1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "ci/ciReplay.hpp" 29 #include "classfile/javaClasses.hpp" 30 #include "code/exceptionHandlerTable.hpp" 31 #include "code/nmethod.hpp" 32 #include "compiler/compilationFailureInfo.hpp" 33 #include "compiler/compilationMemoryStatistic.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/compileLog.hpp" 36 #include "compiler/compilerOracle.hpp" 37 #include "compiler/compiler_globals.hpp" 38 #include "compiler/disassembler.hpp" 39 #include "compiler/oopMap.hpp" 40 #include "gc/shared/barrierSet.hpp" 41 #include "gc/shared/c2/barrierSetC2.hpp" 42 #include "jfr/jfrEvents.hpp" 43 #include "jvm_io.h" 44 #include "memory/allocation.hpp" 45 #include "memory/resourceArea.hpp" 46 #include "opto/addnode.hpp" 47 #include "opto/block.hpp" 48 #include "opto/c2compiler.hpp" 49 #include "opto/callGenerator.hpp" 50 #include "opto/callnode.hpp" 51 #include "opto/castnode.hpp" 52 #include "opto/cfgnode.hpp" 53 #include "opto/chaitin.hpp" 54 #include "opto/compile.hpp" 55 #include "opto/connode.hpp" 56 #include "opto/convertnode.hpp" 57 #include "opto/divnode.hpp" 58 #include "opto/escape.hpp" 59 #include "opto/idealGraphPrinter.hpp" 60 #include "opto/locknode.hpp" 61 #include "opto/loopnode.hpp" 62 #include "opto/machnode.hpp" 63 #include "opto/macro.hpp" 64 #include "opto/matcher.hpp" 65 #include "opto/mathexactnode.hpp" 66 #include "opto/memnode.hpp" 67 #include "opto/mulnode.hpp" 68 #include "opto/narrowptrnode.hpp" 69 #include "opto/node.hpp" 70 #include "opto/opcodes.hpp" 71 #include "opto/output.hpp" 72 #include "opto/parse.hpp" 73 #include "opto/phaseX.hpp" 74 #include "opto/rootnode.hpp" 75 #include "opto/runtime.hpp" 76 #include "opto/stringopts.hpp" 77 #include "opto/type.hpp" 78 #include "opto/vector.hpp" 79 #include "opto/vectornode.hpp" 80 #include "runtime/globals_extension.hpp" 81 #include "runtime/sharedRuntime.hpp" 82 #include "runtime/signature.hpp" 83 #include "runtime/stubRoutines.hpp" 84 #include "runtime/timer.hpp" 85 #include "utilities/align.hpp" 86 #include "utilities/copy.hpp" 87 #include "utilities/macros.hpp" 88 #include "utilities/resourceHash.hpp" 89 90 // -------------------- Compile::mach_constant_base_node ----------------------- 91 // Constant table base node singleton. 92 MachConstantBaseNode* Compile::mach_constant_base_node() { 93 if (_mach_constant_base_node == nullptr) { 94 _mach_constant_base_node = new MachConstantBaseNode(); 95 _mach_constant_base_node->add_req(C->root()); 96 } 97 return _mach_constant_base_node; 98 } 99 100 101 /// Support for intrinsics. 102 103 // Return the index at which m must be inserted (or already exists). 104 // The sort order is by the address of the ciMethod, with is_virtual as minor key. 105 class IntrinsicDescPair { 106 private: 107 ciMethod* _m; 108 bool _is_virtual; 109 public: 110 IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {} 111 static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) { 112 ciMethod* m= elt->method(); 113 ciMethod* key_m = key->_m; 114 if (key_m < m) return -1; 115 else if (key_m > m) return 1; 116 else { 117 bool is_virtual = elt->is_virtual(); 118 bool key_virtual = key->_is_virtual; 119 if (key_virtual < is_virtual) return -1; 120 else if (key_virtual > is_virtual) return 1; 121 else return 0; 122 } 123 } 124 }; 125 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) { 126 #ifdef ASSERT 127 for (int i = 1; i < _intrinsics.length(); i++) { 128 CallGenerator* cg1 = _intrinsics.at(i-1); 129 CallGenerator* cg2 = _intrinsics.at(i); 130 assert(cg1->method() != cg2->method() 131 ? cg1->method() < cg2->method() 132 : cg1->is_virtual() < cg2->is_virtual(), 133 "compiler intrinsics list must stay sorted"); 134 } 135 #endif 136 IntrinsicDescPair pair(m, is_virtual); 137 return _intrinsics.find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found); 138 } 139 140 void Compile::register_intrinsic(CallGenerator* cg) { 141 bool found = false; 142 int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found); 143 assert(!found, "registering twice"); 144 _intrinsics.insert_before(index, cg); 145 assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked"); 146 } 147 148 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) { 149 assert(m->is_loaded(), "don't try this on unloaded methods"); 150 if (_intrinsics.length() > 0) { 151 bool found = false; 152 int index = intrinsic_insertion_index(m, is_virtual, found); 153 if (found) { 154 return _intrinsics.at(index); 155 } 156 } 157 // Lazily create intrinsics for intrinsic IDs well-known in the runtime. 158 if (m->intrinsic_id() != vmIntrinsics::_none && 159 m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) { 160 CallGenerator* cg = make_vm_intrinsic(m, is_virtual); 161 if (cg != nullptr) { 162 // Save it for next time: 163 register_intrinsic(cg); 164 return cg; 165 } else { 166 gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled); 167 } 168 } 169 return nullptr; 170 } 171 172 // Compile::make_vm_intrinsic is defined in library_call.cpp. 173 174 #ifndef PRODUCT 175 // statistics gathering... 176 177 juint Compile::_intrinsic_hist_count[vmIntrinsics::number_of_intrinsics()] = {0}; 178 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::number_of_intrinsics()] = {0}; 179 180 inline int as_int(vmIntrinsics::ID id) { 181 return vmIntrinsics::as_int(id); 182 } 183 184 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) { 185 assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob"); 186 int oflags = _intrinsic_hist_flags[as_int(id)]; 187 assert(flags != 0, "what happened?"); 188 if (is_virtual) { 189 flags |= _intrinsic_virtual; 190 } 191 bool changed = (flags != oflags); 192 if ((flags & _intrinsic_worked) != 0) { 193 juint count = (_intrinsic_hist_count[as_int(id)] += 1); 194 if (count == 1) { 195 changed = true; // first time 196 } 197 // increment the overall count also: 198 _intrinsic_hist_count[as_int(vmIntrinsics::_none)] += 1; 199 } 200 if (changed) { 201 if (((oflags ^ flags) & _intrinsic_virtual) != 0) { 202 // Something changed about the intrinsic's virtuality. 203 if ((flags & _intrinsic_virtual) != 0) { 204 // This is the first use of this intrinsic as a virtual call. 205 if (oflags != 0) { 206 // We already saw it as a non-virtual, so note both cases. 207 flags |= _intrinsic_both; 208 } 209 } else if ((oflags & _intrinsic_both) == 0) { 210 // This is the first use of this intrinsic as a non-virtual 211 flags |= _intrinsic_both; 212 } 213 } 214 _intrinsic_hist_flags[as_int(id)] = (jubyte) (oflags | flags); 215 } 216 // update the overall flags also: 217 _intrinsic_hist_flags[as_int(vmIntrinsics::_none)] |= (jubyte) flags; 218 return changed; 219 } 220 221 static char* format_flags(int flags, char* buf) { 222 buf[0] = 0; 223 if ((flags & Compile::_intrinsic_worked) != 0) strcat(buf, ",worked"); 224 if ((flags & Compile::_intrinsic_failed) != 0) strcat(buf, ",failed"); 225 if ((flags & Compile::_intrinsic_disabled) != 0) strcat(buf, ",disabled"); 226 if ((flags & Compile::_intrinsic_virtual) != 0) strcat(buf, ",virtual"); 227 if ((flags & Compile::_intrinsic_both) != 0) strcat(buf, ",nonvirtual"); 228 if (buf[0] == 0) strcat(buf, ","); 229 assert(buf[0] == ',', "must be"); 230 return &buf[1]; 231 } 232 233 void Compile::print_intrinsic_statistics() { 234 char flagsbuf[100]; 235 ttyLocker ttyl; 236 if (xtty != nullptr) xtty->head("statistics type='intrinsic'"); 237 tty->print_cr("Compiler intrinsic usage:"); 238 juint total = _intrinsic_hist_count[as_int(vmIntrinsics::_none)]; 239 if (total == 0) total = 1; // avoid div0 in case of no successes 240 #define PRINT_STAT_LINE(name, c, f) \ 241 tty->print_cr(" %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f); 242 for (auto id : EnumRange<vmIntrinsicID>{}) { 243 int flags = _intrinsic_hist_flags[as_int(id)]; 244 juint count = _intrinsic_hist_count[as_int(id)]; 245 if ((flags | count) != 0) { 246 PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf)); 247 } 248 } 249 PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[as_int(vmIntrinsics::_none)], flagsbuf)); 250 if (xtty != nullptr) xtty->tail("statistics"); 251 } 252 253 void Compile::print_statistics() { 254 { ttyLocker ttyl; 255 if (xtty != nullptr) xtty->head("statistics type='opto'"); 256 Parse::print_statistics(); 257 PhaseStringOpts::print_statistics(); 258 PhaseCCP::print_statistics(); 259 PhaseRegAlloc::print_statistics(); 260 PhaseOutput::print_statistics(); 261 PhasePeephole::print_statistics(); 262 PhaseIdealLoop::print_statistics(); 263 ConnectionGraph::print_statistics(); 264 PhaseMacroExpand::print_statistics(); 265 if (xtty != nullptr) xtty->tail("statistics"); 266 } 267 if (_intrinsic_hist_flags[as_int(vmIntrinsics::_none)] != 0) { 268 // put this under its own <statistics> element. 269 print_intrinsic_statistics(); 270 } 271 } 272 #endif //PRODUCT 273 274 void Compile::gvn_replace_by(Node* n, Node* nn) { 275 for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) { 276 Node* use = n->last_out(i); 277 bool is_in_table = initial_gvn()->hash_delete(use); 278 uint uses_found = 0; 279 for (uint j = 0; j < use->len(); j++) { 280 if (use->in(j) == n) { 281 if (j < use->req()) 282 use->set_req(j, nn); 283 else 284 use->set_prec(j, nn); 285 uses_found++; 286 } 287 } 288 if (is_in_table) { 289 // reinsert into table 290 initial_gvn()->hash_find_insert(use); 291 } 292 record_for_igvn(use); 293 PhaseIterGVN::add_users_of_use_to_worklist(nn, use, *_igvn_worklist); 294 i -= uses_found; // we deleted 1 or more copies of this edge 295 } 296 } 297 298 299 // Identify all nodes that are reachable from below, useful. 300 // Use breadth-first pass that records state in a Unique_Node_List, 301 // recursive traversal is slower. 302 void Compile::identify_useful_nodes(Unique_Node_List &useful) { 303 int estimated_worklist_size = live_nodes(); 304 useful.map( estimated_worklist_size, nullptr ); // preallocate space 305 306 // Initialize worklist 307 if (root() != nullptr) { useful.push(root()); } 308 // If 'top' is cached, declare it useful to preserve cached node 309 if (cached_top_node()) { useful.push(cached_top_node()); } 310 311 // Push all useful nodes onto the list, breadthfirst 312 for( uint next = 0; next < useful.size(); ++next ) { 313 assert( next < unique(), "Unique useful nodes < total nodes"); 314 Node *n = useful.at(next); 315 uint max = n->len(); 316 for( uint i = 0; i < max; ++i ) { 317 Node *m = n->in(i); 318 if (not_a_node(m)) continue; 319 useful.push(m); 320 } 321 } 322 } 323 324 // Update dead_node_list with any missing dead nodes using useful 325 // list. Consider all non-useful nodes to be useless i.e., dead nodes. 326 void Compile::update_dead_node_list(Unique_Node_List &useful) { 327 uint max_idx = unique(); 328 VectorSet& useful_node_set = useful.member_set(); 329 330 for (uint node_idx = 0; node_idx < max_idx; node_idx++) { 331 // If node with index node_idx is not in useful set, 332 // mark it as dead in dead node list. 333 if (!useful_node_set.test(node_idx)) { 334 record_dead_node(node_idx); 335 } 336 } 337 } 338 339 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) { 340 int shift = 0; 341 for (int i = 0; i < inlines->length(); i++) { 342 CallGenerator* cg = inlines->at(i); 343 if (useful.member(cg->call_node())) { 344 if (shift > 0) { 345 inlines->at_put(i - shift, cg); 346 } 347 } else { 348 shift++; // skip over the dead element 349 } 350 } 351 if (shift > 0) { 352 inlines->trunc_to(inlines->length() - shift); // remove last elements from compacted array 353 } 354 } 355 356 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead) { 357 assert(dead != nullptr && dead->is_Call(), "sanity"); 358 int found = 0; 359 for (int i = 0; i < inlines->length(); i++) { 360 if (inlines->at(i)->call_node() == dead) { 361 inlines->remove_at(i); 362 found++; 363 NOT_DEBUG( break; ) // elements are unique, so exit early 364 } 365 } 366 assert(found <= 1, "not unique"); 367 } 368 369 template<typename N, ENABLE_IF_SDEFN(std::is_base_of<Node, N>::value)> 370 void Compile::remove_useless_nodes(GrowableArray<N*>& node_list, Unique_Node_List& useful) { 371 for (int i = node_list.length() - 1; i >= 0; i--) { 372 N* node = node_list.at(i); 373 if (!useful.member(node)) { 374 node_list.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 375 } 376 } 377 } 378 379 void Compile::remove_useless_node(Node* dead) { 380 remove_modified_node(dead); 381 382 // Constant node that has no out-edges and has only one in-edge from 383 // root is usually dead. However, sometimes reshaping walk makes 384 // it reachable by adding use edges. So, we will NOT count Con nodes 385 // as dead to be conservative about the dead node count at any 386 // given time. 387 if (!dead->is_Con()) { 388 record_dead_node(dead->_idx); 389 } 390 if (dead->is_macro()) { 391 remove_macro_node(dead); 392 } 393 if (dead->is_expensive()) { 394 remove_expensive_node(dead); 395 } 396 if (dead->Opcode() == Op_Opaque4) { 397 remove_template_assertion_predicate_opaq(dead); 398 } 399 if (dead->is_ParsePredicate()) { 400 remove_parse_predicate(dead->as_ParsePredicate()); 401 } 402 if (dead->for_post_loop_opts_igvn()) { 403 remove_from_post_loop_opts_igvn(dead); 404 } 405 if (dead->is_Call()) { 406 remove_useless_late_inlines( &_late_inlines, dead); 407 remove_useless_late_inlines( &_string_late_inlines, dead); 408 remove_useless_late_inlines( &_boxing_late_inlines, dead); 409 remove_useless_late_inlines(&_vector_reboxing_late_inlines, dead); 410 411 if (dead->is_CallStaticJava()) { 412 remove_unstable_if_trap(dead->as_CallStaticJava(), false); 413 } 414 } 415 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 416 bs->unregister_potential_barrier_node(dead); 417 } 418 419 // Disconnect all useless nodes by disconnecting those at the boundary. 420 void Compile::disconnect_useless_nodes(Unique_Node_List& useful, Unique_Node_List& worklist) { 421 uint next = 0; 422 while (next < useful.size()) { 423 Node *n = useful.at(next++); 424 if (n->is_SafePoint()) { 425 // We're done with a parsing phase. Replaced nodes are not valid 426 // beyond that point. 427 n->as_SafePoint()->delete_replaced_nodes(); 428 } 429 // Use raw traversal of out edges since this code removes out edges 430 int max = n->outcnt(); 431 for (int j = 0; j < max; ++j) { 432 Node* child = n->raw_out(j); 433 if (!useful.member(child)) { 434 assert(!child->is_top() || child != top(), 435 "If top is cached in Compile object it is in useful list"); 436 // Only need to remove this out-edge to the useless node 437 n->raw_del_out(j); 438 --j; 439 --max; 440 } 441 } 442 if (n->outcnt() == 1 && n->has_special_unique_user()) { 443 assert(useful.member(n->unique_out()), "do not push a useless node"); 444 worklist.push(n->unique_out()); 445 } 446 } 447 448 remove_useless_nodes(_macro_nodes, useful); // remove useless macro nodes 449 remove_useless_nodes(_parse_predicates, useful); // remove useless Parse Predicate nodes 450 remove_useless_nodes(_template_assertion_predicate_opaqs, useful); // remove useless Assertion Predicate opaque nodes 451 remove_useless_nodes(_expensive_nodes, useful); // remove useless expensive nodes 452 remove_useless_nodes(_for_post_loop_igvn, useful); // remove useless node recorded for post loop opts IGVN pass 453 remove_useless_unstable_if_traps(useful); // remove useless unstable_if traps 454 remove_useless_coarsened_locks(useful); // remove useless coarsened locks nodes 455 #ifdef ASSERT 456 if (_modified_nodes != nullptr) { 457 _modified_nodes->remove_useless_nodes(useful.member_set()); 458 } 459 #endif 460 461 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 462 bs->eliminate_useless_gc_barriers(useful, this); 463 // clean up the late inline lists 464 remove_useless_late_inlines( &_late_inlines, useful); 465 remove_useless_late_inlines( &_string_late_inlines, useful); 466 remove_useless_late_inlines( &_boxing_late_inlines, useful); 467 remove_useless_late_inlines(&_vector_reboxing_late_inlines, useful); 468 debug_only(verify_graph_edges(true/*check for no_dead_code*/);) 469 } 470 471 // ============================================================================ 472 //------------------------------CompileWrapper--------------------------------- 473 class CompileWrapper : public StackObj { 474 Compile *const _compile; 475 public: 476 CompileWrapper(Compile* compile); 477 478 ~CompileWrapper(); 479 }; 480 481 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) { 482 // the Compile* pointer is stored in the current ciEnv: 483 ciEnv* env = compile->env(); 484 assert(env == ciEnv::current(), "must already be a ciEnv active"); 485 assert(env->compiler_data() == nullptr, "compile already active?"); 486 env->set_compiler_data(compile); 487 assert(compile == Compile::current(), "sanity"); 488 489 compile->set_type_dict(nullptr); 490 compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena())); 491 compile->clone_map().set_clone_idx(0); 492 compile->set_type_last_size(0); 493 compile->set_last_tf(nullptr, nullptr); 494 compile->set_indexSet_arena(nullptr); 495 compile->set_indexSet_free_block_list(nullptr); 496 compile->init_type_arena(); 497 Type::Initialize(compile); 498 _compile->begin_method(); 499 _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption); 500 } 501 CompileWrapper::~CompileWrapper() { 502 // simulate crash during compilation 503 assert(CICrashAt < 0 || _compile->compile_id() != CICrashAt, "just as planned"); 504 505 _compile->end_method(); 506 _compile->env()->set_compiler_data(nullptr); 507 } 508 509 510 //----------------------------print_compile_messages--------------------------- 511 void Compile::print_compile_messages() { 512 #ifndef PRODUCT 513 // Check if recompiling 514 if (!subsume_loads() && PrintOpto) { 515 // Recompiling without allowing machine instructions to subsume loads 516 tty->print_cr("*********************************************************"); 517 tty->print_cr("** Bailout: Recompile without subsuming loads **"); 518 tty->print_cr("*********************************************************"); 519 } 520 if ((do_escape_analysis() != DoEscapeAnalysis) && PrintOpto) { 521 // Recompiling without escape analysis 522 tty->print_cr("*********************************************************"); 523 tty->print_cr("** Bailout: Recompile without escape analysis **"); 524 tty->print_cr("*********************************************************"); 525 } 526 if (do_iterative_escape_analysis() != DoEscapeAnalysis && PrintOpto) { 527 // Recompiling without iterative escape analysis 528 tty->print_cr("*********************************************************"); 529 tty->print_cr("** Bailout: Recompile without iterative escape analysis**"); 530 tty->print_cr("*********************************************************"); 531 } 532 if (do_reduce_allocation_merges() != ReduceAllocationMerges && PrintOpto) { 533 // Recompiling without reducing allocation merges 534 tty->print_cr("*********************************************************"); 535 tty->print_cr("** Bailout: Recompile without reduce allocation merges **"); 536 tty->print_cr("*********************************************************"); 537 } 538 if ((eliminate_boxing() != EliminateAutoBox) && PrintOpto) { 539 // Recompiling without boxing elimination 540 tty->print_cr("*********************************************************"); 541 tty->print_cr("** Bailout: Recompile without boxing elimination **"); 542 tty->print_cr("*********************************************************"); 543 } 544 if ((do_locks_coarsening() != EliminateLocks) && PrintOpto) { 545 // Recompiling without locks coarsening 546 tty->print_cr("*********************************************************"); 547 tty->print_cr("** Bailout: Recompile without locks coarsening **"); 548 tty->print_cr("*********************************************************"); 549 } 550 if (env()->break_at_compile()) { 551 // Open the debugger when compiling this method. 552 tty->print("### Breaking when compiling: "); 553 method()->print_short_name(); 554 tty->cr(); 555 BREAKPOINT; 556 } 557 558 if( PrintOpto ) { 559 if (is_osr_compilation()) { 560 tty->print("[OSR]%3d", _compile_id); 561 } else { 562 tty->print("%3d", _compile_id); 563 } 564 } 565 #endif 566 } 567 568 #ifndef PRODUCT 569 void Compile::print_ideal_ir(const char* phase_name) { 570 // keep the following output all in one block 571 // This output goes directly to the tty, not the compiler log. 572 // To enable tools to match it up with the compilation activity, 573 // be sure to tag this tty output with the compile ID. 574 575 // Node dumping can cause a safepoint, which can break the tty lock. 576 // Buffer all node dumps, so that all safepoints happen before we lock. 577 ResourceMark rm; 578 stringStream ss; 579 580 if (_output == nullptr) { 581 ss.print_cr("AFTER: %s", phase_name); 582 // Print out all nodes in ascending order of index. 583 root()->dump_bfs(MaxNodeLimit, nullptr, "+S$", &ss); 584 } else { 585 // Dump the node blockwise if we have a scheduling 586 _output->print_scheduling(&ss); 587 } 588 589 // Check that the lock is not broken by a safepoint. 590 NoSafepointVerifier nsv; 591 ttyLocker ttyl; 592 if (xtty != nullptr) { 593 xtty->head("ideal compile_id='%d'%s compile_phase='%s'", 594 compile_id(), 595 is_osr_compilation() ? " compile_kind='osr'" : "", 596 phase_name); 597 } 598 599 tty->print("%s", ss.as_string()); 600 601 if (xtty != nullptr) { 602 xtty->tail("ideal"); 603 } 604 } 605 #endif 606 607 // ============================================================================ 608 //------------------------------Compile standard------------------------------- 609 610 // Compile a method. entry_bci is -1 for normal compilations and indicates 611 // the continuation bci for on stack replacement. 612 613 614 Compile::Compile( ciEnv* ci_env, ciMethod* target, int osr_bci, 615 Options options, DirectiveSet* directive) 616 : Phase(Compiler), 617 _compile_id(ci_env->compile_id()), 618 _options(options), 619 _method(target), 620 _entry_bci(osr_bci), 621 _ilt(nullptr), 622 _stub_function(nullptr), 623 _stub_name(nullptr), 624 _stub_entry_point(nullptr), 625 _max_node_limit(MaxNodeLimit), 626 _post_loop_opts_phase(false), 627 _allow_macro_nodes(true), 628 _inlining_progress(false), 629 _inlining_incrementally(false), 630 _do_cleanup(false), 631 _has_reserved_stack_access(target->has_reserved_stack_access()), 632 #ifndef PRODUCT 633 _igv_idx(0), 634 _trace_opto_output(directive->TraceOptoOutputOption), 635 #endif 636 _has_method_handle_invokes(false), 637 _clinit_barrier_on_entry(false), 638 _stress_seed(0), 639 _comp_arena(mtCompiler), 640 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 641 _env(ci_env), 642 _directive(directive), 643 _log(ci_env->log()), 644 _first_failure_details(nullptr), 645 _intrinsics (comp_arena(), 0, 0, nullptr), 646 _macro_nodes (comp_arena(), 8, 0, nullptr), 647 _parse_predicates (comp_arena(), 8, 0, nullptr), 648 _template_assertion_predicate_opaqs (comp_arena(), 8, 0, nullptr), 649 _expensive_nodes (comp_arena(), 8, 0, nullptr), 650 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 651 _unstable_if_traps (comp_arena(), 8, 0, nullptr), 652 _coarsened_locks (comp_arena(), 8, 0, nullptr), 653 _congraph(nullptr), 654 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 655 _unique(0), 656 _dead_node_count(0), 657 _dead_node_list(comp_arena()), 658 _node_arena_one(mtCompiler, Arena::Tag::tag_node), 659 _node_arena_two(mtCompiler, Arena::Tag::tag_node), 660 _node_arena(&_node_arena_one), 661 _mach_constant_base_node(nullptr), 662 _Compile_types(mtCompiler), 663 _initial_gvn(nullptr), 664 _igvn_worklist(nullptr), 665 _types(nullptr), 666 _node_hash(nullptr), 667 _late_inlines(comp_arena(), 2, 0, nullptr), 668 _string_late_inlines(comp_arena(), 2, 0, nullptr), 669 _boxing_late_inlines(comp_arena(), 2, 0, nullptr), 670 _vector_reboxing_late_inlines(comp_arena(), 2, 0, nullptr), 671 _late_inlines_pos(0), 672 _number_of_mh_late_inlines(0), 673 _oom(false), 674 _print_inlining_stream(new (mtCompiler) stringStream()), 675 _print_inlining_list(nullptr), 676 _print_inlining_idx(0), 677 _print_inlining_output(nullptr), 678 _replay_inline_data(nullptr), 679 _java_calls(0), 680 _inner_loops(0), 681 _interpreter_frame_size(0), 682 _output(nullptr) 683 #ifndef PRODUCT 684 , _in_dump_cnt(0) 685 #endif 686 { 687 C = this; 688 CompileWrapper cw(this); 689 690 TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose); 691 TraceTime t2(nullptr, &_t_methodCompilation, CITime, false); 692 693 #if defined(SUPPORT_ASSEMBLY) || defined(SUPPORT_ABSTRACT_ASSEMBLY) 694 bool print_opto_assembly = directive->PrintOptoAssemblyOption; 695 // We can always print a disassembly, either abstract (hex dump) or 696 // with the help of a suitable hsdis library. Thus, we should not 697 // couple print_assembly and print_opto_assembly controls. 