1 /*
   2  * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.inline.hpp"
  27 #include "gc/shared/gc_globals.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "oops/compressedOops.hpp"
  30 #include "opto/ad.hpp"
  31 #include "opto/block.hpp"
  32 #include "opto/c2compiler.hpp"
  33 #include "opto/callnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "opto/chaitin.hpp"
  38 #include "runtime/os.inline.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 
  41 // Optimization - Graph Style
  42 
  43 // Check whether val is not-null-decoded compressed oop,
  44 // i.e. will grab into the base of the heap if it represents null.
  45 static bool accesses_heap_base_zone(Node *val) {
  46   if (CompressedOops::base() != nullptr) { // Implies UseCompressedOops.
  47     if (val && val->is_Mach()) {
  48       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  49         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  50         // decode null to point to the heap base (Decode_NN).
  51         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  52           return true;
  53         }
  54       }
  55       // Must recognize load operation with Decode matched in memory operand.
  56       // We should not reach here except for PPC/AIX, as os::zero_page_read_protected()
  57       // returns true everywhere else. On PPC, no such memory operands
  58       // exist, therefore we did not yet implement a check for such operands.
  59       NOT_AIX(Unimplemented());
  60     }
  61   }
  62   return false;
  63 }
  64 
  65 static bool needs_explicit_null_check_for_read(Node *val) {
  66   // On some OSes (AIX) the page at address 0 is only write protected.
  67   // If so, only Store operations will trap.
  68   if (os::zero_page_read_protected()) {
  69     return false;  // Implicit null check will work.
  70   }
  71   // Also a read accessing the base of a heap-based compressed heap will trap.
  72   if (accesses_heap_base_zone(val) &&         // Hits the base zone page.
  73       CompressedOops::use_implicit_null_checks()) { // Base zone page is protected.
  74     return false;
  75   }
  76 
  77   return true;
  78 }
  79 
  80 //------------------------------implicit_null_check----------------------------
  81 // Detect implicit-null-check opportunities.  Basically, find null checks
  82 // with suitable memory ops nearby.  Use the memory op to do the null check.
  83 // I can generate a memory op if there is not one nearby.
  84 // The proj is the control projection for the not-null case.
  85 // The val is the pointer being checked for nullness or
  86 // decodeHeapOop_not_null node if it did not fold into address.
  87 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
  88   // Assume if null check need for 0 offset then always needed
  89   // Intel solaris doesn't support any null checks yet and no
  90   // mechanism exists (yet) to set the switches at an os_cpu level
  91   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  92 
  93   // Make sure the ptr-is-null path appears to be uncommon!
  94   float f = block->end()->as_MachIf()->_prob;
  95   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  96   if( f > PROB_UNLIKELY_MAG(4) ) return;
  97 
  98   uint bidx = 0;                // Capture index of value into memop
  99   bool was_store;               // Memory op is a store op
 100 
 101   // Get the successor block for if the test ptr is non-null
 102   Block* not_null_block;  // this one goes with the proj
 103   Block* null_block;
 104   if (block->get_node(block->number_of_nodes()-1) == proj) {
 105     null_block     = block->_succs[0];
 106     not_null_block = block->_succs[1];
 107   } else {
 108     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
 109     not_null_block = block->_succs[0];
 110     null_block     = block->_succs[1];
 111   }
 112   while (null_block->is_Empty() == Block::empty_with_goto) {
 113     null_block     = null_block->_succs[0];
 114   }
 115 
 116   // Search the exception block for an uncommon trap.
 117   // (See Parse::do_if and Parse::do_ifnull for the reason
 118   // we need an uncommon trap.  Briefly, we need a way to
 119   // detect failure of this optimization, as in 6366351.)
 120   {
 121     bool found_trap = false;
 122     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
 123       Node* nn = null_block->get_node(i1);
 124       if (nn->is_MachCall() &&
 125           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
 126         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 127         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 128           jint tr_con = trtype->is_int()->get_con();
 129           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 130           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 131           assert((int)reason < (int)BitsPerInt, "recode bit map");
 132           if (is_set_nth_bit(allowed_reasons, (int) reason)
 133               && action != Deoptimization::Action_none) {
 134             // This uncommon trap is sure to recompile, eventually.
 135             // When that happens, C->too_many_traps will prevent
 136             // this transformation from happening again.
 137             found_trap = true;
 138           }
 139         }
 140         break;
 141       }
 142     }
 143     if (!found_trap) {
 144       // We did not find an uncommon trap.
 145       return;
 146     }
 147   }
 148 
 149   // Check for decodeHeapOop_not_null node which did not fold into address
 150   bool is_decoden = ((intptr_t)val) & 1;
 151   val = (Node*)(((intptr_t)val) & ~1);
 152 
 153   assert(!is_decoden ||
 154          ((val->in(0) == nullptr) && val->is_Mach() &&
 155           (val->as_Mach()->ideal_Opcode() == Op_DecodeN)), "sanity");
 156 
 157   // Search the successor block for a load or store who's base value is also
 158   // the tested value.  There may be several.
 159   MachNode *best = nullptr;        // Best found so far
 160   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 161     Node *m = val->out(i);
 162     if( !m->is_Mach() ) continue;
 163     MachNode *mach = m->as_Mach();
 164     was_store = false;
 165     int iop = mach->ideal_Opcode();
 166     switch( iop ) {
 167     case Op_LoadB:
 168     case Op_LoadUB:
 169     case Op_LoadUS:
 170     case Op_LoadD:
 171     case Op_LoadF:
 172     case Op_LoadI:
 173     case Op_LoadL:
 174     case Op_LoadP:
 175     case Op_LoadN:
 176     case Op_LoadS:
 177     case Op_LoadKlass:
 178     case Op_LoadNKlass:
 179     case Op_LoadRange:
 180     case Op_LoadD_unaligned:
 181     case Op_LoadL_unaligned:
 182       assert(mach->in(2) == val, "should be address");
 183       break;
 184     case Op_StoreB:
 185     case Op_StoreC:
 186     case Op_StoreCM:
 187     case Op_StoreD:
 188     case Op_StoreF:
 189     case Op_StoreI:
 190     case Op_StoreL:
 191     case Op_StoreP:
 192     case Op_StoreN:
 193     case Op_StoreNKlass:
 194       was_store = true;         // Memory op is a store op
 195       // Stores will have their address in slot 2 (memory in slot 1).
 196       // If the value being nul-checked is in another slot, it means we
 197       // are storing the checked value, which does NOT check the value!
 198       if( mach->in(2) != val ) continue;
 199       break;                    // Found a memory op?
