1 /* 2 * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "jfr/support/jfrIntrinsics.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/klass.inline.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/countbitsnode.hpp" 43 #include "opto/idealKit.hpp" 44 #include "opto/library_call.hpp" 45 #include "opto/mathexactnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/parse.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/rootnode.hpp" 52 #include "opto/subnode.hpp" 53 #include "prims/jvmtiExport.hpp" 54 #include "prims/jvmtiThreadState.hpp" 55 #include "prims/unsafe.hpp" 56 #include "runtime/jniHandles.inline.hpp" 57 #include "runtime/objectMonitor.hpp" 58 #include "runtime/sharedRuntime.hpp" 59 #include "runtime/stubRoutines.hpp" 60 #include "utilities/macros.hpp" 61 #include "utilities/powerOfTwo.hpp" 62 63 //---------------------------make_vm_intrinsic---------------------------- 64 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 65 vmIntrinsicID id = m->intrinsic_id(); 66 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 67 68 if (!m->is_loaded()) { 69 // Do not attempt to inline unloaded methods. 70 return nullptr; 71 } 72 73 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 74 bool is_available = false; 75 76 { 77 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 78 // the compiler must transition to '_thread_in_vm' state because both 79 // methods access VM-internal data. 80 VM_ENTRY_MARK; 81 methodHandle mh(THREAD, m->get_Method()); 82 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 83 if (is_available && is_virtual) { 84 is_available = vmIntrinsics::does_virtual_dispatch(id); 85 } 86 } 87 88 if (is_available) { 89 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 90 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 91 return new LibraryIntrinsic(m, is_virtual, 92 vmIntrinsics::predicates_needed(id), 93 vmIntrinsics::does_virtual_dispatch(id), 94 id); 95 } else { 96 return nullptr; 97 } 98 } 99 100 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 101 LibraryCallKit kit(jvms, this); 102 Compile* C = kit.C; 103 int nodes = C->unique(); 104 #ifndef PRODUCT 105 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 106 char buf[1000]; 107 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 108 tty->print_cr("Intrinsic %s", str); 109 } 110 #endif 111 ciMethod* callee = kit.callee(); 112 const int bci = kit.bci(); 113 #ifdef ASSERT 114 Node* ctrl = kit.control(); 115 #endif 116 // Try to inline the intrinsic. 117 if (callee->check_intrinsic_candidate() && 118 kit.try_to_inline(_last_predicate)) { 119 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 120 : "(intrinsic)"; 121 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 122 if (C->print_intrinsics() || C->print_inlining()) { 123 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 124 } 125 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 126 if (C->log()) { 127 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 128 vmIntrinsics::name_at(intrinsic_id()), 129 (is_virtual() ? " virtual='1'" : ""), 130 C->unique() - nodes); 131 } 132 // Push the result from the inlined method onto the stack. 133 kit.push_result(); 134 C->print_inlining_update(this); 135 return kit.transfer_exceptions_into_jvms(); 136 } 137 138 // The intrinsic bailed out 139 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 140 if (jvms->has_method()) { 141 // Not a root compile. 142 const char* msg; 143 if (callee->intrinsic_candidate()) { 144 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 145 } else { 146 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 147 : "failed to inline (intrinsic), method not annotated"; 148 } 149 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg); 150 if (C->print_intrinsics() || C->print_inlining()) { 151 C->print_inlining(callee, jvms->depth() - 1, bci, msg); 152 } 153 } else { 154 // Root compile 155 ResourceMark rm; 156 stringStream msg_stream; 157 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 158 vmIntrinsics::name_at(intrinsic_id()), 159 is_virtual() ? " (virtual)" : "", bci); 160 const char *msg = msg_stream.freeze(); 161 log_debug(jit, inlining)("%s", msg); 162 if (C->print_intrinsics() || C->print_inlining()) { 163 tty->print("%s", msg); 164 } 165 } 166 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 167 C->print_inlining_update(this); 168 169 return nullptr; 170 } 171 172 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 173 LibraryCallKit kit(jvms, this); 174 Compile* C = kit.C; 175 int nodes = C->unique(); 176 _last_predicate = predicate; 177 #ifndef PRODUCT 178 assert(is_predicated() && predicate < predicates_count(), "sanity"); 179 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 180 char buf[1000]; 181 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 182 tty->print_cr("Predicate for intrinsic %s", str); 183 } 184 #endif 185 ciMethod* callee = kit.callee(); 186 const int bci = kit.bci(); 187 188 Node* slow_ctl = kit.try_to_predicate(predicate); 189 if (!kit.failing()) { 190 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 191 : "(intrinsic, predicate)"; 192 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 193 if (C->print_intrinsics() || C->print_inlining()) { 194 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 195 } 196 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 197 if (C->log()) { 198 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 199 vmIntrinsics::name_at(intrinsic_id()), 200 (is_virtual() ? " virtual='1'" : ""), 201 C->unique() - nodes); 202 } 203 return slow_ctl; // Could be null if the check folds. 204 } 205 206 // The intrinsic bailed out 207 if (jvms->has_method()) { 208 // Not a root compile. 209 const char* msg = "failed to generate predicate for intrinsic"; 210 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg); 211 if (C->print_intrinsics() || C->print_inlining()) { 212 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg); 213 } 214 } else { 215 // Root compile 216 ResourceMark rm; 217 stringStream msg_stream; 218 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 219 vmIntrinsics::name_at(intrinsic_id()), 220 is_virtual() ? " (virtual)" : "", bci); 221 const char *msg = msg_stream.freeze(); 222 log_debug(jit, inlining)("%s", msg); 223 if (C->print_intrinsics() || C->print_inlining()) { 224 C->print_inlining_stream()->print("%s", msg); 225 } 226 } 227 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 228 return nullptr; 229 } 230 231 bool LibraryCallKit::try_to_inline(int predicate) { 232 // Handle symbolic names for otherwise undistinguished boolean switches: 233 const bool is_store = true; 234 const bool is_compress = true; 235 const bool is_static = true; 236 const bool is_volatile = true; 237 238 if (!jvms()->has_method()) { 239 // Root JVMState has a null method. 240 assert(map()->memory()->Opcode() == Op_Parm, ""); 241 // Insert the memory aliasing node 242 set_all_memory(reset_memory()); 243 } 244 assert(merged_memory(), ""); 245 246 switch (intrinsic_id()) { 247 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 248 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 249 case vmIntrinsics::_getClass: return inline_native_getClass(); 250 251 case vmIntrinsics::_ceil: 252 case vmIntrinsics::_floor: 253 case vmIntrinsics::_rint: 254 case vmIntrinsics::_dsin: 255 case vmIntrinsics::_dcos: 256 case vmIntrinsics::_dtan: 257 case vmIntrinsics::_dabs: 258 case vmIntrinsics::_fabs: 259 case vmIntrinsics::_iabs: 260 case vmIntrinsics::_labs: 261 case vmIntrinsics::_datan2: 262 case vmIntrinsics::_dsqrt: 263 case vmIntrinsics::_dsqrt_strict: 264 case vmIntrinsics::_dexp: 265 case vmIntrinsics::_dlog: 266 case vmIntrinsics::_dlog10: 267 case vmIntrinsics::_dpow: 268 case vmIntrinsics::_dcopySign: 269 case vmIntrinsics::_fcopySign: 270 case vmIntrinsics::_dsignum: 271 case vmIntrinsics::_roundF: 272 case vmIntrinsics::_roundD: 273 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 274 275 case vmIntrinsics::_notify: 276 case vmIntrinsics::_notifyAll: 277 return inline_notify(intrinsic_id()); 278 279 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 280 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 281 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 282 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 283 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 284 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 285 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 286 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 287 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 288 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 289 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 290 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 291 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 292 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 293 294 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 295 296 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 297 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 298 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 299 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 300 301 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 302 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 303 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 304 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 305 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 306 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 307 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 308 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 309 310 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 311 case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU); 312 313 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 314 315 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 316 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 317 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 318 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 319 320 case vmIntrinsics::_compressStringC: 321 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 322 case vmIntrinsics::_inflateStringC: 323 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 324 325 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 326 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 327 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 328 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 329 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 330 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 331 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 332 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 333 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 334 335 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 336 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 337 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 338 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 339 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 340 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 341 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 342 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 343 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 344 345 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 346 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 347 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 348 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 349 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 350 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 351 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 352 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 353 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 354 355 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 356 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 357 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 358 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 359 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 360 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 361 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 362 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 363 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 364 365 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 366 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 367 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 368 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 369 370 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 371 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 372 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 373 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 374 375 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 376 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 377 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 378 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 379 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 380 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 381 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 382 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 383 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 384 385 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 386 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 387 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 388 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 389 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 390 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 391 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 392 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 393 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 394 395 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 396 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 397 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 398 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 399 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 400 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 401 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 402 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 403 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 404 405 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 406 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 407 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 408 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 409 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 410 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 411 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 412 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 413 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 414 415 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 416 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 417 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 418 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 419 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 420 421 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 422 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 423 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 424 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 425 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 426 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 427 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 428 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 429 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 430 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 431 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 432 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 433 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 434 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 435 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 436 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 437 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 438 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 439 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 440 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 441 442 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 443 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 444 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 445 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 446 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 447 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 448 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 449 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 450 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 451 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 452 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 453 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 454 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 455 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 456 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 457 458 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 459 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 460 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 461 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 462 463 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 464 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 465 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 466 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 467 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 468 469 case vmIntrinsics::_loadFence: 470 case vmIntrinsics::_storeFence: 471 case vmIntrinsics::_storeStoreFence: 472 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 473 474 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 475 476 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 477 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 478 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 479 480 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 481 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 482 483 #if INCLUDE_JVMTI 484 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 485 "notifyJvmtiStart", true, false); 486 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 487 "notifyJvmtiEnd", false, true); 488 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 489 "notifyJvmtiMount", false, false); 490 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 491 "notifyJvmtiUnmount", false, false); 492 case vmIntrinsics::_notifyJvmtiVThreadHideFrames: return inline_native_notify_jvmti_hide(); 493 #endif 494 495 #ifdef JFR_HAVE_INTRINSICS 496 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 497 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 498 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 499 #endif 500 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 501 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 502 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 503 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 504 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 505 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 506 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 507 case vmIntrinsics::_getLength: return inline_native_getLength(); 508 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 509 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 510 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 511 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 512 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 513 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 514 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 515 516 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 517 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 518 519 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 520 521 case vmIntrinsics::_isInstance: 522 case vmIntrinsics::_getModifiers: 523 case vmIntrinsics::_isInterface: 524 case vmIntrinsics::_isArray: 525 case vmIntrinsics::_isPrimitive: 526 case vmIntrinsics::_isHidden: 527 case vmIntrinsics::_getSuperclass: 528 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 529 530 case vmIntrinsics::_floatToRawIntBits: 531 case vmIntrinsics::_floatToIntBits: 532 case vmIntrinsics::_intBitsToFloat: 533 case vmIntrinsics::_doubleToRawLongBits: 534 case vmIntrinsics::_doubleToLongBits: 535 case vmIntrinsics::_longBitsToDouble: 536 case vmIntrinsics::_floatToFloat16: 537 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 538 539 case vmIntrinsics::_floatIsFinite: 540 case vmIntrinsics::_floatIsInfinite: 541 case vmIntrinsics::_doubleIsFinite: 542 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 543 544 case vmIntrinsics::_numberOfLeadingZeros_i: 545 case vmIntrinsics::_numberOfLeadingZeros_l: 546 case vmIntrinsics::_numberOfTrailingZeros_i: 547 case vmIntrinsics::_numberOfTrailingZeros_l: 548 case vmIntrinsics::_bitCount_i: 549 case vmIntrinsics::_bitCount_l: 550 case vmIntrinsics::_reverse_i: 551 case vmIntrinsics::_reverse_l: 552 case vmIntrinsics::_reverseBytes_i: 553 case vmIntrinsics::_reverseBytes_l: 554 case vmIntrinsics::_reverseBytes_s: 555 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 556 557 case vmIntrinsics::_compress_i: 558 case vmIntrinsics::_compress_l: 559 case vmIntrinsics::_expand_i: 560 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 561 562 case vmIntrinsics::_compareUnsigned_i: 563 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 564 565 case vmIntrinsics::_divideUnsigned_i: 566 case vmIntrinsics::_divideUnsigned_l: 567 case vmIntrinsics::_remainderUnsigned_i: 568 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 569 570 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 571 572 case vmIntrinsics::_Reference_get: return inline_reference_get(); 573 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 574 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 575 576 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 577 578 case vmIntrinsics::_aescrypt_encryptBlock: 579 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 580 581 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 582 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 583 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 584 585 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 586 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 587 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 588 589 case vmIntrinsics::_counterMode_AESCrypt: 590 return inline_counterMode_AESCrypt(intrinsic_id()); 591 592 case vmIntrinsics::_galoisCounterMode_AESCrypt: 593 return inline_galoisCounterMode_AESCrypt(); 594 595 case vmIntrinsics::_md5_implCompress: 596 case vmIntrinsics::_sha_implCompress: 597 case vmIntrinsics::_sha2_implCompress: 598 case vmIntrinsics::_sha5_implCompress: 599 case vmIntrinsics::_sha3_implCompress: 600 return inline_digestBase_implCompress(intrinsic_id()); 601 602 case vmIntrinsics::_digestBase_implCompressMB: 603 return inline_digestBase_implCompressMB(predicate); 604 605 case vmIntrinsics::_multiplyToLen: 606 return inline_multiplyToLen(); 607 608 case vmIntrinsics::_squareToLen: 609 return inline_squareToLen(); 610 611 case vmIntrinsics::_mulAdd: 612 return inline_mulAdd(); 613 614 case vmIntrinsics::_montgomeryMultiply: 615 return inline_montgomeryMultiply(); 616 case vmIntrinsics::_montgomerySquare: 617 return inline_montgomerySquare(); 618 619 case vmIntrinsics::_bigIntegerRightShiftWorker: 620 return inline_bigIntegerShift(true); 621 case vmIntrinsics::_bigIntegerLeftShiftWorker: 622 return inline_bigIntegerShift(false); 623 624 case vmIntrinsics::_vectorizedMismatch: 625 return inline_vectorizedMismatch(); 626 627 case vmIntrinsics::_ghash_processBlocks: 628 return inline_ghash_processBlocks(); 629 case vmIntrinsics::_chacha20Block: 630 return inline_chacha20Block(); 631 case vmIntrinsics::_base64_encodeBlock: 632 return inline_base64_encodeBlock(); 633 case vmIntrinsics::_base64_decodeBlock: 634 return inline_base64_decodeBlock(); 635 case vmIntrinsics::_poly1305_processBlocks: 636 return inline_poly1305_processBlocks(); 637 638 case vmIntrinsics::_encodeISOArray: 639 case vmIntrinsics::_encodeByteISOArray: 640 return inline_encodeISOArray(false); 641 case vmIntrinsics::_encodeAsciiArray: 642 return inline_encodeISOArray(true); 643 644 case vmIntrinsics::_updateCRC32: 645 return inline_updateCRC32(); 646 case vmIntrinsics::_updateBytesCRC32: 647 return inline_updateBytesCRC32(); 648 case vmIntrinsics::_updateByteBufferCRC32: 649 return inline_updateByteBufferCRC32(); 650 651 case vmIntrinsics::_updateBytesCRC32C: 652 return inline_updateBytesCRC32C(); 653 case vmIntrinsics::_updateDirectByteBufferCRC32C: 654 return inline_updateDirectByteBufferCRC32C(); 655 656 case vmIntrinsics::_updateBytesAdler32: 657 return inline_updateBytesAdler32(); 658 case vmIntrinsics::_updateByteBufferAdler32: 659 return inline_updateByteBufferAdler32(); 660 661 case vmIntrinsics::_profileBoolean: 662 return inline_profileBoolean(); 663 case vmIntrinsics::_isCompileConstant: 664 return inline_isCompileConstant(); 665 666 case vmIntrinsics::_countPositives: 667 return inline_countPositives(); 668 669 case vmIntrinsics::_fmaD: 670 case vmIntrinsics::_fmaF: 671 return inline_fma(intrinsic_id()); 672 673 case vmIntrinsics::_isDigit: 674 case vmIntrinsics::_isLowerCase: 675 case vmIntrinsics::_isUpperCase: 676 case vmIntrinsics::_isWhitespace: 677 return inline_character_compare(intrinsic_id()); 678 679 case vmIntrinsics::_min: 680 case vmIntrinsics::_max: 681 case vmIntrinsics::_min_strict: 682 case vmIntrinsics::_max_strict: 683 return inline_min_max(intrinsic_id()); 684 685 case vmIntrinsics::_maxF: 686 case vmIntrinsics::_minF: 687 case vmIntrinsics::_maxD: 688 case vmIntrinsics::_minD: 689 case vmIntrinsics::_maxF_strict: 690 case vmIntrinsics::_minF_strict: 691 case vmIntrinsics::_maxD_strict: 692 case vmIntrinsics::_minD_strict: 693 return inline_fp_min_max(intrinsic_id()); 694 695 case vmIntrinsics::_VectorUnaryOp: 696 return inline_vector_nary_operation(1); 697 case vmIntrinsics::_VectorBinaryOp: 698 return inline_vector_nary_operation(2); 699 case vmIntrinsics::_VectorTernaryOp: 700 return inline_vector_nary_operation(3); 701 case vmIntrinsics::_VectorFromBitsCoerced: 702 return inline_vector_frombits_coerced(); 703 case vmIntrinsics::_VectorShuffleIota: 704 return inline_vector_shuffle_iota(); 705 case vmIntrinsics::_VectorMaskOp: 706 return inline_vector_mask_operation(); 707 case vmIntrinsics::_VectorShuffleToVector: 708 return inline_vector_shuffle_to_vector(); 709 case vmIntrinsics::_VectorLoadOp: 710 return inline_vector_mem_operation(/*is_store=*/false); 711 case vmIntrinsics::_VectorLoadMaskedOp: 712 return inline_vector_mem_masked_operation(/*is_store*/false); 713 case vmIntrinsics::_VectorStoreOp: 714 return inline_vector_mem_operation(/*is_store=*/true); 715 case vmIntrinsics::_VectorStoreMaskedOp: 716 return inline_vector_mem_masked_operation(/*is_store=*/true); 717 case vmIntrinsics::_VectorGatherOp: 718 return inline_vector_gather_scatter(/*is_scatter*/ false); 719 case vmIntrinsics::_VectorScatterOp: 720 return inline_vector_gather_scatter(/*is_scatter*/ true); 721 case vmIntrinsics::_VectorReductionCoerced: 722 return inline_vector_reduction(); 723 case vmIntrinsics::_VectorTest: 724 return inline_vector_test(); 725 case vmIntrinsics::_VectorBlend: 726 return inline_vector_blend(); 727 case vmIntrinsics::_VectorRearrange: 728 return inline_vector_rearrange(); 729 case vmIntrinsics::_VectorCompare: 730 return inline_vector_compare(); 731 case vmIntrinsics::_VectorBroadcastInt: 732 return inline_vector_broadcast_int(); 733 case vmIntrinsics::_VectorConvert: 734 return inline_vector_convert(); 735 case vmIntrinsics::_VectorInsert: 736 return inline_vector_insert(); 737 case vmIntrinsics::_VectorExtract: 738 return inline_vector_extract(); 739 case vmIntrinsics::_VectorCompressExpand: 740 return inline_vector_compress_expand(); 741 case vmIntrinsics::_IndexVector: 742 return inline_index_vector(); 743 case vmIntrinsics::_IndexPartiallyInUpperRange: 744 return inline_index_partially_in_upper_range(); 745 746 case vmIntrinsics::_getObjectSize: 747 return inline_getObjectSize(); 748 749 case vmIntrinsics::_blackhole: 750 return inline_blackhole(); 751 752 default: 753 // If you get here, it may be that someone has added a new intrinsic 754 // to the list in vmIntrinsics.hpp without implementing it here. 755 #ifndef PRODUCT 756 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 757 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 758 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 759 } 760 #endif 761 return false; 762 } 763 } 764 765 Node* LibraryCallKit::try_to_predicate(int predicate) { 766 if (!jvms()->has_method()) { 767 // Root JVMState has a null method. 768 assert(map()->memory()->Opcode() == Op_Parm, ""); 769 // Insert the memory aliasing node 770 set_all_memory(reset_memory()); 771 } 772 assert(merged_memory(), ""); 773 774 switch (intrinsic_id()) { 775 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 776 return inline_cipherBlockChaining_AESCrypt_predicate(false); 777 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 778 return inline_cipherBlockChaining_AESCrypt_predicate(true); 779 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 780 return inline_electronicCodeBook_AESCrypt_predicate(false); 781 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 782 return inline_electronicCodeBook_AESCrypt_predicate(true); 783 case vmIntrinsics::_counterMode_AESCrypt: 784 return inline_counterMode_AESCrypt_predicate(); 785 case vmIntrinsics::_digestBase_implCompressMB: 786 return inline_digestBase_implCompressMB_predicate(predicate); 787 case vmIntrinsics::_galoisCounterMode_AESCrypt: 788 return inline_galoisCounterMode_AESCrypt_predicate(); 789 790 default: 791 // If you get here, it may be that someone has added a new intrinsic 792 // to the list in vmIntrinsics.hpp without implementing it here. 793 #ifndef PRODUCT 794 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 795 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 796 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 797 } 798 #endif 799 Node* slow_ctl = control(); 800 set_control(top()); // No fast path intrinsic 801 return slow_ctl; 802 } 803 } 804 805 //------------------------------set_result------------------------------- 806 // Helper function for finishing intrinsics. 807 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 808 record_for_igvn(region); 809 set_control(_gvn.transform(region)); 810 set_result( _gvn.transform(value)); 811 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 812 } 813 814 //------------------------------generate_guard--------------------------- 815 // Helper function for generating guarded fast-slow graph structures. 816 // The given 'test', if true, guards a slow path. If the test fails 817 // then a fast path can be taken. (We generally hope it fails.) 818 // In all cases, GraphKit::control() is updated to the fast path. 819 // The returned value represents the control for the slow path. 820 // The return value is never 'top'; it is either a valid control 821 // or null if it is obvious that the slow path can never be taken. 822 // Also, if region and the slow control are not null, the slow edge 823 // is appended to the region. 824 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 825 if (stopped()) { 826 // Already short circuited. 827 return nullptr; 828 } 829 830 // Build an if node and its projections. 831 // If test is true we take the slow path, which we assume is uncommon. 832 if (_gvn.type(test) == TypeInt::ZERO) { 833 // The slow branch is never taken. No need to build this guard. 834 return nullptr; 835 } 836 837 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 838 839 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 840 if (if_slow == top()) { 841 // The slow branch is never taken. No need to build this guard. 842 return nullptr; 843 } 844 845 if (region != nullptr) 846 region->add_req(if_slow); 847 848 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 849 set_control(if_fast); 850 851 return if_slow; 852 } 853 854 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 855 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 856 } 857 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 858 return generate_guard(test, region, PROB_FAIR); 859 } 860 861 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 862 Node* *pos_index) { 863 if (stopped()) 864 return nullptr; // already stopped 865 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 866 return nullptr; // index is already adequately typed 867 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 868 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 869 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 870 if (is_neg != nullptr && pos_index != nullptr) { 871 // Emulate effect of Parse::adjust_map_after_if. 872 Node* ccast = new CastIINode(index, TypeInt::POS); 873 ccast->set_req(0, control()); 874 (*pos_index) = _gvn.transform(ccast); 875 } 876 return is_neg; 877 } 878 879 // Make sure that 'position' is a valid limit index, in [0..length]. 880 // There are two equivalent plans for checking this: 881 // A. (offset + copyLength) unsigned<= arrayLength 882 // B. offset <= (arrayLength - copyLength) 883 // We require that all of the values above, except for the sum and 884 // difference, are already known to be non-negative. 885 // Plan A is robust in the face of overflow, if offset and copyLength 886 // are both hugely positive. 887 // 888 // Plan B is less direct and intuitive, but it does not overflow at 889 // all, since the difference of two non-negatives is always 890 // representable. Whenever Java methods must perform the equivalent 891 // check they generally use Plan B instead of Plan A. 892 // For the moment we use Plan A. 893 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 894 Node* subseq_length, 895 Node* array_length, 896 RegionNode* region) { 897 if (stopped()) 898 return nullptr; // already stopped 899 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 900 if (zero_offset && subseq_length->eqv_uncast(array_length)) 901 return nullptr; // common case of whole-array copy 902 Node* last = subseq_length; 903 if (!zero_offset) // last += offset 904 last = _gvn.transform(new AddINode(last, offset)); 905 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 906 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 907 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 908 return is_over; 909 } 910 911 // Emit range checks for the given String.value byte array 912 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 913 if (stopped()) { 914 return; // already stopped 915 } 916 RegionNode* bailout = new RegionNode(1); 917 record_for_igvn(bailout); 918 if (char_count) { 919 // Convert char count to byte count 920 count = _gvn.transform(new LShiftINode(count, intcon(1))); 921 } 922 923 // Offset and count must not be negative 924 generate_negative_guard(offset, bailout); 925 generate_negative_guard(count, bailout); 926 // Offset + count must not exceed length of array 927 generate_limit_guard(offset, count, load_array_length(array), bailout); 928 929 if (bailout->req() > 1) { 930 PreserveJVMState pjvms(this); 931 set_control(_gvn.transform(bailout)); 932 uncommon_trap(Deoptimization::Reason_intrinsic, 933 Deoptimization::Action_maybe_recompile); 934 } 935 } 936 937 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 938 bool is_immutable) { 939 ciKlass* thread_klass = env()->Thread_klass(); 940 const Type* thread_type 941 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 942 943 Node* thread = _gvn.transform(new ThreadLocalNode()); 944 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 945 tls_output = thread; 946 947 Node* thread_obj_handle 948 = (is_immutable 949 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 950 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 951 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 952 thread_obj_handle = _gvn.transform(thread_obj_handle); 953 954 DecoratorSet decorators = IN_NATIVE; 955 if (is_immutable) { 956 decorators |= C2_IMMUTABLE_MEMORY; 957 } 958 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 959 } 960 961 //--------------------------generate_current_thread-------------------- 962 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 963 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 964 /*is_immutable*/false); 965 } 966 967 //--------------------------generate_virtual_thread-------------------- 968 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 969 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 970 !C->method()->changes_current_thread()); 971 } 972 973 //------------------------------make_string_method_node------------------------ 974 // Helper method for String intrinsic functions. This version is called with 975 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 976 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 977 // containing the lengths of str1 and str2. 978 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 979 Node* result = nullptr; 980 switch (opcode) { 981 case Op_StrIndexOf: 982 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 983 str1_start, cnt1, str2_start, cnt2, ae); 984 break; 985 case Op_StrComp: 986 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 987 str1_start, cnt1, str2_start, cnt2, ae); 988 break; 989 case Op_StrEquals: 990 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 991 // Use the constant length if there is one because optimized match rule may exist. 992 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 993 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 994 break; 995 default: 996 ShouldNotReachHere(); 997 return nullptr; 998 } 999 1000 // All these intrinsics have checks. 