1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/javaClasses.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compilationFailureInfo.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compileLog.hpp"
  36 #include "compiler/compilerOracle.hpp"
  37 #include "compiler/compiler_globals.hpp"
  38 #include "compiler/disassembler.hpp"
  39 #include "compiler/oopMap.hpp"
  40 #include "gc/shared/barrierSet.hpp"
  41 #include "gc/shared/c2/barrierSetC2.hpp"
  42 #include "jfr/jfrEvents.hpp"
  43 #include "jvm_io.h"
  44 #include "memory/allocation.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "opto/addnode.hpp"
  47 #include "opto/block.hpp"
  48 #include "opto/c2compiler.hpp"
  49 #include "opto/callGenerator.hpp"
  50 #include "opto/callnode.hpp"
  51 #include "opto/castnode.hpp"
  52 #include "opto/cfgnode.hpp"
  53 #include "opto/chaitin.hpp"
  54 #include "opto/compile.hpp"
  55 #include "opto/connode.hpp"
  56 #include "opto/convertnode.hpp"
  57 #include "opto/divnode.hpp"
  58 #include "opto/escape.hpp"
  59 #include "opto/idealGraphPrinter.hpp"
  60 #include "opto/locknode.hpp"
  61 #include "opto/loopnode.hpp"
  62 #include "opto/machnode.hpp"
  63 #include "opto/macro.hpp"
  64 #include "opto/matcher.hpp"
  65 #include "opto/mathexactnode.hpp"
  66 #include "opto/memnode.hpp"
  67 #include "opto/mulnode.hpp"
  68 #include "opto/narrowptrnode.hpp"
  69 #include "opto/node.hpp"
  70 #include "opto/opcodes.hpp"
  71 #include "opto/output.hpp"
  72 #include "opto/parse.hpp"
  73 #include "opto/phaseX.hpp"
  74 #include "opto/rootnode.hpp"
  75 #include "opto/runtime.hpp"
  76 #include "opto/stringopts.hpp"
  77 #include "opto/type.hpp"
  78 #include "opto/vector.hpp"
  79 #include "opto/vectornode.hpp"
  80 #include "runtime/globals_extension.hpp"
  81 #include "runtime/sharedRuntime.hpp"
  82 #include "runtime/signature.hpp"
  83 #include "runtime/stubRoutines.hpp"
  84 #include "runtime/timer.hpp"
  85 #include "utilities/align.hpp"
  86 #include "utilities/copy.hpp"
  87 #include "utilities/macros.hpp"
  88 #include "utilities/resourceHash.hpp"
  89 
  90 // -------------------- Compile::mach_constant_base_node -----------------------
  91 // Constant table base node singleton.
  92 MachConstantBaseNode* Compile::mach_constant_base_node() {
  93   if (_mach_constant_base_node == nullptr) {
  94     _mach_constant_base_node = new MachConstantBaseNode();
  95     _mach_constant_base_node->add_req(C->root());
  96   }
  97   return _mach_constant_base_node;
  98 }
  99 
 100 
 101 /// Support for intrinsics.
 102 
 103 // Return the index at which m must be inserted (or already exists).
 104 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 105 class IntrinsicDescPair {
 106  private:
 107   ciMethod* _m;
 108   bool _is_virtual;
 109  public:
 110   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 111   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 112     ciMethod* m= elt->method();
 113     ciMethod* key_m = key->_m;
 114     if (key_m < m)      return -1;
 115     else if (key_m > m) return 1;
 116     else {
 117       bool is_virtual = elt->is_virtual();
 118       bool key_virtual = key->_is_virtual;
 119       if (key_virtual < is_virtual)      return -1;
 120       else if (key_virtual > is_virtual) return 1;
 121       else                               return 0;
 122     }
 123   }
 124 };
 125 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 126 #ifdef ASSERT
 127   for (int i = 1; i < _intrinsics.length(); i++) {
 128     CallGenerator* cg1 = _intrinsics.at(i-1);
 129     CallGenerator* cg2 = _intrinsics.at(i);
 130     assert(cg1->method() != cg2->method()
 131            ? cg1->method()     < cg2->method()
 132            : cg1->is_virtual() < cg2->is_virtual(),
 133            "compiler intrinsics list must stay sorted");
 134   }
 135 #endif
 136   IntrinsicDescPair pair(m, is_virtual);
 137   return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 138 }
 139 
 140 void Compile::register_intrinsic(CallGenerator* cg) {
 141   bool found = false;
 142   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 143   assert(!found, "registering twice");
 144   _intrinsics.insert_before(index, cg);
 145   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 146 }
 147 
 148 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 149   assert(m->is_loaded(), "don't try this on unloaded methods");
 150   if (_intrinsics.length() > 0) {
 151     bool found = false;
 152     int index = intrinsic_insertion_index(m, is_virtual, found);
 153      if (found) {
 154       return _intrinsics.at(index);
 155     }
 156   }
 157   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 158   if (m->intrinsic_id() != vmIntrinsics::_none &&
 159       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 160     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 161     if (cg != nullptr) {
 162       // Save it for next time:
 163       register_intrinsic(cg);
 164       return cg;
 165     } else {
 166       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 167     }
 168   }
 169   return nullptr;
 170 }
 171 
 172 // Compile::make_vm_intrinsic is defined in library_call.cpp.
 173 
 174 #ifndef PRODUCT
 175 // statistics gathering...
 176 
 177 juint  Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0};
 178 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0};
 179 
 180 inline int as_int(vmIntrinsics::ID id) {
 181   return vmIntrinsics::as_int(id);
 182 }
 183 
 184 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 185   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 186   int oflags = _intrinsic_hist_flags[as_int(id)];
 187   assert(flags != 0, "what happened?");
 188   if (is_virtual) {
 189     flags |= _intrinsic_virtual;
 190   }
 191   bool changed = (flags != oflags);
 192   if ((flags & _intrinsic_worked) != 0) {
 193     juint count = (_intrinsic_hist_count[as_int(id)] += 1);
 194     if (count == 1) {
 195       changed = true;           // first time
 196     }
 197     // increment the overall count also:
 198     _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1;
 199   }
 200   if (changed) {
 201     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 202       // Something changed about the intrinsic's virtuality.
 203       if ((flags & _intrinsic_virtual) != 0) {
 204         // This is the first use of this intrinsic as a virtual call.
 205         if (oflags != 0) {
 206           // We already saw it as a non-virtual, so note both cases.
 207           flags |= _intrinsic_both;
 208         }
 209       } else if ((oflags & _intrinsic_both) == 0) {
 210         // This is the first use of this intrinsic as a non-virtual
 211         flags |= _intrinsic_both;
 212       }
 213     }
 214     _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags);
 215   }
 216   // update the overall flags also:
 217   _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags;
 218   return changed;
 219 }
 220 
 221 static char* format_flags(int flags, char* buf) {
 222   buf[0] = 0;
 223   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 224   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 225   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 226   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 227   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 228   if (buf[0] == 0)  strcat(buf, ",");
 229   assert(buf[0] == ',', "must be");
 230   return &buf[1];
 231 }
 232 
 233 void Compile::print_intrinsic_statistics() {
 234   char flagsbuf[100];
 235   ttyLocker ttyl;
 236   if (xtty != nullptr)  xtty->head("statistics type='intrinsic'");
 237   tty->print_cr("Compiler intrinsic usage:");
 238   juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)];
 239   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 240   #define PRINT_STAT_LINE(name, c, f) \
 241     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 242   for (auto id : EnumRange<vmIntrinsicID>{}) {
 243     int   flags = _intrinsic_hist_flags[as_int(id)];
 244     juint count = _intrinsic_hist_count[as_int(id)];
 245     if ((flags | count) != 0) {
 246       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 247     }
 248   }
 249   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf));
 250   if (xtty != nullptr)  xtty->tail("statistics");
 251 }
 252 
 253 void Compile::print_statistics() {
 254   { ttyLocker ttyl;
 255     if (xtty != nullptr)  xtty->head("statistics type='opto'");
 256     Parse::print_statistics();
 257     PhaseStringOpts::print_statistics();
 258     PhaseCCP::print_statistics();
 259     PhaseRegAlloc::print_statistics();
 260     PhaseOutput::print_statistics();
 261     PhasePeephole::print_statistics();
 262     PhaseIdealLoop::print_statistics();
 263     ConnectionGraph::print_statistics();
 264     PhaseMacroExpand::print_statistics();
 265     if (xtty != nullptr)  xtty->tail("statistics");
 266   }
 267   if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) {
 268     // put this under its own <statistics> element.
 269     print_intrinsic_statistics();
 270   }
 271 }
 272 #endif //PRODUCT
 273 
 274 void Compile::gvn_replace_by(Node* n, Node* nn) {
 275   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 276     Node* use = n->last_out(i);
 277     bool is_in_table = initial_gvn()->hash_delete(use);
 278     uint uses_found = 0;
 279     for (uint j = 0; j < use->len(); j++) {
 280       if (use->in(j) == n) {
 281         if (j < use->req())
 282           use->set_req(j, nn);
 283         else
 284           use->set_prec(j, nn);
 285         uses_found++;
 286       }
 287     }
 288     if (is_in_table) {
 289       // reinsert into table
 290       initial_gvn()->hash_find_insert(use);
 291     }
 292     record_for_igvn(use);
 293     PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist);
 294     i -= uses_found;    // we deleted 1 or more copies of this edge
 295   }
 296 }
 297 
 298 
 299 // Identify all nodes that are reachable from below, useful.
 300 // Use breadth-first pass that records state in a Unique_Node_List,
 301 // recursive traversal is slower.
 302 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 303   int estimated_worklist_size = live_nodes();
 304   useful.map( estimated_worklist_size, nullptr );  // preallocate space
 305 
 306   // Initialize worklist
 307   if (root() != nullptr)  { useful.push(root()); }
 308   // If 'top' is cached, declare it useful to preserve cached node
 309   if (cached_top_node())  { useful.push(cached_top_node()); }
 310 
 311   // Push all useful nodes onto the list, breadthfirst
 312   for( uint next = 0; next < useful.size(); ++next ) {
 313     assert( next < unique(), "Unique useful nodes < total nodes");
 314     Node *n  = useful.at(next);
 315     uint max = n->len();
 316     for( uint i = 0; i < max; ++i ) {
 317       Node *m = n->in(i);
 318       if (not_a_node(m))  continue;
 319       useful.push(m);
 320     }
 321   }
 322 }
 323 
 324 // Update dead_node_list with any missing dead nodes using useful
 325 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 326 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 327   uint max_idx = unique();
 328   VectorSet& useful_node_set = useful.member_set();
 329 
 330   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 331     // If node with index node_idx is not in useful set,
 332     // mark it as dead in dead node list.
 333     if (!useful_node_set.test(node_idx)) {
 334       record_dead_node(node_idx);
 335     }
 336   }
 337 }
 338 
 339 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 340   int shift = 0;
 341   for (int i = 0; i < inlines->length(); i++) {
 342     CallGenerator* cg = inlines->at(i);
 343     if (useful.member(cg->call_node())) {
 344       if (shift > 0) {
 345         inlines->at_put(i - shift, cg);
 346       }
 347     } else {
 348       shift++; // skip over the dead element
 349     }
 350   }
 351   if (shift > 0) {
 352     inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array
 353   }
 354 }
 355 
 356 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) {
 357   assert(dead != nullptr && dead->is_Call(), "sanity");
 358   int found = 0;
 359   for (int i = 0; i < inlines->length(); i++) {
 360     if (inlines->at(i)->call_node() == dead) {
 361       inlines->remove_at(i);
 362       found++;
 363       NOT_DEBUG( break; ) // elements are unique, so exit early
 364     }
 365   }
 366   assert(found <= 1, "not unique");
 367 }
 368 
 369 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)>
 370 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) {
 371   for (int i = node_list.length() - 1; i >= 0; i--) {
 372     N* node = node_list.at(i);
 373     if (!useful.member(node)) {
 374       node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
 375     }
 376   }
 377 }
 378 
 379 void Compile::remove_useless_node(Node* dead) {
 380   remove_modified_node(dead);
 381 
 382   // Constant node that has no out-edges and has only one in-edge from
 383   // root is usually dead. However, sometimes reshaping walk makes
 384   // it reachable by adding use edges. So, we will NOT count Con nodes
 385   // as dead to be conservative about the dead node count at any
 386   // given time.
 387   if (!dead->is_Con()) {
 388     record_dead_node(dead->_idx);
 389   }
 390   if (dead->is_macro()) {
 391     remove_macro_node(dead);
 392   }
 393   if (dead->is_expensive()) {
 394     remove_expensive_node(dead);
 395   }
 396   if (dead->Opcode() == Op_Opaque4) {
 397     remove_template_assertion_predicate_opaq(dead);
 398   }
 399   if (dead->is_ParsePredicate()) {
 400     remove_parse_predicate(dead->as_ParsePredicate());
 401   }
 402   if (dead->for_post_loop_opts_igvn()) {
 403     remove_from_post_loop_opts_igvn(dead);
 404   }
 405   if (dead->is_Call()) {
 406     remove_useless_late_inlines(                &_late_inlines, dead);
 407     remove_useless_late_inlines(         &_string_late_inlines, dead);
 408     remove_useless_late_inlines(         &_boxing_late_inlines, dead);
 409     remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead);
 410 
 411     if (dead->is_CallStaticJava()) {
 412       remove_unstable_if_trap(dead->as_CallStaticJava(), false);
 413     }
 414   }
 415   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 416   bs->unregister_potential_barrier_node(dead);
 417 }
 418 
 419 // Disconnect all useless nodes by disconnecting those at the boundary.
 420 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist) {
 421   uint next = 0;
 422   while (next < useful.size()) {
 423     Node *n = useful.at(next++);
 424     if (n->is_SafePoint()) {
 425       // We're done with a parsing phase. Replaced nodes are not valid
 426       // beyond that point.
 427       n->as_SafePoint()->delete_replaced_nodes();
 428     }
 429     // Use raw traversal of out edges since this code removes out edges
 430     int max = n->outcnt();
 431     for (int j = 0; j < max; ++j) {
 432       Node* child = n->raw_out(j);
 433       if (!useful.member(child)) {
 434         assert(!child->is_top() || child != top(),
 435                "If top is cached in Compile object it is in useful list");
 436         // Only need to remove this out-edge to the useless node
 437         n->raw_del_out(j);
 438         --j;
 439         --max;
 440       }
 441     }
 442     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 443       assert(useful.member(n->unique_out()), "do not push a useless node");
 444       worklist.push(n->unique_out());
 445     }
 446   }
 447 
 448   remove_useless_nodes(_macro_nodes,        useful); // remove useless macro nodes
 449   remove_useless_nodes(_parse_predicates,   useful); // remove useless Parse Predicate nodes
 450   remove_useless_nodes(_template_assertion_predicate_opaqs, useful); // remove useless Assertion Predicate opaque nodes
 451   remove_useless_nodes(_expensive_nodes,    useful); // remove useless expensive nodes
 452   remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass
 453   remove_useless_unstable_if_traps(useful);          // remove useless unstable_if traps
 454   remove_useless_coarsened_locks(useful);            // remove useless coarsened locks nodes
 455 #ifdef ASSERT
 456   if (_modified_nodes != nullptr) {
 457     _modified_nodes->remove_useless_nodes(useful.member_set());
 458   }
 459 #endif
 460 
 461   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 462   bs->eliminate_useless_gc_barriers(useful, this);
 463   // clean up the late inline lists
 464   remove_useless_late_inlines(                &_late_inlines, useful);
 465   remove_useless_late_inlines(         &_string_late_inlines, useful);
 466   remove_useless_late_inlines(         &_boxing_late_inlines, useful);
 467   remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful);
 468   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 469 }
 470 
 471 // ============================================================================
 472 //------------------------------CompileWrapper---------------------------------
 473 class CompileWrapper : public StackObj {
 474   Compile *const _compile;
 475  public:
 476   CompileWrapper(Compile* compile);
 477 
 478   ~CompileWrapper();
 479 };
 480 
 481 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 482   // the Compile* pointer is stored in the current ciEnv:
 483   ciEnv* env = compile->env();
 484   assert(env == ciEnv::current(), "must already be a ciEnv active");
 485   assert(env->compiler_data() == nullptr, "compile already active?");
 486   env->set_compiler_data(compile);
 487   assert(compile == Compile::current(), "sanity");
 488 
 489   compile->set_type_dict(nullptr);
 490   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 491   compile->clone_map().set_clone_idx(0);
 492   compile->set_type_last_size(0);
 493   compile->set_last_tf(nullptr, nullptr);
 494   compile->set_indexSet_arena(nullptr);
 495   compile->set_indexSet_free_block_list(nullptr);
 496   compile->init_type_arena();
 497   Type::Initialize(compile);
 498   _compile->begin_method();
 499   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 500 }
 501 CompileWrapper::~CompileWrapper() {
 502   // simulate crash during compilation
 503   assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned");
 504 
 505   _compile->end_method();
 506   _compile->env()->set_compiler_data(nullptr);
 507 }
 508 
 509 
 510 //----------------------------print_compile_messages---------------------------
 511 void Compile::print_compile_messages() {
 512 #ifndef PRODUCT
 513   // Check if recompiling
 514   if (!subsume_loads() && PrintOpto) {
 515     // Recompiling without allowing machine instructions to subsume loads
 516     tty->print_cr("*********************************************************");
 517     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 518     tty->print_cr("*********************************************************");
 519   }
 520   if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) {
 521     // Recompiling without escape analysis
 522     tty->print_cr("*********************************************************");
 523     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 524     tty->print_cr("*********************************************************");
 525   }
 526   if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) {
 527     // Recompiling without iterative escape analysis
 528     tty->print_cr("*********************************************************");
 529     tty->print_cr("** Bailout: Recompile without iterative escape analysis**");
 530     tty->print_cr("*********************************************************");
 531   }
 532   if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) {
 533     // Recompiling without reducing allocation merges
 534     tty->print_cr("*********************************************************");
 535     tty->print_cr("** Bailout: Recompile without reduce allocation merges **");
 536     tty->print_cr("*********************************************************");
 537   }
 538   if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) {
 539     // Recompiling without boxing elimination
 540     tty->print_cr("*********************************************************");
 541     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 542     tty->print_cr("*********************************************************");
 543   }
 544   if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) {
 545     // Recompiling without locks coarsening
 546     tty->print_cr("*********************************************************");
 547     tty->print_cr("** Bailout: Recompile without locks coarsening         **");
 548     tty->print_cr("*********************************************************");
 549   }
 550   if (env()->break_at_compile()) {
 551     // Open the debugger when compiling this method.
 552     tty->print("### Breaking when compiling: ");
 553     method()->print_short_name();
 554     tty->cr();
 555     BREAKPOINT;
 556   }
 557 
 558   if( PrintOpto ) {
 559     if (is_osr_compilation()) {
 560       tty->print("[OSR]%3d", _compile_id);
 561     } else {
 562       tty->print("%3d", _compile_id);
 563     }
 564   }
 565 #endif
 566 }
 567 
 568 #ifndef PRODUCT
 569 void Compile::print_ideal_ir(const char* phase_name) {
 570   // keep the following output all in one block
 571   // This output goes directly to the tty, not the compiler log.
 572   // To enable tools to match it up with the compilation activity,
 573   // be sure to tag this tty output with the compile ID.
 574 
 575   // Node dumping can cause a safepoint, which can break the tty lock.
 576   // Buffer all node dumps, so that all safepoints happen before we lock.
 577   ResourceMark rm;
 578   stringStream ss;
 579 
 580   if (_output == nullptr) {
 581     ss.print_cr("AFTER: %s", phase_name);
 582     // Print out all nodes in ascending order of index.
 583     root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss);
 584   } else {
 585     // Dump the node blockwise if we have a scheduling
 586     _output->print_scheduling(&ss);
 587   }
 588 
 589   // Check that the lock is not broken by a safepoint.
 590   NoSafepointVerifier nsv;
 591   ttyLocker ttyl;
 592   if (xtty != nullptr) {
 593     xtty->head("ideal compile_id='%d'%s compile_phase='%s'",
 594                compile_id(),
 595                is_osr_compilation() ? " compile_kind='osr'" : "",
 596                phase_name);
 597   }
 598 
 599   tty->print("%s", ss.as_string());
 600 
 601   if (xtty != nullptr) {
 602     xtty->tail("ideal");
 603   }
 604 }
 605 #endif
 606 
 607 // ============================================================================
 608 //------------------------------Compile standard-------------------------------
 609 
 610 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 611 // the continuation bci for on stack replacement.
 612 
 613 
 614 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci,
 615                   Options options, DirectiveSet* directive)
 616                 : Phase(Compiler),
 617                   _compile_id(ci_env->compile_id()),
 618                   _options(options),
 619                   _method(target),
 620                   _entry_bci(osr_bci),
 621                   _ilt(nullptr),
 622                   _stub_function(nullptr),
 623                   _stub_name(nullptr),
 624                   _stub_entry_point(nullptr),
 625                   _max_node_limit(MaxNodeLimit),
 626                   _post_loop_opts_phase(false),
 627                   _allow_macro_nodes(true),
 628                   _inlining_progress(false),
 629                   _inlining_incrementally(false),
 630                   _do_cleanup(false),
 631                   _has_reserved_stack_access(target->has_reserved_stack_access()),
 632 #ifndef PRODUCT
 633                   _igv_idx(0),
 634                   _trace_opto_output(directive->TraceOptoOutputOption),
 635 #endif
 636                   _has_method_handle_invokes(false),
 637                   _clinit_barrier_on_entry(false),
 638                   _stress_seed(0),
 639                   _comp_arena(mtCompiler),
 640                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 641                   _env(ci_env),
 642                   _directive(directive),
 643                   _log(ci_env->log()),
 644                   _first_failure_details(nullptr),
 645                   _intrinsics        (comp_arena(), 0, 0, nullptr),
 646                   _macro_nodes       (comp_arena(), 8, 0, nullptr),
 647                   _parse_predicates  (comp_arena(), 8, 0, nullptr),
 648                   _template_assertion_predicate_opaqs (comp_arena(), 8, 0, nullptr),
 649                   _expensive_nodes   (comp_arena(), 8, 0, nullptr),
 650                   _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 651                   _unstable_if_traps (comp_arena(), 8, 0, nullptr),
 652                   _coarsened_locks   (comp_arena(), 8, 0, nullptr),
 653                   _congraph(nullptr),
 654                   NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 655                   _unique(0),
 656                   _dead_node_count(0),
 657                   _dead_node_list(comp_arena()),
 658                   _node_arena_one(mtCompiler, Arena::Tag::tag_node),
 659                   _node_arena_two(mtCompiler, Arena::Tag::tag_node),
 660                   _node_arena(&_node_arena_one),
 661                   _mach_constant_base_node(nullptr),
 662                   _Compile_types(mtCompiler),
 663                   _initial_gvn(nullptr),
 664                   _igvn_worklist(nullptr),
 665                   _types(nullptr),
 666                   _node_hash(nullptr),
 667                   _late_inlines(comp_arena(), 2, 0, nullptr),
 668                   _string_late_inlines(comp_arena(), 2, 0, nullptr),
 669                   _boxing_late_inlines(comp_arena(), 2, 0, nullptr),
 670                   _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr),
 671                   _late_inlines_pos(0),
 672                   _number_of_mh_late_inlines(0),
 673                   _oom(false),
 674                   _print_inlining_stream(new (mtCompiler) stringStream()),
 675                   _print_inlining_list(nullptr),
 676                   _print_inlining_idx(0),
 677                   _print_inlining_output(nullptr),
 678                   _replay_inline_data(nullptr),
 679                   _java_calls(0),
 680                   _inner_loops(0),
 681                   _interpreter_frame_size(0),
 682                   _output(nullptr)
 683 #ifndef PRODUCT
 684                   , _in_dump_cnt(0)
 685 #endif
 686 {
 687   C = this;
 688   CompileWrapper cw(this);
 689 
 690   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 691   TraceTime t2(nullptr, &_t_methodCompilation, CITime, false);
 692 
 693 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY)
 694   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 695   // We can always print a disassembly, either abstract (hex dump) or
 696   // with the help of a suitable hsdis library. Thus, we should not
 697   // couple print_assembly and print_opto_assembly controls.