 200     case Op_StrComp:
 201     case Op_StrEquals:
 202     case Op_StrIndexOf:
 203     case Op_StrIndexOfChar:
 204     case Op_AryEq:
 205     case Op_VectorizedHashCode:
 206     case Op_StrInflatedCopy:
 207     case Op_StrCompressedCopy:
 208     case Op_EncodeISOArray:
 209     case Op_CountPositives:
 210       // Not a legit memory op for implicit null check regardless of
 211       // embedded loads
 212       continue;
 213     default:                    // Also check for embedded loads
 214       if( !mach->needs_anti_dependence_check() )
 215         continue;               // Not an memory op; skip it
 216       if( must_clone[iop] ) {
 217         // Do not move nodes which produce flags because
 218         // RA will try to clone it to place near branch and
 219         // it will cause recompilation, see clone_node().
 220         continue;
 221       }
 222       {
 223         // Check that value is used in memory address in
 224         // instructions with embedded load (CmpP val1,(val2+off)).
 225         Node* base;
 226         Node* index;
 227         const MachOper* oper = mach->memory_inputs(base, index);
 228         if (oper == nullptr || oper == (MachOper*)-1) {
 229           continue;             // Not an memory op; skip it
 230         }
 231         if (val == base ||
 232             (val == index && val->bottom_type()->isa_narrowoop())) {
 233           break;                // Found it
 234         } else {
 235           continue;             // Skip it
 236         }
 237       }
 238       break;
 239     }
 240 
 241     // On some OSes (AIX) the page at address 0 is only write protected.
 242     // If so, only Store operations will trap.
 243     // But a read accessing the base of a heap-based compressed heap will trap.
 244     if (!was_store && needs_explicit_null_check_for_read(val)) {
 245       continue;
 246     }
 247 
 248     // Check that node's control edge is not-null block's head or dominates it,
 249     // otherwise we can't hoist it because there are other control dependencies.
 250     Node* ctrl = mach->in(0);
 251     if (ctrl != nullptr && !(ctrl == not_null_block->head() ||
 252         get_block_for_node(ctrl)->dominates(not_null_block))) {
 253       continue;
 254     }
 255 
 256     // check if the offset is not too high for implicit exception
 257     {
 258       intptr_t offset = 0;
 259       const TypePtr *adr_type = nullptr;  // Do not need this return value here
 260       const Node* base = mach->get_base_and_disp(offset, adr_type);
 261       if (base == nullptr || base == NodeSentinel) {
 262         // Narrow oop address doesn't have base, only index.
 263         // Give up if offset is beyond page size or if heap base is not protected.
 264         if (val->bottom_type()->isa_narrowoop() &&
 265             (MacroAssembler::needs_explicit_null_check(offset) ||
 266              !CompressedOops::use_implicit_null_checks()))
 267           continue;
 268         // cannot reason about it; is probably not implicit null exception
 269       } else {
 270         const TypePtr* tptr;
 271         if ((UseCompressedOops && CompressedOops::shift() == 0) ||
 272             (UseCompressedClassPointers && CompressedKlassPointers::shift() == 0)) {
 273           // 32-bits narrow oop can be the base of address expressions
 274           tptr = base->get_ptr_type();
 275         } else {
 276           // only regular oops are expected here
 277           tptr = base->bottom_type()->is_ptr();
 278         }
 279         // Give up if offset is not a compile-time constant.
 280         if (offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot)
 281           continue;
 282         offset += tptr->_offset; // correct if base is offsetted
 283         // Give up if reference is beyond page size.
 284         if (MacroAssembler::needs_explicit_null_check(offset))
 285           continue;
 286         // Give up if base is a decode node and the heap base is not protected.
 287         if (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_DecodeN &&
 288             !CompressedOops::use_implicit_null_checks())
 289           continue;
 290       }
 291     }
 292 
 293     // Check ctrl input to see if the null-check dominates the memory op
 294     Block *cb = get_block_for_node(mach);
 295     cb = cb->_idom;             // Always hoist at least 1 block
 296     if( !was_store ) {          // Stores can be hoisted only one block
 297       while( cb->_dom_depth > (block->_dom_depth + 1))
 298         cb = cb->_idom;         // Hoist loads as far as we want
 299       // The non-null-block should dominate the memory op, too. Live
 300       // range spilling will insert a spill in the non-null-block if it is
 301       // needs to spill the memory op for an implicit null check.
 302       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 303         if (cb != not_null_block) continue;
 304         cb = cb->_idom;
 305       }
 306     }
 307     if( cb != block ) continue;
 308 
 309     // Found a memory user; see if it can be hoisted to check-block
 310     uint vidx = 0;              // Capture index of value into memop
 311     uint j;
 312     for( j = mach->req()-1; j > 0; j-- ) {
 313       if( mach->in(j) == val ) {
 314         vidx = j;
 315         // Ignore DecodeN val which could be hoisted to where needed.
 316         if( is_decoden ) continue;
 317       }
 318       // Block of memory-op input
 319       Block *inb = get_block_for_node(mach->in(j));
 320       Block *b = block;          // Start from nul check
 321       while( b != inb && b->_dom_depth > inb->_dom_depth )
 322         b = b->_idom;           // search upwards for input
 323       // See if input dominates null check
 324       if( b != inb )
 325         break;
 326     }
 327     if( j > 0 )
 328       continue;
 329     Block *mb = get_block_for_node(mach);
 330     // Hoisting stores requires more checks for the anti-dependence case.
 331     // Give up hoisting if we have to move the store past any load.
 332     if (was_store) {
 333        // Make sure control does not do a merge (would have to check allpaths)
 334        if (mb->num_preds() != 2) {
 335          continue;
 336        }
 337        // mach is a store, hence block is the immediate dominator of mb.
 338        // Due to the null-check shape of block (where its successors cannot re-join),
 339        // block must be the direct predecessor of mb.
 340        assert(get_block_for_node(mb->pred(1)) == block, "Unexpected predecessor block");
 341        uint k;
 342        uint num_nodes = mb->number_of_nodes();
 343        for (k = 1; k < num_nodes; k++) {
 344          Node *n = mb->get_node(k);
 345          if (n->needs_anti_dependence_check() &&
 346              n->in(LoadNode::Memory) == mach->in(StoreNode::Memory)) {
 347            break;              // Found anti-dependent load
 348          }
 349        }
 350        if (k < num_nodes) {
 351          continue;             // Found anti-dependent load
 352        }
 353     }
 354 
 355     // Make sure this memory op is not already being used for a NullCheck
 356     Node *e = mb->end();
 357     if( e->is_MachNullCheck() && e->in(1) == mach )
 358       continue;                 // Already being used as a null check
 359 
 360     // Found a candidate!  Pick one with least dom depth - the highest
 361     // in the dom tree should be closest to the null check.
