1 /*
   2  * Copyright (c) 1999, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"
  43 #include "opto/idealKit.hpp"
  44 #include "opto/library_call.hpp"
  45 #include "opto/mathexactnode.hpp"
  46 #include "opto/mulnode.hpp"
  47 #include "opto/narrowptrnode.hpp"
  48 #include "opto/opaquenode.hpp"
  49 #include "opto/parse.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/rootnode.hpp"
  52 #include "opto/subnode.hpp"
  53 #include "prims/jvmtiExport.hpp"
  54 #include "prims/jvmtiThreadState.hpp"
  55 #include "prims/unsafe.hpp"
  56 #include "runtime/jniHandles.inline.hpp"
  57 #include "runtime/objectMonitor.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "utilities/macros.hpp"
  61 #include "utilities/powerOfTwo.hpp"
  62 
  63 //---------------------------make_vm_intrinsic----------------------------
  64 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  65   vmIntrinsicID id = m->intrinsic_id();
  66   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  67 
  68   if (!m->is_loaded()) {
  69     // Do not attempt to inline unloaded methods.
  70     return nullptr;
  71   }
  72 
  73   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  74   bool is_available = false;
  75 
  76   {
  77     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  78     // the compiler must transition to '_thread_in_vm' state because both
  79     // methods access VM-internal data.
  80     VM_ENTRY_MARK;
  81     methodHandle mh(THREAD, m->get_Method());
  82     is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive());
  83     if (is_available && is_virtual) {
  84       is_available = vmIntrinsics::does_virtual_dispatch(id);
  85     }
  86   }
  87 
  88   if (is_available) {
  89     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
  90     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
  91     return new LibraryIntrinsic(m, is_virtual,
  92                                 vmIntrinsics::predicates_needed(id),
  93                                 vmIntrinsics::does_virtual_dispatch(id),
  94                                 id);
  95   } else {
  96     return nullptr;
  97   }
  98 }
  99 
 100 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 101   LibraryCallKit kit(jvms, this);
 102   Compile* C = kit.C;
 103   int nodes = C->unique();
 104 #ifndef PRODUCT
 105   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 106     char buf[1000];
 107     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 108     tty->print_cr("Intrinsic %s", str);
 109   }
 110 #endif
 111   ciMethod* callee = kit.callee();
 112   const int bci    = kit.bci();
 113 #ifdef ASSERT
 114   Node* ctrl = kit.control();
 115 #endif
 116   // Try to inline the intrinsic.
 117   if (callee->check_intrinsic_candidate() &&
 118       kit.try_to_inline(_last_predicate)) {
 119     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 120                                           : "(intrinsic)";
 121     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 122     if (C->print_intrinsics() || C->print_inlining()) {
 123       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 124     }
 125     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 126     if (C->log()) {
 127       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 128                      vmIntrinsics::name_at(intrinsic_id()),
 129                      (is_virtual() ? " virtual='1'" : ""),
 130                      C->unique() - nodes);
 131     }
 132     // Push the result from the inlined method onto the stack.
 133     kit.push_result();
 134     C->print_inlining_update(this);
 135     return kit.transfer_exceptions_into_jvms();
 136   }
 137 
 138   // The intrinsic bailed out
 139   assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out");
 140   if (jvms->has_method()) {
 141     // Not a root compile.
 142     const char* msg;
 143     if (callee->intrinsic_candidate()) {
 144       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 145     } else {
 146       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 147                          : "failed to inline (intrinsic), method not annotated";
 148     }
 149     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 150     if (C->print_intrinsics() || C->print_inlining()) {
 151       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 152     }
 153   } else {
 154     // Root compile
 155     ResourceMark rm;
 156     stringStream msg_stream;
 157     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 158                      vmIntrinsics::name_at(intrinsic_id()),
 159                      is_virtual() ? " (virtual)" : "", bci);
 160     const char *msg = msg_stream.freeze();
 161     log_debug(jit, inlining)("%s", msg);
 162     if (C->print_intrinsics() || C->print_inlining()) {
 163       tty->print("%s", msg);
 164     }
 165   }
 166   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 167   C->print_inlining_update(this);
 168 
 169   return nullptr;
 170 }
 171 
 172 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 173   LibraryCallKit kit(jvms, this);
 174   Compile* C = kit.C;
 175   int nodes = C->unique();
 176   _last_predicate = predicate;
 177 #ifndef PRODUCT
 178   assert(is_predicated() && predicate < predicates_count(), "sanity");
 179   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 180     char buf[1000];
 181     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 182     tty->print_cr("Predicate for intrinsic %s", str);
 183   }
 184 #endif
 185   ciMethod* callee = kit.callee();
 186   const int bci    = kit.bci();
 187 
 188   Node* slow_ctl = kit.try_to_predicate(predicate);
 189   if (!kit.failing()) {
 190     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 191                                           : "(intrinsic, predicate)";
 192     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 193     if (C->print_intrinsics() || C->print_inlining()) {
 194       C->print_inlining(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 195     }
 196     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 197     if (C->log()) {
 198       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 199                      vmIntrinsics::name_at(intrinsic_id()),
 200                      (is_virtual() ? " virtual='1'" : ""),
 201                      C->unique() - nodes);
 202     }
 203     return slow_ctl; // Could be null if the check folds.
 204   }
 205 
 206   // The intrinsic bailed out
 207   if (jvms->has_method()) {
 208     // Not a root compile.
 209     const char* msg = "failed to generate predicate for intrinsic";
 210     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 211     if (C->print_intrinsics() || C->print_inlining()) {
 212       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 213     }
 214   } else {
 215     // Root compile
 216     ResourceMark rm;
 217     stringStream msg_stream;
 218     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 219                      vmIntrinsics::name_at(intrinsic_id()),
 220                      is_virtual() ? " (virtual)" : "", bci);
 221     const char *msg = msg_stream.freeze();
 222     log_debug(jit, inlining)("%s", msg);
 223     if (C->print_intrinsics() || C->print_inlining()) {
 224       C->print_inlining_stream()->print("%s", msg);
 225     }
 226   }
 227   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 228   return nullptr;
 229 }
 230 
 231 bool LibraryCallKit::try_to_inline(int predicate) {
 232   // Handle symbolic names for otherwise undistinguished boolean switches:
 233   const bool is_store       = true;
 234   const bool is_compress    = true;
 235   const bool is_static      = true;
 236   const bool is_volatile    = true;
 237 
 238   if (!jvms()->has_method()) {
 239     // Root JVMState has a null method.
 240     assert(map()->memory()->Opcode() == Op_Parm, "");
 241     // Insert the memory aliasing node
 242     set_all_memory(reset_memory());
 243   }
 244   assert(merged_memory(), "");
 245 
 246   switch (intrinsic_id()) {
 247   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 248   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 249   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 250 
 251   case vmIntrinsics::_ceil:
 252   case vmIntrinsics::_floor:
 253   case vmIntrinsics::_rint:
 254   case vmIntrinsics::_dsin:
 255   case vmIntrinsics::_dcos:
 256   case vmIntrinsics::_dtan:
 257   case vmIntrinsics::_dtanh:
 258   case vmIntrinsics::_dabs:
 259   case vmIntrinsics::_fabs:
 260   case vmIntrinsics::_iabs:
 261   case vmIntrinsics::_labs:
 262   case vmIntrinsics::_datan2:
 263   case vmIntrinsics::_dsqrt:
 264   case vmIntrinsics::_dsqrt_strict:
 265   case vmIntrinsics::_dexp:
 266   case vmIntrinsics::_dlog:
 267   case vmIntrinsics::_dlog10:
 268   case vmIntrinsics::_dpow:
 269   case vmIntrinsics::_dcopySign:
 270   case vmIntrinsics::_fcopySign:
 271   case vmIntrinsics::_dsignum:
 272   case vmIntrinsics::_roundF:
 273   case vmIntrinsics::_roundD:
 274   case vmIntrinsics::_fsignum:                  return inline_math_native(intrinsic_id());
 275 
 276   case vmIntrinsics::_notify:
 277   case vmIntrinsics::_notifyAll:
 278     return inline_notify(intrinsic_id());
 279 
 280   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 281   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 282   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 283   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 284   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 285   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 286   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 287   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 288   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 289   case vmIntrinsics::_unsignedMultiplyHigh:     return inline_math_unsignedMultiplyHigh();
 290   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 291   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 292   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 293   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 294 
 295   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 296 
 297   case vmIntrinsics::_arraySort:                return inline_array_sort();
 298   case vmIntrinsics::_arrayPartition:           return inline_array_partition();
 299 
 300   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 301   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 302   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 303   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 304 
 305   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 306   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 307   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 308   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 309   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 310   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 311   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 312   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 313 
 314   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 315 
 316   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 317 
 318   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 319   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 320   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 321   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 322 
 323   case vmIntrinsics::_compressStringC:
 324   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 325   case vmIntrinsics::_inflateStringC:
 326   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 327 
 328   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 329   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 330   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 331   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 332   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 333   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 334   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 335   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 336   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 337 
 338   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 339   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 340   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 341   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 342   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 343   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 344   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 345   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 346   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 347 
 348   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 349   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 350   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 351   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 352   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 353   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 354   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 355   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 356   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 357 
 358   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 359   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 360   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 361   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 362   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 363   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 364   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 365   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 366   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 367 
 368   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 369   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 370   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 371   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 372 
 373   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 374   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 375   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 376   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 377 
 378   case vmIntrinsics::_getReferenceAcquire:      return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 379   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 380   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 381   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 382   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 383   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 384   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 385   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 386   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 387 
 388   case vmIntrinsics::_putReferenceRelease:      return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 389   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 390   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 391   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 392   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 393   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 394   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 395   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 396   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 397 
 398   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 399   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 400   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 401   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 402   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 403   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 404   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 405   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 406   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 407 
 408   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 409   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 410   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 411   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 412   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 413   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 414   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 415   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 416   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 417 
 418   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 419   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 420   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 421   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 422   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 423 
 424   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 425   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 426   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 427   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 428   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 429   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 430   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 431   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 432   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 433   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 434   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 435   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 436   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 437   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 438   case vmIntrinsics::_weakCompareAndSetIntRelease:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 439   case vmIntrinsics::_weakCompareAndSetInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 440   case vmIntrinsics::_weakCompareAndSetLongPlain:          return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 441   case vmIntrinsics::_weakCompareAndSetLongAcquire:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 442   case vmIntrinsics::_weakCompareAndSetLongRelease:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 443   case vmIntrinsics::_weakCompareAndSetLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 444 
 445   case vmIntrinsics::_compareAndExchangeReference:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 446   case vmIntrinsics::_compareAndExchangeReferenceAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 447   case vmIntrinsics::_compareAndExchangeReferenceRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 448   case vmIntrinsics::_compareAndExchangeByte:              return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 449   case vmIntrinsics::_compareAndExchangeByteAcquire:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 450   case vmIntrinsics::_compareAndExchangeByteRelease:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 451   case vmIntrinsics::_compareAndExchangeShort:             return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 452   case vmIntrinsics::_compareAndExchangeShortAcquire:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 453   case vmIntrinsics::_compareAndExchangeShortRelease:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 454   case vmIntrinsics::_compareAndExchangeInt:               return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 455   case vmIntrinsics::_compareAndExchangeIntAcquire:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 456   case vmIntrinsics::_compareAndExchangeIntRelease:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 457   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 458   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 459   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 460 
 461   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 462   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 463   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 464   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 465 
 466   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 467   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 468   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 469   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 470   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 471 
 472   case vmIntrinsics::_loadFence:
 473   case vmIntrinsics::_storeFence:
 474   case vmIntrinsics::_storeStoreFence:
 475   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 476 
 477   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 478 
 479   case vmIntrinsics::_currentCarrierThread:     return inline_native_currentCarrierThread();
 480   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 481   case vmIntrinsics::_setCurrentThread:         return inline_native_setCurrentThread();
 482 
 483   case vmIntrinsics::_scopedValueCache:          return inline_native_scopedValueCache();
 484   case vmIntrinsics::_setScopedValueCache:       return inline_native_setScopedValueCache();
 485 
 486   case vmIntrinsics::_Continuation_pin:          return inline_native_Continuation_pinning(false);
 487   case vmIntrinsics::_Continuation_unpin:        return inline_native_Continuation_pinning(true);
 488 
 489 #if INCLUDE_JVMTI
 490   case vmIntrinsics::_notifyJvmtiVThreadStart:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()),
 491                                                                                          "notifyJvmtiStart", true, false);
 492   case vmIntrinsics::_notifyJvmtiVThreadEnd:     return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()),
 493                                                                                          "notifyJvmtiEnd", false, true);
 494   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 495                                                                                          "notifyJvmtiMount", false, false);
 496   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 497                                                                                          "notifyJvmtiUnmount", false, false);
 498   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 499 #endif
 500 
 501 #ifdef JFR_HAVE_INTRINSICS
 502   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 503   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 504   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 505 #endif
 506   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 507   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 508   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 509   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 510   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 511   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 512   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 513   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 514   case vmIntrinsics::_getLength:                return inline_native_getLength();
 515   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 516   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 517   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 518   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 519   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 520   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 521   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 522 
 523   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 524   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 525 
 526   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 527 
 528   case vmIntrinsics::_isInstance:
 529   case vmIntrinsics::_getModifiers:
 530   case vmIntrinsics::_isInterface:
 531   case vmIntrinsics::_isArray:
 532   case vmIntrinsics::_isPrimitive:
 533   case vmIntrinsics::_isHidden:
 534   case vmIntrinsics::_getSuperclass:
 535   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 536 
 537   case vmIntrinsics::_floatToRawIntBits:
 538   case vmIntrinsics::_floatToIntBits:
 539   case vmIntrinsics::_intBitsToFloat:
 540   case vmIntrinsics::_doubleToRawLongBits:
 541   case vmIntrinsics::_doubleToLongBits:
 542   case vmIntrinsics::_longBitsToDouble:
 543   case vmIntrinsics::_floatToFloat16:
 544   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 545 
 546   case vmIntrinsics::_floatIsFinite:
 547   case vmIntrinsics::_floatIsInfinite:
 548   case vmIntrinsics::_doubleIsFinite:
 549   case vmIntrinsics::_doubleIsInfinite:         return inline_fp_range_check(intrinsic_id());
 550 
 551   case vmIntrinsics::_numberOfLeadingZeros_i:
 552   case vmIntrinsics::_numberOfLeadingZeros_l:
 553   case vmIntrinsics::_numberOfTrailingZeros_i:
 554   case vmIntrinsics::_numberOfTrailingZeros_l:
 555   case vmIntrinsics::_bitCount_i:
 556   case vmIntrinsics::_bitCount_l:
 557   case vmIntrinsics::_reverse_i:
 558   case vmIntrinsics::_reverse_l:
 559   case vmIntrinsics::_reverseBytes_i:
 560   case vmIntrinsics::_reverseBytes_l:
 561   case vmIntrinsics::_reverseBytes_s:
 562   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 563 
 564   case vmIntrinsics::_compress_i:
 565   case vmIntrinsics::_compress_l:
 566   case vmIntrinsics::_expand_i:
 567   case vmIntrinsics::_expand_l:                 return inline_bitshuffle_methods(intrinsic_id());
 568 
 569   case vmIntrinsics::_compareUnsigned_i:
 570   case vmIntrinsics::_compareUnsigned_l:        return inline_compare_unsigned(intrinsic_id());
 571 
 572   case vmIntrinsics::_divideUnsigned_i:
 573   case vmIntrinsics::_divideUnsigned_l:
 574   case vmIntrinsics::_remainderUnsigned_i:
 575   case vmIntrinsics::_remainderUnsigned_l:      return inline_divmod_methods(intrinsic_id());
 576 
 577   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 578 
 579   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 580   case vmIntrinsics::_Reference_refersTo0:      return inline_reference_refersTo0(false);
 581   case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true);
 582   case vmIntrinsics::_Reference_clear0:         return inline_reference_clear0(false);
 583   case vmIntrinsics::_PhantomReference_clear0:  return inline_reference_clear0(true);
 584 
 585   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 586 
 587   case vmIntrinsics::_aescrypt_encryptBlock:
 588   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 589 
 590   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 591   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 592     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 593 
 594   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 595   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 596     return inline_electronicCodeBook_AESCrypt(intrinsic_id());
 597 
 598   case vmIntrinsics::_counterMode_AESCrypt:
 599     return inline_counterMode_AESCrypt(intrinsic_id());
 600 
 601   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 602     return inline_galoisCounterMode_AESCrypt();
 603 
 604   case vmIntrinsics::_md5_implCompress:
 605   case vmIntrinsics::_sha_implCompress:
 606   case vmIntrinsics::_sha2_implCompress:
 607   case vmIntrinsics::_sha5_implCompress:
 608   case vmIntrinsics::_sha3_implCompress:
 609     return inline_digestBase_implCompress(intrinsic_id());
 610 
 611   case vmIntrinsics::_digestBase_implCompressMB:
 612     return inline_digestBase_implCompressMB(predicate);
 613 
 614   case vmIntrinsics::_multiplyToLen:
 615     return inline_multiplyToLen();
 616 
 617   case vmIntrinsics::_squareToLen:
 618     return inline_squareToLen();
 619 
 620   case vmIntrinsics::_mulAdd:
 621     return inline_mulAdd();
 622 
 623   case vmIntrinsics::_montgomeryMultiply:
 624     return inline_montgomeryMultiply();
 625   case vmIntrinsics::_montgomerySquare:
 626     return inline_montgomerySquare();
 627 
 628   case vmIntrinsics::_bigIntegerRightShiftWorker:
 629     return inline_bigIntegerShift(true);
 630   case vmIntrinsics::_bigIntegerLeftShiftWorker:
 631     return inline_bigIntegerShift(false);
 632 
 633   case vmIntrinsics::_vectorizedMismatch:
 634     return inline_vectorizedMismatch();
 635 
 636   case vmIntrinsics::_ghash_processBlocks:
 637     return inline_ghash_processBlocks();
 638   case vmIntrinsics::_chacha20Block:
 639     return inline_chacha20Block();
 640   case vmIntrinsics::_base64_encodeBlock:
 641     return inline_base64_encodeBlock();
 642   case vmIntrinsics::_base64_decodeBlock:
 643     return inline_base64_decodeBlock();
 644   case vmIntrinsics::_poly1305_processBlocks:
 645     return inline_poly1305_processBlocks();
 646   case vmIntrinsics::_intpoly_montgomeryMult_P256:
 647     return inline_intpoly_montgomeryMult_P256();
 648   case vmIntrinsics::_intpoly_assign:
 649     return inline_intpoly_assign();
 650   case vmIntrinsics::_encodeISOArray:
 651   case vmIntrinsics::_encodeByteISOArray:
 652     return inline_encodeISOArray(false);
 653   case vmIntrinsics::_encodeAsciiArray:
 654     return inline_encodeISOArray(true);
 655 
 656   case vmIntrinsics::_updateCRC32:
 657     return inline_updateCRC32();
 658   case vmIntrinsics::_updateBytesCRC32:
 659     return inline_updateBytesCRC32();
 660   case vmIntrinsics::_updateByteBufferCRC32:
 661     return inline_updateByteBufferCRC32();
 662 
 663   case vmIntrinsics::_updateBytesCRC32C:
 664     return inline_updateBytesCRC32C();
 665   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 666     return inline_updateDirectByteBufferCRC32C();
 667 
 668   case vmIntrinsics::_updateBytesAdler32:
 669     return inline_updateBytesAdler32();
 670   case vmIntrinsics::_updateByteBufferAdler32:
 671     return inline_updateByteBufferAdler32();
 672 
 673   case vmIntrinsics::_profileBoolean:
 674     return inline_profileBoolean();
 675   case vmIntrinsics::_isCompileConstant:
 676     return inline_isCompileConstant();
 677 
 678   case vmIntrinsics::_countPositives:
 679     return inline_countPositives();
 680 
 681   case vmIntrinsics::_fmaD:
 682   case vmIntrinsics::_fmaF:
 683     return inline_fma(intrinsic_id());
 684 
 685   case vmIntrinsics::_isDigit:
 686   case vmIntrinsics::_isLowerCase:
 687   case vmIntrinsics::_isUpperCase:
 688   case vmIntrinsics::_isWhitespace:
 689     return inline_character_compare(intrinsic_id());
 690 
 691   case vmIntrinsics::_min:
 692   case vmIntrinsics::_max:
 693   case vmIntrinsics::_min_strict:
 694   case vmIntrinsics::_max_strict:
 695     return inline_min_max(intrinsic_id());
 696 
 697   case vmIntrinsics::_maxF:
 698   case vmIntrinsics::_minF:
 699   case vmIntrinsics::_maxD:
 700   case vmIntrinsics::_minD:
 701   case vmIntrinsics::_maxF_strict:
 702   case vmIntrinsics::_minF_strict:
 703   case vmIntrinsics::_maxD_strict:
 704   case vmIntrinsics::_minD_strict:
 705       return inline_fp_min_max(intrinsic_id());
 706 
 707   case vmIntrinsics::_VectorUnaryOp:
 708     return inline_vector_nary_operation(1);
 709   case vmIntrinsics::_VectorBinaryOp:
 710     return inline_vector_nary_operation(2);
 711   case vmIntrinsics::_VectorTernaryOp:
 712     return inline_vector_nary_operation(3);
 713   case vmIntrinsics::_VectorFromBitsCoerced:
 714     return inline_vector_frombits_coerced();
 715   case vmIntrinsics::_VectorShuffleIota:
 716     return inline_vector_shuffle_iota();
 717   case vmIntrinsics::_VectorMaskOp:
 718     return inline_vector_mask_operation();
 719   case vmIntrinsics::_VectorShuffleToVector:
 720     return inline_vector_shuffle_to_vector();
 721   case vmIntrinsics::_VectorWrapShuffleIndexes:
 722     return inline_vector_wrap_shuffle_indexes();
 723   case vmIntrinsics::_VectorLoadOp:
 724     return inline_vector_mem_operation(/*is_store=*/false);
 725   case vmIntrinsics::_VectorLoadMaskedOp:
 726     return inline_vector_mem_masked_operation(/*is_store*/false);
 727   case vmIntrinsics::_VectorStoreOp:
 728     return inline_vector_mem_operation(/*is_store=*/true);
 729   case vmIntrinsics::_VectorStoreMaskedOp:
 730     return inline_vector_mem_masked_operation(/*is_store=*/true);
 731   case vmIntrinsics::_VectorGatherOp:
 732     return inline_vector_gather_scatter(/*is_scatter*/ false);
 733   case vmIntrinsics::_VectorScatterOp:
 734     return inline_vector_gather_scatter(/*is_scatter*/ true);
 735   case vmIntrinsics::_VectorReductionCoerced:
 736     return inline_vector_reduction();
 737   case vmIntrinsics::_VectorTest:
 738     return inline_vector_test();
 739   case vmIntrinsics::_VectorBlend:
 740     return inline_vector_blend();
 741   case vmIntrinsics::_VectorRearrange:
 742     return inline_vector_rearrange();
 743   case vmIntrinsics::_VectorSelectFrom:
 744     return inline_vector_select_from();
 745   case vmIntrinsics::_VectorCompare:
 746     return inline_vector_compare();
 747   case vmIntrinsics::_VectorBroadcastInt:
 748     return inline_vector_broadcast_int();
 749   case vmIntrinsics::_VectorConvert:
 750     return inline_vector_convert();
 751   case vmIntrinsics::_VectorInsert:
 752     return inline_vector_insert();
 753   case vmIntrinsics::_VectorExtract:
 754     return inline_vector_extract();
 755   case vmIntrinsics::_VectorCompressExpand:
 756     return inline_vector_compress_expand();
 757   case vmIntrinsics::_VectorSelectFromTwoVectorOp:
 758     return inline_vector_select_from_two_vectors();
 759   case vmIntrinsics::_IndexVector:
 760     return inline_index_vector();
 761   case vmIntrinsics::_IndexPartiallyInUpperRange:
 762     return inline_index_partially_in_upper_range();
 763 
 764   case vmIntrinsics::_getObjectSize:
 765     return inline_getObjectSize();
 766 
 767   case vmIntrinsics::_blackhole:
 768     return inline_blackhole();
 769 
 770   default:
 771     // If you get here, it may be that someone has added a new intrinsic
 772     // to the list in vmIntrinsics.hpp without implementing it here.
 773 #ifndef PRODUCT
 774     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 775       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 776                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 777     }
 778 #endif
 779     return false;
 780   }
 781 }
 782 
 783 Node* LibraryCallKit::try_to_predicate(int predicate) {
 784   if (!jvms()->has_method()) {
 785     // Root JVMState has a null method.
 786     assert(map()->memory()->Opcode() == Op_Parm, "");
 787     // Insert the memory aliasing node
 788     set_all_memory(reset_memory());
 789   }
 790   assert(merged_memory(), "");
 791 
 792   switch (intrinsic_id()) {
 793   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 794     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 795   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 796     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 797   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 798     return inline_electronicCodeBook_AESCrypt_predicate(false);
 799   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 800     return inline_electronicCodeBook_AESCrypt_predicate(true);
 801   case vmIntrinsics::_counterMode_AESCrypt:
 802     return inline_counterMode_AESCrypt_predicate();
 803   case vmIntrinsics::_digestBase_implCompressMB:
 804     return inline_digestBase_implCompressMB_predicate(predicate);
 805   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 806     return inline_galoisCounterMode_AESCrypt_predicate();
 807 
 808   default:
 809     // If you get here, it may be that someone has added a new intrinsic
 810     // to the list in vmIntrinsics.hpp without implementing it here.
 811 #ifndef PRODUCT
 812     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 813       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 814                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 815     }
 816 #endif
 817     Node* slow_ctl = control();
 818     set_control(top()); // No fast path intrinsic
 819     return slow_ctl;
 820   }
 821 }
 822 
 823 //------------------------------set_result-------------------------------
 824 // Helper function for finishing intrinsics.
 825 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 826   record_for_igvn(region);
 827   set_control(_gvn.transform(region));
 828   set_result( _gvn.transform(value));
 829   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 830 }
 831 
 832 //------------------------------generate_guard---------------------------
 833 // Helper function for generating guarded fast-slow graph structures.
 834 // The given 'test', if true, guards a slow path.  If the test fails
 835 // then a fast path can be taken.  (We generally hope it fails.)
 836 // In all cases, GraphKit::control() is updated to the fast path.
 837 // The returned value represents the control for the slow path.
 838 // The return value is never 'top'; it is either a valid control
 839 // or null if it is obvious that the slow path can never be taken.
 840 // Also, if region and the slow control are not null, the slow edge
 841 // is appended to the region.
 842 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 843   if (stopped()) {
 844     // Already short circuited.
 845     return nullptr;
 846   }
 847 
 848   // Build an if node and its projections.
 849   // If test is true we take the slow path, which we assume is uncommon.
 850   if (_gvn.type(test) == TypeInt::ZERO) {
 851     // The slow branch is never taken.  No need to build this guard.
 852     return nullptr;
 853   }
 854 
 855   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 856 
 857   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 858   if (if_slow == top()) {
 859     // The slow branch is never taken.  No need to build this guard.
 860     return nullptr;
 861   }
 862 
 863   if (region != nullptr)
 864     region->add_req(if_slow);
 865 
 866   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 867   set_control(if_fast);
 868 
 869   return if_slow;
 870 }
 871 
 872 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 873   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 874 }
 875 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 876   return generate_guard(test, region, PROB_FAIR);
 877 }
 878 
 879 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 880                                                      Node* *pos_index) {
 881   if (stopped())
 882     return nullptr;                // already stopped
 883   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 884     return nullptr;                // index is already adequately typed
 885   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 886   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 887   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 888   if (is_neg != nullptr && pos_index != nullptr) {
 889     // Emulate effect of Parse::adjust_map_after_if.
 890     Node* ccast = new CastIINode(control(), index, TypeInt::POS);
 891     (*pos_index) = _gvn.transform(ccast);
 892   }
 893   return is_neg;
 894 }
 895 
 896 // Make sure that 'position' is a valid limit index, in [0..length].
 897 // There are two equivalent plans for checking this:
 898 //   A. (offset + copyLength)  unsigned<=  arrayLength
 899 //   B. offset  <=  (arrayLength - copyLength)
 900 // We require that all of the values above, except for the sum and
 901 // difference, are already known to be non-negative.
 902 // Plan A is robust in the face of overflow, if offset and copyLength
 903 // are both hugely positive.
 904 //
 905 // Plan B is less direct and intuitive, but it does not overflow at
 906 // all, since the difference of two non-negatives is always
 907 // representable.  Whenever Java methods must perform the equivalent
 908 // check they generally use Plan B instead of Plan A.
 909 // For the moment we use Plan A.
 910 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 911                                                   Node* subseq_length,
 912                                                   Node* array_length,
 913                                                   RegionNode* region) {
 914   if (stopped())
 915     return nullptr;                // already stopped
 916   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 917   if (zero_offset && subseq_length->eqv_uncast(array_length))
 918     return nullptr;                // common case of whole-array copy
 919   Node* last = subseq_length;
 920   if (!zero_offset)             // last += offset
 921     last = _gvn.transform(new AddINode(last, offset));
 922   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 923   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 924   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 925   return is_over;
 926 }
 927 
 928 // Emit range checks for the given String.value byte array
 929 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 930   if (stopped()) {
 931     return; // already stopped
 932   }
 933   RegionNode* bailout = new RegionNode(1);
 934   record_for_igvn(bailout);
 935   if (char_count) {
 936     // Convert char count to byte count
 937     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 938   }
 939 
 940   // Offset and count must not be negative
 941   generate_negative_guard(offset, bailout);
 942   generate_negative_guard(count, bailout);
 943   // Offset + count must not exceed length of array
 944   generate_limit_guard(offset, count, load_array_length(array), bailout);
 945 
 946   if (bailout->req() > 1) {
 947     PreserveJVMState pjvms(this);
 948     set_control(_gvn.transform(bailout));
 949     uncommon_trap(Deoptimization::Reason_intrinsic,
 950                   Deoptimization::Action_maybe_recompile);
 951   }
 952 }
 953 
 954 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset,
 955                                             bool is_immutable) {
 956   ciKlass* thread_klass = env()->Thread_klass();
 957   const Type* thread_type
 958     = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 959 
 960   Node* thread = _gvn.transform(new ThreadLocalNode());
 961   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset));
 962   tls_output = thread;
 963 
 964   Node* thread_obj_handle
 965     = (is_immutable
 966       ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
 967         TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)
 968       : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered));
 969   thread_obj_handle = _gvn.transform(thread_obj_handle);
 970 
 971   DecoratorSet decorators = IN_NATIVE;
 972   if (is_immutable) {
 973     decorators |= C2_IMMUTABLE_MEMORY;
 974   }
 975   return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators);
 976 }
 977 
 978 //--------------------------generate_current_thread--------------------
 979 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 980   return current_thread_helper(tls_output, JavaThread::threadObj_offset(),
 981                                /*is_immutable*/false);
 982 }
 983 
 984 //--------------------------generate_virtual_thread--------------------
 985 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) {
 986   return current_thread_helper(tls_output, JavaThread::vthread_offset(),
 987                                !C->method()->changes_current_thread());
 988 }
 989 
 990 //------------------------------make_string_method_node------------------------
 991 // Helper method for String intrinsic functions. This version is called with
 992 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
 993 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
 994 // containing the lengths of str1 and str2.
