1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.inline.hpp" 27 #include "gc/shared/gc_globals.hpp" 28 #include "memory/allocation.inline.hpp" 29 #include "oops/compressedOops.hpp" 30 #include "opto/ad.hpp" 31 #include "opto/block.hpp" 32 #include "opto/c2compiler.hpp" 33 #include "opto/callnode.hpp" 34 #include "opto/cfgnode.hpp" 35 #include "opto/machnode.hpp" 36 #include "opto/runtime.hpp" 37 #include "opto/chaitin.hpp" 38 #include "runtime/os.inline.hpp" 39 #include "runtime/sharedRuntime.hpp" 40 41 // Optimization - Graph Style 42 43 // Check whether val is not-null-decoded compressed oop, 44 // i.e. will grab into the base of the heap if it represents null. 45 static bool accesses_heap_base_zone(Node *val) { 46 if (CompressedOops::base() != nullptr) { // Implies UseCompressedOops. 47 if (val && val->is_Mach()) { 48 if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) { 49 // This assumes all Decodes with TypePtr::NotNull are matched to nodes that 50 // decode null to point to the heap base (Decode_NN). 51 if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) { 52 return true; 53 } 54 } 55 // Must recognize load operation with Decode matched in memory operand. 56 // We should not reach here except for PPC/AIX, as os::zero_page_read_protected() 57 // returns true everywhere else. On PPC, no such memory operands 58 // exist, therefore we did not yet implement a check for such operands. 59 NOT_AIX(Unimplemented()); 60 } 61 } 62 return false; 63 } 64 65 static bool needs_explicit_null_check_for_read(Node *val) { 66 // On some OSes (AIX) the page at address 0 is only write protected. 67 // If so, only Store operations will trap. 68 if (os::zero_page_read_protected()) { 69 return false; // Implicit null check will work. 70 } 71 // Also a read accessing the base of a heap-based compressed heap will trap. 72 if (accesses_heap_base_zone(val) && // Hits the base zone page. 73 CompressedOops::use_implicit_null_checks()) { // Base zone page is protected. 74 return false; 75 } 76 77 return true; 78 } 79 80 //------------------------------implicit_null_check---------------------------- 81 // Detect implicit-null-check opportunities. Basically, find null checks 82 // with suitable memory ops nearby. Use the memory op to do the null check. 83 // I can generate a memory op if there is not one nearby. 84 // The proj is the control projection for the not-null case. 85 // The val is the pointer being checked for nullness or 86 // decodeHeapOop_not_null node if it did not fold into address. 87 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) { 88 // Assume if null check need for 0 offset then always needed 89 // Intel solaris doesn't support any null checks yet and no 90 // mechanism exists (yet) to set the switches at an os_cpu level 91 if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return; 92 93 // Make sure the ptr-is-null path appears to be uncommon! 94 float f = block->end()->as_MachIf()->_prob; 95 if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f; 96 if( f > PROB_UNLIKELY_MAG(4) ) return; 97 98 uint bidx = 0; // Capture index of value into memop 99 bool was_store; // Memory op is a store op 100 101 // Get the successor block for if the test ptr is non-null 102 Block* not_null_block; // this one goes with the proj 103 Block* null_block; 104 if (block->get_node(block->number_of_nodes()-1) == proj) { 105 null_block = block->_succs[0]; 106 not_null_block = block->_succs[1]; 107 } else { 108 assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other"); 109 not_null_block = block->_succs[0]; 110 null_block = block->_succs[1]; 111 } 112 while (null_block->is_Empty() == Block::empty_with_goto) { 113 null_block = null_block->_succs[0]; 114 } 115 116 // Search the exception block for an uncommon trap. 117 // (See Parse::do_if and Parse::do_ifnull for the reason 118 // we need an uncommon trap. Briefly, we need a way to 119 // detect failure of this optimization, as in 6366351.) 120 { 121 bool found_trap = false; 122 for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) { 123 Node* nn = null_block->get_node(i1); 124 if (nn->is_MachCall() && 125 nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) { 126 const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type(); 127 if (trtype->isa_int() && trtype->is_int()->is_con()) { 128 jint tr_con = trtype->is_int()->get_con(); 129 Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con); 130 Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con); 131 assert((int)reason < (int)BitsPerInt, "recode bit map"); 132 if (is_set_nth_bit(allowed_reasons, (int) reason) 133 && action != Deoptimization::Action_none) { 134 // This uncommon trap is sure to recompile, eventually. 135 // When that happens, C->too_many_traps will prevent 136 // this transformation from happening again. 137 found_trap = true; 138 } 139 } 140 break; 141 } 142 } 143 if (!found_trap) { 144 // We did not find an uncommon trap. 145 return; 146 } 147 } 148 149 // Check for decodeHeapOop_not_null node which did not fold into address 150 bool is_decoden = ((intptr_t)val) & 1; 151 val = (Node*)(((intptr_t)val) & ~1); 152 153 assert(!is_decoden || 154 ((val->in(0) == nullptr) && val->is_Mach() && 155 (val->as_Mach()->ideal_Opcode() == Op_DecodeN)), "sanity"); 156 157 // Search the successor block for a load or store who's base value is also 158 // the tested value. There may be several. 159 MachNode *best = nullptr; // Best found so far 160 for (DUIterator i = val->outs(); val->has_out(i); i++) { 161 Node *m = val->out(i); 162 if( !m->is_Mach() ) continue; 163 MachNode *mach = m->as_Mach(); 164 was_store = false; 165 int iop = mach->ideal_Opcode(); 166 switch( iop ) { 167 case Op_LoadB: 168 case Op_LoadUB: 169 case Op_LoadUS: 170 case Op_LoadD: 171 case Op_LoadF: 172 case Op_LoadI: 173 case Op_LoadL: 174 case Op_LoadP: 175 case Op_LoadN: 176 case Op_LoadS: 177 case Op_LoadKlass: 178 case Op_LoadNKlass: 179 case Op_LoadRange: 180 case Op_LoadD_unaligned: 181 case Op_LoadL_unaligned: 182 assert(mach->in(2) == val, "should be address"); 183 break; 184 case Op_StoreB: 185 case Op_StoreC: 186 case Op_StoreCM: 187 case Op_StoreD: 188 case Op_StoreF: 189 case Op_StoreI: 190 case Op_StoreL: 191 case Op_StoreP: 192 case Op_StoreN: 193 case Op_StoreNKlass: 194 was_store = true; // Memory op is a store op 195 // Stores will have their address in slot 2 (memory in slot 1). 196 // If the value being nul-checked is in another slot, it means we 197 // are storing the checked value, which does NOT check the value! 