1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_COMPILE_HPP 26 #define SHARE_OPTO_COMPILE_HPP 27 28 #include "asm/codeBuffer.hpp" 29 #include "ci/compilerInterface.hpp" 30 #include "code/debugInfoRec.hpp" 31 #include "compiler/compiler_globals.hpp" 32 #include "compiler/compilerOracle.hpp" 33 #include "compiler/compileBroker.hpp" 34 #include "compiler/compilerEvent.hpp" 35 #include "libadt/dict.hpp" 36 #include "libadt/vectset.hpp" 37 #include "memory/resourceArea.hpp" 38 #include "oops/methodData.hpp" 39 #include "opto/idealGraphPrinter.hpp" 40 #include "opto/phasetype.hpp" 41 #include "opto/phase.hpp" 42 #include "opto/regmask.hpp" 43 #include "runtime/deoptimization.hpp" 44 #include "runtime/sharedRuntime.hpp" 45 #include "runtime/timerTrace.hpp" 46 #include "runtime/vmThread.hpp" 47 #include "utilities/ticks.hpp" 48 49 class AbstractLockNode; 50 class AddPNode; 51 class Block; 52 class Bundle; 53 class CallGenerator; 54 class CallStaticJavaNode; 55 class CloneMap; 56 class ConnectionGraph; 57 class IdealGraphPrinter; 58 class InlineTree; 59 class Matcher; 60 class MachConstantNode; 61 class MachConstantBaseNode; 62 class MachNode; 63 class MachOper; 64 class MachSafePointNode; 65 class Node; 66 class Node_Array; 67 class Node_List; 68 class Node_Notes; 69 class NodeCloneInfo; 70 class OptoReg; 71 class PhaseCFG; 72 class PhaseGVN; 73 class PhaseIterGVN; 74 class PhaseRegAlloc; 75 class PhaseCCP; 76 class PhaseOutput; 77 class RootNode; 78 class relocInfo; 79 class StartNode; 80 class SafePointNode; 81 class JVMState; 82 class Type; 83 class TypeInt; 84 class TypeInteger; 85 class TypeKlassPtr; 86 class TypePtr; 87 class TypeOopPtr; 88 class TypeFunc; 89 class TypeVect; 90 class Unique_Node_List; 91 class UnstableIfTrap; 92 class nmethod; 93 class Node_Stack; 94 struct Final_Reshape_Counts; 95 96 enum LoopOptsMode { 97 LoopOptsDefault, 98 LoopOptsNone, 99 LoopOptsMaxUnroll, 100 LoopOptsShenandoahExpand, 101 LoopOptsShenandoahPostExpand, 102 LoopOptsSkipSplitIf, 103 LoopOptsVerify 104 }; 105 106 // The type of all node counts and indexes. 107 // It must hold at least 16 bits, but must also be fast to load and store. 108 // This type, if less than 32 bits, could limit the number of possible nodes. 109 // (To make this type platform-specific, move to globalDefinitions_xxx.hpp.) 110 typedef unsigned int node_idx_t; 111 112 class NodeCloneInfo { 113 private: 114 uint64_t _idx_clone_orig; 115 public: 116 117 void set_idx(node_idx_t idx) { 118 _idx_clone_orig = (_idx_clone_orig & CONST64(0xFFFFFFFF00000000)) | idx; 119 } 120 node_idx_t idx() const { return (node_idx_t)(_idx_clone_orig & 0xFFFFFFFF); } 121 122 void set_gen(int generation) { 123 uint64_t g = (uint64_t)generation << 32; 124 _idx_clone_orig = (_idx_clone_orig & 0xFFFFFFFF) | g; 125 } 126 int gen() const { return (int)(_idx_clone_orig >> 32); } 127 128 void set(uint64_t x) { _idx_clone_orig = x; } 129 void set(node_idx_t x, int g) { set_idx(x); set_gen(g); } 130 uint64_t get() const { return _idx_clone_orig; } 131 132 NodeCloneInfo(uint64_t idx_clone_orig) : _idx_clone_orig(idx_clone_orig) {} 133 NodeCloneInfo(node_idx_t x, int g) : _idx_clone_orig(0) { set(x, g); } 134 135 void dump() const; 136 }; 137 138 class CloneMap { 139 friend class Compile; 140 private: 141 bool _debug; 142 Dict* _dict; 143 int _clone_idx; // current cloning iteration/generation in loop unroll 144 public: 145 void* _2p(node_idx_t key) const { return (void*)(intptr_t)key; } // 2 conversion functions to make gcc happy 146 node_idx_t _2_node_idx_t(const void* k) const { return (node_idx_t)(intptr_t)k; } 147 Dict* dict() const { return _dict; } 148 void insert(node_idx_t key, uint64_t val) { assert(_dict->operator[](_2p(key)) == NULL, "key existed"); _dict->Insert(_2p(key), (void*)val); } 149 void insert(node_idx_t key, NodeCloneInfo& ci) { insert(key, ci.get()); } 150 void remove(node_idx_t key) { _dict->Delete(_2p(key)); } 151 uint64_t value(node_idx_t key) const { return (uint64_t)_dict->operator[](_2p(key)); } 152 node_idx_t idx(node_idx_t key) const { return NodeCloneInfo(value(key)).idx(); } 153 int gen(node_idx_t key) const { return NodeCloneInfo(value(key)).gen(); } 154 int gen(const void* k) const { return gen(_2_node_idx_t(k)); } 155 int max_gen() const; 156 void clone(Node* old, Node* nnn, int gen); 157 void verify_insert_and_clone(Node* old, Node* nnn, int gen); 158 void dump(node_idx_t key) const; 159 160 int clone_idx() const { return _clone_idx; } 161 void set_clone_idx(int x) { _clone_idx = x; } 162 bool is_debug() const { return _debug; } 163 void set_debug(bool debug) { _debug = debug; } 164 165 bool same_idx(node_idx_t k1, node_idx_t k2) const { return idx(k1) == idx(k2); } 166 bool same_gen(node_idx_t k1, node_idx_t k2) const { return gen(k1) == gen(k2); } 167 }; 168 169 class Options { 170 friend class Compile; 171 friend class VMStructs; 172 private: 173 const bool _subsume_loads; // Load can be matched as part of a larger op. 174 const bool _do_escape_analysis; // Do escape analysis. 175 const bool _do_iterative_escape_analysis; // Do iterative escape analysis. 176 const bool _eliminate_boxing; // Do boxing elimination. 177 const bool _do_locks_coarsening; // Do locks coarsening 178 const bool _install_code; // Install the code that was compiled 179 public: 180 Options(bool subsume_loads, bool do_escape_analysis, 181 bool do_iterative_escape_analysis, 182 bool eliminate_boxing, bool do_locks_coarsening, 183 bool install_code) : 184 _subsume_loads(subsume_loads), 185 _do_escape_analysis(do_escape_analysis), 186 _do_iterative_escape_analysis(do_iterative_escape_analysis), 187 _eliminate_boxing(eliminate_boxing), 188 _do_locks_coarsening(do_locks_coarsening), 189 _install_code(install_code) { 190 } 191 192 static Options for_runtime_stub() { 193 return Options( 194 /* subsume_loads = */ true, 195 /* do_escape_analysis = */ false, 196 /* do_iterative_escape_analysis = */ false, 197 /* eliminate_boxing = */ false, 198 /* do_lock_coarsening = */ false, 199 /* install_code = */ true 200 ); 201 } 202 }; 203 204 //------------------------------Compile---------------------------------------- 205 // This class defines a top-level Compiler invocation. 206 207 class Compile : public Phase { 208 friend class VMStructs; 209 210 public: 211 // Fixed alias indexes. (See also MergeMemNode.) 212 enum { 213 AliasIdxTop = 1, // pseudo-index, aliases to nothing (used as sentinel value) 214 AliasIdxBot = 2, // pseudo-index, aliases to everything 215 AliasIdxRaw = 3 // hard-wired index for TypeRawPtr::BOTTOM 216 }; 217 218 // Variant of TraceTime(NULL, &_t_accumulator, CITime); 219 // Integrated with logging. If logging is turned on, and CITimeVerbose is true, 220 // then brackets are put into the log, with time stamps and node counts. 