1001 C->set_has_split_ifs(true); // Has chance for split-if optimization 1002 clear_upper_avx(); 1003 1004 return _gvn.transform(result); 1005 } 1006 1007 //------------------------------inline_string_compareTo------------------------ 1008 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1009 Node* arg1 = argument(0); 1010 Node* arg2 = argument(1); 1011 1012 arg1 = must_be_not_null(arg1, true); 1013 arg2 = must_be_not_null(arg2, true); 1014 1015 // Get start addr and length of first argument 1016 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1017 Node* arg1_cnt = load_array_length(arg1); 1018 1019 // Get start addr and length of second argument 1020 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1021 Node* arg2_cnt = load_array_length(arg2); 1022 1023 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1024 set_result(result); 1025 return true; 1026 } 1027 1028 //------------------------------inline_string_equals------------------------ 1029 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1030 Node* arg1 = argument(0); 1031 Node* arg2 = argument(1); 1032 1033 // paths (plus control) merge 1034 RegionNode* region = new RegionNode(3); 1035 Node* phi = new PhiNode(region, TypeInt::BOOL); 1036 1037 if (!stopped()) { 1038 1039 arg1 = must_be_not_null(arg1, true); 1040 arg2 = must_be_not_null(arg2, true); 1041 1042 // Get start addr and length of first argument 1043 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1044 Node* arg1_cnt = load_array_length(arg1); 1045 1046 // Get start addr and length of second argument 1047 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1048 Node* arg2_cnt = load_array_length(arg2); 1049 1050 // Check for arg1_cnt != arg2_cnt 1051 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1052 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1053 Node* if_ne = generate_slow_guard(bol, nullptr); 1054 if (if_ne != nullptr) { 1055 phi->init_req(2, intcon(0)); 1056 region->init_req(2, if_ne); 1057 } 1058 1059 // Check for count == 0 is done by assembler code for StrEquals. 1060 1061 if (!stopped()) { 1062 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1063 phi->init_req(1, equals); 1064 region->init_req(1, control()); 1065 } 1066 } 1067 1068 // post merge 1069 set_control(_gvn.transform(region)); 1070 record_for_igvn(region); 1071 1072 set_result(_gvn.transform(phi)); 1073 return true; 1074 } 1075 1076 //------------------------------inline_array_equals---------------------------- 1077 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1078 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1079 Node* arg1 = argument(0); 1080 Node* arg2 = argument(1); 1081 1082 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1083 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1084 clear_upper_avx(); 1085 1086 return true; 1087 } 1088 1089 1090 //------------------------------inline_countPositives------------------------------ 1091 bool LibraryCallKit::inline_countPositives() { 1092 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1093 return false; 1094 } 1095 1096 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1097 // no receiver since it is static method 1098 Node* ba = argument(0); 1099 Node* offset = argument(1); 1100 Node* len = argument(2); 1101 1102 ba = must_be_not_null(ba, true); 1103 1104 // Range checks 1105 generate_string_range_check(ba, offset, len, false); 1106 if (stopped()) { 1107 return true; 1108 } 1109 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1110 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1111 set_result(_gvn.transform(result)); 1112 return true; 1113 } 1114 1115 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1116 Node* index = argument(0); 1117 Node* length = bt == T_INT ? argument(1) : argument(2); 1118 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1119 return false; 1120 } 1121 1122 // check that length is positive 1123 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1124 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1125 1126 { 1127 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1128 uncommon_trap(Deoptimization::Reason_intrinsic, 1129 Deoptimization::Action_make_not_entrant); 1130 } 1131 1132 if (stopped()) { 1133 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1134 return true; 1135 } 1136 1137 // length is now known positive, add a cast node to make this explicit 1138 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1139 Node* casted_length = ConstraintCastNode::make(control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt); 1140 casted_length = _gvn.transform(casted_length); 1141 replace_in_map(length, casted_length); 1142 length = casted_length; 1143 1144 // Use an unsigned comparison for the range check itself 1145 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1146 BoolTest::mask btest = BoolTest::lt; 1147 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1148 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1149 _gvn.set_type(rc, rc->Value(&_gvn)); 1150 if (!rc_bool->is_Con()) { 1151 record_for_igvn(rc); 1152 } 1153 set_control(_gvn.transform(new IfTrueNode(rc))); 1154 { 1155 PreserveJVMState pjvms(this); 1156 set_control(_gvn.transform(new IfFalseNode(rc))); 1157 uncommon_trap(Deoptimization::Reason_range_check, 1158 Deoptimization::Action_make_not_entrant); 1159 } 1160 1161 if (stopped()) { 1162 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1163 return true; 1164 } 1165 1166 // index is now known to be >= 0 and < length, cast it 1167 Node* result = ConstraintCastNode::make(control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt); 1168 result = _gvn.transform(result); 1169 set_result(result); 1170 replace_in_map(index, result); 1171 return true; 1172 } 1173 1174 //------------------------------inline_string_indexOf------------------------ 1175 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1176 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1177 return false; 1178 } 1179 Node* src = argument(0); 1180 Node* tgt = argument(1); 1181 1182 // Make the merge point 1183 RegionNode* result_rgn = new RegionNode(4); 1184 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1185 1186 src = must_be_not_null(src, true); 1187 tgt = must_be_not_null(tgt, true); 1188 1189 // Get start addr and length of source string 1190 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1191 Node* src_count = load_array_length(src); 1192 1193 // Get start addr and length of substring 1194 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1195 Node* tgt_count = load_array_length(tgt); 1196 1197 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1198 // Divide src size by 2 if String is UTF16 encoded 1199 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1200 } 1201 if (ae == StrIntrinsicNode::UU) { 1202 // Divide substring size by 2 if String is UTF16 encoded 1203 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1204 } 1205 1206 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae); 1207 if (result != nullptr) { 1208 result_phi->init_req(3, result); 1209 result_rgn->init_req(3, control()); 1210 } 1211 set_control(_gvn.transform(result_rgn)); 1212 record_for_igvn(result_rgn); 1213 set_result(_gvn.transform(result_phi)); 1214 1215 return true; 1216 } 1217 1218 //-----------------------------inline_string_indexOf----------------------- 1219 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1220 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1221 return false; 1222 } 1223 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1224 return false; 1225 } 1226 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1227 Node* src = argument(0); // byte[] 1228 Node* src_count = argument(1); // char count 1229 Node* tgt = argument(2); // byte[] 1230 Node* tgt_count = argument(3); // char count 1231 Node* from_index = argument(4); // char index 1232 1233 src = must_be_not_null(src, true); 1234 tgt = must_be_not_null(tgt, true); 1235 1236 // Multiply byte array index by 2 if String is UTF16 encoded 1237 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1238 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1239 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1240 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1241 1242 // Range checks 1243 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1244 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1245 if (stopped()) { 1246 return true; 1247 } 1248 1249 RegionNode* region = new RegionNode(5); 1250 Node* phi = new PhiNode(region, TypeInt::INT); 1251 1252 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae); 1253 if (result != nullptr) { 1254 // The result is index relative to from_index if substring was found, -1 otherwise. 1255 // Generate code which will fold into cmove. 1256 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1257 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1258 1259 Node* if_lt = generate_slow_guard(bol, nullptr); 1260 if (if_lt != nullptr) { 1261 // result == -1 1262 phi->init_req(3, result); 1263 region->init_req(3, if_lt); 1264 } 1265 if (!stopped()) { 1266 result = _gvn.transform(new AddINode(result, from_index)); 1267 phi->init_req(4, result); 1268 region->init_req(4, control()); 1269 } 1270 } 1271 1272 set_control(_gvn.transform(region)); 1273 record_for_igvn(region); 1274 set_result(_gvn.transform(phi)); 1275 clear_upper_avx(); 1276 1277 return true; 1278 } 1279 1280 // Create StrIndexOfNode with fast path checks 1281 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1282 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1283 // Check for substr count > string count 1284 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1285 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1286 Node* if_gt = generate_slow_guard(bol, nullptr); 1287 if (if_gt != nullptr) { 1288 phi->init_req(1, intcon(-1)); 1289 region->init_req(1, if_gt); 1290 } 1291 if (!stopped()) { 1292 // Check for substr count == 0 1293 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1294 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1295 Node* if_zero = generate_slow_guard(bol, nullptr); 1296 if (if_zero != nullptr) { 1297 phi->init_req(2, intcon(0)); 1298 region->init_req(2, if_zero); 1299 } 1300 } 1301 if (!stopped()) { 1302 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1303 } 1304 return nullptr; 1305 } 1306 1307 //-----------------------------inline_string_indexOfChar----------------------- 1308 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1309 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1310 return false; 1311 } 1312 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1313 return false; 1314 } 1315 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1316 Node* src = argument(0); // byte[] 1317 Node* int_ch = argument(1); 1318 Node* from_index = argument(2); 1319 Node* max = argument(3); 1320 1321 src = must_be_not_null(src, true); 1322 1323 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1324 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1325 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1326 1327 // Range checks 1328 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1329 1330 // Check for int_ch >= 0 1331 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1332 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1333 { 1334 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1335 uncommon_trap(Deoptimization::Reason_intrinsic, 1336 Deoptimization::Action_maybe_recompile); 1337 } 1338 if (stopped()) { 1339 return true; 1340 } 1341 1342 RegionNode* region = new RegionNode(3); 1343 Node* phi = new PhiNode(region, TypeInt::INT); 1344 1345 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1346 C->set_has_split_ifs(true); // Has chance for split-if optimization 1347 _gvn.transform(result); 1348 1349 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1350 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1351 1352 Node* if_lt = generate_slow_guard(bol, nullptr); 1353 if (if_lt != nullptr) { 1354 // result == -1 1355 phi->init_req(2, result); 1356 region->init_req(2, if_lt); 1357 } 1358 if (!stopped()) { 1359 result = _gvn.transform(new AddINode(result, from_index)); 1360 phi->init_req(1, result); 1361 region->init_req(1, control()); 1362 } 1363 set_control(_gvn.transform(region)); 1364 record_for_igvn(region); 1365 set_result(_gvn.transform(phi)); 1366 1367 return true; 1368 } 1369 //---------------------------inline_string_copy--------------------- 1370 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1371 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1372 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1373 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1374 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1375 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1376 bool LibraryCallKit::inline_string_copy(bool compress) { 1377 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1378 return false; 1379 } 1380 int nargs = 5; // 2 oops, 3 ints 1381 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1382 1383 Node* src = argument(0); 1384 Node* src_offset = argument(1); 1385 Node* dst = argument(2); 1386 Node* dst_offset = argument(3); 1387 Node* length = argument(4); 1388 1389 // Check for allocation before we add nodes that would confuse 1390 // tightly_coupled_allocation() 1391 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1392 1393 // Figure out the size and type of the elements we will be copying. 1394 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1395 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1396 if (src_type == nullptr || dst_type == nullptr) { 1397 return false; 1398 } 1399 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1400 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1401 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1402 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1403 "Unsupported array types for inline_string_copy"); 1404 1405 src = must_be_not_null(src, true); 1406 dst = must_be_not_null(dst, true); 1407 1408 // Convert char[] offsets to byte[] offsets 1409 bool convert_src = (compress && src_elem == T_BYTE); 1410 bool convert_dst = (!compress && dst_elem == T_BYTE); 1411 if (convert_src) { 1412 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1413 } else if (convert_dst) { 1414 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1415 } 1416 1417 // Range checks 1418 generate_string_range_check(src, src_offset, length, convert_src); 1419 generate_string_range_check(dst, dst_offset, length, convert_dst); 1420 if (stopped()) { 1421 return true; 1422 } 1423 1424 Node* src_start = array_element_address(src, src_offset, src_elem); 1425 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1426 // 'src_start' points to src array + scaled offset 1427 // 'dst_start' points to dst array + scaled offset 1428 Node* count = nullptr; 1429 if (compress) { 1430 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1431 } else { 1432 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1433 } 1434 1435 if (alloc != nullptr) { 1436 if (alloc->maybe_set_complete(&_gvn)) { 1437 // "You break it, you buy it." 1438 InitializeNode* init = alloc->initialization(); 1439 assert(init->is_complete(), "we just did this"); 1440 init->set_complete_with_arraycopy(); 1441 assert(dst->is_CheckCastPP(), "sanity"); 1442 assert(dst->in(0)->in(0) == init, "dest pinned"); 1443 } 1444 // Do not let stores that initialize this object be reordered with 1445 // a subsequent store that would make this object accessible by 1446 // other threads. 1447 // Record what AllocateNode this StoreStore protects so that 1448 // escape analysis can go from the MemBarStoreStoreNode to the 1449 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1450 // based on the escape status of the AllocateNode. 1451 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1452 } 1453 if (compress) { 1454 set_result(_gvn.transform(count)); 1455 } 1456 clear_upper_avx(); 1457 1458 return true; 1459 } 1460 1461 #ifdef _LP64 1462 #define XTOP ,top() /*additional argument*/ 1463 #else //_LP64 1464 #define XTOP /*no additional argument*/ 1465 #endif //_LP64 1466 1467 //------------------------inline_string_toBytesU-------------------------- 1468 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1469 bool LibraryCallKit::inline_string_toBytesU() { 1470 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1471 return false; 1472 } 1473 // Get the arguments. 1474 Node* value = argument(0); 1475 Node* offset = argument(1); 1476 Node* length = argument(2); 1477 1478 Node* newcopy = nullptr; 1479 1480 // Set the original stack and the reexecute bit for the interpreter to reexecute 1481 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1482 { PreserveReexecuteState preexecs(this); 1483 jvms()->set_should_reexecute(true); 1484 1485 // Check if a null path was taken unconditionally. 1486 value = null_check(value); 1487 1488 RegionNode* bailout = new RegionNode(1); 1489 record_for_igvn(bailout); 1490 1491 // Range checks 1492 generate_negative_guard(offset, bailout); 1493 generate_negative_guard(length, bailout); 1494 generate_limit_guard(offset, length, load_array_length(value), bailout); 1495 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1496 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1497 1498 if (bailout->req() > 1) { 1499 PreserveJVMState pjvms(this); 1500 set_control(_gvn.transform(bailout)); 1501 uncommon_trap(Deoptimization::Reason_intrinsic, 1502 Deoptimization::Action_maybe_recompile); 1503 } 1504 if (stopped()) { 1505 return true; 1506 } 1507 1508 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1509 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1510 newcopy = new_array(klass_node, size, 0); // no arguments to push 1511 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1512 guarantee(alloc != nullptr, "created above"); 1513 1514 // Calculate starting addresses. 1515 Node* src_start = array_element_address(value, offset, T_CHAR); 1516 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1517 1518 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1519 const TypeInt* toffset = gvn().type(offset)->is_int(); 1520 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1521 1522 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1523 const char* copyfunc_name = "arraycopy"; 1524 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1525 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1526 OptoRuntime::fast_arraycopy_Type(), 1527 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1528 src_start, dst_start, ConvI2X(length) XTOP); 1529 // Do not let reads from the cloned object float above the arraycopy. 1530 if (alloc->maybe_set_complete(&_gvn)) { 1531 // "You break it, you buy it." 1532 InitializeNode* init = alloc->initialization(); 1533 assert(init->is_complete(), "we just did this"); 1534 init->set_complete_with_arraycopy(); 1535 assert(newcopy->is_CheckCastPP(), "sanity"); 1536 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1537 } 1538 // Do not let stores that initialize this object be reordered with 1539 // a subsequent store that would make this object accessible by 1540 // other threads. 1541 // Record what AllocateNode this StoreStore protects so that 1542 // escape analysis can go from the MemBarStoreStoreNode to the 1543 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1544 // based on the escape status of the AllocateNode. 1545 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1546 } // original reexecute is set back here 1547 1548 C->set_has_split_ifs(true); // Has chance for split-if optimization 1549 if (!stopped()) { 1550 set_result(newcopy); 1551 } 1552 clear_upper_avx(); 1553 1554 return true; 1555 } 1556 1557 //------------------------inline_string_getCharsU-------------------------- 1558 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1559 bool LibraryCallKit::inline_string_getCharsU() { 1560 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1561 return false; 1562 } 1563 1564 // Get the arguments. 1565 Node* src = argument(0); 1566 Node* src_begin = argument(1); 1567 Node* src_end = argument(2); // exclusive offset (i < src_end) 1568 Node* dst = argument(3); 1569 Node* dst_begin = argument(4); 1570 1571 // Check for allocation before we add nodes that would confuse 1572 // tightly_coupled_allocation() 1573 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1574 1575 // Check if a null path was taken unconditionally. 1576 src = null_check(src); 1577 dst = null_check(dst); 1578 if (stopped()) { 1579 return true; 1580 } 1581 1582 // Get length and convert char[] offset to byte[] offset 1583 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1584 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1585 1586 // Range checks 1587 generate_string_range_check(src, src_begin, length, true); 1588 generate_string_range_check(dst, dst_begin, length, false); 1589 if (stopped()) { 1590 return true; 1591 } 1592 1593 if (!stopped()) { 1594 // Calculate starting addresses. 1595 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1596 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1597 1598 // Check if array addresses are aligned to HeapWordSize 1599 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1600 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1601 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1602 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1603 1604 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1605 const char* copyfunc_name = "arraycopy"; 1606 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1607 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1608 OptoRuntime::fast_arraycopy_Type(), 1609 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1610 src_start, dst_start, ConvI2X(length) XTOP); 1611 // Do not let reads from the cloned object float above the arraycopy. 1612 if (alloc != nullptr) { 1613 if (alloc->maybe_set_complete(&_gvn)) { 1614 // "You break it, you buy it." 1615 InitializeNode* init = alloc->initialization(); 1616 assert(init->is_complete(), "we just did this"); 1617 init->set_complete_with_arraycopy(); 1618 assert(dst->is_CheckCastPP(), "sanity"); 1619 assert(dst->in(0)->in(0) == init, "dest pinned"); 1620 } 1621 // Do not let stores that initialize this object be reordered with 1622 // a subsequent store that would make this object accessible by 1623 // other threads. 1624 // Record what AllocateNode this StoreStore protects so that 1625 // escape analysis can go from the MemBarStoreStoreNode to the 1626 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1627 // based on the escape status of the AllocateNode. 1628 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1629 } else { 1630 insert_mem_bar(Op_MemBarCPUOrder); 1631 } 1632 } 1633 1634 C->set_has_split_ifs(true); // Has chance for split-if optimization 1635 return true; 1636 } 1637 1638 //----------------------inline_string_char_access---------------------------- 1639 // Store/Load char to/from byte[] array. 1640 // static void StringUTF16.putChar(byte[] val, int index, int c) 1641 // static char StringUTF16.getChar(byte[] val, int index) 1642 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1643 Node* value = argument(0); 1644 Node* index = argument(1); 1645 Node* ch = is_store ? argument(2) : nullptr; 1646 1647 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1648 // correctly requires matched array shapes. 1649 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1650 "sanity: byte[] and char[] bases agree"); 1651 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1652 "sanity: byte[] and char[] scales agree"); 1653 1654 // Bail when getChar over constants is requested: constant folding would 1655 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1656 // Java method would constant fold nicely instead. 1657 if (!is_store && value->is_Con() && index->is_Con()) { 1658 return false; 1659 } 1660 1661 // Save state and restore on bailout 1662 uint old_sp = sp(); 1663 SafePointNode* old_map = clone_map(); 1664 1665 value = must_be_not_null(value, true); 1666 1667 Node* adr = array_element_address(value, index, T_CHAR); 1668 if (adr->is_top()) { 1669 set_map(old_map); 1670 set_sp(old_sp); 1671 return false; 1672 } 1673 destruct_map_clone(old_map); 1674 if (is_store) { 1675 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1676 } else { 1677 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1678 set_result(ch); 1679 } 1680 return true; 1681 } 1682 1683 //--------------------------round_double_node-------------------------------- 1684 // Round a double node if necessary. 1685 Node* LibraryCallKit::round_double_node(Node* n) { 1686 if (Matcher::strict_fp_requires_explicit_rounding) { 1687 #ifdef IA32 1688 if (UseSSE < 2) { 1689 n = _gvn.transform(new RoundDoubleNode(nullptr, n)); 1690 } 1691 #else 1692 Unimplemented(); 1693 #endif // IA32 1694 } 1695 return n; 1696 } 1697 1698 //------------------------------inline_math----------------------------------- 1699 // public static double Math.abs(double) 1700 // public static double Math.sqrt(double) 1701 // public static double Math.log(double) 1702 // public static double Math.log10(double) 1703 // public static double Math.round(double) 1704 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1705 Node* arg = round_double_node(argument(0)); 1706 Node* n = nullptr; 1707 switch (id) { 1708 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1709 case vmIntrinsics::_dsqrt: 1710 case vmIntrinsics::_dsqrt_strict: 1711 n = new SqrtDNode(C, control(), arg); break; 1712 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1713 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1714 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1715 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1716 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break; 1717 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1718 default: fatal_unexpected_iid(id); break; 1719 } 1720 set_result(_gvn.transform(n)); 1721 return true; 1722 } 1723 1724 //------------------------------inline_math----------------------------------- 1725 // public static float Math.abs(float) 1726 // public static int Math.abs(int) 1727 // public static long Math.abs(long) 1728 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1729 Node* arg = argument(0); 1730 Node* n = nullptr; 1731 switch (id) { 1732 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1733 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1734 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1735 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1736 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1737 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1738 default: fatal_unexpected_iid(id); break; 1739 } 1740 set_result(_gvn.transform(n)); 1741 return true; 1742 } 1743 1744 //------------------------------runtime_math----------------------------- 1745 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1746 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1747 "must be (DD)D or (D)D type"); 1748 1749 // Inputs 1750 Node* a = round_double_node(argument(0)); 1751 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr; 1752 1753 const TypePtr* no_memory_effects = nullptr; 1754 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1755 no_memory_effects, 1756 a, top(), b, b ? top() : nullptr); 1757 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1758 #ifdef ASSERT 1759 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1760 assert(value_top == top(), "second value must be top"); 1761 #endif 1762 1763 set_result(value); 1764 return true; 1765 } 1766 1767 //------------------------------inline_math_pow----------------------------- 1768 bool LibraryCallKit::inline_math_pow() { 1769 Node* exp = round_double_node(argument(2)); 1770 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1771 if (d != nullptr) { 1772 if (d->getd() == 2.0) { 1773 // Special case: pow(x, 2.0) => x * x 1774 Node* base = round_double_node(argument(0)); 1775 set_result(_gvn.transform(new MulDNode(base, base))); 1776 return true; 1777 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1778 // Special case: pow(x, 0.5) => sqrt(x) 1779 Node* base = round_double_node(argument(0)); 1780 Node* zero = _gvn.zerocon(T_DOUBLE); 1781 1782 RegionNode* region = new RegionNode(3); 1783 Node* phi = new PhiNode(region, Type::DOUBLE); 1784 1785 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1786 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1787 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1788 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1789 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1790 1791 Node* if_pow = generate_slow_guard(test, nullptr); 1792 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1793 phi->init_req(1, value_sqrt); 1794 region->init_req(1, control()); 1795 1796 if (if_pow != nullptr) { 1797 set_control(if_pow); 1798 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1799 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1800 const TypePtr* no_memory_effects = nullptr; 1801 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1802 no_memory_effects, base, top(), exp, top()); 1803 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1804 #ifdef ASSERT 1805 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1806 assert(value_top == top(), "second value must be top"); 1807 #endif 1808 phi->init_req(2, value_pow); 1809 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1810 } 1811 1812 C->set_has_split_ifs(true); // Has chance for split-if optimization 1813 set_control(_gvn.transform(region)); 1814 record_for_igvn(region); 1815 set_result(_gvn.transform(phi)); 1816 1817 return true; 1818 } 1819 } 1820 1821 return StubRoutines::dpow() != nullptr ? 1822 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1823 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1824 } 1825 1826 //------------------------------inline_math_native----------------------------- 1827 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1828 switch (id) { 1829 case vmIntrinsics::_dsin: 1830 return StubRoutines::dsin() != nullptr ? 1831 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1832 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1833 case vmIntrinsics::_dcos: 1834 return StubRoutines::dcos() != nullptr ? 1835 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1836 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1837 case vmIntrinsics::_dtan: 1838 return StubRoutines::dtan() != nullptr ? 1839 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1840 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1841 case vmIntrinsics::_dexp: 1842 return StubRoutines::dexp() != nullptr ? 1843 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1844 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1845 case vmIntrinsics::_dlog: 1846 return StubRoutines::dlog() != nullptr ? 1847 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1848 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1849 case vmIntrinsics::_dlog10: 1850 return StubRoutines::dlog10() != nullptr ? 1851 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1852 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1853 1854 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1855 case vmIntrinsics::_ceil: 1856 case vmIntrinsics::_floor: 1857 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1858 1859 case vmIntrinsics::_dsqrt: 1860 case vmIntrinsics::_dsqrt_strict: 1861 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1862 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1863 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1864 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1865 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1866 1867 case vmIntrinsics::_dpow: return inline_math_pow(); 1868 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1869 case vmIntrinsics::_fcopySign: return inline_math(id); 1870 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1871 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1872 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1873 1874 // These intrinsics are not yet correctly implemented 1875 case vmIntrinsics::_datan2: 1876 return false; 1877 1878 default: 1879 fatal_unexpected_iid(id); 1880 return false; 1881 } 1882 } 1883 1884 //----------------------------inline_notify-----------------------------------* 1885 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1886 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1887 address func; 1888 if (id == vmIntrinsics::_notify) { 1889 func = OptoRuntime::monitor_notify_Java(); 1890 } else { 1891 func = OptoRuntime::monitor_notifyAll_Java(); 1892 } 1893 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1894 make_slow_call_ex(call, env()->Throwable_klass(), false); 1895 return true; 1896 } 1897 1898 1899 //----------------------------inline_min_max----------------------------------- 1900 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1901 set_result(generate_min_max(id, argument(0), argument(1))); 1902 return true; 1903 } 1904 1905 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1906 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1907 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1908 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1909 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1910 1911 { 1912 PreserveJVMState pjvms(this); 1913 PreserveReexecuteState preexecs(this); 1914 jvms()->set_should_reexecute(true); 1915 1916 set_control(slow_path); 1917 set_i_o(i_o()); 1918 1919 uncommon_trap(Deoptimization::Reason_intrinsic, 1920 Deoptimization::Action_none); 1921 } 1922 1923 set_control(fast_path); 1924 set_result(math); 1925 } 1926 1927 template <typename OverflowOp> 1928 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1929 typedef typename OverflowOp::MathOp MathOp; 1930 1931 MathOp* mathOp = new MathOp(arg1, arg2); 1932 Node* operation = _gvn.transform( mathOp ); 1933 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 1934 inline_math_mathExact(operation, ofcheck); 1935 return true; 1936 } 1937 1938 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 1939 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 1940 } 1941 1942 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 1943 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 1944 } 1945 1946 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 1947 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 1948 } 1949 1950 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 1951 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 1952 } 1953 1954 bool LibraryCallKit::inline_math_negateExactI() { 1955 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 1956 } 1957 1958 bool LibraryCallKit::inline_math_negateExactL() { 1959 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 1960 } 1961 1962 bool LibraryCallKit::inline_math_multiplyExactI() { 1963 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 1964 } 1965 1966 bool LibraryCallKit::inline_math_multiplyExactL() { 1967 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 1968 } 1969 1970 bool LibraryCallKit::inline_math_multiplyHigh() { 1971 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 1972 return true; 1973 } 1974 1975 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 1976 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 1977 return true; 1978 } 1979 1980 Node* 1981 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 1982 Node* result_val = nullptr; 1983 switch (id) { 1984 case vmIntrinsics::_min: 1985 case vmIntrinsics::_min_strict: 1986 result_val = _gvn.transform(new MinINode(x0, y0)); 1987 break; 1988 case vmIntrinsics::_max: 1989 case vmIntrinsics::_max_strict: 1990 result_val = _gvn.transform(new MaxINode(x0, y0)); 1991 break; 1992 default: 1993 fatal_unexpected_iid(id); 1994 break; 1995 } 1996 return result_val; 1997 } 1998 1999 inline int 2000 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2001 const TypePtr* base_type = TypePtr::NULL_PTR; 2002 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2003 if (base_type == nullptr) { 2004 // Unknown type. 2005 return Type::AnyPtr; 2006 } else if (base_type == TypePtr::NULL_PTR) { 2007 // Since this is a null+long form, we have to switch to a rawptr. 2008 base = _gvn.transform(new CastX2PNode(offset)); 2009 offset = MakeConX(0); 2010 return Type::RawPtr; 2011 } else if (base_type->base() == Type::RawPtr) { 2012 return Type::RawPtr; 2013 } else if (base_type->isa_oopptr()) { 2014 // Base is never null => always a heap address. 2015 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2016 return Type::OopPtr; 2017 } 2018 // Offset is small => always a heap address. 2019 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2020 if (offset_type != nullptr && 2021 base_type->offset() == 0 && // (should always be?) 2022 offset_type->_lo >= 0 && 2023 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2024 return Type::OopPtr; 2025 } else if (type == T_OBJECT) { 2026 // off heap access to an oop doesn't make any sense. Has to be on 2027 // heap. 2028 return Type::OopPtr; 2029 } 2030 // Otherwise, it might either be oop+off or null+addr. 2031 return Type::AnyPtr; 2032 } else { 2033 // No information: 2034 return Type::AnyPtr; 2035 } 2036 } 2037 2038 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2039 Node* uncasted_base = base; 2040 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2041 if (kind == Type::RawPtr) { 2042 return basic_plus_adr(top(), uncasted_base, offset); 2043 } else if (kind == Type::AnyPtr) { 2044 assert(base == uncasted_base, "unexpected base change"); 2045 if (can_cast) { 2046 if (!_gvn.type(base)->speculative_maybe_null() && 2047 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2048 // According to profiling, this access is always on 2049 // heap. Casting the base to not null and thus avoiding membars 2050 // around the access should allow better optimizations 2051 Node* null_ctl = top(); 2052 base = null_check_oop(base, &null_ctl, true, true, true); 2053 assert(null_ctl->is_top(), "no null control here"); 2054 return basic_plus_adr(base, offset); 2055 } else if (_gvn.type(base)->speculative_always_null() && 2056 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2057 // According to profiling, this access is always off 2058 // heap. 2059 base = null_assert(base); 2060 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2061 offset = MakeConX(0); 2062 return basic_plus_adr(top(), raw_base, offset); 2063 } 2064 } 2065 // We don't know if it's an on heap or off heap access. Fall back 2066 // to raw memory access. 