 362     if (best == nullptr || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 363       best = mach;
 364       bidx = vidx;
 365     }
 366   }
 367   // No candidate!
 368   if (best == nullptr) {
 369     return;
 370   }
 371 
 372   // ---- Found an implicit null check
 373 #ifndef PRODUCT
 374   extern uint implicit_null_checks;
 375   implicit_null_checks++;
 376 #endif
 377 
 378   if( is_decoden ) {
 379     // Check if we need to hoist decodeHeapOop_not_null first.
 380     Block *valb = get_block_for_node(val);
 381     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 382       // Hoist it up to the end of the test block together with its inputs if they exist.
 383       for (uint i = 2; i < val->req(); i++) {
 384         // DecodeN has 2 regular inputs + optional MachTemp or load Base inputs.
 385         Node *temp = val->in(i);
 386         Block *tempb = get_block_for_node(temp);
 387         if (!tempb->dominates(block)) {
 388           assert(block->dominates(tempb), "sanity check: temp node placement");
 389           // We only expect nodes without further inputs, like MachTemp or load Base.
 390           assert(temp->req() == 0 || (temp->req() == 1 && temp->in(0) == (Node*)C->root()),
 391                  "need for recursive hoisting not expected");
 392           tempb->find_remove(temp);
 393           block->add_inst(temp);
 394           map_node_to_block(temp, block);
 395         }
 396       }
 397       valb->find_remove(val);
 398       block->add_inst(val);
 399       map_node_to_block(val, block);
 400       // DecodeN on x86 may kill flags. Check for flag-killing projections
 401       // that also need to be hoisted.
 402       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 403         Node* n = val->fast_out(j);
 404         if( n->is_MachProj() ) {
 405           get_block_for_node(n)->find_remove(n);
 406           block->add_inst(n);
 407           map_node_to_block(n, block);
 408         }
 409       }
 410     }
 411   }
 412   // Hoist the memory candidate up to the end of the test block.
 413   Block *old_block = get_block_for_node(best);
 414   old_block->find_remove(best);
 415   block->add_inst(best);
 416   map_node_to_block(best, block);
 417 
 418   // Move the control dependence if it is pinned to not-null block.
 419   // Don't change it in other cases: null or dominating control.
 420   Node* ctrl = best->in(0);
 421   if (ctrl != nullptr && get_block_for_node(ctrl) == not_null_block) {
 422     // Set it to control edge of null check.
 423     best->set_req(0, proj->in(0)->in(0));
 424   }
 425 
 426   // Check for flag-killing projections that also need to be hoisted
 427   // Should be DU safe because no edge updates.
 428   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 429     Node* n = best->fast_out(j);
 430     if( n->is_MachProj() ) {
 431       get_block_for_node(n)->find_remove(n);
 432       block->add_inst(n);
 433       map_node_to_block(n, block);
 434     }
 435   }
 436 
 437   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 438   // One of two graph shapes got matched:
 439   //   (IfTrue  (If (Bool NE (CmpP ptr null))))
 440   //   (IfFalse (If (Bool EQ (CmpP ptr null))))
 441   // null checks are always branch-if-eq.  If we see a IfTrue projection
 442   // then we are replacing a 'ne' test with a 'eq' null check test.
 443   // We need to flip the projections to keep the same semantics.
 444   if( proj->Opcode() == Op_IfTrue ) {
 445     // Swap order of projections in basic block to swap branch targets
 446     Node *tmp1 = block->get_node(block->end_idx()+1);
 447     Node *tmp2 = block->get_node(block->end_idx()+2);
 448     block->map_node(tmp2, block->end_idx()+1);
 449     block->map_node(tmp1, block->end_idx()+2);
 450     Node *tmp = new Node(C->top()); // Use not null input
 451     tmp1->replace_by(tmp);
 452     tmp2->replace_by(tmp1);
 453     tmp->replace_by(tmp2);
 454     tmp->destruct(nullptr);
 455   }
 456 
 457   // Remove the existing null check; use a new implicit null check instead.
 458   // Since schedule-local needs precise def-use info, we need to correct
 459   // it as well.
 460   Node *old_tst = proj->in(0);
 461   MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
 462   block->map_node(nul_chk, block->end_idx());
 463   map_node_to_block(nul_chk, block);
 464   // Redirect users of old_test to nul_chk
 465   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 466     old_tst->last_out(i2)->set_req(0, nul_chk);
 467   // Clean-up any dead code
 468   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
 469     Node* in = old_tst->in(i3);
 470     old_tst->set_req(i3, nullptr);
 471     if (in->outcnt() == 0) {
 472       // Remove dead input node
 473       in->disconnect_inputs(C);
 474       block->find_remove(in);
 475     }
 476   }
 477 
 478   latency_from_uses(nul_chk);
 479   latency_from_uses(best);
 480 
 481   // insert anti-dependences to defs in this block
 482   if (! best->needs_anti_dependence_check()) {
 483     for (uint k = 1; k < block->number_of_nodes(); k++) {
 484       Node *n = block->get_node(k);
 485       if (n->needs_anti_dependence_check() &&
 486           n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
 487         // Found anti-dependent load
 488         insert_anti_dependences(block, n);
 489       }
 490     }
 491   }
 492 }
 493 
 494 
 495 //------------------------------select-----------------------------------------
 496 // Select a nice fellow from the worklist to schedule next. If there is only one
 497 // choice, then use it. CreateEx nodes that are initially ready must start their
 498 // blocks and are given the highest priority, by being placed at the beginning
 499 // of the worklist. Next after initially-ready CreateEx nodes are projections,
 500 // which must follow their parents, and CreateEx nodes with local input
 501 // dependencies. Next are constants and CheckCastPP nodes. There are a number of
 502 // other special cases, for instructions that consume condition codes, et al.
 503 // These are chosen immediately. Some instructions are required to immediately
 504 // precede the last instruction in the block, and these are taken last. Of the
 505 // remaining cases (most), choose the instruction with the greatest latency
 506 // (that is, the most number of pseudo-cycles required to the end of the
 507 // routine). If there is a tie, choose the instruction with the most inputs.
 508 Node* PhaseCFG::select(
 509   Block* block,
 510   Node_List &worklist,
 511   GrowableArray<int> &ready_cnt,
 512   VectorSet &next_call,
 513   uint sched_slot,
 514   intptr_t* recalc_pressure_nodes) {
 515 
 516   // If only a single entry on the stack, use it
 517   uint cnt = worklist.size();
 518   if (cnt == 1) {
 519     Node *n = worklist[0];
 520     worklist.map(0,worklist.pop());
 521     return n;
 522   }
 523 
 524   uint choice  = 0; // Bigger is most important
 525   uint latency = 0; // Bigger is scheduled first
 526   uint score   = 0; // Bigger is better
 527   int idx = -1;     // Index in worklist
 528   int cand_cnt = 0; // Candidate count
 529   bool block_size_threshold_ok = (recalc_pressure_nodes != nullptr) && (block->number_of_nodes() > 10);
 530 
 531   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 532     // Order in worklist is used to break ties.
