1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "ci/ciUtilities.inline.hpp" 27 #include "classfile/vmIntrinsics.hpp" 28 #include "compiler/compileBroker.hpp" 29 #include "compiler/compileLog.hpp" 30 #include "gc/shared/barrierSet.hpp" 31 #include "jfr/support/jfrIntrinsics.hpp" 32 #include "memory/resourceArea.hpp" 33 #include "oops/klass.inline.hpp" 34 #include "oops/objArrayKlass.hpp" 35 #include "opto/addnode.hpp" 36 #include "opto/arraycopynode.hpp" 37 #include "opto/c2compiler.hpp" 38 #include "opto/castnode.hpp" 39 #include "opto/cfgnode.hpp" 40 #include "opto/convertnode.hpp" 41 #include "opto/countbitsnode.hpp" 42 #include "opto/idealKit.hpp" 43 #include "opto/library_call.hpp" 44 #include "opto/mathexactnode.hpp" 45 #include "opto/mulnode.hpp" 46 #include "opto/narrowptrnode.hpp" 47 #include "opto/opaquenode.hpp" 48 #include "opto/parse.hpp" 49 #include "opto/runtime.hpp" 50 #include "opto/rootnode.hpp" 51 #include "opto/subnode.hpp" 52 #include "opto/vectornode.hpp" 53 #include "prims/jvmtiExport.hpp" 54 #include "prims/jvmtiThreadState.hpp" 55 #include "prims/unsafe.hpp" 56 #include "runtime/jniHandles.inline.hpp" 57 #include "runtime/objectMonitor.hpp" 58 #include "runtime/sharedRuntime.hpp" 59 #include "runtime/stubRoutines.hpp" 60 #include "utilities/macros.hpp" 61 #include "utilities/powerOfTwo.hpp" 62 63 //---------------------------make_vm_intrinsic---------------------------- 64 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 65 vmIntrinsicID id = m->intrinsic_id(); 66 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 67 68 if (!m->is_loaded()) { 69 // Do not attempt to inline unloaded methods. 70 return nullptr; 71 } 72 73 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 74 bool is_available = false; 75 76 { 77 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 78 // the compiler must transition to '_thread_in_vm' state because both 79 // methods access VM-internal data. 80 VM_ENTRY_MARK; 81 methodHandle mh(THREAD, m->get_Method()); 82 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 83 if (is_available && is_virtual) { 84 is_available = vmIntrinsics::does_virtual_dispatch(id); 85 } 86 } 87 88 if (is_available) { 89 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 90 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 91 return new LibraryIntrinsic(m, is_virtual, 92 vmIntrinsics::predicates_needed(id), 93 vmIntrinsics::does_virtual_dispatch(id), 94 id); 95 } else { 96 return nullptr; 97 } 98 } 99 100 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 101 LibraryCallKit kit(jvms, this); 102 Compile* C = kit.C; 103 int nodes = C->unique(); 104 #ifndef PRODUCT 105 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 106 char buf[1000]; 107 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 108 tty->print_cr("Intrinsic %s", str); 109 } 110 #endif 111 ciMethod* callee = kit.callee(); 112 const int bci = kit.bci(); 113 #ifdef ASSERT 114 Node* ctrl = kit.control(); 115 #endif 116 // Try to inline the intrinsic. 117 if (callee->check_intrinsic_candidate() && 118 kit.try_to_inline(_last_predicate)) { 119 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 120 : "(intrinsic)"; 121 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 122 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 123 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 124 if (C->log()) { 125 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 126 vmIntrinsics::name_at(intrinsic_id()), 127 (is_virtual() ? " virtual='1'" : ""), 128 C->unique() - nodes); 129 } 130 // Push the result from the inlined method onto the stack. 131 kit.push_result(); 132 return kit.transfer_exceptions_into_jvms(); 133 } 134 135 // The intrinsic bailed out 136 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 137 if (jvms->has_method()) { 138 // Not a root compile. 139 const char* msg; 140 if (callee->intrinsic_candidate()) { 141 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 142 } else { 143 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 144 : "failed to inline (intrinsic), method not annotated"; 145 } 146 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 147 C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg); 148 } else { 149 // Root compile 150 ResourceMark rm; 151 stringStream msg_stream; 152 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 153 vmIntrinsics::name_at(intrinsic_id()), 154 is_virtual() ? " (virtual)" : "", bci); 155 const char *msg = msg_stream.freeze(); 156 log_debug(jit, inlining)("%s", msg); 157 if (C->print_intrinsics() || C->print_inlining()) { 158 tty->print("%s", msg); 159 } 160 } 161 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 162 163 return nullptr; 164 } 165 166 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 167 LibraryCallKit kit(jvms, this); 168 Compile* C = kit.C; 169 int nodes = C->unique(); 170 _last_predicate = predicate; 171 #ifndef PRODUCT 172 assert(is_predicated() && predicate < predicates_count(), "sanity"); 173 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 174 char buf[1000]; 175 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 176 tty->print_cr("Predicate for intrinsic %s", str); 177 } 178 #endif 179 ciMethod* callee = kit.callee(); 180 const int bci = kit.bci(); 181 182 Node* slow_ctl = kit.try_to_predicate(predicate); 183 if (!kit.failing()) { 184 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 185 : "(intrinsic, predicate)"; 186 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 187 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 188 189 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 190 if (C->log()) { 191 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 192 vmIntrinsics::name_at(intrinsic_id()), 193 (is_virtual() ? " virtual='1'" : ""), 194 C->unique() - nodes); 195 } 196 return slow_ctl; // Could be null if the check folds. 197 } 198 199 // The intrinsic bailed out 200 if (jvms->has_method()) { 201 // Not a root compile. 202 const char* msg = "failed to generate predicate for intrinsic"; 203 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 204 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 205 } else { 206 // Root compile 207 ResourceMark rm; 208 stringStream msg_stream; 209 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 210 vmIntrinsics::name_at(intrinsic_id()), 211 is_virtual() ? " (virtual)" : "", bci); 212 const char *msg = msg_stream.freeze(); 213 log_debug(jit, inlining)("%s", msg); 214 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 215 } 216 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 217 return nullptr; 218 } 219 220 bool LibraryCallKit::try_to_inline(int predicate) { 221 // Handle symbolic names for otherwise undistinguished boolean switches: 222 const bool is_store = true; 223 const bool is_compress = true; 224 const bool is_static = true; 225 const bool is_volatile = true; 226 227 if (!jvms()->has_method()) { 228 // Root JVMState has a null method. 229 assert(map()->memory()->Opcode() == Op_Parm, ""); 230 // Insert the memory aliasing node 231 set_all_memory(reset_memory()); 232 } 233 assert(merged_memory(), ""); 234 235 switch (intrinsic_id()) { 236 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 237 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 238 case vmIntrinsics::_getClass: return inline_native_getClass(); 239 240 case vmIntrinsics::_ceil: 241 case vmIntrinsics::_floor: 242 case vmIntrinsics::_rint: 243 case vmIntrinsics::_dsin: 244 case vmIntrinsics::_dcos: 245 case vmIntrinsics::_dtan: 246 case vmIntrinsics::_dtanh: 247 case vmIntrinsics::_dabs: 248 case vmIntrinsics::_fabs: 249 case vmIntrinsics::_iabs: 250 case vmIntrinsics::_labs: 251 case vmIntrinsics::_datan2: 252 case vmIntrinsics::_dsqrt: 253 case vmIntrinsics::_dsqrt_strict: 254 case vmIntrinsics::_dexp: 255 case vmIntrinsics::_dlog: 256 case vmIntrinsics::_dlog10: 257 case vmIntrinsics::_dpow: 258 case vmIntrinsics::_dcopySign: 259 case vmIntrinsics::_fcopySign: 260 case vmIntrinsics::_dsignum: 261 case vmIntrinsics::_roundF: 262 case vmIntrinsics::_roundD: 263 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 264 265 case vmIntrinsics::_notify: 266 case vmIntrinsics::_notifyAll: 267 return inline_notify(intrinsic_id()); 268 269 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 270 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 271 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 272 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 273 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 274 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 275 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 276 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 277 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 278 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 279 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 280 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 281 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 282 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 283 284 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 285 286 case vmIntrinsics::_arraySort: return inline_array_sort(); 287 case vmIntrinsics::_arrayPartition: return inline_array_partition(); 288 289 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 290 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 291 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 292 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 293 294 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 295 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 296 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 297 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 298 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 299 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 300 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 301 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 302 303 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 304 305 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 306 307 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 308 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 309 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 310 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 311 312 case vmIntrinsics::_compressStringC: 313 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 314 case vmIntrinsics::_inflateStringC: 315 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 316 317 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 318 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 319 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 320 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 321 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 322 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 323 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 324 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 325 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 326 327 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 328 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 329 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 330 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 331 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 332 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 333 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 334 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 335 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 336 337 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 338 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 339 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 340 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 341 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 342 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 343 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 344 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 345 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 346 347 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 348 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 349 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 350 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 351 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 352 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 353 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 354 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 355 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 356 357 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 358 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 359 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 360 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 361 362 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 363 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 364 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 365 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 366 367 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 368 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 369 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 370 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 371 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 372 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 373 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 374 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 375 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 376 377 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 378 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 379 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 380 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 381 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 382 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 383 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 384 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 385 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 386 387 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 388 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 389 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 390 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 391 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 392 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 393 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 394 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 395 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 396 397 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 398 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 399 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 400 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 401 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 402 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 403 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 404 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 405 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 406 407 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 408 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 409 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 410 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 411 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 412 413 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 414 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 415 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 416 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 417 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 418 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 419 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 420 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 421 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 422 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 423 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 424 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 425 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 426 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 427 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 428 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 429 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 430 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 431 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 432 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 433 434 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 435 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 436 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 437 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 438 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 439 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 440 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 441 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 442 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 443 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 444 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 445 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 446 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 447 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 448 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 449 450 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 451 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 452 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 453 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 454 455 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 456 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 457 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 458 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 459 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 460 461 case vmIntrinsics::_loadFence: 462 case vmIntrinsics::_storeFence: 463 case vmIntrinsics::_storeStoreFence: 464 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 465 466 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 467 468 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 469 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 470 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 471 472 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 473 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 474 475 case vmIntrinsics::_Continuation_pin: return inline_native_Continuation_pinning(false); 476 case vmIntrinsics::_Continuation_unpin: return inline_native_Continuation_pinning(true); 477 478 #if INCLUDE_JVMTI 479 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 480 "notifyJvmtiStart", true, false); 481 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 482 "notifyJvmtiEnd", false, true); 483 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 484 "notifyJvmtiMount", false, false); 485 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 486 "notifyJvmtiUnmount", false, false); 487 case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync(); 488 #endif 489 490 #ifdef JFR_HAVE_INTRINSICS 491 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 492 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 493 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 494 #endif 495 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 496 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 497 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 498 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 499 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 500 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 501 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 502 case vmIntrinsics::_setMemory: return inline_unsafe_setMemory(); 503 case vmIntrinsics::_getLength: return inline_native_getLength(); 504 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 505 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 506 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 507 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 508 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 509 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 510 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 511 512 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 513 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 514 515 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 516 517 case vmIntrinsics::_isInstance: 518 case vmIntrinsics::_getModifiers: 519 case vmIntrinsics::_isInterface: 520 case vmIntrinsics::_isArray: 521 case vmIntrinsics::_isPrimitive: 522 case vmIntrinsics::_isHidden: 523 case vmIntrinsics::_getSuperclass: 524 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 525 526 case vmIntrinsics::_floatToRawIntBits: 527 case vmIntrinsics::_floatToIntBits: 528 case vmIntrinsics::_intBitsToFloat: 529 case vmIntrinsics::_doubleToRawLongBits: 530 case vmIntrinsics::_doubleToLongBits: 531 case vmIntrinsics::_longBitsToDouble: 532 case vmIntrinsics::_floatToFloat16: 533 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 534 535 case vmIntrinsics::_floatIsFinite: 536 case vmIntrinsics::_floatIsInfinite: 537 case vmIntrinsics::_doubleIsFinite: 538 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 539 540 case vmIntrinsics::_numberOfLeadingZeros_i: 541 case vmIntrinsics::_numberOfLeadingZeros_l: 542 case vmIntrinsics::_numberOfTrailingZeros_i: 543 case vmIntrinsics::_numberOfTrailingZeros_l: 544 case vmIntrinsics::_bitCount_i: 545 case vmIntrinsics::_bitCount_l: 546 case vmIntrinsics::_reverse_i: 547 case vmIntrinsics::_reverse_l: 548 case vmIntrinsics::_reverseBytes_i: 549 case vmIntrinsics::_reverseBytes_l: 550 case vmIntrinsics::_reverseBytes_s: 551 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 552 553 case vmIntrinsics::_compress_i: 554 case vmIntrinsics::_compress_l: 555 case vmIntrinsics::_expand_i: 556 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 557 558 case vmIntrinsics::_compareUnsigned_i: 559 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 560 561 case vmIntrinsics::_divideUnsigned_i: 562 case vmIntrinsics::_divideUnsigned_l: 563 case vmIntrinsics::_remainderUnsigned_i: 564 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 565 566 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 567 568 case vmIntrinsics::_Reference_get: return inline_reference_get(); 569 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 570 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 571 case vmIntrinsics::_Reference_clear0: return inline_reference_clear0(false); 572 case vmIntrinsics::_PhantomReference_clear0: return inline_reference_clear0(true); 573 574 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 575 576 case vmIntrinsics::_aescrypt_encryptBlock: 577 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 578 579 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 580 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 581 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 582 583 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 584 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 585 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 586 587 case vmIntrinsics::_counterMode_AESCrypt: 588 return inline_counterMode_AESCrypt(intrinsic_id()); 589 590 case vmIntrinsics::_galoisCounterMode_AESCrypt: 591 return inline_galoisCounterMode_AESCrypt(); 592 593 case vmIntrinsics::_md5_implCompress: 594 case vmIntrinsics::_sha_implCompress: 595 case vmIntrinsics::_sha2_implCompress: 596 case vmIntrinsics::_sha5_implCompress: 597 case vmIntrinsics::_sha3_implCompress: 598 return inline_digestBase_implCompress(intrinsic_id()); 599 600 case vmIntrinsics::_digestBase_implCompressMB: 601 return inline_digestBase_implCompressMB(predicate); 602 603 case vmIntrinsics::_multiplyToLen: 604 return inline_multiplyToLen(); 605 606 case vmIntrinsics::_squareToLen: 607 return inline_squareToLen(); 608 609 case vmIntrinsics::_mulAdd: 610 return inline_mulAdd(); 611 612 case vmIntrinsics::_montgomeryMultiply: 613 return inline_montgomeryMultiply(); 614 case vmIntrinsics::_montgomerySquare: 615 return inline_montgomerySquare(); 616 617 case vmIntrinsics::_bigIntegerRightShiftWorker: 618 return inline_bigIntegerShift(true); 619 case vmIntrinsics::_bigIntegerLeftShiftWorker: 620 return inline_bigIntegerShift(false); 621 622 case vmIntrinsics::_vectorizedMismatch: 623 return inline_vectorizedMismatch(); 624 625 case vmIntrinsics::_ghash_processBlocks: 626 return inline_ghash_processBlocks(); 627 case vmIntrinsics::_chacha20Block: 628 return inline_chacha20Block(); 629 case vmIntrinsics::_base64_encodeBlock: 630 return inline_base64_encodeBlock(); 631 case vmIntrinsics::_base64_decodeBlock: 632 return inline_base64_decodeBlock(); 633 case vmIntrinsics::_poly1305_processBlocks: 634 return inline_poly1305_processBlocks(); 635 case vmIntrinsics::_intpoly_montgomeryMult_P256: 636 return inline_intpoly_montgomeryMult_P256(); 637 case vmIntrinsics::_intpoly_assign: 638 return inline_intpoly_assign(); 639 case vmIntrinsics::_encodeISOArray: 640 case vmIntrinsics::_encodeByteISOArray: 641 return inline_encodeISOArray(false); 642 case vmIntrinsics::_encodeAsciiArray: 643 return inline_encodeISOArray(true); 644 645 case vmIntrinsics::_updateCRC32: 646 return inline_updateCRC32(); 647 case vmIntrinsics::_updateBytesCRC32: 648 return inline_updateBytesCRC32(); 649 case vmIntrinsics::_updateByteBufferCRC32: 650 return inline_updateByteBufferCRC32(); 651 652 case vmIntrinsics::_updateBytesCRC32C: 653 return inline_updateBytesCRC32C(); 654 case vmIntrinsics::_updateDirectByteBufferCRC32C: 655 return inline_updateDirectByteBufferCRC32C(); 656 657 case vmIntrinsics::_updateBytesAdler32: 658 return inline_updateBytesAdler32(); 659 case vmIntrinsics::_updateByteBufferAdler32: 660 return inline_updateByteBufferAdler32(); 661 662 case vmIntrinsics::_profileBoolean: 663 return inline_profileBoolean(); 664 case vmIntrinsics::_isCompileConstant: 665 return inline_isCompileConstant(); 666 667 case vmIntrinsics::_countPositives: 668 return inline_countPositives(); 669 670 case vmIntrinsics::_fmaD: 671 case vmIntrinsics::_fmaF: 672 return inline_fma(intrinsic_id()); 673 674 case vmIntrinsics::_isDigit: 675 case vmIntrinsics::_isLowerCase: 676 case vmIntrinsics::_isUpperCase: 677 case vmIntrinsics::_isWhitespace: 678 return inline_character_compare(intrinsic_id()); 679 680 case vmIntrinsics::_min: 681 case vmIntrinsics::_max: 682 case vmIntrinsics::_min_strict: 683 case vmIntrinsics::_max_strict: 684 return inline_min_max(intrinsic_id()); 685 686 case vmIntrinsics::_maxF: 687 case vmIntrinsics::_minF: 688 case vmIntrinsics::_maxD: 689 case vmIntrinsics::_minD: 690 case vmIntrinsics::_maxF_strict: 691 case vmIntrinsics::_minF_strict: 692 case vmIntrinsics::_maxD_strict: 693 case vmIntrinsics::_minD_strict: 694 return inline_fp_min_max(intrinsic_id()); 695 696 case vmIntrinsics::_VectorUnaryOp: 697 return inline_vector_nary_operation(1); 698 case vmIntrinsics::_VectorBinaryOp: 699 return inline_vector_nary_operation(2); 700 case vmIntrinsics::_VectorTernaryOp: 701 return inline_vector_nary_operation(3); 702 case vmIntrinsics::_VectorFromBitsCoerced: 703 return inline_vector_frombits_coerced(); 704 case vmIntrinsics::_VectorMaskOp: 705 return inline_vector_mask_operation(); 706 case vmIntrinsics::_VectorLoadOp: 707 return inline_vector_mem_operation(/*is_store=*/false); 708 case vmIntrinsics::_VectorLoadMaskedOp: 709 return inline_vector_mem_masked_operation(/*is_store*/false); 710 case vmIntrinsics::_VectorStoreOp: 711 return inline_vector_mem_operation(/*is_store=*/true); 712 case vmIntrinsics::_VectorStoreMaskedOp: 713 return inline_vector_mem_masked_operation(/*is_store=*/true); 714 case vmIntrinsics::_VectorGatherOp: 715 return inline_vector_gather_scatter(/*is_scatter*/ false); 716 case vmIntrinsics::_VectorScatterOp: 717 return inline_vector_gather_scatter(/*is_scatter*/ true); 718 case vmIntrinsics::_VectorReductionCoerced: 719 return inline_vector_reduction(); 720 case vmIntrinsics::_VectorTest: 721 return inline_vector_test(); 722 case vmIntrinsics::_VectorBlend: 723 return inline_vector_blend(); 724 case vmIntrinsics::_VectorRearrange: 725 return inline_vector_rearrange(); 726 case vmIntrinsics::_VectorSelectFrom: 727 return inline_vector_select_from(); 728 case vmIntrinsics::_VectorCompare: 729 return inline_vector_compare(); 730 case vmIntrinsics::_VectorBroadcastInt: 731 return inline_vector_broadcast_int(); 732 case vmIntrinsics::_VectorConvert: 733 return inline_vector_convert(); 734 case vmIntrinsics::_VectorInsert: 735 return inline_vector_insert(); 736 case vmIntrinsics::_VectorExtract: 737 return inline_vector_extract(); 738 case vmIntrinsics::_VectorCompressExpand: 739 return inline_vector_compress_expand(); 740 case vmIntrinsics::_VectorSelectFromTwoVectorOp: 741 return inline_vector_select_from_two_vectors(); 742 case vmIntrinsics::_IndexVector: 743 return inline_index_vector(); 744 case vmIntrinsics::_IndexPartiallyInUpperRange: 745 return inline_index_partially_in_upper_range(); 746 747 case vmIntrinsics::_getObjectSize: 748 return inline_getObjectSize(); 749 750 case vmIntrinsics::_blackhole: 751 return inline_blackhole(); 752 753 default: 754 // If you get here, it may be that someone has added a new intrinsic 755 // to the list in vmIntrinsics.hpp without implementing it here. 756 #ifndef PRODUCT 757 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 758 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 759 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 760 } 761 #endif 762 return false; 763 } 764 } 765 766 Node* LibraryCallKit::try_to_predicate(int predicate) { 767 if (!jvms()->has_method()) { 768 // Root JVMState has a null method. 769 assert(map()->memory()->Opcode() == Op_Parm, ""); 770 // Insert the memory aliasing node 771 set_all_memory(reset_memory()); 772 } 773 assert(merged_memory(), ""); 774 775 switch (intrinsic_id()) { 776 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 777 return inline_cipherBlockChaining_AESCrypt_predicate(false); 778 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 779 return inline_cipherBlockChaining_AESCrypt_predicate(true); 780 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 781 return inline_electronicCodeBook_AESCrypt_predicate(false); 782 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 783 return inline_electronicCodeBook_AESCrypt_predicate(true); 784 case vmIntrinsics::_counterMode_AESCrypt: 785 return inline_counterMode_AESCrypt_predicate(); 786 case vmIntrinsics::_digestBase_implCompressMB: 787 return inline_digestBase_implCompressMB_predicate(predicate); 788 case vmIntrinsics::_galoisCounterMode_AESCrypt: 789 return inline_galoisCounterMode_AESCrypt_predicate(); 790 791 default: 792 // If you get here, it may be that someone has added a new intrinsic 793 // to the list in vmIntrinsics.hpp without implementing it here. 794 #ifndef PRODUCT 795 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 796 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 797 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 798 } 799 #endif 800 Node* slow_ctl = control(); 801 set_control(top()); // No fast path intrinsic 802 return slow_ctl; 803 } 804 } 805 806 //------------------------------set_result------------------------------- 807 // Helper function for finishing intrinsics. 808 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 809 record_for_igvn(region); 810 set_control(_gvn.transform(region)); 811 set_result( _gvn.transform(value)); 812 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 813 } 814 815 //------------------------------generate_guard--------------------------- 816 // Helper function for generating guarded fast-slow graph structures. 817 // The given 'test', if true, guards a slow path. If the test fails 818 // then a fast path can be taken. (We generally hope it fails.) 819 // In all cases, GraphKit::control() is updated to the fast path. 820 // The returned value represents the control for the slow path. 821 // The return value is never 'top'; it is either a valid control 822 // or null if it is obvious that the slow path can never be taken. 823 // Also, if region and the slow control are not null, the slow edge 824 // is appended to the region. 825 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 826 if (stopped()) { 827 // Already short circuited. 828 return nullptr; 829 } 830 831 // Build an if node and its projections. 832 // If test is true we take the slow path, which we assume is uncommon. 833 if (_gvn.type(test) == TypeInt::ZERO) { 834 // The slow branch is never taken. No need to build this guard. 835 return nullptr; 836 } 837 838 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 839 840 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 841 if (if_slow == top()) { 842 // The slow branch is never taken. No need to build this guard. 843 return nullptr; 844 } 845 846 if (region != nullptr) 847 region->add_req(if_slow); 848 849 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 850 set_control(if_fast); 851 852 return if_slow; 853 } 854 855 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 856 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 857 } 858 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 859 return generate_guard(test, region, PROB_FAIR); 860 } 861 862 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 863 Node* *pos_index) { 864 if (stopped()) 865 return nullptr; // already stopped 866 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 867 return nullptr; // index is already adequately typed 868 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 869 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 870 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 871 if (is_neg != nullptr && pos_index != nullptr) { 872 // Emulate effect of Parse::adjust_map_after_if. 873 Node* ccast = new CastIINode(control(), index, TypeInt::POS); 874 (*pos_index) = _gvn.transform(ccast); 875 } 876 return is_neg; 877 } 878 879 // Make sure that 'position' is a valid limit index, in [0..length]. 880 // There are two equivalent plans for checking this: 881 // A. (offset + copyLength) unsigned<= arrayLength 882 // B. offset <= (arrayLength - copyLength) 883 // We require that all of the values above, except for the sum and 884 // difference, are already known to be non-negative. 885 // Plan A is robust in the face of overflow, if offset and copyLength 886 // are both hugely positive. 887 // 888 // Plan B is less direct and intuitive, but it does not overflow at 889 // all, since the difference of two non-negatives is always 890 // representable. Whenever Java methods must perform the equivalent 891 // check they generally use Plan B instead of Plan A. 892 // For the moment we use Plan A. 893 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 894 Node* subseq_length, 895 Node* array_length, 896 RegionNode* region) { 897 if (stopped()) 898 return nullptr; // already stopped 899 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 900 if (zero_offset && subseq_length->eqv_uncast(array_length)) 901 return nullptr; // common case of whole-array copy 902 Node* last = subseq_length; 903 if (!zero_offset) // last += offset 904 last = _gvn.transform(new AddINode(last, offset)); 905 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 906 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 907 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 908 return is_over; 909 } 910 911 // Emit range checks for the given String.value byte array 912 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 913 if (stopped()) { 914 return; // already stopped 915 } 916 RegionNode* bailout = new RegionNode(1); 917 record_for_igvn(bailout); 918 if (char_count) { 919 // Convert char count to byte count 920 count = _gvn.transform(new LShiftINode(count, intcon(1))); 921 } 922 923 // Offset and count must not be negative 924 generate_negative_guard(offset, bailout); 925 generate_negative_guard(count, bailout); 926 // Offset + count must not exceed length of array 927 generate_limit_guard(offset, count, load_array_length(array), bailout); 928 929 if (bailout->req() > 1) { 930 PreserveJVMState pjvms(this); 931 set_control(_gvn.transform(bailout)); 932 uncommon_trap(Deoptimization::Reason_intrinsic, 933 Deoptimization::Action_maybe_recompile); 934 } 935 } 936 937 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 938 bool is_immutable) { 939 ciKlass* thread_klass = env()->Thread_klass(); 940 const Type* thread_type 941 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 942 943 Node* thread = _gvn.transform(new ThreadLocalNode()); 944 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 945 tls_output = thread; 946 947 Node* thread_obj_handle 948 = (is_immutable 949 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 950 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 951 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 952 thread_obj_handle = _gvn.transform(thread_obj_handle); 953 954 DecoratorSet decorators = IN_NATIVE; 955 if (is_immutable) { 956 decorators |= C2_IMMUTABLE_MEMORY; 957 } 958 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 959 } 960 961 //--------------------------generate_current_thread-------------------- 962 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 963 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 964 /*is_immutable*/false); 965 } 966 967 //--------------------------generate_virtual_thread-------------------- 968 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 969 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 970 !C->method()->changes_current_thread()); 971 } 972 973 //------------------------------make_string_method_node------------------------ 974 // Helper method for String intrinsic functions. This version is called with 975 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 976 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 977 // containing the lengths of str1 and str2. 978 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 979 Node* result = nullptr; 980 switch (opcode) { 981 case Op_StrIndexOf: 982 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 983 str1_start, cnt1, str2_start, cnt2, ae); 984 break; 985 case Op_StrComp: 986 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 987 str1_start, cnt1, str2_start, cnt2, ae); 988 break; 989 case Op_StrEquals: 990 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 991 // Use the constant length if there is one because optimized match rule may exist. 992 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 993 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 994 break; 995 default: 996 ShouldNotReachHere(); 997 return nullptr; 998 } 999 1000 // All these intrinsics have checks. 1001 C->set_has_split_ifs(true); // Has chance for split-if optimization 1002 clear_upper_avx(); 1003 1004 return _gvn.transform(result); 1005 } 1006 1007 //------------------------------inline_string_compareTo------------------------ 1008 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1009 Node* arg1 = argument(0); 1010 Node* arg2 = argument(1); 1011 1012 arg1 = must_be_not_null(arg1, true); 1013 arg2 = must_be_not_null(arg2, true); 1014 1015 // Get start addr and length of first argument 1016 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1017 Node* arg1_cnt = load_array_length(arg1); 1018 1019 // Get start addr and length of second argument 1020 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1021 Node* arg2_cnt = load_array_length(arg2); 1022 1023 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1024 set_result(result); 1025 return true; 1026 } 1027 1028 //------------------------------inline_string_equals------------------------ 1029 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1030 Node* arg1 = argument(0); 1031 Node* arg2 = argument(1); 1032 1033 // paths (plus control) merge 1034 RegionNode* region = new RegionNode(3); 1035 Node* phi = new PhiNode(region, TypeInt::BOOL); 1036 1037 if (!stopped()) { 1038 1039 arg1 = must_be_not_null(arg1, true); 1040 arg2 = must_be_not_null(arg2, true); 1041 1042 // Get start addr and length of first argument 1043 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1044 Node* arg1_cnt = load_array_length(arg1); 1045 1046 // Get start addr and length of second argument 1047 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1048 Node* arg2_cnt = load_array_length(arg2); 1049 1050 // Check for arg1_cnt != arg2_cnt 1051 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1052 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1053 Node* if_ne = generate_slow_guard(bol, nullptr); 1054 if (if_ne != nullptr) { 1055 phi->init_req(2, intcon(0)); 1056 region->init_req(2, if_ne); 1057 } 1058 1059 // Check for count == 0 is done by assembler code for StrEquals. 