198 if( mach->in(2) != val ) continue; 199 break; // Found a memory op? 200 case Op_StrComp: 201 case Op_StrEquals: 202 case Op_StrIndexOf: 203 case Op_StrIndexOfChar: 204 case Op_AryEq: 205 case Op_VectorizedHashCode: 206 case Op_StrInflatedCopy: 207 case Op_StrCompressedCopy: 208 case Op_EncodeISOArray: 209 case Op_CountPositives: 210 // Not a legit memory op for implicit null check regardless of 211 // embedded loads 212 continue; 213 default: // Also check for embedded loads 214 if( !mach->needs_anti_dependence_check() ) 215 continue; // Not an memory op; skip it 216 if( must_clone[iop] ) { 217 // Do not move nodes which produce flags because 218 // RA will try to clone it to place near branch and 219 // it will cause recompilation, see clone_node(). 220 continue; 221 } 222 { 223 // Check that value is used in memory address in 224 // instructions with embedded load (CmpP val1,(val2+off)). 225 Node* base; 226 Node* index; 227 const MachOper* oper = mach->memory_inputs(base, index); 228 if (oper == nullptr || oper == (MachOper*)-1) { 229 continue; // Not an memory op; skip it 230 } 231 if (val == base || 232 (val == index && val->bottom_type()->isa_narrowoop())) { 233 break; // Found it 234 } else { 235 continue; // Skip it 236 } 237 } 238 break; 239 } 240 241 // On some OSes (AIX) the page at address 0 is only write protected. 242 // If so, only Store operations will trap. 243 // But a read accessing the base of a heap-based compressed heap will trap. 244 if (!was_store && needs_explicit_null_check_for_read(val)) { 245 continue; 246 } 247 248 // Check that node's control edge is not-null block's head or dominates it, 249 // otherwise we can't hoist it because there are other control dependencies. 250 Node* ctrl = mach->in(0); 251 if (ctrl != nullptr && !(ctrl == not_null_block->head() || 252 get_block_for_node(ctrl)->dominates(not_null_block))) { 253 continue; 254 } 255 256 // check if the offset is not too high for implicit exception 257 { 258 intptr_t offset = 0; 259 const TypePtr *adr_type = nullptr; // Do not need this return value here 260 const Node* base = mach->get_base_and_disp(offset, adr_type); 261 if (base == nullptr || base == NodeSentinel) { 262 // Narrow oop address doesn't have base, only index. 263 // Give up if offset is beyond page size or if heap base is not protected. 264 if (val->bottom_type()->isa_narrowoop() && 265 (MacroAssembler::needs_explicit_null_check(offset) || 266 !CompressedOops::use_implicit_null_checks())) 267 continue; 268 // cannot reason about it; is probably not implicit null exception 269 } else { 270 const TypePtr* tptr; 271 if ((UseCompressedOops || UseCompressedClassPointers) && 272 (CompressedOops::shift() == 0 || CompressedKlassPointers::shift() == 0)) { 273 // 32-bits narrow oop can be the base of address expressions 274 tptr = base->get_ptr_type(); 275 } else { 276 // only regular oops are expected here 277 tptr = base->bottom_type()->is_ptr(); 278 } 279 // Give up if offset is not a compile-time constant. 280 if (offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot) 281 continue; 282 offset += tptr->_offset; // correct if base is offsetted 283 // Give up if reference is beyond page size. 284 if (MacroAssembler::needs_explicit_null_check(offset)) 285 continue; 286 // Give up if base is a decode node and the heap base is not protected. 287 if (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_DecodeN && 288 !CompressedOops::use_implicit_null_checks()) 289 continue; 290 } 291 } 292 293 // Check ctrl input to see if the null-check dominates the memory op 294 Block *cb = get_block_for_node(mach); 295 cb = cb->_idom; // Always hoist at least 1 block 296 if( !was_store ) { // Stores can be hoisted only one block 297 while( cb->_dom_depth > (block->_dom_depth + 1)) 298 cb = cb->_idom; // Hoist loads as far as we want 299 // The non-null-block should dominate the memory op, too. Live 300 // range spilling will insert a spill in the non-null-block if it is 301 // needs to spill the memory op for an implicit null check. 302 if (cb->_dom_depth == (block->_dom_depth + 1)) { 303 if (cb != not_null_block) continue; 304 cb = cb->_idom; 305 } 306 } 307 if( cb != block ) continue; 308 309 // Found a memory user; see if it can be hoisted to check-block 310 uint vidx = 0; // Capture index of value into memop 311 uint j; 312 for( j = mach->req()-1; j > 0; j-- ) { 313 if( mach->in(j) == val ) { 314 vidx = j; 315 // Ignore DecodeN val which could be hoisted to where needed. 316 if( is_decoden ) continue; 317 } 318 // Block of memory-op input 319 Block *inb = get_block_for_node(mach->in(j)); 320 Block *b = block; // Start from nul check 321 while( b != inb && b->_dom_depth > inb->_dom_depth ) 322 b = b->_idom; // search upwards for input 323 // See if input dominates null check 324 if( b != inb ) 325 break; 326 } 327 if( j > 0 ) 328 continue; 329 Block *mb = get_block_for_node(mach); 330 // Hoisting stores requires more checks for the anti-dependence case. 331 // Give up hoisting if we have to move the store past any load. 332 if (was_store) { 333 // Make sure control does not do a merge (would have to check allpaths) 334 if (mb->num_preds() != 2) { 335 continue; 336 } 337 // mach is a store, hence block is the immediate dominator of mb. 338 // Due to the null-check shape of block (where its successors cannot re-join), 339 // block must be the direct predecessor of mb. 340 assert(get_block_for_node(mb->pred(1)) == block, "Unexpected predecessor block"); 341 uint k; 342 uint num_nodes = mb->number_of_nodes(); 343 for (k = 1; k < num_nodes; k++) { 344 Node *n = mb->get_node(k); 345 if (n->needs_anti_dependence_check() && 346 n->in(LoadNode::Memory) == mach->in(StoreNode::Memory)) { 347 break; // Found anti-dependent load 348 } 349 } 350 if (k < num_nodes) { 351 continue; // Found anti-dependent load 352 } 353 } 354 355 // Make sure this memory op is not already being used for a NullCheck 356 Node *e = mb->end(); 357 if( e->is_MachNullCheck() && e->in(1) == mach ) 358 continue; // Already being used as a null check 359 360 // Found a candidate! Pick one with least dom depth - the highest 361 // in the dom tree should be closest to the null check. 362 if (best == nullptr || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) { 363 best = mach; 364 bidx = vidx; 365 } 366 } 367 // No candidate! 368 if (best == nullptr) { 369 return; 370 } 371 372 // ---- Found an implicit null check 373 #ifndef PRODUCT 374 extern uint implicit_null_checks; 375 implicit_null_checks++; 376 #endif 377 378 if( is_decoden ) { 379 // Check if we need to hoist decodeHeapOop_not_null first. 