 698   // But: always print opto and regular assembly on compile command 'print'.
 699   bool print_assembly = directive->PrintAssemblyOption;
 700   set_print_assembly(print_opto_assembly || print_assembly);
 701 #else
 702   set_print_assembly(false); // must initialize.
 703 #endif
 704 
 705 #ifndef PRODUCT
 706   set_parsed_irreducible_loop(false);
 707 #endif
 708 
 709   if (directive->ReplayInlineOption) {
 710     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 711   }
 712   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 713   set_print_intrinsics(directive->PrintIntrinsicsOption);
 714   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 715 
 716   if (ProfileTraps) {
 717     // Make sure the method being compiled gets its own MDO,
 718     // so we can at least track the decompile_count().
 719     method()->ensure_method_data();
 720   }
 721 
 722   Init(/*do_aliasing=*/ true);
 723 
 724   print_compile_messages();
 725 
 726   _ilt = InlineTree::build_inline_tree_root();
 727 
 728   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 729   assert(num_alias_types() >= AliasIdxRaw, "");
 730 
 731 #define MINIMUM_NODE_HASH  1023
 732 
 733   // GVN that will be run immediately on new nodes
 734   uint estimated_size = method()->code_size()*4+64;
 735   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 736   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 737   _types = new (comp_arena()) Type_Array(comp_arena());
 738   _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size);
 739   PhaseGVN gvn;
 740   set_initial_gvn(&gvn);
 741 
 742   print_inlining_init();
 743   { // Scope for timing the parser
 744     TracePhase tp("parse", &timers[_t_parser]);
 745 
 746     // Put top into the hash table ASAP.
 747     initial_gvn()->transform(top());
 748 
 749     // Set up tf(), start(), and find a CallGenerator.
 750     CallGenerator* cg = nullptr;
 751     if (is_osr_compilation()) {
 752       const TypeTuple *domain = StartOSRNode::osr_domain();
 753       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 754       init_tf(TypeFunc::make(domain, range));
 755       StartNode* s = new StartOSRNode(root(), domain);
 756       initial_gvn()->set_type_bottom(s);
 757       init_start(s);
 758       cg = CallGenerator::for_osr(method(), entry_bci());
 759     } else {
 760       // Normal case.
 761       init_tf(TypeFunc::make(method()));
 762       StartNode* s = new StartNode(root(), tf()->domain());
 763       initial_gvn()->set_type_bottom(s);
 764       init_start(s);
 765       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 766         // With java.lang.ref.reference.get() we must go through the
 767         // intrinsic - even when get() is the root
 768         // method of the compile - so that, if necessary, the value in
 769         // the referent field of the reference object gets recorded by
 770         // the pre-barrier code.
 771         cg = find_intrinsic(method(), false);
 772       }
 773       if (cg == nullptr) {
 774         float past_uses = method()->interpreter_invocation_count();
 775         float expected_uses = past_uses;
 776         cg = CallGenerator::for_inline(method(), expected_uses);
 777       }
 778     }
 779     if (failing())  return;
 780     if (cg == nullptr) {
 781       const char* reason = InlineTree::check_can_parse(method());
 782       assert(reason != nullptr, "expect reason for parse failure");
 783       stringStream ss;
 784       ss.print("cannot parse method: %s", reason);
 785       record_method_not_compilable(ss.as_string());
 786       return;
 787     }
 788 
 789     gvn.set_type(root(), root()->bottom_type());
 790 
 791     JVMState* jvms = build_start_state(start(), tf());
 792     if ((jvms = cg->generate(jvms)) == nullptr) {
 793       assert(failure_reason() != nullptr, "expect reason for parse failure");
 794       stringStream ss;
 795       ss.print("method parse failed: %s", failure_reason());
 796       record_method_not_compilable(ss.as_string());
 797       return;
 798     }
 799     GraphKit kit(jvms);
 800 
 801     if (!kit.stopped()) {
 802       // Accept return values, and transfer control we know not where.
 803       // This is done by a special, unique ReturnNode bound to root.
 804       return_values(kit.jvms());
 805     }
 806 
 807     if (kit.has_exceptions()) {
 808       // Any exceptions that escape from this call must be rethrown
 809       // to whatever caller is dynamically above us on the stack.
 810       // This is done by a special, unique RethrowNode bound to root.
 811       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 812     }
 813 
 814     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 815 
 816     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 817       inline_string_calls(true);
 818     }
 819 
 820     if (failing())  return;
 821 
 822     // Remove clutter produced by parsing.
 823     if (!failing()) {
 824       ResourceMark rm;
 825       PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
 826     }
 827   }
 828 
 829   // Note:  Large methods are capped off in do_one_bytecode().
 830   if (failing())  return;
 831 
 832   // After parsing, node notes are no longer automagic.
 833   // They must be propagated by register_new_node_with_optimizer(),
 834   // clone(), or the like.
 835   set_default_node_notes(nullptr);
 836 
 837 #ifndef PRODUCT
 838   if (should_print_igv(1)) {
 839     _igv_printer->print_inlining();
 840   }
 841 #endif
 842 
 843   if (failing())  return;
 844   NOT_PRODUCT( verify_graph_edges(); )
 845 
 846   if (StressLCM || StressGCM || StressIGVN || StressCCP ||
 847       StressIncrementalInlining || StressMacroExpansion) {
 848     initialize_stress_seed(directive);
 849   }
 850 
 851   // Now optimize
 852   Optimize();
 853   if (failing())  return;
 854   NOT_PRODUCT( verify_graph_edges(); )
 855 
 856 #ifndef PRODUCT
 857   if (should_print_ideal()) {
 858     print_ideal_ir("print_ideal");
 859   }
 860 #endif
 861 
 862 #ifdef ASSERT
 863   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 864   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 865 #endif
 866 
 867   // Dump compilation data to replay it.
 868   if (directive->DumpReplayOption) {
 869     env()->dump_replay_data(_compile_id);
 870   }
 871   if (directive->DumpInlineOption && (ilt() != nullptr)) {
 872     env()->dump_inline_data(_compile_id);
 873   }
 874 
 875   // Now that we know the size of all the monitors we can add a fixed slot
 876   // for the original deopt pc.
 877   int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size);
 878   set_fixed_slots(next_slot);
 879 
 880   // Compute when to use implicit null checks. Used by matching trap based
 881   // nodes and NullCheck optimization.
 882   set_allowed_deopt_reasons();
 883 
 884   // Now generate code
 885   Code_Gen();
 886 }
 887 
 888 //------------------------------Compile----------------------------------------
 889 // Compile a runtime stub
 890 Compile::Compile( ciEnv* ci_env,
 891                   TypeFunc_generator generator,
 892                   address stub_function,
 893                   const char *stub_name,
 894                   int is_fancy_jump,
 895                   bool pass_tls,
 896                   bool return_pc,
 897                   DirectiveSet* directive)
 898   : Phase(Compiler),
 899     _compile_id(0),
 900     _options(Options::for_runtime_stub()),
 901     _method(nullptr),
 902     _entry_bci(InvocationEntryBci),
 903     _stub_function(stub_function),
 904     _stub_name(stub_name),
 905     _stub_entry_point(nullptr),
 906     _max_node_limit(MaxNodeLimit),
 907     _post_loop_opts_phase(false),
 908     _allow_macro_nodes(true),
 909     _inlining_progress(false),
 910     _inlining_incrementally(false),
 911     _has_reserved_stack_access(false),
 912 #ifndef PRODUCT
 913     _igv_idx(0),
 914     _trace_opto_output(directive->TraceOptoOutputOption),
 915 #endif
 916     _has_method_handle_invokes(false),
 917     _clinit_barrier_on_entry(false),
 918     _stress_seed(0),
 919     _comp_arena(mtCompiler),
 920     _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 921     _env(ci_env),
 922     _directive(directive),
 923     _log(ci_env->log()),
 924     _first_failure_details(nullptr),
 925     _for_post_loop_igvn(comp_arena(), 8, 0, nullptr),
 926     _congraph(nullptr),
 927     NOT_PRODUCT(_igv_printer(nullptr) COMMA)
 928     _unique(0),
 929     _dead_node_count(0),
 930     _dead_node_list(comp_arena()),
 931     _node_arena_one(mtCompiler),
 932     _node_arena_two(mtCompiler),
 933     _node_arena(&_node_arena_one),
 934     _mach_constant_base_node(nullptr),
 935     _Compile_types(mtCompiler),
 936     _initial_gvn(nullptr),
 937     _igvn_worklist(nullptr),
 938     _types(nullptr),
 939     _node_hash(nullptr),
 940     _number_of_mh_late_inlines(0),
 941     _oom(false),
 942     _print_inlining_stream(new (mtCompiler) stringStream()),
 943     _print_inlining_list(nullptr),
 944     _print_inlining_idx(0),
 945     _print_inlining_output(nullptr),
 946     _replay_inline_data(nullptr),
 947     _java_calls(0),
 948     _inner_loops(0),
 949     _interpreter_frame_size(0),
 950     _output(nullptr),
 951 #ifndef PRODUCT
 952     _in_dump_cnt(0),
 953 #endif
 954     _allowed_reasons(0) {
 955   C = this;
 956 
 957   TraceTime t1(nullptr, &_t_totalCompilation, CITime, false);
 958   TraceTime t2(nullptr, &_t_stubCompilation, CITime, false);
 959 
 960 #ifndef PRODUCT
 961   set_print_assembly(PrintFrameConverterAssembly);
 962   set_parsed_irreducible_loop(false);
 963 #else
 964   set_print_assembly(false); // Must initialize.
 965 #endif
 966   set_has_irreducible_loop(false); // no loops
 967 
 968   CompileWrapper cw(this);
 969   Init(/*do_aliasing=*/ false);
 970   init_tf((*generator)());
 971 
 972   _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena());
 973   _types = new (comp_arena()) Type_Array(comp_arena());
 974   _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255);
 975 
 976   if (StressLCM || StressGCM) {
 977     initialize_stress_seed(directive);
 978   }
 979 
 980   {
 981     PhaseGVN gvn;
 982     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 983     gvn.transform(top());
 984 
 985     GraphKit kit;
 986     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 987   }
 988 
 989   NOT_PRODUCT( verify_graph_edges(); )
 990 
 991   Code_Gen();
 992 }
 993 
 994 Compile::~Compile() {
 995   delete _print_inlining_stream;
 996   delete _first_failure_details;
 997 };
 998 
 999 //------------------------------Init-------------------------------------------
1000 // Prepare for a single compilation
1001 void Compile::Init(bool aliasing) {
1002   _do_aliasing = aliasing;
1003   _unique  = 0;
1004   _regalloc = nullptr;
1005 
1006   _tf      = nullptr;  // filled in later
1007   _top     = nullptr;  // cached later
1008   _matcher = nullptr;  // filled in later
1009   _cfg     = nullptr;  // filled in later
1010 
1011   IA32_ONLY( set_24_bit_selection_and_mode(true, false); )
1012 
1013   _node_note_array = nullptr;
1014   _default_node_notes = nullptr;
1015   DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize()
1016 
1017   _immutable_memory = nullptr; // filled in at first inquiry
1018 
1019 #ifdef ASSERT
1020   _phase_optimize_finished = false;
1021   _exception_backedge = false;
1022   _type_verify = nullptr;
1023 #endif
1024 
1025   // Globally visible Nodes
1026   // First set TOP to null to give safe behavior during creation of RootNode
1027   set_cached_top_node(nullptr);
1028   set_root(new RootNode());
1029   // Now that you have a Root to point to, create the real TOP
1030   set_cached_top_node( new ConNode(Type::TOP) );
1031   set_recent_alloc(nullptr, nullptr);
1032 
1033   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1034   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1035   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1036   env()->set_dependencies(new Dependencies(env()));
1037 
1038   _fixed_slots = 0;
1039   set_has_split_ifs(false);
1040   set_has_loops(false); // first approximation
1041   set_has_stringbuilder(false);
1042   set_has_boxed_value(false);
1043   _trap_can_recompile = false;  // no traps emitted yet
1044   _major_progress = true; // start out assuming good things will happen
1045   set_has_unsafe_access(false);
1046   set_max_vector_size(0);
1047   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1048   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1049   set_decompile_count(0);
1050 
1051 #ifndef PRODUCT
1052   Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter));
1053 #endif
1054 
1055   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1056   _loop_opts_cnt = LoopOptsCount;
1057   set_do_inlining(Inline);
1058   set_max_inline_size(MaxInlineSize);
1059   set_freq_inline_size(FreqInlineSize);
1060   set_do_scheduling(OptoScheduling);
1061 
1062   set_do_vector_loop(false);
1063   set_has_monitors(false);
1064 
1065   if (AllowVectorizeOnDemand) {
1066     if (has_method() && _directive->VectorizeOption) {
1067       set_do_vector_loop(true);
1068       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1069     } else if (has_method() && method()->name() != 0 &&
1070                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1071       set_do_vector_loop(true);
1072     }
1073   }
1074   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1075   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1076 
1077   _max_node_limit = _directive->MaxNodeLimitOption;
1078 
1079   if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) {
1080     set_clinit_barrier_on_entry(true);
1081   }
1082   if (debug_info()->recording_non_safepoints()) {
1083     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1084                         (comp_arena(), 8, 0, nullptr));
1085     set_default_node_notes(Node_Notes::make(this));
1086   }
1087 
1088   const int grow_ats = 16;
1089   _max_alias_types = grow_ats;
1090   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1091   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1092   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1093   {
1094     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1095   }
1096   // Initialize the first few types.
1097   _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr);
1098   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1099   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1100   _num_alias_types = AliasIdxRaw+1;
1101   // Zero out the alias type cache.
1102   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1103   // A null adr_type hits in the cache right away.  Preload the right answer.
1104   probe_alias_cache(nullptr)->_index = AliasIdxTop;
1105 }
1106 
1107 //---------------------------init_start----------------------------------------
1108 // Install the StartNode on this compile object.
1109 void Compile::init_start(StartNode* s) {
1110   if (failing())
1111     return; // already failing
1112   assert(s == start(), "");
1113 }
1114 
1115 /**
1116  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1117  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1118  * the ideal graph.
1119  */
1120 StartNode* Compile::start() const {
1121   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1122   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1123     Node* start = root()->fast_out(i);
1124     if (start->is_Start()) {
1125       return start->as_Start();
1126     }
1127   }
1128   fatal("Did not find Start node!");
1129   return nullptr;
1130 }
1131 
1132 //-------------------------------immutable_memory-------------------------------------
1133 // Access immutable memory
1134 Node* Compile::immutable_memory() {
1135   if (_immutable_memory != nullptr) {
1136     return _immutable_memory;
1137   }
1138   StartNode* s = start();
1139   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1140     Node *p = s->fast_out(i);
1141     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1142       _immutable_memory = p;
1143       return _immutable_memory;
1144     }
1145   }
1146   ShouldNotReachHere();
1147   return nullptr;
1148 }
1149 
1150 //----------------------set_cached_top_node------------------------------------
1151 // Install the cached top node, and make sure Node::is_top works correctly.
1152 void Compile::set_cached_top_node(Node* tn) {
1153   if (tn != nullptr)  verify_top(tn);
1154   Node* old_top = _top;
1155   _top = tn;
1156   // Calling Node::setup_is_top allows the nodes the chance to adjust
1157   // their _out arrays.
1158   if (_top != nullptr)     _top->setup_is_top();
1159   if (old_top != nullptr)  old_top->setup_is_top();
1160   assert(_top == nullptr || top()->is_top(), "");
1161 }
1162 
1163 #ifdef ASSERT
1164 uint Compile::count_live_nodes_by_graph_walk() {
1165   Unique_Node_List useful(comp_arena());
1166   // Get useful node list by walking the graph.
1167   identify_useful_nodes(useful);
1168   return useful.size();
1169 }
1170 
1171 void Compile::print_missing_nodes() {
1172 
1173   // Return if CompileLog is null and PrintIdealNodeCount is false.
1174   if ((_log == nullptr) && (! PrintIdealNodeCount)) {
1175     return;
1176   }
1177 
1178   // This is an expensive function. It is executed only when the user
1179   // specifies VerifyIdealNodeCount option or otherwise knows the
1180   // additional work that needs to be done to identify reachable nodes
1181   // by walking the flow graph and find the missing ones using
1182   // _dead_node_list.
1183 
1184   Unique_Node_List useful(comp_arena());
1185   // Get useful node list by walking the graph.
1186   identify_useful_nodes(useful);
1187 
1188   uint l_nodes = C->live_nodes();
1189   uint l_nodes_by_walk = useful.size();
1190 
1191   if (l_nodes != l_nodes_by_walk) {
1192     if (_log != nullptr) {
1193       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1194       _log->stamp();
1195       _log->end_head();
1196     }
1197     VectorSet& useful_member_set = useful.member_set();
1198     int last_idx = l_nodes_by_walk;
1199     for (int i = 0; i < last_idx; i++) {
1200       if (useful_member_set.test(i)) {
1201         if (_dead_node_list.test(i)) {
1202           if (_log != nullptr) {
1203             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1204           }
1205           if (PrintIdealNodeCount) {
1206             // Print the log message to tty
1207               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1208               useful.at(i)->dump();
1209           }
1210         }
1211       }
1212       else if (! _dead_node_list.test(i)) {
1213         if (_log != nullptr) {
1214           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1215         }
1216         if (PrintIdealNodeCount) {
1217           // Print the log message to tty
1218           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1219         }
1220       }
1221     }
1222     if (_log != nullptr) {
1223       _log->tail("mismatched_nodes");
1224     }
1225   }
1226 }
1227 void Compile::record_modified_node(Node* n) {
1228   if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) {
1229     _modified_nodes->push(n);
1230   }
1231 }
1232 
1233 void Compile::remove_modified_node(Node* n) {
1234   if (_modified_nodes != nullptr) {
1235     _modified_nodes->remove(n);
1236   }
1237 }
1238 #endif
1239 
1240 #ifndef PRODUCT
1241 void Compile::verify_top(Node* tn) const {
1242   if (tn != nullptr) {
1243     assert(tn->is_Con(), "top node must be a constant");
1244     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1245     assert(tn->in(0) != nullptr, "must have live top node");
1246   }
1247 }
1248 #endif
1249 
1250 
1251 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1252 
1253 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1254   guarantee(arr != nullptr, "");
1255   int num_blocks = arr->length();
1256   if (grow_by < num_blocks)  grow_by = num_blocks;
1257   int num_notes = grow_by * _node_notes_block_size;
1258   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1259   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1260   while (num_notes > 0) {
1261     arr->append(notes);
1262     notes     += _node_notes_block_size;
1263     num_notes -= _node_notes_block_size;
1264   }
1265   assert(num_notes == 0, "exact multiple, please");
1266 }
1267 
1268 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1269   if (source == nullptr || dest == nullptr)  return false;
1270 
1271   if (dest->is_Con())
1272     return false;               // Do not push debug info onto constants.
1273 
1274 #ifdef ASSERT
1275   // Leave a bread crumb trail pointing to the original node:
1276   if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) {
1277     dest->set_debug_orig(source);
1278   }
1279 #endif
1280 
1281   if (node_note_array() == nullptr)
1282     return false;               // Not collecting any notes now.
1283 
1284   // This is a copy onto a pre-existing node, which may already have notes.
1285   // If both nodes have notes, do not overwrite any pre-existing notes.
1286   Node_Notes* source_notes = node_notes_at(source->_idx);
1287   if (source_notes == nullptr || source_notes->is_clear())  return false;
1288   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1289   if (dest_notes == nullptr || dest_notes->is_clear()) {
1290     return set_node_notes_at(dest->_idx, source_notes);
1291   }
1292 
1293   Node_Notes merged_notes = (*source_notes);
1294   // The order of operations here ensures that dest notes will win...
1295   merged_notes.update_from(dest_notes);
1296   return set_node_notes_at(dest->_idx, &merged_notes);
1297 }
1298 
1299 
1300 //--------------------------allow_range_check_smearing-------------------------
1301 // Gating condition for coalescing similar range checks.
1302 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1303 // single covering check that is at least as strong as any of them.
1304 // If the optimization succeeds, the simplified (strengthened) range check
1305 // will always succeed.  If it fails, we will deopt, and then give up
1306 // on the optimization.
1307 bool Compile::allow_range_check_smearing() const {
1308   // If this method has already thrown a range-check,
1309   // assume it was because we already tried range smearing
1310   // and it failed.
1311   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1312   return !already_trapped;
1313 }
1314 
1315 
1316 //------------------------------flatten_alias_type-----------------------------
1317 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1318   assert(do_aliasing(), "Aliasing should be enabled");
1319   int offset = tj->offset();
1320   TypePtr::PTR ptr = tj->ptr();
1321 
1322   // Known instance (scalarizable allocation) alias only with itself.
1323   bool is_known_inst = tj->isa_oopptr() != nullptr &&
1324                        tj->is_oopptr()->is_known_instance();
1325 
1326   // Process weird unsafe references.
1327   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1328     assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops");
1329     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1330     tj = TypeOopPtr::BOTTOM;
1331     ptr = tj->ptr();
1332     offset = tj->offset();
1333   }
1334 
1335   // Array pointers need some flattening
1336   const TypeAryPtr* ta = tj->isa_aryptr();
1337   if (ta && ta->is_stable()) {
1338     // Erase stability property for alias analysis.
1339     tj = ta = ta->cast_to_stable(false);
1340   }
1341   if( ta && is_known_inst ) {
1342     if ( offset != Type::OffsetBot &&
1343          offset > arrayOopDesc::length_offset_in_bytes() ) {
1344       offset = Type::OffsetBot; // Flatten constant access into array body only
1345       tj = ta = ta->
1346               remove_speculative()->
1347               cast_to_ptr_type(ptr)->
1348               with_offset(offset);
1349     }
1350   } else if (ta) {
1351     // For arrays indexed by constant indices, we flatten the alias
1352     // space to include all of the array body.  Only the header, klass
1353     // and array length can be accessed un-aliased.
