1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "ci/ciReplay.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "code/exceptionHandlerTable.hpp" 30 #include "code/nmethod.hpp" 31 #include "compiler/compilationFailureInfo.hpp" 32 #include "compiler/compilationMemoryStatistic.hpp" 33 #include "compiler/compileBroker.hpp" 34 #include "compiler/compileLog.hpp" 35 #include "compiler/compilerOracle.hpp" 36 #include "compiler/compiler_globals.hpp" 37 #include "compiler/disassembler.hpp" 38 #include "compiler/oopMap.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/c2/barrierSetC2.hpp" 41 #include "jfr/jfrEvents.hpp" 42 #include "jvm_io.h" 43 #include "memory/allocation.hpp" 44 #include "memory/arena.hpp" 45 #include "memory/resourceArea.hpp" 46 #include "opto/addnode.hpp" 47 #include "opto/block.hpp" 48 #include "opto/c2compiler.hpp" 49 #include "opto/callGenerator.hpp" 50 #include "opto/callnode.hpp" 51 #include "opto/castnode.hpp" 52 #include "opto/cfgnode.hpp" 53 #include "opto/chaitin.hpp" 54 #include "opto/compile.hpp" 55 #include "opto/connode.hpp" 56 #include "opto/convertnode.hpp" 57 #include "opto/divnode.hpp" 58 #include "opto/escape.hpp" 59 #include "opto/idealGraphPrinter.hpp" 60 #include "opto/locknode.hpp" 61 #include "opto/loopnode.hpp" 62 #include "opto/machnode.hpp" 63 #include "opto/macro.hpp" 64 #include "opto/matcher.hpp" 65 #include "opto/mathexactnode.hpp" 66 #include "opto/memnode.hpp" 67 #include "opto/mulnode.hpp" 68 #include "opto/narrowptrnode.hpp" 69 #include "opto/node.hpp" 70 #include "opto/opaquenode.hpp" 71 #include "opto/opcodes.hpp" 72 #include "opto/output.hpp" 73 #include "opto/parse.hpp" 74 #include "opto/phaseX.hpp" 75 #include "opto/rootnode.hpp" 76 #include "opto/runtime.hpp" 77 #include "opto/stringopts.hpp" 78 #include "opto/type.hpp" 79 #include "opto/vector.hpp" 80 #include "opto/vectornode.hpp" 81 #include "runtime/globals_extension.hpp" 82 #include "runtime/sharedRuntime.hpp" 83 #include "runtime/signature.hpp" 84 #include "runtime/stubRoutines.hpp" 85 #include "runtime/timer.hpp" 86 #include "utilities/align.hpp" 87 #include "utilities/copy.hpp" 88 #include "utilities/macros.hpp" 89 #include "utilities/resourceHash.hpp" 90 91 // -------------------- Compile::mach_constant_base_node ----------------------- 92 // Constant table base node singleton. 93 MachConstantBaseNode* Compile::mach_constant_base_node() { 94 if (_mach_constant_base_node == nullptr) { 95 _mach_constant_base_node = new MachConstantBaseNode(); 96 _mach_constant_base_node->add_req(C->root()); 97 } 98 return _mach_constant_base_node; 99 } 100 101 102 /// Support for intrinsics. 103 104 // Return the index at which m must be inserted (or already exists). 105 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 106 class IntrinsicDescPair { 107 private: 108 ciMethod* _m; 109 bool _is_virtual; 110 public: 111 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 112 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 113 ciMethod* m= elt->method(); 114 ciMethod* key_m = key->_m; 115 if (key_m < m) return -1; 116 else if (key_m > m) return 1; 117 else { 118 bool is_virtual = elt->is_virtual(); 119 bool key_virtual = key->_is_virtual; 120 if (key_virtual < is_virtual) return -1; 121 else if (key_virtual > is_virtual) return 1; 122 else return 0; 123 } 124 } 125 }; 126 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 127 #ifdef ASSERT 128 for (int i = 1; i < _intrinsics.length(); i++) { 129 CallGenerator* cg1 = _intrinsics.at(i-1); 130 CallGenerator* cg2 = _intrinsics.at(i); 131 assert(cg1->method() != cg2->method() 132 ? cg1->method() < cg2->method() 133 : cg1->is_virtual() < cg2->is_virtual(), 134 "compiler intrinsics list must stay sorted"); 135 } 136 #endif 137 IntrinsicDescPair pair(m, is_virtual); 138 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 139 } 140 141 void Compile::register_intrinsic(CallGenerator* cg) { 142 bool found = false; 143 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 144 assert(!found, "registering twice"); 145 _intrinsics.insert_before(index, cg); 146 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 147 } 148 149 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 150 assert(m->is_loaded(), "don't try this on unloaded methods"); 151 if (_intrinsics.length() > 0) { 152 bool found = false; 153 int index = intrinsic_insertion_index(m, is_virtual, found); 154 if (found) { 155 return _intrinsics.at(index); 156 } 157 } 158 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 159 if (m->intrinsic_id() != vmIntrinsics::_none && 160 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 161 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 162 if (cg != nullptr) { 163 // Save it for next time: 164 register_intrinsic(cg); 165 return cg; 166 } else { 167 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 168 } 169 } 170 return nullptr; 171 } 172 173 // Compile::make_vm_intrinsic is defined in library_call.cpp. 174 175 #ifndef PRODUCT 176 // statistics gathering... 177 178 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 179 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 180 181 inline int as_int(vmIntrinsics::ID id) { 182 return vmIntrinsics::as_int(id); 183 } 184 185 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 186 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 187 int oflags = _intrinsic_hist_flags[as_int(id)]; 188 assert(flags != 0, "what happened?"); 189 if (is_virtual) { 190 flags |= _intrinsic_virtual; 191 } 192 bool changed = (flags != oflags); 193 if ((flags & _intrinsic_worked) != 0) { 194 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 195 if (count == 1) { 196 changed = true; // first time 197 } 198 // increment the overall count also: 199 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 200 } 201 if (changed) { 202 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 203 // Something changed about the intrinsic's virtuality. 204 if ((flags & _intrinsic_virtual) != 0) { 205 // This is the first use of this intrinsic as a virtual call. 206 if (oflags != 0) { 207 // We already saw it as a non-virtual, so note both cases. 208 flags |= _intrinsic_both; 209 } 210 } else if ((oflags & _intrinsic_both) == 0) { 211 // This is the first use of this intrinsic as a non-virtual 212 flags |= _intrinsic_both; 213 } 214 } 215 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 216 } 217 // update the overall flags also: 218 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 219 return changed; 220 } 221 222 static char* format_flags(int flags, char* buf) { 223 buf[0] = 0; 224 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 225 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 226 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 227 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 228 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 229 if (buf[0] == 0) strcat(buf, ","); 230 assert(buf[0] == ',', "must be"); 231 return &buf[1]; 232 } 233 234 void Compile::print_intrinsic_statistics() { 235 char flagsbuf[100]; 236 ttyLocker ttyl; 237 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 238 tty->print_cr("Compiler intrinsic usage:"); 239 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 240 if (total == 0) total = 1; // avoid div0 in case of no successes 241 #define PRINT_STAT_LINE(name, c, f) \ 242 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 243 for (auto id : EnumRange<vmIntrinsicID>{}) { 244 int flags = _intrinsic_hist_flags[as_int(id)]; 245 juint count = _intrinsic_hist_count[as_int(id)]; 246 if ((flags | count) != 0) { 247 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 248 } 249 } 250 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 251 if (xtty != nullptr) xtty->tail("statistics"); 252 } 253 254 void Compile::print_statistics() { 255 { ttyLocker ttyl; 256 if (xtty != nullptr) xtty->head("statistics type='opto'"); 257 Parse::print_statistics(); 258 PhaseStringOpts::print_statistics(); 259 PhaseCCP::print_statistics(); 260 PhaseRegAlloc::print_statistics(); 261 PhaseOutput::print_statistics(); 262 PhasePeephole::print_statistics(); 263 PhaseIdealLoop::print_statistics(); 264 ConnectionGraph::print_statistics(); 265 PhaseMacroExpand::print_statistics(); 266 if (xtty != nullptr) xtty->tail("statistics"); 267 } 268 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 269 // put this under its own <statistics> element. 270 print_intrinsic_statistics(); 271 } 272 } 273 #endif //PRODUCT 274 275 void Compile::gvn_replace_by(Node* n, Node* nn) { 276 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 277 Node* use = n->last_out(i); 278 bool is_in_table = initial_gvn()->hash_delete(use); 279 uint uses_found = 0; 280 for (uint j = 0; j < use->len(); j++) { 281 if (use->in(j) == n) { 282 if (j < use->req()) 283 use->set_req(j, nn); 284 else 285 use->set_prec(j, nn); 286 uses_found++; 287 } 288 } 289 if (is_in_table) { 290 // reinsert into table 291 initial_gvn()->hash_find_insert(use); 292 } 293 record_for_igvn(use); 294 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist); 295 i -= uses_found; // we deleted 1 or more copies of this edge 296 } 297 } 298 299 300 // Identify all nodes that are reachable from below, useful. 301 // Use breadth-first pass that records state in a Unique_Node_List, 302 // recursive traversal is slower. 303 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 304 int estimated_worklist_size = live_nodes(); 305 useful.map( estimated_worklist_size, nullptr ); // preallocate space 306 307 // Initialize worklist 308 if (root() != nullptr) { useful.push(root()); } 309 // If 'top' is cached, declare it useful to preserve cached node 310 if (cached_top_node()) { useful.push(cached_top_node()); } 311 312 // Push all useful nodes onto the list, breadthfirst 313 for( uint next = 0; next < useful.size(); ++next ) { 314 assert( next < unique(), "Unique useful nodes < total nodes"); 315 Node *n = useful.at(next); 316 uint max = n->len(); 317 for( uint i = 0; i < max; ++i ) { 318 Node *m = n->in(i); 319 if (not_a_node(m)) continue; 320 useful.push(m); 321 } 322 } 323 } 324 325 // Update dead_node_list with any missing dead nodes using useful 326 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 327 void Compile::update_dead_node_list(Unique_Node_List &useful) { 328 uint max_idx = unique(); 329 VectorSet& useful_node_set = useful.member_set(); 330 331 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 332 // If node with index node_idx is not in useful set, 333 // mark it as dead in dead node list. 334 if (!useful_node_set.test(node_idx)) { 335 record_dead_node(node_idx); 336 } 337 } 338 } 339 340 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 341 int shift = 0; 342 for (int i = 0; i < inlines->length(); i++) { 343 CallGenerator* cg = inlines->at(i); 344 if (useful.member(cg->call_node())) { 345 if (shift > 0) { 346 inlines->at_put(i - shift, cg); 347 } 348 } else { 349 shift++; // skip over the dead element 350 } 351 } 352 if (shift > 0) { 353 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 354 } 355 } 356 357 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 358 assert(dead != nullptr && dead->is_Call(), "sanity"); 359 int found = 0; 360 for (int i = 0; i < inlines->length(); i++) { 361 if (inlines->at(i)->call_node() == dead) { 362 inlines->remove_at(i); 363 found++; 364 NOT_DEBUG( break; ) // elements are unique, so exit early 365 } 366 } 367 assert(found <= 1, "not unique"); 368 } 369 370 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)> 371 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) { 372 for (int i = node_list.length() - 1; i >= 0; i--) { 373 N* node = node_list.at(i); 374 if (!useful.member(node)) { 375 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 376 } 377 } 378 } 379 380 void Compile::remove_useless_node(Node* dead) { 381 remove_modified_node(dead); 382 383 // Constant node that has no out-edges and has only one in-edge from 384 // root is usually dead. However, sometimes reshaping walk makes 385 // it reachable by adding use edges. So, we will NOT count Con nodes 386 // as dead to be conservative about the dead node count at any 387 // given time. 388 if (!dead->is_Con()) { 389 record_dead_node(dead->_idx); 390 } 391 if (dead->is_macro()) { 392 remove_macro_node(dead); 393 } 394 if (dead->is_expensive()) { 395 remove_expensive_node(dead); 396 } 397 if (dead->is_OpaqueTemplateAssertionPredicate()) { 398 remove_template_assertion_predicate_opaque(dead->as_OpaqueTemplateAssertionPredicate()); 399 } 400 if (dead->is_ParsePredicate()) { 401 remove_parse_predicate(dead->as_ParsePredicate()); 402 } 403 if (dead->for_post_loop_opts_igvn()) { 404 remove_from_post_loop_opts_igvn(dead); 405 } 406 if (dead->for_merge_stores_igvn()) { 407 remove_from_merge_stores_igvn(dead); 408 } 409 if (dead->is_Call()) { 410 remove_useless_late_inlines( &_late_inlines, dead); 411 remove_useless_late_inlines( &_string_late_inlines, dead); 412 remove_useless_late_inlines( &_boxing_late_inlines, dead); 413 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 414 415 if (dead->is_CallStaticJava()) { 416 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 417 } 418 } 419 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 420 bs->unregister_potential_barrier_node(dead); 421 } 422 423 // Disconnect all useless nodes by disconnecting those at the boundary. 424 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist, const Unique_Node_List* root_and_safepoints) { 425 uint next = 0; 426 while (next < useful.size()) { 427 Node *n = useful.at(next++); 428 if (n->is_SafePoint()) { 429 // We're done with a parsing phase. Replaced nodes are not valid 430 // beyond that point. 431 n->as_SafePoint()->delete_replaced_nodes(); 432 } 433 // Use raw traversal of out edges since this code removes out edges 434 int max = n->outcnt(); 435 for (int j = 0; j < max; ++j) { 436 Node* child = n->raw_out(j); 437 if (!useful.member(child)) { 438 assert(!child->is_top() || child != top(), 439 "If top is cached in Compile object it is in useful list"); 440 // Only need to remove this out-edge to the useless node 441 n->raw_del_out(j); 442 --j; 443 --max; 444 if (child->is_data_proj_of_pure_function(n)) { 445 worklist.push(n); 446 } 447 } 448 } 449 if (n->outcnt() == 1 && n->has_special_unique_user()) { 450 assert(useful.member(n->unique_out()), "do not push a useless node"); 451 worklist.push(n->unique_out()); 452 } 453 } 454 455 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 456 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes 457 // Remove useless Template Assertion Predicate opaque nodes 458 remove_useless_nodes(_template_assertion_predicate_opaques, useful); 459 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 460 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 461 remove_useless_nodes(_for_merge_stores_igvn, useful); // remove useless node recorded for merge stores IGVN pass 462 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 463 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 464 #ifdef ASSERT 465 if (_modified_nodes != nullptr) { 466 _modified_nodes->remove_useless_nodes(useful.member_set()); 467 } 468 #endif 469 470 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 471 bs->eliminate_useless_gc_barriers(useful, this); 472 // clean up the late inline lists 473 remove_useless_late_inlines( &_late_inlines, useful); 474 remove_useless_late_inlines( &_string_late_inlines, useful); 475 remove_useless_late_inlines( &_boxing_late_inlines, useful); 476 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 477 DEBUG_ONLY(verify_graph_edges(true /*check for no_dead_code*/, root_and_safepoints);) 478 } 479 480 // ============================================================================ 481 //------------------------------CompileWrapper--------------------------------- 482 class CompileWrapper : public StackObj { 483 Compile *const _compile; 484 public: 485 CompileWrapper(Compile* compile); 486 487 ~CompileWrapper(); 488 }; 489 490 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 491 // the Compile* pointer is stored in the current ciEnv: 492 ciEnv* env = compile->env(); 493 assert(env == ciEnv::current(), "must already be a ciEnv active"); 494 assert(env->compiler_data() == nullptr, "compile already active?"); 495 env->set_compiler_data(compile); 496 assert(compile == Compile::current(), "sanity"); 497 498 compile->set_type_dict(nullptr); 499 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 500 compile->clone_map().set_clone_idx(0); 501 compile->set_type_last_size(0); 502 compile->set_last_tf(nullptr, nullptr); 503 compile->set_indexSet_arena(nullptr); 504 compile->set_indexSet_free_block_list(nullptr); 505 compile->init_type_arena(); 506 Type::Initialize(compile); 507 _compile->begin_method(); 508 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 509 } 510 CompileWrapper::~CompileWrapper() { 511 // simulate crash during compilation 512 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 513 514 _compile->end_method(); 515 _compile->env()->set_compiler_data(nullptr); 516 } 517 518 519 //----------------------------print_compile_messages--------------------------- 520 void Compile::print_compile_messages() { 521 #ifndef PRODUCT 522 // Check if recompiling 523 if (!subsume_loads() && PrintOpto) { 524 // Recompiling without allowing machine instructions to subsume loads 525 tty->print_cr("*********************************************************"); 526 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 527 tty->print_cr("*********************************************************"); 528 } 529 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 530 // Recompiling without escape analysis 531 tty->print_cr("*********************************************************"); 532 tty->print_cr("** Bailout: Recompile without escape analysis **"); 533 tty->print_cr("*********************************************************"); 534 } 535 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 536 // Recompiling without iterative escape analysis 537 tty->print_cr("*********************************************************"); 538 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 539 tty->print_cr("*********************************************************"); 540 } 541 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) { 542 // Recompiling without reducing allocation merges 543 tty->print_cr("*********************************************************"); 544 tty->print_cr("** Bailout: Recompile without reduce allocation merges **"); 545 tty->print_cr("*********************************************************"); 546 } 547 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 548 // Recompiling without boxing elimination 549 tty->print_cr("*********************************************************"); 550 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 551 tty->print_cr("*********************************************************"); 552 } 553 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 554 // Recompiling without locks coarsening 555 tty->print_cr("*********************************************************"); 556 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 557 tty->print_cr("*********************************************************"); 558 } 559 if (env()->break_at_compile()) { 560 // Open the debugger when compiling this method. 561 tty->print("### Breaking when compiling: "); 562 method()->print_short_name(); 563 tty->cr(); 564 BREAKPOINT; 565 } 566 567 if( PrintOpto ) { 568 if (is_osr_compilation()) { 569 tty->print("[OSR]%3d", _compile_id); 570 } else { 571 tty->print("%3d", _compile_id); 572 } 573 } 574 #endif 575 } 576 577 #ifndef PRODUCT 578 void Compile::print_ideal_ir(const char* phase_name) { 579 // keep the following output all in one block 580 // This output goes directly to the tty, not the compiler log. 581 // To enable tools to match it up with the compilation activity, 582 // be sure to tag this tty output with the compile ID. 583 584 // Node dumping can cause a safepoint, which can break the tty lock. 585 // Buffer all node dumps, so that all safepoints happen before we lock. 586 ResourceMark rm; 587 stringStream ss; 588 589 if (_output == nullptr) { 590 ss.print_cr("AFTER: %s", phase_name); 591 // Print out all nodes in ascending order of index. 592 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 593 } else { 594 // Dump the node blockwise if we have a scheduling 595 _output->print_scheduling(&ss); 596 } 597 598 // Check that the lock is not broken by a safepoint. 599 NoSafepointVerifier nsv; 600 ttyLocker ttyl; 601 if (xtty != nullptr) { 602 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 603 compile_id(), 604 is_osr_compilation() ? " compile_kind='osr'" : "", 605 phase_name); 606 } 607 608 tty->print("%s", ss.as_string()); 609 610 if (xtty != nullptr) { 611 xtty->tail("ideal"); 612 } 613 } 614 #endif 615 616 // ============================================================================ 617 //------------------------------Compile standard------------------------------- 618 619 // Compile a method. entry_bci is -1 for normal compilations and indicates 620 // the continuation bci for on stack replacement. 