1060 1061 if (!stopped()) { 1062 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1063 phi->init_req(1, equals); 1064 region->init_req(1, control()); 1065 } 1066 } 1067 1068 // post merge 1069 set_control(_gvn.transform(region)); 1070 record_for_igvn(region); 1071 1072 set_result(_gvn.transform(phi)); 1073 return true; 1074 } 1075 1076 //------------------------------inline_array_equals---------------------------- 1077 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1078 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1079 Node* arg1 = argument(0); 1080 Node* arg2 = argument(1); 1081 1082 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1083 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1084 clear_upper_avx(); 1085 1086 return true; 1087 } 1088 1089 1090 //------------------------------inline_countPositives------------------------------ 1091 bool LibraryCallKit::inline_countPositives() { 1092 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1093 return false; 1094 } 1095 1096 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1097 // no receiver since it is static method 1098 Node* ba = argument(0); 1099 Node* offset = argument(1); 1100 Node* len = argument(2); 1101 1102 ba = must_be_not_null(ba, true); 1103 1104 // Range checks 1105 generate_string_range_check(ba, offset, len, false); 1106 if (stopped()) { 1107 return true; 1108 } 1109 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1110 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1111 set_result(_gvn.transform(result)); 1112 clear_upper_avx(); 1113 return true; 1114 } 1115 1116 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1117 Node* index = argument(0); 1118 Node* length = bt == T_INT ? argument(1) : argument(2); 1119 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1120 return false; 1121 } 1122 1123 // check that length is positive 1124 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1125 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1126 1127 { 1128 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1129 uncommon_trap(Deoptimization::Reason_intrinsic, 1130 Deoptimization::Action_make_not_entrant); 1131 } 1132 1133 if (stopped()) { 1134 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1135 return true; 1136 } 1137 1138 // length is now known positive, add a cast node to make this explicit 1139 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1140 Node* casted_length = ConstraintCastNode::make_cast_for_basic_type( 1141 control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1142 ConstraintCastNode::RegularDependency, bt); 1143 casted_length = _gvn.transform(casted_length); 1144 replace_in_map(length, casted_length); 1145 length = casted_length; 1146 1147 // Use an unsigned comparison for the range check itself 1148 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1149 BoolTest::mask btest = BoolTest::lt; 1150 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1151 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1152 _gvn.set_type(rc, rc->Value(&_gvn)); 1153 if (!rc_bool->is_Con()) { 1154 record_for_igvn(rc); 1155 } 1156 set_control(_gvn.transform(new IfTrueNode(rc))); 1157 { 1158 PreserveJVMState pjvms(this); 1159 set_control(_gvn.transform(new IfFalseNode(rc))); 1160 uncommon_trap(Deoptimization::Reason_range_check, 1161 Deoptimization::Action_make_not_entrant); 1162 } 1163 1164 if (stopped()) { 1165 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1166 return true; 1167 } 1168 1169 // index is now known to be >= 0 and < length, cast it 1170 Node* result = ConstraintCastNode::make_cast_for_basic_type( 1171 control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1172 ConstraintCastNode::RegularDependency, bt); 1173 result = _gvn.transform(result); 1174 set_result(result); 1175 replace_in_map(index, result); 1176 return true; 1177 } 1178 1179 //------------------------------inline_string_indexOf------------------------ 1180 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1181 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1182 return false; 1183 } 1184 Node* src = argument(0); 1185 Node* tgt = argument(1); 1186 1187 // Make the merge point 1188 RegionNode* result_rgn = new RegionNode(4); 1189 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1190 1191 src = must_be_not_null(src, true); 1192 tgt = must_be_not_null(tgt, true); 1193 1194 // Get start addr and length of source string 1195 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1196 Node* src_count = load_array_length(src); 1197 1198 // Get start addr and length of substring 1199 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1200 Node* tgt_count = load_array_length(tgt); 1201 1202 Node* result = nullptr; 1203 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1204 1205 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1206 // Divide src size by 2 if String is UTF16 encoded 1207 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1208 } 1209 if (ae == StrIntrinsicNode::UU) { 1210 // Divide substring size by 2 if String is UTF16 encoded 1211 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1212 } 1213 1214 if (call_opt_stub) { 1215 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1216 StubRoutines::_string_indexof_array[ae], 1217 "stringIndexOf", TypePtr::BOTTOM, src_start, 1218 src_count, tgt_start, tgt_count); 1219 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1220 } else { 1221 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1222 result_rgn, result_phi, ae); 1223 } 1224 if (result != nullptr) { 1225 result_phi->init_req(3, result); 1226 result_rgn->init_req(3, control()); 1227 } 1228 set_control(_gvn.transform(result_rgn)); 1229 record_for_igvn(result_rgn); 1230 set_result(_gvn.transform(result_phi)); 1231 1232 return true; 1233 } 1234 1235 //-----------------------------inline_string_indexOfI----------------------- 1236 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1237 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1238 return false; 1239 } 1240 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1241 return false; 1242 } 1243 1244 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1245 Node* src = argument(0); // byte[] 1246 Node* src_count = argument(1); // char count 1247 Node* tgt = argument(2); // byte[] 1248 Node* tgt_count = argument(3); // char count 1249 Node* from_index = argument(4); // char index 1250 1251 src = must_be_not_null(src, true); 1252 tgt = must_be_not_null(tgt, true); 1253 1254 // Multiply byte array index by 2 if String is UTF16 encoded 1255 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1256 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1257 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1258 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1259 1260 // Range checks 1261 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1262 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1263 if (stopped()) { 1264 return true; 1265 } 1266 1267 RegionNode* region = new RegionNode(5); 1268 Node* phi = new PhiNode(region, TypeInt::INT); 1269 Node* result = nullptr; 1270 1271 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1272 1273 if (call_opt_stub) { 1274 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1275 StubRoutines::_string_indexof_array[ae], 1276 "stringIndexOf", TypePtr::BOTTOM, src_start, 1277 src_count, tgt_start, tgt_count); 1278 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1279 } else { 1280 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1281 region, phi, ae); 1282 } 1283 if (result != nullptr) { 1284 // The result is index relative to from_index if substring was found, -1 otherwise. 1285 // Generate code which will fold into cmove. 1286 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1287 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1288 1289 Node* if_lt = generate_slow_guard(bol, nullptr); 1290 if (if_lt != nullptr) { 1291 // result == -1 1292 phi->init_req(3, result); 1293 region->init_req(3, if_lt); 1294 } 1295 if (!stopped()) { 1296 result = _gvn.transform(new AddINode(result, from_index)); 1297 phi->init_req(4, result); 1298 region->init_req(4, control()); 1299 } 1300 } 1301 1302 set_control(_gvn.transform(region)); 1303 record_for_igvn(region); 1304 set_result(_gvn.transform(phi)); 1305 clear_upper_avx(); 1306 1307 return true; 1308 } 1309 1310 // Create StrIndexOfNode with fast path checks 1311 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1312 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1313 // Check for substr count > string count 1314 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1315 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1316 Node* if_gt = generate_slow_guard(bol, nullptr); 1317 if (if_gt != nullptr) { 1318 phi->init_req(1, intcon(-1)); 1319 region->init_req(1, if_gt); 1320 } 1321 if (!stopped()) { 1322 // Check for substr count == 0 1323 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1324 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1325 Node* if_zero = generate_slow_guard(bol, nullptr); 1326 if (if_zero != nullptr) { 1327 phi->init_req(2, intcon(0)); 1328 region->init_req(2, if_zero); 1329 } 1330 } 1331 if (!stopped()) { 1332 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1333 } 1334 return nullptr; 1335 } 1336 1337 //-----------------------------inline_string_indexOfChar----------------------- 1338 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1339 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1340 return false; 1341 } 1342 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1343 return false; 1344 } 1345 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1346 Node* src = argument(0); // byte[] 1347 Node* int_ch = argument(1); 1348 Node* from_index = argument(2); 1349 Node* max = argument(3); 1350 1351 src = must_be_not_null(src, true); 1352 1353 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1354 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1355 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1356 1357 // Range checks 1358 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1359 1360 // Check for int_ch >= 0 1361 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1362 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1363 { 1364 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1365 uncommon_trap(Deoptimization::Reason_intrinsic, 1366 Deoptimization::Action_maybe_recompile); 1367 } 1368 if (stopped()) { 1369 return true; 1370 } 1371 1372 RegionNode* region = new RegionNode(3); 1373 Node* phi = new PhiNode(region, TypeInt::INT); 1374 1375 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1376 C->set_has_split_ifs(true); // Has chance for split-if optimization 1377 _gvn.transform(result); 1378 1379 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1380 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1381 1382 Node* if_lt = generate_slow_guard(bol, nullptr); 1383 if (if_lt != nullptr) { 1384 // result == -1 1385 phi->init_req(2, result); 1386 region->init_req(2, if_lt); 1387 } 1388 if (!stopped()) { 1389 result = _gvn.transform(new AddINode(result, from_index)); 1390 phi->init_req(1, result); 1391 region->init_req(1, control()); 1392 } 1393 set_control(_gvn.transform(region)); 1394 record_for_igvn(region); 1395 set_result(_gvn.transform(phi)); 1396 clear_upper_avx(); 1397 1398 return true; 1399 } 1400 //---------------------------inline_string_copy--------------------- 1401 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1402 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1403 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1404 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1405 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1406 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1407 bool LibraryCallKit::inline_string_copy(bool compress) { 1408 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1409 return false; 1410 } 1411 int nargs = 5; // 2 oops, 3 ints 1412 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1413 1414 Node* src = argument(0); 1415 Node* src_offset = argument(1); 1416 Node* dst = argument(2); 1417 Node* dst_offset = argument(3); 1418 Node* length = argument(4); 1419 1420 // Check for allocation before we add nodes that would confuse 1421 // tightly_coupled_allocation() 1422 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1423 1424 // Figure out the size and type of the elements we will be copying. 1425 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1426 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1427 if (src_type == nullptr || dst_type == nullptr) { 1428 return false; 1429 } 1430 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1431 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1432 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1433 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1434 "Unsupported array types for inline_string_copy"); 1435 1436 src = must_be_not_null(src, true); 1437 dst = must_be_not_null(dst, true); 1438 1439 // Convert char[] offsets to byte[] offsets 1440 bool convert_src = (compress && src_elem == T_BYTE); 1441 bool convert_dst = (!compress && dst_elem == T_BYTE); 1442 if (convert_src) { 1443 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1444 } else if (convert_dst) { 1445 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1446 } 1447 1448 // Range checks 1449 generate_string_range_check(src, src_offset, length, convert_src); 1450 generate_string_range_check(dst, dst_offset, length, convert_dst); 1451 if (stopped()) { 1452 return true; 1453 } 1454 1455 Node* src_start = array_element_address(src, src_offset, src_elem); 1456 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1457 // 'src_start' points to src array + scaled offset 1458 // 'dst_start' points to dst array + scaled offset 1459 Node* count = nullptr; 1460 if (compress) { 1461 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1462 } else { 1463 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1464 } 1465 1466 if (alloc != nullptr) { 1467 if (alloc->maybe_set_complete(&_gvn)) { 1468 // "You break it, you buy it." 1469 InitializeNode* init = alloc->initialization(); 1470 assert(init->is_complete(), "we just did this"); 1471 init->set_complete_with_arraycopy(); 1472 assert(dst->is_CheckCastPP(), "sanity"); 1473 assert(dst->in(0)->in(0) == init, "dest pinned"); 1474 } 1475 // Do not let stores that initialize this object be reordered with 1476 // a subsequent store that would make this object accessible by 1477 // other threads. 1478 // Record what AllocateNode this StoreStore protects so that 1479 // escape analysis can go from the MemBarStoreStoreNode to the 1480 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1481 // based on the escape status of the AllocateNode. 1482 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1483 } 1484 if (compress) { 1485 set_result(_gvn.transform(count)); 1486 } 1487 clear_upper_avx(); 1488 1489 return true; 1490 } 1491 1492 #ifdef _LP64 1493 #define XTOP ,top() /*additional argument*/ 1494 #else //_LP64 1495 #define XTOP /*no additional argument*/ 1496 #endif //_LP64 1497 1498 //------------------------inline_string_toBytesU-------------------------- 1499 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1500 bool LibraryCallKit::inline_string_toBytesU() { 1501 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1502 return false; 1503 } 1504 // Get the arguments. 1505 Node* value = argument(0); 1506 Node* offset = argument(1); 1507 Node* length = argument(2); 1508 1509 Node* newcopy = nullptr; 1510 1511 // Set the original stack and the reexecute bit for the interpreter to reexecute 1512 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1513 { PreserveReexecuteState preexecs(this); 1514 jvms()->set_should_reexecute(true); 1515 1516 // Check if a null path was taken unconditionally. 1517 value = null_check(value); 1518 1519 RegionNode* bailout = new RegionNode(1); 1520 record_for_igvn(bailout); 1521 1522 // Range checks 1523 generate_negative_guard(offset, bailout); 1524 generate_negative_guard(length, bailout); 1525 generate_limit_guard(offset, length, load_array_length(value), bailout); 1526 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1527 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1528 1529 if (bailout->req() > 1) { 1530 PreserveJVMState pjvms(this); 1531 set_control(_gvn.transform(bailout)); 1532 uncommon_trap(Deoptimization::Reason_intrinsic, 1533 Deoptimization::Action_maybe_recompile); 1534 } 1535 if (stopped()) { 1536 return true; 1537 } 1538 1539 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1540 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1541 newcopy = new_array(klass_node, size, 0); // no arguments to push 1542 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1543 guarantee(alloc != nullptr, "created above"); 1544 1545 // Calculate starting addresses. 1546 Node* src_start = array_element_address(value, offset, T_CHAR); 1547 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1548 1549 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1550 const TypeInt* toffset = gvn().type(offset)->is_int(); 1551 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1552 1553 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1554 const char* copyfunc_name = "arraycopy"; 1555 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1556 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1557 OptoRuntime::fast_arraycopy_Type(), 1558 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1559 src_start, dst_start, ConvI2X(length) XTOP); 1560 // Do not let reads from the cloned object float above the arraycopy. 1561 if (alloc->maybe_set_complete(&_gvn)) { 1562 // "You break it, you buy it." 1563 InitializeNode* init = alloc->initialization(); 1564 assert(init->is_complete(), "we just did this"); 1565 init->set_complete_with_arraycopy(); 1566 assert(newcopy->is_CheckCastPP(), "sanity"); 1567 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1568 } 1569 // Do not let stores that initialize this object be reordered with 1570 // a subsequent store that would make this object accessible by 1571 // other threads. 1572 // Record what AllocateNode this StoreStore protects so that 1573 // escape analysis can go from the MemBarStoreStoreNode to the 1574 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1575 // based on the escape status of the AllocateNode. 1576 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1577 } // original reexecute is set back here 1578 1579 C->set_has_split_ifs(true); // Has chance for split-if optimization 1580 if (!stopped()) { 1581 set_result(newcopy); 1582 } 1583 clear_upper_avx(); 1584 1585 return true; 1586 } 1587 1588 //------------------------inline_string_getCharsU-------------------------- 1589 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1590 bool LibraryCallKit::inline_string_getCharsU() { 1591 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1592 return false; 1593 } 1594 1595 // Get the arguments. 1596 Node* src = argument(0); 1597 Node* src_begin = argument(1); 1598 Node* src_end = argument(2); // exclusive offset (i < src_end) 1599 Node* dst = argument(3); 1600 Node* dst_begin = argument(4); 1601 1602 // Check for allocation before we add nodes that would confuse 1603 // tightly_coupled_allocation() 1604 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1605 1606 // Check if a null path was taken unconditionally. 1607 src = null_check(src); 1608 dst = null_check(dst); 1609 if (stopped()) { 1610 return true; 1611 } 1612 1613 // Get length and convert char[] offset to byte[] offset 1614 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1615 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1616 1617 // Range checks 1618 generate_string_range_check(src, src_begin, length, true); 1619 generate_string_range_check(dst, dst_begin, length, false); 1620 if (stopped()) { 1621 return true; 1622 } 1623 1624 if (!stopped()) { 1625 // Calculate starting addresses. 1626 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1627 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1628 1629 // Check if array addresses are aligned to HeapWordSize 1630 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1631 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1632 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1633 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1634 1635 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1636 const char* copyfunc_name = "arraycopy"; 1637 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1638 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1639 OptoRuntime::fast_arraycopy_Type(), 1640 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1641 src_start, dst_start, ConvI2X(length) XTOP); 1642 // Do not let reads from the cloned object float above the arraycopy. 1643 if (alloc != nullptr) { 1644 if (alloc->maybe_set_complete(&_gvn)) { 1645 // "You break it, you buy it." 1646 InitializeNode* init = alloc->initialization(); 1647 assert(init->is_complete(), "we just did this"); 1648 init->set_complete_with_arraycopy(); 1649 assert(dst->is_CheckCastPP(), "sanity"); 1650 assert(dst->in(0)->in(0) == init, "dest pinned"); 1651 } 1652 // Do not let stores that initialize this object be reordered with 1653 // a subsequent store that would make this object accessible by 1654 // other threads. 1655 // Record what AllocateNode this StoreStore protects so that 1656 // escape analysis can go from the MemBarStoreStoreNode to the 1657 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1658 // based on the escape status of the AllocateNode. 1659 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1660 } else { 1661 insert_mem_bar(Op_MemBarCPUOrder); 1662 } 1663 } 1664 1665 C->set_has_split_ifs(true); // Has chance for split-if optimization 1666 return true; 1667 } 1668 1669 //----------------------inline_string_char_access---------------------------- 1670 // Store/Load char to/from byte[] array. 1671 // static void StringUTF16.putChar(byte[] val, int index, int c) 1672 // static char StringUTF16.getChar(byte[] val, int index) 1673 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1674 Node* value = argument(0); 1675 Node* index = argument(1); 1676 Node* ch = is_store ? argument(2) : nullptr; 1677 1678 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1679 // correctly requires matched array shapes. 1680 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1681 "sanity: byte[] and char[] bases agree"); 1682 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1683 "sanity: byte[] and char[] scales agree"); 1684 1685 // Bail when getChar over constants is requested: constant folding would 1686 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1687 // Java method would constant fold nicely instead. 1688 if (!is_store && value->is_Con() && index->is_Con()) { 1689 return false; 1690 } 1691 1692 // Save state and restore on bailout 1693 uint old_sp = sp(); 1694 SafePointNode* old_map = clone_map(); 1695 1696 value = must_be_not_null(value, true); 1697 1698 Node* adr = array_element_address(value, index, T_CHAR); 1699 if (adr->is_top()) { 1700 set_map(old_map); 1701 set_sp(old_sp); 1702 return false; 1703 } 1704 destruct_map_clone(old_map); 1705 if (is_store) { 1706 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1707 } else { 1708 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1709 set_result(ch); 1710 } 1711 return true; 1712 } 1713 1714 //--------------------------round_double_node-------------------------------- 1715 // Round a double node if necessary. 1716 Node* LibraryCallKit::round_double_node(Node* n) { 1717 if (Matcher::strict_fp_requires_explicit_rounding) { 1718 #ifdef IA32 1719 if (UseSSE < 2) { 1720 n = _gvn.transform(new RoundDoubleNode(nullptr, n)); 1721 } 1722 #else 1723 Unimplemented(); 1724 #endif // IA32 1725 } 1726 return n; 1727 } 1728 1729 //------------------------------inline_math----------------------------------- 1730 // public static double Math.abs(double) 1731 // public static double Math.sqrt(double) 1732 // public static double Math.log(double) 1733 // public static double Math.log10(double) 1734 // public static double Math.round(double) 1735 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1736 Node* arg = round_double_node(argument(0)); 1737 Node* n = nullptr; 1738 switch (id) { 1739 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1740 case vmIntrinsics::_dsqrt: 1741 case vmIntrinsics::_dsqrt_strict: 1742 n = new SqrtDNode(C, control(), arg); break; 1743 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1744 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1745 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1746 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1747 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break; 1748 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1749 default: fatal_unexpected_iid(id); break; 1750 } 1751 set_result(_gvn.transform(n)); 1752 return true; 1753 } 1754 1755 //------------------------------inline_math----------------------------------- 1756 // public static float Math.abs(float) 1757 // public static int Math.abs(int) 1758 // public static long Math.abs(long) 1759 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1760 Node* arg = argument(0); 1761 Node* n = nullptr; 1762 switch (id) { 1763 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1764 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1765 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1766 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1767 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1768 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1769 default: fatal_unexpected_iid(id); break; 1770 } 1771 set_result(_gvn.transform(n)); 1772 return true; 1773 } 1774 1775 //------------------------------runtime_math----------------------------- 1776 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1777 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1778 "must be (DD)D or (D)D type"); 1779 1780 // Inputs 1781 Node* a = round_double_node(argument(0)); 1782 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr; 1783 1784 const TypePtr* no_memory_effects = nullptr; 1785 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1786 no_memory_effects, 1787 a, top(), b, b ? top() : nullptr); 1788 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1789 #ifdef ASSERT 1790 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1791 assert(value_top == top(), "second value must be top"); 1792 #endif 1793 1794 set_result(value); 1795 return true; 1796 } 1797 1798 //------------------------------inline_math_pow----------------------------- 1799 bool LibraryCallKit::inline_math_pow() { 1800 Node* exp = round_double_node(argument(2)); 1801 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1802 if (d != nullptr) { 1803 if (d->getd() == 2.0) { 1804 // Special case: pow(x, 2.0) => x * x 1805 Node* base = round_double_node(argument(0)); 1806 set_result(_gvn.transform(new MulDNode(base, base))); 1807 return true; 1808 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1809 // Special case: pow(x, 0.5) => sqrt(x) 1810 Node* base = round_double_node(argument(0)); 1811 Node* zero = _gvn.zerocon(T_DOUBLE); 1812 1813 RegionNode* region = new RegionNode(3); 1814 Node* phi = new PhiNode(region, Type::DOUBLE); 1815 1816 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1817 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1818 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1819 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1820 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1821 1822 Node* if_pow = generate_slow_guard(test, nullptr); 1823 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1824 phi->init_req(1, value_sqrt); 1825 region->init_req(1, control()); 1826 1827 if (if_pow != nullptr) { 1828 set_control(if_pow); 1829 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1830 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1831 const TypePtr* no_memory_effects = nullptr; 1832 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1833 no_memory_effects, base, top(), exp, top()); 1834 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1835 #ifdef ASSERT 1836 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1837 assert(value_top == top(), "second value must be top"); 1838 #endif 1839 phi->init_req(2, value_pow); 1840 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1841 } 1842 1843 C->set_has_split_ifs(true); // Has chance for split-if optimization 1844 set_control(_gvn.transform(region)); 1845 record_for_igvn(region); 1846 set_result(_gvn.transform(phi)); 1847 1848 return true; 1849 } 1850 } 1851 1852 return StubRoutines::dpow() != nullptr ? 1853 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1854 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1855 } 1856 1857 //------------------------------inline_math_native----------------------------- 1858 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1859 switch (id) { 1860 case vmIntrinsics::_dsin: 1861 return StubRoutines::dsin() != nullptr ? 1862 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1863 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1864 case vmIntrinsics::_dcos: 1865 return StubRoutines::dcos() != nullptr ? 1866 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1867 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1868 case vmIntrinsics::_dtan: 1869 return StubRoutines::dtan() != nullptr ? 1870 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1871 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1872 case vmIntrinsics::_dtanh: 1873 return StubRoutines::dtanh() != nullptr ? 1874 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false; 1875 case vmIntrinsics::_dexp: 1876 return StubRoutines::dexp() != nullptr ? 1877 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1878 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1879 case vmIntrinsics::_dlog: 1880 return StubRoutines::dlog() != nullptr ? 1881 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1882 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1883 case vmIntrinsics::_dlog10: 1884 return StubRoutines::dlog10() != nullptr ? 1885 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1886 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1887 1888 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1889 case vmIntrinsics::_ceil: 1890 case vmIntrinsics::_floor: 1891 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1892 1893 case vmIntrinsics::_dsqrt: 1894 case vmIntrinsics::_dsqrt_strict: 1895 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1896 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1897 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1898 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1899 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1900 1901 case vmIntrinsics::_dpow: return inline_math_pow(); 1902 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1903 case vmIntrinsics::_fcopySign: return inline_math(id); 1904 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1905 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1906 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1907 1908 // These intrinsics are not yet correctly implemented 1909 case vmIntrinsics::_datan2: 1910 return false; 1911 1912 default: 1913 fatal_unexpected_iid(id); 1914 return false; 1915 } 1916 } 1917 1918 //----------------------------inline_notify-----------------------------------* 1919 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1920 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1921 address func; 1922 if (id == vmIntrinsics::_notify) { 1923 func = OptoRuntime::monitor_notify_Java(); 1924 } else { 1925 func = OptoRuntime::monitor_notifyAll_Java(); 1926 } 1927 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1928 make_slow_call_ex(call, env()->Throwable_klass(), false); 1929 return true; 1930 } 1931 1932 1933 //----------------------------inline_min_max----------------------------------- 1934 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1935 set_result(generate_min_max(id, argument(0), argument(1))); 1936 return true; 1937 } 1938 1939 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1940 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1941 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1942 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1943 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1944 1945 { 1946 PreserveJVMState pjvms(this); 1947 PreserveReexecuteState preexecs(this); 1948 jvms()->set_should_reexecute(true); 1949 1950 set_control(slow_path); 1951 set_i_o(i_o()); 1952 1953 uncommon_trap(Deoptimization::Reason_intrinsic, 1954 Deoptimization::Action_none); 1955 } 1956 1957 set_control(fast_path); 1958 set_result(math); 1959 } 1960 1961 template <typename OverflowOp> 1962 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1963 typedef typename OverflowOp::MathOp MathOp; 1964 1965 MathOp* mathOp = new MathOp(arg1, arg2); 1966 Node* operation = _gvn.transform( mathOp ); 1967 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 1968 inline_math_mathExact(operation, ofcheck); 1969 return true; 1970 } 1971 1972 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 1973 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 1974 } 1975 1976 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 1977 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 1978 } 1979 1980 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 1981 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 1982 } 1983 1984 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 1985 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 1986 } 1987 1988 bool LibraryCallKit::inline_math_negateExactI() { 1989 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 1990 } 1991 1992 bool LibraryCallKit::inline_math_negateExactL() { 1993 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 1994 } 1995 1996 bool LibraryCallKit::inline_math_multiplyExactI() { 1997 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 1998 } 1999 2000 bool LibraryCallKit::inline_math_multiplyExactL() { 2001 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2002 } 2003 2004 bool LibraryCallKit::inline_math_multiplyHigh() { 2005 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2006 return true; 2007 } 2008 2009 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 2010 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 2011 return true; 2012 } 2013 2014 Node* 2015 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 2016 Node* result_val = nullptr; 2017 switch (id) { 2018 case vmIntrinsics::_min: 2019 case vmIntrinsics::_min_strict: 2020 result_val = _gvn.transform(new MinINode(x0, y0)); 2021 break; 2022 case vmIntrinsics::_max: 2023 case vmIntrinsics::_max_strict: 2024 result_val = _gvn.transform(new MaxINode(x0, y0)); 2025 break; 2026 default: 2027 fatal_unexpected_iid(id); 2028 break; 2029 } 2030 return result_val; 2031 } 2032 2033 inline int 2034 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2035 const TypePtr* base_type = TypePtr::NULL_PTR; 2036 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2037 if (base_type == nullptr) { 2038 // Unknown type. 2039 return Type::AnyPtr; 2040 } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) { 2041 // Since this is a null+long form, we have to switch to a rawptr. 2042 base = _gvn.transform(new CastX2PNode(offset)); 2043 offset = MakeConX(0); 2044 return Type::RawPtr; 2045 } else if (base_type->base() == Type::RawPtr) { 2046 return Type::RawPtr; 2047 } else if (base_type->isa_oopptr()) { 2048 // Base is never null => always a heap address. 2049 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2050 return Type::OopPtr; 2051 } 2052 // Offset is small => always a heap address. 2053 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2054 if (offset_type != nullptr && 2055 base_type->offset() == 0 && // (should always be?) 2056 offset_type->_lo >= 0 && 2057 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2058 return Type::OopPtr; 2059 } else if (type == T_OBJECT) { 2060 // off heap access to an oop doesn't make any sense. Has to be on 2061 // heap. 2062 return Type::OopPtr; 2063 } 2064 // Otherwise, it might either be oop+off or null+addr. 2065 return Type::AnyPtr; 2066 } else { 2067 // No information: 2068 return Type::AnyPtr; 2069 } 2070 } 2071 2072 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2073 Node* uncasted_base = base; 2074 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2075 if (kind == Type::RawPtr) { 2076 return basic_plus_adr(top(), uncasted_base, offset); 2077 } else if (kind == Type::AnyPtr) { 2078 assert(base == uncasted_base, "unexpected base change"); 2079 if (can_cast) { 2080 if (!_gvn.type(base)->speculative_maybe_null() && 2081 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2082 // According to profiling, this access is always on 2083 // heap. Casting the base to not null and thus avoiding membars 2084 // around the access should allow better optimizations 2085 Node* null_ctl = top(); 2086 base = null_check_oop(base, &null_ctl, true, true, true); 2087 assert(null_ctl->is_top(), "no null control here"); 2088 return basic_plus_adr(base, offset); 2089 } else if (_gvn.type(base)->speculative_always_null() && 2090 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2091 // According to profiling, this access is always off 2092 // heap. 2093 base = null_assert(base); 2094 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2095 offset = MakeConX(0); 2096 return basic_plus_adr(top(), raw_base, offset); 2097 } 2098 } 2099 // We don't know if it's an on heap or off heap access. Fall back 2100 // to raw memory access. 