 533     // See caller for how this is used to delay scheduling
 534     // of induction variable increments to after the other
 535     // uses of the phi are scheduled.
 536     Node *n = worklist[i];      // Get Node on worklist
 537 
 538     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 539     if (iop == Op_CreateEx || n->is_Proj()) {
 540       // CreateEx nodes that are initially ready must start the block (after Phi
 541       // and Parm nodes which are pre-scheduled) and get top priority. This is
 542       // currently enforced by placing them at the beginning of the initial
 543       // worklist and selecting them eagerly here. After these, projections and
 544       // other CreateEx nodes are selected with equal priority.
 545       worklist.map(i,worklist.pop());
 546       return n;
 547     }
 548 
 549     if (n->Opcode() == Op_Con || iop == Op_CheckCastPP) {
 550       // Constants and CheckCastPP nodes have higher priority than the rest of
 551       // the nodes tested below. Record as current winner, but keep looking for
 552       // higher-priority nodes in the worklist.
 553       choice  = 4;
 554       // Latency and score are only used to break ties among low-priority nodes.
 555       latency = 0;
 556       score   = 0;
 557       idx     = i;
 558       continue;
 559     }
 560 
 561     // Final call in a block must be adjacent to 'catch'
 562     Node *e = block->end();
 563     if( e->is_Catch() && e->in(0)->in(0) == n )
 564       continue;
 565 
 566     // Memory op for an implicit null check has to be at the end of the block
 567     if( e->is_MachNullCheck() && e->in(1) == n )
 568       continue;
 569 
 570     // Schedule IV increment last.
 571     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) {
 572       // Cmp might be matched into CountedLoopEnd node.
 573       Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e;
 574       if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) {
 575         continue;
 576       }
 577     }
 578 
 579     uint n_choice = 2;
 580 
 581     // See if this instruction is consumed by a branch. If so, then (as the
 582     // branch is the last instruction in the basic block) force it to the
 583     // end of the basic block
 584     if ( must_clone[iop] ) {
 585       // See if any use is a branch
 586       bool found_machif = false;
 587 
 588       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 589         Node* use = n->fast_out(j);
 590 
 591         // The use is a conditional branch, make them adjacent
 592         if (use->is_MachIf() && get_block_for_node(use) == block) {
 593           found_machif = true;
 594           break;
 595         }
 596 
 597         // More than this instruction pending for successor to be ready,
 598         // don't choose this if other opportunities are ready
 599         if (ready_cnt.at(use->_idx) > 1)
 600           n_choice = 1;
 601       }
 602 
 603       // loop terminated, prefer not to use this instruction
 604       if (found_machif)
 605         continue;
 606     }
 607 
 608     // See if this has a predecessor that is "must_clone", i.e. sets the
 609     // condition code. If so, choose this first
 610     for (uint j = 0; j < n->req() ; j++) {
 611       Node *inn = n->in(j);
 612       if (inn) {
 613         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 614           n_choice = 3;
 615           break;
 616         }
 617       }
 618     }
 619 
 620     // MachTemps should be scheduled last so they are near their uses
 621     if (n->is_MachTemp()) {
 622       n_choice = 1;
 623     }
 624 
 625     uint n_latency = get_latency_for_node(n);
 626     uint n_score = n->req();   // Many inputs get high score to break ties
 627 
 628     if (OptoRegScheduling && block_size_threshold_ok) {
 629       if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
 630         _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
 631         _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
 632         // simulate the notion that we just picked this node to schedule
 633         n->add_flag(Node::Flag_is_scheduled);
 634         // now calculate its effect upon the graph if we did
 635         adjust_register_pressure(n, block, recalc_pressure_nodes, false);
 636         // return its state for finalize in case somebody else wins
 637         n->remove_flag(Node::Flag_is_scheduled);
 638         // now save the two final pressure components of register pressure, limiting pressure calcs to short size
 639         short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
 640         short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
 641         recalc_pressure_nodes[n->_idx] = int_pressure;
 642         recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
 643       }
 644 
 645       if (_scheduling_for_pressure) {
 646         latency = n_latency;
 647         if (n_choice != 3) {
 648           // Now evaluate each register pressure component based on threshold in the score.
 649           // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
 650           // on a single instruction, but we might see it shrink on both banks.
 651           // For each use of register that has a register class that is over the high pressure limit, we build n_score up for
 652           // live ranges that terminate on this instruction.