 995 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
 996   Node* result = nullptr;
 997   switch (opcode) {
 998   case Op_StrIndexOf:
 999     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1000                                 str1_start, cnt1, str2_start, cnt2, ae);
1001     break;
1002   case Op_StrComp:
1003     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1004                              str1_start, cnt1, str2_start, cnt2, ae);
1005     break;
1006   case Op_StrEquals:
1007     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1008     // Use the constant length if there is one because optimized match rule may exist.
1009     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1010                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1011     break;
1012   default:
1013     ShouldNotReachHere();
1014     return nullptr;
1015   }
1016 
1017   // All these intrinsics have checks.
1018   C->set_has_split_ifs(true); // Has chance for split-if optimization
1019   clear_upper_avx();
1020 
1021   return _gvn.transform(result);
1022 }
1023 
1024 //------------------------------inline_string_compareTo------------------------
1025 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1026   Node* arg1 = argument(0);
1027   Node* arg2 = argument(1);
1028 
1029   arg1 = must_be_not_null(arg1, true);
1030   arg2 = must_be_not_null(arg2, true);
1031 
1032   // Get start addr and length of first argument
1033   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1034   Node* arg1_cnt    = load_array_length(arg1);
1035 
1036   // Get start addr and length of second argument
1037   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1038   Node* arg2_cnt    = load_array_length(arg2);
1039 
1040   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1041   set_result(result);
1042   return true;
1043 }
1044 
1045 //------------------------------inline_string_equals------------------------
1046 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1047   Node* arg1 = argument(0);
1048   Node* arg2 = argument(1);
1049 
1050   // paths (plus control) merge
1051   RegionNode* region = new RegionNode(3);
1052   Node* phi = new PhiNode(region, TypeInt::BOOL);
1053 
1054   if (!stopped()) {
1055 
1056     arg1 = must_be_not_null(arg1, true);
1057     arg2 = must_be_not_null(arg2, true);
1058 
1059     // Get start addr and length of first argument
1060     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1061     Node* arg1_cnt    = load_array_length(arg1);
1062 
1063     // Get start addr and length of second argument
1064     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1065     Node* arg2_cnt    = load_array_length(arg2);
1066 
1067     // Check for arg1_cnt != arg2_cnt
1068     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1069     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1070     Node* if_ne = generate_slow_guard(bol, nullptr);
1071     if (if_ne != nullptr) {
1072       phi->init_req(2, intcon(0));
1073       region->init_req(2, if_ne);
1074     }
1075 
1076     // Check for count == 0 is done by assembler code for StrEquals.
1077 
1078     if (!stopped()) {
1079       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1080       phi->init_req(1, equals);
1081       region->init_req(1, control());
1082     }
1083   }
1084 
1085   // post merge
1086   set_control(_gvn.transform(region));
1087   record_for_igvn(region);
1088 
1089   set_result(_gvn.transform(phi));
1090   return true;
1091 }
1092 
1093 //------------------------------inline_array_equals----------------------------
1094 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1095   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1096   Node* arg1 = argument(0);
1097   Node* arg2 = argument(1);
1098 
1099   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1100   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1101   clear_upper_avx();
1102 
1103   return true;
1104 }
1105 
1106 
1107 //------------------------------inline_countPositives------------------------------
1108 bool LibraryCallKit::inline_countPositives() {
1109   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1110     return false;
1111   }
1112 
1113   assert(callee()->signature()->size() == 3, "countPositives has 3 parameters");
1114   // no receiver since it is static method
1115   Node* ba         = argument(0);
1116   Node* offset     = argument(1);
1117   Node* len        = argument(2);
1118 
1119   ba = must_be_not_null(ba, true);
1120 
1121   // Range checks
1122   generate_string_range_check(ba, offset, len, false);
1123   if (stopped()) {
1124     return true;
1125   }
1126   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1127   Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1128   set_result(_gvn.transform(result));
1129   clear_upper_avx();
1130   return true;
1131 }
1132 
1133 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) {
1134   Node* index = argument(0);
1135   Node* length = bt == T_INT ? argument(1) : argument(2);
1136   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1137     return false;
1138   }
1139 
1140   // check that length is positive
1141   Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt));
1142   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1143 
1144   {
1145     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1146     uncommon_trap(Deoptimization::Reason_intrinsic,
1147                   Deoptimization::Action_make_not_entrant);
1148   }
1149 
1150   if (stopped()) {
1151     // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success
1152     return true;
1153   }
1154 
1155   // length is now known positive, add a cast node to make this explicit
1156   jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long();
1157   Node* casted_length = ConstraintCastNode::make_cast_for_basic_type(
1158       control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1159       ConstraintCastNode::RegularDependency, bt);
1160   casted_length = _gvn.transform(casted_length);
1161   replace_in_map(length, casted_length);
1162   length = casted_length;
1163 
1164   // Use an unsigned comparison for the range check itself
1165   Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true));
1166   BoolTest::mask btest = BoolTest::lt;
1167   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1168   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1169   _gvn.set_type(rc, rc->Value(&_gvn));
1170   if (!rc_bool->is_Con()) {
1171     record_for_igvn(rc);
1172   }
1173   set_control(_gvn.transform(new IfTrueNode(rc)));
1174   {
1175     PreserveJVMState pjvms(this);
1176     set_control(_gvn.transform(new IfFalseNode(rc)));
1177     uncommon_trap(Deoptimization::Reason_range_check,
1178                   Deoptimization::Action_make_not_entrant);
1179   }
1180 
1181   if (stopped()) {
1182     // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success
1183     return true;
1184   }
1185 
1186   // index is now known to be >= 0 and < length, cast it
1187   Node* result = ConstraintCastNode::make_cast_for_basic_type(
1188       control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1189       ConstraintCastNode::RegularDependency, bt);
1190   result = _gvn.transform(result);
1191   set_result(result);
1192   replace_in_map(index, result);
1193   return true;
1194 }
1195 
1196 //------------------------------inline_string_indexOf------------------------
1197 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1198   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1199     return false;
1200   }
1201   Node* src = argument(0);
1202   Node* tgt = argument(1);
1203 
1204   // Make the merge point
1205   RegionNode* result_rgn = new RegionNode(4);
1206   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1207 
1208   src = must_be_not_null(src, true);
1209   tgt = must_be_not_null(tgt, true);
1210 
1211   // Get start addr and length of source string
1212   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1213   Node* src_count = load_array_length(src);
1214 
1215   // Get start addr and length of substring
1216   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1217   Node* tgt_count = load_array_length(tgt);
1218 
1219   Node* result = nullptr;
1220   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1221 
1222   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1223     // Divide src size by 2 if String is UTF16 encoded
1224     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1225   }
1226   if (ae == StrIntrinsicNode::UU) {
1227     // Divide substring size by 2 if String is UTF16 encoded
1228     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1229   }
1230 
1231   if (call_opt_stub) {
1232     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1233                                    StubRoutines::_string_indexof_array[ae],
1234                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1235                                    src_count, tgt_start, tgt_count);
1236     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1237   } else {
1238     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1239                                result_rgn, result_phi, ae);
1240   }
1241   if (result != nullptr) {
1242     result_phi->init_req(3, result);
1243     result_rgn->init_req(3, control());
1244   }
1245   set_control(_gvn.transform(result_rgn));
1246   record_for_igvn(result_rgn);
1247   set_result(_gvn.transform(result_phi));
1248 
1249   return true;
1250 }
1251 
1252 //-----------------------------inline_string_indexOfI-----------------------
1253 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1254   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1255     return false;
1256   }
1257   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1258     return false;
1259   }
1260 
1261   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1262   Node* src         = argument(0); // byte[]
1263   Node* src_count   = argument(1); // char count
1264   Node* tgt         = argument(2); // byte[]
1265   Node* tgt_count   = argument(3); // char count
1266   Node* from_index  = argument(4); // char index
1267 
1268   src = must_be_not_null(src, true);
1269   tgt = must_be_not_null(tgt, true);
1270 
1271   // Multiply byte array index by 2 if String is UTF16 encoded
1272   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1273   src_count = _gvn.transform(new SubINode(src_count, from_index));
1274   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1275   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1276 
1277   // Range checks
1278   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1279   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1280   if (stopped()) {
1281     return true;
1282   }
1283 
1284   RegionNode* region = new RegionNode(5);
1285   Node* phi = new PhiNode(region, TypeInt::INT);
1286   Node* result = nullptr;
1287 
1288   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1289 
1290   if (call_opt_stub) {
1291     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1292                                    StubRoutines::_string_indexof_array[ae],
1293                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1294                                    src_count, tgt_start, tgt_count);
1295     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1296   } else {
1297     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1298                                region, phi, ae);
1299   }
1300   if (result != nullptr) {
1301     // The result is index relative to from_index if substring was found, -1 otherwise.
1302     // Generate code which will fold into cmove.
1303     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1304     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1305 
1306     Node* if_lt = generate_slow_guard(bol, nullptr);
1307     if (if_lt != nullptr) {
1308       // result == -1
1309       phi->init_req(3, result);
1310       region->init_req(3, if_lt);
1311     }
1312     if (!stopped()) {
1313       result = _gvn.transform(new AddINode(result, from_index));
1314       phi->init_req(4, result);
1315       region->init_req(4, control());
1316     }
1317   }
1318 
1319   set_control(_gvn.transform(region));
1320   record_for_igvn(region);
1321   set_result(_gvn.transform(phi));
1322   clear_upper_avx();
1323 
1324   return true;
1325 }
1326 
1327 // Create StrIndexOfNode with fast path checks
1328 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1329                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1330   // Check for substr count > string count
1331   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1332   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1333   Node* if_gt = generate_slow_guard(bol, nullptr);
1334   if (if_gt != nullptr) {
1335     phi->init_req(1, intcon(-1));
1336     region->init_req(1, if_gt);
1337   }
1338   if (!stopped()) {
1339     // Check for substr count == 0
1340     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1341     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1342     Node* if_zero = generate_slow_guard(bol, nullptr);
1343     if (if_zero != nullptr) {
1344       phi->init_req(2, intcon(0));
1345       region->init_req(2, if_zero);
1346     }
1347   }
1348   if (!stopped()) {
1349     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1350   }
1351   return nullptr;
1352 }
1353 
1354 //-----------------------------inline_string_indexOfChar-----------------------
1355 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) {
1356   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1357     return false;
1358   }
1359   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1360     return false;
1361   }
1362   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1363   Node* src         = argument(0); // byte[]
1364   Node* int_ch      = argument(1);
1365   Node* from_index  = argument(2);
1366   Node* max         = argument(3);
1367 
1368   src = must_be_not_null(src, true);
1369 
1370   Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1371   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1372   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1373 
1374   // Range checks
1375   generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U);
1376 
1377   // Check for int_ch >= 0
1378   Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0)));
1379   Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge));
1380   {
1381     BuildCutout unless(this, int_ch_bol, PROB_MAX);
1382     uncommon_trap(Deoptimization::Reason_intrinsic,
1383                   Deoptimization::Action_maybe_recompile);
1384   }
1385   if (stopped()) {
1386     return true;
1387   }
1388 
1389   RegionNode* region = new RegionNode(3);
1390   Node* phi = new PhiNode(region, TypeInt::INT);
1391 
1392   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae);
1393   C->set_has_split_ifs(true); // Has chance for split-if optimization
1394   _gvn.transform(result);
1395 
1396   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1397   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1398 
1399   Node* if_lt = generate_slow_guard(bol, nullptr);
1400   if (if_lt != nullptr) {
1401     // result == -1
1402     phi->init_req(2, result);
1403     region->init_req(2, if_lt);
1404   }
1405   if (!stopped()) {
1406     result = _gvn.transform(new AddINode(result, from_index));
1407     phi->init_req(1, result);
1408     region->init_req(1, control());
1409   }
1410   set_control(_gvn.transform(region));
1411   record_for_igvn(region);
1412   set_result(_gvn.transform(phi));
1413   clear_upper_avx();
1414 
1415   return true;
1416 }
1417 //---------------------------inline_string_copy---------------------
1418 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1419 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1420 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1421 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1422 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1423 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1424 bool LibraryCallKit::inline_string_copy(bool compress) {
1425   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1426     return false;
1427   }
1428   int nargs = 5;  // 2 oops, 3 ints
1429   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1430 
1431   Node* src         = argument(0);
1432   Node* src_offset  = argument(1);
1433   Node* dst         = argument(2);
1434   Node* dst_offset  = argument(3);
1435   Node* length      = argument(4);
1436 
1437   // Check for allocation before we add nodes that would confuse
1438   // tightly_coupled_allocation()
1439   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1440 
1441   // Figure out the size and type of the elements we will be copying.
1442   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
1443   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
1444   if (src_type == nullptr || dst_type == nullptr) {
1445     return false;
1446   }
1447   BasicType src_elem = src_type->elem()->array_element_basic_type();
1448   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
1449   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1450          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1451          "Unsupported array types for inline_string_copy");
1452 
1453   src = must_be_not_null(src, true);
1454   dst = must_be_not_null(dst, true);
1455 
1456   // Convert char[] offsets to byte[] offsets
1457   bool convert_src = (compress && src_elem == T_BYTE);
1458   bool convert_dst = (!compress && dst_elem == T_BYTE);
1459   if (convert_src) {
1460     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1461   } else if (convert_dst) {
1462     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1463   }
1464 
1465   // Range checks
1466   generate_string_range_check(src, src_offset, length, convert_src);
1467   generate_string_range_check(dst, dst_offset, length, convert_dst);
1468   if (stopped()) {
1469     return true;
1470   }
1471 
1472   Node* src_start = array_element_address(src, src_offset, src_elem);
1473   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1474   // 'src_start' points to src array + scaled offset
1475   // 'dst_start' points to dst array + scaled offset
1476   Node* count = nullptr;
1477   if (compress) {
1478     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1479   } else {
1480     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1481   }
1482 
1483   if (alloc != nullptr) {
1484     if (alloc->maybe_set_complete(&_gvn)) {
1485       // "You break it, you buy it."
1486       InitializeNode* init = alloc->initialization();
1487       assert(init->is_complete(), "we just did this");
1488       init->set_complete_with_arraycopy();
1489       assert(dst->is_CheckCastPP(), "sanity");
1490       assert(dst->in(0)->in(0) == init, "dest pinned");
1491     }
1492     // Do not let stores that initialize this object be reordered with
1493     // a subsequent store that would make this object accessible by
1494     // other threads.
1495     // Record what AllocateNode this StoreStore protects so that
1496     // escape analysis can go from the MemBarStoreStoreNode to the
1497     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1498     // based on the escape status of the AllocateNode.
1499     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1500   }
1501   if (compress) {
1502     set_result(_gvn.transform(count));
1503   }
1504   clear_upper_avx();
1505 
1506   return true;
1507 }
1508 
1509 #ifdef _LP64
1510 #define XTOP ,top() /*additional argument*/
1511 #else  //_LP64
1512 #define XTOP        /*no additional argument*/
1513 #endif //_LP64
1514 
1515 //------------------------inline_string_toBytesU--------------------------
1516 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1517 bool LibraryCallKit::inline_string_toBytesU() {
1518   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1519     return false;
1520   }
1521   // Get the arguments.
1522   Node* value     = argument(0);
1523   Node* offset    = argument(1);
1524   Node* length    = argument(2);
1525 
1526   Node* newcopy = nullptr;
1527 
1528   // Set the original stack and the reexecute bit for the interpreter to reexecute
1529   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1530   { PreserveReexecuteState preexecs(this);
1531     jvms()->set_should_reexecute(true);
1532 
1533     // Check if a null path was taken unconditionally.
1534     value = null_check(value);
1535 
1536     RegionNode* bailout = new RegionNode(1);
1537     record_for_igvn(bailout);
1538 
1539     // Range checks
1540     generate_negative_guard(offset, bailout);
1541     generate_negative_guard(length, bailout);
1542     generate_limit_guard(offset, length, load_array_length(value), bailout);
1543     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1544     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1545 
1546     if (bailout->req() > 1) {
1547       PreserveJVMState pjvms(this);
1548       set_control(_gvn.transform(bailout));
1549       uncommon_trap(Deoptimization::Reason_intrinsic,
1550                     Deoptimization::Action_maybe_recompile);
1551     }
1552     if (stopped()) {
1553       return true;
1554     }
1555 
1556     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1557     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1558     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1559     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy);
1560     guarantee(alloc != nullptr, "created above");
1561 
1562     // Calculate starting addresses.
1563     Node* src_start = array_element_address(value, offset, T_CHAR);
1564     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1565 
1566     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1567     const TypeInt* toffset = gvn().type(offset)->is_int();
1568     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1569 
1570     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1571     const char* copyfunc_name = "arraycopy";
1572     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1573     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1574                       OptoRuntime::fast_arraycopy_Type(),
1575                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1576                       src_start, dst_start, ConvI2X(length) XTOP);
1577     // Do not let reads from the cloned object float above the arraycopy.
1578     if (alloc->maybe_set_complete(&_gvn)) {
1579       // "You break it, you buy it."
1580       InitializeNode* init = alloc->initialization();
1581       assert(init->is_complete(), "we just did this");
1582       init->set_complete_with_arraycopy();
1583       assert(newcopy->is_CheckCastPP(), "sanity");
1584       assert(newcopy->in(0)->in(0) == init, "dest pinned");
1585     }
1586     // Do not let stores that initialize this object be reordered with
1587     // a subsequent store that would make this object accessible by
1588     // other threads.
1589     // Record what AllocateNode this StoreStore protects so that
1590     // escape analysis can go from the MemBarStoreStoreNode to the
1591     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1592     // based on the escape status of the AllocateNode.
1593     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1594   } // original reexecute is set back here
1595 
1596   C->set_has_split_ifs(true); // Has chance for split-if optimization
1597   if (!stopped()) {
1598     set_result(newcopy);
1599   }
1600   clear_upper_avx();
1601 
1602   return true;
1603 }
1604 
1605 //------------------------inline_string_getCharsU--------------------------
1606 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1607 bool LibraryCallKit::inline_string_getCharsU() {
1608   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1609     return false;
1610   }
1611 
1612   // Get the arguments.
1613   Node* src       = argument(0);
1614   Node* src_begin = argument(1);
1615   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1616   Node* dst       = argument(3);
1617   Node* dst_begin = argument(4);
1618 
1619   // Check for allocation before we add nodes that would confuse
1620   // tightly_coupled_allocation()
1621   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1622 
1623   // Check if a null path was taken unconditionally.
1624   src = null_check(src);
1625   dst = null_check(dst);
1626   if (stopped()) {
1627     return true;
1628   }
1629 
1630   // Get length and convert char[] offset to byte[] offset
1631   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1632   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1633 
1634   // Range checks
1635   generate_string_range_check(src, src_begin, length, true);
1636   generate_string_range_check(dst, dst_begin, length, false);
1637   if (stopped()) {
1638     return true;
1639   }
1640 
1641   if (!stopped()) {
1642     // Calculate starting addresses.
1643     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1644     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1645 
1646     // Check if array addresses are aligned to HeapWordSize
1647     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1648     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1649     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1650                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1651 
1652     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1653     const char* copyfunc_name = "arraycopy";
1654     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1655     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1656                       OptoRuntime::fast_arraycopy_Type(),
1657                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1658                       src_start, dst_start, ConvI2X(length) XTOP);
1659     // Do not let reads from the cloned object float above the arraycopy.
1660     if (alloc != nullptr) {
1661       if (alloc->maybe_set_complete(&_gvn)) {
1662         // "You break it, you buy it."
1663         InitializeNode* init = alloc->initialization();
1664         assert(init->is_complete(), "we just did this");
1665         init->set_complete_with_arraycopy();
1666         assert(dst->is_CheckCastPP(), "sanity");
1667         assert(dst->in(0)->in(0) == init, "dest pinned");
1668       }
1669       // Do not let stores that initialize this object be reordered with
1670       // a subsequent store that would make this object accessible by
1671       // other threads.
1672       // Record what AllocateNode this StoreStore protects so that
1673       // escape analysis can go from the MemBarStoreStoreNode to the
1674       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1675       // based on the escape status of the AllocateNode.
1676       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1677     } else {
1678       insert_mem_bar(Op_MemBarCPUOrder);
1679     }
1680   }
1681 
1682   C->set_has_split_ifs(true); // Has chance for split-if optimization
1683   return true;
1684 }
1685 
1686 //----------------------inline_string_char_access----------------------------
1687 // Store/Load char to/from byte[] array.
1688 // static void StringUTF16.putChar(byte[] val, int index, int c)
1689 // static char StringUTF16.getChar(byte[] val, int index)
1690 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1691   Node* value  = argument(0);
1692   Node* index  = argument(1);
1693   Node* ch = is_store ? argument(2) : nullptr;
1694 
1695   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1696   // correctly requires matched array shapes.
1697   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1698           "sanity: byte[] and char[] bases agree");
1699   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1700           "sanity: byte[] and char[] scales agree");
1701 
1702   // Bail when getChar over constants is requested: constant folding would
1703   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1704   // Java method would constant fold nicely instead.
1705   if (!is_store && value->is_Con() && index->is_Con()) {
1706     return false;
1707   }
1708 
1709   // Save state and restore on bailout
1710   uint old_sp = sp();
1711   SafePointNode* old_map = clone_map();
1712 
1713   value = must_be_not_null(value, true);
1714 
1715   Node* adr = array_element_address(value, index, T_CHAR);
1716   if (adr->is_top()) {
1717     set_map(old_map);
1718     set_sp(old_sp);
1719     return false;
1720   }
1721   destruct_map_clone(old_map);
1722   if (is_store) {
1723     access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1724   } else {
1725     ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
1726     set_result(ch);
1727   }
1728   return true;
1729 }
1730 
1731 //--------------------------round_double_node--------------------------------
1732 // Round a double node if necessary.
1733 Node* LibraryCallKit::round_double_node(Node* n) {
1734   if (Matcher::strict_fp_requires_explicit_rounding) {
1735 #ifdef IA32
1736     if (UseSSE < 2) {
1737       n = _gvn.transform(new RoundDoubleNode(nullptr, n));
1738     }
1739 #else
1740     Unimplemented();
1741 #endif // IA32
1742   }
1743   return n;
1744 }
1745 
1746 //------------------------------inline_math-----------------------------------
1747 // public static double Math.abs(double)
1748 // public static double Math.sqrt(double)
1749 // public static double Math.log(double)
1750 // public static double Math.log10(double)
1751 // public static double Math.round(double)
1752 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1753   Node* arg = round_double_node(argument(0));
1754   Node* n = nullptr;
1755   switch (id) {
1756   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1757   case vmIntrinsics::_dsqrt:
1758   case vmIntrinsics::_dsqrt_strict:
1759                               n = new SqrtDNode(C, control(),  arg);  break;
1760   case vmIntrinsics::_ceil:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break;
1761   case vmIntrinsics::_floor:  n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break;
1762   case vmIntrinsics::_rint:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break;
1763   case vmIntrinsics::_roundD: n = new RoundDNode(arg); break;
1764   case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break;
1765   case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break;
1766   default:  fatal_unexpected_iid(id);  break;
1767   }
1768   set_result(_gvn.transform(n));
1769   return true;
1770 }
1771 
1772 //------------------------------inline_math-----------------------------------
1773 // public static float Math.abs(float)
1774 // public static int Math.abs(int)
1775 // public static long Math.abs(long)
1776 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1777   Node* arg = argument(0);
1778   Node* n = nullptr;
1779   switch (id) {
1780   case vmIntrinsics::_fabs:   n = new AbsFNode(                arg);  break;
1781   case vmIntrinsics::_iabs:   n = new AbsINode(                arg);  break;
1782   case vmIntrinsics::_labs:   n = new AbsLNode(                arg);  break;
1783   case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break;
1784   case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break;
1785   case vmIntrinsics::_roundF: n = new RoundFNode(arg); break;
1786   default:  fatal_unexpected_iid(id);  break;
1787   }
1788   set_result(_gvn.transform(n));
1789   return true;
1790 }
1791 
1792 //------------------------------runtime_math-----------------------------
1793 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1794   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1795          "must be (DD)D or (D)D type");
1796 
1797   // Inputs
1798   Node* a = round_double_node(argument(0));
1799   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr;
1800 
1801   const TypePtr* no_memory_effects = nullptr;
1802   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1803                                  no_memory_effects,
1804                                  a, top(), b, b ? top() : nullptr);
1805   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1806 #ifdef ASSERT
1807   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1808   assert(value_top == top(), "second value must be top");
1809 #endif
1810 
1811   set_result(value);
1812   return true;
1813 }
1814 
1815 //------------------------------inline_math_pow-----------------------------
1816 bool LibraryCallKit::inline_math_pow() {
1817   Node* exp = round_double_node(argument(2));
1818   const TypeD* d = _gvn.type(exp)->isa_double_constant();
1819   if (d != nullptr) {
1820     if (d->getd() == 2.0) {
1821       // Special case: pow(x, 2.0) => x * x
1822       Node* base = round_double_node(argument(0));
1823       set_result(_gvn.transform(new MulDNode(base, base)));
1824       return true;
1825     } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) {
1826       // Special case: pow(x, 0.5) => sqrt(x)
1827       Node* base = round_double_node(argument(0));
1828       Node* zero = _gvn.zerocon(T_DOUBLE);
1829 
1830       RegionNode* region = new RegionNode(3);
1831       Node* phi = new PhiNode(region, Type::DOUBLE);
1832 
1833       Node* cmp  = _gvn.transform(new CmpDNode(base, zero));
1834       // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0.
1835       // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0).
1836       // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0.
1837       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le));
1838 
1839       Node* if_pow = generate_slow_guard(test, nullptr);
1840       Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base));
1841       phi->init_req(1, value_sqrt);
1842       region->init_req(1, control());
1843 
1844       if (if_pow != nullptr) {
1845         set_control(if_pow);
1846         address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() :
1847                                                         CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
1848         const TypePtr* no_memory_effects = nullptr;
1849         Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW",
1850                                        no_memory_effects, base, top(), exp, top());
1851         Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1852 #ifdef ASSERT
1853         Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1854         assert(value_top == top(), "second value must be top");
1855 #endif
1856         phi->init_req(2, value_pow);
1857         region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control)));
1858       }
1859 
1860       C->set_has_split_ifs(true); // Has chance for split-if optimization
1861       set_control(_gvn.transform(region));
1862       record_for_igvn(region);
1863       set_result(_gvn.transform(phi));
1864 
1865       return true;
1866     }
1867   }
1868 
1869   return StubRoutines::dpow() != nullptr ?
1870     runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1871     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow),  "POW");
1872 }
1873 
1874 //------------------------------inline_math_native-----------------------------
1875 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1876   switch (id) {
1877   case vmIntrinsics::_dsin:
1878     return StubRoutines::dsin() != nullptr ?
1879       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1880       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin),   "SIN");
1881   case vmIntrinsics::_dcos:
1882     return StubRoutines::dcos() != nullptr ?
1883       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1884       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos),   "COS");
1885   case vmIntrinsics::_dtan:
1886     return StubRoutines::dtan() != nullptr ?
1887       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1888       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1889   case vmIntrinsics::_dtanh:
1890     return StubRoutines::dtanh() != nullptr ?
1891       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false;
1892   case vmIntrinsics::_dexp:
1893     return StubRoutines::dexp() != nullptr ?
1894       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1895       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp),  "EXP");
1896   case vmIntrinsics::_dlog:
1897     return StubRoutines::dlog() != nullptr ?
1898       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1899       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog),   "LOG");
1900   case vmIntrinsics::_dlog10:
1901     return StubRoutines::dlog10() != nullptr ?
1902       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1903       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1904 
1905   case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false;
1906   case vmIntrinsics::_ceil:
1907   case vmIntrinsics::_floor:
1908   case vmIntrinsics::_rint:   return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1909 
1910   case vmIntrinsics::_dsqrt:
1911   case vmIntrinsics::_dsqrt_strict:
1912                               return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1913   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_double_math(id) : false;
1914   case vmIntrinsics::_fabs:   return Matcher::match_rule_supported(Op_AbsF)   ? inline_math(id) : false;
1915   case vmIntrinsics::_iabs:   return Matcher::match_rule_supported(Op_AbsI)   ? inline_math(id) : false;
1916   case vmIntrinsics::_labs:   return Matcher::match_rule_supported(Op_AbsL)   ? inline_math(id) : false;
1917 
1918   case vmIntrinsics::_dpow:      return inline_math_pow();
1919   case vmIntrinsics::_dcopySign: return inline_double_math(id);
1920   case vmIntrinsics::_fcopySign: return inline_math(id);
1921   case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false;
1922   case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false;
1923   case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false;
1924 
1925    // These intrinsics are not yet correctly implemented
1926   case vmIntrinsics::_datan2:
1927     return false;
1928 
1929   default:
1930     fatal_unexpected_iid(id);
1931     return false;
1932   }
1933 }
1934 
1935 //----------------------------inline_notify-----------------------------------*
1936 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1937   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1938   address func;
1939   if (id == vmIntrinsics::_notify) {
1940     func = OptoRuntime::monitor_notify_Java();
1941   } else {
1942     func = OptoRuntime::monitor_notifyAll_Java();
1943   }
1944   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0));
1945   make_slow_call_ex(call, env()->Throwable_klass(), false);
1946   return true;
1947 }
1948 
1949 
1950 //----------------------------inline_min_max-----------------------------------
1951 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1952   set_result(generate_min_max(id, argument(0), argument(1)));
1953   return true;
1954 }
1955 
1956 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1957   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1958   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1959   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1960   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1961 
1962   {
1963     PreserveJVMState pjvms(this);
1964     PreserveReexecuteState preexecs(this);
1965     jvms()->set_should_reexecute(true);
1966 
1967     set_control(slow_path);
1968     set_i_o(i_o());
1969 
1970     uncommon_trap(Deoptimization::Reason_intrinsic,
1971                   Deoptimization::Action_none);
1972   }
1973 
1974   set_control(fast_path);
1975   set_result(math);
1976 }
1977 
1978 template <typename OverflowOp>
1979 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1980   typedef typename OverflowOp::MathOp MathOp;
1981 
1982   MathOp* mathOp = new MathOp(arg1, arg2);
1983   Node* operation = _gvn.transform( mathOp );
1984   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1985   inline_math_mathExact(operation, ofcheck);
1986   return true;
1987 }
1988 
1989 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1990   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1991 }
1992 
1993 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1994   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1995 }
1996 
1997 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1998   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1999 }
2000 
2001 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2002   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2003 }
2004 
2005 bool LibraryCallKit::inline_math_negateExactI() {
2006   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2007 }
2008 
2009 bool LibraryCallKit::inline_math_negateExactL() {
2010   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2011 }
2012 
2013 bool LibraryCallKit::inline_math_multiplyExactI() {
2014   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2015 }
2016 
2017 bool LibraryCallKit::inline_math_multiplyExactL() {
2018   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2019 }
2020 
2021 bool LibraryCallKit::inline_math_multiplyHigh() {
2022   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
2023   return true;
2024 }
2025 
2026 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() {
2027   set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2))));
2028   return true;
2029 }
2030 
2031 Node*
2032 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2033   Node* result_val = nullptr;
2034   switch (id) {
2035   case vmIntrinsics::_min:
2036   case vmIntrinsics::_min_strict:
2037     result_val = _gvn.transform(new MinINode(x0, y0));
2038     break;
2039   case vmIntrinsics::_max:
2040   case vmIntrinsics::_max_strict:
2041     result_val = _gvn.transform(new MaxINode(x0, y0));
2042     break;
2043   default:
2044     fatal_unexpected_iid(id);
2045     break;
2046   }
2047   return result_val;
2048 }
2049 
2050 inline int
2051 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2052   const TypePtr* base_type = TypePtr::NULL_PTR;
2053   if (base != nullptr)  base_type = _gvn.type(base)->isa_ptr();
2054   if (base_type == nullptr) {
2055     // Unknown type.