2101 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2102 return basic_plus_adr(top(), raw, offset); 2103 } else { 2104 assert(base == uncasted_base, "unexpected base change"); 2105 // We know it's an on heap access so base can't be null 2106 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2107 base = must_be_not_null(base, true); 2108 } 2109 return basic_plus_adr(base, offset); 2110 } 2111 } 2112 2113 //--------------------------inline_number_methods----------------------------- 2114 // inline int Integer.numberOfLeadingZeros(int) 2115 // inline int Long.numberOfLeadingZeros(long) 2116 // 2117 // inline int Integer.numberOfTrailingZeros(int) 2118 // inline int Long.numberOfTrailingZeros(long) 2119 // 2120 // inline int Integer.bitCount(int) 2121 // inline int Long.bitCount(long) 2122 // 2123 // inline char Character.reverseBytes(char) 2124 // inline short Short.reverseBytes(short) 2125 // inline int Integer.reverseBytes(int) 2126 // inline long Long.reverseBytes(long) 2127 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2128 Node* arg = argument(0); 2129 Node* n = nullptr; 2130 switch (id) { 2131 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2132 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2133 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2134 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2135 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2136 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2137 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode( arg); break; 2138 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( arg); break; 2139 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( arg); break; 2140 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( arg); break; 2141 case vmIntrinsics::_reverse_i: n = new ReverseINode( arg); break; 2142 case vmIntrinsics::_reverse_l: n = new ReverseLNode( arg); break; 2143 default: fatal_unexpected_iid(id); break; 2144 } 2145 set_result(_gvn.transform(n)); 2146 return true; 2147 } 2148 2149 //--------------------------inline_bitshuffle_methods----------------------------- 2150 // inline int Integer.compress(int, int) 2151 // inline int Integer.expand(int, int) 2152 // inline long Long.compress(long, long) 2153 // inline long Long.expand(long, long) 2154 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2155 Node* n = nullptr; 2156 switch (id) { 2157 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2158 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2159 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2160 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2161 default: fatal_unexpected_iid(id); break; 2162 } 2163 set_result(_gvn.transform(n)); 2164 return true; 2165 } 2166 2167 //--------------------------inline_number_methods----------------------------- 2168 // inline int Integer.compareUnsigned(int, int) 2169 // inline int Long.compareUnsigned(long, long) 2170 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2171 Node* arg1 = argument(0); 2172 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2173 Node* n = nullptr; 2174 switch (id) { 2175 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2176 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2177 default: fatal_unexpected_iid(id); break; 2178 } 2179 set_result(_gvn.transform(n)); 2180 return true; 2181 } 2182 2183 //--------------------------inline_unsigned_divmod_methods----------------------------- 2184 // inline int Integer.divideUnsigned(int, int) 2185 // inline int Integer.remainderUnsigned(int, int) 2186 // inline long Long.divideUnsigned(long, long) 2187 // inline long Long.remainderUnsigned(long, long) 2188 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2189 Node* n = nullptr; 2190 switch (id) { 2191 case vmIntrinsics::_divideUnsigned_i: { 2192 zero_check_int(argument(1)); 2193 // Compile-time detect of null-exception 2194 if (stopped()) { 2195 return true; // keep the graph constructed so far 2196 } 2197 n = new UDivINode(control(), argument(0), argument(1)); 2198 break; 2199 } 2200 case vmIntrinsics::_divideUnsigned_l: { 2201 zero_check_long(argument(2)); 2202 // Compile-time detect of null-exception 2203 if (stopped()) { 2204 return true; // keep the graph constructed so far 2205 } 2206 n = new UDivLNode(control(), argument(0), argument(2)); 2207 break; 2208 } 2209 case vmIntrinsics::_remainderUnsigned_i: { 2210 zero_check_int(argument(1)); 2211 // Compile-time detect of null-exception 2212 if (stopped()) { 2213 return true; // keep the graph constructed so far 2214 } 2215 n = new UModINode(control(), argument(0), argument(1)); 2216 break; 2217 } 2218 case vmIntrinsics::_remainderUnsigned_l: { 2219 zero_check_long(argument(2)); 2220 // Compile-time detect of null-exception 2221 if (stopped()) { 2222 return true; // keep the graph constructed so far 2223 } 2224 n = new UModLNode(control(), argument(0), argument(2)); 2225 break; 2226 } 2227 default: fatal_unexpected_iid(id); break; 2228 } 2229 set_result(_gvn.transform(n)); 2230 return true; 2231 } 2232 2233 //----------------------------inline_unsafe_access---------------------------- 2234 2235 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2236 // Attempt to infer a sharper value type from the offset and base type. 2237 ciKlass* sharpened_klass = nullptr; 2238 2239 // See if it is an instance field, with an object type. 2240 if (alias_type->field() != nullptr) { 2241 if (alias_type->field()->type()->is_klass()) { 2242 sharpened_klass = alias_type->field()->type()->as_klass(); 2243 } 2244 } 2245 2246 const TypeOopPtr* result = nullptr; 2247 // See if it is a narrow oop array. 2248 if (adr_type->isa_aryptr()) { 2249 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2250 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2251 if (elem_type != nullptr && elem_type->is_loaded()) { 2252 // Sharpen the value type. 2253 result = elem_type; 2254 } 2255 } 2256 } 2257 2258 // The sharpened class might be unloaded if there is no class loader 2259 // contraint in place. 2260 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2261 // Sharpen the value type. 2262 result = TypeOopPtr::make_from_klass(sharpened_klass); 2263 } 2264 if (result != nullptr) { 2265 #ifndef PRODUCT 2266 if (C->print_intrinsics() || C->print_inlining()) { 2267 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2268 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2269 } 2270 #endif 2271 } 2272 return result; 2273 } 2274 2275 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2276 switch (kind) { 2277 case Relaxed: 2278 return MO_UNORDERED; 2279 case Opaque: 2280 return MO_RELAXED; 2281 case Acquire: 2282 return MO_ACQUIRE; 2283 case Release: 2284 return MO_RELEASE; 2285 case Volatile: 2286 return MO_SEQ_CST; 2287 default: 2288 ShouldNotReachHere(); 2289 return 0; 2290 } 2291 } 2292 2293 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2294 if (callee()->is_static()) return false; // caller must have the capability! 2295 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2296 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2297 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2298 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2299 2300 if (is_reference_type(type)) { 2301 decorators |= ON_UNKNOWN_OOP_REF; 2302 } 2303 2304 if (unaligned) { 2305 decorators |= C2_UNALIGNED; 2306 } 2307 2308 #ifndef PRODUCT 2309 { 2310 ResourceMark rm; 2311 // Check the signatures. 2312 ciSignature* sig = callee()->signature(); 2313 #ifdef ASSERT 2314 if (!is_store) { 2315 // Object getReference(Object base, int/long offset), etc. 2316 BasicType rtype = sig->return_type()->basic_type(); 2317 assert(rtype == type, "getter must return the expected value"); 2318 assert(sig->count() == 2, "oop getter has 2 arguments"); 2319 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2320 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2321 } else { 2322 // void putReference(Object base, int/long offset, Object x), etc. 2323 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2324 assert(sig->count() == 3, "oop putter has 3 arguments"); 2325 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2326 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2327 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2328 assert(vtype == type, "putter must accept the expected value"); 2329 } 2330 #endif // ASSERT 2331 } 2332 #endif //PRODUCT 2333 2334 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2335 2336 Node* receiver = argument(0); // type: oop 2337 2338 // Build address expression. 2339 Node* heap_base_oop = top(); 2340 2341 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2342 Node* base = argument(1); // type: oop 2343 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2344 Node* offset = argument(2); // type: long 2345 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2346 // to be plain byte offsets, which are also the same as those accepted 2347 // by oopDesc::field_addr. 2348 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2349 "fieldOffset must be byte-scaled"); 2350 // 32-bit machines ignore the high half! 2351 offset = ConvL2X(offset); 2352 2353 // Save state and restore on bailout 2354 uint old_sp = sp(); 2355 SafePointNode* old_map = clone_map(); 2356 2357 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2358 assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly"); 2359 2360 if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) { 2361 if (type != T_OBJECT) { 2362 decorators |= IN_NATIVE; // off-heap primitive access 2363 } else { 2364 set_map(old_map); 2365 set_sp(old_sp); 2366 return false; // off-heap oop accesses are not supported 2367 } 2368 } else { 2369 heap_base_oop = base; // on-heap or mixed access 2370 } 2371 2372 // Can base be null? Otherwise, always on-heap access. 2373 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2374 2375 if (!can_access_non_heap) { 2376 decorators |= IN_HEAP; 2377 } 2378 2379 Node* val = is_store ? argument(4) : nullptr; 2380 2381 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2382 if (adr_type == TypePtr::NULL_PTR) { 2383 set_map(old_map); 2384 set_sp(old_sp); 2385 return false; // off-heap access with zero address 2386 } 2387 2388 // Try to categorize the address. 2389 Compile::AliasType* alias_type = C->alias_type(adr_type); 2390 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2391 2392 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2393 alias_type->adr_type() == TypeAryPtr::RANGE) { 2394 set_map(old_map); 2395 set_sp(old_sp); 2396 return false; // not supported 2397 } 2398 2399 bool mismatched = false; 2400 BasicType bt = alias_type->basic_type(); 2401 if (bt != T_ILLEGAL) { 2402 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2403 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2404 // Alias type doesn't differentiate between byte[] and boolean[]). 2405 // Use address type to get the element type. 2406 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2407 } 2408 if (is_reference_type(bt, true)) { 2409 // accessing an array field with getReference is not a mismatch 2410 bt = T_OBJECT; 2411 } 2412 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2413 // Don't intrinsify mismatched object accesses 2414 set_map(old_map); 2415 set_sp(old_sp); 2416 return false; 2417 } 2418 mismatched = (bt != type); 2419 } else if (alias_type->adr_type()->isa_oopptr()) { 2420 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2421 } 2422 2423 destruct_map_clone(old_map); 2424 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2425 2426 if (mismatched) { 2427 decorators |= C2_MISMATCHED; 2428 } 2429 2430 // First guess at the value type. 2431 const Type *value_type = Type::get_const_basic_type(type); 2432 2433 // Figure out the memory ordering. 2434 decorators |= mo_decorator_for_access_kind(kind); 2435 2436 if (!is_store && type == T_OBJECT) { 2437 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2438 if (tjp != nullptr) { 2439 value_type = tjp; 2440 } 2441 } 2442 2443 receiver = null_check(receiver); 2444 if (stopped()) { 2445 return true; 2446 } 2447 // Heap pointers get a null-check from the interpreter, 2448 // as a courtesy. However, this is not guaranteed by Unsafe, 2449 // and it is not possible to fully distinguish unintended nulls 2450 // from intended ones in this API. 2451 2452 if (!is_store) { 2453 Node* p = nullptr; 2454 // Try to constant fold a load from a constant field 2455 ciField* field = alias_type->field(); 2456 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) { 2457 // final or stable field 2458 p = make_constant_from_field(field, heap_base_oop); 2459 } 2460 2461 if (p == nullptr) { // Could not constant fold the load 2462 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2463 // Normalize the value returned by getBoolean in the following cases 2464 if (type == T_BOOLEAN && 2465 (mismatched || 2466 heap_base_oop == top() || // - heap_base_oop is null or 2467 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2468 // and the unsafe access is made to large offset 2469 // (i.e., larger than the maximum offset necessary for any 2470 // field access) 2471 ) { 2472 IdealKit ideal = IdealKit(this); 2473 #define __ ideal. 2474 IdealVariable normalized_result(ideal); 2475 __ declarations_done(); 2476 __ set(normalized_result, p); 2477 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2478 __ set(normalized_result, ideal.ConI(1)); 2479 ideal.end_if(); 2480 final_sync(ideal); 2481 p = __ value(normalized_result); 2482 #undef __ 2483 } 2484 } 2485 if (type == T_ADDRESS) { 2486 p = gvn().transform(new CastP2XNode(nullptr, p)); 2487 p = ConvX2UL(p); 2488 } 2489 // The load node has the control of the preceding MemBarCPUOrder. All 2490 // following nodes will have the control of the MemBarCPUOrder inserted at 2491 // the end of this method. So, pushing the load onto the stack at a later 2492 // point is fine. 2493 set_result(p); 2494 } else { 2495 if (bt == T_ADDRESS) { 2496 // Repackage the long as a pointer. 2497 val = ConvL2X(val); 2498 val = gvn().transform(new CastX2PNode(val)); 2499 } 2500 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2501 } 2502 2503 return true; 2504 } 2505 2506 //----------------------------inline_unsafe_load_store---------------------------- 2507 // This method serves a couple of different customers (depending on LoadStoreKind): 2508 // 2509 // LS_cmp_swap: 2510 // 2511 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2512 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2513 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2514 // 2515 // LS_cmp_swap_weak: 2516 // 2517 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2518 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2519 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2520 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2521 // 2522 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2523 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2524 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2525 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2526 // 2527 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2528 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2529 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2530 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2531 // 2532 // LS_cmp_exchange: 2533 // 2534 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2535 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2536 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2537 // 2538 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2539 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2540 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2541 // 2542 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2543 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2544 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2545 // 2546 // LS_get_add: 2547 // 2548 // int getAndAddInt( Object o, long offset, int delta) 2549 // long getAndAddLong(Object o, long offset, long delta) 2550 // 2551 // LS_get_set: 2552 // 2553 // int getAndSet(Object o, long offset, int newValue) 2554 // long getAndSet(Object o, long offset, long newValue) 2555 // Object getAndSet(Object o, long offset, Object newValue) 2556 // 2557 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2558 // This basic scheme here is the same as inline_unsafe_access, but 2559 // differs in enough details that combining them would make the code 2560 // overly confusing. (This is a true fact! I originally combined 2561 // them, but even I was confused by it!) As much code/comments as 2562 // possible are retained from inline_unsafe_access though to make 2563 // the correspondences clearer. - dl 2564 2565 if (callee()->is_static()) return false; // caller must have the capability! 2566 2567 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2568 decorators |= mo_decorator_for_access_kind(access_kind); 2569 2570 #ifndef PRODUCT 2571 BasicType rtype; 2572 { 2573 ResourceMark rm; 2574 // Check the signatures. 2575 ciSignature* sig = callee()->signature(); 2576 rtype = sig->return_type()->basic_type(); 2577 switch(kind) { 2578 case LS_get_add: 2579 case LS_get_set: { 2580 // Check the signatures. 2581 #ifdef ASSERT 2582 assert(rtype == type, "get and set must return the expected type"); 2583 assert(sig->count() == 3, "get and set has 3 arguments"); 2584 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2585 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2586 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2587 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2588 #endif // ASSERT 2589 break; 2590 } 2591 case LS_cmp_swap: 2592 case LS_cmp_swap_weak: { 2593 // Check the signatures. 2594 #ifdef ASSERT 2595 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2596 assert(sig->count() == 4, "CAS has 4 arguments"); 2597 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2598 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2599 #endif // ASSERT 2600 break; 2601 } 2602 case LS_cmp_exchange: { 2603 // Check the signatures. 2604 #ifdef ASSERT 2605 assert(rtype == type, "CAS must return the expected type"); 2606 assert(sig->count() == 4, "CAS has 4 arguments"); 2607 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2608 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2609 #endif // ASSERT 2610 break; 2611 } 2612 default: 2613 ShouldNotReachHere(); 2614 } 2615 } 2616 #endif //PRODUCT 2617 2618 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2619 2620 // Get arguments: 2621 Node* receiver = nullptr; 2622 Node* base = nullptr; 2623 Node* offset = nullptr; 2624 Node* oldval = nullptr; 2625 Node* newval = nullptr; 2626 switch(kind) { 2627 case LS_cmp_swap: 2628 case LS_cmp_swap_weak: 2629 case LS_cmp_exchange: { 2630 const bool two_slot_type = type2size[type] == 2; 2631 receiver = argument(0); // type: oop 2632 base = argument(1); // type: oop 2633 offset = argument(2); // type: long 2634 oldval = argument(4); // type: oop, int, or long 2635 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2636 break; 2637 } 2638 case LS_get_add: 2639 case LS_get_set: { 2640 receiver = argument(0); // type: oop 2641 base = argument(1); // type: oop 2642 offset = argument(2); // type: long 2643 oldval = nullptr; 2644 newval = argument(4); // type: oop, int, or long 2645 break; 2646 } 2647 default: 2648 ShouldNotReachHere(); 2649 } 2650 2651 // Build field offset expression. 2652 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2653 // to be plain byte offsets, which are also the same as those accepted 2654 // by oopDesc::field_addr. 2655 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2656 // 32-bit machines ignore the high half of long offsets 2657 offset = ConvL2X(offset); 2658 // Save state and restore on bailout 2659 uint old_sp = sp(); 2660 SafePointNode* old_map = clone_map(); 2661 Node* adr = make_unsafe_address(base, offset,type, false); 2662 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2663 2664 Compile::AliasType* alias_type = C->alias_type(adr_type); 2665 BasicType bt = alias_type->basic_type(); 2666 if (bt != T_ILLEGAL && 2667 (is_reference_type(bt) != (type == T_OBJECT))) { 2668 // Don't intrinsify mismatched object accesses. 2669 set_map(old_map); 2670 set_sp(old_sp); 2671 return false; 2672 } 2673 2674 destruct_map_clone(old_map); 2675 2676 // For CAS, unlike inline_unsafe_access, there seems no point in 2677 // trying to refine types. Just use the coarse types here. 2678 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2679 const Type *value_type = Type::get_const_basic_type(type); 2680 2681 switch (kind) { 2682 case LS_get_set: 2683 case LS_cmp_exchange: { 2684 if (type == T_OBJECT) { 2685 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2686 if (tjp != nullptr) { 2687 value_type = tjp; 2688 } 2689 } 2690 break; 2691 } 2692 case LS_cmp_swap: 2693 case LS_cmp_swap_weak: 2694 case LS_get_add: 2695 break; 2696 default: 2697 ShouldNotReachHere(); 2698 } 2699 2700 // Null check receiver. 2701 receiver = null_check(receiver); 2702 if (stopped()) { 2703 return true; 2704 } 2705 2706 int alias_idx = C->get_alias_index(adr_type); 2707 2708 if (is_reference_type(type)) { 2709 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2710 2711 // Transformation of a value which could be null pointer (CastPP #null) 2712 // could be delayed during Parse (for example, in adjust_map_after_if()). 2713 // Execute transformation here to avoid barrier generation in such case. 2714 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2715 newval = _gvn.makecon(TypePtr::NULL_PTR); 2716 2717 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2718 // Refine the value to a null constant, when it is known to be null 2719 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2720 } 2721 } 2722 2723 Node* result = nullptr; 2724 switch (kind) { 2725 case LS_cmp_exchange: { 2726 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2727 oldval, newval, value_type, type, decorators); 2728 break; 2729 } 2730 case LS_cmp_swap_weak: 2731 decorators |= C2_WEAK_CMPXCHG; 2732 case LS_cmp_swap: { 2733 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2734 oldval, newval, value_type, type, decorators); 2735 break; 2736 } 2737 case LS_get_set: { 2738 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2739 newval, value_type, type, decorators); 2740 break; 2741 } 2742 case LS_get_add: { 2743 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2744 newval, value_type, type, decorators); 2745 break; 2746 } 2747 default: 2748 ShouldNotReachHere(); 2749 } 2750 2751 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2752 set_result(result); 2753 return true; 2754 } 2755 2756 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2757 // Regardless of form, don't allow previous ld/st to move down, 2758 // then issue acquire, release, or volatile mem_bar. 2759 insert_mem_bar(Op_MemBarCPUOrder); 2760 switch(id) { 2761 case vmIntrinsics::_loadFence: 2762 insert_mem_bar(Op_LoadFence); 2763 return true; 2764 case vmIntrinsics::_storeFence: 2765 insert_mem_bar(Op_StoreFence); 2766 return true; 2767 case vmIntrinsics::_storeStoreFence: 2768 insert_mem_bar(Op_StoreStoreFence); 2769 return true; 2770 case vmIntrinsics::_fullFence: 2771 insert_mem_bar(Op_MemBarVolatile); 2772 return true; 2773 default: 2774 fatal_unexpected_iid(id); 2775 return false; 2776 } 2777 } 2778 2779 bool LibraryCallKit::inline_onspinwait() { 2780 insert_mem_bar(Op_OnSpinWait); 2781 return true; 2782 } 2783 2784 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2785 if (!kls->is_Con()) { 2786 return true; 2787 } 2788 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2789 if (klsptr == nullptr) { 2790 return true; 2791 } 2792 ciInstanceKlass* ik = klsptr->instance_klass(); 2793 // don't need a guard for a klass that is already initialized 2794 return !ik->is_initialized(); 2795 } 2796 2797 //----------------------------inline_unsafe_writeback0------------------------- 2798 // public native void Unsafe.writeback0(long address) 2799 bool LibraryCallKit::inline_unsafe_writeback0() { 2800 if (!Matcher::has_match_rule(Op_CacheWB)) { 2801 return false; 2802 } 2803 #ifndef PRODUCT 2804 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2805 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2806 ciSignature* sig = callee()->signature(); 2807 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2808 #endif 2809 null_check_receiver(); // null-check, then ignore 2810 Node *addr = argument(1); 2811 addr = new CastX2PNode(addr); 2812 addr = _gvn.transform(addr); 2813 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2814 flush = _gvn.transform(flush); 2815 set_memory(flush, TypeRawPtr::BOTTOM); 2816 return true; 2817 } 2818 2819 //----------------------------inline_unsafe_writeback0------------------------- 2820 // public native void Unsafe.writeback0(long address) 2821 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2822 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2823 return false; 2824 } 2825 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2826 return false; 2827 } 2828 #ifndef PRODUCT 2829 assert(Matcher::has_match_rule(Op_CacheWB), 2830 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2831 : "found match rule for CacheWBPostSync but not CacheWB")); 2832 2833 #endif 2834 null_check_receiver(); // null-check, then ignore 2835 Node *sync; 2836 if (is_pre) { 2837 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2838 } else { 2839 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2840 } 2841 sync = _gvn.transform(sync); 2842 set_memory(sync, TypeRawPtr::BOTTOM); 2843 return true; 2844 } 2845 2846 //----------------------------inline_unsafe_allocate--------------------------- 2847 // public native Object Unsafe.allocateInstance(Class<?> cls); 2848 bool LibraryCallKit::inline_unsafe_allocate() { 2849 2850 #if INCLUDE_JVMTI 2851 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 2852 return false; 2853 } 2854 #endif //INCLUDE_JVMTI 2855 2856 if (callee()->is_static()) return false; // caller must have the capability! 2857 2858 null_check_receiver(); // null-check, then ignore 2859 Node* cls = null_check(argument(1)); 2860 if (stopped()) return true; 2861 2862 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 2863 kls = null_check(kls); 2864 if (stopped()) return true; // argument was like int.class 2865 2866 #if INCLUDE_JVMTI 2867 // Don't try to access new allocated obj in the intrinsic. 2868 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 2869 // Deoptimize and allocate in interpreter instead. 2870 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 2871 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 2872 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 2873 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 2874 { 2875 BuildCutout unless(this, tst, PROB_MAX); 2876 uncommon_trap(Deoptimization::Reason_intrinsic, 2877 Deoptimization::Action_make_not_entrant); 2878 } 2879 if (stopped()) { 2880 return true; 2881 } 2882 #endif //INCLUDE_JVMTI 2883 2884 Node* test = nullptr; 2885 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2886 // Note: The argument might still be an illegal value like 2887 // Serializable.class or Object[].class. The runtime will handle it. 2888 // But we must make an explicit check for initialization. 2889 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2890 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2891 // can generate code to load it as unsigned byte. 2892 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire); 2893 Node* bits = intcon(InstanceKlass::fully_initialized); 2894 test = _gvn.transform(new SubINode(inst, bits)); 2895 // The 'test' is non-zero if we need to take a slow path. 2896 } 2897 2898 Node* obj = new_instance(kls, test); 2899 set_result(obj); 2900 return true; 2901 } 2902 2903 //------------------------inline_native_time_funcs-------------- 2904 // inline code for System.currentTimeMillis() and System.nanoTime() 2905 // these have the same type and signature 2906 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2907 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2908 const TypePtr* no_memory_effects = nullptr; 2909 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2910 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2911 #ifdef ASSERT 2912 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2913 assert(value_top == top(), "second value must be top"); 2914 #endif 2915 set_result(value); 2916 return true; 2917 } 2918 2919 2920 #if INCLUDE_JVMTI 2921 2922 // When notifications are disabled then just update the VTMS transition bit and return. 2923 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 2924 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 2925 if (!DoJVMTIVirtualThreadTransitions) { 2926 return true; 2927 } 2928 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 2929 IdealKit ideal(this); 2930 2931 Node* ONE = ideal.ConI(1); 2932 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 2933 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 2934 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 2935 2936 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 2937 sync_kit(ideal); 2938 // if notifyJvmti enabled then make a call to the given SharedRuntime function 2939 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 2940 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 2941 ideal.sync_kit(this); 2942 } ideal.else_(); { 2943 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 2944 Node* thread = ideal.thread(); 2945 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 2946 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 2947 2948 sync_kit(ideal); 2949 access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2950 access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2951 2952 ideal.sync_kit(this); 2953 } ideal.end_if(); 2954 final_sync(ideal); 2955 2956 return true; 2957 } 2958 2959 // Always update the is_disable_suspend bit. 2960 bool LibraryCallKit::inline_native_notify_jvmti_sync() { 2961 if (!DoJVMTIVirtualThreadTransitions) { 2962 return true; 2963 } 2964 IdealKit ideal(this); 2965 2966 { 2967 // unconditionally update the is_disable_suspend bit in current JavaThread 2968 Node* thread = ideal.thread(); 2969 Node* arg = _gvn.transform(argument(0)); // argument for notification 2970 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset())); 2971 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 2972 2973 sync_kit(ideal); 2974 access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2975 ideal.sync_kit(this); 2976 } 2977 final_sync(ideal); 2978 2979 return true; 2980 } 2981 2982 #endif // INCLUDE_JVMTI 2983 2984 #ifdef JFR_HAVE_INTRINSICS 2985 2986 /** 2987 * if oop->klass != null 2988 * // normal class 2989 * epoch = _epoch_state ? 2 : 1 2990 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 2991 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 2992 * } 2993 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 2994 * else 2995 * // primitive class 2996 * if oop->array_klass != null 2997 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 2998 * else 2999 * id = LAST_TYPE_ID + 1 // void class path 3000 * if (!signaled) 3001 * signaled = true 3002 */ 3003 bool LibraryCallKit::inline_native_classID() { 3004 Node* cls = argument(0); 3005 3006 IdealKit ideal(this); 3007 #define __ ideal. 3008 IdealVariable result(ideal); __ declarations_done(); 3009 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 3010 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3011 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3012 3013 3014 __ if_then(kls, BoolTest::ne, null()); { 3015 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3016 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3017 3018 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3019 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3020 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3021 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3022 mask = _gvn.transform(new OrLNode(mask, epoch)); 3023 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3024 3025 float unlikely = PROB_UNLIKELY(0.999); 3026 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3027 sync_kit(ideal); 3028 make_runtime_call(RC_LEAF, 3029 OptoRuntime::class_id_load_barrier_Type(), 3030 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3031 "class id load barrier", 3032 TypePtr::BOTTOM, 3033 kls); 3034 ideal.sync_kit(this); 3035 } __ end_if(); 3036 3037 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3038 } __ else_(); { 3039 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 3040 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3041 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3042 __ if_then(array_kls, BoolTest::ne, null()); { 3043 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3044 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3045 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3046 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3047 } __ else_(); { 3048 // void class case 3049 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3050 } __ end_if(); 3051 3052 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3053 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3054 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3055 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3056 } __ end_if(); 3057 } __ end_if(); 3058 3059 final_sync(ideal); 3060 set_result(ideal.value(result)); 3061 #undef __ 3062 return true; 3063 } 3064 3065 //------------------------inline_native_jvm_commit------------------ 3066 bool LibraryCallKit::inline_native_jvm_commit() { 3067 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3068 3069 // Save input memory and i_o state. 3070 Node* input_memory_state = reset_memory(); 3071 set_all_memory(input_memory_state); 3072 Node* input_io_state = i_o(); 3073 3074 // TLS. 3075 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3076 // Jfr java buffer. 3077 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3078 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3079 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3080 3081 // Load the current value of the notified field in the JfrThreadLocal. 3082 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3083 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3084 3085 // Test for notification. 3086 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3087 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3088 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3089 3090 // True branch, is notified. 3091 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3092 set_control(is_notified); 3093 3094 // Reset notified state. 3095 Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered); 3096 3097 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3098 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3099 // Convert the machine-word to a long. 3100 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3101 3102 // False branch, not notified. 3103 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3104 set_control(not_notified); 3105 set_all_memory(input_memory_state); 3106 3107 // Arg is the next position as a long. 3108 Node* arg = argument(0); 3109 // Convert long to machine-word. 3110 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3111 3112 // Store the next_position to the underlying jfr java buffer. 3113 Node* commit_memory; 3114 #ifdef _LP64 3115 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, MemNode::release); 3116 #else 3117 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, MemNode::release); 3118 #endif 3119 3120 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3121 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3122 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3123 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3124 3125 // And flags with lease constant. 3126 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3127 3128 // Branch on lease to conditionalize returning the leased java buffer. 3129 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3130 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3131 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3132 3133 // False branch, not a lease. 3134 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3135 3136 // True branch, is lease. 3137 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3138 set_control(is_lease); 3139 3140 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3141 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3142 OptoRuntime::void_void_Type(), 3143 SharedRuntime::jfr_return_lease(), 3144 "return_lease", TypePtr::BOTTOM); 3145 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3146 3147 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3148 record_for_igvn(lease_compare_rgn); 3149 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3150 record_for_igvn(lease_compare_mem); 3151 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3152 record_for_igvn(lease_compare_io); 3153 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3154 record_for_igvn(lease_result_value); 3155 3156 // Update control and phi nodes. 3157 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3158 lease_compare_rgn->init_req(_false_path, not_lease); 3159 3160 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3161 lease_compare_mem->init_req(_false_path, commit_memory); 3162 3163 lease_compare_io->init_req(_true_path, i_o()); 3164 lease_compare_io->init_req(_false_path, input_io_state); 3165 3166 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3167 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3168 3169 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3170 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3171 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3172 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3173 3174 // Update control and phi nodes. 3175 result_rgn->init_req(_true_path, is_notified); 3176 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3177 3178 result_mem->init_req(_true_path, notified_reset_memory); 3179 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3180 3181 result_io->init_req(_true_path, input_io_state); 3182 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3183 3184 result_value->init_req(_true_path, current_pos); 3185 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3186 3187 // Set output state. 3188 set_control(_gvn.transform(result_rgn)); 3189 set_all_memory(_gvn.transform(result_mem)); 3190 set_i_o(_gvn.transform(result_io)); 3191 set_result(result_rgn, result_value); 3192 return true; 3193 } 3194 3195 /* 3196 * The intrinsic is a model of this pseudo-code: 3197 * 3198 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3199 * jobject h_event_writer = tl->java_event_writer(); 3200 * if (h_event_writer == nullptr) { 3201 * return nullptr; 3202 * } 3203 * oop threadObj = Thread::threadObj(); 3204 * oop vthread = java_lang_Thread::vthread(threadObj); 3205 * traceid tid; 3206 * bool pinVirtualThread; 3207 * bool excluded; 3208 * if (vthread != threadObj) { // i.e. current thread is virtual 3209 * tid = java_lang_Thread::tid(vthread); 3210 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3211 * pinVirtualThread = VMContinuations; 3212 * excluded = vthread_epoch_raw & excluded_mask; 3213 * if (!excluded) { 3214 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3215 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3216 * if (vthread_epoch != current_epoch) { 3217 * write_checkpoint(); 3218 * } 3219 * } 3220 * } else { 3221 * tid = java_lang_Thread::tid(threadObj); 3222 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3223 * pinVirtualThread = false; 3224 * excluded = thread_epoch_raw & excluded_mask; 3225 * } 3226 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3227 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3228 * if (tid_in_event_writer != tid) { 3229 * setField(event_writer, "pinVirtualThread", pinVirtualThread); 3230 * setField(event_writer, "excluded", excluded); 3231 * setField(event_writer, "threadID", tid); 3232 * } 3233 * return event_writer 3234 */ 3235 bool LibraryCallKit::inline_native_getEventWriter() { 3236 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3237 3238 // Save input memory and i_o state. 3239 Node* input_memory_state = reset_memory(); 3240 set_all_memory(input_memory_state); 3241 Node* input_io_state = i_o(); 3242 3243 // The most significant bit of the u2 is used to denote thread exclusion 3244 Node* excluded_shift = _gvn.intcon(15); 3245 Node* excluded_mask = _gvn.intcon(1 << 15); 3246 // The epoch generation is the range [1-32767] 3247 Node* epoch_mask = _gvn.intcon(32767); 3248 3249 // TLS 3250 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3251 3252 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3253 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3254 3255 // Load the eventwriter jobject handle. 3256 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3257 3258 // Null check the jobject handle. 3259 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3260 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3261 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3262 3263 // False path, jobj is null. 3264 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3265 3266 // True path, jobj is not null. 3267 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3268 3269 set_control(jobj_is_not_null); 3270 3271 // Load the threadObj for the CarrierThread. 3272 Node* threadObj = generate_current_thread(tls_ptr); 3273 3274 // Load the vthread. 3275 Node* vthread = generate_virtual_thread(tls_ptr); 3276 3277 // If vthread != threadObj, this is a virtual thread. 3278 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3279 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3280 IfNode* iff_vthread_not_equal_threadObj = 3281 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3282 3283 // False branch, fallback to threadObj. 3284 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3285 set_control(vthread_equal_threadObj); 3286 3287 // Load the tid field from the vthread object. 3288 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3289 3290 // Load the raw epoch value from the threadObj. 