2067 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2068 return basic_plus_adr(top(), raw, offset); 2069 } else { 2070 assert(base == uncasted_base, "unexpected base change"); 2071 // We know it's an on heap access so base can't be null 2072 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2073 base = must_be_not_null(base, true); 2074 } 2075 return basic_plus_adr(base, offset); 2076 } 2077 } 2078 2079 //--------------------------inline_number_methods----------------------------- 2080 // inline int Integer.numberOfLeadingZeros(int) 2081 // inline int Long.numberOfLeadingZeros(long) 2082 // 2083 // inline int Integer.numberOfTrailingZeros(int) 2084 // inline int Long.numberOfTrailingZeros(long) 2085 // 2086 // inline int Integer.bitCount(int) 2087 // inline int Long.bitCount(long) 2088 // 2089 // inline char Character.reverseBytes(char) 2090 // inline short Short.reverseBytes(short) 2091 // inline int Integer.reverseBytes(int) 2092 // inline long Long.reverseBytes(long) 2093 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2094 Node* arg = argument(0); 2095 Node* n = nullptr; 2096 switch (id) { 2097 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2098 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2099 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2100 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2101 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2102 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2103 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break; 2104 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break; 2105 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break; 2106 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break; 2107 case vmIntrinsics::_reverse_i: n = new ReverseINode(0, arg); break; 2108 case vmIntrinsics::_reverse_l: n = new ReverseLNode(0, arg); break; 2109 default: fatal_unexpected_iid(id); break; 2110 } 2111 set_result(_gvn.transform(n)); 2112 return true; 2113 } 2114 2115 //--------------------------inline_bitshuffle_methods----------------------------- 2116 // inline int Integer.compress(int, int) 2117 // inline int Integer.expand(int, int) 2118 // inline long Long.compress(long, long) 2119 // inline long Long.expand(long, long) 2120 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2121 Node* n = nullptr; 2122 switch (id) { 2123 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2124 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2125 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2126 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2127 default: fatal_unexpected_iid(id); break; 2128 } 2129 set_result(_gvn.transform(n)); 2130 return true; 2131 } 2132 2133 //--------------------------inline_number_methods----------------------------- 2134 // inline int Integer.compareUnsigned(int, int) 2135 // inline int Long.compareUnsigned(long, long) 2136 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2137 Node* arg1 = argument(0); 2138 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2139 Node* n = nullptr; 2140 switch (id) { 2141 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2142 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2143 default: fatal_unexpected_iid(id); break; 2144 } 2145 set_result(_gvn.transform(n)); 2146 return true; 2147 } 2148 2149 //--------------------------inline_unsigned_divmod_methods----------------------------- 2150 // inline int Integer.divideUnsigned(int, int) 2151 // inline int Integer.remainderUnsigned(int, int) 2152 // inline long Long.divideUnsigned(long, long) 2153 // inline long Long.remainderUnsigned(long, long) 2154 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2155 Node* n = nullptr; 2156 switch (id) { 2157 case vmIntrinsics::_divideUnsigned_i: { 2158 zero_check_int(argument(1)); 2159 // Compile-time detect of null-exception 2160 if (stopped()) { 2161 return true; // keep the graph constructed so far 2162 } 2163 n = new UDivINode(control(), argument(0), argument(1)); 2164 break; 2165 } 2166 case vmIntrinsics::_divideUnsigned_l: { 2167 zero_check_long(argument(2)); 2168 // Compile-time detect of null-exception 2169 if (stopped()) { 2170 return true; // keep the graph constructed so far 2171 } 2172 n = new UDivLNode(control(), argument(0), argument(2)); 2173 break; 2174 } 2175 case vmIntrinsics::_remainderUnsigned_i: { 2176 zero_check_int(argument(1)); 2177 // Compile-time detect of null-exception 2178 if (stopped()) { 2179 return true; // keep the graph constructed so far 2180 } 2181 n = new UModINode(control(), argument(0), argument(1)); 2182 break; 2183 } 2184 case vmIntrinsics::_remainderUnsigned_l: { 2185 zero_check_long(argument(2)); 2186 // Compile-time detect of null-exception 2187 if (stopped()) { 2188 return true; // keep the graph constructed so far 2189 } 2190 n = new UModLNode(control(), argument(0), argument(2)); 2191 break; 2192 } 2193 default: fatal_unexpected_iid(id); break; 2194 } 2195 set_result(_gvn.transform(n)); 2196 return true; 2197 } 2198 2199 //----------------------------inline_unsafe_access---------------------------- 2200 2201 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2202 // Attempt to infer a sharper value type from the offset and base type. 2203 ciKlass* sharpened_klass = nullptr; 2204 2205 // See if it is an instance field, with an object type. 2206 if (alias_type->field() != nullptr) { 2207 if (alias_type->field()->type()->is_klass()) { 2208 sharpened_klass = alias_type->field()->type()->as_klass(); 2209 } 2210 } 2211 2212 const TypeOopPtr* result = nullptr; 2213 // See if it is a narrow oop array. 2214 if (adr_type->isa_aryptr()) { 2215 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2216 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2217 if (elem_type != nullptr && elem_type->is_loaded()) { 2218 // Sharpen the value type. 2219 result = elem_type; 2220 } 2221 } 2222 } 2223 2224 // The sharpened class might be unloaded if there is no class loader 2225 // contraint in place. 2226 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2227 // Sharpen the value type. 2228 result = TypeOopPtr::make_from_klass(sharpened_klass); 2229 } 2230 if (result != nullptr) { 2231 #ifndef PRODUCT 2232 if (C->print_intrinsics() || C->print_inlining()) { 2233 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2234 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2235 } 2236 #endif 2237 } 2238 return result; 2239 } 2240 2241 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2242 switch (kind) { 2243 case Relaxed: 2244 return MO_UNORDERED; 2245 case Opaque: 2246 return MO_RELAXED; 2247 case Acquire: 2248 return MO_ACQUIRE; 2249 case Release: 2250 return MO_RELEASE; 2251 case Volatile: 2252 return MO_SEQ_CST; 2253 default: 2254 ShouldNotReachHere(); 2255 return 0; 2256 } 2257 } 2258 2259 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2260 if (callee()->is_static()) return false; // caller must have the capability! 2261 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2262 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2263 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2264 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2265 2266 if (is_reference_type(type)) { 2267 decorators |= ON_UNKNOWN_OOP_REF; 2268 } 2269 2270 if (unaligned) { 2271 decorators |= C2_UNALIGNED; 2272 } 2273 2274 #ifndef PRODUCT 2275 { 2276 ResourceMark rm; 2277 // Check the signatures. 2278 ciSignature* sig = callee()->signature(); 2279 #ifdef ASSERT 2280 if (!is_store) { 2281 // Object getReference(Object base, int/long offset), etc. 2282 BasicType rtype = sig->return_type()->basic_type(); 2283 assert(rtype == type, "getter must return the expected value"); 2284 assert(sig->count() == 2, "oop getter has 2 arguments"); 2285 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2286 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2287 } else { 2288 // void putReference(Object base, int/long offset, Object x), etc. 2289 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2290 assert(sig->count() == 3, "oop putter has 3 arguments"); 2291 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2292 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2293 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2294 assert(vtype == type, "putter must accept the expected value"); 2295 } 2296 #endif // ASSERT 2297 } 2298 #endif //PRODUCT 2299 2300 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2301 2302 Node* receiver = argument(0); // type: oop 2303 2304 // Build address expression. 2305 Node* heap_base_oop = top(); 2306 2307 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2308 Node* base = argument(1); // type: oop 2309 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2310 Node* offset = argument(2); // type: long 2311 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2312 // to be plain byte offsets, which are also the same as those accepted 2313 // by oopDesc::field_addr. 2314 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2315 "fieldOffset must be byte-scaled"); 2316 // 32-bit machines ignore the high half! 2317 offset = ConvL2X(offset); 2318 2319 // Save state and restore on bailout 2320 uint old_sp = sp(); 2321 SafePointNode* old_map = clone_map(); 2322 2323 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2324 2325 if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) { 2326 if (type != T_OBJECT) { 2327 decorators |= IN_NATIVE; // off-heap primitive access 2328 } else { 2329 set_map(old_map); 2330 set_sp(old_sp); 2331 return false; // off-heap oop accesses are not supported 2332 } 2333 } else { 2334 heap_base_oop = base; // on-heap or mixed access 2335 } 2336 2337 // Can base be null? Otherwise, always on-heap access. 2338 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2339 2340 if (!can_access_non_heap) { 2341 decorators |= IN_HEAP; 2342 } 2343 2344 Node* val = is_store ? argument(4) : nullptr; 2345 2346 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2347 if (adr_type == TypePtr::NULL_PTR) { 2348 set_map(old_map); 2349 set_sp(old_sp); 2350 return false; // off-heap access with zero address 2351 } 2352 2353 // Try to categorize the address. 2354 Compile::AliasType* alias_type = C->alias_type(adr_type); 2355 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2356 2357 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2358 alias_type->adr_type() == TypeAryPtr::RANGE) { 2359 set_map(old_map); 2360 set_sp(old_sp); 2361 return false; // not supported 2362 } 2363 2364 bool mismatched = false; 2365 BasicType bt = alias_type->basic_type(); 2366 if (bt != T_ILLEGAL) { 2367 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2368 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2369 // Alias type doesn't differentiate between byte[] and boolean[]). 2370 // Use address type to get the element type. 2371 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2372 } 2373 if (is_reference_type(bt, true)) { 2374 // accessing an array field with getReference is not a mismatch 2375 bt = T_OBJECT; 2376 } 2377 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2378 // Don't intrinsify mismatched object accesses 2379 set_map(old_map); 2380 set_sp(old_sp); 2381 return false; 2382 } 2383 mismatched = (bt != type); 2384 } else if (alias_type->adr_type()->isa_oopptr()) { 2385 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2386 } 2387 2388 destruct_map_clone(old_map); 2389 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2390 2391 if (mismatched) { 2392 decorators |= C2_MISMATCHED; 2393 } 2394 2395 // First guess at the value type. 2396 const Type *value_type = Type::get_const_basic_type(type); 2397 2398 // Figure out the memory ordering. 2399 decorators |= mo_decorator_for_access_kind(kind); 2400 2401 if (!is_store && type == T_OBJECT) { 2402 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2403 if (tjp != nullptr) { 2404 value_type = tjp; 2405 } 2406 } 2407 2408 receiver = null_check(receiver); 2409 if (stopped()) { 2410 return true; 2411 } 2412 // Heap pointers get a null-check from the interpreter, 2413 // as a courtesy. However, this is not guaranteed by Unsafe, 2414 // and it is not possible to fully distinguish unintended nulls 2415 // from intended ones in this API. 2416 2417 if (!is_store) { 2418 Node* p = nullptr; 2419 // Try to constant fold a load from a constant field 2420 ciField* field = alias_type->field(); 2421 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) { 2422 // final or stable field 2423 p = make_constant_from_field(field, heap_base_oop); 2424 } 2425 2426 if (p == nullptr) { // Could not constant fold the load 2427 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2428 // Normalize the value returned by getBoolean in the following cases 2429 if (type == T_BOOLEAN && 2430 (mismatched || 2431 heap_base_oop == top() || // - heap_base_oop is null or 2432 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2433 // and the unsafe access is made to large offset 2434 // (i.e., larger than the maximum offset necessary for any 2435 // field access) 2436 ) { 2437 IdealKit ideal = IdealKit(this); 2438 #define __ ideal. 2439 IdealVariable normalized_result(ideal); 2440 __ declarations_done(); 2441 __ set(normalized_result, p); 2442 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2443 __ set(normalized_result, ideal.ConI(1)); 2444 ideal.end_if(); 2445 final_sync(ideal); 2446 p = __ value(normalized_result); 2447 #undef __ 2448 } 2449 } 2450 if (type == T_ADDRESS) { 2451 p = gvn().transform(new CastP2XNode(nullptr, p)); 2452 p = ConvX2UL(p); 2453 } 2454 // The load node has the control of the preceding MemBarCPUOrder. All 2455 // following nodes will have the control of the MemBarCPUOrder inserted at 2456 // the end of this method. So, pushing the load onto the stack at a later 2457 // point is fine. 2458 set_result(p); 2459 } else { 2460 if (bt == T_ADDRESS) { 2461 // Repackage the long as a pointer. 2462 val = ConvL2X(val); 2463 val = gvn().transform(new CastX2PNode(val)); 2464 } 2465 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2466 } 2467 2468 return true; 2469 } 2470 2471 //----------------------------inline_unsafe_load_store---------------------------- 2472 // This method serves a couple of different customers (depending on LoadStoreKind): 2473 // 2474 // LS_cmp_swap: 2475 // 2476 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2477 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2478 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2479 // 2480 // LS_cmp_swap_weak: 2481 // 2482 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2483 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2484 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2485 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2486 // 2487 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2488 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2489 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2490 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2491 // 2492 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2493 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2494 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2495 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2496 // 2497 // LS_cmp_exchange: 2498 // 2499 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2500 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2501 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2502 // 2503 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2504 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2505 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2506 // 2507 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2508 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2509 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2510 // 2511 // LS_get_add: 2512 // 2513 // int getAndAddInt( Object o, long offset, int delta) 2514 // long getAndAddLong(Object o, long offset, long delta) 2515 // 2516 // LS_get_set: 2517 // 2518 // int getAndSet(Object o, long offset, int newValue) 2519 // long getAndSet(Object o, long offset, long newValue) 2520 // Object getAndSet(Object o, long offset, Object newValue) 2521 // 2522 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2523 // This basic scheme here is the same as inline_unsafe_access, but 2524 // differs in enough details that combining them would make the code 2525 // overly confusing. (This is a true fact! I originally combined 2526 // them, but even I was confused by it!) As much code/comments as 2527 // possible are retained from inline_unsafe_access though to make 2528 // the correspondences clearer. - dl 2529 2530 if (callee()->is_static()) return false; // caller must have the capability! 2531 2532 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2533 decorators |= mo_decorator_for_access_kind(access_kind); 2534 2535 #ifndef PRODUCT 2536 BasicType rtype; 2537 { 2538 ResourceMark rm; 2539 // Check the signatures. 2540 ciSignature* sig = callee()->signature(); 2541 rtype = sig->return_type()->basic_type(); 2542 switch(kind) { 2543 case LS_get_add: 2544 case LS_get_set: { 2545 // Check the signatures. 2546 #ifdef ASSERT 2547 assert(rtype == type, "get and set must return the expected type"); 2548 assert(sig->count() == 3, "get and set has 3 arguments"); 2549 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2550 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2551 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2552 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2553 #endif // ASSERT 2554 break; 2555 } 2556 case LS_cmp_swap: 2557 case LS_cmp_swap_weak: { 2558 // Check the signatures. 2559 #ifdef ASSERT 2560 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2561 assert(sig->count() == 4, "CAS has 4 arguments"); 2562 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2563 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2564 #endif // ASSERT 2565 break; 2566 } 2567 case LS_cmp_exchange: { 2568 // Check the signatures. 2569 #ifdef ASSERT 2570 assert(rtype == type, "CAS must return the expected type"); 2571 assert(sig->count() == 4, "CAS has 4 arguments"); 2572 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2573 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2574 #endif // ASSERT 2575 break; 2576 } 2577 default: 2578 ShouldNotReachHere(); 2579 } 2580 } 2581 #endif //PRODUCT 2582 2583 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2584 2585 // Get arguments: 2586 Node* receiver = nullptr; 2587 Node* base = nullptr; 2588 Node* offset = nullptr; 2589 Node* oldval = nullptr; 2590 Node* newval = nullptr; 2591 switch(kind) { 2592 case LS_cmp_swap: 2593 case LS_cmp_swap_weak: 2594 case LS_cmp_exchange: { 2595 const bool two_slot_type = type2size[type] == 2; 2596 receiver = argument(0); // type: oop 2597 base = argument(1); // type: oop 2598 offset = argument(2); // type: long 2599 oldval = argument(4); // type: oop, int, or long 2600 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2601 break; 2602 } 2603 case LS_get_add: 2604 case LS_get_set: { 2605 receiver = argument(0); // type: oop 2606 base = argument(1); // type: oop 2607 offset = argument(2); // type: long 2608 oldval = nullptr; 2609 newval = argument(4); // type: oop, int, or long 2610 break; 2611 } 2612 default: 2613 ShouldNotReachHere(); 2614 } 2615 2616 // Build field offset expression. 2617 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2618 // to be plain byte offsets, which are also the same as those accepted 2619 // by oopDesc::field_addr. 2620 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2621 // 32-bit machines ignore the high half of long offsets 2622 offset = ConvL2X(offset); 2623 // Save state and restore on bailout 2624 uint old_sp = sp(); 2625 SafePointNode* old_map = clone_map(); 2626 Node* adr = make_unsafe_address(base, offset,type, false); 2627 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2628 2629 Compile::AliasType* alias_type = C->alias_type(adr_type); 2630 BasicType bt = alias_type->basic_type(); 2631 if (bt != T_ILLEGAL && 2632 (is_reference_type(bt) != (type == T_OBJECT))) { 2633 // Don't intrinsify mismatched object accesses. 2634 set_map(old_map); 2635 set_sp(old_sp); 2636 return false; 2637 } 2638 2639 destruct_map_clone(old_map); 2640 2641 // For CAS, unlike inline_unsafe_access, there seems no point in 2642 // trying to refine types. Just use the coarse types here. 2643 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2644 const Type *value_type = Type::get_const_basic_type(type); 2645 2646 switch (kind) { 2647 case LS_get_set: 2648 case LS_cmp_exchange: { 2649 if (type == T_OBJECT) { 2650 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2651 if (tjp != nullptr) { 2652 value_type = tjp; 2653 } 2654 } 2655 break; 2656 } 2657 case LS_cmp_swap: 2658 case LS_cmp_swap_weak: 2659 case LS_get_add: 2660 break; 2661 default: 2662 ShouldNotReachHere(); 2663 } 2664 2665 // Null check receiver. 2666 receiver = null_check(receiver); 2667 if (stopped()) { 2668 return true; 2669 } 2670 2671 int alias_idx = C->get_alias_index(adr_type); 2672 2673 if (is_reference_type(type)) { 2674 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2675 2676 // Transformation of a value which could be null pointer (CastPP #null) 2677 // could be delayed during Parse (for example, in adjust_map_after_if()). 2678 // Execute transformation here to avoid barrier generation in such case. 2679 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2680 newval = _gvn.makecon(TypePtr::NULL_PTR); 2681 2682 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2683 // Refine the value to a null constant, when it is known to be null 2684 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2685 } 2686 } 2687 2688 Node* result = nullptr; 2689 switch (kind) { 2690 case LS_cmp_exchange: { 2691 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2692 oldval, newval, value_type, type, decorators); 2693 break; 2694 } 2695 case LS_cmp_swap_weak: 2696 decorators |= C2_WEAK_CMPXCHG; 2697 case LS_cmp_swap: { 2698 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2699 oldval, newval, value_type, type, decorators); 2700 break; 2701 } 2702 case LS_get_set: { 2703 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2704 newval, value_type, type, decorators); 2705 break; 2706 } 2707 case LS_get_add: { 2708 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2709 newval, value_type, type, decorators); 2710 break; 2711 } 2712 default: 2713 ShouldNotReachHere(); 2714 } 2715 2716 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2717 set_result(result); 2718 return true; 2719 } 2720 2721 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2722 // Regardless of form, don't allow previous ld/st to move down, 2723 // then issue acquire, release, or volatile mem_bar. 2724 insert_mem_bar(Op_MemBarCPUOrder); 2725 switch(id) { 2726 case vmIntrinsics::_loadFence: 2727 insert_mem_bar(Op_LoadFence); 2728 return true; 2729 case vmIntrinsics::_storeFence: 2730 insert_mem_bar(Op_StoreFence); 2731 return true; 2732 case vmIntrinsics::_storeStoreFence: 2733 insert_mem_bar(Op_StoreStoreFence); 2734 return true; 2735 case vmIntrinsics::_fullFence: 2736 insert_mem_bar(Op_MemBarVolatile); 2737 return true; 2738 default: 2739 fatal_unexpected_iid(id); 2740 return false; 2741 } 2742 } 2743 2744 bool LibraryCallKit::inline_onspinwait() { 2745 insert_mem_bar(Op_OnSpinWait); 2746 return true; 2747 } 2748 2749 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2750 if (!kls->is_Con()) { 2751 return true; 2752 } 2753 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2754 if (klsptr == nullptr) { 2755 return true; 2756 } 2757 ciInstanceKlass* ik = klsptr->instance_klass(); 2758 // don't need a guard for a klass that is already initialized 2759 return !ik->is_initialized(); 2760 } 2761 2762 //----------------------------inline_unsafe_writeback0------------------------- 2763 // public native void Unsafe.writeback0(long address) 2764 bool LibraryCallKit::inline_unsafe_writeback0() { 2765 if (!Matcher::has_match_rule(Op_CacheWB)) { 2766 return false; 2767 } 2768 #ifndef PRODUCT 2769 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2770 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2771 ciSignature* sig = callee()->signature(); 2772 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2773 #endif 2774 null_check_receiver(); // null-check, then ignore 2775 Node *addr = argument(1); 2776 addr = new CastX2PNode(addr); 2777 addr = _gvn.transform(addr); 2778 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2779 flush = _gvn.transform(flush); 2780 set_memory(flush, TypeRawPtr::BOTTOM); 2781 return true; 2782 } 2783 2784 //----------------------------inline_unsafe_writeback0------------------------- 2785 // public native void Unsafe.writeback0(long address) 2786 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2787 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2788 return false; 2789 } 2790 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2791 return false; 2792 } 2793 #ifndef PRODUCT 2794 assert(Matcher::has_match_rule(Op_CacheWB), 2795 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2796 : "found match rule for CacheWBPostSync but not CacheWB")); 2797 2798 #endif 2799 null_check_receiver(); // null-check, then ignore 2800 Node *sync; 2801 if (is_pre) { 2802 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2803 } else { 2804 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2805 } 2806 sync = _gvn.transform(sync); 2807 set_memory(sync, TypeRawPtr::BOTTOM); 2808 return true; 2809 } 2810 2811 //----------------------------inline_unsafe_allocate--------------------------- 2812 // public native Object Unsafe.allocateInstance(Class<?> cls); 2813 bool LibraryCallKit::inline_unsafe_allocate() { 2814 2815 #if INCLUDE_JVMTI 2816 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 2817 return false; 2818 } 2819 #endif //INCLUDE_JVMTI 2820 2821 if (callee()->is_static()) return false; // caller must have the capability! 2822 2823 null_check_receiver(); // null-check, then ignore 2824 Node* cls = null_check(argument(1)); 2825 if (stopped()) return true; 2826 2827 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 2828 kls = null_check(kls); 2829 if (stopped()) return true; // argument was like int.class 2830 2831 #if INCLUDE_JVMTI 2832 // Don't try to access new allocated obj in the intrinsic. 2833 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 2834 // Deoptimize and allocate in interpreter instead. 2835 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 2836 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 2837 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 2838 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 2839 { 2840 BuildCutout unless(this, tst, PROB_MAX); 2841 uncommon_trap(Deoptimization::Reason_intrinsic, 2842 Deoptimization::Action_make_not_entrant); 2843 } 2844 if (stopped()) { 2845 return true; 2846 } 2847 #endif //INCLUDE_JVMTI 2848 2849 Node* test = nullptr; 2850 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2851 // Note: The argument might still be an illegal value like 2852 // Serializable.class or Object[].class. The runtime will handle it. 2853 // But we must make an explicit check for initialization. 2854 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2855 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2856 // can generate code to load it as unsigned byte. 2857 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2858 Node* bits = intcon(InstanceKlass::fully_initialized); 2859 test = _gvn.transform(new SubINode(inst, bits)); 2860 // The 'test' is non-zero if we need to take a slow path. 2861 } 2862 2863 Node* obj = new_instance(kls, test); 2864 set_result(obj); 2865 return true; 2866 } 2867 2868 //------------------------inline_native_time_funcs-------------- 2869 // inline code for System.currentTimeMillis() and System.nanoTime() 2870 // these have the same type and signature 2871 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2872 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2873 const TypePtr* no_memory_effects = nullptr; 2874 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2875 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2876 #ifdef ASSERT 2877 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2878 assert(value_top == top(), "second value must be top"); 2879 #endif 2880 set_result(value); 2881 return true; 2882 } 2883 2884 2885 #if INCLUDE_JVMTI 2886 2887 // When notifications are disabled then just update the VTMS transition bit and return. 2888 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 2889 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 2890 if (!DoJVMTIVirtualThreadTransitions) { 2891 return true; 2892 } 2893 IdealKit ideal(this); 2894 2895 Node* ONE = ideal.ConI(1); 2896 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 2897 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 2898 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 2899 2900 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 2901 // if notifyJvmti enabled then make a call to the given SharedRuntime function 2902 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 2903 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 2904 2905 sync_kit(ideal); 2906 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 2907 ideal.sync_kit(this); 2908 } ideal.else_(); { 2909 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 2910 Node* vt_oop = _gvn.transform(argument(0)); // this argument - VirtualThread oop 2911 Node* thread = ideal.thread(); 2912 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 2913 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 2914 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 2915 2916 sync_kit(ideal); 2917 access_store_at(nullptr, jt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2918 access_store_at(nullptr, vt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2919 2920 ideal.sync_kit(this); 2921 } ideal.end_if(); 2922 final_sync(ideal); 2923 2924 return true; 2925 } 2926 2927 // Always update the temporary VTMS transition bit. 2928 bool LibraryCallKit::inline_native_notify_jvmti_hide() { 2929 if (!DoJVMTIVirtualThreadTransitions) { 2930 return true; 2931 } 2932 IdealKit ideal(this); 2933 2934 { 2935 // unconditionally update the temporary VTMS transition bit in current JavaThread 2936 Node* thread = ideal.thread(); 2937 Node* hide = _gvn.transform(argument(1)); // hide argument for temporary VTMS transition notification 2938 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_tmp_VTMS_transition_offset())); 2939 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 2940 2941 sync_kit(ideal); 2942 access_store_at(nullptr, addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2943 ideal.sync_kit(this); 2944 } 2945 final_sync(ideal); 2946 2947 return true; 2948 } 2949 2950 #endif // INCLUDE_JVMTI 2951 2952 #ifdef JFR_HAVE_INTRINSICS 2953 2954 /** 2955 * if oop->klass != null 2956 * // normal class 2957 * epoch = _epoch_state ? 2 : 1 2958 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 2959 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 2960 * } 2961 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 2962 * else 2963 * // primitive class 2964 * if oop->array_klass != null 2965 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 2966 * else 2967 * id = LAST_TYPE_ID + 1 // void class path 2968 * if (!signaled) 2969 * signaled = true 2970 */ 2971 bool LibraryCallKit::inline_native_classID() { 2972 Node* cls = argument(0); 2973 2974 IdealKit ideal(this); 2975 #define __ ideal. 2976 IdealVariable result(ideal); __ declarations_done(); 2977 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 2978 basic_plus_adr(cls, java_lang_Class::klass_offset()), 2979 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 2980 2981 2982 __ if_then(kls, BoolTest::ne, null()); { 2983 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 2984 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 2985 2986 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 2987 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 2988 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 2989 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 2990 mask = _gvn.transform(new OrLNode(mask, epoch)); 2991 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 2992 2993 float unlikely = PROB_UNLIKELY(0.999); 2994 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 2995 sync_kit(ideal); 2996 make_runtime_call(RC_LEAF, 2997 OptoRuntime::class_id_load_barrier_Type(), 2998 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 2999 "class id load barrier", 3000 TypePtr::BOTTOM, 3001 kls); 3002 ideal.sync_kit(this); 3003 } __ end_if(); 3004 3005 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3006 } __ else_(); { 3007 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 3008 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3009 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3010 __ if_then(array_kls, BoolTest::ne, null()); { 3011 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3012 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3013 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3014 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3015 } __ else_(); { 3016 // void class case 3017 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3018 } __ end_if(); 3019 3020 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3021 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3022 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3023 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3024 } __ end_if(); 3025 } __ end_if(); 3026 3027 final_sync(ideal); 3028 set_result(ideal.value(result)); 3029 #undef __ 3030 return true; 3031 } 3032 3033 //------------------------inline_native_jvm_commit------------------ 3034 bool LibraryCallKit::inline_native_jvm_commit() { 3035 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3036 3037 // Save input memory and i_o state. 3038 Node* input_memory_state = reset_memory(); 3039 set_all_memory(input_memory_state); 3040 Node* input_io_state = i_o(); 3041 3042 // TLS. 3043 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3044 // Jfr java buffer. 3045 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3046 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3047 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3048 3049 // Load the current value of the notified field in the JfrThreadLocal. 3050 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3051 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3052 3053 // Test for notification. 3054 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3055 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3056 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3057 3058 // True branch, is notified. 3059 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3060 set_control(is_notified); 3061 3062 // Reset notified state. 3063 Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered); 3064 3065 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3066 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3067 // Convert the machine-word to a long. 3068 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3069 3070 // False branch, not notified. 3071 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3072 set_control(not_notified); 3073 set_all_memory(input_memory_state); 3074 3075 // Arg is the next position as a long. 3076 Node* arg = argument(0); 3077 // Convert long to machine-word. 3078 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3079 3080 // Store the next_position to the underlying jfr java buffer. 3081 Node* commit_memory; 3082 #ifdef _LP64 3083 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, Compile::AliasIdxRaw, MemNode::release); 3084 #else 3085 commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, Compile::AliasIdxRaw, MemNode::release); 3086 #endif 3087 3088 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3089 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3090 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3091 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3092 3093 // And flags with lease constant. 3094 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3095 3096 // Branch on lease to conditionalize returning the leased java buffer. 3097 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3098 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3099 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3100 3101 // False branch, not a lease. 3102 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3103 3104 // True branch, is lease. 3105 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3106 set_control(is_lease); 3107 3108 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3109 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3110 OptoRuntime::void_void_Type(), 3111 StubRoutines::jfr_return_lease(), 3112 "return_lease", TypePtr::BOTTOM); 3113 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3114 3115 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3116 record_for_igvn(lease_compare_rgn); 3117 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3118 record_for_igvn(lease_compare_mem); 3119 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3120 record_for_igvn(lease_compare_io); 3121 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3122 record_for_igvn(lease_result_value); 3123 3124 // Update control and phi nodes. 3125 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3126 lease_compare_rgn->init_req(_false_path, not_lease); 3127 3128 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3129 lease_compare_mem->init_req(_false_path, commit_memory); 3130 3131 lease_compare_io->init_req(_true_path, i_o()); 3132 lease_compare_io->init_req(_false_path, input_io_state); 3133 3134 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3135 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3136 3137 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3138 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3139 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3140 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3141 3142 // Update control and phi nodes. 