698 // But: always print opto and regular assembly on compile command 'print'. 699 bool print_assembly = directive->PrintAssemblyOption; 700 set_print_assembly(print_opto_assembly || print_assembly); 701 #else 702 set_print_assembly(false); // must initialize. 703 #endif 704 705 #ifndef PRODUCT 706 set_parsed_irreducible_loop(false); 707 #endif 708 709 if (directive->ReplayInlineOption) { 710 _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level()); 711 } 712 set_print_inlining(directive->PrintInliningOption || PrintOptoInlining); 713 set_print_intrinsics(directive->PrintIntrinsicsOption); 714 set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it 715 716 if (ProfileTraps) { 717 // Make sure the method being compiled gets its own MDO, 718 // so we can at least track the decompile_count(). 719 method()->ensure_method_data(); 720 } 721 722 Init(/*do_aliasing=*/ true); 723 724 print_compile_messages(); 725 726 _ilt = InlineTree::build_inline_tree_root(); 727 728 // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice 729 assert(num_alias_types() >= AliasIdxRaw, ""); 730 731 #define MINIMUM_NODE_HASH 1023 732 733 // GVN that will be run immediately on new nodes 734 uint estimated_size = method()->code_size()*4+64; 735 estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size); 736 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 737 _types = new (comp_arena()) Type_Array(comp_arena()); 738 _node_hash = new (comp_arena()) NodeHash(comp_arena(), estimated_size); 739 PhaseGVN gvn; 740 set_initial_gvn(&gvn); 741 742 print_inlining_init(); 743 { // Scope for timing the parser 744 TracePhase tp("parse", &timers[_t_parser]); 745 746 // Put top into the hash table ASAP. 747 initial_gvn()->transform(top()); 748 749 // Set up tf(), start(), and find a CallGenerator. 750 CallGenerator* cg = nullptr; 751 if (is_osr_compilation()) { 752 const TypeTuple *domain = StartOSRNode::osr_domain(); 753 const TypeTuple *range = TypeTuple::make_range(method()->signature()); 754 init_tf(TypeFunc::make(domain, range)); 755 StartNode* s = new StartOSRNode(root(), domain); 756 initial_gvn()->set_type_bottom(s); 757 init_start(s); 758 cg = CallGenerator::for_osr(method(), entry_bci()); 759 } else { 760 // Normal case. 761 init_tf(TypeFunc::make(method())); 762 StartNode* s = new StartNode(root(), tf()->domain()); 763 initial_gvn()->set_type_bottom(s); 764 init_start(s); 765 if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) { 766 // With java.lang.ref.reference.get() we must go through the 767 // intrinsic - even when get() is the root 768 // method of the compile - so that, if necessary, the value in 769 // the referent field of the reference object gets recorded by 770 // the pre-barrier code. 771 cg = find_intrinsic(method(), false); 772 } 773 if (cg == nullptr) { 774 float past_uses = method()->interpreter_invocation_count(); 775 float expected_uses = past_uses; 776 cg = CallGenerator::for_inline(method(), expected_uses); 777 } 778 } 779 if (failing()) return; 780 if (cg == nullptr) { 781 const char* reason = InlineTree::check_can_parse(method()); 782 assert(reason != nullptr, "expect reason for parse failure"); 783 stringStream ss; 784 ss.print("cannot parse method: %s", reason); 785 record_method_not_compilable(ss.as_string()); 786 return; 787 } 788 789 gvn.set_type(root(), root()->bottom_type()); 790 791 JVMState* jvms = build_start_state(start(), tf()); 792 if ((jvms = cg->generate(jvms)) == nullptr) { 793 assert(failure_reason() != nullptr, "expect reason for parse failure"); 794 stringStream ss; 795 ss.print("method parse failed: %s", failure_reason()); 796 record_method_not_compilable(ss.as_string()); 797 return; 798 } 799 GraphKit kit(jvms); 800 801 if (!kit.stopped()) { 802 // Accept return values, and transfer control we know not where. 803 // This is done by a special, unique ReturnNode bound to root. 804 return_values(kit.jvms()); 805 } 806 807 if (kit.has_exceptions()) { 808 // Any exceptions that escape from this call must be rethrown 809 // to whatever caller is dynamically above us on the stack. 810 // This is done by a special, unique RethrowNode bound to root. 811 rethrow_exceptions(kit.transfer_exceptions_into_jvms()); 812 } 813 814 assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off"); 815 816 if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) { 817 inline_string_calls(true); 818 } 819 820 if (failing()) return; 821 822 // Remove clutter produced by parsing. 823 if (!failing()) { 824 ResourceMark rm; 825 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 826 } 827 } 828 829 // Note: Large methods are capped off in do_one_bytecode(). 830 if (failing()) return; 831 832 // After parsing, node notes are no longer automagic. 833 // They must be propagated by register_new_node_with_optimizer(), 834 // clone(), or the like. 835 set_default_node_notes(nullptr); 836 837 #ifndef PRODUCT 838 if (should_print_igv(1)) { 839 _igv_printer->print_inlining(); 840 } 841 #endif 842 843 if (failing()) return; 844 NOT_PRODUCT( verify_graph_edges(); ) 845 846 if (StressLCM || StressGCM || StressIGVN || StressCCP || 847 StressIncrementalInlining || StressMacroExpansion) { 848 initialize_stress_seed(directive); 849 } 850 851 // Now optimize 852 Optimize(); 853 if (failing()) return; 854 NOT_PRODUCT( verify_graph_edges(); ) 855 856 #ifndef PRODUCT 857 if (should_print_ideal()) { 858 print_ideal_ir("print_ideal"); 859 } 860 #endif 861 862 #ifdef ASSERT 863 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 864 bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen); 865 #endif 866 867 // Dump compilation data to replay it. 868 if (directive->DumpReplayOption) { 869 env()->dump_replay_data(_compile_id); 870 } 871 if (directive->DumpInlineOption && (ilt() != nullptr)) { 872 env()->dump_inline_data(_compile_id); 873 } 874 875 // Now that we know the size of all the monitors we can add a fixed slot 876 // for the original deopt pc. 877 int next_slot = fixed_slots() + (sizeof(address) / VMRegImpl::stack_slot_size); 878 set_fixed_slots(next_slot); 879 880 // Compute when to use implicit null checks. Used by matching trap based 881 // nodes and NullCheck optimization. 882 set_allowed_deopt_reasons(); 883 884 // Now generate code 885 Code_Gen(); 886 } 887 888 //------------------------------Compile---------------------------------------- 889 // Compile a runtime stub 890 Compile::Compile( ciEnv* ci_env, 891 TypeFunc_generator generator, 892 address stub_function, 893 const char *stub_name, 894 int is_fancy_jump, 895 bool pass_tls, 896 bool return_pc, 897 DirectiveSet* directive) 898 : Phase(Compiler), 899 _compile_id(0), 900 _options(Options::for_runtime_stub()), 901 _method(nullptr), 902 _entry_bci(InvocationEntryBci), 903 _stub_function(stub_function), 904 _stub_name(stub_name), 905 _stub_entry_point(nullptr), 906 _max_node_limit(MaxNodeLimit), 907 _post_loop_opts_phase(false), 908 _allow_macro_nodes(true), 909 _inlining_progress(false), 910 _inlining_incrementally(false), 911 _has_reserved_stack_access(false), 912 #ifndef PRODUCT 913 _igv_idx(0), 914 _trace_opto_output(directive->TraceOptoOutputOption), 915 #endif 916 _has_method_handle_invokes(false), 917 _clinit_barrier_on_entry(false), 918 _stress_seed(0), 919 _comp_arena(mtCompiler), 920 _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())), 921 _env(ci_env), 922 _directive(directive), 923 _log(ci_env->log()), 924 _first_failure_details(nullptr), 925 _for_post_loop_igvn(comp_arena(), 8, 0, nullptr), 926 _congraph(nullptr), 927 NOT_PRODUCT(_igv_printer(nullptr) COMMA) 928 _unique(0), 929 _dead_node_count(0), 930 _dead_node_list(comp_arena()), 931 _node_arena_one(mtCompiler), 932 _node_arena_two(mtCompiler), 933 _node_arena(&_node_arena_one), 934 _mach_constant_base_node(nullptr), 935 _Compile_types(mtCompiler), 936 _initial_gvn(nullptr), 937 _igvn_worklist(nullptr), 938 _types(nullptr), 939 _node_hash(nullptr), 940 _number_of_mh_late_inlines(0), 941 _oom(false), 942 _print_inlining_stream(new (mtCompiler) stringStream()), 943 _print_inlining_list(nullptr), 944 _print_inlining_idx(0), 945 _print_inlining_output(nullptr), 946 _replay_inline_data(nullptr), 947 _java_calls(0), 948 _inner_loops(0), 949 _interpreter_frame_size(0), 950 _output(nullptr), 951 #ifndef PRODUCT 952 _in_dump_cnt(0), 953 #endif 954 _allowed_reasons(0) { 955 C = this; 956 957 TraceTime t1(nullptr, &_t_totalCompilation, CITime, false); 958 TraceTime t2(nullptr, &_t_stubCompilation, CITime, false); 959 960 #ifndef PRODUCT 961 set_print_assembly(PrintFrameConverterAssembly); 962 set_parsed_irreducible_loop(false); 963 #else 964 set_print_assembly(false); // Must initialize. 965 #endif 966 set_has_irreducible_loop(false); // no loops 967 968 CompileWrapper cw(this); 969 Init(/*do_aliasing=*/ false); 970 init_tf((*generator)()); 971 972 _igvn_worklist = new (comp_arena()) Unique_Node_List(comp_arena()); 973 _types = new (comp_arena()) Type_Array(comp_arena()); 974 _node_hash = new (comp_arena()) NodeHash(comp_arena(), 255); 975 976 if (StressLCM || StressGCM) { 977 initialize_stress_seed(directive); 978 } 979 980 { 981 PhaseGVN gvn; 982 set_initial_gvn(&gvn); // not significant, but GraphKit guys use it pervasively 983 gvn.transform(top()); 984 985 GraphKit kit; 986 kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc); 987 } 988 989 NOT_PRODUCT( verify_graph_edges(); ) 990 991 Code_Gen(); 992 } 993 994 Compile::~Compile() { 995 delete _print_inlining_stream; 996 delete _first_failure_details; 997 }; 998 999 //------------------------------Init------------------------------------------- 1000 // Prepare for a single compilation 1001 void Compile::Init(bool aliasing) { 1002 _do_aliasing = aliasing; 1003 _unique = 0; 1004 _regalloc = nullptr; 1005 1006 _tf = nullptr; // filled in later 1007 _top = nullptr; // cached later 1008 _matcher = nullptr; // filled in later 1009 _cfg = nullptr; // filled in later 1010 1011 IA32_ONLY( set_24_bit_selection_and_mode(true, false); ) 1012 1013 _node_note_array = nullptr; 1014 _default_node_notes = nullptr; 1015 DEBUG_ONLY( _modified_nodes = nullptr; ) // Used in Optimize() 1016 1017 _immutable_memory = nullptr; // filled in at first inquiry 1018 1019 #ifdef ASSERT 1020 _phase_optimize_finished = false; 1021 _exception_backedge = false; 1022 _type_verify = nullptr; 1023 #endif 1024 1025 // Globally visible Nodes 1026 // First set TOP to null to give safe behavior during creation of RootNode 1027 set_cached_top_node(nullptr); 1028 set_root(new RootNode()); 1029 // Now that you have a Root to point to, create the real TOP 1030 set_cached_top_node( new ConNode(Type::TOP) ); 1031 set_recent_alloc(nullptr, nullptr); 1032 1033 // Create Debug Information Recorder to record scopes, oopmaps, etc. 1034 env()->set_oop_recorder(new OopRecorder(env()->arena())); 1035 env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder())); 1036 env()->set_dependencies(new Dependencies(env())); 1037 1038 _fixed_slots = 0; 1039 set_has_split_ifs(false); 1040 set_has_loops(false); // first approximation 1041 set_has_stringbuilder(false); 1042 set_has_boxed_value(false); 1043 _trap_can_recompile = false; // no traps emitted yet 1044 _major_progress = true; // start out assuming good things will happen 1045 set_has_unsafe_access(false); 1046 set_max_vector_size(0); 1047 set_clear_upper_avx(false); //false as default for clear upper bits of ymm registers 1048 Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist)); 1049 set_decompile_count(0); 1050 1051 #ifndef PRODUCT 1052 Copy::zero_to_bytes(_igv_phase_iter, sizeof(_igv_phase_iter)); 1053 #endif 1054 1055 set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption); 1056 _loop_opts_cnt = LoopOptsCount; 1057 set_do_inlining(Inline); 1058 set_max_inline_size(MaxInlineSize); 1059 set_freq_inline_size(FreqInlineSize); 1060 set_do_scheduling(OptoScheduling); 1061 1062 set_do_vector_loop(false); 1063 set_has_monitors(false); 1064 1065 if (AllowVectorizeOnDemand) { 1066 if (has_method() && _directive->VectorizeOption) { 1067 set_do_vector_loop(true); 1068 NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n", method()->name()->as_quoted_ascii());}) 1069 } else if (has_method() && method()->name() != 0 && 1070 method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) { 1071 set_do_vector_loop(true); 1072 } 1073 } 1074 set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally 1075 NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n", method()->name()->as_quoted_ascii());}) 1076 1077 _max_node_limit = _directive->MaxNodeLimitOption; 1078 1079 if (VM_Version::supports_fast_class_init_checks() && has_method() && !is_osr_compilation() && method()->needs_clinit_barrier()) { 1080 set_clinit_barrier_on_entry(true); 1081 } 1082 if (debug_info()->recording_non_safepoints()) { 1083 set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*> 1084 (comp_arena(), 8, 0, nullptr)); 1085 set_default_node_notes(Node_Notes::make(this)); 1086 } 1087 1088 const int grow_ats = 16; 1089 _max_alias_types = grow_ats; 1090 _alias_types = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats); 1091 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, grow_ats); 1092 Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats); 1093 { 1094 for (int i = 0; i < grow_ats; i++) _alias_types[i] = &ats[i]; 1095 } 1096 // Initialize the first few types. 1097 _alias_types[AliasIdxTop]->Init(AliasIdxTop, nullptr); 1098 _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM); 1099 _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM); 1100 _num_alias_types = AliasIdxRaw+1; 1101 // Zero out the alias type cache. 1102 Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache)); 1103 // A null adr_type hits in the cache right away. Preload the right answer. 1104 probe_alias_cache(nullptr)->_index = AliasIdxTop; 1105 } 1106 1107 //---------------------------init_start---------------------------------------- 1108 // Install the StartNode on this compile object. 1109 void Compile::init_start(StartNode* s) { 1110 if (failing()) 1111 return; // already failing 1112 assert(s == start(), ""); 1113 } 1114 1115 /** 1116 * Return the 'StartNode'. We must not have a pending failure, since the ideal graph 1117 * can be in an inconsistent state, i.e., we can get segmentation faults when traversing 1118 * the ideal graph. 1119 */ 1120 StartNode* Compile::start() const { 1121 assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason()); 1122 for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) { 1123 Node* start = root()->fast_out(i); 1124 if (start->is_Start()) { 1125 return start->as_Start(); 1126 } 1127 } 1128 fatal("Did not find Start node!"); 1129 return nullptr; 1130 } 1131 1132 //-------------------------------immutable_memory------------------------------------- 1133 // Access immutable memory 1134 Node* Compile::immutable_memory() { 1135 if (_immutable_memory != nullptr) { 1136 return _immutable_memory; 1137 } 1138 StartNode* s = start(); 1139 for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) { 1140 Node *p = s->fast_out(i); 1141 if (p != s && p->as_Proj()->_con == TypeFunc::Memory) { 1142 _immutable_memory = p; 1143 return _immutable_memory; 1144 } 1145 } 1146 ShouldNotReachHere(); 1147 return nullptr; 1148 } 1149 1150 //----------------------set_cached_top_node------------------------------------ 1151 // Install the cached top node, and make sure Node::is_top works correctly. 1152 void Compile::set_cached_top_node(Node* tn) { 1153 if (tn != nullptr) verify_top(tn); 1154 Node* old_top = _top; 1155 _top = tn; 1156 // Calling Node::setup_is_top allows the nodes the chance to adjust 1157 // their _out arrays. 1158 if (_top != nullptr) _top->setup_is_top(); 1159 if (old_top != nullptr) old_top->setup_is_top(); 1160 assert(_top == nullptr || top()->is_top(), ""); 1161 } 1162 1163 #ifdef ASSERT 1164 uint Compile::count_live_nodes_by_graph_walk() { 1165 Unique_Node_List useful(comp_arena()); 1166 // Get useful node list by walking the graph. 1167 identify_useful_nodes(useful); 1168 return useful.size(); 1169 } 1170 1171 void Compile::print_missing_nodes() { 1172 1173 // Return if CompileLog is null and PrintIdealNodeCount is false. 1174 if ((_log == nullptr) && (! PrintIdealNodeCount)) { 1175 return; 1176 } 1177 1178 // This is an expensive function. It is executed only when the user 1179 // specifies VerifyIdealNodeCount option or otherwise knows the 1180 // additional work that needs to be done to identify reachable nodes 1181 // by walking the flow graph and find the missing ones using 1182 // _dead_node_list. 1183 1184 Unique_Node_List useful(comp_arena()); 1185 // Get useful node list by walking the graph. 1186 identify_useful_nodes(useful); 1187 1188 uint l_nodes = C->live_nodes(); 1189 uint l_nodes_by_walk = useful.size(); 1190 1191 if (l_nodes != l_nodes_by_walk) { 1192 if (_log != nullptr) { 1193 _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk))); 1194 _log->stamp(); 1195 _log->end_head(); 1196 } 1197 VectorSet& useful_member_set = useful.member_set(); 1198 int last_idx = l_nodes_by_walk; 1199 for (int i = 0; i < last_idx; i++) { 1200 if (useful_member_set.test(i)) { 1201 if (_dead_node_list.test(i)) { 1202 if (_log != nullptr) { 1203 _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i); 1204 } 1205 if (PrintIdealNodeCount) { 1206 // Print the log message to tty 1207 tty->print_cr("mismatched_node idx='%d' both live and dead'", i); 1208 useful.at(i)->dump(); 1209 } 1210 } 1211 } 1212 else if (! _dead_node_list.test(i)) { 1213 if (_log != nullptr) { 1214 _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i); 1215 } 1216 if (PrintIdealNodeCount) { 1217 // Print the log message to tty 1218 tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i); 1219 } 1220 } 1221 } 1222 if (_log != nullptr) { 1223 _log->tail("mismatched_nodes"); 1224 } 1225 } 1226 } 1227 void Compile::record_modified_node(Node* n) { 1228 if (_modified_nodes != nullptr && !_inlining_incrementally && !n->is_Con()) { 1229 _modified_nodes->push(n); 1230 } 1231 } 1232 1233 void Compile::remove_modified_node(Node* n) { 1234 if (_modified_nodes != nullptr) { 1235 _modified_nodes->remove(n); 1236 } 1237 } 1238 #endif 1239 1240 #ifndef PRODUCT 1241 void Compile::verify_top(Node* tn) const { 1242 if (tn != nullptr) { 1243 assert(tn->is_Con(), "top node must be a constant"); 1244 assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type"); 1245 assert(tn->in(0) != nullptr, "must have live top node"); 1246 } 1247 } 1248 #endif 1249 1250 1251 ///-------------------Managing Per-Node Debug & Profile Info------------------- 1252 1253 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) { 1254 guarantee(arr != nullptr, ""); 1255 int num_blocks = arr->length(); 1256 if (grow_by < num_blocks) grow_by = num_blocks; 1257 int num_notes = grow_by * _node_notes_block_size; 1258 Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes); 1259 Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes)); 1260 while (num_notes > 0) { 1261 arr->append(notes); 1262 notes += _node_notes_block_size; 1263 num_notes -= _node_notes_block_size; 1264 } 1265 assert(num_notes == 0, "exact multiple, please"); 1266 } 1267 1268 bool Compile::copy_node_notes_to(Node* dest, Node* source) { 1269 if (source == nullptr || dest == nullptr) return false; 1270 1271 if (dest->is_Con()) 1272 return false; // Do not push debug info onto constants. 1273 1274 #ifdef ASSERT 1275 // Leave a bread crumb trail pointing to the original node: 1276 if (dest != nullptr && dest != source && dest->debug_orig() == nullptr) { 1277 dest->set_debug_orig(source); 1278 } 1279 #endif 1280 1281 if (node_note_array() == nullptr) 1282 return false; // Not collecting any notes now. 1283 1284 // This is a copy onto a pre-existing node, which may already have notes. 1285 // If both nodes have notes, do not overwrite any pre-existing notes. 1286 Node_Notes* source_notes = node_notes_at(source->_idx); 1287 if (source_notes == nullptr || source_notes->is_clear()) return false; 1288 Node_Notes* dest_notes = node_notes_at(dest->_idx); 1289 if (dest_notes == nullptr || dest_notes->is_clear()) { 1290 return set_node_notes_at(dest->_idx, source_notes); 1291 } 1292 1293 Node_Notes merged_notes = (*source_notes); 1294 // The order of operations here ensures that dest notes will win... 1295 merged_notes.update_from(dest_notes); 1296 return set_node_notes_at(dest->_idx, &merged_notes); 1297 } 1298 1299 1300 //--------------------------allow_range_check_smearing------------------------- 1301 // Gating condition for coalescing similar range checks. 1302 // Sometimes we try 'speculatively' replacing a series of a range checks by a 1303 // single covering check that is at least as strong as any of them. 1304 // If the optimization succeeds, the simplified (strengthened) range check 1305 // will always succeed. If it fails, we will deopt, and then give up 1306 // on the optimization. 1307 bool Compile::allow_range_check_smearing() const { 1308 // If this method has already thrown a range-check, 1309 // assume it was because we already tried range smearing 1310 // and it failed. 1311 uint already_trapped = trap_count(Deoptimization::Reason_range_check); 1312 return !already_trapped; 1313 } 1314 1315 1316 //------------------------------flatten_alias_type----------------------------- 1317 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const { 1318 assert(do_aliasing(), "Aliasing should be enabled"); 1319 int offset = tj->offset(); 1320 TypePtr::PTR ptr = tj->ptr(); 1321 1322 // Known instance (scalarizable allocation) alias only with itself. 1323 bool is_known_inst = tj->isa_oopptr() != nullptr && 1324 tj->is_oopptr()->is_known_instance(); 1325 1326 // Process weird unsafe references. 1327 if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) { 1328 assert(InlineUnsafeOps || StressReflectiveCode, "indeterminate pointers come only from unsafe ops"); 1329 assert(!is_known_inst, "scalarizable allocation should not have unsafe references"); 1330 tj = TypeOopPtr::BOTTOM; 1331 ptr = tj->ptr(); 1332 offset = tj->offset(); 1333 } 1334 1335 // Array pointers need some flattening 1336 const TypeAryPtr* ta = tj->isa_aryptr(); 1337 if (ta && ta->is_stable()) { 1338 // Erase stability property for alias analysis. 1339 tj = ta = ta->cast_to_stable(false); 1340 } 1341 if( ta && is_known_inst ) { 1342 if ( offset != Type::OffsetBot && 1343 offset > arrayOopDesc::length_offset_in_bytes() ) { 1344 offset = Type::OffsetBot; // Flatten constant access into array body only 1345 tj = ta = ta-> 1346 remove_speculative()-> 1347 cast_to_ptr_type(ptr)-> 1348 with_offset(offset); 1349 } 1350 } else if (ta) { 1351 // For arrays indexed by constant indices, we flatten the alias 1352 // space to include all of the array body. Only the header, klass 1353 // and array length can be accessed un-aliased. 