221 // (The time collection itself is always conditionalized on CITime.) 222 class TracePhase : public TraceTime { 223 private: 224 Compile* C; 225 CompileLog* _log; 226 const char* _phase_name; 227 bool _dolog; 228 public: 229 TracePhase(const char* name, elapsedTimer* accumulator); 230 ~TracePhase(); 231 }; 232 233 // Information per category of alias (memory slice) 234 class AliasType { 235 private: 236 friend class Compile; 237 238 int _index; // unique index, used with MergeMemNode 239 const TypePtr* _adr_type; // normalized address type 240 ciField* _field; // relevant instance field, or null if none 241 const Type* _element; // relevant array element type, or null if none 242 bool _is_rewritable; // false if the memory is write-once only 243 int _general_index; // if this is type is an instance, the general 244 // type that this is an instance of 245 246 void Init(int i, const TypePtr* at); 247 248 public: 249 int index() const { return _index; } 250 const TypePtr* adr_type() const { return _adr_type; } 251 ciField* field() const { return _field; } 252 const Type* element() const { return _element; } 253 bool is_rewritable() const { return _is_rewritable; } 254 bool is_volatile() const { return (_field ? _field->is_volatile() : false); } 255 int general_index() const { return (_general_index != 0) ? _general_index : _index; } 256 257 void set_rewritable(bool z) { _is_rewritable = z; } 258 void set_field(ciField* f) { 259 assert(!_field,""); 260 _field = f; 261 if (f->is_final() || f->is_stable()) { 262 // In the case of @Stable, multiple writes are possible but may be assumed to be no-ops. 263 _is_rewritable = false; 264 } 265 } 266 void set_element(const Type* e) { 267 assert(_element == NULL, ""); 268 _element = e; 269 } 270 271 BasicType basic_type() const; 272 273 void print_on(outputStream* st) PRODUCT_RETURN; 274 }; 275 276 enum { 277 logAliasCacheSize = 6, 278 AliasCacheSize = (1<<logAliasCacheSize) 279 }; 280 struct AliasCacheEntry { const TypePtr* _adr_type; int _index; }; // simple duple type 281 enum { 282 trapHistLength = MethodData::_trap_hist_limit 283 }; 284 285 private: 286 // Fixed parameters to this compilation. 287 const int _compile_id; 288 const Options _options; // Compilation options 289 ciMethod* _method; // The method being compiled. 290 int _entry_bci; // entry bci for osr methods. 291 const TypeFunc* _tf; // My kind of signature 292 InlineTree* _ilt; // Ditto (temporary). 293 address _stub_function; // VM entry for stub being compiled, or NULL 294 const char* _stub_name; // Name of stub or adapter being compiled, or NULL 295 address _stub_entry_point; // Compile code entry for generated stub, or NULL 296 297 // Control of this compilation. 298 int _max_inline_size; // Max inline size for this compilation 299 int _freq_inline_size; // Max hot method inline size for this compilation 300 int _fixed_slots; // count of frame slots not allocated by the register 301 // allocator i.e. locks, original deopt pc, etc. 302 uintx _max_node_limit; // Max unique node count during a single compilation. 303 304 bool _post_loop_opts_phase; // Loop opts are finished. 305 306 int _major_progress; // Count of something big happening 307 bool _inlining_progress; // progress doing incremental inlining? 308 bool _inlining_incrementally;// Are we doing incremental inlining (post parse) 309 bool _do_cleanup; // Cleanup is needed before proceeding with incremental inlining 310 bool _has_loops; // True if the method _may_ have some loops 311 bool _has_split_ifs; // True if the method _may_ have some split-if 312 bool _has_unsafe_access; // True if the method _may_ produce faults in unsafe loads or stores. 313 bool _has_stringbuilder; // True StringBuffers or StringBuilders are allocated 314 bool _has_boxed_value; // True if a boxed object is allocated 315 bool _has_reserved_stack_access; // True if the method or an inlined method is annotated with ReservedStackAccess 316 uint _max_vector_size; // Maximum size of generated vectors 317 bool _clear_upper_avx; // Clear upper bits of ymm registers using vzeroupper 318 uint _trap_hist[trapHistLength]; // Cumulative traps 319 bool _trap_can_recompile; // Have we emitted a recompiling trap? 320 uint _decompile_count; // Cumulative decompilation counts. 321 bool _do_inlining; // True if we intend to do inlining 322 bool _do_scheduling; // True if we intend to do scheduling 323 bool _do_freq_based_layout; // True if we intend to do frequency based block layout 324 bool _do_vector_loop; // True if allowed to execute loop in parallel iterations 325 bool _use_cmove; // True if CMove should be used without profitability analysis 326 bool _do_aliasing; // True if we intend to do aliasing 327 bool _print_assembly; // True if we should dump assembly code for this compilation 328 bool _print_inlining; // True if we should print inlining for this compilation 329 bool _print_intrinsics; // True if we should print intrinsics for this compilation 330 #ifndef PRODUCT 331 uint _igv_idx; // Counter for IGV node identifiers 332 bool _trace_opto_output; 333 bool _parsed_irreducible_loop; // True if ciTypeFlow detected irreducible loops during parsing 334 #endif 335 bool _has_irreducible_loop; // Found irreducible loops 336 // JSR 292 337 bool _has_method_handle_invokes; // True if this method has MethodHandle invokes. 338 bool _has_monitors; // Metadata transfered to nmethod to enable Continuations lock-detection fastpath 339 uint _max_monitors; // Keep track of maximum number of active monitors in this compilation 340 RTMState _rtm_state; // State of Restricted Transactional Memory usage 341 int _loop_opts_cnt; // loop opts round 342 bool _clinit_barrier_on_entry; // True if clinit barrier is needed on nmethod entry 343 uint _stress_seed; // Seed for stress testing 344 345 // Compilation environment. 346 Arena _comp_arena; // Arena with lifetime equivalent to Compile 347 void* _barrier_set_state; // Potential GC barrier state for Compile 348 ciEnv* _env; // CI interface 349 DirectiveSet* _directive; // Compiler directive 350 CompileLog* _log; // from CompilerThread 351 const char* _failure_reason; // for record_failure/failing pattern 352 GrowableArray<CallGenerator*> _intrinsics; // List of intrinsics. 353 GrowableArray<Node*> _macro_nodes; // List of nodes which need to be expanded before matching. 354 GrowableArray<Node*> _predicate_opaqs; // List of Opaque1 nodes for the loop predicates. 355 GrowableArray<Node*> _skeleton_predicate_opaqs; // List of Opaque4 nodes for the loop skeleton predicates. 