1354     if( offset != Type::OffsetBot ) {
1355       if( ta->const_oop() ) { // MethodData* or Method*
1356         offset = Type::OffsetBot;   // Flatten constant access into array body
1357         tj = ta = ta->
1358                 remove_speculative()->
1359                 cast_to_ptr_type(ptr)->
1360                 cast_to_exactness(false)->
1361                 with_offset(offset);
1362       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1363         // range is OK as-is.
1364         tj = ta = TypeAryPtr::RANGE;
1365       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1366         tj = TypeInstPtr::KLASS; // all klass loads look alike
1367         ta = TypeAryPtr::RANGE; // generic ignored junk
1368         ptr = TypePtr::BotPTR;
1369       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1370         tj = TypeInstPtr::MARK;
1371         ta = TypeAryPtr::RANGE; // generic ignored junk
1372         ptr = TypePtr::BotPTR;
1373       } else {                  // Random constant offset into array body
1374         offset = Type::OffsetBot;   // Flatten constant access into array body
1375         tj = ta = ta->
1376                 remove_speculative()->
1377                 cast_to_ptr_type(ptr)->
1378                 cast_to_exactness(false)->
1379                 with_offset(offset);
1380       }
1381     }
1382     // Arrays of fixed size alias with arrays of unknown size.
1383     if (ta->size() != TypeInt::POS) {
1384       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1385       tj = ta = ta->
1386               remove_speculative()->
1387               cast_to_ptr_type(ptr)->
1388               with_ary(tary)->
1389               cast_to_exactness(false);
1390     }
1391     // Arrays of known objects become arrays of unknown objects.
1392     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1393       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1394       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1395     }
1396     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1397       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1398       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset);
1399     }
1400     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1401     // cannot be distinguished by bytecode alone.
1402     if (ta->elem() == TypeInt::BOOL) {
1403       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1404       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1405       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1406     }
1407     // During the 2nd round of IterGVN, NotNull castings are removed.
1408     // Make sure the Bottom and NotNull variants alias the same.
1409     // Also, make sure exact and non-exact variants alias the same.
1410     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) {
1411       tj = ta = ta->
1412               remove_speculative()->
1413               cast_to_ptr_type(TypePtr::BotPTR)->
1414               cast_to_exactness(false)->
1415               with_offset(offset);
1416     }
1417   }
1418 
1419   // Oop pointers need some flattening
1420   const TypeInstPtr *to = tj->isa_instptr();
1421   if (to && to != TypeOopPtr::BOTTOM) {
1422     ciInstanceKlass* ik = to->instance_klass();
1423     if( ptr == TypePtr::Constant ) {
1424       if (ik != ciEnv::current()->Class_klass() ||
1425           offset < ik->layout_helper_size_in_bytes()) {
1426         // No constant oop pointers (such as Strings); they alias with
1427         // unknown strings.
1428         assert(!is_known_inst, "not scalarizable allocation");
1429         tj = to = to->
1430                 cast_to_instance_id(TypeOopPtr::InstanceBot)->
1431                 remove_speculative()->
1432                 cast_to_ptr_type(TypePtr::BotPTR)->
1433                 cast_to_exactness(false);
1434       }
1435     } else if( is_known_inst ) {
1436       tj = to; // Keep NotNull and klass_is_exact for instance type
1437     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1438       // During the 2nd round of IterGVN, NotNull castings are removed.
1439       // Make sure the Bottom and NotNull variants alias the same.
1440       // Also, make sure exact and non-exact variants alias the same.
1441       tj = to = to->
1442               remove_speculative()->
1443               cast_to_instance_id(TypeOopPtr::InstanceBot)->
1444               cast_to_ptr_type(TypePtr::BotPTR)->
1445               cast_to_exactness(false);
1446     }
1447     if (to->speculative() != nullptr) {
1448       tj = to = to->remove_speculative();
1449     }
1450     // Canonicalize the holder of this field
1451     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1452       // First handle header references such as a LoadKlassNode, even if the
1453       // object's klass is unloaded at compile time (4965979).
1454       if (!is_known_inst) { // Do it only for non-instance types
1455         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset);
1456       }
1457     } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) {
1458       // Static fields are in the space above the normal instance
1459       // fields in the java.lang.Class instance.
1460       if (ik != ciEnv::current()->Class_klass()) {
1461         to = nullptr;
1462         tj = TypeOopPtr::BOTTOM;
1463         offset = tj->offset();
1464       }
1465     } else {
1466       ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset);
1467       assert(offset < canonical_holder->layout_helper_size_in_bytes(), "");
1468       if (!ik->equals(canonical_holder) || tj->offset() != offset) {
1469         if( is_known_inst ) {
1470           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, nullptr, offset, to->instance_id());
1471         } else {
1472           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, nullptr, offset);
1473         }
1474       }
1475     }
1476   }
1477 
1478   // Klass pointers to object array klasses need some flattening
1479   const TypeKlassPtr *tk = tj->isa_klassptr();
1480   if( tk ) {
1481     // If we are referencing a field within a Klass, we need
1482     // to assume the worst case of an Object.  Both exact and
1483     // inexact types must flatten to the same alias class so
1484     // use NotNull as the PTR.
1485     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1486       tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull,
1487                                        env()->Object_klass(),
1488                                        offset);
1489     }
1490 
1491     if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) {
1492       ciKlass* k = ciObjArrayKlass::make(env()->Object_klass());
1493       if (!k || !k->is_loaded()) {                  // Only fails for some -Xcomp runs
1494         tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset);
1495       } else {
1496         tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset);
1497       }
1498     }
1499 
1500     // Check for precise loads from the primary supertype array and force them
1501     // to the supertype cache alias index.  Check for generic array loads from
1502     // the primary supertype array and also force them to the supertype cache
1503     // alias index.  Since the same load can reach both, we need to merge
1504     // these 2 disparate memories into the same alias class.  Since the
1505     // primary supertype array is read-only, there's no chance of confusion
1506     // where we bypass an array load and an array store.
1507     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1508     if (offset == Type::OffsetBot ||
1509         (offset >= primary_supers_offset &&
1510          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1511         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1512       offset = in_bytes(Klass::secondary_super_cache_offset());
1513       tj = tk = tk->with_offset(offset);
1514     }
1515   }
1516 
1517   // Flatten all Raw pointers together.
1518   if (tj->base() == Type::RawPtr)
1519     tj = TypeRawPtr::BOTTOM;
1520 
1521   if (tj->base() == Type::AnyPtr)
1522     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1523 
1524   offset = tj->offset();
1525   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1526 
1527   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1528           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1529           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1530           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1531           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1532           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1533           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr),
1534           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1535   assert( tj->ptr() != TypePtr::TopPTR &&
1536           tj->ptr() != TypePtr::AnyNull &&
1537           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1538 //    assert( tj->ptr() != TypePtr::Constant ||
1539 //            tj->base() == Type::RawPtr ||
1540 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1541 
1542   return tj;
1543 }
1544 
1545 void Compile::AliasType::Init(int i, const TypePtr* at) {
1546   assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index");
1547   _index = i;
1548   _adr_type = at;
1549   _field = nullptr;
1550   _element = nullptr;
1551   _is_rewritable = true; // default
1552   const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr;
1553   if (atoop != nullptr && atoop->is_known_instance()) {
1554     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1555     _general_index = Compile::current()->get_alias_index(gt);
1556   } else {
1557     _general_index = 0;
1558   }
1559 }
1560 
1561 BasicType Compile::AliasType::basic_type() const {
1562   if (element() != nullptr) {
1563     const Type* element = adr_type()->is_aryptr()->elem();
1564     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1565   } if (field() != nullptr) {
1566     return field()->layout_type();
1567   } else {
1568     return T_ILLEGAL; // unknown
1569   }
1570 }
1571 
1572 //---------------------------------print_on------------------------------------
1573 #ifndef PRODUCT
1574 void Compile::AliasType::print_on(outputStream* st) {
1575   if (index() < 10)
1576         st->print("@ <%d> ", index());
1577   else  st->print("@ <%d>",  index());
1578   st->print(is_rewritable() ? "   " : " RO");
1579   int offset = adr_type()->offset();
1580   if (offset == Type::OffsetBot)
1581         st->print(" +any");
1582   else  st->print(" +%-3d", offset);
1583   st->print(" in ");
1584   adr_type()->dump_on(st);
1585   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1586   if (field() != nullptr && tjp) {
1587     if (tjp->is_instptr()->instance_klass()  != field()->holder() ||
1588         tjp->offset() != field()->offset_in_bytes()) {
1589       st->print(" != ");
1590       field()->print();
1591       st->print(" ***");
1592     }
1593   }
1594 }
1595 
1596 void print_alias_types() {
1597   Compile* C = Compile::current();
1598   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1599   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1600     C->alias_type(idx)->print_on(tty);
1601     tty->cr();
1602   }
1603 }
1604 #endif
1605 
1606 
1607 //----------------------------probe_alias_cache--------------------------------
1608 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1609   intptr_t key = (intptr_t) adr_type;
1610   key ^= key >> logAliasCacheSize;
1611   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1612 }
1613 
1614 
1615 //-----------------------------grow_alias_types--------------------------------
1616 void Compile::grow_alias_types() {
1617   const int old_ats  = _max_alias_types; // how many before?
1618   const int new_ats  = old_ats;          // how many more?
1619   const int grow_ats = old_ats+new_ats;  // how many now?
1620   _max_alias_types = grow_ats;
1621   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1622   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1623   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1624   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1625 }
1626 
1627 
1628 //--------------------------------find_alias_type------------------------------
1629 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1630   if (!do_aliasing()) {
1631     return alias_type(AliasIdxBot);
1632   }
1633 
1634   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1635   if (ace->_adr_type == adr_type) {
1636     return alias_type(ace->_index);
1637   }
1638 
1639   // Handle special cases.
1640   if (adr_type == nullptr)          return alias_type(AliasIdxTop);
1641   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1642 
1643   // Do it the slow way.
1644   const TypePtr* flat = flatten_alias_type(adr_type);
1645 
1646 #ifdef ASSERT
1647   {
1648     ResourceMark rm;
1649     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1650            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1651     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1652            Type::str(adr_type));
1653     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1654       const TypeOopPtr* foop = flat->is_oopptr();
1655       // Scalarizable allocations have exact klass always.
1656       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1657       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1658       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1659              Type::str(foop), Type::str(xoop));
1660     }
1661   }
1662 #endif
1663 
1664   int idx = AliasIdxTop;
1665   for (int i = 0; i < num_alias_types(); i++) {
1666     if (alias_type(i)->adr_type() == flat) {
1667       idx = i;
1668       break;
1669     }
1670   }
1671 
1672   if (idx == AliasIdxTop) {
1673     if (no_create)  return nullptr;
1674     // Grow the array if necessary.
1675     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1676     // Add a new alias type.
1677     idx = _num_alias_types++;
1678     _alias_types[idx]->Init(idx, flat);
1679     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1680     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1681     if (flat->isa_instptr()) {
1682       if (flat->offset() == java_lang_Class::klass_offset()
1683           && flat->is_instptr()->instance_klass() == env()->Class_klass())
1684         alias_type(idx)->set_rewritable(false);
1685     }
1686     if (flat->isa_aryptr()) {
1687 #ifdef ASSERT
1688       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1689       // (T_BYTE has the weakest alignment and size restrictions...)
1690       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1691 #endif
1692       if (flat->offset() == TypePtr::OffsetBot) {
1693         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1694       }
1695     }
1696     if (flat->isa_klassptr()) {
1697       if (UseCompactObjectHeaders) {
1698         if (flat->offset() == in_bytes(Klass::prototype_header_offset()))
1699           alias_type(idx)->set_rewritable(false);
1700       }
1701       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1702         alias_type(idx)->set_rewritable(false);
1703       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1704         alias_type(idx)->set_rewritable(false);
1705       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1706         alias_type(idx)->set_rewritable(false);
1707       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1708         alias_type(idx)->set_rewritable(false);
1709       if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset()))
1710         alias_type(idx)->set_rewritable(false);
1711     }
1712     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1713     // but the base pointer type is not distinctive enough to identify
1714     // references into JavaThread.)
1715 
1716     // Check for final fields.
1717     const TypeInstPtr* tinst = flat->isa_instptr();
1718     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1719       ciField* field;
1720       if (tinst->const_oop() != nullptr &&
1721           tinst->instance_klass() == ciEnv::current()->Class_klass() &&
1722           tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) {
1723         // static field
1724         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1725         field = k->get_field_by_offset(tinst->offset(), true);
1726       } else {
1727         ciInstanceKlass *k = tinst->instance_klass();
1728         field = k->get_field_by_offset(tinst->offset(), false);
1729       }
1730       assert(field == nullptr ||
1731              original_field == nullptr ||
1732              (field->holder() == original_field->holder() &&
1733               field->offset_in_bytes() == original_field->offset_in_bytes() &&
1734               field->is_static() == original_field->is_static()), "wrong field?");
1735       // Set field() and is_rewritable() attributes.
1736       if (field != nullptr)  alias_type(idx)->set_field(field);
1737     }
1738   }
1739 
1740   // Fill the cache for next time.
1741   ace->_adr_type = adr_type;
1742   ace->_index    = idx;
1743   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1744 
1745   // Might as well try to fill the cache for the flattened version, too.
1746   AliasCacheEntry* face = probe_alias_cache(flat);
1747   if (face->_adr_type == nullptr) {
1748     face->_adr_type = flat;
1749     face->_index    = idx;
1750     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1751   }
1752 
1753   return alias_type(idx);
1754 }
1755 
1756 
1757 Compile::AliasType* Compile::alias_type(ciField* field) {
1758   const TypeOopPtr* t;
1759   if (field->is_static())
1760     t = TypeInstPtr::make(field->holder()->java_mirror());
1761   else
1762     t = TypeOopPtr::make_from_klass_raw(field->holder());
1763   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1764   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1765   return atp;
1766 }
1767 
1768 
1769 //------------------------------have_alias_type--------------------------------
1770 bool Compile::have_alias_type(const TypePtr* adr_type) {
1771   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1772   if (ace->_adr_type == adr_type) {
1773     return true;
1774   }
1775 
1776   // Handle special cases.
1777   if (adr_type == nullptr)             return true;
1778   if (adr_type == TypePtr::BOTTOM)  return true;
1779 
1780   return find_alias_type(adr_type, true, nullptr) != nullptr;
1781 }
1782 
1783 //-----------------------------must_alias--------------------------------------
1784 // True if all values of the given address type are in the given alias category.
1785 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1786   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1787   if (adr_type == nullptr)              return true;  // null serves as TypePtr::TOP
1788   if (alias_idx == AliasIdxTop)         return false; // the empty category
1789   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1790 
1791   // the only remaining possible overlap is identity
1792   int adr_idx = get_alias_index(adr_type);
1793   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1794   assert(adr_idx == alias_idx ||
1795          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1796           && adr_type                       != TypeOopPtr::BOTTOM),
1797          "should not be testing for overlap with an unsafe pointer");
1798   return adr_idx == alias_idx;
1799 }
1800 
1801 //------------------------------can_alias--------------------------------------
1802 // True if any values of the given address type are in the given alias category.
1803 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1804   if (alias_idx == AliasIdxTop)         return false; // the empty category
1805   if (adr_type == nullptr)              return false; // null serves as TypePtr::TOP
1806   // Known instance doesn't alias with bottom memory
1807   if (alias_idx == AliasIdxBot)         return !adr_type->is_known_instance();                   // the universal category
1808   if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins
1809 
1810   // the only remaining possible overlap is identity
1811   int adr_idx = get_alias_index(adr_type);
1812   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1813   return adr_idx == alias_idx;
1814 }
1815 
1816 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their
1817 // uncommon traps if no Runtime Predicates were created from the Parse Predicates.
1818 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) {
1819   if (parse_predicate_count() == 0) {
1820     return;
1821   }
1822   for (int i = 0; i < parse_predicate_count(); i++) {
1823     ParsePredicateNode* parse_predicate = _parse_predicates.at(i);
1824     parse_predicate->mark_useless();
1825     igvn._worklist.push(parse_predicate);
1826   }
1827   _parse_predicates.clear();
1828 }
1829 
1830 void Compile::record_for_post_loop_opts_igvn(Node* n) {
1831   if (!n->for_post_loop_opts_igvn()) {
1832     assert(!_for_post_loop_igvn.contains(n), "duplicate");
1833     n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1834     _for_post_loop_igvn.append(n);
1835   }
1836 }
1837 
1838 void Compile::remove_from_post_loop_opts_igvn(Node* n) {
1839   n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1840   _for_post_loop_igvn.remove(n);
1841 }
1842 
1843 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) {
1844   // Verify that all previous optimizations produced a valid graph
1845   // at least to this point, even if no loop optimizations were done.
1846   PhaseIdealLoop::verify(igvn);
1847 
1848   C->set_post_loop_opts_phase(); // no more loop opts allowed
1849 
1850   assert(!C->major_progress(), "not cleared");
1851 
1852   if (_for_post_loop_igvn.length() > 0) {
1853     while (_for_post_loop_igvn.length() > 0) {
1854       Node* n = _for_post_loop_igvn.pop();
1855       n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn);
1856       igvn._worklist.push(n);
1857     }
1858     igvn.optimize();
1859     if (failing()) return;
1860     assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed");
1861     assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now");
1862 
1863     // Sometimes IGVN sets major progress (e.g., when processing loop nodes).
1864     if (C->major_progress()) {
1865       C->clear_major_progress(); // ensure that major progress is now clear
1866     }
1867   }
1868 }
1869 
1870 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) {
1871   if (OptimizeUnstableIf) {
1872     _unstable_if_traps.append(trap);
1873   }
1874 }
1875 
1876 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) {
1877   for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) {
1878     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1879     Node* n = trap->uncommon_trap();
1880     if (!useful.member(n)) {
1881       _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed)
1882     }
1883   }
1884 }
1885 
1886 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead
1887 // or fold-compares case. Return true if succeed or not found.
1888 //
1889 // In rare cases, the found trap has been processed. It is too late to delete it. Return
1890 // false and ask fold-compares to yield.
1891 //
1892 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused
1893 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path
1894 // when deoptimization does happen.
1895 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) {
1896   for (int i = 0; i < _unstable_if_traps.length(); ++i) {
1897     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1898     if (trap->uncommon_trap() == unc) {
1899       if (yield && trap->modified()) {
1900         return false;
1901       }
1902       _unstable_if_traps.delete_at(i);
1903       break;
1904     }
1905   }
1906   return true;
1907 }
1908 
1909 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path.
1910 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering.
1911 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) {
1912   for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) {
1913     UnstableIfTrap* trap = _unstable_if_traps.at(i);
1914     CallStaticJavaNode* unc = trap->uncommon_trap();
1915     int next_bci = trap->next_bci();
1916     bool modified = trap->modified();
1917 
1918     if (next_bci != -1 && !modified) {
1919       assert(!_dead_node_list.test(unc->_idx), "changing a dead node!");
1920       JVMState* jvms = unc->jvms();
1921       ciMethod* method = jvms->method();
1922       ciBytecodeStream iter(method);
1923 
1924       iter.force_bci(jvms->bci());
1925       assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if");
1926       Bytecodes::Code c = iter.cur_bc();
1927       Node* lhs = nullptr;
1928       Node* rhs = nullptr;
1929       if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) {
1930         lhs = unc->peek_operand(0);
1931         rhs = unc->peek_operand(1);
1932       } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) {
1933         lhs = unc->peek_operand(0);
1934       }
1935 
1936       ResourceMark rm;
1937       const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci);
1938       assert(live_locals.is_valid(), "broken liveness info");
1939       int len = (int)live_locals.size();
1940 
1941       for (int i = 0; i < len; i++) {
1942         Node* local = unc->local(jvms, i);
1943         // kill local using the liveness of next_bci.
1944         // give up when the local looks like an operand to secure reexecution.
1945         if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) {
1946           uint idx = jvms->locoff() + i;
1947 #ifdef ASSERT
1948           if (PrintOpto && Verbose) {
1949             tty->print("[unstable_if] kill local#%d: ", idx);
1950             local->dump();
1951             tty->cr();
1952           }
1953 #endif
1954           igvn.replace_input_of(unc, idx, top());
1955           modified = true;
1956         }
1957       }
1958     }
1959 
1960     // keep the mondified trap for late query
1961     if (modified) {
1962       trap->set_modified();
1963     } else {
1964       _unstable_if_traps.delete_at(i);
1965     }
1966   }
1967   igvn.optimize();
1968 }
1969 
1970 // StringOpts and late inlining of string methods
1971 void Compile::inline_string_calls(bool parse_time) {
1972   {
1973     // remove useless nodes to make the usage analysis simpler
1974     ResourceMark rm;
1975     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
1976   }
1977 
1978   {
1979     ResourceMark rm;
1980     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1981     PhaseStringOpts pso(initial_gvn());
1982     print_method(PHASE_AFTER_STRINGOPTS, 3);
1983   }
1984 
1985   // now inline anything that we skipped the first time around
1986   if (!parse_time) {
1987     _late_inlines_pos = _late_inlines.length();
1988   }
1989 
1990   while (_string_late_inlines.length() > 0) {
1991     CallGenerator* cg = _string_late_inlines.pop();
1992     cg->do_late_inline();
1993     if (failing())  return;
1994   }
1995   _string_late_inlines.trunc_to(0);
1996 }
1997 
1998 // Late inlining of boxing methods
1999 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2000   if (_boxing_late_inlines.length() > 0) {
2001     assert(has_boxed_value(), "inconsistent");
2002 
2003     set_inlining_incrementally(true);
2004 
2005     igvn_worklist()->ensure_empty(); // should be done with igvn
2006 
2007     _late_inlines_pos = _late_inlines.length();
2008 
2009     while (_boxing_late_inlines.length() > 0) {
2010       CallGenerator* cg = _boxing_late_inlines.pop();
2011       cg->do_late_inline();
2012       if (failing())  return;
2013     }
2014     _boxing_late_inlines.trunc_to(0);
2015 
2016     inline_incrementally_cleanup(igvn);
2017 
2018     set_inlining_incrementally(false);
2019   }
2020 }
2021 
2022 bool Compile::inline_incrementally_one() {
2023   assert(IncrementalInline, "incremental inlining should be on");
2024 
2025   TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2026 
2027   set_inlining_progress(false);
2028   set_do_cleanup(false);
2029 
2030   for (int i = 0; i < _late_inlines.length(); i++) {
2031     _late_inlines_pos = i+1;
2032     CallGenerator* cg = _late_inlines.at(i);
2033     bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline();
2034     if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call
2035       cg->do_late_inline();
2036       assert(_late_inlines.at(i) == cg, "no insertions before current position allowed");
2037       if (failing()) {
2038         return false;
2039       } else if (inlining_progress()) {
2040         _late_inlines_pos = i+1; // restore the position in case new elements were inserted
2041         print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node());
2042         break; // process one call site at a time
2043       }
2044     } else {
2045       // Ignore late inline direct calls when inlining is not allowed.