1354 if( offset != Type::OffsetBot ) { 1355 if( ta->const_oop() ) { // MethodData* or Method* 1356 offset = Type::OffsetBot; // Flatten constant access into array body 1357 tj = ta = ta-> 1358 remove_speculative()-> 1359 cast_to_ptr_type(ptr)-> 1360 cast_to_exactness(false)-> 1361 with_offset(offset); 1362 } else if( offset == arrayOopDesc::length_offset_in_bytes() ) { 1363 // range is OK as-is. 1364 tj = ta = TypeAryPtr::RANGE; 1365 } else if( offset == oopDesc::klass_offset_in_bytes() ) { 1366 tj = TypeInstPtr::KLASS; // all klass loads look alike 1367 ta = TypeAryPtr::RANGE; // generic ignored junk 1368 ptr = TypePtr::BotPTR; 1369 } else if( offset == oopDesc::mark_offset_in_bytes() ) { 1370 tj = TypeInstPtr::MARK; 1371 ta = TypeAryPtr::RANGE; // generic ignored junk 1372 ptr = TypePtr::BotPTR; 1373 } else { // Random constant offset into array body 1374 offset = Type::OffsetBot; // Flatten constant access into array body 1375 tj = ta = ta-> 1376 remove_speculative()-> 1377 cast_to_ptr_type(ptr)-> 1378 cast_to_exactness(false)-> 1379 with_offset(offset); 1380 } 1381 } 1382 // Arrays of fixed size alias with arrays of unknown size. 1383 if (ta->size() != TypeInt::POS) { 1384 const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS); 1385 tj = ta = ta-> 1386 remove_speculative()-> 1387 cast_to_ptr_type(ptr)-> 1388 with_ary(tary)-> 1389 cast_to_exactness(false); 1390 } 1391 // Arrays of known objects become arrays of unknown objects. 1392 if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) { 1393 const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size()); 1394 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1395 } 1396 if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) { 1397 const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size()); 1398 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,nullptr,false,offset); 1399 } 1400 // Arrays of bytes and of booleans both use 'bastore' and 'baload' so 1401 // cannot be distinguished by bytecode alone. 1402 if (ta->elem() == TypeInt::BOOL) { 1403 const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size()); 1404 ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE); 1405 tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset); 1406 } 1407 // During the 2nd round of IterGVN, NotNull castings are removed. 1408 // Make sure the Bottom and NotNull variants alias the same. 1409 // Also, make sure exact and non-exact variants alias the same. 1410 if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != nullptr) { 1411 tj = ta = ta-> 1412 remove_speculative()-> 1413 cast_to_ptr_type(TypePtr::BotPTR)-> 1414 cast_to_exactness(false)-> 1415 with_offset(offset); 1416 } 1417 } 1418 1419 // Oop pointers need some flattening 1420 const TypeInstPtr *to = tj->isa_instptr(); 1421 if (to && to != TypeOopPtr::BOTTOM) { 1422 ciInstanceKlass* ik = to->instance_klass(); 1423 if( ptr == TypePtr::Constant ) { 1424 if (ik != ciEnv::current()->Class_klass() || 1425 offset < ik->layout_helper_size_in_bytes()) { 1426 // No constant oop pointers (such as Strings); they alias with 1427 // unknown strings. 1428 assert(!is_known_inst, "not scalarizable allocation"); 1429 tj = to = to-> 1430 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1431 remove_speculative()-> 1432 cast_to_ptr_type(TypePtr::BotPTR)-> 1433 cast_to_exactness(false); 1434 } 1435 } else if( is_known_inst ) { 1436 tj = to; // Keep NotNull and klass_is_exact for instance type 1437 } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) { 1438 // During the 2nd round of IterGVN, NotNull castings are removed. 1439 // Make sure the Bottom and NotNull variants alias the same. 1440 // Also, make sure exact and non-exact variants alias the same. 1441 tj = to = to-> 1442 remove_speculative()-> 1443 cast_to_instance_id(TypeOopPtr::InstanceBot)-> 1444 cast_to_ptr_type(TypePtr::BotPTR)-> 1445 cast_to_exactness(false); 1446 } 1447 if (to->speculative() != nullptr) { 1448 tj = to = to->remove_speculative(); 1449 } 1450 // Canonicalize the holder of this field 1451 if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) { 1452 // First handle header references such as a LoadKlassNode, even if the 1453 // object's klass is unloaded at compile time (4965979). 1454 if (!is_known_inst) { // Do it only for non-instance types 1455 tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, nullptr, offset); 1456 } 1457 } else if (offset < 0 || offset >= ik->layout_helper_size_in_bytes()) { 1458 // Static fields are in the space above the normal instance 1459 // fields in the java.lang.Class instance. 1460 if (ik != ciEnv::current()->Class_klass()) { 1461 to = nullptr; 1462 tj = TypeOopPtr::BOTTOM; 1463 offset = tj->offset(); 1464 } 1465 } else { 1466 ciInstanceKlass *canonical_holder = ik->get_canonical_holder(offset); 1467 assert(offset < canonical_holder->layout_helper_size_in_bytes(), ""); 1468 if (!ik->equals(canonical_holder) || tj->offset() != offset) { 1469 if( is_known_inst ) { 1470 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, nullptr, offset, to->instance_id()); 1471 } else { 1472 tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, nullptr, offset); 1473 } 1474 } 1475 } 1476 } 1477 1478 // Klass pointers to object array klasses need some flattening 1479 const TypeKlassPtr *tk = tj->isa_klassptr(); 1480 if( tk ) { 1481 // If we are referencing a field within a Klass, we need 1482 // to assume the worst case of an Object. Both exact and 1483 // inexact types must flatten to the same alias class so 1484 // use NotNull as the PTR. 1485 if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) { 1486 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, 1487 env()->Object_klass(), 1488 offset); 1489 } 1490 1491 if (tk->isa_aryklassptr() && tk->is_aryklassptr()->elem()->isa_klassptr()) { 1492 ciKlass* k = ciObjArrayKlass::make(env()->Object_klass()); 1493 if (!k || !k->is_loaded()) { // Only fails for some -Xcomp runs 1494 tj = tk = TypeInstKlassPtr::make(TypePtr::NotNull, env()->Object_klass(), offset); 1495 } else { 1496 tj = tk = TypeAryKlassPtr::make(TypePtr::NotNull, tk->is_aryklassptr()->elem(), k, offset); 1497 } 1498 } 1499 1500 // Check for precise loads from the primary supertype array and force them 1501 // to the supertype cache alias index. Check for generic array loads from 1502 // the primary supertype array and also force them to the supertype cache 1503 // alias index. Since the same load can reach both, we need to merge 1504 // these 2 disparate memories into the same alias class. Since the 1505 // primary supertype array is read-only, there's no chance of confusion 1506 // where we bypass an array load and an array store. 1507 int primary_supers_offset = in_bytes(Klass::primary_supers_offset()); 1508 if (offset == Type::OffsetBot || 1509 (offset >= primary_supers_offset && 1510 offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) || 1511 offset == (int)in_bytes(Klass::secondary_super_cache_offset())) { 1512 offset = in_bytes(Klass::secondary_super_cache_offset()); 1513 tj = tk = tk->with_offset(offset); 1514 } 1515 } 1516 1517 // Flatten all Raw pointers together. 1518 if (tj->base() == Type::RawPtr) 1519 tj = TypeRawPtr::BOTTOM; 1520 1521 if (tj->base() == Type::AnyPtr) 1522 tj = TypePtr::BOTTOM; // An error, which the caller must check for. 1523 1524 offset = tj->offset(); 1525 assert( offset != Type::OffsetTop, "Offset has fallen from constant" ); 1526 1527 assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) || 1528 (offset == Type::OffsetBot && tj->base() == Type::AryPtr) || 1529 (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) || 1530 (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) || 1531 (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) || 1532 (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) || 1533 (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr), 1534 "For oops, klasses, raw offset must be constant; for arrays the offset is never known" ); 1535 assert( tj->ptr() != TypePtr::TopPTR && 1536 tj->ptr() != TypePtr::AnyNull && 1537 tj->ptr() != TypePtr::Null, "No imprecise addresses" ); 1538 // assert( tj->ptr() != TypePtr::Constant || 1539 // tj->base() == Type::RawPtr || 1540 // tj->base() == Type::KlassPtr, "No constant oop addresses" ); 1541 1542 return tj; 1543 } 1544 1545 void Compile::AliasType::Init(int i, const TypePtr* at) { 1546 assert(AliasIdxTop <= i && i < Compile::current()->_max_alias_types, "Invalid alias index"); 1547 _index = i; 1548 _adr_type = at; 1549 _field = nullptr; 1550 _element = nullptr; 1551 _is_rewritable = true; // default 1552 const TypeOopPtr *atoop = (at != nullptr) ? at->isa_oopptr() : nullptr; 1553 if (atoop != nullptr && atoop->is_known_instance()) { 1554 const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot); 1555 _general_index = Compile::current()->get_alias_index(gt); 1556 } else { 1557 _general_index = 0; 1558 } 1559 } 1560 1561 BasicType Compile::AliasType::basic_type() const { 1562 if (element() != nullptr) { 1563 const Type* element = adr_type()->is_aryptr()->elem(); 1564 return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type(); 1565 } if (field() != nullptr) { 1566 return field()->layout_type(); 1567 } else { 1568 return T_ILLEGAL; // unknown 1569 } 1570 } 1571 1572 //---------------------------------print_on------------------------------------ 1573 #ifndef PRODUCT 1574 void Compile::AliasType::print_on(outputStream* st) { 1575 if (index() < 10) 1576 st->print("@ <%d> ", index()); 1577 else st->print("@ <%d>", index()); 1578 st->print(is_rewritable() ? " " : " RO"); 1579 int offset = adr_type()->offset(); 1580 if (offset == Type::OffsetBot) 1581 st->print(" +any"); 1582 else st->print(" +%-3d", offset); 1583 st->print(" in "); 1584 adr_type()->dump_on(st); 1585 const TypeOopPtr* tjp = adr_type()->isa_oopptr(); 1586 if (field() != nullptr && tjp) { 1587 if (tjp->is_instptr()->instance_klass() != field()->holder() || 1588 tjp->offset() != field()->offset_in_bytes()) { 1589 st->print(" != "); 1590 field()->print(); 1591 st->print(" ***"); 1592 } 1593 } 1594 } 1595 1596 void print_alias_types() { 1597 Compile* C = Compile::current(); 1598 tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1); 1599 for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) { 1600 C->alias_type(idx)->print_on(tty); 1601 tty->cr(); 1602 } 1603 } 1604 #endif 1605 1606 1607 //----------------------------probe_alias_cache-------------------------------- 1608 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) { 1609 intptr_t key = (intptr_t) adr_type; 1610 key ^= key >> logAliasCacheSize; 1611 return &_alias_cache[key & right_n_bits(logAliasCacheSize)]; 1612 } 1613 1614 1615 //-----------------------------grow_alias_types-------------------------------- 1616 void Compile::grow_alias_types() { 1617 const int old_ats = _max_alias_types; // how many before? 1618 const int new_ats = old_ats; // how many more? 1619 const int grow_ats = old_ats+new_ats; // how many now? 1620 _max_alias_types = grow_ats; 1621 _alias_types = REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats); 1622 AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats); 1623 Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats); 1624 for (int i = 0; i < new_ats; i++) _alias_types[old_ats+i] = &ats[i]; 1625 } 1626 1627 1628 //--------------------------------find_alias_type------------------------------ 1629 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) { 1630 if (!do_aliasing()) { 1631 return alias_type(AliasIdxBot); 1632 } 1633 1634 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1635 if (ace->_adr_type == adr_type) { 1636 return alias_type(ace->_index); 1637 } 1638 1639 // Handle special cases. 1640 if (adr_type == nullptr) return alias_type(AliasIdxTop); 1641 if (adr_type == TypePtr::BOTTOM) return alias_type(AliasIdxBot); 1642 1643 // Do it the slow way. 1644 const TypePtr* flat = flatten_alias_type(adr_type); 1645 1646 #ifdef ASSERT 1647 { 1648 ResourceMark rm; 1649 assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s", 1650 Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat))); 1651 assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s", 1652 Type::str(adr_type)); 1653 if (flat->isa_oopptr() && !flat->isa_klassptr()) { 1654 const TypeOopPtr* foop = flat->is_oopptr(); 1655 // Scalarizable allocations have exact klass always. 1656 bool exact = !foop->klass_is_exact() || foop->is_known_instance(); 1657 const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr(); 1658 assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s", 1659 Type::str(foop), Type::str(xoop)); 1660 } 1661 } 1662 #endif 1663 1664 int idx = AliasIdxTop; 1665 for (int i = 0; i < num_alias_types(); i++) { 1666 if (alias_type(i)->adr_type() == flat) { 1667 idx = i; 1668 break; 1669 } 1670 } 1671 1672 if (idx == AliasIdxTop) { 1673 if (no_create) return nullptr; 1674 // Grow the array if necessary. 1675 if (_num_alias_types == _max_alias_types) grow_alias_types(); 1676 // Add a new alias type. 1677 idx = _num_alias_types++; 1678 _alias_types[idx]->Init(idx, flat); 1679 if (flat == TypeInstPtr::KLASS) alias_type(idx)->set_rewritable(false); 1680 if (flat == TypeAryPtr::RANGE) alias_type(idx)->set_rewritable(false); 1681 if (flat->isa_instptr()) { 1682 if (flat->offset() == java_lang_Class::klass_offset() 1683 && flat->is_instptr()->instance_klass() == env()->Class_klass()) 1684 alias_type(idx)->set_rewritable(false); 1685 } 1686 if (flat->isa_aryptr()) { 1687 #ifdef ASSERT 1688 const int header_size_min = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1689 // (T_BYTE has the weakest alignment and size restrictions...) 1690 assert(flat->offset() < header_size_min, "array body reference must be OffsetBot"); 1691 #endif 1692 if (flat->offset() == TypePtr::OffsetBot) { 1693 alias_type(idx)->set_element(flat->is_aryptr()->elem()); 1694 } 1695 } 1696 if (flat->isa_klassptr()) { 1697 if (UseCompactObjectHeaders) { 1698 if (flat->offset() == in_bytes(Klass::prototype_header_offset())) 1699 alias_type(idx)->set_rewritable(false); 1700 } 1701 if (flat->offset() == in_bytes(Klass::super_check_offset_offset())) 1702 alias_type(idx)->set_rewritable(false); 1703 if (flat->offset() == in_bytes(Klass::modifier_flags_offset())) 1704 alias_type(idx)->set_rewritable(false); 1705 if (flat->offset() == in_bytes(Klass::access_flags_offset())) 1706 alias_type(idx)->set_rewritable(false); 1707 if (flat->offset() == in_bytes(Klass::java_mirror_offset())) 1708 alias_type(idx)->set_rewritable(false); 1709 if (flat->offset() == in_bytes(Klass::secondary_super_cache_offset())) 1710 alias_type(idx)->set_rewritable(false); 1711 } 1712 // %%% (We would like to finalize JavaThread::threadObj_offset(), 1713 // but the base pointer type is not distinctive enough to identify 1714 // references into JavaThread.) 1715 1716 // Check for final fields. 1717 const TypeInstPtr* tinst = flat->isa_instptr(); 1718 if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) { 1719 ciField* field; 1720 if (tinst->const_oop() != nullptr && 1721 tinst->instance_klass() == ciEnv::current()->Class_klass() && 1722 tinst->offset() >= (tinst->instance_klass()->layout_helper_size_in_bytes())) { 1723 // static field 1724 ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 1725 field = k->get_field_by_offset(tinst->offset(), true); 1726 } else { 1727 ciInstanceKlass *k = tinst->instance_klass(); 1728 field = k->get_field_by_offset(tinst->offset(), false); 1729 } 1730 assert(field == nullptr || 1731 original_field == nullptr || 1732 (field->holder() == original_field->holder() && 1733 field->offset_in_bytes() == original_field->offset_in_bytes() && 1734 field->is_static() == original_field->is_static()), "wrong field?"); 1735 // Set field() and is_rewritable() attributes. 1736 if (field != nullptr) alias_type(idx)->set_field(field); 1737 } 1738 } 1739 1740 // Fill the cache for next time. 1741 ace->_adr_type = adr_type; 1742 ace->_index = idx; 1743 assert(alias_type(adr_type) == alias_type(idx), "type must be installed"); 1744 1745 // Might as well try to fill the cache for the flattened version, too. 1746 AliasCacheEntry* face = probe_alias_cache(flat); 1747 if (face->_adr_type == nullptr) { 1748 face->_adr_type = flat; 1749 face->_index = idx; 1750 assert(alias_type(flat) == alias_type(idx), "flat type must work too"); 1751 } 1752 1753 return alias_type(idx); 1754 } 1755 1756 1757 Compile::AliasType* Compile::alias_type(ciField* field) { 1758 const TypeOopPtr* t; 1759 if (field->is_static()) 1760 t = TypeInstPtr::make(field->holder()->java_mirror()); 1761 else 1762 t = TypeOopPtr::make_from_klass_raw(field->holder()); 1763 AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field); 1764 assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct"); 1765 return atp; 1766 } 1767 1768 1769 //------------------------------have_alias_type-------------------------------- 1770 bool Compile::have_alias_type(const TypePtr* adr_type) { 1771 AliasCacheEntry* ace = probe_alias_cache(adr_type); 1772 if (ace->_adr_type == adr_type) { 1773 return true; 1774 } 1775 1776 // Handle special cases. 1777 if (adr_type == nullptr) return true; 1778 if (adr_type == TypePtr::BOTTOM) return true; 1779 1780 return find_alias_type(adr_type, true, nullptr) != nullptr; 1781 } 1782 1783 //-----------------------------must_alias-------------------------------------- 1784 // True if all values of the given address type are in the given alias category. 1785 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) { 1786 if (alias_idx == AliasIdxBot) return true; // the universal category 1787 if (adr_type == nullptr) return true; // null serves as TypePtr::TOP 1788 if (alias_idx == AliasIdxTop) return false; // the empty category 1789 if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins 1790 1791 // the only remaining possible overlap is identity 1792 int adr_idx = get_alias_index(adr_type); 1793 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1794 assert(adr_idx == alias_idx || 1795 (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM 1796 && adr_type != TypeOopPtr::BOTTOM), 1797 "should not be testing for overlap with an unsafe pointer"); 1798 return adr_idx == alias_idx; 1799 } 1800 1801 //------------------------------can_alias-------------------------------------- 1802 // True if any values of the given address type are in the given alias category. 1803 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) { 1804 if (alias_idx == AliasIdxTop) return false; // the empty category 1805 if (adr_type == nullptr) return false; // null serves as TypePtr::TOP 1806 // Known instance doesn't alias with bottom memory 1807 if (alias_idx == AliasIdxBot) return !adr_type->is_known_instance(); // the universal category 1808 if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins 1809 1810 // the only remaining possible overlap is identity 1811 int adr_idx = get_alias_index(adr_type); 1812 assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, ""); 1813 return adr_idx == alias_idx; 1814 } 1815 1816 // Mark all ParsePredicateNodes as useless. They will later be removed from the graph in IGVN together with their 1817 // uncommon traps if no Runtime Predicates were created from the Parse Predicates. 1818 void Compile::mark_parse_predicate_nodes_useless(PhaseIterGVN& igvn) { 1819 if (parse_predicate_count() == 0) { 1820 return; 1821 } 1822 for (int i = 0; i < parse_predicate_count(); i++) { 1823 ParsePredicateNode* parse_predicate = _parse_predicates.at(i); 1824 parse_predicate->mark_useless(); 1825 igvn._worklist.push(parse_predicate); 1826 } 1827 _parse_predicates.clear(); 1828 } 1829 1830 void Compile::record_for_post_loop_opts_igvn(Node* n) { 1831 if (!n->for_post_loop_opts_igvn()) { 1832 assert(!_for_post_loop_igvn.contains(n), "duplicate"); 1833 n->add_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1834 _for_post_loop_igvn.append(n); 1835 } 1836 } 1837 1838 void Compile::remove_from_post_loop_opts_igvn(Node* n) { 1839 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1840 _for_post_loop_igvn.remove(n); 1841 } 1842 1843 void Compile::process_for_post_loop_opts_igvn(PhaseIterGVN& igvn) { 1844 // Verify that all previous optimizations produced a valid graph 1845 // at least to this point, even if no loop optimizations were done. 1846 PhaseIdealLoop::verify(igvn); 1847 1848 C->set_post_loop_opts_phase(); // no more loop opts allowed 1849 1850 assert(!C->major_progress(), "not cleared"); 1851 1852 if (_for_post_loop_igvn.length() > 0) { 1853 while (_for_post_loop_igvn.length() > 0) { 1854 Node* n = _for_post_loop_igvn.pop(); 1855 n->remove_flag(Node::NodeFlags::Flag_for_post_loop_opts_igvn); 1856 igvn._worklist.push(n); 1857 } 1858 igvn.optimize(); 1859 if (failing()) return; 1860 assert(_for_post_loop_igvn.length() == 0, "no more delayed nodes allowed"); 1861 assert(C->parse_predicate_count() == 0, "all parse predicates should have been removed now"); 1862 1863 // Sometimes IGVN sets major progress (e.g., when processing loop nodes). 1864 if (C->major_progress()) { 1865 C->clear_major_progress(); // ensure that major progress is now clear 1866 } 1867 } 1868 } 1869 1870 void Compile::record_unstable_if_trap(UnstableIfTrap* trap) { 1871 if (OptimizeUnstableIf) { 1872 _unstable_if_traps.append(trap); 1873 } 1874 } 1875 1876 void Compile::remove_useless_unstable_if_traps(Unique_Node_List& useful) { 1877 for (int i = _unstable_if_traps.length() - 1; i >= 0; i--) { 1878 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1879 Node* n = trap->uncommon_trap(); 1880 if (!useful.member(n)) { 1881 _unstable_if_traps.delete_at(i); // replaces i-th with last element which is known to be useful (already processed) 1882 } 1883 } 1884 } 1885 1886 // Remove the unstable if trap associated with 'unc' from candidates. It is either dead 1887 // or fold-compares case. Return true if succeed or not found. 1888 // 1889 // In rare cases, the found trap has been processed. It is too late to delete it. Return 1890 // false and ask fold-compares to yield. 1891 // 1892 // 'fold-compares' may use the uncommon_trap of the dominating IfNode to cover the fused 1893 // IfNode. This breaks the unstable_if trap invariant: control takes the unstable path 1894 // when deoptimization does happen. 1895 bool Compile::remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield) { 1896 for (int i = 0; i < _unstable_if_traps.length(); ++i) { 1897 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1898 if (trap->uncommon_trap() == unc) { 1899 if (yield && trap->modified()) { 1900 return false; 1901 } 1902 _unstable_if_traps.delete_at(i); 1903 break; 1904 } 1905 } 1906 return true; 1907 } 1908 1909 // Re-calculate unstable_if traps with the liveness of next_bci, which points to the unlikely path. 1910 // It needs to be done after igvn because fold-compares may fuse uncommon_traps and before renumbering. 1911 void Compile::process_for_unstable_if_traps(PhaseIterGVN& igvn) { 1912 for (int i = _unstable_if_traps.length() - 1; i >= 0; --i) { 1913 UnstableIfTrap* trap = _unstable_if_traps.at(i); 1914 CallStaticJavaNode* unc = trap->uncommon_trap(); 1915 int next_bci = trap->next_bci(); 1916 bool modified = trap->modified(); 1917 1918 if (next_bci != -1 && !modified) { 1919 assert(!