356 GrowableArray<Node*> _expensive_nodes; // List of nodes that are expensive to compute and that we'd better not let the GVN freely common 357 GrowableArray<Node*> _for_post_loop_igvn; // List of nodes for IGVN after loop opts are over 358 GrowableArray<UnstableIfTrap*> _unstable_if_traps; // List of ifnodes after IGVN 359 GrowableArray<Node_List*> _coarsened_locks; // List of coarsened Lock and Unlock nodes 360 ConnectionGraph* _congraph; 361 #ifndef PRODUCT 362 IdealGraphPrinter* _igv_printer; 363 static IdealGraphPrinter* _debug_file_printer; 364 static IdealGraphPrinter* _debug_network_printer; 365 #endif 366 367 368 // Node management 369 uint _unique; // Counter for unique Node indices 370 VectorSet _dead_node_list; // Set of dead nodes 371 uint _dead_node_count; // Number of dead nodes; VectorSet::Size() is O(N). 372 // So use this to keep count and make the call O(1). 373 DEBUG_ONLY(Unique_Node_List* _modified_nodes;) // List of nodes which inputs were modified 374 DEBUG_ONLY(bool _phase_optimize_finished;) // Used for live node verification while creating new nodes 375 376 debug_only(static int _debug_idx;) // Monotonic counter (not reset), use -XX:BreakAtNode=<idx> 377 Arena _node_arena; // Arena for new-space Nodes 378 Arena _old_arena; // Arena for old-space Nodes, lifetime during xform 379 RootNode* _root; // Unique root of compilation, or NULL after bail-out. 380 Node* _top; // Unique top node. (Reset by various phases.) 381 382 Node* _immutable_memory; // Initial memory state 383 384 Node* _recent_alloc_obj; 385 Node* _recent_alloc_ctl; 386 387 // Constant table 388 MachConstantBaseNode* _mach_constant_base_node; // Constant table base node singleton. 389 390 391 // Blocked array of debugging and profiling information, 392 // tracked per node. 393 enum { _log2_node_notes_block_size = 8, 394 _node_notes_block_size = (1<<_log2_node_notes_block_size) 395 }; 396 GrowableArray<Node_Notes*>* _node_note_array; 397 Node_Notes* _default_node_notes; // default notes for new nodes 398 399 // After parsing and every bulk phase we hang onto the Root instruction. 400 // The RootNode instruction is where the whole program begins. It produces 401 // the initial Control and BOTTOM for everybody else. 402 403 // Type management 404 Arena _Compile_types; // Arena for all types 405 Arena* _type_arena; // Alias for _Compile_types except in Initialize_shared() 406 Dict* _type_dict; // Intern table 407 CloneMap _clone_map; // used for recording history of cloned nodes 408 size_t _type_last_size; // Last allocation size (see Type::operator new/delete) 409 ciMethod* _last_tf_m; // Cache for 410 const TypeFunc* _last_tf; // TypeFunc::make 411 AliasType** _alias_types; // List of alias types seen so far. 412 int _num_alias_types; // Logical length of _alias_types 413 int _max_alias_types; // Physical length of _alias_types 414 AliasCacheEntry _alias_cache[AliasCacheSize]; // Gets aliases w/o data structure walking 415 416 // Parsing, optimization 417 PhaseGVN* _initial_gvn; // Results of parse-time PhaseGVN 418 Unique_Node_List* _for_igvn; // Initial work-list for next round of Iterative GVN 419 420 GrowableArray<CallGenerator*> _late_inlines; // List of CallGenerators to be revisited after main parsing has finished. 421 GrowableArray<CallGenerator*> _string_late_inlines; // same but for string operations 422 GrowableArray<CallGenerator*> _boxing_late_inlines; // same but for boxing operations 423 424 GrowableArray<CallGenerator*> _vector_reboxing_late_inlines; // same but for vector reboxing operations 425 426 int _late_inlines_pos; // Where in the queue should the next late inlining candidate go (emulate depth first inlining) 427 uint _number_of_mh_late_inlines; // number of method handle late inlining still pending 428 429 // Inlining may not happen in parse order which would make 430 // PrintInlining output confusing. Keep track of PrintInlining 431 // pieces in order. 432 class PrintInliningBuffer : public CHeapObj<mtCompiler> { 433 private: 434 CallGenerator* _cg; 435 stringStream _ss; 436 static const size_t default_stream_buffer_size = 128; 437 438 public: 439 PrintInliningBuffer() 440 : _cg(NULL), _ss(default_stream_buffer_size) {} 441 442 stringStream* ss() { return &_ss; } 443 CallGenerator* cg() { return _cg; } 444 void set_cg(CallGenerator* cg) { _cg = cg; } 445 }; 446 447 stringStream* _print_inlining_stream; 448 GrowableArray<PrintInliningBuffer*>* _print_inlining_list; 449 int _print_inlining_idx; 450 char* _print_inlining_output; 451 452 // Only keep nodes in the expensive node list that need to be optimized 453 void cleanup_expensive_nodes(PhaseIterGVN &igvn); 454 // Use for sorting expensive nodes to bring similar nodes together 455 static int cmp_expensive_nodes(Node** n1, Node** n2); 456 // Expensive nodes list already sorted? 457 bool expensive_nodes_sorted() const; 458 // Remove the speculative part of types and clean up the graph 459 void remove_speculative_types(PhaseIterGVN &igvn); 460 461 void* _replay_inline_data; // Pointer to data loaded from file 462 463 void print_inlining_init(); 464 void print_inlining_reinit(); 465 void print_inlining_commit(); 466 void print_inlining_push(); 467 PrintInliningBuffer* print_inlining_current(); 468 469 void log_late_inline_failure(CallGenerator* cg, const char* msg); 470 DEBUG_ONLY(bool _exception_backedge;) 471 472 public: 473 474 void* barrier_set_state() const { return _barrier_set_state; } 475 476 stringStream* print_inlining_stream() { 477 assert(print_inlining() || print_intrinsics(), "PrintInlining off?"); 478 return _print_inlining_stream; 479 } 480 481 void print_inlining_update(CallGenerator* cg); 482 void print_inlining_update_delayed(CallGenerator* cg); 483 void print_inlining_move_to(CallGenerator* cg); 484 void print_inlining_assert_ready(); 485 void print_inlining_reset(); 486 487 void print_inlining(ciMethod* method, int inline_level, int bci, const char* msg = NULL) { 488 stringStream ss; 489 CompileTask::print_inlining_inner(&ss, method, inline_level, bci, msg); 490 print_inlining_stream()->print("%s", ss.freeze()); 491 } 492 493 #ifndef PRODUCT 494 IdealGraphPrinter* igv_printer() { return _igv_printer; } 495 #endif 496 497 void log_late_inline(CallGenerator* cg); 498 void log_inline_id(CallGenerator* cg); 499 void log_inline_failure(const char* msg); 500 501 void* replay_inline_data() const { return _replay_inline_data; } 502 503 // Dump inlining replay data to the stream. 504 void dump_inline_data(outputStream* out); 505 void dump_inline_data_reduced(outputStream* out); 506 507 private: 508 // Matching, CFG layout, allocation, code generation 509 PhaseCFG* _cfg; // Results of CFG finding 510 int _java_calls; // Number of java calls in the method 511 int _inner_loops; // Number of inner loops in the method 512 Matcher* _matcher; // Engine to map ideal to machine instructions 513 PhaseRegAlloc* _regalloc; // Results of register allocation. 