3143 result_rgn->init_req(_true_path, is_notified); 3144 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3145 3146 result_mem->init_req(_true_path, notified_reset_memory); 3147 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3148 3149 result_io->init_req(_true_path, input_io_state); 3150 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3151 3152 result_value->init_req(_true_path, current_pos); 3153 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3154 3155 // Set output state. 3156 set_control(_gvn.transform(result_rgn)); 3157 set_all_memory(_gvn.transform(result_mem)); 3158 set_i_o(_gvn.transform(result_io)); 3159 set_result(result_rgn, result_value); 3160 return true; 3161 } 3162 3163 /* 3164 * The intrinsic is a model of this pseudo-code: 3165 * 3166 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3167 * jobject h_event_writer = tl->java_event_writer(); 3168 * if (h_event_writer == nullptr) { 3169 * return nullptr; 3170 * } 3171 * oop threadObj = Thread::threadObj(); 3172 * oop vthread = java_lang_Thread::vthread(threadObj); 3173 * traceid tid; 3174 * bool excluded; 3175 * if (vthread != threadObj) { // i.e. current thread is virtual 3176 * tid = java_lang_Thread::tid(vthread); 3177 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3178 * excluded = vthread_epoch_raw & excluded_mask; 3179 * if (!excluded) { 3180 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3181 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3182 * if (vthread_epoch != current_epoch) { 3183 * write_checkpoint(); 3184 * } 3185 * } 3186 * } else { 3187 * tid = java_lang_Thread::tid(threadObj); 3188 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3189 * excluded = thread_epoch_raw & excluded_mask; 3190 * } 3191 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3192 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3193 * if (tid_in_event_writer != tid) { 3194 * setField(event_writer, "threadID", tid); 3195 * setField(event_writer, "excluded", excluded); 3196 * } 3197 * return event_writer 3198 */ 3199 bool LibraryCallKit::inline_native_getEventWriter() { 3200 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3201 3202 // Save input memory and i_o state. 3203 Node* input_memory_state = reset_memory(); 3204 set_all_memory(input_memory_state); 3205 Node* input_io_state = i_o(); 3206 3207 Node* excluded_mask = _gvn.intcon(32768); 3208 Node* epoch_mask = _gvn.intcon(32767); 3209 3210 // TLS 3211 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3212 3213 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3214 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3215 3216 // Load the eventwriter jobject handle. 3217 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3218 3219 // Null check the jobject handle. 3220 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3221 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3222 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3223 3224 // False path, jobj is null. 3225 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3226 3227 // True path, jobj is not null. 3228 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3229 3230 set_control(jobj_is_not_null); 3231 3232 // Load the threadObj for the CarrierThread. 3233 Node* threadObj = generate_current_thread(tls_ptr); 3234 3235 // Load the vthread. 3236 Node* vthread = generate_virtual_thread(tls_ptr); 3237 3238 // If vthread != threadObj, this is a virtual thread. 3239 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3240 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3241 IfNode* iff_vthread_not_equal_threadObj = 3242 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3243 3244 // False branch, fallback to threadObj. 3245 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3246 set_control(vthread_equal_threadObj); 3247 3248 // Load the tid field from the vthread object. 3249 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3250 3251 // Load the raw epoch value from the threadObj. 3252 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3253 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3254 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3255 3256 // Mask off the excluded information from the epoch. 3257 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3258 3259 // True branch, this is a virtual thread. 3260 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3261 set_control(vthread_not_equal_threadObj); 3262 3263 // Load the tid field from the vthread object. 3264 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3265 3266 // Load the raw epoch value from the vthread. 3267 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3268 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3269 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3270 3271 // Mask off the excluded information from the epoch. 3272 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3273 3274 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3275 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3276 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3277 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3278 3279 // False branch, vthread is excluded, no need to write epoch info. 3280 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3281 3282 // True branch, vthread is included, update epoch info. 3283 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3284 set_control(included); 3285 3286 // Get epoch value. 3287 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3288 3289 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3290 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3291 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3292 3293 // Compare the epoch in the vthread to the current epoch generation. 3294 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3295 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3296 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3297 3298 // False path, epoch is equal, checkpoint information is valid. 3299 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3300 3301 // True path, epoch is not equal, write a checkpoint for the vthread. 3302 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3303 3304 set_control(epoch_is_not_equal); 3305 3306 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3307 // The call also updates the native thread local thread id and the vthread with the current epoch. 3308 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3309 OptoRuntime::jfr_write_checkpoint_Type(), 3310 StubRoutines::jfr_write_checkpoint(), 3311 "write_checkpoint", TypePtr::BOTTOM); 3312 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3313 3314 // vthread epoch != current epoch 3315 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3316 record_for_igvn(epoch_compare_rgn); 3317 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3318 record_for_igvn(epoch_compare_mem); 3319 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3320 record_for_igvn(epoch_compare_io); 3321 3322 // Update control and phi nodes. 3323 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3324 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3325 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3326 epoch_compare_mem->init_req(_false_path, input_memory_state); 3327 epoch_compare_io->init_req(_true_path, i_o()); 3328 epoch_compare_io->init_req(_false_path, input_io_state); 3329 3330 // excluded != true 3331 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3332 record_for_igvn(exclude_compare_rgn); 3333 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3334 record_for_igvn(exclude_compare_mem); 3335 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3336 record_for_igvn(exclude_compare_io); 3337 3338 // Update control and phi nodes. 3339 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3340 exclude_compare_rgn->init_req(_false_path, excluded); 3341 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3342 exclude_compare_mem->init_req(_false_path, input_memory_state); 3343 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3344 exclude_compare_io->init_req(_false_path, input_io_state); 3345 3346 // vthread != threadObj 3347 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3348 record_for_igvn(vthread_compare_rgn); 3349 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3350 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3351 record_for_igvn(vthread_compare_io); 3352 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3353 record_for_igvn(tid); 3354 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3355 record_for_igvn(exclusion); 3356 3357 // Update control and phi nodes. 3358 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3359 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3360 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3361 vthread_compare_mem->init_req(_false_path, input_memory_state); 3362 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3363 vthread_compare_io->init_req(_false_path, input_io_state); 3364 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3365 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3366 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3367 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3368 3369 // Update branch state. 3370 set_control(_gvn.transform(vthread_compare_rgn)); 3371 set_all_memory(_gvn.transform(vthread_compare_mem)); 3372 set_i_o(_gvn.transform(vthread_compare_io)); 3373 3374 // Load the event writer oop by dereferencing the jobject handle. 3375 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3376 assert(klass_EventWriter->is_loaded(), "invariant"); 3377 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3378 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3379 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3380 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3381 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3382 3383 // Load the current thread id from the event writer object. 3384 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3385 // Get the field offset to, conditionally, store an updated tid value later. 3386 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3387 const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr(); 3388 // Get the field offset to, conditionally, store an updated exclusion value later. 3389 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3390 const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr(); 3391 3392 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3393 record_for_igvn(event_writer_tid_compare_rgn); 3394 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3395 record_for_igvn(event_writer_tid_compare_mem); 3396 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3397 record_for_igvn(event_writer_tid_compare_io); 3398 3399 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3400 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3401 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3402 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3403 3404 // False path, tids are the same. 3405 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3406 3407 // True path, tid is not equal, need to update the tid in the event writer. 3408 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3409 record_for_igvn(tid_is_not_equal); 3410 3411 // Store the exclusion state to the event writer. 3412 store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered); 3413 3414 // Store the tid to the event writer. 3415 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered); 3416 3417 // Update control and phi nodes. 3418 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3419 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3420 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3421 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3422 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3423 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3424 3425 // Result of top level CFG, Memory, IO and Value. 3426 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3427 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3428 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3429 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3430 3431 // Result control. 3432 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3433 result_rgn->init_req(_false_path, jobj_is_null); 3434 3435 // Result memory. 3436 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3437 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3438 3439 // Result IO. 3440 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3441 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3442 3443 // Result value. 3444 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3445 result_value->init_req(_false_path, null()); // return null 3446 3447 // Set output state. 3448 set_control(_gvn.transform(result_rgn)); 3449 set_all_memory(_gvn.transform(result_mem)); 3450 set_i_o(_gvn.transform(result_io)); 3451 set_result(result_rgn, result_value); 3452 return true; 3453 } 3454 3455 /* 3456 * The intrinsic is a model of this pseudo-code: 3457 * 3458 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3459 * if (carrierThread != thread) { // is virtual thread 3460 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3461 * bool excluded = vthread_epoch_raw & excluded_mask; 3462 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3463 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3464 * if (!excluded) { 3465 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3466 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3467 * } 3468 * Atomic::release_store(&tl->_vthread, true); 3469 * return; 3470 * } 3471 * Atomic::release_store(&tl->_vthread, false); 3472 */ 3473 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3474 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3475 3476 Node* input_memory_state = reset_memory(); 3477 set_all_memory(input_memory_state); 3478 3479 Node* excluded_mask = _gvn.intcon(32768); 3480 Node* epoch_mask = _gvn.intcon(32767); 3481 3482 Node* const carrierThread = generate_current_thread(jt); 3483 // If thread != carrierThread, this is a virtual thread. 3484 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3485 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3486 IfNode* iff_thread_not_equal_carrierThread = 3487 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3488 3489 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3490 3491 // False branch, is carrierThread. 3492 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3493 // Store release 3494 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3495 3496 set_all_memory(input_memory_state); 3497 3498 // True branch, is virtual thread. 3499 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3500 set_control(thread_not_equal_carrierThread); 3501 3502 // Load the raw epoch value from the vthread. 3503 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3504 Node* epoch_raw = access_load_at(thread, epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3505 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3506 3507 // Mask off the excluded information from the epoch. 3508 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3509 3510 // Load the tid field from the thread. 3511 Node* tid = load_field_from_object(thread, "tid", "J"); 3512 3513 // Store the vthread tid to the jfr thread local. 3514 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3515 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true); 3516 3517 // Branch is_excluded to conditionalize updating the epoch . 3518 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3519 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3520 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3521 3522 // True branch, vthread is excluded, no need to write epoch info. 3523 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3524 set_control(excluded); 3525 Node* vthread_is_excluded = _gvn.intcon(1); 3526 3527 // False branch, vthread is included, update epoch info. 3528 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3529 set_control(included); 3530 Node* vthread_is_included = _gvn.intcon(0); 3531 3532 // Get epoch value. 3533 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3534 3535 // Store the vthread epoch to the jfr thread local. 3536 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3537 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true); 3538 3539 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3540 record_for_igvn(excluded_rgn); 3541 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3542 record_for_igvn(excluded_mem); 3543 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3544 record_for_igvn(exclusion); 3545 3546 // Merge the excluded control and memory. 3547 excluded_rgn->init_req(_true_path, excluded); 3548 excluded_rgn->init_req(_false_path, included); 3549 excluded_mem->init_req(_true_path, tid_memory); 3550 excluded_mem->init_req(_false_path, included_memory); 3551 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3552 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3553 3554 // Set intermediate state. 3555 set_control(_gvn.transform(excluded_rgn)); 3556 set_all_memory(excluded_mem); 3557 3558 // Store the vthread exclusion state to the jfr thread local. 3559 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3560 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true); 3561 3562 // Store release 3563 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3564 3565 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3566 record_for_igvn(thread_compare_rgn); 3567 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3568 record_for_igvn(thread_compare_mem); 3569 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3570 record_for_igvn(vthread); 3571 3572 // Merge the thread_compare control and memory. 3573 thread_compare_rgn->init_req(_true_path, control()); 3574 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3575 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3576 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3577 3578 // Set output state. 3579 set_control(_gvn.transform(thread_compare_rgn)); 3580 set_all_memory(_gvn.transform(thread_compare_mem)); 3581 } 3582 3583 #endif // JFR_HAVE_INTRINSICS 3584 3585 //------------------------inline_native_currentCarrierThread------------------ 3586 bool LibraryCallKit::inline_native_currentCarrierThread() { 3587 Node* junk = nullptr; 3588 set_result(generate_current_thread(junk)); 3589 return true; 3590 } 3591 3592 //------------------------inline_native_currentThread------------------ 3593 bool LibraryCallKit::inline_native_currentThread() { 3594 Node* junk = nullptr; 3595 set_result(generate_virtual_thread(junk)); 3596 return true; 3597 } 3598 3599 //------------------------inline_native_setVthread------------------ 3600 bool LibraryCallKit::inline_native_setCurrentThread() { 3601 assert(C->method()->changes_current_thread(), 3602 "method changes current Thread but is not annotated ChangesCurrentThread"); 3603 Node* arr = argument(1); 3604 Node* thread = _gvn.transform(new ThreadLocalNode()); 3605 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3606 Node* thread_obj_handle 3607 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3608 thread_obj_handle = _gvn.transform(thread_obj_handle); 3609 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3610 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3611 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3612 return true; 3613 } 3614 3615 const Type* LibraryCallKit::scopedValueCache_type() { 3616 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3617 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3618 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3619 3620 // Because we create the scopedValue cache lazily we have to make the 3621 // type of the result BotPTR. 3622 bool xk = etype->klass_is_exact(); 3623 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); 3624 return objects_type; 3625 } 3626 3627 Node* LibraryCallKit::scopedValueCache_helper() { 3628 Node* thread = _gvn.transform(new ThreadLocalNode()); 3629 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3630 // We cannot use immutable_memory() because we might flip onto a 3631 // different carrier thread, at which point we'll need to use that 3632 // carrier thread's cache. 3633 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3634 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3635 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3636 } 3637 3638 //------------------------inline_native_scopedValueCache------------------ 3639 bool LibraryCallKit::inline_native_scopedValueCache() { 3640 Node* cache_obj_handle = scopedValueCache_helper(); 3641 const Type* objects_type = scopedValueCache_type(); 3642 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3643 3644 return true; 3645 } 3646 3647 //------------------------inline_native_setScopedValueCache------------------ 3648 bool LibraryCallKit::inline_native_setScopedValueCache() { 3649 Node* arr = argument(0); 3650 Node* cache_obj_handle = scopedValueCache_helper(); 3651 const Type* objects_type = scopedValueCache_type(); 3652 3653 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3654 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 3655 3656 return true; 3657 } 3658 3659 //---------------------------load_mirror_from_klass---------------------------- 3660 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3661 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3662 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3663 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3664 // mirror = ((OopHandle)mirror)->resolve(); 3665 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3666 } 3667 3668 //-----------------------load_klass_from_mirror_common------------------------- 3669 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3670 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3671 // and branch to the given path on the region. 3672 // If never_see_null, take an uncommon trap on null, so we can optimistically 3673 // compile for the non-null case. 3674 // If the region is null, force never_see_null = true. 3675 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3676 bool never_see_null, 3677 RegionNode* region, 3678 int null_path, 3679 int offset) { 3680 if (region == nullptr) never_see_null = true; 3681 Node* p = basic_plus_adr(mirror, offset); 3682 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3683 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3684 Node* null_ctl = top(); 3685 kls = null_check_oop(kls, &null_ctl, never_see_null); 3686 if (region != nullptr) { 3687 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3688 region->init_req(null_path, null_ctl); 3689 } else { 3690 assert(null_ctl == top(), "no loose ends"); 3691 } 3692 return kls; 3693 } 3694 3695 //--------------------(inline_native_Class_query helpers)--------------------- 3696 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER. 3697 // Fall through if (mods & mask) == bits, take the guard otherwise. 3698 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3699 // Branch around if the given klass has the given modifier bit set. 3700 // Like generate_guard, adds a new path onto the region. 3701 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3702 Node* mods = make_load(nullptr, modp, TypeInt::INT, T_INT, MemNode::unordered); 3703 Node* mask = intcon(modifier_mask); 3704 Node* bits = intcon(modifier_bits); 3705 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3706 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3707 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3708 return generate_fair_guard(bol, region); 3709 } 3710 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3711 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); 3712 } 3713 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3714 return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region); 3715 } 3716 3717 //-------------------------inline_native_Class_query------------------- 3718 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3719 const Type* return_type = TypeInt::BOOL; 3720 Node* prim_return_value = top(); // what happens if it's a primitive class? 3721 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3722 bool expect_prim = false; // most of these guys expect to work on refs 3723 3724 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3725 3726 Node* mirror = argument(0); 3727 Node* obj = top(); 3728 3729 switch (id) { 3730 case vmIntrinsics::_isInstance: 3731 // nothing is an instance of a primitive type 3732 prim_return_value = intcon(0); 3733 obj = argument(1); 3734 break; 3735 case vmIntrinsics::_getModifiers: 3736 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3737 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); 3738 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); 3739 break; 3740 case vmIntrinsics::_isInterface: 3741 prim_return_value = intcon(0); 3742 break; 3743 case vmIntrinsics::_isArray: 3744 prim_return_value = intcon(0); 3745 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 3746 break; 3747 case vmIntrinsics::_isPrimitive: 3748 prim_return_value = intcon(1); 3749 expect_prim = true; // obviously 3750 break; 3751 case vmIntrinsics::_isHidden: 3752 prim_return_value = intcon(0); 3753 break; 3754 case vmIntrinsics::_getSuperclass: 3755 prim_return_value = null(); 3756 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3757 break; 3758 case vmIntrinsics::_getClassAccessFlags: 3759 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3760 return_type = TypeInt::INT; // not bool! 6297094 3761 break; 3762 default: 3763 fatal_unexpected_iid(id); 3764 break; 3765 } 3766 3767 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3768 if (mirror_con == nullptr) return false; // cannot happen? 3769 3770 #ifndef PRODUCT 3771 if (C->print_intrinsics() || C->print_inlining()) { 3772 ciType* k = mirror_con->java_mirror_type(); 3773 if (k) { 3774 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3775 k->print_name(); 3776 tty->cr(); 3777 } 3778 } 3779 #endif 3780 3781 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3782 RegionNode* region = new RegionNode(PATH_LIMIT); 3783 record_for_igvn(region); 3784 PhiNode* phi = new PhiNode(region, return_type); 3785 3786 // The mirror will never be null of Reflection.getClassAccessFlags, however 3787 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3788 // if it is. See bug 4774291. 3789 3790 // For Reflection.getClassAccessFlags(), the null check occurs in 3791 // the wrong place; see inline_unsafe_access(), above, for a similar 3792 // situation. 3793 mirror = null_check(mirror); 3794 // If mirror or obj is dead, only null-path is taken. 3795 if (stopped()) return true; 3796 3797 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3798 3799 // Now load the mirror's klass metaobject, and null-check it. 3800 // Side-effects region with the control path if the klass is null. 3801 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 3802 // If kls is null, we have a primitive mirror. 3803 phi->init_req(_prim_path, prim_return_value); 3804 if (stopped()) { set_result(region, phi); return true; } 3805 bool safe_for_replace = (region->in(_prim_path) == top()); 3806 3807 Node* p; // handy temp 3808 Node* null_ctl; 3809 3810 // Now that we have the non-null klass, we can perform the real query. 3811 // For constant classes, the query will constant-fold in LoadNode::Value. 3812 Node* query_value = top(); 3813 switch (id) { 3814 case vmIntrinsics::_isInstance: 3815 // nothing is an instance of a primitive type 3816 query_value = gen_instanceof(obj, kls, safe_for_replace); 3817 break; 3818 3819 case vmIntrinsics::_getModifiers: 3820 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 3821 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 3822 break; 3823 3824 case vmIntrinsics::_isInterface: 3825 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3826 if (generate_interface_guard(kls, region) != nullptr) 3827 // A guard was added. If the guard is taken, it was an interface. 3828 phi->add_req(intcon(1)); 3829 // If we fall through, it's a plain class. 3830 query_value = intcon(0); 3831 break; 3832 3833 case vmIntrinsics::_isArray: 3834 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 3835 if (generate_array_guard(kls, region) != nullptr) 3836 // A guard was added. If the guard is taken, it was an array. 3837 phi->add_req(intcon(1)); 3838 // If we fall through, it's a plain class. 3839 query_value = intcon(0); 3840 break; 3841 3842 case vmIntrinsics::_isPrimitive: 3843 query_value = intcon(0); // "normal" path produces false 3844 break; 3845 3846 case vmIntrinsics::_isHidden: 3847 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 3848 if (generate_hidden_class_guard(kls, region) != nullptr) 3849 // A guard was added. If the guard is taken, it was an hidden class. 3850 phi->add_req(intcon(1)); 3851 // If we fall through, it's a plain class. 3852 query_value = intcon(0); 3853 break; 3854 3855 3856 case vmIntrinsics::_getSuperclass: 3857 // The rules here are somewhat unfortunate, but we can still do better 3858 // with random logic than with a JNI call. 3859 // Interfaces store null or Object as _super, but must report null. 3860 // Arrays store an intermediate super as _super, but must report Object. 3861 // Other types can report the actual _super. 3862 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3863 if (generate_interface_guard(kls, region) != nullptr) 3864 // A guard was added. If the guard is taken, it was an interface. 3865 phi->add_req(null()); 3866 if (generate_array_guard(kls, region) != nullptr) 3867 // A guard was added. If the guard is taken, it was an array. 3868 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 3869 // If we fall through, it's a plain class. Get its _super. 3870 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 3871 kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3872 null_ctl = top(); 3873 kls = null_check_oop(kls, &null_ctl); 3874 if (null_ctl != top()) { 3875 // If the guard is taken, Object.superClass is null (both klass and mirror). 3876 region->add_req(null_ctl); 3877 phi ->add_req(null()); 3878 } 3879 if (!stopped()) { 3880 query_value = load_mirror_from_klass(kls); 3881 } 3882 break; 3883 3884 case vmIntrinsics::_getClassAccessFlags: 3885 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3886 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 3887 break; 3888 3889 default: 3890 fatal_unexpected_iid(id); 3891 break; 3892 } 3893 3894 // Fall-through is the normal case of a query to a real class. 3895 phi->init_req(1, query_value); 3896 region->init_req(1, control()); 3897 3898 C->set_has_split_ifs(true); // Has chance for split-if optimization 3899 set_result(region, phi); 3900 return true; 3901 } 3902 3903 //-------------------------inline_Class_cast------------------- 3904 bool LibraryCallKit::inline_Class_cast() { 3905 Node* mirror = argument(0); // Class 3906 Node* obj = argument(1); 3907 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3908 if (mirror_con == nullptr) { 3909 return false; // dead path (mirror->is_top()). 3910 } 3911 if (obj == nullptr || obj->is_top()) { 3912 return false; // dead path 3913 } 3914 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 3915 3916 // First, see if Class.cast() can be folded statically. 3917 // java_mirror_type() returns non-null for compile-time Class constants. 3918 ciType* tm = mirror_con->java_mirror_type(); 3919 if (tm != nullptr && tm->is_klass() && 3920 tp != nullptr) { 3921 if (!tp->is_loaded()) { 3922 // Don't use intrinsic when class is not loaded. 3923 return false; 3924 } else { 3925 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 3926 if (static_res == Compile::SSC_always_true) { 3927 // isInstance() is true - fold the code. 3928 set_result(obj); 3929 return true; 3930 } else if (static_res == Compile::SSC_always_false) { 3931 // Don't use intrinsic, have to throw ClassCastException. 3932 // If the reference is null, the non-intrinsic bytecode will 3933 // be optimized appropriately. 3934 return false; 3935 } 3936 } 3937 } 3938 3939 // Bailout intrinsic and do normal inlining if exception path is frequent. 3940 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3941 return false; 3942 } 3943 3944 // Generate dynamic checks. 3945 // Class.cast() is java implementation of _checkcast bytecode. 3946 // Do checkcast (Parse::do_checkcast()) optimizations here. 3947 3948 mirror = null_check(mirror); 3949 // If mirror is dead, only null-path is taken. 3950 if (stopped()) { 3951 return true; 3952 } 3953 3954 // Not-subtype or the mirror's klass ptr is null (in case it is a primitive). 3955 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 3956 RegionNode* region = new RegionNode(PATH_LIMIT); 3957 record_for_igvn(region); 3958 3959 // Now load the mirror's klass metaobject, and null-check it. 3960 // If kls is null, we have a primitive mirror and 3961 // nothing is an instance of a primitive type. 3962 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 3963 3964 Node* res = top(); 3965 if (!stopped()) { 3966 Node* bad_type_ctrl = top(); 3967 // Do checkcast optimizations. 3968 res = gen_checkcast(obj, kls, &bad_type_ctrl); 3969 region->init_req(_bad_type_path, bad_type_ctrl); 3970 } 3971 if (region->in(_prim_path) != top() || 3972 region->in(_bad_type_path) != top()) { 3973 // Let Interpreter throw ClassCastException. 3974 PreserveJVMState pjvms(this); 3975 set_control(_gvn.transform(region)); 3976 uncommon_trap(Deoptimization::Reason_intrinsic, 3977 Deoptimization::Action_maybe_recompile); 3978 } 3979 if (!stopped()) { 3980 set_result(res); 3981 } 3982 return true; 3983 } 3984 3985 3986 //--------------------------inline_native_subtype_check------------------------ 3987 // This intrinsic takes the JNI calls out of the heart of 3988 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 3989 bool LibraryCallKit::inline_native_subtype_check() { 3990 // Pull both arguments off the stack. 3991 Node* args[2]; // two java.lang.Class mirrors: superc, subc 3992 args[0] = argument(0); 3993 args[1] = argument(1); 3994 Node* klasses[2]; // corresponding Klasses: superk, subk 3995 klasses[0] = klasses[1] = top(); 3996 3997 enum { 3998 // A full decision tree on {superc is prim, subc is prim}: 3999 _prim_0_path = 1, // {P,N} => false 4000 // {P,P} & superc!=subc => false 4001 _prim_same_path, // {P,P} & superc==subc => true 4002 _prim_1_path, // {N,P} => false 4003 _ref_subtype_path, // {N,N} & subtype check wins => true 4004 _both_ref_path, // {N,N} & subtype check loses => false 4005 PATH_LIMIT 4006 }; 4007 4008 RegionNode* region = new RegionNode(PATH_LIMIT); 4009 Node* phi = new PhiNode(region, TypeInt::BOOL); 4010 record_for_igvn(region); 4011 4012 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4013 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4014 int class_klass_offset = java_lang_Class::klass_offset(); 4015 4016 // First null-check both mirrors and load each mirror's klass metaobject. 4017 int which_arg; 4018 for (which_arg = 0; which_arg <= 1; which_arg++) { 4019 Node* arg = args[which_arg]; 4020 arg = null_check(arg); 4021 if (stopped()) break; 4022 args[which_arg] = arg; 4023 4024 Node* p = basic_plus_adr(arg, class_klass_offset); 4025 Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type); 4026 klasses[which_arg] = _gvn.transform(kls); 4027 } 4028 4029 // Having loaded both klasses, test each for null. 4030 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4031 for (which_arg = 0; which_arg <= 1; which_arg++) { 4032 Node* kls = klasses[which_arg]; 4033 Node* null_ctl = top(); 4034 kls = null_check_oop(kls, &null_ctl, never_see_null); 4035 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 4036 region->init_req(prim_path, null_ctl); 4037 if (stopped()) break; 4038 klasses[which_arg] = kls; 4039 } 4040 4041 if (!stopped()) { 4042 // now we have two reference types, in klasses[0..1] 4043 Node* subk = klasses[1]; // the argument to isAssignableFrom 4044 Node* superk = klasses[0]; // the receiver 4045 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4046 // now we have a successful reference subtype check 4047 region->set_req(_ref_subtype_path, control()); 4048 } 4049 4050 // If both operands are primitive (both klasses null), then 4051 // we must return true when they are identical primitives. 4052 // It is convenient to test this after the first null klass check. 4053 set_control(region->in(_prim_0_path)); // go back to first null check 4054 if (!stopped()) { 4055 // Since superc is primitive, make a guard for the superc==subc case. 4056 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4057 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4058 generate_guard(bol_eq, region, PROB_FAIR); 4059 if (region->req() == PATH_LIMIT+1) { 4060 // A guard was added. If the added guard is taken, superc==subc. 4061 region->swap_edges(PATH_LIMIT, _prim_same_path); 4062 region->del_req(PATH_LIMIT); 4063 } 4064 region->set_req(_prim_0_path, control()); // Not equal after all. 4065 } 4066 4067 // these are the only paths that produce 'true': 4068 phi->set_req(_prim_same_path, intcon(1)); 4069 phi->set_req(_ref_subtype_path, intcon(1)); 4070 4071 // pull together the cases: 4072 assert(region->req() == PATH_LIMIT, "sane region"); 4073 for (uint i = 1; i < region->req(); i++) { 4074 Node* ctl = region->in(i); 4075 if (ctl == nullptr || ctl == top()) { 4076 region->set_req(i, top()); 4077 phi ->set_req(i, top()); 4078 } else if (phi->in(i) == nullptr) { 4079 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4080 } 4081 } 4082 4083 set_control(_gvn.transform(region)); 4084 set_result(_gvn.transform(phi)); 4085 return true; 4086 } 4087 4088 //---------------------generate_array_guard_common------------------------ 4089 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 4090 bool obj_array, bool not_array) { 4091 4092 if (stopped()) { 4093 return nullptr; 4094 } 4095 4096 // If obj_array/non_array==false/false: 4097 // Branch around if the given klass is in fact an array (either obj or prim). 