_dead_node_list.test(unc->_idx), "changing a dead node!"); 1920 JVMState* jvms = unc->jvms(); 1921 ciMethod* method = jvms->method(); 1922 ciBytecodeStream iter(method); 1923 1924 iter.force_bci(jvms->bci()); 1925 assert(next_bci == iter.next_bci() || next_bci == iter.get_dest(), "wrong next_bci at unstable_if"); 1926 Bytecodes::Code c = iter.cur_bc(); 1927 Node* lhs = nullptr; 1928 Node* rhs = nullptr; 1929 if (c == Bytecodes::_if_acmpeq || c == Bytecodes::_if_acmpne) { 1930 lhs = unc->peek_operand(0); 1931 rhs = unc->peek_operand(1); 1932 } else if (c == Bytecodes::_ifnull || c == Bytecodes::_ifnonnull) { 1933 lhs = unc->peek_operand(0); 1934 } 1935 1936 ResourceMark rm; 1937 const MethodLivenessResult& live_locals = method->liveness_at_bci(next_bci); 1938 assert(live_locals.is_valid(), "broken liveness info"); 1939 int len = (int)live_locals.size(); 1940 1941 for (int i = 0; i < len; i++) { 1942 Node* local = unc->local(jvms, i); 1943 // kill local using the liveness of next_bci. 1944 // give up when the local looks like an operand to secure reexecution. 1945 if (!live_locals.at(i) && !local->is_top() && local != lhs && local!= rhs) { 1946 uint idx = jvms->locoff() + i; 1947 #ifdef ASSERT 1948 if (PrintOpto && Verbose) { 1949 tty->print("[unstable_if] kill local#%d: ", idx); 1950 local->dump(); 1951 tty->cr(); 1952 } 1953 #endif 1954 igvn.replace_input_of(unc, idx, top()); 1955 modified = true; 1956 } 1957 } 1958 } 1959 1960 // keep the mondified trap for late query 1961 if (modified) { 1962 trap->set_modified(); 1963 } else { 1964 _unstable_if_traps.delete_at(i); 1965 } 1966 } 1967 igvn.optimize(); 1968 } 1969 1970 // StringOpts and late inlining of string methods 1971 void Compile::inline_string_calls(bool parse_time) { 1972 { 1973 // remove useless nodes to make the usage analysis simpler 1974 ResourceMark rm; 1975 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 1976 } 1977 1978 { 1979 ResourceMark rm; 1980 print_method(PHASE_BEFORE_STRINGOPTS, 3); 1981 PhaseStringOpts pso(initial_gvn()); 1982 print_method(PHASE_AFTER_STRINGOPTS, 3); 1983 } 1984 1985 // now inline anything that we skipped the first time around 1986 if (!parse_time) { 1987 _late_inlines_pos = _late_inlines.length(); 1988 } 1989 1990 while (_string_late_inlines.length() > 0) { 1991 CallGenerator* cg = _string_late_inlines.pop(); 1992 cg->do_late_inline(); 1993 if (failing()) return; 1994 } 1995 _string_late_inlines.trunc_to(0); 1996 } 1997 1998 // Late inlining of boxing methods 1999 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) { 2000 if (_boxing_late_inlines.length() > 0) { 2001 assert(has_boxed_value(), "inconsistent"); 2002 2003 set_inlining_incrementally(true); 2004 2005 igvn_worklist()->ensure_empty(); // should be done with igvn 2006 2007 _late_inlines_pos = _late_inlines.length(); 2008 2009 while (_boxing_late_inlines.length() > 0) { 2010 CallGenerator* cg = _boxing_late_inlines.pop(); 2011 cg->do_late_inline(); 2012 if (failing()) return; 2013 } 2014 _boxing_late_inlines.trunc_to(0); 2015 2016 inline_incrementally_cleanup(igvn); 2017 2018 set_inlining_incrementally(false); 2019 } 2020 } 2021 2022 bool Compile::inline_incrementally_one() { 2023 assert(IncrementalInline, "incremental inlining should be on"); 2024 2025 TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]); 2026 2027 set_inlining_progress(false); 2028 set_do_cleanup(false); 2029 2030 for (int i = 0; i < _late_inlines.length(); i++) { 2031 _late_inlines_pos = i+1; 2032 CallGenerator* cg = _late_inlines.at(i); 2033 bool does_dispatch = cg->is_virtual_late_inline() || cg->is_mh_late_inline(); 2034 if (inlining_incrementally() || does_dispatch) { // a call can be either inlined or strength-reduced to a direct call 2035 cg->do_late_inline(); 2036 assert(_late_inlines.at(i) == cg, "no insertions before current position allowed"); 2037 if (failing()) { 2038 return false; 2039 } else if (inlining_progress()) { 2040 _late_inlines_pos = i+1; // restore the position in case new elements were inserted 2041 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3, cg->call_node()); 2042 break; // process one call site at a time 2043 } 2044 } else { 2045 // Ignore late inline direct calls when inlining is not allowed. 2046 // They are left in the late inline list when node budget is exhausted until the list is fully drained. 2047 } 2048 } 2049 // Remove processed elements. 2050 _late_inlines.remove_till(_late_inlines_pos); 2051 _late_inlines_pos = 0; 2052 2053 assert(inlining_progress() || _late_inlines.length() == 0, "no progress"); 2054 2055 bool needs_cleanup = do_cleanup() || over_inlining_cutoff(); 2056 2057 set_inlining_progress(false); 2058 set_do_cleanup(false); 2059 2060 bool force_cleanup = directive()->IncrementalInlineForceCleanupOption; 2061 return (_late_inlines.length() > 0) && !needs_cleanup && !force_cleanup; 2062 } 2063 2064 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) { 2065 { 2066 TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]); 2067 ResourceMark rm; 2068 PhaseRemoveUseless pru(initial_gvn(), *igvn_worklist()); 2069 } 2070 { 2071 TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]); 2072 igvn.reset_from_gvn(initial_gvn()); 2073 igvn.optimize(); 2074 if (failing()) return; 2075 } 2076 print_method(PHASE_INCREMENTAL_INLINE_CLEANUP, 3); 2077 } 2078 2079 // Perform incremental inlining until bound on number of live nodes is reached 2080 void Compile::inline_incrementally(PhaseIterGVN& igvn) { 2081 TracePhase tp("incrementalInline", &timers[_t_incrInline]); 2082 2083 set_inlining_incrementally(true); 2084 uint low_live_nodes = 0; 2085 2086 while (_late_inlines.length() > 0) { 2087 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2088 if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) { 2089 TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]); 2090 // PhaseIdealLoop is expensive so we only try it once we are 2091 // out of live nodes and we only try it again if the previous 2092 // helped got the number of nodes down significantly 2093 PhaseIdealLoop::optimize(igvn, LoopOptsNone); 2094 if (failing()) return; 2095 low_live_nodes = live_nodes(); 2096 _major_progress = true; 2097 } 2098 2099 if (live_nodes() > (uint)LiveNodeCountInliningCutoff) { 2100 bool do_print_inlining = print_inlining() || print_intrinsics(); 2101 if (do_print_inlining || log() != nullptr) { 2102 // Print inlining message for candidates that we couldn't inline for lack of space. 2103 for (int i = 0; i < _late_inlines.length(); i++) { 2104 CallGenerator* cg = _late_inlines.at(i); 2105 const char* msg = "live nodes > LiveNodeCountInliningCutoff"; 2106 if (do_print_inlining) { 2107 cg->print_inlining_late(InliningResult::FAILURE, msg); 2108 } 2109 log_late_inline_failure(cg, msg); 2110 } 2111 } 2112 break; // finish 2113 } 2114 } 2115 2116 igvn_worklist()->ensure_empty(); // should be done with igvn 2117 2118 while (inline_incrementally_one()) { 2119 assert(!failing(), "inconsistent"); 2120 } 2121 if (failing()) return; 2122 2123 inline_incrementally_cleanup(igvn); 2124 2125 print_method(PHASE_INCREMENTAL_INLINE_STEP, 3); 2126 2127 if (failing()) return; 2128 2129 if (_late_inlines.length() == 0) { 2130 break; // no more progress 2131 } 2132 } 2133 2134 igvn_worklist()->ensure_empty(); // should be done with igvn 2135 2136 if (_string_late_inlines.length() > 0) { 2137 assert(has_stringbuilder(), "inconsistent"); 2138 2139 inline_string_calls(false); 2140 2141 if (failing()) return; 2142 2143 inline_incrementally_cleanup(igvn); 2144 } 2145 2146 set_inlining_incrementally(false); 2147 } 2148 2149 void Compile::process_late_inline_calls_no_inline(PhaseIterGVN& igvn) { 2150 // "inlining_incrementally() == false" is used to signal that no inlining is allowed 2151 // (see LateInlineVirtualCallGenerator::do_late_inline_check() for details). 2152 // Tracking and verification of modified nodes is disabled by setting "_modified_nodes == nullptr" 2153 // as if "inlining_incrementally() == true" were set. 2154 assert(inlining_incrementally() == false, "not allowed"); 2155 assert(_modified_nodes == nullptr, "not allowed"); 2156 assert(_late_inlines.length() > 0, "sanity"); 2157 2158 while (_late_inlines.length() > 0) { 2159 igvn_worklist()->ensure_empty(); // should be done with igvn 2160 2161 while (inline_incrementally_one()) { 2162 assert(!failing(), "inconsistent"); 2163 } 2164 if (failing()) return; 2165 2166 inline_incrementally_cleanup(igvn); 2167 } 2168 } 2169 2170 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) { 2171 if (_loop_opts_cnt > 0) { 2172 while (major_progress() && (_loop_opts_cnt > 0)) { 2173 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2174 PhaseIdealLoop::optimize(igvn, mode); 2175 _loop_opts_cnt--; 2176 if (failing()) return false; 2177 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2); 2178 } 2179 } 2180 return true; 2181 } 2182 2183 // Remove edges from "root" to each SafePoint at a backward branch. 2184 // They were inserted during parsing (see add_safepoint()) to make 2185 // infinite loops without calls or exceptions visible to root, i.e., 2186 // useful. 2187 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) { 2188 Node *r = root(); 2189 if (r != nullptr) { 2190 for (uint i = r->req(); i < r->len(); ++i) { 2191 Node *n = r->in(i); 2192 if (n != nullptr && n->is_SafePoint()) { 2193 r->rm_prec(i); 2194 if (n->outcnt() == 0) { 2195 igvn.remove_dead_node(n); 2196 } 2197 --i; 2198 } 2199 } 2200 // Parsing may have added top inputs to the root node (Path 2201 // leading to the Halt node proven dead). Make sure we get a 2202 // chance to clean them up. 2203 igvn._worklist.push(r); 2204 igvn.optimize(); 2205 } 2206 } 2207 2208 //------------------------------Optimize--------------------------------------- 2209 // Given a graph, optimize it. 2210 void Compile::Optimize() { 2211 TracePhase tp("optimizer", &timers[_t_optimizer]); 2212 2213 #ifndef PRODUCT 2214 if (env()->break_at_compile()) { 2215 BREAKPOINT; 2216 } 2217 2218 #endif 2219 2220 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2221 #ifdef ASSERT 2222 bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize); 2223 #endif 2224 2225 ResourceMark rm; 2226 2227 print_inlining_reinit(); 2228 2229 NOT_PRODUCT( verify_graph_edges(); ) 2230 2231 print_method(PHASE_AFTER_PARSING, 1); 2232 2233 { 2234 // Iterative Global Value Numbering, including ideal transforms 2235 // Initialize IterGVN with types and values from parse-time GVN 2236 PhaseIterGVN igvn(initial_gvn()); 2237 #ifdef ASSERT 2238 _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena()); 2239 #endif 2240 { 2241 TracePhase tp("iterGVN", &timers[_t_iterGVN]); 2242 igvn.optimize(); 2243 } 2244 2245 if (failing()) return; 2246 2247 print_method(PHASE_ITER_GVN1, 2); 2248 2249 process_for_unstable_if_traps(igvn); 2250 2251 if (failing()) return; 2252 2253 inline_incrementally(igvn); 2254 2255 print_method(PHASE_INCREMENTAL_INLINE, 2); 2256 2257 if (failing()) return; 2258 2259 if (eliminate_boxing()) { 2260 // Inline valueOf() methods now. 2261 inline_boxing_calls(igvn); 2262 2263 if (failing()) return; 2264 2265 if (AlwaysIncrementalInline || StressIncrementalInlining) { 2266 inline_incrementally(igvn); 2267 } 2268 2269 print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2); 2270 2271 if (failing()) return; 2272 } 2273 2274 // Remove the speculative part of types and clean up the graph from 2275 // the extra CastPP nodes whose only purpose is to carry them. Do 2276 // that early so that optimizations are not disrupted by the extra 2277 // CastPP nodes. 2278 remove_speculative_types(igvn); 2279 2280 if (failing()) return; 2281 2282 // No more new expensive nodes will be added to the list from here 2283 // so keep only the actual candidates for optimizations. 2284 cleanup_expensive_nodes(igvn); 2285 2286 if (failing()) return; 2287 2288 assert(EnableVectorSupport || !has_vbox_nodes(), "sanity"); 2289 if (EnableVectorSupport && has_vbox_nodes()) { 2290 TracePhase tp("", &timers[_t_vector]); 2291 PhaseVector pv(igvn); 2292 pv.optimize_vector_boxes(); 2293 if (failing()) return; 2294 print_method(PHASE_ITER_GVN_AFTER_VECTOR, 2); 2295 } 2296 assert(!has_vbox_nodes(), "sanity"); 2297 2298 if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) { 2299 Compile::TracePhase tp("", &timers[_t_renumberLive]); 2300 igvn_worklist()->ensure_empty(); // should be done with igvn 2301 { 2302 ResourceMark rm; 2303 PhaseRenumberLive prl(initial_gvn(), *igvn_worklist()); 2304 } 2305 igvn.reset_from_gvn(initial_gvn()); 2306 igvn.optimize(); 2307 if (failing()) return; 2308 } 2309 2310 // Now that all inlining is over and no PhaseRemoveUseless will run, cut edge from root to loop 2311 // safepoints 2312 remove_root_to_sfpts_edges(igvn); 2313 2314 if (failing()) return; 2315 2316 // Perform escape analysis 2317 if (do_escape_analysis() && ConnectionGraph::has_candidates(this)) { 2318 if (has_loops()) { 2319 // Cleanup graph (remove dead nodes). 2320 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2321 PhaseIdealLoop::optimize(igvn, LoopOptsMaxUnroll); 2322 if (failing()) return; 2323 } 2324 bool progress; 2325 print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2); 2326 do { 2327 ConnectionGraph::do_analysis(this, &igvn); 2328 2329 if (failing()) return; 2330 2331 int mcount = macro_count(); // Record number of allocations and locks before IGVN 2332 2333 // Optimize out fields loads from scalar replaceable allocations. 2334 igvn.optimize(); 2335 print_method(PHASE_ITER_GVN_AFTER_EA, 2); 2336 2337 if (failing()) return; 2338 2339 if (congraph() != nullptr && macro_count() > 0) { 2340 TracePhase tp("macroEliminate", &timers[_t_macroEliminate]); 2341 PhaseMacroExpand mexp(igvn); 2342 mexp.eliminate_macro_nodes(); 2343 if (failing()) return; 2344 2345 igvn.set_delay_transform(false); 2346 igvn.optimize(); 2347 if (failing()) return; 2348 2349 print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2); 2350 } 2351 2352 ConnectionGraph::verify_ram_nodes(this, root()); 2353 if (failing()) return; 2354 2355 progress = do_iterative_escape_analysis() && 2356 (macro_count() < mcount) && 2357 ConnectionGraph::has_candidates(this); 2358 // Try again if candidates exist and made progress 2359 // by removing some allocations and/or locks. 2360 } while (progress); 2361 } 2362 2363 // Loop transforms on the ideal graph. Range Check Elimination, 2364 // peeling, unrolling, etc. 2365 2366 // Set loop opts counter 2367 if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) { 2368 { 2369 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2370 PhaseIdealLoop::optimize(igvn, LoopOptsDefault); 2371 _loop_opts_cnt--; 2372 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2); 2373 if (failing()) return; 2374 } 2375 // Loop opts pass if partial peeling occurred in previous pass 2376 if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) { 2377 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2378 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2379 _loop_opts_cnt--; 2380 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2); 2381 if (failing()) return; 2382 } 2383 // Loop opts pass for loop-unrolling before CCP 2384 if(major_progress() && (_loop_opts_cnt > 0)) { 2385 TracePhase tp("idealLoop", &timers[_t_idealLoop]); 2386 PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf); 2387 _loop_opts_cnt--; 2388 if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2); 2389 } 2390 if (!failing()) { 2391 // Verify that last round of loop opts produced a valid graph 2392 PhaseIdealLoop::verify(igvn); 2393 } 2394 } 2395 if (failing()) return; 2396 2397 // Conditional Constant Propagation; 2398 print_method(PHASE_BEFORE_CCP1, 2); 2399 PhaseCCP ccp( &igvn ); 2400 assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)"); 2401 { 2402 TracePhase tp("ccp", &timers[_t_ccp]); 2403 ccp.do_transform(); 2404 } 2405 print_method(PHASE_CCP1, 2); 2406 2407 assert( true, "Break here to ccp.dump_old2new_map()"); 2408 2409 // Iterative Global Value Numbering, including ideal transforms 2410 { 2411 TracePhase tp("iterGVN2", &timers[_t_iterGVN2]); 2412 igvn.reset_from_igvn(&ccp); 2413 igvn.optimize(); 2414 } 2415 print_method(PHASE_ITER_GVN2, 2); 2416 2417 if (failing()) return; 2418 2419 // Loop transforms on the ideal graph. Range Check Elimination, 2420 // peeling, unrolling, etc. 2421 if (!optimize_loops(igvn, LoopOptsDefault)) { 2422 return; 2423 } 2424 2425 if (failing()) return; 2426 2427 C->clear_major_progress(); // ensure that major progress is now clear 2428 2429 process_for_post_loop_opts_igvn(igvn); 2430 2431 if (failing()) return; 2432 2433 #ifdef ASSERT 2434 bs->verify_gc_barriers(this, BarrierSetC2::BeforeMacroExpand); 2435 #endif 2436 2437 { 2438 TracePhase tp("macroExpand", &timers[_t_macroExpand]); 2439 print_method(PHASE_BEFORE_MACRO_EXPANSION, 3); 2440 PhaseMacroExpand mex(igvn); 2441 if (mex.expand_macro_nodes()) { 2442 assert(failing(), "must bail out w/ explicit message"); 2443 return; 2444 } 2445 print_method(PHASE_AFTER_MACRO_EXPANSION, 2); 2446 } 2447 2448 { 2449 TracePhase tp("barrierExpand", &timers[_t_barrierExpand]); 2450 if (bs->expand_barriers(this, igvn)) { 2451 assert(failing(), "must bail out w/ explicit message"); 2452 return; 2453 } 2454 print_method(PHASE_BARRIER_EXPANSION, 2); 2455 } 2456 2457 if (C->max_vector_size() > 0) { 2458 C->optimize_logic_cones(igvn); 2459 igvn.optimize(); 2460 if (failing()) return; 2461 } 2462 2463 DEBUG_ONLY( _modified_nodes = nullptr; ) 2464 2465 assert(igvn._worklist.size() == 0, "not empty"); 2466 2467 assert(_late_inlines.length() == 0 || IncrementalInlineMH || IncrementalInlineVirtual, "not empty"); 2468 2469 if (_late_inlines.length() > 0) { 2470 // More opportunities to optimize virtual and MH calls. 2471 // Though it's maybe too late to perform inlining, strength-reducing them to direct calls is still an option. 2472 process_late_inline_calls_no_inline(igvn); 2473 if (failing()) return; 2474 } 2475 } // (End scope of igvn; run destructor if necessary for asserts.) 2476 2477 check_no_dead_use(); 2478 2479 process_print_inlining(); 2480 2481 // We will never use the NodeHash table any more. Clear it so that final_graph_reshaping does not have 2482 // to remove hashes to unlock nodes for modifications. 2483 C->node_hash()->clear(); 2484 2485 // A method with only infinite loops has no edges entering loops from root 2486 { 2487 TracePhase tp("graphReshape", &timers[_t_graphReshaping]); 2488 if (final_graph_reshaping()) { 2489 assert(failing(), "must bail out w/ explicit message"); 2490 return; 2491 } 2492 } 2493 2494 print_method(PHASE_OPTIMIZE_FINISHED, 2); 2495 DEBUG_ONLY(set_phase_optimize_finished();) 2496 } 2497 2498 #ifdef ASSERT 2499 void Compile::check_no_dead_use() const { 2500 ResourceMark rm; 2501 Unique_Node_List wq; 2502 wq.push(root()); 2503 for (uint i = 0; i < wq.size(); ++i) { 2504 Node* n = wq.at(i); 2505 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 2506 Node* u = n->fast_out(j); 2507 if (u->outcnt() == 0 && !u->is_Con()) { 2508 u->dump(); 2509 fatal("no reachable node should have no use"); 2510 } 2511 wq.push(u); 2512 } 2513 } 2514 } 2515 #endif 2516 2517 void Compile::inline_vector_reboxing_calls() { 2518 if (C->_vector_reboxing_late_inlines.length() > 0) { 2519 _late_inlines_pos = C->_late_inlines.length(); 2520 while (_vector_reboxing_late_inlines.length() > 0) { 2521 CallGenerator* cg = _vector_reboxing_late_inlines.pop(); 2522 cg->do_late_inline(); 2523 if (failing()) return; 2524 print_method(PHASE_INLINE_VECTOR_REBOX, 3, cg->call_node()); 2525 } 2526 _vector_reboxing_late_inlines.trunc_to(0); 2527 } 2528 } 2529 2530 bool Compile::has_vbox_nodes() { 2531 if (C->_vector_reboxing_late_inlines.length() > 0) { 2532 return true; 2533 } 2534 for (int macro_idx = C->macro_count() - 1; macro_idx >= 0; macro_idx--) { 2535 Node * n = C->macro_node(macro_idx); 2536 assert(n->is_macro(), "only macro nodes expected here"); 2537 if (n->Opcode() == Op_VectorUnbox || n->Opcode() == Op_VectorBox || n->Opcode() == Op_VectorBoxAllocate) { 2538 return true; 2539 } 2540 } 2541 return false; 2542 } 2543 2544 //---------------------------- Bitwise operation packing optimization --------------------------- 2545 2546 static bool is_vector_unary_bitwise_op(Node* n) { 2547 return n->Opcode() == Op_XorV && 2548 VectorNode::is_vector_bitwise_not_pattern(n); 2549 } 2550 2551 static bool is_vector_binary_bitwise_op(Node* n) { 2552 switch (n->Opcode()) { 2553 case Op_AndV: 2554 case Op_OrV: 2555 return true; 2556 2557 case Op_XorV: 2558 return !is_vector_unary_bitwise_op(n); 2559 2560 default: 2561 return false; 2562 } 2563 } 2564 2565 static bool is_vector_ternary_bitwise_op(Node* n) { 2566 return n->Opcode() == Op_MacroLogicV; 2567 } 2568 2569 static bool is_vector_bitwise_op(Node* n) { 2570 return is_vector_unary_bitwise_op(n) || 2571 is_vector_binary_bitwise_op(n) || 2572 is_vector_ternary_bitwise_op(n); 2573 } 2574 2575 static bool is_vector_bitwise_cone_root(Node* n) { 2576 if (n->bottom_type()->isa_vectmask() || !is_vector_bitwise_op(n)) { 2577 return false; 2578 } 2579 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2580 if (is_vector_bitwise_op(n->fast_out(i))) { 2581 return false; 2582 } 2583 } 2584 return true; 2585 } 2586 2587 static uint collect_unique_inputs(Node* n, Unique_Node_List& inputs) { 2588 uint cnt = 0; 2589 if (is_vector_bitwise_op(n)) { 2590 uint inp_cnt = n->is_predicated_vector() ? n->req()-1 : n->req(); 2591 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2592 for (uint i = 1; i < inp_cnt; i++) { 2593 Node* in = n->in(i); 2594 bool skip = VectorNode::is_all_ones_vector(in); 2595 if (!skip && !inputs.member(in)) { 2596 inputs.push(in); 2597 cnt++; 2598 } 2599 } 2600 assert(cnt <= 1, "not unary"); 2601 } else { 2602 uint last_req = inp_cnt; 2603 if (is_vector_ternary_bitwise_op(n)) { 2604 last_req = inp_cnt - 1; // skip last input 2605 } 2606 for (uint i = 1; i < last_req; i++) { 2607 Node* def = n->in(i); 2608 if (!inputs.member(def)) { 2609 inputs.push(def); 2610 cnt++; 2611 } 2612 } 2613 } 2614 } else { // not a bitwise operations 2615 if (!inputs.member(n)) { 2616 inputs.push(n); 2617 cnt++; 2618 } 2619 } 2620 return cnt; 2621 } 2622 2623 void Compile::collect_logic_cone_roots(Unique_Node_List& list) { 2624 Unique_Node_List useful_nodes; 2625 C->identify_useful_nodes(useful_nodes); 2626 2627 for (uint i = 0; i < useful_nodes.size(); i++) { 2628 Node* n = useful_nodes.at(i); 2629 if (is_vector_bitwise_cone_root(n)) { 2630 list.push(n); 2631 } 2632 } 2633 } 2634 2635 Node* Compile::xform_to_MacroLogicV(PhaseIterGVN& igvn, 2636 const TypeVect* vt, 2637 Unique_Node_List& partition, 2638 Unique_Node_List& inputs) { 2639 assert(partition.size() == 2 || partition.size() == 3, "not supported"); 2640 assert(inputs.size() == 2 || inputs.size() == 3, "not supported"); 2641 assert(Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()), "not supported"); 2642 2643 Node* in1 = inputs.at(0); 2644 Node* in2 = inputs.at(1); 2645 Node* in3 = (inputs.size() == 3 ? inputs.at(2) : in2); 2646 2647 uint func = compute_truth_table(partition, inputs); 2648 2649 Node* pn = partition.at(partition.size() - 1); 2650 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2651 return igvn.transform(MacroLogicVNode::make(igvn, in1, in2, in3, mask, func, vt)); 2652 } 2653 2654 static uint extract_bit(uint func, uint pos) { 2655 return (func & (1 << pos)) >> pos; 2656 } 2657 2658 // 2659 // A macro logic node represents a truth table. It has 4 inputs, 2660 // First three inputs corresponds to 3 columns of a truth table 2661 // and fourth input captures the logic function. 