514 RegMask _FIRST_STACK_mask; // All stack slots usable for spills (depends on frame layout) 515 Arena* _indexSet_arena; // control IndexSet allocation within PhaseChaitin 516 void* _indexSet_free_block_list; // free list of IndexSet bit blocks 517 int _interpreter_frame_size; 518 519 PhaseOutput* _output; 520 521 public: 522 // Accessors 523 524 // The Compile instance currently active in this (compiler) thread. 525 static Compile* current() { 526 return (Compile*) ciEnv::current()->compiler_data(); 527 } 528 529 int interpreter_frame_size() const { return _interpreter_frame_size; } 530 531 PhaseOutput* output() const { return _output; } 532 void set_output(PhaseOutput* o) { _output = o; } 533 534 // ID for this compilation. Useful for setting breakpoints in the debugger. 535 int compile_id() const { return _compile_id; } 536 DirectiveSet* directive() const { return _directive; } 537 538 // Does this compilation allow instructions to subsume loads? User 539 // instructions that subsume a load may result in an unschedulable 540 // instruction sequence. 541 bool subsume_loads() const { return _options._subsume_loads; } 542 /** Do escape analysis. */ 543 bool do_escape_analysis() const { return _options._do_escape_analysis; } 544 bool do_iterative_escape_analysis() const { return _options._do_iterative_escape_analysis; } 545 /** Do boxing elimination. */ 546 bool eliminate_boxing() const { return _options._eliminate_boxing; } 547 /** Do aggressive boxing elimination. */ 548 bool aggressive_unboxing() const { return _options._eliminate_boxing && AggressiveUnboxing; } 549 bool should_install_code() const { return _options._install_code; } 550 /** Do locks coarsening. */ 551 bool do_locks_coarsening() const { return _options._do_locks_coarsening; } 552 553 // Other fixed compilation parameters. 554 ciMethod* method() const { return _method; } 555 int entry_bci() const { return _entry_bci; } 556 bool is_osr_compilation() const { return _entry_bci != InvocationEntryBci; } 557 bool is_method_compilation() const { return (_method != NULL && !_method->flags().is_native()); } 558 const TypeFunc* tf() const { assert(_tf!=NULL, ""); return _tf; } 559 void init_tf(const TypeFunc* tf) { assert(_tf==NULL, ""); _tf = tf; } 560 InlineTree* ilt() const { return _ilt; } 561 address stub_function() const { return _stub_function; } 562 const char* stub_name() const { return _stub_name; } 563 address stub_entry_point() const { return _stub_entry_point; } 564 void set_stub_entry_point(address z) { _stub_entry_point = z; } 565 566 // Control of this compilation. 567 int fixed_slots() const { assert(_fixed_slots >= 0, ""); return _fixed_slots; } 568 void set_fixed_slots(int n) { _fixed_slots = n; } 569 int major_progress() const { return _major_progress; } 570 void set_inlining_progress(bool z) { _inlining_progress = z; } 571 int inlining_progress() const { return _inlining_progress; } 572 void set_inlining_incrementally(bool z) { _inlining_incrementally = z; } 573 int inlining_incrementally() const { return _inlining_incrementally; } 574 void set_do_cleanup(bool z) { _do_cleanup = z; } 575 int do_cleanup() const { return _do_cleanup; } 576 void set_major_progress() { _major_progress++; } 577 void restore_major_progress(int progress) { _major_progress += progress; } 578 void clear_major_progress() { _major_progress = 0; } 579 int max_inline_size() const { return _max_inline_size; } 580 void set_freq_inline_size(int n) { _freq_inline_size = n; } 581 int freq_inline_size() const { return _freq_inline_size; } 582 void set_max_inline_size(int n) { _max_inline_size = n; } 583 bool has_loops() const { return _has_loops; } 584 void set_has_loops(bool z) { _has_loops = z; } 585 bool has_split_ifs() const { return _has_split_ifs; } 586 void set_has_split_ifs(bool z) { _has_split_ifs = z; } 587 bool has_unsafe_access() const { return _has_unsafe_access; } 588 void set_has_unsafe_access(bool z) { _has_unsafe_access = z; } 589 bool has_stringbuilder() const { return _has_stringbuilder; } 590 void set_has_stringbuilder(bool z) { _has_stringbuilder = z; } 591 bool has_boxed_value() const { return _has_boxed_value; } 592 void set_has_boxed_value(bool z) { _has_boxed_value = z; } 593 bool has_reserved_stack_access() const { return _has_reserved_stack_access; } 594 void set_has_reserved_stack_access(bool z) { _has_reserved_stack_access = z; } 595 uint max_vector_size() const { return _max_vector_size; } 596 void set_max_vector_size(uint s) { _max_vector_size = s; } 597 bool clear_upper_avx() const { return _clear_upper_avx; } 598 void set_clear_upper_avx(bool s) { _clear_upper_avx = s; } 599 void set_trap_count(uint r, uint c) { assert(r < trapHistLength, "oob"); _trap_hist[r] = c; } 600 uint trap_count(uint r) const { assert(r < trapHistLength, "oob"); return _trap_hist[r]; } 601 bool trap_can_recompile() const { return _trap_can_recompile; } 602 void set_trap_can_recompile(bool z) { _trap_can_recompile = z; } 603 uint decompile_count() const { return _decompile_count; } 604 void set_decompile_count(uint c) { _decompile_count = c; } 605 bool allow_range_check_smearing() const; 606 bool do_inlining() const { return _do_inlining; } 607 void set_do_inlining(bool z) { _do_inlining = z; } 608 bool do_scheduling() const { return _do_scheduling; } 609 void set_do_scheduling(bool z) { _do_scheduling = z; } 610 bool do_freq_based_layout() const{ return _do_freq_based_layout; } 611 void set_do_freq_based_layout(bool z){ _do_freq_based_layout = z; } 612 bool do_vector_loop() const { return _do_vector_loop; } 613 void set_do_vector_loop(bool z) { _do_vector_loop = z; } 614 bool use_cmove() const { return _use_cmove; } 615 void set_use_cmove(bool z) { _use_cmove = z; } 616 bool do_aliasing() const { return _do_aliasing; } 617 bool print_assembly() const { return _print_assembly; } 618 void set_print_assembly(bool z) { _print_assembly = z; } 619 bool print_inlining() const { return _print_inlining; } 620 void set_print_inlining(bool z) { _print_inlining = z; } 621 bool print_intrinsics() const { return _print_intrinsics; } 622 void set_print_intrinsics(bool z) { _print_intrinsics = z; } 623 RTMState rtm_state() const { return _rtm_state; } 624 void set_rtm_state(RTMState s) { _rtm_state = s; } 625 bool use_rtm() const { return (_rtm_state & NoRTM) == 0; } 626 bool profile_rtm() const { return _rtm_state == ProfileRTM; } 627 uint max_node_limit() const { return (uint)_max_node_limit; } 628 void set_max_node_limit(uint n) { _max_node_limit = n; } 629 bool