380 Block *valb = get_block_for_node(val); 381 if( block != valb && block->_dom_depth < valb->_dom_depth ) { 382 // Hoist it up to the end of the test block together with its inputs if they exist. 383 for (uint i = 2; i < val->req(); i++) { 384 // DecodeN has 2 regular inputs + optional MachTemp or load Base inputs. 385 Node *temp = val->in(i); 386 Block *tempb = get_block_for_node(temp); 387 if (!tempb->dominates(block)) { 388 assert(block->dominates(tempb), "sanity check: temp node placement"); 389 // We only expect nodes without further inputs, like MachTemp or load Base. 390 assert(temp->req() == 0 || (temp->req() == 1 && temp->in(0) == (Node*)C->root()), 391 "need for recursive hoisting not expected"); 392 tempb->find_remove(temp); 393 block->add_inst(temp); 394 map_node_to_block(temp, block); 395 } 396 } 397 valb->find_remove(val); 398 block->add_inst(val); 399 map_node_to_block(val, block); 400 // DecodeN on x86 may kill flags. Check for flag-killing projections 401 // that also need to be hoisted. 402 for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) { 403 Node* n = val->fast_out(j); 404 if( n->is_MachProj() ) { 405 get_block_for_node(n)->find_remove(n); 406 block->add_inst(n); 407 map_node_to_block(n, block); 408 } 409 } 410 } 411 } 412 // Hoist the memory candidate up to the end of the test block. 413 Block *old_block = get_block_for_node(best); 414 old_block->find_remove(best); 415 block->add_inst(best); 416 map_node_to_block(best, block); 417 418 // Move the control dependence if it is pinned to not-null block. 419 // Don't change it in other cases: null or dominating control. 420 Node* ctrl = best->in(0); 421 if (ctrl != nullptr && get_block_for_node(ctrl) == not_null_block) { 422 // Set it to control edge of null check. 423 best->set_req(0, proj->in(0)->in(0)); 424 } 425 426 // Check for flag-killing projections that also need to be hoisted 427 // Should be DU safe because no edge updates. 428 for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) { 429 Node* n = best->fast_out(j); 430 if( n->is_MachProj() ) { 431 get_block_for_node(n)->find_remove(n); 432 block->add_inst(n); 433 map_node_to_block(n, block); 434 } 435 } 436 437 // proj==Op_True --> ne test; proj==Op_False --> eq test. 438 // One of two graph shapes got matched: 439 // (IfTrue (If (Bool NE (CmpP ptr null)))) 440 // (IfFalse (If (Bool EQ (CmpP ptr null)))) 441 // null checks are always branch-if-eq. If we see a IfTrue projection 442 // then we are replacing a 'ne' test with a 'eq' null check test. 443 // We need to flip the projections to keep the same semantics. 444 if( proj->Opcode() == Op_IfTrue ) { 445 // Swap order of projections in basic block to swap branch targets 446 Node *tmp1 = block->get_node(block->end_idx()+1); 447 Node *tmp2 = block->get_node(block->end_idx()+2); 448 block->map_node(tmp2, block->end_idx()+1); 449 block->map_node(tmp1, block->end_idx()+2); 450 Node *tmp = new Node(C->top()); // Use not null input 451 tmp1->replace_by(tmp); 452 tmp2->replace_by(tmp1); 453 tmp->replace_by(tmp2); 454 tmp->destruct(nullptr); 455 } 456 457 // Remove the existing null check; use a new implicit null check instead. 458 // Since schedule-local needs precise def-use info, we need to correct 459 // it as well. 460 Node *old_tst = proj->in(0); 461 MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx); 462 block->map_node(nul_chk, block->end_idx()); 463 map_node_to_block(nul_chk, block); 464 // Redirect users of old_test to nul_chk 465 for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2) 466 old_tst->last_out(i2)->set_req(0, nul_chk); 467 // Clean-up any dead code 468 for (uint i3 = 0; i3 < old_tst->req(); i3++) { 469 Node* in = old_tst->in(i3); 470 old_tst->set_req(i3, nullptr); 471 if (in->outcnt() == 0) { 472 // Remove dead input node 473 in->disconnect_inputs(C); 474 block->find_remove(in); 475 } 476 } 477 478 latency_from_uses(nul_chk); 479 latency_from_uses(best); 480 481 // insert anti-dependences to defs in this block 482 if (! best->needs_anti_dependence_check()) { 483 for (uint k = 1; k < block->number_of_nodes(); k++) { 484 Node *n = block->get_node(k); 485 if (n->needs_anti_dependence_check() && 486 n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) { 487 // Found anti-dependent load 488 insert_anti_dependences(block, n); 489 } 490 } 491 } 492 } 493 494 495 //------------------------------select----------------------------------------- 496 // Select a nice fellow from the worklist to schedule next. If there is only one 497 // choice, then use it. CreateEx nodes that are initially ready must start their 498 // blocks and are given the highest priority, by being placed at the beginning 499 // of the worklist. Next after initially-ready CreateEx nodes are projections, 500 // which must follow their parents, and CreateEx nodes with local input 501 // dependencies. Next are constants and CheckCastPP nodes. There are a number of 502 // other special cases, for instructions that consume condition codes, et al. 503 // These are chosen immediately. Some instructions are required to immediately 504 // precede the last instruction in the block, and these are taken last. Of the 505 // remaining cases (most), choose the instruction with the greatest latency 506 // (that is, the most number of pseudo-cycles required to the end of the 507 // routine). If there is a tie, choose the instruction with the most inputs. 508 Node* PhaseCFG::select( 509 Block* block, 510 Node_List &worklist, 511 GrowableArray<int> &ready_cnt, 512 VectorSet &next_call, 513 uint sched_slot, 514 intptr_t* recalc_pressure_nodes) { 515 516 // If only a single entry on the stack, use it 517 uint cnt = worklist.size(); 518 if (cnt == 1) { 519 Node *n = worklist[0]; 520 worklist.map(0,worklist.pop()); 521 return n; 522 } 523 524 uint choice = 0; // Bigger is most important 525 uint latency = 0; // Bigger is scheduled first 526 uint score = 0; // Bigger is better 527 int idx = -1; // Index in worklist 528 int cand_cnt = 0; // Candidate count 529 bool block_size_threshold_ok = (recalc_pressure_nodes != nullptr) && (block->number_of_nodes() > 10); 530 531 for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist 532 // Order in worklist is used to break ties. 533 // See caller for how this is used to delay scheduling 534 // of induction variable increments to after the other 535 // uses of the phi are scheduled. 