4098 // If obj_array/non_array==false/true: 4099 // Branch around if the given klass is not an array klass of any kind. 4100 // If obj_array/non_array==true/true: 4101 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 4102 // If obj_array/non_array==true/false: 4103 // Branch around if the kls is an oop array (Object[] or subtype) 4104 // 4105 // Like generate_guard, adds a new path onto the region. 4106 jint layout_con = 0; 4107 Node* layout_val = get_layout_helper(kls, layout_con); 4108 if (layout_val == nullptr) { 4109 bool query = (obj_array 4110 ? Klass::layout_helper_is_objArray(layout_con) 4111 : Klass::layout_helper_is_array(layout_con)); 4112 if (query == not_array) { 4113 return nullptr; // never a branch 4114 } else { // always a branch 4115 Node* always_branch = control(); 4116 if (region != nullptr) 4117 region->add_req(always_branch); 4118 set_control(top()); 4119 return always_branch; 4120 } 4121 } 4122 // Now test the correct condition. 4123 jint nval = (obj_array 4124 ? (jint)(Klass::_lh_array_tag_type_value 4125 << Klass::_lh_array_tag_shift) 4126 : Klass::_lh_neutral_value); 4127 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4128 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 4129 // invert the test if we are looking for a non-array 4130 if (not_array) btest = BoolTest(btest).negate(); 4131 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4132 return generate_fair_guard(bol, region); 4133 } 4134 4135 4136 //-----------------------inline_native_newArray-------------------------- 4137 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 4138 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4139 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4140 Node* mirror; 4141 Node* count_val; 4142 if (uninitialized) { 4143 null_check_receiver(); 4144 mirror = argument(1); 4145 count_val = argument(2); 4146 } else { 4147 mirror = argument(0); 4148 count_val = argument(1); 4149 } 4150 4151 mirror = null_check(mirror); 4152 // If mirror or obj is dead, only null-path is taken. 4153 if (stopped()) return true; 4154 4155 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4156 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4157 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4158 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4159 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4160 4161 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4162 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4163 result_reg, _slow_path); 4164 Node* normal_ctl = control(); 4165 Node* no_array_ctl = result_reg->in(_slow_path); 4166 4167 // Generate code for the slow case. We make a call to newArray(). 4168 set_control(no_array_ctl); 4169 if (!stopped()) { 4170 // Either the input type is void.class, or else the 4171 // array klass has not yet been cached. Either the 4172 // ensuing call will throw an exception, or else it 4173 // will cache the array klass for next time. 4174 PreserveJVMState pjvms(this); 4175 CallJavaNode* slow_call = nullptr; 4176 if (uninitialized) { 4177 // Generate optimized virtual call (holder class 'Unsafe' is final) 4178 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4179 } else { 4180 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4181 } 4182 Node* slow_result = set_results_for_java_call(slow_call); 4183 // this->control() comes from set_results_for_java_call 4184 result_reg->set_req(_slow_path, control()); 4185 result_val->set_req(_slow_path, slow_result); 4186 result_io ->set_req(_slow_path, i_o()); 4187 result_mem->set_req(_slow_path, reset_memory()); 4188 } 4189 4190 set_control(normal_ctl); 4191 if (!stopped()) { 4192 // Normal case: The array type has been cached in the java.lang.Class. 4193 // The following call works fine even if the array type is polymorphic. 4194 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4195 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4196 result_reg->init_req(_normal_path, control()); 4197 result_val->init_req(_normal_path, obj); 4198 result_io ->init_req(_normal_path, i_o()); 4199 result_mem->init_req(_normal_path, reset_memory()); 4200 4201 if (uninitialized) { 4202 // Mark the allocation so that zeroing is skipped 4203 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4204 alloc->maybe_set_complete(&_gvn); 4205 } 4206 } 4207 4208 // Return the combined state. 4209 set_i_o( _gvn.transform(result_io) ); 4210 set_all_memory( _gvn.transform(result_mem)); 4211 4212 C->set_has_split_ifs(true); // Has chance for split-if optimization 4213 set_result(result_reg, result_val); 4214 return true; 4215 } 4216 4217 //----------------------inline_native_getLength-------------------------- 4218 // public static native int java.lang.reflect.Array.getLength(Object array); 4219 bool LibraryCallKit::inline_native_getLength() { 4220 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4221 4222 Node* array = null_check(argument(0)); 4223 // If array is dead, only null-path is taken. 4224 if (stopped()) return true; 4225 4226 // Deoptimize if it is a non-array. 4227 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr); 4228 4229 if (non_array != nullptr) { 4230 PreserveJVMState pjvms(this); 4231 set_control(non_array); 4232 uncommon_trap(Deoptimization::Reason_intrinsic, 4233 Deoptimization::Action_maybe_recompile); 4234 } 4235 4236 // If control is dead, only non-array-path is taken. 4237 if (stopped()) return true; 4238 4239 // The works fine even if the array type is polymorphic. 4240 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4241 Node* result = load_array_length(array); 4242 4243 C->set_has_split_ifs(true); // Has chance for split-if optimization 4244 set_result(result); 4245 return true; 4246 } 4247 4248 //------------------------inline_array_copyOf---------------------------- 4249 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4250 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4251 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4252 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4253 4254 // Get the arguments. 4255 Node* original = argument(0); 4256 Node* start = is_copyOfRange? argument(1): intcon(0); 4257 Node* end = is_copyOfRange? argument(2): argument(1); 4258 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4259 4260 Node* newcopy = nullptr; 4261 4262 // Set the original stack and the reexecute bit for the interpreter to reexecute 4263 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4264 { PreserveReexecuteState preexecs(this); 4265 jvms()->set_should_reexecute(true); 4266 4267 array_type_mirror = null_check(array_type_mirror); 4268 original = null_check(original); 4269 4270 // Check if a null path was taken unconditionally. 4271 if (stopped()) return true; 4272 4273 Node* orig_length = load_array_length(original); 4274 4275 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4276 klass_node = null_check(klass_node); 4277 4278 RegionNode* bailout = new RegionNode(1); 4279 record_for_igvn(bailout); 4280 4281 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4282 // Bail out if that is so. 4283 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 4284 if (not_objArray != nullptr) { 4285 // Improve the klass node's type from the new optimistic assumption: 4286 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4287 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 4288 Node* cast = new CastPPNode(klass_node, akls); 4289 cast->init_req(0, control()); 4290 klass_node = _gvn.transform(cast); 4291 } 4292 4293 // Bail out if either start or end is negative. 4294 generate_negative_guard(start, bailout, &start); 4295 generate_negative_guard(end, bailout, &end); 4296 4297 Node* length = end; 4298 if (_gvn.type(start) != TypeInt::ZERO) { 4299 length = _gvn.transform(new SubINode(end, start)); 4300 } 4301 4302 // Bail out if length is negative. 4303 // Without this the new_array would throw 4304 // NegativeArraySizeException but IllegalArgumentException is what 4305 // should be thrown 4306 generate_negative_guard(length, bailout, &length); 4307 4308 if (bailout->req() > 1) { 4309 PreserveJVMState pjvms(this); 4310 set_control(_gvn.transform(bailout)); 4311 uncommon_trap(Deoptimization::Reason_intrinsic, 4312 Deoptimization::Action_maybe_recompile); 4313 } 4314 4315 if (!stopped()) { 4316 // How many elements will we copy from the original? 4317 // The answer is MinI(orig_length - start, length). 4318 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4319 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 4320 4321 // Generate a direct call to the right arraycopy function(s). 4322 // We know the copy is disjoint but we might not know if the 4323 // oop stores need checking. 4324 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4325 // This will fail a store-check if x contains any non-nulls. 4326 4327 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4328 // loads/stores but it is legal only if we're sure the 4329 // Arrays.copyOf would succeed. So we need all input arguments 4330 // to the copyOf to be validated, including that the copy to the 4331 // new array won't trigger an ArrayStoreException. That subtype 4332 // check can be optimized if we know something on the type of 4333 // the input array from type speculation. 4334 if (_gvn.type(klass_node)->singleton()) { 4335 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4336 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4337 4338 int test = C->static_subtype_check(superk, subk); 4339 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4340 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4341 if (t_original->speculative_type() != nullptr) { 4342 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4343 } 4344 } 4345 } 4346 4347 bool validated = false; 4348 // Reason_class_check rather than Reason_intrinsic because we 4349 // want to intrinsify even if this traps. 4350 if (!too_many_traps(Deoptimization::Reason_class_check)) { 4351 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4352 4353 if (not_subtype_ctrl != top()) { 4354 PreserveJVMState pjvms(this); 4355 set_control(not_subtype_ctrl); 4356 uncommon_trap(Deoptimization::Reason_class_check, 4357 Deoptimization::Action_make_not_entrant); 4358 assert(stopped(), "Should be stopped"); 4359 } 4360 validated = true; 4361 } 4362 4363 if (!stopped()) { 4364 newcopy = new_array(klass_node, length, 0); // no arguments to push 4365 4366 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false, 4367 load_object_klass(original), klass_node); 4368 if (!is_copyOfRange) { 4369 ac->set_copyof(validated); 4370 } else { 4371 ac->set_copyofrange(validated); 4372 } 4373 Node* n = _gvn.transform(ac); 4374 if (n == ac) { 4375 ac->connect_outputs(this); 4376 } else { 4377 assert(validated, "shouldn't transform if all arguments not validated"); 4378 set_all_memory(n); 4379 } 4380 } 4381 } 4382 } // original reexecute is set back here 4383 4384 C->set_has_split_ifs(true); // Has chance for split-if optimization 4385 if (!stopped()) { 4386 set_result(newcopy); 4387 } 4388 return true; 4389 } 4390 4391 4392 //----------------------generate_virtual_guard--------------------------- 4393 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4394 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4395 RegionNode* slow_region) { 4396 ciMethod* method = callee(); 4397 int vtable_index = method->vtable_index(); 4398 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4399 "bad index %d", vtable_index); 4400 // Get the Method* out of the appropriate vtable entry. 4401 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4402 vtable_index*vtableEntry::size_in_bytes() + 4403 in_bytes(vtableEntry::method_offset()); 4404 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4405 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4406 4407 // Compare the target method with the expected method (e.g., Object.hashCode). 4408 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4409 4410 Node* native_call = makecon(native_call_addr); 4411 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4412 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4413 4414 return generate_slow_guard(test_native, slow_region); 4415 } 4416 4417 //-----------------------generate_method_call---------------------------- 4418 // Use generate_method_call to make a slow-call to the real 4419 // method if the fast path fails. An alternative would be to 4420 // use a stub like OptoRuntime::slow_arraycopy_Java. 4421 // This only works for expanding the current library call, 4422 // not another intrinsic. (E.g., don't use this for making an 4423 // arraycopy call inside of the copyOf intrinsic.) 4424 CallJavaNode* 4425 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4426 // When compiling the intrinsic method itself, do not use this technique. 4427 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4428 4429 ciMethod* method = callee(); 4430 // ensure the JVMS we have will be correct for this call 4431 guarantee(method_id == method->intrinsic_id(), "must match"); 4432 4433 const TypeFunc* tf = TypeFunc::make(method); 4434 if (res_not_null) { 4435 assert(tf->return_type() == T_OBJECT, ""); 4436 const TypeTuple* range = tf->range(); 4437 const Type** fields = TypeTuple::fields(range->cnt()); 4438 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4439 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4440 tf = TypeFunc::make(tf->domain(), new_range); 4441 } 4442 CallJavaNode* slow_call; 4443 if (is_static) { 4444 assert(!is_virtual, ""); 4445 slow_call = new CallStaticJavaNode(C, tf, 4446 SharedRuntime::get_resolve_static_call_stub(), method); 4447 } else if (is_virtual) { 4448 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4449 int vtable_index = Method::invalid_vtable_index; 4450 if (UseInlineCaches) { 4451 // Suppress the vtable call 4452 } else { 4453 // hashCode and clone are not a miranda methods, 4454 // so the vtable index is fixed. 4455 // No need to use the linkResolver to get it. 4456 vtable_index = method->vtable_index(); 4457 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4458 "bad index %d", vtable_index); 4459 } 4460 slow_call = new CallDynamicJavaNode(tf, 4461 SharedRuntime::get_resolve_virtual_call_stub(), 4462 method, vtable_index); 4463 } else { // neither virtual nor static: opt_virtual 4464 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4465 slow_call = new CallStaticJavaNode(C, tf, 4466 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4467 slow_call->set_optimized_virtual(true); 4468 } 4469 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4470 // To be able to issue a direct call (optimized virtual or virtual) 4471 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4472 // about the method being invoked should be attached to the call site to 4473 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4474 slow_call->set_override_symbolic_info(true); 4475 } 4476 set_arguments_for_java_call(slow_call); 4477 set_edges_for_java_call(slow_call); 4478 return slow_call; 4479 } 4480 4481 4482 /** 4483 * Build special case code for calls to hashCode on an object. This call may 4484 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4485 * slightly different code. 4486 */ 4487 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4488 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4489 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4490 4491 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4492 4493 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4494 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4495 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4496 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4497 Node* obj = nullptr; 4498 if (!is_static) { 4499 // Check for hashing null object 4500 obj = null_check_receiver(); 4501 if (stopped()) return true; // unconditionally null 4502 result_reg->init_req(_null_path, top()); 4503 result_val->init_req(_null_path, top()); 4504 } else { 4505 // Do a null check, and return zero if null. 4506 // System.identityHashCode(null) == 0 4507 obj = argument(0); 4508 Node* null_ctl = top(); 4509 obj = null_check_oop(obj, &null_ctl); 4510 result_reg->init_req(_null_path, null_ctl); 4511 result_val->init_req(_null_path, _gvn.intcon(0)); 4512 } 4513 4514 // Unconditionally null? Then return right away. 4515 if (stopped()) { 4516 set_control( result_reg->in(_null_path)); 4517 if (!stopped()) 4518 set_result(result_val->in(_null_path)); 4519 return true; 4520 } 4521 4522 // We only go to the fast case code if we pass a number of guards. The 4523 // paths which do not pass are accumulated in the slow_region. 4524 RegionNode* slow_region = new RegionNode(1); 4525 record_for_igvn(slow_region); 4526 4527 // If this is a virtual call, we generate a funny guard. We pull out 4528 // the vtable entry corresponding to hashCode() from the target object. 4529 // If the target method which we are calling happens to be the native 4530 // Object hashCode() method, we pass the guard. We do not need this 4531 // guard for non-virtual calls -- the caller is known to be the native 4532 // Object hashCode(). 4533 if (is_virtual) { 4534 // After null check, get the object's klass. 4535 Node* obj_klass = load_object_klass(obj); 4536 generate_virtual_guard(obj_klass, slow_region); 4537 } 4538 4539 // Get the header out of the object, use LoadMarkNode when available 4540 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4541 // The control of the load must be null. Otherwise, the load can move before 4542 // the null check after castPP removal. 4543 Node* no_ctrl = nullptr; 4544 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4545 4546 // Test the header to see if it is unlocked. 4547 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); 4548 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4549 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4550 Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val)); 4551 Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne)); 4552 4553 generate_slow_guard(test_unlocked, slow_region); 4554 4555 // Get the hash value and check to see that it has been properly assigned. 4556 // We depend on hash_mask being at most 32 bits and avoid the use of 4557 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4558 // vm: see markWord.hpp. 4559 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4560 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4561 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4562 // This hack lets the hash bits live anywhere in the mark object now, as long 4563 // as the shift drops the relevant bits into the low 32 bits. Note that 4564 // Java spec says that HashCode is an int so there's no point in capturing 4565 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4566 hshifted_header = ConvX2I(hshifted_header); 4567 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4568 4569 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4570 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4571 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4572 4573 generate_slow_guard(test_assigned, slow_region); 4574 4575 Node* init_mem = reset_memory(); 4576 // fill in the rest of the null path: 4577 result_io ->init_req(_null_path, i_o()); 4578 result_mem->init_req(_null_path, init_mem); 4579 4580 result_val->init_req(_fast_path, hash_val); 4581 result_reg->init_req(_fast_path, control()); 4582 result_io ->init_req(_fast_path, i_o()); 4583 result_mem->init_req(_fast_path, init_mem); 4584 4585 // Generate code for the slow case. We make a call to hashCode(). 4586 set_control(_gvn.transform(slow_region)); 4587 if (!stopped()) { 4588 // No need for PreserveJVMState, because we're using up the present state. 4589 set_all_memory(init_mem); 4590 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4591 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 4592 Node* slow_result = set_results_for_java_call(slow_call); 4593 // this->control() comes from set_results_for_java_call 4594 result_reg->init_req(_slow_path, control()); 4595 result_val->init_req(_slow_path, slow_result); 4596 result_io ->set_req(_slow_path, i_o()); 4597 result_mem ->set_req(_slow_path, reset_memory()); 4598 } 4599 4600 // Return the combined state. 4601 set_i_o( _gvn.transform(result_io) ); 4602 set_all_memory( _gvn.transform(result_mem)); 4603 4604 set_result(result_reg, result_val); 4605 return true; 4606 } 4607 4608 //---------------------------inline_native_getClass---------------------------- 4609 // public final native Class<?> java.lang.Object.getClass(); 4610 // 4611 // Build special case code for calls to getClass on an object. 4612 bool LibraryCallKit::inline_native_getClass() { 4613 Node* obj = null_check_receiver(); 4614 if (stopped()) return true; 4615 set_result(load_mirror_from_klass(load_object_klass(obj))); 4616 return true; 4617 } 4618 4619 //-----------------inline_native_Reflection_getCallerClass--------------------- 4620 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4621 // 4622 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4623 // 4624 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4625 // in that it must skip particular security frames and checks for 4626 // caller sensitive methods. 4627 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4628 #ifndef PRODUCT 4629 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4630 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4631 } 4632 #endif 4633 4634 if (!jvms()->has_method()) { 4635 #ifndef PRODUCT 4636 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4637 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4638 } 4639 #endif 4640 return false; 4641 } 4642 4643 // Walk back up the JVM state to find the caller at the required 4644 // depth. 4645 JVMState* caller_jvms = jvms(); 4646 4647 // Cf. JVM_GetCallerClass 4648 // NOTE: Start the loop at depth 1 because the current JVM state does 4649 // not include the Reflection.getCallerClass() frame. 4650 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 4651 ciMethod* m = caller_jvms->method(); 4652 switch (n) { 4653 case 0: 4654 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4655 break; 4656 case 1: 4657 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4658 if (!m->caller_sensitive()) { 4659 #ifndef PRODUCT 4660 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4661 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4662 } 4663 #endif 4664 return false; // bail-out; let JVM_GetCallerClass do the work 4665 } 4666 break; 4667 default: 4668 if (!m->is_ignored_by_security_stack_walk()) { 4669 // We have reached the desired frame; return the holder class. 4670 // Acquire method holder as java.lang.Class and push as constant. 4671 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4672 ciInstance* caller_mirror = caller_klass->java_mirror(); 4673 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4674 4675 #ifndef PRODUCT 4676 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4677 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4678 tty->print_cr(" JVM state at this point:"); 4679 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4680 ciMethod* m = jvms()->of_depth(i)->method(); 4681 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4682 } 4683 } 4684 #endif 4685 return true; 4686 } 4687 break; 4688 } 4689 } 4690 4691 #ifndef PRODUCT 4692 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4693 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4694 tty->print_cr(" JVM state at this point:"); 4695 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4696 ciMethod* m = jvms()->of_depth(i)->method(); 4697 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4698 } 4699 } 4700 #endif 4701 4702 return false; // bail-out; let JVM_GetCallerClass do the work 4703 } 4704 4705 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4706 Node* arg = argument(0); 4707 Node* result = nullptr; 4708 4709 switch (id) { 4710 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4711 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4712 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4713 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4714 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 4715 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 4716 4717 case vmIntrinsics::_doubleToLongBits: { 4718 // two paths (plus control) merge in a wood 4719 RegionNode *r = new RegionNode(3); 4720 Node *phi = new PhiNode(r, TypeLong::LONG); 4721 4722 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4723 // Build the boolean node 4724 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4725 4726 // Branch either way. 4727 // NaN case is less traveled, which makes all the difference. 4728 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4729 Node *opt_isnan = _gvn.transform(ifisnan); 4730 assert( opt_isnan->is_If(), "Expect an IfNode"); 4731 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4732 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4733 4734 set_control(iftrue); 4735 4736 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4737 Node *slow_result = longcon(nan_bits); // return NaN 4738 phi->init_req(1, _gvn.transform( slow_result )); 4739 r->init_req(1, iftrue); 4740 4741 // Else fall through 4742 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4743 set_control(iffalse); 4744 4745 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4746 r->init_req(2, iffalse); 4747 4748 // Post merge 4749 set_control(_gvn.transform(r)); 4750 record_for_igvn(r); 4751 4752 C->set_has_split_ifs(true); // Has chance for split-if optimization 4753 result = phi; 4754 assert(result->bottom_type()->isa_long(), "must be"); 4755 break; 4756 } 4757 4758 case vmIntrinsics::_floatToIntBits: { 4759 // two paths (plus control) merge in a wood 4760 RegionNode *r = new RegionNode(3); 4761 Node *phi = new PhiNode(r, TypeInt::INT); 4762 4763 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4764 // Build the boolean node 4765 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4766 4767 // Branch either way. 4768 // NaN case is less traveled, which makes all the difference. 4769 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4770 Node *opt_isnan = _gvn.transform(ifisnan); 4771 assert( opt_isnan->is_If(), "Expect an IfNode"); 4772 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4773 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4774 4775 set_control(iftrue); 4776 4777 static const jint nan_bits = 0x7fc00000; 4778 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4779 phi->init_req(1, _gvn.transform( slow_result )); 4780 r->init_req(1, iftrue); 4781 4782 // Else fall through 4783 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4784 set_control(iffalse); 4785 4786 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4787 r->init_req(2, iffalse); 4788 4789 // Post merge 4790 set_control(_gvn.transform(r)); 4791 record_for_igvn(r); 4792 4793 C->set_has_split_ifs(true); // Has chance for split-if optimization 4794 result = phi; 4795 assert(result->bottom_type()->isa_int(), "must be"); 4796 break; 4797 } 4798 4799 default: 4800 fatal_unexpected_iid(id); 4801 break; 4802 } 4803 set_result(_gvn.transform(result)); 4804 return true; 4805 } 4806 4807 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 4808 Node* arg = argument(0); 4809 Node* result = nullptr; 4810 4811 switch (id) { 4812 case vmIntrinsics::_floatIsInfinite: 4813 result = new IsInfiniteFNode(arg); 4814 break; 4815 case vmIntrinsics::_floatIsFinite: 4816 result = new IsFiniteFNode(arg); 4817 break; 4818 case vmIntrinsics::_doubleIsInfinite: 4819 result = new IsInfiniteDNode(arg); 4820 break; 4821 case vmIntrinsics::_doubleIsFinite: 4822 result = new IsFiniteDNode(arg); 4823 break; 4824 default: 4825 fatal_unexpected_iid(id); 4826 break; 4827 } 4828 set_result(_gvn.transform(result)); 4829 return true; 4830 } 4831 4832 //----------------------inline_unsafe_copyMemory------------------------- 4833 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 4834 4835 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 4836 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 4837 const Type* base_t = gvn.type(base); 4838 4839 bool in_native = (base_t == TypePtr::NULL_PTR); 4840 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 4841 bool is_mixed = !in_heap && !in_native; 4842 4843 if (is_mixed) { 4844 return true; // mixed accesses can touch both on-heap and off-heap memory 4845 } 4846 if (in_heap) { 4847 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 4848 if (!is_prim_array) { 4849 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 4850 // there's not enough type information available to determine proper memory slice for it. 4851 return true; 4852 } 4853 } 4854 return false; 4855 } 4856 4857 bool LibraryCallKit::inline_unsafe_copyMemory() { 4858 if (callee()->is_static()) return false; // caller must have the capability! 4859 null_check_receiver(); // null-check receiver 4860 if (stopped()) return true; 4861 4862 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 4863 4864 Node* src_base = argument(1); // type: oop 4865 Node* src_off = ConvL2X(argument(2)); // type: long 4866 Node* dst_base = argument(4); // type: oop 4867 Node* dst_off = ConvL2X(argument(5)); // type: long 4868 Node* size = ConvL2X(argument(7)); // type: long 4869 4870 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 4871 "fieldOffset must be byte-scaled"); 4872 4873 Node* src_addr = make_unsafe_address(src_base, src_off); 4874 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 4875 4876 Node* thread = _gvn.transform(new ThreadLocalNode()); 4877 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 4878 BasicType doing_unsafe_access_bt = T_BYTE; 4879 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 4880 4881 // update volatile field 4882 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4883 4884 int flags = RC_LEAF | RC_NO_FP; 4885 4886 const TypePtr* dst_type = TypePtr::BOTTOM; 4887 4888 // Adjust memory effects of the runtime call based on input values. 4889 if (!has_wide_mem(_gvn, src_addr, src_base) && 4890 !has_wide_mem(_gvn, dst_addr, dst_base)) { 4891 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 4892 4893 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 4894 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 4895 flags |= RC_NARROW_MEM; // narrow in memory 4896 } 4897 } 4898 4899 // Call it. Note that the length argument is not scaled. 4900 make_runtime_call(flags, 4901 OptoRuntime::fast_arraycopy_Type(), 4902 StubRoutines::unsafe_arraycopy(), 4903 "unsafe_arraycopy", 4904 dst_type, 4905 src_addr, dst_addr, size XTOP); 4906 4907 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4908 4909 return true; 4910 } 4911 4912 #undef XTOP 4913 4914 //------------------------clone_coping----------------------------------- 4915 // Helper function for inline_native_clone. 4916 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 4917 assert(obj_size != nullptr, ""); 4918 Node* raw_obj = alloc_obj->in(1); 4919 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 4920 4921 AllocateNode* alloc = nullptr; 4922 if (ReduceBulkZeroing) { 4923 // We will be completely responsible for initializing this object - 4924 // mark Initialize node as complete. 4925 alloc = AllocateNode::Ideal_allocation(alloc_obj); 4926 // The object was just allocated - there should be no any stores! 4927 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 4928 // Mark as complete_with_arraycopy so that on AllocateNode 4929 // expansion, we know this AllocateNode is initialized by an array 4930 // copy and a StoreStore barrier exists after the array copy. 4931 alloc->initialization()->set_complete_with_arraycopy(); 4932 } 4933 4934 Node* size = _gvn.transform(obj_size); 4935 access_clone(obj, alloc_obj, size, is_array); 4936 4937 // Do not let reads from the cloned object float above the arraycopy. 4938 if (alloc != nullptr) { 4939 // Do not let stores that initialize this object be reordered with 4940 // a subsequent store that would make this object accessible by 4941 // other threads. 4942 // Record what AllocateNode this StoreStore protects so that 4943 // escape analysis can go from the MemBarStoreStoreNode to the 4944 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 4945 // based on the escape status of the AllocateNode. 4946 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 4947 } else { 4948 insert_mem_bar(Op_MemBarCPUOrder); 4949 } 4950 } 4951 4952 //------------------------inline_native_clone---------------------------- 4953 // protected native Object java.lang.Object.clone(); 4954 // 4955 // Here are the simple edge cases: 4956 // null receiver => normal trap 4957 // virtual and clone was overridden => slow path to out-of-line clone 4958 // not cloneable or finalizer => slow path to out-of-line Object.clone 4959 // 4960 // The general case has two steps, allocation and copying. 4961 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 4962 // 4963 // Copying also has two cases, oop arrays and everything else. 4964 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 4965 // Everything else uses the tight inline loop supplied by CopyArrayNode. 4966 // 4967 // These steps fold up nicely if and when the cloned object's klass 4968 // can be sharply typed as an object array, a type array, or an instance. 4969 // 4970 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 4971 PhiNode* result_val; 4972 4973 // Set the reexecute bit for the interpreter to reexecute 4974 // the bytecode that invokes Object.clone if deoptimization happens. 4975 { PreserveReexecuteState preexecs(this); 4976 jvms()->set_should_reexecute(true); 4977 4978 Node* obj = null_check_receiver(); 4979 if (stopped()) return true; 4980 4981 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 4982 4983 // If we are going to clone an instance, we need its exact type to 4984 // know the number and types of fields to convert the clone to 4985 // loads/stores. Maybe a speculative type can help us. 4986 if (!obj_type->klass_is_exact() && 4987 obj_type->speculative_type() != nullptr && 4988 obj_type->speculative_type()->is_instance_klass()) { 4989 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 4990 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 4991 !spec_ik->has_injected_fields()) { 4992 if (!obj_type->isa_instptr() || 4993 obj_type->is_instptr()->instance_klass()->has_subklass()) { 4994 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 4995 } 4996 } 4997 } 4998 4999 // Conservatively insert a memory barrier on all memory slices. 5000 // Do not let writes into the original float below the clone. 5001 insert_mem_bar(Op_MemBarCPUOrder); 5002 5003 // paths into result_reg: 5004 enum { 5005 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5006 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5007 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5008 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5009 PATH_LIMIT 5010 }; 5011 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5012 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5013 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5014 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5015 record_for_igvn(result_reg); 5016 5017 Node* obj_klass = load_object_klass(obj); 5018 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr); 5019 if (array_ctl != nullptr) { 5020 // It's an array. 5021 PreserveJVMState pjvms(this); 5022 set_control(array_ctl); 5023 Node* obj_length = load_array_length(obj); 5024 Node* obj_size = nullptr; 5025 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size, /*deoptimize_on_exception=*/true); 5026 5027 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5028 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5029 // If it is an oop array, it requires very special treatment, 5030 // because gc barriers are required when accessing the array. 5031 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5032 if (is_obja != nullptr) { 5033 PreserveJVMState pjvms2(this); 5034 set_control(is_obja); 5035 // Generate a direct call to the right arraycopy function(s). 5036 // Clones are always tightly coupled. 5037 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5038 ac->set_clone_oop_array(); 5039 Node* n = _gvn.transform(ac); 5040 assert(n == ac, "cannot disappear"); 5041 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5042 5043 result_reg->init_req(_objArray_path, control()); 5044 result_val->init_req(_objArray_path, alloc_obj); 5045 result_i_o ->set_req(_objArray_path, i_o()); 5046 result_mem ->set_req(_objArray_path, reset_memory()); 5047 } 5048 } 5049 // Otherwise, there are no barriers to worry about. 5050 // (We can dispense with card marks if we know the allocation 5051 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5052 // causes the non-eden paths to take compensating steps to 5053 // simulate a fresh allocation, so that no further 5054 // card marks are required in compiled code to initialize 5055 // the object.) 5056 5057 if (!stopped()) { 5058 copy_to_clone(obj, alloc_obj, obj_size, true); 5059 5060 // Present the results of the copy. 5061 result_reg->init_req(_array_path, control()); 5062 result_val->init_req(_array_path, alloc_obj); 5063 result_i_o ->set_req(_array_path, i_o()); 5064 result_mem ->set_req(_array_path, reset_memory()); 5065 } 5066 } 5067 5068 // We only go to the instance fast case code if we pass a number of guards. 5069 // The paths which do not pass are accumulated in the slow_region. 5070 RegionNode* slow_region = new RegionNode(1); 5071 record_for_igvn(slow_region); 5072 if (!stopped()) { 5073 // It's an instance (we did array above). Make the slow-path tests. 5074 // If this is a virtual call, we generate a funny guard. We grab 5075 // the vtable entry corresponding to clone() from the target object. 5076 // If the target method which we are calling happens to be the 5077 // Object clone() method, we pass the guard. We do not need this 5078 // guard for non-virtual calls; the caller is known to be the native 5079 // Object clone(). 5080 if (is_virtual) { 5081 generate_virtual_guard(obj_klass, slow_region); 5082 } 5083 5084 // The object must be easily cloneable and must not have a finalizer. 