2046       // They are left in the late inline list when node budget is exhausted until the list is fully drained.
2047     }
2048   }
2049   // Remove processed elements.
2050   _late_inlines.remove_till(_late_inlines_pos);
2051   _late_inlines_pos = 0;
2052 
2053   assert(inlining_progress() || _late_inlines.length() == 0, "no progress");
2054 
2055   bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2056 
2057   set_inlining_progress(false);
2058   set_do_cleanup(false);
2059 
2060   bool force_cleanup = directive()->IncrementalInlineForceCleanupOption;
2061   return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup;
2062 }
2063 
2064 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2065   {
2066     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2067     ResourceMark rm;
2068     PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist());
2069   }
2070   {
2071     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2072     igvn.reset_from_gvn(initial_gvn());
2073     igvn.optimize();
2074     if (failing()) return;
2075   }
2076   print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3);
2077 }
2078 
2079 // Perform incremental inlining until bound on number of live nodes is reached
2080 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2081   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2082 
2083   set_inlining_incrementally(true);
2084   uint low_live_nodes = 0;
2085 
2086   while (_late_inlines.length() > 0) {
2087     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2088       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2089         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2090         // PhaseIdealLoop is expensive so we only try it once we are
2091         // out of live nodes and we only try it again if the previous
2092         // helped got the number of nodes down significantly
2093         PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2094         if (failing())  return;
2095         low_live_nodes = live_nodes();
2096         _major_progress = true;
2097       }
2098 
2099       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2100         bool do_print_inlining = print_inlining() || print_intrinsics();
2101         if (do_print_inlining || log() != nullptr) {
2102           // Print inlining message for candidates that we couldn't inline for lack of space.
2103           for (int i = 0; i < _late_inlines.length(); i++) {
2104             CallGenerator* cg = _late_inlines.at(i);
2105             const char* msg = "live nodes > LiveNodeCountInliningCutoff";
2106             if (do_print_inlining) {
2107               cg->print_inlining_late(InliningResult::FAILURE, msg);
2108             }
2109             log_late_inline_failure(cg, msg);
2110           }
2111         }
2112         break; // finish
2113       }
2114     }
2115 
2116     igvn_worklist()->ensure_empty(); // should be done with igvn
2117 
2118     while (inline_incrementally_one()) {
2119       assert(!failing(), "inconsistent");
2120     }
2121     if (failing())  return;
2122 
2123     inline_incrementally_cleanup(igvn);
2124 
2125     print_method(PHASE_INCREMENTAL_INLINE_STEP, 3);
2126 
2127     if (failing())  return;
2128 
2129     if (_late_inlines.length() == 0) {
2130       break; // no more progress
2131     }
2132   }
2133 
2134   igvn_worklist()->ensure_empty(); // should be done with igvn
2135 
2136   if (_string_late_inlines.length() > 0) {
2137     assert(has_stringbuilder(), "inconsistent");
2138 
2139     inline_string_calls(false);
2140 
2141     if (failing())  return;
2142 
2143     inline_incrementally_cleanup(igvn);
2144   }
2145 
2146   set_inlining_incrementally(false);
2147 }
2148 
2149 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) {
2150   // "inlining_incrementally() == false" is used to signal that no inlining is allowed
2151   // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details).
2152   // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr"
2153   // as if "inlining_incrementally() == true" were set.
2154   assert(inlining_incrementally() == false, "not allowed");
2155   assert(_modified_nodes == nullptr, "not allowed");
2156   assert(_late_inlines.length() > 0, "sanity");
2157 
2158   while (_late_inlines.length() > 0) {
2159     igvn_worklist()->ensure_empty(); // should be done with igvn
2160 
2161     while (inline_incrementally_one()) {
2162       assert(!failing(), "inconsistent");
2163     }
2164     if (failing())  return;
2165 
2166     inline_incrementally_cleanup(igvn);
2167   }
2168 }
2169 
2170 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2171   if (_loop_opts_cnt > 0) {
2172     while (major_progress() && (_loop_opts_cnt > 0)) {
2173       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2174       PhaseIdealLoop::optimize(igvn, mode);
2175       _loop_opts_cnt--;
2176       if (failing())  return false;
2177       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2178     }
2179   }
2180   return true;
2181 }
2182 
2183 // Remove edges from "root" to each SafePoint at a backward branch.
2184 // They were inserted during parsing (see add_safepoint()) to make
2185 // infinite loops without calls or exceptions visible to root, i.e.,
2186 // useful.
2187 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2188   Node *r = root();
2189   if (r != nullptr) {
2190     for (uint i = r->req(); i < r->len(); ++i) {
2191       Node *n = r->in(i);
2192       if (n != nullptr && n->is_SafePoint()) {
2193         r->rm_prec(i);
2194         if (n->outcnt() == 0) {
2195           igvn.remove_dead_node(n);
2196         }
2197         --i;
2198       }
2199     }
2200     // Parsing may have added top inputs to the root node (Path
2201     // leading to the Halt node proven dead). Make sure we get a
2202     // chance to clean them up.
2203     igvn._worklist.push(r);
2204     igvn.optimize();
2205   }
2206 }
2207 
2208 //------------------------------Optimize---------------------------------------
2209 // Given a graph, optimize it.
2210 void Compile::Optimize() {
2211   TracePhase tp("optimizer", &timers[_t_optimizer]);
2212 
2213 #ifndef PRODUCT
2214   if (env()->break_at_compile()) {
2215     BREAKPOINT;
2216   }
2217 
2218 #endif
2219 
2220   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2221 #ifdef ASSERT
2222   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2223 #endif
2224 
2225   ResourceMark rm;
2226 
2227   print_inlining_reinit();
2228 
2229   NOT_PRODUCT( verify_graph_edges(); )
2230 
2231   print_method(PHASE_AFTER_PARSING, 1);
2232 
2233  {
2234   // Iterative Global Value Numbering, including ideal transforms
2235   // Initialize IterGVN with types and values from parse-time GVN
2236   PhaseIterGVN igvn(initial_gvn());
2237 #ifdef ASSERT
2238   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2239 #endif
2240   {
2241     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2242     igvn.optimize();
2243   }
2244 
2245   if (failing())  return;
2246 
2247   print_method(PHASE_ITER_GVN1, 2);
2248 
2249   process_for_unstable_if_traps(igvn);
2250 
2251   if (failing())  return;
2252 
2253   inline_incrementally(igvn);
2254 
2255   print_method(PHASE_INCREMENTAL_INLINE, 2);
2256 
2257   if (failing())  return;
2258 
2259   if (eliminate_boxing()) {
2260     // Inline valueOf() methods now.
2261     inline_boxing_calls(igvn);
2262 
2263     if (failing())  return;
2264 
2265     if (AlwaysIncrementalInline || StressIncrementalInlining) {
2266       inline_incrementally(igvn);
2267     }
2268 
2269     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2270 
2271     if (failing())  return;
2272   }
2273 
2274   // Remove the speculative part of types and clean up the graph from
2275   // the extra CastPP nodes whose only purpose is to carry them. Do
2276   // that early so that optimizations are not disrupted by the extra
2277   // CastPP nodes.
2278   remove_speculative_types(igvn);
2279 
2280   if (failing())  return;
2281 
2282   // No more new expensive nodes will be added to the list from here
2283   // so keep only the actual candidates for optimizations.
2284   cleanup_expensive_nodes(igvn);
2285 
2286   if (failing())  return;
2287 
2288   assert(EnableVectorSupport || !has_vbox_nodes(), "sanity");
2289   if (EnableVectorSupport && has_vbox_nodes()) {
2290     TracePhase tp("", &timers[_t_vector]);
2291     PhaseVector pv(igvn);
2292     pv.optimize_vector_boxes();
2293     if (failing())  return;
2294     print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2);
2295   }
2296   assert(!has_vbox_nodes(), "sanity");
2297 
2298   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2299     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2300     igvn_worklist()->ensure_empty(); // should be done with igvn
2301     {
2302       ResourceMark rm;
2303       PhaseRenumberLive prl(initial_gvn(), *igvn_worklist());
2304     }
2305     igvn.reset_from_gvn(initial_gvn());
2306     igvn.optimize();
2307     if (failing()) return;
2308   }
2309 
2310   // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop
2311   // safepoints
2312   remove_root_to_sfpts_edges(igvn);
2313 
2314   if (failing())  return;
2315 
2316   // Perform escape analysis
2317   if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) {
2318     if (has_loops()) {
2319       // Cleanup graph (remove dead nodes).
2320       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2321       PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll);
2322       if (failing())  return;
2323     }
2324     bool progress;
2325     print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2326     do {
2327       ConnectionGraph::do_analysis(this, &igvn);
2328 
2329       if (failing())  return;
2330 
2331       int mcount = macro_count(); // Record number of allocations and locks before IGVN
2332 
2333       // Optimize out fields loads from scalar replaceable allocations.
2334       igvn.optimize();
2335       print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2336 
2337       if (failing()) return;
2338 
2339       if (congraph() != nullptr && macro_count() > 0) {
2340         TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2341         PhaseMacroExpand mexp(igvn);
2342         mexp.eliminate_macro_nodes();
2343         if (failing()) return;
2344 
2345         igvn.set_delay_transform(false);
2346         igvn.optimize();
2347         if (failing()) return;
2348 
2349         print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2350       }
2351 
2352       ConnectionGraph::verify_ram_nodes(this, root());
2353       if (failing())  return;
2354 
2355       progress = do_iterative_escape_analysis() &&
2356                  (macro_count() < mcount) &&
2357                  ConnectionGraph::has_candidates(this);
2358       // Try again if candidates exist and made progress
2359       // by removing some allocations and/or locks.
2360     } while (progress);
2361   }
2362 
2363   // Loop transforms on the ideal graph.  Range Check Elimination,
2364   // peeling, unrolling, etc.
2365 
2366   // Set loop opts counter
2367   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2368     {
2369       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2370       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2371       _loop_opts_cnt--;
2372       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2373       if (failing())  return;
2374     }
2375     // Loop opts pass if partial peeling occurred in previous pass
2376     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2377       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2378       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2379       _loop_opts_cnt--;
2380       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2381       if (failing())  return;
2382     }
2383     // Loop opts pass for loop-unrolling before CCP
2384     if(major_progress() && (_loop_opts_cnt > 0)) {
2385       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2386       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2387       _loop_opts_cnt--;
2388       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2389     }
2390     if (!failing()) {
2391       // Verify that last round of loop opts produced a valid graph
2392       PhaseIdealLoop::verify(igvn);
2393     }
2394   }
2395   if (failing())  return;
2396 
2397   // Conditional Constant Propagation;
2398   print_method(PHASE_BEFORE_CCP1, 2);
2399   PhaseCCP ccp( &igvn );
2400   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2401   {
2402     TracePhase tp("ccp", &timers[_t_ccp]);
2403     ccp.do_transform();
2404   }
2405   print_method(PHASE_CCP1, 2);
2406 
2407   assert( true, "Break here to ccp.dump_old2new_map()");
2408 
2409   // Iterative Global Value Numbering, including ideal transforms
2410   {
2411     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2412     igvn.reset_from_igvn(&ccp);
2413     igvn.optimize();
2414   }
2415   print_method(PHASE_ITER_GVN2, 2);
2416 
2417   if (failing())  return;
2418 
2419   // Loop transforms on the ideal graph.  Range Check Elimination,
2420   // peeling, unrolling, etc.
2421   if (!optimize_loops(igvn, LoopOptsDefault)) {
2422     return;
2423   }
2424 
2425   if (failing())  return;
2426 
2427   C->clear_major_progress(); // ensure that major progress is now clear
2428 
2429   process_for_post_loop_opts_igvn(igvn);
2430 
2431   if (failing())  return;
2432 
2433 #ifdef ASSERT
2434   bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand);
2435 #endif
2436 
2437   {
2438     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2439     print_method(PHASE_BEFORE_MACRO_EXPANSION, 3);
2440     PhaseMacroExpand  mex(igvn);
2441     if (mex.expand_macro_nodes()) {
2442       assert(failing(), "must bail out w/ explicit message");
2443       return;
2444     }
2445     print_method(PHASE_AFTER_MACRO_EXPANSION, 2);
2446   }
2447 
2448   {
2449     TracePhase tp("barrierExpand", &timers[_t_barrierExpand]);
2450     if (bs->expand_barriers(this, igvn)) {
2451       assert(failing(), "must bail out w/ explicit message");
2452       return;
2453     }
2454     print_method(PHASE_BARRIER_EXPANSION, 2);
2455   }
2456 
2457   if (C->max_vector_size() > 0) {
2458     C->optimize_logic_cones(igvn);
2459     igvn.optimize();
2460     if (failing()) return;
2461   }
2462 
2463   DEBUG_ONLY( _modified_nodes = nullptr; )
2464 
2465   assert(igvn._worklist.size() == 0, "not empty");
2466 
2467   assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty");
2468 
2469   if (_late_inlines.length() > 0) {
2470     // More opportunities to optimize virtual and MH calls.
2471     // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option.
2472     process_late_inline_calls_no_inline(igvn);
2473     if (failing())  return;
2474   }
2475  } // (End scope of igvn; run destructor if necessary for asserts.)
2476 
2477  check_no_dead_use();
2478 
2479  process_print_inlining();
2480 
2481  // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have
2482  // to remove hashes to unlock nodes for modifications.
2483  C->node_hash()->clear();
2484 
2485  // A method with only infinite loops has no edges entering loops from root
2486  {
2487    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2488    if (final_graph_reshaping()) {
2489      assert(failing(), "must bail out w/ explicit message");
2490      return;
2491    }
2492  }
2493 
2494  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2495  DEBUG_ONLY(set_phase_optimize_finished();)
2496 }
2497 
2498 #ifdef ASSERT
2499 void Compile::check_no_dead_use() const {
2500   ResourceMark rm;
2501   Unique_Node_List wq;
2502   wq.push(root());
2503   for (uint i = 0; i < wq.size(); ++i) {
2504     Node* n = wq.at(i);
2505     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
2506       Node* u = n->fast_out(j);
2507       if (u->outcnt() == 0 && !u->is_Con()) {
2508         u->dump();
2509         fatal("no reachable node should have no use");
2510       }
2511       wq.push(u);
2512     }
2513   }
2514 }
2515 #endif
2516 
2517 void Compile::inline_vector_reboxing_calls() {
2518   if (C->_vector_reboxing_late_inlines.length() > 0) {
2519     _late_inlines_pos = C->_late_inlines.length();
2520     while (_vector_reboxing_late_inlines.length() > 0) {
2521       CallGenerator* cg = _vector_reboxing_late_inlines.pop();
2522       cg->do_late_inline();
2523       if (failing())  return;
2524       print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node());
2525     }
2526     _vector_reboxing_late_inlines.trunc_to(0);
2527   }
2528 }
2529 
2530 bool Compile::has_vbox_nodes() {
2531   if (C->_vector_reboxing_late_inlines.length() > 0) {
2532     return true;
2533   }
2534   for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) {
2535     Node * n = C->macro_node(macro_idx);
2536     assert(n->is_macro(), "only macro nodes expected here");
2537     if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) {
2538       return true;
2539     }
2540   }
2541   return false;
2542 }
2543 
2544 //---------------------------- Bitwise operation packing optimization ---------------------------
2545 
2546 static bool is_vector_unary_bitwise_op(Node* n) {
2547   return n->Opcode() == Op_XorV &&
2548          VectorNode::is_vector_bitwise_not_pattern(n);
2549 }
2550 
2551 static bool is_vector_binary_bitwise_op(Node* n) {
2552   switch (n->Opcode()) {
2553     case Op_AndV:
2554     case Op_OrV:
2555       return true;
2556 
2557     case Op_XorV:
2558       return !is_vector_unary_bitwise_op(n);
2559 
2560     default:
2561       return false;
2562   }
2563 }
2564 
2565 static bool is_vector_ternary_bitwise_op(Node* n) {
2566   return n->Opcode() == Op_MacroLogicV;
2567 }
2568 
2569 static bool is_vector_bitwise_op(Node* n) {
2570   return is_vector_unary_bitwise_op(n)  ||
2571          is_vector_binary_bitwise_op(n) ||
2572          is_vector_ternary_bitwise_op(n);
2573 }
2574 
2575 static bool is_vector_bitwise_cone_root(Node* n) {
2576   if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) {
2577     return false;
2578   }
2579   for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2580     if (is_vector_bitwise_op(n->fast_out(i))) {
2581       return false;
2582     }
2583   }
2584   return true;
2585 }
2586 
2587 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) {
2588   uint cnt = 0;
2589   if (is_vector_bitwise_op(n)) {
2590     uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req();
2591     if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2592       for (uint i = 1; i < inp_cnt; i++) {
2593         Node* in = n->in(i);
2594         bool skip = VectorNode::is_all_ones_vector(in);
2595         if (!skip && !inputs.member(in)) {
2596           inputs.push(in);
2597           cnt++;
2598         }
2599       }
2600       assert(cnt <= 1, "not unary");
2601     } else {
2602       uint last_req = inp_cnt;
2603       if (is_vector_ternary_bitwise_op(n)) {
2604         last_req = inp_cnt - 1; // skip last input
2605       }
2606       for (uint i = 1; i < last_req; i++) {
2607         Node* def = n->in(i);
2608         if (!inputs.member(def)) {
2609           inputs.push(def);
2610           cnt++;
2611         }
2612       }
2613     }
2614   } else { // not a bitwise operations
2615     if (!inputs.member(n)) {
2616       inputs.push(n);
2617       cnt++;
2618     }
2619   }
2620   return cnt;
2621 }
2622 
2623 void Compile::collect_logic_cone_roots(Unique_Node_List& list) {
2624   Unique_Node_List useful_nodes;
2625   C->identify_useful_nodes(useful_nodes);
2626 
2627   for (uint i = 0; i < useful_nodes.size(); i++) {
2628     Node* n = useful_nodes.at(i);
2629     if (is_vector_bitwise_cone_root(n)) {
2630       list.push(n);
2631     }
2632   }
2633 }
2634 
2635 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn,
2636                                     const TypeVect* vt,
2637                                     Unique_Node_List& partition,
2638                                     Unique_Node_List& inputs) {
2639   assert(partition.size() == 2 || partition.size() == 3, "not supported");
2640   assert(inputs.size()    == 2 || inputs.size()    == 3, "not supported");
2641   assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported");
2642 
2643   Node* in1 = inputs.at(0);
2644   Node* in2 = inputs.at(1);
2645   Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2);
2646 
2647   uint func = compute_truth_table(partition, inputs);
2648 
2649   Node* pn = partition.at(partition.size() - 1);
2650   Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2651   return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt));
2652 }
2653 
2654 static uint extract_bit(uint func, uint pos) {
2655   return (func & (1 << pos)) >> pos;
2656 }
2657 
2658 //
2659 //  A macro logic node represents a truth table. It has 4 inputs,
2660 //  First three inputs corresponds to 3 columns of a truth table
2661 //  and fourth input captures the logic function.
2662 //
2663 //  eg.  fn = (in1 AND in2) OR in3;
2664 //
2665 //      MacroNode(in1,in2,in3,fn)
2666 //
2667 //  -----------------
2668 //  in1 in2 in3  fn
2669 //  -----------------
2670 //  0    0   0    0
2671 //  0    0   1    1
2672 //  0    1   0    0
2673 //  0    1   1    1
2674 //  1    0   0    0
2675 //  1    0   1    1
2676 //  1    1   0    1
2677 //  1    1   1    1
2678 //
2679 
2680 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) {
2681   int res = 0;
2682   for (int i = 0; i < 8; i++) {
2683     int bit1 = extract_bit(in1, i);
2684     int bit2 = extract_bit(in2, i);
2685     int bit3 = extract_bit(in3, i);
2686 
2687     int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3);
2688     int func_bit = extract_bit(func, func_bit_pos);
2689 
2690     res |= func_bit << i;
2691   }
2692   return res;
2693 }
2694 
2695 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) {
2696   assert(n != nullptr, "");
2697   assert(eval_map.contains(n), "absent");
2698   return *(eval_map.get(n));
2699 }
2700 
2701 static void eval_operands(Node* n,
2702                           uint& func1, uint& func2, uint& func3,
2703                           ResourceHashtable<Node*,uint>& eval_map) {
2704   assert(is_vector_bitwise_op(n), "");
2705 
2706   if (is_vector_unary_bitwise_op(n)) {
2707     Node* opnd = n->in(1);
2708     if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) {
2709       opnd = n->in(2);
2710     }
2711     func1 = eval_operand(opnd, eval_map);
2712   } else if (is_vector_binary_bitwise_op(n)) {
2713     func1 = eval_operand(n->in(1), eval_map);
2714     func2 = eval_operand(n->in(2), eval_map);
2715   } else {
2716     assert(is_vector_ternary_bitwise_op(n), "unknown operation");
2717     func1 = eval_operand(n->in(1), eval_map);
2718     func2 = eval_operand(n->in(2), eval_map);
2719     func3 = eval_operand(n->in(3), eval_map);
2720   }
2721 }
2722 
2723 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) {
2724   assert(inputs.size() <= 3, "sanity");
2725   ResourceMark rm;
2726   uint res = 0;
2727   ResourceHashtable<Node*,uint> eval_map;
2728 
2729   // Populate precomputed functions for inputs.
2730   // Each input corresponds to one column of 3 input truth-table.
2731   uint input_funcs[] = { 0xAA,   // (_, _, c) -> c
2732                          0xCC,   // (_, b, _) -> b
2733                          0xF0 }; // (a, _, _) -> a
2734   for (uint i = 0; i < inputs.size(); i++) {
2735     eval_map.put(inputs.at(i), input_funcs[2-i]);
2736   }
2737 
2738   for (uint i = 0; i < partition.size(); i++) {
2739     Node* n = partition.at(i);
2740 
2741     uint func1 = 0, func2 = 0, func3 = 0;
2742     eval_operands(n, func1, func2, func3, eval_map);
2743 
2744     switch (n->Opcode()) {
2745       case Op_OrV:
2746         assert(func3 == 0, "not binary");
2747         res = func1 | func2;
2748         break;
2749       case Op_AndV:
2750         assert(func3 == 0, "not binary");
2751         res = func1 & func2;
2752         break;
2753       case Op_XorV:
2754         if (VectorNode::is_vector_bitwise_not_pattern(n)) {
2755           assert(func2 == 0 && func3 == 0, "not unary");
2756           res = (~func1) & 0xFF;
2757         } else {
2758           assert(func3 == 0, "not binary");
2759           res = func1 ^ func2;
2760         }
2761         break;
2762       case Op_MacroLogicV:
2763         // Ordering of inputs may change during evaluation of sub-tree
2764         // containing MacroLogic node as a child node, thus a re-evaluation
2765         // makes sure that function is evaluated in context of current
2766         // inputs.