536 Node *n = worklist[i]; // Get Node on worklist 537 538 int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0; 539 if (iop == Op_CreateEx || n->is_Proj()) { 540 // CreateEx nodes that are initially ready must start the block (after Phi 541 // and Parm nodes which are pre-scheduled) and get top priority. This is 542 // currently enforced by placing them at the beginning of the initial 543 // worklist and selecting them eagerly here. After these, projections and 544 // other CreateEx nodes are selected with equal priority. 545 worklist.map(i,worklist.pop()); 546 return n; 547 } 548 549 if (n->Opcode() == Op_Con || iop == Op_CheckCastPP) { 550 // Constants and CheckCastPP nodes have higher priority than the rest of 551 // the nodes tested below. Record as current winner, but keep looking for 552 // higher-priority nodes in the worklist. 553 choice = 4; 554 // Latency and score are only used to break ties among low-priority nodes. 555 latency = 0; 556 score = 0; 557 idx = i; 558 continue; 559 } 560 561 // Final call in a block must be adjacent to 'catch' 562 Node *e = block->end(); 563 if( e->is_Catch() && e->in(0)->in(0) == n ) 564 continue; 565 566 // Memory op for an implicit null check has to be at the end of the block 567 if( e->is_MachNullCheck() && e->in(1) == n ) 568 continue; 569 570 // Schedule IV increment last. 571 if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) { 572 // Cmp might be matched into CountedLoopEnd node. 573 Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e; 574 if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) { 575 continue; 576 } 577 } 578 579 uint n_choice = 2; 580 581 // See if this instruction is consumed by a branch. If so, then (as the 582 // branch is the last instruction in the basic block) force it to the 583 // end of the basic block 584 if ( must_clone[iop] ) { 585 // See if any use is a branch 586 bool found_machif = false; 587 588 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 589 Node* use = n->fast_out(j); 590 591 // The use is a conditional branch, make them adjacent 592 if (use->is_MachIf() && get_block_for_node(use) == block) { 593 found_machif = true; 594 break; 595 } 596 597 // More than this instruction pending for successor to be ready, 598 // don't choose this if other opportunities are ready 599 if (ready_cnt.at(use->_idx) > 1) 600 n_choice = 1; 601 } 602 603 // loop terminated, prefer not to use this instruction 604 if (found_machif) 605 continue; 606 } 607 608 // See if this has a predecessor that is "must_clone", i.e. sets the 609 // condition code. If so, choose this first 610 for (uint j = 0; j < n->req() ; j++) { 611 Node *inn = n->in(j); 612 if (inn) { 613 if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) { 614 n_choice = 3; 615 break; 616 } 617 } 618 } 619 620 // MachTemps should be scheduled last so they are near their uses 621 if (n->is_MachTemp()) { 622 n_choice = 1; 623 } 624 625 uint n_latency = get_latency_for_node(n); 626 uint n_score = n->req(); // Many inputs get high score to break ties 627 628 if (OptoRegScheduling && block_size_threshold_ok) { 629 if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) { 630 _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit()); 631 _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit()); 632 // simulate the notion that we just picked this node to schedule 633 n->add_flag(Node::Flag_is_scheduled); 634 // now calculate its effect upon the graph if we did 635 adjust_register_pressure(n, block, recalc_pressure_nodes, false); 636 // return its state for finalize in case somebody else wins 637 n->remove_flag(Node::Flag_is_scheduled); 638 // now save the two final pressure components of register pressure, limiting pressure calcs to short size 639 short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure(); 640 short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure(); 641 recalc_pressure_nodes[n->_idx] = int_pressure; 642 recalc_pressure_nodes[n->_idx] |= (float_pressure << 16); 643 } 644 645 if (_scheduling_for_pressure) { 646 latency = n_latency; 647 if (n_choice != 3) { 648 // Now evaluate each register pressure component based on threshold in the score. 649 // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks 650 // on a single instruction, but we might see it shrink on both banks. 651 // For each use of register that has a register class that is over the high pressure limit, we build n_score up for 652 // live ranges that terminate on this instruction. 653 if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) { 654 short int_pressure = (short)recalc_pressure_nodes[n->_idx]; 655 n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score; 656 } 657 if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) { 658 short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16); 659 n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score; 660 } 661 } else { 662 // make sure we choose these candidates 663 score = 0; 664 } 665 } 666 } 667 668 // Keep best latency found 669 cand_cnt++; 670 if (choice < n_choice || 671 (choice == n_choice && 672 ((StressLCM && C->randomized_select(cand_cnt)) || 673 (!StressLCM && 674 (latency < n_latency || 675 (latency == n_latency && 676 (score < n_score))))))) { 677 choice = n_choice; 678 latency = n_latency; 679 score = n_score; 680 idx = i; // Also keep index in worklist 681 } 682 } // End of for all ready nodes in worklist 683 684 guarantee(idx >= 0, "index should be set"); 685 Node *n = worklist[(uint)idx]; // Get the winner 686 687 worklist.map((uint)idx, worklist.pop()); // Compress worklist 688 return n; 689 } 690 691 //-------------------------adjust_register_pressure---------------------------- 692 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) { 693 PhaseLive* liveinfo = _regalloc->get_live(); 694 IndexSet* liveout = liveinfo->live(block); 695 // first adjust the register pressure for the sources 696 for (uint i = 1; i < n->req(); i++) { 697 bool lrg_ends = false; 698 Node *src_n = n->in(i); 699 if (src_n == nullptr) continue; 700 if (!src_n->is_Mach()) continue; 701 uint src = _regalloc->_lrg_map.find(src_n); 702 if (src == 0) continue; 703 LRG& lrg_src = _regalloc->lrgs(src); 704 // detect if the live range ends or not 705 if (liveout->member(src) == false) { 706 lrg_ends = true; 707 for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) { 708 Node* m = src_n->fast_out(j); // Get user 709 if (m == n) continue; 710 if (!m->is_Mach()) continue; 711 MachNode *mach = m->as_Mach(); 712 bool src_matches = false; 713 int iop = mach->ideal_Opcode(); 714 715 switch (iop) { 716 case Op_StoreB: 717 case Op_StoreC: 718 case Op_StoreCM: 719 case Op_StoreD: 720 case Op_StoreF: 721 case Op_StoreI: 722 case Op_StoreL: 723 case Op_StoreP: 724 case Op_StoreN: 725 case Op_StoreVector: 726 case Op_StoreVectorMasked: 727 case Op_StoreVectorScatter: 