 653           if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 654             short int_pressure = (short)recalc_pressure_nodes[n->_idx];
 655             n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
 656           }
 657           if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 658             short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
 659             n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
 660           }
 661         } else {
 662           // make sure we choose these candidates
 663           score = 0;
 664         }
 665       }
 666     }
 667 
 668     // Keep best latency found
 669     cand_cnt++;
 670     if (choice < n_choice ||
 671         (choice == n_choice &&
 672          ((StressLCM && C->randomized_select(cand_cnt)) ||
 673           (!StressLCM &&
 674            (latency < n_latency ||
 675             (latency == n_latency &&
 676              (score < n_score))))))) {
 677       choice  = n_choice;
 678       latency = n_latency;
 679       score   = n_score;
 680       idx     = i;               // Also keep index in worklist
 681     }
 682   } // End of for all ready nodes in worklist
 683 
 684   guarantee(idx >= 0, "index should be set");
 685   Node *n = worklist[(uint)idx];      // Get the winner
 686 
 687   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 688   return n;
 689 }
 690 
 691 //-------------------------adjust_register_pressure----------------------------
 692 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
 693   PhaseLive* liveinfo = _regalloc->get_live();
 694   IndexSet* liveout = liveinfo->live(block);
 695   // first adjust the register pressure for the sources
 696   for (uint i = 1; i < n->req(); i++) {
 697     bool lrg_ends = false;
 698     Node *src_n = n->in(i);
 699     if (src_n == nullptr) continue;
 700     if (!src_n->is_Mach()) continue;
 701     uint src = _regalloc->_lrg_map.find(src_n);
 702     if (src == 0) continue;
 703     LRG& lrg_src = _regalloc->lrgs(src);
 704     // detect if the live range ends or not
 705     if (liveout->member(src) == false) {
 706       lrg_ends = true;
 707       for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
 708         Node* m = src_n->fast_out(j); // Get user
 709         if (m == n) continue;
 710         if (!m->is_Mach()) continue;
 711         MachNode *mach = m->as_Mach();
 712         bool src_matches = false;
 713         int iop = mach->ideal_Opcode();
 714 
 715         switch (iop) {
 716         case Op_StoreB:
 717         case Op_StoreC:
 718         case Op_StoreCM:
 719         case Op_StoreD:
 720         case Op_StoreF:
 721         case Op_StoreI:
 722         case Op_StoreL:
 723         case Op_StoreP:
 724         case Op_StoreN:
 725         case Op_StoreVector:
 726         case Op_StoreVectorMasked:
 727         case Op_StoreVectorScatter:
 728         case Op_StoreVectorScatterMasked:
 729         case Op_StoreNKlass:
 730           for (uint k = 1; k < m->req(); k++) {
 731             Node *in = m->in(k);
 732             if (in == src_n) {
 733               src_matches = true;
 734               break;
 735             }
 736           }
 737           break;
 738 
 739         default:
 740           src_matches = true;
 741           break;
 742         }
 743 
 744         // If we have a store as our use, ignore the non source operands
 745         if (src_matches == false) continue;
 746 
 747         // Mark every unscheduled use which is not n with a recalculation
 748         if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
 749           if (finalize_mode && !m->is_Phi()) {
 750             recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
 751           }
 752           lrg_ends = false;
 753         }
 754       }
 755     }
 756     // if none, this live range ends and we can adjust register pressure
 757     if (lrg_ends) {
 758       if (finalize_mode) {
 759         _regalloc->lower_pressure(block, 0, lrg_src, nullptr, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 760       } else {
 761         _regalloc->lower_pressure(block, 0, lrg_src, nullptr, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 762       }
 763     }
 764   }
 765 
 766   // now add the register pressure from the dest and evaluate which heuristic we should use:
 767   // 1.) The default, latency scheduling
 768   // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
 769   uint dst = _regalloc->_lrg_map.find(n);
 770   if (dst != 0) {
 771     LRG& lrg_dst = _regalloc->lrgs(dst);
 772     if (finalize_mode) {
 773       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 774       // check to see if we fall over the register pressure cliff here
 775       if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 776         _scheduling_for_pressure = true;
 777       } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 778         _scheduling_for_pressure = true;
 779       } else {
 780         // restore latency scheduling mode
 781         _scheduling_for_pressure = false;
 782       }
 783     } else {
 784       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 785     }
 786   }
 787 }
 788 
 789 //------------------------------set_next_call----------------------------------
 790 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 791   if( next_call.test_set(n->_idx) ) return;
 792   for( uint i=0; i<n->len(); i++ ) {
 793     Node *m = n->in(i);
 794     if( !m ) continue;  // must see all nodes in block that precede call
 795     if (get_block_for_node(m) == block) {
 796       set_next_call(block, m, next_call);
 797     }
 798   }
 799 }
 800 
 801 //------------------------------needed_for_next_call---------------------------
 802 // Set the flag 'next_call' for each Node that is needed for the next call to
 803 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 804 // next subroutine call get priority - basically it moves things NOT needed
 805 // for the next call till after the call.  This prevents me from trying to
 806 // carry lots of stuff live across a call.
 807 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 808   // Find the next control-defining Node in this block
 809   Node* call = nullptr;
 810   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 811     Node* m = this_call->fast_out(i);
 812     if (get_block_for_node(m) == block && // Local-block user
 813         m != this_call &&       // Not self-start node
 814         m->is_MachCall()) {
 815       call = m;
 816       break;
 817     }
 818   }
 819   if (call == nullptr)  return;    // No next call (e.g., block end is near)
 820   // Set next-call for all inputs to this call
 821   set_next_call(block, call, next_call);
 822 }
 823 
 824 //------------------------------add_call_kills-------------------------------------
 825 // helper function that adds caller save registers to MachProjNode
 826 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
 827   // Fill in the kill mask for the call
 828   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 829     if( !regs.Member(r) ) {     // Not already defined by the call
 830       // Save-on-call register?
 831       if ((save_policy[r] == 'C') ||
 832           (save_policy[r] == 'A') ||
 833           ((save_policy[r] == 'E') && exclude_soe)) {
 834         proj->_rout.Insert(r);
 835       }
 836     }
 837   }
 838 }
 839 
 840 
 841 //------------------------------sched_call-------------------------------------
 842 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 843   RegMask regs;
 844 
 845   // Schedule all the users of the call right now.  All the users are
 846   // projection Nodes, so they must be scheduled next to the call.
 847   // Collect all the defined registers.
 848   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 849     Node* n = mcall->fast_out(i);
 850     assert( n->is_MachProj(), "" );
 851     int n_cnt = ready_cnt.at(n->_idx)-1;
 852     ready_cnt.at_put(n->_idx, n_cnt);
 853     assert( n_cnt == 0, "" );
 854     // Schedule next to call
 855     block->map_node(n, node_cnt++);
 856     // Collect defined registers
 857     regs.OR(n->out_RegMask());
 858     // Check for scheduling the next control-definer
 859     if( n->bottom_type() == Type::CONTROL )
 860       // Warm up next pile of heuristic bits
 861       needed_for_next_call(block, n, next_call);
 862 
 863     // Children of projections are now all ready
 864     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 865       Node* m = n->fast_out(j); // Get user
 866       if(get_block_for_node(m) != block) {
 867         continue;
 868       }
 869       if( m->is_Phi() ) continue;
 870       int m_cnt = ready_cnt.at(m->_idx) - 1;
 871       ready_cnt.at_put(m->_idx, m_cnt);
 872       if( m_cnt == 0 )
 873         worklist.push(m);
 874     }
 875 
 876   }
 877 
 878   // Act as if the call defines the Frame Pointer.
 879   // Certainly the FP is alive and well after the call.
 880   regs.Insert(_matcher.c_frame_pointer());
 881 
 882   // Set all registers killed and not already defined by the call.
 883   uint r_cnt = mcall->tf()->range()->cnt();
 884   int op = mcall->ideal_Opcode();
 885   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 886   map_node_to_block(proj, block);
 887   block->insert_node(proj, node_cnt++);
 888 
 889   // Select the right register save policy.
 890   const char *save_policy = nullptr;
 891   switch (op) {
 892     case Op_CallRuntime:
 893     case Op_CallLeaf:
 894     case Op_CallLeafNoFP:
 895     case Op_CallLeafVector:
 896       // Calling C code so use C calling convention
 897       save_policy = _matcher._c_reg_save_policy;
 898       break;
 899 
 900     case Op_CallStaticJava:
 901     case Op_CallDynamicJava:
 902       // Calling Java code so use Java calling convention
 903       save_policy = _matcher._register_save_policy;
 904       break;
 905 
 906     default:
 907       ShouldNotReachHere();
 908   }
 909 
 910   // When using CallRuntime mark SOE registers as killed by the call
 911   // so values that could show up in the RegisterMap aren't live in a
 912   // callee saved register since the register wouldn't know where to
 913   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 914   // have debug info on them.  Strictly speaking this only needs to be
 915   // done for oops since idealreg2debugmask takes care of debug info
 916   // references but there no way to handle oops differently than other
 917   // pointers as far as the kill mask goes.