621 622 623 Compile::Compile(ciEnv* ci_env, ciMethod* target, int osr_bci, 624 Options options, DirectiveSet* directive) 625 : Phase(Compiler), 626 _compile_id(ci_env->compile_id()), 627 _options(options), 628 _method(target), 629 _entry_bci(osr_bci), 630 _ilt(nullptr), 631 _stub_function(nullptr), 632 _stub_name(nullptr), 633 _stub_entry_point(nullptr), 634 _max_node_limit(MaxNodeLimit), 635 _post_loop_opts_phase(false), 636 _merge_stores_phase(false), 637 _allow_macro_nodes(true), 638 _inlining_progress(false), 639 _inlining_incrementally(false), 640 _do_cleanup(false), 641 _has_reserved_stack_access(target->has_reserved_stack_access()), 642 #ifndef PRODUCT 643 _igv_idx(0), 644 _trace_opto_output(directive->TraceOptoOutputOption), 645 #endif 646 _has_method_handle_invokes(false), 647 _clinit_barrier_on_entry(false), 648 _stress_seed(0), 649 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 650 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 651 _env(ci_env), 652 _directive(directive), 653 _log(ci_env->log()), 654 _first_failure_details(nullptr), 655 _intrinsics(comp_arena(), 0, 0, nullptr), 656 _macro_nodes(comp_arena(), 8, 0, nullptr), 657 _parse_predicates(comp_arena(), 8, 0, nullptr), 658 _template_assertion_predicate_opaques(comp_arena(), 8, 0, nullptr), 659 _expensive_nodes(comp_arena(), 8, 0, nullptr), 660 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 661 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 662 _unstable_if_traps(comp_arena(), 8, 0, nullptr), 663 _coarsened_locks(comp_arena(), 8, 0, nullptr), 664 _congraph(nullptr), 665 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 666 _unique(0), 667 _dead_node_count(0), 668 _dead_node_list(comp_arena()), 669 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 670 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 671 _node_arena(&_node_arena_one), 672 _mach_constant_base_node(nullptr), 673 _Compile_types(mtCompiler, Arena::Tag::tag_type), 674 _initial_gvn(nullptr), 675 _igvn_worklist(nullptr), 676 _types(nullptr), 677 _node_hash(nullptr), 678 _late_inlines(comp_arena(), 2, 0, nullptr), 679 _string_late_inlines(comp_arena(), 2, 0, nullptr), 680 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 681 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 682 _late_inlines_pos(0), 683 _number_of_mh_late_inlines(0), 684 _oom(false), 685 _replay_inline_data(nullptr), 686 _inline_printer(this), 687 _java_calls(0), 688 _inner_loops(0), 689 _interpreter_frame_size(0), 690 _output(nullptr) 691 #ifndef PRODUCT 692 , 693 _in_dump_cnt(0) 694 #endif 695 { 696 C = this; 697 CompileWrapper cw(this); 698 699 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 700 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 701 702 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 703 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 704 // We can always print a disassembly, either abstract (hex dump) or 705 // with the help of a suitable hsdis library. Thus, we should not 706 // couple print_assembly and print_opto_assembly controls. 707 // But: always print opto and regular assembly on compile command 'print'. 708 bool print_assembly = directive->PrintAssemblyOption; 709 set_print_assembly(print_opto_assembly || print_assembly); 710 #else 711 set_print_assembly(false); // must initialize. 712 #endif 713 714 #ifndef PRODUCT 715 set_parsed_irreducible_loop(false); 716 #endif 717 718 if (directive->ReplayInlineOption) { 719 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 720 } 721 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 722 set_print_intrinsics(directive->PrintIntrinsicsOption); 723 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 724 725 if (ProfileTraps) { 726 // Make sure the method being compiled gets its own MDO, 727 // so we can at least track the decompile_count(). 728 method()->ensure_method_data(); 729 } 730 731 if (StressLCM || StressGCM || StressIGVN || StressCCP || 732 StressIncrementalInlining || StressMacroExpansion || StressUnstableIfTraps || StressBailout) { 733 initialize_stress_seed(directive); 734 } 735 736 Init(/*do_aliasing=*/ true); 737 738 print_compile_messages(); 739 740 _ilt = InlineTree::build_inline_tree_root(); 741 742 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 743 assert(num_alias_types() >= AliasIdxRaw, ""); 744 745 #define MINIMUM_NODE_HASH 1023 746 747 // GVN that will be run immediately on new nodes 748 uint estimated_size = method()->code_size()*4+64; 749 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 750 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 751 _types = new (comp_arena()) Type_Array(comp_arena()); 752 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 753 PhaseGVN gvn; 754 set_initial_gvn(&gvn); 755 756 { // Scope for timing the parser 757 TracePhase tp(_t_parser); 758 759 // Put top into the hash table ASAP. 760 initial_gvn()->transform(top()); 761 762 // Set up tf(), start(), and find a CallGenerator. 763 CallGenerator* cg = nullptr; 764 if (is_osr_compilation()) { 765 const TypeTuple *domain = StartOSRNode::osr_domain(); 766 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 767 init_tf(TypeFunc::make(domain, range)); 768 StartNode* s = new StartOSRNode(root(), domain); 769 initial_gvn()->set_type_bottom(s); 770 verify_start(s); 771 cg = CallGenerator::for_osr(method(), entry_bci()); 772 } else { 773 // Normal case. 774 init_tf(TypeFunc::make(method())); 775 StartNode* s = new StartNode(root(), tf()->domain()); 776 initial_gvn()->set_type_bottom(s); 777 verify_start(s); 778 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 779 // With java.lang.ref.reference.get() we must go through the 780 // intrinsic - even when get() is the root 781 // method of the compile - so that, if necessary, the value in 782 // the referent field of the reference object gets recorded by 783 // the pre-barrier code. 784 cg = find_intrinsic(method(), false); 785 } 786 if (cg == nullptr) { 787 float past_uses = method()->interpreter_invocation_count(); 788 float expected_uses = past_uses; 789 cg = CallGenerator::for_inline(method(), expected_uses); 790 } 791 } 792 if (failing()) return; 793 if (cg == nullptr) { 794 const char* reason = InlineTree::check_can_parse(method()); 795 assert(reason != nullptr, "expect reason for parse failure"); 796 stringStream ss; 797 ss.print("cannot parse method: %s", reason); 798 record_method_not_compilable(ss.as_string()); 799 return; 800 } 801 802 gvn.set_type(root(), root()->bottom_type()); 803 804 JVMState* jvms = build_start_state(start(), tf()); 805 if ((jvms = cg->generate(jvms)) == nullptr) { 806 assert(failure_reason() != nullptr, "expect reason for parse failure"); 807 stringStream ss; 808 ss.print("method parse failed: %s", failure_reason()); 809 record_method_not_compilable(ss.as_string() DEBUG_ONLY(COMMA true)); 810 return; 811 } 812 GraphKit kit(jvms); 813 814 if (!kit.stopped()) { 815 // Accept return values, and transfer control we know not where. 816 // This is done by a special, unique ReturnNode bound to root. 817 return_values(kit.jvms()); 818 } 819 820 if (kit.has_exceptions()) { 821 // Any exceptions that escape from this call must be rethrown 822 // to whatever caller is dynamically above us on the stack. 823 // This is done by a special, unique RethrowNode bound to root. 824 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 825 } 826 827 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 828 829 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 830 inline_string_calls(true); 831 } 832 833 if (failing()) return; 834 835 // Remove clutter produced by parsing. 836 if (!failing()) { 837 ResourceMark rm; 838 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 839 } 840 } 841 842 // Note: Large methods are capped off in do_one_bytecode(). 843 if (failing()) return; 844 845 // After parsing, node notes are no longer automagic. 846 // They must be propagated by register_new_node_with_optimizer(), 847 // clone(), or the like. 848 set_default_node_notes(nullptr); 849 850 #ifndef PRODUCT 851 if (should_print_igv(1)) { 852 _igv_printer->print_inlining(); 853 } 854 #endif 855 856 if (failing()) return; 857 NOT_PRODUCT( verify_graph_edges(); ) 858 859 // Now optimize 860 Optimize(); 861 if (failing()) return; 862 NOT_PRODUCT( verify_graph_edges(); ) 863 864 #ifndef PRODUCT 865 if (should_print_ideal()) { 866 print_ideal_ir("print_ideal"); 867 } 868 #endif 869 870 #ifdef ASSERT 871 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 872 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 873 #endif 874 875 // Dump compilation data to replay it. 876 if (directive->DumpReplayOption) { 877 env()->dump_replay_data(_compile_id); 878 } 879 if (directive->DumpInlineOption && (ilt() != nullptr)) { 880 env()->dump_inline_data(_compile_id); 881 } 882 883 // Now that we know the size of all the monitors we can add a fixed slot 884 // for the original deopt pc. 885 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 886 set_fixed_slots(next_slot); 887 888 // Compute when to use implicit null checks. Used by matching trap based 889 // nodes and NullCheck optimization. 890 set_allowed_deopt_reasons(); 891 892 // Now generate code 893 Code_Gen(); 894 } 895 896 //------------------------------Compile---------------------------------------- 897 // Compile a runtime stub 898 Compile::Compile(ciEnv* ci_env, 899 TypeFunc_generator generator, 900 address stub_function, 901 const char* stub_name, 902 int is_fancy_jump, 903 bool pass_tls, 904 bool return_pc, 905 DirectiveSet* directive) 906 : Phase(Compiler), 907 _compile_id(0), 908 _options(Options::for_runtime_stub()), 909 _method(nullptr), 910 _entry_bci(InvocationEntryBci), 911 _stub_function(stub_function), 912 _stub_name(stub_name), 913 _stub_entry_point(nullptr), 914 _max_node_limit(MaxNodeLimit), 915 _post_loop_opts_phase(false), 916 _merge_stores_phase(false), 917 _allow_macro_nodes(true), 918 _inlining_progress(false), 919 _inlining_incrementally(false), 920 _has_reserved_stack_access(false), 921 #ifndef PRODUCT 922 _igv_idx(0), 923 _trace_opto_output(directive->TraceOptoOutputOption), 924 #endif 925 _has_method_handle_invokes(false), 926 _clinit_barrier_on_entry(false), 927 _stress_seed(0), 928 _comp_arena(mtCompiler, Arena::Tag::tag_comp), 929 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 930 _env(ci_env), 931 _directive(directive), 932 _log(ci_env->log()), 933 _first_failure_details(nullptr), 934 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 935 _for_merge_stores_igvn(comp_arena(), 8, 0, nullptr), 936 _congraph(nullptr), 937 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 938 _unique(0), 939 _dead_node_count(0), 940 _dead_node_list(comp_arena()), 941 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 942 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 943 _node_arena(&_node_arena_one), 944 _mach_constant_base_node(nullptr), 945 _Compile_types(mtCompiler, Arena::Tag::tag_type), 946 _initial_gvn(nullptr), 947 _igvn_worklist(nullptr), 948 _types(nullptr), 949 _node_hash(nullptr), 950 _number_of_mh_late_inlines(0), 951 _oom(false), 952 _replay_inline_data(nullptr), 953 _inline_printer(this), 954 _java_calls(0), 955 _inner_loops(0), 956 _interpreter_frame_size(0), 957 _output(nullptr), 958 #ifndef PRODUCT 959 _in_dump_cnt(0), 960 #endif 961 _allowed_reasons(0) { 962 C = this; 963 964 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 965 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 966 967 #ifndef PRODUCT 968 set_print_assembly(PrintFrameConverterAssembly); 969 set_parsed_irreducible_loop(false); 970 #else 971 set_print_assembly(false); // Must initialize. 972 #endif 973 set_has_irreducible_loop(false); // no loops 974 975 CompileWrapper cw(this); 976 Init(/*do_aliasing=*/ false); 977 init_tf((*generator)()); 978 979 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 980 _types = new (comp_arena()) Type_Array(comp_arena()); 981 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 982 983 if (StressLCM || StressGCM || StressBailout) { 984 initialize_stress_seed(directive); 985 } 986 987 { 988 PhaseGVN gvn; 989 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 990 gvn.transform(top()); 991 992 GraphKit kit; 993 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 994 } 995 996 NOT_PRODUCT( verify_graph_edges(); ) 997 998 Code_Gen(); 999 } 1000 1001 Compile::~Compile() { 1002 delete _first_failure_details; 1003 }; 1004 1005 //------------------------------Init------------------------------------------- 1006 // Prepare for a single compilation 1007 void Compile::Init(bool aliasing) { 1008 _do_aliasing = aliasing; 1009 _unique = 0; 1010 _regalloc = nullptr; 1011 1012 _tf = nullptr; // filled in later 1013 _top = nullptr; // cached later 1014 _matcher = nullptr; // filled in later 1015 _cfg = nullptr; // filled in later 1016 1017 _node_note_array = nullptr; 1018 _default_node_notes = nullptr; 1019 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 1020 1021 _immutable_memory = nullptr; // filled in at first inquiry 1022 1023 #ifdef ASSERT 1024 _phase_optimize_finished = false; 1025 _phase_verify_ideal_loop = false; 1026 _exception_backedge = false; 1027 _type_verify = nullptr; 1028 #endif 1029 1030 // Globally visible Nodes 1031 // First set TOP to null to give safe behavior during creation of RootNode 1032 set_cached_top_node(nullptr); 1033 set_root(new RootNode()); 1034 // Now that you have a Root to point to, create the real TOP 1035 set_cached_top_node( new ConNode(Type::TOP) ); 1036 set_recent_alloc(nullptr, nullptr); 1037 1038 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1039 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1040 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1041 env()->set_dependencies(new Dependencies(env())); 1042 1043 _fixed_slots = 0; 1044 set_has_split_ifs(false); 1045 set_has_loops(false); // first approximation 1046 set_has_stringbuilder(false); 1047 set_has_boxed_value(false); 1048 _trap_can_recompile = false; // no traps emitted yet 1049 _major_progress = true; // start out assuming good things will happen 1050 set_has_unsafe_access(false); 1051 set_max_vector_size(0); 1052 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1053 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1054 set_decompile_count(0); 1055 1056 #ifndef PRODUCT 1057 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter)); 1058 #endif 1059 1060 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1061 _loop_opts_cnt = LoopOptsCount; 1062 set_do_inlining(Inline); 1063 set_max_inline_size(MaxInlineSize); 1064 set_freq_inline_size(FreqInlineSize); 1065 set_do_scheduling(OptoScheduling); 1066 1067 set_do_vector_loop(false); 1068 set_has_monitors(false); 1069 set_has_scoped_access(false); 1070 1071 if (AllowVectorizeOnDemand) { 1072 if (has_method() && _directive->VectorizeOption) { 1073 set_do_vector_loop(true); 1074 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1075 } else if (has_method() && method()->name() != nullptr && 1076 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1077 set_do_vector_loop(true); 1078 } 1079 } 1080 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1081 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1082 1083 _max_node_limit = _directive->MaxNodeLimitOption; 1084 1085 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) { 1086 set_clinit_barrier_on_entry(true); 1087 } 1088 if (debug_info()->recording_non_safepoints()) { 1089 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1090 (comp_arena(), 8, 0, nullptr)); 1091 set_default_node_notes(Node_Notes::make(this)); 1092 } 1093 1094 const int grow_ats = 16; 1095 _max_alias_types = grow_ats; 1096 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1097 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1098 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1099 { 1100 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1101 } 1102 // Initialize the first few types. 1103 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1104 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1105 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1106 _num_alias_types = AliasIdxRaw+1; 1107 // Zero out the alias type cache. 1108 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1109 // A null adr_type hits in the cache right away. Preload the right answer. 1110 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1111 } 1112 1113 #ifdef ASSERT 1114 // Verify that the current StartNode is valid. 1115 void Compile::verify_start(StartNode* s) const { 1116 assert(failing_internal() || s == start(), "should be StartNode"); 1117 } 1118 #endif 1119 1120 /** 1121 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1122 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1123 * the ideal graph. 1124 */ 1125 StartNode* Compile::start() const { 1126 assert (!failing_internal() || C->failure_is_artificial(), "Must not have pending failure. Reason is: %s", failure_reason()); 1127 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1128 Node* start = root()->fast_out(i); 1129 if (start->is_Start()) { 1130 return start->as_Start(); 1131 } 1132 } 1133 fatal("Did not find Start node!"); 1134 return nullptr; 1135 } 1136 1137 //-------------------------------immutable_memory------------------------------------- 1138 // Access immutable memory 1139 Node* Compile::immutable_memory() { 1140 if (_immutable_memory != nullptr) { 1141 return _immutable_memory; 1142 } 1143 StartNode* s = start(); 1144 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1145 Node *p = s->fast_out(i); 1146 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1147 _immutable_memory = p; 1148 return _immutable_memory; 1149 } 1150 } 1151 ShouldNotReachHere(); 1152 return nullptr; 1153 } 1154 1155 //----------------------set_cached_top_node------------------------------------ 1156 // Install the cached top node, and make sure Node::is_top works correctly. 1157 void Compile::set_cached_top_node(Node* tn) { 1158 if (tn != nullptr) verify_top(tn); 1159 Node* old_top = _top; 1160 _top = tn; 1161 // Calling Node::setup_is_top allows the nodes the chance to adjust 1162 // their _out arrays. 1163 if (_top != nullptr) _top->setup_is_top(); 1164 if (old_top != nullptr) old_top->setup_is_top(); 1165 assert(_top == nullptr || top()->is_top(), ""); 1166 } 1167 1168 #ifdef ASSERT 1169 uint Compile::count_live_nodes_by_graph_walk() { 1170 Unique_Node_List useful(comp_arena()); 1171 // Get useful node list by walking the graph. 1172 identify_useful_nodes(useful); 1173 return useful.size(); 1174 } 1175 1176 void Compile::print_missing_nodes() { 1177 1178 // Return if CompileLog is null and PrintIdealNodeCount is false. 1179 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1180 return; 1181 } 1182 1183 // This is an expensive function. It is executed only when the user 1184 // specifies VerifyIdealNodeCount option or otherwise knows the 1185 // additional work that needs to be done to identify reachable nodes 1186 // by walking the flow graph and find the missing ones using 1187 // _dead_node_list. 1188 1189 Unique_Node_List useful(comp_arena()); 1190 // Get useful node list by walking the graph. 1191 identify_useful_nodes(useful); 1192 1193 uint l_nodes = C->live_nodes(); 1194 uint l_nodes_by_walk = useful.size(); 1195 1196 if (l_nodes != l_nodes_by_walk) { 1197 if (_log != nullptr) { 1198 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1199 _log->stamp(); 1200 _log->end_head(); 1201 } 1202 VectorSet& useful_member_set = useful.member_set(); 1203 int last_idx = l_nodes_by_walk; 1204 for (int i = 0; i < last_idx; i++) { 1205 if (useful_member_set.test(i)) { 1206 if (_dead_node_list.test(i)) { 1207 if (_log != nullptr) { 1208 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1209 } 1210 if (PrintIdealNodeCount) { 1211 // Print the log message to tty 1212 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1213 useful.at(i)->dump(); 1214 } 1215 } 1216 } 1217 else if (! _dead_node_list.test(i)) { 1218 if (_log != nullptr) { 1219 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1220 } 1221 if (PrintIdealNodeCount) { 1222 // Print the log message to tty 1223 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1224 } 1225 } 1226 } 1227 if (_log != nullptr) { 1228 _log->tail("mismatched_nodes"); 1229 } 1230 } 1231 } 1232 void Compile::record_modified_node(Node* n) { 1233 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1234 _modified_nodes->push(n); 1235 } 1236 } 1237 1238 void Compile::remove_modified_node(Node* n) { 1239 if (_modified_nodes != nullptr) { 1240 _modified_nodes->remove(n); 1241 } 1242 } 1243 #endif 1244 1245 #ifndef PRODUCT 1246 void Compile::verify_top(Node* tn) const { 1247 if (tn != nullptr) { 1248 assert(tn->is_Con(), "top node must be a constant"); 1249 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1250 assert(tn->in(0) != nullptr, "must have live top node"); 1251 } 1252 } 1253 #endif 1254 1255 1256 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1257 1258 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1259 guarantee(arr != nullptr, ""); 1260 int num_blocks = arr->length(); 1261 if (grow_by < num_blocks) grow_by = num_blocks; 1262 int num_notes = grow_by * _node_notes_block_size; 1263 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1264 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1265 while (num_notes > 0) { 1266 arr->append(notes); 1267 notes += _node_notes_block_size; 1268 num_notes -= _node_notes_block_size; 1269 } 1270 assert(num_notes == 0, "exact multiple, please"); 1271 } 1272 1273 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1274 if (source == nullptr || dest == nullptr) return false; 1275 1276 if (dest->is_Con()) 1277 return false; // Do not push debug info onto constants. 1278 1279 #ifdef ASSERT 1280 // Leave a bread crumb trail pointing to the original node: 1281 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1282 dest->set_debug_orig(source); 1283 } 1284 #endif 1285 1286 if (node_note_array() == nullptr) 1287 return false; // Not collecting any notes now. 1288 1289 // This is a copy onto a pre-existing node, which may already have notes. 1290 // If both nodes have notes, do not overwrite any pre-existing notes. 1291 Node_Notes* source_notes = node_notes_at(source->_idx); 1292 if (source_notes == nullptr || source_notes->is_clear()) return false; 1293 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1294 if (dest_notes == nullptr || dest_notes->is_clear()) { 1295 return set_node_notes_at(dest->_idx, source_notes); 1296 } 1297 1298 Node_Notes merged_notes = (*source_notes); 1299 // The order of operations here ensures that dest notes will win... 1300 merged_notes.update_from(dest_notes); 1301 return set_node_notes_at(dest->_idx, &merged_notes); 1302 } 1303 1304 1305 //--------------------------allow_range_check_smearing------------------------- 1306 // Gating condition for coalescing similar range checks. 1307 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1308 // single covering check that is at least as strong as any of them. 1309 // If the optimization succeeds, the simplified (strengthened) range check 1310 // will always succeed. If it fails, we will deopt, and then give up 1311 // on the optimization. 1312 bool Compile::allow_range_check_smearing() const { 1313 // If this method has already thrown a range-check, 1314 // assume it was because we already tried range smearing 1315 // and it failed. 1316 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1317 return !already_trapped; 1318 } 1319 1320 1321 //------------------------------flatten_alias_type----------------------------- 1322 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1323 assert(do_aliasing(), "Aliasing should be enabled"); 1324 int offset = tj->offset(); 1325 TypePtr::PTR ptr = tj->ptr(); 1326 1327 // Known instance (scalarizable allocation) alias only with itself. 