3291 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3292 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, 3293 _gvn.type(threadObj_epoch_offset)->isa_ptr(), 3294 TypeInt::CHAR, T_CHAR, 3295 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3296 3297 // Mask off the excluded information from the epoch. 3298 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3299 3300 // True branch, this is a virtual thread. 3301 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3302 set_control(vthread_not_equal_threadObj); 3303 3304 // Load the tid field from the vthread object. 3305 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3306 3307 // Continuation support determines if a virtual thread should be pinned. 3308 Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations)); 3309 Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3310 3311 // Load the raw epoch value from the vthread. 3312 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3313 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(), 3314 TypeInt::CHAR, T_CHAR, 3315 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3316 3317 // Mask off the excluded information from the epoch. 3318 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3319 3320 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3321 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3322 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3323 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3324 3325 // False branch, vthread is excluded, no need to write epoch info. 3326 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3327 3328 // True branch, vthread is included, update epoch info. 3329 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3330 set_control(included); 3331 3332 // Get epoch value. 3333 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3334 3335 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3336 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3337 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3338 3339 // Compare the epoch in the vthread to the current epoch generation. 3340 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3341 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3342 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3343 3344 // False path, epoch is equal, checkpoint information is valid. 3345 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3346 3347 // True path, epoch is not equal, write a checkpoint for the vthread. 3348 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3349 3350 set_control(epoch_is_not_equal); 3351 3352 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3353 // The call also updates the native thread local thread id and the vthread with the current epoch. 3354 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3355 OptoRuntime::jfr_write_checkpoint_Type(), 3356 SharedRuntime::jfr_write_checkpoint(), 3357 "write_checkpoint", TypePtr::BOTTOM); 3358 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3359 3360 // vthread epoch != current epoch 3361 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3362 record_for_igvn(epoch_compare_rgn); 3363 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3364 record_for_igvn(epoch_compare_mem); 3365 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3366 record_for_igvn(epoch_compare_io); 3367 3368 // Update control and phi nodes. 3369 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3370 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3371 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3372 epoch_compare_mem->init_req(_false_path, input_memory_state); 3373 epoch_compare_io->init_req(_true_path, i_o()); 3374 epoch_compare_io->init_req(_false_path, input_io_state); 3375 3376 // excluded != true 3377 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3378 record_for_igvn(exclude_compare_rgn); 3379 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3380 record_for_igvn(exclude_compare_mem); 3381 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3382 record_for_igvn(exclude_compare_io); 3383 3384 // Update control and phi nodes. 3385 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3386 exclude_compare_rgn->init_req(_false_path, excluded); 3387 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3388 exclude_compare_mem->init_req(_false_path, input_memory_state); 3389 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3390 exclude_compare_io->init_req(_false_path, input_io_state); 3391 3392 // vthread != threadObj 3393 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3394 record_for_igvn(vthread_compare_rgn); 3395 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3396 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3397 record_for_igvn(vthread_compare_io); 3398 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3399 record_for_igvn(tid); 3400 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR); 3401 record_for_igvn(exclusion); 3402 PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3403 record_for_igvn(pinVirtualThread); 3404 3405 // Update control and phi nodes. 3406 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3407 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3408 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3409 vthread_compare_mem->init_req(_false_path, input_memory_state); 3410 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3411 vthread_compare_io->init_req(_false_path, input_io_state); 3412 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3413 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3414 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3415 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3416 pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support)); 3417 pinVirtualThread->init_req(_false_path, _gvn.intcon(0)); 3418 3419 // Update branch state. 3420 set_control(_gvn.transform(vthread_compare_rgn)); 3421 set_all_memory(_gvn.transform(vthread_compare_mem)); 3422 set_i_o(_gvn.transform(vthread_compare_io)); 3423 3424 // Load the event writer oop by dereferencing the jobject handle. 3425 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3426 assert(klass_EventWriter->is_loaded(), "invariant"); 3427 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3428 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3429 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3430 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3431 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3432 3433 // Load the current thread id from the event writer object. 3434 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3435 // Get the field offset to, conditionally, store an updated tid value later. 3436 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3437 // Get the field offset to, conditionally, store an updated exclusion value later. 3438 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3439 // Get the field offset to, conditionally, store an updated pinVirtualThread value later. 3440 Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false); 3441 3442 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3443 record_for_igvn(event_writer_tid_compare_rgn); 3444 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3445 record_for_igvn(event_writer_tid_compare_mem); 3446 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3447 record_for_igvn(event_writer_tid_compare_io); 3448 3449 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3450 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3451 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3452 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3453 3454 // False path, tids are the same. 3455 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3456 3457 // True path, tid is not equal, need to update the tid in the event writer. 3458 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3459 record_for_igvn(tid_is_not_equal); 3460 3461 // Store the pin state to the event writer. 3462 store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered); 3463 3464 // Store the exclusion state to the event writer. 3465 Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift)); 3466 store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered); 3467 3468 // Store the tid to the event writer. 3469 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered); 3470 3471 // Update control and phi nodes. 3472 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3473 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3474 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3475 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3476 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3477 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3478 3479 // Result of top level CFG, Memory, IO and Value. 3480 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3481 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3482 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3483 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3484 3485 // Result control. 3486 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3487 result_rgn->init_req(_false_path, jobj_is_null); 3488 3489 // Result memory. 3490 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3491 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3492 3493 // Result IO. 3494 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3495 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3496 3497 // Result value. 3498 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3499 result_value->init_req(_false_path, null()); // return null 3500 3501 // Set output state. 3502 set_control(_gvn.transform(result_rgn)); 3503 set_all_memory(_gvn.transform(result_mem)); 3504 set_i_o(_gvn.transform(result_io)); 3505 set_result(result_rgn, result_value); 3506 return true; 3507 } 3508 3509 /* 3510 * The intrinsic is a model of this pseudo-code: 3511 * 3512 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3513 * if (carrierThread != thread) { // is virtual thread 3514 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3515 * bool excluded = vthread_epoch_raw & excluded_mask; 3516 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3517 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3518 * if (!excluded) { 3519 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3520 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3521 * } 3522 * Atomic::release_store(&tl->_vthread, true); 3523 * return; 3524 * } 3525 * Atomic::release_store(&tl->_vthread, false); 3526 */ 3527 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3528 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3529 3530 Node* input_memory_state = reset_memory(); 3531 set_all_memory(input_memory_state); 3532 3533 // The most significant bit of the u2 is used to denote thread exclusion 3534 Node* excluded_mask = _gvn.intcon(1 << 15); 3535 // The epoch generation is the range [1-32767] 3536 Node* epoch_mask = _gvn.intcon(32767); 3537 3538 Node* const carrierThread = generate_current_thread(jt); 3539 // If thread != carrierThread, this is a virtual thread. 3540 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3541 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3542 IfNode* iff_thread_not_equal_carrierThread = 3543 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3544 3545 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3546 3547 // False branch, is carrierThread. 3548 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3549 // Store release 3550 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true); 3551 3552 set_all_memory(input_memory_state); 3553 3554 // True branch, is virtual thread. 3555 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3556 set_control(thread_not_equal_carrierThread); 3557 3558 // Load the raw epoch value from the vthread. 3559 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3560 Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR, 3561 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3562 3563 // Mask off the excluded information from the epoch. 3564 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3565 3566 // Load the tid field from the thread. 3567 Node* tid = load_field_from_object(thread, "tid", "J"); 3568 3569 // Store the vthread tid to the jfr thread local. 3570 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3571 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true); 3572 3573 // Branch is_excluded to conditionalize updating the epoch . 3574 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3575 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3576 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3577 3578 // True branch, vthread is excluded, no need to write epoch info. 3579 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3580 set_control(excluded); 3581 Node* vthread_is_excluded = _gvn.intcon(1); 3582 3583 // False branch, vthread is included, update epoch info. 3584 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3585 set_control(included); 3586 Node* vthread_is_included = _gvn.intcon(0); 3587 3588 // Get epoch value. 3589 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3590 3591 // Store the vthread epoch to the jfr thread local. 3592 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3593 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true); 3594 3595 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3596 record_for_igvn(excluded_rgn); 3597 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3598 record_for_igvn(excluded_mem); 3599 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3600 record_for_igvn(exclusion); 3601 3602 // Merge the excluded control and memory. 3603 excluded_rgn->init_req(_true_path, excluded); 3604 excluded_rgn->init_req(_false_path, included); 3605 excluded_mem->init_req(_true_path, tid_memory); 3606 excluded_mem->init_req(_false_path, included_memory); 3607 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3608 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3609 3610 // Set intermediate state. 3611 set_control(_gvn.transform(excluded_rgn)); 3612 set_all_memory(excluded_mem); 3613 3614 // Store the vthread exclusion state to the jfr thread local. 3615 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3616 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true); 3617 3618 // Store release 3619 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true); 3620 3621 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3622 record_for_igvn(thread_compare_rgn); 3623 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3624 record_for_igvn(thread_compare_mem); 3625 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3626 record_for_igvn(vthread); 3627 3628 // Merge the thread_compare control and memory. 3629 thread_compare_rgn->init_req(_true_path, control()); 3630 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3631 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3632 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3633 3634 // Set output state. 3635 set_control(_gvn.transform(thread_compare_rgn)); 3636 set_all_memory(_gvn.transform(thread_compare_mem)); 3637 } 3638 3639 #endif // JFR_HAVE_INTRINSICS 3640 3641 //------------------------inline_native_currentCarrierThread------------------ 3642 bool LibraryCallKit::inline_native_currentCarrierThread() { 3643 Node* junk = nullptr; 3644 set_result(generate_current_thread(junk)); 3645 return true; 3646 } 3647 3648 //------------------------inline_native_currentThread------------------ 3649 bool LibraryCallKit::inline_native_currentThread() { 3650 Node* junk = nullptr; 3651 set_result(generate_virtual_thread(junk)); 3652 return true; 3653 } 3654 3655 //------------------------inline_native_setVthread------------------ 3656 bool LibraryCallKit::inline_native_setCurrentThread() { 3657 assert(C->method()->changes_current_thread(), 3658 "method changes current Thread but is not annotated ChangesCurrentThread"); 3659 Node* arr = argument(1); 3660 Node* thread = _gvn.transform(new ThreadLocalNode()); 3661 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3662 Node* thread_obj_handle 3663 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3664 thread_obj_handle = _gvn.transform(thread_obj_handle); 3665 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3666 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3667 3668 // Change the _monitor_owner_id of the JavaThread 3669 Node* tid = load_field_from_object(arr, "tid", "J"); 3670 Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset())); 3671 store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true); 3672 3673 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3674 return true; 3675 } 3676 3677 const Type* LibraryCallKit::scopedValueCache_type() { 3678 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3679 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3680 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3681 3682 // Because we create the scopedValue cache lazily we have to make the 3683 // type of the result BotPTR. 3684 bool xk = etype->klass_is_exact(); 3685 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); 3686 return objects_type; 3687 } 3688 3689 Node* LibraryCallKit::scopedValueCache_helper() { 3690 Node* thread = _gvn.transform(new ThreadLocalNode()); 3691 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3692 // We cannot use immutable_memory() because we might flip onto a 3693 // different carrier thread, at which point we'll need to use that 3694 // carrier thread's cache. 3695 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3696 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3697 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3698 } 3699 3700 //------------------------inline_native_scopedValueCache------------------ 3701 bool LibraryCallKit::inline_native_scopedValueCache() { 3702 Node* cache_obj_handle = scopedValueCache_helper(); 3703 const Type* objects_type = scopedValueCache_type(); 3704 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3705 3706 return true; 3707 } 3708 3709 //------------------------inline_native_setScopedValueCache------------------ 3710 bool LibraryCallKit::inline_native_setScopedValueCache() { 3711 Node* arr = argument(0); 3712 Node* cache_obj_handle = scopedValueCache_helper(); 3713 const Type* objects_type = scopedValueCache_type(); 3714 3715 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3716 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 3717 3718 return true; 3719 } 3720 3721 //------------------------inline_native_Continuation_pin and unpin----------- 3722 3723 // Shared implementation routine for both pin and unpin. 3724 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) { 3725 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3726 3727 // Save input memory. 3728 Node* input_memory_state = reset_memory(); 3729 set_all_memory(input_memory_state); 3730 3731 // TLS 3732 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3733 Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset())); 3734 Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered); 3735 3736 // Null check the last continuation object. 3737 Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null())); 3738 Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne)); 3739 IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3740 3741 // False path, last continuation is null. 3742 Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null)); 3743 3744 // True path, last continuation is not null. 3745 Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null)); 3746 3747 set_control(continuation_is_not_null); 3748 3749 // Load the pin count from the last continuation. 3750 Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset())); 3751 Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered); 3752 3753 // The loaded pin count is compared against a context specific rhs for over/underflow detection. 3754 Node* pin_count_rhs; 3755 if (unpin) { 3756 pin_count_rhs = _gvn.intcon(0); 3757 } else { 3758 pin_count_rhs = _gvn.intcon(UINT32_MAX); 3759 } 3760 Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs)); 3761 Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq)); 3762 IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN); 3763 3764 // True branch, pin count over/underflow. 3765 Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow)); 3766 { 3767 // Trap (but not deoptimize (Action_none)) and continue in the interpreter 3768 // which will throw IllegalStateException for pin count over/underflow. 3769 // No memory changed so far - we can use memory create by reset_memory() 3770 // at the beginning of this intrinsic. No need to call reset_memory() again. 3771 PreserveJVMState pjvms(this); 3772 set_control(pin_count_over_underflow); 3773 uncommon_trap(Deoptimization::Reason_intrinsic, 3774 Deoptimization::Action_none); 3775 assert(stopped(), "invariant"); 3776 } 3777 3778 // False branch, no pin count over/underflow. Increment or decrement pin count and store back. 3779 Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow)); 3780 set_control(valid_pin_count); 3781 3782 Node* next_pin_count; 3783 if (unpin) { 3784 next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1))); 3785 } else { 3786 next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1))); 3787 } 3788 3789 store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered); 3790 3791 // Result of top level CFG and Memory. 3792 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3793 record_for_igvn(result_rgn); 3794 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3795 record_for_igvn(result_mem); 3796 3797 result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count)); 3798 result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null)); 3799 result_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3800 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3801 3802 // Set output state. 3803 set_control(_gvn.transform(result_rgn)); 3804 set_all_memory(_gvn.transform(result_mem)); 3805 3806 return true; 3807 } 3808 3809 //---------------------------load_mirror_from_klass---------------------------- 3810 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3811 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3812 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3813 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3814 // mirror = ((OopHandle)mirror)->resolve(); 3815 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3816 } 3817 3818 //-----------------------load_klass_from_mirror_common------------------------- 3819 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3820 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3821 // and branch to the given path on the region. 3822 // If never_see_null, take an uncommon trap on null, so we can optimistically 3823 // compile for the non-null case. 3824 // If the region is null, force never_see_null = true. 3825 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3826 bool never_see_null, 3827 RegionNode* region, 3828 int null_path, 3829 int offset) { 3830 if (region == nullptr) never_see_null = true; 3831 Node* p = basic_plus_adr(mirror, offset); 3832 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3833 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3834 Node* null_ctl = top(); 3835 kls = null_check_oop(kls, &null_ctl, never_see_null); 3836 if (region != nullptr) { 3837 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3838 region->init_req(null_path, null_ctl); 3839 } else { 3840 assert(null_ctl == top(), "no loose ends"); 3841 } 3842 return kls; 3843 } 3844 3845 //--------------------(inline_native_Class_query helpers)--------------------- 3846 // Use this for JVM_ACC_INTERFACE. 3847 // Fall through if (mods & mask) == bits, take the guard otherwise. 3848 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region, 3849 ByteSize offset, const Type* type, BasicType bt) { 3850 // Branch around if the given klass has the given modifier bit set. 3851 // Like generate_guard, adds a new path onto the region. 3852 Node* modp = basic_plus_adr(kls, in_bytes(offset)); 3853 Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered); 3854 Node* mask = intcon(modifier_mask); 3855 Node* bits = intcon(modifier_bits); 3856 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3857 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3858 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3859 return generate_fair_guard(bol, region); 3860 } 3861 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3862 return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region, 3863 Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR); 3864 } 3865 3866 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast. 3867 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3868 return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region, 3869 Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN); 3870 } 3871 3872 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3873 return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region); 3874 } 3875 3876 //-------------------------inline_native_Class_query------------------- 3877 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3878 const Type* return_type = TypeInt::BOOL; 3879 Node* prim_return_value = top(); // what happens if it's a primitive class? 3880 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3881 bool expect_prim = false; // most of these guys expect to work on refs 3882 3883 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3884 3885 Node* mirror = argument(0); 3886 Node* obj = top(); 3887 3888 switch (id) { 3889 case vmIntrinsics::_isInstance: 3890 // nothing is an instance of a primitive type 3891 prim_return_value = intcon(0); 3892 obj = argument(1); 3893 break; 3894 case vmIntrinsics::_getModifiers: 3895 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3896 return_type = TypeInt::CHAR; 3897 break; 3898 case vmIntrinsics::_isInterface: 3899 prim_return_value = intcon(0); 3900 break; 3901 case vmIntrinsics::_isArray: 3902 prim_return_value = intcon(0); 3903 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 3904 break; 3905 case vmIntrinsics::_isPrimitive: 3906 prim_return_value = intcon(1); 3907 expect_prim = true; // obviously 3908 break; 3909 case vmIntrinsics::_isHidden: 3910 prim_return_value = intcon(0); 3911 break; 3912 case vmIntrinsics::_getSuperclass: 3913 prim_return_value = null(); 3914 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3915 break; 3916 case vmIntrinsics::_getClassAccessFlags: 3917 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3918 return_type = TypeInt::CHAR; 3919 break; 3920 default: 3921 fatal_unexpected_iid(id); 3922 break; 3923 } 3924 3925 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3926 if (mirror_con == nullptr) return false; // cannot happen? 3927 3928 #ifndef PRODUCT 3929 if (C->print_intrinsics() || C->print_inlining()) { 3930 ciType* k = mirror_con->java_mirror_type(); 3931 if (k) { 3932 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3933 k->print_name(); 3934 tty->cr(); 3935 } 3936 } 3937 #endif 3938 3939 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3940 RegionNode* region = new RegionNode(PATH_LIMIT); 3941 record_for_igvn(region); 3942 PhiNode* phi = new PhiNode(region, return_type); 3943 3944 // The mirror will never be null of Reflection.getClassAccessFlags, however 3945 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3946 // if it is. See bug 4774291. 3947 3948 // For Reflection.getClassAccessFlags(), the null check occurs in 3949 // the wrong place; see inline_unsafe_access(), above, for a similar 3950 // situation. 3951 mirror = null_check(mirror); 3952 // If mirror or obj is dead, only null-path is taken. 3953 if (stopped()) return true; 3954 3955 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3956 3957 // Now load the mirror's klass metaobject, and null-check it. 3958 // Side-effects region with the control path if the klass is null. 3959 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 3960 // If kls is null, we have a primitive mirror. 3961 phi->init_req(_prim_path, prim_return_value); 3962 if (stopped()) { set_result(region, phi); return true; } 3963 bool safe_for_replace = (region->in(_prim_path) == top()); 3964 3965 Node* p; // handy temp 3966 Node* null_ctl; 3967 3968 // Now that we have the non-null klass, we can perform the real query. 3969 // For constant classes, the query will constant-fold in LoadNode::Value. 3970 Node* query_value = top(); 3971 switch (id) { 3972 case vmIntrinsics::_isInstance: 3973 // nothing is an instance of a primitive type 3974 query_value = gen_instanceof(obj, kls, safe_for_replace); 3975 break; 3976 3977 case vmIntrinsics::_getModifiers: 3978 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 3979 query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3980 break; 3981 3982 case vmIntrinsics::_isInterface: 3983 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3984 if (generate_interface_guard(kls, region) != nullptr) 3985 // A guard was added. If the guard is taken, it was an interface. 3986 phi->add_req(intcon(1)); 3987 // If we fall through, it's a plain class. 3988 query_value = intcon(0); 3989 break; 3990 3991 case vmIntrinsics::_isArray: 3992 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 3993 if (generate_array_guard(kls, region) != nullptr) 3994 // A guard was added. If the guard is taken, it was an array. 3995 phi->add_req(intcon(1)); 3996 // If we fall through, it's a plain class. 3997 query_value = intcon(0); 3998 break; 3999 4000 case vmIntrinsics::_isPrimitive: 4001 query_value = intcon(0); // "normal" path produces false 4002 break; 4003 4004 case vmIntrinsics::_isHidden: 4005 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 4006 if (generate_hidden_class_guard(kls, region) != nullptr) 4007 // A guard was added. If the guard is taken, it was an hidden class. 4008 phi->add_req(intcon(1)); 4009 // If we fall through, it's a plain class. 4010 query_value = intcon(0); 4011 break; 4012 4013 4014 case vmIntrinsics::_getSuperclass: 4015 // The rules here are somewhat unfortunate, but we can still do better 4016 // with random logic than with a JNI call. 4017 // Interfaces store null or Object as _super, but must report null. 4018 // Arrays store an intermediate super as _super, but must report Object. 4019 // Other types can report the actual _super. 4020 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4021 if (generate_interface_guard(kls, region) != nullptr) 4022 // A guard was added. If the guard is taken, it was an interface. 4023 phi->add_req(null()); 4024 if (generate_array_guard(kls, region) != nullptr) 4025 // A guard was added. If the guard is taken, it was an array. 4026 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 4027 // If we fall through, it's a plain class. Get its _super. 4028 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 4029 kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4030 null_ctl = top(); 4031 kls = null_check_oop(kls, &null_ctl); 4032 if (null_ctl != top()) { 4033 // If the guard is taken, Object.superClass is null (both klass and mirror). 4034 region->add_req(null_ctl); 4035 phi ->add_req(null()); 4036 } 4037 if (!stopped()) { 4038 query_value = load_mirror_from_klass(kls); 4039 } 4040 break; 4041 4042 case vmIntrinsics::_getClassAccessFlags: 4043 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 4044 query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered); 4045 break; 4046 4047 default: 4048 fatal_unexpected_iid(id); 4049 break; 4050 } 4051 4052 // Fall-through is the normal case of a query to a real class. 4053 phi->init_req(1, query_value); 4054 region->init_req(1, control()); 4055 4056 C->set_has_split_ifs(true); // Has chance for split-if optimization 4057 set_result(region, phi); 4058 return true; 4059 } 4060 4061 //-------------------------inline_Class_cast------------------- 4062 bool LibraryCallKit::inline_Class_cast() { 4063 Node* mirror = argument(0); // Class 4064 Node* obj = argument(1); 4065 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4066 if (mirror_con == nullptr) { 4067 return false; // dead path (mirror->is_top()). 4068 } 4069 if (obj == nullptr || obj->is_top()) { 4070 return false; // dead path 4071 } 4072 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 4073 4074 // First, see if Class.cast() can be folded statically. 4075 // java_mirror_type() returns non-null for compile-time Class constants. 4076 ciType* tm = mirror_con->java_mirror_type(); 4077 if (tm != nullptr && tm->is_klass() && 4078 tp != nullptr) { 4079 if (!tp->is_loaded()) { 4080 // Don't use intrinsic when class is not loaded. 4081 return false; 4082 } else { 4083 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 4084 if (static_res == Compile::SSC_always_true) { 4085 // isInstance() is true - fold the code. 4086 set_result(obj); 4087 return true; 4088 } else if (static_res == Compile::SSC_always_false) { 4089 // Don't use intrinsic, have to throw ClassCastException. 4090 // If the reference is null, the non-intrinsic bytecode will 4091 // be optimized appropriately. 4092 return false; 4093 } 4094 } 4095 } 4096 4097 // Bailout intrinsic and do normal inlining if exception path is frequent. 4098 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4099 return false; 4100 } 4101 4102 // Generate dynamic checks. 4103 // Class.cast() is java implementation of _checkcast bytecode. 4104 // Do checkcast (Parse::do_checkcast()) optimizations here. 4105 4106 mirror = null_check(mirror); 4107 // If mirror is dead, only null-path is taken. 4108 if (stopped()) { 4109 return true; 4110 } 4111 4112 // Not-subtype or the mirror's klass ptr is null (in case it is a primitive). 4113 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 4114 RegionNode* region = new RegionNode(PATH_LIMIT); 4115 record_for_igvn(region); 4116 4117 // Now load the mirror's klass metaobject, and null-check it. 4118 // If kls is null, we have a primitive mirror and 4119 // nothing is an instance of a primitive type. 4120 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4121 4122 Node* res = top(); 4123 if (!stopped()) { 4124 Node* bad_type_ctrl = top(); 4125 // Do checkcast optimizations. 4126 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4127 region->init_req(_bad_type_path, bad_type_ctrl); 4128 } 4129 if (region->in(_prim_path) != top() || 4130 region->in(_bad_type_path) != top()) { 4131 // Let Interpreter throw ClassCastException. 4132 PreserveJVMState pjvms(this); 4133 set_control(_gvn.transform(region)); 4134 uncommon_trap(Deoptimization::Reason_intrinsic, 4135 Deoptimization::Action_maybe_recompile); 4136 } 4137 if (!stopped()) { 4138 set_result(res); 4139 } 4140 return true; 4141 } 4142 4143 4144 //--------------------------inline_native_subtype_check------------------------ 4145 // This intrinsic takes the JNI calls out of the heart of 4146 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4147 bool LibraryCallKit::inline_native_subtype_check() { 4148 // Pull both arguments off the stack. 4149 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4150 args[0] = argument(0); 4151 args[1] = argument(1); 4152 Node* klasses[2]; // corresponding Klasses: superk, subk 4153 klasses[0] = klasses[1] = top(); 4154 4155 enum { 4156 // A full decision tree on {superc is prim, subc is prim}: 4157 _prim_0_path = 1, // {P,N} => false 4158 // {P,P} & superc!=subc => false 4159 _prim_same_path, // {P,P} & superc==subc => true 4160 _prim_1_path, // {N,P} => false 4161 _ref_subtype_path, // {N,N} & subtype check wins => true 4162 _both_ref_path, // {N,N} & subtype check loses => false 4163 PATH_LIMIT 4164 }; 4165 4166 RegionNode* region = new RegionNode(PATH_LIMIT); 4167 Node* phi = new PhiNode(region, TypeInt::BOOL); 4168 record_for_igvn(region); 4169 4170 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4171 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4172 int class_klass_offset = java_lang_Class::klass_offset(); 4173 4174 // First null-check both mirrors and load each mirror's klass metaobject. 4175 int which_arg; 4176 for (which_arg = 0; which_arg <= 1; which_arg++) { 4177 Node* arg = args[which_arg]; 4178 arg = null_check(arg); 4179 if (stopped()) break; 4180 args[which_arg] = arg; 4181 4182 Node* p = basic_plus_adr(arg, class_klass_offset); 4183 Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type); 4184 klasses[which_arg] = _gvn.transform(kls); 4185 } 4186 4187 // Having loaded both klasses, test each for null. 4188 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4189 for (which_arg = 0; which_arg <= 1; which_arg++) { 4190 Node* kls = klasses[which_arg]; 4191 Node* null_ctl = top(); 4192 kls = null_check_oop(kls, &null_ctl, never_see_null); 4193 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 4194 region->init_req(prim_path, null_ctl); 4195 if (stopped()) break; 4196 klasses[which_arg] = kls; 4197 } 4198 4199 if (!stopped()) { 4200 // now we have two reference types, in klasses[0..1] 4201 Node* subk = klasses[1]; // the argument to isAssignableFrom 4202 Node* superk = klasses[0]; // the receiver 4203 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4204 // now we have a successful reference subtype check 4205 region->set_req(_ref_subtype_path, control()); 4206 } 4207 4208 // If both operands are primitive (both klasses null), then 4209 // we must return true when they are identical primitives. 4210 // It is convenient to test this after the first null klass check. 4211 set_control(region->in(_prim_0_path)); // go back to first null check 4212 if (!stopped()) { 4213 // Since superc is primitive, make a guard for the superc==subc case. 4214 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4215 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4216 generate_guard(bol_eq, region, PROB_FAIR); 4217 if (region->req() == PATH_LIMIT+1) { 4218 // A guard was added. If the added guard is taken, superc==subc. 4219 region->swap_edges(PATH_LIMIT, _prim_same_path); 4220 region->del_req(PATH_LIMIT); 4221 } 4222 region->set_req(_prim_0_path, control()); // Not equal after all. 4223 } 4224 4225 // these are the only paths that produce 'true': 4226 phi->set_req(_prim_same_path, intcon(1)); 4227 phi->set_req(_ref_subtype_path, intcon(1)); 4228 4229 // pull together the cases: 4230 assert(region->req() == PATH_LIMIT, "sane region"); 4231 for (uint i = 1; i < region->req(); i++) { 4232 Node* ctl = region->in(i); 4233 if (ctl == nullptr || ctl == top()) { 4234 region->set_req(i, top()); 4235 phi ->set_req(i, top()); 4236 } else if (phi->in(i) == nullptr) { 4237 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4238 } 4239 } 4240 4241 set_control(_gvn.transform(region)); 4242 set_result(_gvn.transform(phi)); 4243 return true; 4244 } 4245 4246 //---------------------generate_array_guard_common------------------------ 4247 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 4248 bool obj_array, bool not_array, Node** obj) { 4249 4250 if (stopped()) { 4251 return nullptr; 4252 } 4253 4254 // If obj_array/non_array==false/false: 4255 // Branch around if the given klass is in fact an array (either obj or prim). 4256 // If obj_array/non_array==false/true: 4257 // Branch around if the given klass is not an array klass of any kind. 4258 // If obj_array/non_array==true/true: 4259 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 4260 // If obj_array/non_array==true/false: 4261 // Branch around if the kls is an oop array (Object[] or subtype) 4262 // 4263 // Like generate_guard, adds a new path onto the region. 4264 jint layout_con = 0; 4265 Node* layout_val = get_layout_helper(kls, layout_con); 4266 if (layout_val == nullptr) { 4267 bool query = (obj_array 4268 ? Klass::layout_helper_is_objArray(layout_con) 4269 : Klass::layout_helper_is_array(layout_con)); 4270 if (query == not_array) { 4271 return nullptr; // never a branch 4272 } else { // always a branch 4273 Node* always_branch = control(); 4274 if (region != nullptr) 4275 region->add_req(always_branch); 4276 set_control(top()); 4277 return always_branch; 4278 } 4279 } 4280 // Now test the correct condition. 