728 case Op_StoreVectorScatterMasked: 729 case Op_StoreNKlass: 730 for (uint k = 1; k < m->req(); k++) { 731 Node *in = m->in(k); 732 if (in == src_n) { 733 src_matches = true; 734 break; 735 } 736 } 737 break; 738 739 default: 740 src_matches = true; 741 break; 742 } 743 744 // If we have a store as our use, ignore the non source operands 745 if (src_matches == false) continue; 746 747 // Mark every unscheduled use which is not n with a recalculation 748 if ((get_block_for_node(m) == block) && (!m->is_scheduled())) { 749 if (finalize_mode && !m->is_Phi()) { 750 recalc_pressure_nodes[m->_idx] = 0x7fff7fff; 751 } 752 lrg_ends = false; 753 } 754 } 755 } 756 // if none, this live range ends and we can adjust register pressure 757 if (lrg_ends) { 758 if (finalize_mode) { 759 _regalloc->lower_pressure(block, 0, lrg_src, nullptr, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure); 760 } else { 761 _regalloc->lower_pressure(block, 0, lrg_src, nullptr, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure); 762 } 763 } 764 } 765 766 // now add the register pressure from the dest and evaluate which heuristic we should use: 767 // 1.) The default, latency scheduling 768 // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks 769 uint dst = _regalloc->_lrg_map.find(n); 770 if (dst != 0) { 771 LRG& lrg_dst = _regalloc->lrgs(dst); 772 if (finalize_mode) { 773 _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure); 774 // check to see if we fall over the register pressure cliff here 775 if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) { 776 _scheduling_for_pressure = true; 777 } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) { 778 _scheduling_for_pressure = true; 779 } else { 780 // restore latency scheduling mode 781 _scheduling_for_pressure = false; 782 } 783 } else { 784 _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure); 785 } 786 } 787 } 788 789 //------------------------------set_next_call---------------------------------- 790 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) { 791 if( next_call.test_set(n->_idx) ) return; 792 for( uint i=0; i<n->len(); i++ ) { 793 Node *m = n->in(i); 794 if( !m ) continue; // must see all nodes in block that precede call 795 if (get_block_for_node(m) == block) { 796 set_next_call(block, m, next_call); 797 } 798 } 799 } 800 801 //------------------------------needed_for_next_call--------------------------- 802 // Set the flag 'next_call' for each Node that is needed for the next call to 803 // be scheduled. This flag lets me bias scheduling so Nodes needed for the 804 // next subroutine call get priority - basically it moves things NOT needed 805 // for the next call till after the call. This prevents me from trying to 806 // carry lots of stuff live across a call. 807 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) { 808 // Find the next control-defining Node in this block 809 Node* call = nullptr; 810 for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) { 811 Node* m = this_call->fast_out(i); 812 if (get_block_for_node(m) == block && // Local-block user 813 m != this_call && // Not self-start node 814 m->is_MachCall()) { 815 call = m; 816 break; 817 } 818 } 819 if (call == nullptr) return; // No next call (e.g., block end is near) 820 // Set next-call for all inputs to this call 821 set_next_call(block, call, next_call); 822 } 823 824 //------------------------------add_call_kills------------------------------------- 825 // helper function that adds caller save registers to MachProjNode 826 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) { 827 // Fill in the kill mask for the call 828 for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) { 829 if( !regs.Member(r) ) { // Not already defined by the call 830 // Save-on-call register? 831 if ((save_policy[r] == 'C') || 832 (save_policy[r] == 'A') || 833 ((save_policy[r] == 'E') && exclude_soe)) { 834 proj->_rout.Insert(r); 835 } 836 } 837 } 838 } 839 840 841 //------------------------------sched_call------------------------------------- 842 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) { 843 RegMask regs; 844 845 // Schedule all the users of the call right now. All the users are 846 // projection Nodes, so they must be scheduled next to the call. 847 // Collect all the defined registers. 848 for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) { 849 Node* n = mcall->fast_out(i); 850 assert( n->is_MachProj(), "" ); 851 int n_cnt = ready_cnt.at(n->_idx)-1; 852 ready_cnt.at_put(n->_idx, n_cnt); 853 assert( n_cnt == 0, "" ); 854 // Schedule next to call 855 block->map_node(n, node_cnt++); 856 // Collect defined registers 857 regs.OR(n->out_RegMask()); 858 // Check for scheduling the next control-definer 859 if( n->bottom_type() == Type::CONTROL ) 860 // Warm up next pile of heuristic bits 861 needed_for_next_call(block, n, next_call); 862 863 // Children of projections are now all ready 864 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 865 Node* m = n->fast_out(j); // Get user 866 if(get_block_for_node(m) != block) { 867 continue; 868 } 869 if( m->is_Phi() ) continue; 870 int m_cnt = ready_cnt.at(m->_idx) - 1; 871 ready_cnt.at_put(m->_idx, m_cnt); 872 if( m_cnt == 0 ) 873 worklist.push(m); 874 } 875 876 } 877 878 // Act as if the call defines the Frame Pointer. 879 // Certainly the FP is alive and well after the call. 880 regs.Insert(_matcher.c_frame_pointer()); 881 882 // Set all registers killed and not already defined by the call. 883 uint r_cnt = mcall->tf()->range()->cnt(); 884 int op = mcall->ideal_Opcode(); 885 MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj ); 886 map_node_to_block(proj, block); 887 block->insert_node(proj, node_cnt++); 888 889 // Select the right register save policy. 890 const char *save_policy = nullptr; 891 switch (op) { 892 case Op_CallRuntime: 893 case Op_CallLeaf: 894 case Op_CallLeafNoFP: 895 case Op_CallLeafVector: 896 // Calling C code so use C calling convention 897 save_policy = _matcher._c_reg_save_policy; 898 break; 899 900 case Op_CallStaticJava: 901 case Op_CallDynamicJava: 902 // Calling Java code so use Java calling convention 903 save_policy = _matcher._register_save_policy; 904 break; 905 906 default: 907 ShouldNotReachHere(); 908 } 909 910 // When using CallRuntime mark SOE registers as killed by the call 911 // so values that could show up in the RegisterMap aren't live in a 912 // callee saved register since the register wouldn't know where to 913 // find them. CallLeaf and CallLeafNoFP are ok because they can't 914 // have debug info on them. Strictly speaking this only needs to be 915 // done for oops since idealreg2debugmask takes care of debug info 916 // references but there no way to handle oops differently than other 917 // pointers as far as the kill mask goes. 918 bool exclude_soe = op == Op_CallRuntime; 919 920 // If the call is a MethodHandle invoke, we need to exclude the 921 // register which is used to save the SP value over MH invokes from 922 // the mask. Otherwise this register could be used for 923 // deoptimization information. 