1328 bool is_known_inst = tj->isa_oopptr() != nullptr && 1329 tj->is_oopptr()->is_known_instance(); 1330 1331 // Process weird unsafe references. 1332 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1333 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1334 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1335 tj = TypeOopPtr::BOTTOM; 1336 ptr = tj->ptr(); 1337 offset = tj->offset(); 1338 } 1339 1340 // Array pointers need some flattening 1341 const TypeAryPtr* ta = tj->isa_aryptr(); 1342 if (ta && ta->is_stable()) { 1343 // Erase stability property for alias analysis. 1344 tj = ta = ta->cast_to_stable(false); 1345 } 1346 if( ta && is_known_inst ) { 1347 if ( offset != Type::OffsetBot && 1348 offset > arrayOopDesc::length_offset_in_bytes() ) { 1349 offset = Type::OffsetBot; // Flatten constant access into array body only 1350 tj = ta = ta-> 1351 remove_speculative()-> 1352 cast_to_ptr_type(ptr)-> 1353 with_offset(offset); 1354 } 1355 } else if (ta) { 1356 // For arrays indexed by constant indices, we flatten the alias 1357 // space to include all of the array body. Only the header, klass 1358 // and array length can be accessed un-aliased. 1359 if( offset != Type::OffsetBot ) { 1360 if( ta->const_oop() ) { // MethodData* or Method* 1361 offset = Type::OffsetBot; // Flatten constant access into array body 1362 tj = ta = ta-> 1363 remove_speculative()-> 1364 cast_to_ptr_type(ptr)-> 1365 cast_to_exactness(false)-> 1366 with_offset(offset); 1367 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1368 // range is OK as-is. 1369 tj = ta = TypeAryPtr::RANGE; 1370 } else if( offset == Type::klass_offset() ) { 1371 tj = TypeInstPtr::KLASS; // all klass loads look alike 1372 ta = TypeAryPtr::RANGE; // generic ignored junk 1373 ptr = TypePtr::BotPTR; 1374 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1375 tj = TypeInstPtr::MARK; 1376 ta = TypeAryPtr::RANGE; // generic ignored junk 1377 ptr = TypePtr::BotPTR; 1378 } else { // Random constant offset into array body 1379 offset = Type::OffsetBot; // Flatten constant access into array body 1380 tj = ta = ta-> 1381 remove_speculative()-> 1382 cast_to_ptr_type(ptr)-> 1383 cast_to_exactness(false)-> 1384 with_offset(offset); 1385 } 1386 } 1387 // Arrays of fixed size alias with arrays of unknown size. 1388 if (ta->size() != TypeInt::POS) { 1389 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1390 tj = ta = ta-> 1391 remove_speculative()-> 1392 cast_to_ptr_type(ptr)-> 1393 with_ary(tary)-> 1394 cast_to_exactness(false); 1395 } 1396 // Arrays of known objects become arrays of unknown objects. 1397 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1398 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1399 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1400 } 1401 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1402 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1403 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1404 } 1405 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1406 // cannot be distinguished by bytecode alone. 1407 if (ta->elem() == TypeInt::BOOL) { 1408 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1409 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1410 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1411 } 1412 // During the 2nd round of IterGVN, NotNull castings are removed. 1413 // Make sure the Bottom and NotNull variants alias the same. 1414 // Also, make sure exact and non-exact variants alias the same. 1415 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1416 tj = ta = ta-> 1417 remove_speculative()-> 1418 cast_to_ptr_type(TypePtr::BotPTR)-> 1419 cast_to_exactness(false)-> 1420 with_offset(offset); 1421 } 1422 } 1423 1424 // Oop pointers need some flattening 1425 const TypeInstPtr *to = tj->isa_instptr(); 1426 if (to && to != TypeOopPtr::BOTTOM) { 1427 ciInstanceKlass* ik = to->instance_klass(); 1428 if( ptr == TypePtr::Constant ) { 1429 if (ik != ciEnv::current()->Class_klass() || 1430 offset < ik->layout_helper_size_in_bytes()) { 1431 // No constant oop pointers (such as Strings); they alias with 1432 // unknown strings. 1433 assert(!is_known_inst, "not scalarizable allocation"); 1434 tj = to = to-> 1435 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1436 remove_speculative()-> 1437 cast_to_ptr_type(TypePtr::BotPTR)-> 1438 cast_to_exactness(false); 1439 } 1440 } else if( is_known_inst ) { 1441 tj = to; // Keep NotNull and klass_is_exact for instance type 1442 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1443 // During the 2nd round of IterGVN, NotNull castings are removed. 1444 // Make sure the Bottom and NotNull variants alias the same. 1445 // Also, make sure exact and non-exact variants alias the same. 1446 tj = to = to-> 1447 remove_speculative()-> 1448 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1449 cast_to_ptr_type(TypePtr::BotPTR)-> 1450 cast_to_exactness(false); 1451 } 1452 if (to->speculative() != nullptr) { 1453 tj = to = to->remove_speculative(); 1454 } 1455 // Canonicalize the holder of this field 1456 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1457 // First handle header references such as a LoadKlassNode, even if the 1458 // object's klass is unloaded at compile time (4965979). 1459 if (!is_known_inst) { // Do it only for non-instance types 1460 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset); 1461 } 1462 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1463 // Static fields are in the space above the normal instance 1464 // fields in the java.lang.Class instance. 1465 if (ik != ciEnv::current()->Class_klass()) { 1466 to = nullptr; 1467 tj = TypeOopPtr::BOTTOM; 1468 offset = tj->offset(); 1469 } 1470 } else { 1471 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1472 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1473 assert(tj->offset() == offset, "no change to offset expected"); 1474 bool xk = to->klass_is_exact(); 1475 int instance_id = to->instance_id(); 1476 1477 // If the input type's class is the holder: if exact, the type only includes interfaces implemented by the holder 1478 // but if not exact, it may include extra interfaces: build new type from the holder class to make sure only 1479 // its interfaces are included. 1480 if (xk && ik->equals(canonical_holder)) { 1481 assert(tj == TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id), "exact type should be canonical type"); 1482 } else { 1483 assert(xk || !is_known_inst, "Known instance should be exact type"); 1484 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, is_known_inst, nullptr, offset, instance_id); 1485 } 1486 } 1487 } 1488 1489 // Klass pointers to object array klasses need some flattening 1490 const TypeKlassPtr *tk = tj->isa_klassptr(); 1491 if( tk ) { 1492 // If we are referencing a field within a Klass, we need 1493 // to assume the worst case of an Object. Both exact and 1494 // inexact types must flatten to the same alias class so 1495 // use NotNull as the PTR. 1496 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1497 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1498 env()->Object_klass(), 1499 offset); 1500 } 1501 1502 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1503 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1504 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1505 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset); 1506 } else { 1507 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset); 1508 } 1509 } 1510 1511 // Check for precise loads from the primary supertype array and force them 1512 // to the supertype cache alias index. Check for generic array loads from 1513 // the primary supertype array and also force them to the supertype cache 1514 // alias index. Since the same load can reach both, we need to merge 1515 // these 2 disparate memories into the same alias class. Since the 1516 // primary supertype array is read-only, there's no chance of confusion 1517 // where we bypass an array load and an array store. 1518 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1519 if (offset == Type::OffsetBot || 1520 (offset >= primary_supers_offset && 1521 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1522 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1523 offset = in_bytes(Klass::secondary_super_cache_offset()); 1524 tj = tk = tk->with_offset(offset); 1525 } 1526 } 1527 1528 // Flatten all Raw pointers together. 1529 if (tj->base() == Type::RawPtr) 1530 tj = TypeRawPtr::BOTTOM; 1531 1532 if (tj->base() == Type::AnyPtr) 1533 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1534 1535 offset = tj->offset(); 1536 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1537 1538 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1539 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1540 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1541 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1542 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1543 (offset == Type::klass_offset() && tj->base() == Type::AryPtr) || 1544 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1545 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1546 assert( tj->ptr() != TypePtr::TopPTR && 1547 tj->ptr() != TypePtr::AnyNull && 1548 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1549 // assert( tj->ptr() != TypePtr::Constant || 1550 // tj->base() == Type::RawPtr || 1551 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1552 1553 return tj; 1554 } 1555 1556 void Compile::AliasType::Init(int i, const TypePtr* at) { 1557 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1558 _index = i; 1559 _adr_type = at; 1560 _field = nullptr; 1561 _element = nullptr; 1562 _is_rewritable = true; // default 1563 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1564 if (atoop != nullptr && atoop->is_known_instance()) { 1565 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1566 _general_index = Compile::current()->get_alias_index(gt); 1567 } else { 1568 _general_index = 0; 1569 } 1570 } 1571 1572 BasicType Compile::AliasType::basic_type() const { 1573 if (element() != nullptr) { 1574 const Type* element = adr_type()->is_aryptr()->elem(); 1575 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1576 } if (field() != nullptr) { 1577 return field()->layout_type(); 1578 } else { 1579 return T_ILLEGAL; // unknown 1580 } 1581 } 1582 1583 //---------------------------------print_on------------------------------------ 1584 #ifndef PRODUCT 1585 void Compile::AliasType::print_on(outputStream* st) { 1586 if (index() < 10) 1587 st->print("@ <%d> ", index()); 1588 else st->print("@ <%d>", index()); 1589 st->print(is_rewritable() ? " " : " RO"); 1590 int offset = adr_type()->offset(); 1591 if (offset == Type::OffsetBot) 1592 st->print(" +any"); 1593 else st->print(" +%-3d", offset); 1594 st->print(" in "); 1595 adr_type()->dump_on(st); 1596 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1597 if (field() != nullptr && tjp) { 1598 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1599 tjp->offset() != field()->offset_in_bytes()) { 1600 st->print(" != "); 1601 field()->print(); 1602 st->print(" ***"); 1603 } 1604 } 1605 } 1606 1607 void print_alias_types() { 1608 Compile* C = Compile::current(); 1609 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1610 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1611 C->alias_type(idx)->print_on(tty); 1612 tty->cr(); 1613 } 1614 } 1615 #endif 1616 1617 1618 //----------------------------probe_alias_cache-------------------------------- 1619 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1620 intptr_t key = (intptr_t) adr_type; 1621 key ^= key >> logAliasCacheSize; 1622 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1623 } 1624 1625 1626 //-----------------------------grow_alias_types-------------------------------- 1627 void Compile::grow_alias_types() { 1628 const int old_ats = _max_alias_types; // how many before? 1629 const int new_ats = old_ats; // how many more? 1630 const int grow_ats = old_ats+new_ats; // how many now? 1631 _max_alias_types = grow_ats; 1632 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1633 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1634 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1635 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1636 } 1637 1638 1639 //--------------------------------find_alias_type------------------------------ 1640 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1641 if (!do_aliasing()) { 1642 return alias_type(AliasIdxBot); 1643 } 1644 1645 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1646 if (ace->_adr_type == adr_type) { 1647 return alias_type(ace->_index); 1648 } 1649 1650 // Handle special cases. 1651 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1652 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1653 1654 // Do it the slow way. 1655 const TypePtr* flat = flatten_alias_type(adr_type); 1656 1657 #ifdef ASSERT 1658 { 1659 ResourceMark rm; 1660 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1661 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1662 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1663 Type::str(adr_type)); 1664 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1665 const TypeOopPtr* foop = flat->is_oopptr(); 1666 // Scalarizable allocations have exact klass always. 1667 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1668 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1669 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1670 Type::str(foop), Type::str(xoop)); 1671 } 1672 } 1673 #endif 1674 1675 int idx = AliasIdxTop; 1676 for (int i = 0; i < num_alias_types(); i++) { 1677 if (alias_type(i)->adr_type() == flat) { 1678 idx = i; 1679 break; 1680 } 1681 } 1682 1683 if (idx == AliasIdxTop) { 1684 if (no_create) return nullptr; 1685 // Grow the array if necessary. 1686 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1687 // Add a new alias type. 1688 idx = _num_alias_types++; 1689 _alias_types[idx]->Init(idx, flat); 1690 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1691 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1692 if (flat->isa_instptr()) { 1693 if (flat->offset() == java_lang_Class::klass_offset() 1694 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1695 alias_type(idx)->set_rewritable(false); 1696 } 1697 if (flat->isa_aryptr()) { 1698 #ifdef ASSERT 1699 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1700 // (T_BYTE has the weakest alignment and size restrictions...) 1701 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1702 #endif 1703 if (flat->offset() == TypePtr::OffsetBot) { 1704 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1705 } 1706 } 1707 if (flat->isa_klassptr()) { 1708 if (UseCompactObjectHeaders) { 1709 if (flat->offset() == in_bytes(Klass::prototype_header_offset())) 1710 alias_type(idx)->set_rewritable(false); 1711 } 1712 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1713 alias_type(idx)->set_rewritable(false); 1714 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1715 alias_type(idx)->set_rewritable(false); 1716 if (flat->offset() == in_bytes(Klass::misc_flags_offset())) 1717 alias_type(idx)->set_rewritable(false); 1718 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1719 alias_type(idx)->set_rewritable(false); 1720 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1721 alias_type(idx)->set_rewritable(false); 1722 } 1723 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1724 // but the base pointer type is not distinctive enough to identify 1725 // references into JavaThread.) 1726 1727 // Check for final fields. 1728 const TypeInstPtr* tinst = flat->isa_instptr(); 1729 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1730 ciField* field; 1731 if (tinst->const_oop() != nullptr && 1732 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1733 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1734 // static field 1735 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1736 field = k->get_field_by_offset(tinst->offset(), true); 1737 } else { 1738 ciInstanceKlass *k = tinst->instance_klass(); 1739 field = k->get_field_by_offset(tinst->offset(), false); 1740 } 1741 assert(field == nullptr || 1742 original_field == nullptr || 1743 (field->holder() == original_field->holder() && 1744 field->offset_in_bytes() == original_field->offset_in_bytes() && 1745 field->is_static() == original_field->is_static()), "wrong field?"); 1746 // Set field() and is_rewritable() attributes. 1747 if (field != nullptr) alias_type(idx)->set_field(field); 1748 } 1749 } 1750 1751 // Fill the cache for next time. 1752 ace->_adr_type = adr_type; 1753 ace->_index = idx; 1754 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1755 1756 // Might as well try to fill the cache for the flattened version, too. 1757 AliasCacheEntry* face = probe_alias_cache(flat); 1758 if (face->_adr_type == nullptr) { 1759 face->_adr_type = flat; 1760 face->_index = idx; 1761 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1762 } 1763 1764 return alias_type(idx); 1765 } 1766 1767 1768 Compile::AliasType* Compile::alias_type(ciField* field) { 1769 const TypeOopPtr* t; 1770 if (field->is_static()) 1771 t = TypeInstPtr::make(field->holder()->java_mirror()); 1772 else 1773 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1774 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1775 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1776 return atp; 1777 } 1778 1779 1780 //------------------------------have_alias_type-------------------------------- 1781 bool Compile::have_alias_type(const TypePtr* adr_type) { 1782 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1783 if (ace->_adr_type == adr_type) { 1784 return true; 1785 } 1786 1787 // Handle special cases. 1788 if (adr_type == nullptr) return true; 1789 if (adr_type == TypePtr::BOTTOM) return true; 1790 1791 return find_alias_type(adr_type, true, nullptr) != nullptr; 1792 } 1793 1794 //-----------------------------must_alias-------------------------------------- 1795 // True if all values of the given address type are in the given alias category. 1796 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1797 if (alias_idx == AliasIdxBot) return true; // the universal category 1798 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1799 if (alias_idx == AliasIdxTop) return false; // the empty category 1800 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1801 1802 // the only remaining possible overlap is identity 1803 int adr_idx = get_alias_index(adr_type); 1804 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1805 assert(adr_idx == alias_idx || 1806 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1807 && adr_type != TypeOopPtr::BOTTOM), 1808 "should not be testing for overlap with an unsafe pointer"); 1809 return adr_idx == alias_idx; 1810 } 1811 1812 //------------------------------can_alias-------------------------------------- 1813 // True if any values of the given address type are in the given alias category. 1814 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1815 if (alias_idx == AliasIdxTop) return false; // the empty category 1816 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1817 // Known instance doesn't alias with bottom memory 1818 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1819 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1820 1821 // the only remaining possible overlap is identity 1822 int adr_idx = get_alias_index(adr_type); 1823 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1824 return adr_idx == alias_idx; 1825 } 1826 1827 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their 1828 // uncommon traps if no Runtime Predicates were created from the Parse Predicates. 1829 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) { 1830 if (parse_predicate_count() == 0) { 1831 return; 1832 } 1833 for (int i = 0; i < parse_predicate_count(); i++) { 1834 ParsePredicateNode* parse_predicate = _parse_predicates.at(i); 1835 parse_predicate->mark_useless(igvn); 1836 } 1837 _parse_predicates.clear(); 1838 } 1839 1840 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1841 if (!n->for_post_loop_opts_igvn()) { 1842 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1843 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1844 _for_post_loop_igvn.append(n); 1845 } 1846 } 1847 1848 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1849 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1850 _for_post_loop_igvn.remove(n); 1851 } 1852 1853 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1854 // Verify that all previous optimizations produced a valid graph 1855 // at least to this point, even if no loop optimizations were done. 1856 PhaseIdealLoop::verify(igvn); 1857 1858 if (has_loops() || _loop_opts_cnt > 0) { 1859 print_method(PHASE_AFTER_LOOP_OPTS, 2); 1860 } 1861 C->set_post_loop_opts_phase(); // no more loop opts allowed 1862 1863 assert(!C->major_progress(), "not cleared"); 1864 1865 if (_for_post_loop_igvn.length() > 0) { 1866 while (_for_post_loop_igvn.length() > 0) { 1867 Node* n = _for_post_loop_igvn.pop(); 1868 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1869 igvn._worklist.push(n); 1870 } 1871 igvn.optimize(); 1872 if (failing()) return; 1873 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1874 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now"); 1875 1876 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1877 if (C->major_progress()) { 1878 C->clear_major_progress(); // ensure that major progress is now clear 1879 } 1880 } 1881 } 1882 1883 void Compile::record_for_merge_stores_igvn(Node* n) { 1884 if (!n->for_merge_stores_igvn()) { 1885 assert(!_for_merge_stores_igvn.contains(n), "duplicate"); 1886 n->add_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1887 _for_merge_stores_igvn.append(n); 1888 } 1889 } 1890 1891 void Compile::remove_from_merge_stores_igvn(Node* n) { 1892 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1893 _for_merge_stores_igvn.remove(n); 1894 } 1895 1896 // We need to wait with merging stores until RangeCheck smearing has removed the RangeChecks during 1897 // the post loops IGVN phase. If we do it earlier, then there may still be some RangeChecks between 1898 // the stores, and we merge the wrong sequence of stores. 1899 // Example: 1900 // StoreI RangeCheck StoreI StoreI RangeCheck StoreI 1901 // Apply MergeStores: 1902 // StoreI RangeCheck [ StoreL ] RangeCheck StoreI 1903 // Remove more RangeChecks: 1904 // StoreI [ StoreL ] StoreI 1905 // But now it would have been better to do this instead: 1906 // [ StoreL ] [ StoreL ] 1907 // 1908 // Note: we allow stores to merge in this dedicated IGVN round, and any later IGVN round, 1909 // since we never unset _merge_stores_phase. 