2056     return Type::AnyPtr;
2057   } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) {
2058     // Since this is a null+long form, we have to switch to a rawptr.
2059     base   = _gvn.transform(new CastX2PNode(offset));
2060     offset = MakeConX(0);
2061     return Type::RawPtr;
2062   } else if (base_type->base() == Type::RawPtr) {
2063     return Type::RawPtr;
2064   } else if (base_type->isa_oopptr()) {
2065     // Base is never null => always a heap address.
2066     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2067       return Type::OopPtr;
2068     }
2069     // Offset is small => always a heap address.
2070     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2071     if (offset_type != nullptr &&
2072         base_type->offset() == 0 &&     // (should always be?)
2073         offset_type->_lo >= 0 &&
2074         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2075       return Type::OopPtr;
2076     } else if (type == T_OBJECT) {
2077       // off heap access to an oop doesn't make any sense. Has to be on
2078       // heap.
2079       return Type::OopPtr;
2080     }
2081     // Otherwise, it might either be oop+off or null+addr.
2082     return Type::AnyPtr;
2083   } else {
2084     // No information:
2085     return Type::AnyPtr;
2086   }
2087 }
2088 
2089 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2090   Node* uncasted_base = base;
2091   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2092   if (kind == Type::RawPtr) {
2093     return basic_plus_adr(top(), uncasted_base, offset);
2094   } else if (kind == Type::AnyPtr) {
2095     assert(base == uncasted_base, "unexpected base change");
2096     if (can_cast) {
2097       if (!_gvn.type(base)->speculative_maybe_null() &&
2098           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2099         // According to profiling, this access is always on
2100         // heap. Casting the base to not null and thus avoiding membars
2101         // around the access should allow better optimizations
2102         Node* null_ctl = top();
2103         base = null_check_oop(base, &null_ctl, true, true, true);
2104         assert(null_ctl->is_top(), "no null control here");
2105         return basic_plus_adr(base, offset);
2106       } else if (_gvn.type(base)->speculative_always_null() &&
2107                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2108         // According to profiling, this access is always off
2109         // heap.
2110         base = null_assert(base);
2111         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2112         offset = MakeConX(0);
2113         return basic_plus_adr(top(), raw_base, offset);
2114       }
2115     }
2116     // We don't know if it's an on heap or off heap access. Fall back
2117     // to raw memory access.
2118     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2119     return basic_plus_adr(top(), raw, offset);
2120   } else {
2121     assert(base == uncasted_base, "unexpected base change");
2122     // We know it's an on heap access so base can't be null
2123     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2124       base = must_be_not_null(base, true);
2125     }
2126     return basic_plus_adr(base, offset);
2127   }
2128 }
2129 
2130 //--------------------------inline_number_methods-----------------------------
2131 // inline int     Integer.numberOfLeadingZeros(int)
2132 // inline int        Long.numberOfLeadingZeros(long)
2133 //
2134 // inline int     Integer.numberOfTrailingZeros(int)
2135 // inline int        Long.numberOfTrailingZeros(long)
2136 //
2137 // inline int     Integer.bitCount(int)
2138 // inline int        Long.bitCount(long)
2139 //
2140 // inline char  Character.reverseBytes(char)
2141 // inline short     Short.reverseBytes(short)
2142 // inline int     Integer.reverseBytes(int)
2143 // inline long       Long.reverseBytes(long)
2144 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2145   Node* arg = argument(0);
2146   Node* n = nullptr;
2147   switch (id) {
2148   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2149   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2150   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2151   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2152   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2153   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2154   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(nullptr, arg);  break;
2155   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( nullptr, arg);  break;
2156   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( nullptr, arg);  break;
2157   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( nullptr, arg);  break;
2158   case vmIntrinsics::_reverse_i:                n = new ReverseINode(nullptr, arg); break;
2159   case vmIntrinsics::_reverse_l:                n = new ReverseLNode(nullptr, arg); break;
2160   default:  fatal_unexpected_iid(id);  break;
2161   }
2162   set_result(_gvn.transform(n));
2163   return true;
2164 }
2165 
2166 //--------------------------inline_bitshuffle_methods-----------------------------
2167 // inline int Integer.compress(int, int)
2168 // inline int Integer.expand(int, int)
2169 // inline long Long.compress(long, long)
2170 // inline long Long.expand(long, long)
2171 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) {
2172   Node* n = nullptr;
2173   switch (id) {
2174     case vmIntrinsics::_compress_i:  n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break;
2175     case vmIntrinsics::_expand_i:    n = new ExpandBitsNode(argument(0),  argument(1), TypeInt::INT); break;
2176     case vmIntrinsics::_compress_l:  n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2177     case vmIntrinsics::_expand_l:    n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2178     default:  fatal_unexpected_iid(id);  break;
2179   }
2180   set_result(_gvn.transform(n));
2181   return true;
2182 }
2183 
2184 //--------------------------inline_number_methods-----------------------------
2185 // inline int Integer.compareUnsigned(int, int)
2186 // inline int    Long.compareUnsigned(long, long)
2187 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) {
2188   Node* arg1 = argument(0);
2189   Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1);
2190   Node* n = nullptr;
2191   switch (id) {
2192     case vmIntrinsics::_compareUnsigned_i:   n = new CmpU3Node(arg1, arg2);  break;
2193     case vmIntrinsics::_compareUnsigned_l:   n = new CmpUL3Node(arg1, arg2); break;
2194     default:  fatal_unexpected_iid(id);  break;
2195   }
2196   set_result(_gvn.transform(n));
2197   return true;
2198 }
2199 
2200 //--------------------------inline_unsigned_divmod_methods-----------------------------
2201 // inline int Integer.divideUnsigned(int, int)
2202 // inline int Integer.remainderUnsigned(int, int)
2203 // inline long Long.divideUnsigned(long, long)
2204 // inline long Long.remainderUnsigned(long, long)
2205 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) {
2206   Node* n = nullptr;
2207   switch (id) {
2208     case vmIntrinsics::_divideUnsigned_i: {
2209       zero_check_int(argument(1));
2210       // Compile-time detect of null-exception
2211       if (stopped()) {
2212         return true; // keep the graph constructed so far
2213       }
2214       n = new UDivINode(control(), argument(0), argument(1));
2215       break;
2216     }
2217     case vmIntrinsics::_divideUnsigned_l: {
2218       zero_check_long(argument(2));
2219       // Compile-time detect of null-exception
2220       if (stopped()) {
2221         return true; // keep the graph constructed so far
2222       }
2223       n = new UDivLNode(control(), argument(0), argument(2));
2224       break;
2225     }
2226     case vmIntrinsics::_remainderUnsigned_i: {
2227       zero_check_int(argument(1));
2228       // Compile-time detect of null-exception
2229       if (stopped()) {
2230         return true; // keep the graph constructed so far
2231       }
2232       n = new UModINode(control(), argument(0), argument(1));
2233       break;
2234     }
2235     case vmIntrinsics::_remainderUnsigned_l: {
2236       zero_check_long(argument(2));
2237       // Compile-time detect of null-exception
2238       if (stopped()) {
2239         return true; // keep the graph constructed so far
2240       }
2241       n = new UModLNode(control(), argument(0), argument(2));
2242       break;
2243     }
2244     default:  fatal_unexpected_iid(id);  break;
2245   }
2246   set_result(_gvn.transform(n));
2247   return true;
2248 }
2249 
2250 //----------------------------inline_unsafe_access----------------------------
2251 
2252 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2253   // Attempt to infer a sharper value type from the offset and base type.
2254   ciKlass* sharpened_klass = nullptr;
2255 
2256   // See if it is an instance field, with an object type.
2257   if (alias_type->field() != nullptr) {
2258     if (alias_type->field()->type()->is_klass()) {
2259       sharpened_klass = alias_type->field()->type()->as_klass();
2260     }
2261   }
2262 
2263   const TypeOopPtr* result = nullptr;
2264   // See if it is a narrow oop array.
2265   if (adr_type->isa_aryptr()) {
2266     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2267       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2268       if (elem_type != nullptr && elem_type->is_loaded()) {
2269         // Sharpen the value type.
2270         result = elem_type;
2271       }
2272     }
2273   }
2274 
2275   // The sharpened class might be unloaded if there is no class loader
2276   // contraint in place.
2277   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2278     // Sharpen the value type.
2279     result = TypeOopPtr::make_from_klass(sharpened_klass);
2280   }
2281   if (result != nullptr) {
2282 #ifndef PRODUCT
2283     if (C->print_intrinsics() || C->print_inlining()) {
2284       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2285       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2286     }
2287 #endif
2288   }
2289   return result;
2290 }
2291 
2292 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2293   switch (kind) {
2294       case Relaxed:
2295         return MO_UNORDERED;
2296       case Opaque:
2297         return MO_RELAXED;
2298       case Acquire:
2299         return MO_ACQUIRE;
2300       case Release:
2301         return MO_RELEASE;
2302       case Volatile:
2303         return MO_SEQ_CST;
2304       default:
2305         ShouldNotReachHere();
2306         return 0;
2307   }
2308 }
2309 
2310 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2311   if (callee()->is_static())  return false;  // caller must have the capability!
2312   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2313   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2314   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2315   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2316 
2317   if (is_reference_type(type)) {
2318     decorators |= ON_UNKNOWN_OOP_REF;
2319   }
2320 
2321   if (unaligned) {
2322     decorators |= C2_UNALIGNED;
2323   }
2324 
2325 #ifndef PRODUCT
2326   {
2327     ResourceMark rm;
2328     // Check the signatures.
2329     ciSignature* sig = callee()->signature();
2330 #ifdef ASSERT
2331     if (!is_store) {
2332       // Object getReference(Object base, int/long offset), etc.
2333       BasicType rtype = sig->return_type()->basic_type();
2334       assert(rtype == type, "getter must return the expected value");
2335       assert(sig->count() == 2, "oop getter has 2 arguments");
2336       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2337       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2338     } else {
2339       // void putReference(Object base, int/long offset, Object x), etc.
2340       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2341       assert(sig->count() == 3, "oop putter has 3 arguments");
2342       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2343       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2344       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2345       assert(vtype == type, "putter must accept the expected value");
2346     }
2347 #endif // ASSERT
2348  }
2349 #endif //PRODUCT
2350 
2351   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2352 
2353   Node* receiver = argument(0);  // type: oop
2354 
2355   // Build address expression.
2356   Node* heap_base_oop = top();
2357 
2358   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2359   Node* base = argument(1);  // type: oop
2360   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2361   Node* offset = argument(2);  // type: long
2362   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2363   // to be plain byte offsets, which are also the same as those accepted
2364   // by oopDesc::field_addr.
2365   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2366          "fieldOffset must be byte-scaled");
2367   // 32-bit machines ignore the high half!
2368   offset = ConvL2X(offset);
2369 
2370   // Save state and restore on bailout
2371   uint old_sp = sp();
2372   SafePointNode* old_map = clone_map();
2373 
2374   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2375   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2376 
2377   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2378     if (type != T_OBJECT) {
2379       decorators |= IN_NATIVE; // off-heap primitive access
2380     } else {
2381       set_map(old_map);
2382       set_sp(old_sp);
2383       return false; // off-heap oop accesses are not supported
2384     }
2385   } else {
2386     heap_base_oop = base; // on-heap or mixed access
2387   }
2388 
2389   // Can base be null? Otherwise, always on-heap access.
2390   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2391 
2392   if (!can_access_non_heap) {
2393     decorators |= IN_HEAP;
2394   }
2395 
2396   Node* val = is_store ? argument(4) : nullptr;
2397 
2398   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2399   if (adr_type == TypePtr::NULL_PTR) {
2400     set_map(old_map);
2401     set_sp(old_sp);
2402     return false; // off-heap access with zero address
2403   }
2404 
2405   // Try to categorize the address.
2406   Compile::AliasType* alias_type = C->alias_type(adr_type);
2407   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2408 
2409   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2410       alias_type->adr_type() == TypeAryPtr::RANGE) {
2411     set_map(old_map);
2412     set_sp(old_sp);
2413     return false; // not supported
2414   }
2415 
2416   bool mismatched = false;
2417   BasicType bt = alias_type->basic_type();
2418   if (bt != T_ILLEGAL) {
2419     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2420     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2421       // Alias type doesn't differentiate between byte[] and boolean[]).
2422       // Use address type to get the element type.
2423       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2424     }
2425     if (is_reference_type(bt, true)) {
2426       // accessing an array field with getReference is not a mismatch
2427       bt = T_OBJECT;
2428     }
2429     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2430       // Don't intrinsify mismatched object accesses
2431       set_map(old_map);
2432       set_sp(old_sp);
2433       return false;
2434     }
2435     mismatched = (bt != type);
2436   } else if (alias_type->adr_type()->isa_oopptr()) {
2437     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2438   }
2439 
2440   destruct_map_clone(old_map);
2441   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2442 
2443   if (mismatched) {
2444     decorators |= C2_MISMATCHED;
2445   }
2446 
2447   // First guess at the value type.
2448   const Type *value_type = Type::get_const_basic_type(type);
2449 
2450   // Figure out the memory ordering.
2451   decorators |= mo_decorator_for_access_kind(kind);
2452 
2453   if (!is_store && type == T_OBJECT) {
2454     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2455     if (tjp != nullptr) {
2456       value_type = tjp;
2457     }
2458   }
2459 
2460   receiver = null_check(receiver);
2461   if (stopped()) {
2462     return true;
2463   }
2464   // Heap pointers get a null-check from the interpreter,
2465   // as a courtesy.  However, this is not guaranteed by Unsafe,
2466   // and it is not possible to fully distinguish unintended nulls
2467   // from intended ones in this API.
2468 
2469   if (!is_store) {
2470     Node* p = nullptr;
2471     // Try to constant fold a load from a constant field
2472     ciField* field = alias_type->field();
2473     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2474       // final or stable field
2475       p = make_constant_from_field(field, heap_base_oop);
2476     }
2477 
2478     if (p == nullptr) { // Could not constant fold the load
2479       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2480       // Normalize the value returned by getBoolean in the following cases
2481       if (type == T_BOOLEAN &&
2482           (mismatched ||
2483            heap_base_oop == top() ||                  // - heap_base_oop is null or
2484            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2485                                                       //   and the unsafe access is made to large offset
2486                                                       //   (i.e., larger than the maximum offset necessary for any
2487                                                       //   field access)
2488             ) {
2489           IdealKit ideal = IdealKit(this);
2490 #define __ ideal.
2491           IdealVariable normalized_result(ideal);
2492           __ declarations_done();
2493           __ set(normalized_result, p);
2494           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2495           __ set(normalized_result, ideal.ConI(1));
2496           ideal.end_if();
2497           final_sync(ideal);
2498           p = __ value(normalized_result);
2499 #undef __
2500       }
2501     }
2502     if (type == T_ADDRESS) {
2503       p = gvn().transform(new CastP2XNode(nullptr, p));
2504       p = ConvX2UL(p);
2505     }
2506     // The load node has the control of the preceding MemBarCPUOrder.  All
2507     // following nodes will have the control of the MemBarCPUOrder inserted at
2508     // the end of this method.  So, pushing the load onto the stack at a later
2509     // point is fine.
2510     set_result(p);
2511   } else {
2512     if (bt == T_ADDRESS) {
2513       // Repackage the long as a pointer.
2514       val = ConvL2X(val);
2515       val = gvn().transform(new CastX2PNode(val));
2516     }
2517     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2518   }
2519 
2520   return true;
2521 }
2522 
2523 //----------------------------inline_unsafe_load_store----------------------------
2524 // This method serves a couple of different customers (depending on LoadStoreKind):
2525 //
2526 // LS_cmp_swap:
2527 //
2528 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2529 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2530 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2531 //
2532 // LS_cmp_swap_weak:
2533 //
2534 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2535 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2536 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2537 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2538 //
2539 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2540 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2541 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2542 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2543 //
2544 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2545 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2546 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2547 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2548 //
2549 // LS_cmp_exchange:
2550 //
2551 //   Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2552 //   Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2553 //   Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2554 //
2555 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2556 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2557 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2558 //
2559 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2560 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2561 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2562 //
2563 // LS_get_add:
2564 //
2565 //   int  getAndAddInt( Object o, long offset, int  delta)
2566 //   long getAndAddLong(Object o, long offset, long delta)
2567 //
2568 // LS_get_set:
2569 //
2570 //   int    getAndSet(Object o, long offset, int    newValue)
2571 //   long   getAndSet(Object o, long offset, long   newValue)
2572 //   Object getAndSet(Object o, long offset, Object newValue)
2573 //
2574 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2575   // This basic scheme here is the same as inline_unsafe_access, but
2576   // differs in enough details that combining them would make the code
2577   // overly confusing.  (This is a true fact! I originally combined
2578   // them, but even I was confused by it!) As much code/comments as
2579   // possible are retained from inline_unsafe_access though to make
2580   // the correspondences clearer. - dl
2581 
2582   if (callee()->is_static())  return false;  // caller must have the capability!
2583 
2584   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2585   decorators |= mo_decorator_for_access_kind(access_kind);
2586 
2587 #ifndef PRODUCT
2588   BasicType rtype;
2589   {
2590     ResourceMark rm;
2591     // Check the signatures.
2592     ciSignature* sig = callee()->signature();
2593     rtype = sig->return_type()->basic_type();
2594     switch(kind) {
2595       case LS_get_add:
2596       case LS_get_set: {
2597       // Check the signatures.
2598 #ifdef ASSERT
2599       assert(rtype == type, "get and set must return the expected type");
2600       assert(sig->count() == 3, "get and set has 3 arguments");
2601       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2602       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2603       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2604       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2605 #endif // ASSERT
2606         break;
2607       }
2608       case LS_cmp_swap:
2609       case LS_cmp_swap_weak: {
2610       // Check the signatures.
2611 #ifdef ASSERT
2612       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2613       assert(sig->count() == 4, "CAS has 4 arguments");
2614       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2615       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2616 #endif // ASSERT
2617         break;
2618       }
2619       case LS_cmp_exchange: {
2620       // Check the signatures.
2621 #ifdef ASSERT
2622       assert(rtype == type, "CAS must return the expected type");
2623       assert(sig->count() == 4, "CAS has 4 arguments");
2624       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2625       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2626 #endif // ASSERT
2627         break;
2628       }
2629       default:
2630         ShouldNotReachHere();
2631     }
2632   }
2633 #endif //PRODUCT
2634 
2635   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2636 
2637   // Get arguments:
2638   Node* receiver = nullptr;
2639   Node* base     = nullptr;
2640   Node* offset   = nullptr;
2641   Node* oldval   = nullptr;
2642   Node* newval   = nullptr;
2643   switch(kind) {
2644     case LS_cmp_swap:
2645     case LS_cmp_swap_weak:
2646     case LS_cmp_exchange: {
2647       const bool two_slot_type = type2size[type] == 2;
2648       receiver = argument(0);  // type: oop
2649       base     = argument(1);  // type: oop
2650       offset   = argument(2);  // type: long
2651       oldval   = argument(4);  // type: oop, int, or long
2652       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2653       break;
2654     }
2655     case LS_get_add:
2656     case LS_get_set: {
2657       receiver = argument(0);  // type: oop
2658       base     = argument(1);  // type: oop
2659       offset   = argument(2);  // type: long
2660       oldval   = nullptr;
2661       newval   = argument(4);  // type: oop, int, or long
2662       break;
2663     }
2664     default:
2665       ShouldNotReachHere();
2666   }
2667 
2668   // Build field offset expression.
2669   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2670   // to be plain byte offsets, which are also the same as those accepted
2671   // by oopDesc::field_addr.
2672   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2673   // 32-bit machines ignore the high half of long offsets
2674   offset = ConvL2X(offset);
2675   // Save state and restore on bailout
2676   uint old_sp = sp();
2677   SafePointNode* old_map = clone_map();
2678   Node* adr = make_unsafe_address(base, offset,type, false);
2679   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2680 
2681   Compile::AliasType* alias_type = C->alias_type(adr_type);
2682   BasicType bt = alias_type->basic_type();
2683   if (bt != T_ILLEGAL &&
2684       (is_reference_type(bt) != (type == T_OBJECT))) {
2685     // Don't intrinsify mismatched object accesses.
2686     set_map(old_map);
2687     set_sp(old_sp);
2688     return false;
2689   }
2690 
2691   destruct_map_clone(old_map);
2692 
2693   // For CAS, unlike inline_unsafe_access, there seems no point in
2694   // trying to refine types. Just use the coarse types here.
2695   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2696   const Type *value_type = Type::get_const_basic_type(type);
2697 
2698   switch (kind) {
2699     case LS_get_set:
2700     case LS_cmp_exchange: {
2701       if (type == T_OBJECT) {
2702         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2703         if (tjp != nullptr) {
2704           value_type = tjp;
2705         }
2706       }
2707       break;
2708     }
2709     case LS_cmp_swap:
2710     case LS_cmp_swap_weak:
2711     case LS_get_add:
2712       break;
2713     default:
2714       ShouldNotReachHere();
2715   }
2716 
2717   // Null check receiver.
2718   receiver = null_check(receiver);
2719   if (stopped()) {
2720     return true;
2721   }
2722 
2723   int alias_idx = C->get_alias_index(adr_type);
2724 
2725   if (is_reference_type(type)) {
2726     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2727 
2728     // Transformation of a value which could be null pointer (CastPP #null)
2729     // could be delayed during Parse (for example, in adjust_map_after_if()).
2730     // Execute transformation here to avoid barrier generation in such case.
2731     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2732       newval = _gvn.makecon(TypePtr::NULL_PTR);
2733 
2734     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2735       // Refine the value to a null constant, when it is known to be null
2736       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2737     }
2738   }
2739 
2740   Node* result = nullptr;
2741   switch (kind) {
2742     case LS_cmp_exchange: {
2743       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2744                                             oldval, newval, value_type, type, decorators);
2745       break;
2746     }
2747     case LS_cmp_swap_weak:
2748       decorators |= C2_WEAK_CMPXCHG;
2749     case LS_cmp_swap: {
2750       result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
2751                                              oldval, newval, value_type, type, decorators);
2752       break;
2753     }
2754     case LS_get_set: {
2755       result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
2756                                      newval, value_type, type, decorators);
2757       break;
2758     }
2759     case LS_get_add: {
2760       result = access_atomic_add_at(base, adr, adr_type, alias_idx,
2761                                     newval, value_type, type, decorators);
2762       break;
2763     }
2764     default:
2765       ShouldNotReachHere();
2766   }
2767 
2768   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2769   set_result(result);
2770   return true;
2771 }
2772 
2773 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2774   // Regardless of form, don't allow previous ld/st to move down,
2775   // then issue acquire, release, or volatile mem_bar.
2776   insert_mem_bar(Op_MemBarCPUOrder);
2777   switch(id) {
2778     case vmIntrinsics::_loadFence:
2779       insert_mem_bar(Op_LoadFence);
2780       return true;
2781     case vmIntrinsics::_storeFence:
2782       insert_mem_bar(Op_StoreFence);
2783       return true;
2784     case vmIntrinsics::_storeStoreFence:
2785       insert_mem_bar(Op_StoreStoreFence);
2786       return true;
2787     case vmIntrinsics::_fullFence:
2788       insert_mem_bar(Op_MemBarVolatile);
2789       return true;
2790     default:
2791       fatal_unexpected_iid(id);
2792       return false;
2793   }
2794 }
2795 
2796 bool LibraryCallKit::inline_onspinwait() {
2797   insert_mem_bar(Op_OnSpinWait);
2798   return true;
2799 }
2800 
2801 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2802   if (!kls->is_Con()) {
2803     return true;
2804   }
2805   const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr();
2806   if (klsptr == nullptr) {
2807     return true;
2808   }
2809   ciInstanceKlass* ik = klsptr->instance_klass();
2810   // don't need a guard for a klass that is already initialized
2811   return !ik->is_initialized();
2812 }
2813 
2814 //----------------------------inline_unsafe_writeback0-------------------------
2815 // public native void Unsafe.writeback0(long address)
2816 bool LibraryCallKit::inline_unsafe_writeback0() {
2817   if (!Matcher::has_match_rule(Op_CacheWB)) {
2818     return false;
2819   }
2820 #ifndef PRODUCT
2821   assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync");
2822   assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync");
2823   ciSignature* sig = callee()->signature();
2824   assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!");
2825 #endif
2826   null_check_receiver();  // null-check, then ignore
2827   Node *addr = argument(1);
2828   addr = new CastX2PNode(addr);
2829   addr = _gvn.transform(addr);
2830   Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr);
2831   flush = _gvn.transform(flush);
2832   set_memory(flush, TypeRawPtr::BOTTOM);
2833   return true;
2834 }
2835 
2836 //----------------------------inline_unsafe_writeback0-------------------------
2837 // public native void Unsafe.writeback0(long address)
2838 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) {
2839   if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) {
2840     return false;
2841   }
2842   if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) {
2843     return false;
2844   }
2845 #ifndef PRODUCT
2846   assert(Matcher::has_match_rule(Op_CacheWB),
2847          (is_pre ? "found match rule for CacheWBPreSync but not CacheWB"
2848                 : "found match rule for CacheWBPostSync but not CacheWB"));
2849 
2850 #endif
2851   null_check_receiver();  // null-check, then ignore
2852   Node *sync;
2853   if (is_pre) {
2854     sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2855   } else {
2856     sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2857   }
2858   sync = _gvn.transform(sync);
2859   set_memory(sync, TypeRawPtr::BOTTOM);
2860   return true;
2861 }
2862 
2863 //----------------------------inline_unsafe_allocate---------------------------
2864 // public native Object Unsafe.allocateInstance(Class<?> cls);
2865 bool LibraryCallKit::inline_unsafe_allocate() {
2866 
2867 #if INCLUDE_JVMTI
2868   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
2869     return false;
2870   }
2871 #endif //INCLUDE_JVMTI
2872 
2873   if (callee()->is_static())  return false;  // caller must have the capability!
2874 
2875   null_check_receiver();  // null-check, then ignore
2876   Node* cls = null_check(argument(1));
2877   if (stopped())  return true;
2878 
2879   Node* kls = load_klass_from_mirror(cls, false, nullptr, 0);
2880   kls = null_check(kls);
2881   if (stopped())  return true;  // argument was like int.class
2882 
2883 #if INCLUDE_JVMTI
2884     // Don't try to access new allocated obj in the intrinsic.
2885     // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled.
2886     // Deoptimize and allocate in interpreter instead.
2887     Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc));
2888     Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered);
2889     Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0)));
2890     Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
2891     {
2892       BuildCutout unless(this, tst, PROB_MAX);
2893       uncommon_trap(Deoptimization::Reason_intrinsic,
2894                     Deoptimization::Action_make_not_entrant);
2895     }
2896     if (stopped()) {
2897       return true;
2898     }
2899 #endif //INCLUDE_JVMTI
2900 
2901   Node* test = nullptr;
2902   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2903     // Note:  The argument might still be an illegal value like
2904     // Serializable.class or Object[].class.   The runtime will handle it.
2905     // But we must make an explicit check for initialization.
2906     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2907     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2908     // can generate code to load it as unsigned byte.
2909     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
2910     Node* bits = intcon(InstanceKlass::fully_initialized);
2911     test = _gvn.transform(new SubINode(inst, bits));
2912     // The 'test' is non-zero if we need to take a slow path.
2913   }
2914 
2915   Node* obj = new_instance(kls, test);
2916   set_result(obj);
2917   return true;
2918 }
2919 
2920 //------------------------inline_native_time_funcs--------------
2921 // inline code for System.currentTimeMillis() and System.nanoTime()
2922 // these have the same type and signature
2923 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2924   const TypeFunc* tf = OptoRuntime::void_long_Type();
2925   const TypePtr* no_memory_effects = nullptr;
2926   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2927   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2928 #ifdef ASSERT
2929   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2930   assert(value_top == top(), "second value must be top");
2931 #endif
2932   set_result(value);
2933   return true;
2934 }
2935 
2936 
2937 #if INCLUDE_JVMTI
2938 
2939 // When notifications are disabled then just update the VTMS transition bit and return.
2940 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol.
2941 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) {
2942   if (!DoJVMTIVirtualThreadTransitions) {
2943     return true;
2944   }
2945   Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument
2946   IdealKit ideal(this);
2947 
2948   Node* ONE = ideal.ConI(1);
2949   Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1)));
2950   Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events));
2951   Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
2952 
2953   ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); {
2954     sync_kit(ideal);
2955     // if notifyJvmti enabled then make a call to the given SharedRuntime function
2956     const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type();
2957     make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide);
2958     ideal.sync_kit(this);
2959   } ideal.else_(); {
2960     // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object
2961     Node* thread = ideal.thread();
2962     Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset()));
2963     Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset());
2964 
2965     sync_kit(ideal);
2966     access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2967     access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2968 
2969     ideal.sync_kit(this);
2970   } ideal.end_if();
2971   final_sync(ideal);
2972 
2973   return true;
2974 }
2975 
2976 // Always update the is_disable_suspend bit.