924 if (op == Op_CallStaticJava) { 925 MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall; 926 if (mcallstaticjava->_method_handle_invoke) 927 proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask()); 928 } 929 930 add_call_kills(proj, regs, save_policy, exclude_soe); 931 932 return node_cnt; 933 } 934 935 936 //------------------------------schedule_local--------------------------------- 937 // Topological sort within a block. Someday become a real scheduler. 938 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) { 939 // Already "sorted" are the block start Node (as the first entry), and 940 // the block-ending Node and any trailing control projections. We leave 941 // these alone. PhiNodes and ParmNodes are made to follow the block start 942 // Node. Everything else gets topo-sorted. 943 944 #ifndef PRODUCT 945 if (trace_opto_pipelining()) { 946 tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order); 947 for (uint i = 0;i < block->number_of_nodes(); i++) { 948 tty->print("# "); 949 block->get_node(i)->dump(); 950 } 951 tty->print_cr("#"); 952 } 953 #endif 954 955 // RootNode is already sorted 956 if (block->number_of_nodes() == 1) { 957 return true; 958 } 959 960 bool block_size_threshold_ok = (recalc_pressure_nodes != nullptr) && (block->number_of_nodes() > 10); 961 962 // We track the uses of local definitions as input dependences so that 963 // we know when a given instruction is available to be scheduled. 964 uint i; 965 if (OptoRegScheduling && block_size_threshold_ok) { 966 for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc 967 Node *n = block->get_node(i); 968 n->remove_flag(Node::Flag_is_scheduled); 969 if (!n->is_Phi()) { 970 recalc_pressure_nodes[n->_idx] = 0x7fff7fff; 971 } 972 } 973 } 974 975 // Move PhiNodes and ParmNodes from 1 to cnt up to the start 976 uint node_cnt = block->end_idx(); 977 uint phi_cnt = 1; 978 for( i = 1; i<node_cnt; i++ ) { // Scan for Phi 979 Node *n = block->get_node(i); 980 if( n->is_Phi() || // Found a PhiNode or ParmNode 981 (n->is_Proj() && n->in(0) == block->head()) ) { 982 // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt 983 block->map_node(block->get_node(phi_cnt), i); 984 block->map_node(n, phi_cnt++); // swap Phi/Parm up front 985 if (OptoRegScheduling && block_size_threshold_ok) { 986 // mark n as scheduled 987 n->add_flag(Node::Flag_is_scheduled); 988 } 989 } else { // All others 990 // Count block-local inputs to 'n' 991 uint cnt = n->len(); // Input count 992 uint local = 0; 993 for( uint j=0; j<cnt; j++ ) { 994 Node *m = n->in(j); 995 if( m && get_block_for_node(m) == block && !m->is_top() ) 996 local++; // One more block-local input 997 } 998 ready_cnt.at_put(n->_idx, local); // Count em up 999 1000 #ifdef ASSERT 1001 if (UseG1GC) { 1002 if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) { 1003 // Check the precedence edges 1004 for (uint prec = n->req(); prec < n->len(); prec++) { 1005 Node* oop_store = n->in(prec); 1006 if (oop_store != nullptr) { 1007 assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark"); 1008 } 1009 } 1010 } 1011 } 1012 #endif 1013 1014 // A few node types require changing a required edge to a precedence edge 1015 // before allocation. 1016 if( n->is_Mach() && n->req() > TypeFunc::Parms && 1017 (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire || 1018 n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) { 1019 // MemBarAcquire could be created without Precedent edge. 1020 // del_req() replaces the specified edge with the last input edge 1021 // and then removes the last edge. If the specified edge > number of 1022 // edges the last edge will be moved outside of the input edges array 1023 // and the edge will be lost. This is why this code should be 1024 // executed only when Precedent (== TypeFunc::Parms) edge is present. 1025 Node *x = n->in(TypeFunc::Parms); 1026 if (x != nullptr && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) { 1027 // Old edge to node within same block will get removed, but no precedence 1028 // edge will get added because it already exists. Update ready count. 1029 int cnt = ready_cnt.at(n->_idx); 1030 assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx); 1031 ready_cnt.at_put(n->_idx, cnt-1); 1032 } 1033 n->del_req(TypeFunc::Parms); 1034 n->add_prec(x); 1035 } 1036 } 1037 } 1038 for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count 1039 ready_cnt.at_put(block->get_node(i2)->_idx, 0); 1040 1041 // All the prescheduled guys do not hold back internal nodes 1042 uint i3; 1043 for (i3 = 0; i3 < phi_cnt; i3++) { // For all pre-scheduled 1044 Node *n = block->get_node(i3); // Get pre-scheduled 1045 for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) { 1046 Node* m = n->fast_out(j); 1047 if (get_block_for_node(m) == block) { // Local-block user 1048 int m_cnt = ready_cnt.at(m->_idx)-1; 1049 if (OptoRegScheduling && block_size_threshold_ok) { 1050 // mark m as scheduled 1051 if (m_cnt < 0) { 1052 m->add_flag(Node::Flag_is_scheduled); 1053 } 1054 } 1055 ready_cnt.at_put(m->_idx, m_cnt); // Fix ready count 1056 } 1057 } 1058 } 1059 1060 Node_List delay; 1061 // Make a worklist 1062 Node_List worklist; 1063 for(uint i4=i3; i4<node_cnt; i4++ ) { // Put ready guys on worklist 1064 Node *m = block->get_node(i4); 1065 if( !ready_cnt.at(m->_idx) ) { // Zero ready count? 1066 if (m->is_iteratively_computed()) { 1067 // Push induction variable increments last to allow other uses 1068 // of the phi to be scheduled first. The select() method breaks 1069 // ties in scheduling by worklist order. 1070 delay.push(m); 1071 } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) { 1072 // Place CreateEx nodes that are initially ready at the beginning of the 1073 // worklist so they are selected first and scheduled at the block start. 1074 worklist.insert(0, m); 1075 } else { 1076 worklist.push(m); // Then on to worklist! 1077 } 1078 } 1079 } 1080 while (delay.size()) { 1081 Node* d = delay.pop(); 1082 worklist.push(d); 1083 } 1084 1085 if (OptoRegScheduling && block_size_threshold_ok) { 1086 // To stage register pressure calculations we need to examine the live set variables 1087 // breaking them up by register class to compartmentalize the calculations. 