1910 void Compile::process_for_merge_stores_igvn(PhaseIterGVN& igvn) { 1911 C->set_merge_stores_phase(); 1912 1913 if (_for_merge_stores_igvn.length() > 0) { 1914 while (_for_merge_stores_igvn.length() > 0) { 1915 Node* n = _for_merge_stores_igvn.pop(); 1916 n->remove_flag(Node::NodeFlags::Flag_for_merge_stores_igvn); 1917 igvn._worklist.push(n); 1918 } 1919 igvn.optimize(); 1920 if (failing()) return; 1921 assert(_for_merge_stores_igvn.length() == 0, "no more delayed nodes allowed"); 1922 print_method(PHASE_AFTER_MERGE_STORES, 3); 1923 } 1924 } 1925 1926 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 1927 if (OptimizeUnstableIf) { 1928 _unstable_if_traps.append(trap); 1929 } 1930 } 1931 1932 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 1933 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 1934 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1935 Node* n = trap->uncommon_trap(); 1936 if (!useful.member(n)) { 1937 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 1938 } 1939 } 1940 } 1941 1942 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 1943 // or fold-compares case. Return true if succeed or not found. 1944 // 1945 // In rare cases, the found trap has been processed. It is too late to delete it. Return 1946 // false and ask fold-compares to yield. 1947 // 1948 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 1949 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 1950 // when deoptimization does happen. 1951 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 1952 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 1953 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1954 if (trap->uncommon_trap() == unc) { 1955 if (yield && trap->modified()) { 1956 return false; 1957 } 1958 _unstable_if_traps.delete_at(i); 1959 break; 1960 } 1961 } 1962 return true; 1963 } 1964 1965 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 1966 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 1967 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 1968 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 1969 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1970 CallStaticJavaNode* unc = trap->uncommon_trap(); 1971 int next_bci = trap->next_bci(); 1972 bool modified = trap->modified(); 1973 1974 if (next_bci != -1 && !modified) { 1975 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 1976 JVMState* jvms = unc->jvms(); 1977 ciMethod* method = jvms->method(); 1978 ciBytecodeStream iter(method); 1979 1980 iter.force_bci(jvms->bci()); 1981 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 1982 Bytecodes::Code c = iter.cur_bc(); 1983 Node* lhs = nullptr; 1984 Node* rhs = nullptr; 1985 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 1986 lhs = unc->peek_operand(0); 1987 rhs = unc->peek_operand(1); 1988 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 1989 lhs = unc->peek_operand(0); 1990 } 1991 1992 ResourceMark rm; 1993 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 1994 assert(live_locals.is_valid(), "broken liveness info"); 1995 int len = (int)live_locals.size(); 1996 1997 for (int i = 0; i < len; i++) { 1998 Node* local = unc->local(jvms, i); 1999 // kill local using the liveness of next_bci. 2000 // give up when the local looks like an operand to secure reexecution. 2001 if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) { 2002 uint idx = jvms->locoff() + i; 2003 #ifdef ASSERT 2004 if (PrintOpto && Verbose) { 2005 tty->print("[unstable_if] kill local#%d: ", idx); 2006 local->dump(); 2007 tty->cr(); 2008 } 2009 #endif 2010 igvn.replace_input_of(unc, idx, top()); 2011 modified = true; 2012 } 2013 } 2014 } 2015 2016 // keep the mondified trap for late query 2017 if (modified) { 2018 trap->set_modified(); 2019 } else { 2020 _unstable_if_traps.delete_at(i); 2021 } 2022 } 2023 igvn.optimize(); 2024 } 2025 2026 // StringOpts and late inlining of string methods 2027 void Compile::inline_string_calls(bool parse_time) { 2028 { 2029 // remove useless nodes to make the usage analysis simpler 2030 ResourceMark rm; 2031 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2032 } 2033 2034 { 2035 ResourceMark rm; 2036 print_method(PHASE_BEFORE_STRINGOPTS, 3); 2037 PhaseStringOpts pso(initial_gvn()); 2038 print_method(PHASE_AFTER_STRINGOPTS, 3); 2039 } 2040 2041 // now inline anything that we skipped the first time around 2042 if (!parse_time) { 2043 _late_inlines_pos = _late_inlines.length(); 2044 } 2045 2046 while (_string_late_inlines.length() > 0) { 2047 CallGenerator* cg = _string_late_inlines.pop(); 2048 cg->do_late_inline(); 2049 if (failing()) return; 2050 } 2051 _string_late_inlines.trunc_to(0); 2052 } 2053 2054 // Late inlining of boxing methods 2055 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2056 if (_boxing_late_inlines.length() > 0) { 2057 assert(has_boxed_value(), "inconsistent"); 2058 2059 set_inlining_incrementally(true); 2060 2061 igvn_worklist()->ensure_empty(); // should be done with igvn 2062 2063 _late_inlines_pos = _late_inlines.length(); 2064 2065 while (_boxing_late_inlines.length() > 0) { 2066 CallGenerator* cg = _boxing_late_inlines.pop(); 2067 cg->do_late_inline(); 2068 if (failing()) return; 2069 } 2070 _boxing_late_inlines.trunc_to(0); 2071 2072 inline_incrementally_cleanup(igvn); 2073 2074 set_inlining_incrementally(false); 2075 } 2076 } 2077 2078 bool Compile::inline_incrementally_one() { 2079 assert(IncrementalInline, "incremental inlining should be on"); 2080 2081 TracePhase tp(_t_incrInline_inline); 2082 2083 set_inlining_progress(false); 2084 set_do_cleanup(false); 2085 2086 for (int i = 0; i < _late_inlines.length(); i++) { 2087 _late_inlines_pos = i+1; 2088 CallGenerator* cg = _late_inlines.at(i); 2089 bool is_scheduled_for_igvn_before = C->igvn_worklist()->member(cg->call_node()); 2090 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2091 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2092 cg->do_late_inline(); 2093 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2094 if (failing()) { 2095 return false; 2096 } else if (inlining_progress()) { 2097 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2098 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2099 break; // process one call site at a time 2100 } else { 2101 bool is_scheduled_for_igvn_after = C->igvn_worklist()->member(cg->call_node()); 2102 if (!is_scheduled_for_igvn_before && is_scheduled_for_igvn_after) { 2103 // Avoid potential infinite loop if node already in the IGVN list 2104 assert(false, "scheduled for IGVN during inlining attempt"); 2105 } else { 2106 // Ensure call node has not disappeared from IGVN worklist during a failed inlining attempt 2107 assert(!is_scheduled_for_igvn_before || is_scheduled_for_igvn_after, "call node removed from IGVN list during inlining pass"); 2108 cg->call_node()->set_generator(cg); 2109 } 2110 } 2111 } else { 2112 // Ignore late inline direct calls when inlining is not allowed. 2113 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2114 } 2115 } 2116 // Remove processed elements. 2117 _late_inlines.remove_till(_late_inlines_pos); 2118 _late_inlines_pos = 0; 2119 2120 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2121 2122 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2123 2124 set_inlining_progress(false); 2125 set_do_cleanup(false); 2126 2127 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2128 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2129 } 2130 2131 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2132 { 2133 TracePhase tp(_t_incrInline_pru); 2134 ResourceMark rm; 2135 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2136 } 2137 { 2138 TracePhase tp(_t_incrInline_igvn); 2139 igvn.reset_from_gvn(initial_gvn()); 2140 igvn.optimize(); 2141 if (failing()) return; 2142 } 2143 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2144 } 2145 2146 // Perform incremental inlining until bound on number of live nodes is reached 2147 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2148 TracePhase tp(_t_incrInline); 2149 2150 set_inlining_incrementally(true); 2151 uint low_live_nodes = 0; 2152 2153 while (_late_inlines.length() > 0) { 2154 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2155 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2156 TracePhase tp(_t_incrInline_ideal); 2157 // PhaseIdealLoop is expensive so we only try it once we are 2158 // out of live nodes and we only try it again if the previous 2159 // helped got the number of nodes down significantly 2160 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2161 if (failing()) return; 2162 low_live_nodes = live_nodes(); 2163 _major_progress = true; 2164 } 2165 2166 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2167 bool do_print_inlining = print_inlining() || print_intrinsics(); 2168 if (do_print_inlining || log() != nullptr) { 2169 // Print inlining message for candidates that we couldn't inline for lack of space. 2170 for (int i = 0; i < _late_inlines.length(); i++) { 2171 CallGenerator* cg = _late_inlines.at(i); 2172 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2173 if (do_print_inlining) { 2174 inline_printer()->record(cg->method(), cg->call_node()->jvms(), InliningResult::FAILURE, msg); 2175 } 2176 log_late_inline_failure(cg, msg); 2177 } 2178 } 2179 break; // finish 2180 } 2181 } 2182 2183 igvn_worklist()->ensure_empty(); // should be done with igvn 2184 2185 while (inline_incrementally_one()) { 2186 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2187 } 2188 if (failing()) return; 2189 2190 inline_incrementally_cleanup(igvn); 2191 2192 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2193 2194 if (failing()) return; 2195 2196 if (_late_inlines.length() == 0) { 2197 break; // no more progress 2198 } 2199 } 2200 2201 igvn_worklist()->ensure_empty(); // should be done with igvn 2202 2203 if (_string_late_inlines.length() > 0) { 2204 assert(has_stringbuilder(), "inconsistent"); 2205 2206 inline_string_calls(false); 2207 2208 if (failing()) return; 2209 2210 inline_incrementally_cleanup(igvn); 2211 } 2212 2213 set_inlining_incrementally(false); 2214 } 2215 2216 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2217 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2218 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2219 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2220 // as if "inlining_incrementally() == true" were set. 2221 assert(inlining_incrementally() == false, "not allowed"); 2222 assert(_modified_nodes == nullptr, "not allowed"); 2223 assert(_late_inlines.length() > 0, "sanity"); 2224 2225 while (_late_inlines.length() > 0) { 2226 igvn_worklist()->ensure_empty(); // should be done with igvn 2227 2228 while (inline_incrementally_one()) { 2229 assert(!failing_internal() || failure_is_artificial(), "inconsistent"); 2230 } 2231 if (failing()) return; 2232 2233 inline_incrementally_cleanup(igvn); 2234 } 2235 } 2236 2237 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2238 if (_loop_opts_cnt > 0) { 2239 while (major_progress() && (_loop_opts_cnt > 0)) { 2240 TracePhase tp(_t_idealLoop); 2241 PhaseIdealLoop::optimize(igvn, mode); 2242 _loop_opts_cnt--; 2243 if (failing()) return false; 2244 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2245 } 2246 } 2247 return true; 2248 } 2249 2250 // Remove edges from "root" to each SafePoint at a backward branch. 2251 // They were inserted during parsing (see add_safepoint()) to make 2252 // infinite loops without calls or exceptions visible to root, i.e., 2253 // useful. 2254 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2255 Node *r = root(); 2256 if (r != nullptr) { 2257 for (uint i = r->req(); i < r->len(); ++i) { 2258 Node *n = r->in(i); 2259 if (n != nullptr && n->is_SafePoint()) { 2260 r->rm_prec(i); 2261 if (n->outcnt() == 0) { 2262 igvn.remove_dead_node(n); 2263 } 2264 --i; 2265 } 2266 } 2267 // Parsing may have added top inputs to the root node (Path 2268 // leading to the Halt node proven dead). Make sure we get a 2269 // chance to clean them up. 2270 igvn._worklist.push(r); 2271 igvn.optimize(); 2272 } 2273 } 2274 2275 //------------------------------Optimize--------------------------------------- 2276 // Given a graph, optimize it. 2277 void Compile::Optimize() { 2278 TracePhase tp(_t_optimizer); 2279 2280 #ifndef PRODUCT 2281 if (env()->break_at_compile()) { 2282 BREAKPOINT; 2283 } 2284 2285 #endif 2286 2287 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2288 #ifdef ASSERT 2289 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2290 #endif 2291 2292 ResourceMark rm; 2293 2294 NOT_PRODUCT( verify_graph_edges(); ) 2295 2296 print_method(PHASE_AFTER_PARSING, 1); 2297 2298 { 2299 // Iterative Global Value Numbering, including ideal transforms 2300 // Initialize IterGVN with types and values from parse-time GVN 2301 PhaseIterGVN igvn(initial_gvn()); 2302 #ifdef ASSERT 2303 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2304 #endif 2305 { 2306 TracePhase tp(_t_iterGVN); 2307 igvn.optimize(); 2308 } 2309 2310 if (failing()) return; 2311 2312 print_method(PHASE_ITER_GVN1, 2); 2313 2314 process_for_unstable_if_traps(igvn); 2315 2316 if (failing()) return; 2317 2318 inline_incrementally(igvn); 2319 2320 print_method(PHASE_INCREMENTAL_INLINE, 2); 2321 2322 if (failing()) return; 2323 2324 if (eliminate_boxing()) { 2325 // Inline valueOf() methods now. 2326 inline_boxing_calls(igvn); 2327 2328 if (failing()) return; 2329 2330 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2331 inline_incrementally(igvn); 2332 } 2333 2334 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2335 2336 if (failing()) return; 2337 } 2338 2339 // Remove the speculative part of types and clean up the graph from 2340 // the extra CastPP nodes whose only purpose is to carry them. Do 2341 // that early so that optimizations are not disrupted by the extra 2342 // CastPP nodes. 2343 remove_speculative_types(igvn); 2344 2345 if (failing()) return; 2346 2347 // No more new expensive nodes will be added to the list from here 2348 // so keep only the actual candidates for optimizations. 2349 cleanup_expensive_nodes(igvn); 2350 2351 if (failing()) return; 2352 2353 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2354 if (EnableVectorSupport && has_vbox_nodes()) { 2355 TracePhase tp(_t_vector); 2356 PhaseVector pv(igvn); 2357 pv.optimize_vector_boxes(); 2358 if (failing()) return; 2359 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2360 } 2361 assert(!has_vbox_nodes(), "sanity"); 2362 2363 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2364 Compile::TracePhase tp(_t_renumberLive); 2365 igvn_worklist()->ensure_empty(); // should be done with igvn 2366 { 2367 ResourceMark rm; 2368 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2369 } 2370 igvn.reset_from_gvn(initial_gvn()); 2371 igvn.optimize(); 2372 if (failing()) return; 2373 } 2374 2375 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2376 // safepoints 2377 remove_root_to_sfpts_edges(igvn); 2378 2379 if (failing()) return; 2380 2381 if (has_loops()) { 2382 print_method(PHASE_BEFORE_LOOP_OPTS, 2); 2383 } 2384 2385 // Perform escape analysis 2386 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2387 if (has_loops()) { 2388 // Cleanup graph (remove dead nodes). 2389 TracePhase tp(_t_idealLoop); 2390 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2391 if (failing()) return; 2392 } 2393 bool progress; 2394 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2395 do { 2396 ConnectionGraph::do_analysis(this, &igvn); 2397 2398 if (failing()) return; 2399 2400 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2401 2402 // Optimize out fields loads from scalar replaceable allocations. 2403 igvn.optimize(); 2404 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2405 2406 if (failing()) return; 2407 2408 if (congraph() != nullptr && macro_count() > 0) { 2409 TracePhase tp(_t_macroEliminate); 2410 PhaseMacroExpand mexp(igvn); 2411 mexp.eliminate_macro_nodes(); 2412 if (failing()) return; 2413 2414 igvn.set_delay_transform(false); 2415 igvn.optimize(); 2416 if (failing()) return; 2417 2418 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2419 } 2420 2421 ConnectionGraph::verify_ram_nodes(this, root()); 2422 if (failing()) return; 2423 2424 progress = do_iterative_escape_analysis() && 2425 (macro_count() < mcount) && 2426 ConnectionGraph::has_candidates(this); 2427 // Try again if candidates exist and made progress 2428 // by removing some allocations and/or locks. 2429 } while (progress); 2430 } 2431 2432 // Loop transforms on the ideal graph. Range Check Elimination, 2433 // peeling, unrolling, etc. 2434 2435 // Set loop opts counter 2436 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2437 { 2438 TracePhase tp(_t_idealLoop); 2439 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2440 _loop_opts_cnt--; 2441 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2442 if (failing()) return; 2443 } 2444 // Loop opts pass if partial peeling occurred in previous pass 2445 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2446 TracePhase tp(_t_idealLoop); 2447 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2448 _loop_opts_cnt--; 2449 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2450 if (failing()) return; 2451 } 2452 // Loop opts pass for loop-unrolling before CCP 2453 if(major_progress() && (_loop_opts_cnt > 0)) { 2454 TracePhase tp(_t_idealLoop); 2455 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2456 _loop_opts_cnt--; 2457 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2458 } 2459 if (!failing()) { 2460 // Verify that last round of loop opts produced a valid graph 2461 PhaseIdealLoop::verify(igvn); 2462 } 2463 } 2464 if (failing()) return; 2465 2466 // Conditional Constant Propagation; 2467 print_method(PHASE_BEFORE_CCP1, 2); 2468 PhaseCCP ccp( &igvn ); 2469 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2470 { 2471 TracePhase tp(_t_ccp); 2472 ccp.do_transform(); 2473 } 2474 print_method(PHASE_CCP1, 2); 2475 2476 assert( true, "Break here to ccp.dump_old2new_map()"); 2477 2478 // Iterative Global Value Numbering, including ideal transforms 2479 { 2480 TracePhase tp(_t_iterGVN2); 2481 igvn.reset_from_igvn(&ccp); 2482 igvn.optimize(); 2483 } 2484 print_method(PHASE_ITER_GVN2, 2); 2485 2486 if (failing()) return; 2487 2488 // Loop transforms on the ideal graph. Range Check Elimination, 2489 // peeling, unrolling, etc. 2490 if (!optimize_loops(igvn, LoopOptsDefault)) { 2491 return; 2492 } 2493 2494 if (failing()) return; 2495 2496 C->clear_major_progress(); // ensure that major progress is now clear 2497 2498 process_for_post_loop_opts_igvn(igvn); 2499 2500 process_for_merge_stores_igvn(igvn); 2501 2502 if (failing()) return; 2503 2504 #ifdef ASSERT 2505 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2506 #endif 2507 2508 { 2509 TracePhase tp(_t_macroExpand); 2510 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3); 2511 PhaseMacroExpand mex(igvn); 2512 if (mex.expand_macro_nodes()) { 2513 assert(failing(), "must bail out w/ explicit message"); 2514 return; 2515 } 2516 print_method(PHASE_AFTER_MACRO_EXPANSION, 2); 2517 } 2518 2519 { 2520 TracePhase tp(_t_barrierExpand); 2521 if (bs->expand_barriers(this, igvn)) { 2522 assert(failing(), "must bail out w/ explicit message"); 2523 return; 2524 } 2525 print_method(PHASE_BARRIER_EXPANSION, 2); 2526 } 2527 2528 if (C->max_vector_size() > 0) { 2529 C->optimize_logic_cones(igvn); 2530 igvn.optimize(); 2531 if (failing()) return; 2532 } 2533 2534 DEBUG_ONLY( _modified_nodes = nullptr; ) 2535 2536 assert(igvn._worklist.size() == 0, "not empty"); 2537 2538 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2539 2540 if (_late_inlines.length() > 0) { 2541 // More opportunities to optimize virtual and MH calls. 2542 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2543 process_late_inline_calls_no_inline(igvn); 2544 if (failing()) return; 2545 } 2546 } // (End scope of igvn; run destructor if necessary for asserts.) 2547 2548 check_no_dead_use(); 2549 2550 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 2551 // to remove hashes to unlock nodes for modifications. 