 918   bool exclude_soe = op == Op_CallRuntime;
 919 
 920   // If the call is a MethodHandle invoke, we need to exclude the
 921   // register which is used to save the SP value over MH invokes from
 922   // the mask.  Otherwise this register could be used for
 923   // deoptimization information.
 924   if (op == Op_CallStaticJava) {
 925     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 926     if (mcallstaticjava->_method_handle_invoke)
 927       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 928   }
 929 
 930   add_call_kills(proj, regs, save_policy, exclude_soe);
 931 
 932   return node_cnt;
 933 }
 934 
 935 
 936 //------------------------------schedule_local---------------------------------
 937 // Topological sort within a block.  Someday become a real scheduler.
 938 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
 939   // Already "sorted" are the block start Node (as the first entry), and
 940   // the block-ending Node and any trailing control projections.  We leave
 941   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 942   // Node.  Everything else gets topo-sorted.
 943 
 944 #ifndef PRODUCT
 945     if (trace_opto_pipelining()) {
 946       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 947       for (uint i = 0;i < block->number_of_nodes(); i++) {
 948         tty->print("# ");
 949         block->get_node(i)->dump();
 950       }
 951       tty->print_cr("#");
 952     }
 953 #endif
 954 
 955   // RootNode is already sorted
 956   if (block->number_of_nodes() == 1) {
 957     return true;
 958   }
 959 
 960   bool block_size_threshold_ok = (recalc_pressure_nodes != nullptr) && (block->number_of_nodes() > 10);
 961 
 962   // We track the uses of local definitions as input dependences so that
 963   // we know when a given instruction is available to be scheduled.
 964   uint i;
 965   if (OptoRegScheduling && block_size_threshold_ok) {
 966     for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
 967       Node *n = block->get_node(i);
 968       n->remove_flag(Node::Flag_is_scheduled);
 969       if (!n->is_Phi()) {
 970         recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
 971       }
 972     }
 973   }
 974 
 975   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 976   uint node_cnt = block->end_idx();
 977   uint phi_cnt = 1;
 978   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 979     Node *n = block->get_node(i);
 980     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 981         (n->is_Proj()  && n->in(0) == block->head()) ) {
 982       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 983       block->map_node(block->get_node(phi_cnt), i);
 984       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
 985       if (OptoRegScheduling && block_size_threshold_ok) {
 986         // mark n as scheduled
 987         n->add_flag(Node::Flag_is_scheduled);
 988       }
 989     } else {                    // All others
 990       // Count block-local inputs to 'n'
 991       uint cnt = n->len();      // Input count
 992       uint local = 0;
 993       for( uint j=0; j<cnt; j++ ) {
 994         Node *m = n->in(j);
 995         if( m && get_block_for_node(m) == block && !m->is_top() )
 996           local++;              // One more block-local input
 997       }
 998       ready_cnt.at_put(n->_idx, local); // Count em up
 999 
1000 #ifdef ASSERT
1001       if (UseG1GC) {
1002         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
1003           // Check the precedence edges
1004           for (uint prec = n->req(); prec < n->len(); prec++) {
1005             Node* oop_store = n->in(prec);
1006             if (oop_store != nullptr) {
1007               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
1008             }
1009           }
1010         }
1011       }
1012 #endif
1013 
1014       // A few node types require changing a required edge to a precedence edge
1015       // before allocation.
1016       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
1017           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
1018            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
1019         // MemBarAcquire could be created without Precedent edge.
1020         // del_req() replaces the specified edge with the last input edge
1021         // and then removes the last edge. If the specified edge > number of
1022         // edges the last edge will be moved outside of the input edges array
1023         // and the edge will be lost. This is why this code should be
1024         // executed only when Precedent (== TypeFunc::Parms) edge is present.
1025         Node *x = n->in(TypeFunc::Parms);
1026         if (x != nullptr && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) {
1027           // Old edge to node within same block will get removed, but no precedence
1028           // edge will get added because it already exists. Update ready count.
1029           int cnt = ready_cnt.at(n->_idx);
1030           assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx);
1031           ready_cnt.at_put(n->_idx, cnt-1);
1032         }
1033         n->del_req(TypeFunc::Parms);
1034         n->add_prec(x);
1035       }
1036     }
1037   }
1038   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
1039     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
1040 
1041   // All the prescheduled guys do not hold back internal nodes
1042   uint i3;
1043   for (i3 = 0; i3 < phi_cnt; i3++) {  // For all pre-scheduled
1044     Node *n = block->get_node(i3);       // Get pre-scheduled
1045     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1046       Node* m = n->fast_out(j);
1047       if (get_block_for_node(m) == block) { // Local-block user
1048         int m_cnt = ready_cnt.at(m->_idx)-1;
1049         if (OptoRegScheduling && block_size_threshold_ok) {
1050           // mark m as scheduled
1051           if (m_cnt < 0) {
1052             m->add_flag(Node::Flag_is_scheduled);
1053           }
1054         }
1055         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
1056       }
1057     }
1058   }
1059 
1060   Node_List delay;
1061   // Make a worklist
1062   Node_List worklist;
1063   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
1064     Node *m = block->get_node(i4);
1065     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
1066       if (m->is_iteratively_computed()) {
1067         // Push induction variable increments last to allow other uses
1068         // of the phi to be scheduled first. The select() method breaks
1069         // ties in scheduling by worklist order.
1070         delay.push(m);
1071       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1072         // Place CreateEx nodes that are initially ready at the beginning of the
1073         // worklist so they are selected first and scheduled at the block start.
1074         worklist.insert(0, m);
1075       } else {
1076         worklist.push(m);         // Then on to worklist!
1077       }
1078     }
1079   }
1080   while (delay.size()) {
1081     Node* d = delay.pop();
1082     worklist.push(d);
1083   }
1084 
1085   if (OptoRegScheduling && block_size_threshold_ok) {
1086     // To stage register pressure calculations we need to examine the live set variables
1087     // breaking them up by register class to compartmentalize the calculations.