clinit_barrier_on_entry() { return _clinit_barrier_on_entry; } 630 void set_clinit_barrier_on_entry(bool z) { _clinit_barrier_on_entry = z; } 631 bool has_monitors() const { return _has_monitors; } 632 void set_has_monitors(bool v) { _has_monitors = v; } 633 634 void push_monitor() { _max_monitors++; } 635 void reset_max_monitors() { _max_monitors = 0; } 636 uint max_monitors() { return _max_monitors; } 637 638 // check the CompilerOracle for special behaviours for this compile 639 bool method_has_option(enum CompileCommand option) { 640 return method() != NULL && method()->has_option(option); 641 } 642 643 #ifndef PRODUCT 644 uint next_igv_idx() { return _igv_idx++; } 645 bool trace_opto_output() const { return _trace_opto_output; } 646 void print_ideal_ir(const char* phase_name); 647 bool should_print_ideal() const { return _directive->PrintIdealOption; } 648 bool parsed_irreducible_loop() const { return _parsed_irreducible_loop; } 649 void set_parsed_irreducible_loop(bool z) { _parsed_irreducible_loop = z; } 650 int _in_dump_cnt; // Required for dumping ir nodes. 651 #endif 652 bool has_irreducible_loop() const { return _has_irreducible_loop; } 653 void set_has_irreducible_loop(bool z) { _has_irreducible_loop = z; } 654 655 // JSR 292 656 bool has_method_handle_invokes() const { return _has_method_handle_invokes; } 657 void set_has_method_handle_invokes(bool z) { _has_method_handle_invokes = z; } 658 659 Ticks _latest_stage_start_counter; 660 661 void begin_method(); 662 void end_method(); 663 bool should_print_igv(int level); 664 bool should_print_phase(CompilerPhaseType cpt); 665 666 void print_method(CompilerPhaseType cpt, int level, Node* n = nullptr); 667 668 #ifndef PRODUCT 669 void igv_print_method_to_file(const char* phase_name = "Debug", bool append = false); 670 void igv_print_method_to_network(const char* phase_name = "Debug"); 671 static IdealGraphPrinter* debug_file_printer() { return _debug_file_printer; } 672 static IdealGraphPrinter* debug_network_printer() { return _debug_network_printer; } 673 #endif 674 675 int macro_count() const { return _macro_nodes.length(); } 676 int predicate_count() const { return _predicate_opaqs.length(); } 677 int skeleton_predicate_count() const { return _skeleton_predicate_opaqs.length(); } 678 int expensive_count() const { return _expensive_nodes.length(); } 679 int coarsened_count() const { return _coarsened_locks.length(); } 680 681 Node* macro_node(int idx) const { return _macro_nodes.at(idx); } 682 Node* predicate_opaque1_node(int idx) const { return _predicate_opaqs.at(idx); } 683 Node* skeleton_predicate_opaque4_node(int idx) const { return _skeleton_predicate_opaqs.at(idx); } 684 Node* expensive_node(int idx) const { return _expensive_nodes.at(idx); } 685 686 ConnectionGraph* congraph() { return _congraph;} 687 void set_congraph(ConnectionGraph* congraph) { _congraph = congraph;} 688 void add_macro_node(Node * n) { 689 //assert(n->is_macro(), "must be a macro node"); 690 assert(!_macro_nodes.contains(n), "duplicate entry in expand list"); 691 _macro_nodes.append(n); 692 } 693 void remove_macro_node(Node* n) { 694 // this function may be called twice for a node so we can only remove it 695 // if it's still existing. 696 _macro_nodes.remove_if_existing(n); 697 // remove from _predicate_opaqs list also if it is there 698 if (predicate_count() > 0) { 699 _predicate_opaqs.remove_if_existing(n); 700 } 701 // Remove from coarsened locks list if present 702 if (coarsened_count() > 0) { 703 remove_coarsened_lock(n); 704 } 705 } 706 void add_expensive_node(Node* n); 707 void remove_expensive_node(Node* n) { 708 _expensive_nodes.remove_if_existing(n); 709 } 710 void add_predicate_opaq(Node* n) { 711 assert(!_predicate_opaqs.contains(n), "duplicate entry in predicate opaque1"); 712 assert(_macro_nodes.contains(n), "should have already been in macro list"); 713 _predicate_opaqs.append(n); 714 } 715 void add_skeleton_predicate_opaq(Node* n) { 716 assert(!_skeleton_predicate_opaqs.contains(n), "duplicate entry in skeleton predicate opaque4 list"); 717 _skeleton_predicate_opaqs.append(n); 718 } 719 void remove_skeleton_predicate_opaq(Node* n) { 720 if (skeleton_predicate_count() > 0) { 721 _skeleton_predicate_opaqs.remove_if_existing(n); 722 } 723 } 724 void add_coarsened_locks(GrowableArray<AbstractLockNode*>& locks); 725 void remove_coarsened_lock(Node* n); 726 bool coarsened_locks_consistent(); 727 728 bool post_loop_opts_phase() { return _post_loop_opts_phase; } 729 void set_post_loop_opts_phase() { _post_loop_opts_phase = true; } 730 void reset_post_loop_opts_phase() { _post_loop_opts_phase = false; } 731 732 void record_for_post_loop_opts_igvn(Node* n); 733 void remove_from_post_loop_opts_igvn(Node* n); 734 void process_for_post_loop_opts_igvn(PhaseIterGVN& igvn); 735 736 void record_unstable_if_trap(UnstableIfTrap* trap); 737 bool remove_unstable_if_trap(CallStaticJavaNode* unc, bool yield); 738 void remove_useless_unstable_if_traps(Unique_Node_List &useful); 739 void process_for_unstable_if_traps(PhaseIterGVN& igvn); 740 741 void sort_macro_nodes(); 742 743 // remove the opaque nodes that protect the predicates so that the unused checks and 744 // uncommon traps will be eliminated from the graph. 745 void cleanup_loop_predicates(PhaseIterGVN &igvn); 746 bool is_predicate_opaq(Node* n) { 747 return _predicate_opaqs.contains(n); 748 } 749 750 // Are there candidate expensive nodes for optimization? 751 bool should_optimize_expensive_nodes(PhaseIterGVN &igvn); 752 // Check whether n1 and n2 are similar 753 static int cmp_expensive_nodes(Node* n1, Node* n2); 754 // Sort expensive nodes to locate similar expensive nodes 755 void sort_expensive_nodes(); 756 757 // Compilation environment. 758 Arena* comp_arena() { return &_comp_arena; } 759 ciEnv* env() const { return _env; } 760 CompileLog* log() const { return _log; } 761 bool failing() const { return _env->failing() || _failure_reason != NULL; } 762 const char* failure_reason() const { return (_env->failing()) ? _env->failure_reason() : _failure_reason; } 763 764 bool failure_reason_is(const char* r) const { 765 return (r == _failure_reason) || (r != NULL && _failure_reason != NULL && strcmp(r, _failure_reason) == 0); 766 } 767 768 void record_failure(const char* reason); 769 void record_method_not_compilable(const char* reason) { 770 env()->record_method_not_compilable(reason); 771 // Record failure reason. 