2977 bool LibraryCallKit::inline_native_notify_jvmti_sync() {
2978   if (!DoJVMTIVirtualThreadTransitions) {
2979     return true;
2980   }
2981   IdealKit ideal(this);
2982 
2983   {
2984     // unconditionally update the is_disable_suspend bit in current JavaThread
2985     Node* thread = ideal.thread();
2986     Node* arg = _gvn.transform(argument(0)); // argument for notification
2987     Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset()));
2988     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
2989 
2990     sync_kit(ideal);
2991     access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2992     ideal.sync_kit(this);
2993   }
2994   final_sync(ideal);
2995 
2996   return true;
2997 }
2998 
2999 #endif // INCLUDE_JVMTI
3000 
3001 #ifdef JFR_HAVE_INTRINSICS
3002 
3003 /**
3004  * if oop->klass != null
3005  *   // normal class
3006  *   epoch = _epoch_state ? 2 : 1
3007  *   if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch {
3008  *     ... // enter slow path when the klass is first recorded or the epoch of JFR shifts
3009  *   }
3010  *   id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path
3011  * else
3012  *   // primitive class
3013  *   if oop->array_klass != null
3014  *     id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path
3015  *   else
3016  *     id = LAST_TYPE_ID + 1 // void class path
3017  *   if (!signaled)
3018  *     signaled = true
3019  */
3020 bool LibraryCallKit::inline_native_classID() {
3021   Node* cls = argument(0);
3022 
3023   IdealKit ideal(this);
3024 #define __ ideal.
3025   IdealVariable result(ideal); __ declarations_done();
3026   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(),
3027                                                  basic_plus_adr(cls, java_lang_Class::klass_offset()),
3028                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3029 
3030 
3031   __ if_then(kls, BoolTest::ne, null()); {
3032     Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3033     Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3034 
3035     Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address()));
3036     Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
3037     epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch));
3038     Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT)));
3039     mask = _gvn.transform(new OrLNode(mask, epoch));
3040     Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask));
3041 
3042     float unlikely  = PROB_UNLIKELY(0.999);
3043     __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); {
3044       sync_kit(ideal);
3045       make_runtime_call(RC_LEAF,
3046                         OptoRuntime::class_id_load_barrier_Type(),
3047                         CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier),
3048                         "class id load barrier",
3049                         TypePtr::BOTTOM,
3050                         kls);
3051       ideal.sync_kit(this);
3052     } __ end_if();
3053 
3054     ideal.set(result,  _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))));
3055   } __ else_(); {
3056     Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(),
3057                                                    basic_plus_adr(cls, java_lang_Class::array_klass_offset()),
3058                                                    TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3059     __ if_then(array_kls, BoolTest::ne, null()); {
3060       Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3061       Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3062       Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)));
3063       ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1))));
3064     } __ else_(); {
3065       // void class case
3066       ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1)));
3067     } __ end_if();
3068 
3069     Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address()));
3070     Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire);
3071     __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); {
3072       ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3073     } __ end_if();
3074   } __ end_if();
3075 
3076   final_sync(ideal);
3077   set_result(ideal.value(result));
3078 #undef __
3079   return true;
3080 }
3081 
3082 //------------------------inline_native_jvm_commit------------------
3083 bool LibraryCallKit::inline_native_jvm_commit() {
3084   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3085 
3086   // Save input memory and i_o state.
3087   Node* input_memory_state = reset_memory();
3088   set_all_memory(input_memory_state);
3089   Node* input_io_state = i_o();
3090 
3091   // TLS.
3092   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3093   // Jfr java buffer.
3094   Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR)))));
3095   Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered));
3096   Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET)))));
3097 
3098   // Load the current value of the notified field in the JfrThreadLocal.
3099   Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR));
3100   Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3101 
3102   // Test for notification.
3103   Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1)));
3104   Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq));
3105   IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN);
3106 
3107   // True branch, is notified.
3108   Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified));
3109   set_control(is_notified);
3110 
3111   // Reset notified state.
3112   Node* notified_reset_memory = store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered);
3113 
3114   // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer.
3115   Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered));
3116   // Convert the machine-word to a long.
3117   Node* current_pos = _gvn.transform(ConvX2L(current_pos_X));
3118 
3119   // False branch, not notified.
3120   Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified));
3121   set_control(not_notified);
3122   set_all_memory(input_memory_state);
3123 
3124   // Arg is the next position as a long.
3125   Node* arg = argument(0);
3126   // Convert long to machine-word.
3127   Node* next_pos_X = _gvn.transform(ConvL2X(arg));
3128 
3129   // Store the next_position to the underlying jfr java buffer.
3130   Node* commit_memory;
3131 #ifdef _LP64
3132   commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_LONG, MemNode::release);
3133 #else
3134   commit_memory = store_to_memory(control(), java_buffer_pos_offset, next_pos_X, T_INT, MemNode::release);
3135 #endif
3136 
3137   // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit.
3138   Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET)))));
3139   Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered);
3140   Node* lease_constant = _gvn.transform(_gvn.intcon(4));
3141 
3142   // And flags with lease constant.
3143   Node* lease = _gvn.transform(new AndINode(flags, lease_constant));
3144 
3145   // Branch on lease to conditionalize returning the leased java buffer.
3146   Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant));
3147   Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq));
3148   IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN);
3149 
3150   // False branch, not a lease.
3151   Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease));
3152 
3153   // True branch, is lease.
3154   Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease));
3155   set_control(is_lease);
3156 
3157   // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop.
3158   Node* call_return_lease = make_runtime_call(RC_NO_LEAF,
3159                                               OptoRuntime::void_void_Type(),
3160                                               SharedRuntime::jfr_return_lease(),
3161                                               "return_lease", TypePtr::BOTTOM);
3162   Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control));
3163 
3164   RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT);
3165   record_for_igvn(lease_compare_rgn);
3166   PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3167   record_for_igvn(lease_compare_mem);
3168   PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO);
3169   record_for_igvn(lease_compare_io);
3170   PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG);
3171   record_for_igvn(lease_result_value);
3172 
3173   // Update control and phi nodes.
3174   lease_compare_rgn->init_req(_true_path, call_return_lease_control);
3175   lease_compare_rgn->init_req(_false_path, not_lease);
3176 
3177   lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3178   lease_compare_mem->init_req(_false_path, commit_memory);
3179 
3180   lease_compare_io->init_req(_true_path, i_o());
3181   lease_compare_io->init_req(_false_path, input_io_state);
3182 
3183   lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0.
3184   lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position.
3185 
3186   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3187   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3188   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3189   PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG);
3190 
3191   // Update control and phi nodes.
3192   result_rgn->init_req(_true_path, is_notified);
3193   result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn));
3194 
3195   result_mem->init_req(_true_path, notified_reset_memory);
3196   result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem));
3197 
3198   result_io->init_req(_true_path, input_io_state);
3199   result_io->init_req(_false_path, _gvn.transform(lease_compare_io));
3200 
3201   result_value->init_req(_true_path, current_pos);
3202   result_value->init_req(_false_path, _gvn.transform(lease_result_value));
3203 
3204   // Set output state.
3205   set_control(_gvn.transform(result_rgn));
3206   set_all_memory(_gvn.transform(result_mem));
3207   set_i_o(_gvn.transform(result_io));
3208   set_result(result_rgn, result_value);
3209   return true;
3210 }
3211 
3212 /*
3213  * The intrinsic is a model of this pseudo-code:
3214  *
3215  * JfrThreadLocal* const tl = Thread::jfr_thread_local()
3216  * jobject h_event_writer = tl->java_event_writer();
3217  * if (h_event_writer == nullptr) {
3218  *   return nullptr;
3219  * }
3220  * oop threadObj = Thread::threadObj();
3221  * oop vthread = java_lang_Thread::vthread(threadObj);
3222  * traceid tid;
3223  * bool pinVirtualThread;
3224  * bool excluded;
3225  * if (vthread != threadObj) {  // i.e. current thread is virtual
3226  *   tid = java_lang_Thread::tid(vthread);
3227  *   u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread);
3228  *   pinVirtualThread = VMContinuations;
3229  *   excluded = vthread_epoch_raw & excluded_mask;
3230  *   if (!excluded) {
3231  *     traceid current_epoch = JfrTraceIdEpoch::current_generation();
3232  *     u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3233  *     if (vthread_epoch != current_epoch) {
3234  *       write_checkpoint();
3235  *     }
3236  *   }
3237  * } else {
3238  *   tid = java_lang_Thread::tid(threadObj);
3239  *   u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj);
3240  *   pinVirtualThread = false;
3241  *   excluded = thread_epoch_raw & excluded_mask;
3242  * }
3243  * oop event_writer = JNIHandles::resolve_non_null(h_event_writer);
3244  * traceid tid_in_event_writer = getField(event_writer, "threadID");
3245  * if (tid_in_event_writer != tid) {
3246  *   setField(event_writer, "pinVirtualThread", pinVirtualThread);
3247  *   setField(event_writer, "excluded", excluded);
3248  *   setField(event_writer, "threadID", tid);
3249  * }
3250  * return event_writer
3251  */
3252 bool LibraryCallKit::inline_native_getEventWriter() {
3253   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3254 
3255   // Save input memory and i_o state.
3256   Node* input_memory_state = reset_memory();
3257   set_all_memory(input_memory_state);
3258   Node* input_io_state = i_o();
3259 
3260   // The most significant bit of the u2 is used to denote thread exclusion
3261   Node* excluded_shift = _gvn.intcon(15);
3262   Node* excluded_mask = _gvn.intcon(1 << 15);
3263   // The epoch generation is the range [1-32767]
3264   Node* epoch_mask = _gvn.intcon(32767);
3265 
3266   // TLS
3267   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3268 
3269   // Load the address of java event writer jobject handle from the jfr_thread_local structure.
3270   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
3271 
3272   // Load the eventwriter jobject handle.
3273   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3274 
3275   // Null check the jobject handle.
3276   Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null()));
3277   Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne));
3278   IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3279 
3280   // False path, jobj is null.
3281   Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null));
3282 
3283   // True path, jobj is not null.
3284   Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null));
3285 
3286   set_control(jobj_is_not_null);
3287 
3288   // Load the threadObj for the CarrierThread.
3289   Node* threadObj = generate_current_thread(tls_ptr);
3290 
3291   // Load the vthread.
3292   Node* vthread = generate_virtual_thread(tls_ptr);
3293 
3294   // If vthread != threadObj, this is a virtual thread.
3295   Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj));
3296   Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne));
3297   IfNode* iff_vthread_not_equal_threadObj =
3298     create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN);
3299 
3300   // False branch, fallback to threadObj.
3301   Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj));
3302   set_control(vthread_equal_threadObj);
3303 
3304   // Load the tid field from the vthread object.
3305   Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J");
3306 
3307   // Load the raw epoch value from the threadObj.
3308   Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset());
3309   Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset,
3310                                              _gvn.type(threadObj_epoch_offset)->isa_ptr(),
3311                                              TypeInt::CHAR, T_CHAR,
3312                                              IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3313 
3314   // Mask off the excluded information from the epoch.
3315   Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask));
3316 
3317   // True branch, this is a virtual thread.
3318   Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj));
3319   set_control(vthread_not_equal_threadObj);
3320 
3321   // Load the tid field from the vthread object.
3322   Node* vthread_tid = load_field_from_object(vthread, "tid", "J");
3323 
3324   // Continuation support determines if a virtual thread should be pinned.
3325   Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations));
3326   Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3327 
3328   // Load the raw epoch value from the vthread.
3329   Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset());
3330   Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(),
3331                                            TypeInt::CHAR, T_CHAR,
3332                                            IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3333 
3334   // Mask off the excluded information from the epoch.
3335   Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask)));
3336 
3337   // Branch on excluded to conditionalize updating the epoch for the virtual thread.
3338   Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask)));
3339   Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne));
3340   IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN);
3341 
3342   // False branch, vthread is excluded, no need to write epoch info.
3343   Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded));
3344 
3345   // True branch, vthread is included, update epoch info.
3346   Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded));
3347   set_control(included);
3348 
3349   // Get epoch value.
3350   Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask)));
3351 
3352   // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR.
3353   Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address()));
3354   Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered);
3355 
3356   // Compare the epoch in the vthread to the current epoch generation.
3357   Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch));
3358   Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne));
3359   IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3360 
3361   // False path, epoch is equal, checkpoint information is valid.
3362   Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal));
3363 
3364   // True path, epoch is not equal, write a checkpoint for the vthread.
3365   Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal));
3366 
3367   set_control(epoch_is_not_equal);
3368 
3369   // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch.
3370   // The call also updates the native thread local thread id and the vthread with the current epoch.
3371   Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF,
3372                                                   OptoRuntime::jfr_write_checkpoint_Type(),
3373                                                   SharedRuntime::jfr_write_checkpoint(),
3374                                                   "write_checkpoint", TypePtr::BOTTOM);
3375   Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control));
3376 
3377   // vthread epoch != current epoch
3378   RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT);
3379   record_for_igvn(epoch_compare_rgn);
3380   PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3381   record_for_igvn(epoch_compare_mem);
3382   PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO);
3383   record_for_igvn(epoch_compare_io);
3384 
3385   // Update control and phi nodes.
3386   epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control);
3387   epoch_compare_rgn->init_req(_false_path, epoch_is_equal);
3388   epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3389   epoch_compare_mem->init_req(_false_path, input_memory_state);
3390   epoch_compare_io->init_req(_true_path, i_o());
3391   epoch_compare_io->init_req(_false_path, input_io_state);
3392 
3393   // excluded != true
3394   RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT);
3395   record_for_igvn(exclude_compare_rgn);
3396   PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3397   record_for_igvn(exclude_compare_mem);
3398   PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO);
3399   record_for_igvn(exclude_compare_io);
3400 
3401   // Update control and phi nodes.
3402   exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn));
3403   exclude_compare_rgn->init_req(_false_path, excluded);
3404   exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem));
3405   exclude_compare_mem->init_req(_false_path, input_memory_state);
3406   exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io));
3407   exclude_compare_io->init_req(_false_path, input_io_state);
3408 
3409   // vthread != threadObj
3410   RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT);
3411   record_for_igvn(vthread_compare_rgn);
3412   PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3413   PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO);
3414   record_for_igvn(vthread_compare_io);
3415   PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG);
3416   record_for_igvn(tid);
3417   PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR);
3418   record_for_igvn(exclusion);
3419   PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL);
3420   record_for_igvn(pinVirtualThread);
3421 
3422   // Update control and phi nodes.
3423   vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn));
3424   vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj);
3425   vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem));
3426   vthread_compare_mem->init_req(_false_path, input_memory_state);
3427   vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io));
3428   vthread_compare_io->init_req(_false_path, input_io_state);
3429   tid->init_req(_true_path, _gvn.transform(vthread_tid));
3430   tid->init_req(_false_path, _gvn.transform(thread_obj_tid));
3431   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3432   exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded));
3433   pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support));
3434   pinVirtualThread->init_req(_false_path, _gvn.intcon(0));
3435 
3436   // Update branch state.
3437   set_control(_gvn.transform(vthread_compare_rgn));
3438   set_all_memory(_gvn.transform(vthread_compare_mem));
3439   set_i_o(_gvn.transform(vthread_compare_io));
3440 
3441   // Load the event writer oop by dereferencing the jobject handle.
3442   ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter"));
3443   assert(klass_EventWriter->is_loaded(), "invariant");
3444   ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass();
3445   const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter);
3446   const TypeOopPtr* const xtype = aklass->as_instance_type();
3447   Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global)));
3448   Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
3449 
3450   // Load the current thread id from the event writer object.
3451   Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J");
3452   // Get the field offset to, conditionally, store an updated tid value later.
3453   Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false);
3454   // Get the field offset to, conditionally, store an updated exclusion value later.
3455   Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false);
3456   // Get the field offset to, conditionally, store an updated pinVirtualThread value later.
3457   Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false);
3458 
3459   RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT);
3460   record_for_igvn(event_writer_tid_compare_rgn);
3461   PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3462   record_for_igvn(event_writer_tid_compare_mem);
3463   PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO);
3464   record_for_igvn(event_writer_tid_compare_io);
3465 
3466   // Compare the current tid from the thread object to what is currently stored in the event writer object.
3467   Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid)));
3468   Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne));
3469   IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3470 
3471   // False path, tids are the same.
3472   Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal));
3473 
3474   // True path, tid is not equal, need to update the tid in the event writer.
3475   Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal));
3476   record_for_igvn(tid_is_not_equal);
3477 
3478   // Store the pin state to the event writer.
3479   store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered);
3480 
3481   // Store the exclusion state to the event writer.
3482   Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift));
3483   store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered);
3484 
3485   // Store the tid to the event writer.
3486   store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered);
3487 
3488   // Update control and phi nodes.
3489   event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal);
3490   event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal);
3491   event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3492   event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem));
3493   event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o()));
3494   event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io));
3495 
3496   // Result of top level CFG, Memory, IO and Value.
3497   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3498   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3499   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3500   PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
3501 
3502   // Result control.
3503   result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn));
3504   result_rgn->init_req(_false_path, jobj_is_null);
3505 
3506   // Result memory.
3507   result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem));
3508   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3509 
3510   // Result IO.
3511   result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io));
3512   result_io->init_req(_false_path, _gvn.transform(input_io_state));
3513 
3514   // Result value.
3515   result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop
3516   result_value->init_req(_false_path, null()); // return null
3517 
3518   // Set output state.
3519   set_control(_gvn.transform(result_rgn));
3520   set_all_memory(_gvn.transform(result_mem));
3521   set_i_o(_gvn.transform(result_io));
3522   set_result(result_rgn, result_value);
3523   return true;
3524 }
3525 
3526 /*
3527  * The intrinsic is a model of this pseudo-code:
3528  *
3529  * JfrThreadLocal* const tl = thread->jfr_thread_local();
3530  * if (carrierThread != thread) { // is virtual thread
3531  *   const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread);
3532  *   bool excluded = vthread_epoch_raw & excluded_mask;
3533  *   Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread));
3534  *   Atomic::store(&tl->_contextual_thread_excluded, is_excluded);
3535  *   if (!excluded) {
3536  *     const u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3537  *     Atomic::store(&tl->_vthread_epoch, vthread_epoch);
3538  *   }
3539  *   Atomic::release_store(&tl->_vthread, true);
3540  *   return;
3541  * }
3542  * Atomic::release_store(&tl->_vthread, false);
3543  */
3544 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) {
3545   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3546 
3547   Node* input_memory_state = reset_memory();
3548   set_all_memory(input_memory_state);
3549 
3550   // The most significant bit of the u2 is used to denote thread exclusion
3551   Node* excluded_mask = _gvn.intcon(1 << 15);
3552   // The epoch generation is the range [1-32767]
3553   Node* epoch_mask = _gvn.intcon(32767);
3554 
3555   Node* const carrierThread = generate_current_thread(jt);
3556   // If thread != carrierThread, this is a virtual thread.
3557   Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread));
3558   Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne));
3559   IfNode* iff_thread_not_equal_carrierThread =
3560     create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN);
3561 
3562   Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR));
3563 
3564   // False branch, is carrierThread.
3565   Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread));
3566   // Store release
3567   Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true);
3568 
3569   set_all_memory(input_memory_state);
3570 
3571   // True branch, is virtual thread.
3572   Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread));
3573   set_control(thread_not_equal_carrierThread);
3574 
3575   // Load the raw epoch value from the vthread.
3576   Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset());
3577   Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR,
3578                                    IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3579 
3580   // Mask off the excluded information from the epoch.
3581   Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask)));
3582 
3583   // Load the tid field from the thread.
3584   Node* tid = load_field_from_object(thread, "tid", "J");
3585 
3586   // Store the vthread tid to the jfr thread local.
3587   Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR));
3588   Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true);
3589 
3590   // Branch is_excluded to conditionalize updating the epoch .
3591   Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask)));
3592   Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq));
3593   IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN);
3594 
3595   // True branch, vthread is excluded, no need to write epoch info.
3596   Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded));
3597   set_control(excluded);
3598   Node* vthread_is_excluded = _gvn.intcon(1);
3599 
3600   // False branch, vthread is included, update epoch info.
3601   Node* included = _gvn.transform(new IfFalseNode(iff_excluded));
3602   set_control(included);
3603   Node* vthread_is_included = _gvn.intcon(0);
3604 
3605   // Get epoch value.
3606   Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask)));
3607 
3608   // Store the vthread epoch to the jfr thread local.
3609   Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR));
3610   Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true);
3611 
3612   RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT);
3613   record_for_igvn(excluded_rgn);
3614   PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM);
3615   record_for_igvn(excluded_mem);
3616   PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL);
3617   record_for_igvn(exclusion);
3618 
3619   // Merge the excluded control and memory.
3620   excluded_rgn->init_req(_true_path, excluded);
3621   excluded_rgn->init_req(_false_path, included);
3622   excluded_mem->init_req(_true_path, tid_memory);
3623   excluded_mem->init_req(_false_path, included_memory);
3624   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3625   exclusion->init_req(_false_path, _gvn.transform(vthread_is_included));
3626 
3627   // Set intermediate state.
3628   set_control(_gvn.transform(excluded_rgn));
3629   set_all_memory(excluded_mem);
3630 
3631   // Store the vthread exclusion state to the jfr thread local.
3632   Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR));
3633   store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true);
3634 
3635   // Store release
3636   Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true);
3637 
3638   RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT);
3639   record_for_igvn(thread_compare_rgn);
3640   PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3641   record_for_igvn(thread_compare_mem);
3642   PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL);
3643   record_for_igvn(vthread);
3644 
3645   // Merge the thread_compare control and memory.
3646   thread_compare_rgn->init_req(_true_path, control());
3647   thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread);
3648   thread_compare_mem->init_req(_true_path, vthread_true_memory);
3649   thread_compare_mem->init_req(_false_path, vthread_false_memory);
3650 
3651   // Set output state.
3652   set_control(_gvn.transform(thread_compare_rgn));
3653   set_all_memory(_gvn.transform(thread_compare_mem));
3654 }
3655 
3656 #endif // JFR_HAVE_INTRINSICS
3657 
3658 //------------------------inline_native_currentCarrierThread------------------
3659 bool LibraryCallKit::inline_native_currentCarrierThread() {
3660   Node* junk = nullptr;
3661   set_result(generate_current_thread(junk));
3662   return true;
3663 }
3664 
3665 //------------------------inline_native_currentThread------------------
3666 bool LibraryCallKit::inline_native_currentThread() {
3667   Node* junk = nullptr;
3668   set_result(generate_virtual_thread(junk));
3669   return true;
3670 }
3671 
3672 //------------------------inline_native_setVthread------------------
3673 bool LibraryCallKit::inline_native_setCurrentThread() {
3674   assert(C->method()->changes_current_thread(),
3675          "method changes current Thread but is not annotated ChangesCurrentThread");
3676   Node* arr = argument(1);
3677   Node* thread = _gvn.transform(new ThreadLocalNode());
3678   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3679   Node* thread_obj_handle
3680     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3681   thread_obj_handle = _gvn.transform(thread_obj_handle);
3682   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3683   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3684 
3685   // Change the _monitor_owner_id of the JavaThread
3686   Node* tid = load_field_from_object(arr, "tid", "J");
3687   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
3688   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
3689 
3690   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3691   return true;
3692 }
3693 
3694 const Type* LibraryCallKit::scopedValueCache_type() {
3695   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3696   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3697   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3698 
3699   // Because we create the scopedValue cache lazily we have to make the
3700   // type of the result BotPTR.
3701   bool xk = etype->klass_is_exact();
3702   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3703   return objects_type;
3704 }
3705 
3706 Node* LibraryCallKit::scopedValueCache_helper() {
3707   Node* thread = _gvn.transform(new ThreadLocalNode());
3708   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3709   // We cannot use immutable_memory() because we might flip onto a
3710   // different carrier thread, at which point we'll need to use that
3711   // carrier thread's cache.
3712   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3713   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3714   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3715 }
3716 
3717 //------------------------inline_native_scopedValueCache------------------
3718 bool LibraryCallKit::inline_native_scopedValueCache() {
3719   Node* cache_obj_handle = scopedValueCache_helper();
3720   const Type* objects_type = scopedValueCache_type();
3721   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3722 
3723   return true;
3724 }
3725 
3726 //------------------------inline_native_setScopedValueCache------------------
3727 bool LibraryCallKit::inline_native_setScopedValueCache() {
3728   Node* arr = argument(0);
3729   Node* cache_obj_handle = scopedValueCache_helper();
3730   const Type* objects_type = scopedValueCache_type();
3731 
3732   const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr();
3733   access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED);
3734 
3735   return true;
3736 }
3737 
3738 //------------------------inline_native_Continuation_pin and unpin-----------
3739 
3740 // Shared implementation routine for both pin and unpin.
3741 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) {
3742   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3743 
3744   // Save input memory.
3745   Node* input_memory_state = reset_memory();
3746   set_all_memory(input_memory_state);
3747 
3748   // TLS
3749   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3750   Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset()));
3751   Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered);
3752 
3753   // Null check the last continuation object.
3754   Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null()));
3755   Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne));
3756   IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3757 
3758   // False path, last continuation is null.
3759   Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null));
3760 
3761   // True path, last continuation is not null.
3762   Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null));
3763 
3764   set_control(continuation_is_not_null);
3765 
3766   // Load the pin count from the last continuation.
3767   Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset()));
3768   Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered);
3769 
3770   // The loaded pin count is compared against a context specific rhs for over/underflow detection.
3771   Node* pin_count_rhs;
3772   if (unpin) {
3773     pin_count_rhs = _gvn.intcon(0);
3774   } else {
3775     pin_count_rhs = _gvn.intcon(UINT32_MAX);
3776   }
3777   Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs));
3778   Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq));
3779   IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN);
3780 
3781   // False branch, no pin count over/underflow. Increment or decrement pin count and store back.
3782   Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow));
3783   set_control(valid_pin_count);
3784 
3785   Node* next_pin_count;
3786   if (unpin) {
3787     next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1)));
3788   } else {
3789     next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1)));
3790   }
3791 
3792   Node* updated_pin_count_memory = store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
3793 
3794   // True branch, pin count over/underflow.
3795   Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow));
3796   {
3797     // Trap (but not deoptimize (Action_none)) and continue in the interpreter
3798     // which will throw IllegalStateException for pin count over/underflow.
3799     PreserveJVMState pjvms(this);
3800     set_control(pin_count_over_underflow);
3801     set_all_memory(input_memory_state);
3802     uncommon_trap_exact(Deoptimization::Reason_intrinsic,
3803                         Deoptimization::Action_none);
3804     assert(stopped(), "invariant");
3805   }
3806 
3807   // Result of top level CFG and Memory.
3808   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3809   record_for_igvn(result_rgn);
3810   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3811   record_for_igvn(result_mem);
3812 
3813   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
3814   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
3815   result_mem->init_req(_true_path, _gvn.transform(updated_pin_count_memory));
3816   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3817 
3818   // Set output state.
3819   set_control(_gvn.transform(result_rgn));
3820   set_all_memory(_gvn.transform(result_mem));
3821 
3822   return true;
3823 }
3824 
3825 //---------------------------load_mirror_from_klass----------------------------
3826 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3827 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3828   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3829   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3830   // mirror = ((OopHandle)mirror)->resolve();
3831   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3832 }
3833 
3834 //-----------------------load_klass_from_mirror_common-------------------------
3835 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3836 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3837 // and branch to the given path on the region.
3838 // If never_see_null, take an uncommon trap on null, so we can optimistically
3839 // compile for the non-null case.
3840 // If the region is null, force never_see_null = true.
3841 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3842                                                     bool never_see_null,
3843                                                     RegionNode* region,
3844                                                     int null_path,
3845                                                     int offset) {
3846   if (region == nullptr)  never_see_null = true;
3847   Node* p = basic_plus_adr(mirror, offset);
3848   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3849   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3850   Node* null_ctl = top();
3851   kls = null_check_oop(kls, &null_ctl, never_see_null);
3852   if (region != nullptr) {
3853     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3854     region->init_req(null_path, null_ctl);
3855   } else {
3856     assert(null_ctl == top(), "no loose ends");
3857   }
3858   return kls;
3859 }
3860 
3861 //--------------------(inline_native_Class_query helpers)---------------------
3862 // Use this for JVM_ACC_INTERFACE.
3863 // Fall through if (mods & mask) == bits, take the guard otherwise.
3864 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
3865                                                  ByteSize offset, const Type* type, BasicType bt) {
3866   // Branch around if the given klass has the given modifier bit set.
3867   // Like generate_guard, adds a new path onto the region.
3868   Node* modp = basic_plus_adr(kls, in_bytes(offset));
3869   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
3870   Node* mask = intcon(modifier_mask);
3871   Node* bits = intcon(modifier_bits);
3872   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3873   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3874   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3875   return generate_fair_guard(bol, region);
3876 }
3877 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3878   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
3879                                     Klass::access_flags_offset(), TypeInt::INT, T_INT);
3880 }
3881 
3882 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
3883 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3884   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
3885                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
3886 }
3887 
3888 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3889   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
3890 }
3891 
3892 //-------------------------inline_native_Class_query-------------------
3893 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3894   const Type* return_type = TypeInt::BOOL;
3895   Node* prim_return_value = top();  // what happens if it's a primitive class?
3896   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3897   bool expect_prim = false;     // most of these guys expect to work on refs
3898 
3899   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3900 
3901   Node* mirror = argument(0);
3902   Node* obj    = top();
3903 
3904   switch (id) {
3905   case vmIntrinsics::_isInstance:
3906     // nothing is an instance of a primitive type
3907     prim_return_value = intcon(0);
3908     obj = argument(1);
3909     break;
3910   case vmIntrinsics::_getModifiers:
3911     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3912     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3913     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3914     break;
3915   case vmIntrinsics::_isInterface:
3916     prim_return_value = intcon(0);
3917     break;
3918   case vmIntrinsics::_isArray:
3919     prim_return_value = intcon(0);
3920     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3921     break;
3922   case vmIntrinsics::_isPrimitive:
3923     prim_return_value = intcon(1);
3924     expect_prim = true;  // obviously
3925     break;
3926   case vmIntrinsics::_isHidden:
3927     prim_return_value = intcon(0);
3928     break;
3929   case vmIntrinsics::_getSuperclass:
3930     prim_return_value = null();
3931     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3932     break;
3933   case vmIntrinsics::_getClassAccessFlags:
3934     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3935     return_type = TypeInt::INT;  // not bool!  6297094
3936     break;
3937   default:
3938     fatal_unexpected_iid(id);
3939     break;
3940   }
3941 
3942   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3943   if (mirror_con == nullptr)  return false;  // cannot happen?
3944 
3945 #ifndef PRODUCT
3946   if (C->print_intrinsics() || C->print_inlining()) {
3947     ciType* k = mirror_con->java_mirror_type();
3948     if (k) {
3949       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3950       k->print_name();
3951       tty->cr();
3952     }
3953   }
3954 #endif
3955 
3956   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3957   RegionNode* region = new RegionNode(PATH_LIMIT);
3958   record_for_igvn(region);
3959   PhiNode* phi = new PhiNode(region, return_type);
3960 
3961   // The mirror will never be null of Reflection.getClassAccessFlags, however
3962   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3963   // if it is. See bug 4774291.