2767         res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3);
2768         break;
2769 
2770       default: assert(false, "not supported: %s", n->Name());
2771     }
2772     assert(res <= 0xFF, "invalid");
2773     eval_map.put(n, res);
2774   }
2775   return res;
2776 }
2777 
2778 // Criteria under which nodes gets packed into a macro logic node:-
2779 //  1) Parent and both child nodes are all unmasked or masked with
2780 //     same predicates.
2781 //  2) Masked parent can be packed with left child if it is predicated
2782 //     and both have same predicates.
2783 //  3) Masked parent can be packed with right child if its un-predicated
2784 //     or has matching predication condition.
2785 //  4) An unmasked parent can be packed with an unmasked child.
2786 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) {
2787   assert(partition.size() == 0, "not empty");
2788   assert(inputs.size() == 0, "not empty");
2789   if (is_vector_ternary_bitwise_op(n)) {
2790     return false;
2791   }
2792 
2793   bool is_unary_op = is_vector_unary_bitwise_op(n);
2794   if (is_unary_op) {
2795     assert(collect_unique_inputs(n, inputs) == 1, "not unary");
2796     return false; // too few inputs
2797   }
2798 
2799   bool pack_left_child = true;
2800   bool pack_right_child = true;
2801 
2802   bool left_child_LOP = is_vector_bitwise_op(n->in(1));
2803   bool right_child_LOP = is_vector_bitwise_op(n->in(2));
2804 
2805   int left_child_input_cnt = 0;
2806   int right_child_input_cnt = 0;
2807 
2808   bool parent_is_predicated = n->is_predicated_vector();
2809   bool left_child_predicated = n->in(1)->is_predicated_vector();
2810   bool right_child_predicated = n->in(2)->is_predicated_vector();
2811 
2812   Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr;
2813   Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2814   Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr;
2815 
2816   do {
2817     if (pack_left_child && left_child_LOP &&
2818         ((!parent_is_predicated && !left_child_predicated) ||
2819         ((parent_is_predicated && left_child_predicated &&
2820           parent_pred == left_child_pred)))) {
2821        partition.push(n->in(1));
2822        left_child_input_cnt = collect_unique_inputs(n->in(1), inputs);
2823     } else {
2824        inputs.push(n->in(1));
2825        left_child_input_cnt = 1;
2826     }
2827 
2828     if (pack_right_child && right_child_LOP &&
2829         (!right_child_predicated ||
2830          (right_child_predicated && parent_is_predicated &&
2831           parent_pred == right_child_pred))) {
2832        partition.push(n->in(2));
2833        right_child_input_cnt = collect_unique_inputs(n->in(2), inputs);
2834     } else {
2835        inputs.push(n->in(2));
2836        right_child_input_cnt = 1;
2837     }
2838 
2839     if (inputs.size() > 3) {
2840       assert(partition.size() > 0, "");
2841       inputs.clear();
2842       partition.clear();
2843       if (left_child_input_cnt > right_child_input_cnt) {
2844         pack_left_child = false;
2845       } else {
2846         pack_right_child = false;
2847       }
2848     } else {
2849       break;
2850     }
2851   } while(true);
2852 
2853   if(partition.size()) {
2854     partition.push(n);
2855   }
2856 
2857   return (partition.size() == 2 || partition.size() == 3) &&
2858          (inputs.size()    == 2 || inputs.size()    == 3);
2859 }
2860 
2861 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) {
2862   assert(is_vector_bitwise_op(n), "not a root");
2863 
2864   visited.set(n->_idx);
2865 
2866   // 1) Do a DFS walk over the logic cone.
2867   for (uint i = 1; i < n->req(); i++) {
2868     Node* in = n->in(i);
2869     if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) {
2870       process_logic_cone_root(igvn, in, visited);
2871     }
2872   }
2873 
2874   // 2) Bottom up traversal: Merge node[s] with
2875   // the parent to form macro logic node.
2876   Unique_Node_List partition;
2877   Unique_Node_List inputs;
2878   if (compute_logic_cone(n, partition, inputs)) {
2879     const TypeVect* vt = n->bottom_type()->is_vect();
2880     Node* pn = partition.at(partition.size() - 1);
2881     Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr;
2882     if (mask == nullptr ||
2883         Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) {
2884       Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs);
2885       VectorNode::trace_new_vector(macro_logic, "MacroLogic");
2886       igvn.replace_node(n, macro_logic);
2887     }
2888   }
2889 }
2890 
2891 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) {
2892   ResourceMark rm;
2893   if (Matcher::match_rule_supported(Op_MacroLogicV)) {
2894     Unique_Node_List list;
2895     collect_logic_cone_roots(list);
2896 
2897     while (list.size() > 0) {
2898       Node* n = list.pop();
2899       const TypeVect* vt = n->bottom_type()->is_vect();
2900       bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type());
2901       if (supported) {
2902         VectorSet visited(comp_arena());
2903         process_logic_cone_root(igvn, n, visited);
2904       }
2905     }
2906   }
2907 }
2908 
2909 //------------------------------Code_Gen---------------------------------------
2910 // Given a graph, generate code for it
2911 void Compile::Code_Gen() {
2912   if (failing()) {
2913     return;
2914   }
2915 
2916   // Perform instruction selection.  You might think we could reclaim Matcher
2917   // memory PDQ, but actually the Matcher is used in generating spill code.
2918   // Internals of the Matcher (including some VectorSets) must remain live
2919   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2920   // set a bit in reclaimed memory.
2921 
2922   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2923   // nodes.  Mapping is only valid at the root of each matched subtree.
2924   NOT_PRODUCT( verify_graph_edges(); )
2925 
2926   Matcher matcher;
2927   _matcher = &matcher;
2928   {
2929     TracePhase tp("matcher", &timers[_t_matcher]);
2930     matcher.match();
2931     if (failing()) {
2932       return;
2933     }
2934   }
2935   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2936   // nodes.  Mapping is only valid at the root of each matched subtree.
2937   NOT_PRODUCT( verify_graph_edges(); )
2938 
2939   // If you have too many nodes, or if matching has failed, bail out
2940   check_node_count(0, "out of nodes matching instructions");
2941   if (failing()) {
2942     return;
2943   }
2944 
2945   print_method(PHASE_MATCHING, 2);
2946 
2947   // Build a proper-looking CFG
2948   PhaseCFG cfg(node_arena(), root(), matcher);
2949   _cfg = &cfg;
2950   {
2951     TracePhase tp("scheduler", &timers[_t_scheduler]);
2952     bool success = cfg.do_global_code_motion();
2953     if (!success) {
2954       return;
2955     }
2956 
2957     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2958     NOT_PRODUCT( verify_graph_edges(); )
2959     cfg.verify();
2960   }
2961 
2962   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2963   _regalloc = &regalloc;
2964   {
2965     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2966     // Perform register allocation.  After Chaitin, use-def chains are
2967     // no longer accurate (at spill code) and so must be ignored.
2968     // Node->LRG->reg mappings are still accurate.
2969     _regalloc->Register_Allocate();
2970 
2971     // Bail out if the allocator builds too many nodes
2972     if (failing()) {
2973       return;
2974     }
2975 
2976     print_method(PHASE_REGISTER_ALLOCATION, 2);
2977   }
2978 
2979   // Prior to register allocation we kept empty basic blocks in case the
2980   // the allocator needed a place to spill.  After register allocation we
2981   // are not adding any new instructions.  If any basic block is empty, we
2982   // can now safely remove it.
2983   {
2984     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2985     cfg.remove_empty_blocks();
2986     if (do_freq_based_layout()) {
2987       PhaseBlockLayout layout(cfg);
2988     } else {
2989       cfg.set_loop_alignment();
2990     }
2991     cfg.fixup_flow();
2992     cfg.remove_unreachable_blocks();
2993     cfg.verify_dominator_tree();
2994     print_method(PHASE_BLOCK_ORDERING, 3);
2995   }
2996 
2997   // Apply peephole optimizations
2998   if( OptoPeephole ) {
2999     TracePhase tp("peephole", &timers[_t_peephole]);
3000     PhasePeephole peep( _regalloc, cfg);
3001     peep.do_transform();
3002     print_method(PHASE_PEEPHOLE, 3);
3003   }
3004 
3005   // Do late expand if CPU requires this.
3006   if (Matcher::require_postalloc_expand) {
3007     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
3008     cfg.postalloc_expand(_regalloc);
3009     print_method(PHASE_POSTALLOC_EXPAND, 3);
3010   }
3011 
3012   // Convert Nodes to instruction bits in a buffer
3013   {
3014     TracePhase tp("output", &timers[_t_output]);
3015     PhaseOutput output;
3016     output.Output();
3017     if (failing())  return;
3018     output.install();
3019     print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here
3020   }
3021 
3022   // He's dead, Jim.
3023   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
3024   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
3025 }
3026 
3027 //------------------------------Final_Reshape_Counts---------------------------
3028 // This class defines counters to help identify when a method
3029 // may/must be executed using hardware with only 24-bit precision.
3030 struct Final_Reshape_Counts : public StackObj {
3031   int  _call_count;             // count non-inlined 'common' calls
3032   int  _float_count;            // count float ops requiring 24-bit precision
3033   int  _double_count;           // count double ops requiring more precision
3034   int  _java_call_count;        // count non-inlined 'java' calls
3035   int  _inner_loop_count;       // count loops which need alignment
3036   VectorSet _visited;           // Visitation flags
3037   Node_List _tests;             // Set of IfNodes & PCTableNodes
3038 
3039   Final_Reshape_Counts() :
3040     _call_count(0), _float_count(0), _double_count(0),
3041     _java_call_count(0), _inner_loop_count(0) { }
3042 
3043   void inc_call_count  () { _call_count  ++; }
3044   void inc_float_count () { _float_count ++; }
3045   void inc_double_count() { _double_count++; }
3046   void inc_java_call_count() { _java_call_count++; }
3047   void inc_inner_loop_count() { _inner_loop_count++; }
3048 
3049   int  get_call_count  () const { return _call_count  ; }
3050   int  get_float_count () const { return _float_count ; }
3051   int  get_double_count() const { return _double_count; }
3052   int  get_java_call_count() const { return _java_call_count; }
3053   int  get_inner_loop_count() const { return _inner_loop_count; }
3054 };
3055 
3056 // Eliminate trivially redundant StoreCMs and accumulate their
3057 // precedence edges.
3058 void Compile::eliminate_redundant_card_marks(Node* n) {
3059   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
3060   if (n->in(MemNode::Address)->outcnt() > 1) {
3061     // There are multiple users of the same address so it might be
3062     // possible to eliminate some of the StoreCMs
3063     Node* mem = n->in(MemNode::Memory);
3064     Node* adr = n->in(MemNode::Address);
3065     Node* val = n->in(MemNode::ValueIn);
3066     Node* prev = n;
3067     bool done = false;
3068     // Walk the chain of StoreCMs eliminating ones that match.  As
3069     // long as it's a chain of single users then the optimization is
3070     // safe.  Eliminating partially redundant StoreCMs would require
3071     // cloning copies down the other paths.
3072     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
3073       if (adr == mem->in(MemNode::Address) &&
3074           val == mem->in(MemNode::ValueIn)) {
3075         // redundant StoreCM
3076         if (mem->req() > MemNode::OopStore) {
3077           // Hasn't been processed by this code yet.
3078           n->add_prec(mem->in(MemNode::OopStore));
3079         } else {
3080           // Already converted to precedence edge
3081           for (uint i = mem->req(); i < mem->len(); i++) {
3082             // Accumulate any precedence edges
3083             if (mem->in(i) != nullptr) {
3084               n->add_prec(mem->in(i));
3085             }
3086           }
3087           // Everything above this point has been processed.
3088           done = true;
3089         }
3090         // Eliminate the previous StoreCM
3091         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
3092         assert(mem->outcnt() == 0, "should be dead");
3093         mem->disconnect_inputs(this);
3094       } else {
3095         prev = mem;
3096       }
3097       mem = prev->in(MemNode::Memory);
3098     }
3099   }
3100 }
3101 
3102 //------------------------------final_graph_reshaping_impl----------------------
3103 // Implement items 1-5 from final_graph_reshaping below.
3104 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3105 
3106   if ( n->outcnt() == 0 ) return; // dead node
3107   uint nop = n->Opcode();
3108 
3109   // Check for 2-input instruction with "last use" on right input.
3110   // Swap to left input.  Implements item (2).
3111   if( n->req() == 3 &&          // two-input instruction
3112       n->in(1)->outcnt() > 1 && // left use is NOT a last use
3113       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
3114       n->in(2)->outcnt() == 1 &&// right use IS a last use
3115       !n->in(2)->is_Con() ) {   // right use is not a constant
3116     // Check for commutative opcode
3117     switch( nop ) {
3118     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
3119     case Op_MaxI:  case Op_MaxL:  case Op_MaxF:  case Op_MaxD:
3120     case Op_MinI:  case Op_MinL:  case Op_MinF:  case Op_MinD:
3121     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
3122     case Op_AndL:  case Op_XorL:  case Op_OrL:
3123     case Op_AndI:  case Op_XorI:  case Op_OrI: {
3124       // Move "last use" input to left by swapping inputs
3125       n->swap_edges(1, 2);
3126       break;
3127     }
3128     default:
3129       break;
3130     }
3131   }
3132 
3133 #ifdef ASSERT
3134   if( n->is_Mem() ) {
3135     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
3136     assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw ||
3137             // oop will be recorded in oop map if load crosses safepoint
3138             (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
3139                               LoadNode::is_immutable_value(n->in(MemNode::Address)))),
3140             "raw memory operations should have control edge");
3141   }
3142   if (n->is_MemBar()) {
3143     MemBarNode* mb = n->as_MemBar();
3144     if (mb->trailing_store() || mb->trailing_load_store()) {
3145       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
3146       Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent));
3147       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
3148              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
3149     } else if (mb->leading()) {
3150       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
3151     }
3152   }
3153 #endif
3154   // Count FPU ops and common calls, implements item (3)
3155   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes);
3156   if (!gc_handled) {
3157     final_graph_reshaping_main_switch(n, frc, nop, dead_nodes);
3158   }
3159 
3160   // Collect CFG split points
3161   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3162     frc._tests.push(n);
3163   }
3164 }
3165 
3166 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) {
3167   switch( nop ) {
3168   // Count all float operations that may use FPU
3169   case Op_AddF:
3170   case Op_SubF:
3171   case Op_MulF:
3172   case Op_DivF:
3173   case Op_NegF:
3174   case Op_ModF:
3175   case Op_ConvI2F:
3176   case Op_ConF:
3177   case Op_CmpF:
3178   case Op_CmpF3:
3179   case Op_StoreF:
3180   case Op_LoadF:
3181   // case Op_ConvL2F: // longs are split into 32-bit halves
3182     frc.inc_float_count();
3183     break;
3184 
3185   case Op_ConvF2D:
3186   case Op_ConvD2F:
3187     frc.inc_float_count();
3188     frc.inc_double_count();
3189     break;
3190 
3191   // Count all double operations that may use FPU
3192   case Op_AddD:
3193   case Op_SubD:
3194   case Op_MulD:
3195   case Op_DivD:
3196   case Op_NegD:
3197   case Op_ModD:
3198   case Op_ConvI2D:
3199   case Op_ConvD2I:
3200   // case Op_ConvL2D: // handled by leaf call
3201   // case Op_ConvD2L: // handled by leaf call
3202   case Op_ConD:
3203   case Op_CmpD:
3204   case Op_CmpD3:
3205   case Op_StoreD:
3206   case Op_LoadD:
3207   case Op_LoadD_unaligned:
3208     frc.inc_double_count();
3209     break;
3210   case Op_Opaque1:              // Remove Opaque Nodes before matching
3211     n->subsume_by(n->in(1), this);
3212     break;
3213   case Op_CallStaticJava:
3214   case Op_CallJava:
3215   case Op_CallDynamicJava:
3216     frc.inc_java_call_count(); // Count java call site;
3217   case Op_CallRuntime:
3218   case Op_CallLeaf:
3219   case Op_CallLeafVector:
3220   case Op_CallLeafNoFP: {
3221     assert (n->is_Call(), "");
3222     CallNode *call = n->as_Call();
3223     // Count call sites where the FP mode bit would have to be flipped.
3224     // Do not count uncommon runtime calls:
3225     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
3226     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
3227     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
3228       frc.inc_call_count();   // Count the call site
3229     } else {                  // See if uncommon argument is shared
3230       Node *n = call->in(TypeFunc::Parms);
3231       int nop = n->Opcode();
3232       // Clone shared simple arguments to uncommon calls, item (1).
3233       if (n->outcnt() > 1 &&
3234           !n->is_Proj() &&
3235           nop != Op_CreateEx &&
3236           nop != Op_CheckCastPP &&
3237           nop != Op_DecodeN &&
3238           nop != Op_DecodeNKlass &&
3239           !n->is_Mem() &&
3240           !n->is_Phi()) {
3241         Node *x = n->clone();
3242         call->set_req(TypeFunc::Parms, x);
3243       }
3244     }
3245     break;
3246   }
3247 
3248   case Op_StoreCM:
3249     {
3250       // Convert OopStore dependence into precedence edge
3251       Node* prec = n->in(MemNode::OopStore);
3252       n->del_req(MemNode::OopStore);
3253       n->add_prec(prec);
3254       eliminate_redundant_card_marks(n);
3255     }
3256 
3257     // fall through
3258 
3259   case Op_StoreB:
3260   case Op_StoreC:
3261   case Op_StoreI:
3262   case Op_StoreL:
3263   case Op_CompareAndSwapB:
3264   case Op_CompareAndSwapS:
3265   case Op_CompareAndSwapI:
3266   case Op_CompareAndSwapL:
3267   case Op_CompareAndSwapP:
3268   case Op_CompareAndSwapN:
3269   case Op_WeakCompareAndSwapB:
3270   case Op_WeakCompareAndSwapS:
3271   case Op_WeakCompareAndSwapI:
3272   case Op_WeakCompareAndSwapL:
3273   case Op_WeakCompareAndSwapP:
3274   case Op_WeakCompareAndSwapN:
3275   case Op_CompareAndExchangeB:
3276   case Op_CompareAndExchangeS:
3277   case Op_CompareAndExchangeI:
3278   case Op_CompareAndExchangeL:
3279   case Op_CompareAndExchangeP:
3280   case Op_CompareAndExchangeN:
3281   case Op_GetAndAddS:
3282   case Op_GetAndAddB:
3283   case Op_GetAndAddI:
3284   case Op_GetAndAddL:
3285   case Op_GetAndSetS:
3286   case Op_GetAndSetB:
3287   case Op_GetAndSetI:
3288   case Op_GetAndSetL:
3289   case Op_GetAndSetP:
3290   case Op_GetAndSetN:
3291   case Op_StoreP:
3292   case Op_StoreN:
3293   case Op_StoreNKlass:
3294   case Op_LoadB:
3295   case Op_LoadUB:
3296   case Op_LoadUS:
3297   case Op_LoadI:
3298   case Op_LoadKlass:
3299   case Op_LoadNKlass:
3300   case Op_LoadL:
3301   case Op_LoadL_unaligned:
3302   case Op_LoadP:
3303   case Op_LoadN:
3304   case Op_LoadRange:
3305   case Op_LoadS:
3306     break;
3307 
3308   case Op_AddP: {               // Assert sane base pointers
3309     Node *addp = n->in(AddPNode::Address);
3310     assert( !addp->is_AddP() ||
3311             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3312             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3313             "Base pointers must match (addp %u)", addp->_idx );
3314 #ifdef _LP64
3315     if ((UseCompressedOops || UseCompressedClassPointers) &&
3316         addp->Opcode() == Op_ConP &&
3317         addp == n->in(AddPNode::Base) &&
3318         n->in(AddPNode::Offset)->is_Con()) {
3319       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3320       // on the platform and on the compressed oops mode.
3321       // Use addressing with narrow klass to load with offset on x86.
3322       // Some platforms can use the constant pool to load ConP.
3323       // Do this transformation here since IGVN will convert ConN back to ConP.
3324       const Type* t = addp->bottom_type();
3325       bool is_oop   = t->isa_oopptr() != nullptr;
3326       bool is_klass = t->isa_klassptr() != nullptr;
3327 
3328       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
3329           (is_klass && Matcher::const_klass_prefer_decode())) {
3330         Node* nn = nullptr;
3331 
3332         int op = is_oop ? Op_ConN : Op_ConNKlass;
3333 
3334         // Look for existing ConN node of the same exact type.
3335         Node* r  = root();
3336         uint cnt = r->outcnt();
3337         for (uint i = 0; i < cnt; i++) {
3338           Node* m = r->raw_out(i);
3339           if (m!= nullptr && m->Opcode() == op &&
3340               m->bottom_type()->make_ptr() == t) {
3341             nn = m;
3342             break;
3343           }
3344         }
3345         if (nn != nullptr) {
3346           // Decode a narrow oop to match address
3347           // [R12 + narrow_oop_reg<<3 + offset]
3348           if (is_oop) {
3349             nn = new DecodeNNode(nn, t);
3350           } else {
3351             nn = new DecodeNKlassNode(nn, t);
3352           }
3353           // Check for succeeding AddP which uses the same Base.
3354           // Otherwise we will run into the assertion above when visiting that guy.
3355           for (uint i = 0; i < n->outcnt(); ++i) {
3356             Node *out_i = n->raw_out(i);
3357             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3358               out_i->set_req(AddPNode::Base, nn);
3359 #ifdef ASSERT
3360               for (uint j = 0; j < out_i->outcnt(); ++j) {
3361                 Node *out_j = out_i->raw_out(j);
3362                 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3363                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3364               }
3365 #endif
3366             }
3367           }
3368           n->set_req(AddPNode::Base, nn);
3369           n->set_req(AddPNode::Address, nn);
3370           if (addp->outcnt() == 0) {
3371             addp->disconnect_inputs(this);
3372           }
3373         }
3374       }
3375     }
3376 #endif
3377     break;
3378   }
3379 
3380   case Op_CastPP: {
3381     // Remove CastPP nodes to gain more freedom during scheduling but
3382     // keep the dependency they encode as control or precedence edges
3383     // (if control is set already) on memory operations. Some CastPP
3384     // nodes don't have a control (don't carry a dependency): skip
3385     // those.