4281 jint nval = (obj_array 4282 ? (jint)(Klass::_lh_array_tag_type_value 4283 << Klass::_lh_array_tag_shift) 4284 : Klass::_lh_neutral_value); 4285 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4286 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 4287 // invert the test if we are looking for a non-array 4288 if (not_array) btest = BoolTest(btest).negate(); 4289 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4290 Node* ctrl = generate_fair_guard(bol, region); 4291 Node* is_array_ctrl = not_array ? control() : ctrl; 4292 if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) { 4293 // Keep track of the fact that 'obj' is an array to prevent 4294 // array specific accesses from floating above the guard. 4295 Node* cast = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM)); 4296 // Check for top because in rare cases, the type system can determine that 4297 // the object can't be an array but the layout helper check is not folded. 4298 if (!cast->is_top()) { 4299 *obj = cast; 4300 } 4301 } 4302 return ctrl; 4303 } 4304 4305 4306 //-----------------------inline_native_newArray-------------------------- 4307 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 4308 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4309 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4310 Node* mirror; 4311 Node* count_val; 4312 if (uninitialized) { 4313 null_check_receiver(); 4314 mirror = argument(1); 4315 count_val = argument(2); 4316 } else { 4317 mirror = argument(0); 4318 count_val = argument(1); 4319 } 4320 4321 mirror = null_check(mirror); 4322 // If mirror or obj is dead, only null-path is taken. 4323 if (stopped()) return true; 4324 4325 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4326 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4327 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4328 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4329 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4330 4331 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4332 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4333 result_reg, _slow_path); 4334 Node* normal_ctl = control(); 4335 Node* no_array_ctl = result_reg->in(_slow_path); 4336 4337 // Generate code for the slow case. We make a call to newArray(). 4338 set_control(no_array_ctl); 4339 if (!stopped()) { 4340 // Either the input type is void.class, or else the 4341 // array klass has not yet been cached. Either the 4342 // ensuing call will throw an exception, or else it 4343 // will cache the array klass for next time. 4344 PreserveJVMState pjvms(this); 4345 CallJavaNode* slow_call = nullptr; 4346 if (uninitialized) { 4347 // Generate optimized virtual call (holder class 'Unsafe' is final) 4348 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4349 } else { 4350 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4351 } 4352 Node* slow_result = set_results_for_java_call(slow_call); 4353 // this->control() comes from set_results_for_java_call 4354 result_reg->set_req(_slow_path, control()); 4355 result_val->set_req(_slow_path, slow_result); 4356 result_io ->set_req(_slow_path, i_o()); 4357 result_mem->set_req(_slow_path, reset_memory()); 4358 } 4359 4360 set_control(normal_ctl); 4361 if (!stopped()) { 4362 // Normal case: The array type has been cached in the java.lang.Class. 4363 // The following call works fine even if the array type is polymorphic. 4364 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4365 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4366 result_reg->init_req(_normal_path, control()); 4367 result_val->init_req(_normal_path, obj); 4368 result_io ->init_req(_normal_path, i_o()); 4369 result_mem->init_req(_normal_path, reset_memory()); 4370 4371 if (uninitialized) { 4372 // Mark the allocation so that zeroing is skipped 4373 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4374 alloc->maybe_set_complete(&_gvn); 4375 } 4376 } 4377 4378 // Return the combined state. 4379 set_i_o( _gvn.transform(result_io) ); 4380 set_all_memory( _gvn.transform(result_mem)); 4381 4382 C->set_has_split_ifs(true); // Has chance for split-if optimization 4383 set_result(result_reg, result_val); 4384 return true; 4385 } 4386 4387 //----------------------inline_native_getLength-------------------------- 4388 // public static native int java.lang.reflect.Array.getLength(Object array); 4389 bool LibraryCallKit::inline_native_getLength() { 4390 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4391 4392 Node* array = null_check(argument(0)); 4393 // If array is dead, only null-path is taken. 4394 if (stopped()) return true; 4395 4396 // Deoptimize if it is a non-array. 4397 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array); 4398 4399 if (non_array != nullptr) { 4400 PreserveJVMState pjvms(this); 4401 set_control(non_array); 4402 uncommon_trap(Deoptimization::Reason_intrinsic, 4403 Deoptimization::Action_maybe_recompile); 4404 } 4405 4406 // If control is dead, only non-array-path is taken. 4407 if (stopped()) return true; 4408 4409 // The works fine even if the array type is polymorphic. 4410 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4411 Node* result = load_array_length(array); 4412 4413 C->set_has_split_ifs(true); // Has chance for split-if optimization 4414 set_result(result); 4415 return true; 4416 } 4417 4418 //------------------------inline_array_copyOf---------------------------- 4419 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4420 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4421 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4422 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4423 4424 // Get the arguments. 4425 Node* original = argument(0); 4426 Node* start = is_copyOfRange? argument(1): intcon(0); 4427 Node* end = is_copyOfRange? argument(2): argument(1); 4428 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4429 4430 Node* newcopy = nullptr; 4431 4432 // Set the original stack and the reexecute bit for the interpreter to reexecute 4433 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4434 { PreserveReexecuteState preexecs(this); 4435 jvms()->set_should_reexecute(true); 4436 4437 array_type_mirror = null_check(array_type_mirror); 4438 original = null_check(original); 4439 4440 // Check if a null path was taken unconditionally. 4441 if (stopped()) return true; 4442 4443 Node* orig_length = load_array_length(original); 4444 4445 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4446 klass_node = null_check(klass_node); 4447 4448 RegionNode* bailout = new RegionNode(1); 4449 record_for_igvn(bailout); 4450 4451 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4452 // Bail out if that is so. 4453 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 4454 if (not_objArray != nullptr) { 4455 // Improve the klass node's type from the new optimistic assumption: 4456 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4457 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 4458 Node* cast = new CastPPNode(control(), klass_node, akls); 4459 klass_node = _gvn.transform(cast); 4460 } 4461 4462 // Bail out if either start or end is negative. 4463 generate_negative_guard(start, bailout, &start); 4464 generate_negative_guard(end, bailout, &end); 4465 4466 Node* length = end; 4467 if (_gvn.type(start) != TypeInt::ZERO) { 4468 length = _gvn.transform(new SubINode(end, start)); 4469 } 4470 4471 // Bail out if length is negative (i.e., if start > end). 4472 // Without this the new_array would throw 4473 // NegativeArraySizeException but IllegalArgumentException is what 4474 // should be thrown 4475 generate_negative_guard(length, bailout, &length); 4476 4477 // Bail out if start is larger than the original length 4478 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4479 generate_negative_guard(orig_tail, bailout, &orig_tail); 4480 4481 if (bailout->req() > 1) { 4482 PreserveJVMState pjvms(this); 4483 set_control(_gvn.transform(bailout)); 4484 uncommon_trap(Deoptimization::Reason_intrinsic, 4485 Deoptimization::Action_maybe_recompile); 4486 } 4487 4488 if (!stopped()) { 4489 // How many elements will we copy from the original? 4490 // The answer is MinI(orig_tail, length). 4491 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 4492 4493 // Generate a direct call to the right arraycopy function(s). 4494 // We know the copy is disjoint but we might not know if the 4495 // oop stores need checking. 4496 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4497 // This will fail a store-check if x contains any non-nulls. 4498 4499 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4500 // loads/stores but it is legal only if we're sure the 4501 // Arrays.copyOf would succeed. So we need all input arguments 4502 // to the copyOf to be validated, including that the copy to the 4503 // new array won't trigger an ArrayStoreException. That subtype 4504 // check can be optimized if we know something on the type of 4505 // the input array from type speculation. 4506 if (_gvn.type(klass_node)->singleton()) { 4507 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4508 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4509 4510 int test = C->static_subtype_check(superk, subk); 4511 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4512 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4513 if (t_original->speculative_type() != nullptr) { 4514 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4515 } 4516 } 4517 } 4518 4519 bool validated = false; 4520 // Reason_class_check rather than Reason_intrinsic because we 4521 // want to intrinsify even if this traps. 4522 if (!too_many_traps(Deoptimization::Reason_class_check)) { 4523 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4524 4525 if (not_subtype_ctrl != top()) { 4526 PreserveJVMState pjvms(this); 4527 set_control(not_subtype_ctrl); 4528 uncommon_trap(Deoptimization::Reason_class_check, 4529 Deoptimization::Action_make_not_entrant); 4530 assert(stopped(), "Should be stopped"); 4531 } 4532 validated = true; 4533 } 4534 4535 if (!stopped()) { 4536 newcopy = new_array(klass_node, length, 0); // no arguments to push 4537 4538 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true, 4539 load_object_klass(original), klass_node); 4540 if (!is_copyOfRange) { 4541 ac->set_copyof(validated); 4542 } else { 4543 ac->set_copyofrange(validated); 4544 } 4545 Node* n = _gvn.transform(ac); 4546 if (n == ac) { 4547 ac->connect_outputs(this); 4548 } else { 4549 assert(validated, "shouldn't transform if all arguments not validated"); 4550 set_all_memory(n); 4551 } 4552 } 4553 } 4554 } // original reexecute is set back here 4555 4556 C->set_has_split_ifs(true); // Has chance for split-if optimization 4557 if (!stopped()) { 4558 set_result(newcopy); 4559 } 4560 return true; 4561 } 4562 4563 4564 //----------------------generate_virtual_guard--------------------------- 4565 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4566 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4567 RegionNode* slow_region) { 4568 ciMethod* method = callee(); 4569 int vtable_index = method->vtable_index(); 4570 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4571 "bad index %d", vtable_index); 4572 // Get the Method* out of the appropriate vtable entry. 4573 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4574 vtable_index*vtableEntry::size_in_bytes() + 4575 in_bytes(vtableEntry::method_offset()); 4576 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4577 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4578 4579 // Compare the target method with the expected method (e.g., Object.hashCode). 4580 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4581 4582 Node* native_call = makecon(native_call_addr); 4583 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4584 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4585 4586 return generate_slow_guard(test_native, slow_region); 4587 } 4588 4589 //-----------------------generate_method_call---------------------------- 4590 // Use generate_method_call to make a slow-call to the real 4591 // method if the fast path fails. An alternative would be to 4592 // use a stub like OptoRuntime::slow_arraycopy_Java. 4593 // This only works for expanding the current library call, 4594 // not another intrinsic. (E.g., don't use this for making an 4595 // arraycopy call inside of the copyOf intrinsic.) 4596 CallJavaNode* 4597 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4598 // When compiling the intrinsic method itself, do not use this technique. 4599 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4600 4601 ciMethod* method = callee(); 4602 // ensure the JVMS we have will be correct for this call 4603 guarantee(method_id == method->intrinsic_id(), "must match"); 4604 4605 const TypeFunc* tf = TypeFunc::make(method); 4606 if (res_not_null) { 4607 assert(tf->return_type() == T_OBJECT, ""); 4608 const TypeTuple* range = tf->range(); 4609 const Type** fields = TypeTuple::fields(range->cnt()); 4610 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4611 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4612 tf = TypeFunc::make(tf->domain(), new_range); 4613 } 4614 CallJavaNode* slow_call; 4615 if (is_static) { 4616 assert(!is_virtual, ""); 4617 slow_call = new CallStaticJavaNode(C, tf, 4618 SharedRuntime::get_resolve_static_call_stub(), method); 4619 } else if (is_virtual) { 4620 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4621 int vtable_index = Method::invalid_vtable_index; 4622 if (UseInlineCaches) { 4623 // Suppress the vtable call 4624 } else { 4625 // hashCode and clone are not a miranda methods, 4626 // so the vtable index is fixed. 4627 // No need to use the linkResolver to get it. 4628 vtable_index = method->vtable_index(); 4629 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4630 "bad index %d", vtable_index); 4631 } 4632 slow_call = new CallDynamicJavaNode(tf, 4633 SharedRuntime::get_resolve_virtual_call_stub(), 4634 method, vtable_index); 4635 } else { // neither virtual nor static: opt_virtual 4636 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4637 slow_call = new CallStaticJavaNode(C, tf, 4638 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4639 slow_call->set_optimized_virtual(true); 4640 } 4641 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4642 // To be able to issue a direct call (optimized virtual or virtual) 4643 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4644 // about the method being invoked should be attached to the call site to 4645 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4646 slow_call->set_override_symbolic_info(true); 4647 } 4648 set_arguments_for_java_call(slow_call); 4649 set_edges_for_java_call(slow_call); 4650 return slow_call; 4651 } 4652 4653 4654 /** 4655 * Build special case code for calls to hashCode on an object. This call may 4656 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4657 * slightly different code. 4658 */ 4659 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4660 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4661 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4662 4663 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4664 4665 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4666 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4667 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4668 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4669 Node* obj = nullptr; 4670 if (!is_static) { 4671 // Check for hashing null object 4672 obj = null_check_receiver(); 4673 if (stopped()) return true; // unconditionally null 4674 result_reg->init_req(_null_path, top()); 4675 result_val->init_req(_null_path, top()); 4676 } else { 4677 // Do a null check, and return zero if null. 4678 // System.identityHashCode(null) == 0 4679 obj = argument(0); 4680 Node* null_ctl = top(); 4681 obj = null_check_oop(obj, &null_ctl); 4682 result_reg->init_req(_null_path, null_ctl); 4683 result_val->init_req(_null_path, _gvn.intcon(0)); 4684 } 4685 4686 // Unconditionally null? Then return right away. 4687 if (stopped()) { 4688 set_control( result_reg->in(_null_path)); 4689 if (!stopped()) 4690 set_result(result_val->in(_null_path)); 4691 return true; 4692 } 4693 4694 // We only go to the fast case code if we pass a number of guards. The 4695 // paths which do not pass are accumulated in the slow_region. 4696 RegionNode* slow_region = new RegionNode(1); 4697 record_for_igvn(slow_region); 4698 4699 // If this is a virtual call, we generate a funny guard. We pull out 4700 // the vtable entry corresponding to hashCode() from the target object. 4701 // If the target method which we are calling happens to be the native 4702 // Object hashCode() method, we pass the guard. We do not need this 4703 // guard for non-virtual calls -- the caller is known to be the native 4704 // Object hashCode(). 4705 if (is_virtual) { 4706 // After null check, get the object's klass. 4707 Node* obj_klass = load_object_klass(obj); 4708 generate_virtual_guard(obj_klass, slow_region); 4709 } 4710 4711 // Get the header out of the object, use LoadMarkNode when available 4712 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4713 // The control of the load must be null. Otherwise, the load can move before 4714 // the null check after castPP removal. 4715 Node* no_ctrl = nullptr; 4716 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4717 4718 if (!UseObjectMonitorTable) { 4719 // Test the header to see if it is safe to read w.r.t. locking. 4720 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); 4721 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4722 if (LockingMode == LM_LIGHTWEIGHT) { 4723 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value); 4724 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val)); 4725 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq)); 4726 4727 generate_slow_guard(test_monitor, slow_region); 4728 } else { 4729 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4730 Node *chk_unlocked = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val)); 4731 Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne)); 4732 4733 generate_slow_guard(test_not_unlocked, slow_region); 4734 } 4735 } 4736 4737 // Get the hash value and check to see that it has been properly assigned. 4738 // We depend on hash_mask being at most 32 bits and avoid the use of 4739 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4740 // vm: see markWord.hpp. 4741 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4742 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4743 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4744 // This hack lets the hash bits live anywhere in the mark object now, as long 4745 // as the shift drops the relevant bits into the low 32 bits. Note that 4746 // Java spec says that HashCode is an int so there's no point in capturing 4747 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4748 hshifted_header = ConvX2I(hshifted_header); 4749 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4750 4751 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4752 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4753 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4754 4755 generate_slow_guard(test_assigned, slow_region); 4756 4757 Node* init_mem = reset_memory(); 4758 // fill in the rest of the null path: 4759 result_io ->init_req(_null_path, i_o()); 4760 result_mem->init_req(_null_path, init_mem); 4761 4762 result_val->init_req(_fast_path, hash_val); 4763 result_reg->init_req(_fast_path, control()); 4764 result_io ->init_req(_fast_path, i_o()); 4765 result_mem->init_req(_fast_path, init_mem); 4766 4767 // Generate code for the slow case. We make a call to hashCode(). 4768 set_control(_gvn.transform(slow_region)); 4769 if (!stopped()) { 4770 // No need for PreserveJVMState, because we're using up the present state. 4771 set_all_memory(init_mem); 4772 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4773 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 4774 Node* slow_result = set_results_for_java_call(slow_call); 4775 // this->control() comes from set_results_for_java_call 4776 result_reg->init_req(_slow_path, control()); 4777 result_val->init_req(_slow_path, slow_result); 4778 result_io ->set_req(_slow_path, i_o()); 4779 result_mem ->set_req(_slow_path, reset_memory()); 4780 } 4781 4782 // Return the combined state. 4783 set_i_o( _gvn.transform(result_io) ); 4784 set_all_memory( _gvn.transform(result_mem)); 4785 4786 set_result(result_reg, result_val); 4787 return true; 4788 } 4789 4790 //---------------------------inline_native_getClass---------------------------- 4791 // public final native Class<?> java.lang.Object.getClass(); 4792 // 4793 // Build special case code for calls to getClass on an object. 4794 bool LibraryCallKit::inline_native_getClass() { 4795 Node* obj = null_check_receiver(); 4796 if (stopped()) return true; 4797 set_result(load_mirror_from_klass(load_object_klass(obj))); 4798 return true; 4799 } 4800 4801 //-----------------inline_native_Reflection_getCallerClass--------------------- 4802 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4803 // 4804 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4805 // 4806 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4807 // in that it must skip particular security frames and checks for 4808 // caller sensitive methods. 4809 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4810 #ifndef PRODUCT 4811 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4812 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4813 } 4814 #endif 4815 4816 if (!jvms()->has_method()) { 4817 #ifndef PRODUCT 4818 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4819 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4820 } 4821 #endif 4822 return false; 4823 } 4824 4825 // Walk back up the JVM state to find the caller at the required 4826 // depth. 4827 JVMState* caller_jvms = jvms(); 4828 4829 // Cf. JVM_GetCallerClass 4830 // NOTE: Start the loop at depth 1 because the current JVM state does 4831 // not include the Reflection.getCallerClass() frame. 4832 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 4833 ciMethod* m = caller_jvms->method(); 4834 switch (n) { 4835 case 0: 4836 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4837 break; 4838 case 1: 4839 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4840 if (!m->caller_sensitive()) { 4841 #ifndef PRODUCT 4842 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4843 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4844 } 4845 #endif 4846 return false; // bail-out; let JVM_GetCallerClass do the work 4847 } 4848 break; 4849 default: 4850 if (!m->is_ignored_by_security_stack_walk()) { 4851 // We have reached the desired frame; return the holder class. 4852 // Acquire method holder as java.lang.Class and push as constant. 4853 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4854 ciInstance* caller_mirror = caller_klass->java_mirror(); 4855 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4856 4857 #ifndef PRODUCT 4858 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4859 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4860 tty->print_cr(" JVM state at this point:"); 4861 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4862 ciMethod* m = jvms()->of_depth(i)->method(); 4863 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4864 } 4865 } 4866 #endif 4867 return true; 4868 } 4869 break; 4870 } 4871 } 4872 4873 #ifndef PRODUCT 4874 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4875 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4876 tty->print_cr(" JVM state at this point:"); 4877 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4878 ciMethod* m = jvms()->of_depth(i)->method(); 4879 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4880 } 4881 } 4882 #endif 4883 4884 return false; // bail-out; let JVM_GetCallerClass do the work 4885 } 4886 4887 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4888 Node* arg = argument(0); 4889 Node* result = nullptr; 4890 4891 switch (id) { 4892 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4893 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4894 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4895 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4896 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 4897 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 4898 4899 case vmIntrinsics::_doubleToLongBits: { 4900 // two paths (plus control) merge in a wood 4901 RegionNode *r = new RegionNode(3); 4902 Node *phi = new PhiNode(r, TypeLong::LONG); 4903 4904 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4905 // Build the boolean node 4906 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4907 4908 // Branch either way. 4909 // NaN case is less traveled, which makes all the difference. 4910 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4911 Node *opt_isnan = _gvn.transform(ifisnan); 4912 assert( opt_isnan->is_If(), "Expect an IfNode"); 4913 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4914 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4915 4916 set_control(iftrue); 4917 4918 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4919 Node *slow_result = longcon(nan_bits); // return NaN 4920 phi->init_req(1, _gvn.transform( slow_result )); 4921 r->init_req(1, iftrue); 4922 4923 // Else fall through 4924 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4925 set_control(iffalse); 4926 4927 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4928 r->init_req(2, iffalse); 4929 4930 // Post merge 4931 set_control(_gvn.transform(r)); 4932 record_for_igvn(r); 4933 4934 C->set_has_split_ifs(true); // Has chance for split-if optimization 4935 result = phi; 4936 assert(result->bottom_type()->isa_long(), "must be"); 4937 break; 4938 } 4939 4940 case vmIntrinsics::_floatToIntBits: { 4941 // two paths (plus control) merge in a wood 4942 RegionNode *r = new RegionNode(3); 4943 Node *phi = new PhiNode(r, TypeInt::INT); 4944 4945 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4946 // Build the boolean node 4947 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4948 4949 // Branch either way. 4950 // NaN case is less traveled, which makes all the difference. 4951 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4952 Node *opt_isnan = _gvn.transform(ifisnan); 4953 assert( opt_isnan->is_If(), "Expect an IfNode"); 4954 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4955 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4956 4957 set_control(iftrue); 4958 4959 static const jint nan_bits = 0x7fc00000; 4960 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4961 phi->init_req(1, _gvn.transform( slow_result )); 4962 r->init_req(1, iftrue); 4963 4964 // Else fall through 4965 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4966 set_control(iffalse); 4967 4968 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4969 r->init_req(2, iffalse); 4970 4971 // Post merge 4972 set_control(_gvn.transform(r)); 4973 record_for_igvn(r); 4974 4975 C->set_has_split_ifs(true); // Has chance for split-if optimization 4976 result = phi; 4977 assert(result->bottom_type()->isa_int(), "must be"); 4978 break; 4979 } 4980 4981 default: 4982 fatal_unexpected_iid(id); 4983 break; 4984 } 4985 set_result(_gvn.transform(result)); 4986 return true; 4987 } 4988 4989 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 4990 Node* arg = argument(0); 4991 Node* result = nullptr; 4992 4993 switch (id) { 4994 case vmIntrinsics::_floatIsInfinite: 4995 result = new IsInfiniteFNode(arg); 4996 break; 4997 case vmIntrinsics::_floatIsFinite: 4998 result = new IsFiniteFNode(arg); 4999 break; 5000 case vmIntrinsics::_doubleIsInfinite: 5001 result = new IsInfiniteDNode(arg); 5002 break; 5003 case vmIntrinsics::_doubleIsFinite: 5004 result = new IsFiniteDNode(arg); 5005 break; 5006 default: 5007 fatal_unexpected_iid(id); 5008 break; 5009 } 5010 set_result(_gvn.transform(result)); 5011 return true; 5012 } 5013 5014 //----------------------inline_unsafe_copyMemory------------------------- 5015 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5016 5017 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5018 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5019 const Type* base_t = gvn.type(base); 5020 5021 bool in_native = (base_t == TypePtr::NULL_PTR); 5022 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5023 bool is_mixed = !in_heap && !in_native; 5024 5025 if (is_mixed) { 5026 return true; // mixed accesses can touch both on-heap and off-heap memory 5027 } 5028 if (in_heap) { 5029 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5030 if (!is_prim_array) { 5031 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5032 // there's not enough type information available to determine proper memory slice for it. 5033 return true; 5034 } 5035 } 5036 return false; 5037 } 5038 5039 bool LibraryCallKit::inline_unsafe_copyMemory() { 5040 if (callee()->is_static()) return false; // caller must have the capability! 5041 null_check_receiver(); // null-check receiver 5042 if (stopped()) return true; 5043 5044 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5045 5046 Node* src_base = argument(1); // type: oop 5047 Node* src_off = ConvL2X(argument(2)); // type: long 5048 Node* dst_base = argument(4); // type: oop 5049 Node* dst_off = ConvL2X(argument(5)); // type: long 5050 Node* size = ConvL2X(argument(7)); // type: long 5051 5052 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5053 "fieldOffset must be byte-scaled"); 5054 5055 Node* src_addr = make_unsafe_address(src_base, src_off); 5056 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5057 5058 Node* thread = _gvn.transform(new ThreadLocalNode()); 5059 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5060 BasicType doing_unsafe_access_bt = T_BYTE; 5061 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5062 5063 // update volatile field 5064 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5065 5066 int flags = RC_LEAF | RC_NO_FP; 5067 5068 const TypePtr* dst_type = TypePtr::BOTTOM; 5069 5070 // Adjust memory effects of the runtime call based on input values. 5071 if (!has_wide_mem(_gvn, src_addr, src_base) && 5072 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5073 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5074 5075 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5076 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5077 flags |= RC_NARROW_MEM; // narrow in memory 5078 } 5079 } 5080 5081 // Call it. Note that the length argument is not scaled. 5082 make_runtime_call(flags, 5083 OptoRuntime::fast_arraycopy_Type(), 5084 StubRoutines::unsafe_arraycopy(), 5085 "unsafe_arraycopy", 5086 dst_type, 5087 src_addr, dst_addr, size XTOP); 5088 5089 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5090 5091 return true; 5092 } 5093 5094 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value); 5095 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value' 5096 bool LibraryCallKit::inline_unsafe_setMemory() { 5097 if (callee()->is_static()) return false; // caller must have the capability! 5098 null_check_receiver(); // null-check receiver 5099 if (stopped()) return true; 5100 5101 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5102 5103 Node* dst_base = argument(1); // type: oop 5104 Node* dst_off = ConvL2X(argument(2)); // type: long 5105 Node* size = ConvL2X(argument(4)); // type: long 5106 Node* byte = argument(6); // type: byte 5107 5108 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5109 "fieldOffset must be byte-scaled"); 5110 5111 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5112 5113 Node* thread = _gvn.transform(new ThreadLocalNode()); 5114 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5115 BasicType doing_unsafe_access_bt = T_BYTE; 5116 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5117 5118 // update volatile field 5119 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5120 5121 int flags = RC_LEAF | RC_NO_FP; 5122 5123 const TypePtr* dst_type = TypePtr::BOTTOM; 5124 5125 // Adjust memory effects of the runtime call based on input values. 5126 if (!has_wide_mem(_gvn, dst_addr, dst_base)) { 5127 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5128 5129 flags |= RC_NARROW_MEM; // narrow in memory 5130 } 5131 5132 // Call it. Note that the length argument is not scaled. 5133 make_runtime_call(flags, 5134 OptoRuntime::unsafe_setmemory_Type(), 5135 StubRoutines::unsafe_setmemory(), 5136 "unsafe_setmemory", 5137 dst_type, 5138 dst_addr, size XTOP, byte); 5139 5140 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5141 5142 return true; 5143 } 5144 5145 #undef XTOP 5146 5147 //------------------------clone_coping----------------------------------- 5148 // Helper function for inline_native_clone. 5149 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5150 assert(obj_size != nullptr, ""); 5151 Node* raw_obj = alloc_obj->in(1); 5152 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5153 5154 AllocateNode* alloc = nullptr; 5155 if (ReduceBulkZeroing && 5156 // If we are implementing an array clone without knowing its source type 5157 // (can happen when compiling the array-guarded branch of a reflective 5158 // Object.clone() invocation), initialize the array within the allocation. 5159 // This is needed because some GCs (e.g. ZGC) might fall back in this case 5160 // to a runtime clone call that assumes fully initialized source arrays. 5161 (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) { 5162 // We will be completely responsible for initializing this object - 5163 // mark Initialize node as complete. 5164 alloc = AllocateNode::Ideal_allocation(alloc_obj); 5165 // The object was just allocated - there should be no any stores! 5166 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5167 // Mark as complete_with_arraycopy so that on AllocateNode 5168 // expansion, we know this AllocateNode is initialized by an array 5169 // copy and a StoreStore barrier exists after the array copy. 5170 alloc->initialization()->set_complete_with_arraycopy(); 5171 } 5172 5173 Node* size = _gvn.transform(obj_size); 5174 access_clone(obj, alloc_obj, size, is_array); 5175 5176 // Do not let reads from the cloned object float above the arraycopy. 5177 if (alloc != nullptr) { 5178 // Do not let stores that initialize this object be reordered with 5179 // a subsequent store that would make this object accessible by 5180 // other threads. 5181 // Record what AllocateNode this StoreStore protects so that 5182 // escape analysis can go from the MemBarStoreStoreNode to the 5183 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5184 // based on the escape status of the AllocateNode. 5185 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5186 } else { 5187 insert_mem_bar(Op_MemBarCPUOrder); 5188 } 5189 } 5190 5191 //------------------------inline_native_clone---------------------------- 5192 // protected native Object java.lang.Object.clone(); 5193 // 5194 // Here are the simple edge cases: 5195 // null receiver => normal trap 5196 // virtual and clone was overridden => slow path to out-of-line clone 5197 // not cloneable or finalizer => slow path to out-of-line Object.clone 5198 // 5199 // The general case has two steps, allocation and copying. 5200 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5201 // 5202 // Copying also has two cases, oop arrays and everything else. 5203 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5204 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5205 // 5206 // These steps fold up nicely if and when the cloned object's klass 5207 // can be sharply typed as an object array, a type array, or an instance. 5208 // 5209 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5210 PhiNode* result_val; 5211 5212 // Set the reexecute bit for the interpreter to reexecute 5213 // the bytecode that invokes Object.clone if deoptimization happens. 5214 { PreserveReexecuteState preexecs(this); 5215 jvms()->set_should_reexecute(true); 5216 5217 Node* obj = null_check_receiver(); 5218 if (stopped()) return true; 5219 5220 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5221 5222 // If we are going to clone an instance, we need its exact type to 5223 // know the number and types of fields to convert the clone to 5224 // loads/stores. Maybe a speculative type can help us. 5225 if (!obj_type->klass_is_exact() && 5226 obj_type->speculative_type() != nullptr && 5227 obj_type->speculative_type()->is_instance_klass()) { 5228 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5229 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5230 !spec_ik->has_injected_fields()) { 5231 if (!obj_type->isa_instptr() || 5232 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5233 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5234 } 5235 } 5236 } 5237 5238 // Conservatively insert a memory barrier on all memory slices. 5239 // Do not let writes into the original float below the clone. 5240 insert_mem_bar(Op_MemBarCPUOrder); 5241 5242 // paths into result_reg: 5243 enum { 5244 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5245 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5246 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5247 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5248 PATH_LIMIT 5249 }; 5250 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5251 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5252 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5253 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5254 record_for_igvn(result_reg); 5255 5256 Node* obj_klass = load_object_klass(obj); 5257 Node* array_obj = obj; 5258 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj); 5259 if (array_ctl != nullptr) { 5260 // It's an array. 5261 PreserveJVMState pjvms(this); 5262 set_control(array_ctl); 5263 Node* obj_length = load_array_length(array_obj); 5264 Node* array_size = nullptr; // Size of the array without object alignment padding. 5265 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5266 5267 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5268 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5269 // If it is an oop array, it requires very special treatment, 5270 // because gc barriers are required when accessing the array. 5271 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5272 if (is_obja != nullptr) { 5273 PreserveJVMState pjvms2(this); 5274 set_control(is_obja); 5275 // Generate a direct call to the right arraycopy function(s). 5276 // Clones are always tightly coupled. 5277 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5278 ac->set_clone_oop_array(); 5279 Node* n = _gvn.transform(ac); 5280 assert(n == ac, "cannot disappear"); 5281 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5282 5283 result_reg->init_req(_objArray_path, control()); 5284 result_val->init_req(_objArray_path, alloc_obj); 5285 result_i_o ->set_req(_objArray_path, i_o()); 5286 result_mem ->set_req(_objArray_path, reset_memory()); 5287 } 5288 } 5289 // Otherwise, there are no barriers to worry about. 5290 // (We can dispense with card marks if we know the allocation 5291 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5292 // causes the non-eden paths to take compensating steps to 5293 // simulate a fresh allocation, so that no further 5294 // card marks are required in compiled code to initialize 5295 // the object.) 5296 5297 if (!stopped()) { 5298 copy_to_clone(array_obj, alloc_obj, array_size, true); 5299 5300 // Present the results of the copy. 5301 result_reg->init_req(_array_path, control()); 5302 result_val->init_req(_array_path, alloc_obj); 5303 result_i_o ->set_req(_array_path, i_o()); 5304 result_mem ->set_req(_array_path, reset_memory()); 5305 } 5306 } 5307 5308 // We only go to the instance fast case code if we pass a number of guards. 5309 // The paths which do not pass are accumulated in the slow_region. 5310 RegionNode* slow_region = new RegionNode(1); 5311 record_for_igvn(slow_region); 5312 if (!stopped()) { 5313 // It's an instance (we did array above). Make the slow-path tests. 5314 // If this is a virtual call, we generate a funny guard. We grab 5315 // the vtable entry corresponding to clone() from the target object. 5316 // If the target method which we are calling happens to be the 5317 // Object clone() method, we pass the guard. We do not need this 5318 // guard for non-virtual calls; the caller is known to be the native 5319 // Object clone(). 5320 if (is_virtual) { 5321 generate_virtual_guard(obj_klass, slow_region); 5322 } 5323 5324 // The object must be easily cloneable and must not have a finalizer. 