3964 
3965   // For Reflection.getClassAccessFlags(), the null check occurs in
3966   // the wrong place; see inline_unsafe_access(), above, for a similar
3967   // situation.
3968   mirror = null_check(mirror);
3969   // If mirror or obj is dead, only null-path is taken.
3970   if (stopped())  return true;
3971 
3972   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3973 
3974   // Now load the mirror's klass metaobject, and null-check it.
3975   // Side-effects region with the control path if the klass is null.
3976   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3977   // If kls is null, we have a primitive mirror.
3978   phi->init_req(_prim_path, prim_return_value);
3979   if (stopped()) { set_result(region, phi); return true; }
3980   bool safe_for_replace = (region->in(_prim_path) == top());
3981 
3982   Node* p;  // handy temp
3983   Node* null_ctl;
3984 
3985   // Now that we have the non-null klass, we can perform the real query.
3986   // For constant classes, the query will constant-fold in LoadNode::Value.
3987   Node* query_value = top();
3988   switch (id) {
3989   case vmIntrinsics::_isInstance:
3990     // nothing is an instance of a primitive type
3991     query_value = gen_instanceof(obj, kls, safe_for_replace);
3992     break;
3993 
3994   case vmIntrinsics::_getModifiers:
3995     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3996     query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered);
3997     break;
3998 
3999   case vmIntrinsics::_isInterface:
4000     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
4001     if (generate_interface_guard(kls, region) != nullptr)
4002       // A guard was added.  If the guard is taken, it was an interface.
4003       phi->add_req(intcon(1));
4004     // If we fall through, it's a plain class.
4005     query_value = intcon(0);
4006     break;
4007 
4008   case vmIntrinsics::_isArray:
4009     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
4010     if (generate_array_guard(kls, region) != nullptr)
4011       // A guard was added.  If the guard is taken, it was an array.
4012       phi->add_req(intcon(1));
4013     // If we fall through, it's a plain class.
4014     query_value = intcon(0);
4015     break;
4016 
4017   case vmIntrinsics::_isPrimitive:
4018     query_value = intcon(0); // "normal" path produces false
4019     break;
4020 
4021   case vmIntrinsics::_isHidden:
4022     // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.)
4023     if (generate_hidden_class_guard(kls, region) != nullptr)
4024       // A guard was added.  If the guard is taken, it was an hidden class.
4025       phi->add_req(intcon(1));
4026     // If we fall through, it's a plain class.
4027     query_value = intcon(0);
4028     break;
4029 
4030 
4031   case vmIntrinsics::_getSuperclass:
4032     // The rules here are somewhat unfortunate, but we can still do better
4033     // with random logic than with a JNI call.
4034     // Interfaces store null or Object as _super, but must report null.
4035     // Arrays store an intermediate super as _super, but must report Object.
4036     // Other types can report the actual _super.
4037     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
4038     if (generate_interface_guard(kls, region) != nullptr)
4039       // A guard was added.  If the guard is taken, it was an interface.
4040       phi->add_req(null());
4041     if (generate_array_guard(kls, region) != nullptr)
4042       // A guard was added.  If the guard is taken, it was an array.
4043       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
4044     // If we fall through, it's a plain class.  Get its _super.
4045     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
4046     kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4047     null_ctl = top();
4048     kls = null_check_oop(kls, &null_ctl);
4049     if (null_ctl != top()) {
4050       // If the guard is taken, Object.superClass is null (both klass and mirror).
4051       region->add_req(null_ctl);
4052       phi   ->add_req(null());
4053     }
4054     if (!stopped()) {
4055       query_value = load_mirror_from_klass(kls);
4056     }
4057     break;
4058 
4059   case vmIntrinsics::_getClassAccessFlags:
4060     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4061     query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered);
4062     break;
4063 
4064   default:
4065     fatal_unexpected_iid(id);
4066     break;
4067   }
4068 
4069   // Fall-through is the normal case of a query to a real class.
4070   phi->init_req(1, query_value);
4071   region->init_req(1, control());
4072 
4073   C->set_has_split_ifs(true); // Has chance for split-if optimization
4074   set_result(region, phi);
4075   return true;
4076 }
4077 
4078 //-------------------------inline_Class_cast-------------------
4079 bool LibraryCallKit::inline_Class_cast() {
4080   Node* mirror = argument(0); // Class
4081   Node* obj    = argument(1);
4082   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4083   if (mirror_con == nullptr) {
4084     return false;  // dead path (mirror->is_top()).
4085   }
4086   if (obj == nullptr || obj->is_top()) {
4087     return false;  // dead path
4088   }
4089   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4090 
4091   // First, see if Class.cast() can be folded statically.
4092   // java_mirror_type() returns non-null for compile-time Class constants.
4093   ciType* tm = mirror_con->java_mirror_type();
4094   if (tm != nullptr && tm->is_klass() &&
4095       tp != nullptr) {
4096     if (!tp->is_loaded()) {
4097       // Don't use intrinsic when class is not loaded.
4098       return false;
4099     } else {
4100       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());
4101       if (static_res == Compile::SSC_always_true) {
4102         // isInstance() is true - fold the code.
4103         set_result(obj);
4104         return true;
4105       } else if (static_res == Compile::SSC_always_false) {
4106         // Don't use intrinsic, have to throw ClassCastException.
4107         // If the reference is null, the non-intrinsic bytecode will
4108         // be optimized appropriately.
4109         return false;
4110       }
4111     }
4112   }
4113 
4114   // Bailout intrinsic and do normal inlining if exception path is frequent.
4115   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4116     return false;
4117   }
4118 
4119   // Generate dynamic checks.
4120   // Class.cast() is java implementation of _checkcast bytecode.
4121   // Do checkcast (Parse::do_checkcast()) optimizations here.
4122 
4123   mirror = null_check(mirror);
4124   // If mirror is dead, only null-path is taken.
4125   if (stopped()) {
4126     return true;
4127   }
4128 
4129   // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
4130   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
4131   RegionNode* region = new RegionNode(PATH_LIMIT);
4132   record_for_igvn(region);
4133 
4134   // Now load the mirror's klass metaobject, and null-check it.
4135   // If kls is null, we have a primitive mirror and
4136   // nothing is an instance of a primitive type.
4137   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4138 
4139   Node* res = top();
4140   if (!stopped()) {
4141     Node* bad_type_ctrl = top();
4142     // Do checkcast optimizations.
4143     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4144     region->init_req(_bad_type_path, bad_type_ctrl);
4145   }
4146   if (region->in(_prim_path) != top() ||
4147       region->in(_bad_type_path) != top()) {
4148     // Let Interpreter throw ClassCastException.
4149     PreserveJVMState pjvms(this);
4150     set_control(_gvn.transform(region));
4151     uncommon_trap(Deoptimization::Reason_intrinsic,
4152                   Deoptimization::Action_maybe_recompile);
4153   }
4154   if (!stopped()) {
4155     set_result(res);
4156   }
4157   return true;
4158 }
4159 
4160 
4161 //--------------------------inline_native_subtype_check------------------------
4162 // This intrinsic takes the JNI calls out of the heart of
4163 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4164 bool LibraryCallKit::inline_native_subtype_check() {
4165   // Pull both arguments off the stack.
4166   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4167   args[0] = argument(0);
4168   args[1] = argument(1);
4169   Node* klasses[2];             // corresponding Klasses: superk, subk
4170   klasses[0] = klasses[1] = top();
4171 
4172   enum {
4173     // A full decision tree on {superc is prim, subc is prim}:
4174     _prim_0_path = 1,           // {P,N} => false
4175                                 // {P,P} & superc!=subc => false
4176     _prim_same_path,            // {P,P} & superc==subc => true
4177     _prim_1_path,               // {N,P} => false
4178     _ref_subtype_path,          // {N,N} & subtype check wins => true
4179     _both_ref_path,             // {N,N} & subtype check loses => false
4180     PATH_LIMIT
4181   };
4182 
4183   RegionNode* region = new RegionNode(PATH_LIMIT);
4184   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4185   record_for_igvn(region);
4186 
4187   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4188   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4189   int class_klass_offset = java_lang_Class::klass_offset();
4190 
4191   // First null-check both mirrors and load each mirror's klass metaobject.
4192   int which_arg;
4193   for (which_arg = 0; which_arg <= 1; which_arg++) {
4194     Node* arg = args[which_arg];
4195     arg = null_check(arg);
4196     if (stopped())  break;
4197     args[which_arg] = arg;
4198 
4199     Node* p = basic_plus_adr(arg, class_klass_offset);
4200     Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type);
4201     klasses[which_arg] = _gvn.transform(kls);
4202   }
4203 
4204   // Having loaded both klasses, test each for null.
4205   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4206   for (which_arg = 0; which_arg <= 1; which_arg++) {
4207     Node* kls = klasses[which_arg];
4208     Node* null_ctl = top();
4209     kls = null_check_oop(kls, &null_ctl, never_see_null);
4210     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4211     region->init_req(prim_path, null_ctl);
4212     if (stopped())  break;
4213     klasses[which_arg] = kls;
4214   }
4215 
4216   if (!stopped()) {
4217     // now we have two reference types, in klasses[0..1]
4218     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4219     Node* superk = klasses[0];  // the receiver
4220     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4221     // now we have a successful reference subtype check
4222     region->set_req(_ref_subtype_path, control());
4223   }
4224 
4225   // If both operands are primitive (both klasses null), then
4226   // we must return true when they are identical primitives.
4227   // It is convenient to test this after the first null klass check.
4228   set_control(region->in(_prim_0_path)); // go back to first null check
4229   if (!stopped()) {
4230     // Since superc is primitive, make a guard for the superc==subc case.
4231     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4232     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4233     generate_guard(bol_eq, region, PROB_FAIR);
4234     if (region->req() == PATH_LIMIT+1) {
4235       // A guard was added.  If the added guard is taken, superc==subc.
4236       region->swap_edges(PATH_LIMIT, _prim_same_path);
4237       region->del_req(PATH_LIMIT);
4238     }
4239     region->set_req(_prim_0_path, control()); // Not equal after all.
4240   }
4241 
4242   // these are the only paths that produce 'true':
4243   phi->set_req(_prim_same_path,   intcon(1));
4244   phi->set_req(_ref_subtype_path, intcon(1));
4245 
4246   // pull together the cases:
4247   assert(region->req() == PATH_LIMIT, "sane region");
4248   for (uint i = 1; i < region->req(); i++) {
4249     Node* ctl = region->in(i);
4250     if (ctl == nullptr || ctl == top()) {
4251       region->set_req(i, top());
4252       phi   ->set_req(i, top());
4253     } else if (phi->in(i) == nullptr) {
4254       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4255     }
4256   }
4257 
4258   set_control(_gvn.transform(region));
4259   set_result(_gvn.transform(phi));
4260   return true;
4261 }
4262 
4263 //---------------------generate_array_guard_common------------------------
4264 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4265                                                   bool obj_array, bool not_array) {
4266 
4267   if (stopped()) {
4268     return nullptr;
4269   }
4270 
4271   // If obj_array/non_array==false/false:
4272   // Branch around if the given klass is in fact an array (either obj or prim).
4273   // If obj_array/non_array==false/true:
4274   // Branch around if the given klass is not an array klass of any kind.
4275   // If obj_array/non_array==true/true:
4276   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4277   // If obj_array/non_array==true/false:
4278   // Branch around if the kls is an oop array (Object[] or subtype)
4279   //
4280   // Like generate_guard, adds a new path onto the region.
4281   jint  layout_con = 0;
4282   Node* layout_val = get_layout_helper(kls, layout_con);
4283   if (layout_val == nullptr) {
4284     bool query = (obj_array
4285                   ? Klass::layout_helper_is_objArray(layout_con)
4286                   : Klass::layout_helper_is_array(layout_con));
4287     if (query == not_array) {
4288       return nullptr;                       // never a branch
4289     } else {                             // always a branch
4290       Node* always_branch = control();
4291       if (region != nullptr)
4292         region->add_req(always_branch);
4293       set_control(top());
4294       return always_branch;
4295     }
4296   }
4297   // Now test the correct condition.
4298   jint  nval = (obj_array
4299                 ? (jint)(Klass::_lh_array_tag_type_value
4300                    <<    Klass::_lh_array_tag_shift)
4301                 : Klass::_lh_neutral_value);
4302   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4303   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
4304   // invert the test if we are looking for a non-array
4305   if (not_array)  btest = BoolTest(btest).negate();
4306   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4307   return generate_fair_guard(bol, region);
4308 }
4309 
4310 
4311 //-----------------------inline_native_newArray--------------------------
4312 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4313 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4314 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4315   Node* mirror;
4316   Node* count_val;
4317   if (uninitialized) {
4318     null_check_receiver();
4319     mirror    = argument(1);
4320     count_val = argument(2);
4321   } else {
4322     mirror    = argument(0);
4323     count_val = argument(1);
4324   }
4325 
4326   mirror = null_check(mirror);
4327   // If mirror or obj is dead, only null-path is taken.
4328   if (stopped())  return true;
4329 
4330   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4331   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4332   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4333   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4334   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4335 
4336   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4337   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
4338                                                   result_reg, _slow_path);
4339   Node* normal_ctl   = control();
4340   Node* no_array_ctl = result_reg->in(_slow_path);
4341 
4342   // Generate code for the slow case.  We make a call to newArray().
4343   set_control(no_array_ctl);
4344   if (!stopped()) {
4345     // Either the input type is void.class, or else the
4346     // array klass has not yet been cached.  Either the
4347     // ensuing call will throw an exception, or else it
4348     // will cache the array klass for next time.
4349     PreserveJVMState pjvms(this);
4350     CallJavaNode* slow_call = nullptr;
4351     if (uninitialized) {
4352       // Generate optimized virtual call (holder class 'Unsafe' is final)
4353       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4354     } else {
4355       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4356     }
4357     Node* slow_result = set_results_for_java_call(slow_call);
4358     // this->control() comes from set_results_for_java_call
4359     result_reg->set_req(_slow_path, control());
4360     result_val->set_req(_slow_path, slow_result);
4361     result_io ->set_req(_slow_path, i_o());
4362     result_mem->set_req(_slow_path, reset_memory());
4363   }
4364 
4365   set_control(normal_ctl);
4366   if (!stopped()) {
4367     // Normal case:  The array type has been cached in the java.lang.Class.
4368     // The following call works fine even if the array type is polymorphic.
4369     // It could be a dynamic mix of int[], boolean[], Object[], etc.
4370     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4371     result_reg->init_req(_normal_path, control());
4372     result_val->init_req(_normal_path, obj);
4373     result_io ->init_req(_normal_path, i_o());
4374     result_mem->init_req(_normal_path, reset_memory());
4375 
4376     if (uninitialized) {
4377       // Mark the allocation so that zeroing is skipped
4378       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4379       alloc->maybe_set_complete(&_gvn);
4380     }
4381   }
4382 
4383   // Return the combined state.
4384   set_i_o(        _gvn.transform(result_io)  );
4385   set_all_memory( _gvn.transform(result_mem));
4386 
4387   C->set_has_split_ifs(true); // Has chance for split-if optimization
4388   set_result(result_reg, result_val);
4389   return true;
4390 }
4391 
4392 //----------------------inline_native_getLength--------------------------
4393 // public static native int java.lang.reflect.Array.getLength(Object array);
4394 bool LibraryCallKit::inline_native_getLength() {
4395   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4396 
4397   Node* array = null_check(argument(0));
4398   // If array is dead, only null-path is taken.
4399   if (stopped())  return true;
4400 
4401   // Deoptimize if it is a non-array.
4402   Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr);
4403 
4404   if (non_array != nullptr) {
4405     PreserveJVMState pjvms(this);
4406     set_control(non_array);
4407     uncommon_trap(Deoptimization::Reason_intrinsic,
4408                   Deoptimization::Action_maybe_recompile);
4409   }
4410 
4411   // If control is dead, only non-array-path is taken.
4412   if (stopped())  return true;
4413 
4414   // The works fine even if the array type is polymorphic.
4415   // It could be a dynamic mix of int[], boolean[], Object[], etc.
4416   Node* result = load_array_length(array);
4417 
4418   C->set_has_split_ifs(true);  // Has chance for split-if optimization
4419   set_result(result);
4420   return true;
4421 }
4422 
4423 //------------------------inline_array_copyOf----------------------------
4424 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
4425 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
4426 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4427   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4428 
4429   // Get the arguments.
4430   Node* original          = argument(0);
4431   Node* start             = is_copyOfRange? argument(1): intcon(0);
4432   Node* end               = is_copyOfRange? argument(2): argument(1);
4433   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4434 
4435   Node* newcopy = nullptr;
4436 
4437   // Set the original stack and the reexecute bit for the interpreter to reexecute
4438   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4439   { PreserveReexecuteState preexecs(this);
4440     jvms()->set_should_reexecute(true);
4441 
4442     array_type_mirror = null_check(array_type_mirror);
4443     original          = null_check(original);
4444 
4445     // Check if a null path was taken unconditionally.
4446     if (stopped())  return true;
4447 
4448     Node* orig_length = load_array_length(original);
4449 
4450     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4451     klass_node = null_check(klass_node);
4452 
4453     RegionNode* bailout = new RegionNode(1);
4454     record_for_igvn(bailout);
4455 
4456     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4457     // Bail out if that is so.
4458     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
4459     if (not_objArray != nullptr) {
4460       // Improve the klass node's type from the new optimistic assumption:
4461       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4462       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4463       Node* cast = new CastPPNode(control(), klass_node, akls);
4464       klass_node = _gvn.transform(cast);
4465     }
4466 
4467     // Bail out if either start or end is negative.
4468     generate_negative_guard(start, bailout, &start);
4469     generate_negative_guard(end,   bailout, &end);
4470 
4471     Node* length = end;
4472     if (_gvn.type(start) != TypeInt::ZERO) {
4473       length = _gvn.transform(new SubINode(end, start));
4474     }
4475 
4476     // Bail out if length is negative (i.e., if start > end).
4477     // Without this the new_array would throw
4478     // NegativeArraySizeException but IllegalArgumentException is what
4479     // should be thrown
4480     generate_negative_guard(length, bailout, &length);
4481 
4482     // Bail out if start is larger than the original length
4483     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4484     generate_negative_guard(orig_tail, bailout, &orig_tail);
4485 
4486     if (bailout->req() > 1) {
4487       PreserveJVMState pjvms(this);
4488       set_control(_gvn.transform(bailout));
4489       uncommon_trap(Deoptimization::Reason_intrinsic,
4490                     Deoptimization::Action_maybe_recompile);
4491     }
4492 
4493     if (!stopped()) {
4494       // How many elements will we copy from the original?
4495       // The answer is MinI(orig_tail, length).
4496       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4497 
4498       // Generate a direct call to the right arraycopy function(s).
4499       // We know the copy is disjoint but we might not know if the
4500       // oop stores need checking.
4501       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4502       // This will fail a store-check if x contains any non-nulls.
4503 
4504       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4505       // loads/stores but it is legal only if we're sure the
4506       // Arrays.copyOf would succeed. So we need all input arguments
4507       // to the copyOf to be validated, including that the copy to the
4508       // new array won't trigger an ArrayStoreException. That subtype
4509       // check can be optimized if we know something on the type of
4510       // the input array from type speculation.
4511       if (_gvn.type(klass_node)->singleton()) {
4512         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4513         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4514 
4515         int test = C->static_subtype_check(superk, subk);
4516         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4517           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4518           if (t_original->speculative_type() != nullptr) {
4519             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4520           }
4521         }
4522       }
4523 
4524       bool validated = false;
4525       // Reason_class_check rather than Reason_intrinsic because we
4526       // want to intrinsify even if this traps.
4527       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4528         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4529 
4530         if (not_subtype_ctrl != top()) {
4531           PreserveJVMState pjvms(this);
4532           set_control(not_subtype_ctrl);
4533           uncommon_trap(Deoptimization::Reason_class_check,
4534                         Deoptimization::Action_make_not_entrant);
4535           assert(stopped(), "Should be stopped");
4536         }
4537         validated = true;
4538       }
4539 
4540       if (!stopped()) {
4541         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4542 
4543         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4544                                                 load_object_klass(original), klass_node);
4545         if (!is_copyOfRange) {
4546           ac->set_copyof(validated);
4547         } else {
4548           ac->set_copyofrange(validated);
4549         }
4550         Node* n = _gvn.transform(ac);
4551         if (n == ac) {
4552           ac->connect_outputs(this);
4553         } else {
4554           assert(validated, "shouldn't transform if all arguments not validated");
4555           set_all_memory(n);
4556         }
4557       }
4558     }
4559   } // original reexecute is set back here
4560 
4561   C->set_has_split_ifs(true); // Has chance for split-if optimization
4562   if (!stopped()) {
4563     set_result(newcopy);
4564   }
4565   return true;
4566 }
4567 
4568 
4569 //----------------------generate_virtual_guard---------------------------
4570 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4571 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4572                                              RegionNode* slow_region) {
4573   ciMethod* method = callee();
4574   int vtable_index = method->vtable_index();
4575   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4576          "bad index %d", vtable_index);
4577   // Get the Method* out of the appropriate vtable entry.
4578   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4579                      vtable_index*vtableEntry::size_in_bytes() +
4580                      in_bytes(vtableEntry::method_offset());
4581   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4582   Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4583 
4584   // Compare the target method with the expected method (e.g., Object.hashCode).
4585   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4586 
4587   Node* native_call = makecon(native_call_addr);
4588   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4589   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4590 
4591   return generate_slow_guard(test_native, slow_region);
4592 }
4593 
4594 //-----------------------generate_method_call----------------------------
4595 // Use generate_method_call to make a slow-call to the real
4596 // method if the fast path fails.  An alternative would be to
4597 // use a stub like OptoRuntime::slow_arraycopy_Java.
4598 // This only works for expanding the current library call,
4599 // not another intrinsic.  (E.g., don't use this for making an
4600 // arraycopy call inside of the copyOf intrinsic.)
4601 CallJavaNode*
4602 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4603   // When compiling the intrinsic method itself, do not use this technique.
4604   guarantee(callee() != C->method(), "cannot make slow-call to self");
4605 
4606   ciMethod* method = callee();
4607   // ensure the JVMS we have will be correct for this call
4608   guarantee(method_id == method->intrinsic_id(), "must match");
4609 
4610   const TypeFunc* tf = TypeFunc::make(method);
4611   if (res_not_null) {
4612     assert(tf->return_type() == T_OBJECT, "");
4613     const TypeTuple* range = tf->range();
4614     const Type** fields = TypeTuple::fields(range->cnt());
4615     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4616     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4617     tf = TypeFunc::make(tf->domain(), new_range);
4618   }
4619   CallJavaNode* slow_call;
4620   if (is_static) {
4621     assert(!is_virtual, "");
4622     slow_call = new CallStaticJavaNode(C, tf,
4623                            SharedRuntime::get_resolve_static_call_stub(), method);
4624   } else if (is_virtual) {
4625     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4626     int vtable_index = Method::invalid_vtable_index;
4627     if (UseInlineCaches) {
4628       // Suppress the vtable call
4629     } else {
4630       // hashCode and clone are not a miranda methods,
4631       // so the vtable index is fixed.
4632       // No need to use the linkResolver to get it.
4633        vtable_index = method->vtable_index();
4634        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4635               "bad index %d", vtable_index);
4636     }
4637     slow_call = new CallDynamicJavaNode(tf,
4638                           SharedRuntime::get_resolve_virtual_call_stub(),
4639                           method, vtable_index);
4640   } else {  // neither virtual nor static:  opt_virtual
4641     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4642     slow_call = new CallStaticJavaNode(C, tf,
4643                                 SharedRuntime::get_resolve_opt_virtual_call_stub(), method);
4644     slow_call->set_optimized_virtual(true);
4645   }
4646   if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
4647     // To be able to issue a direct call (optimized virtual or virtual)
4648     // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
4649     // about the method being invoked should be attached to the call site to
4650     // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
4651     slow_call->set_override_symbolic_info(true);
4652   }
4653   set_arguments_for_java_call(slow_call);
4654   set_edges_for_java_call(slow_call);
4655   return slow_call;
4656 }
4657 
4658 
4659 /**
4660  * Build special case code for calls to hashCode on an object. This call may
4661  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4662  * slightly different code.
4663  */
4664 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4665   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4666   assert(!(is_virtual && is_static), "either virtual, special, or static");
4667 
4668   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4669 
4670   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4671   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4672   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4673   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4674   Node* obj = nullptr;
4675   if (!is_static) {
4676     // Check for hashing null object
4677     obj = null_check_receiver();
4678     if (stopped())  return true;        // unconditionally null
4679     result_reg->init_req(_null_path, top());
4680     result_val->init_req(_null_path, top());
4681   } else {
4682     // Do a null check, and return zero if null.
4683     // System.identityHashCode(null) == 0
4684     obj = argument(0);
4685     Node* null_ctl = top();
4686     obj = null_check_oop(obj, &null_ctl);
4687     result_reg->init_req(_null_path, null_ctl);
4688     result_val->init_req(_null_path, _gvn.intcon(0));
4689   }
4690 
4691   // Unconditionally null?  Then return right away.
4692   if (stopped()) {
4693     set_control( result_reg->in(_null_path));
4694     if (!stopped())
4695       set_result(result_val->in(_null_path));
4696     return true;
4697   }
4698 
4699   // We only go to the fast case code if we pass a number of guards.  The
4700   // paths which do not pass are accumulated in the slow_region.
4701   RegionNode* slow_region = new RegionNode(1);
4702   record_for_igvn(slow_region);
4703 
4704   // If this is a virtual call, we generate a funny guard.  We pull out
4705   // the vtable entry corresponding to hashCode() from the target object.
4706   // If the target method which we are calling happens to be the native
4707   // Object hashCode() method, we pass the guard.  We do not need this
4708   // guard for non-virtual calls -- the caller is known to be the native
4709   // Object hashCode().
4710   if (is_virtual) {
4711     // After null check, get the object's klass.
4712     Node* obj_klass = load_object_klass(obj);
4713     generate_virtual_guard(obj_klass, slow_region);
4714   }
4715 
4716   // Get the header out of the object, use LoadMarkNode when available
4717   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4718   // The control of the load must be null. Otherwise, the load can move before
4719   // the null check after castPP removal.
4720   Node* no_ctrl = nullptr;
4721   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4722 
4723   if (!UseObjectMonitorTable) {
4724     // Test the header to see if it is safe to read w.r.t. locking.
4725     Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);
4726     Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4727     if (LockingMode == LM_LIGHTWEIGHT) {
4728       Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4729       Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4730       Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4731 
4732       generate_slow_guard(test_monitor, slow_region);
4733     } else {
4734       Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
4735       Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
4736       Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
4737 
4738       generate_slow_guard(test_not_unlocked, slow_region);
4739     }
4740   }
4741 
4742   // Get the hash value and check to see that it has been properly assigned.
4743   // We depend on hash_mask being at most 32 bits and avoid the use of
4744   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4745   // vm: see markWord.hpp.
4746   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
4747   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
4748   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4749   // This hack lets the hash bits live anywhere in the mark object now, as long
4750   // as the shift drops the relevant bits into the low 32 bits.  Note that
4751   // Java spec says that HashCode is an int so there's no point in capturing
4752   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4753   hshifted_header      = ConvX2I(hshifted_header);
4754   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4755 
4756   Node *no_hash_val    = _gvn.intcon(markWord::no_hash);
4757   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4758   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4759 
4760   generate_slow_guard(test_assigned, slow_region);
4761 
4762   Node* init_mem = reset_memory();
4763   // fill in the rest of the null path:
4764   result_io ->init_req(_null_path, i_o());
4765   result_mem->init_req(_null_path, init_mem);
4766 
4767   result_val->init_req(_fast_path, hash_val);
4768   result_reg->init_req(_fast_path, control());
4769   result_io ->init_req(_fast_path, i_o());
4770   result_mem->init_req(_fast_path, init_mem);
4771 
4772   // Generate code for the slow case.  We make a call to hashCode().
4773   set_control(_gvn.transform(slow_region));
4774   if (!stopped()) {
4775     // No need for PreserveJVMState, because we're using up the present state.
4776     set_all_memory(init_mem);
4777     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4778     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false);
4779     Node* slow_result = set_results_for_java_call(slow_call);
4780     // this->control() comes from set_results_for_java_call
4781     result_reg->init_req(_slow_path, control());
4782     result_val->init_req(_slow_path, slow_result);
4783     result_io  ->set_req(_slow_path, i_o());
4784     result_mem ->set_req(_slow_path, reset_memory());
4785   }
4786 
4787   // Return the combined state.
4788   set_i_o(        _gvn.transform(result_io)  );
4789   set_all_memory( _gvn.transform(result_mem));
4790 
4791   set_result(result_reg, result_val);
4792   return true;
4793 }
4794 
4795 //---------------------------inline_native_getClass----------------------------
4796 // public final native Class<?> java.lang.Object.getClass();
4797 //
4798 // Build special case code for calls to getClass on an object.
4799 bool LibraryCallKit::inline_native_getClass() {
4800   Node* obj = null_check_receiver();
4801   if (stopped())  return true;
4802   set_result(load_mirror_from_klass(load_object_klass(obj)));
4803   return true;
4804 }
4805 
4806 //-----------------inline_native_Reflection_getCallerClass---------------------
4807 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4808 //
4809 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4810 //
4811 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4812 // in that it must skip particular security frames and checks for
4813 // caller sensitive methods.
4814 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4815 #ifndef PRODUCT
4816   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4817     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4818   }
4819 #endif
4820 
4821   if (!jvms()->has_method()) {
4822 #ifndef PRODUCT
4823     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4824       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4825     }
4826 #endif
4827     return false;
4828   }
4829 
4830   // Walk back up the JVM state to find the caller at the required
4831   // depth.
4832   JVMState* caller_jvms = jvms();
4833 
4834   // Cf. JVM_GetCallerClass
4835   // NOTE: Start the loop at depth 1 because the current JVM state does
4836   // not include the Reflection.getCallerClass() frame.
4837   for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) {
4838     ciMethod* m = caller_jvms->method();
4839     switch (n) {
4840     case 0:
4841       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4842       break;
4843     case 1:
4844       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4845       if (!m->caller_sensitive()) {
4846 #ifndef PRODUCT
4847         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4848           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4849         }
4850 #endif
4851         return false;  // bail-out; let JVM_GetCallerClass do the work
4852       }
4853       break;
4854     default:
4855       if (!m->is_ignored_by_security_stack_walk()) {
4856         // We have reached the desired frame; return the holder class.
4857         // Acquire method holder as java.lang.Class and push as constant.