1088     _regalloc->_sched_int_pressure.init(Matcher::int_pressure_limit());
1089     _regalloc->_sched_float_pressure.init(Matcher::float_pressure_limit());
1090     _regalloc->_scratch_int_pressure.init(Matcher::int_pressure_limit());
1091     _regalloc->_scratch_float_pressure.init(Matcher::float_pressure_limit());
1092 
1093     _regalloc->compute_entry_block_pressure(block);
1094   }
1095 
1096   // Warm up the 'next_call' heuristic bits
1097   needed_for_next_call(block, block->head(), next_call);
1098 
1099 #ifndef PRODUCT
1100     if (trace_opto_pipelining()) {
1101       for (uint j=0; j< block->number_of_nodes(); j++) {
1102         Node     *n = block->get_node(j);
1103         int     idx = n->_idx;
1104         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
1105         tty->print("latency:%3d  ", get_latency_for_node(n));
1106         tty->print("%4d: %s\n", idx, n->Name());
1107       }
1108     }
1109 #endif
1110 
1111   uint max_idx = (uint)ready_cnt.length();
1112   // Pull from worklist and schedule
1113   while( worklist.size() ) {    // Worklist is not ready
1114 
1115 #ifndef PRODUCT
1116     if (trace_opto_pipelining()) {
1117       tty->print("#   ready list:");
1118       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1119         Node *n = worklist[i];      // Get Node on worklist
1120         tty->print(" %d", n->_idx);
1121       }
1122       tty->cr();
1123     }
1124 #endif
1125 
1126     // Select and pop a ready guy from worklist
1127     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
1128     block->map_node(n, phi_cnt++);    // Schedule him next
1129 
1130     if (OptoRegScheduling && block_size_threshold_ok) {
1131       n->add_flag(Node::Flag_is_scheduled);
1132 
1133       // Now adjust the resister pressure with the node we selected
1134       if (!n->is_Phi()) {
1135         adjust_register_pressure(n, block, recalc_pressure_nodes, true);
1136       }
1137     }
1138 
1139 #ifndef PRODUCT
1140     if (trace_opto_pipelining()) {
1141       tty->print("#    select %d: %s", n->_idx, n->Name());
1142       tty->print(", latency:%d", get_latency_for_node(n));
1143       n->dump();
1144       if (Verbose) {
1145         tty->print("#   ready list:");
1146         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1147           Node *n = worklist[i];      // Get Node on worklist
1148           tty->print(" %d", n->_idx);
1149         }
1150         tty->cr();
1151       }
1152     }
1153 
1154 #endif
1155     if( n->is_MachCall() ) {
1156       MachCallNode *mcall = n->as_MachCall();
1157       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
1158       continue;
1159     }
1160 
1161     if (n->is_Mach() && n->as_Mach()->has_call()) {
1162       RegMask regs;
1163       regs.Insert(_matcher.c_frame_pointer());
1164       regs.OR(n->out_RegMask());
1165 
1166       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
1167       map_node_to_block(proj, block);
1168       block->insert_node(proj, phi_cnt++);
1169 
1170       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
1171     }
1172 
1173     // Children are now all ready
1174     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
1175       Node* m = n->fast_out(i5); // Get user
1176       if (get_block_for_node(m) != block) {
1177         continue;
1178       }
1179       if( m->is_Phi() ) continue;
1180       if (m->_idx >= max_idx) { // new node, skip it
1181         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
1182         continue;
1183       }
1184       int m_cnt = ready_cnt.at(m->_idx) - 1;
1185       ready_cnt.at_put(m->_idx, m_cnt);
1186       if( m_cnt == 0 )
1187         worklist.push(m);
1188     }
1189   }
1190 
1191   if( phi_cnt != block->end_idx() ) {
1192     // did not schedule all.  Retry, Bailout, or Die
1193     if (C->subsume_loads() == true && !C->failing()) {
1194       // Retry with subsume_loads == false
1195       // If this is the first failure, the sentinel string will "stick"
1196       // to the Compile object, and the C2Compiler will see it and retry.
1197       C->record_failure(C2Compiler::retry_no_subsuming_loads());
1198     } else {
1199       assert(false, "graph should be schedulable");
1200     }
1201     // assert( phi_cnt == end_idx(), "did not schedule all" );
1202     return false;
1203   }
1204 
1205   if (OptoRegScheduling && block_size_threshold_ok) {
1206     _regalloc->compute_exit_block_pressure(block);
1207     block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
1208     block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
1209   }
1210 
1211 #ifndef PRODUCT
1212   if (trace_opto_pipelining()) {
1213     tty->print_cr("#");
1214     tty->print_cr("# after schedule_local");
1215     for (uint i = 0;i < block->number_of_nodes();i++) {
1216       tty->print("# ");
1217       block->get_node(i)->dump();
1218     }
1219     tty->print_cr("# ");
1220 
1221     if (OptoRegScheduling && block_size_threshold_ok) {
1222       tty->print_cr("# pressure info : %d", block->_pre_order);
1223       _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
1224       _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
1225     }
1226     tty->cr();
1227   }
1228 #endif
1229 
1230   return true;
1231 }
1232 
1233 //--------------------------catch_cleanup_fix_all_inputs-----------------------
1234 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
1235   for (uint l = 0; l < use->len(); l++) {
1236     if (use->in(l) == old_def) {
1237       if (l < use->req()) {
1238         use->set_req(l, new_def);
1239       } else {
1240         use->rm_prec(l);
1241         use->add_prec(new_def);
1242         l--;
1243       }
1244     }
1245   }
1246 }
1247 
1248 //------------------------------catch_cleanup_find_cloned_def------------------
1249 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1250   assert( use_blk != def_blk, "Inter-block cleanup only");
1251 
1252   // The use is some block below the Catch.  Find and return the clone of the def
1253   // that dominates the use. If there is no clone in a dominating block, then
1254   // create a phi for the def in a dominating block.
1255 
1256   // Find which successor block dominates this use.  The successor
1257   // blocks must all be single-entry (from the Catch only; I will have
1258   // split blocks to make this so), hence they all dominate.
1259   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1260     use_blk = use_blk->_idom;
1261 
1262   // Find the successor
1263   Node *fixup = nullptr;
1264 
1265   uint j;
1266   for( j = 0; j < def_blk->_num_succs; j++ )
1267     if( use_blk == def_blk->_succs[j] )
1268       break;
1269 
1270   if( j == def_blk->_num_succs ) {
1271     // Block at same level in dom-tree is not a successor.  It needs a
1272     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1273     Node_Array inputs;
1274     for(uint k = 1; k < use_blk->num_preds(); k++) {
1275       Block* block = get_block_for_node(use_blk->pred(k));
1276       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1277     }
1278 
1279     // Check to see if the use_blk already has an identical phi inserted.
1280     // If it exists, it will be at the first position since all uses of a
1281     // def are processed together.