772 record_failure(reason); 773 } 774 bool check_node_count(uint margin, const char* reason) { 775 if (live_nodes() + margin > max_node_limit()) { 776 record_method_not_compilable(reason); 777 return true; 778 } else { 779 return false; 780 } 781 } 782 783 // Node management 784 uint unique() const { return _unique; } 785 uint next_unique() { return _unique++; } 786 void set_unique(uint i) { _unique = i; } 787 static int debug_idx() { return debug_only(_debug_idx)+0; } 788 static void set_debug_idx(int i) { debug_only(_debug_idx = i); } 789 Arena* node_arena() { return &_node_arena; } 790 Arena* old_arena() { return &_old_arena; } 791 RootNode* root() const { return _root; } 792 void set_root(RootNode* r) { _root = r; } 793 StartNode* start() const; // (Derived from root.) 794 void init_start(StartNode* s); 795 Node* immutable_memory(); 796 797 Node* recent_alloc_ctl() const { return _recent_alloc_ctl; } 798 Node* recent_alloc_obj() const { return _recent_alloc_obj; } 799 void set_recent_alloc(Node* ctl, Node* obj) { 800 _recent_alloc_ctl = ctl; 801 _recent_alloc_obj = obj; 802 } 803 void record_dead_node(uint idx) { if (_dead_node_list.test_set(idx)) return; 804 _dead_node_count++; 805 } 806 void reset_dead_node_list() { _dead_node_list.reset(); 807 _dead_node_count = 0; 808 } 809 uint live_nodes() const { 810 int val = _unique - _dead_node_count; 811 assert (val >= 0, "number of tracked dead nodes %d more than created nodes %d", _unique, _dead_node_count); 812 return (uint) val; 813 } 814 #ifdef ASSERT 815 void set_phase_optimize_finished() { _phase_optimize_finished = true; } 816 bool phase_optimize_finished() const { return _phase_optimize_finished; } 817 uint count_live_nodes_by_graph_walk(); 818 void print_missing_nodes(); 819 #endif 820 821 // Record modified nodes to check that they are put on IGVN worklist 822 void record_modified_node(Node* n) NOT_DEBUG_RETURN; 823 void remove_modified_node(Node* n) NOT_DEBUG_RETURN; 824 DEBUG_ONLY( Unique_Node_List* modified_nodes() const { return _modified_nodes; } ) 825 826 MachConstantBaseNode* mach_constant_base_node(); 827 bool has_mach_constant_base_node() const { return _mach_constant_base_node != NULL; } 828 // Generated by adlc, true if CallNode requires MachConstantBase. 829 bool needs_deep_clone_jvms(); 830 831 // Handy undefined Node 832 Node* top() const { return _top; } 833 834 // these are used by guys who need to know about creation and transformation of top: 835 Node* cached_top_node() { return _top; } 836 void set_cached_top_node(Node* tn); 837 838 GrowableArray<Node_Notes*>* node_note_array() const { return _node_note_array; } 839 void set_node_note_array(GrowableArray<Node_Notes*>* arr) { _node_note_array = arr; } 840 Node_Notes* default_node_notes() const { return _default_node_notes; } 841 void set_default_node_notes(Node_Notes* n) { _default_node_notes = n; } 842 843 Node_Notes* node_notes_at(int idx) { 844 return locate_node_notes(_node_note_array, idx, false); 845 } 846 inline bool set_node_notes_at(int idx, Node_Notes* value); 847 848 // Copy notes from source to dest, if they exist. 849 // Overwrite dest only if source provides something. 850 // Return true if information was moved. 851 bool copy_node_notes_to(Node* dest, Node* source); 852 853 // Workhorse function to sort out the blocked Node_Notes array: 854 inline Node_Notes* locate_node_notes(GrowableArray<Node_Notes*>* arr, 855 int idx, bool can_grow = false); 856 857 void grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by); 858 859 // Type management 860 Arena* type_arena() { return _type_arena; } 861 Dict* type_dict() { return _type_dict; } 862 size_t type_last_size() { return _type_last_size; } 863 int num_alias_types() { return _num_alias_types; } 864 865 void init_type_arena() { _type_arena = &_Compile_types; } 866 void set_type_arena(Arena* a) { _type_arena = a; } 867 void set_type_dict(Dict* d) { _type_dict = d; } 868 void set_type_last_size(size_t sz) { _type_last_size = sz; } 869 870 const TypeFunc* last_tf(ciMethod* m) { 871 return (m == _last_tf_m) ? _last_tf : NULL; 872 } 873 void set_last_tf(ciMethod* m, const TypeFunc* tf) { 874 assert(m != NULL || tf == NULL, ""); 875 _last_tf_m = m; 876 _last_tf = tf; 877 } 878 879 AliasType* alias_type(int idx) { assert(idx < num_alias_types(), "oob"); return _alias_types[idx]; } 880 AliasType* alias_type(const TypePtr* adr_type, ciField* field = NULL) { return find_alias_type(adr_type, false, field); } 881 bool have_alias_type(const TypePtr* adr_type); 882 AliasType* alias_type(ciField* field); 883 884 int get_alias_index(const TypePtr* at) { return alias_type(at)->index(); } 885 const TypePtr* get_adr_type(uint aidx) { return alias_type(aidx)->adr_type(); } 886 int get_general_index(uint aidx) { return alias_type(aidx)->general_index(); } 887 888 // Building nodes 889 void rethrow_exceptions(JVMState* jvms); 890 void return_values(JVMState* jvms); 891 JVMState* build_start_state(StartNode* start, const TypeFunc* tf); 892 893 // Decide how to build a call. 894 // The profile factor is a discount to apply to this site's interp. profile. 895 CallGenerator* call_generator(ciMethod* call_method, int vtable_index, bool call_does_dispatch, 896 JVMState* jvms, bool allow_inline, float profile_factor, ciKlass* speculative_receiver_type = NULL, 897 bool allow_intrinsics = true); 898 bool should_delay_inlining(ciMethod* call_method, JVMState* jvms) { 899 return should_delay_string_inlining(call_method, jvms) || 900 should_delay_boxing_inlining(call_method, jvms) || 901 should_delay_vector_inlining(call_method, jvms); 902 } 903 bool should_delay_string_inlining(ciMethod* call_method, JVMState* jvms); 904 bool should_delay_boxing_inlining(ciMethod* call_method, JVMState* jvms); 905 bool should_delay_vector_inlining(ciMethod* call_method, JVMState* jvms); 906 bool should_delay_vector_reboxing_inlining(ciMethod* call_method, JVMState* jvms); 907 908 // Helper functions to identify inlining potential at call-site 909 ciMethod* optimize_virtual_call(ciMethod* caller, ciInstanceKlass* klass, 910 ciKlass* holder, ciMethod* callee, 911 const TypeOopPtr* receiver_type, bool is_virtual, 912 bool &call_does_dispatch, int &vtable_index, 913 bool check_access = true); 914 ciMethod* optimize_inlining(ciMethod* caller, ciInstanceKlass* klass, ciKlass* holder, 915 ciMethod* callee, const TypeOopPtr* receiver_type, 916 bool check_access = true); 917 918 // Report if there were too many traps at a current method and bci. 919 // Report if a trap was recorded, and/or PerMethodTrapLimit was exceeded. 