2552 C->node_hash()->clear(); 2553 2554 // A method with only infinite loops has no edges entering loops from root 2555 { 2556 TracePhase tp(_t_graphReshaping); 2557 if (final_graph_reshaping()) { 2558 assert(failing(), "must bail out w/ explicit message"); 2559 return; 2560 } 2561 } 2562 2563 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2564 DEBUG_ONLY(set_phase_optimize_finished();) 2565 } 2566 2567 #ifdef ASSERT 2568 void Compile::check_no_dead_use() const { 2569 ResourceMark rm; 2570 Unique_Node_List wq; 2571 wq.push(root()); 2572 for (uint i = 0; i < wq.size(); ++i) { 2573 Node* n = wq.at(i); 2574 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2575 Node* u = n->fast_out(j); 2576 if (u->outcnt() == 0 && !u->is_Con()) { 2577 u->dump(); 2578 fatal("no reachable node should have no use"); 2579 } 2580 wq.push(u); 2581 } 2582 } 2583 } 2584 #endif 2585 2586 void Compile::inline_vector_reboxing_calls() { 2587 if (C->_vector_reboxing_late_inlines.length() > 0) { 2588 _late_inlines_pos = C->_late_inlines.length(); 2589 while (_vector_reboxing_late_inlines.length() > 0) { 2590 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2591 cg->do_late_inline(); 2592 if (failing()) return; 2593 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 2594 } 2595 _vector_reboxing_late_inlines.trunc_to(0); 2596 } 2597 } 2598 2599 bool Compile::has_vbox_nodes() { 2600 if (C->_vector_reboxing_late_inlines.length() > 0) { 2601 return true; 2602 } 2603 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2604 Node * n = C->macro_node(macro_idx); 2605 assert(n->is_macro(), "only macro nodes expected here"); 2606 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2607 return true; 2608 } 2609 } 2610 return false; 2611 } 2612 2613 //---------------------------- Bitwise operation packing optimization --------------------------- 2614 2615 static bool is_vector_unary_bitwise_op(Node* n) { 2616 return n->Opcode() == Op_XorV && 2617 VectorNode::is_vector_bitwise_not_pattern(n); 2618 } 2619 2620 static bool is_vector_binary_bitwise_op(Node* n) { 2621 switch (n->Opcode()) { 2622 case Op_AndV: 2623 case Op_OrV: 2624 return true; 2625 2626 case Op_XorV: 2627 return !is_vector_unary_bitwise_op(n); 2628 2629 default: 2630 return false; 2631 } 2632 } 2633 2634 static bool is_vector_ternary_bitwise_op(Node* n) { 2635 return n->Opcode() == Op_MacroLogicV; 2636 } 2637 2638 static bool is_vector_bitwise_op(Node* n) { 2639 return is_vector_unary_bitwise_op(n) || 2640 is_vector_binary_bitwise_op(n) || 2641 is_vector_ternary_bitwise_op(n); 2642 } 2643 2644 static bool is_vector_bitwise_cone_root(Node* n) { 2645 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 2646 return false; 2647 } 2648 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2649 if (is_vector_bitwise_op(n->fast_out(i))) { 2650 return false; 2651 } 2652 } 2653 return true; 2654 } 2655 2656 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 2657 uint cnt = 0; 2658 if (is_vector_bitwise_op(n)) { 2659 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 2660 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2661 for (uint i = 1; i < inp_cnt; i++) { 2662 Node* in = n->in(i); 2663 bool skip = VectorNode::is_all_ones_vector(in); 2664 if (!skip && !inputs.member(in)) { 2665 inputs.push(in); 2666 cnt++; 2667 } 2668 } 2669 assert(cnt <= 1, "not unary"); 2670 } else { 2671 uint last_req = inp_cnt; 2672 if (is_vector_ternary_bitwise_op(n)) { 2673 last_req = inp_cnt - 1; // skip last input 2674 } 2675 for (uint i = 1; i < last_req; i++) { 2676 Node* def = n->in(i); 2677 if (!inputs.member(def)) { 2678 inputs.push(def); 2679 cnt++; 2680 } 2681 } 2682 } 2683 } else { // not a bitwise operations 2684 if (!inputs.member(n)) { 2685 inputs.push(n); 2686 cnt++; 2687 } 2688 } 2689 return cnt; 2690 } 2691 2692 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2693 Unique_Node_List useful_nodes; 2694 C->identify_useful_nodes(useful_nodes); 2695 2696 for (uint i = 0; i < useful_nodes.size(); i++) { 2697 Node* n = useful_nodes.at(i); 2698 if (is_vector_bitwise_cone_root(n)) { 2699 list.push(n); 2700 } 2701 } 2702 } 2703 2704 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2705 const TypeVect* vt, 2706 Unique_Node_List& partition, 2707 Unique_Node_List& inputs) { 2708 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2709 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2710 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2711 2712 Node* in1 = inputs.at(0); 2713 Node* in2 = inputs.at(1); 2714 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2715 2716 uint func = compute_truth_table(partition, inputs); 2717 2718 Node* pn = partition.at(partition.size() - 1); 2719 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2720 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 2721 } 2722 2723 static uint extract_bit(uint func, uint pos) { 2724 return (func & (1 << pos)) >> pos; 2725 } 2726 2727 // 2728 // A macro logic node represents a truth table. It has 4 inputs, 2729 // First three inputs corresponds to 3 columns of a truth table 2730 // and fourth input captures the logic function. 2731 // 2732 // eg. fn = (in1 AND in2) OR in3; 2733 // 2734 // MacroNode(in1,in2,in3,fn) 2735 // 2736 // ----------------- 2737 // in1 in2 in3 fn 2738 // ----------------- 2739 // 0 0 0 0 2740 // 0 0 1 1 2741 // 0 1 0 0 2742 // 0 1 1 1 2743 // 1 0 0 0 2744 // 1 0 1 1 2745 // 1 1 0 1 2746 // 1 1 1 1 2747 // 2748 2749 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2750 int res = 0; 2751 for (int i = 0; i < 8; i++) { 2752 int bit1 = extract_bit(in1, i); 2753 int bit2 = extract_bit(in2, i); 2754 int bit3 = extract_bit(in3, i); 2755 2756 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2757 int func_bit = extract_bit(func, func_bit_pos); 2758 2759 res |= func_bit << i; 2760 } 2761 return res; 2762 } 2763 2764 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 2765 assert(n != nullptr, ""); 2766 assert(eval_map.contains(n), "absent"); 2767 return *(eval_map.get(n)); 2768 } 2769 2770 static void eval_operands(Node* n, 2771 uint& func1, uint& func2, uint& func3, 2772 ResourceHashtable<Node*,uint>& eval_map) { 2773 assert(is_vector_bitwise_op(n), ""); 2774 2775 if (is_vector_unary_bitwise_op(n)) { 2776 Node* opnd = n->in(1); 2777 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 2778 opnd = n->in(2); 2779 } 2780 func1 = eval_operand(opnd, eval_map); 2781 } else if (is_vector_binary_bitwise_op(n)) { 2782 func1 = eval_operand(n->in(1), eval_map); 2783 func2 = eval_operand(n->in(2), eval_map); 2784 } else { 2785 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 2786 func1 = eval_operand(n->in(1), eval_map); 2787 func2 = eval_operand(n->in(2), eval_map); 2788 func3 = eval_operand(n->in(3), eval_map); 2789 } 2790 } 2791 2792 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2793 assert(inputs.size() <= 3, "sanity"); 2794 ResourceMark rm; 2795 uint res = 0; 2796 ResourceHashtable<Node*,uint> eval_map; 2797 2798 // Populate precomputed functions for inputs. 2799 // Each input corresponds to one column of 3 input truth-table. 2800 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 2801 0xCC, // (_, b, _) -> b 2802 0xF0 }; // (a, _, _) -> a 2803 for (uint i = 0; i < inputs.size(); i++) { 2804 eval_map.put(inputs.at(i), input_funcs[2-i]); 2805 } 2806 2807 for (uint i = 0; i < partition.size(); i++) { 2808 Node* n = partition.at(i); 2809 2810 uint func1 = 0, func2 = 0, func3 = 0; 2811 eval_operands(n, func1, func2, func3, eval_map); 2812 2813 switch (n->Opcode()) { 2814 case Op_OrV: 2815 assert(func3 == 0, "not binary"); 2816 res = func1 | func2; 2817 break; 2818 case Op_AndV: 2819 assert(func3 == 0, "not binary"); 2820 res = func1 & func2; 2821 break; 2822 case Op_XorV: 2823 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2824 assert(func2 == 0 && func3 == 0, "not unary"); 2825 res = (~func1) & 0xFF; 2826 } else { 2827 assert(func3 == 0, "not binary"); 2828 res = func1 ^ func2; 2829 } 2830 break; 2831 case Op_MacroLogicV: 2832 // Ordering of inputs may change during evaluation of sub-tree 2833 // containing MacroLogic node as a child node, thus a re-evaluation 2834 // makes sure that function is evaluated in context of current 2835 // inputs. 2836 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2837 break; 2838 2839 default: assert(false, "not supported: %s", n->Name()); 2840 } 2841 assert(res <= 0xFF, "invalid"); 2842 eval_map.put(n, res); 2843 } 2844 return res; 2845 } 2846 2847 // Criteria under which nodes gets packed into a macro logic node:- 2848 // 1) Parent and both child nodes are all unmasked or masked with 2849 // same predicates. 2850 // 2) Masked parent can be packed with left child if it is predicated 2851 // and both have same predicates. 2852 // 3) Masked parent can be packed with right child if its un-predicated 2853 // or has matching predication condition. 2854 // 4) An unmasked parent can be packed with an unmasked child. 2855 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2856 assert(partition.size() == 0, "not empty"); 2857 assert(inputs.size() == 0, "not empty"); 2858 if (is_vector_ternary_bitwise_op(n)) { 2859 return false; 2860 } 2861 2862 bool is_unary_op = is_vector_unary_bitwise_op(n); 2863 if (is_unary_op) { 2864 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 2865 return false; // too few inputs 2866 } 2867 2868 bool pack_left_child = true; 2869 bool pack_right_child = true; 2870 2871 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 2872 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 2873 2874 int left_child_input_cnt = 0; 2875 int right_child_input_cnt = 0; 2876 2877 bool parent_is_predicated = n->is_predicated_vector(); 2878 bool left_child_predicated = n->in(1)->is_predicated_vector(); 2879 bool right_child_predicated = n->in(2)->is_predicated_vector(); 2880 2881 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 2882 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2883 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2884 2885 do { 2886 if (pack_left_child && left_child_LOP && 2887 ((!parent_is_predicated && !left_child_predicated) || 2888 ((parent_is_predicated && left_child_predicated && 2889 parent_pred == left_child_pred)))) { 2890 partition.push(n->in(1)); 2891 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 2892 } else { 2893 inputs.push(n->in(1)); 2894 left_child_input_cnt = 1; 2895 } 2896 2897 if (pack_right_child && right_child_LOP && 2898 (!right_child_predicated || 2899 (right_child_predicated && parent_is_predicated && 2900 parent_pred == right_child_pred))) { 2901 partition.push(n->in(2)); 2902 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 2903 } else { 2904 inputs.push(n->in(2)); 2905 right_child_input_cnt = 1; 2906 } 2907 2908 if (inputs.size() > 3) { 2909 assert(partition.size() > 0, ""); 2910 inputs.clear(); 2911 partition.clear(); 2912 if (left_child_input_cnt > right_child_input_cnt) { 2913 pack_left_child = false; 2914 } else { 2915 pack_right_child = false; 2916 } 2917 } else { 2918 break; 2919 } 2920 } while(true); 2921 2922 if(partition.size()) { 2923 partition.push(n); 2924 } 2925 2926 return (partition.size() == 2 || partition.size() == 3) && 2927 (inputs.size() == 2 || inputs.size() == 3); 2928 } 2929 2930 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2931 assert(is_vector_bitwise_op(n), "not a root"); 2932 2933 visited.set(n->_idx); 2934 2935 // 1) Do a DFS walk over the logic cone. 2936 for (uint i = 1; i < n->req(); i++) { 2937 Node* in = n->in(i); 2938 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2939 process_logic_cone_root(igvn, in, visited); 2940 } 2941 } 2942 2943 // 2) Bottom up traversal: Merge node[s] with 2944 // the parent to form macro logic node. 2945 Unique_Node_List partition; 2946 Unique_Node_List inputs; 2947 if (compute_logic_cone(n, partition, inputs)) { 2948 const TypeVect* vt = n->bottom_type()->is_vect(); 2949 Node* pn = partition.at(partition.size() - 1); 2950 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2951 if (mask == nullptr || 2952 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 2953 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2954 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 2955 igvn.replace_node(n, macro_logic); 2956 } 2957 } 2958 } 2959 2960 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2961 ResourceMark rm; 2962 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 2963 Unique_Node_List list; 2964 collect_logic_cone_roots(list); 2965 2966 while (list.size() > 0) { 2967 Node* n = list.pop(); 2968 const TypeVect* vt = n->bottom_type()->is_vect(); 2969 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 2970 if (supported) { 2971 VectorSet visited(comp_arena()); 2972 process_logic_cone_root(igvn, n, visited); 2973 } 2974 } 2975 } 2976 } 2977 2978 //------------------------------Code_Gen--------------------------------------- 2979 // Given a graph, generate code for it 2980 void Compile::Code_Gen() { 2981 if (failing()) { 2982 return; 2983 } 2984 2985 // Perform instruction selection. You might think we could reclaim Matcher 2986 // memory PDQ, but actually the Matcher is used in generating spill code. 2987 // Internals of the Matcher (including some VectorSets) must remain live 2988 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2989 // set a bit in reclaimed memory. 2990 2991 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2992 // nodes. Mapping is only valid at the root of each matched subtree. 2993 NOT_PRODUCT( verify_graph_edges(); ) 2994 2995 Matcher matcher; 2996 _matcher = &matcher; 2997 { 2998 TracePhase tp(_t_matcher); 2999 matcher.match(); 3000 if (failing()) { 3001 return; 3002 } 3003 } 3004 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 3005 // nodes. Mapping is only valid at the root of each matched subtree. 3006 NOT_PRODUCT( verify_graph_edges(); ) 3007 3008 // If you have too many nodes, or if matching has failed, bail out 3009 check_node_count(0, "out of nodes matching instructions"); 3010 if (failing()) { 3011 return; 3012 } 3013 3014 print_method(PHASE_MATCHING, 2); 3015 3016 // Build a proper-looking CFG 3017 PhaseCFG cfg(node_arena(), root(), matcher); 3018 if (failing()) { 3019 return; 3020 } 3021 _cfg = &cfg; 3022 { 3023 TracePhase tp(_t_scheduler); 3024 bool success = cfg.do_global_code_motion(); 3025 if (!success) { 3026 return; 3027 } 3028 3029 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 3030 NOT_PRODUCT( verify_graph_edges(); ) 3031 cfg.verify(); 3032 if (failing()) { 3033 return; 3034 } 3035 } 3036 3037 PhaseChaitin regalloc(unique(), cfg, matcher, false); 3038 _regalloc = ®alloc; 3039 { 3040 TracePhase tp(_t_registerAllocation); 3041 // Perform register allocation. After Chaitin, use-def chains are 3042 // no longer accurate (at spill code) and so must be ignored. 3043 // Node->LRG->reg mappings are still accurate. 3044 _regalloc->Register_Allocate(); 3045 3046 // Bail out if the allocator builds too many nodes 3047 if (failing()) { 3048 return; 3049 } 3050 3051 print_method(PHASE_REGISTER_ALLOCATION, 2); 3052 } 3053 3054 // Prior to register allocation we kept empty basic blocks in case the 3055 // the allocator needed a place to spill. After register allocation we 3056 // are not adding any new instructions. If any basic block is empty, we 3057 // can now safely remove it. 3058 { 3059 TracePhase tp(_t_blockOrdering); 3060 cfg.remove_empty_blocks(); 3061 if (do_freq_based_layout()) { 3062 PhaseBlockLayout layout(cfg); 3063 } else { 3064 cfg.set_loop_alignment(); 3065 } 3066 cfg.fixup_flow(); 3067 cfg.remove_unreachable_blocks(); 3068 cfg.verify_dominator_tree(); 3069 print_method(PHASE_BLOCK_ORDERING, 3); 3070 } 3071 3072 // Apply peephole optimizations 3073 if( OptoPeephole ) { 3074 TracePhase tp(_t_peephole); 3075 PhasePeephole peep( _regalloc, cfg); 3076 peep.do_transform(); 3077 print_method(PHASE_PEEPHOLE, 3); 3078 } 3079 3080 // Do late expand if CPU requires this. 3081 if (Matcher::require_postalloc_expand) { 3082 TracePhase tp(_t_postalloc_expand); 3083 cfg.postalloc_expand(_regalloc); 3084 print_method(PHASE_POSTALLOC_EXPAND, 3); 3085 } 3086 3087 #ifdef ASSERT 3088 { 3089 CompilationMemoryStatistic::do_test_allocations(); 3090 if (failing()) return; 3091 } 3092 #endif 3093 3094 // Convert Nodes to instruction bits in a buffer 3095 { 3096 TracePhase tp(_t_output); 3097 PhaseOutput output; 3098 output.Output(); 3099 if (failing()) return; 3100 output.install(); 3101 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here 3102 } 3103 3104 // He's dead, Jim. 3105 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3106 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3107 } 3108 3109 //------------------------------Final_Reshape_Counts--------------------------- 3110 // This class defines counters to help identify when a method 3111 // may/must be executed using hardware with only 24-bit precision. 3112 struct Final_Reshape_Counts : public StackObj { 3113 int _call_count; // count non-inlined 'common' calls 3114 int _float_count; // count float ops requiring 24-bit precision 3115 int _double_count; // count double ops requiring more precision 3116 int _java_call_count; // count non-inlined 'java' calls 3117 int _inner_loop_count; // count loops which need alignment 3118 VectorSet _visited; // Visitation flags 3119 Node_List _tests; // Set of IfNodes & PCTableNodes 3120 3121 Final_Reshape_Counts() : 3122 _call_count(0), _float_count(0), _double_count(0), 3123 _java_call_count(0), _inner_loop_count(0) { } 3124 3125 void inc_call_count () { _call_count ++; } 3126 void inc_float_count () { _float_count ++; } 3127 void inc_double_count() { _double_count++; } 3128 void inc_java_call_count() { _java_call_count++; } 3129 void inc_inner_loop_count() { _inner_loop_count++; } 3130 3131 int get_call_count () const { return _call_count ; } 3132 int get_float_count () const { return _float_count ; } 3133 int get_double_count() const { return _double_count; } 3134 int get_java_call_count() const { return _java_call_count; } 3135 int get_inner_loop_count() const { return _inner_loop_count; } 3136 }; 3137 3138 //------------------------------final_graph_reshaping_impl---------------------- 3139 // Implement items 1-5 from final_graph_reshaping below. 3140 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3141 3142 if ( n->outcnt() == 0 ) return; // dead node 3143 uint nop = n->Opcode(); 3144 3145 // Check for 2-input instruction with "last use" on right input. 3146 // Swap to left input. Implements item (2). 3147 if( n->req() == 3 && // two-input instruction 3148 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3149 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3150 n->in(2)->outcnt() == 1 &&// right use IS a last use 3151 !n->in(2)->is_Con() ) { // right use is not a constant 3152 // Check for commutative opcode 3153 switch( nop ) { 3154 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3155 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3156 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3157 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3158 case Op_AndL: case Op_XorL: case Op_OrL: 3159 case Op_AndI: case Op_XorI: case Op_OrI: { 3160 // Move "last use" input to left by swapping inputs 3161 n->swap_edges(1, 2); 3162 break; 3163 } 3164 default: 3165 break; 3166 } 3167 } 3168 3169 #ifdef ASSERT 3170 if( n->is_Mem() ) { 3171 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3172 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3173 // oop will be recorded in oop map if load crosses safepoint 3174 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3175 LoadNode::is_immutable_value(n->in(MemNode::Address)))), 3176 "raw memory operations should have control edge"); 3177 } 3178 if (n->is_MemBar()) { 3179 MemBarNode* mb = n->as_MemBar(); 3180 if (mb->trailing_store() || mb->trailing_load_store()) { 3181 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3182 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3183 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3184 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3185 } else if (mb->leading()) { 3186 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3187 } 3188 } 3189 #endif 3190 // Count FPU ops and common calls, implements item (3) 3191 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3192 if (!gc_handled) { 3193 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3194 } 3195 3196 // Collect CFG split points 3197 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3198 frc._tests.push(n); 3199 } 3200 } 3201 3202 void Compile::handle_div_mod_op(Node* n, BasicType bt, bool is_unsigned) { 3203 if (!UseDivMod) { 3204 return; 3205 } 3206 3207 // Check if "a % b" and "a / b" both exist 3208 Node* d = n->find_similar(Op_DivIL(bt, is_unsigned)); 3209 if (d == nullptr) { 3210 return; 3211 } 3212 3213 // Replace them with a fused divmod if supported 3214 if (Matcher::has_match_rule(Op_DivModIL(bt, is_unsigned))) { 3215 DivModNode* divmod = DivModNode::make(n, bt, is_unsigned); 3216 // If the divisor input for a Div (or Mod etc.) is not zero, then the control input of the Div is set to zero. 3217 // It could be that the divisor input is found not zero because its type is narrowed down by a CastII in the 3218 // subgraph for that input. Range check CastIIs are removed during final graph reshape. To preserve the dependency 3219 // carried by a CastII, precedence edges are added to the Div node. We need to transfer the precedence edges to the 3220 // DivMod node so the dependency is not lost. 3221 divmod->add_prec_from(n); 3222 divmod->add_prec_from(d); 3223 d->subsume_by(divmod->div_proj(), this); 3224 n->subsume_by(divmod->mod_proj(), this); 3225 } else { 3226 // Replace "a % b" with "a - ((a / b) * b)" 3227 Node* mult = MulNode::make(d, d->in(2), bt); 3228 Node* sub = SubNode::make(d->in(1), mult, bt); 3229 n->subsume_by(sub, this); 3230 } 3231 } 3232 3233 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3234 switch( nop ) { 3235 // Count all float operations that may use FPU 3236 case Op_AddF: 3237 case Op_SubF: 3238 case Op_MulF: 3239 case Op_DivF: 3240 case Op_NegF: 3241 case Op_ModF: 3242 case Op_ConvI2F: 3243 case Op_ConF: 3244 case Op_CmpF: 3245 case Op_CmpF3: 3246 case Op_StoreF: 3247 case Op_LoadF: 3248 // case Op_ConvL2F: // longs are split into 32-bit halves 3249 frc.inc_float_count(); 3250 break; 3251 3252 case Op_ConvF2D: 3253 case Op_ConvD2F: 3254 frc.inc_float_count(); 3255 frc.inc_double_count(); 3256 break; 3257 3258 // Count all double operations that may use FPU 3259 case Op_AddD: 3260 case Op_SubD: 3261 case Op_MulD: 3262 case Op_DivD: 3263 case Op_NegD: 3264 case Op_ModD: 3265 case Op_ConvI2D: 3266 case Op_ConvD2I: 3267 // case Op_ConvL2D: // handled by leaf call 3268 // case Op_ConvD2L: // handled by leaf call 3269 case Op_ConD: 3270 case Op_CmpD: 3271 case Op_CmpD3: 3272 case Op_StoreD: 3273 case Op_LoadD: 3274 case Op_LoadD_unaligned: 3275 frc.inc_double_count(); 3276 break; 3277 case Op_Opaque1: // Remove Opaque Nodes before matching 3278 n->subsume_by(n->in(1), this); 3279 break; 3280 case Op_CallStaticJava: 3281 case Op_CallJava: 3282 case Op_CallDynamicJava: 3283 frc.inc_java_call_count(); // Count java call site; 3284 case Op_CallRuntime: 3285 case Op_CallLeaf: 3286 case Op_CallLeafVector: 3287 case Op_CallLeafNoFP: { 3288 assert (n->is_Call(), ""); 3289 CallNode *call = n->as_Call(); 3290 // Count call sites where the FP mode bit would have to be flipped. 3291 // Do not count uncommon runtime calls: 3292 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3293 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3294 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3295 frc.inc_call_count(); // Count the call site 3296 } else { // See if uncommon argument is shared 3297 Node *n = call->in(TypeFunc::Parms); 3298 int nop = n->Opcode(); 3299 // Clone shared simple arguments to uncommon calls, item (1). 