5085 // Both of these conditions may be checked in a single test. 5086 // We could optimize the test further, but we don't care. 5087 generate_access_flags_guard(obj_klass, 5088 // Test both conditions: 5089 JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER, 5090 // Must be cloneable but not finalizer: 5091 JVM_ACC_IS_CLONEABLE_FAST, 5092 slow_region); 5093 } 5094 5095 if (!stopped()) { 5096 // It's an instance, and it passed the slow-path tests. 5097 PreserveJVMState pjvms(this); 5098 Node* obj_size = nullptr; 5099 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5100 // is reexecuted if deoptimization occurs and there could be problems when merging 5101 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5102 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5103 5104 copy_to_clone(obj, alloc_obj, obj_size, false); 5105 5106 // Present the results of the slow call. 5107 result_reg->init_req(_instance_path, control()); 5108 result_val->init_req(_instance_path, alloc_obj); 5109 result_i_o ->set_req(_instance_path, i_o()); 5110 result_mem ->set_req(_instance_path, reset_memory()); 5111 } 5112 5113 // Generate code for the slow case. We make a call to clone(). 5114 set_control(_gvn.transform(slow_region)); 5115 if (!stopped()) { 5116 PreserveJVMState pjvms(this); 5117 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5118 // We need to deoptimize on exception (see comment above) 5119 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5120 // this->control() comes from set_results_for_java_call 5121 result_reg->init_req(_slow_path, control()); 5122 result_val->init_req(_slow_path, slow_result); 5123 result_i_o ->set_req(_slow_path, i_o()); 5124 result_mem ->set_req(_slow_path, reset_memory()); 5125 } 5126 5127 // Return the combined state. 5128 set_control( _gvn.transform(result_reg)); 5129 set_i_o( _gvn.transform(result_i_o)); 5130 set_all_memory( _gvn.transform(result_mem)); 5131 } // original reexecute is set back here 5132 5133 set_result(_gvn.transform(result_val)); 5134 return true; 5135 } 5136 5137 // If we have a tightly coupled allocation, the arraycopy may take care 5138 // of the array initialization. If one of the guards we insert between 5139 // the allocation and the arraycopy causes a deoptimization, an 5140 // uninitialized array will escape the compiled method. To prevent that 5141 // we set the JVM state for uncommon traps between the allocation and 5142 // the arraycopy to the state before the allocation so, in case of 5143 // deoptimization, we'll reexecute the allocation and the 5144 // initialization. 5145 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5146 if (alloc != nullptr) { 5147 ciMethod* trap_method = alloc->jvms()->method(); 5148 int trap_bci = alloc->jvms()->bci(); 5149 5150 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5151 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5152 // Make sure there's no store between the allocation and the 5153 // arraycopy otherwise visible side effects could be rexecuted 5154 // in case of deoptimization and cause incorrect execution. 5155 bool no_interfering_store = true; 5156 Node* mem = alloc->in(TypeFunc::Memory); 5157 if (mem->is_MergeMem()) { 5158 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5159 Node* n = mms.memory(); 5160 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5161 assert(n->is_Store(), "what else?"); 5162 no_interfering_store = false; 5163 break; 5164 } 5165 } 5166 } else { 5167 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5168 Node* n = mms.memory(); 5169 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5170 assert(n->is_Store(), "what else?"); 5171 no_interfering_store = false; 5172 break; 5173 } 5174 } 5175 } 5176 5177 if (no_interfering_store) { 5178 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5179 5180 JVMState* saved_jvms = jvms(); 5181 saved_reexecute_sp = _reexecute_sp; 5182 5183 set_jvms(sfpt->jvms()); 5184 _reexecute_sp = jvms()->sp(); 5185 5186 return saved_jvms; 5187 } 5188 } 5189 } 5190 return nullptr; 5191 } 5192 5193 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5194 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5195 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5196 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5197 uint size = alloc->req(); 5198 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5199 old_jvms->set_map(sfpt); 5200 for (uint i = 0; i < size; i++) { 5201 sfpt->init_req(i, alloc->in(i)); 5202 } 5203 // re-push array length for deoptimization 5204 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5205 old_jvms->set_sp(old_jvms->sp()+1); 5206 old_jvms->set_monoff(old_jvms->monoff()+1); 5207 old_jvms->set_scloff(old_jvms->scloff()+1); 5208 old_jvms->set_endoff(old_jvms->endoff()+1); 5209 old_jvms->set_should_reexecute(true); 5210 5211 sfpt->set_i_o(map()->i_o()); 5212 sfpt->set_memory(map()->memory()); 5213 sfpt->set_control(map()->control()); 5214 return sfpt; 5215 } 5216 5217 // In case of a deoptimization, we restart execution at the 5218 // allocation, allocating a new array. We would leave an uninitialized 5219 // array in the heap that GCs wouldn't expect. Move the allocation 5220 // after the traps so we don't allocate the array if we 5221 // deoptimize. This is possible because tightly_coupled_allocation() 5222 // guarantees there's no observer of the allocated array at this point 5223 // and the control flow is simple enough. 5224 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5225 int saved_reexecute_sp, uint new_idx) { 5226 if (saved_jvms_before_guards != nullptr && !stopped()) { 5227 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5228 5229 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5230 // restore JVM state to the state at the arraycopy 5231 saved_jvms_before_guards->map()->set_control(map()->control()); 5232 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5233 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5234 // If we've improved the types of some nodes (null check) while 5235 // emitting the guards, propagate them to the current state 5236 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5237 set_jvms(saved_jvms_before_guards); 5238 _reexecute_sp = saved_reexecute_sp; 5239 5240 // Remove the allocation from above the guards 5241 CallProjections callprojs; 5242 alloc->extract_projections(&callprojs, true); 5243 InitializeNode* init = alloc->initialization(); 5244 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5245 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5246 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5247 5248 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5249 // the allocation (i.e. is only valid if the allocation succeeds): 5250 // 1) replace CastIINode with AllocateArrayNode's length here 5251 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5252 // 5253 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5254 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5255 Node* init_control = init->proj_out(TypeFunc::Control); 5256 Node* alloc_length = alloc->Ideal_length(); 5257 #ifdef ASSERT 5258 Node* prev_cast = nullptr; 5259 #endif 5260 for (uint i = 0; i < init_control->outcnt(); i++) { 5261 Node* init_out = init_control->raw_out(i); 5262 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5263 #ifdef ASSERT 5264 if (prev_cast == nullptr) { 5265 prev_cast = init_out; 5266 } else { 5267 if (prev_cast->cmp(*init_out) == false) { 5268 prev_cast->dump(); 5269 init_out->dump(); 5270 assert(false, "not equal CastIINode"); 5271 } 5272 } 5273 #endif 5274 C->gvn_replace_by(init_out, alloc_length); 5275 } 5276 } 5277 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5278 5279 // move the allocation here (after the guards) 5280 _gvn.hash_delete(alloc); 5281 alloc->set_req(TypeFunc::Control, control()); 5282 alloc->set_req(TypeFunc::I_O, i_o()); 5283 Node *mem = reset_memory(); 5284 set_all_memory(mem); 5285 alloc->set_req(TypeFunc::Memory, mem); 5286 set_control(init->proj_out_or_null(TypeFunc::Control)); 5287 set_i_o(callprojs.fallthrough_ioproj); 5288 5289 // Update memory as done in GraphKit::set_output_for_allocation() 5290 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5291 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5292 if (ary_type->isa_aryptr() && length_type != nullptr) { 5293 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5294 } 5295 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5296 int elemidx = C->get_alias_index(telemref); 5297 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5298 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5299 5300 Node* allocx = _gvn.transform(alloc); 5301 assert(allocx == alloc, "where has the allocation gone?"); 5302 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5303 5304 _gvn.hash_delete(dest); 5305 dest->set_req(0, control()); 5306 Node* destx = _gvn.transform(dest); 5307 assert(destx == dest, "where has the allocation result gone?"); 5308 5309 array_ideal_length(alloc, ary_type, true); 5310 } 5311 } 5312 5313 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5314 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5315 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5316 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5317 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5318 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5319 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5320 JVMState* saved_jvms_before_guards) { 5321 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5322 // There is at least one unrelated uncommon trap which needs to be replaced. 5323 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5324 5325 JVMState* saved_jvms = jvms(); 5326 const int saved_reexecute_sp = _reexecute_sp; 5327 set_jvms(sfpt->jvms()); 5328 _reexecute_sp = jvms()->sp(); 5329 5330 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5331 5332 // Restore state 5333 set_jvms(saved_jvms); 5334 _reexecute_sp = saved_reexecute_sp; 5335 } 5336 } 5337 5338 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5339 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5340 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5341 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5342 while (if_proj->is_IfProj()) { 5343 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5344 if (uncommon_trap != nullptr) { 5345 create_new_uncommon_trap(uncommon_trap); 5346 } 5347 assert(if_proj->in(0)->is_If(), "must be If"); 5348 if_proj = if_proj->in(0)->in(0); 5349 } 5350 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5351 "must have reached control projection of init node"); 5352 } 5353 5354 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5355 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5356 assert(trap_request != 0, "no valid UCT trap request"); 5357 PreserveJVMState pjvms(this); 5358 set_control(uncommon_trap_call->in(0)); 5359 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5360 Deoptimization::trap_request_action(trap_request)); 5361 assert(stopped(), "Should be stopped"); 5362 _gvn.hash_delete(uncommon_trap_call); 5363 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5364 } 5365 5366 //------------------------------inline_arraycopy----------------------- 5367 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5368 // Object dest, int destPos, 5369 // int length); 5370 bool LibraryCallKit::inline_arraycopy() { 5371 // Get the arguments. 5372 Node* src = argument(0); // type: oop 5373 Node* src_offset = argument(1); // type: int 5374 Node* dest = argument(2); // type: oop 5375 Node* dest_offset = argument(3); // type: int 5376 Node* length = argument(4); // type: int 5377 5378 uint new_idx = C->unique(); 5379 5380 // Check for allocation before we add nodes that would confuse 5381 // tightly_coupled_allocation() 5382 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5383 5384 int saved_reexecute_sp = -1; 5385 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5386 // See arraycopy_restore_alloc_state() comment 5387 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5388 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 5389 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 5390 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 5391 5392 // The following tests must be performed 5393 // (1) src and dest are arrays. 5394 // (2) src and dest arrays must have elements of the same BasicType 5395 // (3) src and dest must not be null. 5396 // (4) src_offset must not be negative. 5397 // (5) dest_offset must not be negative. 5398 // (6) length must not be negative. 5399 // (7) src_offset + length must not exceed length of src. 5400 // (8) dest_offset + length must not exceed length of dest. 5401 // (9) each element of an oop array must be assignable 5402 5403 // (3) src and dest must not be null. 5404 // always do this here because we need the JVM state for uncommon traps 5405 Node* null_ctl = top(); 5406 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5407 assert(null_ctl->is_top(), "no null control here"); 5408 dest = null_check(dest, T_ARRAY); 5409 5410 if (!can_emit_guards) { 5411 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 5412 // guards but the arraycopy node could still take advantage of a 5413 // tightly allocated allocation. tightly_coupled_allocation() is 5414 // called again to make sure it takes the null check above into 5415 // account: the null check is mandatory and if it caused an 5416 // uncommon trap to be emitted then the allocation can't be 5417 // considered tightly coupled in this context. 5418 alloc = tightly_coupled_allocation(dest); 5419 } 5420 5421 bool validated = false; 5422 5423 const Type* src_type = _gvn.type(src); 5424 const Type* dest_type = _gvn.type(dest); 5425 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5426 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5427 5428 // Do we have the type of src? 5429 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5430 // Do we have the type of dest? 5431 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5432 // Is the type for src from speculation? 5433 bool src_spec = false; 5434 // Is the type for dest from speculation? 5435 bool dest_spec = false; 5436 5437 if ((!has_src || !has_dest) && can_emit_guards) { 5438 // We don't have sufficient type information, let's see if 5439 // speculative types can help. We need to have types for both src 5440 // and dest so that it pays off. 5441 5442 // Do we already have or could we have type information for src 5443 bool could_have_src = has_src; 5444 // Do we already have or could we have type information for dest 5445 bool could_have_dest = has_dest; 5446 5447 ciKlass* src_k = nullptr; 5448 if (!has_src) { 5449 src_k = src_type->speculative_type_not_null(); 5450 if (src_k != nullptr && src_k->is_array_klass()) { 5451 could_have_src = true; 5452 } 5453 } 5454 5455 ciKlass* dest_k = nullptr; 5456 if (!has_dest) { 5457 dest_k = dest_type->speculative_type_not_null(); 5458 if (dest_k != nullptr && dest_k->is_array_klass()) { 5459 could_have_dest = true; 5460 } 5461 } 5462 5463 if (could_have_src && could_have_dest) { 5464 // This is going to pay off so emit the required guards 5465 if (!has_src) { 5466 src = maybe_cast_profiled_obj(src, src_k, true); 5467 src_type = _gvn.type(src); 5468 top_src = src_type->isa_aryptr(); 5469 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5470 src_spec = true; 5471 } 5472 if (!has_dest) { 5473 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5474 dest_type = _gvn.type(dest); 5475 top_dest = dest_type->isa_aryptr(); 5476 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5477 dest_spec = true; 5478 } 5479 } 5480 } 5481 5482 if (has_src && has_dest && can_emit_guards) { 5483 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5484 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5485 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5486 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5487 5488 if (src_elem == dest_elem && src_elem == T_OBJECT) { 5489 // If both arrays are object arrays then having the exact types 5490 // for both will remove the need for a subtype check at runtime 5491 // before the call and may make it possible to pick a faster copy 5492 // routine (without a subtype check on every element) 5493 // Do we have the exact type of src? 5494 bool could_have_src = src_spec; 5495 // Do we have the exact type of dest? 5496 bool could_have_dest = dest_spec; 5497 ciKlass* src_k = nullptr; 5498 ciKlass* dest_k = nullptr; 5499 if (!src_spec) { 5500 src_k = src_type->speculative_type_not_null(); 5501 if (src_k != nullptr && src_k->is_array_klass()) { 5502 could_have_src = true; 5503 } 5504 } 5505 if (!dest_spec) { 5506 dest_k = dest_type->speculative_type_not_null(); 5507 if (dest_k != nullptr && dest_k->is_array_klass()) { 5508 could_have_dest = true; 5509 } 5510 } 5511 if (could_have_src && could_have_dest) { 5512 // If we can have both exact types, emit the missing guards 5513 if (could_have_src && !src_spec) { 5514 src = maybe_cast_profiled_obj(src, src_k, true); 5515 } 5516 if (could_have_dest && !dest_spec) { 5517 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5518 } 5519 } 5520 } 5521 } 5522 5523 ciMethod* trap_method = method(); 5524 int trap_bci = bci(); 5525 if (saved_jvms_before_guards != nullptr) { 5526 trap_method = alloc->jvms()->method(); 5527 trap_bci = alloc->jvms()->bci(); 5528 } 5529 5530 bool negative_length_guard_generated = false; 5531 5532 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5533 can_emit_guards && 5534 !src->is_top() && !dest->is_top()) { 5535 // validate arguments: enables transformation the ArrayCopyNode 5536 validated = true; 5537 5538 RegionNode* slow_region = new RegionNode(1); 5539 record_for_igvn(slow_region); 5540 5541 // (1) src and dest are arrays. 5542 generate_non_array_guard(load_object_klass(src), slow_region); 5543 generate_non_array_guard(load_object_klass(dest), slow_region); 5544 5545 // (2) src and dest arrays must have elements of the same BasicType 5546 // done at macro expansion or at Ideal transformation time 5547 5548 // (4) src_offset must not be negative. 5549 generate_negative_guard(src_offset, slow_region); 5550 5551 // (5) dest_offset must not be negative. 5552 generate_negative_guard(dest_offset, slow_region); 5553 5554 // (7) src_offset + length must not exceed length of src. 5555 generate_limit_guard(src_offset, length, 5556 load_array_length(src), 5557 slow_region); 5558 5559 // (8) dest_offset + length must not exceed length of dest. 5560 generate_limit_guard(dest_offset, length, 5561 load_array_length(dest), 5562 slow_region); 5563 5564 // (6) length must not be negative. 5565 // This is also checked in generate_arraycopy() during macro expansion, but 5566 // we also have to check it here for the case where the ArrayCopyNode will 5567 // be eliminated by Escape Analysis. 5568 if (EliminateAllocations) { 5569 generate_negative_guard(length, slow_region); 5570 negative_length_guard_generated = true; 5571 } 5572 5573 // (9) each element of an oop array must be assignable 5574 Node* dest_klass = load_object_klass(dest); 5575 if (src != dest) { 5576 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 5577 5578 if (not_subtype_ctrl != top()) { 5579 PreserveJVMState pjvms(this); 5580 set_control(not_subtype_ctrl); 5581 uncommon_trap(Deoptimization::Reason_intrinsic, 5582 Deoptimization::Action_make_not_entrant); 5583 assert(stopped(), "Should be stopped"); 5584 } 5585 } 5586 { 5587 PreserveJVMState pjvms(this); 5588 set_control(_gvn.transform(slow_region)); 5589 uncommon_trap(Deoptimization::Reason_intrinsic, 5590 Deoptimization::Action_make_not_entrant); 5591 assert(stopped(), "Should be stopped"); 5592 } 5593 5594 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 5595 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 5596 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 5597 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 5598 } 5599 5600 if (stopped()) { 5601 return true; 5602 } 5603 5604 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 5605 // Create LoadRange and LoadKlass nodes for use during macro expansion here 5606 // so the compiler has a chance to eliminate them: during macro expansion, 5607 // we have to set their control (CastPP nodes are eliminated). 5608 load_object_klass(src), load_object_klass(dest), 5609 load_array_length(src), load_array_length(dest)); 5610 5611 ac->set_arraycopy(validated); 5612 5613 Node* n = _gvn.transform(ac); 5614 if (n == ac) { 5615 ac->connect_outputs(this); 5616 } else { 5617 assert(validated, "shouldn't transform if all arguments not validated"); 5618 set_all_memory(n); 5619 } 5620 clear_upper_avx(); 5621 5622 5623 return true; 5624 } 5625 5626 5627 // Helper function which determines if an arraycopy immediately follows 5628 // an allocation, with no intervening tests or other escapes for the object. 5629 AllocateArrayNode* 5630 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 5631 if (stopped()) return nullptr; // no fast path 5632 if (!C->do_aliasing()) return nullptr; // no MergeMems around 5633 5634 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 5635 if (alloc == nullptr) return nullptr; 5636 5637 Node* rawmem = memory(Compile::AliasIdxRaw); 5638 // Is the allocation's memory state untouched? 5639 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 5640 // Bail out if there have been raw-memory effects since the allocation. 5641 // (Example: There might have been a call or safepoint.) 5642 return nullptr; 5643 } 5644 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 5645 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 5646 return nullptr; 5647 } 5648 5649 // There must be no unexpected observers of this allocation. 5650 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 5651 Node* obs = ptr->fast_out(i); 5652 if (obs != this->map()) { 5653 return nullptr; 5654 } 5655 } 5656 5657 // This arraycopy must unconditionally follow the allocation of the ptr. 5658 Node* alloc_ctl = ptr->in(0); 5659 Node* ctl = control(); 5660 while (ctl != alloc_ctl) { 5661 // There may be guards which feed into the slow_region. 5662 // Any other control flow means that we might not get a chance 5663 // to finish initializing the allocated object. 5664 // Various low-level checks bottom out in uncommon traps. These 5665 // are considered safe since we've already checked above that 5666 // there is no unexpected observer of this allocation. 5667 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 5668 assert(ctl->in(0)->is_If(), "must be If"); 5669 ctl = ctl->in(0)->in(0); 5670 } else { 5671 return nullptr; 5672 } 5673 } 5674 5675 // If we get this far, we have an allocation which immediately 5676 // precedes the arraycopy, and we can take over zeroing the new object. 5677 // The arraycopy will finish the initialization, and provide 5678 // a new control state to which we will anchor the destination pointer. 5679 5680 return alloc; 5681 } 5682 5683 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 5684 if (node->is_IfProj()) { 5685 Node* other_proj = node->as_IfProj()->other_if_proj(); 5686 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 5687 Node* obs = other_proj->fast_out(j); 5688 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 5689 (obs->as_CallStaticJava()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) { 5690 return obs->as_CallStaticJava(); 5691 } 5692 } 5693 } 5694 return nullptr; 5695 } 5696 5697 //-------------inline_encodeISOArray----------------------------------- 5698 // encode char[] to byte[] in ISO_8859_1 or ASCII 5699 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 5700 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 5701 // no receiver since it is static method 5702 Node *src = argument(0); 5703 Node *src_offset = argument(1); 5704 Node *dst = argument(2); 5705 Node *dst_offset = argument(3); 5706 Node *length = argument(4); 5707 5708 src = must_be_not_null(src, true); 5709 dst = must_be_not_null(dst, true); 5710 5711 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 5712 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 5713 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 5714 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 5715 // failed array check 5716 return false; 5717 } 5718 5719 // Figure out the size and type of the elements we will be copying. 5720 BasicType src_elem = src_type->elem()->array_element_basic_type(); 5721 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 5722 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 5723 return false; 5724 } 5725 5726 Node* src_start = array_element_address(src, src_offset, T_CHAR); 5727 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 5728 // 'src_start' points to src array + scaled offset 5729 // 'dst_start' points to dst array + scaled offset 5730 5731 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 5732 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 5733 enc = _gvn.transform(enc); 5734 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 5735 set_memory(res_mem, mtype); 5736 set_result(enc); 5737 clear_upper_avx(); 5738 5739 return true; 5740 } 5741 5742 //-------------inline_multiplyToLen----------------------------------- 5743 bool LibraryCallKit::inline_multiplyToLen() { 5744 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 5745 5746 address stubAddr = StubRoutines::multiplyToLen(); 5747 if (stubAddr == nullptr) { 5748 return false; // Intrinsic's stub is not implemented on this platform 5749 } 5750 const char* stubName = "multiplyToLen"; 5751 5752 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 5753 5754 // no receiver because it is a static method 5755 Node* x = argument(0); 5756 Node* xlen = argument(1); 5757 Node* y = argument(2); 5758 Node* ylen = argument(3); 5759 Node* z = argument(4); 5760 5761 x = must_be_not_null(x, true); 5762 y = must_be_not_null(y, true); 5763 5764 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 5765 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 5766 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 5767 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 5768 // failed array check 5769 return false; 5770 } 5771 5772 BasicType x_elem = x_type->elem()->array_element_basic_type(); 5773 BasicType y_elem = y_type->elem()->array_element_basic_type(); 5774 if (x_elem != T_INT || y_elem != T_INT) { 5775 return false; 5776 } 5777 5778 // Set the original stack and the reexecute bit for the interpreter to reexecute 5779 // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens 5780 // on the return from z array allocation in runtime. 5781 { PreserveReexecuteState preexecs(this); 5782 jvms()->set_should_reexecute(true); 5783 5784 Node* x_start = array_element_address(x, intcon(0), x_elem); 5785 Node* y_start = array_element_address(y, intcon(0), y_elem); 5786 // 'x_start' points to x array + scaled xlen 5787 // 'y_start' points to y array + scaled ylen 5788 5789 // Allocate the result array 5790 Node* zlen = _gvn.transform(new AddINode(xlen, ylen)); 5791 ciKlass* klass = ciTypeArrayKlass::make(T_INT); 5792 Node* klass_node = makecon(TypeKlassPtr::make(klass)); 5793 5794 IdealKit ideal(this); 5795 5796 #define __ ideal. 5797 Node* one = __ ConI(1); 5798 Node* zero = __ ConI(0); 5799 IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done(); 5800 __ set(need_alloc, zero); 5801 __ set(z_alloc, z); 5802 __ if_then(z, BoolTest::eq, null()); { 5803 __ increment (need_alloc, one); 5804 } __ else_(); { 5805 // Update graphKit memory and control from IdealKit. 5806 sync_kit(ideal); 5807 Node *cast = new CastPPNode(z, TypePtr::NOTNULL); 5808 cast->init_req(0, control()); 5809 _gvn.set_type(cast, cast->bottom_type()); 5810 C->record_for_igvn(cast); 5811 5812 Node* zlen_arg = load_array_length(cast); 5813 // Update IdealKit memory and control from graphKit. 5814 __ sync_kit(this); 5815 __ if_then(zlen_arg, BoolTest::lt, zlen); { 5816 __ increment (need_alloc, one); 5817 } __ end_if(); 5818 } __ end_if(); 5819 5820 __ if_then(__ value(need_alloc), BoolTest::ne, zero); { 5821 // Update graphKit memory and control from IdealKit. 5822 sync_kit(ideal); 5823 Node * narr = new_array(klass_node, zlen, 1); 5824 // Update IdealKit memory and control from graphKit. 5825 __ sync_kit(this); 5826 __ set(z_alloc, narr); 5827 } __ end_if(); 5828 5829 sync_kit(ideal); 5830 z = __ value(z_alloc); 5831 // Can't use TypeAryPtr::INTS which uses Bottom offset. 5832 _gvn.set_type(z, TypeOopPtr::make_from_klass(klass)); 5833 // Final sync IdealKit and GraphKit. 5834 final_sync(ideal); 5835 #undef __ 5836 5837 Node* z_start = array_element_address(z, intcon(0), T_INT); 5838 5839 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5840 OptoRuntime::multiplyToLen_Type(), 5841 stubAddr, stubName, TypePtr::BOTTOM, 5842 x_start, xlen, y_start, ylen, z_start, zlen); 5843 } // original reexecute is set back here 5844 5845 C->set_has_split_ifs(true); // Has chance for split-if optimization 5846 set_result(z); 5847 return true; 5848 } 5849 5850 //-------------inline_squareToLen------------------------------------ 5851 bool LibraryCallKit::inline_squareToLen() { 5852 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 5853 5854 address stubAddr = StubRoutines::squareToLen(); 5855 if (stubAddr == nullptr) { 5856 return false; // Intrinsic's stub is not implemented on this platform 5857 } 5858 const char* stubName = "squareToLen"; 5859 5860 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 5861 5862 Node* x = argument(0); 5863 Node* len = argument(1); 5864 Node* z = argument(2); 5865 Node* zlen = argument(3); 5866 5867 x = must_be_not_null(x, true); 5868 z = must_be_not_null(z, true); 5869 5870 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 5871 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 5872 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 5873 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 5874 // failed array check 5875 return false; 5876 } 5877 5878 BasicType x_elem = x_type->elem()->array_element_basic_type(); 5879 BasicType z_elem = z_type->elem()->array_element_basic_type(); 5880 if (x_elem != T_INT || z_elem != T_INT) { 5881 return false; 5882 } 5883 5884 5885 Node* x_start = array_element_address(x, intcon(0), x_elem); 5886 Node* z_start = array_element_address(z, intcon(0), z_elem); 5887 5888 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5889 OptoRuntime::squareToLen_Type(), 5890 stubAddr, stubName, TypePtr::BOTTOM, 5891 x_start, len, z_start, zlen); 5892 5893 set_result(z); 5894 return true; 5895 } 5896 5897 //-------------inline_mulAdd------------------------------------------ 5898 bool LibraryCallKit::inline_mulAdd() { 5899 assert(UseMulAddIntrinsic, "not implemented on this platform"); 5900 5901 address stubAddr = StubRoutines::mulAdd(); 5902 if (stubAddr == nullptr) { 5903 return false; // Intrinsic's stub is not implemented on this platform 5904 } 5905 const char* stubName = "mulAdd"; 5906 5907 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 5908 5909 Node* out = argument(0); 5910 Node* in = argument(1); 5911 Node* offset = argument(2); 5912 Node* len = argument(3); 5913 Node* k = argument(4); 5914 5915 in = must_be_not_null(in, true); 5916 out = must_be_not_null(out, true); 5917 5918 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 5919 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 5920 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 5921 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 5922 // failed array check 5923 return false; 5924 } 5925 5926 BasicType out_elem = out_type->elem()->array_element_basic_type(); 5927 BasicType in_elem = in_type->elem()->array_element_basic_type(); 5928 if (out_elem != T_INT || in_elem != T_INT) { 5929 return false; 5930 } 5931 5932 Node* outlen = load_array_length(out); 5933 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 5934 Node* out_start = array_element_address(out, intcon(0), out_elem); 5935 Node* in_start = array_element_address(in, intcon(0), in_elem); 5936 5937 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5938 OptoRuntime::mulAdd_Type(), 5939 stubAddr, stubName, TypePtr::BOTTOM, 5940 out_start,in_start, new_offset, len, k); 5941 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5942 set_result(result); 5943 return true; 5944 } 5945 5946 //-------------inline_montgomeryMultiply----------------------------------- 5947 bool LibraryCallKit::inline_montgomeryMultiply() { 5948 address stubAddr = StubRoutines::montgomeryMultiply(); 5949 if (stubAddr == nullptr) { 5950 return false; // Intrinsic's stub is not implemented on this platform 5951 } 5952 5953 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 5954 const char* stubName = "montgomery_multiply"; 5955 5956 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 5957 5958 Node* a = argument(0); 5959 Node* b = argument(1); 5960 Node* n = argument(2); 5961 Node* len = argument(3); 5962 Node* inv = argument(4); 5963 Node* m = argument(6); 5964 5965 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 5966 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 5967 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 5968 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 5969 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 5970 b_type == nullptr || b_type->elem() == Type::BOTTOM || 5971 n_type == nullptr || n_type->elem() == Type::BOTTOM || 5972 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 5973 // failed array check 5974 return false; 5975 } 5976 5977 BasicType a_elem = a_type->elem()->array_element_basic_type(); 5978 BasicType b_elem = b_type->elem()->array_element_basic_type(); 5979 BasicType n_elem = n_type->elem()->array_element_basic_type(); 5980 BasicType m_elem = m_type->elem()->array_element_basic_type(); 5981 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5982 return false; 5983 } 5984 5985 // Make the call 5986 { 5987 Node* a_start = array_element_address(a, intcon(0), a_elem); 5988 Node* b_start = array_element_address(b, intcon(0), b_elem); 5989 Node* n_start = array_element_address(n, intcon(0), n_elem); 5990 Node* m_start = array_element_address(m, intcon(0), m_elem); 5991 5992 Node* call = make_runtime_call(RC_LEAF, 5993 OptoRuntime::montgomeryMultiply_Type(), 5994 stubAddr, stubName, TypePtr::BOTTOM, 5995 a_start, b_start, n_start, len, inv, top(), 5996 m_start); 5997 set_result(m); 5998 } 5999 6000 return true; 6001 } 6002 6003 bool LibraryCallKit::inline_montgomerySquare() { 6004 address stubAddr = StubRoutines::montgomerySquare(); 6005 if (stubAddr == nullptr) { 6006 return false; // Intrinsic's stub is not implemented on this platform 6007 } 6008 6009 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6010 const char* stubName = "montgomery_square"; 6011 6012 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6013 6014 Node* a = argument(0); 6015 Node* n = argument(1); 6016 Node* len = argument(2); 6017 Node* inv = argument(3); 6018 Node* m = argument(5); 6019 6020 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6021 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6022 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6023 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6024 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6025 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6026 // failed array check 6027 return false; 6028 } 6029 6030 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6031 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6032 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6033 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6034 return false; 6035 } 6036 6037 // Make the call 6038 { 6039 Node* a_start = array_element_address(a, intcon(0), a_elem); 6040 Node* n_start = array_element_address(n, intcon(0), n_elem); 6041 Node* m_start = array_element_address(m, intcon(0), m_elem); 6042 6043 Node* call = make_runtime_call(RC_LEAF, 6044 OptoRuntime::montgomerySquare_Type(), 6045 stubAddr, stubName, TypePtr::BOTTOM, 6046 a_start, n_start, len, inv, top(), 6047 m_start); 6048 set_result(m); 6049 } 6050 6051 return true; 6052 } 6053 6054 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6055 address stubAddr = nullptr; 6056 const char* stubName = nullptr; 6057 6058 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6059 if (stubAddr == nullptr) { 6060 return false; // Intrinsic's stub is not implemented on this platform 6061 } 6062 6063 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6064 6065 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6066 6067 Node* newArr = argument(0); 6068 Node* oldArr = argument(1); 6069 Node* newIdx = argument(2); 6070 Node* shiftCount = argument(3); 6071 Node* numIter = argument(4); 6072 6073 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6074 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6075 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6076 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6077 return false; 6078 } 6079 6080 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6081 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6082 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6083 return false; 6084 } 6085 6086 // Make the call 6087 { 6088 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6089 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6090 6091 Node* call = make_runtime_call(RC_LEAF, 6092 OptoRuntime::bigIntegerShift_Type(), 6093 stubAddr, 6094 stubName, 6095 TypePtr::BOTTOM, 6096 newArr_start, 6097 oldArr_start, 6098 newIdx, 6099 shiftCount, 6100 numIter); 6101 } 6102 6103 return true; 6104 } 6105 6106 //-------------inline_vectorizedMismatch------------------------------ 6107 bool LibraryCallKit::inline_vectorizedMismatch() { 6108 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6109 6110 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6111 Node* obja = argument(0); // Object 6112 Node* aoffset = argument(1); // long 6113 Node* objb = argument(3); // Object 6114 Node* boffset = argument(4); // long 6115 Node* length = argument(6); // int 6116 Node* scale = argument(7); // int 6117 6118 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6119 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6120 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6121 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6122 scale == top()) { 6123 return false; // failed input validation 6124 } 6125 