5325 // Both of these conditions may be checked in a single test. 5326 // We could optimize the test further, but we don't care. 5327 generate_misc_flags_guard(obj_klass, 5328 // Test both conditions: 5329 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer, 5330 // Must be cloneable but not finalizer: 5331 KlassFlags::_misc_is_cloneable_fast, 5332 slow_region); 5333 } 5334 5335 if (!stopped()) { 5336 // It's an instance, and it passed the slow-path tests. 5337 PreserveJVMState pjvms(this); 5338 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5339 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5340 // is reexecuted if deoptimization occurs and there could be problems when merging 5341 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5342 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5343 5344 copy_to_clone(obj, alloc_obj, obj_size, false); 5345 5346 // Present the results of the slow call. 5347 result_reg->init_req(_instance_path, control()); 5348 result_val->init_req(_instance_path, alloc_obj); 5349 result_i_o ->set_req(_instance_path, i_o()); 5350 result_mem ->set_req(_instance_path, reset_memory()); 5351 } 5352 5353 // Generate code for the slow case. We make a call to clone(). 5354 set_control(_gvn.transform(slow_region)); 5355 if (!stopped()) { 5356 PreserveJVMState pjvms(this); 5357 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5358 // We need to deoptimize on exception (see comment above) 5359 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5360 // this->control() comes from set_results_for_java_call 5361 result_reg->init_req(_slow_path, control()); 5362 result_val->init_req(_slow_path, slow_result); 5363 result_i_o ->set_req(_slow_path, i_o()); 5364 result_mem ->set_req(_slow_path, reset_memory()); 5365 } 5366 5367 // Return the combined state. 5368 set_control( _gvn.transform(result_reg)); 5369 set_i_o( _gvn.transform(result_i_o)); 5370 set_all_memory( _gvn.transform(result_mem)); 5371 } // original reexecute is set back here 5372 5373 set_result(_gvn.transform(result_val)); 5374 return true; 5375 } 5376 5377 // If we have a tightly coupled allocation, the arraycopy may take care 5378 // of the array initialization. If one of the guards we insert between 5379 // the allocation and the arraycopy causes a deoptimization, an 5380 // uninitialized array will escape the compiled method. To prevent that 5381 // we set the JVM state for uncommon traps between the allocation and 5382 // the arraycopy to the state before the allocation so, in case of 5383 // deoptimization, we'll reexecute the allocation and the 5384 // initialization. 5385 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5386 if (alloc != nullptr) { 5387 ciMethod* trap_method = alloc->jvms()->method(); 5388 int trap_bci = alloc->jvms()->bci(); 5389 5390 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5391 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5392 // Make sure there's no store between the allocation and the 5393 // arraycopy otherwise visible side effects could be rexecuted 5394 // in case of deoptimization and cause incorrect execution. 5395 bool no_interfering_store = true; 5396 Node* mem = alloc->in(TypeFunc::Memory); 5397 if (mem->is_MergeMem()) { 5398 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5399 Node* n = mms.memory(); 5400 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5401 assert(n->is_Store(), "what else?"); 5402 no_interfering_store = false; 5403 break; 5404 } 5405 } 5406 } else { 5407 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5408 Node* n = mms.memory(); 5409 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5410 assert(n->is_Store(), "what else?"); 5411 no_interfering_store = false; 5412 break; 5413 } 5414 } 5415 } 5416 5417 if (no_interfering_store) { 5418 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5419 5420 JVMState* saved_jvms = jvms(); 5421 saved_reexecute_sp = _reexecute_sp; 5422 5423 set_jvms(sfpt->jvms()); 5424 _reexecute_sp = jvms()->sp(); 5425 5426 return saved_jvms; 5427 } 5428 } 5429 } 5430 return nullptr; 5431 } 5432 5433 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5434 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5435 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5436 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5437 uint size = alloc->req(); 5438 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5439 old_jvms->set_map(sfpt); 5440 for (uint i = 0; i < size; i++) { 5441 sfpt->init_req(i, alloc->in(i)); 5442 } 5443 // re-push array length for deoptimization 5444 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5445 old_jvms->set_sp(old_jvms->sp()+1); 5446 old_jvms->set_monoff(old_jvms->monoff()+1); 5447 old_jvms->set_scloff(old_jvms->scloff()+1); 5448 old_jvms->set_endoff(old_jvms->endoff()+1); 5449 old_jvms->set_should_reexecute(true); 5450 5451 sfpt->set_i_o(map()->i_o()); 5452 sfpt->set_memory(map()->memory()); 5453 sfpt->set_control(map()->control()); 5454 return sfpt; 5455 } 5456 5457 // In case of a deoptimization, we restart execution at the 5458 // allocation, allocating a new array. We would leave an uninitialized 5459 // array in the heap that GCs wouldn't expect. Move the allocation 5460 // after the traps so we don't allocate the array if we 5461 // deoptimize. This is possible because tightly_coupled_allocation() 5462 // guarantees there's no observer of the allocated array at this point 5463 // and the control flow is simple enough. 5464 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5465 int saved_reexecute_sp, uint new_idx) { 5466 if (saved_jvms_before_guards != nullptr && !stopped()) { 5467 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5468 5469 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5470 // restore JVM state to the state at the arraycopy 5471 saved_jvms_before_guards->map()->set_control(map()->control()); 5472 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5473 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5474 // If we've improved the types of some nodes (null check) while 5475 // emitting the guards, propagate them to the current state 5476 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5477 set_jvms(saved_jvms_before_guards); 5478 _reexecute_sp = saved_reexecute_sp; 5479 5480 // Remove the allocation from above the guards 5481 CallProjections callprojs; 5482 alloc->extract_projections(&callprojs, true); 5483 InitializeNode* init = alloc->initialization(); 5484 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5485 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5486 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5487 5488 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5489 // the allocation (i.e. is only valid if the allocation succeeds): 5490 // 1) replace CastIINode with AllocateArrayNode's length here 5491 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5492 // 5493 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5494 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5495 Node* init_control = init->proj_out(TypeFunc::Control); 5496 Node* alloc_length = alloc->Ideal_length(); 5497 #ifdef ASSERT 5498 Node* prev_cast = nullptr; 5499 #endif 5500 for (uint i = 0; i < init_control->outcnt(); i++) { 5501 Node* init_out = init_control->raw_out(i); 5502 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5503 #ifdef ASSERT 5504 if (prev_cast == nullptr) { 5505 prev_cast = init_out; 5506 } else { 5507 if (prev_cast->cmp(*init_out) == false) { 5508 prev_cast->dump(); 5509 init_out->dump(); 5510 assert(false, "not equal CastIINode"); 5511 } 5512 } 5513 #endif 5514 C->gvn_replace_by(init_out, alloc_length); 5515 } 5516 } 5517 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5518 5519 // move the allocation here (after the guards) 5520 _gvn.hash_delete(alloc); 5521 alloc->set_req(TypeFunc::Control, control()); 5522 alloc->set_req(TypeFunc::I_O, i_o()); 5523 Node *mem = reset_memory(); 5524 set_all_memory(mem); 5525 alloc->set_req(TypeFunc::Memory, mem); 5526 set_control(init->proj_out_or_null(TypeFunc::Control)); 5527 set_i_o(callprojs.fallthrough_ioproj); 5528 5529 // Update memory as done in GraphKit::set_output_for_allocation() 5530 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5531 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5532 if (ary_type->isa_aryptr() && length_type != nullptr) { 5533 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5534 } 5535 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5536 int elemidx = C->get_alias_index(telemref); 5537 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5538 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5539 5540 Node* allocx = _gvn.transform(alloc); 5541 assert(allocx == alloc, "where has the allocation gone?"); 5542 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5543 5544 _gvn.hash_delete(dest); 5545 dest->set_req(0, control()); 5546 Node* destx = _gvn.transform(dest); 5547 assert(destx == dest, "where has the allocation result gone?"); 5548 5549 array_ideal_length(alloc, ary_type, true); 5550 } 5551 } 5552 5553 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5554 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5555 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5556 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5557 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5558 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5559 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5560 JVMState* saved_jvms_before_guards) { 5561 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5562 // There is at least one unrelated uncommon trap which needs to be replaced. 5563 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5564 5565 JVMState* saved_jvms = jvms(); 5566 const int saved_reexecute_sp = _reexecute_sp; 5567 set_jvms(sfpt->jvms()); 5568 _reexecute_sp = jvms()->sp(); 5569 5570 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5571 5572 // Restore state 5573 set_jvms(saved_jvms); 5574 _reexecute_sp = saved_reexecute_sp; 5575 } 5576 } 5577 5578 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5579 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5580 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5581 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5582 while (if_proj->is_IfProj()) { 5583 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5584 if (uncommon_trap != nullptr) { 5585 create_new_uncommon_trap(uncommon_trap); 5586 } 5587 assert(if_proj->in(0)->is_If(), "must be If"); 5588 if_proj = if_proj->in(0)->in(0); 5589 } 5590 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5591 "must have reached control projection of init node"); 5592 } 5593 5594 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5595 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5596 assert(trap_request != 0, "no valid UCT trap request"); 5597 PreserveJVMState pjvms(this); 5598 set_control(uncommon_trap_call->in(0)); 5599 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5600 Deoptimization::trap_request_action(trap_request)); 5601 assert(stopped(), "Should be stopped"); 5602 _gvn.hash_delete(uncommon_trap_call); 5603 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5604 } 5605 5606 // Common checks for array sorting intrinsics arguments. 5607 // Returns `true` if checks passed. 5608 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) { 5609 // check address of the class 5610 if (elementType == nullptr || elementType->is_top()) { 5611 return false; // dead path 5612 } 5613 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 5614 if (elem_klass == nullptr) { 5615 return false; // dead path 5616 } 5617 // java_mirror_type() returns non-null for compile-time Class constants only 5618 ciType* elem_type = elem_klass->java_mirror_type(); 5619 if (elem_type == nullptr) { 5620 return false; 5621 } 5622 bt = elem_type->basic_type(); 5623 // Disable the intrinsic if the CPU does not support SIMD sort 5624 if (!Matcher::supports_simd_sort(bt)) { 5625 return false; 5626 } 5627 // check address of the array 5628 if (obj == nullptr || obj->is_top()) { 5629 return false; // dead path 5630 } 5631 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 5632 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) { 5633 return false; // failed input validation 5634 } 5635 return true; 5636 } 5637 5638 //------------------------------inline_array_partition----------------------- 5639 bool LibraryCallKit::inline_array_partition() { 5640 address stubAddr = StubRoutines::select_array_partition_function(); 5641 if (stubAddr == nullptr) { 5642 return false; // Intrinsic's stub is not implemented on this platform 5643 } 5644 assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)"); 5645 5646 // no receiver because it is a static method 5647 Node* elementType = argument(0); 5648 Node* obj = argument(1); 5649 Node* offset = argument(2); // long 5650 Node* fromIndex = argument(4); 5651 Node* toIndex = argument(5); 5652 Node* indexPivot1 = argument(6); 5653 Node* indexPivot2 = argument(7); 5654 // PartitionOperation: argument(8) is ignored 5655 5656 Node* pivotIndices = nullptr; 5657 BasicType bt = T_ILLEGAL; 5658 5659 if (!check_array_sort_arguments(elementType, obj, bt)) { 5660 return false; 5661 } 5662 null_check(obj); 5663 // If obj is dead, only null-path is taken. 5664 if (stopped()) { 5665 return true; 5666 } 5667 // Set the original stack and the reexecute bit for the interpreter to reexecute 5668 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens. 5669 { PreserveReexecuteState preexecs(this); 5670 jvms()->set_should_reexecute(true); 5671 5672 Node* obj_adr = make_unsafe_address(obj, offset); 5673 5674 // create the pivotIndices array of type int and size = 2 5675 Node* size = intcon(2); 5676 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT))); 5677 pivotIndices = new_array(klass_node, size, 0); // no arguments to push 5678 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices); 5679 guarantee(alloc != nullptr, "created above"); 5680 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT)); 5681 5682 // pass the basic type enum to the stub 5683 Node* elemType = intcon(bt); 5684 5685 // Call the stub 5686 const char *stubName = "array_partition_stub"; 5687 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(), 5688 stubAddr, stubName, TypePtr::BOTTOM, 5689 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr, 5690 indexPivot1, indexPivot2); 5691 5692 } // original reexecute is set back here 5693 5694 if (!stopped()) { 5695 set_result(pivotIndices); 5696 } 5697 5698 return true; 5699 } 5700 5701 5702 //------------------------------inline_array_sort----------------------- 5703 bool LibraryCallKit::inline_array_sort() { 5704 address stubAddr = StubRoutines::select_arraysort_function(); 5705 if (stubAddr == nullptr) { 5706 return false; // Intrinsic's stub is not implemented on this platform 5707 } 5708 assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)"); 5709 5710 // no receiver because it is a static method 5711 Node* elementType = argument(0); 5712 Node* obj = argument(1); 5713 Node* offset = argument(2); // long 5714 Node* fromIndex = argument(4); 5715 Node* toIndex = argument(5); 5716 // SortOperation: argument(6) is ignored 5717 5718 BasicType bt = T_ILLEGAL; 5719 5720 if (!check_array_sort_arguments(elementType, obj, bt)) { 5721 return false; 5722 } 5723 null_check(obj); 5724 // If obj is dead, only null-path is taken. 5725 if (stopped()) { 5726 return true; 5727 } 5728 Node* obj_adr = make_unsafe_address(obj, offset); 5729 5730 // pass the basic type enum to the stub 5731 Node* elemType = intcon(bt); 5732 5733 // Call the stub. 5734 const char *stubName = "arraysort_stub"; 5735 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(), 5736 stubAddr, stubName, TypePtr::BOTTOM, 5737 obj_adr, elemType, fromIndex, toIndex); 5738 5739 return true; 5740 } 5741 5742 5743 //------------------------------inline_arraycopy----------------------- 5744 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5745 // Object dest, int destPos, 5746 // int length); 5747 bool LibraryCallKit::inline_arraycopy() { 5748 // Get the arguments. 5749 Node* src = argument(0); // type: oop 5750 Node* src_offset = argument(1); // type: int 5751 Node* dest = argument(2); // type: oop 5752 Node* dest_offset = argument(3); // type: int 5753 Node* length = argument(4); // type: int 5754 5755 uint new_idx = C->unique(); 5756 5757 // Check for allocation before we add nodes that would confuse 5758 // tightly_coupled_allocation() 5759 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5760 5761 int saved_reexecute_sp = -1; 5762 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5763 // See arraycopy_restore_alloc_state() comment 5764 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5765 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 5766 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 5767 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 5768 5769 // The following tests must be performed 5770 // (1) src and dest are arrays. 5771 // (2) src and dest arrays must have elements of the same BasicType 5772 // (3) src and dest must not be null. 5773 // (4) src_offset must not be negative. 5774 // (5) dest_offset must not be negative. 5775 // (6) length must not be negative. 5776 // (7) src_offset + length must not exceed length of src. 5777 // (8) dest_offset + length must not exceed length of dest. 5778 // (9) each element of an oop array must be assignable 5779 5780 // (3) src and dest must not be null. 5781 // always do this here because we need the JVM state for uncommon traps 5782 Node* null_ctl = top(); 5783 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5784 assert(null_ctl->is_top(), "no null control here"); 5785 dest = null_check(dest, T_ARRAY); 5786 5787 if (!can_emit_guards) { 5788 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 5789 // guards but the arraycopy node could still take advantage of a 5790 // tightly allocated allocation. tightly_coupled_allocation() is 5791 // called again to make sure it takes the null check above into 5792 // account: the null check is mandatory and if it caused an 5793 // uncommon trap to be emitted then the allocation can't be 5794 // considered tightly coupled in this context. 5795 alloc = tightly_coupled_allocation(dest); 5796 } 5797 5798 bool validated = false; 5799 5800 const Type* src_type = _gvn.type(src); 5801 const Type* dest_type = _gvn.type(dest); 5802 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5803 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5804 5805 // Do we have the type of src? 5806 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5807 // Do we have the type of dest? 5808 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5809 // Is the type for src from speculation? 5810 bool src_spec = false; 5811 // Is the type for dest from speculation? 5812 bool dest_spec = false; 5813 5814 if ((!has_src || !has_dest) && can_emit_guards) { 5815 // We don't have sufficient type information, let's see if 5816 // speculative types can help. We need to have types for both src 5817 // and dest so that it pays off. 5818 5819 // Do we already have or could we have type information for src 5820 bool could_have_src = has_src; 5821 // Do we already have or could we have type information for dest 5822 bool could_have_dest = has_dest; 5823 5824 ciKlass* src_k = nullptr; 5825 if (!has_src) { 5826 src_k = src_type->speculative_type_not_null(); 5827 if (src_k != nullptr && src_k->is_array_klass()) { 5828 could_have_src = true; 5829 } 5830 } 5831 5832 ciKlass* dest_k = nullptr; 5833 if (!has_dest) { 5834 dest_k = dest_type->speculative_type_not_null(); 5835 if (dest_k != nullptr && dest_k->is_array_klass()) { 5836 could_have_dest = true; 5837 } 5838 } 5839 5840 if (could_have_src && could_have_dest) { 5841 // This is going to pay off so emit the required guards 5842 if (!has_src) { 5843 src = maybe_cast_profiled_obj(src, src_k, true); 5844 src_type = _gvn.type(src); 5845 top_src = src_type->isa_aryptr(); 5846 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5847 src_spec = true; 5848 } 5849 if (!has_dest) { 5850 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5851 dest_type = _gvn.type(dest); 5852 top_dest = dest_type->isa_aryptr(); 5853 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5854 dest_spec = true; 5855 } 5856 } 5857 } 5858 5859 if (has_src && has_dest && can_emit_guards) { 5860 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5861 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5862 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5863 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5864 5865 if (src_elem == dest_elem && src_elem == T_OBJECT) { 5866 // If both arrays are object arrays then having the exact types 5867 // for both will remove the need for a subtype check at runtime 5868 // before the call and may make it possible to pick a faster copy 5869 // routine (without a subtype check on every element) 5870 // Do we have the exact type of src? 5871 bool could_have_src = src_spec; 5872 // Do we have the exact type of dest? 5873 bool could_have_dest = dest_spec; 5874 ciKlass* src_k = nullptr; 5875 ciKlass* dest_k = nullptr; 5876 if (!src_spec) { 5877 src_k = src_type->speculative_type_not_null(); 5878 if (src_k != nullptr && src_k->is_array_klass()) { 5879 could_have_src = true; 5880 } 5881 } 5882 if (!dest_spec) { 5883 dest_k = dest_type->speculative_type_not_null(); 5884 if (dest_k != nullptr && dest_k->is_array_klass()) { 5885 could_have_dest = true; 5886 } 5887 } 5888 if (could_have_src && could_have_dest) { 5889 // If we can have both exact types, emit the missing guards 5890 if (could_have_src && !src_spec) { 5891 src = maybe_cast_profiled_obj(src, src_k, true); 5892 } 5893 if (could_have_dest && !dest_spec) { 5894 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5895 } 5896 } 5897 } 5898 } 5899 5900 ciMethod* trap_method = method(); 5901 int trap_bci = bci(); 5902 if (saved_jvms_before_guards != nullptr) { 5903 trap_method = alloc->jvms()->method(); 5904 trap_bci = alloc->jvms()->bci(); 5905 } 5906 5907 bool negative_length_guard_generated = false; 5908 5909 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5910 can_emit_guards && 5911 !src->is_top() && !dest->is_top()) { 5912 // validate arguments: enables transformation the ArrayCopyNode 5913 validated = true; 5914 5915 RegionNode* slow_region = new RegionNode(1); 5916 record_for_igvn(slow_region); 5917 5918 // (1) src and dest are arrays. 5919 generate_non_array_guard(load_object_klass(src), slow_region, &src); 5920 generate_non_array_guard(load_object_klass(dest), slow_region, &dest); 5921 5922 // (2) src and dest arrays must have elements of the same BasicType 5923 // done at macro expansion or at Ideal transformation time 5924 5925 // (4) src_offset must not be negative. 5926 generate_negative_guard(src_offset, slow_region); 5927 5928 // (5) dest_offset must not be negative. 5929 generate_negative_guard(dest_offset, slow_region); 5930 5931 // (7) src_offset + length must not exceed length of src. 5932 generate_limit_guard(src_offset, length, 5933 load_array_length(src), 5934 slow_region); 5935 5936 // (8) dest_offset + length must not exceed length of dest. 5937 generate_limit_guard(dest_offset, length, 5938 load_array_length(dest), 5939 slow_region); 5940 5941 // (6) length must not be negative. 5942 // This is also checked in generate_arraycopy() during macro expansion, but 5943 // we also have to check it here for the case where the ArrayCopyNode will 5944 // be eliminated by Escape Analysis. 5945 if (EliminateAllocations) { 5946 generate_negative_guard(length, slow_region); 5947 negative_length_guard_generated = true; 5948 } 5949 5950 // (9) each element of an oop array must be assignable 5951 Node* dest_klass = load_object_klass(dest); 5952 if (src != dest) { 5953 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 5954 5955 if (not_subtype_ctrl != top()) { 5956 PreserveJVMState pjvms(this); 5957 set_control(not_subtype_ctrl); 5958 uncommon_trap(Deoptimization::Reason_intrinsic, 5959 Deoptimization::Action_make_not_entrant); 5960 assert(stopped(), "Should be stopped"); 5961 } 5962 } 5963 { 5964 PreserveJVMState pjvms(this); 5965 set_control(_gvn.transform(slow_region)); 5966 uncommon_trap(Deoptimization::Reason_intrinsic, 5967 Deoptimization::Action_make_not_entrant); 5968 assert(stopped(), "Should be stopped"); 5969 } 5970 5971 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 5972 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 5973 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 5974 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 5975 } 5976 5977 if (stopped()) { 5978 return true; 5979 } 5980 5981 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 5982 // Create LoadRange and LoadKlass nodes for use during macro expansion here 5983 // so the compiler has a chance to eliminate them: during macro expansion, 5984 // we have to set their control (CastPP nodes are eliminated). 5985 load_object_klass(src), load_object_klass(dest), 5986 load_array_length(src), load_array_length(dest)); 5987 5988 ac->set_arraycopy(validated); 5989 5990 Node* n = _gvn.transform(ac); 5991 if (n == ac) { 5992 ac->connect_outputs(this); 5993 } else { 5994 assert(validated, "shouldn't transform if all arguments not validated"); 5995 set_all_memory(n); 5996 } 5997 clear_upper_avx(); 5998 5999 6000 return true; 6001 } 6002 6003 6004 // Helper function which determines if an arraycopy immediately follows 6005 // an allocation, with no intervening tests or other escapes for the object. 6006 AllocateArrayNode* 6007 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 6008 if (stopped()) return nullptr; // no fast path 6009 if (!C->do_aliasing()) return nullptr; // no MergeMems around 6010 6011 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 6012 if (alloc == nullptr) return nullptr; 6013 6014 Node* rawmem = memory(Compile::AliasIdxRaw); 6015 // Is the allocation's memory state untouched? 6016 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 6017 // Bail out if there have been raw-memory effects since the allocation. 6018 // (Example: There might have been a call or safepoint.) 6019 return nullptr; 6020 } 6021 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 6022 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 6023 return nullptr; 6024 } 6025 6026 // There must be no unexpected observers of this allocation. 6027 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 6028 Node* obs = ptr->fast_out(i); 6029 if (obs != this->map()) { 6030 return nullptr; 6031 } 6032 } 6033 6034 // This arraycopy must unconditionally follow the allocation of the ptr. 6035 Node* alloc_ctl = ptr->in(0); 6036 Node* ctl = control(); 6037 while (ctl != alloc_ctl) { 6038 // There may be guards which feed into the slow_region. 6039 // Any other control flow means that we might not get a chance 6040 // to finish initializing the allocated object. 6041 // Various low-level checks bottom out in uncommon traps. These 6042 // are considered safe since we've already checked above that 6043 // there is no unexpected observer of this allocation. 6044 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 6045 assert(ctl->in(0)->is_If(), "must be If"); 6046 ctl = ctl->in(0)->in(0); 6047 } else { 6048 return nullptr; 6049 } 6050 } 6051 6052 // If we get this far, we have an allocation which immediately 6053 // precedes the arraycopy, and we can take over zeroing the new object. 6054 // The arraycopy will finish the initialization, and provide 6055 // a new control state to which we will anchor the destination pointer. 6056 6057 return alloc; 6058 } 6059 6060 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 6061 if (node->is_IfProj()) { 6062 Node* other_proj = node->as_IfProj()->other_if_proj(); 6063 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 6064 Node* obs = other_proj->fast_out(j); 6065 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 6066 (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) { 6067 return obs->as_CallStaticJava(); 6068 } 6069 } 6070 } 6071 return nullptr; 6072 } 6073 6074 //-------------inline_encodeISOArray----------------------------------- 6075 // encode char[] to byte[] in ISO_8859_1 or ASCII 6076 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 6077 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 6078 // no receiver since it is static method 6079 Node *src = argument(0); 6080 Node *src_offset = argument(1); 6081 Node *dst = argument(2); 6082 Node *dst_offset = argument(3); 6083 Node *length = argument(4); 6084 6085 src = must_be_not_null(src, true); 6086 dst = must_be_not_null(dst, true); 6087 6088 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6089 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 6090 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 6091 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 6092 // failed array check 6093 return false; 6094 } 6095 6096 // Figure out the size and type of the elements we will be copying. 6097 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6098 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 6099 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 6100 return false; 6101 } 6102 6103 Node* src_start = array_element_address(src, src_offset, T_CHAR); 6104 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 6105 // 'src_start' points to src array + scaled offset 6106 // 'dst_start' points to dst array + scaled offset 6107 6108 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 6109 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 6110 enc = _gvn.transform(enc); 6111 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 6112 set_memory(res_mem, mtype); 6113 set_result(enc); 6114 clear_upper_avx(); 6115 6116 return true; 6117 } 6118 6119 //-------------inline_multiplyToLen----------------------------------- 6120 bool LibraryCallKit::inline_multiplyToLen() { 6121 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 6122 6123 address stubAddr = StubRoutines::multiplyToLen(); 6124 if (stubAddr == nullptr) { 6125 return false; // Intrinsic's stub is not implemented on this platform 6126 } 6127 const char* stubName = "multiplyToLen"; 6128 6129 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 6130 6131 // no receiver because it is a static method 6132 Node* x = argument(0); 6133 Node* xlen = argument(1); 6134 Node* y = argument(2); 6135 Node* ylen = argument(3); 6136 Node* z = argument(4); 6137 6138 x = must_be_not_null(x, true); 6139 y = must_be_not_null(y, true); 6140 6141 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6142 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 6143 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6144 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 6145 // failed array check 6146 return false; 6147 } 6148 6149 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6150 BasicType y_elem = y_type->elem()->array_element_basic_type(); 6151 if (x_elem != T_INT || y_elem != T_INT) { 6152 return false; 6153 } 6154 6155 Node* x_start = array_element_address(x, intcon(0), x_elem); 6156 Node* y_start = array_element_address(y, intcon(0), y_elem); 6157 // 'x_start' points to x array + scaled xlen 6158 // 'y_start' points to y array + scaled ylen 6159 6160 Node* z_start = array_element_address(z, intcon(0), T_INT); 6161 6162 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6163 OptoRuntime::multiplyToLen_Type(), 6164 stubAddr, stubName, TypePtr::BOTTOM, 6165 x_start, xlen, y_start, ylen, z_start); 6166 6167 C->set_has_split_ifs(true); // Has chance for split-if optimization 6168 set_result(z); 6169 return true; 6170 } 6171 6172 //-------------inline_squareToLen------------------------------------ 6173 bool LibraryCallKit::inline_squareToLen() { 6174 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6175 6176 address stubAddr = StubRoutines::squareToLen(); 6177 if (stubAddr == nullptr) { 6178 return false; // Intrinsic's stub is not implemented on this platform 6179 } 6180 const char* stubName = "squareToLen"; 6181 6182 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6183 6184 Node* x = argument(0); 6185 Node* len = argument(1); 6186 Node* z = argument(2); 6187 Node* zlen = argument(3); 6188 6189 x = must_be_not_null(x, true); 6190 z = must_be_not_null(z, true); 6191 6192 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6193 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6194 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6195 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6196 // failed array check 6197 return false; 6198 } 6199 6200 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6201 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6202 if (x_elem != T_INT || z_elem != T_INT) { 6203 return false; 6204 } 6205 6206 6207 Node* x_start = array_element_address(x, intcon(0), x_elem); 6208 Node* z_start = array_element_address(z, intcon(0), z_elem); 6209 6210 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6211 OptoRuntime::squareToLen_Type(), 6212 stubAddr, stubName, TypePtr::BOTTOM, 6213 x_start, len, z_start, zlen); 6214 6215 set_result(z); 6216 return true; 6217 } 6218 6219 //-------------inline_mulAdd------------------------------------------ 6220 bool LibraryCallKit::inline_mulAdd() { 6221 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6222 6223 address stubAddr = StubRoutines::mulAdd(); 6224 if (stubAddr == nullptr) { 6225 return false; // Intrinsic's stub is not implemented on this platform 6226 } 6227 const char* stubName = "mulAdd"; 6228 6229 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6230 6231 Node* out = argument(0); 6232 Node* in = argument(1); 6233 Node* offset = argument(2); 6234 Node* len = argument(3); 6235 Node* k = argument(4); 6236 6237 in = must_be_not_null(in, true); 6238 out = must_be_not_null(out, true); 6239 6240 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6241 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6242 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6243 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6244 // failed array check 6245 return false; 6246 } 6247 6248 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6249 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6250 if (out_elem != T_INT || in_elem != T_INT) { 6251 return false; 6252 } 6253 6254 Node* outlen = load_array_length(out); 6255 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6256 Node* out_start = array_element_address(out, intcon(0), out_elem); 6257 Node* in_start = array_element_address(in, intcon(0), in_elem); 6258 6259 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6260 OptoRuntime::mulAdd_Type(), 6261 stubAddr, stubName, TypePtr::BOTTOM, 6262 out_start,in_start, new_offset, len, k); 6263 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6264 set_result(result); 6265 return true; 6266 } 6267 6268 //-------------inline_montgomeryMultiply----------------------------------- 6269 bool LibraryCallKit::inline_montgomeryMultiply() { 6270 address stubAddr = StubRoutines::montgomeryMultiply(); 6271 if (stubAddr == nullptr) { 6272 return false; // Intrinsic's stub is not implemented on this platform 6273 } 6274 6275 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6276 const char* stubName = "montgomery_multiply"; 6277 6278 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6279 6280 Node* a = argument(0); 6281 Node* b = argument(1); 6282 Node* n = argument(2); 6283 Node* len = argument(3); 6284 Node* inv = argument(4); 6285 Node* m = argument(6); 6286 6287 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6288 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6289 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6290 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6291 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6292 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6293 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6294 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6295 // failed array check 6296 return false; 6297 } 6298 6299 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6300 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6301 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6302 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6303 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6304 return false; 6305 } 6306 6307 // Make the call 6308 { 6309 Node* a_start = array_element_address(a, intcon(0), a_elem); 6310 Node* b_start = array_element_address(b, intcon(0), b_elem); 6311 Node* n_start = array_element_address(n, intcon(0), n_elem); 6312 Node* m_start = array_element_address(m, intcon(0), m_elem); 6313 6314 Node* call = make_runtime_call(RC_LEAF, 6315 OptoRuntime::montgomeryMultiply_Type(), 6316 stubAddr, stubName, TypePtr::BOTTOM, 6317 a_start, b_start, n_start, len, inv, top(), 6318 m_start); 6319 set_result(m); 6320 } 6321 6322 return true; 6323 } 6324 6325 bool LibraryCallKit::inline_montgomerySquare() { 6326 address stubAddr = StubRoutines::montgomerySquare(); 6327 if (stubAddr == nullptr) { 6328 return false; // Intrinsic's stub is not implemented on this platform 6329 } 6330 6331 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6332 const char* stubName = "montgomery_square"; 6333 6334 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6335 6336 Node* a = argument(0); 6337 Node* n = argument(1); 6338 Node* len = argument(2); 6339 Node* inv = argument(3); 6340 Node* m = argument(5); 6341 6342 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6343 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6344 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6345 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6346 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6347 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6348 // failed array check 6349 return false; 6350 } 6351 6352 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6353 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6354 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6355 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6356 return false; 6357 } 6358 6359 // Make the call 6360 { 6361 Node* a_start = array_element_address(a, intcon(0), a_elem); 6362 Node* n_start = array_element_address(n, intcon(0), n_elem); 6363 Node* m_start = array_element_address(m, intcon(0), m_elem); 6364 6365 Node* call = make_runtime_call(RC_LEAF, 6366 OptoRuntime::montgomerySquare_Type(), 6367 stubAddr, stubName, TypePtr::BOTTOM, 6368 a_start, n_start, len, inv, top(), 6369 m_start); 6370 set_result(m); 6371 } 6372 6373 return true; 6374 } 6375 6376 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6377 address stubAddr = nullptr; 6378 const char* stubName = nullptr; 6379 6380 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6381 if (stubAddr == nullptr) { 6382 return false; // Intrinsic's stub is not implemented on this platform 6383 } 6384 6385 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6386 6387 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6388 6389 Node* newArr = argument(0); 6390 Node* oldArr = argument(1); 6391 Node* newIdx = argument(2); 6392 Node* shiftCount = argument(3); 6393 Node* numIter = argument(4); 6394 6395 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6396 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6397 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6398 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6399 return false; 6400 } 6401 6402 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6403 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6404 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6405 return false; 6406 } 6407 6408 // Make the call 6409 { 6410 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6411 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6412 6413 Node* call = make_runtime_call(RC_LEAF, 6414 OptoRuntime::bigIntegerShift_Type(), 6415 stubAddr, 6416 stubName, 6417 TypePtr::BOTTOM, 6418 newArr_start, 6419 oldArr_start, 6420 newIdx, 6421 shiftCount, 6422 numIter); 6423 } 6424 6425 return true; 6426 } 6427 6428 //-------------inline_vectorizedMismatch------------------------------ 6429 bool LibraryCallKit::inline_vectorizedMismatch() { 6430 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6431 6432 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6433 Node* obja = argument(0); // Object 6434 Node* aoffset = argument(1); // long 6435 Node* objb = argument(3); // Object 6436 Node* boffset = argument(4); // long 6437 Node* length = argument(6); // int 6438 Node* scale = argument(7); // int 6439 6440 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6441 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6442 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6443 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6444 scale == top()) { 6445 return false; // failed input validation 6446 } 6447 6448 Node* obja_adr = make_unsafe_address(obja, aoffset); 6449 Node* objb_adr = make_unsafe_address(objb, boffset); 6450 6451 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6452 // 6453 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6454 // if (length <= inline_limit) { 6455 // inline_path: 6456 // vmask = VectorMaskGen length 6457 // vload1 = LoadVectorMasked obja, vmask 6458 // vload2 = LoadVectorMasked objb, vmask 6459 // result1 = VectorCmpMasked vload1, vload2, vmask 6460 // } else { 6461 // call_stub_path: 6462 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6463 // } 6464 // exit_block: 6465 // return Phi(result1, result2); 6466 // 6467 enum { inline_path = 1, // input is small enough to process it all at once 6468 stub_path = 2, // input is too large; call into the VM 6469 PATH_LIMIT = 3 6470 }; 6471 6472 Node* exit_block = new RegionNode(PATH_LIMIT); 6473 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6474 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6475 6476 Node* call_stub_path = control(); 6477 6478 BasicType elem_bt = T_ILLEGAL; 6479 6480 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6481 if (scale_t->is_con()) { 6482 switch (scale_t->get_con()) { 6483 case 0: elem_bt = T_BYTE; break; 6484 case 1: elem_bt = T_SHORT; break; 6485 case 2: elem_bt = T_INT; break; 6486 case 3: elem_bt = T_LONG; break; 6487 6488 default: elem_bt = T_ILLEGAL; break; // not supported 6489 } 6490 } 6491 6492 int inline_limit = 0; 6493 bool do_partial_inline = false; 6494 6495 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6496 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6497 do_partial_inline = inline_limit >= 16; 6498 } 6499 6500 if (do_partial_inline) { 6501 assert(elem_bt != T_ILLEGAL, "sanity"); 6502 6503 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6504 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6505 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6506 6507 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6508 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6509 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6510 6511 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6512 6513 if (!stopped()) { 6514 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6515 6516 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6517 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6518 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6519 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6520 6521 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6522 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6523 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6524 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6525 6526 exit_block->init_req(inline_path, control()); 6527 memory_phi->init_req(inline_path, map()->memory()); 6528 result_phi->init_req(inline_path, result); 6529 6530 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6531 clear_upper_avx(); 6532 } 6533 } 6534 } 6535 6536 if (call_stub_path != nullptr) { 6537 set_control(call_stub_path); 6538 6539 Node* call = make_runtime_call(RC_LEAF, 6540 OptoRuntime::vectorizedMismatch_Type(), 6541 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6542 obja_adr, objb_adr, length, scale); 6543 6544 exit_block->init_req(stub_path, control()); 6545 memory_phi->init_req(stub_path, map()->memory()); 6546 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6547 } 6548 6549 exit_block = _gvn.transform(exit_block); 6550 memory_phi = _gvn.transform(memory_phi); 6551 result_phi = _gvn.transform(result_phi); 6552 6553 set_control(exit_block); 6554 set_all_memory(memory_phi); 6555 set_result(result_phi); 6556 6557 return true; 6558 } 6559 6560 //------------------------------inline_vectorizedHashcode---------------------------- 6561 bool LibraryCallKit::inline_vectorizedHashCode() { 6562 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6563 6564 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6565 Node* array = argument(0); 6566 Node* offset = argument(1); 6567 Node* length = argument(2); 6568 Node* initialValue = argument(3); 6569 Node* basic_type = argument(4); 6570 6571 if (basic_type == top()) { 6572 return false; // failed input validation 6573 } 6574 6575 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6576 if (!basic_type_t->is_con()) { 6577 return false; // Only intrinsify if mode argument is constant 6578 } 6579 6580 array = must_be_not_null(array, true); 6581 6582 BasicType bt = (BasicType)basic_type_t->get_con(); 6583 6584 // Resolve address of first element 6585 Node* array_start = array_element_address(array, offset, bt); 6586 6587 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6588 array_start, length, initialValue, basic_type))); 6589 clear_upper_avx(); 6590 6591 return true; 6592 } 6593 6594 /** 6595 * Calculate CRC32 for byte. 6596 * int java.util.zip.CRC32.update(int crc, int b) 6597 */ 6598 bool LibraryCallKit::inline_updateCRC32() { 6599 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6600 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6601 // no receiver since it is static method 6602 Node* crc = argument(0); // type: int 6603 Node* b = argument(1); // type: int 6604 6605 /* 6606 * int c = ~ crc; 6607 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6608 * b = b ^ (c >>> 8); 6609 * crc = ~b; 6610 */ 6611 6612 Node* M1 = intcon(-1); 6613 crc = _gvn.transform(new XorINode(crc, M1)); 6614 Node* result = _gvn.transform(new XorINode(crc, b)); 6615 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6616 6617 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6618 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6619 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6620 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6621 6622 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6623 result = _gvn.transform(new XorINode(crc, result)); 6624 result = _gvn.transform(new XorINode(result, M1)); 6625 set_result(result); 6626 return true; 6627 } 6628 6629 /** 6630 * Calculate CRC32 for byte[] array. 6631 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6632 */ 6633 bool LibraryCallKit::inline_updateBytesCRC32() { 6634 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6635 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6636 // no receiver since it is static method 6637 Node* crc = argument(0); // type: int 6638 Node* src = argument(1); // type: oop 6639 Node* offset = argument(2); // type: int 6640 Node* length = argument(3); // type: int 6641 6642 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6643 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6644 // failed array check 6645 return false; 6646 } 6647 6648 // Figure out the size and type of the elements we will be copying. 6649 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6650 if (src_elem != T_BYTE) { 6651 return false; 6652 } 6653 6654 // 'src_start' points to src array + scaled offset 6655 src = must_be_not_null(src, true); 6656 Node* src_start = array_element_address(src, offset, src_elem); 6657 6658 // We assume that range check is done by caller. 6659 // TODO: generate range check (offset+length < src.length) in debug VM. 6660 6661 // Call the stub. 6662 address stubAddr = StubRoutines::updateBytesCRC32(); 6663 const char *stubName = "updateBytesCRC32"; 6664 6665 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6666 stubAddr, stubName, TypePtr::BOTTOM, 6667 crc, src_start, length); 6668 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6669 set_result(result); 6670 return true; 6671 } 6672 6673 /** 6674 * Calculate CRC32 for ByteBuffer. 6675 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6676 */ 6677 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6678 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6679 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6680 // no receiver since it is static method 6681 Node* crc = argument(0); // type: int 6682 Node* src = argument(1); // type: long 6683 Node* offset = argument(3); // type: int 6684 Node* length = argument(4); // type: int 6685 6686 src = ConvL2X(src); // adjust Java long to machine word 6687 Node* base = _gvn.transform(new CastX2PNode(src)); 6688 offset = ConvI2X(offset); 6689 6690 // 'src_start' points to src array + scaled offset 6691 Node* src_start = basic_plus_adr(top(), base, offset); 6692 6693 // Call the stub. 6694 address stubAddr = StubRoutines::updateBytesCRC32(); 6695 const char *stubName = "updateBytesCRC32"; 6696 6697 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6698 stubAddr, stubName, TypePtr::BOTTOM, 6699 crc, src_start, length); 6700 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6701 set_result(result); 6702 return true; 6703 } 6704 6705 //------------------------------get_table_from_crc32c_class----------------------- 6706 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6707 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6708 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 6709 6710 return table; 6711 } 6712 6713 //------------------------------inline_updateBytesCRC32C----------------------- 6714 // 6715 // Calculate CRC32C for byte[] array. 6716 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6717 // 6718 bool LibraryCallKit::inline_updateBytesCRC32C() { 6719 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6720 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6721 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6722 // no receiver since it is a static method 6723 Node* crc = argument(0); // type: int 6724 Node* src = argument(1); // type: oop 6725 Node* offset = argument(2); // type: int 6726 Node* end = argument(3); // type: int 6727 6728 Node* length = _gvn.transform(new SubINode(end, offset)); 6729 6730 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6731 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6732 // failed array check 6733 return false; 6734 } 6735 6736 // Figure out the size and type of the elements we will be copying. 6737 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6738 if (src_elem != T_BYTE) { 6739 return false; 6740 } 6741 6742 // 'src_start' points to src array + scaled offset 6743 src = must_be_not_null(src, true); 6744 Node* src_start = array_element_address(src, offset, src_elem); 6745 6746 // static final int[] byteTable in class CRC32C 6747 Node* table = get_table_from_crc32c_class(callee()->holder()); 6748 table = must_be_not_null(table, true); 6749 Node* table_start = array_element_address(table, intcon(0), T_INT); 6750 6751 // We assume that range check is done by caller. 6752 // TODO: generate range check (offset+length < src.length) in debug VM. 6753 6754 // Call the stub. 6755 address stubAddr = StubRoutines::updateBytesCRC32C(); 6756 const char *stubName = "updateBytesCRC32C"; 6757 6758 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6759 stubAddr, stubName, TypePtr::BOTTOM, 6760 crc, src_start, length, table_start); 6761 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6762 set_result(result); 6763 return true; 6764 } 6765 6766 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6767 // 6768 // Calculate CRC32C for DirectByteBuffer. 6769 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6770 // 6771 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6772 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6773 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6774 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6775 // no receiver since it is a static method 6776 Node* crc = argument(0); // type: int 6777 Node* src = argument(1); // type: long 6778 Node* offset = argument(3); // type: int 6779 Node* end = argument(4); // type: int 6780 6781 Node* length = _gvn.transform(new SubINode(end, offset)); 6782 6783 src = ConvL2X(src); // adjust Java long to machine word 6784 Node* base = _gvn.transform(new CastX2PNode(src)); 6785 offset = ConvI2X(offset); 6786 6787 // 'src_start' points to src array + scaled offset 6788 Node* src_start = basic_plus_adr(top(), base, offset); 6789 6790 // static final int[] byteTable in class CRC32C 6791 Node* table = get_table_from_crc32c_class(callee()->holder()); 6792 table = must_be_not_null(table, true); 6793 Node* table_start = array_element_address(table, intcon(0), T_INT); 6794 6795 // Call the stub. 6796 address stubAddr = StubRoutines::updateBytesCRC32C(); 6797 const char *stubName = "updateBytesCRC32C"; 6798 6799 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6800 stubAddr, stubName, TypePtr::BOTTOM, 6801 crc, src_start, length, table_start); 6802 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6803 set_result(result); 6804 return true; 6805 } 6806 6807 //------------------------------inline_updateBytesAdler32---------------------- 6808 // 6809 // Calculate Adler32 checksum for byte[] array. 6810 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6811 // 6812 bool LibraryCallKit::inline_updateBytesAdler32() { 6813 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6814 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6815 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6816 // no receiver since it is static method 6817 Node* crc = argument(0); // type: int 6818 Node* src = argument(1); // type: oop 6819 Node* offset = argument(2); // type: int 6820 Node* length = argument(3); // type: int 6821 6822 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6823 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6824 // failed array check 6825 return false; 6826 } 6827 6828 // Figure out the size and type of the elements we will be copying. 6829 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6830 if (src_elem != T_BYTE) { 6831 return false; 6832 } 6833 6834 // 'src_start' points to src array + scaled offset 6835 Node* src_start = array_element_address(src, offset, src_elem); 6836 6837 // We assume that range check is done by caller. 6838 // TODO: generate range check (offset+length < src.length) in debug VM. 6839 6840 // Call the stub. 6841 address stubAddr = StubRoutines::updateBytesAdler32(); 6842 const char *stubName = "updateBytesAdler32"; 6843 6844 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6845 stubAddr, stubName, TypePtr::BOTTOM, 6846 crc, src_start, length); 6847 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6848 set_result(result); 6849 return true; 6850 } 6851 6852 //------------------------------inline_updateByteBufferAdler32--------------- 6853 // 6854 // Calculate Adler32 checksum for DirectByteBuffer. 6855 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6856 // 6857 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6858 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6859 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6860 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6861 // no receiver since it is static method 6862 Node* crc = argument(0); // type: int 6863 Node* src = argument(1); // type: long 6864 Node* offset = argument(3); // type: int 6865 Node* length = argument(4); // type: int 6866 6867 src = ConvL2X(src); // adjust Java long to machine word 6868 Node* base = _gvn.transform(new CastX2PNode(src)); 6869 offset = ConvI2X(offset); 6870 6871 // 'src_start' points to src array + scaled offset 6872 Node* src_start = basic_plus_adr(top(), base, offset); 6873 6874 // Call the stub. 6875 address stubAddr = StubRoutines::updateBytesAdler32(); 6876 const char *stubName = "updateBytesAdler32"; 6877 6878 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6879 stubAddr, stubName, TypePtr::BOTTOM, 6880 crc, src_start, length); 6881 6882 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6883 set_result(result); 6884 return true; 6885 } 6886 6887 //----------------------------inline_reference_get---------------------------- 6888 // public T java.lang.ref.Reference.get(); 6889 bool LibraryCallKit::inline_reference_get() { 6890 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6891 6892 // Get the argument: 6893 Node* reference_obj = null_check_receiver(); 6894 if (stopped()) return true; 6895 6896 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6897 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6898 decorators, /*is_static*/ false, nullptr); 6899 if (result == nullptr) return false; 6900 6901 // Add memory barrier to prevent commoning reads from this field 6902 // across safepoint since GC can change its value. 6903 insert_mem_bar(Op_MemBarCPUOrder); 6904 6905 set_result(result); 6906 return true; 6907 } 6908 6909 //----------------------------inline_reference_refersTo0---------------------------- 6910 // bool java.lang.ref.Reference.refersTo0(); 6911 // bool java.lang.ref.PhantomReference.refersTo0(); 6912 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 6913 // Get arguments: 6914 Node* reference_obj = null_check_receiver(); 6915 Node* other_obj = argument(1); 6916 if (stopped()) return true; 6917 6918 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6919 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6920 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6921 decorators, /*is_static*/ false, nullptr); 6922 if (referent == nullptr) return false; 6923 6924 // Add memory barrier to prevent commoning reads from this field 6925 // across safepoint since GC can change its value. 6926 insert_mem_bar(Op_MemBarCPUOrder); 6927 6928 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 6929 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6930 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 6931 6932 RegionNode* region = new RegionNode(3); 6933 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 6934 6935 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 6936 region->init_req(1, if_true); 6937 phi->init_req(1, intcon(1)); 6938 6939 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 6940 region->init_req(2, if_false); 6941 phi->init_req(2, intcon(0)); 6942 6943 set_control(_gvn.transform(region)); 6944 record_for_igvn(region); 6945 set_result(_gvn.transform(phi)); 6946 return true; 6947 } 6948 6949 //----------------------------inline_reference_clear0---------------------------- 6950 // void java.lang.ref.Reference.clear0(); 6951 // void java.lang.ref.PhantomReference.clear0(); 6952 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) { 6953 // This matches the implementation in JVM_ReferenceClear, see the comments there. 6954 6955 // Get arguments 6956 Node* reference_obj = null_check_receiver(); 6957 if (stopped()) return true; 6958 6959 // Common access parameters 6960 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6961 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6962 Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset()); 6963 const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr(); 6964 const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass()); 6965 6966 Node* referent = access_load_at(reference_obj, 6967 referent_field_addr, 6968 referent_field_addr_type, 6969 val_type, 6970 T_OBJECT, 6971 decorators); 6972 6973 IdealKit ideal(this); 6974 #define __ ideal. 6975 __ if_then(referent, BoolTest::ne, null()); 6976 sync_kit(ideal); 6977 access_store_at(reference_obj, 6978 referent_field_addr, 6979 referent_field_addr_type, 6980 null(), 6981 val_type, 6982 T_OBJECT, 6983 decorators); 6984 __ sync_kit(this); 6985 __ end_if(); 6986 final_sync(ideal); 6987 #undef __ 6988 6989 return true; 6990 } 6991 6992 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 6993 DecoratorSet decorators, bool is_static, 6994 ciInstanceKlass* fromKls) { 6995 if (fromKls == nullptr) { 6996 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 6997 assert(tinst != nullptr, "obj is null"); 6998 assert(tinst->is_loaded(), "obj is not loaded"); 6999 fromKls = tinst->instance_klass(); 7000 } else { 7001 assert(is_static, "only for static field access"); 7002 } 7003 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7004 ciSymbol::make(fieldTypeString), 7005 is_static); 7006 7007 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 7008 if (field == nullptr) return (Node *) nullptr; 7009 7010 if (is_static) { 7011 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7012 fromObj = makecon(tip); 7013 } 7014 7015 // Next code copied from Parse::do_get_xxx(): 7016 7017 // Compute address and memory type. 7018 int offset = field->offset_in_bytes(); 7019 bool is_vol = field->is_volatile(); 7020 ciType* field_klass = field->type(); 7021 assert(field_klass->is_loaded(), "should be loaded"); 7022 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 7023 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7024 assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()), 7025 "slice of address and input slice don't match"); 7026 BasicType bt = field->layout_type(); 7027 7028 // Build the resultant type of the load 7029 const Type *type; 7030 if (bt == T_OBJECT) { 7031 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 7032 } else { 7033 type = Type::get_const_basic_type(bt); 7034 } 7035 7036 if (is_vol) { 7037 decorators |= MO_SEQ_CST; 7038 } 7039 7040 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 7041 } 7042 7043 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 7044 bool is_exact /* true */, bool is_static /* false */, 7045 ciInstanceKlass * fromKls /* nullptr */) { 7046 if (fromKls == nullptr) { 7047 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7048 assert(tinst != nullptr, "obj is null"); 7049 assert(tinst->is_loaded(), "obj is not loaded"); 7050 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 7051 fromKls = tinst->instance_klass(); 7052 } 7053 else { 7054 assert(is_static, "only for static field access"); 7055 } 7056 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7057 ciSymbol::make(fieldTypeString), 7058 is_static); 7059 7060 assert(field != nullptr, "undefined field"); 7061 assert(!field->is_volatile(), "not defined for volatile fields"); 7062 7063 if (is_static) { 7064 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7065 fromObj = makecon(tip); 7066 } 7067 7068 // Next code copied from Parse::do_get_xxx(): 7069 7070 // Compute address and memory type. 7071 int offset = field->offset_in_bytes(); 7072 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7073 7074 return adr; 7075 } 7076 7077 //------------------------------inline_aescrypt_Block----------------------- 7078 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 7079 address stubAddr = nullptr; 7080 const char *stubName; 7081 assert(UseAES, "need AES instruction support"); 7082 7083 switch(id) { 7084 case vmIntrinsics::_aescrypt_encryptBlock: 7085 stubAddr = StubRoutines::aescrypt_encryptBlock(); 7086 stubName = "aescrypt_encryptBlock"; 7087 break; 7088 case vmIntrinsics::_aescrypt_decryptBlock: 7089 stubAddr = StubRoutines::aescrypt_decryptBlock(); 7090 stubName = "aescrypt_decryptBlock"; 7091 break; 7092 default: 7093 break; 7094 } 7095 if (stubAddr == nullptr) return false; 7096 7097 Node* aescrypt_object = argument(0); 7098 Node* src = argument(1); 7099 Node* src_offset = argument(2); 7100 Node* dest = argument(3); 7101 Node* dest_offset = argument(4); 7102 7103 src = must_be_not_null(src, true); 7104 dest = must_be_not_null(dest, true); 7105 7106 // (1) src and dest are arrays. 7107 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7108 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7109 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7110 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7111 7112 // for the quick and dirty code we will skip all the checks. 7113 // we are just trying to get the call to be generated. 7114 Node* src_start = src; 7115 Node* dest_start = dest; 7116 if (src_offset != nullptr || dest_offset != nullptr) { 7117 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7118 src_start = array_element_address(src, src_offset, T_BYTE); 7119 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7120 } 7121 7122 // now need to get the start of its expanded key array 7123 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7124 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7125 if (k_start == nullptr) return false; 7126 7127 // Call the stub. 7128 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 7129 stubAddr, stubName, TypePtr::BOTTOM, 7130 src_start, dest_start, k_start); 7131 7132 return true; 7133 } 7134 7135 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 7136 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 7137 address stubAddr = nullptr; 7138 const char *stubName = nullptr; 7139 7140 assert(UseAES, "need AES instruction support"); 7141 7142 switch(id) { 7143 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 7144 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 7145 stubName = "cipherBlockChaining_encryptAESCrypt"; 7146 break; 7147 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7148 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7149 stubName = "cipherBlockChaining_decryptAESCrypt"; 7150 break; 7151 default: 7152 break; 7153 } 7154 if (stubAddr == nullptr) return false; 7155 7156 Node* cipherBlockChaining_object = argument(0); 7157 Node* src = argument(1); 7158 Node* src_offset = argument(2); 7159 Node* len = argument(3); 7160 Node* dest = argument(4); 7161 Node* dest_offset = argument(5); 7162 7163 src = must_be_not_null(src, false); 7164 dest = must_be_not_null(dest, false); 7165 7166 // (1) src and dest are arrays. 7167 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7168 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7169 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7170 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7171 7172 // checks are the responsibility of the caller 7173 Node* src_start = src; 7174 Node* dest_start = dest; 7175 if (src_offset != nullptr || dest_offset != nullptr) { 7176 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7177 src_start = array_element_address(src, src_offset, T_BYTE); 7178 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7179 } 7180 7181 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7182 // (because of the predicated logic executed earlier). 7183 // so we cast it here safely. 7184 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7185 7186 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7187 if (embeddedCipherObj == nullptr) return false; 7188 7189 // cast it to what we know it will be at runtime 7190 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7191 assert(tinst != nullptr, "CBC obj is null"); 7192 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7193 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7194 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7195 7196 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7197 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7198 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7199 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7200 aescrypt_object = _gvn.transform(aescrypt_object); 7201 7202 // we need to get the start of the aescrypt_object's expanded key array 7203 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7204 if (k_start == nullptr) return false; 7205 7206 // similarly, get the start address of the r vector 7207 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7208 if (objRvec == nullptr) return false; 7209 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7210 7211 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7212 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7213 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7214 stubAddr, stubName, TypePtr::BOTTOM, 7215 src_start, dest_start, k_start, r_start, len); 7216 7217 // return cipher length (int) 7218 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7219 set_result(retvalue); 7220 return true; 7221 } 7222 7223 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7224 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7225 address stubAddr = nullptr; 7226 const char *stubName = nullptr; 7227 7228 assert(UseAES, "need AES instruction support"); 7229 7230 switch (id) { 7231 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7232 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7233 stubName = "electronicCodeBook_encryptAESCrypt"; 7234 break; 7235 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7236 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7237 stubName = "electronicCodeBook_decryptAESCrypt"; 7238 break; 7239 default: 7240 break; 7241 } 7242 7243 if (stubAddr == nullptr) return false; 7244 7245 Node* electronicCodeBook_object = argument(0); 7246 Node* src = argument(1); 7247 Node* src_offset = argument(2); 7248 Node* len = argument(3); 7249 Node* dest = argument(4); 7250 Node* dest_offset = argument(5); 7251 7252 // (1) src and dest are arrays. 7253 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7254 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7255 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7256 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7257 7258 // checks are the responsibility of the caller 7259 Node* src_start = src; 7260 Node* dest_start = dest; 7261 if (src_offset != nullptr || dest_offset != nullptr) { 7262 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7263 src_start = array_element_address(src, src_offset, T_BYTE); 7264 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7265 } 7266 7267 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7268 // (because of the predicated logic executed earlier). 7269 // so we cast it here safely. 7270 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7271 7272 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7273 if (embeddedCipherObj == nullptr) return false; 7274 7275 // cast it to what we know it will be at runtime 7276 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7277 assert(tinst != nullptr, "ECB obj is null"); 7278 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7279 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7280 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7281 7282 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7283 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7284 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7285 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7286 aescrypt_object = _gvn.transform(aescrypt_object); 7287 7288 // we need to get the start of the aescrypt_object's expanded key array 7289 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7290 if (k_start == nullptr) return false; 7291 7292 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7293 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7294 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7295 stubAddr, stubName, TypePtr::BOTTOM, 7296 src_start, dest_start, k_start, len); 7297 7298 // return cipher length (int) 7299 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7300 set_result(retvalue); 7301 return true; 7302 } 7303 7304 //------------------------------inline_counterMode_AESCrypt----------------------- 7305 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7306 assert(UseAES, "need AES instruction support"); 7307 if (!UseAESCTRIntrinsics) return false; 7308 7309 address stubAddr = nullptr; 7310 const char *stubName = nullptr; 7311 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7312 stubAddr = StubRoutines::counterMode_AESCrypt(); 7313 stubName = "counterMode_AESCrypt"; 7314 } 7315 if (stubAddr == nullptr) return false; 7316 7317 Node* counterMode_object = argument(0); 7318 Node* src = argument(1); 7319 Node* src_offset = argument(2); 7320 Node* len = argument(3); 7321 Node* dest = argument(4); 7322 Node* dest_offset = argument(5); 7323 7324 // (1) src and dest are arrays. 7325 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7326 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7327 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7328 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7329 7330 // checks are the responsibility of the caller 7331 Node* src_start = src; 7332 Node* dest_start = dest; 7333 if (src_offset != nullptr || dest_offset != nullptr) { 7334 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7335 src_start = array_element_address(src, src_offset, T_BYTE); 7336 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7337 } 7338 7339 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7340 // (because of the predicated logic executed earlier). 7341 // so we cast it here safely. 7342 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7343 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7344 if (embeddedCipherObj == nullptr) return false; 7345 // cast it to what we know it will be at runtime 7346 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7347 assert(tinst != nullptr, "CTR obj is null"); 7348 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7349 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7350 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7351 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7352 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7353 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7354 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7355 aescrypt_object = _gvn.transform(aescrypt_object); 7356 // we need to get the start of the aescrypt_object's expanded key array 7357 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7358 if (k_start == nullptr) return false; 7359 // similarly, get the start address of the r vector 7360 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7361 if (obj_counter == nullptr) return false; 7362 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7363 7364 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7365 if (saved_encCounter == nullptr) return false; 7366 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7367 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7368 7369 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7370 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7371 OptoRuntime::counterMode_aescrypt_Type(), 7372 stubAddr, stubName, TypePtr::BOTTOM, 7373 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7374 7375 // return cipher length (int) 7376 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7377 set_result(retvalue); 7378 return true; 7379 } 7380 7381 //------------------------------get_key_start_from_aescrypt_object----------------------- 7382 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7383 #if defined(PPC64) || defined(S390) || defined(RISCV64) 7384 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7385 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7386 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7387 // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7388 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7389 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7390 if (objSessionK == nullptr) { 7391 return (Node *) nullptr; 7392 } 7393 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7394 #else 7395 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7396 #endif // PPC64 7397 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7398 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7399 7400 // now have the array, need to get the start address of the K array 7401 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7402 return k_start; 7403 } 7404 7405 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7406 // Return node representing slow path of predicate check. 7407 // the pseudo code we want to emulate with this predicate is: 7408 // for encryption: 7409 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7410 // for decryption: 7411 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7412 // note cipher==plain is more conservative than the original java code but that's OK 7413 // 7414 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7415 // The receiver was checked for null already. 7416 Node* objCBC = argument(0); 7417 7418 Node* src = argument(1); 7419 Node* dest = argument(4); 7420 7421 // Load embeddedCipher field of CipherBlockChaining object. 7422 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7423 7424 // get AESCrypt klass for instanceOf check 7425 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7426 // will have same classloader as CipherBlockChaining object 7427 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7428 assert(tinst != nullptr, "CBCobj is null"); 7429 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7430 7431 // we want to do an instanceof comparison against the AESCrypt class 7432 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7433 if (!klass_AESCrypt->is_loaded()) { 7434 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7435 Node* ctrl = control(); 7436 set_control(top()); // no regular fast path 7437 return ctrl; 7438 } 7439 7440 src = must_be_not_null(src, true); 7441 dest = must_be_not_null(dest, true); 7442 7443 // Resolve oops to stable for CmpP below. 7444 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7445 7446 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7447 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7448 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7449 7450 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7451 7452 // for encryption, we are done 7453 if (!decrypting) 7454 return instof_false; // even if it is null 7455 7456 // for decryption, we need to add a further check to avoid 7457 // taking the intrinsic path when cipher and plain are the same 7458 // see the original java code for why. 7459 RegionNode* region = new RegionNode(3); 7460 region->init_req(1, instof_false); 7461 7462 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7463 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7464 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7465 region->init_req(2, src_dest_conjoint); 7466 7467 record_for_igvn(region); 7468 return _gvn.transform(region); 7469 } 7470 7471 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7472 // Return node representing slow path of predicate check. 7473 // the pseudo code we want to emulate with this predicate is: 7474 // for encryption: 7475 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7476 // for decryption: 7477 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7478 // note cipher==plain is more conservative than the original java code but that's OK 7479 // 7480 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7481 // The receiver was checked for null already. 7482 Node* objECB = argument(0); 7483 7484 // Load embeddedCipher field of ElectronicCodeBook object. 7485 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7486 7487 // get AESCrypt klass for instanceOf check 7488 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7489 // will have same classloader as ElectronicCodeBook object 7490 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7491 assert(tinst != nullptr, "ECBobj is null"); 7492 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7493 7494 // we want to do an instanceof comparison against the AESCrypt class 7495 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7496 if (!klass_AESCrypt->is_loaded()) { 7497 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7498 Node* ctrl = control(); 7499 set_control(top()); // no regular fast path 7500 return ctrl; 7501 } 7502 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7503 7504 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7505 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7506 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7507 7508 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7509 7510 // for encryption, we are done 7511 if (!decrypting) 7512 return instof_false; // even if it is null 7513 7514 // for decryption, we need to add a further check to avoid 7515 // taking the intrinsic path when cipher and plain are the same 7516 // see the original java code for why. 7517 RegionNode* region = new RegionNode(3); 7518 region->init_req(1, instof_false); 7519 Node* src = argument(1); 7520 Node* dest = argument(4); 7521 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7522 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7523 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7524 region->init_req(2, src_dest_conjoint); 7525 7526 record_for_igvn(region); 7527 return _gvn.transform(region); 7528 } 7529 7530 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7531 // Return node representing slow path of predicate check. 