2662 // 2663 // eg. fn = (in1 AND in2) OR in3; 2664 // 2665 // MacroNode(in1,in2,in3,fn) 2666 // 2667 // ----------------- 2668 // in1 in2 in3 fn 2669 // ----------------- 2670 // 0 0 0 0 2671 // 0 0 1 1 2672 // 0 1 0 0 2673 // 0 1 1 1 2674 // 1 0 0 0 2675 // 1 0 1 1 2676 // 1 1 0 1 2677 // 1 1 1 1 2678 // 2679 2680 uint Compile::eval_macro_logic_op(uint func, uint in1 , uint in2, uint in3) { 2681 int res = 0; 2682 for (int i = 0; i < 8; i++) { 2683 int bit1 = extract_bit(in1, i); 2684 int bit2 = extract_bit(in2, i); 2685 int bit3 = extract_bit(in3, i); 2686 2687 int func_bit_pos = (bit1 << 2 | bit2 << 1 | bit3); 2688 int func_bit = extract_bit(func, func_bit_pos); 2689 2690 res |= func_bit << i; 2691 } 2692 return res; 2693 } 2694 2695 static uint eval_operand(Node* n, ResourceHashtable<Node*,uint>& eval_map) { 2696 assert(n != nullptr, ""); 2697 assert(eval_map.contains(n), "absent"); 2698 return *(eval_map.get(n)); 2699 } 2700 2701 static void eval_operands(Node* n, 2702 uint& func1, uint& func2, uint& func3, 2703 ResourceHashtable<Node*,uint>& eval_map) { 2704 assert(is_vector_bitwise_op(n), ""); 2705 2706 if (is_vector_unary_bitwise_op(n)) { 2707 Node* opnd = n->in(1); 2708 if (VectorNode::is_vector_bitwise_not_pattern(n) && VectorNode::is_all_ones_vector(opnd)) { 2709 opnd = n->in(2); 2710 } 2711 func1 = eval_operand(opnd, eval_map); 2712 } else if (is_vector_binary_bitwise_op(n)) { 2713 func1 = eval_operand(n->in(1), eval_map); 2714 func2 = eval_operand(n->in(2), eval_map); 2715 } else { 2716 assert(is_vector_ternary_bitwise_op(n), "unknown operation"); 2717 func1 = eval_operand(n->in(1), eval_map); 2718 func2 = eval_operand(n->in(2), eval_map); 2719 func3 = eval_operand(n->in(3), eval_map); 2720 } 2721 } 2722 2723 uint Compile::compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs) { 2724 assert(inputs.size() <= 3, "sanity"); 2725 ResourceMark rm; 2726 uint res = 0; 2727 ResourceHashtable<Node*,uint> eval_map; 2728 2729 // Populate precomputed functions for inputs. 2730 // Each input corresponds to one column of 3 input truth-table. 2731 uint input_funcs[] = { 0xAA, // (_, _, c) -> c 2732 0xCC, // (_, b, _) -> b 2733 0xF0 }; // (a, _, _) -> a 2734 for (uint i = 0; i < inputs.size(); i++) { 2735 eval_map.put(inputs.at(i), input_funcs[2-i]); 2736 } 2737 2738 for (uint i = 0; i < partition.size(); i++) { 2739 Node* n = partition.at(i); 2740 2741 uint func1 = 0, func2 = 0, func3 = 0; 2742 eval_operands(n, func1, func2, func3, eval_map); 2743 2744 switch (n->Opcode()) { 2745 case Op_OrV: 2746 assert(func3 == 0, "not binary"); 2747 res = func1 | func2; 2748 break; 2749 case Op_AndV: 2750 assert(func3 == 0, "not binary"); 2751 res = func1 & func2; 2752 break; 2753 case Op_XorV: 2754 if (VectorNode::is_vector_bitwise_not_pattern(n)) { 2755 assert(func2 == 0 && func3 == 0, "not unary"); 2756 res = (~func1) & 0xFF; 2757 } else { 2758 assert(func3 == 0, "not binary"); 2759 res = func1 ^ func2; 2760 } 2761 break; 2762 case Op_MacroLogicV: 2763 // Ordering of inputs may change during evaluation of sub-tree 2764 // containing MacroLogic node as a child node, thus a re-evaluation 2765 // makes sure that function is evaluated in context of current 2766 // inputs. 2767 res = eval_macro_logic_op(n->in(4)->get_int(), func1, func2, func3); 2768 break; 2769 2770 default: assert(false, "not supported: %s", n->Name()); 2771 } 2772 assert(res <= 0xFF, "invalid"); 2773 eval_map.put(n, res); 2774 } 2775 return res; 2776 } 2777 2778 // Criteria under which nodes gets packed into a macro logic node:- 2779 // 1) Parent and both child nodes are all unmasked or masked with 2780 // same predicates. 2781 // 2) Masked parent can be packed with left child if it is predicated 2782 // and both have same predicates. 2783 // 3) Masked parent can be packed with right child if its un-predicated 2784 // or has matching predication condition. 2785 // 4) An unmasked parent can be packed with an unmasked child. 2786 bool Compile::compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs) { 2787 assert(partition.size() == 0, "not empty"); 2788 assert(inputs.size() == 0, "not empty"); 2789 if (is_vector_ternary_bitwise_op(n)) { 2790 return false; 2791 } 2792 2793 bool is_unary_op = is_vector_unary_bitwise_op(n); 2794 if (is_unary_op) { 2795 assert(collect_unique_inputs(n, inputs) == 1, "not unary"); 2796 return false; // too few inputs 2797 } 2798 2799 bool pack_left_child = true; 2800 bool pack_right_child = true; 2801 2802 bool left_child_LOP = is_vector_bitwise_op(n->in(1)); 2803 bool right_child_LOP = is_vector_bitwise_op(n->in(2)); 2804 2805 int left_child_input_cnt = 0; 2806 int right_child_input_cnt = 0; 2807 2808 bool parent_is_predicated = n->is_predicated_vector(); 2809 bool left_child_predicated = n->in(1)->is_predicated_vector(); 2810 bool right_child_predicated = n->in(2)->is_predicated_vector(); 2811 2812 Node* parent_pred = parent_is_predicated ? n->in(n->req()-1) : nullptr; 2813 Node* left_child_pred = left_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2814 Node* right_child_pred = right_child_predicated ? n->in(1)->in(n->in(1)->req()-1) : nullptr; 2815 2816 do { 2817 if (pack_left_child && left_child_LOP && 2818 ((!parent_is_predicated && !left_child_predicated) || 2819 ((parent_is_predicated && left_child_predicated && 2820 parent_pred == left_child_pred)))) { 2821 partition.push(n->in(1)); 2822 left_child_input_cnt = collect_unique_inputs(n->in(1), inputs); 2823 } else { 2824 inputs.push(n->in(1)); 2825 left_child_input_cnt = 1; 2826 } 2827 2828 if (pack_right_child && right_child_LOP && 2829 (!right_child_predicated || 2830 (right_child_predicated && parent_is_predicated && 2831 parent_pred == right_child_pred))) { 2832 partition.push(n->in(2)); 2833 right_child_input_cnt = collect_unique_inputs(n->in(2), inputs); 2834 } else { 2835 inputs.push(n->in(2)); 2836 right_child_input_cnt = 1; 2837 } 2838 2839 if (inputs.size() > 3) { 2840 assert(partition.size() > 0, ""); 2841 inputs.clear(); 2842 partition.clear(); 2843 if (left_child_input_cnt > right_child_input_cnt) { 2844 pack_left_child = false; 2845 } else { 2846 pack_right_child = false; 2847 } 2848 } else { 2849 break; 2850 } 2851 } while(true); 2852 2853 if(partition.size()) { 2854 partition.push(n); 2855 } 2856 2857 return (partition.size() == 2 || partition.size() == 3) && 2858 (inputs.size() == 2 || inputs.size() == 3); 2859 } 2860 2861 void Compile::process_logic_cone_root(PhaseIterGVN &igvn, Node *n, VectorSet &visited) { 2862 assert(is_vector_bitwise_op(n), "not a root"); 2863 2864 visited.set(n->_idx); 2865 2866 // 1) Do a DFS walk over the logic cone. 2867 for (uint i = 1; i < n->req(); i++) { 2868 Node* in = n->in(i); 2869 if (!visited.test(in->_idx) && is_vector_bitwise_op(in)) { 2870 process_logic_cone_root(igvn, in, visited); 2871 } 2872 } 2873 2874 // 2) Bottom up traversal: Merge node[s] with 2875 // the parent to form macro logic node. 2876 Unique_Node_List partition; 2877 Unique_Node_List inputs; 2878 if (compute_logic_cone(n, partition, inputs)) { 2879 const TypeVect* vt = n->bottom_type()->is_vect(); 2880 Node* pn = partition.at(partition.size() - 1); 2881 Node* mask = pn->is_predicated_vector() ? pn->in(pn->req()-1) : nullptr; 2882 if (mask == nullptr || 2883 Matcher::match_rule_supported_vector_masked(Op_MacroLogicV, vt->length(), vt->element_basic_type())) { 2884 Node* macro_logic = xform_to_MacroLogicV(igvn, vt, partition, inputs); 2885 VectorNode::trace_new_vector(macro_logic, "MacroLogic"); 2886 igvn.replace_node(n, macro_logic); 2887 } 2888 } 2889 } 2890 2891 void Compile::optimize_logic_cones(PhaseIterGVN &igvn) { 2892 ResourceMark rm; 2893 if (Matcher::match_rule_supported(Op_MacroLogicV)) { 2894 Unique_Node_List list; 2895 collect_logic_cone_roots(list); 2896 2897 while (list.size() > 0) { 2898 Node* n = list.pop(); 2899 const TypeVect* vt = n->bottom_type()->is_vect(); 2900 bool supported = Matcher::match_rule_supported_vector(Op_MacroLogicV, vt->length(), vt->element_basic_type()); 2901 if (supported) { 2902 VectorSet visited(comp_arena()); 2903 process_logic_cone_root(igvn, n, visited); 2904 } 2905 } 2906 } 2907 } 2908 2909 //------------------------------Code_Gen--------------------------------------- 2910 // Given a graph, generate code for it 2911 void Compile::Code_Gen() { 2912 if (failing()) { 2913 return; 2914 } 2915 2916 // Perform instruction selection. You might think we could reclaim Matcher 2917 // memory PDQ, but actually the Matcher is used in generating spill code. 2918 // Internals of the Matcher (including some VectorSets) must remain live 2919 // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage 2920 // set a bit in reclaimed memory. 2921 2922 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2923 // nodes. Mapping is only valid at the root of each matched subtree. 2924 NOT_PRODUCT( verify_graph_edges(); ) 2925 2926 Matcher matcher; 2927 _matcher = &matcher; 2928 { 2929 TracePhase tp("matcher", &timers[_t_matcher]); 2930 matcher.match(); 2931 if (failing()) { 2932 return; 2933 } 2934 } 2935 // In debug mode can dump m._nodes.dump() for mapping of ideal to machine 2936 // nodes. Mapping is only valid at the root of each matched subtree. 2937 NOT_PRODUCT( verify_graph_edges(); ) 2938 2939 // If you have too many nodes, or if matching has failed, bail out 2940 check_node_count(0, "out of nodes matching instructions"); 2941 if (failing()) { 2942 return; 2943 } 2944 2945 print_method(PHASE_MATCHING, 2); 2946 2947 // Build a proper-looking CFG 2948 PhaseCFG cfg(node_arena(), root(), matcher); 2949 _cfg = &cfg; 2950 { 2951 TracePhase tp("scheduler", &timers[_t_scheduler]); 2952 bool success = cfg.do_global_code_motion(); 2953 if (!success) { 2954 return; 2955 } 2956 2957 print_method(PHASE_GLOBAL_CODE_MOTION, 2); 2958 NOT_PRODUCT( verify_graph_edges(); ) 2959 cfg.verify(); 2960 } 2961 2962 PhaseChaitin regalloc(unique(), cfg, matcher, false); 2963 _regalloc = ®alloc; 2964 { 2965 TracePhase tp("regalloc", &timers[_t_registerAllocation]); 2966 // Perform register allocation. After Chaitin, use-def chains are 2967 // no longer accurate (at spill code) and so must be ignored. 2968 // Node->LRG->reg mappings are still accurate. 2969 _regalloc->Register_Allocate(); 2970 2971 // Bail out if the allocator builds too many nodes 2972 if (failing()) { 2973 return; 2974 } 2975 2976 print_method(PHASE_REGISTER_ALLOCATION, 2); 2977 } 2978 2979 // Prior to register allocation we kept empty basic blocks in case the 2980 // the allocator needed a place to spill. After register allocation we 2981 // are not adding any new instructions. If any basic block is empty, we 2982 // can now safely remove it. 2983 { 2984 TracePhase tp("blockOrdering", &timers[_t_blockOrdering]); 2985 cfg.remove_empty_blocks(); 2986 if (do_freq_based_layout()) { 2987 PhaseBlockLayout layout(cfg); 2988 } else { 2989 cfg.set_loop_alignment(); 2990 } 2991 cfg.fixup_flow(); 2992 cfg.remove_unreachable_blocks(); 2993 cfg.verify_dominator_tree(); 2994 print_method(PHASE_BLOCK_ORDERING, 3); 2995 } 2996 2997 // Apply peephole optimizations 2998 if( OptoPeephole ) { 2999 TracePhase tp("peephole", &timers[_t_peephole]); 3000 PhasePeephole peep( _regalloc, cfg); 3001 peep.do_transform(); 3002 print_method(PHASE_PEEPHOLE, 3); 3003 } 3004 3005 // Do late expand if CPU requires this. 3006 if (Matcher::require_postalloc_expand) { 3007 TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]); 3008 cfg.postalloc_expand(_regalloc); 3009 print_method(PHASE_POSTALLOC_EXPAND, 3); 3010 } 3011 3012 // Convert Nodes to instruction bits in a buffer 3013 { 3014 TracePhase tp("output", &timers[_t_output]); 3015 PhaseOutput output; 3016 output.Output(); 3017 if (failing()) return; 3018 output.install(); 3019 print_method(PHASE_FINAL_CODE, 1); // Compile::_output is not null here 3020 } 3021 3022 // He's dead, Jim. 3023 _cfg = (PhaseCFG*)((intptr_t)0xdeadbeef); 3024 _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef); 3025 } 3026 3027 //------------------------------Final_Reshape_Counts--------------------------- 3028 // This class defines counters to help identify when a method 3029 // may/must be executed using hardware with only 24-bit precision. 3030 struct Final_Reshape_Counts : public StackObj { 3031 int _call_count; // count non-inlined 'common' calls 3032 int _float_count; // count float ops requiring 24-bit precision 3033 int _double_count; // count double ops requiring more precision 3034 int _java_call_count; // count non-inlined 'java' calls 3035 int _inner_loop_count; // count loops which need alignment 3036 VectorSet _visited; // Visitation flags 3037 Node_List _tests; // Set of IfNodes & PCTableNodes 3038 3039 Final_Reshape_Counts() : 3040 _call_count(0), _float_count(0), _double_count(0), 3041 _java_call_count(0), _inner_loop_count(0) { } 3042 3043 void inc_call_count () { _call_count ++; } 3044 void inc_float_count () { _float_count ++; } 3045 void inc_double_count() { _double_count++; } 3046 void inc_java_call_count() { _java_call_count++; } 3047 void inc_inner_loop_count() { _inner_loop_count++; } 3048 3049 int get_call_count () const { return _call_count ; } 3050 int get_float_count () const { return _float_count ; } 3051 int get_double_count() const { return _double_count; } 3052 int get_java_call_count() const { return _java_call_count; } 3053 int get_inner_loop_count() const { return _inner_loop_count; } 3054 }; 3055 3056 // Eliminate trivially redundant StoreCMs and accumulate their 3057 // precedence edges. 3058 void Compile::eliminate_redundant_card_marks(Node* n) { 3059 assert(n->Opcode() == Op_StoreCM, "expected StoreCM"); 3060 if (n->in(MemNode::Address)->outcnt() > 1) { 3061 // There are multiple users of the same address so it might be 3062 // possible to eliminate some of the StoreCMs 3063 Node* mem = n->in(MemNode::Memory); 3064 Node* adr = n->in(MemNode::Address); 3065 Node* val = n->in(MemNode::ValueIn); 3066 Node* prev = n; 3067 bool done = false; 3068 // Walk the chain of StoreCMs eliminating ones that match. As 3069 // long as it's a chain of single users then the optimization is 3070 // safe. Eliminating partially redundant StoreCMs would require 3071 // cloning copies down the other paths. 3072 while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) { 3073 if (adr == mem->in(MemNode::Address) && 3074 val == mem->in(MemNode::ValueIn)) { 3075 // redundant StoreCM 3076 if (mem->req() > MemNode::OopStore) { 3077 // Hasn't been processed by this code yet. 3078 n->add_prec(mem->in(MemNode::OopStore)); 3079 } else { 3080 // Already converted to precedence edge 3081 for (uint i = mem->req(); i < mem->len(); i++) { 3082 // Accumulate any precedence edges 3083 if (mem->in(i) != nullptr) { 3084 n->add_prec(mem->in(i)); 3085 } 3086 } 3087 // Everything above this point has been processed. 3088 done = true; 3089 } 3090 // Eliminate the previous StoreCM 3091 prev->set_req(MemNode::Memory, mem->in(MemNode::Memory)); 3092 assert(mem->outcnt() == 0, "should be dead"); 3093 mem->disconnect_inputs(this); 3094 } else { 3095 prev = mem; 3096 } 3097 mem = prev->in(MemNode::Memory); 3098 } 3099 } 3100 } 3101 3102 //------------------------------final_graph_reshaping_impl---------------------- 3103 // Implement items 1-5 from final_graph_reshaping below. 3104 void Compile::final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3105 3106 if ( n->outcnt() == 0 ) return; // dead node 3107 uint nop = n->Opcode(); 3108 3109 // Check for 2-input instruction with "last use" on right input. 3110 // Swap to left input. Implements item (2). 3111 if( n->req() == 3 && // two-input instruction 3112 n->in(1)->outcnt() > 1 && // left use is NOT a last use 3113 (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop 3114 n->in(2)->outcnt() == 1 &&// right use IS a last use 3115 !n->in(2)->is_Con() ) { // right use is not a constant 3116 // Check for commutative opcode 3117 switch( nop ) { 3118 case Op_AddI: case Op_AddF: case Op_AddD: case Op_AddL: 3119 case Op_MaxI: case Op_MaxL: case Op_MaxF: case Op_MaxD: 3120 case Op_MinI: case Op_MinL: case Op_MinF: case Op_MinD: 3121 case Op_MulI: case Op_MulF: case Op_MulD: case Op_MulL: 3122 case Op_AndL: case Op_XorL: case Op_OrL: 3123 case Op_AndI: case Op_XorI: case Op_OrI: { 3124 // Move "last use" input to left by swapping inputs 3125 n->swap_edges(1, 2); 3126 break; 3127 } 3128 default: 3129 break; 3130 } 3131 } 3132 3133 #ifdef ASSERT 3134 if( n->is_Mem() ) { 3135 int alias_idx = get_alias_index(n->as_Mem()->adr_type()); 3136 assert( n->in(0) != nullptr || alias_idx != Compile::AliasIdxRaw || 3137 // oop will be recorded in oop map if load crosses safepoint 3138 (n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() || 3139 LoadNode::is_immutable_value(n->in(MemNode::Address)))), 3140 "raw memory operations should have control edge"); 3141 } 3142 if (n->is_MemBar()) { 3143 MemBarNode* mb = n->as_MemBar(); 3144 if (mb->trailing_store() || mb->trailing_load_store()) { 3145 assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair"); 3146 Node* mem = BarrierSet::barrier_set()->barrier_set_c2()->step_over_gc_barrier(mb->in(MemBarNode::Precedent)); 3147 assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) || 3148 (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op"); 3149 } else if (mb->leading()) { 3150 assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair"); 3151 } 3152 } 3153 #endif 3154 // Count FPU ops and common calls, implements item (3) 3155 bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop, dead_nodes); 3156 if (!gc_handled) { 3157 final_graph_reshaping_main_switch(n, frc, nop, dead_nodes); 3158 } 3159 3160 // Collect CFG split points 3161 if (n->is_MultiBranch() && !n->is_RangeCheck()) { 3162 frc._tests.push(n); 3163 } 3164 } 3165 3166 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes) { 3167 switch( nop ) { 3168 // Count all float operations that may use FPU 3169 case Op_AddF: 3170 case Op_SubF: 3171 case Op_MulF: 3172 case Op_DivF: 3173 case Op_NegF: 3174 case Op_ModF: 3175 case Op_ConvI2F: 3176 case Op_ConF: 3177 case Op_CmpF: 3178 case Op_CmpF3: 3179 case Op_StoreF: 3180 case Op_LoadF: 3181 // case Op_ConvL2F: // longs are split into 32-bit halves 3182 frc.inc_float_count(); 3183 break; 3184 3185 case Op_ConvF2D: 3186 case Op_ConvD2F: 3187 frc.inc_float_count(); 3188 frc.inc_double_count(); 3189 break; 3190 3191 // Count all double operations that may use FPU 3192 case Op_AddD: 3193 case Op_SubD: 3194 case Op_MulD: 3195 case Op_DivD: 3196 case Op_NegD: 3197 case Op_ModD: 3198 case Op_ConvI2D: 3199 case Op_ConvD2I: 3200 // case Op_ConvL2D: // handled by leaf call 3201 // case Op_ConvD2L: // handled by leaf call 3202 case Op_ConD: 3203 case Op_CmpD: 3204 case Op_CmpD3: 3205 case Op_StoreD: 3206 case Op_LoadD: 3207 case Op_LoadD_unaligned: 3208 frc.inc_double_count(); 3209 break; 3210 case Op_Opaque1: // Remove Opaque Nodes before matching 3211 n->subsume_by(n->in(1), this); 3212 break; 3213 case Op_CallStaticJava: 3214 case Op_CallJava: 3215 case Op_CallDynamicJava: 3216 frc.inc_java_call_count(); // Count java call site; 3217 case Op_CallRuntime: 3218 case Op_CallLeaf: 3219 case Op_CallLeafVector: 3220 case Op_CallLeafNoFP: { 3221 assert (n->is_Call(), ""); 3222 CallNode *call = n->as_Call(); 3223 // Count call sites where the FP mode bit would have to be flipped. 3224 // Do not count uncommon runtime calls: 3225 // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking, 3226 // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ... 3227 if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) { 3228 frc.inc_call_count(); // Count the call site 3229 } else { // See if uncommon argument is shared 3230 Node *n = call->in(TypeFunc::Parms); 3231 int nop = n->Opcode(); 3232 // Clone shared simple arguments to uncommon calls, item (1). 3233 if (n->outcnt() > 1 && 3234 !n->is_Proj() && 3235 nop != Op_CreateEx && 3236 nop != Op_CheckCastPP && 3237 nop != Op_DecodeN && 3238 nop != Op_DecodeNKlass && 3239 !n->is_Mem() && 3240 !n->is_Phi()) { 3241 Node *x = n->clone(); 3242 call->set_req(TypeFunc::Parms, x); 3243 } 3244 } 3245 break; 3246 } 3247 3248 case Op_StoreCM: 3249 { 3250 // Convert OopStore dependence into precedence edge 3251 Node* prec = n->in(MemNode::OopStore); 3252 n->del_req(MemNode::OopStore); 3253 n->add_prec(prec); 3254 eliminate_redundant_card_marks(n); 3255 } 3256 3257 // fall through 3258 3259 case Op_StoreB: 3260 case Op_StoreC: 3261 case Op_StoreI: 3262 case Op_StoreL: 3263 case Op_CompareAndSwapB: 3264 case Op_CompareAndSwapS: 3265 case Op_CompareAndSwapI: 3266 case Op_CompareAndSwapL: 3267 case Op_CompareAndSwapP: 3268 case Op_CompareAndSwapN: 3269 case Op_WeakCompareAndSwapB: 3270 case Op_WeakCompareAndSwapS: 3271 case Op_WeakCompareAndSwapI: 3272 case Op_WeakCompareAndSwapL: 3273 case Op_WeakCompareAndSwapP: 3274 case Op_WeakCompareAndSwapN: 3275 case Op_CompareAndExchangeB: 3276 case Op_CompareAndExchangeS: 3277 case Op_CompareAndExchangeI: 3278 case Op_CompareAndExchangeL: 3279 case Op_CompareAndExchangeP: 3280 case Op_CompareAndExchangeN: 3281 case Op_GetAndAddS: 3282 case Op_GetAndAddB: 3283 case Op_GetAndAddI: 3284 case Op_GetAndAddL: 3285 case Op_GetAndSetS: 3286 case Op_GetAndSetB: 3287 case Op_GetAndSetI: 3288 case Op_GetAndSetL: 3289 case Op_GetAndSetP: 3290 case Op_GetAndSetN: 3291 case Op_StoreP: 3292 case Op_StoreN: 3293 case Op_StoreNKlass: 3294 case Op_LoadB: 3295 case Op_LoadUB: 3296 case Op_LoadUS: 3297 case Op_LoadI: 3298 case Op_LoadKlass: 3299 case Op_LoadNKlass: 3300 case Op_LoadL: 3301 case Op_LoadL_unaligned: 3302 case Op_LoadP: 3303 case Op_LoadN: 3304 case Op_LoadRange: 3305 case Op_LoadS: 3306 break; 3307 3308 case Op_AddP: { // Assert sane base pointers 3309 Node *addp = n->in(AddPNode::Address); 3310 assert( !addp->is_AddP() || 3311 addp->in(AddPNode::Base)->is_top() || // Top OK for allocation 3312 addp->in(AddPNode::Base) == n->in(AddPNode::Base), 3313 "Base pointers must match (addp %u)", addp->_idx ); 3314 #ifdef _LP64 3315 if ((UseCompressedOops || UseCompressedClassPointers) && 3316 addp->Opcode() == Op_ConP && 3317 addp == n->in(AddPNode::Base) && 3318 n->in(AddPNode::Offset)->is_Con()) { 3319 // If the transformation of ConP to ConN+DecodeN is beneficial depends 3320 // on the platform and on the compressed oops mode. 3321 // Use addressing with narrow klass to load with offset on x86. 3322 // Some platforms can use the constant pool to load ConP. 3323 // Do this transformation here since IGVN will convert ConN back to ConP. 3324 const Type* t = addp->bottom_type(); 3325 bool is_oop = t->isa_oopptr() != nullptr; 3326 bool is_klass = t->isa_klassptr() != nullptr; 3327 3328 if ((is_oop && Matcher::const_oop_prefer_decode() ) || 3329 (is_klass && Matcher::const_klass_prefer_decode())) { 3330 Node* nn = nullptr; 3331 3332 int op = is_oop ? Op_ConN : Op_ConNKlass; 3333 3334 // Look for existing ConN node of the same exact type. 3335 Node* r = root(); 3336 uint cnt = r->outcnt(); 3337 for (uint i = 0; i < cnt; i++) { 3338 Node* m = r->raw_out(i); 3339 if (m!= nullptr && m->Opcode() == op && 3340 m->bottom_type()->make_ptr() == t) { 3341 nn = m; 3342 break; 3343 } 3344 } 3345 if (nn != nullptr) { 3346 // Decode a narrow oop to match address 3347 // [R12 + narrow_oop_reg<<3 + offset] 3348 if (is_oop) { 3349 nn = new DecodeNNode(nn, t); 3350 } else { 3351 nn = new DecodeNKlassNode(nn, t); 3352 } 3353 // Check for succeeding AddP which uses the same Base. 3354 // Otherwise we will run into the assertion above when visiting that guy. 3355 for (uint i = 0; i < n->outcnt(); ++i) { 3356 Node *out_i = n->raw_out(i); 3357 if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) { 3358 out_i->set_req(AddPNode::Base, nn); 3359 #ifdef ASSERT 3360 for (uint j = 0; j < out_i->outcnt(); ++j) { 3361 Node *out_j = out_i->raw_out(j); 3362 assert(out_j == nullptr || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp, 3363 "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx); 3364 } 3365 #endif 3366 } 3367 } 3368 n->set_req(AddPNode::Base, nn); 3369 n->set_req(AddPNode::Address, nn); 3370 if (addp->outcnt() == 0) { 3371 addp->disconnect_inputs(this); 3372 } 3373 } 3374 } 3375 } 3376 #endif 3377 break; 3378 } 3379 3380 case Op_CastPP: { 3381 // Remove CastPP nodes to gain more freedom during scheduling but 3382 // keep the dependency they encode as control or precedence edges 3383 // (if control is set already) on memory operations. Some CastPP 3384 // nodes don't have a control (don't carry a dependency): skip 3385 // those. 