6126 Node* obja_adr = make_unsafe_address(obja, aoffset); 6127 Node* objb_adr = make_unsafe_address(objb, boffset); 6128 6129 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6130 // 6131 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6132 // if (length <= inline_limit) { 6133 // inline_path: 6134 // vmask = VectorMaskGen length 6135 // vload1 = LoadVectorMasked obja, vmask 6136 // vload2 = LoadVectorMasked objb, vmask 6137 // result1 = VectorCmpMasked vload1, vload2, vmask 6138 // } else { 6139 // call_stub_path: 6140 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6141 // } 6142 // exit_block: 6143 // return Phi(result1, result2); 6144 // 6145 enum { inline_path = 1, // input is small enough to process it all at once 6146 stub_path = 2, // input is too large; call into the VM 6147 PATH_LIMIT = 3 6148 }; 6149 6150 Node* exit_block = new RegionNode(PATH_LIMIT); 6151 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6152 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6153 6154 Node* call_stub_path = control(); 6155 6156 BasicType elem_bt = T_ILLEGAL; 6157 6158 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6159 if (scale_t->is_con()) { 6160 switch (scale_t->get_con()) { 6161 case 0: elem_bt = T_BYTE; break; 6162 case 1: elem_bt = T_SHORT; break; 6163 case 2: elem_bt = T_INT; break; 6164 case 3: elem_bt = T_LONG; break; 6165 6166 default: elem_bt = T_ILLEGAL; break; // not supported 6167 } 6168 } 6169 6170 int inline_limit = 0; 6171 bool do_partial_inline = false; 6172 6173 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6174 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6175 do_partial_inline = inline_limit >= 16; 6176 } 6177 6178 if (do_partial_inline) { 6179 assert(elem_bt != T_ILLEGAL, "sanity"); 6180 6181 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6182 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6183 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6184 6185 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6186 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6187 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6188 6189 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6190 6191 if (!stopped()) { 6192 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6193 6194 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6195 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6196 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6197 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6198 6199 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6200 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6201 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6202 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6203 6204 exit_block->init_req(inline_path, control()); 6205 memory_phi->init_req(inline_path, map()->memory()); 6206 result_phi->init_req(inline_path, result); 6207 6208 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6209 clear_upper_avx(); 6210 } 6211 } 6212 } 6213 6214 if (call_stub_path != nullptr) { 6215 set_control(call_stub_path); 6216 6217 Node* call = make_runtime_call(RC_LEAF, 6218 OptoRuntime::vectorizedMismatch_Type(), 6219 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6220 obja_adr, objb_adr, length, scale); 6221 6222 exit_block->init_req(stub_path, control()); 6223 memory_phi->init_req(stub_path, map()->memory()); 6224 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6225 } 6226 6227 exit_block = _gvn.transform(exit_block); 6228 memory_phi = _gvn.transform(memory_phi); 6229 result_phi = _gvn.transform(result_phi); 6230 6231 set_control(exit_block); 6232 set_all_memory(memory_phi); 6233 set_result(result_phi); 6234 6235 return true; 6236 } 6237 6238 //------------------------------inline_vectorizedHashcode---------------------------- 6239 bool LibraryCallKit::inline_vectorizedHashCode() { 6240 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6241 6242 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6243 Node* array = argument(0); 6244 Node* offset = argument(1); 6245 Node* length = argument(2); 6246 Node* initialValue = argument(3); 6247 Node* basic_type = argument(4); 6248 6249 if (basic_type == top()) { 6250 return false; // failed input validation 6251 } 6252 6253 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6254 if (!basic_type_t->is_con()) { 6255 return false; // Only intrinsify if mode argument is constant 6256 } 6257 6258 array = must_be_not_null(array, true); 6259 6260 BasicType bt = (BasicType)basic_type_t->get_con(); 6261 6262 // Resolve address of first element 6263 Node* array_start = array_element_address(array, offset, bt); 6264 6265 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6266 array_start, length, initialValue, basic_type))); 6267 clear_upper_avx(); 6268 6269 return true; 6270 } 6271 6272 /** 6273 * Calculate CRC32 for byte. 6274 * int java.util.zip.CRC32.update(int crc, int b) 6275 */ 6276 bool LibraryCallKit::inline_updateCRC32() { 6277 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6278 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6279 // no receiver since it is static method 6280 Node* crc = argument(0); // type: int 6281 Node* b = argument(1); // type: int 6282 6283 /* 6284 * int c = ~ crc; 6285 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6286 * b = b ^ (c >>> 8); 6287 * crc = ~b; 6288 */ 6289 6290 Node* M1 = intcon(-1); 6291 crc = _gvn.transform(new XorINode(crc, M1)); 6292 Node* result = _gvn.transform(new XorINode(crc, b)); 6293 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6294 6295 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6296 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6297 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6298 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6299 6300 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6301 result = _gvn.transform(new XorINode(crc, result)); 6302 result = _gvn.transform(new XorINode(result, M1)); 6303 set_result(result); 6304 return true; 6305 } 6306 6307 /** 6308 * Calculate CRC32 for byte[] array. 6309 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6310 */ 6311 bool LibraryCallKit::inline_updateBytesCRC32() { 6312 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6313 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6314 // no receiver since it is static method 6315 Node* crc = argument(0); // type: int 6316 Node* src = argument(1); // type: oop 6317 Node* offset = argument(2); // type: int 6318 Node* length = argument(3); // type: int 6319 6320 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6321 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6322 // failed array check 6323 return false; 6324 } 6325 6326 // Figure out the size and type of the elements we will be copying. 6327 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6328 if (src_elem != T_BYTE) { 6329 return false; 6330 } 6331 6332 // 'src_start' points to src array + scaled offset 6333 src = must_be_not_null(src, true); 6334 Node* src_start = array_element_address(src, offset, src_elem); 6335 6336 // We assume that range check is done by caller. 6337 // TODO: generate range check (offset+length < src.length) in debug VM. 6338 6339 // Call the stub. 6340 address stubAddr = StubRoutines::updateBytesCRC32(); 6341 const char *stubName = "updateBytesCRC32"; 6342 6343 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6344 stubAddr, stubName, TypePtr::BOTTOM, 6345 crc, src_start, length); 6346 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6347 set_result(result); 6348 return true; 6349 } 6350 6351 /** 6352 * Calculate CRC32 for ByteBuffer. 6353 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6354 */ 6355 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6356 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6357 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6358 // no receiver since it is static method 6359 Node* crc = argument(0); // type: int 6360 Node* src = argument(1); // type: long 6361 Node* offset = argument(3); // type: int 6362 Node* length = argument(4); // type: int 6363 6364 src = ConvL2X(src); // adjust Java long to machine word 6365 Node* base = _gvn.transform(new CastX2PNode(src)); 6366 offset = ConvI2X(offset); 6367 6368 // 'src_start' points to src array + scaled offset 6369 Node* src_start = basic_plus_adr(top(), base, offset); 6370 6371 // Call the stub. 6372 address stubAddr = StubRoutines::updateBytesCRC32(); 6373 const char *stubName = "updateBytesCRC32"; 6374 6375 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6376 stubAddr, stubName, TypePtr::BOTTOM, 6377 crc, src_start, length); 6378 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6379 set_result(result); 6380 return true; 6381 } 6382 6383 //------------------------------get_table_from_crc32c_class----------------------- 6384 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6385 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6386 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 6387 6388 return table; 6389 } 6390 6391 //------------------------------inline_updateBytesCRC32C----------------------- 6392 // 6393 // Calculate CRC32C for byte[] array. 6394 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6395 // 6396 bool LibraryCallKit::inline_updateBytesCRC32C() { 6397 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6398 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6399 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6400 // no receiver since it is a static method 6401 Node* crc = argument(0); // type: int 6402 Node* src = argument(1); // type: oop 6403 Node* offset = argument(2); // type: int 6404 Node* end = argument(3); // type: int 6405 6406 Node* length = _gvn.transform(new SubINode(end, offset)); 6407 6408 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6409 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6410 // failed array check 6411 return false; 6412 } 6413 6414 // Figure out the size and type of the elements we will be copying. 6415 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6416 if (src_elem != T_BYTE) { 6417 return false; 6418 } 6419 6420 // 'src_start' points to src array + scaled offset 6421 src = must_be_not_null(src, true); 6422 Node* src_start = array_element_address(src, offset, src_elem); 6423 6424 // static final int[] byteTable in class CRC32C 6425 Node* table = get_table_from_crc32c_class(callee()->holder()); 6426 table = must_be_not_null(table, true); 6427 Node* table_start = array_element_address(table, intcon(0), T_INT); 6428 6429 // We assume that range check is done by caller. 6430 // TODO: generate range check (offset+length < src.length) in debug VM. 6431 6432 // Call the stub. 6433 address stubAddr = StubRoutines::updateBytesCRC32C(); 6434 const char *stubName = "updateBytesCRC32C"; 6435 6436 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6437 stubAddr, stubName, TypePtr::BOTTOM, 6438 crc, src_start, length, table_start); 6439 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6440 set_result(result); 6441 return true; 6442 } 6443 6444 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6445 // 6446 // Calculate CRC32C for DirectByteBuffer. 6447 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6448 // 6449 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6450 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6451 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6452 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6453 // no receiver since it is a static method 6454 Node* crc = argument(0); // type: int 6455 Node* src = argument(1); // type: long 6456 Node* offset = argument(3); // type: int 6457 Node* end = argument(4); // type: int 6458 6459 Node* length = _gvn.transform(new SubINode(end, offset)); 6460 6461 src = ConvL2X(src); // adjust Java long to machine word 6462 Node* base = _gvn.transform(new CastX2PNode(src)); 6463 offset = ConvI2X(offset); 6464 6465 // 'src_start' points to src array + scaled offset 6466 Node* src_start = basic_plus_adr(top(), base, offset); 6467 6468 // static final int[] byteTable in class CRC32C 6469 Node* table = get_table_from_crc32c_class(callee()->holder()); 6470 table = must_be_not_null(table, true); 6471 Node* table_start = array_element_address(table, intcon(0), T_INT); 6472 6473 // Call the stub. 6474 address stubAddr = StubRoutines::updateBytesCRC32C(); 6475 const char *stubName = "updateBytesCRC32C"; 6476 6477 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6478 stubAddr, stubName, TypePtr::BOTTOM, 6479 crc, src_start, length, table_start); 6480 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6481 set_result(result); 6482 return true; 6483 } 6484 6485 //------------------------------inline_updateBytesAdler32---------------------- 6486 // 6487 // Calculate Adler32 checksum for byte[] array. 6488 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6489 // 6490 bool LibraryCallKit::inline_updateBytesAdler32() { 6491 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6492 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6493 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6494 // no receiver since it is static method 6495 Node* crc = argument(0); // type: int 6496 Node* src = argument(1); // type: oop 6497 Node* offset = argument(2); // type: int 6498 Node* length = argument(3); // type: int 6499 6500 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6501 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6502 // failed array check 6503 return false; 6504 } 6505 6506 // Figure out the size and type of the elements we will be copying. 6507 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6508 if (src_elem != T_BYTE) { 6509 return false; 6510 } 6511 6512 // 'src_start' points to src array + scaled offset 6513 Node* src_start = array_element_address(src, offset, src_elem); 6514 6515 // We assume that range check is done by caller. 6516 // TODO: generate range check (offset+length < src.length) in debug VM. 6517 6518 // Call the stub. 6519 address stubAddr = StubRoutines::updateBytesAdler32(); 6520 const char *stubName = "updateBytesAdler32"; 6521 6522 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6523 stubAddr, stubName, TypePtr::BOTTOM, 6524 crc, src_start, length); 6525 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6526 set_result(result); 6527 return true; 6528 } 6529 6530 //------------------------------inline_updateByteBufferAdler32--------------- 6531 // 6532 // Calculate Adler32 checksum for DirectByteBuffer. 6533 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6534 // 6535 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6536 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6537 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6538 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6539 // no receiver since it is static method 6540 Node* crc = argument(0); // type: int 6541 Node* src = argument(1); // type: long 6542 Node* offset = argument(3); // type: int 6543 Node* length = argument(4); // type: int 6544 6545 src = ConvL2X(src); // adjust Java long to machine word 6546 Node* base = _gvn.transform(new CastX2PNode(src)); 6547 offset = ConvI2X(offset); 6548 6549 // 'src_start' points to src array + scaled offset 6550 Node* src_start = basic_plus_adr(top(), base, offset); 6551 6552 // Call the stub. 6553 address stubAddr = StubRoutines::updateBytesAdler32(); 6554 const char *stubName = "updateBytesAdler32"; 6555 6556 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6557 stubAddr, stubName, TypePtr::BOTTOM, 6558 crc, src_start, length); 6559 6560 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6561 set_result(result); 6562 return true; 6563 } 6564 6565 //----------------------------inline_reference_get---------------------------- 6566 // public T java.lang.ref.Reference.get(); 6567 bool LibraryCallKit::inline_reference_get() { 6568 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6569 6570 // Get the argument: 6571 Node* reference_obj = null_check_receiver(); 6572 if (stopped()) return true; 6573 6574 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6575 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6576 decorators, /*is_static*/ false, nullptr); 6577 if (result == nullptr) return false; 6578 6579 // Add memory barrier to prevent commoning reads from this field 6580 // across safepoint since GC can change its value. 6581 insert_mem_bar(Op_MemBarCPUOrder); 6582 6583 set_result(result); 6584 return true; 6585 } 6586 6587 //----------------------------inline_reference_refersTo0---------------------------- 6588 // bool java.lang.ref.Reference.refersTo0(); 6589 // bool java.lang.ref.PhantomReference.refersTo0(); 6590 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 6591 // Get arguments: 6592 Node* reference_obj = null_check_receiver(); 6593 Node* other_obj = argument(1); 6594 if (stopped()) return true; 6595 6596 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6597 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6598 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6599 decorators, /*is_static*/ false, nullptr); 6600 if (referent == nullptr) return false; 6601 6602 // Add memory barrier to prevent commoning reads from this field 6603 // across safepoint since GC can change its value. 6604 insert_mem_bar(Op_MemBarCPUOrder); 6605 6606 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 6607 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6608 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 6609 6610 RegionNode* region = new RegionNode(3); 6611 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 6612 6613 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 6614 region->init_req(1, if_true); 6615 phi->init_req(1, intcon(1)); 6616 6617 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 6618 region->init_req(2, if_false); 6619 phi->init_req(2, intcon(0)); 6620 6621 set_control(_gvn.transform(region)); 6622 record_for_igvn(region); 6623 set_result(_gvn.transform(phi)); 6624 return true; 6625 } 6626 6627 6628 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 6629 DecoratorSet decorators, bool is_static, 6630 ciInstanceKlass* fromKls) { 6631 if (fromKls == nullptr) { 6632 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 6633 assert(tinst != nullptr, "obj is null"); 6634 assert(tinst->is_loaded(), "obj is not loaded"); 6635 fromKls = tinst->instance_klass(); 6636 } else { 6637 assert(is_static, "only for static field access"); 6638 } 6639 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 6640 ciSymbol::make(fieldTypeString), 6641 is_static); 6642 6643 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 6644 if (field == nullptr) return (Node *) nullptr; 6645 6646 if (is_static) { 6647 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 6648 fromObj = makecon(tip); 6649 } 6650 6651 // Next code copied from Parse::do_get_xxx(): 6652 6653 // Compute address and memory type. 6654 int offset = field->offset_in_bytes(); 6655 bool is_vol = field->is_volatile(); 6656 ciType* field_klass = field->type(); 6657 assert(field_klass->is_loaded(), "should be loaded"); 6658 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 6659 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 6660 BasicType bt = field->layout_type(); 6661 6662 // Build the resultant type of the load 6663 const Type *type; 6664 if (bt == T_OBJECT) { 6665 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 6666 } else { 6667 type = Type::get_const_basic_type(bt); 6668 } 6669 6670 if (is_vol) { 6671 decorators |= MO_SEQ_CST; 6672 } 6673 6674 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 6675 } 6676 6677 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 6678 bool is_exact /* true */, bool is_static /* false */, 6679 ciInstanceKlass * fromKls /* nullptr */) { 6680 if (fromKls == nullptr) { 6681 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 6682 assert(tinst != nullptr, "obj is null"); 6683 assert(tinst->is_loaded(), "obj is not loaded"); 6684 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 6685 fromKls = tinst->instance_klass(); 6686 } 6687 else { 6688 assert(is_static, "only for static field access"); 6689 } 6690 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 6691 ciSymbol::make(fieldTypeString), 6692 is_static); 6693 6694 assert(field != nullptr, "undefined field"); 6695 assert(!field->is_volatile(), "not defined for volatile fields"); 6696 6697 if (is_static) { 6698 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 6699 fromObj = makecon(tip); 6700 } 6701 6702 // Next code copied from Parse::do_get_xxx(): 6703 6704 // Compute address and memory type. 6705 int offset = field->offset_in_bytes(); 6706 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 6707 6708 return adr; 6709 } 6710 6711 //------------------------------inline_aescrypt_Block----------------------- 6712 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 6713 address stubAddr = nullptr; 6714 const char *stubName; 6715 assert(UseAES, "need AES instruction support"); 6716 6717 switch(id) { 6718 case vmIntrinsics::_aescrypt_encryptBlock: 6719 stubAddr = StubRoutines::aescrypt_encryptBlock(); 6720 stubName = "aescrypt_encryptBlock"; 6721 break; 6722 case vmIntrinsics::_aescrypt_decryptBlock: 6723 stubAddr = StubRoutines::aescrypt_decryptBlock(); 6724 stubName = "aescrypt_decryptBlock"; 6725 break; 6726 default: 6727 break; 6728 } 6729 if (stubAddr == nullptr) return false; 6730 6731 Node* aescrypt_object = argument(0); 6732 Node* src = argument(1); 6733 Node* src_offset = argument(2); 6734 Node* dest = argument(3); 6735 Node* dest_offset = argument(4); 6736 6737 src = must_be_not_null(src, true); 6738 dest = must_be_not_null(dest, true); 6739 6740 // (1) src and dest are arrays. 6741 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6742 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6743 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6744 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6745 6746 // for the quick and dirty code we will skip all the checks. 6747 // we are just trying to get the call to be generated. 6748 Node* src_start = src; 6749 Node* dest_start = dest; 6750 if (src_offset != nullptr || dest_offset != nullptr) { 6751 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6752 src_start = array_element_address(src, src_offset, T_BYTE); 6753 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6754 } 6755 6756 // now need to get the start of its expanded key array 6757 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6758 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6759 if (k_start == nullptr) return false; 6760 6761 // Call the stub. 6762 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 6763 stubAddr, stubName, TypePtr::BOTTOM, 6764 src_start, dest_start, k_start); 6765 6766 return true; 6767 } 6768 6769 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 6770 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 6771 address stubAddr = nullptr; 6772 const char *stubName = nullptr; 6773 6774 assert(UseAES, "need AES instruction support"); 6775 6776 switch(id) { 6777 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 6778 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 6779 stubName = "cipherBlockChaining_encryptAESCrypt"; 6780 break; 6781 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 6782 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 6783 stubName = "cipherBlockChaining_decryptAESCrypt"; 6784 break; 6785 default: 6786 break; 6787 } 6788 if (stubAddr == nullptr) return false; 6789 6790 Node* cipherBlockChaining_object = argument(0); 6791 Node* src = argument(1); 6792 Node* src_offset = argument(2); 6793 Node* len = argument(3); 6794 Node* dest = argument(4); 6795 Node* dest_offset = argument(5); 6796 6797 src = must_be_not_null(src, false); 6798 dest = must_be_not_null(dest, false); 6799 6800 // (1) src and dest are arrays. 6801 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6802 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6803 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6804 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6805 6806 // checks are the responsibility of the caller 6807 Node* src_start = src; 6808 Node* dest_start = dest; 6809 if (src_offset != nullptr || dest_offset != nullptr) { 6810 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6811 src_start = array_element_address(src, src_offset, T_BYTE); 6812 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6813 } 6814 6815 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6816 // (because of the predicated logic executed earlier). 6817 // so we cast it here safely. 6818 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6819 6820 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6821 if (embeddedCipherObj == nullptr) return false; 6822 6823 // cast it to what we know it will be at runtime 6824 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 6825 assert(tinst != nullptr, "CBC obj is null"); 6826 assert(tinst->is_loaded(), "CBC obj is not loaded"); 6827 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6828 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6829 6830 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6831 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6832 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6833 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6834 aescrypt_object = _gvn.transform(aescrypt_object); 6835 6836 // we need to get the start of the aescrypt_object's expanded key array 6837 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6838 if (k_start == nullptr) return false; 6839 6840 // similarly, get the start address of the r vector 6841 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 6842 if (objRvec == nullptr) return false; 6843 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 6844 6845 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6846 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6847 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 6848 stubAddr, stubName, TypePtr::BOTTOM, 6849 src_start, dest_start, k_start, r_start, len); 6850 6851 // return cipher length (int) 6852 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 6853 set_result(retvalue); 6854 return true; 6855 } 6856 6857 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 6858 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 6859 address stubAddr = nullptr; 6860 const char *stubName = nullptr; 6861 6862 assert(UseAES, "need AES instruction support"); 6863 6864 switch (id) { 6865 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 6866 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 6867 stubName = "electronicCodeBook_encryptAESCrypt"; 6868 break; 6869 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 6870 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 6871 stubName = "electronicCodeBook_decryptAESCrypt"; 6872 break; 6873 default: 6874 break; 6875 } 6876 6877 if (stubAddr == nullptr) return false; 6878 6879 Node* electronicCodeBook_object = argument(0); 6880 Node* src = argument(1); 6881 Node* src_offset = argument(2); 6882 Node* len = argument(3); 6883 Node* dest = argument(4); 6884 Node* dest_offset = argument(5); 6885 6886 // (1) src and dest are arrays. 6887 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6888 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6889 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6890 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6891 6892 // checks are the responsibility of the caller 6893 Node* src_start = src; 6894 Node* dest_start = dest; 6895 if (src_offset != nullptr || dest_offset != nullptr) { 6896 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6897 src_start = array_element_address(src, src_offset, T_BYTE); 6898 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6899 } 6900 6901 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6902 // (because of the predicated logic executed earlier). 6903 // so we cast it here safely. 6904 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6905 6906 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6907 if (embeddedCipherObj == nullptr) return false; 6908 6909 // cast it to what we know it will be at runtime 6910 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 6911 assert(tinst != nullptr, "ECB obj is null"); 6912 assert(tinst->is_loaded(), "ECB obj is not loaded"); 6913 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6914 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6915 6916 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6917 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6918 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6919 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6920 aescrypt_object = _gvn.transform(aescrypt_object); 6921 6922 // we need to get the start of the aescrypt_object's expanded key array 6923 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6924 if (k_start == nullptr) return false; 6925 6926 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6927 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 6928 OptoRuntime::electronicCodeBook_aescrypt_Type(), 6929 stubAddr, stubName, TypePtr::BOTTOM, 6930 src_start, dest_start, k_start, len); 6931 6932 // return cipher length (int) 6933 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 6934 set_result(retvalue); 6935 return true; 6936 } 6937 6938 //------------------------------inline_counterMode_AESCrypt----------------------- 6939 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 6940 assert(UseAES, "need AES instruction support"); 6941 if (!UseAESCTRIntrinsics) return false; 6942 6943 address stubAddr = nullptr; 6944 const char *stubName = nullptr; 6945 if (id == vmIntrinsics::_counterMode_AESCrypt) { 6946 stubAddr = StubRoutines::counterMode_AESCrypt(); 6947 stubName = "counterMode_AESCrypt"; 6948 } 6949 if (stubAddr == nullptr) return false; 6950 6951 Node* counterMode_object = argument(0); 6952 Node* src = argument(1); 6953 Node* src_offset = argument(2); 6954 Node* len = argument(3); 6955 Node* dest = argument(4); 6956 Node* dest_offset = argument(5); 6957 6958 // (1) src and dest are arrays. 6959 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6960 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6961 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6962 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6963 6964 // checks are the responsibility of the caller 6965 Node* src_start = src; 6966 Node* dest_start = dest; 6967 if (src_offset != nullptr || dest_offset != nullptr) { 6968 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6969 src_start = array_element_address(src, src_offset, T_BYTE); 6970 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6971 } 6972 6973 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6974 // (because of the predicated logic executed earlier). 6975 // so we cast it here safely. 6976 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6977 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6978 if (embeddedCipherObj == nullptr) return false; 6979 // cast it to what we know it will be at runtime 6980 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 6981 assert(tinst != nullptr, "CTR obj is null"); 6982 assert(tinst->is_loaded(), "CTR obj is not loaded"); 6983 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6984 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6985 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6986 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6987 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6988 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6989 aescrypt_object = _gvn.transform(aescrypt_object); 6990 // we need to get the start of the aescrypt_object's expanded key array 6991 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6992 if (k_start == nullptr) return false; 6993 // similarly, get the start address of the r vector 6994 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 6995 if (obj_counter == nullptr) return false; 6996 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 6997 6998 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 6999 if (saved_encCounter == nullptr) return false; 7000 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7001 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7002 7003 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7004 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7005 OptoRuntime::counterMode_aescrypt_Type(), 7006 stubAddr, stubName, TypePtr::BOTTOM, 7007 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7008 7009 // return cipher length (int) 7010 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7011 set_result(retvalue); 7012 return true; 7013 } 7014 7015 //------------------------------get_key_start_from_aescrypt_object----------------------- 7016 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7017 #if defined(PPC64) || defined(S390) 7018 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7019 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7020 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7021 // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7022 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7023 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7024 if (objSessionK == nullptr) { 7025 return (Node *) nullptr; 7026 } 7027 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7028 #else 7029 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7030 #endif // PPC64 7031 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7032 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7033 7034 // now have the array, need to get the start address of the K array 7035 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7036 return k_start; 7037 } 7038 7039 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7040 // Return node representing slow path of predicate check. 7041 // the pseudo code we want to emulate with this predicate is: 7042 // for encryption: 7043 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7044 // for decryption: 7045 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7046 // note cipher==plain is more conservative than the original java code but that's OK 7047 // 7048 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7049 // The receiver was checked for null already. 7050 Node* objCBC = argument(0); 7051 7052 Node* src = argument(1); 7053 Node* dest = argument(4); 7054 7055 // Load embeddedCipher field of CipherBlockChaining object. 7056 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7057 7058 // get AESCrypt klass for instanceOf check 7059 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7060 // will have same classloader as CipherBlockChaining object 7061 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7062 assert(tinst != nullptr, "CBCobj is null"); 7063 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7064 7065 // we want to do an instanceof comparison against the AESCrypt class 7066 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7067 if (!klass_AESCrypt->is_loaded()) { 7068 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7069 Node* ctrl = control(); 7070 set_control(top()); // no regular fast path 7071 return ctrl; 7072 } 7073 7074 src = must_be_not_null(src, true); 7075 dest = must_be_not_null(dest, true); 7076 7077 // Resolve oops to stable for CmpP below. 7078 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7079 7080 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7081 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7082 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7083 7084 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7085 7086 // for encryption, we are done 7087 if (!decrypting) 7088 return instof_false; // even if it is null 7089 7090 // for decryption, we need to add a further check to avoid 7091 // taking the intrinsic path when cipher and plain are the same 7092 // see the original java code for why. 7093 RegionNode* region = new RegionNode(3); 7094 region->init_req(1, instof_false); 7095 7096 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7097 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7098 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7099 region->init_req(2, src_dest_conjoint); 7100 7101 record_for_igvn(region); 7102 return _gvn.transform(region); 7103 } 7104 7105 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7106 // Return node representing slow path of predicate check. 7107 // the pseudo code we want to emulate with this predicate is: 7108 // for encryption: 7109 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7110 // for decryption: 7111 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7112 // note cipher==plain is more conservative than the original java code but that's OK 7113 // 7114 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7115 // The receiver was checked for null already. 7116 Node* objECB = argument(0); 7117 7118 // Load embeddedCipher field of ElectronicCodeBook object. 7119 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7120 7121 // get AESCrypt klass for instanceOf check 7122 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7123 // will have same classloader as ElectronicCodeBook object 7124 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7125 assert(tinst != nullptr, "ECBobj is null"); 7126 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7127 7128 // we want to do an instanceof comparison against the AESCrypt class 7129 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7130 if (!klass_AESCrypt->is_loaded()) { 7131 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7132 Node* ctrl = control(); 7133 set_control(top()); // no regular fast path 7134 return ctrl; 7135 } 7136 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7137 7138 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7139 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7140 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7141 7142 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7143 7144 // for encryption, we are done 7145 if (!decrypting) 7146 return instof_false; // even if it is null 7147 7148 // for decryption, we need to add a further check to avoid 7149 // taking the intrinsic path when cipher and plain are the same 7150 // see the original java code for why. 7151 RegionNode* region = new RegionNode(3); 7152 region->init_req(1, instof_false); 7153 Node* src = argument(1); 7154 Node* dest = argument(4); 7155 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7156 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7157 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7158 region->init_req(2, src_dest_conjoint); 7159 7160 record_for_igvn(region); 7161 return _gvn.transform(region); 7162 } 7163 7164 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7165 // Return node representing slow path of predicate check. 