3300 if (n->outcnt() > 1 && 3301 !n->is_Proj() && 3302 nop != Op_CreateEx && 3303 nop != Op_CheckCastPP && 3304 nop != Op_DecodeN && 3305 nop != Op_DecodeNKlass && 3306 !n->is_Mem() && 3307 !n->is_Phi()) { 3308 Node *x = n->clone(); 3309 call->set_req(TypeFunc::Parms, x); 3310 } 3311 } 3312 break; 3313 } 3314 case Op_StoreB: 3315 case Op_StoreC: 3316 case Op_StoreI: 3317 case Op_StoreL: 3318 case Op_CompareAndSwapB: 3319 case Op_CompareAndSwapS: 3320 case Op_CompareAndSwapI: 3321 case Op_CompareAndSwapL: 3322 case Op_CompareAndSwapP: 3323 case Op_CompareAndSwapN: 3324 case Op_WeakCompareAndSwapB: 3325 case Op_WeakCompareAndSwapS: 3326 case Op_WeakCompareAndSwapI: 3327 case Op_WeakCompareAndSwapL: 3328 case Op_WeakCompareAndSwapP: 3329 case Op_WeakCompareAndSwapN: 3330 case Op_CompareAndExchangeB: 3331 case Op_CompareAndExchangeS: 3332 case Op_CompareAndExchangeI: 3333 case Op_CompareAndExchangeL: 3334 case Op_CompareAndExchangeP: 3335 case Op_CompareAndExchangeN: 3336 case Op_GetAndAddS: 3337 case Op_GetAndAddB: 3338 case Op_GetAndAddI: 3339 case Op_GetAndAddL: 3340 case Op_GetAndSetS: 3341 case Op_GetAndSetB: 3342 case Op_GetAndSetI: 3343 case Op_GetAndSetL: 3344 case Op_GetAndSetP: 3345 case Op_GetAndSetN: 3346 case Op_StoreP: 3347 case Op_StoreN: 3348 case Op_StoreNKlass: 3349 case Op_LoadB: 3350 case Op_LoadUB: 3351 case Op_LoadUS: 3352 case Op_LoadI: 3353 case Op_LoadKlass: 3354 case Op_LoadNKlass: 3355 case Op_LoadL: 3356 case Op_LoadL_unaligned: 3357 case Op_LoadP: 3358 case Op_LoadN: 3359 case Op_LoadRange: 3360 case Op_LoadS: 3361 break; 3362 3363 case Op_AddP: { // Assert sane base pointers 3364 Node *addp = n->in(AddPNode::Address); 3365 assert( !addp->is_AddP() || 3366 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3367 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3368 "Base pointers must match (addp %u)", addp->_idx ); 3369 #ifdef _LP64 3370 if ((UseCompressedOops || UseCompressedClassPointers) && 3371 addp->Opcode() == Op_ConP && 3372 addp == n->in(AddPNode::Base) && 3373 n->in(AddPNode::Offset)->is_Con()) { 3374 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3375 // on the platform and on the compressed oops mode. 3376 // Use addressing with narrow klass to load with offset on x86. 3377 // Some platforms can use the constant pool to load ConP. 3378 // Do this transformation here since IGVN will convert ConN back to ConP. 3379 const Type* t = addp->bottom_type(); 3380 bool is_oop = t->isa_oopptr() != nullptr; 3381 bool is_klass = t->isa_klassptr() != nullptr; 3382 3383 if ((is_oop && UseCompressedOops && Matcher::const_oop_prefer_decode() ) || 3384 (is_klass && UseCompressedClassPointers && Matcher::const_klass_prefer_decode() && 3385 t->isa_klassptr()->exact_klass()->is_in_encoding_range())) { 3386 Node* nn = nullptr; 3387 3388 int op = is_oop ? Op_ConN : Op_ConNKlass; 3389 3390 // Look for existing ConN node of the same exact type. 3391 Node* r = root(); 3392 uint cnt = r->outcnt(); 3393 for (uint i = 0; i < cnt; i++) { 3394 Node* m = r->raw_out(i); 3395 if (m!= nullptr && m->Opcode() == op && 3396 m->bottom_type()->make_ptr() == t) { 3397 nn = m; 3398 break; 3399 } 3400 } 3401 if (nn != nullptr) { 3402 // Decode a narrow oop to match address 3403 // [R12 + narrow_oop_reg<<3 + offset] 3404 if (is_oop) { 3405 nn = new DecodeNNode(nn, t); 3406 } else { 3407 nn = new DecodeNKlassNode(nn, t); 3408 } 3409 // Check for succeeding AddP which uses the same Base. 3410 // Otherwise we will run into the assertion above when visiting that guy. 3411 for (uint i = 0; i < n->outcnt(); ++i) { 3412 Node *out_i = n->raw_out(i); 3413 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3414 out_i->set_req(AddPNode::Base, nn); 3415 #ifdef ASSERT 3416 for (uint j = 0; j < out_i->outcnt(); ++j) { 3417 Node *out_j = out_i->raw_out(j); 3418 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3419 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3420 } 3421 #endif 3422 } 3423 } 3424 n->set_req(AddPNode::Base, nn); 3425 n->set_req(AddPNode::Address, nn); 3426 if (addp->outcnt() == 0) { 3427 addp->disconnect_inputs(this); 3428 } 3429 } 3430 } 3431 } 3432 #endif 3433 break; 3434 } 3435 3436 case Op_CastPP: { 3437 // Remove CastPP nodes to gain more freedom during scheduling but 3438 // keep the dependency they encode as control or precedence edges 3439 // (if control is set already) on memory operations. Some CastPP 3440 // nodes don't have a control (don't carry a dependency): skip 3441 // those. 3442 if (n->in(0) != nullptr) { 3443 ResourceMark rm; 3444 Unique_Node_List wq; 3445 wq.push(n); 3446 for (uint next = 0; next < wq.size(); ++next) { 3447 Node *m = wq.at(next); 3448 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3449 Node* use = m->fast_out(i); 3450 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3451 use->ensure_control_or_add_prec(n->in(0)); 3452 } else { 3453 switch(use->Opcode()) { 3454 case Op_AddP: 3455 case Op_DecodeN: 3456 case Op_DecodeNKlass: 3457 case Op_CheckCastPP: 3458 case Op_CastPP: 3459 wq.push(use); 3460 break; 3461 } 3462 } 3463 } 3464 } 3465 } 3466 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3467 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3468 Node* in1 = n->in(1); 3469 const Type* t = n->bottom_type(); 3470 Node* new_in1 = in1->clone(); 3471 new_in1->as_DecodeN()->set_type(t); 3472 3473 if (!Matcher::narrow_oop_use_complex_address()) { 3474 // 3475 // x86, ARM and friends can handle 2 adds in addressing mode 3476 // and Matcher can fold a DecodeN node into address by using 3477 // a narrow oop directly and do implicit null check in address: 3478 // 3479 // [R12 + narrow_oop_reg<<3 + offset] 3480 // NullCheck narrow_oop_reg 3481 // 3482 // On other platforms (Sparc) we have to keep new DecodeN node and 3483 // use it to do implicit null check in address: 3484 // 3485 // decode_not_null narrow_oop_reg, base_reg 3486 // [base_reg + offset] 3487 // NullCheck base_reg 3488 // 3489 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3490 // to keep the information to which null check the new DecodeN node 3491 // corresponds to use it as value in implicit_null_check(). 3492 // 3493 new_in1->set_req(0, n->in(0)); 3494 } 3495 3496 n->subsume_by(new_in1, this); 3497 if (in1->outcnt() == 0) { 3498 in1->disconnect_inputs(this); 3499 } 3500 } else { 3501 n->subsume_by(n->in(1), this); 3502 if (n->outcnt() == 0) { 3503 n->disconnect_inputs(this); 3504 } 3505 } 3506 break; 3507 } 3508 case Op_CastII: { 3509 n->as_CastII()->remove_range_check_cast(this); 3510 break; 3511 } 3512 #ifdef _LP64 3513 case Op_CmpP: 3514 // Do this transformation here to preserve CmpPNode::sub() and 3515 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3516 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3517 Node* in1 = n->in(1); 3518 Node* in2 = n->in(2); 3519 if (!in1->is_DecodeNarrowPtr()) { 3520 in2 = in1; 3521 in1 = n->in(2); 3522 } 3523 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3524 3525 Node* new_in2 = nullptr; 3526 if (in2->is_DecodeNarrowPtr()) { 3527 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3528 new_in2 = in2->in(1); 3529 } else if (in2->Opcode() == Op_ConP) { 3530 const Type* t = in2->bottom_type(); 3531 if (t == TypePtr::NULL_PTR) { 3532 assert(in1->is_DecodeN(), "compare klass to null?"); 3533 // Don't convert CmpP null check into CmpN if compressed 3534 // oops implicit null check is not generated. 3535 // This will allow to generate normal oop implicit null check. 3536 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3537 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3538 // 3539 // This transformation together with CastPP transformation above 3540 // will generated code for implicit null checks for compressed oops. 3541 // 3542 // The original code after Optimize() 3543 // 3544 // LoadN memory, narrow_oop_reg 3545 // decode narrow_oop_reg, base_reg 3546 // CmpP base_reg, nullptr 3547 // CastPP base_reg // NotNull 3548 // Load [base_reg + offset], val_reg 3549 // 3550 // after these transformations will be 3551 // 3552 // LoadN memory, narrow_oop_reg 3553 // CmpN narrow_oop_reg, nullptr 3554 // decode_not_null narrow_oop_reg, base_reg 3555 // Load [base_reg + offset], val_reg 3556 // 3557 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 3558 // since narrow oops can be used in debug info now (see the code in 3559 // final_graph_reshaping_walk()). 3560 // 3561 // At the end the code will be matched to 3562 // on x86: 3563 // 3564 // Load_narrow_oop memory, narrow_oop_reg 3565 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3566 // NullCheck narrow_oop_reg 3567 // 3568 // and on sparc: 3569 // 3570 // Load_narrow_oop memory, narrow_oop_reg 3571 // decode_not_null narrow_oop_reg, base_reg 3572 // Load [base_reg + offset], val_reg 3573 // NullCheck base_reg 3574 // 3575 } else if (t->isa_oopptr()) { 3576 new_in2 = ConNode::make(t->make_narrowoop()); 3577 } else if (t->isa_klassptr()) { 3578 new_in2 = ConNode::make(t->make_narrowklass()); 3579 } 3580 } 3581 if (new_in2 != nullptr) { 3582 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3583 n->subsume_by(cmpN, this); 3584 if (in1->outcnt() == 0) { 3585 in1->disconnect_inputs(this); 3586 } 3587 if (in2->outcnt() == 0) { 3588 in2->disconnect_inputs(this); 3589 } 3590 } 3591 } 3592 break; 3593 3594 case Op_DecodeN: 3595 case Op_DecodeNKlass: 3596 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3597 // DecodeN could be pinned when it can't be fold into 3598 // an address expression, see the code for Op_CastPP above. 3599 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3600 break; 3601 3602 case Op_EncodeP: 3603 case Op_EncodePKlass: { 3604 Node* in1 = n->in(1); 3605 if (in1->is_DecodeNarrowPtr()) { 3606 n->subsume_by(in1->in(1), this); 3607 } else if (in1->Opcode() == Op_ConP) { 3608 const Type* t = in1->bottom_type(); 3609 if (t == TypePtr::NULL_PTR) { 3610 assert(t->isa_oopptr(), "null klass?"); 3611 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3612 } else if (t->isa_oopptr()) { 3613 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3614 } else if (t->isa_klassptr()) { 3615 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3616 } 3617 } 3618 if (in1->outcnt() == 0) { 3619 in1->disconnect_inputs(this); 3620 } 3621 break; 3622 } 3623 3624 case Op_Proj: { 3625 if (OptimizeStringConcat || IncrementalInline) { 3626 ProjNode* proj = n->as_Proj(); 3627 if (proj->_is_io_use) { 3628 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 3629 // Separate projections were used for the exception path which 3630 // are normally removed by a late inline. If it wasn't inlined 3631 // then they will hang around and should just be replaced with 3632 // the original one. Merge them. 3633 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 3634 if (non_io_proj != nullptr) { 3635 proj->subsume_by(non_io_proj , this); 3636 } 3637 } 3638 } 3639 break; 3640 } 3641 3642 case Op_Phi: 3643 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3644 // The EncodeP optimization may create Phi with the same edges 3645 // for all paths. It is not handled well by Register Allocator. 3646 Node* unique_in = n->in(1); 3647 assert(unique_in != nullptr, ""); 3648 uint cnt = n->req(); 3649 for (uint i = 2; i < cnt; i++) { 3650 Node* m = n->in(i); 3651 assert(m != nullptr, ""); 3652 if (unique_in != m) 3653 unique_in = nullptr; 3654 } 3655 if (unique_in != nullptr) { 3656 n->subsume_by(unique_in, this); 3657 } 3658 } 3659 break; 3660 3661 #endif 3662 3663 case Op_ModI: 3664 handle_div_mod_op(n, T_INT, false); 3665 break; 3666 3667 case Op_ModL: 3668 handle_div_mod_op(n, T_LONG, false); 3669 break; 3670 3671 case Op_UModI: 3672 handle_div_mod_op(n, T_INT, true); 3673 break; 3674 3675 case Op_UModL: 3676 handle_div_mod_op(n, T_LONG, true); 3677 break; 3678 3679 case Op_LoadVector: 3680 case Op_StoreVector: 3681 #ifdef ASSERT 3682 // Add VerifyVectorAlignment node between adr and load / store. 3683 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) { 3684 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() : 3685 n->as_StoreVector()->must_verify_alignment(); 3686 if (must_verify_alignment) { 3687 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() : 3688 n->as_StoreVector()->memory_size(); 3689 // The memory access should be aligned to the vector width in bytes. 3690 // However, the underlying array is possibly less well aligned, but at least 3691 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in 3692 // a loop we can expect at least the following alignment: 3693 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes); 3694 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range"); 3695 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2"); 3696 // Create mask from alignment. e.g. 0b1000 -> 0b0111 3697 jlong mask = guaranteed_alignment - 1; 3698 Node* mask_con = ConLNode::make(mask); 3699 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con); 3700 n->set_req(MemNode::Address, va); 3701 } 3702 } 3703 #endif 3704 break; 3705 3706 case Op_LoadVectorGather: 3707 case Op_StoreVectorScatter: 3708 case Op_LoadVectorGatherMasked: 3709 case Op_StoreVectorScatterMasked: 3710 case Op_VectorCmpMasked: 3711 case Op_VectorMaskGen: 3712 case Op_LoadVectorMasked: 3713 case Op_StoreVectorMasked: 3714 break; 3715 3716 case Op_AddReductionVI: 3717 case Op_AddReductionVL: 3718 case Op_AddReductionVF: 3719 case Op_AddReductionVD: 3720 case Op_MulReductionVI: 3721 case Op_MulReductionVL: 3722 case Op_MulReductionVF: 3723 case Op_MulReductionVD: 3724 case Op_MinReductionV: 3725 case Op_MaxReductionV: 3726 case Op_AndReductionV: 3727 case Op_OrReductionV: 3728 case Op_XorReductionV: 3729 break; 3730 3731 case Op_PackB: 3732 case Op_PackS: 3733 case Op_PackI: 3734 case Op_PackF: 3735 case Op_PackL: 3736 case Op_PackD: 3737 if (n->req()-1 > 2) { 3738 // Replace many operand PackNodes with a binary tree for matching 3739 PackNode* p = (PackNode*) n; 3740 Node* btp = p->binary_tree_pack(1, n->req()); 3741 n->subsume_by(btp, this); 3742 } 3743 break; 3744 case Op_Loop: 3745 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 3746 case Op_CountedLoop: 3747 case Op_LongCountedLoop: 3748 case Op_OuterStripMinedLoop: 3749 if (n->as_Loop()->is_inner_loop()) { 3750 frc.inc_inner_loop_count(); 3751 } 3752 n->as_Loop()->verify_strip_mined(0); 3753 break; 3754 case Op_LShiftI: 3755 case Op_RShiftI: 3756 case Op_URShiftI: 3757 case Op_LShiftL: 3758 case Op_RShiftL: 3759 case Op_URShiftL: 3760 if (Matcher::need_masked_shift_count) { 3761 // The cpu's shift instructions don't restrict the count to the 3762 // lower 5/6 bits. We need to do the masking ourselves. 3763 Node* in2 = n->in(2); 3764 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3765 const TypeInt* t = in2->find_int_type(); 3766 if (t != nullptr && t->is_con()) { 3767 juint shift = t->get_con(); 3768 if (shift > mask) { // Unsigned cmp 3769 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3770 } 3771 } else { 3772 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 3773 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3774 n->set_req(2, shift); 3775 } 3776 } 3777 if (in2->outcnt() == 0) { // Remove dead node 3778 in2->disconnect_inputs(this); 3779 } 3780 } 3781 break; 3782 case Op_MemBarStoreStore: 3783 case Op_MemBarRelease: 3784 // Break the link with AllocateNode: it is no longer useful and 3785 // confuses register allocation. 3786 if (n->req() > MemBarNode::Precedent) { 3787 n->set_req(MemBarNode::Precedent, top()); 3788 } 3789 break; 3790 case Op_MemBarAcquire: { 3791 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3792 // At parse time, the trailing MemBarAcquire for a volatile load 3793 // is created with an edge to the load. After optimizations, 3794 // that input may be a chain of Phis. If those phis have no 3795 // other use, then the MemBarAcquire keeps them alive and 3796 // register allocation can be confused. 3797 dead_nodes.push(n->in(MemBarNode::Precedent)); 3798 n->set_req(MemBarNode::Precedent, top()); 3799 } 3800 break; 3801 } 3802 case Op_Blackhole: 3803 break; 3804 case Op_RangeCheck: { 3805 RangeCheckNode* rc = n->as_RangeCheck(); 3806 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3807 n->subsume_by(iff, this); 3808 frc._tests.push(iff); 3809 break; 3810 } 3811 case Op_ConvI2L: { 3812 if (!Matcher::convi2l_type_required) { 3813 // Code generation on some platforms doesn't need accurate 3814 // ConvI2L types. Widening the type can help remove redundant 3815 // address computations. 3816 n->as_Type()->set_type(TypeLong::INT); 3817 ResourceMark rm; 3818 Unique_Node_List wq; 3819 wq.push(n); 3820 for (uint next = 0; next < wq.size(); next++) { 3821 Node *m = wq.at(next); 3822 3823 for(;;) { 3824 // Loop over all nodes with identical inputs edges as m 3825 Node* k = m->find_similar(m->Opcode()); 3826 if (k == nullptr) { 3827 break; 3828 } 3829 // Push their uses so we get a chance to remove node made 3830 // redundant 3831 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3832 Node* u = k->fast_out(i); 3833 if (u->Opcode() == Op_LShiftL || 3834 u->Opcode() == Op_AddL || 3835 u->Opcode() == Op_SubL || 3836 u->Opcode() == Op_AddP) { 3837 wq.push(u); 3838 } 3839 } 3840 // Replace all nodes with identical edges as m with m 3841 k->subsume_by(m, this); 3842 } 3843 } 3844 } 3845 break; 3846 } 3847 case Op_CmpUL: { 3848 if (!Matcher::has_match_rule(Op_CmpUL)) { 3849 // No support for unsigned long comparisons 3850 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3851 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3852 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3853 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3854 Node* andl = new AndLNode(orl, remove_sign_mask); 3855 Node* cmp = new CmpLNode(andl, n->in(2)); 3856 n->subsume_by(cmp, this); 3857 } 3858 break; 3859 } 3860 #ifdef ASSERT 3861 case Op_ConNKlass: { 3862 const TypePtr* tp = n->as_Type()->type()->make_ptr(); 3863 ciKlass* klass = tp->is_klassptr()->exact_klass(); 3864 assert(klass->is_in_encoding_range(), "klass cannot be compressed"); 3865 break; 3866 } 3867 #endif 3868 default: 3869 assert(!n->is_Call(), ""); 3870 assert(!n->is_Mem(), ""); 3871 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3872 break; 3873 } 3874 } 3875 3876 //------------------------------final_graph_reshaping_walk--------------------- 3877 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3878 // requires that the walk visits a node's inputs before visiting the node. 3879 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3880 Unique_Node_List sfpt; 3881 3882 frc._visited.set(root->_idx); // first, mark node as visited 3883 uint cnt = root->req(); 3884 Node *n = root; 3885 uint i = 0; 3886 while (true) { 3887 if (i < cnt) { 3888 // Place all non-visited non-null inputs onto stack 3889 Node* m = n->in(i); 3890 ++i; 3891 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 3892 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 3893 // compute worst case interpreter size in case of a deoptimization 3894 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3895 3896 sfpt.push(m); 3897 } 3898 cnt = m->req(); 3899 nstack.push(n, i); // put on stack parent and next input's index 3900 n = m; 3901 i = 0; 3902 } 3903 } else { 3904 // Now do post-visit work 3905 final_graph_reshaping_impl(n, frc, dead_nodes); 3906 if (nstack.is_empty()) 3907 break; // finished 3908 n = nstack.node(); // Get node from stack 3909 cnt = n->req(); 3910 i = nstack.index(); 3911 nstack.pop(); // Shift to the next node on stack 3912 } 3913 } 3914 3915 // Skip next transformation if compressed oops are not used. 3916 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3917 (!UseCompressedOops && !UseCompressedClassPointers)) 3918 return; 3919 3920 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3921 // It could be done for an uncommon traps or any safepoints/calls 3922 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3923 while (sfpt.size() > 0) { 3924 n = sfpt.pop(); 3925 JVMState *jvms = n->as_SafePoint()->jvms(); 3926 assert(jvms != nullptr, "sanity"); 3927 int start = jvms->debug_start(); 3928 int end = n->req(); 3929 bool is_uncommon = (n->is_CallStaticJava() && 3930 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3931 for (int j = start; j < end; j++) { 3932 Node* in = n->in(j); 3933 if (in->is_DecodeNarrowPtr()) { 3934 bool safe_to_skip = true; 3935 if (!is_uncommon ) { 3936 // Is it safe to skip? 3937 for (uint i = 0; i < in->outcnt(); i++) { 3938 Node* u = in->raw_out(i); 3939 if (!u->is_SafePoint() || 3940 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3941 safe_to_skip = false; 3942 } 3943 } 3944 } 3945 if (safe_to_skip) { 3946 n->set_req(j, in->in(1)); 3947 } 3948 if (in->outcnt() == 0) { 3949 in->disconnect_inputs(this); 3950 } 3951 } 3952 } 3953 } 3954 } 3955 3956 //------------------------------final_graph_reshaping-------------------------- 3957 // Final Graph Reshaping. 3958 // 3959 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3960 // and not commoned up and forced early. Must come after regular 3961 // optimizations to avoid GVN undoing the cloning. Clone constant 3962 // inputs to Loop Phis; these will be split by the allocator anyways. 3963 // Remove Opaque nodes. 3964 // (2) Move last-uses by commutative operations to the left input to encourage 3965 // Intel update-in-place two-address operations and better register usage 3966 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3967 // calls canonicalizing them back. 3968 // (3) Count the number of double-precision FP ops, single-precision FP ops 3969 // and call sites. On Intel, we can get correct rounding either by 3970 // forcing singles to memory (requires extra stores and loads after each 3971 // FP bytecode) or we can set a rounding mode bit (requires setting and 3972 // clearing the mode bit around call sites). The mode bit is only used 3973 // if the relative frequency of single FP ops to calls is low enough. 3974 // This is a key transform for SPEC mpeg_audio. 3975 // (4) Detect infinite loops; blobs of code reachable from above but not 3976 // below. Several of the Code_Gen algorithms fail on such code shapes, 3977 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3978 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3979 // Detection is by looking for IfNodes where only 1 projection is 3980 // reachable from below or CatchNodes missing some targets. 3981 // (5) Assert for insane oop offsets in debug mode. 3982 3983 bool Compile::final_graph_reshaping() { 3984 // an infinite loop may have been eliminated by the optimizer, 3985 // in which case the graph will be empty. 3986 if (root()->req() == 1) { 3987 // Do not compile method that is only a trivial infinite loop, 3988 // since the content of the loop may have been eliminated. 3989 record_method_not_compilable("trivial infinite loop"); 3990 return true; 3991 } 3992 3993 // Expensive nodes have their control input set to prevent the GVN 3994 // from freely commoning them. There's no GVN beyond this point so 3995 // no need to keep the control input. We want the expensive nodes to 3996 // be freely moved to the least frequent code path by gcm. 3997 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 3998 for (int i = 0; i < expensive_count(); i++) { 3999 _expensive_nodes.at(i)->set_req(0, nullptr); 4000 } 4001 4002 Final_Reshape_Counts frc; 4003 4004 // Visit everybody reachable! 