3386 if (n->in(0) != nullptr) { 3387 ResourceMark rm; 3388 Unique_Node_List wq; 3389 wq.push(n); 3390 for (uint next = 0; next < wq.size(); ++next) { 3391 Node *m = wq.at(next); 3392 for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) { 3393 Node* use = m->fast_out(i); 3394 if (use->is_Mem() || use->is_EncodeNarrowPtr()) { 3395 use->ensure_control_or_add_prec(n->in(0)); 3396 } else { 3397 switch(use->Opcode()) { 3398 case Op_AddP: 3399 case Op_DecodeN: 3400 case Op_DecodeNKlass: 3401 case Op_CheckCastPP: 3402 case Op_CastPP: 3403 wq.push(use); 3404 break; 3405 } 3406 } 3407 } 3408 } 3409 } 3410 const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false); 3411 if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) { 3412 Node* in1 = n->in(1); 3413 const Type* t = n->bottom_type(); 3414 Node* new_in1 = in1->clone(); 3415 new_in1->as_DecodeN()->set_type(t); 3416 3417 if (!Matcher::narrow_oop_use_complex_address()) { 3418 // 3419 // x86, ARM and friends can handle 2 adds in addressing mode 3420 // and Matcher can fold a DecodeN node into address by using 3421 // a narrow oop directly and do implicit null check in address: 3422 // 3423 // [R12 + narrow_oop_reg<<3 + offset] 3424 // NullCheck narrow_oop_reg 3425 // 3426 // On other platforms (Sparc) we have to keep new DecodeN node and 3427 // use it to do implicit null check in address: 3428 // 3429 // decode_not_null narrow_oop_reg, base_reg 3430 // [base_reg + offset] 3431 // NullCheck base_reg 3432 // 3433 // Pin the new DecodeN node to non-null path on these platform (Sparc) 3434 // to keep the information to which null check the new DecodeN node 3435 // corresponds to use it as value in implicit_null_check(). 3436 // 3437 new_in1->set_req(0, n->in(0)); 3438 } 3439 3440 n->subsume_by(new_in1, this); 3441 if (in1->outcnt() == 0) { 3442 in1->disconnect_inputs(this); 3443 } 3444 } else { 3445 n->subsume_by(n->in(1), this); 3446 if (n->outcnt() == 0) { 3447 n->disconnect_inputs(this); 3448 } 3449 } 3450 break; 3451 } 3452 #ifdef _LP64 3453 case Op_CmpP: 3454 // Do this transformation here to preserve CmpPNode::sub() and 3455 // other TypePtr related Ideal optimizations (for example, ptr nullness). 3456 if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) { 3457 Node* in1 = n->in(1); 3458 Node* in2 = n->in(2); 3459 if (!in1->is_DecodeNarrowPtr()) { 3460 in2 = in1; 3461 in1 = n->in(2); 3462 } 3463 assert(in1->is_DecodeNarrowPtr(), "sanity"); 3464 3465 Node* new_in2 = nullptr; 3466 if (in2->is_DecodeNarrowPtr()) { 3467 assert(in2->Opcode() == in1->Opcode(), "must be same node type"); 3468 new_in2 = in2->in(1); 3469 } else if (in2->Opcode() == Op_ConP) { 3470 const Type* t = in2->bottom_type(); 3471 if (t == TypePtr::NULL_PTR) { 3472 assert(in1->is_DecodeN(), "compare klass to null?"); 3473 // Don't convert CmpP null check into CmpN if compressed 3474 // oops implicit null check is not generated. 3475 // This will allow to generate normal oop implicit null check. 3476 if (Matcher::gen_narrow_oop_implicit_null_checks()) 3477 new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR); 3478 // 3479 // This transformation together with CastPP transformation above 3480 // will generated code for implicit null checks for compressed oops. 3481 // 3482 // The original code after Optimize() 3483 // 3484 // LoadN memory, narrow_oop_reg 3485 // decode narrow_oop_reg, base_reg 3486 // CmpP base_reg, nullptr 3487 // CastPP base_reg // NotNull 3488 // Load [base_reg + offset], val_reg 3489 // 3490 // after these transformations will be 3491 // 3492 // LoadN memory, narrow_oop_reg 3493 // CmpN narrow_oop_reg, nullptr 3494 // decode_not_null narrow_oop_reg, base_reg 3495 // Load [base_reg + offset], val_reg 3496 // 3497 // and the uncommon path (== nullptr) will use narrow_oop_reg directly 3498 // since narrow oops can be used in debug info now (see the code in 3499 // final_graph_reshaping_walk()). 3500 // 3501 // At the end the code will be matched to 3502 // on x86: 3503 // 3504 // Load_narrow_oop memory, narrow_oop_reg 3505 // Load [R12 + narrow_oop_reg<<3 + offset], val_reg 3506 // NullCheck narrow_oop_reg 3507 // 3508 // and on sparc: 3509 // 3510 // Load_narrow_oop memory, narrow_oop_reg 3511 // decode_not_null narrow_oop_reg, base_reg 3512 // Load [base_reg + offset], val_reg 3513 // NullCheck base_reg 3514 // 3515 } else if (t->isa_oopptr()) { 3516 new_in2 = ConNode::make(t->make_narrowoop()); 3517 } else if (t->isa_klassptr()) { 3518 new_in2 = ConNode::make(t->make_narrowklass()); 3519 } 3520 } 3521 if (new_in2 != nullptr) { 3522 Node* cmpN = new CmpNNode(in1->in(1), new_in2); 3523 n->subsume_by(cmpN, this); 3524 if (in1->outcnt() == 0) { 3525 in1->disconnect_inputs(this); 3526 } 3527 if (in2->outcnt() == 0) { 3528 in2->disconnect_inputs(this); 3529 } 3530 } 3531 } 3532 break; 3533 3534 case Op_DecodeN: 3535 case Op_DecodeNKlass: 3536 assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out"); 3537 // DecodeN could be pinned when it can't be fold into 3538 // an address expression, see the code for Op_CastPP above. 3539 assert(n->in(0) == nullptr || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control"); 3540 break; 3541 3542 case Op_EncodeP: 3543 case Op_EncodePKlass: { 3544 Node* in1 = n->in(1); 3545 if (in1->is_DecodeNarrowPtr()) { 3546 n->subsume_by(in1->in(1), this); 3547 } else if (in1->Opcode() == Op_ConP) { 3548 const Type* t = in1->bottom_type(); 3549 if (t == TypePtr::NULL_PTR) { 3550 assert(t->isa_oopptr(), "null klass?"); 3551 n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this); 3552 } else if (t->isa_oopptr()) { 3553 n->subsume_by(ConNode::make(t->make_narrowoop()), this); 3554 } else if (t->isa_klassptr()) { 3555 n->subsume_by(ConNode::make(t->make_narrowklass()), this); 3556 } 3557 } 3558 if (in1->outcnt() == 0) { 3559 in1->disconnect_inputs(this); 3560 } 3561 break; 3562 } 3563 3564 case Op_Proj: { 3565 if (OptimizeStringConcat || IncrementalInline) { 3566 ProjNode* proj = n->as_Proj(); 3567 if (proj->_is_io_use) { 3568 assert(proj->_con == TypeFunc::I_O || proj->_con == TypeFunc::Memory, ""); 3569 // Separate projections were used for the exception path which 3570 // are normally removed by a late inline. If it wasn't inlined 3571 // then they will hang around and should just be replaced with 3572 // the original one. Merge them. 3573 Node* non_io_proj = proj->in(0)->as_Multi()->proj_out_or_null(proj->_con, false /*is_io_use*/); 3574 if (non_io_proj != nullptr) { 3575 proj->subsume_by(non_io_proj , this); 3576 } 3577 } 3578 } 3579 break; 3580 } 3581 3582 case Op_Phi: 3583 if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) { 3584 // The EncodeP optimization may create Phi with the same edges 3585 // for all paths. It is not handled well by Register Allocator. 3586 Node* unique_in = n->in(1); 3587 assert(unique_in != nullptr, ""); 3588 uint cnt = n->req(); 3589 for (uint i = 2; i < cnt; i++) { 3590 Node* m = n->in(i); 3591 assert(m != nullptr, ""); 3592 if (unique_in != m) 3593 unique_in = nullptr; 3594 } 3595 if (unique_in != nullptr) { 3596 n->subsume_by(unique_in, this); 3597 } 3598 } 3599 break; 3600 3601 #endif 3602 3603 #ifdef ASSERT 3604 case Op_CastII: 3605 // Verify that all range check dependent CastII nodes were removed. 3606 if (n->isa_CastII()->has_range_check()) { 3607 n->dump(3); 3608 assert(false, "Range check dependent CastII node was not removed"); 3609 } 3610 break; 3611 #endif 3612 3613 case Op_ModI: 3614 if (UseDivMod) { 3615 // Check if a%b and a/b both exist 3616 Node* d = n->find_similar(Op_DivI); 3617 if (d) { 3618 // Replace them with a fused divmod if supported 3619 if (Matcher::has_match_rule(Op_DivModI)) { 3620 DivModINode* divmod = DivModINode::make(n); 3621 d->subsume_by(divmod->div_proj(), this); 3622 n->subsume_by(divmod->mod_proj(), this); 3623 } else { 3624 // replace a%b with a-((a/b)*b) 3625 Node* mult = new MulINode(d, d->in(2)); 3626 Node* sub = new SubINode(d->in(1), mult); 3627 n->subsume_by(sub, this); 3628 } 3629 } 3630 } 3631 break; 3632 3633 case Op_ModL: 3634 if (UseDivMod) { 3635 // Check if a%b and a/b both exist 3636 Node* d = n->find_similar(Op_DivL); 3637 if (d) { 3638 // Replace them with a fused divmod if supported 3639 if (Matcher::has_match_rule(Op_DivModL)) { 3640 DivModLNode* divmod = DivModLNode::make(n); 3641 d->subsume_by(divmod->div_proj(), this); 3642 n->subsume_by(divmod->mod_proj(), this); 3643 } else { 3644 // replace a%b with a-((a/b)*b) 3645 Node* mult = new MulLNode(d, d->in(2)); 3646 Node* sub = new SubLNode(d->in(1), mult); 3647 n->subsume_by(sub, this); 3648 } 3649 } 3650 } 3651 break; 3652 3653 case Op_UModI: 3654 if (UseDivMod) { 3655 // Check if a%b and a/b both exist 3656 Node* d = n->find_similar(Op_UDivI); 3657 if (d) { 3658 // Replace them with a fused unsigned divmod if supported 3659 if (Matcher::has_match_rule(Op_UDivModI)) { 3660 UDivModINode* divmod = UDivModINode::make(n); 3661 d->subsume_by(divmod->div_proj(), this); 3662 n->subsume_by(divmod->mod_proj(), this); 3663 } else { 3664 // replace a%b with a-((a/b)*b) 3665 Node* mult = new MulINode(d, d->in(2)); 3666 Node* sub = new SubINode(d->in(1), mult); 3667 n->subsume_by(sub, this); 3668 } 3669 } 3670 } 3671 break; 3672 3673 case Op_UModL: 3674 if (UseDivMod) { 3675 // Check if a%b and a/b both exist 3676 Node* d = n->find_similar(Op_UDivL); 3677 if (d) { 3678 // Replace them with a fused unsigned divmod if supported 3679 if (Matcher::has_match_rule(Op_UDivModL)) { 3680 UDivModLNode* divmod = UDivModLNode::make(n); 3681 d->subsume_by(divmod->div_proj(), this); 3682 n->subsume_by(divmod->mod_proj(), this); 3683 } else { 3684 // replace a%b with a-((a/b)*b) 3685 Node* mult = new MulLNode(d, d->in(2)); 3686 Node* sub = new SubLNode(d->in(1), mult); 3687 n->subsume_by(sub, this); 3688 } 3689 } 3690 } 3691 break; 3692 3693 case Op_LoadVector: 3694 case Op_StoreVector: 3695 #ifdef ASSERT 3696 // Add VerifyVectorAlignment node between adr and load / store. 3697 if (VerifyAlignVector && Matcher::has_match_rule(Op_VerifyVectorAlignment)) { 3698 bool must_verify_alignment = n->is_LoadVector() ? n->as_LoadVector()->must_verify_alignment() : 3699 n->as_StoreVector()->must_verify_alignment(); 3700 if (must_verify_alignment) { 3701 jlong vector_width = n->is_LoadVector() ? n->as_LoadVector()->memory_size() : 3702 n->as_StoreVector()->memory_size(); 3703 // The memory access should be aligned to the vector width in bytes. 3704 // However, the underlying array is possibly less well aligned, but at least 3705 // to ObjectAlignmentInBytes. Hence, even if multiple arrays are accessed in 3706 // a loop we can expect at least the following alignment: 3707 jlong guaranteed_alignment = MIN2(vector_width, (jlong)ObjectAlignmentInBytes); 3708 assert(2 <= guaranteed_alignment && guaranteed_alignment <= 64, "alignment must be in range"); 3709 assert(is_power_of_2(guaranteed_alignment), "alignment must be power of 2"); 3710 // Create mask from alignment. e.g. 0b1000 -> 0b0111 3711 jlong mask = guaranteed_alignment - 1; 3712 Node* mask_con = ConLNode::make(mask); 3713 VerifyVectorAlignmentNode* va = new VerifyVectorAlignmentNode(n->in(MemNode::Address), mask_con); 3714 n->set_req(MemNode::Address, va); 3715 } 3716 } 3717 #endif 3718 break; 3719 3720 case Op_LoadVectorGather: 3721 case Op_StoreVectorScatter: 3722 case Op_LoadVectorGatherMasked: 3723 case Op_StoreVectorScatterMasked: 3724 case Op_VectorCmpMasked: 3725 case Op_VectorMaskGen: 3726 case Op_LoadVectorMasked: 3727 case Op_StoreVectorMasked: 3728 break; 3729 3730 case Op_AddReductionVI: 3731 case Op_AddReductionVL: 3732 case Op_AddReductionVF: 3733 case Op_AddReductionVD: 3734 case Op_MulReductionVI: 3735 case Op_MulReductionVL: 3736 case Op_MulReductionVF: 3737 case Op_MulReductionVD: 3738 case Op_MinReductionV: 3739 case Op_MaxReductionV: 3740 case Op_AndReductionV: 3741 case Op_OrReductionV: 3742 case Op_XorReductionV: 3743 break; 3744 3745 case Op_PackB: 3746 case Op_PackS: 3747 case Op_PackI: 3748 case Op_PackF: 3749 case Op_PackL: 3750 case Op_PackD: 3751 if (n->req()-1 > 2) { 3752 // Replace many operand PackNodes with a binary tree for matching 3753 PackNode* p = (PackNode*) n; 3754 Node* btp = p->binary_tree_pack(1, n->req()); 3755 n->subsume_by(btp, this); 3756 } 3757 break; 3758 case Op_Loop: 3759 assert(!n->as_Loop()->is_loop_nest_inner_loop() || _loop_opts_cnt == 0, "should have been turned into a counted loop"); 3760 case Op_CountedLoop: 3761 case Op_LongCountedLoop: 3762 case Op_OuterStripMinedLoop: 3763 if (n->as_Loop()->is_inner_loop()) { 3764 frc.inc_inner_loop_count(); 3765 } 3766 n->as_Loop()->verify_strip_mined(0); 3767 break; 3768 case Op_LShiftI: 3769 case Op_RShiftI: 3770 case Op_URShiftI: 3771 case Op_LShiftL: 3772 case Op_RShiftL: 3773 case Op_URShiftL: 3774 if (Matcher::need_masked_shift_count) { 3775 // The cpu's shift instructions don't restrict the count to the 3776 // lower 5/6 bits. We need to do the masking ourselves. 3777 Node* in2 = n->in(2); 3778 juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1); 3779 const TypeInt* t = in2->find_int_type(); 3780 if (t != nullptr && t->is_con()) { 3781 juint shift = t->get_con(); 3782 if (shift > mask) { // Unsigned cmp 3783 n->set_req(2, ConNode::make(TypeInt::make(shift & mask))); 3784 } 3785 } else { 3786 if (t == nullptr || t->_lo < 0 || t->_hi > (int)mask) { 3787 Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask))); 3788 n->set_req(2, shift); 3789 } 3790 } 3791 if (in2->outcnt() == 0) { // Remove dead node 3792 in2->disconnect_inputs(this); 3793 } 3794 } 3795 break; 3796 case Op_MemBarStoreStore: 3797 case Op_MemBarRelease: 3798 // Break the link with AllocateNode: it is no longer useful and 3799 // confuses register allocation. 3800 if (n->req() > MemBarNode::Precedent) { 3801 n->set_req(MemBarNode::Precedent, top()); 3802 } 3803 break; 3804 case Op_MemBarAcquire: { 3805 if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) { 3806 // At parse time, the trailing MemBarAcquire for a volatile load 3807 // is created with an edge to the load. After optimizations, 3808 // that input may be a chain of Phis. If those phis have no 3809 // other use, then the MemBarAcquire keeps them alive and 3810 // register allocation can be confused. 3811 dead_nodes.push(n->in(MemBarNode::Precedent)); 3812 n->set_req(MemBarNode::Precedent, top()); 3813 } 3814 break; 3815 } 3816 case Op_Blackhole: 3817 break; 3818 case Op_RangeCheck: { 3819 RangeCheckNode* rc = n->as_RangeCheck(); 3820 Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt); 3821 n->subsume_by(iff, this); 3822 frc._tests.push(iff); 3823 break; 3824 } 3825 case Op_ConvI2L: { 3826 if (!Matcher::convi2l_type_required) { 3827 // Code generation on some platforms doesn't need accurate 3828 // ConvI2L types. Widening the type can help remove redundant 3829 // address computations. 3830 n->as_Type()->set_type(TypeLong::INT); 3831 ResourceMark rm; 3832 Unique_Node_List wq; 3833 wq.push(n); 3834 for (uint next = 0; next < wq.size(); next++) { 3835 Node *m = wq.at(next); 3836 3837 for(;;) { 3838 // Loop over all nodes with identical inputs edges as m 3839 Node* k = m->find_similar(m->Opcode()); 3840 if (k == nullptr) { 3841 break; 3842 } 3843 // Push their uses so we get a chance to remove node made 3844 // redundant 3845 for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) { 3846 Node* u = k->fast_out(i); 3847 if (u->Opcode() == Op_LShiftL || 3848 u->Opcode() == Op_AddL || 3849 u->Opcode() == Op_SubL || 3850 u->Opcode() == Op_AddP) { 3851 wq.push(u); 3852 } 3853 } 3854 // Replace all nodes with identical edges as m with m 3855 k->subsume_by(m, this); 3856 } 3857 } 3858 } 3859 break; 3860 } 3861 case Op_CmpUL: { 3862 if (!Matcher::has_match_rule(Op_CmpUL)) { 3863 // No support for unsigned long comparisons 3864 ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1)); 3865 Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos); 3866 Node* orl = new OrLNode(n->in(1), sign_bit_mask); 3867 ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong)); 3868 Node* andl = new AndLNode(orl, remove_sign_mask); 3869 Node* cmp = new CmpLNode(andl, n->in(2)); 3870 n->subsume_by(cmp, this); 3871 } 3872 break; 3873 } 3874 default: 3875 assert(!n->is_Call(), ""); 3876 assert(!n->is_Mem(), ""); 3877 assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN"); 3878 break; 3879 } 3880 } 3881 3882 //------------------------------final_graph_reshaping_walk--------------------- 3883 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(), 3884 // requires that the walk visits a node's inputs before visiting the node. 3885 void Compile::final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes) { 3886 Unique_Node_List sfpt; 3887 3888 frc._visited.set(root->_idx); // first, mark node as visited 3889 uint cnt = root->req(); 3890 Node *n = root; 3891 uint i = 0; 3892 while (true) { 3893 if (i < cnt) { 3894 // Place all non-visited non-null inputs onto stack 3895 Node* m = n->in(i); 3896 ++i; 3897 if (m != nullptr && !frc._visited.test_set(m->_idx)) { 3898 if (m->is_SafePoint() && m->as_SafePoint()->jvms() != nullptr) { 3899 // compute worst case interpreter size in case of a deoptimization 3900 update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size()); 3901 3902 sfpt.push(m); 3903 } 3904 cnt = m->req(); 3905 nstack.push(n, i); // put on stack parent and next input's index 3906 n = m; 3907 i = 0; 3908 } 3909 } else { 3910 // Now do post-visit work 3911 final_graph_reshaping_impl(n, frc, dead_nodes); 3912 if (nstack.is_empty()) 3913 break; // finished 3914 n = nstack.node(); // Get node from stack 3915 cnt = n->req(); 3916 i = nstack.index(); 3917 nstack.pop(); // Shift to the next node on stack 3918 } 3919 } 3920 3921 // Skip next transformation if compressed oops are not used. 3922 if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) || 3923 (!UseCompressedOops && !UseCompressedClassPointers)) 3924 return; 3925 3926 // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges. 3927 // It could be done for an uncommon traps or any safepoints/calls 3928 // if the DecodeN/DecodeNKlass node is referenced only in a debug info. 3929 while (sfpt.size() > 0) { 3930 n = sfpt.pop(); 3931 JVMState *jvms = n->as_SafePoint()->jvms(); 3932 assert(jvms != nullptr, "sanity"); 3933 int start = jvms->debug_start(); 3934 int end = n->req(); 3935 bool is_uncommon = (n->is_CallStaticJava() && 3936 n->as_CallStaticJava()->uncommon_trap_request() != 0); 3937 for (int j = start; j < end; j++) { 3938 Node* in = n->in(j); 3939 if (in->is_DecodeNarrowPtr()) { 3940 bool safe_to_skip = true; 3941 if (!is_uncommon ) { 3942 // Is it safe to skip? 3943 for (uint i = 0; i < in->outcnt(); i++) { 3944 Node* u = in->raw_out(i); 3945 if (!u->is_SafePoint() || 3946 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) { 3947 safe_to_skip = false; 3948 } 3949 } 3950 } 3951 if (safe_to_skip) { 3952 n->set_req(j, in->in(1)); 3953 } 3954 if (in->outcnt() == 0) { 3955 in->disconnect_inputs(this); 3956 } 3957 } 3958 } 3959 } 3960 } 3961 3962 //------------------------------final_graph_reshaping-------------------------- 3963 // Final Graph Reshaping. 3964 // 3965 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late 3966 // and not commoned up and forced early. Must come after regular 3967 // optimizations to avoid GVN undoing the cloning. Clone constant 3968 // inputs to Loop Phis; these will be split by the allocator anyways. 3969 // Remove Opaque nodes. 3970 // (2) Move last-uses by commutative operations to the left input to encourage 3971 // Intel update-in-place two-address operations and better register usage 3972 // on RISCs. Must come after regular optimizations to avoid GVN Ideal 3973 // calls canonicalizing them back. 3974 // (3) Count the number of double-precision FP ops, single-precision FP ops 3975 // and call sites. On Intel, we can get correct rounding either by 3976 // forcing singles to memory (requires extra stores and loads after each 3977 // FP bytecode) or we can set a rounding mode bit (requires setting and 3978 // clearing the mode bit around call sites). The mode bit is only used 3979 // if the relative frequency of single FP ops to calls is low enough. 3980 // This is a key transform for SPEC mpeg_audio. 3981 // (4) Detect infinite loops; blobs of code reachable from above but not 3982 // below. Several of the Code_Gen algorithms fail on such code shapes, 3983 // so we simply bail out. Happens a lot in ZKM.jar, but also happens 3984 // from time to time in other codes (such as -Xcomp finalizer loops, etc). 3985 // Detection is by looking for IfNodes where only 1 projection is 3986 // reachable from below or CatchNodes missing some targets. 3987 // (5) Assert for insane oop offsets in debug mode. 3988 3989 bool Compile::final_graph_reshaping() { 3990 // an infinite loop may have been eliminated by the optimizer, 3991 // in which case the graph will be empty. 3992 if (root()->req() == 1) { 3993 // Do not compile method that is only a trivial infinite loop, 3994 // since the content of the loop may have been eliminated. 3995 record_method_not_compilable("trivial infinite loop"); 3996 return true; 3997 } 3998 3999 // Expensive nodes have their control input set to prevent the GVN 4000 // from freely commoning them. There's no GVN beyond this point so 4001 // no need to keep the control input. We want the expensive nodes to 4002 // be freely moved to the least frequent code path by gcm. 4003 assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?"); 4004 for (int i = 0; i < expensive_count(); i++) { 4005 _expensive_nodes.at(i)->set_req(0, nullptr); 4006 } 4007 4008 Final_Reshape_Counts frc; 4009 4010 // Visit everybody reachable! 4011 // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc 4012 Node_Stack nstack(live_nodes() >> 1); 4013 Unique_Node_List dead_nodes; 4014 final_graph_reshaping_walk(nstack, root(), frc, dead_nodes); 4015 4016 // Check for unreachable (from below) code (i.e., infinite loops). 4017 for( uint i = 0; i < frc._tests.size(); i++ ) { 4018 MultiBranchNode *n = frc._tests[i]->as_MultiBranch(); 4019 // Get number of CFG targets. 4020 // Note that PCTables include exception targets after calls. 4021 uint required_outcnt = n->required_outcnt(); 4022 if (n->outcnt() != required_outcnt) { 4023 // Check for a few special cases. Rethrow Nodes never take the 4024 // 'fall-thru' path, so expected kids is 1 less. 4025 if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) { 4026 if (n->in(0)->in(0)->is_Call()) { 4027 CallNode* call = n->in(0)->in(0)->as_Call(); 4028 if (call->entry_point() == OptoRuntime::rethrow_stub()) { 4029 required_outcnt--; // Rethrow always has 1 less kid 4030 } else if (call->req() > TypeFunc::Parms && 4031 call->is_CallDynamicJava()) { 4032 // Check for null receiver. In such case, the optimizer has 4033 // detected that the virtual call will always result in a null 4034 // pointer exception. The fall-through projection of this CatchNode 4035 // will not be populated. 4036 Node* arg0 = call->in(TypeFunc::Parms); 4037 if (arg0->is_Type() && 4038 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) { 4039 required_outcnt--; 4040 } 4041 } else if (call->entry_point() == OptoRuntime::new_array_Java() || 4042 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4043 // Check for illegal array length. In such case, the optimizer has 4044 // detected that the allocation attempt will always result in an 4045 // exception. There is no fall-through projection of this CatchNode . 