7166 // the pseudo code we want to emulate with this predicate is: 7167 // for encryption: 7168 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7169 // for decryption: 7170 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7171 // note cipher==plain is more conservative than the original java code but that's OK 7172 // 7173 7174 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7175 // The receiver was checked for null already. 7176 Node* objCTR = argument(0); 7177 7178 // Load embeddedCipher field of CipherBlockChaining object. 7179 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7180 7181 // get AESCrypt klass for instanceOf check 7182 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7183 // will have same classloader as CipherBlockChaining object 7184 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7185 assert(tinst != nullptr, "CTRobj is null"); 7186 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7187 7188 // we want to do an instanceof comparison against the AESCrypt class 7189 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7190 if (!klass_AESCrypt->is_loaded()) { 7191 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7192 Node* ctrl = control(); 7193 set_control(top()); // no regular fast path 7194 return ctrl; 7195 } 7196 7197 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7198 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7199 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7200 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7201 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7202 7203 return instof_false; // even if it is null 7204 } 7205 7206 //------------------------------inline_ghash_processBlocks 7207 bool LibraryCallKit::inline_ghash_processBlocks() { 7208 address stubAddr; 7209 const char *stubName; 7210 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7211 7212 stubAddr = StubRoutines::ghash_processBlocks(); 7213 stubName = "ghash_processBlocks"; 7214 7215 Node* data = argument(0); 7216 Node* offset = argument(1); 7217 Node* len = argument(2); 7218 Node* state = argument(3); 7219 Node* subkeyH = argument(4); 7220 7221 state = must_be_not_null(state, true); 7222 subkeyH = must_be_not_null(subkeyH, true); 7223 data = must_be_not_null(data, true); 7224 7225 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7226 assert(state_start, "state is null"); 7227 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7228 assert(subkeyH_start, "subkeyH is null"); 7229 Node* data_start = array_element_address(data, offset, T_BYTE); 7230 assert(data_start, "data is null"); 7231 7232 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7233 OptoRuntime::ghash_processBlocks_Type(), 7234 stubAddr, stubName, TypePtr::BOTTOM, 7235 state_start, subkeyH_start, data_start, len); 7236 return true; 7237 } 7238 7239 //------------------------------inline_chacha20Block 7240 bool LibraryCallKit::inline_chacha20Block() { 7241 address stubAddr; 7242 const char *stubName; 7243 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7244 7245 stubAddr = StubRoutines::chacha20Block(); 7246 stubName = "chacha20Block"; 7247 7248 Node* state = argument(0); 7249 Node* result = argument(1); 7250 7251 state = must_be_not_null(state, true); 7252 result = must_be_not_null(result, true); 7253 7254 Node* state_start = array_element_address(state, intcon(0), T_INT); 7255 assert(state_start, "state is null"); 7256 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 7257 assert(result_start, "result is null"); 7258 7259 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7260 OptoRuntime::chacha20Block_Type(), 7261 stubAddr, stubName, TypePtr::BOTTOM, 7262 state_start, result_start); 7263 // return key stream length (int) 7264 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7265 set_result(retvalue); 7266 return true; 7267 } 7268 7269 bool LibraryCallKit::inline_base64_encodeBlock() { 7270 address stubAddr; 7271 const char *stubName; 7272 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7273 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 7274 stubAddr = StubRoutines::base64_encodeBlock(); 7275 stubName = "encodeBlock"; 7276 7277 if (!stubAddr) return false; 7278 Node* base64obj = argument(0); 7279 Node* src = argument(1); 7280 Node* offset = argument(2); 7281 Node* len = argument(3); 7282 Node* dest = argument(4); 7283 Node* dp = argument(5); 7284 Node* isURL = argument(6); 7285 7286 src = must_be_not_null(src, true); 7287 dest = must_be_not_null(dest, true); 7288 7289 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7290 assert(src_start, "source array is null"); 7291 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7292 assert(dest_start, "destination array is null"); 7293 7294 Node* base64 = make_runtime_call(RC_LEAF, 7295 OptoRuntime::base64_encodeBlock_Type(), 7296 stubAddr, stubName, TypePtr::BOTTOM, 7297 src_start, offset, len, dest_start, dp, isURL); 7298 return true; 7299 } 7300 7301 bool LibraryCallKit::inline_base64_decodeBlock() { 7302 address stubAddr; 7303 const char *stubName; 7304 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7305 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 7306 stubAddr = StubRoutines::base64_decodeBlock(); 7307 stubName = "decodeBlock"; 7308 7309 if (!stubAddr) return false; 7310 Node* base64obj = argument(0); 7311 Node* src = argument(1); 7312 Node* src_offset = argument(2); 7313 Node* len = argument(3); 7314 Node* dest = argument(4); 7315 Node* dest_offset = argument(5); 7316 Node* isURL = argument(6); 7317 Node* isMIME = argument(7); 7318 7319 src = must_be_not_null(src, true); 7320 dest = must_be_not_null(dest, true); 7321 7322 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7323 assert(src_start, "source array is null"); 7324 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7325 assert(dest_start, "destination array is null"); 7326 7327 Node* call = make_runtime_call(RC_LEAF, 7328 OptoRuntime::base64_decodeBlock_Type(), 7329 stubAddr, stubName, TypePtr::BOTTOM, 7330 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 7331 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7332 set_result(result); 7333 return true; 7334 } 7335 7336 bool LibraryCallKit::inline_poly1305_processBlocks() { 7337 address stubAddr; 7338 const char *stubName; 7339 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 7340 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 7341 stubAddr = StubRoutines::poly1305_processBlocks(); 7342 stubName = "poly1305_processBlocks"; 7343 7344 if (!stubAddr) return false; 7345 null_check_receiver(); // null-check receiver 7346 if (stopped()) return true; 7347 7348 Node* input = argument(1); 7349 Node* input_offset = argument(2); 7350 Node* len = argument(3); 7351 Node* alimbs = argument(4); 7352 Node* rlimbs = argument(5); 7353 7354 input = must_be_not_null(input, true); 7355 alimbs = must_be_not_null(alimbs, true); 7356 rlimbs = must_be_not_null(rlimbs, true); 7357 7358 Node* input_start = array_element_address(input, input_offset, T_BYTE); 7359 assert(input_start, "input array is null"); 7360 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 7361 assert(acc_start, "acc array is null"); 7362 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 7363 assert(r_start, "r array is null"); 7364 7365 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7366 OptoRuntime::poly1305_processBlocks_Type(), 7367 stubAddr, stubName, TypePtr::BOTTOM, 7368 input_start, len, acc_start, r_start); 7369 return true; 7370 } 7371 7372 //------------------------------inline_digestBase_implCompress----------------------- 7373 // 7374 // Calculate MD5 for single-block byte[] array. 7375 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 7376 // 7377 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 7378 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 7379 // 7380 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 7381 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 7382 // 7383 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 7384 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 7385 // 7386 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 7387 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 7388 // 7389 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 7390 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 7391 7392 Node* digestBase_obj = argument(0); 7393 Node* src = argument(1); // type oop 7394 Node* ofs = argument(2); // type int 7395 7396 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7397 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7398 // failed array check 7399 return false; 7400 } 7401 // Figure out the size and type of the elements we will be copying. 7402 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7403 if (src_elem != T_BYTE) { 7404 return false; 7405 } 7406 // 'src_start' points to src array + offset 7407 src = must_be_not_null(src, true); 7408 Node* src_start = array_element_address(src, ofs, src_elem); 7409 Node* state = nullptr; 7410 Node* block_size = nullptr; 7411 address stubAddr; 7412 const char *stubName; 7413 7414 switch(id) { 7415 case vmIntrinsics::_md5_implCompress: 7416 assert(UseMD5Intrinsics, "need MD5 instruction support"); 7417 state = get_state_from_digest_object(digestBase_obj, T_INT); 7418 stubAddr = StubRoutines::md5_implCompress(); 7419 stubName = "md5_implCompress"; 7420 break; 7421 case vmIntrinsics::_sha_implCompress: 7422 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 7423 state = get_state_from_digest_object(digestBase_obj, T_INT); 7424 stubAddr = StubRoutines::sha1_implCompress(); 7425 stubName = "sha1_implCompress"; 7426 break; 7427 case vmIntrinsics::_sha2_implCompress: 7428 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 7429 state = get_state_from_digest_object(digestBase_obj, T_INT); 7430 stubAddr = StubRoutines::sha256_implCompress(); 7431 stubName = "sha256_implCompress"; 7432 break; 7433 case vmIntrinsics::_sha5_implCompress: 7434 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 7435 state = get_state_from_digest_object(digestBase_obj, T_LONG); 7436 stubAddr = StubRoutines::sha512_implCompress(); 7437 stubName = "sha512_implCompress"; 7438 break; 7439 case vmIntrinsics::_sha3_implCompress: 7440 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 7441 state = get_state_from_digest_object(digestBase_obj, T_BYTE); 7442 stubAddr = StubRoutines::sha3_implCompress(); 7443 stubName = "sha3_implCompress"; 7444 block_size = get_block_size_from_digest_object(digestBase_obj); 7445 if (block_size == nullptr) return false; 7446 break; 7447 default: 7448 fatal_unexpected_iid(id); 7449 return false; 7450 } 7451 if (state == nullptr) return false; 7452 7453 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 7454 if (stubAddr == nullptr) return false; 7455 7456 // Call the stub. 7457 Node* call; 7458 if (block_size == nullptr) { 7459 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 7460 stubAddr, stubName, TypePtr::BOTTOM, 7461 src_start, state); 7462 } else { 7463 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 7464 stubAddr, stubName, TypePtr::BOTTOM, 7465 src_start, state, block_size); 7466 } 7467 7468 return true; 7469 } 7470 7471 //------------------------------inline_digestBase_implCompressMB----------------------- 7472 // 7473 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 7474 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 7475 // 7476 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 7477 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7478 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7479 assert((uint)predicate < 5, "sanity"); 7480 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 7481 7482 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 7483 Node* src = argument(1); // byte[] array 7484 Node* ofs = argument(2); // type int 7485 Node* limit = argument(3); // type int 7486 7487 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7488 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7489 // failed array check 7490 return false; 7491 } 7492 // Figure out the size and type of the elements we will be copying. 7493 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7494 if (src_elem != T_BYTE) { 7495 return false; 7496 } 7497 // 'src_start' points to src array + offset 7498 src = must_be_not_null(src, false); 7499 Node* src_start = array_element_address(src, ofs, src_elem); 7500 7501 const char* klass_digestBase_name = nullptr; 7502 const char* stub_name = nullptr; 7503 address stub_addr = nullptr; 7504 BasicType elem_type = T_INT; 7505 7506 switch (predicate) { 7507 case 0: 7508 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 7509 klass_digestBase_name = "sun/security/provider/MD5"; 7510 stub_name = "md5_implCompressMB"; 7511 stub_addr = StubRoutines::md5_implCompressMB(); 7512 } 7513 break; 7514 case 1: 7515 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 7516 klass_digestBase_name = "sun/security/provider/SHA"; 7517 stub_name = "sha1_implCompressMB"; 7518 stub_addr = StubRoutines::sha1_implCompressMB(); 7519 } 7520 break; 7521 case 2: 7522 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 7523 klass_digestBase_name = "sun/security/provider/SHA2"; 7524 stub_name = "sha256_implCompressMB"; 7525 stub_addr = StubRoutines::sha256_implCompressMB(); 7526 } 7527 break; 7528 case 3: 7529 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 7530 klass_digestBase_name = "sun/security/provider/SHA5"; 7531 stub_name = "sha512_implCompressMB"; 7532 stub_addr = StubRoutines::sha512_implCompressMB(); 7533 elem_type = T_LONG; 7534 } 7535 break; 7536 case 4: 7537 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 7538 klass_digestBase_name = "sun/security/provider/SHA3"; 7539 stub_name = "sha3_implCompressMB"; 7540 stub_addr = StubRoutines::sha3_implCompressMB(); 7541 elem_type = T_BYTE; 7542 } 7543 break; 7544 default: 7545 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 7546 } 7547 if (klass_digestBase_name != nullptr) { 7548 assert(stub_addr != nullptr, "Stub is generated"); 7549 if (stub_addr == nullptr) return false; 7550 7551 // get DigestBase klass to lookup for SHA klass 7552 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 7553 assert(tinst != nullptr, "digestBase_obj is not instance???"); 7554 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7555 7556 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 7557 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 7558 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 7559 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 7560 } 7561 return false; 7562 } 7563 7564 //------------------------------inline_digestBase_implCompressMB----------------------- 7565 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 7566 BasicType elem_type, address stubAddr, const char *stubName, 7567 Node* src_start, Node* ofs, Node* limit) { 7568 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 7569 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7570 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 7571 digest_obj = _gvn.transform(digest_obj); 7572 7573 Node* state = get_state_from_digest_object(digest_obj, elem_type); 7574 if (state == nullptr) return false; 7575 7576 Node* block_size = nullptr; 7577 if (strcmp("sha3_implCompressMB", stubName) == 0) { 7578 block_size = get_block_size_from_digest_object(digest_obj); 7579 if (block_size == nullptr) return false; 7580 } 7581 7582 // Call the stub. 7583 Node* call; 7584 if (block_size == nullptr) { 7585 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7586 OptoRuntime::digestBase_implCompressMB_Type(false), 7587 stubAddr, stubName, TypePtr::BOTTOM, 7588 src_start, state, ofs, limit); 7589 } else { 7590 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7591 OptoRuntime::digestBase_implCompressMB_Type(true), 7592 stubAddr, stubName, TypePtr::BOTTOM, 7593 src_start, state, block_size, ofs, limit); 7594 } 7595 7596 // return ofs (int) 7597 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7598 set_result(result); 7599 7600 return true; 7601 } 7602 7603 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 7604 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 7605 assert(UseAES, "need AES instruction support"); 7606 address stubAddr = nullptr; 7607 const char *stubName = nullptr; 7608 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 7609 stubName = "galoisCounterMode_AESCrypt"; 7610 7611 if (stubAddr == nullptr) return false; 7612 7613 Node* in = argument(0); 7614 Node* inOfs = argument(1); 7615 Node* len = argument(2); 7616 Node* ct = argument(3); 7617 Node* ctOfs = argument(4); 7618 Node* out = argument(5); 7619 Node* outOfs = argument(6); 7620 Node* gctr_object = argument(7); 7621 Node* ghash_object = argument(8); 7622 7623 // (1) in, ct and out are arrays. 7624 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 7625 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 7626 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 7627 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 7628 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 7629 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 7630 7631 // checks are the responsibility of the caller 7632 Node* in_start = in; 7633 Node* ct_start = ct; 7634 Node* out_start = out; 7635 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 7636 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 7637 in_start = array_element_address(in, inOfs, T_BYTE); 7638 ct_start = array_element_address(ct, ctOfs, T_BYTE); 7639 out_start = array_element_address(out, outOfs, T_BYTE); 7640 } 7641 7642 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7643 // (because of the predicated logic executed earlier). 7644 // so we cast it here safely. 7645 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7646 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7647 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 7648 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 7649 Node* state = load_field_from_object(ghash_object, "state", "[J"); 7650 7651 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 7652 return false; 7653 } 7654 // cast it to what we know it will be at runtime 7655 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 7656 assert(tinst != nullptr, "GCTR obj is null"); 7657 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 7658 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7659 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7660 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7661 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7662 const TypeOopPtr* xtype = aklass->as_instance_type(); 7663 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7664 aescrypt_object = _gvn.transform(aescrypt_object); 7665 // we need to get the start of the aescrypt_object's expanded key array 7666 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7667 if (k_start == nullptr) return false; 7668 // similarly, get the start address of the r vector 7669 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 7670 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7671 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 7672 7673 7674 // Call the stub, passing params 7675 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7676 OptoRuntime::galoisCounterMode_aescrypt_Type(), 7677 stubAddr, stubName, TypePtr::BOTTOM, 7678 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 7679 7680 // return cipher length (int) 7681 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 7682 set_result(retvalue); 7683 7684 return true; 7685 } 7686 7687 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 7688 // Return node representing slow path of predicate check. 7689 // the pseudo code we want to emulate with this predicate is: 7690 // for encryption: 7691 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7692 // for decryption: 7693 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7694 // note cipher==plain is more conservative than the original java code but that's OK 7695 // 7696 7697 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 7698 // The receiver was checked for null already. 7699 Node* objGCTR = argument(7); 7700 // Load embeddedCipher field of GCTR object. 7701 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7702 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 7703 7704 // get AESCrypt klass for instanceOf check 7705 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7706 // will have same classloader as CipherBlockChaining object 7707 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 7708 assert(tinst != nullptr, "GCTR obj is null"); 7709 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 7710 7711 // we want to do an instanceof comparison against the AESCrypt class 7712 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7713 if (!klass_AESCrypt->is_loaded()) { 7714 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7715 Node* ctrl = control(); 7716 set_control(top()); // no regular fast path 7717 return ctrl; 7718 } 7719 7720 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7721 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7722 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7723 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7724 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7725 7726 return instof_false; // even if it is null 7727 } 7728 7729 //------------------------------get_state_from_digest_object----------------------- 7730 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 7731 const char* state_type; 7732 switch (elem_type) { 7733 case T_BYTE: state_type = "[B"; break; 7734 case T_INT: state_type = "[I"; break; 7735 case T_LONG: state_type = "[J"; break; 7736 default: ShouldNotReachHere(); 7737 } 7738 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 7739 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 7740 if (digest_state == nullptr) return (Node *) nullptr; 7741 7742 // now have the array, need to get the start address of the state array 7743 Node* state = array_element_address(digest_state, intcon(0), elem_type); 7744 return state; 7745 } 7746 7747 //------------------------------get_block_size_from_sha3_object---------------------------------- 7748 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 7749 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 7750 assert (block_size != nullptr, "sanity"); 7751 return block_size; 7752 } 7753 7754 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 7755 // Return node representing slow path of predicate check. 7756 // the pseudo code we want to emulate with this predicate is: 7757 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 7758 // 7759 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 7760 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7761 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7762 assert((uint)predicate < 5, "sanity"); 7763 7764 // The receiver was checked for null already. 7765 Node* digestBaseObj = argument(0); 7766 7767 // get DigestBase klass for instanceOf check 7768 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 7769 assert(tinst != nullptr, "digestBaseObj is null"); 7770 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7771 7772 const char* klass_name = nullptr; 7773 switch (predicate) { 7774 case 0: 7775 if (UseMD5Intrinsics) { 7776 // we want to do an instanceof comparison against the MD5 class 7777 klass_name = "sun/security/provider/MD5"; 7778 } 7779 break; 7780 case 1: 7781 if (UseSHA1Intrinsics) { 7782 // we want to do an instanceof comparison against the SHA class 7783 klass_name = "sun/security/provider/SHA"; 7784 } 7785 break; 7786 case 2: 7787 if (UseSHA256Intrinsics) { 7788 // we want to do an instanceof comparison against the SHA2 class 7789 klass_name = "sun/security/provider/SHA2"; 7790 } 7791 break; 7792 case 3: 7793 if (UseSHA512Intrinsics) { 7794 // we want to do an instanceof comparison against the SHA5 class 7795 klass_name = "sun/security/provider/SHA5"; 7796 } 7797 break; 7798 case 4: 7799 if (UseSHA3Intrinsics) { 7800 // we want to do an instanceof comparison against the SHA3 class 7801 klass_name = "sun/security/provider/SHA3"; 7802 } 7803 break; 7804 default: 7805 fatal("unknown SHA intrinsic predicate: %d", predicate); 7806 } 7807 7808 ciKlass* klass = nullptr; 7809 if (klass_name != nullptr) { 7810 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 7811 } 7812 if ((klass == nullptr) || !klass->is_loaded()) { 7813 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 7814 Node* ctrl = control(); 7815 set_control(top()); // no intrinsic path 7816 return ctrl; 7817 } 7818 ciInstanceKlass* instklass = klass->as_instance_klass(); 7819 7820 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 7821 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7822 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7823 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7824 7825 return instof_false; // even if it is null 7826 } 7827 7828 //-------------inline_fma----------------------------------- 7829 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 7830 Node *a = nullptr; 7831 Node *b = nullptr; 7832 Node *c = nullptr; 7833 Node* result = nullptr; 7834 switch (id) { 7835 case vmIntrinsics::_fmaD: 7836 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 7837 // no receiver since it is static method 7838 a = round_double_node(argument(0)); 7839 b = round_double_node(argument(2)); 7840 c = round_double_node(argument(4)); 7841 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 7842 break; 7843 case vmIntrinsics::_fmaF: 7844 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 7845 a = argument(0); 7846 b = argument(1); 7847 c = argument(2); 7848 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 7849 break; 7850 default: 7851 fatal_unexpected_iid(id); break; 7852 } 7853 set_result(result); 7854 return true; 7855 } 7856 7857 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 7858 // argument(0) is receiver 7859 Node* codePoint = argument(1); 7860 Node* n = nullptr; 7861 7862 switch (id) { 7863 case vmIntrinsics::_isDigit : 7864 n = new DigitNode(control(), codePoint); 7865 break; 7866 case vmIntrinsics::_isLowerCase : 7867 n = new LowerCaseNode(control(), codePoint); 7868 break; 7869 case vmIntrinsics::_isUpperCase : 7870 n = new UpperCaseNode(control(), codePoint); 7871 break; 7872 case vmIntrinsics::_isWhitespace : 7873 n = new WhitespaceNode(control(), codePoint); 7874 break; 7875 default: 7876 fatal_unexpected_iid(id); 7877 } 7878 7879 set_result(_gvn.transform(n)); 7880 return true; 7881 } 7882 7883 //------------------------------inline_fp_min_max------------------------------ 7884 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 7885 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 7886 7887 // The intrinsic should be used only when the API branches aren't predictable, 7888 // the last one performing the most important comparison. The following heuristic 7889 // uses the branch statistics to eventually bail out if necessary. 7890 7891 ciMethodData *md = callee()->method_data(); 7892 7893 if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) { 7894 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 7895 7896 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 7897 // Bail out if the call-site didn't contribute enough to the statistics. 7898 return false; 7899 } 7900 7901 uint taken = 0, not_taken = 0; 7902 7903 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 7904 if (p->is_BranchData()) { 7905 taken = ((ciBranchData*)p)->taken(); 7906 not_taken = ((ciBranchData*)p)->not_taken(); 7907 } 7908 } 7909 7910 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 7911 balance = balance < 0 ? -balance : balance; 7912 if ( balance > 0.2 ) { 7913 // Bail out if the most important branch is predictable enough. 7914 return false; 7915 } 7916 } 7917 */ 7918 7919 Node *a = nullptr; 7920 Node *b = nullptr; 7921 Node *n = nullptr; 7922 switch (id) { 7923 case vmIntrinsics::_maxF: 7924 case vmIntrinsics::_minF: 7925 case vmIntrinsics::_maxF_strict: 7926 case vmIntrinsics::_minF_strict: 7927 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 7928 a = argument(0); 7929 b = argument(1); 7930 break; 7931 case vmIntrinsics::_maxD: 7932 case vmIntrinsics::_minD: 7933 case vmIntrinsics::_maxD_strict: 7934 case vmIntrinsics::_minD_strict: 7935 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 7936 a = round_double_node(argument(0)); 7937 b = round_double_node(argument(2)); 7938 break; 7939 default: 7940 fatal_unexpected_iid(id); 7941 break; 7942 } 7943 switch (id) { 7944 case vmIntrinsics::_maxF: 7945 case vmIntrinsics::_maxF_strict: 7946 n = new MaxFNode(a, b); 7947 break; 7948 case vmIntrinsics::_minF: 7949 case vmIntrinsics::_minF_strict: 7950 n = new MinFNode(a, b); 7951 break; 7952 case vmIntrinsics::_maxD: 7953 case vmIntrinsics::_maxD_strict: 7954 n = new MaxDNode(a, b); 7955 break; 7956 case vmIntrinsics::_minD: 7957 case vmIntrinsics::_minD_strict: 7958 n = new MinDNode(a, b); 7959 break; 7960 default: 7961 fatal_unexpected_iid(id); 7962 break; 7963 } 7964 set_result(_gvn.transform(n)); 7965 return true; 7966 } 7967 7968 bool LibraryCallKit::inline_profileBoolean() { 7969 Node* counts = argument(1); 7970 const TypeAryPtr* ary = nullptr; 7971 ciArray* aobj = nullptr; 7972 if (counts->is_Con() 7973 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 7974 && (aobj = ary->const_oop()->as_array()) != nullptr 7975 && (aobj->length() == 2)) { 7976 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 7977 jint false_cnt = aobj->element_value(0).as_int(); 7978 jint true_cnt = aobj->element_value(1).as_int(); 7979 7980 if (C->log() != nullptr) { 7981 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 7982 false_cnt, true_cnt); 7983 } 7984 7985 if (false_cnt + true_cnt == 0) { 7986 // According to profile, never executed. 7987 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 7988 Deoptimization::Action_reinterpret); 7989 return true; 7990 } 7991 7992 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 7993 // is a number of each value occurrences. 7994 Node* result = argument(0); 7995 if (false_cnt == 0 || true_cnt == 0) { 7996 // According to profile, one value has been never seen. 7997 int expected_val = (false_cnt == 0) ? 1 : 0; 7998 7999 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 8000 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 8001 8002 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 8003 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 8004 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 8005 8006 { // Slow path: uncommon trap for never seen value and then reexecute 8007 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 8008 // the value has been seen at least once. 8009 PreserveJVMState pjvms(this); 8010 PreserveReexecuteState preexecs(this); 8011 jvms()->set_should_reexecute(true); 8012 8013 set_control(slow_path); 8014 set_i_o(i_o()); 8015 8016 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8017 Deoptimization::Action_reinterpret); 8018 } 8019 // The guard for never seen value enables sharpening of the result and 8020 // returning a constant. It allows to eliminate branches on the same value 8021 // later on. 8022 set_control(fast_path); 8023 result = intcon(expected_val); 8024 } 8025 // Stop profiling. 8026 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8027 // By replacing method body with profile data (represented as ProfileBooleanNode 8028 // on IR level) we effectively disable profiling. 8029 // It enables full speed execution once optimized code is generated. 8030 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8031 C->record_for_igvn(profile); 8032 set_result(profile); 8033 return true; 8034 } else { 8035 // Continue profiling. 8036 // Profile data isn't available at the moment. So, execute method's bytecode version. 8037 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8038 // is compiled and counters aren't available since corresponding MethodHandle 8039 // isn't a compile-time constant. 8040 return false; 8041 } 8042 } 8043 8044 bool LibraryCallKit::inline_isCompileConstant() { 8045 Node* n = argument(0); 8046 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8047 return true; 8048 } 8049 8050 //------------------------------- inline_getObjectSize -------------------------------------- 8051 // 8052 // Calculate the runtime size of the object/array. 8053 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8054 // 8055 bool LibraryCallKit::inline_getObjectSize() { 8056 Node* obj = argument(3); 8057 Node* klass_node = load_object_klass(obj); 8058 8059 jint layout_con = Klass::_lh_neutral_value; 8060 Node* layout_val = get_layout_helper(klass_node, layout_con); 8061 int layout_is_con = (layout_val == nullptr); 8062 8063 if (layout_is_con) { 8064 // Layout helper is constant, can figure out things at compile time. 8065 8066 if (Klass::layout_helper_is_instance(layout_con)) { 8067 // Instance case: layout_con contains the size itself. 8068 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8069 set_result(size); 8070 } else { 8071 // Array case: size is round(header + element_size*arraylength). 8072 // Since arraylength is different for every array instance, we have to 8073 // compute the whole thing at runtime. 8074 8075 Node* arr_length = load_array_length(obj); 8076 8077 int round_mask = MinObjAlignmentInBytes - 1; 8078 int hsize = Klass::layout_helper_header_size(layout_con); 8079 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8080 8081 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8082 round_mask = 0; // strength-reduce it if it goes away completely 8083 } 8084 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8085 Node* header_size = intcon(hsize + round_mask); 8086 8087 Node* lengthx = ConvI2X(arr_length); 8088 Node* headerx = ConvI2X(header_size); 8089 8090 Node* abody = lengthx; 8091 if (eshift != 0) { 8092 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8093 } 8094 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8095 if (round_mask != 0) { 8096 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8097 } 8098 size = ConvX2L(size); 8099 set_result(size); 8100 } 8101 } else { 8102 // Layout helper is not constant, need to test for array-ness at runtime. 8103 8104 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8105 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8106 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8107 record_for_igvn(result_reg); 8108 8109 Node* array_ctl = generate_array_guard(klass_node, nullptr); 8110 if (array_ctl != nullptr) { 8111 // Array case: size is round(header + element_size*arraylength). 8112 // Since arraylength is different for every array instance, we have to 8113 // compute the whole thing at runtime. 8114 8115 PreserveJVMState pjvms(this); 8116 set_control(array_ctl); 8117 Node* arr_length = load_array_length(obj); 8118 8119 int round_mask = MinObjAlignmentInBytes - 1; 8120 Node* mask = intcon(round_mask); 8121 8122 Node* hss = intcon(Klass::_lh_header_size_shift); 8123 Node* hsm = intcon(Klass::_lh_header_size_mask); 8124 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 8125 header_size = _gvn.transform(new AndINode(header_size, hsm)); 8126 header_size = _gvn.transform(new AddINode(header_size, mask)); 8127 8128 // There is no need to mask or shift this value. 8129 // The semantics of LShiftINode include an implicit mask to 0x1F. 8130 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 8131 Node* elem_shift = layout_val; 8132 8133 Node* lengthx = ConvI2X(arr_length); 8134 Node* headerx = ConvI2X(header_size); 8135 8136 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 8137 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 8138 if (round_mask != 0) { 8139 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 8140 } 8141 size = ConvX2L(size); 8142 8143 result_reg->init_req(_array_path, control()); 8144 result_val->init_req(_array_path, size); 8145 } 8146 8147 if (!stopped()) { 8148 // Instance case: the layout helper gives us instance size almost directly, 8149 // but we need to mask out the _lh_instance_slow_path_bit. 8150 Node* size = ConvI2X(layout_val); 8151 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 8152 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 8153 size = _gvn.transform(new AndXNode(size, mask)); 8154 size = ConvX2L(size); 8155 8156 result_reg->init_req(_instance_path, control()); 8157 result_val->init_req(_instance_path, size); 8158 } 8159 8160 set_result(result_reg, result_val); 8161 } 8162 8163 return true; 8164 } 8165 8166 //------------------------------- inline_blackhole -------------------------------------- 8167 // 8168 // Make sure all arguments to this node are alive. 8169 // This matches methods that were requested to be blackholed through compile commands. 8170 // 8171 bool LibraryCallKit::inline_blackhole() { 8172 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 8173 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 8174 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 8175 8176 // Blackhole node pinches only the control, not memory. This allows 8177 // the blackhole to be pinned in the loop that computes blackholed 8178 // values, but have no other side effects, like breaking the optimizations 8179 // across the blackhole. 8180 8181 Node* bh = _gvn.transform(new BlackholeNode(control())); 8182 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 8183 8184 // Bind call arguments as blackhole arguments to keep them alive 8185 uint nargs = callee()->arg_size(); 8186 for (uint i = 0; i < nargs; i++) { 8187 bh->add_req(argument(i)); 8188 } 8189 8190 return true; 8191 }