1088 _regalloc->_sched_int_pressure.init(Matcher::int_pressure_limit()); 1089 _regalloc->_sched_float_pressure.init(Matcher::float_pressure_limit()); 1090 _regalloc->_scratch_int_pressure.init(Matcher::int_pressure_limit()); 1091 _regalloc->_scratch_float_pressure.init(Matcher::float_pressure_limit()); 1092 1093 _regalloc->compute_entry_block_pressure(block); 1094 } 1095 1096 // Warm up the 'next_call' heuristic bits 1097 needed_for_next_call(block, block->head(), next_call); 1098 1099 #ifndef PRODUCT 1100 if (trace_opto_pipelining()) { 1101 for (uint j=0; j< block->number_of_nodes(); j++) { 1102 Node *n = block->get_node(j); 1103 int idx = n->_idx; 1104 tty->print("# ready cnt:%3d ", ready_cnt.at(idx)); 1105 tty->print("latency:%3d ", get_latency_for_node(n)); 1106 tty->print("%4d: %s\n", idx, n->Name()); 1107 } 1108 } 1109 #endif 1110 1111 uint max_idx = (uint)ready_cnt.length(); 1112 // Pull from worklist and schedule 1113 while( worklist.size() ) { // Worklist is not ready 1114 1115 #ifndef PRODUCT 1116 if (trace_opto_pipelining()) { 1117 tty->print("# ready list:"); 1118 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist 1119 Node *n = worklist[i]; // Get Node on worklist 1120 tty->print(" %d", n->_idx); 1121 } 1122 tty->cr(); 1123 } 1124 #endif 1125 1126 // Select and pop a ready guy from worklist 1127 Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes); 1128 block->map_node(n, phi_cnt++); // Schedule him next 1129 1130 if (OptoRegScheduling && block_size_threshold_ok) { 1131 n->add_flag(Node::Flag_is_scheduled); 1132 1133 // Now adjust the resister pressure with the node we selected 1134 if (!n->is_Phi()) { 1135 adjust_register_pressure(n, block, recalc_pressure_nodes, true); 1136 } 1137 } 1138 1139 #ifndef PRODUCT 1140 if (trace_opto_pipelining()) { 1141 tty->print("# select %d: %s", n->_idx, n->Name()); 1142 tty->print(", latency:%d", get_latency_for_node(n)); 1143 n->dump(); 1144 if (Verbose) { 1145 tty->print("# ready list:"); 1146 for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist 1147 Node *n = worklist[i]; // Get Node on worklist 1148 tty->print(" %d", n->_idx); 1149 } 1150 tty->cr(); 1151 } 1152 } 1153 1154 #endif 1155 if( n->is_MachCall() ) { 1156 MachCallNode *mcall = n->as_MachCall(); 1157 phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call); 1158 continue; 1159 } 1160 1161 if (n->is_Mach() && n->as_Mach()->has_call()) { 1162 RegMask regs; 1163 regs.Insert(_matcher.c_frame_pointer()); 1164 regs.OR(n->out_RegMask()); 1165 1166 MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj ); 1167 map_node_to_block(proj, block); 1168 block->insert_node(proj, phi_cnt++); 1169 1170 add_call_kills(proj, regs, _matcher._c_reg_save_policy, false); 1171 } 1172 1173 // Children are now all ready 1174 for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) { 1175 Node* m = n->fast_out(i5); // Get user 1176 if (get_block_for_node(m) != block) { 1177 continue; 1178 } 1179 if( m->is_Phi() ) continue; 1180 if (m->_idx >= max_idx) { // new node, skip it 1181 assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types"); 1182 continue; 1183 } 1184 int m_cnt = ready_cnt.at(m->_idx) - 1; 1185 ready_cnt.at_put(m->_idx, m_cnt); 1186 if( m_cnt == 0 ) 1187 worklist.push(m); 1188 } 1189 } 1190 1191 if( phi_cnt != block->end_idx() ) { 1192 // did not schedule all. Retry, Bailout, or Die 1193 if (C->subsume_loads() == true && !C->failing()) { 1194 // Retry with subsume_loads == false 1195 // If this is the first failure, the sentinel string will "stick" 1196 // to the Compile object, and the C2Compiler will see it and retry. 1197 C->record_failure(C2Compiler::retry_no_subsuming_loads()); 1198 } else { 1199 assert(false, "graph should be schedulable"); 1200 } 1201 // assert( phi_cnt == end_idx(), "did not schedule all" ); 1202 return false; 1203 } 1204 1205 if (OptoRegScheduling && block_size_threshold_ok) { 1206 _regalloc->compute_exit_block_pressure(block); 1207 block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure(); 1208 block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure(); 1209 } 1210 1211 #ifndef PRODUCT 1212 if (trace_opto_pipelining()) { 1213 tty->print_cr("#"); 1214 tty->print_cr("# after schedule_local"); 1215 for (uint i = 0;i < block->number_of_nodes();i++) { 1216 tty->print("# "); 1217 block->get_node(i)->dump(); 1218 } 1219 tty->print_cr("# "); 1220 1221 if (OptoRegScheduling && block_size_threshold_ok) { 1222 tty->print_cr("# pressure info : %d", block->_pre_order); 1223 _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info"); 1224 _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info"); 1225 } 1226 tty->cr(); 1227 } 1228 #endif 1229 1230 return true; 1231 } 1232 1233 //--------------------------catch_cleanup_fix_all_inputs----------------------- 1234 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) { 1235 for (uint l = 0; l < use->len(); l++) { 1236 if (use->in(l) == old_def) { 1237 if (l < use->req()) { 1238 use->set_req(l, new_def); 1239 } else { 1240 use->rm_prec(l); 1241 use->add_prec(new_def); 1242 l--; 1243 } 1244 } 1245 } 1246 } 1247 1248 //------------------------------catch_cleanup_find_cloned_def------------------ 1249 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) { 1250 assert( use_blk != def_blk, "Inter-block cleanup only"); 1251 1252 // The use is some block below the Catch. Find and return the clone of the def 1253 // that dominates the use. If there is no clone in a dominating block, then 1254 // create a phi for the def in a dominating block. 1255 1256 // Find which successor block dominates this use. The successor 1257 // blocks must all be single-entry (from the Catch only; I will have 1258 // split blocks to make this so), hence they all dominate. 1259 while( use_blk->_dom_depth > def_blk->_dom_depth+1 ) 1260 use_blk = use_blk->_idom; 1261 1262 // Find the successor 1263 Node *fixup = nullptr; 1264 1265 uint j; 1266 for( j = 0; j < def_blk->_num_succs; j++ ) 1267 if( use_blk == def_blk->_succs[j] ) 1268 break; 1269 1270 if( j == def_blk->_num_succs ) { 1271 // Block at same level in dom-tree is not a successor. It needs a 1272 // PhiNode, the PhiNode uses from the def and IT's uses need fixup. 1273 Node_Array inputs; 1274 for(uint k = 1; k < use_blk->num_preds(); k++) { 1275 Block* block = get_block_for_node(use_blk->pred(k)); 1276 inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx)); 1277 } 1278 1279 // Check to see if the use_blk already has an identical phi inserted. 