920 // If there is no MDO at all, report no trap unless told to assume it. 921 bool too_many_traps(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 922 // This version, unspecific to a particular bci, asks if 923 // PerMethodTrapLimit was exceeded for all inlined methods seen so far. 924 bool too_many_traps(Deoptimization::DeoptReason reason, 925 // Privately used parameter for logging: 926 ciMethodData* logmd = NULL); 927 // Report if there were too many recompiles at a method and bci. 928 bool too_many_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason); 929 // Report if there were too many traps or recompiles at a method and bci. 930 bool too_many_traps_or_recompiles(ciMethod* method, int bci, Deoptimization::DeoptReason reason) { 931 return too_many_traps(method, bci, reason) || 932 too_many_recompiles(method, bci, reason); 933 } 934 // Return a bitset with the reasons where deoptimization is allowed, 935 // i.e., where there were not too many uncommon traps. 936 int _allowed_reasons; 937 int allowed_deopt_reasons() { return _allowed_reasons; } 938 void set_allowed_deopt_reasons(); 939 940 // Parsing, optimization 941 PhaseGVN* initial_gvn() { return _initial_gvn; } 942 Unique_Node_List* for_igvn() { return _for_igvn; } 943 inline void record_for_igvn(Node* n); // Body is after class Unique_Node_List. 944 void set_initial_gvn(PhaseGVN *gvn) { _initial_gvn = gvn; } 945 void set_for_igvn(Unique_Node_List *for_igvn) { _for_igvn = for_igvn; } 946 947 // Replace n by nn using initial_gvn, calling hash_delete and 948 // record_for_igvn as needed. 949 void gvn_replace_by(Node* n, Node* nn); 950 951 952 void identify_useful_nodes(Unique_Node_List &useful); 953 void update_dead_node_list(Unique_Node_List &useful); 954 void disconnect_useless_nodes(Unique_Node_List &useful, Unique_Node_List* worklist); 955 956 void remove_useless_node(Node* dead); 957 958 // Record this CallGenerator for inlining at the end of parsing. 959 void add_late_inline(CallGenerator* cg) { 960 _late_inlines.insert_before(_late_inlines_pos, cg); 961 _late_inlines_pos++; 962 } 963 964 void prepend_late_inline(CallGenerator* cg) { 965 _late_inlines.insert_before(0, cg); 966 } 967 968 void add_string_late_inline(CallGenerator* cg) { 969 _string_late_inlines.push(cg); 970 } 971 972 void add_boxing_late_inline(CallGenerator* cg) { 973 _boxing_late_inlines.push(cg); 974 } 975 976 void add_vector_reboxing_late_inline(CallGenerator* cg) { 977 _vector_reboxing_late_inlines.push(cg); 978 } 979 980 void remove_useless_nodes (GrowableArray<Node*>& node_list, Unique_Node_List &useful); 981 982 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful); 983 void remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Node* dead); 984 985 void remove_useless_coarsened_locks(Unique_Node_List& useful); 986 987 void process_print_inlining(); 988 void dump_print_inlining(); 989 990 bool over_inlining_cutoff() const { 991 if (!inlining_incrementally()) { 992 return unique() > (uint)NodeCountInliningCutoff; 993 } else { 994 // Give some room for incremental inlining algorithm to "breathe" 995 // and avoid thrashing when live node count is close to the limit. 996 // Keep in mind that live_nodes() isn't accurate during inlining until 997 // dead node elimination step happens (see Compile::inline_incrementally). 998 return live_nodes() > (uint)LiveNodeCountInliningCutoff * 11 / 10; 999 } 1000 } 1001 1002 void inc_number_of_mh_late_inlines() { _number_of_mh_late_inlines++; } 1003 void dec_number_of_mh_late_inlines() { assert(_number_of_mh_late_inlines > 0, "_number_of_mh_late_inlines < 0 !"); _number_of_mh_late_inlines--; } 1004 bool has_mh_late_inlines() const { return _number_of_mh_late_inlines > 0; } 1005 1006 bool inline_incrementally_one(); 1007 void inline_incrementally_cleanup(PhaseIterGVN& igvn); 1008 void inline_incrementally(PhaseIterGVN& igvn); 1009 void inline_string_calls(bool parse_time); 1010 void inline_boxing_calls(PhaseIterGVN& igvn); 1011 bool optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode); 1012 void remove_root_to_sfpts_edges(PhaseIterGVN& igvn); 1013 1014 void inline_vector_reboxing_calls(); 1015 bool has_vbox_nodes(); 1016 1017 void process_late_inline_calls_no_inline(PhaseIterGVN& igvn); 1018 1019 // Matching, CFG layout, allocation, code generation 1020 PhaseCFG* cfg() { return _cfg; } 1021 bool has_java_calls() const { return _java_calls > 0; } 1022 int java_calls() const { return _java_calls; } 1023 int inner_loops() const { return _inner_loops; } 1024 Matcher* matcher() { return _matcher; } 1025 PhaseRegAlloc* regalloc() { return _regalloc; } 1026 RegMask& FIRST_STACK_mask() { return _FIRST_STACK_mask; } 1027 Arena* indexSet_arena() { return _indexSet_arena; } 1028 void* indexSet_free_block_list() { return _indexSet_free_block_list; } 1029 DebugInformationRecorder* debug_info() { return env()->debug_info(); } 1030 1031 void update_interpreter_frame_size(int size) { 1032 if (_interpreter_frame_size < size) { 1033 _interpreter_frame_size = size; 1034 } 1035 } 1036 1037 void set_matcher(Matcher* m) { _matcher = m; } 1038 //void set_regalloc(PhaseRegAlloc* ra) { _regalloc = ra; } 1039 void set_indexSet_arena(Arena* a) { _indexSet_arena = a; } 1040 void set_indexSet_free_block_list(void* p) { _indexSet_free_block_list = p; } 1041 1042 void set_java_calls(int z) { _java_calls = z; } 1043 void set_inner_loops(int z) { _inner_loops = z; } 1044 1045 Dependencies* dependencies() { return env()->dependencies(); } 1046 1047 // Major entry point. Given a Scope, compile the associated method. 1048 // For normal compilations, entry_bci is InvocationEntryBci. For on stack 1049 // replacement, entry_bci indicates the bytecode for which to compile a 1050 // continuation. 1051 Compile(ciEnv* ci_env, ciMethod* target, 1052 int entry_bci, Options options, DirectiveSet* directive); 1053 1054 // Second major entry point. From the TypeFunc signature, generate code 1055 // to pass arguments from the Java calling convention to the C calling 1056 // convention. 1057 Compile(ciEnv* ci_env, const TypeFunc *(*gen)(), 1058 address stub_function, const char *stub_name, 1059 int is_fancy_jump, bool pass_tls, 1060 bool return_pc, DirectiveSet* directive); 1061 1062 ~Compile() { 1063 delete _print_inlining_stream; 1064 }; 1065 1066 // Are we compiling a method? 1067 bool has_method() { return method() != NULL; } 1068 1069 // Maybe print some information about this compile. 1070 void print_compile_messages(); 1071 1072 // Final graph reshaping, a post-pass after the regular optimizer is done. 1073 bool final_graph_reshaping(); 1074 1075 // returns true if adr is completely contained in the given alias category 1076 bool must_alias(const TypePtr* adr, int alias_idx); 1077 1078 // returns true if adr overlaps with the given alias category 1079 bool can_alias(const TypePtr* adr, int alias_idx); 1080 1081 // Stack slots that may be unused by the calling convention but must 1082 // otherwise be preserved. On Intel this includes the return address. 