3386     if (n->in(0) != nullptr) {
3387       ResourceMark rm;
3388       Unique_Node_List wq;
3389       wq.push(n);
3390       for (uint next = 0; next < wq.size(); ++next) {
3391         Node *m = wq.at(next);
3392         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3393           Node* use = m->fast_out(i);
3394           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3395             use->ensure_control_or_add_prec(n->in(0));
3396           } else {
3397             switch(use->Opcode()) {
3398             case Op_AddP:
3399             case Op_DecodeN:
3400             case Op_DecodeNKlass:
3401             case Op_CheckCastPP:
3402             case Op_CastPP:
3403               wq.push(use);
3404               break;
3405             }
3406           }
3407         }
3408       }
3409     }
3410     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3411     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3412       Node* in1 = n->in(1);
3413       const Type* t = n->bottom_type();
3414       Node* new_in1 = in1->clone();
3415       new_in1->as_DecodeN()->set_type(t);
3416 
3417       if (!Matcher::narrow_oop_use_complex_address()) {
3418         //
3419         // x86, ARM and friends can handle 2 adds in addressing mode
3420         // and Matcher can fold a DecodeN node into address by using
3421         // a narrow oop directly and do implicit null check in address:
3422         //
3423         // [R12 + narrow_oop_reg<<3 + offset]
3424         // NullCheck narrow_oop_reg
3425         //
3426         // On other platforms (Sparc) we have to keep new DecodeN node and
3427         // use it to do implicit null check in address:
3428         //
3429         // decode_not_null narrow_oop_reg, base_reg
3430         // [base_reg + offset]
3431         // NullCheck base_reg
3432         //
3433         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3434         // to keep the information to which null check the new DecodeN node
3435         // corresponds to use it as value in implicit_null_check().
3436         //
3437         new_in1->set_req(0, n->in(0));
3438       }
3439 
3440       n->subsume_by(new_in1, this);
3441       if (in1->outcnt() == 0) {
3442         in1->disconnect_inputs(this);
3443       }
3444     } else {
3445       n->subsume_by(n->in(1), this);
3446       if (n->outcnt() == 0) {
3447         n->disconnect_inputs(this);
3448       }
3449     }
3450     break;
3451   }
3452 #ifdef _LP64
3453   case Op_CmpP:
3454     // Do this transformation here to preserve CmpPNode::sub() and
3455     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3456     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3457       Node* in1 = n->in(1);
3458       Node* in2 = n->in(2);
3459       if (!in1->is_DecodeNarrowPtr()) {
3460         in2 = in1;
3461         in1 = n->in(2);
3462       }
3463       assert(in1->is_DecodeNarrowPtr(), "sanity");
3464 
3465       Node* new_in2 = nullptr;
3466       if (in2->is_DecodeNarrowPtr()) {
3467         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3468         new_in2 = in2->in(1);
3469       } else if (in2->Opcode() == Op_ConP) {
3470         const Type* t = in2->bottom_type();
3471         if (t == TypePtr::NULL_PTR) {
3472           assert(in1->is_DecodeN(), "compare klass to null?");
3473           // Don't convert CmpP null check into CmpN if compressed
3474           // oops implicit null check is not generated.
3475           // This will allow to generate normal oop implicit null check.
3476           if (Matcher::gen_narrow_oop_implicit_null_checks())
3477             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3478           //
3479           // This transformation together with CastPP transformation above
3480           // will generated code for implicit null checks for compressed oops.
3481           //
3482           // The original code after Optimize()
3483           //
3484           //    LoadN memory, narrow_oop_reg
3485           //    decode narrow_oop_reg, base_reg
3486           //    CmpP base_reg, nullptr
3487           //    CastPP base_reg // NotNull
3488           //    Load [base_reg + offset], val_reg
3489           //
3490           // after these transformations will be
3491           //
3492           //    LoadN memory, narrow_oop_reg
3493           //    CmpN narrow_oop_reg, nullptr
3494           //    decode_not_null narrow_oop_reg, base_reg
3495           //    Load [base_reg + offset], val_reg
3496           //
3497           // and the uncommon path (== nullptr) will use narrow_oop_reg directly
3498           // since narrow oops can be used in debug info now (see the code in
3499           // final_graph_reshaping_walk()).
3500           //
3501           // At the end the code will be matched to
3502           // on x86:
3503           //
3504           //    Load_narrow_oop memory, narrow_oop_reg
3505           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3506           //    NullCheck narrow_oop_reg
3507           //
3508           // and on sparc:
3509           //
3510           //    Load_narrow_oop memory, narrow_oop_reg
3511           //    decode_not_null narrow_oop_reg, base_reg
3512           //    Load [base_reg + offset], val_reg
3513           //    NullCheck base_reg
3514           //
3515         } else if (t->isa_oopptr()) {
3516           new_in2 = ConNode::make(t->make_narrowoop());
3517         } else if (t->isa_klassptr()) {
3518           new_in2 = ConNode::make(t->make_narrowklass());
3519         }
3520       }
3521       if (new_in2 != nullptr) {
3522         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3523         n->subsume_by(cmpN, this);
3524         if (in1->outcnt() == 0) {
3525           in1->disconnect_inputs(this);
3526         }
3527         if (in2->outcnt() == 0) {
3528           in2->disconnect_inputs(this);
3529         }
3530       }
3531     }
3532     break;
3533 
3534   case Op_DecodeN:
3535   case Op_DecodeNKlass:
3536     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3537     // DecodeN could be pinned when it can't be fold into
3538     // an address expression, see the code for Op_CastPP above.
3539     assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3540     break;
3541 
3542   case Op_EncodeP:
3543   case Op_EncodePKlass: {
3544     Node* in1 = n->in(1);
3545     if (in1->is_DecodeNarrowPtr()) {
3546       n->subsume_by(in1->in(1), this);
3547     } else if (in1->Opcode() == Op_ConP) {
3548       const Type* t = in1->bottom_type();
3549       if (t == TypePtr::NULL_PTR) {
3550         assert(t->isa_oopptr(), "null klass?");
3551         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3552       } else if (t->isa_oopptr()) {
3553         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3554       } else if (t->isa_klassptr()) {
3555         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3556       }
3557     }
3558     if (in1->outcnt() == 0) {
3559       in1->disconnect_inputs(this);
3560     }
3561     break;
3562   }
3563 
3564   case Op_Proj: {
3565     if (OptimizeStringConcat || IncrementalInline) {
3566       ProjNode* proj = n->as_Proj();
3567       if (proj->_is_io_use) {
3568         assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, "");
3569         // Separate projections were used for the exception path which
3570         // are normally removed by a late inline.  If it wasn't inlined
3571         // then they will hang around and should just be replaced with
3572         // the original one. Merge them.
3573         Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/);
3574         if (non_io_proj  != nullptr) {
3575           proj->subsume_by(non_io_proj , this);
3576         }
3577       }
3578     }
3579     break;
3580   }
3581 
3582   case Op_Phi:
3583     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3584       // The EncodeP optimization may create Phi with the same edges
3585       // for all paths. It is not handled well by Register Allocator.
3586       Node* unique_in = n->in(1);
3587       assert(unique_in != nullptr, "");
3588       uint cnt = n->req();
3589       for (uint i = 2; i < cnt; i++) {
3590         Node* m = n->in(i);
3591         assert(m != nullptr, "");
3592         if (unique_in != m)
3593           unique_in = nullptr;
3594       }
3595       if (unique_in != nullptr) {
3596         n->subsume_by(unique_in, this);
3597       }
3598     }
3599     break;
3600 
3601 #endif
3602 
3603 #ifdef ASSERT
3604   case Op_CastII:
3605     // Verify that all range check dependent CastII nodes were removed.
3606     if (n->isa_CastII()->has_range_check()) {
3607       n->dump(3);
3608       assert(false, "Range check dependent CastII node was not removed");
3609     }
3610     break;
3611 #endif
3612 
3613   case Op_ModI:
3614     if (UseDivMod) {
3615       // Check if a%b and a/b both exist
3616       Node* d = n->find_similar(Op_DivI);
3617       if (d) {
3618         // Replace them with a fused divmod if supported
3619         if (Matcher::has_match_rule(Op_DivModI)) {
3620           DivModINode* divmod = DivModINode::make(n);
3621           d->subsume_by(divmod->div_proj(), this);
3622           n->subsume_by(divmod->mod_proj(), this);
3623         } else {
3624           // replace a%b with a-((a/b)*b)
3625           Node* mult = new MulINode(d, d->in(2));
3626           Node* sub  = new SubINode(d->in(1), mult);
3627           n->subsume_by(sub, this);
3628         }
3629       }
3630     }
3631     break;
3632 
3633   case Op_ModL:
3634     if (UseDivMod) {
3635       // Check if a%b and a/b both exist
3636       Node* d = n->find_similar(Op_DivL);
3637       if (d) {
3638         // Replace them with a fused divmod if supported
3639         if (Matcher::has_match_rule(Op_DivModL)) {
3640           DivModLNode* divmod = DivModLNode::make(n);
3641           d->subsume_by(divmod->div_proj(), this);
3642           n->subsume_by(divmod->mod_proj(), this);
3643         } else {
3644           // replace a%b with a-((a/b)*b)
3645           Node* mult = new MulLNode(d, d->in(2));
3646           Node* sub  = new SubLNode(d->in(1), mult);
3647           n->subsume_by(sub, this);
3648         }
3649       }
3650     }
3651     break;
3652 
3653   case Op_UModI:
3654     if (UseDivMod) {
3655       // Check if a%b and a/b both exist
3656       Node* d = n->find_similar(Op_UDivI);
3657       if (d) {
3658         // Replace them with a fused unsigned divmod if supported
3659         if (Matcher::has_match_rule(Op_UDivModI)) {
3660           UDivModINode* divmod = UDivModINode::make(n);
3661           d->subsume_by(divmod->div_proj(), this);
3662           n->subsume_by(divmod->mod_proj(), this);
3663         } else {
3664           // replace a%b with a-((a/b)*b)
3665           Node* mult = new MulINode(d, d->in(2));
3666           Node* sub  = new SubINode(d->in(1), mult);
3667           n->subsume_by(sub, this);
3668         }
3669       }
3670     }
3671     break;
3672 
3673   case Op_UModL:
3674     if (UseDivMod) {
3675       // Check if a%b and a/b both exist
3676       Node* d = n->find_similar(Op_UDivL);
3677       if (d) {
3678         // Replace them with a fused unsigned divmod if supported
3679         if (Matcher::has_match_rule(Op_UDivModL)) {
3680           UDivModLNode* divmod = UDivModLNode::make(n);
3681           d->subsume_by(divmod->div_proj(), this);
3682           n->subsume_by(divmod->mod_proj(), this);
3683         } else {
3684           // replace a%b with a-((a/b)*b)
3685           Node* mult = new MulLNode(d, d->in(2));
3686           Node* sub  = new SubLNode(d->in(1), mult);
3687           n->subsume_by(sub, this);
3688         }
3689       }
3690     }
3691     break;
3692 
3693   case Op_LoadVector:
3694   case Op_StoreVector:
3695 #ifdef ASSERT
3696     // Add VerifyVectorAlignment node between adr and load / store.
3697     if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) {
3698       bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() :
3699                                                         n->as_StoreVector()->must_verify_alignment();
3700       if (must_verify_alignment) {
3701         jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() :
3702                                                   n->as_StoreVector()->memory_size();
3703         // The memory access should be aligned to the vector width in bytes.
3704         // However, the underlying array is possibly less well aligned, but at least
3705         // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in
3706         // a loop we can expect at least the following alignment:
3707         jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes);
3708         assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range");
3709         assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2");
3710         // Create mask from alignment. e.g. 0b1000 -> 0b0111
3711         jlong mask = guaranteed_alignment - 1;
3712         Node* mask_con = ConLNode::make(mask);
3713         VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con);
3714         n->set_req(MemNode::Address, va);
3715       }
3716     }
3717 #endif
3718     break;
3719 
3720   case Op_LoadVectorGather:
3721   case Op_StoreVectorScatter:
3722   case Op_LoadVectorGatherMasked:
3723   case Op_StoreVectorScatterMasked:
3724   case Op_VectorCmpMasked:
3725   case Op_VectorMaskGen:
3726   case Op_LoadVectorMasked:
3727   case Op_StoreVectorMasked:
3728     break;
3729 
3730   case Op_AddReductionVI:
3731   case Op_AddReductionVL:
3732   case Op_AddReductionVF:
3733   case Op_AddReductionVD:
3734   case Op_MulReductionVI:
3735   case Op_MulReductionVL:
3736   case Op_MulReductionVF:
3737   case Op_MulReductionVD:
3738   case Op_MinReductionV:
3739   case Op_MaxReductionV:
3740   case Op_AndReductionV:
3741   case Op_OrReductionV:
3742   case Op_XorReductionV:
3743     break;
3744 
3745   case Op_PackB:
3746   case Op_PackS:
3747   case Op_PackI:
3748   case Op_PackF:
3749   case Op_PackL:
3750   case Op_PackD:
3751     if (n->req()-1 > 2) {
3752       // Replace many operand PackNodes with a binary tree for matching
3753       PackNode* p = (PackNode*) n;
3754       Node* btp = p->binary_tree_pack(1, n->req());
3755       n->subsume_by(btp, this);
3756     }
3757     break;
3758   case Op_Loop:
3759     assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop");
3760   case Op_CountedLoop:
3761   case Op_LongCountedLoop:
3762   case Op_OuterStripMinedLoop:
3763     if (n->as_Loop()->is_inner_loop()) {
3764       frc.inc_inner_loop_count();
3765     }
3766     n->as_Loop()->verify_strip_mined(0);
3767     break;
3768   case Op_LShiftI:
3769   case Op_RShiftI:
3770   case Op_URShiftI:
3771   case Op_LShiftL:
3772   case Op_RShiftL:
3773   case Op_URShiftL:
3774     if (Matcher::need_masked_shift_count) {
3775       // The cpu's shift instructions don't restrict the count to the
3776       // lower 5/6 bits. We need to do the masking ourselves.
3777       Node* in2 = n->in(2);
3778       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3779       const TypeInt* t = in2->find_int_type();
3780       if (t != nullptr && t->is_con()) {
3781         juint shift = t->get_con();
3782         if (shift > mask) { // Unsigned cmp
3783           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3784         }
3785       } else {
3786         if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) {
3787           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3788           n->set_req(2, shift);
3789         }
3790       }
3791       if (in2->outcnt() == 0) { // Remove dead node
3792         in2->disconnect_inputs(this);
3793       }
3794     }
3795     break;
3796   case Op_MemBarStoreStore:
3797   case Op_MemBarRelease:
3798     // Break the link with AllocateNode: it is no longer useful and
3799     // confuses register allocation.
3800     if (n->req() > MemBarNode::Precedent) {
3801       n->set_req(MemBarNode::Precedent, top());
3802     }
3803     break;
3804   case Op_MemBarAcquire: {
3805     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3806       // At parse time, the trailing MemBarAcquire for a volatile load
3807       // is created with an edge to the load. After optimizations,
3808       // that input may be a chain of Phis. If those phis have no
3809       // other use, then the MemBarAcquire keeps them alive and
3810       // register allocation can be confused.
3811       dead_nodes.push(n->in(MemBarNode::Precedent));
3812       n->set_req(MemBarNode::Precedent, top());
3813     }
3814     break;
3815   }
3816   case Op_Blackhole:
3817     break;
3818   case Op_RangeCheck: {
3819     RangeCheckNode* rc = n->as_RangeCheck();
3820     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3821     n->subsume_by(iff, this);
3822     frc._tests.push(iff);
3823     break;
3824   }
3825   case Op_ConvI2L: {
3826     if (!Matcher::convi2l_type_required) {
3827       // Code generation on some platforms doesn't need accurate
3828       // ConvI2L types. Widening the type can help remove redundant
3829       // address computations.
3830       n->as_Type()->set_type(TypeLong::INT);
3831       ResourceMark rm;
3832       Unique_Node_List wq;
3833       wq.push(n);
3834       for (uint next = 0; next < wq.size(); next++) {
3835         Node *m = wq.at(next);
3836 
3837         for(;;) {
3838           // Loop over all nodes with identical inputs edges as m
3839           Node* k = m->find_similar(m->Opcode());
3840           if (k == nullptr) {
3841             break;
3842           }
3843           // Push their uses so we get a chance to remove node made
3844           // redundant
3845           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3846             Node* u = k->fast_out(i);
3847             if (u->Opcode() == Op_LShiftL ||
3848                 u->Opcode() == Op_AddL ||
3849                 u->Opcode() == Op_SubL ||
3850                 u->Opcode() == Op_AddP) {
3851               wq.push(u);
3852             }
3853           }
3854           // Replace all nodes with identical edges as m with m
3855           k->subsume_by(m, this);
3856         }
3857       }
3858     }
3859     break;
3860   }
3861   case Op_CmpUL: {
3862     if (!Matcher::has_match_rule(Op_CmpUL)) {
3863       // No support for unsigned long comparisons
3864       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3865       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3866       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3867       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3868       Node* andl = new AndLNode(orl, remove_sign_mask);
3869       Node* cmp = new CmpLNode(andl, n->in(2));
3870       n->subsume_by(cmp, this);
3871     }
3872     break;
3873   }
3874   default:
3875     assert(!n->is_Call(), "");
3876     assert(!n->is_Mem(), "");
3877     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3878     break;
3879   }
3880 }
3881 
3882 //------------------------------final_graph_reshaping_walk---------------------
3883 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3884 // requires that the walk visits a node's inputs before visiting the node.
3885 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) {
3886   Unique_Node_List sfpt;
3887 
3888   frc._visited.set(root->_idx); // first, mark node as visited
3889   uint cnt = root->req();
3890   Node *n = root;
3891   uint  i = 0;
3892   while (true) {
3893     if (i < cnt) {
3894       // Place all non-visited non-null inputs onto stack
3895       Node* m = n->in(i);
3896       ++i;
3897       if (m != nullptr && !frc._visited.test_set(m->_idx)) {
3898         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) {
3899           // compute worst case interpreter size in case of a deoptimization
3900           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3901 
3902           sfpt.push(m);
3903         }
3904         cnt = m->req();
3905         nstack.push(n, i); // put on stack parent and next input's index
3906         n = m;
3907         i = 0;
3908       }
3909     } else {
3910       // Now do post-visit work
3911       final_graph_reshaping_impl(n, frc, dead_nodes);
3912       if (nstack.is_empty())
3913         break;             // finished
3914       n = nstack.node();   // Get node from stack
3915       cnt = n->req();
3916       i = nstack.index();
3917       nstack.pop();        // Shift to the next node on stack
3918     }
3919   }
3920 
3921   // Skip next transformation if compressed oops are not used.
3922   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3923       (!UseCompressedOops && !UseCompressedClassPointers))
3924     return;
3925 
3926   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3927   // It could be done for an uncommon traps or any safepoints/calls
3928   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3929   while (sfpt.size() > 0) {
3930     n = sfpt.pop();
3931     JVMState *jvms = n->as_SafePoint()->jvms();
3932     assert(jvms != nullptr, "sanity");
3933     int start = jvms->debug_start();
3934     int end   = n->req();
3935     bool is_uncommon = (n->is_CallStaticJava() &&
3936                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3937     for (int j = start; j < end; j++) {
3938       Node* in = n->in(j);
3939       if (in->is_DecodeNarrowPtr()) {
3940         bool safe_to_skip = true;
3941         if (!is_uncommon ) {
3942           // Is it safe to skip?
3943           for (uint i = 0; i < in->outcnt(); i++) {
3944             Node* u = in->raw_out(i);
3945             if (!u->is_SafePoint() ||
3946                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3947               safe_to_skip = false;
3948             }
3949           }
3950         }
3951         if (safe_to_skip) {
3952           n->set_req(j, in->in(1));
3953         }
3954         if (in->outcnt() == 0) {
3955           in->disconnect_inputs(this);
3956         }
3957       }
3958     }
3959   }
3960 }
3961 
3962 //------------------------------final_graph_reshaping--------------------------
3963 // Final Graph Reshaping.
3964 //
3965 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3966 //     and not commoned up and forced early.  Must come after regular
3967 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3968 //     inputs to Loop Phis; these will be split by the allocator anyways.
3969 //     Remove Opaque nodes.
3970 // (2) Move last-uses by commutative operations to the left input to encourage
3971 //     Intel update-in-place two-address operations and better register usage
3972 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3973 //     calls canonicalizing them back.
3974 // (3) Count the number of double-precision FP ops, single-precision FP ops
3975 //     and call sites.  On Intel, we can get correct rounding either by
3976 //     forcing singles to memory (requires extra stores and loads after each
3977 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3978 //     clearing the mode bit around call sites).  The mode bit is only used
3979 //     if the relative frequency of single FP ops to calls is low enough.
3980 //     This is a key transform for SPEC mpeg_audio.
3981 // (4) Detect infinite loops; blobs of code reachable from above but not
3982 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3983 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3984 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3985 //     Detection is by looking for IfNodes where only 1 projection is
3986 //     reachable from below or CatchNodes missing some targets.
3987 // (5) Assert for insane oop offsets in debug mode.
3988 
3989 bool Compile::final_graph_reshaping() {
3990   // an infinite loop may have been eliminated by the optimizer,
3991   // in which case the graph will be empty.
3992   if (root()->req() == 1) {
3993     // Do not compile method that is only a trivial infinite loop,
3994     // since the content of the loop may have been eliminated.
3995     record_method_not_compilable("trivial infinite loop");
3996     return true;
3997   }
3998 
3999   // Expensive nodes have their control input set to prevent the GVN
4000   // from freely commoning them. There's no GVN beyond this point so
4001   // no need to keep the control input. We want the expensive nodes to
4002   // be freely moved to the least frequent code path by gcm.
4003   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
4004   for (int i = 0; i < expensive_count(); i++) {
4005     _expensive_nodes.at(i)->set_req(0, nullptr);
4006   }
4007 
4008   Final_Reshape_Counts frc;
4009 
4010   // Visit everybody reachable!
4011   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
4012   Node_Stack nstack(live_nodes() >> 1);
4013   Unique_Node_List dead_nodes;
4014   final_graph_reshaping_walk(nstack, root(), frc, dead_nodes);
4015 
4016   // Check for unreachable (from below) code (i.e., infinite loops).
4017   for( uint i = 0; i < frc._tests.size(); i++ ) {
4018     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
4019     // Get number of CFG targets.
4020     // Note that PCTables include exception targets after calls.
4021     uint required_outcnt = n->required_outcnt();
4022     if (n->outcnt() != required_outcnt) {
4023       // Check for a few special cases.  Rethrow Nodes never take the
4024       // 'fall-thru' path, so expected kids is 1 less.
4025       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
4026         if (n->in(0)->in(0)->is_Call()) {
4027           CallNode* call = n->in(0)->in(0)->as_Call();
4028           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
4029             required_outcnt--;      // Rethrow always has 1 less kid
4030           } else if (call->req() > TypeFunc::Parms &&
4031                      call->is_CallDynamicJava()) {
4032             // Check for null receiver. In such case, the optimizer has
4033             // detected that the virtual call will always result in a null
4034             // pointer exception. The fall-through projection of this CatchNode
4035             // will not be populated.
4036             Node* arg0 = call->in(TypeFunc::Parms);
4037             if (arg0->is_Type() &&
4038                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
4039               required_outcnt--;
4040             }
4041           } else if (call->entry_point() == OptoRuntime::new_array_Java() ||
4042                      call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
4043             // Check for illegal array length. In such case, the optimizer has
4044             // detected that the allocation attempt will always result in an
4045             // exception. There is no fall-through projection of this CatchNode .