4858         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4859         ciInstance* caller_mirror = caller_klass->java_mirror();
4860         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4861 
4862 #ifndef PRODUCT
4863         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4864           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4865           tty->print_cr("  JVM state at this point:");
4866           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4867             ciMethod* m = jvms()->of_depth(i)->method();
4868             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4869           }
4870         }
4871 #endif
4872         return true;
4873       }
4874       break;
4875     }
4876   }
4877 
4878 #ifndef PRODUCT
4879   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4880     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4881     tty->print_cr("  JVM state at this point:");
4882     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4883       ciMethod* m = jvms()->of_depth(i)->method();
4884       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4885     }
4886   }
4887 #endif
4888 
4889   return false;  // bail-out; let JVM_GetCallerClass do the work
4890 }
4891 
4892 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4893   Node* arg = argument(0);
4894   Node* result = nullptr;
4895 
4896   switch (id) {
4897   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4898   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4899   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4900   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4901   case vmIntrinsics::_floatToFloat16:       result = new ConvF2HFNode(arg); break;
4902   case vmIntrinsics::_float16ToFloat:       result = new ConvHF2FNode(arg); break;
4903 
4904   case vmIntrinsics::_doubleToLongBits: {
4905     // two paths (plus control) merge in a wood
4906     RegionNode *r = new RegionNode(3);
4907     Node *phi = new PhiNode(r, TypeLong::LONG);
4908 
4909     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4910     // Build the boolean node
4911     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4912 
4913     // Branch either way.
4914     // NaN case is less traveled, which makes all the difference.
4915     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4916     Node *opt_isnan = _gvn.transform(ifisnan);
4917     assert( opt_isnan->is_If(), "Expect an IfNode");
4918     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4919     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4920 
4921     set_control(iftrue);
4922 
4923     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4924     Node *slow_result = longcon(nan_bits); // return NaN
4925     phi->init_req(1, _gvn.transform( slow_result ));
4926     r->init_req(1, iftrue);
4927 
4928     // Else fall through
4929     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4930     set_control(iffalse);
4931 
4932     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4933     r->init_req(2, iffalse);
4934 
4935     // Post merge
4936     set_control(_gvn.transform(r));
4937     record_for_igvn(r);
4938 
4939     C->set_has_split_ifs(true); // Has chance for split-if optimization
4940     result = phi;
4941     assert(result->bottom_type()->isa_long(), "must be");
4942     break;
4943   }
4944 
4945   case vmIntrinsics::_floatToIntBits: {
4946     // two paths (plus control) merge in a wood
4947     RegionNode *r = new RegionNode(3);
4948     Node *phi = new PhiNode(r, TypeInt::INT);
4949 
4950     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4951     // Build the boolean node
4952     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4953 
4954     // Branch either way.
4955     // NaN case is less traveled, which makes all the difference.
4956     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4957     Node *opt_isnan = _gvn.transform(ifisnan);
4958     assert( opt_isnan->is_If(), "Expect an IfNode");
4959     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4960     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4961 
4962     set_control(iftrue);
4963 
4964     static const jint nan_bits = 0x7fc00000;
4965     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4966     phi->init_req(1, _gvn.transform( slow_result ));
4967     r->init_req(1, iftrue);
4968 
4969     // Else fall through
4970     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4971     set_control(iffalse);
4972 
4973     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4974     r->init_req(2, iffalse);
4975 
4976     // Post merge
4977     set_control(_gvn.transform(r));
4978     record_for_igvn(r);
4979 
4980     C->set_has_split_ifs(true); // Has chance for split-if optimization
4981     result = phi;
4982     assert(result->bottom_type()->isa_int(), "must be");
4983     break;
4984   }
4985 
4986   default:
4987     fatal_unexpected_iid(id);
4988     break;
4989   }
4990   set_result(_gvn.transform(result));
4991   return true;
4992 }
4993 
4994 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) {
4995   Node* arg = argument(0);
4996   Node* result = nullptr;
4997 
4998   switch (id) {
4999   case vmIntrinsics::_floatIsInfinite:
5000     result = new IsInfiniteFNode(arg);
5001     break;
5002   case vmIntrinsics::_floatIsFinite:
5003     result = new IsFiniteFNode(arg);
5004     break;
5005   case vmIntrinsics::_doubleIsInfinite:
5006     result = new IsInfiniteDNode(arg);
5007     break;
5008   case vmIntrinsics::_doubleIsFinite:
5009     result = new IsFiniteDNode(arg);
5010     break;
5011   default:
5012     fatal_unexpected_iid(id);
5013     break;
5014   }
5015   set_result(_gvn.transform(result));
5016   return true;
5017 }
5018 
5019 //----------------------inline_unsafe_copyMemory-------------------------
5020 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
5021 
5022 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) {
5023   const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr();
5024   const Type*       base_t = gvn.type(base);
5025 
5026   bool in_native = (base_t == TypePtr::NULL_PTR);
5027   bool in_heap   = !TypePtr::NULL_PTR->higher_equal(base_t);
5028   bool is_mixed  = !in_heap && !in_native;
5029 
5030   if (is_mixed) {
5031     return true; // mixed accesses can touch both on-heap and off-heap memory
5032   }
5033   if (in_heap) {
5034     bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM);
5035     if (!is_prim_array) {
5036       // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array,
5037       // there's not enough type information available to determine proper memory slice for it.
5038       return true;
5039     }
5040   }
5041   return false;
5042 }
5043 
5044 bool LibraryCallKit::inline_unsafe_copyMemory() {
5045   if (callee()->is_static())  return false;  // caller must have the capability!
5046   null_check_receiver();  // null-check receiver
5047   if (stopped())  return true;
5048 
5049   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5050 
5051   Node* src_base =         argument(1);  // type: oop
5052   Node* src_off  = ConvL2X(argument(2)); // type: long
5053   Node* dst_base =         argument(4);  // type: oop
5054   Node* dst_off  = ConvL2X(argument(5)); // type: long
5055   Node* size     = ConvL2X(argument(7)); // type: long
5056 
5057   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5058          "fieldOffset must be byte-scaled");
5059 
5060   Node* src_addr = make_unsafe_address(src_base, src_off);
5061   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5062 
5063   Node* thread = _gvn.transform(new ThreadLocalNode());
5064   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5065   BasicType doing_unsafe_access_bt = T_BYTE;
5066   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5067 
5068   // update volatile field
5069   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered);
5070 
5071   int flags = RC_LEAF | RC_NO_FP;
5072 
5073   const TypePtr* dst_type = TypePtr::BOTTOM;
5074 
5075   // Adjust memory effects of the runtime call based on input values.
5076   if (!has_wide_mem(_gvn, src_addr, src_base) &&
5077       !has_wide_mem(_gvn, dst_addr, dst_base)) {
5078     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5079 
5080     const TypePtr* src_type = _gvn.type(src_addr)->is_ptr();
5081     if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) {
5082       flags |= RC_NARROW_MEM; // narrow in memory
5083     }
5084   }
5085 
5086   // Call it.  Note that the length argument is not scaled.
5087   make_runtime_call(flags,
5088                     OptoRuntime::fast_arraycopy_Type(),
5089                     StubRoutines::unsafe_arraycopy(),
5090                     "unsafe_arraycopy",
5091                     dst_type,
5092                     src_addr, dst_addr, size XTOP);
5093 
5094   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5095 
5096   return true;
5097 }
5098 
5099 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value);
5100 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value'
5101 bool LibraryCallKit::inline_unsafe_setMemory() {
5102   if (callee()->is_static())  return false;  // caller must have the capability!
5103   null_check_receiver();  // null-check receiver
5104   if (stopped())  return true;
5105 
5106   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5107 
5108   Node* dst_base =         argument(1);  // type: oop
5109   Node* dst_off  = ConvL2X(argument(2)); // type: long
5110   Node* size     = ConvL2X(argument(4)); // type: long
5111   Node* byte     =         argument(6);  // type: byte
5112 
5113   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5114          "fieldOffset must be byte-scaled");
5115 
5116   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5117 
5118   Node* thread = _gvn.transform(new ThreadLocalNode());
5119   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5120   BasicType doing_unsafe_access_bt = T_BYTE;
5121   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5122 
5123   // update volatile field
5124   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered);
5125 
5126   int flags = RC_LEAF | RC_NO_FP;
5127 
5128   const TypePtr* dst_type = TypePtr::BOTTOM;
5129 
5130   // Adjust memory effects of the runtime call based on input values.
5131   if (!has_wide_mem(_gvn, dst_addr, dst_base)) {
5132     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5133 
5134     flags |= RC_NARROW_MEM; // narrow in memory
5135   }
5136 
5137   // Call it.  Note that the length argument is not scaled.
5138   make_runtime_call(flags,
5139                     OptoRuntime::make_setmemory_Type(),
5140                     StubRoutines::unsafe_setmemory(),
5141                     "unsafe_setmemory",
5142                     dst_type,
5143                     dst_addr, size XTOP, byte);
5144 
5145   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5146 
5147   return true;
5148 }
5149 
5150 #undef XTOP
5151 
5152 //------------------------clone_coping-----------------------------------
5153 // Helper function for inline_native_clone.
5154 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5155   assert(obj_size != nullptr, "");
5156   Node* raw_obj = alloc_obj->in(1);
5157   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5158 
5159   AllocateNode* alloc = nullptr;
5160   if (ReduceBulkZeroing &&
5161       // If we are implementing an array clone without knowing its source type
5162       // (can happen when compiling the array-guarded branch of a reflective
5163       // Object.clone() invocation), initialize the array within the allocation.
5164       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5165       // to a runtime clone call that assumes fully initialized source arrays.
5166       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5167     // We will be completely responsible for initializing this object -
5168     // mark Initialize node as complete.
5169     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5170     // The object was just allocated - there should be no any stores!
5171     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");
5172     // Mark as complete_with_arraycopy so that on AllocateNode
5173     // expansion, we know this AllocateNode is initialized by an array
5174     // copy and a StoreStore barrier exists after the array copy.
5175     alloc->initialization()->set_complete_with_arraycopy();
5176   }
5177 
5178   Node* size = _gvn.transform(obj_size);
5179   access_clone(obj, alloc_obj, size, is_array);
5180 
5181   // Do not let reads from the cloned object float above the arraycopy.
5182   if (alloc != nullptr) {
5183     // Do not let stores that initialize this object be reordered with
5184     // a subsequent store that would make this object accessible by
5185     // other threads.
5186     // Record what AllocateNode this StoreStore protects so that
5187     // escape analysis can go from the MemBarStoreStoreNode to the
5188     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5189     // based on the escape status of the AllocateNode.
5190     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
5191   } else {
5192     insert_mem_bar(Op_MemBarCPUOrder);
5193   }
5194 }
5195 
5196 //------------------------inline_native_clone----------------------------
5197 // protected native Object java.lang.Object.clone();
5198 //
5199 // Here are the simple edge cases:
5200 //  null receiver => normal trap
5201 //  virtual and clone was overridden => slow path to out-of-line clone
5202 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5203 //
5204 // The general case has two steps, allocation and copying.
5205 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5206 //
5207 // Copying also has two cases, oop arrays and everything else.
5208 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5209 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5210 //
5211 // These steps fold up nicely if and when the cloned object's klass
5212 // can be sharply typed as an object array, a type array, or an instance.
5213 //
5214 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5215   PhiNode* result_val;
5216 
5217   // Set the reexecute bit for the interpreter to reexecute
5218   // the bytecode that invokes Object.clone if deoptimization happens.
5219   { PreserveReexecuteState preexecs(this);
5220     jvms()->set_should_reexecute(true);
5221 
5222     Node* obj = null_check_receiver();
5223     if (stopped())  return true;
5224 
5225     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5226 
5227     // If we are going to clone an instance, we need its exact type to
5228     // know the number and types of fields to convert the clone to
5229     // loads/stores. Maybe a speculative type can help us.
5230     if (!obj_type->klass_is_exact() &&
5231         obj_type->speculative_type() != nullptr &&
5232         obj_type->speculative_type()->is_instance_klass()) {
5233       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5234       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5235           !spec_ik->has_injected_fields()) {
5236         if (!obj_type->isa_instptr() ||
5237             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5238           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5239         }
5240       }
5241     }
5242 
5243     // Conservatively insert a memory barrier on all memory slices.
5244     // Do not let writes into the original float below the clone.
5245     insert_mem_bar(Op_MemBarCPUOrder);
5246 
5247     // paths into result_reg:
5248     enum {
5249       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5250       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5251       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5252       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5253       PATH_LIMIT
5254     };
5255     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5256     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5257     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5258     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5259     record_for_igvn(result_reg);
5260 
5261     Node* obj_klass = load_object_klass(obj);
5262     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr);
5263     if (array_ctl != nullptr) {
5264       // It's an array.
5265       PreserveJVMState pjvms(this);
5266       set_control(array_ctl);
5267       Node* obj_length = load_array_length(obj);
5268       Node* array_size = nullptr; // Size of the array without object alignment padding.
5269       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5270 
5271       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5272       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5273         // If it is an oop array, it requires very special treatment,
5274         // because gc barriers are required when accessing the array.
5275         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5276         if (is_obja != nullptr) {
5277           PreserveJVMState pjvms2(this);
5278           set_control(is_obja);
5279           // Generate a direct call to the right arraycopy function(s).
5280           // Clones are always tightly coupled.
5281           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5282           ac->set_clone_oop_array();
5283           Node* n = _gvn.transform(ac);
5284           assert(n == ac, "cannot disappear");
5285           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5286 
5287           result_reg->init_req(_objArray_path, control());
5288           result_val->init_req(_objArray_path, alloc_obj);
5289           result_i_o ->set_req(_objArray_path, i_o());
5290           result_mem ->set_req(_objArray_path, reset_memory());
5291         }
5292       }
5293       // Otherwise, there are no barriers to worry about.
5294       // (We can dispense with card marks if we know the allocation
5295       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5296       //  causes the non-eden paths to take compensating steps to
5297       //  simulate a fresh allocation, so that no further
5298       //  card marks are required in compiled code to initialize
5299       //  the object.)
5300 
5301       if (!stopped()) {
5302         copy_to_clone(obj, alloc_obj, array_size, true);
5303 
5304         // Present the results of the copy.
5305         result_reg->init_req(_array_path, control());
5306         result_val->init_req(_array_path, alloc_obj);
5307         result_i_o ->set_req(_array_path, i_o());
5308         result_mem ->set_req(_array_path, reset_memory());
5309       }
5310     }
5311 
5312     // We only go to the instance fast case code if we pass a number of guards.
5313     // The paths which do not pass are accumulated in the slow_region.
5314     RegionNode* slow_region = new RegionNode(1);
5315     record_for_igvn(slow_region);
5316     if (!stopped()) {
5317       // It's an instance (we did array above).  Make the slow-path tests.
5318       // If this is a virtual call, we generate a funny guard.  We grab
5319       // the vtable entry corresponding to clone() from the target object.
5320       // If the target method which we are calling happens to be the
5321       // Object clone() method, we pass the guard.  We do not need this
5322       // guard for non-virtual calls; the caller is known to be the native
5323       // Object clone().
5324       if (is_virtual) {
5325         generate_virtual_guard(obj_klass, slow_region);
5326       }
5327 
5328       // The object must be easily cloneable and must not have a finalizer.
5329       // Both of these conditions may be checked in a single test.
5330       // We could optimize the test further, but we don't care.
5331       generate_misc_flags_guard(obj_klass,
5332                                 // Test both conditions:
5333                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5334                                 // Must be cloneable but not finalizer:
5335                                 KlassFlags::_misc_is_cloneable_fast,
5336                                 slow_region);
5337     }
5338 
5339     if (!stopped()) {
5340       // It's an instance, and it passed the slow-path tests.
5341       PreserveJVMState pjvms(this);
5342       Node* obj_size = nullptr; // Total object size, including object alignment padding.
5343       // Need to deoptimize on exception from allocation since Object.clone intrinsic
5344       // is reexecuted if deoptimization occurs and there could be problems when merging
5345       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
5346       Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true);
5347 
5348       copy_to_clone(obj, alloc_obj, obj_size, false);
5349 
5350       // Present the results of the slow call.
5351       result_reg->init_req(_instance_path, control());
5352       result_val->init_req(_instance_path, alloc_obj);
5353       result_i_o ->set_req(_instance_path, i_o());
5354       result_mem ->set_req(_instance_path, reset_memory());
5355     }
5356 
5357     // Generate code for the slow case.  We make a call to clone().
5358     set_control(_gvn.transform(slow_region));
5359     if (!stopped()) {
5360       PreserveJVMState pjvms(this);
5361       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true);
5362       // We need to deoptimize on exception (see comment above)
5363       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
5364       // this->control() comes from set_results_for_java_call
5365       result_reg->init_req(_slow_path, control());
5366       result_val->init_req(_slow_path, slow_result);
5367       result_i_o ->set_req(_slow_path, i_o());
5368       result_mem ->set_req(_slow_path, reset_memory());
5369     }
5370 
5371     // Return the combined state.
5372     set_control(    _gvn.transform(result_reg));
5373     set_i_o(        _gvn.transform(result_i_o));
5374     set_all_memory( _gvn.transform(result_mem));
5375   } // original reexecute is set back here
5376 
5377   set_result(_gvn.transform(result_val));
5378   return true;
5379 }
5380 
5381 // If we have a tightly coupled allocation, the arraycopy may take care
5382 // of the array initialization. If one of the guards we insert between
5383 // the allocation and the arraycopy causes a deoptimization, an
5384 // uninitialized array will escape the compiled method. To prevent that
5385 // we set the JVM state for uncommon traps between the allocation and
5386 // the arraycopy to the state before the allocation so, in case of
5387 // deoptimization, we'll reexecute the allocation and the
5388 // initialization.
5389 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
5390   if (alloc != nullptr) {
5391     ciMethod* trap_method = alloc->jvms()->method();
5392     int trap_bci = alloc->jvms()->bci();
5393 
5394     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5395         !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
5396       // Make sure there's no store between the allocation and the
5397       // arraycopy otherwise visible side effects could be rexecuted
5398       // in case of deoptimization and cause incorrect execution.
5399       bool no_interfering_store = true;
5400       Node* mem = alloc->in(TypeFunc::Memory);
5401       if (mem->is_MergeMem()) {
5402         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
5403           Node* n = mms.memory();
5404           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5405             assert(n->is_Store(), "what else?");
5406             no_interfering_store = false;
5407             break;
5408           }
5409         }
5410       } else {
5411         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
5412           Node* n = mms.memory();
5413           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5414             assert(n->is_Store(), "what else?");
5415             no_interfering_store = false;
5416             break;
5417           }
5418         }
5419       }
5420 
5421       if (no_interfering_store) {
5422         SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5423 
5424         JVMState* saved_jvms = jvms();
5425         saved_reexecute_sp = _reexecute_sp;
5426 
5427         set_jvms(sfpt->jvms());
5428         _reexecute_sp = jvms()->sp();
5429 
5430         return saved_jvms;
5431       }
5432     }
5433   }
5434   return nullptr;
5435 }
5436 
5437 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5438 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5439 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5440   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5441   uint size = alloc->req();
5442   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5443   old_jvms->set_map(sfpt);
5444   for (uint i = 0; i < size; i++) {
5445     sfpt->init_req(i, alloc->in(i));
5446   }
5447   // re-push array length for deoptimization
5448   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5449   old_jvms->set_sp(old_jvms->sp()+1);
5450   old_jvms->set_monoff(old_jvms->monoff()+1);
5451   old_jvms->set_scloff(old_jvms->scloff()+1);
5452   old_jvms->set_endoff(old_jvms->endoff()+1);
5453   old_jvms->set_should_reexecute(true);
5454 
5455   sfpt->set_i_o(map()->i_o());
5456   sfpt->set_memory(map()->memory());
5457   sfpt->set_control(map()->control());
5458   return sfpt;
5459 }
5460 
5461 // In case of a deoptimization, we restart execution at the
5462 // allocation, allocating a new array. We would leave an uninitialized
5463 // array in the heap that GCs wouldn't expect. Move the allocation
5464 // after the traps so we don't allocate the array if we
5465 // deoptimize. This is possible because tightly_coupled_allocation()
5466 // guarantees there's no observer of the allocated array at this point
5467 // and the control flow is simple enough.
5468 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5469                                                     int saved_reexecute_sp, uint new_idx) {
5470   if (saved_jvms_before_guards != nullptr && !stopped()) {
5471     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5472 
5473     assert(alloc != nullptr, "only with a tightly coupled allocation");
5474     // restore JVM state to the state at the arraycopy
5475     saved_jvms_before_guards->map()->set_control(map()->control());
5476     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5477     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5478     // If we've improved the types of some nodes (null check) while
5479     // emitting the guards, propagate them to the current state
5480     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5481     set_jvms(saved_jvms_before_guards);
5482     _reexecute_sp = saved_reexecute_sp;
5483 
5484     // Remove the allocation from above the guards
5485     CallProjections callprojs;
5486     alloc->extract_projections(&callprojs, true);
5487     InitializeNode* init = alloc->initialization();
5488     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5489     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5490     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5491 
5492     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5493     // the allocation (i.e. is only valid if the allocation succeeds):
5494     // 1) replace CastIINode with AllocateArrayNode's length here
5495     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5496     //
5497     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5498     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5499     Node* init_control = init->proj_out(TypeFunc::Control);
5500     Node* alloc_length = alloc->Ideal_length();
5501 #ifdef ASSERT
5502     Node* prev_cast = nullptr;
5503 #endif
5504     for (uint i = 0; i < init_control->outcnt(); i++) {
5505       Node* init_out = init_control->raw_out(i);
5506       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5507 #ifdef ASSERT
5508         if (prev_cast == nullptr) {
5509           prev_cast = init_out;
5510         } else {
5511           if (prev_cast->cmp(*init_out) == false) {
5512             prev_cast->dump();
5513             init_out->dump();
5514             assert(false, "not equal CastIINode");
5515           }
5516         }
5517 #endif
5518         C->gvn_replace_by(init_out, alloc_length);
5519       }
5520     }
5521     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5522 
5523     // move the allocation here (after the guards)
5524     _gvn.hash_delete(alloc);
5525     alloc->set_req(TypeFunc::Control, control());
5526     alloc->set_req(TypeFunc::I_O, i_o());
5527     Node *mem = reset_memory();
5528     set_all_memory(mem);
5529     alloc->set_req(TypeFunc::Memory, mem);
5530     set_control(init->proj_out_or_null(TypeFunc::Control));
5531     set_i_o(callprojs.fallthrough_ioproj);
5532 
5533     // Update memory as done in GraphKit::set_output_for_allocation()
5534     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5535     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5536     if (ary_type->isa_aryptr() && length_type != nullptr) {
5537       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5538     }
5539     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5540     int            elemidx  = C->get_alias_index(telemref);
5541     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5542     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5543 
5544     Node* allocx = _gvn.transform(alloc);
5545     assert(allocx == alloc, "where has the allocation gone?");
5546     assert(dest->is_CheckCastPP(), "not an allocation result?");
5547 
5548     _gvn.hash_delete(dest);
5549     dest->set_req(0, control());
5550     Node* destx = _gvn.transform(dest);
5551     assert(destx == dest, "where has the allocation result gone?");
5552 
5553     array_ideal_length(alloc, ary_type, true);
5554   }
5555 }
5556 
5557 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(),
5558 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary
5559 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array
5560 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter,
5561 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in
5562 // the interpreter similar to what we are doing for the newly emitted guards for the array copy.
5563 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc,
5564                                                                        JVMState* saved_jvms_before_guards) {
5565   if (saved_jvms_before_guards->map()->control()->is_IfProj()) {
5566     // There is at least one unrelated uncommon trap which needs to be replaced.
5567     SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5568 
5569     JVMState* saved_jvms = jvms();
5570     const int saved_reexecute_sp = _reexecute_sp;
5571     set_jvms(sfpt->jvms());
5572     _reexecute_sp = jvms()->sp();
5573 
5574     replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards);
5575 
5576     // Restore state
5577     set_jvms(saved_jvms);
5578     _reexecute_sp = saved_reexecute_sp;
5579   }
5580 }
5581 
5582 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon
5583 // traps will have the state of the array allocation. Let the old uncommon trap nodes die.
5584 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) {
5585   Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards
5586   while (if_proj->is_IfProj()) {
5587     CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj);
5588     if (uncommon_trap != nullptr) {
5589       create_new_uncommon_trap(uncommon_trap);
5590     }
5591     assert(if_proj->in(0)->is_If(), "must be If");
5592     if_proj = if_proj->in(0)->in(0);
5593   }
5594   assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(),
5595          "must have reached control projection of init node");
5596 }
5597 
5598 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) {
5599   const int trap_request = uncommon_trap_call->uncommon_trap_request();
5600   assert(trap_request != 0, "no valid UCT trap request");
5601   PreserveJVMState pjvms(this);
5602   set_control(uncommon_trap_call->in(0));
5603   uncommon_trap(Deoptimization::trap_request_reason(trap_request),
5604                 Deoptimization::trap_request_action(trap_request));
5605   assert(stopped(), "Should be stopped");
5606   _gvn.hash_delete(uncommon_trap_call);
5607   uncommon_trap_call->set_req(0, top()); // not used anymore, kill it
5608 }
5609 
5610 // Common checks for array sorting intrinsics arguments.
5611 // Returns `true` if checks passed.
5612 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) {
5613   // check address of the class
5614   if (elementType == nullptr || elementType->is_top()) {
5615     return false;  // dead path
5616   }
5617   const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr();
5618   if (elem_klass == nullptr) {
5619     return false;  // dead path
5620   }
5621   // java_mirror_type() returns non-null for compile-time Class constants only
5622   ciType* elem_type = elem_klass->java_mirror_type();
5623   if (elem_type == nullptr) {
5624     return false;
5625   }
5626   bt = elem_type->basic_type();
5627   // Disable the intrinsic if the CPU does not support SIMD sort
5628   if (!Matcher::supports_simd_sort(bt)) {
5629     return false;
5630   }
5631   // check address of the array
5632   if (obj == nullptr || obj->is_top()) {
5633     return false;  // dead path
5634   }
5635   const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr();
5636   if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) {
5637     return false; // failed input validation
5638   }
5639   return true;
5640 }
5641 
5642 //------------------------------inline_array_partition-----------------------
5643 bool LibraryCallKit::inline_array_partition() {
5644   address stubAddr = StubRoutines::select_array_partition_function();
5645   if (stubAddr == nullptr) {
5646     return false; // Intrinsic's stub is not implemented on this platform
5647   }
5648   assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)");
5649 
5650   // no receiver because it is a static method
5651   Node* elementType     = argument(0);
5652   Node* obj             = argument(1);
5653   Node* offset          = argument(2); // long
5654   Node* fromIndex       = argument(4);
5655   Node* toIndex         = argument(5);
5656   Node* indexPivot1     = argument(6);
5657   Node* indexPivot2     = argument(7);
5658   // PartitionOperation:  argument(8) is ignored
5659 
5660   Node* pivotIndices = nullptr;
5661   BasicType bt = T_ILLEGAL;
5662 
5663   if (!check_array_sort_arguments(elementType, obj, bt)) {
5664     return false;
5665   }
5666   null_check(obj);
5667   // If obj is dead, only null-path is taken.
5668   if (stopped()) {
5669     return true;
5670   }
5671   // Set the original stack and the reexecute bit for the interpreter to reexecute
5672   // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens.
5673   { PreserveReexecuteState preexecs(this);
5674     jvms()->set_should_reexecute(true);
5675 
5676     Node* obj_adr = make_unsafe_address(obj, offset);
5677 
5678     // create the pivotIndices array of type int and size = 2
5679     Node* size = intcon(2);
5680     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT)));
5681     pivotIndices = new_array(klass_node, size, 0);  // no arguments to push
5682     AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices);
5683     guarantee(alloc != nullptr, "created above");
5684     Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT));
5685 
5686     // pass the basic type enum to the stub
5687     Node* elemType = intcon(bt);
5688 
5689     // Call the stub
5690     const char *stubName = "array_partition_stub";
5691     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(),
5692                       stubAddr, stubName, TypePtr::BOTTOM,
5693                       obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr,
5694                       indexPivot1, indexPivot2);
5695 
5696   } // original reexecute is set back here
5697 
5698   if (!stopped()) {
5699     set_result(pivotIndices);
5700   }
5701 
5702   return true;
5703 }
5704 
5705 
5706 //------------------------------inline_array_sort-----------------------
5707 bool LibraryCallKit::inline_array_sort() {
5708   address stubAddr = StubRoutines::select_arraysort_function();
5709   if (stubAddr == nullptr) {
5710     return false; // Intrinsic's stub is not implemented on this platform
5711   }
5712   assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)");
5713 
5714   // no receiver because it is a static method
5715   Node* elementType     = argument(0);
5716   Node* obj             = argument(1);
5717   Node* offset          = argument(2); // long
5718   Node* fromIndex       = argument(4);
5719   Node* toIndex         = argument(5);
5720   // SortOperation:       argument(6) is ignored
5721 
5722   BasicType bt = T_ILLEGAL;
5723 
5724   if (!check_array_sort_arguments(elementType, obj, bt)) {
5725     return false;
5726   }
5727   null_check(obj);
5728   // If obj is dead, only null-path is taken.
5729   if (stopped()) {
5730     return true;
5731   }
5732   Node* obj_adr = make_unsafe_address(obj, offset);
5733 
5734   // pass the basic type enum to the stub
5735   Node* elemType = intcon(bt);
5736 
5737   // Call the stub.
5738   const char *stubName = "arraysort_stub";
5739   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(),
5740                     stubAddr, stubName, TypePtr::BOTTOM,
5741                     obj_adr, elemType, fromIndex, toIndex);
5742 
5743   return true;
5744 }
5745 
5746 
5747 //------------------------------inline_arraycopy-----------------------
5748 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
5749 //                                                      Object dest, int destPos,
5750 //                                                      int length);
5751 bool LibraryCallKit::inline_arraycopy() {
5752   // Get the arguments.
5753   Node* src         = argument(0);  // type: oop
5754   Node* src_offset  = argument(1);  // type: int
5755   Node* dest        = argument(2);  // type: oop
5756   Node* dest_offset = argument(3);  // type: int
5757   Node* length      = argument(4);  // type: int
5758 
5759   uint new_idx = C->unique();
5760 
5761   // Check for allocation before we add nodes that would confuse
5762   // tightly_coupled_allocation()
5763   AllocateArrayNode* alloc = tightly_coupled_allocation(dest);
5764 
5765   int saved_reexecute_sp = -1;
5766   JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
5767   // See arraycopy_restore_alloc_state() comment
5768   // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards
5769   // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation
5770   // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards
5771   bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr);
5772 
5773   // The following tests must be performed
5774   // (1) src and dest are arrays.
5775   // (2) src and dest arrays must have elements of the same BasicType
5776   // (3) src and dest must not be null.
5777   // (4) src_offset must not be negative.
5778   // (5) dest_offset must not be negative.
5779   // (6) length must not be negative.
5780   // (7) src_offset + length must not exceed length of src.
5781   // (8) dest_offset + length must not exceed length of dest.