1083 // On PowerPC it includes the 4 words holding the old TOC & LR glue. 1084 uint in_preserve_stack_slots() { 1085 return SharedRuntime::in_preserve_stack_slots(); 1086 } 1087 1088 // "Top of Stack" slots that may be unused by the calling convention but must 1089 // otherwise be preserved. 1090 // On Intel these are not necessary and the value can be zero. 1091 static uint out_preserve_stack_slots() { 1092 return SharedRuntime::out_preserve_stack_slots(); 1093 } 1094 1095 // Number of outgoing stack slots killed above the out_preserve_stack_slots 1096 // for calls to C. Supports the var-args backing area for register parms. 1097 uint varargs_C_out_slots_killed() const; 1098 1099 // Number of Stack Slots consumed by a synchronization entry 1100 int sync_stack_slots() const; 1101 1102 // Compute the name of old_SP. See <arch>.ad for frame layout. 1103 OptoReg::Name compute_old_SP(); 1104 1105 private: 1106 // Phase control: 1107 void Init(bool aliasing); // Prepare for a single compilation 1108 void Optimize(); // Given a graph, optimize it 1109 void Code_Gen(); // Generate code from a graph 1110 1111 // Management of the AliasType table. 1112 void grow_alias_types(); 1113 AliasCacheEntry* probe_alias_cache(const TypePtr* adr_type); 1114 const TypePtr *flatten_alias_type(const TypePtr* adr_type) const; 1115 AliasType* find_alias_type(const TypePtr* adr_type, bool no_create, ciField* field); 1116 1117 void verify_top(Node*) const PRODUCT_RETURN; 1118 1119 // Intrinsic setup. 1120 CallGenerator* make_vm_intrinsic(ciMethod* m, bool is_virtual); // constructor 1121 int intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found); // helper 1122 CallGenerator* find_intrinsic(ciMethod* m, bool is_virtual); // query fn 1123 void register_intrinsic(CallGenerator* cg); // update fn 1124 1125 #ifndef PRODUCT 1126 static juint _intrinsic_hist_count[]; 1127 static jubyte _intrinsic_hist_flags[]; 1128 #endif 1129 // Function calls made by the public function final_graph_reshaping. 1130 // No need to be made public as they are not called elsewhere. 1131 void final_graph_reshaping_impl(Node *n, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1132 void final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop, Unique_Node_List& dead_nodes); 1133 void final_graph_reshaping_walk(Node_Stack& nstack, Node* root, Final_Reshape_Counts& frc, Unique_Node_List& dead_nodes); 1134 void eliminate_redundant_card_marks(Node* n); 1135 1136 // Logic cone optimization. 1137 void optimize_logic_cones(PhaseIterGVN &igvn); 1138 void collect_logic_cone_roots(Unique_Node_List& list); 1139 void process_logic_cone_root(PhaseIterGVN &igvn, Node* n, VectorSet& visited); 1140 bool compute_logic_cone(Node* n, Unique_Node_List& partition, Unique_Node_List& inputs); 1141 uint compute_truth_table(Unique_Node_List& partition, Unique_Node_List& inputs); 1142 uint eval_macro_logic_op(uint func, uint op1, uint op2, uint op3); 1143 Node* xform_to_MacroLogicV(PhaseIterGVN &igvn, const TypeVect* vt, Unique_Node_List& partitions, Unique_Node_List& inputs); 1144 void check_no_dead_use() const NOT_DEBUG_RETURN; 1145 1146 public: 1147 1148 // Note: Histogram array size is about 1 Kb. 1149 enum { // flag bits: 1150 _intrinsic_worked = 1, // succeeded at least once 1151 _intrinsic_failed = 2, // tried it but it failed 1152 _intrinsic_disabled = 4, // was requested but disabled (e.g., -XX:-InlineUnsafeOps) 1153 _intrinsic_virtual = 8, // was seen in the virtual form (rare) 1154 _intrinsic_both = 16 // was seen in the non-virtual form (usual) 1155 }; 1156 // Update histogram. Return boolean if this is a first-time occurrence. 1157 static bool gather_intrinsic_statistics(vmIntrinsics::ID id, 1158 bool is_virtual, int flags) PRODUCT_RETURN0; 1159 static void print_intrinsic_statistics() PRODUCT_RETURN; 1160 1161 // Graph verification code 1162 // Walk the node list, verifying that there is a one-to-one 1163 // correspondence between Use-Def edges and Def-Use edges 1164 // The option no_dead_code enables stronger checks that the 1165 // graph is strongly connected from root in both directions. 1166 void verify_graph_edges(bool no_dead_code = false) PRODUCT_RETURN; 1167 1168 // Verify bi-directional correspondence of edges 1169 void verify_bidirectional_edges(Unique_Node_List &visited); 1170 1171 // End-of-run dumps. 1172 static void print_statistics() PRODUCT_RETURN; 1173 1174 // Verify ADLC assumptions during startup 1175 static void adlc_verification() PRODUCT_RETURN; 1176 1177 // Definitions of pd methods 1178 static void pd_compiler2_init(); 1179 1180 // Static parse-time type checking logic for gen_subtype_check: 1181 enum SubTypeCheckResult { SSC_always_false, SSC_always_true, SSC_easy_test, SSC_full_test }; 1182 SubTypeCheckResult static_subtype_check(const TypeKlassPtr* superk, const TypeKlassPtr* subk, bool skip = StressReflectiveCode); 1183 1184 static Node* conv_I2X_index(PhaseGVN* phase, Node* offset, const TypeInt* sizetype, 1185 // Optional control dependency (for example, on range check) 1186 Node* ctrl = NULL); 1187 1188 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check) 1189 static Node* constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency = false); 1190 1191 // Auxiliary methods for randomized fuzzing/stressing 1192 int random(); 1193 bool randomized_select(int count); 1194 1195 // supporting clone_map 1196 CloneMap& clone_map(); 1197 void set_clone_map(Dict* d); 1198 1199 bool needs_clinit_barrier(ciField* ik, ciMethod* accessing_method); 1200 bool needs_clinit_barrier(ciMethod* ik, ciMethod* accessing_method); 1201 bool needs_clinit_barrier(ciInstanceKlass* ik, ciMethod* accessing_method); 1202 1203 #ifdef IA32 1204 private: 1205 bool _select_24_bit_instr; // We selected an instruction with a 24-bit result 1206 bool _in_24_bit_fp_mode; // We are emitting instructions with 24-bit results 1207 1208 // Remember if this compilation changes hardware mode to 24-bit precision. 1209 void set_24_bit_selection_and_mode(bool selection, bool mode) { 1210 _select_24_bit_instr = selection; 1211 _in_24_bit_fp_mode = mode; 1212 } 1213 1214 public: 1215 bool select_24_bit_instr() const { return _select_24_bit_instr; } 1216 bool in_24_bit_fp_mode() const { return _in_24_bit_fp_mode; } 1217 #endif // IA32 1218 #ifdef ASSERT 1219 bool _type_verify_symmetry; 1220 void set_exception_backedge() { _exception_backedge = true; } 1221 bool has_exception_backedge() const { return _exception_backedge; } 1222 #endif 1223 1224 static bool push_thru_add(PhaseGVN* phase, Node* z, const TypeInteger* tz, const TypeInteger*& rx, const TypeInteger*& ry, 1225 BasicType out_bt, BasicType in_bt); 1226 1227 static Node* narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res); 1228 }; 1229 1230 #endif // SHARE_OPTO_COMPILE_HPP