4046             assert(call->is_CallStaticJava(), "static call expected");
4047             assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4048             uint valid_length_test_input = call->req() - 1;
4049             Node* valid_length_test = call->in(valid_length_test_input);
4050             call->del_req(valid_length_test_input);
4051             if (valid_length_test->find_int_con(1) == 0) {
4052               required_outcnt--;
4053             }
4054             dead_nodes.push(valid_length_test);
4055             assert(n->outcnt() == required_outcnt, "malformed control flow");
4056             continue;
4057           }
4058         }
4059       }
4060 
4061       // Recheck with a better notion of 'required_outcnt'
4062       if (n->outcnt() != required_outcnt) {
4063         record_method_not_compilable("malformed control flow");
4064         return true;            // Not all targets reachable!
4065       }
4066     } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) {
4067       CallNode* call = n->in(0)->in(0)->as_Call();
4068       if (call->entry_point() == OptoRuntime::new_array_Java() ||
4069           call->entry_point() == OptoRuntime::new_array_nozero_Java()) {
4070         assert(call->is_CallStaticJava(), "static call expected");
4071         assert(call->req() == call->jvms()->endoff() + 1, "missing extra input");
4072         uint valid_length_test_input = call->req() - 1;
4073         dead_nodes.push(call->in(valid_length_test_input));
4074         call->del_req(valid_length_test_input); // valid length test useless now
4075       }
4076     }
4077     // Check that I actually visited all kids.  Unreached kids
4078     // must be infinite loops.
4079     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
4080       if (!frc._visited.test(n->fast_out(j)->_idx)) {
4081         record_method_not_compilable("infinite loop");
4082         return true;            // Found unvisited kid; must be unreach
4083       }
4084 
4085     // Here so verification code in final_graph_reshaping_walk()
4086     // always see an OuterStripMinedLoopEnd
4087     if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) {
4088       IfNode* init_iff = n->as_If();
4089       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
4090       n->subsume_by(iff, this);
4091     }
4092   }
4093 
4094   while (dead_nodes.size() > 0) {
4095     Node* m = dead_nodes.pop();
4096     if (m->outcnt() == 0 && m != top()) {
4097       for (uint j = 0; j < m->req(); j++) {
4098         Node* in = m->in(j);
4099         if (in != nullptr) {
4100           dead_nodes.push(in);
4101         }
4102       }
4103       m->disconnect_inputs(this);
4104     }
4105   }
4106 
4107 #ifdef IA32
4108   // If original bytecodes contained a mixture of floats and doubles
4109   // check if the optimizer has made it homogeneous, item (3).
4110   if (UseSSE == 0 &&
4111       frc.get_float_count() > 32 &&
4112       frc.get_double_count() == 0 &&
4113       (10 * frc.get_call_count() < frc.get_float_count()) ) {
4114     set_24_bit_selection_and_mode(false, true);
4115   }
4116 #endif // IA32
4117 
4118   set_java_calls(frc.get_java_call_count());
4119   set_inner_loops(frc.get_inner_loop_count());
4120 
4121   // No infinite loops, no reason to bail out.
4122   return false;
4123 }
4124 
4125 //-----------------------------too_many_traps----------------------------------
4126 // Report if there are too many traps at the current method and bci.
4127 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
4128 bool Compile::too_many_traps(ciMethod* method,
4129                              int bci,
4130                              Deoptimization::DeoptReason reason) {
4131   ciMethodData* md = method->method_data();
4132   if (md->is_empty()) {
4133     // Assume the trap has not occurred, or that it occurred only
4134     // because of a transient condition during start-up in the interpreter.
4135     return false;
4136   }
4137   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4138   if (md->has_trap_at(bci, m, reason) != 0) {
4139     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
4140     // Also, if there are multiple reasons, or if there is no per-BCI record,
4141     // assume the worst.
4142     if (log())
4143       log()->elem("observe trap='%s' count='%d'",
4144                   Deoptimization::trap_reason_name(reason),
4145                   md->trap_count(reason));
4146     return true;
4147   } else {
4148     // Ignore method/bci and see if there have been too many globally.
4149     return too_many_traps(reason, md);
4150   }
4151 }
4152 
4153 // Less-accurate variant which does not require a method and bci.
4154 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
4155                              ciMethodData* logmd) {
4156   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
4157     // Too many traps globally.
4158     // Note that we use cumulative trap_count, not just md->trap_count.
4159     if (log()) {
4160       int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason);
4161       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
4162                   Deoptimization::trap_reason_name(reason),
4163                   mcount, trap_count(reason));
4164     }
4165     return true;
4166   } else {
4167     // The coast is clear.
4168     return false;
4169   }
4170 }
4171 
4172 //--------------------------too_many_recompiles--------------------------------
4173 // Report if there are too many recompiles at the current method and bci.
4174 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
4175 // Is not eager to return true, since this will cause the compiler to use
4176 // Action_none for a trap point, to avoid too many recompilations.
4177 bool Compile::too_many_recompiles(ciMethod* method,
4178                                   int bci,
4179                                   Deoptimization::DeoptReason reason) {
4180   ciMethodData* md = method->method_data();
4181   if (md->is_empty()) {
4182     // Assume the trap has not occurred, or that it occurred only
4183     // because of a transient condition during start-up in the interpreter.
4184     return false;
4185   }
4186   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
4187   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
4188   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
4189   Deoptimization::DeoptReason per_bc_reason
4190     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
4191   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr;
4192   if ((per_bc_reason == Deoptimization::Reason_none
4193        || md->has_trap_at(bci, m, reason) != 0)
4194       // The trap frequency measure we care about is the recompile count:
4195       && md->trap_recompiled_at(bci, m)
4196       && md->overflow_recompile_count() >= bc_cutoff) {
4197     // Do not emit a trap here if it has already caused recompilations.
4198     // Also, if there are multiple reasons, or if there is no per-BCI record,
4199     // assume the worst.
4200     if (log())
4201       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
4202                   Deoptimization::trap_reason_name(reason),
4203                   md->trap_count(reason),
4204                   md->overflow_recompile_count());
4205     return true;
4206   } else if (trap_count(reason) != 0
4207              && decompile_count() >= m_cutoff) {
4208     // Too many recompiles globally, and we have seen this sort of trap.
4209     // Use cumulative decompile_count, not just md->decompile_count.
4210     if (log())
4211       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
4212                   Deoptimization::trap_reason_name(reason),
4213                   md->trap_count(reason), trap_count(reason),
4214                   md->decompile_count(), decompile_count());
4215     return true;
4216   } else {
4217     // The coast is clear.
4218     return false;
4219   }
4220 }
4221 
4222 // Compute when not to trap. Used by matching trap based nodes and
4223 // NullCheck optimization.
4224 void Compile::set_allowed_deopt_reasons() {
4225   _allowed_reasons = 0;
4226   if (is_method_compilation()) {
4227     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
4228       assert(rs < BitsPerInt, "recode bit map");
4229       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
4230         _allowed_reasons |= nth_bit(rs);
4231       }
4232     }
4233   }
4234 }
4235 
4236 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) {
4237   return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method);
4238 }
4239 
4240 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) {
4241   return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method);
4242 }
4243 
4244 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) {
4245   if (holder->is_initialized()) {
4246     return false;
4247   }
4248   if (holder->is_being_initialized()) {
4249     if (accessing_method->holder() == holder) {
4250       // Access inside a class. The barrier can be elided when access happens in <clinit>,
4251       // <init>, or a static method. In all those cases, there was an initialization
4252       // barrier on the holder klass passed.
4253       if (accessing_method->is_static_initializer() ||
4254           accessing_method->is_object_initializer() ||
4255           accessing_method->is_static()) {
4256         return false;
4257       }
4258     } else if (accessing_method->holder()->is_subclass_of(holder)) {
4259       // Access from a subclass. The barrier can be elided only when access happens in <clinit>.
4260       // In case of <init> or a static method, the barrier is on the subclass is not enough:
4261       // child class can become fully initialized while its parent class is still being initialized.
4262       if (accessing_method->is_static_initializer()) {
4263         return false;
4264       }
4265     }
4266     ciMethod* root = method(); // the root method of compilation
4267     if (root != accessing_method) {
4268       return needs_clinit_barrier(holder, root); // check access in the context of compilation root
4269     }
4270   }
4271   return true;
4272 }
4273 
4274 #ifndef PRODUCT
4275 //------------------------------verify_bidirectional_edges---------------------
4276 // For each input edge to a node (ie - for each Use-Def edge), verify that
4277 // there is a corresponding Def-Use edge.
4278 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) {
4279   // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc
4280   uint stack_size = live_nodes() >> 4;
4281   Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize));
4282   nstack.push(_root);
4283 
4284   while (nstack.size() > 0) {
4285     Node* n = nstack.pop();
4286     if (visited.member(n)) {
4287       continue;
4288     }
4289     visited.push(n);
4290 
4291     // Walk over all input edges, checking for correspondence
4292     uint length = n->len();
4293     for (uint i = 0; i < length; i++) {
4294       Node* in = n->in(i);
4295       if (in != nullptr && !visited.member(in)) {
4296         nstack.push(in); // Put it on stack
4297       }
4298       if (in != nullptr && !in->is_top()) {
4299         // Count instances of `next`
4300         int cnt = 0;
4301         for (uint idx = 0; idx < in->_outcnt; idx++) {
4302           if (in->_out[idx] == n) {
4303             cnt++;
4304           }
4305         }
4306         assert(cnt > 0, "Failed to find Def-Use edge.");
4307         // Check for duplicate edges
4308         // walk the input array downcounting the input edges to n
4309         for (uint j = 0; j < length; j++) {
4310           if (n->in(j) == in) {
4311             cnt--;
4312           }
4313         }
4314         assert(cnt == 0, "Mismatched edge count.");
4315       } else if (in == nullptr) {
4316         assert(i == 0 || i >= n->req() ||
4317                n->is_Region() || n->is_Phi() || n->is_ArrayCopy() ||
4318                (n->is_Unlock() && i == (n->req() - 1)) ||
4319                (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion
4320               "only region, phi, arraycopy, unlock or membar nodes have null data edges");
4321       } else {
4322         assert(in->is_top(), "sanity");
4323         // Nothing to check.
4324       }
4325     }
4326   }
4327 }
4328 
4329 //------------------------------verify_graph_edges---------------------------
4330 // Walk the Graph and verify that there is a one-to-one correspondence
4331 // between Use-Def edges and Def-Use edges in the graph.
4332 void Compile::verify_graph_edges(bool no_dead_code) {
4333   if (VerifyGraphEdges) {
4334     Unique_Node_List visited;
4335 
4336     // Call graph walk to check edges
4337     verify_bidirectional_edges(visited);
4338     if (no_dead_code) {
4339       // Now make sure that no visited node is used by an unvisited node.
4340       bool dead_nodes = false;
4341       Unique_Node_List checked;
4342       while (visited.size() > 0) {
4343         Node* n = visited.pop();
4344         checked.push(n);
4345         for (uint i = 0; i < n->outcnt(); i++) {
4346           Node* use = n->raw_out(i);
4347           if (checked.member(use))  continue;  // already checked
4348           if (visited.member(use))  continue;  // already in the graph
4349           if (use->is_Con())        continue;  // a dead ConNode is OK
4350           // At this point, we have found a dead node which is DU-reachable.
4351           if (!dead_nodes) {
4352             tty->print_cr("*** Dead nodes reachable via DU edges:");
4353             dead_nodes = true;
4354           }
4355           use->dump(2);
4356           tty->print_cr("---");
4357           checked.push(use);  // No repeats; pretend it is now checked.
4358         }
4359       }
4360       assert(!dead_nodes, "using nodes must be reachable from root");
4361     }
4362   }
4363 }
4364 #endif
4365 
4366 // The Compile object keeps track of failure reasons separately from the ciEnv.
4367 // This is required because there is not quite a 1-1 relation between the
4368 // ciEnv and its compilation task and the Compile object.  Note that one
4369 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
4370 // to backtrack and retry without subsuming loads.  Other than this backtracking
4371 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
4372 // by the logic in C2Compiler.
4373 void Compile::record_failure(const char* reason) {
4374   if (log() != nullptr) {
4375     log()->elem("failure reason='%s' phase='compile'", reason);
4376   }
4377   if (_failure_reason.get() == nullptr) {
4378     // Record the first failure reason.
4379     _failure_reason.set(reason);
4380     if (CaptureBailoutInformation) {
4381       _first_failure_details = new CompilationFailureInfo(reason);
4382     }
4383   }
4384 
4385   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
4386     C->print_method(PHASE_FAILURE, 1);
4387   }
4388   _root = nullptr;  // flush the graph, too
4389 }
4390 
4391 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
4392   : TraceTime(name, accumulator, CITime, CITimeVerbose),
4393     _compile(Compile::current()),
4394     _log(nullptr),
4395     _phase_name(name),
4396     _dolog(CITimeVerbose)
4397 {
4398   assert(_compile != nullptr, "sanity check");
4399   if (_dolog) {
4400     _log = _compile->log();
4401   }
4402   if (_log != nullptr) {
4403     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, _compile->unique(), _compile->live_nodes());
4404     _log->stamp();
4405     _log->end_head();
4406   }
4407 }
4408 
4409 Compile::TracePhase::~TracePhase() {
4410   if (_compile->failing()) return;
4411 #ifdef ASSERT
4412   if (PrintIdealNodeCount) {
4413     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
4414                   _phase_name, _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk());
4415   }
4416 
4417   if (VerifyIdealNodeCount) {
4418     _compile->print_missing_nodes();
4419   }
4420 #endif
4421 
4422   if (_log != nullptr) {
4423     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, _compile->unique(), _compile->live_nodes());
4424   }
4425 }
4426 
4427 //----------------------------static_subtype_check-----------------------------
4428 // Shortcut important common cases when superklass is exact:
4429 // (0) superklass is java.lang.Object (can occur in reflective code)
4430 // (1) subklass is already limited to a subtype of superklass => always ok
4431 // (2) subklass does not overlap with superklass => always fail
4432 // (3) superklass has NO subtypes and we can check with a simple compare.
4433 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) {
4434   if (skip) {
4435     return SSC_full_test;       // Let caller generate the general case.
4436   }
4437 
4438   if (subk->is_java_subtype_of(superk)) {
4439     return SSC_always_true; // (0) and (1)  this test cannot fail
4440   }
4441 
4442   if (!subk->maybe_java_subtype_of(superk)) {
4443     return SSC_always_false; // (2) true path dead; no dynamic test needed
4444   }
4445 
4446   const Type* superelem = superk;
4447   if (superk->isa_aryklassptr()) {
4448     int ignored;
4449     superelem = superk->is_aryklassptr()->base_element_type(ignored);
4450   }
4451 
4452   if (superelem->isa_instklassptr()) {
4453     ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass();
4454     if (!ik->has_subklass()) {
4455       if (!ik->is_final()) {
4456         // Add a dependency if there is a chance of a later subclass.
4457         dependencies()->assert_leaf_type(ik);
4458       }
4459       if (!superk->maybe_java_subtype_of(subk)) {
4460         return SSC_always_false;
4461       }
4462       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4463     }
4464   } else {
4465     // A primitive array type has no subtypes.
4466     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4467   }
4468 
4469   return SSC_full_test;
4470 }
4471 
4472 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4473 #ifdef _LP64
4474   // The scaled index operand to AddP must be a clean 64-bit value.
4475   // Java allows a 32-bit int to be incremented to a negative
4476   // value, which appears in a 64-bit register as a large
4477   // positive number.  Using that large positive number as an
4478   // operand in pointer arithmetic has bad consequences.
4479   // On the other hand, 32-bit overflow is rare, and the possibility
4480   // can often be excluded, if we annotate the ConvI2L node with
4481   // a type assertion that its value is known to be a small positive
4482   // number.  (The prior range check has ensured this.)
4483   // This assertion is used by ConvI2LNode::Ideal.
4484   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4485   if (sizetype != nullptr) index_max = sizetype->_hi - 1;
4486   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4487   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4488 #endif
4489   return idx;
4490 }
4491 
4492 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4493 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) {
4494   if (ctrl != nullptr) {
4495     // Express control dependency by a CastII node with a narrow type.
4496     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4497     // node from floating above the range check during loop optimizations. Otherwise, the
4498     // ConvI2L node may be eliminated independently of the range check, causing the data path
4499     // to become TOP while the control path is still there (although it's unreachable).
4500     value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */);
4501     value = phase->transform(value);
4502   }
4503   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4504   return phase->transform(new ConvI2LNode(value, ltype));
4505 }
4506 
4507 // The message about the current inlining is accumulated in
4508 // _print_inlining_stream and transferred into the _print_inlining_list
4509 // once we know whether inlining succeeds or not. For regular
4510 // inlining, messages are appended to the buffer pointed by
4511 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4512 // a new buffer is added after _print_inlining_idx in the list. This
4513 // way we can update the inlining message for late inlining call site
4514 // when the inlining is attempted again.
4515 void Compile::print_inlining_init() {
4516   if (print_inlining() || print_intrinsics()) {
4517     // print_inlining_init is actually called several times.
4518     print_inlining_reset();
4519     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer*>(comp_arena(), 1, 1, new PrintInliningBuffer());
4520   }
4521 }
4522 
4523 void Compile::print_inlining_reinit() {
4524   if (print_inlining() || print_intrinsics()) {
4525     print_inlining_reset();
4526   }
4527 }
4528 
4529 void Compile::print_inlining_reset() {
4530   _print_inlining_stream->reset();
4531 }
4532 
4533 void Compile::print_inlining_commit() {
4534   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4535   // Transfer the message from _print_inlining_stream to the current
4536   // _print_inlining_list buffer and clear _print_inlining_stream.
4537   _print_inlining_list->at(_print_inlining_idx)->ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size());
4538   print_inlining_reset();
4539 }
4540 
4541 void Compile::print_inlining_push() {
4542   // Add new buffer to the _print_inlining_list at current position
4543   _print_inlining_idx++;
4544   _print_inlining_list->insert_before(_print_inlining_idx, new PrintInliningBuffer());
4545 }
4546 
4547 Compile::PrintInliningBuffer* Compile::print_inlining_current() {
4548   return _print_inlining_list->at(_print_inlining_idx);
4549 }
4550 
4551 void Compile::print_inlining_update(CallGenerator* cg) {
4552   if (print_inlining() || print_intrinsics()) {
4553     if (cg->is_late_inline()) {
4554       if (print_inlining_current()->cg() != cg &&
4555           (print_inlining_current()->cg() != nullptr ||
4556            print_inlining_current()->ss()->size() != 0)) {
4557         print_inlining_push();
4558       }
4559       print_inlining_commit();
4560       print_inlining_current()->set_cg(cg);
4561     } else {
4562       if (print_inlining_current()->cg() != nullptr) {
4563         print_inlining_push();
4564       }
4565       print_inlining_commit();
4566     }
4567   }
4568 }
4569 
4570 void Compile::print_inlining_move_to(CallGenerator* cg) {
4571   // We resume inlining at a late inlining call site. Locate the
4572   // corresponding inlining buffer so that we can update it.
4573   if (print_inlining() || print_intrinsics()) {
4574     for (int i = 0; i < _print_inlining_list->length(); i++) {
4575       if (_print_inlining_list->at(i)->cg() == cg) {
4576         _print_inlining_idx = i;
4577         return;
4578       }
4579     }
4580     ShouldNotReachHere();
4581   }
4582 }
4583 
4584 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4585   if (print_inlining() || print_intrinsics()) {
4586     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4587     assert(print_inlining_current()->cg() == cg, "wrong entry");
4588     // replace message with new message
4589     _print_inlining_list->at_put(_print_inlining_idx, new PrintInliningBuffer());
4590     print_inlining_commit();
4591     print_inlining_current()->set_cg(cg);
4592   }
4593 }
4594 
4595 void Compile::print_inlining_assert_ready() {
4596   assert(!_print_inlining || _print_inlining_stream->size() == 0, "losing data");
4597 }
4598 
4599 void Compile::process_print_inlining() {
4600   assert(_late_inlines.length() == 0, "not drained yet");
4601   if (print_inlining() || print_intrinsics()) {
4602     ResourceMark rm;
4603     stringStream ss;
4604     assert(_print_inlining_list != nullptr, "process_print_inlining should be called only once.");
4605     for (int i = 0; i < _print_inlining_list->length(); i++) {
4606       PrintInliningBuffer* pib = _print_inlining_list->at(i);
4607       ss.print("%s", pib->ss()->freeze());
4608       delete pib;
4609       DEBUG_ONLY(_print_inlining_list->at_put(i, nullptr));
4610     }
4611     // Reset _print_inlining_list, it only contains destructed objects.
4612     // It is on the arena, so it will be freed when the arena is reset.
4613     _print_inlining_list = nullptr;
4614     // _print_inlining_stream won't be used anymore, either.
4615     print_inlining_reset();
4616     size_t end = ss.size();
4617     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4618     strncpy(_print_inlining_output, ss.freeze(), end+1);
4619     _print_inlining_output[end] = 0;
4620   }
4621 }
4622 
4623 void Compile::dump_print_inlining() {
4624   if (_print_inlining_output != nullptr) {
4625     tty->print_raw(_print_inlining_output);
4626   }
4627 }
4628 
4629 void Compile::log_late_inline(CallGenerator* cg) {
4630   if (log() != nullptr) {
4631     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4632                 cg->unique_id());
4633     JVMState* p = cg->call_node()->jvms();
4634     while (p != nullptr) {
4635       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4636       p = p->caller();
4637     }
4638     log()->tail("late_inline");
4639   }
4640 }
4641 
4642 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4643   log_late_inline(cg);
4644   if (log() != nullptr) {
4645     log()->inline_fail(msg);
4646   }
4647 }
4648 
4649 void Compile::log_inline_id(CallGenerator* cg) {
4650   if (log() != nullptr) {
4651     // The LogCompilation tool needs a unique way to identify late
4652     // inline call sites. This id must be unique for this call site in
4653     // this compilation. Try to have it unique across compilations as
4654     // well because it can be convenient when grepping through the log
4655     // file.
4656     // Distinguish OSR compilations from others in case CICountOSR is
4657     // on.
4658     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4659     cg->set_unique_id(id);
4660     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4661   }
4662 }
4663 
4664 void Compile::log_inline_failure(const char* msg) {
4665   if (C->log() != nullptr) {
4666     C->log()->inline_fail(msg);
4667   }
4668 }
4669 
4670 
4671 // Dump inlining replay data to the stream.
4672 // Don't change thread state and acquire any locks.