4046 assert(call->is_CallStaticJava(), "static call expected"); 4047 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4048 uint valid_length_test_input = call->req() - 1; 4049 Node* valid_length_test = call->in(valid_length_test_input); 4050 call->del_req(valid_length_test_input); 4051 if (valid_length_test->find_int_con(1) == 0) { 4052 required_outcnt--; 4053 } 4054 dead_nodes.push(valid_length_test); 4055 assert(n->outcnt() == required_outcnt, "malformed control flow"); 4056 continue; 4057 } 4058 } 4059 } 4060 4061 // Recheck with a better notion of 'required_outcnt' 4062 if (n->outcnt() != required_outcnt) { 4063 record_method_not_compilable("malformed control flow"); 4064 return true; // Not all targets reachable! 4065 } 4066 } else if (n->is_PCTable() && n->in(0) && n->in(0)->in(0) && n->in(0)->in(0)->is_Call()) { 4067 CallNode* call = n->in(0)->in(0)->as_Call(); 4068 if (call->entry_point() == OptoRuntime::new_array_Java() || 4069 call->entry_point() == OptoRuntime::new_array_nozero_Java()) { 4070 assert(call->is_CallStaticJava(), "static call expected"); 4071 assert(call->req() == call->jvms()->endoff() + 1, "missing extra input"); 4072 uint valid_length_test_input = call->req() - 1; 4073 dead_nodes.push(call->in(valid_length_test_input)); 4074 call->del_req(valid_length_test_input); // valid length test useless now 4075 } 4076 } 4077 // Check that I actually visited all kids. Unreached kids 4078 // must be infinite loops. 4079 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) 4080 if (!frc._visited.test(n->fast_out(j)->_idx)) { 4081 record_method_not_compilable("infinite loop"); 4082 return true; // Found unvisited kid; must be unreach 4083 } 4084 4085 // Here so verification code in final_graph_reshaping_walk() 4086 // always see an OuterStripMinedLoopEnd 4087 if (n->is_OuterStripMinedLoopEnd() || n->is_LongCountedLoopEnd()) { 4088 IfNode* init_iff = n->as_If(); 4089 Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt); 4090 n->subsume_by(iff, this); 4091 } 4092 } 4093 4094 while (dead_nodes.size() > 0) { 4095 Node* m = dead_nodes.pop(); 4096 if (m->outcnt() == 0 && m != top()) { 4097 for (uint j = 0; j < m->req(); j++) { 4098 Node* in = m->in(j); 4099 if (in != nullptr) { 4100 dead_nodes.push(in); 4101 } 4102 } 4103 m->disconnect_inputs(this); 4104 } 4105 } 4106 4107 #ifdef IA32 4108 // If original bytecodes contained a mixture of floats and doubles 4109 // check if the optimizer has made it homogeneous, item (3). 4110 if (UseSSE == 0 && 4111 frc.get_float_count() > 32 && 4112 frc.get_double_count() == 0 && 4113 (10 * frc.get_call_count() < frc.get_float_count()) ) { 4114 set_24_bit_selection_and_mode(false, true); 4115 } 4116 #endif // IA32 4117 4118 set_java_calls(frc.get_java_call_count()); 4119 set_inner_loops(frc.get_inner_loop_count()); 4120 4121 // No infinite loops, no reason to bail out. 4122 return false; 4123 } 4124 4125 //-----------------------------too_many_traps---------------------------------- 4126 // Report if there are too many traps at the current method and bci. 4127 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded. 4128 bool Compile::too_many_traps(ciMethod* method, 4129 int bci, 4130 Deoptimization::DeoptReason reason) { 4131 ciMethodData* md = method->method_data(); 4132 if (md->is_empty()) { 4133 // Assume the trap has not occurred, or that it occurred only 4134 // because of a transient condition during start-up in the interpreter. 4135 return false; 4136 } 4137 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4138 if (md->has_trap_at(bci, m, reason) != 0) { 4139 // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic. 4140 // Also, if there are multiple reasons, or if there is no per-BCI record, 4141 // assume the worst. 4142 if (log()) 4143 log()->elem("observe trap='%s' count='%d'", 4144 Deoptimization::trap_reason_name(reason), 4145 md->trap_count(reason)); 4146 return true; 4147 } else { 4148 // Ignore method/bci and see if there have been too many globally. 4149 return too_many_traps(reason, md); 4150 } 4151 } 4152 4153 // Less-accurate variant which does not require a method and bci. 4154 bool Compile::too_many_traps(Deoptimization::DeoptReason reason, 4155 ciMethodData* logmd) { 4156 if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) { 4157 // Too many traps globally. 4158 // Note that we use cumulative trap_count, not just md->trap_count. 4159 if (log()) { 4160 int mcount = (logmd == nullptr)? -1: (int)logmd->trap_count(reason); 4161 log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'", 4162 Deoptimization::trap_reason_name(reason), 4163 mcount, trap_count(reason)); 4164 } 4165 return true; 4166 } else { 4167 // The coast is clear. 4168 return false; 4169 } 4170 } 4171 4172 //--------------------------too_many_recompiles-------------------------------- 4173 // Report if there are too many recompiles at the current method and bci. 4174 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff. 4175 // Is not eager to return true, since this will cause the compiler to use 4176 // Action_none for a trap point, to avoid too many recompilations. 4177 bool Compile::too_many_recompiles(ciMethod* method, 4178 int bci, 4179 Deoptimization::DeoptReason reason) { 4180 ciMethodData* md = method->method_data(); 4181 if (md->is_empty()) { 4182 // Assume the trap has not occurred, or that it occurred only 4183 // because of a transient condition during start-up in the interpreter. 4184 return false; 4185 } 4186 // Pick a cutoff point well within PerBytecodeRecompilationCutoff. 4187 uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8; 4188 uint m_cutoff = (uint) PerMethodRecompilationCutoff / 2 + 1; // not zero 4189 Deoptimization::DeoptReason per_bc_reason 4190 = Deoptimization::reason_recorded_per_bytecode_if_any(reason); 4191 ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : nullptr; 4192 if ((per_bc_reason == Deoptimization::Reason_none 4193 || md->has_trap_at(bci, m, reason) != 0) 4194 // The trap frequency measure we care about is the recompile count: 4195 && md->trap_recompiled_at(bci, m) 4196 && md->overflow_recompile_count() >= bc_cutoff) { 4197 // Do not emit a trap here if it has already caused recompilations. 4198 // Also, if there are multiple reasons, or if there is no per-BCI record, 4199 // assume the worst. 4200 if (log()) 4201 log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'", 4202 Deoptimization::trap_reason_name(reason), 4203 md->trap_count(reason), 4204 md->overflow_recompile_count()); 4205 return true; 4206 } else if (trap_count(reason) != 0 4207 && decompile_count() >= m_cutoff) { 4208 // Too many recompiles globally, and we have seen this sort of trap. 4209 // Use cumulative decompile_count, not just md->decompile_count. 4210 if (log()) 4211 log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'", 4212 Deoptimization::trap_reason_name(reason), 4213 md->trap_count(reason), trap_count(reason), 4214 md->decompile_count(), decompile_count()); 4215 return true; 4216 } else { 4217 // The coast is clear. 4218 return false; 4219 } 4220 } 4221 4222 // Compute when not to trap. Used by matching trap based nodes and 4223 // NullCheck optimization. 4224 void Compile::set_allowed_deopt_reasons() { 4225 _allowed_reasons = 0; 4226 if (is_method_compilation()) { 4227 for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) { 4228 assert(rs < BitsPerInt, "recode bit map"); 4229 if (!too_many_traps((Deoptimization::DeoptReason) rs)) { 4230 _allowed_reasons |= nth_bit(rs); 4231 } 4232 } 4233 } 4234 } 4235 4236 bool Compile::needs_clinit_barrier(ciMethod* method, ciMethod* accessing_method) { 4237 return method->is_static() && needs_clinit_barrier(method->holder(), accessing_method); 4238 } 4239 4240 bool Compile::needs_clinit_barrier(ciField* field, ciMethod* accessing_method) { 4241 return field->is_static() && needs_clinit_barrier(field->holder(), accessing_method); 4242 } 4243 4244 bool Compile::needs_clinit_barrier(ciInstanceKlass* holder, ciMethod* accessing_method) { 4245 if (holder->is_initialized()) { 4246 return false; 4247 } 4248 if (holder->is_being_initialized()) { 4249 if (accessing_method->holder() == holder) { 4250 // Access inside a class. The barrier can be elided when access happens in <clinit>, 4251 // <init>, or a static method. In all those cases, there was an initialization 4252 // barrier on the holder klass passed. 4253 if (accessing_method->is_static_initializer() || 4254 accessing_method->is_object_initializer() || 4255 accessing_method->is_static()) { 4256 return false; 4257 } 4258 } else if (accessing_method->holder()->is_subclass_of(holder)) { 4259 // Access from a subclass. The barrier can be elided only when access happens in <clinit>. 4260 // In case of <init> or a static method, the barrier is on the subclass is not enough: 4261 // child class can become fully initialized while its parent class is still being initialized. 4262 if (accessing_method->is_static_initializer()) { 4263 return false; 4264 } 4265 } 4266 ciMethod* root = method(); // the root method of compilation 4267 if (root != accessing_method) { 4268 return needs_clinit_barrier(holder, root); // check access in the context of compilation root 4269 } 4270 } 4271 return true; 4272 } 4273 4274 #ifndef PRODUCT 4275 //------------------------------verify_bidirectional_edges--------------------- 4276 // For each input edge to a node (ie - for each Use-Def edge), verify that 4277 // there is a corresponding Def-Use edge. 4278 void Compile::verify_bidirectional_edges(Unique_Node_List &visited) { 4279 // Allocate stack of size C->live_nodes()/16 to avoid frequent realloc 4280 uint stack_size = live_nodes() >> 4; 4281 Node_List nstack(MAX2(stack_size, (uint)OptoNodeListSize)); 4282 nstack.push(_root); 4283 4284 while (nstack.size() > 0) { 4285 Node* n = nstack.pop(); 4286 if (visited.member(n)) { 4287 continue; 4288 } 4289 visited.push(n); 4290 4291 // Walk over all input edges, checking for correspondence 4292 uint length = n->len(); 4293 for (uint i = 0; i < length; i++) { 4294 Node* in = n->in(i); 4295 if (in != nullptr && !visited.member(in)) { 4296 nstack.push(in); // Put it on stack 4297 } 4298 if (in != nullptr && !in->is_top()) { 4299 // Count instances of `next` 4300 int cnt = 0; 4301 for (uint idx = 0; idx < in->_outcnt; idx++) { 4302 if (in->_out[idx] == n) { 4303 cnt++; 4304 } 4305 } 4306 assert(cnt > 0, "Failed to find Def-Use edge."); 4307 // Check for duplicate edges 4308 // walk the input array downcounting the input edges to n 4309 for (uint j = 0; j < length; j++) { 4310 if (n->in(j) == in) { 4311 cnt--; 4312 } 4313 } 4314 assert(cnt == 0, "Mismatched edge count."); 4315 } else if (in == nullptr) { 4316 assert(i == 0 || i >= n->req() || 4317 n->is_Region() || n->is_Phi() || n->is_ArrayCopy() || 4318 (n->is_Unlock() && i == (n->req() - 1)) || 4319 (n->is_MemBar() && i == 5), // the precedence edge to a membar can be removed during macro node expansion 4320 "only region, phi, arraycopy, unlock or membar nodes have null data edges"); 4321 } else { 4322 assert(in->is_top(), "sanity"); 4323 // Nothing to check. 4324 } 4325 } 4326 } 4327 } 4328 4329 //------------------------------verify_graph_edges--------------------------- 4330 // Walk the Graph and verify that there is a one-to-one correspondence 4331 // between Use-Def edges and Def-Use edges in the graph. 4332 void Compile::verify_graph_edges(bool no_dead_code) { 4333 if (VerifyGraphEdges) { 4334 Unique_Node_List visited; 4335 4336 // Call graph walk to check edges 4337 verify_bidirectional_edges(visited); 4338 if (no_dead_code) { 4339 // Now make sure that no visited node is used by an unvisited node. 4340 bool dead_nodes = false; 4341 Unique_Node_List checked; 4342 while (visited.size() > 0) { 4343 Node* n = visited.pop(); 4344 checked.push(n); 4345 for (uint i = 0; i < n->outcnt(); i++) { 4346 Node* use = n->raw_out(i); 4347 if (checked.member(use)) continue; // already checked 4348 if (visited.member(use)) continue; // already in the graph 4349 if (use->is_Con()) continue; // a dead ConNode is OK 4350 // At this point, we have found a dead node which is DU-reachable. 4351 if (!dead_nodes) { 4352 tty->print_cr("*** Dead nodes reachable via DU edges:"); 4353 dead_nodes = true; 4354 } 4355 use->dump(2); 4356 tty->print_cr("---"); 4357 checked.push(use); // No repeats; pretend it is now checked. 4358 } 4359 } 4360 assert(!dead_nodes, "using nodes must be reachable from root"); 4361 } 4362 } 4363 } 4364 #endif 4365 4366 // The Compile object keeps track of failure reasons separately from the ciEnv. 4367 // This is required because there is not quite a 1-1 relation between the 4368 // ciEnv and its compilation task and the Compile object. Note that one 4369 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides 4370 // to backtrack and retry without subsuming loads. Other than this backtracking 4371 // behavior, the Compile's failure reason is quietly copied up to the ciEnv 4372 // by the logic in C2Compiler. 4373 void Compile::record_failure(const char* reason) { 4374 if (log() != nullptr) { 4375 log()->elem("failure reason='%s' phase='compile'", reason); 4376 } 4377 if (_failure_reason.get() == nullptr) { 4378 // Record the first failure reason. 4379 _failure_reason.set(reason); 4380 if (CaptureBailoutInformation) { 4381 _first_failure_details = new CompilationFailureInfo(reason); 4382 } 4383 } 4384 4385 if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) { 4386 C->print_method(PHASE_FAILURE, 1); 4387 } 4388 _root = nullptr; // flush the graph, too 4389 } 4390 4391 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator) 4392 : TraceTime(name, accumulator, CITime, CITimeVerbose), 4393 _compile(Compile::current()), 4394 _log(nullptr), 4395 _phase_name(name), 4396 _dolog(CITimeVerbose) 4397 { 4398 assert(_compile != nullptr, "sanity check"); 4399 if (_dolog) { 4400 _log = _compile->log(); 4401 } 4402 if (_log != nullptr) { 4403 _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, _compile->unique(), _compile->live_nodes()); 4404 _log->stamp(); 4405 _log->end_head(); 4406 } 4407 } 4408 4409 Compile::TracePhase::~TracePhase() { 4410 if (_compile->failing()) return; 4411 #ifdef ASSERT 4412 if (PrintIdealNodeCount) { 4413 tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'", 4414 _phase_name, _compile->unique(), _compile->live_nodes(), _compile->count_live_nodes_by_graph_walk()); 4415 } 4416 4417 if (VerifyIdealNodeCount) { 4418 _compile->print_missing_nodes(); 4419 } 4420 #endif 4421 4422 if (_log != nullptr) { 4423 _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, _compile->unique(), _compile->live_nodes()); 4424 } 4425 } 4426 4427 //----------------------------static_subtype_check----------------------------- 4428 // Shortcut important common cases when superklass is exact: 4429 // (0) superklass is java.lang.Object (can occur in reflective code) 4430 // (1) subklass is already limited to a subtype of superklass => always ok 4431 // (2) subklass does not overlap with superklass => always fail 4432 // (3) superklass has NO subtypes and we can check with a simple compare. 4433 Compile::SubTypeCheckResult Compile::static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip) { 4434 if (skip) { 4435 return SSC_full_test; // Let caller generate the general case. 4436 } 4437 4438 if (subk->is_java_subtype_of(superk)) { 4439 return SSC_always_true; // (0) and (1) this test cannot fail 4440 } 4441 4442 if (!subk->maybe_java_subtype_of(superk)) { 4443 return SSC_always_false; // (2) true path dead; no dynamic test needed 4444 } 4445 4446 const Type* superelem = superk; 4447 if (superk->isa_aryklassptr()) { 4448 int ignored; 4449 superelem = superk->is_aryklassptr()->base_element_type(ignored); 4450 } 4451 4452 if (superelem->isa_instklassptr()) { 4453 ciInstanceKlass* ik = superelem->is_instklassptr()->instance_klass(); 4454 if (!ik->has_subklass()) { 4455 if (!ik->is_final()) { 4456 // Add a dependency if there is a chance of a later subclass. 4457 dependencies()->assert_leaf_type(ik); 4458 } 4459 if (!superk->maybe_java_subtype_of(subk)) { 4460 return SSC_always_false; 4461 } 4462 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4463 } 4464 } else { 4465 // A primitive array type has no subtypes. 4466 return SSC_easy_test; // (3) caller can do a simple ptr comparison 4467 } 4468 4469 return SSC_full_test; 4470 } 4471 4472 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) { 4473 #ifdef _LP64 4474 // The scaled index operand to AddP must be a clean 64-bit value. 4475 // Java allows a 32-bit int to be incremented to a negative 4476 // value, which appears in a 64-bit register as a large 4477 // positive number. Using that large positive number as an 4478 // operand in pointer arithmetic has bad consequences. 4479 // On the other hand, 32-bit overflow is rare, and the possibility 4480 // can often be excluded, if we annotate the ConvI2L node with 4481 // a type assertion that its value is known to be a small positive 4482 // number. (The prior range check has ensured this.) 4483 // This assertion is used by ConvI2LNode::Ideal. 4484 int index_max = max_jint - 1; // array size is max_jint, index is one less 4485 if (sizetype != nullptr) index_max = sizetype->_hi - 1; 4486 const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax); 4487 idx = constrained_convI2L(phase, idx, iidxtype, ctrl); 4488 #endif 4489 return idx; 4490 } 4491 4492 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 4493 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) { 4494 if (ctrl != nullptr) { 4495 // Express control dependency by a CastII node with a narrow type. 4496 // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L 4497 // node from floating above the range check during loop optimizations. Otherwise, the 4498 // ConvI2L node may be eliminated independently of the range check, causing the data path 4499 // to become TOP while the control path is still there (although it's unreachable). 4500 value = new CastIINode(ctrl, value, itype, carry_dependency ? ConstraintCastNode::StrongDependency : ConstraintCastNode::RegularDependency, true /* range check dependency */); 4501 value = phase->transform(value); 4502 } 4503 const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen); 4504 return phase->transform(new ConvI2LNode(value, ltype)); 4505 } 4506 4507 // The message about the current inlining is accumulated in 4508 // _print_inlining_stream and transferred into the _print_inlining_list 4509 // once we know whether inlining succeeds or not. For regular 4510 // inlining, messages are appended to the buffer pointed by 4511 // _print_inlining_idx in the _print_inlining_list. For late inlining, 4512 // a new buffer is added after _print_inlining_idx in the list. This 4513 // way we can update the inlining message for late inlining call site 4514 // when the inlining is attempted again. 4515 void Compile::print_inlining_init() { 4516 if (print_inlining() || print_intrinsics()) { 4517 // print_inlining_init is actually called several times. 4518 print_inlining_reset(); 4519 _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer*>(comp_arena(), 1, 1, new PrintInliningBuffer()); 4520 } 4521 } 4522 4523 void Compile::print_inlining_reinit() { 4524 if (print_inlining() || print_intrinsics()) { 4525 print_inlining_reset(); 4526 } 4527 } 4528 4529 void Compile::print_inlining_reset() { 4530 _print_inlining_stream->reset(); 4531 } 4532 4533 void Compile::print_inlining_commit() { 4534 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 4535 // Transfer the message from _print_inlining_stream to the current 4536 // _print_inlining_list buffer and clear _print_inlining_stream. 4537 _print_inlining_list->at(_print_inlining_idx)->ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size()); 4538 print_inlining_reset(); 4539 } 4540 4541 void Compile::print_inlining_push() { 4542 // Add new buffer to the _print_inlining_list at current position 4543 _print_inlining_idx++; 4544 _print_inlining_list->insert_before(_print_inlining_idx, new PrintInliningBuffer()); 4545 } 4546 4547 Compile::PrintInliningBuffer* Compile::print_inlining_current() { 4548 return _print_inlining_list->at(_print_inlining_idx); 4549 } 4550 4551 void Compile::print_inlining_update(CallGenerator* cg) { 4552 if (print_inlining() || print_intrinsics()) { 4553 if (cg->is_late_inline()) { 4554 if (print_inlining_current()->cg() != cg && 4555 (print_inlining_current()->cg() != nullptr || 4556 print_inlining_current()->ss()->size() != 0)) { 4557 print_inlining_push(); 4558 } 4559 print_inlining_commit(); 4560 print_inlining_current()->set_cg(cg); 4561 } else { 4562 if (print_inlining_current()->cg() != nullptr) { 4563 print_inlining_push(); 4564 } 4565 print_inlining_commit(); 4566 } 4567 } 4568 } 4569 4570 void Compile::print_inlining_move_to(CallGenerator* cg) { 4571 // We resume inlining at a late inlining call site. Locate the 4572 // corresponding inlining buffer so that we can update it. 4573 if (print_inlining() || print_intrinsics()) { 4574 for (int i = 0; i < _print_inlining_list->length(); i++) { 4575 if (_print_inlining_list->at(i)->cg() == cg) { 4576 _print_inlining_idx = i; 4577 return; 4578 } 4579 } 4580 ShouldNotReachHere(); 4581 } 4582 } 4583 4584 void Compile::print_inlining_update_delayed(CallGenerator* cg) { 4585 if (print_inlining() || print_intrinsics()) { 4586 assert(_print_inlining_stream->size() > 0, "missing inlining msg"); 4587 assert(print_inlining_current()->cg() == cg, "wrong entry"); 4588 // replace message with new message 4589 _print_inlining_list->at_put(_print_inlining_idx, new PrintInliningBuffer()); 4590 print_inlining_commit(); 4591 print_inlining_current()->set_cg(cg); 4592 } 4593 } 4594 4595 void Compile::print_inlining_assert_ready() { 4596 assert(!_print_inlining || _print_inlining_stream->size() == 0, "losing data"); 4597 } 4598 4599 void Compile::process_print_inlining() { 4600 assert(_late_inlines.length() == 0, "not drained yet"); 4601 if (print_inlining() || print_intrinsics()) { 4602 ResourceMark rm; 4603 stringStream ss; 4604 assert(_print_inlining_list != nullptr, "process_print_inlining should be called only once."); 4605 for (int i = 0; i < _print_inlining_list->length(); i++) { 4606 PrintInliningBuffer* pib = _print_inlining_list->at(i); 4607 ss.print("%s", pib->ss()->freeze()); 4608 delete pib; 4609 DEBUG_ONLY(_print_inlining_list->at_put(i, nullptr)); 4610 } 4611 // Reset _print_inlining_list, it only contains destructed objects. 4612 // It is on the arena, so it will be freed when the arena is reset. 4613 _print_inlining_list = nullptr; 4614 // _print_inlining_stream won't be used anymore, either. 4615 print_inlining_reset(); 4616 size_t end = ss.size(); 4617 _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1); 4618 strncpy(_print_inlining_output, ss.freeze(), end+1); 4619 _print_inlining_output[end] = 0; 4620 } 4621 } 4622 4623 void Compile::dump_print_inlining() { 4624 if (_print_inlining_output != nullptr) { 4625 tty->print_raw(_print_inlining_output); 4626 } 4627 } 4628 4629 void Compile::log_late_inline(CallGenerator* cg) { 4630 if (log() != nullptr) { 4631 log()->head("late_inline method='%d' inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()), 4632 cg->unique_id()); 4633 JVMState* p = cg->call_node()->jvms(); 4634 while (p != nullptr) { 4635 log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method())); 4636 p = p->caller(); 4637 } 4638 log()->tail("late_inline"); 4639 } 4640 } 4641 4642 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) { 4643 log_late_inline(cg); 4644 if (log() != nullptr) { 4645 log()->inline_fail(msg); 4646 } 4647 } 4648 4649 void Compile::log_inline_id(CallGenerator* cg) { 4650 if (log() != nullptr) { 4651 // The LogCompilation tool needs a unique way to identify late 4652 // inline call sites. This id must be unique for this call site in 4653 // this compilation. Try to have it unique across compilations as 4654 // well because it can be convenient when grepping through the log 4655 // file. 4656 // Distinguish OSR compilations from others in case CICountOSR is 4657 // on. 4658 jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0); 4659 cg->set_unique_id(id); 4660 log()->elem("inline_id id='" JLONG_FORMAT "'", id); 4661 } 4662 } 4663 4664 void Compile::log_inline_failure(const char* msg) { 4665 if (C->log() != nullptr) { 4666 C->log()->inline_fail(msg); 4667 } 4668 } 4669 4670 4671 // Dump inlining replay data to the stream. 