1282     Node *phi = use_blk->get_node(1);
1283     if( phi->is_Phi() ) {
1284       fixup = phi;
1285       for (uint k = 1; k < use_blk->num_preds(); k++) {
1286         if (phi->in(k) != inputs[k]) {
1287           // Not a match
1288           fixup = nullptr;
1289           break;
1290         }
1291       }
1292     }
1293 
1294     // If an existing PhiNode was not found, make a new one.
1295     if (fixup == nullptr) {
1296       Node *new_phi = PhiNode::make(use_blk->head(), def);
1297       use_blk->insert_node(new_phi, 1);
1298       map_node_to_block(new_phi, use_blk);
1299       for (uint k = 1; k < use_blk->num_preds(); k++) {
1300         new_phi->set_req(k, inputs[k]);
1301       }
1302       fixup = new_phi;
1303     }
1304 
1305   } else {
1306     // Found the use just below the Catch.  Make it use the clone.
1307     fixup = use_blk->get_node(n_clone_idx);
1308   }
1309 
1310   return fixup;
1311 }
1312 
1313 //--------------------------catch_cleanup_intra_block--------------------------
1314 // Fix all input edges in use that reference "def".  The use is in the same
1315 // block as the def and both have been cloned in each successor block.
1316 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1317 
1318   // Both the use and def have been cloned. For each successor block,
1319   // get the clone of the use, and make its input the clone of the def
1320   // found in that block.
1321 
1322   uint use_idx = blk->find_node(use);
1323   uint offset_idx = use_idx - beg;
1324   for( uint k = 0; k < blk->_num_succs; k++ ) {
1325     // Get clone in each successor block
1326     Block *sb = blk->_succs[k];
1327     Node *clone = sb->get_node(offset_idx+1);
1328     assert( clone->Opcode() == use->Opcode(), "" );
1329 
1330     // Make use-clone reference the def-clone
1331     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1332   }
1333 }
1334 
1335 //------------------------------catch_cleanup_inter_block---------------------
1336 // Fix all input edges in use that reference "def".  The use is in a different
1337 // block than the def.
1338 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1339   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1340 
1341   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1342   catch_cleanup_fix_all_inputs(use, def, new_def);
1343 }
1344 
1345 //------------------------------call_catch_cleanup-----------------------------
1346 // If we inserted any instructions between a Call and his CatchNode,
1347 // clone the instructions on all paths below the Catch.
1348 void PhaseCFG::call_catch_cleanup(Block* block) {
1349 
1350   // End of region to clone
1351   uint end = block->end_idx();
1352   if( !block->get_node(end)->is_Catch() ) return;
1353   // Start of region to clone
1354   uint beg = end;
1355   while(!block->get_node(beg-1)->is_MachProj() ||
1356         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1357     beg--;
1358     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1359   }
1360   // Range of inserted instructions is [beg, end)
1361   if( beg == end ) return;
1362 
1363   // Clone along all Catch output paths.  Clone area between the 'beg' and
1364   // 'end' indices.
1365   for( uint i = 0; i < block->_num_succs; i++ ) {
1366     Block *sb = block->_succs[i];
1367     // Clone the entire area; ignoring the edge fixup for now.
1368     for( uint j = end; j > beg; j-- ) {
1369       Node *clone = block->get_node(j-1)->clone();
1370       sb->insert_node(clone, 1);
1371       map_node_to_block(clone, sb);
1372       if (clone->needs_anti_dependence_check()) {
1373         insert_anti_dependences(sb, clone);
1374       }
1375     }
1376   }
1377 
1378 
1379   // Fixup edges.  Check the def-use info per cloned Node
1380   for(uint i2 = beg; i2 < end; i2++ ) {
1381     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1382     Node *n = block->get_node(i2);        // Node that got cloned
1383     // Need DU safe iterator because of edge manipulation in calls.
1384     Unique_Node_List* out = new Unique_Node_List();
1385     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1386       out->push(n->fast_out(j1));
1387     }
1388     uint max = out->size();
1389     for (uint j = 0; j < max; j++) {// For all users
1390       Node *use = out->pop();
1391       Block *buse = get_block_for_node(use);
1392       if( use->is_Phi() ) {
1393         for( uint k = 1; k < use->req(); k++ )
1394           if( use->in(k) == n ) {
1395             Block* b = get_block_for_node(buse->pred(k));
1396             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1397             use->set_req(k, fixup);
1398           }
1399       } else {
1400         if (block == buse) {
1401           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1402         } else {
1403           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1404         }
1405       }
1406     } // End for all users
1407 
1408   } // End of for all Nodes in cloned area
1409 
1410   // Remove the now-dead cloned ops
1411   for(uint i3 = beg; i3 < end; i3++ ) {
1412     block->get_node(beg)->disconnect_inputs(C);
1413     block->remove_node(beg);
1414   }
1415 
1416   // If the successor blocks have a CreateEx node, move it back to the top
1417   for (uint i4 = 0; i4 < block->_num_succs; i4++) {
1418     Block *sb = block->_succs[i4];
1419     uint new_cnt = end - beg;
1420     // Remove any newly created, but dead, nodes by traversing their schedule
1421     // backwards. Here, a dead node is a node whose only outputs (if any) are
1422     // unused projections.
1423     for (uint j = new_cnt; j > 0; j--) {
1424       Node *n = sb->get_node(j);
1425       // Individual projections are examined together with all siblings when
1426       // their parent is visited.
1427       if (n->is_Proj()) {
1428         continue;
1429       }
1430       bool dead = true;
1431       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
1432         Node* out = n->fast_out(i);
1433         // n is live if it has a non-projection output or a used projection.
1434         if (!out->is_Proj() || out->outcnt() > 0) {
1435           dead = false;
1436           break;
1437         }
1438       }
1439       if (dead) {
1440         // n's only outputs (if any) are unused projections scheduled next to n
1441         // (see PhaseCFG::select()). Remove these projections backwards.
1442         for (uint k = j + n->outcnt(); k > j; k--) {
1443           Node* proj = sb->get_node(k);
1444           assert(proj->is_Proj() && proj->in(0) == n,
1445                  "projection should correspond to dead node");
1446           proj->disconnect_inputs(C);
1447           sb->remove_node(k);
1448           new_cnt--;
1449         }
1450         // Now remove the node itself.
1451         n->disconnect_inputs(C);
1452         sb->remove_node(j);
1453         new_cnt--;
1454       }
1455     }
1456     // If any newly created nodes remain, move the CreateEx node to the top
1457     if (new_cnt > 0) {
1458       Node *cex = sb->get_node(1+new_cnt);
1459       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1460         sb->remove_node(1+new_cnt);
1461         sb->insert_node(cex, 1);
1462       }
1463     }
1464   }
1465 }
--- EOF ---