5782   // (9) each element of an oop array must be assignable
5783 
5784   // (3) src and dest must not be null.
5785   // always do this here because we need the JVM state for uncommon traps
5786   Node* null_ctl = top();
5787   src  = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY);
5788   assert(null_ctl->is_top(), "no null control here");
5789   dest = null_check(dest, T_ARRAY);
5790 
5791   if (!can_emit_guards) {
5792     // if saved_jvms_before_guards is null and alloc is not null, we don't emit any
5793     // guards but the arraycopy node could still take advantage of a
5794     // tightly allocated allocation. tightly_coupled_allocation() is
5795     // called again to make sure it takes the null check above into
5796     // account: the null check is mandatory and if it caused an
5797     // uncommon trap to be emitted then the allocation can't be
5798     // considered tightly coupled in this context.
5799     alloc = tightly_coupled_allocation(dest);
5800   }
5801 
5802   bool validated = false;
5803 
5804   const Type* src_type  = _gvn.type(src);
5805   const Type* dest_type = _gvn.type(dest);
5806   const TypeAryPtr* top_src  = src_type->isa_aryptr();
5807   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5808 
5809   // Do we have the type of src?
5810   bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5811   // Do we have the type of dest?
5812   bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5813   // Is the type for src from speculation?
5814   bool src_spec = false;
5815   // Is the type for dest from speculation?
5816   bool dest_spec = false;
5817 
5818   if ((!has_src || !has_dest) && can_emit_guards) {
5819     // We don't have sufficient type information, let's see if
5820     // speculative types can help. We need to have types for both src
5821     // and dest so that it pays off.
5822 
5823     // Do we already have or could we have type information for src
5824     bool could_have_src = has_src;
5825     // Do we already have or could we have type information for dest
5826     bool could_have_dest = has_dest;
5827 
5828     ciKlass* src_k = nullptr;
5829     if (!has_src) {
5830       src_k = src_type->speculative_type_not_null();
5831       if (src_k != nullptr && src_k->is_array_klass()) {
5832         could_have_src = true;
5833       }
5834     }
5835 
5836     ciKlass* dest_k = nullptr;
5837     if (!has_dest) {
5838       dest_k = dest_type->speculative_type_not_null();
5839       if (dest_k != nullptr && dest_k->is_array_klass()) {
5840         could_have_dest = true;
5841       }
5842     }
5843 
5844     if (could_have_src && could_have_dest) {
5845       // This is going to pay off so emit the required guards
5846       if (!has_src) {
5847         src = maybe_cast_profiled_obj(src, src_k, true);
5848         src_type  = _gvn.type(src);
5849         top_src  = src_type->isa_aryptr();
5850         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5851         src_spec = true;
5852       }
5853       if (!has_dest) {
5854         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5855         dest_type  = _gvn.type(dest);
5856         top_dest  = dest_type->isa_aryptr();
5857         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5858         dest_spec = true;
5859       }
5860     }
5861   }
5862 
5863   if (has_src && has_dest && can_emit_guards) {
5864     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
5865     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
5866     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
5867     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
5868 
5869     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5870       // If both arrays are object arrays then having the exact types
5871       // for both will remove the need for a subtype check at runtime
5872       // before the call and may make it possible to pick a faster copy
5873       // routine (without a subtype check on every element)
5874       // Do we have the exact type of src?
5875       bool could_have_src = src_spec;
5876       // Do we have the exact type of dest?
5877       bool could_have_dest = dest_spec;
5878       ciKlass* src_k = nullptr;
5879       ciKlass* dest_k = nullptr;
5880       if (!src_spec) {
5881         src_k = src_type->speculative_type_not_null();
5882         if (src_k != nullptr && src_k->is_array_klass()) {
5883           could_have_src = true;
5884         }
5885       }
5886       if (!dest_spec) {
5887         dest_k = dest_type->speculative_type_not_null();
5888         if (dest_k != nullptr && dest_k->is_array_klass()) {
5889           could_have_dest = true;
5890         }
5891       }
5892       if (could_have_src && could_have_dest) {
5893         // If we can have both exact types, emit the missing guards
5894         if (could_have_src && !src_spec) {
5895           src = maybe_cast_profiled_obj(src, src_k, true);
5896         }
5897         if (could_have_dest && !dest_spec) {
5898           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5899         }
5900       }
5901     }
5902   }
5903 
5904   ciMethod* trap_method = method();
5905   int trap_bci = bci();
5906   if (saved_jvms_before_guards != nullptr) {
5907     trap_method = alloc->jvms()->method();
5908     trap_bci = alloc->jvms()->bci();
5909   }
5910 
5911   bool negative_length_guard_generated = false;
5912 
5913   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5914       can_emit_guards &&
5915       !src->is_top() && !dest->is_top()) {
5916     // validate arguments: enables transformation the ArrayCopyNode
5917     validated = true;
5918 
5919     RegionNode* slow_region = new RegionNode(1);
5920     record_for_igvn(slow_region);
5921 
5922     // (1) src and dest are arrays.
5923     generate_non_array_guard(load_object_klass(src), slow_region);
5924     generate_non_array_guard(load_object_klass(dest), slow_region);
5925 
5926     // (2) src and dest arrays must have elements of the same BasicType
5927     // done at macro expansion or at Ideal transformation time
5928 
5929     // (4) src_offset must not be negative.
5930     generate_negative_guard(src_offset, slow_region);
5931 
5932     // (5) dest_offset must not be negative.
5933     generate_negative_guard(dest_offset, slow_region);
5934 
5935     // (7) src_offset + length must not exceed length of src.
5936     generate_limit_guard(src_offset, length,
5937                          load_array_length(src),
5938                          slow_region);
5939 
5940     // (8) dest_offset + length must not exceed length of dest.
5941     generate_limit_guard(dest_offset, length,
5942                          load_array_length(dest),
5943                          slow_region);
5944 
5945     // (6) length must not be negative.
5946     // This is also checked in generate_arraycopy() during macro expansion, but
5947     // we also have to check it here for the case where the ArrayCopyNode will
5948     // be eliminated by Escape Analysis.
5949     if (EliminateAllocations) {
5950       generate_negative_guard(length, slow_region);
5951       negative_length_guard_generated = true;
5952     }
5953 
5954     // (9) each element of an oop array must be assignable
5955     Node* dest_klass = load_object_klass(dest);
5956     if (src != dest) {
5957       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
5958 
5959       if (not_subtype_ctrl != top()) {
5960         PreserveJVMState pjvms(this);
5961         set_control(not_subtype_ctrl);
5962         uncommon_trap(Deoptimization::Reason_intrinsic,
5963                       Deoptimization::Action_make_not_entrant);
5964         assert(stopped(), "Should be stopped");
5965       }
5966     }
5967     {
5968       PreserveJVMState pjvms(this);
5969       set_control(_gvn.transform(slow_region));
5970       uncommon_trap(Deoptimization::Reason_intrinsic,
5971                     Deoptimization::Action_make_not_entrant);
5972       assert(stopped(), "Should be stopped");
5973     }
5974 
5975     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
5976     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
5977     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
5978     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
5979   }
5980 
5981   if (stopped()) {
5982     return true;
5983   }
5984 
5985   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
5986                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5987                                           // so the compiler has a chance to eliminate them: during macro expansion,
5988                                           // we have to set their control (CastPP nodes are eliminated).
5989                                           load_object_klass(src), load_object_klass(dest),
5990                                           load_array_length(src), load_array_length(dest));
5991 
5992   ac->set_arraycopy(validated);
5993 
5994   Node* n = _gvn.transform(ac);
5995   if (n == ac) {
5996     ac->connect_outputs(this);
5997   } else {
5998     assert(validated, "shouldn't transform if all arguments not validated");
5999     set_all_memory(n);
6000   }
6001   clear_upper_avx();
6002 
6003 
6004   return true;
6005 }
6006 
6007 
6008 // Helper function which determines if an arraycopy immediately follows
6009 // an allocation, with no intervening tests or other escapes for the object.
6010 AllocateArrayNode*
6011 LibraryCallKit::tightly_coupled_allocation(Node* ptr) {
6012   if (stopped())             return nullptr;  // no fast path
6013   if (!C->do_aliasing())     return nullptr;  // no MergeMems around
6014 
6015   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr);
6016   if (alloc == nullptr)  return nullptr;
6017 
6018   Node* rawmem = memory(Compile::AliasIdxRaw);
6019   // Is the allocation's memory state untouched?
6020   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
6021     // Bail out if there have been raw-memory effects since the allocation.
6022     // (Example:  There might have been a call or safepoint.)
6023     return nullptr;
6024   }
6025   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
6026   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
6027     return nullptr;
6028   }
6029 
6030   // There must be no unexpected observers of this allocation.
6031   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
6032     Node* obs = ptr->fast_out(i);
6033     if (obs != this->map()) {
6034       return nullptr;
6035     }
6036   }
6037 
6038   // This arraycopy must unconditionally follow the allocation of the ptr.
6039   Node* alloc_ctl = ptr->in(0);
6040   Node* ctl = control();
6041   while (ctl != alloc_ctl) {
6042     // There may be guards which feed into the slow_region.
6043     // Any other control flow means that we might not get a chance
6044     // to finish initializing the allocated object.
6045     // Various low-level checks bottom out in uncommon traps. These
6046     // are considered safe since we've already checked above that
6047     // there is no unexpected observer of this allocation.
6048     if (get_uncommon_trap_from_success_proj(ctl) != nullptr) {
6049       assert(ctl->in(0)->is_If(), "must be If");
6050       ctl = ctl->in(0)->in(0);
6051     } else {
6052       return nullptr;
6053     }
6054   }
6055 
6056   // If we get this far, we have an allocation which immediately
6057   // precedes the arraycopy, and we can take over zeroing the new object.
6058   // The arraycopy will finish the initialization, and provide
6059   // a new control state to which we will anchor the destination pointer.
6060 
6061   return alloc;
6062 }
6063 
6064 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) {
6065   if (node->is_IfProj()) {
6066     Node* other_proj = node->as_IfProj()->other_if_proj();
6067     for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) {
6068       Node* obs = other_proj->fast_out(j);
6069       if (obs->in(0) == other_proj && obs->is_CallStaticJava() &&
6070           (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) {
6071         return obs->as_CallStaticJava();
6072       }
6073     }
6074   }
6075   return nullptr;
6076 }
6077 
6078 //-------------inline_encodeISOArray-----------------------------------
6079 // encode char[] to byte[] in ISO_8859_1 or ASCII
6080 bool LibraryCallKit::inline_encodeISOArray(bool ascii) {
6081   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
6082   // no receiver since it is static method
6083   Node *src         = argument(0);
6084   Node *src_offset  = argument(1);
6085   Node *dst         = argument(2);
6086   Node *dst_offset  = argument(3);
6087   Node *length      = argument(4);
6088 
6089   src = must_be_not_null(src, true);
6090   dst = must_be_not_null(dst, true);
6091 
6092   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6093   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
6094   if (src_type == nullptr || src_type->elem() == Type::BOTTOM ||
6095       dst_type == nullptr || dst_type->elem() == Type::BOTTOM) {
6096     // failed array check
6097     return false;
6098   }
6099 
6100   // Figure out the size and type of the elements we will be copying.
6101   BasicType src_elem = src_type->elem()->array_element_basic_type();
6102   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
6103   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
6104     return false;
6105   }
6106 
6107   Node* src_start = array_element_address(src, src_offset, T_CHAR);
6108   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
6109   // 'src_start' points to src array + scaled offset
6110   // 'dst_start' points to dst array + scaled offset
6111 
6112   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
6113   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii);
6114   enc = _gvn.transform(enc);
6115   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
6116   set_memory(res_mem, mtype);
6117   set_result(enc);
6118   clear_upper_avx();
6119 
6120   return true;
6121 }
6122 
6123 //-------------inline_multiplyToLen-----------------------------------
6124 bool LibraryCallKit::inline_multiplyToLen() {
6125   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
6126 
6127   address stubAddr = StubRoutines::multiplyToLen();
6128   if (stubAddr == nullptr) {
6129     return false; // Intrinsic's stub is not implemented on this platform
6130   }
6131   const char* stubName = "multiplyToLen";
6132 
6133   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
6134 
6135   // no receiver because it is a static method
6136   Node* x    = argument(0);
6137   Node* xlen = argument(1);
6138   Node* y    = argument(2);
6139   Node* ylen = argument(3);
6140   Node* z    = argument(4);
6141 
6142   x = must_be_not_null(x, true);
6143   y = must_be_not_null(y, true);
6144 
6145   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6146   const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr();
6147   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6148       y_type == nullptr || y_type->elem() == Type::BOTTOM) {
6149     // failed array check
6150     return false;
6151   }
6152 
6153   BasicType x_elem = x_type->elem()->array_element_basic_type();
6154   BasicType y_elem = y_type->elem()->array_element_basic_type();
6155   if (x_elem != T_INT || y_elem != T_INT) {
6156     return false;
6157   }
6158 
6159   Node* x_start = array_element_address(x, intcon(0), x_elem);
6160   Node* y_start = array_element_address(y, intcon(0), y_elem);
6161   // 'x_start' points to x array + scaled xlen
6162   // 'y_start' points to y array + scaled ylen
6163 
6164   Node* z_start = array_element_address(z, intcon(0), T_INT);
6165 
6166   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6167                                  OptoRuntime::multiplyToLen_Type(),
6168                                  stubAddr, stubName, TypePtr::BOTTOM,
6169                                  x_start, xlen, y_start, ylen, z_start);
6170 
6171   C->set_has_split_ifs(true); // Has chance for split-if optimization
6172   set_result(z);
6173   return true;
6174 }
6175 
6176 //-------------inline_squareToLen------------------------------------
6177 bool LibraryCallKit::inline_squareToLen() {
6178   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
6179 
6180   address stubAddr = StubRoutines::squareToLen();
6181   if (stubAddr == nullptr) {
6182     return false; // Intrinsic's stub is not implemented on this platform
6183   }
6184   const char* stubName = "squareToLen";
6185 
6186   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
6187 
6188   Node* x    = argument(0);
6189   Node* len  = argument(1);
6190   Node* z    = argument(2);
6191   Node* zlen = argument(3);
6192 
6193   x = must_be_not_null(x, true);
6194   z = must_be_not_null(z, true);
6195 
6196   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6197   const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr();
6198   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6199       z_type == nullptr || z_type->elem() == Type::BOTTOM) {
6200     // failed array check
6201     return false;
6202   }
6203 
6204   BasicType x_elem = x_type->elem()->array_element_basic_type();
6205   BasicType z_elem = z_type->elem()->array_element_basic_type();
6206   if (x_elem != T_INT || z_elem != T_INT) {
6207     return false;
6208   }
6209 
6210 
6211   Node* x_start = array_element_address(x, intcon(0), x_elem);
6212   Node* z_start = array_element_address(z, intcon(0), z_elem);
6213 
6214   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6215                                   OptoRuntime::squareToLen_Type(),
6216                                   stubAddr, stubName, TypePtr::BOTTOM,
6217                                   x_start, len, z_start, zlen);
6218 
6219   set_result(z);
6220   return true;
6221 }
6222 
6223 //-------------inline_mulAdd------------------------------------------
6224 bool LibraryCallKit::inline_mulAdd() {
6225   assert(UseMulAddIntrinsic, "not implemented on this platform");
6226 
6227   address stubAddr = StubRoutines::mulAdd();
6228   if (stubAddr == nullptr) {
6229     return false; // Intrinsic's stub is not implemented on this platform
6230   }
6231   const char* stubName = "mulAdd";
6232 
6233   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
6234 
6235   Node* out      = argument(0);
6236   Node* in       = argument(1);
6237   Node* offset   = argument(2);
6238   Node* len      = argument(3);
6239   Node* k        = argument(4);
6240 
6241   in = must_be_not_null(in, true);
6242   out = must_be_not_null(out, true);
6243 
6244   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
6245   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
6246   if (out_type == nullptr || out_type->elem() == Type::BOTTOM ||
6247        in_type == nullptr ||  in_type->elem() == Type::BOTTOM) {
6248     // failed array check
6249     return false;
6250   }
6251 
6252   BasicType out_elem = out_type->elem()->array_element_basic_type();
6253   BasicType in_elem = in_type->elem()->array_element_basic_type();
6254   if (out_elem != T_INT || in_elem != T_INT) {
6255     return false;
6256   }
6257 
6258   Node* outlen = load_array_length(out);
6259   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
6260   Node* out_start = array_element_address(out, intcon(0), out_elem);
6261   Node* in_start = array_element_address(in, intcon(0), in_elem);
6262 
6263   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6264                                   OptoRuntime::mulAdd_Type(),
6265                                   stubAddr, stubName, TypePtr::BOTTOM,
6266                                   out_start,in_start, new_offset, len, k);
6267   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6268   set_result(result);
6269   return true;
6270 }
6271 
6272 //-------------inline_montgomeryMultiply-----------------------------------
6273 bool LibraryCallKit::inline_montgomeryMultiply() {
6274   address stubAddr = StubRoutines::montgomeryMultiply();
6275   if (stubAddr == nullptr) {
6276     return false; // Intrinsic's stub is not implemented on this platform
6277   }
6278 
6279   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
6280   const char* stubName = "montgomery_multiply";
6281 
6282   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
6283 
6284   Node* a    = argument(0);
6285   Node* b    = argument(1);
6286   Node* n    = argument(2);
6287   Node* len  = argument(3);
6288   Node* inv  = argument(4);
6289   Node* m    = argument(6);
6290 
6291   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6292   const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr();
6293   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6294   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6295   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6296       b_type == nullptr || b_type->elem() == Type::BOTTOM ||
6297       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6298       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6299     // failed array check
6300     return false;
6301   }
6302 
6303   BasicType a_elem = a_type->elem()->array_element_basic_type();
6304   BasicType b_elem = b_type->elem()->array_element_basic_type();
6305   BasicType n_elem = n_type->elem()->array_element_basic_type();
6306   BasicType m_elem = m_type->elem()->array_element_basic_type();
6307   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6308     return false;
6309   }
6310 
6311   // Make the call
6312   {
6313     Node* a_start = array_element_address(a, intcon(0), a_elem);
6314     Node* b_start = array_element_address(b, intcon(0), b_elem);
6315     Node* n_start = array_element_address(n, intcon(0), n_elem);
6316     Node* m_start = array_element_address(m, intcon(0), m_elem);
6317 
6318     Node* call = make_runtime_call(RC_LEAF,
6319                                    OptoRuntime::montgomeryMultiply_Type(),
6320                                    stubAddr, stubName, TypePtr::BOTTOM,
6321                                    a_start, b_start, n_start, len, inv, top(),
6322                                    m_start);
6323     set_result(m);
6324   }
6325 
6326   return true;
6327 }
6328 
6329 bool LibraryCallKit::inline_montgomerySquare() {
6330   address stubAddr = StubRoutines::montgomerySquare();
6331   if (stubAddr == nullptr) {
6332     return false; // Intrinsic's stub is not implemented on this platform
6333   }
6334 
6335   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
6336   const char* stubName = "montgomery_square";
6337 
6338   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
6339 
6340   Node* a    = argument(0);
6341   Node* n    = argument(1);
6342   Node* len  = argument(2);
6343   Node* inv  = argument(3);
6344   Node* m    = argument(5);
6345 
6346   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6347   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6348   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6349   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6350       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6351       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6352     // failed array check
6353     return false;
6354   }
6355 
6356   BasicType a_elem = a_type->elem()->array_element_basic_type();
6357   BasicType n_elem = n_type->elem()->array_element_basic_type();
6358   BasicType m_elem = m_type->elem()->array_element_basic_type();
6359   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6360     return false;
6361   }
6362 
6363   // Make the call
6364   {
6365     Node* a_start = array_element_address(a, intcon(0), a_elem);
6366     Node* n_start = array_element_address(n, intcon(0), n_elem);
6367     Node* m_start = array_element_address(m, intcon(0), m_elem);
6368 
6369     Node* call = make_runtime_call(RC_LEAF,
6370                                    OptoRuntime::montgomerySquare_Type(),
6371                                    stubAddr, stubName, TypePtr::BOTTOM,
6372                                    a_start, n_start, len, inv, top(),
6373                                    m_start);
6374     set_result(m);
6375   }
6376 
6377   return true;
6378 }
6379 
6380 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) {
6381   address stubAddr = nullptr;
6382   const char* stubName = nullptr;
6383 
6384   stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift();
6385   if (stubAddr == nullptr) {
6386     return false; // Intrinsic's stub is not implemented on this platform
6387   }
6388 
6389   stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker";
6390 
6391   assert(callee()->signature()->size() == 5, "expected 5 arguments");
6392 
6393   Node* newArr = argument(0);
6394   Node* oldArr = argument(1);
6395   Node* newIdx = argument(2);
6396   Node* shiftCount = argument(3);
6397   Node* numIter = argument(4);
6398 
6399   const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr();
6400   const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr();
6401   if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM ||
6402       oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) {
6403     return false;
6404   }
6405 
6406   BasicType newArr_elem = newArr_type->elem()->array_element_basic_type();
6407   BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type();
6408   if (newArr_elem != T_INT || oldArr_elem != T_INT) {
6409     return false;
6410   }
6411 
6412   // Make the call
6413   {
6414     Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem);
6415     Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem);
6416 
6417     Node* call = make_runtime_call(RC_LEAF,
6418                                    OptoRuntime::bigIntegerShift_Type(),
6419                                    stubAddr,
6420                                    stubName,
6421                                    TypePtr::BOTTOM,
6422                                    newArr_start,
6423                                    oldArr_start,
6424                                    newIdx,
6425                                    shiftCount,
6426                                    numIter);
6427   }
6428 
6429   return true;
6430 }
6431 
6432 //-------------inline_vectorizedMismatch------------------------------
6433 bool LibraryCallKit::inline_vectorizedMismatch() {
6434   assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform");
6435 
6436   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
6437   Node* obja    = argument(0); // Object
6438   Node* aoffset = argument(1); // long
6439   Node* objb    = argument(3); // Object
6440   Node* boffset = argument(4); // long
6441   Node* length  = argument(6); // int
6442   Node* scale   = argument(7); // int
6443 
6444   const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr();
6445   const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr();
6446   if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM ||
6447       objb_t == nullptr || objb_t->elem() == Type::BOTTOM ||
6448       scale == top()) {
6449     return false; // failed input validation
6450   }
6451 
6452   Node* obja_adr = make_unsafe_address(obja, aoffset);
6453   Node* objb_adr = make_unsafe_address(objb, boffset);
6454 
6455   // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size.
6456   //
6457   //    inline_limit = ArrayOperationPartialInlineSize / element_size;
6458   //    if (length <= inline_limit) {
6459   //      inline_path:
6460   //        vmask   = VectorMaskGen length
6461   //        vload1  = LoadVectorMasked obja, vmask
6462   //        vload2  = LoadVectorMasked objb, vmask
6463   //        result1 = VectorCmpMasked vload1, vload2, vmask
6464   //    } else {
6465   //      call_stub_path:
6466   //        result2 = call vectorizedMismatch_stub(obja, objb, length, scale)
6467   //    }
6468   //    exit_block:
6469   //      return Phi(result1, result2);
6470   //
6471   enum { inline_path = 1,  // input is small enough to process it all at once
6472          stub_path   = 2,  // input is too large; call into the VM
6473          PATH_LIMIT  = 3
6474   };
6475 
6476   Node* exit_block = new RegionNode(PATH_LIMIT);
6477   Node* result_phi = new PhiNode(exit_block, TypeInt::INT);
6478   Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM);
6479 
6480   Node* call_stub_path = control();
6481 
6482   BasicType elem_bt = T_ILLEGAL;
6483 
6484   const TypeInt* scale_t = _gvn.type(scale)->is_int();
6485   if (scale_t->is_con()) {
6486     switch (scale_t->get_con()) {
6487       case 0: elem_bt = T_BYTE;  break;
6488       case 1: elem_bt = T_SHORT; break;
6489       case 2: elem_bt = T_INT;   break;
6490       case 3: elem_bt = T_LONG;  break;
6491 
6492       default: elem_bt = T_ILLEGAL; break; // not supported
6493     }
6494   }
6495 
6496   int inline_limit = 0;
6497   bool do_partial_inline = false;
6498 
6499   if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) {
6500     inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt);
6501     do_partial_inline = inline_limit >= 16;
6502   }
6503 
6504   if (do_partial_inline) {
6505     assert(elem_bt != T_ILLEGAL, "sanity");
6506 
6507     if (Matcher::match_rule_supported_vector(Op_VectorMaskGen,    inline_limit, elem_bt) &&
6508         Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) &&
6509         Matcher::match_rule_supported_vector(Op_VectorCmpMasked,  inline_limit, elem_bt)) {
6510 
6511       const TypeVect* vt = TypeVect::make(elem_bt, inline_limit);
6512       Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit)));
6513       Node* bol_gt     = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt));
6514 
6515       call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN);
6516 
6517       if (!stopped()) {
6518         Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin)));
6519 
6520         const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr();
6521         const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr();
6522         Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t));
6523         Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t));
6524 
6525         Node* vmask      = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt));
6526         Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask));
6527         Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask));
6528         Node* result     = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT));
6529 
6530         exit_block->init_req(inline_path, control());
6531         memory_phi->init_req(inline_path, map()->memory());
6532         result_phi->init_req(inline_path, result);
6533 
6534         C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size()));
6535         clear_upper_avx();
6536       }
6537     }
6538   }
6539 
6540   if (call_stub_path != nullptr) {
6541     set_control(call_stub_path);
6542 
6543     Node* call = make_runtime_call(RC_LEAF,
6544                                    OptoRuntime::vectorizedMismatch_Type(),
6545                                    StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM,
6546                                    obja_adr, objb_adr, length, scale);
6547 
6548     exit_block->init_req(stub_path, control());
6549     memory_phi->init_req(stub_path, map()->memory());
6550     result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms)));
6551   }
6552 
6553   exit_block = _gvn.transform(exit_block);
6554   memory_phi = _gvn.transform(memory_phi);
6555   result_phi = _gvn.transform(result_phi);
6556 
6557   set_control(exit_block);
6558   set_all_memory(memory_phi);
6559   set_result(result_phi);
6560 
6561   return true;
6562 }
6563 
6564 //------------------------------inline_vectorizedHashcode----------------------------
6565 bool LibraryCallKit::inline_vectorizedHashCode() {
6566   assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform");
6567 
6568   assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters");
6569   Node* array          = argument(0);
6570   Node* offset         = argument(1);
6571   Node* length         = argument(2);
6572   Node* initialValue   = argument(3);
6573   Node* basic_type     = argument(4);
6574 
6575   if (basic_type == top()) {
6576     return false; // failed input validation
6577   }
6578 
6579   const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int();
6580   if (!basic_type_t->is_con()) {
6581     return false; // Only intrinsify if mode argument is constant
6582   }
6583 
6584   array = must_be_not_null(array, true);
6585 
6586   BasicType bt = (BasicType)basic_type_t->get_con();
6587 
6588   // Resolve address of first element
6589   Node* array_start = array_element_address(array, offset, bt);
6590 
6591   set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)),
6592     array_start, length, initialValue, basic_type)));
6593   clear_upper_avx();
6594 
6595   return true;
6596 }
6597 
6598 /**
6599  * Calculate CRC32 for byte.
6600  * int java.util.zip.CRC32.update(int crc, int b)
6601  */
6602 bool LibraryCallKit::inline_updateCRC32() {
6603   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6604   assert(callee()->signature()->size() == 2, "update has 2 parameters");
6605   // no receiver since it is static method
6606   Node* crc  = argument(0); // type: int
6607   Node* b    = argument(1); // type: int
6608 
6609   /*
6610    *    int c = ~ crc;
6611    *    b = timesXtoThe32[(b ^ c) & 0xFF];
6612    *    b = b ^ (c >>> 8);
6613    *    crc = ~b;
6614    */
6615 
6616   Node* M1 = intcon(-1);
6617   crc = _gvn.transform(new XorINode(crc, M1));
6618   Node* result = _gvn.transform(new XorINode(crc, b));
6619   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
6620 
6621   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
6622   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
6623   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
6624   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
6625 
6626   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
6627   result = _gvn.transform(new XorINode(crc, result));
6628   result = _gvn.transform(new XorINode(result, M1));
6629   set_result(result);
6630   return true;
6631 }
6632 
6633 /**
6634  * Calculate CRC32 for byte[] array.
6635  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
6636  */
6637 bool LibraryCallKit::inline_updateBytesCRC32() {
6638   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6639   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6640   // no receiver since it is static method
6641   Node* crc     = argument(0); // type: int
6642   Node* src     = argument(1); // type: oop
6643   Node* offset  = argument(2); // type: int
6644   Node* length  = argument(3); // type: int
6645 
6646   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6647   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6648     // failed array check
6649     return false;
6650   }
6651 
6652   // Figure out the size and type of the elements we will be copying.
6653   BasicType src_elem = src_type->elem()->array_element_basic_type();
6654   if (src_elem != T_BYTE) {
6655     return false;
6656   }
6657 
6658   // 'src_start' points to src array + scaled offset
6659   src = must_be_not_null(src, true);
6660   Node* src_start = array_element_address(src, offset, src_elem);
6661 
6662   // We assume that range check is done by caller.
6663   // TODO: generate range check (offset+length < src.length) in debug VM.
6664 
6665   // Call the stub.
6666   address stubAddr = StubRoutines::updateBytesCRC32();
6667   const char *stubName = "updateBytesCRC32";
6668 
6669   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6670                                  stubAddr, stubName, TypePtr::BOTTOM,
6671                                  crc, src_start, length);
6672   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6673   set_result(result);
6674   return true;
6675 }
6676 
6677 /**
6678  * Calculate CRC32 for ByteBuffer.
6679  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
6680  */
6681 bool LibraryCallKit::inline_updateByteBufferCRC32() {
6682   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
6683   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6684   // no receiver since it is static method
6685   Node* crc     = argument(0); // type: int
6686   Node* src     = argument(1); // type: long
6687   Node* offset  = argument(3); // type: int
6688   Node* length  = argument(4); // type: int
6689 
6690   src = ConvL2X(src);  // adjust Java long to machine word
6691   Node* base = _gvn.transform(new CastX2PNode(src));
6692   offset = ConvI2X(offset);
6693 
6694   // 'src_start' points to src array + scaled offset
6695   Node* src_start = basic_plus_adr(top(), base, offset);
6696 
6697   // Call the stub.
6698   address stubAddr = StubRoutines::updateBytesCRC32();
6699   const char *stubName = "updateBytesCRC32";
6700 
6701   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6702                                  stubAddr, stubName, TypePtr::BOTTOM,
6703                                  crc, src_start, length);
6704   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6705   set_result(result);
6706   return true;
6707 }
6708 
6709 //------------------------------get_table_from_crc32c_class-----------------------
6710 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
6711   Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class);
6712   assert (table != nullptr, "wrong version of java.util.zip.CRC32C");
6713 
6714   return table;
6715 }
6716 
6717 //------------------------------inline_updateBytesCRC32C-----------------------
6718 //
6719 // Calculate CRC32C for byte[] array.