4673 void Compile::dump_inline_data(outputStream* out) {
4674   InlineTree* inl_tree = ilt();
4675   if (inl_tree != nullptr) {
4676     out->print(" inline %d", inl_tree->count());
4677     inl_tree->dump_replay_data(out);
4678   }
4679 }
4680 
4681 void Compile::dump_inline_data_reduced(outputStream* out) {
4682   assert(ReplayReduce, "");
4683 
4684   InlineTree* inl_tree = ilt();
4685   if (inl_tree == nullptr) {
4686     return;
4687   }
4688   // Enable iterative replay file reduction
4689   // Output "compile" lines for depth 1 subtrees,
4690   // simulating that those trees were compiled
4691   // instead of inlined.
4692   for (int i = 0; i < inl_tree->subtrees().length(); ++i) {
4693     InlineTree* sub = inl_tree->subtrees().at(i);
4694     if (sub->inline_level() != 1) {
4695       continue;
4696     }
4697 
4698     ciMethod* method = sub->method();
4699     int entry_bci = -1;
4700     int comp_level = env()->task()->comp_level();
4701     out->print("compile ");
4702     method->dump_name_as_ascii(out);
4703     out->print(" %d %d", entry_bci, comp_level);
4704     out->print(" inline %d", sub->count());
4705     sub->dump_replay_data(out, -1);
4706     out->cr();
4707   }
4708 }
4709 
4710 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4711   if (n1->Opcode() < n2->Opcode())      return -1;
4712   else if (n1->Opcode() > n2->Opcode()) return 1;
4713 
4714   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4715   for (uint i = 1; i < n1->req(); i++) {
4716     if (n1->in(i) < n2->in(i))      return -1;
4717     else if (n1->in(i) > n2->in(i)) return 1;
4718   }
4719 
4720   return 0;
4721 }
4722 
4723 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4724   Node* n1 = *n1p;
4725   Node* n2 = *n2p;
4726 
4727   return cmp_expensive_nodes(n1, n2);
4728 }
4729 
4730 void Compile::sort_expensive_nodes() {
4731   if (!expensive_nodes_sorted()) {
4732     _expensive_nodes.sort(cmp_expensive_nodes);
4733   }
4734 }
4735 
4736 bool Compile::expensive_nodes_sorted() const {
4737   for (int i = 1; i < _expensive_nodes.length(); i++) {
4738     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) {
4739       return false;
4740     }
4741   }
4742   return true;
4743 }
4744 
4745 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4746   if (_expensive_nodes.length() == 0) {
4747     return false;
4748   }
4749 
4750   assert(OptimizeExpensiveOps, "optimization off?");
4751 
4752   // Take this opportunity to remove dead nodes from the list
4753   int j = 0;
4754   for (int i = 0; i < _expensive_nodes.length(); i++) {
4755     Node* n = _expensive_nodes.at(i);
4756     if (!n->is_unreachable(igvn)) {
4757       assert(n->is_expensive(), "should be expensive");
4758       _expensive_nodes.at_put(j, n);
4759       j++;
4760     }
4761   }
4762   _expensive_nodes.trunc_to(j);
4763 
4764   // Then sort the list so that similar nodes are next to each other
4765   // and check for at least two nodes of identical kind with same data
4766   // inputs.
4767   sort_expensive_nodes();
4768 
4769   for (int i = 0; i < _expensive_nodes.length()-1; i++) {
4770     if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) {
4771       return true;
4772     }
4773   }
4774 
4775   return false;
4776 }
4777 
4778 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4779   if (_expensive_nodes.length() == 0) {
4780     return;
4781   }
4782 
4783   assert(OptimizeExpensiveOps, "optimization off?");
4784 
4785   // Sort to bring similar nodes next to each other and clear the
4786   // control input of nodes for which there's only a single copy.
4787   sort_expensive_nodes();
4788 
4789   int j = 0;
4790   int identical = 0;
4791   int i = 0;
4792   bool modified = false;
4793   for (; i < _expensive_nodes.length()-1; i++) {
4794     assert(j <= i, "can't write beyond current index");
4795     if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) {
4796       identical++;
4797       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4798       continue;
4799     }
4800     if (identical > 0) {
4801       _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4802       identical = 0;
4803     } else {
4804       Node* n = _expensive_nodes.at(i);
4805       igvn.replace_input_of(n, 0, nullptr);
4806       igvn.hash_insert(n);
4807       modified = true;
4808     }
4809   }
4810   if (identical > 0) {
4811     _expensive_nodes.at_put(j++, _expensive_nodes.at(i));
4812   } else if (_expensive_nodes.length() >= 1) {
4813     Node* n = _expensive_nodes.at(i);
4814     igvn.replace_input_of(n, 0, nullptr);
4815     igvn.hash_insert(n);
4816     modified = true;
4817   }
4818   _expensive_nodes.trunc_to(j);
4819   if (modified) {
4820     igvn.optimize();
4821   }
4822 }
4823 
4824 void Compile::add_expensive_node(Node * n) {
4825   assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list");
4826   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4827   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4828   if (OptimizeExpensiveOps) {
4829     _expensive_nodes.append(n);
4830   } else {
4831     // Clear control input and let IGVN optimize expensive nodes if
4832     // OptimizeExpensiveOps is off.
4833     n->set_req(0, nullptr);
4834   }
4835 }
4836 
4837 /**
4838  * Track coarsened Lock and Unlock nodes.
4839  */
4840 
4841 class Lock_List : public Node_List {
4842   uint _origin_cnt;
4843 public:
4844   Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {}
4845   uint origin_cnt() const { return _origin_cnt; }
4846 };
4847 
4848 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) {
4849   int length = locks.length();
4850   if (length > 0) {
4851     // Have to keep this list until locks elimination during Macro nodes elimination.
4852     Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length);
4853     AbstractLockNode* alock = locks.at(0);
4854     BoxLockNode* box = alock->box_node()->as_BoxLock();
4855     for (int i = 0; i < length; i++) {
4856       AbstractLockNode* lock = locks.at(i);
4857       assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx);
4858       locks_list->push(lock);
4859       BoxLockNode* this_box = lock->box_node()->as_BoxLock();
4860       if (this_box != box) {
4861         // Locking regions (BoxLock) could be Unbalanced here:
4862         //  - its coarsened locks were eliminated in earlier
4863         //    macro nodes elimination followed by loop unroll
4864         //  - it is OSR locking region (no Lock node)
4865         // Preserve Unbalanced status in such cases.
4866         if (!this_box->is_unbalanced()) {
4867           this_box->set_coarsened();
4868         }
4869         if (!box->is_unbalanced()) {
4870           box->set_coarsened();
4871         }
4872       }
4873     }
4874     _coarsened_locks.append(locks_list);
4875   }
4876 }
4877 
4878 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) {
4879   int count = coarsened_count();
4880   for (int i = 0; i < count; i++) {
4881     Node_List* locks_list = _coarsened_locks.at(i);
4882     for (uint j = 0; j < locks_list->size(); j++) {
4883       Node* lock = locks_list->at(j);
4884       assert(lock->is_AbstractLock(), "sanity");
4885       if (!useful.member(lock)) {
4886         locks_list->yank(lock);
4887       }
4888     }
4889   }
4890 }
4891 
4892 void Compile::remove_coarsened_lock(Node* n) {
4893   if (n->is_AbstractLock()) {
4894     int count = coarsened_count();
4895     for (int i = 0; i < count; i++) {
4896       Node_List* locks_list = _coarsened_locks.at(i);
4897       locks_list->yank(n);
4898     }
4899   }
4900 }
4901 
4902 bool Compile::coarsened_locks_consistent() {
4903   int count = coarsened_count();
4904   for (int i = 0; i < count; i++) {
4905     bool unbalanced = false;
4906     bool modified = false; // track locks kind modifications
4907     Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i);
4908     uint size = locks_list->size();
4909     if (size == 0) {
4910       unbalanced = false; // All locks were eliminated - good
4911     } else if (size != locks_list->origin_cnt()) {
4912       unbalanced = true; // Some locks were removed from list
4913     } else {
4914       for (uint j = 0; j < size; j++) {
4915         Node* lock = locks_list->at(j);
4916         // All nodes in group should have the same state (modified or not)
4917         if (!lock->as_AbstractLock()->is_coarsened()) {
4918           if (j == 0) {
4919             // first on list was modified, the rest should be too for consistency
4920             modified = true;
4921           } else if (!modified) {
4922             // this lock was modified but previous locks on the list were not
4923             unbalanced = true;
4924             break;
4925           }
4926         } else if (modified) {
4927           // previous locks on list were modified but not this lock
4928           unbalanced = true;
4929           break;
4930         }
4931       }
4932     }
4933     if (unbalanced) {
4934       // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified
4935 #ifdef ASSERT
4936       if (PrintEliminateLocks) {
4937         tty->print_cr("=== unbalanced coarsened locks ===");
4938         for (uint l = 0; l < size; l++) {
4939           locks_list->at(l)->dump();
4940         }
4941       }
4942 #endif
4943       record_failure(C2Compiler::retry_no_locks_coarsening());
4944       return false;
4945     }
4946   }
4947   return true;
4948 }
4949 
4950 // Mark locking regions (identified by BoxLockNode) as unbalanced if
4951 // locks coarsening optimization removed Lock/Unlock nodes from them.
4952 // Such regions become unbalanced because coarsening only removes part
4953 // of Lock/Unlock nodes in region. As result we can't execute other
4954 // locks elimination optimizations which assume all code paths have
4955 // corresponding pair of Lock/Unlock nodes - they are balanced.
4956 void Compile::mark_unbalanced_boxes() const {
4957   int count = coarsened_count();
4958   for (int i = 0; i < count; i++) {
4959     Node_List* locks_list = _coarsened_locks.at(i);
4960     uint size = locks_list->size();
4961     if (size > 0) {
4962       AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock();
4963       BoxLockNode* box = alock->box_node()->as_BoxLock();
4964       if (alock->is_coarsened()) {
4965         // coarsened_locks_consistent(), which is called before this method, verifies
4966         // that the rest of Lock/Unlock nodes on locks_list are also coarsened.
4967         assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4968         for (uint j = 1; j < size; j++) {
4969           assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here");
4970           BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock();
4971           if (box != this_box) {
4972             assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated");
4973             box->set_unbalanced();
4974             this_box->set_unbalanced();
4975           }
4976         }
4977       }
4978     }
4979   }
4980 }
4981 
4982 /**
4983  * Remove the speculative part of types and clean up the graph
4984  */
4985 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4986   if (UseTypeSpeculation) {
4987     Unique_Node_List worklist;
4988     worklist.push(root());
4989     int modified = 0;
4990     // Go over all type nodes that carry a speculative type, drop the
4991     // speculative part of the type and enqueue the node for an igvn
4992     // which may optimize it out.
4993     for (uint next = 0; next < worklist.size(); ++next) {
4994       Node *n  = worklist.at(next);
4995       if (n->is_Type()) {
4996         TypeNode* tn = n->as_Type();
4997         const Type* t = tn->type();
4998         const Type* t_no_spec = t->remove_speculative();
4999         if (t_no_spec != t) {
5000           bool in_hash = igvn.hash_delete(n);
5001           assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table");
5002           tn->set_type(t_no_spec);
5003           igvn.hash_insert(n);
5004           igvn._worklist.push(n); // give it a chance to go away
5005           modified++;
5006         }
5007       }
5008       // Iterate over outs - endless loops is unreachable from below
5009       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
5010         Node *m = n->fast_out(i);
5011         if (not_a_node(m)) {
5012           continue;
5013         }
5014         worklist.push(m);
5015       }
5016     }
5017     // Drop the speculative part of all types in the igvn's type table
5018     igvn.remove_speculative_types();
5019     if (modified > 0) {
5020       igvn.optimize();
5021       if (failing())  return;
5022     }
5023 #ifdef ASSERT
5024     // Verify that after the IGVN is over no speculative type has resurfaced
5025     worklist.clear();
5026     worklist.push(root());
5027     for (uint next = 0; next < worklist.size(); ++next) {
5028       Node *n  = worklist.at(next);
5029       const Type* t = igvn.type_or_null(n);
5030       assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types");
5031       if (n->is_Type()) {
5032         t = n->as_Type()->type();
5033         assert(t == t->remove_speculative(), "no more speculative types");
5034       }
5035       // Iterate over outs - endless loops is unreachable from below
5036       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
5037         Node *m = n->fast_out(i);
5038         if (not_a_node(m)) {
5039           continue;
5040         }
5041         worklist.push(m);
5042       }
5043     }
5044     igvn.check_no_speculative_types();
5045 #endif
5046   }
5047 }
5048 
5049 // Auxiliary methods to support randomized stressing/fuzzing.
5050 
5051 void Compile::initialize_stress_seed(const DirectiveSet* directive) {
5052   if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) {
5053     _stress_seed = static_cast<uint>(Ticks::now().nanoseconds());
5054     FLAG_SET_ERGO(StressSeed, _stress_seed);
5055   } else {
5056     _stress_seed = StressSeed;
5057   }
5058   if (_log != nullptr) {
5059     _log->elem("stress_test seed='%u'", _stress_seed);
5060   }
5061 }
5062 
5063 int Compile::random() {
5064   _stress_seed = os::next_random(_stress_seed);
5065   return static_cast<int>(_stress_seed);
5066 }
5067 
5068 // This method can be called the arbitrary number of times, with current count
5069 // as the argument. The logic allows selecting a single candidate from the
5070 // running list of candidates as follows:
5071 //    int count = 0;
5072 //    Cand* selected = null;
5073 //    while(cand = cand->next()) {
5074 //      if (randomized_select(++count)) {
5075 //        selected = cand;
5076 //      }
5077 //    }
5078 //
5079 // Including count equalizes the chances any candidate is "selected".
5080 // This is useful when we don't have the complete list of candidates to choose
5081 // from uniformly. In this case, we need to adjust the randomicity of the
5082 // selection, or else we will end up biasing the selection towards the latter
5083 // candidates.
5084 //
5085 // Quick back-envelope calculation shows that for the list of n candidates
5086 // the equal probability for the candidate to persist as "best" can be
5087 // achieved by replacing it with "next" k-th candidate with the probability
5088 // of 1/k. It can be easily shown that by the end of the run, the
5089 // probability for any candidate is converged to 1/n, thus giving the
5090 // uniform distribution among all the candidates.
5091 //
5092 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
5093 #define RANDOMIZED_DOMAIN_POW 29
5094 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
5095 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
5096 bool Compile::randomized_select(int count) {
5097   assert(count > 0, "only positive");
5098   return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
5099 }
5100 
5101 CloneMap&     Compile::clone_map()                 { return _clone_map; }
5102 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
5103 
5104 void NodeCloneInfo::dump_on(outputStream* st) const {
5105   st->print(" {%d:%d} ", idx(), gen());
5106 }
5107 
5108 void CloneMap::clone(Node* old, Node* nnn, int gen) {
5109   uint64_t val = value(old->_idx);
5110   NodeCloneInfo cio(val);
5111   assert(val != 0, "old node should be in the map");
5112   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
5113   insert(nnn->_idx, cin.get());
5114 #ifndef PRODUCT
5115   if (is_debug()) {
5116     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
5117   }
5118 #endif
5119 }
5120 
5121 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
5122   NodeCloneInfo cio(value(old->_idx));
5123   if (cio.get() == 0) {
5124     cio.set(old->_idx, 0);
5125     insert(old->_idx, cio.get());
5126 #ifndef PRODUCT
5127     if (is_debug()) {
5128       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
5129     }
5130 #endif
5131   }
5132   clone(old, nnn, gen);
5133 }
5134 
5135 int CloneMap::max_gen() const {
5136   int g = 0;
5137   DictI di(_dict);
5138   for(; di.test(); ++di) {
5139     int t = gen(di._key);
5140     if (g < t) {
5141       g = t;
5142 #ifndef PRODUCT
5143       if (is_debug()) {
5144         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
5145       }
5146 #endif
5147     }
5148   }
5149   return g;
5150 }
5151 
5152 void CloneMap::dump(node_idx_t key, outputStream* st) const {
5153   uint64_t val = value(key);
5154   if (val != 0) {
5155     NodeCloneInfo ni(val);
5156     ni.dump_on(st);
5157   }
5158 }
5159 
5160 void Compile::shuffle_macro_nodes() {
5161   if (_macro_nodes.length() < 2) {
5162     return;
5163   }
5164   for (uint i = _macro_nodes.length() - 1; i >= 1; i--) {
5165     uint j = C->random() % (i + 1);
5166     swap(_macro_nodes.at(i), _macro_nodes.at(j));
5167   }
5168 }
5169 
5170 // Move Allocate nodes to the start of the list
5171 void Compile::sort_macro_nodes() {
5172   int count = macro_count();
5173   int allocates = 0;
5174   for (int i = 0; i < count; i++) {
5175     Node* n = macro_node(i);
5176     if (n->is_Allocate()) {
5177       if (i != allocates) {
5178         Node* tmp = macro_node(allocates);
5179         _macro_nodes.at_put(allocates, n);
5180         _macro_nodes.at_put(i, tmp);
5181       }
5182       allocates++;
5183     }
5184   }
5185 }
5186 
5187 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) {
5188   if (failing()) { return; }
5189   EventCompilerPhase event(UNTIMED);
5190   if (event.should_commit()) {
5191     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level);
5192   }
5193 #ifndef PRODUCT
5194   ResourceMark rm;
5195   stringStream ss;
5196   ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt));
5197   int iter = ++_igv_phase_iter[cpt];
5198   if (iter > 1) {
5199     ss.print(" %d", iter);
5200   }
5201   if (n != nullptr) {
5202     ss.print(": %d %s ", n->_idx, NodeClassNames[n->Opcode()]);
5203   }
5204 
5205   const char* name = ss.as_string();
5206   if (should_print_igv(level)) {
5207     _igv_printer->print_method(name, level);
5208   }
5209   if (should_print_phase(cpt)) {
5210     print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt));
5211   }
5212 #endif
5213   C->_latest_stage_start_counter.stamp();
5214 }
5215 
5216 // Only used from CompileWrapper
5217 void Compile::begin_method() {
5218 #ifndef PRODUCT
5219   if (_method != nullptr && should_print_igv(1)) {
5220     _igv_printer->begin_method();
5221   }
5222 #endif
5223   C->_latest_stage_start_counter.stamp();
5224 }
5225 
5226 // Only used from CompileWrapper
5227 void Compile::end_method() {
5228   EventCompilerPhase event(UNTIMED);
5229   if (event.should_commit()) {
5230     CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1);
5231   }
5232 
5233 #ifndef PRODUCT
5234   if (_method != nullptr && should_print_igv(1)) {
5235     _igv_printer->end_method();
5236   }
5237 #endif
5238 }
5239 
5240 bool Compile::should_print_phase(CompilerPhaseType cpt) {
5241 #ifndef PRODUCT
5242   if (_directive->should_print_phase(cpt)) {
5243     return true;
5244   }
5245 #endif
5246   return false;
5247 }
5248 
5249 bool Compile::should_print_igv(const int level) {
5250 #ifndef PRODUCT
5251   if (PrintIdealGraphLevel < 0) { // disabled by the user
5252     return false;
5253   }
5254 
5255   bool need = directive()->IGVPrintLevelOption >= level;
5256   if (need && !_igv_printer) {
5257     _igv_printer = IdealGraphPrinter::printer();
5258     _igv_printer->set_compile(this);
5259   }
5260   return need;
5261 #else
5262   return false;
5263 #endif
5264 }
5265 
5266 #ifndef PRODUCT
5267 IdealGraphPrinter* Compile::_debug_file_printer = nullptr;
5268 IdealGraphPrinter* Compile::_debug_network_printer = nullptr;
5269 
5270 // Called from debugger. Prints method to the default file with the default phase name.
5271 // This works regardless of any Ideal Graph Visualizer flags set or not.
5272 void igv_print() {
5273   Compile::current()->igv_print_method_to_file();
5274 }
5275 
5276 // Same as igv_print() above but with a specified phase name.
5277 void igv_print(const char* phase_name) {
5278   Compile::current()->igv_print_method_to_file(phase_name);
5279 }
5280 
5281 // Called from debugger. Prints method with the default phase name to the default network or the one specified with
5282 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument.
5283 // This works regardless of any Ideal Graph Visualizer flags set or not.
5284 void igv_print(bool network) {
5285   if (network) {
5286     Compile::current()->igv_print_method_to_network();
5287   } else {
5288     Compile::current()->igv_print_method_to_file();
5289   }
5290 }
5291 
5292 // Same as igv_print(bool network) above but with a specified phase name.
5293 void igv_print(bool network, const char* phase_name) {
5294   if (network) {
5295     Compile::current()->igv_print_method_to_network(phase_name);
5296   } else {
5297     Compile::current()->igv_print_method_to_file(phase_name);
5298   }
5299 }
5300 
5301 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set.
5302 void igv_print_default() {
5303   Compile::current()->print_method(PHASE_DEBUG, 0);
5304 }
5305 
5306 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay.
5307 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow
5308 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not.
5309 void igv_append() {
5310   Compile::current()->igv_print_method_to_file("Debug", true);
5311 }
5312 
5313 // Same as igv_append() above but with a specified phase name.
5314 void igv_append(const char* phase_name) {
5315   Compile::current()->igv_print_method_to_file(phase_name, true);
5316 }
5317 
5318 void Compile::igv_print_method_to_file(const char* phase_name, bool append) {
5319   const char* file_name = "custom_debug.xml";
5320   if (_debug_file_printer == nullptr) {
5321     _debug_file_printer = new IdealGraphPrinter(C, file_name, append);
5322   } else {
5323     _debug_file_printer->update_compiled_method(C->method());
5324   }
5325   tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name);
5326   _debug_file_printer->print(phase_name, (Node*)C->root());
5327 }
5328 
5329 void Compile::igv_print_method_to_network(const char* phase_name) {
5330   if (_debug_network_printer == nullptr) {
5331     _debug_network_printer = new IdealGraphPrinter(C);
5332   } else {
5333     _debug_network_printer->update_compiled_method(C->method());
5334   }
5335   tty->print_cr("Method printed over network stream to IGV");
5336   _debug_network_printer->print(phase_name, (Node*)C->root());
5337 }
5338 #endif
5339 
5340 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) {
5341   if (type != nullptr && phase->type(value)->higher_equal(type)) {
5342     return value;
5343   }
5344   Node* result = nullptr;
5345   if (bt == T_BYTE) {
5346     result = phase->transform(new LShiftINode(value, phase->intcon(24)));
5347     result = new RShiftINode(result, phase->intcon(24));
5348   } else if (bt == T_BOOLEAN) {
5349     result = new AndINode(value, phase->intcon(0xFF));
5350   } else if (bt == T_CHAR) {
5351     result = new AndINode(value,phase->intcon(0xFFFF));
5352   } else {
5353     assert(bt == T_SHORT, "unexpected narrow type");
5354     result = phase->transform(new LShiftINode(value, phase->intcon(16)));
5355     result = new RShiftINode(result, phase->intcon(16));
5356   }
5357   if (transform_res) {
5358     result = phase->transform(result);
5359   }
5360   return result;
5361 }
5362 
5363 void Compile::record_method_not_compilable_oom() {
5364   record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit());
5365 }