4005 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 4006 Node_Stack nstack(live_nodes() >> 1); 4007 Unique_Node_List dead_nodes; 4008 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 4009 4010 // Check for unreachable (from below) code (i.e., infinite loops). 4011 for( uint i = 0; i < frc._tests.size(); i++ ) { 4012 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 4013 // Get number of CFG targets. 4014 // Note that PCTables include exception targets after calls. 4015 uint required_outcnt = n->required_outcnt(); 4016 if (n->outcnt() != required_outcnt) { 4017 // Check for a few special cases. Rethrow Nodes never take the 4018 // 'fall-thru' path, so expected kids is 1 less. 4019 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 4020 if (n->in(0)->in(0)->is_Call()) { 4021 CallNode* call = n->in(0)->in(0)->as_Call(); 4022 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 4023 required_outcnt--; // Rethrow always has 1 less kid 4024 } else if (call->req() > TypeFunc::Parms && 4025 call->is_CallDynamicJava()) { 4026 // Check for null receiver. In such case, the optimizer has 4027 // detected that the virtual call will always result in a null 4028 // pointer exception. The fall-through projection of this CatchNode 4029 // will not be populated. 4030 Node* arg0 = call->in(TypeFunc::Parms); 4031 if (arg0->is_Type() && 4032 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 4033 required_outcnt--; 4034 } 4035 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 4036 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4037 // Check for illegal array length. In such case, the optimizer has 4038 // detected that the allocation attempt will always result in an 4039 // exception. There is no fall-through projection of this CatchNode . 4040 assert(call->is_CallStaticJava(), "static call expected"); 4041 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4042 uint valid_length_test_input = call->req() - 1; 4043 Node* valid_length_test = call->in(valid_length_test_input); 4044 call->del_req(valid_length_test_input); 4045 if (valid_length_test->find_int_con(1) == 0) { 4046 required_outcnt--; 4047 } 4048 dead_nodes.push(valid_length_test); 4049 assert(n->outcnt() == required_outcnt, "malformed control flow"); 4050 continue; 4051 } 4052 } 4053 } 4054 4055 // Recheck with a better notion of 'required_outcnt' 4056 if (n->outcnt() != required_outcnt) { 4057 record_method_not_compilable("malformed control flow"); 4058 return true; // Not all targets reachable! 4059 } 4060 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 4061 CallNode* call = n->in(0)->in(0)->as_Call(); 4062 if (call->entry_point() == OptoRuntime::new_array_Java() || 4063 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4064 assert(call->is_CallStaticJava(), "static call expected"); 4065 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4066 uint valid_length_test_input = call->req() - 1; 4067 dead_nodes.push(call->in(valid_length_test_input)); 4068 call->del_req(valid_length_test_input); // valid length test useless now 4069 } 4070 } 4071 // Check that I actually visited all kids. Unreached kids 4072 // must be infinite loops. 4073 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4074 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4075 record_method_not_compilable("infinite loop"); 4076 return true; // Found unvisited kid; must be unreach 4077 } 4078 4079 // Here so verification code in final_graph_reshaping_walk() 4080 // always see an OuterStripMinedLoopEnd 4081 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4082 IfNode* init_iff = n->as_If(); 4083 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4084 n->subsume_by(iff, this); 4085 } 4086 } 4087 4088 while (dead_nodes.size() > 0) { 4089 Node* m = dead_nodes.pop(); 4090 if (m->outcnt() == 0 && m != top()) { 4091 for (uint j = 0; j < m->req(); j++) { 4092 Node* in = m->in(j); 4093 if (in != nullptr) { 4094 dead_nodes.push(in); 4095 } 4096 } 4097 m->disconnect_inputs(this); 4098 } 4099 } 4100 4101 set_java_calls(frc.get_java_call_count()); 4102 set_inner_loops(frc.get_inner_loop_count()); 4103 4104 // No infinite loops, no reason to bail out. 4105 return false; 4106 } 4107 4108 //-----------------------------too_many_traps---------------------------------- 4109 // Report if there are too many traps at the current method and bci. 4110 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4111 bool Compile::too_many_traps(ciMethod* method, 4112 int bci, 4113 Deoptimization::DeoptReason reason) { 4114 ciMethodData* md = method->method_data(); 4115 if (md->is_empty()) { 4116 // Assume the trap has not occurred, or that it occurred only 4117 // because of a transient condition during start-up in the interpreter. 4118 return false; 4119 } 4120 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4121 if (md->has_trap_at(bci, m, reason) != 0) { 4122 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4123 // Also, if there are multiple reasons, or if there is no per-BCI record, 4124 // assume the worst. 4125 if (log()) 4126 log()->elem("observe trap='%s' count='%d'", 4127 Deoptimization::trap_reason_name(reason), 4128 md->trap_count(reason)); 4129 return true; 4130 } else { 4131 // Ignore method/bci and see if there have been too many globally. 4132 return too_many_traps(reason, md); 4133 } 4134 } 4135 4136 // Less-accurate variant which does not require a method and bci. 4137 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4138 ciMethodData* logmd) { 4139 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4140 // Too many traps globally. 4141 // Note that we use cumulative trap_count, not just md->trap_count. 4142 if (log()) { 4143 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4144 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4145 Deoptimization::trap_reason_name(reason), 4146 mcount, trap_count(reason)); 4147 } 4148 return true; 4149 } else { 4150 // The coast is clear. 4151 return false; 4152 } 4153 } 4154 4155 //--------------------------too_many_recompiles-------------------------------- 4156 // Report if there are too many recompiles at the current method and bci. 4157 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4158 // Is not eager to return true, since this will cause the compiler to use 4159 // Action_none for a trap point, to avoid too many recompilations. 4160 bool Compile::too_many_recompiles(ciMethod* method, 4161 int bci, 4162 Deoptimization::DeoptReason reason) { 4163 ciMethodData* md = method->method_data(); 4164 if (md->is_empty()) { 4165 // Assume the trap has not occurred, or that it occurred only 4166 // because of a transient condition during start-up in the interpreter. 4167 return false; 4168 } 4169 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4170 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4171 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4172 Deoptimization::DeoptReason per_bc_reason 4173 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4174 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4175 if ((per_bc_reason == Deoptimization::Reason_none 4176 || md->has_trap_at(bci, m, reason) != 0) 4177 // The trap frequency measure we care about is the recompile count: 4178 && md->trap_recompiled_at(bci, m) 4179 && md->overflow_recompile_count() >= bc_cutoff) { 4180 // Do not emit a trap here if it has already caused recompilations. 4181 // Also, if there are multiple reasons, or if there is no per-BCI record, 4182 // assume the worst. 4183 if (log()) 4184 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4185 Deoptimization::trap_reason_name(reason), 4186 md->trap_count(reason), 4187 md->overflow_recompile_count()); 4188 return true; 4189 } else if (trap_count(reason) != 0 4190 && decompile_count() >= m_cutoff) { 4191 // Too many recompiles globally, and we have seen this sort of trap. 4192 // Use cumulative decompile_count, not just md->decompile_count. 4193 if (log()) 4194 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4195 Deoptimization::trap_reason_name(reason), 4196 md->trap_count(reason), trap_count(reason), 4197 md->decompile_count(), decompile_count()); 4198 return true; 4199 } else { 4200 // The coast is clear. 4201 return false; 4202 } 4203 } 4204 4205 // Compute when not to trap. Used by matching trap based nodes and 4206 // NullCheck optimization. 4207 void Compile::set_allowed_deopt_reasons() { 4208 _allowed_reasons = 0; 4209 if (is_method_compilation()) { 4210 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4211 assert(rs < BitsPerInt, "recode bit map"); 4212 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4213 _allowed_reasons |= nth_bit(rs); 4214 } 4215 } 4216 } 4217 } 4218 4219 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4220 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4221 } 4222 4223 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4224 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4225 } 4226 4227 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4228 if (holder->is_initialized()) { 4229 return false; 4230 } 4231 if (holder->is_being_initialized()) { 4232 if (accessing_method->holder() == holder) { 4233 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4234 // <init>, or a static method. In all those cases, there was an initialization 4235 // barrier on the holder klass passed. 4236 if (accessing_method->is_static_initializer() || 4237 accessing_method->is_object_initializer() || 4238 accessing_method->is_static()) { 4239 return false; 4240 } 4241 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4242 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4243 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4244 // child class can become fully initialized while its parent class is still being initialized. 4245 if (accessing_method->is_static_initializer()) { 4246 return false; 4247 } 4248 } 4249 ciMethod* root = method(); // the root method of compilation 4250 if (root != accessing_method) { 4251 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4252 } 4253 } 4254 return true; 4255 } 4256 4257 #ifndef PRODUCT 4258 //------------------------------verify_bidirectional_edges--------------------- 4259 // For each input edge to a node (ie - for each Use-Def edge), verify that 4260 // there is a corresponding Def-Use edge. 4261 void Compile::verify_bidirectional_edges(Unique_Node_List& visited, const Unique_Node_List* root_and_safepoints) const { 4262 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4263 uint stack_size = live_nodes() >> 4; 4264 Node_List nstack(MAX2(stack_size, (uint) OptoNodeListSize)); 4265 if (root_and_safepoints != nullptr) { 4266 assert(root_and_safepoints->member(_root), "root is not in root_and_safepoints"); 4267 for (uint i = 0, limit = root_and_safepoints->size(); i < limit; i++) { 4268 Node* root_or_safepoint = root_and_safepoints->at(i); 4269 // If the node is a safepoint, let's check if it still has a control input 4270 // Lack of control input signifies that this node was killed by CCP or 4271 // recursively by remove_globally_dead_node and it shouldn't be a starting 4272 // point. 4273 if (!root_or_safepoint->is_SafePoint() || root_or_safepoint->in(0) != nullptr) { 4274 nstack.push(root_or_safepoint); 4275 } 4276 } 4277 } else { 4278 nstack.push(_root); 4279 } 4280 4281 while (nstack.size() > 0) { 4282 Node* n = nstack.pop(); 4283 if (visited.member(n)) { 4284 continue; 4285 } 4286 visited.push(n); 4287 4288 // Walk over all input edges, checking for correspondence 4289 uint length = n->len(); 4290 for (uint i = 0; i < length; i++) { 4291 Node* in = n->in(i); 4292 if (in != nullptr && !visited.member(in)) { 4293 nstack.push(in); // Put it on stack 4294 } 4295 if (in != nullptr && !in->is_top()) { 4296 // Count instances of `next` 4297 int cnt = 0; 4298 for (uint idx = 0; idx < in->_outcnt; idx++) { 4299 if (in->_out[idx] == n) { 4300 cnt++; 4301 } 4302 } 4303 assert(cnt > 0, "Failed to find Def-Use edge."); 4304 // Check for duplicate edges 4305 // walk the input array downcounting the input edges to n 4306 for (uint j = 0; j < length; j++) { 4307 if (n->in(j) == in) { 4308 cnt--; 4309 } 4310 } 4311 assert(cnt == 0, "Mismatched edge count."); 4312 } else if (in == nullptr) { 4313 assert(i == 0 || i >= n->req() || 4314 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4315 (n->is_Unlock() && i == (n->req() - 1)) || 4316 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4317 "only region, phi, arraycopy, unlock or membar nodes have null data edges"); 4318 } else { 4319 assert(in->is_top(), "sanity"); 4320 // Nothing to check. 4321 } 4322 } 4323 } 4324 } 4325 4326 //------------------------------verify_graph_edges--------------------------- 4327 // Walk the Graph and verify that there is a one-to-one correspondence 4328 // between Use-Def edges and Def-Use edges in the graph. 4329 void Compile::verify_graph_edges(bool no_dead_code, const Unique_Node_List* root_and_safepoints) const { 4330 if (VerifyGraphEdges) { 4331 Unique_Node_List visited; 4332 4333 // Call graph walk to check edges 4334 verify_bidirectional_edges(visited, root_and_safepoints); 4335 if (no_dead_code) { 4336 // Now make sure that no visited node is used by an unvisited node. 4337 bool dead_nodes = false; 4338 Unique_Node_List checked; 4339 while (visited.size() > 0) { 4340 Node* n = visited.pop(); 4341 checked.push(n); 4342 for (uint i = 0; i < n->outcnt(); i++) { 4343 Node* use = n->raw_out(i); 4344 if (checked.member(use)) continue; // already checked 4345 if (visited.member(use)) continue; // already in the graph 4346 if (use->is_Con()) continue; // a dead ConNode is OK 4347 // At this point, we have found a dead node which is DU-reachable. 4348 if (!dead_nodes) { 4349 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4350 dead_nodes = true; 4351 } 4352 use->dump(2); 4353 tty->print_cr("---"); 4354 checked.push(use); // No repeats; pretend it is now checked. 4355 } 4356 } 4357 assert(!dead_nodes, "using nodes must be reachable from root"); 4358 } 4359 } 4360 } 4361 #endif 4362 4363 // The Compile object keeps track of failure reasons separately from the ciEnv. 4364 // This is required because there is not quite a 1-1 relation between the 4365 // ciEnv and its compilation task and the Compile object. Note that one 4366 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4367 // to backtrack and retry without subsuming loads. Other than this backtracking 4368 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4369 // by the logic in C2Compiler. 4370 void Compile::record_failure(const char* reason DEBUG_ONLY(COMMA bool allow_multiple_failures)) { 4371 if (log() != nullptr) { 4372 log()->elem("failure reason='%s' phase='compile'", reason); 4373 } 4374 if (_failure_reason.get() == nullptr) { 4375 // Record the first failure reason. 4376 _failure_reason.set(reason); 4377 if (CaptureBailoutInformation) { 4378 _first_failure_details = new CompilationFailureInfo(reason); 4379 } 4380 } else { 4381 assert(!StressBailout || allow_multiple_failures, "should have handled previous failure."); 4382 } 4383 4384 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4385 C->print_method(PHASE_FAILURE, 1); 4386 } 4387 _root = nullptr; // flush the graph, too 4388 } 4389 4390 Compile::TracePhase::TracePhase(const char* name, PhaseTraceId id) 4391 : TraceTime(name, &Phase::timers[id], CITime, CITimeVerbose), 4392 _compile(Compile::current()), 4393 _log(nullptr), 4394 _dolog(CITimeVerbose) 4395 { 4396 assert(_compile != nullptr, "sanity check"); 4397 assert(id != PhaseTraceId::_t_none, "Don't use none"); 4398 if (_dolog) { 4399 _log = _compile->log(); 4400 } 4401 if (_log != nullptr) { 4402 _log->begin_head("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4403 _log->stamp(); 4404 _log->end_head(); 4405 } 4406 4407 // Inform memory statistic, if enabled 4408 if (CompilationMemoryStatistic::enabled()) { 4409 CompilationMemoryStatistic::on_phase_start((int)id, name); 4410 } 4411 } 4412 4413 Compile::TracePhase::TracePhase(PhaseTraceId id) 4414 : TracePhase(Phase::get_phase_trace_id_text(id), id) {} 4415 4416 Compile::TracePhase::~TracePhase() { 4417 4418 // Inform memory statistic, if enabled 4419 if (CompilationMemoryStatistic::enabled()) { 4420 CompilationMemoryStatistic::on_phase_end(); 4421 } 4422 4423 if (_compile->failing_internal()) { 4424 if (_log != nullptr) { 4425 _log->done("phase"); 4426 } 4427 return; // timing code, not stressing bailouts. 4428 } 4429 #ifdef ASSERT 4430 if (PrintIdealNodeCount) { 4431 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4432 phase_name(), _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk()); 4433 } 4434 4435 if (VerifyIdealNodeCount) { 4436 _compile->print_missing_nodes(); 4437 } 4438 #endif 4439 4440 if (_log != nullptr) { 4441 _log->done("phase name='%s' nodes='%d' live='%d'", phase_name(), _compile->unique(), _compile->live_nodes()); 4442 } 4443 } 4444 4445 //----------------------------static_subtype_check----------------------------- 4446 // Shortcut important common cases when superklass is exact: 4447 // (0) superklass is java.lang.Object (can occur in reflective code) 4448 // (1) subklass is already limited to a subtype of superklass => always ok 4449 // (2) subklass does not overlap with superklass => always fail 4450 // (3) superklass has NO subtypes and we can check with a simple compare. 4451 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4452 if (skip) { 4453 return SSC_full_test; // Let caller generate the general case. 4454 } 4455 4456 if (subk->is_java_subtype_of(superk)) { 4457 return SSC_always_true; // (0) and (1) this test cannot fail 4458 } 4459 4460 if (!subk->maybe_java_subtype_of(superk)) { 4461 return SSC_always_false; // (2) true path dead; no dynamic test needed 4462 } 4463 4464 const Type* superelem = superk; 4465 if (superk->isa_aryklassptr()) { 4466 int ignored; 4467 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4468 } 4469 4470 if (superelem->isa_instklassptr()) { 4471 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4472 if (!ik->has_subklass()) { 4473 if (!ik->is_final()) { 4474 // Add a dependency if there is a chance of a later subclass. 4475 dependencies()->assert_leaf_type(ik); 4476 } 4477 if (!superk->maybe_java_subtype_of(subk)) { 4478 return SSC_always_false; 4479 } 4480 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4481 } 4482 } else { 4483 // A primitive array type has no subtypes. 4484 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4485 } 4486 4487 return SSC_full_test; 4488 } 4489 4490 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4491 #ifdef _LP64 4492 // The scaled index operand to AddP must be a clean 64-bit value. 4493 // Java allows a 32-bit int to be incremented to a negative 4494 // value, which appears in a 64-bit register as a large 4495 // positive number. Using that large positive number as an 4496 // operand in pointer arithmetic has bad consequences. 4497 // On the other hand, 32-bit overflow is rare, and the possibility 4498 // can often be excluded, if we annotate the ConvI2L node with 4499 // a type assertion that its value is known to be a small positive 4500 // number. (The prior range check has ensured this.) 4501 // This assertion is used by ConvI2LNode::Ideal. 4502 int index_max = max_jint - 1; // array size is max_jint, index is one less 4503 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 4504 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4505 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4506 #endif 4507 return idx; 4508 } 4509 4510 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4511 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4512 if (ctrl != nullptr) { 4513 // Express control dependency by a CastII node with a narrow type. 4514 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4515 // node from floating above the range check during loop optimizations. Otherwise, the 4516 // ConvI2L node may be eliminated independently of the range check, causing the data path 4517 // to become TOP while the control path is still there (although it's unreachable). 4518 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4519 value = phase->transform(value); 4520 } 4521 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4522 return phase->transform(new ConvI2LNode(value, ltype)); 4523 } 4524 4525 void Compile::dump_print_inlining() { 4526 inline_printer()->print_on(tty); 4527 } 4528 4529 void Compile::log_late_inline(CallGenerator* cg) { 4530 if (log() != nullptr) { 4531 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4532 cg->unique_id()); 4533 JVMState* p = cg->call_node()->jvms(); 4534 while (p != nullptr) { 4535 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4536 p = p->caller(); 4537 } 4538 log()->tail("late_inline"); 4539 } 4540 } 4541 4542 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4543 log_late_inline(cg); 4544 if (log() != nullptr) { 4545 log()->inline_fail(msg); 4546 } 4547 } 4548 4549 void Compile::log_inline_id(CallGenerator* cg) { 4550 if (log() != nullptr) { 4551 // The LogCompilation tool needs a unique way to identify late 4552 // inline call sites. This id must be unique for this call site in 4553 // this compilation. Try to have it unique across compilations as 4554 // well because it can be convenient when grepping through the log 4555 // file. 4556 // Distinguish OSR compilations from others in case CICountOSR is 4557 // on. 4558 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4559 cg->set_unique_id(id); 4560 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4561 } 4562 } 4563 4564 void Compile::log_inline_failure(const char* msg) { 4565 if (C->log() != nullptr) { 4566 C->log()->inline_fail(msg); 4567 } 4568 } 4569 4570 4571 // Dump inlining replay data to the stream. 4572 // Don't change thread state and acquire any locks. 4573 void Compile::dump_inline_data(outputStream* out) { 4574 InlineTree* inl_tree = ilt(); 4575 if (inl_tree != nullptr) { 4576 out->print(" inline %d", inl_tree->count()); 4577 inl_tree->dump_replay_data(out); 4578 } 4579 } 4580 4581 void Compile::dump_inline_data_reduced(outputStream* out) { 4582 assert(ReplayReduce, ""); 4583 4584 InlineTree* inl_tree = ilt(); 4585 if (inl_tree == nullptr) { 4586 return; 4587 } 4588 // Enable iterative replay file reduction 4589 // Output "compile" lines for depth 1 subtrees, 4590 // simulating that those trees were compiled 4591 // instead of inlined. 