bitmask(cpt)) != 0) {
5099     return true;
5100   }
5101 #endif
5102   return false;
5103 }
5104 
5105 bool Compile::should_print_igv(int level) {
5106 #ifndef PRODUCT
5107   if (PrintIdealGraphLevel < 0) { // disabled by the user
5108     return false;
5109   }
5110 
5111   bool need = directive()->IGVPrintLevelOption >= level;
5112   if (need && !_igv_printer) {
5113     _igv_printer = IdealGraphPrinter::printer();
5114     _igv_printer->set_compile(this);
5115   }
5116   return need;
5117 #else
5118   return false;
5119 #endif
5120 }
5121 
5122 #ifndef PRODUCT
5123 IdealGraphPrinter* Compile::_debug_file_printer = NULL;
5124 IdealGraphPrinter* Compile::_debug_network_printer = NULL;
5125 
5126 // Called from debugger. Prints method to the default file with the default phase name.
5127 // This works regardless of any Ideal Graph Visualizer flags set or not.
5128 void igv_print() {
5129   Compile::current()->igv_print_method_to_file();
5130 }
5131 
5132 // Same as igv_print() above but with a specified phase name.
5133 void igv_print(const char* phase_name) {
5134   Compile::current()->igv_print_method_to_file(phase_name);
5135 }
5136 
5137 // Called from debugger. Prints method with the default phase name to the default network or the one specified with
5138 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument.
5139 // This works regardless of any Ideal Graph Visualizer flags set or not.
5140 void igv_print(bool network) {
5141   if (network) {
5142     Compile::current()->igv_print_method_to_network();
5143   } else {
5144     Compile::current()->igv_print_method_to_file();
5145   }
5146 }
5147 
5148 // Same as igv_print(bool network) above but with a specified phase name.
5149 void igv_print(bool network, const char* phase_name) {
5150   if (network) {
5151     Compile::current()->igv_print_method_to_network(phase_name);
5152   } else {
5153     Compile::current()->igv_print_method_to_file(phase_name);
5154   }
5155 }
5156 
5157 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set.
5158 void igv_print_default() {
5159   Compile::current()->print_method(PHASE_DEBUG, 0);
5160 }
5161 
5162 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay.
5163 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow
5164 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not.
5165 void igv_append() {
5166   Compile::current()->igv_print_method_to_file("Debug", true);
5167 }
5168 
5169 // Same as igv_append() above but with a specified phase name.
5170 void igv_append(const char* phase_name) {
5171   Compile::current()->igv_print_method_to_file(phase_name, true);
5172 }
5173 
5174 void Compile::igv_print_method_to_file(const char* phase_name, bool append) {
5175   const char* file_name = "custom_debug.xml";
5176   if (_debug_file_printer == NULL) {
5177     _debug_file_printer = new IdealGraphPrinter(C, file_name, append);
5178   } else {
5179     _debug_file_printer->update_compiled_method(C->method());
5180   }
5181   tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name);
5182   _debug_file_printer->print(phase_name, (Node*)C->root());
5183 }
5184 
5185 void Compile::igv_print_method_to_network(const char* phase_name) {
5186   if (_debug_network_printer == NULL) {
5187     _debug_network_printer = new IdealGraphPrinter(C);
5188   } else {
5189     _debug_network_printer->update_compiled_method(C->method());
5190   }
5191   tty->print_cr("Method printed over network stream to IGV");
5192   _debug_network_printer->print(phase_name, (Node*)C->root());
5193 }
5194 #endif
5195 
5196 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) {
5197   if (type != NULL && phase->type(value)->higher_equal(type)) {
5198     return value;
5199   }
5200   Node* result = NULL;
5201   if (bt == T_BYTE) {
5202     result = phase->transform(new LShiftINode(value, phase->intcon(24)));
5203     result = new RShiftINode(result, phase->intcon(24));
5204   } else if (bt == T_BOOLEAN) {
5205     result = new AndINode(value, phase->intcon(0xFF));
5206   } else if (bt == T_CHAR) {
5207     result = new AndINode(value,phase->intcon(0xFFFF));
5208   } else {
5209     assert(bt == T_SHORT, "unexpected narrow type");
5210     result = phase->transform(new LShiftINode(value, phase->intcon(16)));
5211     result = new RShiftINode(result, phase->intcon(16));
5212   }
5213   if (transform_res) {
5214     result = phase->transform(result);
5215   }
5216   return result;
5217 }
5218