1280 // If it exists, it will be at the first position since all uses of a 1281 // def are processed together. 1282 Node *phi = use_blk->get_node(1); 1283 if( phi->is_Phi() ) { 1284 fixup = phi; 1285 for (uint k = 1; k < use_blk->num_preds(); k++) { 1286 if (phi->in(k) != inputs[k]) { 1287 // Not a match 1288 fixup = nullptr; 1289 break; 1290 } 1291 } 1292 } 1293 1294 // If an existing PhiNode was not found, make a new one. 1295 if (fixup == nullptr) { 1296 Node *new_phi = PhiNode::make(use_blk->head(), def); 1297 use_blk->insert_node(new_phi, 1); 1298 map_node_to_block(new_phi, use_blk); 1299 for (uint k = 1; k < use_blk->num_preds(); k++) { 1300 new_phi->set_req(k, inputs[k]); 1301 } 1302 fixup = new_phi; 1303 } 1304 1305 } else { 1306 // Found the use just below the Catch. Make it use the clone. 1307 fixup = use_blk->get_node(n_clone_idx); 1308 } 1309 1310 return fixup; 1311 } 1312 1313 //--------------------------catch_cleanup_intra_block-------------------------- 1314 // Fix all input edges in use that reference "def". The use is in the same 1315 // block as the def and both have been cloned in each successor block. 1316 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) { 1317 1318 // Both the use and def have been cloned. For each successor block, 1319 // get the clone of the use, and make its input the clone of the def 1320 // found in that block. 1321 1322 uint use_idx = blk->find_node(use); 1323 uint offset_idx = use_idx - beg; 1324 for( uint k = 0; k < blk->_num_succs; k++ ) { 1325 // Get clone in each successor block 1326 Block *sb = blk->_succs[k]; 1327 Node *clone = sb->get_node(offset_idx+1); 1328 assert( clone->Opcode() == use->Opcode(), "" ); 1329 1330 // Make use-clone reference the def-clone 1331 catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx)); 1332 } 1333 } 1334 1335 //------------------------------catch_cleanup_inter_block--------------------- 1336 // Fix all input edges in use that reference "def". The use is in a different 1337 // block than the def. 1338 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) { 1339 if( !use_blk ) return; // Can happen if the use is a precedence edge 1340 1341 Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx); 1342 catch_cleanup_fix_all_inputs(use, def, new_def); 1343 } 1344 1345 //------------------------------call_catch_cleanup----------------------------- 1346 // If we inserted any instructions between a Call and his CatchNode, 1347 // clone the instructions on all paths below the Catch. 1348 void PhaseCFG::call_catch_cleanup(Block* block) { 1349 1350 // End of region to clone 1351 uint end = block->end_idx(); 1352 if( !block->get_node(end)->is_Catch() ) return; 1353 // Start of region to clone 1354 uint beg = end; 1355 while(!block->get_node(beg-1)->is_MachProj() || 1356 !block->get_node(beg-1)->in(0)->is_MachCall() ) { 1357 beg--; 1358 assert(beg > 0,"Catch cleanup walking beyond block boundary"); 1359 } 1360 // Range of inserted instructions is [beg, end) 1361 if( beg == end ) return; 1362 1363 // Clone along all Catch output paths. Clone area between the 'beg' and 1364 // 'end' indices. 1365 for( uint i = 0; i < block->_num_succs; i++ ) { 1366 Block *sb = block->_succs[i]; 1367 // Clone the entire area; ignoring the edge fixup for now. 1368 for( uint j = end; j > beg; j-- ) { 1369 Node *clone = block->get_node(j-1)->clone(); 1370 sb->insert_node(clone, 1); 1371 map_node_to_block(clone, sb); 1372 if (clone->needs_anti_dependence_check()) { 1373 insert_anti_dependences(sb, clone); 1374 } 1375 } 1376 } 1377 1378 1379 // Fixup edges. Check the def-use info per cloned Node 1380 for(uint i2 = beg; i2 < end; i2++ ) { 1381 uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block 1382 Node *n = block->get_node(i2); // Node that got cloned 1383 // Need DU safe iterator because of edge manipulation in calls. 1384 Unique_Node_List* out = new Unique_Node_List(); 1385 for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) { 1386 out->push(n->fast_out(j1)); 1387 } 1388 uint max = out->size(); 1389 for (uint j = 0; j < max; j++) {// For all users 1390 Node *use = out->pop(); 1391 Block *buse = get_block_for_node(use); 1392 if( use->is_Phi() ) { 1393 for( uint k = 1; k < use->req(); k++ ) 1394 if( use->in(k) == n ) { 1395 Block* b = get_block_for_node(buse->pred(k)); 1396 Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx); 1397 use->set_req(k, fixup); 1398 } 1399 } else { 1400 if (block == buse) { 1401 catch_cleanup_intra_block(use, n, block, beg, n_clone_idx); 1402 } else { 1403 catch_cleanup_inter_block(use, buse, n, block, n_clone_idx); 1404 } 1405 } 1406 } // End for all users 1407 1408 } // End of for all Nodes in cloned area 1409 1410 // Remove the now-dead cloned ops 1411 for(uint i3 = beg; i3 < end; i3++ ) { 1412 block->get_node(beg)->disconnect_inputs(C); 1413 block->remove_node(beg); 1414 } 1415 1416 // If the successor blocks have a CreateEx node, move it back to the top 1417 for (uint i4 = 0; i4 < block->_num_succs; i4++) { 1418 Block *sb = block->_succs[i4]; 1419 uint new_cnt = end - beg; 1420 // Remove any newly created, but dead, nodes by traversing their schedule 1421 // backwards. Here, a dead node is a node whose only outputs (if any) are 1422 // unused projections. 1423 for (uint j = new_cnt; j > 0; j--) { 1424 Node *n = sb->get_node(j); 1425 // Individual projections are examined together with all siblings when 1426 // their parent is visited. 1427 if (n->is_Proj()) { 1428 continue; 1429 } 1430 bool dead = true; 1431 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 1432 Node* out = n->fast_out(i); 1433 // n is live if it has a non-projection output or a used projection. 1434 if (!out->is_Proj() || out->outcnt() > 0) { 1435 dead = false; 1436 break; 1437 } 1438 } 1439 if (dead) { 1440 // n's only outputs (if any) are unused projections scheduled next to n 1441 // (see PhaseCFG::select()). Remove these projections backwards. 1442 for (uint k = j + n->outcnt(); k > j; k--) { 1443 Node* proj = sb->get_node(k); 1444 assert(proj->is_Proj() && proj->in(0) == n, 1445 "projection should correspond to dead node"); 1446 proj->disconnect_inputs(C); 1447 sb->remove_node(k); 1448 new_cnt--; 1449 } 1450 // Now remove the node itself. 1451 n->disconnect_inputs(C); 1452 sb->remove_node(j); 1453 new_cnt--; 1454 } 1455 } 1456 // If any newly created nodes remain, move the CreateEx node to the top 1457 if (new_cnt > 0) { 1458 Node *cex = sb->get_node(1+new_cnt); 1459 if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) { 1460 sb->remove_node(1+new_cnt); 1461 sb->insert_node(cex, 1); 1462 } 1463 } 1464 } 1465 } --- EOF ---