7532 // the pseudo code we want to emulate with this predicate is: 7533 // for encryption: 7534 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7535 // for decryption: 7536 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7537 // note cipher==plain is more conservative than the original java code but that's OK 7538 // 7539 7540 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7541 // The receiver was checked for null already. 7542 Node* objCTR = argument(0); 7543 7544 // Load embeddedCipher field of CipherBlockChaining object. 7545 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7546 7547 // get AESCrypt klass for instanceOf check 7548 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7549 // will have same classloader as CipherBlockChaining object 7550 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7551 assert(tinst != nullptr, "CTRobj is null"); 7552 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7553 7554 // we want to do an instanceof comparison against the AESCrypt class 7555 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7556 if (!klass_AESCrypt->is_loaded()) { 7557 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7558 Node* ctrl = control(); 7559 set_control(top()); // no regular fast path 7560 return ctrl; 7561 } 7562 7563 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7564 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7565 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7566 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7567 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7568 7569 return instof_false; // even if it is null 7570 } 7571 7572 //------------------------------inline_ghash_processBlocks 7573 bool LibraryCallKit::inline_ghash_processBlocks() { 7574 address stubAddr; 7575 const char *stubName; 7576 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7577 7578 stubAddr = StubRoutines::ghash_processBlocks(); 7579 stubName = "ghash_processBlocks"; 7580 7581 Node* data = argument(0); 7582 Node* offset = argument(1); 7583 Node* len = argument(2); 7584 Node* state = argument(3); 7585 Node* subkeyH = argument(4); 7586 7587 state = must_be_not_null(state, true); 7588 subkeyH = must_be_not_null(subkeyH, true); 7589 data = must_be_not_null(data, true); 7590 7591 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7592 assert(state_start, "state is null"); 7593 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7594 assert(subkeyH_start, "subkeyH is null"); 7595 Node* data_start = array_element_address(data, offset, T_BYTE); 7596 assert(data_start, "data is null"); 7597 7598 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7599 OptoRuntime::ghash_processBlocks_Type(), 7600 stubAddr, stubName, TypePtr::BOTTOM, 7601 state_start, subkeyH_start, data_start, len); 7602 return true; 7603 } 7604 7605 //------------------------------inline_chacha20Block 7606 bool LibraryCallKit::inline_chacha20Block() { 7607 address stubAddr; 7608 const char *stubName; 7609 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7610 7611 stubAddr = StubRoutines::chacha20Block(); 7612 stubName = "chacha20Block"; 7613 7614 Node* state = argument(0); 7615 Node* result = argument(1); 7616 7617 state = must_be_not_null(state, true); 7618 result = must_be_not_null(result, true); 7619 7620 Node* state_start = array_element_address(state, intcon(0), T_INT); 7621 assert(state_start, "state is null"); 7622 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 7623 assert(result_start, "result is null"); 7624 7625 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7626 OptoRuntime::chacha20Block_Type(), 7627 stubAddr, stubName, TypePtr::BOTTOM, 7628 state_start, result_start); 7629 // return key stream length (int) 7630 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7631 set_result(retvalue); 7632 return true; 7633 } 7634 7635 bool LibraryCallKit::inline_base64_encodeBlock() { 7636 address stubAddr; 7637 const char *stubName; 7638 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7639 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 7640 stubAddr = StubRoutines::base64_encodeBlock(); 7641 stubName = "encodeBlock"; 7642 7643 if (!stubAddr) return false; 7644 Node* base64obj = argument(0); 7645 Node* src = argument(1); 7646 Node* offset = argument(2); 7647 Node* len = argument(3); 7648 Node* dest = argument(4); 7649 Node* dp = argument(5); 7650 Node* isURL = argument(6); 7651 7652 src = must_be_not_null(src, true); 7653 dest = must_be_not_null(dest, true); 7654 7655 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7656 assert(src_start, "source array is null"); 7657 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7658 assert(dest_start, "destination array is null"); 7659 7660 Node* base64 = make_runtime_call(RC_LEAF, 7661 OptoRuntime::base64_encodeBlock_Type(), 7662 stubAddr, stubName, TypePtr::BOTTOM, 7663 src_start, offset, len, dest_start, dp, isURL); 7664 return true; 7665 } 7666 7667 bool LibraryCallKit::inline_base64_decodeBlock() { 7668 address stubAddr; 7669 const char *stubName; 7670 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7671 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 7672 stubAddr = StubRoutines::base64_decodeBlock(); 7673 stubName = "decodeBlock"; 7674 7675 if (!stubAddr) return false; 7676 Node* base64obj = argument(0); 7677 Node* src = argument(1); 7678 Node* src_offset = argument(2); 7679 Node* len = argument(3); 7680 Node* dest = argument(4); 7681 Node* dest_offset = argument(5); 7682 Node* isURL = argument(6); 7683 Node* isMIME = argument(7); 7684 7685 src = must_be_not_null(src, true); 7686 dest = must_be_not_null(dest, true); 7687 7688 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7689 assert(src_start, "source array is null"); 7690 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7691 assert(dest_start, "destination array is null"); 7692 7693 Node* call = make_runtime_call(RC_LEAF, 7694 OptoRuntime::base64_decodeBlock_Type(), 7695 stubAddr, stubName, TypePtr::BOTTOM, 7696 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 7697 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7698 set_result(result); 7699 return true; 7700 } 7701 7702 bool LibraryCallKit::inline_poly1305_processBlocks() { 7703 address stubAddr; 7704 const char *stubName; 7705 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 7706 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 7707 stubAddr = StubRoutines::poly1305_processBlocks(); 7708 stubName = "poly1305_processBlocks"; 7709 7710 if (!stubAddr) return false; 7711 null_check_receiver(); // null-check receiver 7712 if (stopped()) return true; 7713 7714 Node* input = argument(1); 7715 Node* input_offset = argument(2); 7716 Node* len = argument(3); 7717 Node* alimbs = argument(4); 7718 Node* rlimbs = argument(5); 7719 7720 input = must_be_not_null(input, true); 7721 alimbs = must_be_not_null(alimbs, true); 7722 rlimbs = must_be_not_null(rlimbs, true); 7723 7724 Node* input_start = array_element_address(input, input_offset, T_BYTE); 7725 assert(input_start, "input array is null"); 7726 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 7727 assert(acc_start, "acc array is null"); 7728 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 7729 assert(r_start, "r array is null"); 7730 7731 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7732 OptoRuntime::poly1305_processBlocks_Type(), 7733 stubAddr, stubName, TypePtr::BOTTOM, 7734 input_start, len, acc_start, r_start); 7735 return true; 7736 } 7737 7738 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() { 7739 address stubAddr; 7740 const char *stubName; 7741 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 7742 assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size()); 7743 stubAddr = StubRoutines::intpoly_montgomeryMult_P256(); 7744 stubName = "intpoly_montgomeryMult_P256"; 7745 7746 if (!stubAddr) return false; 7747 null_check_receiver(); // null-check receiver 7748 if (stopped()) return true; 7749 7750 Node* a = argument(1); 7751 Node* b = argument(2); 7752 Node* r = argument(3); 7753 7754 a = must_be_not_null(a, true); 7755 b = must_be_not_null(b, true); 7756 r = must_be_not_null(r, true); 7757 7758 Node* a_start = array_element_address(a, intcon(0), T_LONG); 7759 assert(a_start, "a array is null"); 7760 Node* b_start = array_element_address(b, intcon(0), T_LONG); 7761 assert(b_start, "b array is null"); 7762 Node* r_start = array_element_address(r, intcon(0), T_LONG); 7763 assert(r_start, "r array is null"); 7764 7765 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7766 OptoRuntime::intpoly_montgomeryMult_P256_Type(), 7767 stubAddr, stubName, TypePtr::BOTTOM, 7768 a_start, b_start, r_start); 7769 return true; 7770 } 7771 7772 bool LibraryCallKit::inline_intpoly_assign() { 7773 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 7774 assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size()); 7775 const char *stubName = "intpoly_assign"; 7776 address stubAddr = StubRoutines::intpoly_assign(); 7777 if (!stubAddr) return false; 7778 7779 Node* set = argument(0); 7780 Node* a = argument(1); 7781 Node* b = argument(2); 7782 Node* arr_length = load_array_length(a); 7783 7784 a = must_be_not_null(a, true); 7785 b = must_be_not_null(b, true); 7786 7787 Node* a_start = array_element_address(a, intcon(0), T_LONG); 7788 assert(a_start, "a array is null"); 7789 Node* b_start = array_element_address(b, intcon(0), T_LONG); 7790 assert(b_start, "b array is null"); 7791 7792 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7793 OptoRuntime::intpoly_assign_Type(), 7794 stubAddr, stubName, TypePtr::BOTTOM, 7795 set, a_start, b_start, arr_length); 7796 return true; 7797 } 7798 7799 //------------------------------inline_digestBase_implCompress----------------------- 7800 // 7801 // Calculate MD5 for single-block byte[] array. 7802 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 7803 // 7804 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 7805 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 7806 // 7807 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 7808 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 7809 // 7810 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 7811 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 7812 // 7813 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 7814 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 7815 // 7816 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 7817 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 7818 7819 Node* digestBase_obj = argument(0); 7820 Node* src = argument(1); // type oop 7821 Node* ofs = argument(2); // type int 7822 7823 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7824 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7825 // failed array check 7826 return false; 7827 } 7828 // Figure out the size and type of the elements we will be copying. 7829 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7830 if (src_elem != T_BYTE) { 7831 return false; 7832 } 7833 // 'src_start' points to src array + offset 7834 src = must_be_not_null(src, true); 7835 Node* src_start = array_element_address(src, ofs, src_elem); 7836 Node* state = nullptr; 7837 Node* block_size = nullptr; 7838 address stubAddr; 7839 const char *stubName; 7840 7841 switch(id) { 7842 case vmIntrinsics::_md5_implCompress: 7843 assert(UseMD5Intrinsics, "need MD5 instruction support"); 7844 state = get_state_from_digest_object(digestBase_obj, T_INT); 7845 stubAddr = StubRoutines::md5_implCompress(); 7846 stubName = "md5_implCompress"; 7847 break; 7848 case vmIntrinsics::_sha_implCompress: 7849 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 7850 state = get_state_from_digest_object(digestBase_obj, T_INT); 7851 stubAddr = StubRoutines::sha1_implCompress(); 7852 stubName = "sha1_implCompress"; 7853 break; 7854 case vmIntrinsics::_sha2_implCompress: 7855 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 7856 state = get_state_from_digest_object(digestBase_obj, T_INT); 7857 stubAddr = StubRoutines::sha256_implCompress(); 7858 stubName = "sha256_implCompress"; 7859 break; 7860 case vmIntrinsics::_sha5_implCompress: 7861 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 7862 state = get_state_from_digest_object(digestBase_obj, T_LONG); 7863 stubAddr = StubRoutines::sha512_implCompress(); 7864 stubName = "sha512_implCompress"; 7865 break; 7866 case vmIntrinsics::_sha3_implCompress: 7867 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 7868 state = get_state_from_digest_object(digestBase_obj, T_LONG); 7869 stubAddr = StubRoutines::sha3_implCompress(); 7870 stubName = "sha3_implCompress"; 7871 block_size = get_block_size_from_digest_object(digestBase_obj); 7872 if (block_size == nullptr) return false; 7873 break; 7874 default: 7875 fatal_unexpected_iid(id); 7876 return false; 7877 } 7878 if (state == nullptr) return false; 7879 7880 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 7881 if (stubAddr == nullptr) return false; 7882 7883 // Call the stub. 7884 Node* call; 7885 if (block_size == nullptr) { 7886 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 7887 stubAddr, stubName, TypePtr::BOTTOM, 7888 src_start, state); 7889 } else { 7890 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 7891 stubAddr, stubName, TypePtr::BOTTOM, 7892 src_start, state, block_size); 7893 } 7894 7895 return true; 7896 } 7897 7898 //------------------------------inline_digestBase_implCompressMB----------------------- 7899 // 7900 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 7901 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 7902 // 7903 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 7904 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7905 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7906 assert((uint)predicate < 5, "sanity"); 7907 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 7908 7909 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 7910 Node* src = argument(1); // byte[] array 7911 Node* ofs = argument(2); // type int 7912 Node* limit = argument(3); // type int 7913 7914 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7915 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7916 // failed array check 7917 return false; 7918 } 7919 // Figure out the size and type of the elements we will be copying. 7920 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7921 if (src_elem != T_BYTE) { 7922 return false; 7923 } 7924 // 'src_start' points to src array + offset 7925 src = must_be_not_null(src, false); 7926 Node* src_start = array_element_address(src, ofs, src_elem); 7927 7928 const char* klass_digestBase_name = nullptr; 7929 const char* stub_name = nullptr; 7930 address stub_addr = nullptr; 7931 BasicType elem_type = T_INT; 7932 7933 switch (predicate) { 7934 case 0: 7935 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 7936 klass_digestBase_name = "sun/security/provider/MD5"; 7937 stub_name = "md5_implCompressMB"; 7938 stub_addr = StubRoutines::md5_implCompressMB(); 7939 } 7940 break; 7941 case 1: 7942 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 7943 klass_digestBase_name = "sun/security/provider/SHA"; 7944 stub_name = "sha1_implCompressMB"; 7945 stub_addr = StubRoutines::sha1_implCompressMB(); 7946 } 7947 break; 7948 case 2: 7949 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 7950 klass_digestBase_name = "sun/security/provider/SHA2"; 7951 stub_name = "sha256_implCompressMB"; 7952 stub_addr = StubRoutines::sha256_implCompressMB(); 7953 } 7954 break; 7955 case 3: 7956 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 7957 klass_digestBase_name = "sun/security/provider/SHA5"; 7958 stub_name = "sha512_implCompressMB"; 7959 stub_addr = StubRoutines::sha512_implCompressMB(); 7960 elem_type = T_LONG; 7961 } 7962 break; 7963 case 4: 7964 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 7965 klass_digestBase_name = "sun/security/provider/SHA3"; 7966 stub_name = "sha3_implCompressMB"; 7967 stub_addr = StubRoutines::sha3_implCompressMB(); 7968 elem_type = T_LONG; 7969 } 7970 break; 7971 default: 7972 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 7973 } 7974 if (klass_digestBase_name != nullptr) { 7975 assert(stub_addr != nullptr, "Stub is generated"); 7976 if (stub_addr == nullptr) return false; 7977 7978 // get DigestBase klass to lookup for SHA klass 7979 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 7980 assert(tinst != nullptr, "digestBase_obj is not instance???"); 7981 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7982 7983 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 7984 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 7985 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 7986 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 7987 } 7988 return false; 7989 } 7990 7991 //------------------------------inline_digestBase_implCompressMB----------------------- 7992 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 7993 BasicType elem_type, address stubAddr, const char *stubName, 7994 Node* src_start, Node* ofs, Node* limit) { 7995 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 7996 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7997 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 7998 digest_obj = _gvn.transform(digest_obj); 7999 8000 Node* state = get_state_from_digest_object(digest_obj, elem_type); 8001 if (state == nullptr) return false; 8002 8003 Node* block_size = nullptr; 8004 if (strcmp("sha3_implCompressMB", stubName) == 0) { 8005 block_size = get_block_size_from_digest_object(digest_obj); 8006 if (block_size == nullptr) return false; 8007 } 8008 8009 // Call the stub. 8010 Node* call; 8011 if (block_size == nullptr) { 8012 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8013 OptoRuntime::digestBase_implCompressMB_Type(false), 8014 stubAddr, stubName, TypePtr::BOTTOM, 8015 src_start, state, ofs, limit); 8016 } else { 8017 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8018 OptoRuntime::digestBase_implCompressMB_Type(true), 8019 stubAddr, stubName, TypePtr::BOTTOM, 8020 src_start, state, block_size, ofs, limit); 8021 } 8022 8023 // return ofs (int) 8024 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8025 set_result(result); 8026 8027 return true; 8028 } 8029 8030 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 8031 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 8032 assert(UseAES, "need AES instruction support"); 8033 address stubAddr = nullptr; 8034 const char *stubName = nullptr; 8035 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 8036 stubName = "galoisCounterMode_AESCrypt"; 8037 8038 if (stubAddr == nullptr) return false; 8039 8040 Node* in = argument(0); 8041 Node* inOfs = argument(1); 8042 Node* len = argument(2); 8043 Node* ct = argument(3); 8044 Node* ctOfs = argument(4); 8045 Node* out = argument(5); 8046 Node* outOfs = argument(6); 8047 Node* gctr_object = argument(7); 8048 Node* ghash_object = argument(8); 8049 8050 // (1) in, ct and out are arrays. 8051 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 8052 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 8053 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 8054 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 8055 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 8056 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 8057 8058 // checks are the responsibility of the caller 8059 Node* in_start = in; 8060 Node* ct_start = ct; 8061 Node* out_start = out; 8062 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 8063 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 8064 in_start = array_element_address(in, inOfs, T_BYTE); 8065 ct_start = array_element_address(ct, ctOfs, T_BYTE); 8066 out_start = array_element_address(out, outOfs, T_BYTE); 8067 } 8068 8069 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 8070 // (because of the predicated logic executed earlier). 8071 // so we cast it here safely. 8072 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 8073 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8074 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 8075 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 8076 Node* state = load_field_from_object(ghash_object, "state", "[J"); 8077 8078 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 8079 return false; 8080 } 8081 // cast it to what we know it will be at runtime 8082 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 8083 assert(tinst != nullptr, "GCTR obj is null"); 8084 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8085 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8086 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 8087 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8088 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 8089 const TypeOopPtr* xtype = aklass->as_instance_type(); 8090 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 8091 aescrypt_object = _gvn.transform(aescrypt_object); 8092 // we need to get the start of the aescrypt_object's expanded key array 8093 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 8094 if (k_start == nullptr) return false; 8095 // similarly, get the start address of the r vector 8096 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 8097 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8098 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 8099 8100 8101 // Call the stub, passing params 8102 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 8103 OptoRuntime::galoisCounterMode_aescrypt_Type(), 8104 stubAddr, stubName, TypePtr::BOTTOM, 8105 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 8106 8107 // return cipher length (int) 8108 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 8109 set_result(retvalue); 8110 8111 return true; 8112 } 8113 8114 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 8115 // Return node representing slow path of predicate check. 8116 // the pseudo code we want to emulate with this predicate is: 8117 // for encryption: 8118 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8119 // for decryption: 8120 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8121 // note cipher==plain is more conservative than the original java code but that's OK 8122 // 8123 8124 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 8125 // The receiver was checked for null already. 8126 Node* objGCTR = argument(7); 8127 // Load embeddedCipher field of GCTR object. 8128 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8129 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 8130 8131 // get AESCrypt klass for instanceOf check 8132 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8133 // will have same classloader as CipherBlockChaining object 8134 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 8135 assert(tinst != nullptr, "GCTR obj is null"); 8136 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8137 8138 // we want to do an instanceof comparison against the AESCrypt class 8139 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8140 if (!klass_AESCrypt->is_loaded()) { 8141 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8142 Node* ctrl = control(); 8143 set_control(top()); // no regular fast path 8144 return ctrl; 8145 } 8146 8147 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8148 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8149 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8150 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8151 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8152 8153 return instof_false; // even if it is null 8154 } 8155 8156 //------------------------------get_state_from_digest_object----------------------- 8157 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 8158 const char* state_type; 8159 switch (elem_type) { 8160 case T_BYTE: state_type = "[B"; break; 8161 case T_INT: state_type = "[I"; break; 8162 case T_LONG: state_type = "[J"; break; 8163 default: ShouldNotReachHere(); 8164 } 8165 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 8166 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 8167 if (digest_state == nullptr) return (Node *) nullptr; 8168 8169 // now have the array, need to get the start address of the state array 8170 Node* state = array_element_address(digest_state, intcon(0), elem_type); 8171 return state; 8172 } 8173 8174 //------------------------------get_block_size_from_sha3_object---------------------------------- 8175 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 8176 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 8177 assert (block_size != nullptr, "sanity"); 8178 return block_size; 8179 } 8180 8181 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 8182 // Return node representing slow path of predicate check. 8183 // the pseudo code we want to emulate with this predicate is: 8184 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 8185 // 8186 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 8187 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8188 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8189 assert((uint)predicate < 5, "sanity"); 8190 8191 // The receiver was checked for null already. 8192 Node* digestBaseObj = argument(0); 8193 8194 // get DigestBase klass for instanceOf check 8195 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 8196 assert(tinst != nullptr, "digestBaseObj is null"); 8197 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8198 8199 const char* klass_name = nullptr; 8200 switch (predicate) { 8201 case 0: 8202 if (UseMD5Intrinsics) { 8203 // we want to do an instanceof comparison against the MD5 class 8204 klass_name = "sun/security/provider/MD5"; 8205 } 8206 break; 8207 case 1: 8208 if (UseSHA1Intrinsics) { 8209 // we want to do an instanceof comparison against the SHA class 8210 klass_name = "sun/security/provider/SHA"; 8211 } 8212 break; 8213 case 2: 8214 if (UseSHA256Intrinsics) { 8215 // we want to do an instanceof comparison against the SHA2 class 8216 klass_name = "sun/security/provider/SHA2"; 8217 } 8218 break; 8219 case 3: 8220 if (UseSHA512Intrinsics) { 8221 // we want to do an instanceof comparison against the SHA5 class 8222 klass_name = "sun/security/provider/SHA5"; 8223 } 8224 break; 8225 case 4: 8226 if (UseSHA3Intrinsics) { 8227 // we want to do an instanceof comparison against the SHA3 class 8228 klass_name = "sun/security/provider/SHA3"; 8229 } 8230 break; 8231 default: 8232 fatal("unknown SHA intrinsic predicate: %d", predicate); 8233 } 8234 8235 ciKlass* klass = nullptr; 8236 if (klass_name != nullptr) { 8237 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 8238 } 8239 if ((klass == nullptr) || !klass->is_loaded()) { 8240 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 8241 Node* ctrl = control(); 8242 set_control(top()); // no intrinsic path 8243 return ctrl; 8244 } 8245 ciInstanceKlass* instklass = klass->as_instance_klass(); 8246 8247 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 8248 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8249 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8250 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8251 8252 return instof_false; // even if it is null 8253 } 8254 8255 //-------------inline_fma----------------------------------- 8256 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 8257 Node *a = nullptr; 8258 Node *b = nullptr; 8259 Node *c = nullptr; 8260 Node* result = nullptr; 8261 switch (id) { 8262 case vmIntrinsics::_fmaD: 8263 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 8264 // no receiver since it is static method 8265 a = round_double_node(argument(0)); 8266 b = round_double_node(argument(2)); 8267 c = round_double_node(argument(4)); 8268 result = _gvn.transform(new FmaDNode(a, b, c)); 8269 break; 8270 case vmIntrinsics::_fmaF: 8271 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 8272 a = argument(0); 8273 b = argument(1); 8274 c = argument(2); 8275 result = _gvn.transform(new FmaFNode(a, b, c)); 8276 break; 8277 default: 8278 fatal_unexpected_iid(id); break; 8279 } 8280 set_result(result); 8281 return true; 8282 } 8283 8284 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 8285 // argument(0) is receiver 8286 Node* codePoint = argument(1); 8287 Node* n = nullptr; 8288 8289 switch (id) { 8290 case vmIntrinsics::_isDigit : 8291 n = new DigitNode(control(), codePoint); 8292 break; 8293 case vmIntrinsics::_isLowerCase : 8294 n = new LowerCaseNode(control(), codePoint); 8295 break; 8296 case vmIntrinsics::_isUpperCase : 8297 n = new UpperCaseNode(control(), codePoint); 8298 break; 8299 case vmIntrinsics::_isWhitespace : 8300 n = new WhitespaceNode(control(), codePoint); 8301 break; 8302 default: 8303 fatal_unexpected_iid(id); 8304 } 8305 8306 set_result(_gvn.transform(n)); 8307 return true; 8308 } 8309 8310 //------------------------------inline_fp_min_max------------------------------ 8311 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 8312 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 8313 8314 // The intrinsic should be used only when the API branches aren't predictable, 8315 // the last one performing the most important comparison. The following heuristic 8316 // uses the branch statistics to eventually bail out if necessary. 8317 8318 ciMethodData *md = callee()->method_data(); 8319 8320 if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) { 8321 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 8322 8323 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 8324 // Bail out if the call-site didn't contribute enough to the statistics. 8325 return false; 8326 } 8327 8328 uint taken = 0, not_taken = 0; 8329 8330 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 8331 if (p->is_BranchData()) { 8332 taken = ((ciBranchData*)p)->taken(); 8333 not_taken = ((ciBranchData*)p)->not_taken(); 8334 } 8335 } 8336 8337 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 8338 balance = balance < 0 ? -balance : balance; 8339 if ( balance > 0.2 ) { 8340 // Bail out if the most important branch is predictable enough. 8341 return false; 8342 } 8343 } 8344 */ 8345 8346 Node *a = nullptr; 8347 Node *b = nullptr; 8348 Node *n = nullptr; 8349 switch (id) { 8350 case vmIntrinsics::_maxF: 8351 case vmIntrinsics::_minF: 8352 case vmIntrinsics::_maxF_strict: 8353 case vmIntrinsics::_minF_strict: 8354 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 8355 a = argument(0); 8356 b = argument(1); 8357 break; 8358 case vmIntrinsics::_maxD: 8359 case vmIntrinsics::_minD: 8360 case vmIntrinsics::_maxD_strict: 8361 case vmIntrinsics::_minD_strict: 8362 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 8363 a = round_double_node(argument(0)); 8364 b = round_double_node(argument(2)); 8365 break; 8366 default: 8367 fatal_unexpected_iid(id); 8368 break; 8369 } 8370 switch (id) { 8371 case vmIntrinsics::_maxF: 8372 case vmIntrinsics::_maxF_strict: 8373 n = new MaxFNode(a, b); 8374 break; 8375 case vmIntrinsics::_minF: 8376 case vmIntrinsics::_minF_strict: 8377 n = new MinFNode(a, b); 8378 break; 8379 case vmIntrinsics::_maxD: 8380 case vmIntrinsics::_maxD_strict: 8381 n = new MaxDNode(a, b); 8382 break; 8383 case vmIntrinsics::_minD: 8384 case vmIntrinsics::_minD_strict: 8385 n = new MinDNode(a, b); 8386 break; 8387 default: 8388 fatal_unexpected_iid(id); 8389 break; 8390 } 8391 set_result(_gvn.transform(n)); 8392 return true; 8393 } 8394 8395 bool LibraryCallKit::inline_profileBoolean() { 8396 Node* counts = argument(1); 8397 const TypeAryPtr* ary = nullptr; 8398 ciArray* aobj = nullptr; 8399 if (counts->is_Con() 8400 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 8401 && (aobj = ary->const_oop()->as_array()) != nullptr 8402 && (aobj->length() == 2)) { 8403 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 8404 jint false_cnt = aobj->element_value(0).as_int(); 8405 jint true_cnt = aobj->element_value(1).as_int(); 8406 8407 if (C->log() != nullptr) { 8408 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 8409 false_cnt, true_cnt); 8410 } 8411 8412 if (false_cnt + true_cnt == 0) { 8413 // According to profile, never executed. 8414 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8415 Deoptimization::Action_reinterpret); 8416 return true; 8417 } 8418 8419 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 8420 // is a number of each value occurrences. 8421 Node* result = argument(0); 8422 if (false_cnt == 0 || true_cnt == 0) { 8423 // According to profile, one value has been never seen. 8424 int expected_val = (false_cnt == 0) ? 1 : 0; 8425 8426 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 8427 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 8428 8429 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 8430 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 8431 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 8432 8433 { // Slow path: uncommon trap for never seen value and then reexecute 8434 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 8435 // the value has been seen at least once. 8436 PreserveJVMState pjvms(this); 8437 PreserveReexecuteState preexecs(this); 8438 jvms()->set_should_reexecute(true); 8439 8440 set_control(slow_path); 8441 set_i_o(i_o()); 8442 8443 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8444 Deoptimization::Action_reinterpret); 8445 } 8446 // The guard for never seen value enables sharpening of the result and 8447 // returning a constant. It allows to eliminate branches on the same value 8448 // later on. 8449 set_control(fast_path); 8450 result = intcon(expected_val); 8451 } 8452 // Stop profiling. 8453 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8454 // By replacing method body with profile data (represented as ProfileBooleanNode 8455 // on IR level) we effectively disable profiling. 8456 // It enables full speed execution once optimized code is generated. 8457 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8458 C->record_for_igvn(profile); 8459 set_result(profile); 8460 return true; 8461 } else { 8462 // Continue profiling. 8463 // Profile data isn't available at the moment. So, execute method's bytecode version. 8464 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8465 // is compiled and counters aren't available since corresponding MethodHandle 8466 // isn't a compile-time constant. 8467 return false; 8468 } 8469 } 8470 8471 bool LibraryCallKit::inline_isCompileConstant() { 8472 Node* n = argument(0); 8473 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8474 return true; 8475 } 8476 8477 //------------------------------- inline_getObjectSize -------------------------------------- 8478 // 8479 // Calculate the runtime size of the object/array. 8480 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8481 // 8482 bool LibraryCallKit::inline_getObjectSize() { 8483 Node* obj = argument(3); 8484 Node* klass_node = load_object_klass(obj); 8485 8486 jint layout_con = Klass::_lh_neutral_value; 8487 Node* layout_val = get_layout_helper(klass_node, layout_con); 8488 int layout_is_con = (layout_val == nullptr); 8489 8490 if (layout_is_con) { 8491 // Layout helper is constant, can figure out things at compile time. 8492 8493 if (Klass::layout_helper_is_instance(layout_con)) { 8494 // Instance case: layout_con contains the size itself. 8495 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8496 set_result(size); 8497 } else { 8498 // Array case: size is round(header + element_size*arraylength). 8499 // Since arraylength is different for every array instance, we have to 8500 // compute the whole thing at runtime. 8501 8502 Node* arr_length = load_array_length(obj); 8503 8504 int round_mask = MinObjAlignmentInBytes - 1; 8505 int hsize = Klass::layout_helper_header_size(layout_con); 8506 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8507 8508 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8509 round_mask = 0; // strength-reduce it if it goes away completely 8510 } 8511 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8512 Node* header_size = intcon(hsize + round_mask); 8513 8514 Node* lengthx = ConvI2X(arr_length); 8515 Node* headerx = ConvI2X(header_size); 8516 8517 Node* abody = lengthx; 8518 if (eshift != 0) { 8519 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8520 } 8521 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8522 if (round_mask != 0) { 8523 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8524 } 8525 size = ConvX2L(size); 8526 set_result(size); 8527 } 8528 } else { 8529 // Layout helper is not constant, need to test for array-ness at runtime. 8530 8531 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8532 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8533 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8534 record_for_igvn(result_reg); 8535 8536 Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj); 8537 if (array_ctl != nullptr) { 8538 // Array case: size is round(header + element_size*arraylength). 8539 // Since arraylength is different for every array instance, we have to 8540 // compute the whole thing at runtime. 8541 8542 PreserveJVMState pjvms(this); 8543 set_control(array_ctl); 8544 Node* arr_length = load_array_length(obj); 8545 8546 int round_mask = MinObjAlignmentInBytes - 1; 8547 Node* mask = intcon(round_mask); 8548 8549 Node* hss = intcon(Klass::_lh_header_size_shift); 8550 Node* hsm = intcon(Klass::_lh_header_size_mask); 8551 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 8552 header_size = _gvn.transform(new AndINode(header_size, hsm)); 8553 header_size = _gvn.transform(new AddINode(header_size, mask)); 8554 8555 // There is no need to mask or shift this value. 8556 // The semantics of LShiftINode include an implicit mask to 0x1F. 8557 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 8558 Node* elem_shift = layout_val; 8559 8560 Node* lengthx = ConvI2X(arr_length); 8561 Node* headerx = ConvI2X(header_size); 8562 8563 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 8564 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 8565 if (round_mask != 0) { 8566 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 8567 } 8568 size = ConvX2L(size); 8569 8570 result_reg->init_req(_array_path, control()); 8571 result_val->init_req(_array_path, size); 8572 } 8573 8574 if (!stopped()) { 8575 // Instance case: the layout helper gives us instance size almost directly, 8576 // but we need to mask out the _lh_instance_slow_path_bit. 8577 Node* size = ConvI2X(layout_val); 8578 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 8579 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 8580 size = _gvn.transform(new AndXNode(size, mask)); 8581 size = ConvX2L(size); 8582 8583 result_reg->init_req(_instance_path, control()); 8584 result_val->init_req(_instance_path, size); 8585 } 8586 8587 set_result(result_reg, result_val); 8588 } 8589 8590 return true; 8591 } 8592 8593 //------------------------------- inline_blackhole -------------------------------------- 8594 // 8595 // Make sure all arguments to this node are alive. 8596 // This matches methods that were requested to be blackholed through compile commands. 8597 // 8598 bool LibraryCallKit::inline_blackhole() { 8599 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 8600 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 8601 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 8602 8603 // Blackhole node pinches only the control, not memory. This allows 8604 // the blackhole to be pinned in the loop that computes blackholed 8605 // values, but have no other side effects, like breaking the optimizations 8606 // across the blackhole. 8607 8608 Node* bh = _gvn.transform(new BlackholeNode(control())); 8609 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 8610 8611 // Bind call arguments as blackhole arguments to keep them alive 8612 uint nargs = callee()->arg_size(); 8613 for (uint i = 0; i < nargs; i++) { 8614 bh->add_req(argument(i)); 8615 } 8616 8617 return true; 8618 }