4592 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 4593 InlineTree* sub = inl_tree->subtrees().at(i); 4594 if (sub->inline_level() != 1) { 4595 continue; 4596 } 4597 4598 ciMethod* method = sub->method(); 4599 int entry_bci = -1; 4600 int comp_level = env()->task()->comp_level(); 4601 out->print("compile "); 4602 method->dump_name_as_ascii(out); 4603 out->print(" %d %d", entry_bci, comp_level); 4604 out->print(" inline %d", sub->count()); 4605 sub->dump_replay_data(out, -1); 4606 out->cr(); 4607 } 4608 } 4609 4610 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4611 if (n1->Opcode() < n2->Opcode()) return -1; 4612 else if (n1->Opcode() > n2->Opcode()) return 1; 4613 4614 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4615 for (uint i = 1; i < n1->req(); i++) { 4616 if (n1->in(i) < n2->in(i)) return -1; 4617 else if (n1->in(i) > n2->in(i)) return 1; 4618 } 4619 4620 return 0; 4621 } 4622 4623 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4624 Node* n1 = *n1p; 4625 Node* n2 = *n2p; 4626 4627 return cmp_expensive_nodes(n1, n2); 4628 } 4629 4630 void Compile::sort_expensive_nodes() { 4631 if (!expensive_nodes_sorted()) { 4632 _expensive_nodes.sort(cmp_expensive_nodes); 4633 } 4634 } 4635 4636 bool Compile::expensive_nodes_sorted() const { 4637 for (int i = 1; i < _expensive_nodes.length(); i++) { 4638 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 4639 return false; 4640 } 4641 } 4642 return true; 4643 } 4644 4645 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4646 if (_expensive_nodes.length() == 0) { 4647 return false; 4648 } 4649 4650 assert(OptimizeExpensiveOps, "optimization off?"); 4651 4652 // Take this opportunity to remove dead nodes from the list 4653 int j = 0; 4654 for (int i = 0; i < _expensive_nodes.length(); i++) { 4655 Node* n = _expensive_nodes.at(i); 4656 if (!n->is_unreachable(igvn)) { 4657 assert(n->is_expensive(), "should be expensive"); 4658 _expensive_nodes.at_put(j, n); 4659 j++; 4660 } 4661 } 4662 _expensive_nodes.trunc_to(j); 4663 4664 // Then sort the list so that similar nodes are next to each other 4665 // and check for at least two nodes of identical kind with same data 4666 // inputs. 4667 sort_expensive_nodes(); 4668 4669 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 4670 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 4671 return true; 4672 } 4673 } 4674 4675 return false; 4676 } 4677 4678 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4679 if (_expensive_nodes.length() == 0) { 4680 return; 4681 } 4682 4683 assert(OptimizeExpensiveOps, "optimization off?"); 4684 4685 // Sort to bring similar nodes next to each other and clear the 4686 // control input of nodes for which there's only a single copy. 4687 sort_expensive_nodes(); 4688 4689 int j = 0; 4690 int identical = 0; 4691 int i = 0; 4692 bool modified = false; 4693 for (; i < _expensive_nodes.length()-1; i++) { 4694 assert(j <= i, "can't write beyond current index"); 4695 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 4696 identical++; 4697 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4698 continue; 4699 } 4700 if (identical > 0) { 4701 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4702 identical = 0; 4703 } else { 4704 Node* n = _expensive_nodes.at(i); 4705 igvn.replace_input_of(n, 0, nullptr); 4706 igvn.hash_insert(n); 4707 modified = true; 4708 } 4709 } 4710 if (identical > 0) { 4711 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4712 } else if (_expensive_nodes.length() >= 1) { 4713 Node* n = _expensive_nodes.at(i); 4714 igvn.replace_input_of(n, 0, nullptr); 4715 igvn.hash_insert(n); 4716 modified = true; 4717 } 4718 _expensive_nodes.trunc_to(j); 4719 if (modified) { 4720 igvn.optimize(); 4721 } 4722 } 4723 4724 void Compile::add_expensive_node(Node * n) { 4725 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 4726 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4727 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4728 if (OptimizeExpensiveOps) { 4729 _expensive_nodes.append(n); 4730 } else { 4731 // Clear control input and let IGVN optimize expensive nodes if 4732 // OptimizeExpensiveOps is off. 4733 n->set_req(0, nullptr); 4734 } 4735 } 4736 4737 /** 4738 * Track coarsened Lock and Unlock nodes. 4739 */ 4740 4741 class Lock_List : public Node_List { 4742 uint _origin_cnt; 4743 public: 4744 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 4745 uint origin_cnt() const { return _origin_cnt; } 4746 }; 4747 4748 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 4749 int length = locks.length(); 4750 if (length > 0) { 4751 // Have to keep this list until locks elimination during Macro nodes elimination. 4752 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 4753 AbstractLockNode* alock = locks.at(0); 4754 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4755 for (int i = 0; i < length; i++) { 4756 AbstractLockNode* lock = locks.at(i); 4757 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 4758 locks_list->push(lock); 4759 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 4760 if (this_box != box) { 4761 // Locking regions (BoxLock) could be Unbalanced here: 4762 // - its coarsened locks were eliminated in earlier 4763 // macro nodes elimination followed by loop unroll 4764 // - it is OSR locking region (no Lock node) 4765 // Preserve Unbalanced status in such cases. 4766 if (!this_box->is_unbalanced()) { 4767 this_box->set_coarsened(); 4768 } 4769 if (!box->is_unbalanced()) { 4770 box->set_coarsened(); 4771 } 4772 } 4773 } 4774 _coarsened_locks.append(locks_list); 4775 } 4776 } 4777 4778 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 4779 int count = coarsened_count(); 4780 for (int i = 0; i < count; i++) { 4781 Node_List* locks_list = _coarsened_locks.at(i); 4782 for (uint j = 0; j < locks_list->size(); j++) { 4783 Node* lock = locks_list->at(j); 4784 assert(lock->is_AbstractLock(), "sanity"); 4785 if (!useful.member(lock)) { 4786 locks_list->yank(lock); 4787 } 4788 } 4789 } 4790 } 4791 4792 void Compile::remove_coarsened_lock(Node* n) { 4793 if (n->is_AbstractLock()) { 4794 int count = coarsened_count(); 4795 for (int i = 0; i < count; i++) { 4796 Node_List* locks_list = _coarsened_locks.at(i); 4797 locks_list->yank(n); 4798 } 4799 } 4800 } 4801 4802 bool Compile::coarsened_locks_consistent() { 4803 int count = coarsened_count(); 4804 for (int i = 0; i < count; i++) { 4805 bool unbalanced = false; 4806 bool modified = false; // track locks kind modifications 4807 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 4808 uint size = locks_list->size(); 4809 if (size == 0) { 4810 unbalanced = false; // All locks were eliminated - good 4811 } else if (size != locks_list->origin_cnt()) { 4812 unbalanced = true; // Some locks were removed from list 4813 } else { 4814 for (uint j = 0; j < size; j++) { 4815 Node* lock = locks_list->at(j); 4816 // All nodes in group should have the same state (modified or not) 4817 if (!lock->as_AbstractLock()->is_coarsened()) { 4818 if (j == 0) { 4819 // first on list was modified, the rest should be too for consistency 4820 modified = true; 4821 } else if (!modified) { 4822 // this lock was modified but previous locks on the list were not 4823 unbalanced = true; 4824 break; 4825 } 4826 } else if (modified) { 4827 // previous locks on list were modified but not this lock 4828 unbalanced = true; 4829 break; 4830 } 4831 } 4832 } 4833 if (unbalanced) { 4834 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 4835 #ifdef ASSERT 4836 if (PrintEliminateLocks) { 4837 tty->print_cr("=== unbalanced coarsened locks ==="); 4838 for (uint l = 0; l < size; l++) { 4839 locks_list->at(l)->dump(); 4840 } 4841 } 4842 #endif 4843 record_failure(C2Compiler::retry_no_locks_coarsening()); 4844 return false; 4845 } 4846 } 4847 return true; 4848 } 4849 4850 // Mark locking regions (identified by BoxLockNode) as unbalanced if 4851 // locks coarsening optimization removed Lock/Unlock nodes from them. 4852 // Such regions become unbalanced because coarsening only removes part 4853 // of Lock/Unlock nodes in region. As result we can't execute other 4854 // locks elimination optimizations which assume all code paths have 4855 // corresponding pair of Lock/Unlock nodes - they are balanced. 4856 void Compile::mark_unbalanced_boxes() const { 4857 int count = coarsened_count(); 4858 for (int i = 0; i < count; i++) { 4859 Node_List* locks_list = _coarsened_locks.at(i); 4860 uint size = locks_list->size(); 4861 if (size > 0) { 4862 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 4863 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4864 if (alock->is_coarsened()) { 4865 // coarsened_locks_consistent(), which is called before this method, verifies 4866 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 4867 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4868 for (uint j = 1; j < size; j++) { 4869 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 4870 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 4871 if (box != this_box) { 4872 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4873 box->set_unbalanced(); 4874 this_box->set_unbalanced(); 4875 } 4876 } 4877 } 4878 } 4879 } 4880 } 4881 4882 /** 4883 * Remove the speculative part of types and clean up the graph 4884 */ 4885 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4886 if (UseTypeSpeculation) { 4887 Unique_Node_List worklist; 4888 worklist.push(root()); 4889 int modified = 0; 4890 // Go over all type nodes that carry a speculative type, drop the 4891 // speculative part of the type and enqueue the node for an igvn 4892 // which may optimize it out. 4893 for (uint next = 0; next < worklist.size(); ++next) { 4894 Node *n = worklist.at(next); 4895 if (n->is_Type()) { 4896 TypeNode* tn = n->as_Type(); 4897 const Type* t = tn->type(); 4898 const Type* t_no_spec = t->remove_speculative(); 4899 if (t_no_spec != t) { 4900 bool in_hash = igvn.hash_delete(n); 4901 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 4902 tn->set_type(t_no_spec); 4903 igvn.hash_insert(n); 4904 igvn._worklist.push(n); // give it a chance to go away 4905 modified++; 4906 } 4907 } 4908 // Iterate over outs - endless loops is unreachable from below 4909 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4910 Node *m = n->fast_out(i); 4911 if (not_a_node(m)) { 4912 continue; 4913 } 4914 worklist.push(m); 4915 } 4916 } 4917 // Drop the speculative part of all types in the igvn's type table 4918 igvn.remove_speculative_types(); 4919 if (modified > 0) { 4920 igvn.optimize(); 4921 if (failing()) return; 4922 } 4923 #ifdef ASSERT 4924 // Verify that after the IGVN is over no speculative type has resurfaced 4925 worklist.clear(); 4926 worklist.push(root()); 4927 for (uint next = 0; next < worklist.size(); ++next) { 4928 Node *n = worklist.at(next); 4929 const Type* t = igvn.type_or_null(n); 4930 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 4931 if (n->is_Type()) { 4932 t = n->as_Type()->type(); 4933 assert(t == t->remove_speculative(), "no more speculative types"); 4934 } 4935 // Iterate over outs - endless loops is unreachable from below 4936 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 4937 Node *m = n->fast_out(i); 4938 if (not_a_node(m)) { 4939 continue; 4940 } 4941 worklist.push(m); 4942 } 4943 } 4944 igvn.check_no_speculative_types(); 4945 #endif 4946 } 4947 } 4948 4949 // Auxiliary methods to support randomized stressing/fuzzing. 4950 4951 void Compile::initialize_stress_seed(const DirectiveSet* directive) { 4952 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 4953 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 4954 FLAG_SET_ERGO(StressSeed, _stress_seed); 4955 } else { 4956 _stress_seed = StressSeed; 4957 } 4958 if (_log != nullptr) { 4959 _log->elem("stress_test seed='%u'", _stress_seed); 4960 } 4961 } 4962 4963 int Compile::random() { 4964 _stress_seed = os::next_random(_stress_seed); 4965 return static_cast<int>(_stress_seed); 4966 } 4967 4968 // This method can be called the arbitrary number of times, with current count 4969 // as the argument. The logic allows selecting a single candidate from the 4970 // running list of candidates as follows: 4971 // int count = 0; 4972 // Cand* selected = null; 4973 // while(cand = cand->next()) { 4974 // if (randomized_select(++count)) { 4975 // selected = cand; 4976 // } 4977 // } 4978 // 4979 // Including count equalizes the chances any candidate is "selected". 4980 // This is useful when we don't have the complete list of candidates to choose 4981 // from uniformly. In this case, we need to adjust the randomicity of the 4982 // selection, or else we will end up biasing the selection towards the latter 4983 // candidates. 4984 // 4985 // Quick back-envelope calculation shows that for the list of n candidates 4986 // the equal probability for the candidate to persist as "best" can be 4987 // achieved by replacing it with "next" k-th candidate with the probability 4988 // of 1/k. It can be easily shown that by the end of the run, the 4989 // probability for any candidate is converged to 1/n, thus giving the 4990 // uniform distribution among all the candidates. 4991 // 4992 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 4993 #define RANDOMIZED_DOMAIN_POW 29 4994 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 4995 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 4996 bool Compile::randomized_select(int count) { 4997 assert(count > 0, "only positive"); 4998 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 4999 } 5000 5001 #ifdef ASSERT 5002 // Failures are geometrically distributed with probability 1/StressBailoutMean. 5003 bool Compile::fail_randomly() { 5004 if ((random() % StressBailoutMean) != 0) { 5005 return false; 5006 } 5007 record_failure("StressBailout"); 5008 return true; 5009 } 5010 5011 bool Compile::failure_is_artificial() { 5012 return C->failure_reason_is("StressBailout"); 5013 } 5014 #endif 5015 5016 CloneMap& Compile::clone_map() { return _clone_map; } 5017 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5018 5019 void NodeCloneInfo::dump_on(outputStream* st) const { 5020 st->print(" {%d:%d} ", idx(), gen()); 5021 } 5022 5023 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5024 uint64_t val = value(old->_idx); 5025 NodeCloneInfo cio(val); 5026 assert(val != 0, "old node should be in the map"); 5027 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5028 insert(nnn->_idx, cin.get()); 5029 #ifndef PRODUCT 5030 if (is_debug()) { 5031 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5032 } 5033 #endif 5034 } 5035 5036 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5037 NodeCloneInfo cio(value(old->_idx)); 5038 if (cio.get() == 0) { 5039 cio.set(old->_idx, 0); 5040 insert(old->_idx, cio.get()); 5041 #ifndef PRODUCT 5042 if (is_debug()) { 5043 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5044 } 5045 #endif 5046 } 5047 clone(old, nnn, gen); 5048 } 5049 5050 int CloneMap::max_gen() const { 5051 int g = 0; 5052 DictI di(_dict); 5053 for(; di.test(); ++di) { 5054 int t = gen(di._key); 5055 if (g < t) { 5056 g = t; 5057 #ifndef PRODUCT 5058 if (is_debug()) { 5059 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5060 } 5061 #endif 5062 } 5063 } 5064 return g; 5065 } 5066 5067 void CloneMap::dump(node_idx_t key, outputStream* st) const { 5068 uint64_t val = value(key); 5069 if (val != 0) { 5070 NodeCloneInfo ni(val); 5071 ni.dump_on(st); 5072 } 5073 } 5074 5075 void Compile::shuffle_macro_nodes() { 5076 if (_macro_nodes.length() < 2) { 5077 return; 5078 } 5079 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) { 5080 uint j = C->random() % (i + 1); 5081 swap(_macro_nodes.at(i), _macro_nodes.at(j)); 5082 } 5083 } 5084 5085 // Move Allocate nodes to the start of the list 5086 void Compile::sort_macro_nodes() { 5087 int count = macro_count(); 5088 int allocates = 0; 5089 for (int i = 0; i < count; i++) { 5090 Node* n = macro_node(i); 5091 if (n->is_Allocate()) { 5092 if (i != allocates) { 5093 Node* tmp = macro_node(allocates); 5094 _macro_nodes.at_put(allocates, n); 5095 _macro_nodes.at_put(i, tmp); 5096 } 5097 allocates++; 5098 } 5099 } 5100 } 5101 5102 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5103 if (failing_internal()) { return; } // failing_internal to not stress bailouts from printing code. 5104 EventCompilerPhase event(UNTIMED); 5105 if (event.should_commit()) { 5106 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5107 } 5108 #ifndef PRODUCT 5109 ResourceMark rm; 5110 stringStream ss; 5111 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5112 int iter = ++_igv_phase_iter[cpt]; 5113 if (iter > 1) { 5114 ss.print(" %d", iter); 5115 } 5116 if (n != nullptr) { 5117 ss.print(": %d %s", n->_idx, NodeClassNames[n->Opcode()]); 5118 if (n->is_Call()) { 5119 CallNode* call = n->as_Call(); 5120 if (call->_name != nullptr) { 5121 // E.g. uncommon traps etc. 5122 ss.print(" - %s", call->_name); 5123 } else if (call->is_CallJava()) { 5124 CallJavaNode* call_java = call->as_CallJava(); 5125 if (call_java->method() != nullptr) { 5126 ss.print(" -"); 5127 call_java->method()->print_short_name(&ss); 5128 } 5129 } 5130 } 5131 } 5132 5133 const char* name = ss.as_string(); 5134 if (should_print_igv(level)) { 5135 _igv_printer->print_graph(name); 5136 } 5137 if (should_print_phase(cpt)) { 5138 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5139 } 5140 #endif 5141 C->_latest_stage_start_counter.stamp(); 5142 } 5143 5144 // Only used from CompileWrapper 5145 void Compile::begin_method() { 5146 #ifndef PRODUCT 5147 if (_method != nullptr && should_print_igv(1)) { 5148 _igv_printer->begin_method(); 5149 } 5150 #endif 5151 C->_latest_stage_start_counter.stamp(); 5152 } 5153 5154 // Only used from CompileWrapper 5155 void Compile::end_method() { 5156 EventCompilerPhase event(UNTIMED); 5157 if (event.should_commit()) { 5158 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5159 } 5160 5161 #ifndef PRODUCT 5162 if (_method != nullptr && should_print_igv(1)) { 5163 _igv_printer->end_method(); 5164 } 5165 #endif 5166 } 5167 5168 bool Compile::should_print_phase(CompilerPhaseType cpt) { 5169 #ifndef PRODUCT 5170 if (_directive->should_print_phase(cpt)) { 5171 return true; 5172 } 5173 #endif 5174 return false; 5175 } 5176 5177 #ifndef PRODUCT 5178 void Compile::init_igv() { 5179 if (_igv_printer == nullptr) { 5180 _igv_printer = IdealGraphPrinter::printer(); 5181 _igv_printer->set_compile(this); 5182 } 5183 } 5184 #endif 5185 5186 bool Compile::should_print_igv(const int level) { 5187 #ifndef PRODUCT 5188 if (PrintIdealGraphLevel < 0) { // disabled by the user 5189 return false; 5190 } 5191 5192 bool need = directive()->IGVPrintLevelOption >= level; 5193 if (need) { 5194 Compile::init_igv(); 5195 } 5196 return need; 5197 #else 5198 return false; 5199 #endif 5200 } 5201 5202 #ifndef PRODUCT 5203 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5204 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5205 5206 // Called from debugger. Prints method to the default file with the default phase name. 5207 // This works regardless of any Ideal Graph Visualizer flags set or not. 5208 void igv_print() { 5209 Compile::current()->igv_print_method_to_file(); 5210 } 5211 5212 // Same as igv_print() above but with a specified phase name. 5213 void igv_print(const char* phase_name) { 5214 Compile::current()->igv_print_method_to_file(phase_name); 5215 } 5216 5217 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5218 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5219 // This works regardless of any Ideal Graph Visualizer flags set or not. 5220 void igv_print(bool network) { 5221 if (network) { 5222 Compile::current()->igv_print_method_to_network(); 5223 } else { 5224 Compile::current()->igv_print_method_to_file(); 5225 } 5226 } 5227 5228 // Same as igv_print(bool network) above but with a specified phase name. 5229 void igv_print(bool network, const char* phase_name) { 5230 if (network) { 5231 Compile::current()->igv_print_method_to_network(phase_name); 5232 } else { 5233 Compile::current()->igv_print_method_to_file(phase_name); 5234 } 5235 } 5236 5237 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5238 void igv_print_default() { 5239 Compile::current()->print_method(PHASE_DEBUG, 0); 5240 } 5241 5242 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5243 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5244 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5245 void igv_append() { 5246 Compile::current()->igv_print_method_to_file("Debug", true); 5247 } 5248 5249 // Same as igv_append() above but with a specified phase name. 5250 void igv_append(const char* phase_name) { 5251 Compile::current()->igv_print_method_to_file(phase_name, true); 5252 } 5253 5254 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 5255 const char* file_name = "custom_debug.xml"; 5256 if (_debug_file_printer == nullptr) { 5257 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5258 } else { 5259 _debug_file_printer->update_compiled_method(C->method()); 5260 } 5261 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5262 _debug_file_printer->print_graph(phase_name); 5263 } 5264 5265 void Compile::igv_print_method_to_network(const char* phase_name) { 5266 ResourceMark rm; 5267 GrowableArray<const Node*> empty_list; 5268 igv_print_graph_to_network(phase_name, empty_list); 5269 } 5270 5271 void Compile::igv_print_graph_to_network(const char* name, GrowableArray<const Node*>& visible_nodes) { 5272 if (_debug_network_printer == nullptr) { 5273 _debug_network_printer = new IdealGraphPrinter(C); 5274 } else { 5275 _debug_network_printer->update_compiled_method(C->method()); 5276 } 5277 tty->print_cr("Method printed over network stream to IGV"); 5278 _debug_network_printer->print(name, C->root(), visible_nodes); 5279 } 5280 #endif 5281 5282 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5283 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5284 return value; 5285 } 5286 Node* result = nullptr; 5287 if (bt == T_BYTE) { 5288 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5289 result = new RShiftINode(result, phase->intcon(24)); 5290 } else if (bt == T_BOOLEAN) { 5291 result = new AndINode(value, phase->intcon(0xFF)); 5292 } else if (bt == T_CHAR) { 5293 result = new AndINode(value,phase->intcon(0xFFFF)); 5294 } else { 5295 assert(bt == T_SHORT, "unexpected narrow type"); 5296 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5297 result = new RShiftINode(result, phase->intcon(16)); 5298 } 5299 if (transform_res) { 5300 result = phase->transform(result); 5301 } 5302 return result; 5303 } 5304 5305 void Compile::record_method_not_compilable_oom() { 5306 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit()); 5307 }