4672 // Don't change thread state and acquire any locks. 4673 void Compile::dump_inline_data(outputStream* out) { 4674 InlineTree* inl_tree = ilt(); 4675 if (inl_tree != nullptr) { 4676 out->print(" inline %d", inl_tree->count()); 4677 inl_tree->dump_replay_data(out); 4678 } 4679 } 4680 4681 void Compile::dump_inline_data_reduced(outputStream* out) { 4682 assert(ReplayReduce, ""); 4683 4684 InlineTree* inl_tree = ilt(); 4685 if (inl_tree == nullptr) { 4686 return; 4687 } 4688 // Enable iterative replay file reduction 4689 // Output "compile" lines for depth 1 subtrees, 4690 // simulating that those trees were compiled 4691 // instead of inlined. 4692 for (int i = 0; i < inl_tree->subtrees().length(); ++i) { 4693 InlineTree* sub = inl_tree->subtrees().at(i); 4694 if (sub->inline_level() != 1) { 4695 continue; 4696 } 4697 4698 ciMethod* method = sub->method(); 4699 int entry_bci = -1; 4700 int comp_level = env()->task()->comp_level(); 4701 out->print("compile "); 4702 method->dump_name_as_ascii(out); 4703 out->print(" %d %d", entry_bci, comp_level); 4704 out->print(" inline %d", sub->count()); 4705 sub->dump_replay_data(out, -1); 4706 out->cr(); 4707 } 4708 } 4709 4710 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) { 4711 if (n1->Opcode() < n2->Opcode()) return -1; 4712 else if (n1->Opcode() > n2->Opcode()) return 1; 4713 4714 assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()); 4715 for (uint i = 1; i < n1->req(); i++) { 4716 if (n1->in(i) < n2->in(i)) return -1; 4717 else if (n1->in(i) > n2->in(i)) return 1; 4718 } 4719 4720 return 0; 4721 } 4722 4723 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) { 4724 Node* n1 = *n1p; 4725 Node* n2 = *n2p; 4726 4727 return cmp_expensive_nodes(n1, n2); 4728 } 4729 4730 void Compile::sort_expensive_nodes() { 4731 if (!expensive_nodes_sorted()) { 4732 _expensive_nodes.sort(cmp_expensive_nodes); 4733 } 4734 } 4735 4736 bool Compile::expensive_nodes_sorted() const { 4737 for (int i = 1; i < _expensive_nodes.length(); i++) { 4738 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i-1)) < 0) { 4739 return false; 4740 } 4741 } 4742 return true; 4743 } 4744 4745 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) { 4746 if (_expensive_nodes.length() == 0) { 4747 return false; 4748 } 4749 4750 assert(OptimizeExpensiveOps, "optimization off?"); 4751 4752 // Take this opportunity to remove dead nodes from the list 4753 int j = 0; 4754 for (int i = 0; i < _expensive_nodes.length(); i++) { 4755 Node* n = _expensive_nodes.at(i); 4756 if (!n->is_unreachable(igvn)) { 4757 assert(n->is_expensive(), "should be expensive"); 4758 _expensive_nodes.at_put(j, n); 4759 j++; 4760 } 4761 } 4762 _expensive_nodes.trunc_to(j); 4763 4764 // Then sort the list so that similar nodes are next to each other 4765 // and check for at least two nodes of identical kind with same data 4766 // inputs. 4767 sort_expensive_nodes(); 4768 4769 for (int i = 0; i < _expensive_nodes.length()-1; i++) { 4770 if (cmp_expensive_nodes(_expensive_nodes.adr_at(i), _expensive_nodes.adr_at(i+1)) == 0) { 4771 return true; 4772 } 4773 } 4774 4775 return false; 4776 } 4777 4778 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) { 4779 if (_expensive_nodes.length() == 0) { 4780 return; 4781 } 4782 4783 assert(OptimizeExpensiveOps, "optimization off?"); 4784 4785 // Sort to bring similar nodes next to each other and clear the 4786 // control input of nodes for which there's only a single copy. 4787 sort_expensive_nodes(); 4788 4789 int j = 0; 4790 int identical = 0; 4791 int i = 0; 4792 bool modified = false; 4793 for (; i < _expensive_nodes.length()-1; i++) { 4794 assert(j <= i, "can't write beyond current index"); 4795 if (_expensive_nodes.at(i)->Opcode() == _expensive_nodes.at(i+1)->Opcode()) { 4796 identical++; 4797 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4798 continue; 4799 } 4800 if (identical > 0) { 4801 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4802 identical = 0; 4803 } else { 4804 Node* n = _expensive_nodes.at(i); 4805 igvn.replace_input_of(n, 0, nullptr); 4806 igvn.hash_insert(n); 4807 modified = true; 4808 } 4809 } 4810 if (identical > 0) { 4811 _expensive_nodes.at_put(j++, _expensive_nodes.at(i)); 4812 } else if (_expensive_nodes.length() >= 1) { 4813 Node* n = _expensive_nodes.at(i); 4814 igvn.replace_input_of(n, 0, nullptr); 4815 igvn.hash_insert(n); 4816 modified = true; 4817 } 4818 _expensive_nodes.trunc_to(j); 4819 if (modified) { 4820 igvn.optimize(); 4821 } 4822 } 4823 4824 void Compile::add_expensive_node(Node * n) { 4825 assert(!_expensive_nodes.contains(n), "duplicate entry in expensive list"); 4826 assert(n->is_expensive(), "expensive nodes with non-null control here only"); 4827 assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here"); 4828 if (OptimizeExpensiveOps) { 4829 _expensive_nodes.append(n); 4830 } else { 4831 // Clear control input and let IGVN optimize expensive nodes if 4832 // OptimizeExpensiveOps is off. 4833 n->set_req(0, nullptr); 4834 } 4835 } 4836 4837 /** 4838 * Track coarsened Lock and Unlock nodes. 4839 */ 4840 4841 class Lock_List : public Node_List { 4842 uint _origin_cnt; 4843 public: 4844 Lock_List(Arena *a, uint cnt) : Node_List(a), _origin_cnt(cnt) {} 4845 uint origin_cnt() const { return _origin_cnt; } 4846 }; 4847 4848 void Compile::add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks) { 4849 int length = locks.length(); 4850 if (length > 0) { 4851 // Have to keep this list until locks elimination during Macro nodes elimination. 4852 Lock_List* locks_list = new (comp_arena()) Lock_List(comp_arena(), length); 4853 AbstractLockNode* alock = locks.at(0); 4854 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4855 for (int i = 0; i < length; i++) { 4856 AbstractLockNode* lock = locks.at(i); 4857 assert(lock->is_coarsened(), "expecting only coarsened AbstractLock nodes, but got '%s'[%d] node", lock->Name(), lock->_idx); 4858 locks_list->push(lock); 4859 BoxLockNode* this_box = lock->box_node()->as_BoxLock(); 4860 if (this_box != box) { 4861 // Locking regions (BoxLock) could be Unbalanced here: 4862 // - its coarsened locks were eliminated in earlier 4863 // macro nodes elimination followed by loop unroll 4864 // - it is OSR locking region (no Lock node) 4865 // Preserve Unbalanced status in such cases. 4866 if (!this_box->is_unbalanced()) { 4867 this_box->set_coarsened(); 4868 } 4869 if (!box->is_unbalanced()) { 4870 box->set_coarsened(); 4871 } 4872 } 4873 } 4874 _coarsened_locks.append(locks_list); 4875 } 4876 } 4877 4878 void Compile::remove_useless_coarsened_locks(Unique_Node_List& useful) { 4879 int count = coarsened_count(); 4880 for (int i = 0; i < count; i++) { 4881 Node_List* locks_list = _coarsened_locks.at(i); 4882 for (uint j = 0; j < locks_list->size(); j++) { 4883 Node* lock = locks_list->at(j); 4884 assert(lock->is_AbstractLock(), "sanity"); 4885 if (!useful.member(lock)) { 4886 locks_list->yank(lock); 4887 } 4888 } 4889 } 4890 } 4891 4892 void Compile::remove_coarsened_lock(Node* n) { 4893 if (n->is_AbstractLock()) { 4894 int count = coarsened_count(); 4895 for (int i = 0; i < count; i++) { 4896 Node_List* locks_list = _coarsened_locks.at(i); 4897 locks_list->yank(n); 4898 } 4899 } 4900 } 4901 4902 bool Compile::coarsened_locks_consistent() { 4903 int count = coarsened_count(); 4904 for (int i = 0; i < count; i++) { 4905 bool unbalanced = false; 4906 bool modified = false; // track locks kind modifications 4907 Lock_List* locks_list = (Lock_List*)_coarsened_locks.at(i); 4908 uint size = locks_list->size(); 4909 if (size == 0) { 4910 unbalanced = false; // All locks were eliminated - good 4911 } else if (size != locks_list->origin_cnt()) { 4912 unbalanced = true; // Some locks were removed from list 4913 } else { 4914 for (uint j = 0; j < size; j++) { 4915 Node* lock = locks_list->at(j); 4916 // All nodes in group should have the same state (modified or not) 4917 if (!lock->as_AbstractLock()->is_coarsened()) { 4918 if (j == 0) { 4919 // first on list was modified, the rest should be too for consistency 4920 modified = true; 4921 } else if (!modified) { 4922 // this lock was modified but previous locks on the list were not 4923 unbalanced = true; 4924 break; 4925 } 4926 } else if (modified) { 4927 // previous locks on list were modified but not this lock 4928 unbalanced = true; 4929 break; 4930 } 4931 } 4932 } 4933 if (unbalanced) { 4934 // unbalanced monitor enter/exit - only some [un]lock nodes were removed or modified 4935 #ifdef ASSERT 4936 if (PrintEliminateLocks) { 4937 tty->print_cr("=== unbalanced coarsened locks ==="); 4938 for (uint l = 0; l < size; l++) { 4939 locks_list->at(l)->dump(); 4940 } 4941 } 4942 #endif 4943 record_failure(C2Compiler::retry_no_locks_coarsening()); 4944 return false; 4945 } 4946 } 4947 return true; 4948 } 4949 4950 // Mark locking regions (identified by BoxLockNode) as unbalanced if 4951 // locks coarsening optimization removed Lock/Unlock nodes from them. 4952 // Such regions become unbalanced because coarsening only removes part 4953 // of Lock/Unlock nodes in region. As result we can't execute other 4954 // locks elimination optimizations which assume all code paths have 4955 // corresponding pair of Lock/Unlock nodes - they are balanced. 4956 void Compile::mark_unbalanced_boxes() const { 4957 int count = coarsened_count(); 4958 for (int i = 0; i < count; i++) { 4959 Node_List* locks_list = _coarsened_locks.at(i); 4960 uint size = locks_list->size(); 4961 if (size > 0) { 4962 AbstractLockNode* alock = locks_list->at(0)->as_AbstractLock(); 4963 BoxLockNode* box = alock->box_node()->as_BoxLock(); 4964 if (alock->is_coarsened()) { 4965 // coarsened_locks_consistent(), which is called before this method, verifies 4966 // that the rest of Lock/Unlock nodes on locks_list are also coarsened. 4967 assert(!box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4968 for (uint j = 1; j < size; j++) { 4969 assert(locks_list->at(j)->as_AbstractLock()->is_coarsened(), "only coarsened locks are expected here"); 4970 BoxLockNode* this_box = locks_list->at(j)->as_AbstractLock()->box_node()->as_BoxLock(); 4971 if (box != this_box) { 4972 assert(!this_box->is_eliminated(), "regions with coarsened locks should not be marked as eliminated"); 4973 box->set_unbalanced(); 4974 this_box->set_unbalanced(); 4975 } 4976 } 4977 } 4978 } 4979 } 4980 } 4981 4982 /** 4983 * Remove the speculative part of types and clean up the graph 4984 */ 4985 void Compile::remove_speculative_types(PhaseIterGVN &igvn) { 4986 if (UseTypeSpeculation) { 4987 Unique_Node_List worklist; 4988 worklist.push(root()); 4989 int modified = 0; 4990 // Go over all type nodes that carry a speculative type, drop the 4991 // speculative part of the type and enqueue the node for an igvn 4992 // which may optimize it out. 4993 for (uint next = 0; next < worklist.size(); ++next) { 4994 Node *n = worklist.at(next); 4995 if (n->is_Type()) { 4996 TypeNode* tn = n->as_Type(); 4997 const Type* t = tn->type(); 4998 const Type* t_no_spec = t->remove_speculative(); 4999 if (t_no_spec != t) { 5000 bool in_hash = igvn.hash_delete(n); 5001 assert(in_hash || n->hash() == Node::NO_HASH, "node should be in igvn hash table"); 5002 tn->set_type(t_no_spec); 5003 igvn.hash_insert(n); 5004 igvn._worklist.push(n); // give it a chance to go away 5005 modified++; 5006 } 5007 } 5008 // Iterate over outs - endless loops is unreachable from below 5009 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5010 Node *m = n->fast_out(i); 5011 if (not_a_node(m)) { 5012 continue; 5013 } 5014 worklist.push(m); 5015 } 5016 } 5017 // Drop the speculative part of all types in the igvn's type table 5018 igvn.remove_speculative_types(); 5019 if (modified > 0) { 5020 igvn.optimize(); 5021 if (failing()) return; 5022 } 5023 #ifdef ASSERT 5024 // Verify that after the IGVN is over no speculative type has resurfaced 5025 worklist.clear(); 5026 worklist.push(root()); 5027 for (uint next = 0; next < worklist.size(); ++next) { 5028 Node *n = worklist.at(next); 5029 const Type* t = igvn.type_or_null(n); 5030 assert((t == nullptr) || (t == t->remove_speculative()), "no more speculative types"); 5031 if (n->is_Type()) { 5032 t = n->as_Type()->type(); 5033 assert(t == t->remove_speculative(), "no more speculative types"); 5034 } 5035 // Iterate over outs - endless loops is unreachable from below 5036 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 5037 Node *m = n->fast_out(i); 5038 if (not_a_node(m)) { 5039 continue; 5040 } 5041 worklist.push(m); 5042 } 5043 } 5044 igvn.check_no_speculative_types(); 5045 #endif 5046 } 5047 } 5048 5049 // Auxiliary methods to support randomized stressing/fuzzing. 5050 5051 void Compile::initialize_stress_seed(const DirectiveSet* directive) { 5052 if (FLAG_IS_DEFAULT(StressSeed) || (FLAG_IS_ERGO(StressSeed) && directive->RepeatCompilationOption)) { 5053 _stress_seed = static_cast<uint>(Ticks::now().nanoseconds()); 5054 FLAG_SET_ERGO(StressSeed, _stress_seed); 5055 } else { 5056 _stress_seed = StressSeed; 5057 } 5058 if (_log != nullptr) { 5059 _log->elem("stress_test seed='%u'", _stress_seed); 5060 } 5061 } 5062 5063 int Compile::random() { 5064 _stress_seed = os::next_random(_stress_seed); 5065 return static_cast<int>(_stress_seed); 5066 } 5067 5068 // This method can be called the arbitrary number of times, with current count 5069 // as the argument. The logic allows selecting a single candidate from the 5070 // running list of candidates as follows: 5071 // int count = 0; 5072 // Cand* selected = null; 5073 // while(cand = cand->next()) { 5074 // if (randomized_select(++count)) { 5075 // selected = cand; 5076 // } 5077 // } 5078 // 5079 // Including count equalizes the chances any candidate is "selected". 5080 // This is useful when we don't have the complete list of candidates to choose 5081 // from uniformly. In this case, we need to adjust the randomicity of the 5082 // selection, or else we will end up biasing the selection towards the latter 5083 // candidates. 5084 // 5085 // Quick back-envelope calculation shows that for the list of n candidates 5086 // the equal probability for the candidate to persist as "best" can be 5087 // achieved by replacing it with "next" k-th candidate with the probability 5088 // of 1/k. It can be easily shown that by the end of the run, the 5089 // probability for any candidate is converged to 1/n, thus giving the 5090 // uniform distribution among all the candidates. 5091 // 5092 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large. 5093 #define RANDOMIZED_DOMAIN_POW 29 5094 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW) 5095 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1) 5096 bool Compile::randomized_select(int count) { 5097 assert(count > 0, "only positive"); 5098 return (random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count); 5099 } 5100 5101 CloneMap& Compile::clone_map() { return _clone_map; } 5102 void Compile::set_clone_map(Dict* d) { _clone_map._dict = d; } 5103 5104 void NodeCloneInfo::dump_on(outputStream* st) const { 5105 st->print(" {%d:%d} ", idx(), gen()); 5106 } 5107 5108 void CloneMap::clone(Node* old, Node* nnn, int gen) { 5109 uint64_t val = value(old->_idx); 5110 NodeCloneInfo cio(val); 5111 assert(val != 0, "old node should be in the map"); 5112 NodeCloneInfo cin(cio.idx(), gen + cio.gen()); 5113 insert(nnn->_idx, cin.get()); 5114 #ifndef PRODUCT 5115 if (is_debug()) { 5116 tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen()); 5117 } 5118 #endif 5119 } 5120 5121 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) { 5122 NodeCloneInfo cio(value(old->_idx)); 5123 if (cio.get() == 0) { 5124 cio.set(old->_idx, 0); 5125 insert(old->_idx, cio.get()); 5126 #ifndef PRODUCT 5127 if (is_debug()) { 5128 tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen()); 5129 } 5130 #endif 5131 } 5132 clone(old, nnn, gen); 5133 } 5134 5135 int CloneMap::max_gen() const { 5136 int g = 0; 5137 DictI di(_dict); 5138 for(; di.test(); ++di) { 5139 int t = gen(di._key); 5140 if (g < t) { 5141 g = t; 5142 #ifndef PRODUCT 5143 if (is_debug()) { 5144 tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key)); 5145 } 5146 #endif 5147 } 5148 } 5149 return g; 5150 } 5151 5152 void CloneMap::dump(node_idx_t key, outputStream* st) const { 5153 uint64_t val = value(key); 5154 if (val != 0) { 5155 NodeCloneInfo ni(val); 5156 ni.dump_on(st); 5157 } 5158 } 5159 5160 void Compile::shuffle_macro_nodes() { 5161 if (_macro_nodes.length() < 2) { 5162 return; 5163 } 5164 for (uint i = _macro_nodes.length() - 1; i >= 1; i--) { 5165 uint j = C->random() % (i + 1); 5166 swap(_macro_nodes.at(i), _macro_nodes.at(j)); 5167 } 5168 } 5169 5170 // Move Allocate nodes to the start of the list 5171 void Compile::sort_macro_nodes() { 5172 int count = macro_count(); 5173 int allocates = 0; 5174 for (int i = 0; i < count; i++) { 5175 Node* n = macro_node(i); 5176 if (n->is_Allocate()) { 5177 if (i != allocates) { 5178 Node* tmp = macro_node(allocates); 5179 _macro_nodes.at_put(allocates, n); 5180 _macro_nodes.at_put(i, tmp); 5181 } 5182 allocates++; 5183 } 5184 } 5185 } 5186 5187 void Compile::print_method(CompilerPhaseType cpt, int level, Node* n) { 5188 if (failing()) { return; } 5189 EventCompilerPhase event(UNTIMED); 5190 if (event.should_commit()) { 5191 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, cpt, C->_compile_id, level); 5192 } 5193 #ifndef PRODUCT 5194 ResourceMark rm; 5195 stringStream ss; 5196 ss.print_raw(CompilerPhaseTypeHelper::to_description(cpt)); 5197 int iter = ++_igv_phase_iter[cpt]; 5198 if (iter > 1) { 5199 ss.print(" %d", iter); 5200 } 5201 if (n != nullptr) { 5202 ss.print(": %d %s ", n->_idx, NodeClassNames[n->Opcode()]); 5203 } 5204 5205 const char* name = ss.as_string(); 5206 if (should_print_igv(level)) { 5207 _igv_printer->print_method(name, level); 5208 } 5209 if (should_print_phase(cpt)) { 5210 print_ideal_ir(CompilerPhaseTypeHelper::to_name(cpt)); 5211 } 5212 #endif 5213 C->_latest_stage_start_counter.stamp(); 5214 } 5215 5216 // Only used from CompileWrapper 5217 void Compile::begin_method() { 5218 #ifndef PRODUCT 5219 if (_method != nullptr && should_print_igv(1)) { 5220 _igv_printer->begin_method(); 5221 } 5222 #endif 5223 C->_latest_stage_start_counter.stamp(); 5224 } 5225 5226 // Only used from CompileWrapper 5227 void Compile::end_method() { 5228 EventCompilerPhase event(UNTIMED); 5229 if (event.should_commit()) { 5230 CompilerEvent::PhaseEvent::post(event, C->_latest_stage_start_counter, PHASE_END, C->_compile_id, 1); 5231 } 5232 5233 #ifndef PRODUCT 5234 if (_method != nullptr && should_print_igv(1)) { 5235 _igv_printer->end_method(); 5236 } 5237 #endif 5238 } 5239 5240 bool Compile::should_print_phase(CompilerPhaseType cpt) { 5241 #ifndef PRODUCT 5242 if (_directive->should_print_phase(cpt)) { 5243 return true; 5244 } 5245 #endif 5246 return false; 5247 } 5248 5249 bool Compile::should_print_igv(const int level) { 5250 #ifndef PRODUCT 5251 if (PrintIdealGraphLevel < 0) { // disabled by the user 5252 return false; 5253 } 5254 5255 bool need = directive()->IGVPrintLevelOption >= level; 5256 if (need && !_igv_printer) { 5257 _igv_printer = IdealGraphPrinter::printer(); 5258 _igv_printer->set_compile(this); 5259 } 5260 return need; 5261 #else 5262 return false; 5263 #endif 5264 } 5265 5266 #ifndef PRODUCT 5267 IdealGraphPrinter* Compile::_debug_file_printer = nullptr; 5268 IdealGraphPrinter* Compile::_debug_network_printer = nullptr; 5269 5270 // Called from debugger. Prints method to the default file with the default phase name. 5271 // This works regardless of any Ideal Graph Visualizer flags set or not. 5272 void igv_print() { 5273 Compile::current()->igv_print_method_to_file(); 5274 } 5275 5276 // Same as igv_print() above but with a specified phase name. 5277 void igv_print(const char* phase_name) { 5278 Compile::current()->igv_print_method_to_file(phase_name); 5279 } 5280 5281 // Called from debugger. Prints method with the default phase name to the default network or the one specified with 5282 // the network flags for the Ideal Graph Visualizer, or to the default file depending on the 'network' argument. 5283 // This works regardless of any Ideal Graph Visualizer flags set or not. 5284 void igv_print(bool network) { 5285 if (network) { 5286 Compile::current()->igv_print_method_to_network(); 5287 } else { 5288 Compile::current()->igv_print_method_to_file(); 5289 } 5290 } 5291 5292 // Same as igv_print(bool network) above but with a specified phase name. 5293 void igv_print(bool network, const char* phase_name) { 5294 if (network) { 5295 Compile::current()->igv_print_method_to_network(phase_name); 5296 } else { 5297 Compile::current()->igv_print_method_to_file(phase_name); 5298 } 5299 } 5300 5301 // Called from debugger. Normal write to the default _printer. Only works if Ideal Graph Visualizer printing flags are set. 5302 void igv_print_default() { 5303 Compile::current()->print_method(PHASE_DEBUG, 0); 5304 } 5305 5306 // Called from debugger, especially when replaying a trace in which the program state cannot be altered like with rr replay. 5307 // A method is appended to an existing default file with the default phase name. This means that igv_append() must follow 5308 // an earlier igv_print(*) call which sets up the file. This works regardless of any Ideal Graph Visualizer flags set or not. 5309 void igv_append() { 5310 Compile::current()->igv_print_method_to_file("Debug", true); 5311 } 5312 5313 // Same as igv_append() above but with a specified phase name. 5314 void igv_append(const char* phase_name) { 5315 Compile::current()->igv_print_method_to_file(phase_name, true); 5316 } 5317 5318 void Compile::igv_print_method_to_file(const char* phase_name, bool append) { 5319 const char* file_name = "custom_debug.xml"; 5320 if (_debug_file_printer == nullptr) { 5321 _debug_file_printer = new IdealGraphPrinter(C, file_name, append); 5322 } else { 5323 _debug_file_printer->update_compiled_method(C->method()); 5324 } 5325 tty->print_cr("Method %s to %s", append ? "appended" : "printed", file_name); 5326 _debug_file_printer->print(phase_name, (Node*)C->root()); 5327 } 5328 5329 void Compile::igv_print_method_to_network(const char* phase_name) { 5330 if (_debug_network_printer == nullptr) { 5331 _debug_network_printer = new IdealGraphPrinter(C); 5332 } else { 5333 _debug_network_printer->update_compiled_method(C->method()); 5334 } 5335 tty->print_cr("Method printed over network stream to IGV"); 5336 _debug_network_printer->print(phase_name, (Node*)C->root()); 5337 } 5338 #endif 5339 5340 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) { 5341 if (type != nullptr && phase->type(value)->higher_equal(type)) { 5342 return value; 5343 } 5344 Node* result = nullptr; 5345 if (bt == T_BYTE) { 5346 result = phase->transform(new LShiftINode(value, phase->intcon(24))); 5347 result = new RShiftINode(result, phase->intcon(24)); 5348 } else if (bt == T_BOOLEAN) { 5349 result = new AndINode(value, phase->intcon(0xFF)); 5350 } else if (bt == T_CHAR) { 5351 result = new AndINode(value,phase->intcon(0xFFFF)); 5352 } else { 5353 assert(bt == T_SHORT, "unexpected narrow type"); 5354 result = phase->transform(new LShiftINode(value, phase->intcon(16))); 5355 result = new RShiftINode(result, phase->intcon(16)); 5356 } 5357 if (transform_res) { 5358 result = phase->transform(result); 5359 } 5360 return result; 5361 } 5362 5363 void Compile::record_method_not_compilable_oom() { 5364 record_method_not_compilable(CompilationMemoryStatistic::failure_reason_memlimit()); 5365 }