6720 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
6721 //
6722 bool LibraryCallKit::inline_updateBytesCRC32C() {
6723   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6724   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6725   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6726   // no receiver since it is a static method
6727   Node* crc     = argument(0); // type: int
6728   Node* src     = argument(1); // type: oop
6729   Node* offset  = argument(2); // type: int
6730   Node* end     = argument(3); // type: int
6731 
6732   Node* length = _gvn.transform(new SubINode(end, offset));
6733 
6734   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6735   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6736     // failed array check
6737     return false;
6738   }
6739 
6740   // Figure out the size and type of the elements we will be copying.
6741   BasicType src_elem = src_type->elem()->array_element_basic_type();
6742   if (src_elem != T_BYTE) {
6743     return false;
6744   }
6745 
6746   // 'src_start' points to src array + scaled offset
6747   src = must_be_not_null(src, true);
6748   Node* src_start = array_element_address(src, offset, src_elem);
6749 
6750   // static final int[] byteTable in class CRC32C
6751   Node* table = get_table_from_crc32c_class(callee()->holder());
6752   table = must_be_not_null(table, true);
6753   Node* table_start = array_element_address(table, intcon(0), T_INT);
6754 
6755   // We assume that range check is done by caller.
6756   // TODO: generate range check (offset+length < src.length) in debug VM.
6757 
6758   // Call the stub.
6759   address stubAddr = StubRoutines::updateBytesCRC32C();
6760   const char *stubName = "updateBytesCRC32C";
6761 
6762   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6763                                  stubAddr, stubName, TypePtr::BOTTOM,
6764                                  crc, src_start, length, table_start);
6765   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6766   set_result(result);
6767   return true;
6768 }
6769 
6770 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
6771 //
6772 // Calculate CRC32C for DirectByteBuffer.
6773 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
6774 //
6775 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
6776   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6777   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
6778   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6779   // no receiver since it is a static method
6780   Node* crc     = argument(0); // type: int
6781   Node* src     = argument(1); // type: long
6782   Node* offset  = argument(3); // type: int
6783   Node* end     = argument(4); // type: int
6784 
6785   Node* length = _gvn.transform(new SubINode(end, offset));
6786 
6787   src = ConvL2X(src);  // adjust Java long to machine word
6788   Node* base = _gvn.transform(new CastX2PNode(src));
6789   offset = ConvI2X(offset);
6790 
6791   // 'src_start' points to src array + scaled offset
6792   Node* src_start = basic_plus_adr(top(), base, offset);
6793 
6794   // static final int[] byteTable in class CRC32C
6795   Node* table = get_table_from_crc32c_class(callee()->holder());
6796   table = must_be_not_null(table, true);
6797   Node* table_start = array_element_address(table, intcon(0), T_INT);
6798 
6799   // Call the stub.
6800   address stubAddr = StubRoutines::updateBytesCRC32C();
6801   const char *stubName = "updateBytesCRC32C";
6802 
6803   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6804                                  stubAddr, stubName, TypePtr::BOTTOM,
6805                                  crc, src_start, length, table_start);
6806   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6807   set_result(result);
6808   return true;
6809 }
6810 
6811 //------------------------------inline_updateBytesAdler32----------------------
6812 //
6813 // Calculate Adler32 checksum for byte[] array.
6814 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
6815 //
6816 bool LibraryCallKit::inline_updateBytesAdler32() {
6817   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6818   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6819   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6820   // no receiver since it is static method
6821   Node* crc     = argument(0); // type: int
6822   Node* src     = argument(1); // type: oop
6823   Node* offset  = argument(2); // type: int
6824   Node* length  = argument(3); // type: int
6825 
6826   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6827   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6828     // failed array check
6829     return false;
6830   }
6831 
6832   // Figure out the size and type of the elements we will be copying.
6833   BasicType src_elem = src_type->elem()->array_element_basic_type();
6834   if (src_elem != T_BYTE) {
6835     return false;
6836   }
6837 
6838   // 'src_start' points to src array + scaled offset
6839   Node* src_start = array_element_address(src, offset, src_elem);
6840 
6841   // We assume that range check is done by caller.
6842   // TODO: generate range check (offset+length < src.length) in debug VM.
6843 
6844   // Call the stub.
6845   address stubAddr = StubRoutines::updateBytesAdler32();
6846   const char *stubName = "updateBytesAdler32";
6847 
6848   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6849                                  stubAddr, stubName, TypePtr::BOTTOM,
6850                                  crc, src_start, length);
6851   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6852   set_result(result);
6853   return true;
6854 }
6855 
6856 //------------------------------inline_updateByteBufferAdler32---------------
6857 //
6858 // Calculate Adler32 checksum for DirectByteBuffer.
6859 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
6860 //
6861 bool LibraryCallKit::inline_updateByteBufferAdler32() {
6862   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6863   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6864   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6865   // no receiver since it is static method
6866   Node* crc     = argument(0); // type: int
6867   Node* src     = argument(1); // type: long
6868   Node* offset  = argument(3); // type: int
6869   Node* length  = argument(4); // type: int
6870 
6871   src = ConvL2X(src);  // adjust Java long to machine word
6872   Node* base = _gvn.transform(new CastX2PNode(src));
6873   offset = ConvI2X(offset);
6874 
6875   // 'src_start' points to src array + scaled offset
6876   Node* src_start = basic_plus_adr(top(), base, offset);
6877 
6878   // Call the stub.
6879   address stubAddr = StubRoutines::updateBytesAdler32();
6880   const char *stubName = "updateBytesAdler32";
6881 
6882   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6883                                  stubAddr, stubName, TypePtr::BOTTOM,
6884                                  crc, src_start, length);
6885 
6886   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6887   set_result(result);
6888   return true;
6889 }
6890 
6891 //----------------------------inline_reference_get----------------------------
6892 // public T java.lang.ref.Reference.get();
6893 bool LibraryCallKit::inline_reference_get() {
6894   const int referent_offset = java_lang_ref_Reference::referent_offset();
6895 
6896   // Get the argument:
6897   Node* reference_obj = null_check_receiver();
6898   if (stopped()) return true;
6899 
6900   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
6901   Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
6902                                         decorators, /*is_static*/ false, nullptr);
6903   if (result == nullptr) return false;
6904 
6905   // Add memory barrier to prevent commoning reads from this field
6906   // across safepoint since GC can change its value.
6907   insert_mem_bar(Op_MemBarCPUOrder);
6908 
6909   set_result(result);
6910   return true;
6911 }
6912 
6913 //----------------------------inline_reference_refersTo0----------------------------
6914 // bool java.lang.ref.Reference.refersTo0();
6915 // bool java.lang.ref.PhantomReference.refersTo0();
6916 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) {
6917   // Get arguments:
6918   Node* reference_obj = null_check_receiver();
6919   Node* other_obj = argument(1);
6920   if (stopped()) return true;
6921 
6922   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
6923   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
6924   Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
6925                                           decorators, /*is_static*/ false, nullptr);
6926   if (referent == nullptr) return false;
6927 
6928   // Add memory barrier to prevent commoning reads from this field
6929   // across safepoint since GC can change its value.
6930   insert_mem_bar(Op_MemBarCPUOrder);
6931 
6932   Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj));
6933   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6934   IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
6935 
6936   RegionNode* region = new RegionNode(3);
6937   PhiNode* phi = new PhiNode(region, TypeInt::BOOL);
6938 
6939   Node* if_true = _gvn.transform(new IfTrueNode(if_node));
6940   region->init_req(1, if_true);
6941   phi->init_req(1, intcon(1));
6942 
6943   Node* if_false = _gvn.transform(new IfFalseNode(if_node));
6944   region->init_req(2, if_false);
6945   phi->init_req(2, intcon(0));
6946 
6947   set_control(_gvn.transform(region));
6948   record_for_igvn(region);
6949   set_result(_gvn.transform(phi));
6950   return true;
6951 }
6952 
6953 //----------------------------inline_reference_clear0----------------------------
6954 // void java.lang.ref.Reference.clear0();
6955 // void java.lang.ref.PhantomReference.clear0();
6956 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) {
6957   // This matches the implementation in JVM_ReferenceClear, see the comments there.
6958 
6959   // Get arguments
6960   Node* reference_obj = null_check_receiver();
6961   if (stopped()) return true;
6962 
6963   // Common access parameters
6964   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
6965   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
6966   Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset());
6967   const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr();
6968   const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass());
6969 
6970   Node* referent = access_load_at(reference_obj,
6971                                   referent_field_addr,
6972                                   referent_field_addr_type,
6973                                   val_type,
6974                                   T_OBJECT,
6975                                   decorators);
6976 
6977   IdealKit ideal(this);
6978 #define __ ideal.
6979   __ if_then(referent, BoolTest::ne, null());
6980     sync_kit(ideal);
6981     access_store_at(reference_obj,
6982                     referent_field_addr,
6983                     referent_field_addr_type,
6984                     null(),
6985                     val_type,
6986                     T_OBJECT,
6987                     decorators);
6988     __ sync_kit(this);
6989   __ end_if();
6990   final_sync(ideal);
6991 #undef __
6992 
6993   return true;
6994 }
6995 
6996 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString,
6997                                              DecoratorSet decorators, bool is_static,
6998                                              ciInstanceKlass* fromKls) {
6999   if (fromKls == nullptr) {
7000     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7001     assert(tinst != nullptr, "obj is null");
7002     assert(tinst->is_loaded(), "obj is not loaded");
7003     fromKls = tinst->instance_klass();
7004   } else {
7005     assert(is_static, "only for static field access");
7006   }
7007   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7008                                               ciSymbol::make(fieldTypeString),
7009                                               is_static);
7010 
7011   assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName);
7012   if (field == nullptr) return (Node *) nullptr;
7013 
7014   if (is_static) {
7015     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7016     fromObj = makecon(tip);
7017   }
7018 
7019   // Next code  copied from Parse::do_get_xxx():
7020 
7021   // Compute address and memory type.
7022   int offset  = field->offset_in_bytes();
7023   bool is_vol = field->is_volatile();
7024   ciType* field_klass = field->type();
7025   assert(field_klass->is_loaded(), "should be loaded");
7026   const TypePtr* adr_type = C->alias_type(field)->adr_type();
7027   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7028   assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()),
7029     "slice of address and input slice don't match");
7030   BasicType bt = field->layout_type();
7031 
7032   // Build the resultant type of the load
7033   const Type *type;
7034   if (bt == T_OBJECT) {
7035     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
7036   } else {
7037     type = Type::get_const_basic_type(bt);
7038   }
7039 
7040   if (is_vol) {
7041     decorators |= MO_SEQ_CST;
7042   }
7043 
7044   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
7045 }
7046 
7047 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
7048                                                  bool is_exact /* true */, bool is_static /* false */,
7049                                                  ciInstanceKlass * fromKls /* nullptr */) {
7050   if (fromKls == nullptr) {
7051     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7052     assert(tinst != nullptr, "obj is null");
7053     assert(tinst->is_loaded(), "obj is not loaded");
7054     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
7055     fromKls = tinst->instance_klass();
7056   }
7057   else {
7058     assert(is_static, "only for static field access");
7059   }
7060   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7061     ciSymbol::make(fieldTypeString),
7062     is_static);
7063 
7064   assert(field != nullptr, "undefined field");
7065   assert(!field->is_volatile(), "not defined for volatile fields");
7066 
7067   if (is_static) {
7068     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7069     fromObj = makecon(tip);
7070   }
7071 
7072   // Next code  copied from Parse::do_get_xxx():
7073 
7074   // Compute address and memory type.
7075   int offset = field->offset_in_bytes();
7076   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7077 
7078   return adr;
7079 }
7080 
7081 //------------------------------inline_aescrypt_Block-----------------------
7082 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
7083   address stubAddr = nullptr;
7084   const char *stubName;
7085   assert(UseAES, "need AES instruction support");
7086 
7087   switch(id) {
7088   case vmIntrinsics::_aescrypt_encryptBlock:
7089     stubAddr = StubRoutines::aescrypt_encryptBlock();
7090     stubName = "aescrypt_encryptBlock";
7091     break;
7092   case vmIntrinsics::_aescrypt_decryptBlock:
7093     stubAddr = StubRoutines::aescrypt_decryptBlock();
7094     stubName = "aescrypt_decryptBlock";
7095     break;
7096   default:
7097     break;
7098   }
7099   if (stubAddr == nullptr) return false;
7100 
7101   Node* aescrypt_object = argument(0);
7102   Node* src             = argument(1);
7103   Node* src_offset      = argument(2);
7104   Node* dest            = argument(3);
7105   Node* dest_offset     = argument(4);
7106 
7107   src = must_be_not_null(src, true);
7108   dest = must_be_not_null(dest, true);
7109 
7110   // (1) src and dest are arrays.
7111   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7112   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7113   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7114          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7115 
7116   // for the quick and dirty code we will skip all the checks.
7117   // we are just trying to get the call to be generated.
7118   Node* src_start  = src;
7119   Node* dest_start = dest;
7120   if (src_offset != nullptr || dest_offset != nullptr) {
7121     assert(src_offset != nullptr && dest_offset != nullptr, "");
7122     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7123     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7124   }
7125 
7126   // now need to get the start of its expanded key array
7127   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7128   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7129   if (k_start == nullptr) return false;
7130 
7131   // Call the stub.
7132   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
7133                     stubAddr, stubName, TypePtr::BOTTOM,
7134                     src_start, dest_start, k_start);
7135 
7136   return true;
7137 }
7138 
7139 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
7140 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
7141   address stubAddr = nullptr;
7142   const char *stubName = nullptr;
7143 
7144   assert(UseAES, "need AES instruction support");
7145 
7146   switch(id) {
7147   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
7148     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
7149     stubName = "cipherBlockChaining_encryptAESCrypt";
7150     break;
7151   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
7152     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
7153     stubName = "cipherBlockChaining_decryptAESCrypt";
7154     break;
7155   default:
7156     break;
7157   }
7158   if (stubAddr == nullptr) return false;
7159 
7160   Node* cipherBlockChaining_object = argument(0);
7161   Node* src                        = argument(1);
7162   Node* src_offset                 = argument(2);
7163   Node* len                        = argument(3);
7164   Node* dest                       = argument(4);
7165   Node* dest_offset                = argument(5);
7166 
7167   src = must_be_not_null(src, false);
7168   dest = must_be_not_null(dest, false);
7169 
7170   // (1) src and dest are arrays.
7171   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7172   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7173   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7174          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7175 
7176   // checks are the responsibility of the caller
7177   Node* src_start  = src;
7178   Node* dest_start = dest;
7179   if (src_offset != nullptr || dest_offset != nullptr) {
7180     assert(src_offset != nullptr && dest_offset != nullptr, "");
7181     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7182     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7183   }
7184 
7185   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7186   // (because of the predicated logic executed earlier).
7187   // so we cast it here safely.
7188   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7189 
7190   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7191   if (embeddedCipherObj == nullptr) return false;
7192 
7193   // cast it to what we know it will be at runtime
7194   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
7195   assert(tinst != nullptr, "CBC obj is null");
7196   assert(tinst->is_loaded(), "CBC obj is not loaded");
7197   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7198   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7199 
7200   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7201   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7202   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7203   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7204   aescrypt_object = _gvn.transform(aescrypt_object);
7205 
7206   // we need to get the start of the aescrypt_object's expanded key array
7207   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7208   if (k_start == nullptr) return false;
7209 
7210   // similarly, get the start address of the r vector
7211   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B");
7212   if (objRvec == nullptr) return false;
7213   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
7214 
7215   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7216   Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7217                                      OptoRuntime::cipherBlockChaining_aescrypt_Type(),
7218                                      stubAddr, stubName, TypePtr::BOTTOM,
7219                                      src_start, dest_start, k_start, r_start, len);
7220 
7221   // return cipher length (int)
7222   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
7223   set_result(retvalue);
7224   return true;
7225 }
7226 
7227 //------------------------------inline_electronicCodeBook_AESCrypt-----------------------
7228 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) {
7229   address stubAddr = nullptr;
7230   const char *stubName = nullptr;
7231 
7232   assert(UseAES, "need AES instruction support");
7233 
7234   switch (id) {
7235   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
7236     stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt();
7237     stubName = "electronicCodeBook_encryptAESCrypt";
7238     break;
7239   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
7240     stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt();
7241     stubName = "electronicCodeBook_decryptAESCrypt";
7242     break;
7243   default:
7244     break;
7245   }
7246 
7247   if (stubAddr == nullptr) return false;
7248 
7249   Node* electronicCodeBook_object = argument(0);
7250   Node* src                       = argument(1);
7251   Node* src_offset                = argument(2);
7252   Node* len                       = argument(3);
7253   Node* dest                      = argument(4);
7254   Node* dest_offset               = argument(5);
7255 
7256   // (1) src and dest are arrays.
7257   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7258   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7259   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7260          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7261 
7262   // checks are the responsibility of the caller
7263   Node* src_start = src;
7264   Node* dest_start = dest;
7265   if (src_offset != nullptr || dest_offset != nullptr) {
7266     assert(src_offset != nullptr && dest_offset != nullptr, "");
7267     src_start = array_element_address(src, src_offset, T_BYTE);
7268     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7269   }
7270 
7271   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7272   // (because of the predicated logic executed earlier).
7273   // so we cast it here safely.
7274   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7275 
7276   Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7277   if (embeddedCipherObj == nullptr) return false;
7278 
7279   // cast it to what we know it will be at runtime
7280   const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr();
7281   assert(tinst != nullptr, "ECB obj is null");
7282   assert(tinst->is_loaded(), "ECB obj is not loaded");
7283   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7284   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7285 
7286   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7287   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7288   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7289   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7290   aescrypt_object = _gvn.transform(aescrypt_object);
7291 
7292   // we need to get the start of the aescrypt_object's expanded key array
7293   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7294   if (k_start == nullptr) return false;
7295 
7296   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7297   Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP,
7298                                      OptoRuntime::electronicCodeBook_aescrypt_Type(),
7299                                      stubAddr, stubName, TypePtr::BOTTOM,
7300                                      src_start, dest_start, k_start, len);
7301 
7302   // return cipher length (int)
7303   Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms));
7304   set_result(retvalue);
7305   return true;
7306 }
7307 
7308 //------------------------------inline_counterMode_AESCrypt-----------------------
7309 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
7310   assert(UseAES, "need AES instruction support");
7311   if (!UseAESCTRIntrinsics) return false;
7312 
7313   address stubAddr = nullptr;
7314   const char *stubName = nullptr;
7315   if (id == vmIntrinsics::_counterMode_AESCrypt) {
7316     stubAddr = StubRoutines::counterMode_AESCrypt();
7317     stubName = "counterMode_AESCrypt";
7318   }
7319   if (stubAddr == nullptr) return false;
7320 
7321   Node* counterMode_object = argument(0);
7322   Node* src = argument(1);
7323   Node* src_offset = argument(2);
7324   Node* len = argument(3);
7325   Node* dest = argument(4);
7326   Node* dest_offset = argument(5);
7327 
7328   // (1) src and dest are arrays.
7329   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7330   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7331   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7332          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7333 
7334   // checks are the responsibility of the caller
7335   Node* src_start = src;
7336   Node* dest_start = dest;
7337   if (src_offset != nullptr || dest_offset != nullptr) {
7338     assert(src_offset != nullptr && dest_offset != nullptr, "");
7339     src_start = array_element_address(src, src_offset, T_BYTE);
7340     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7341   }
7342 
7343   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7344   // (because of the predicated logic executed earlier).
7345   // so we cast it here safely.
7346   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7347   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7348   if (embeddedCipherObj == nullptr) return false;
7349   // cast it to what we know it will be at runtime
7350   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
7351   assert(tinst != nullptr, "CTR obj is null");
7352   assert(tinst->is_loaded(), "CTR obj is not loaded");
7353   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7354   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7355   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7356   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7357   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7358   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7359   aescrypt_object = _gvn.transform(aescrypt_object);
7360   // we need to get the start of the aescrypt_object's expanded key array
7361   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7362   if (k_start == nullptr) return false;
7363   // similarly, get the start address of the r vector
7364   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B");
7365   if (obj_counter == nullptr) return false;
7366   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
7367 
7368   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B");
7369   if (saved_encCounter == nullptr) return false;
7370   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
7371   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
7372 
7373   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7374   Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7375                                      OptoRuntime::counterMode_aescrypt_Type(),
7376                                      stubAddr, stubName, TypePtr::BOTTOM,
7377                                      src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
7378 
7379   // return cipher length (int)
7380   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
7381   set_result(retvalue);
7382   return true;
7383 }
7384 
7385 //------------------------------get_key_start_from_aescrypt_object-----------------------
7386 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
7387 #if defined(PPC64) || defined(S390) || defined(RISCV64)
7388   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
7389   // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
7390   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
7391   // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]).
7392   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I");
7393   assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7394   if (objSessionK == nullptr) {
7395     return (Node *) nullptr;
7396   }
7397   Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true);
7398 #else
7399   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I");
7400 #endif // PPC64
7401   assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7402   if (objAESCryptKey == nullptr) return (Node *) nullptr;
7403 
7404   // now have the array, need to get the start address of the K array
7405   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
7406   return k_start;
7407 }
7408 
7409 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
7410 // Return node representing slow path of predicate check.
7411 // the pseudo code we want to emulate with this predicate is:
7412 // for encryption:
7413 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7414 // for decryption:
7415 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7416 //    note cipher==plain is more conservative than the original java code but that's OK
7417 //
7418 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
7419   // The receiver was checked for null already.
7420   Node* objCBC = argument(0);
7421 
7422   Node* src = argument(1);
7423   Node* dest = argument(4);
7424 
7425   // Load embeddedCipher field of CipherBlockChaining object.
7426   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7427 
7428   // get AESCrypt klass for instanceOf check
7429   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7430   // will have same classloader as CipherBlockChaining object
7431   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
7432   assert(tinst != nullptr, "CBCobj is null");
7433   assert(tinst->is_loaded(), "CBCobj is not loaded");
7434 
7435   // we want to do an instanceof comparison against the AESCrypt class
7436   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7437   if (!klass_AESCrypt->is_loaded()) {
7438     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7439     Node* ctrl = control();
7440     set_control(top()); // no regular fast path
7441     return ctrl;
7442   }
7443 
7444   src = must_be_not_null(src, true);
7445   dest = must_be_not_null(dest, true);
7446 
7447   // Resolve oops to stable for CmpP below.
7448   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7449 
7450   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7451   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
7452   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7453 
7454   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7455 
7456   // for encryption, we are done
7457   if (!decrypting)
7458     return instof_false;  // even if it is null
7459 
7460   // for decryption, we need to add a further check to avoid
7461   // taking the intrinsic path when cipher and plain are the same
7462   // see the original java code for why.
7463   RegionNode* region = new RegionNode(3);
7464   region->init_req(1, instof_false);
7465 
7466   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7467   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7468   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7469   region->init_req(2, src_dest_conjoint);
7470 
7471   record_for_igvn(region);
7472   return _gvn.transform(region);
7473 }
7474 
7475 //----------------------------inline_electronicCodeBook_AESCrypt_predicate----------------------------
7476 // Return node representing slow path of predicate check.
7477 // the pseudo code we want to emulate with this predicate is:
7478 // for encryption:
7479 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7480 // for decryption:
7481 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7482 //    note cipher==plain is more conservative than the original java code but that's OK
7483 //
7484 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) {
7485   // The receiver was checked for null already.
7486   Node* objECB = argument(0);
7487 
7488   // Load embeddedCipher field of ElectronicCodeBook object.
7489   Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7490 
7491   // get AESCrypt klass for instanceOf check
7492   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7493   // will have same classloader as ElectronicCodeBook object
7494   const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr();
7495   assert(tinst != nullptr, "ECBobj is null");
7496   assert(tinst->is_loaded(), "ECBobj is not loaded");
7497 
7498   // we want to do an instanceof comparison against the AESCrypt class
7499   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7500   if (!klass_AESCrypt->is_loaded()) {
7501     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7502     Node* ctrl = control();
7503     set_control(top()); // no regular fast path
7504     return ctrl;
7505   }
7506   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7507 
7508   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7509   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7510   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7511 
7512   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7513 
7514   // for encryption, we are done
7515   if (!decrypting)
7516     return instof_false;  // even if it is null
7517 
7518   // for decryption, we need to add a further check to avoid
7519   // taking the intrinsic path when cipher and plain are the same
7520   // see the original java code for why.
7521   RegionNode* region = new RegionNode(3);
7522   region->init_req(1, instof_false);
7523   Node* src = argument(1);
7524   Node* dest = argument(4);
7525   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7526   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7527   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7528   region->init_req(2, src_dest_conjoint);
7529 
7530   record_for_igvn(region);
7531   return _gvn.transform(region);
7532 }
7533 
7534 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
7535 // Return node representing slow path of predicate check.
7536 // the pseudo code we want to emulate with this predicate is:
7537 // for encryption:
7538 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7539 // for decryption:
7540 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7541 //    note cipher==plain is more conservative than the original java code but that's OK
7542 //
7543 
7544 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
7545   // The receiver was checked for null already.
7546   Node* objCTR = argument(0);
7547 
7548   // Load embeddedCipher field of CipherBlockChaining object.
7549   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7550 
7551   // get AESCrypt klass for instanceOf check
7552   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7553   // will have same classloader as CipherBlockChaining object
7554   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
7555   assert(tinst != nullptr, "CTRobj is null");
7556   assert(tinst->is_loaded(), "CTRobj is not loaded");
7557 
7558   // we want to do an instanceof comparison against the AESCrypt class
7559   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7560   if (!klass_AESCrypt->is_loaded()) {
7561     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7562     Node* ctrl = control();
7563     set_control(top()); // no regular fast path
7564     return ctrl;
7565   }
7566 
7567   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7568   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7569   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7570   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7571   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7572 
7573   return instof_false; // even if it is null
7574 }
7575 
7576 //------------------------------inline_ghash_processBlocks
7577 bool LibraryCallKit::inline_ghash_processBlocks() {
7578   address stubAddr;
7579   const char *stubName;
7580   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
7581 
7582   stubAddr = StubRoutines::ghash_processBlocks();
7583   stubName = "ghash_processBlocks";
7584 
7585   Node* data           = argument(0);
7586   Node* offset         = argument(1);
7587   Node* len            = argument(2);
7588   Node* state          = argument(3);
7589   Node* subkeyH        = argument(4);
7590 
7591   state = must_be_not_null(state, true);
7592   subkeyH = must_be_not_null(subkeyH, true);
7593   data = must_be_not_null(data, true);
7594 
7595   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
7596   assert(state_start, "state is null");
7597   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
7598   assert(subkeyH_start, "subkeyH is null");
7599   Node* data_start  = array_element_address(data, offset, T_BYTE);
7600   assert(data_start, "data is null");
7601 
7602   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
7603                                   OptoRuntime::ghash_processBlocks_Type(),
7604                                   stubAddr, stubName, TypePtr::BOTTOM,
7605                                   state_start, subkeyH_start, data_start, len);
7606   return true;
7607 }
7608 
7609 //------------------------------inline_chacha20Block
7610 bool LibraryCallKit::inline_chacha20Block() {
7611   address stubAddr;
7612   const char *stubName;
7613   assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support");
7614 
7615   stubAddr = StubRoutines::chacha20Block();
7616   stubName = "chacha20Block";
7617 
7618   Node* state          = argument(0);
7619   Node* result         = argument(1);
7620 
7621   state = must_be_not_null(state, true);
7622   result = must_be_not_null(result, true);
7623 
7624   Node* state_start  = array_element_address(state, intcon(0), T_INT);
7625   assert(state_start, "state is null");
7626   Node* result_start  = array_element_address(result, intcon(0), T_BYTE);
7627   assert(result_start, "result is null");
7628 
7629   Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP,
7630                                   OptoRuntime::chacha20Block_Type(),
7631                                   stubAddr, stubName, TypePtr::BOTTOM,
7632                                   state_start, result_start);
7633   // return key stream length (int)
7634   Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms));
7635   set_result(retvalue);
7636   return true;
7637 }
7638 
7639 bool LibraryCallKit::inline_base64_encodeBlock() {
7640   address stubAddr;
7641   const char *stubName;
7642   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7643   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
7644   stubAddr = StubRoutines::base64_encodeBlock();
7645   stubName = "encodeBlock";
7646 
7647   if (!stubAddr) return false;
7648   Node* base64obj = argument(0);
7649   Node* src = argument(1);
7650   Node* offset = argument(2);
7651   Node* len = argument(3);
7652   Node* dest = argument(4);
7653   Node* dp = argument(5);
7654   Node* isURL = argument(6);
7655 
7656   src = must_be_not_null(src, true);
7657   dest = must_be_not_null(dest, true);
7658 
7659   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
7660   assert(src_start, "source array is null");
7661   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
7662   assert(dest_start, "destination array is null");
7663 
7664   Node* base64 = make_runtime_call(RC_LEAF,
7665                                    OptoRuntime::base64_encodeBlock_Type(),
7666                                    stubAddr, stubName, TypePtr::BOTTOM,
7667                                    src_start, offset, len, dest_start, dp, isURL);
7668   return true;
7669 }
7670 
7671 bool LibraryCallKit::inline_base64_decodeBlock() {
7672   address stubAddr;
7673   const char *stubName;
7674   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7675   assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters");
7676   stubAddr = StubRoutines::base64_decodeBlock();
7677   stubName = "decodeBlock";
7678 
7679   if (!stubAddr) return false;
7680   Node* base64obj = argument(0);
7681   Node* src = argument(1);
7682   Node* src_offset = argument(2);
7683   Node* len = argument(3);
7684   Node* dest = argument(4);
7685   Node* dest_offset = argument(5);
7686   Node* isURL = argument(6);
7687   Node* isMIME = argument(7);
7688 
7689   src = must_be_not_null(src, true);
7690   dest = must_be_not_null(dest, true);
7691 
7692   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
7693   assert(src_start, "source array is null");
7694   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
7695   assert(dest_start, "destination array is null");
7696 
7697   Node* call = make_runtime_call(RC_LEAF,
7698                                  OptoRuntime::base64_decodeBlock_Type(),
7699                                  stubAddr, stubName, TypePtr::BOTTOM,
7700                                  src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME);
7701   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7702   set_result(result);
7703   return true;
7704 }
7705 
7706 bool LibraryCallKit::inline_poly1305_processBlocks() {
7707   address stubAddr;
7708   const char *stubName;
7709   assert(UsePoly1305Intrinsics, "need Poly intrinsics support");
7710   assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size());
7711   stubAddr = StubRoutines::poly1305_processBlocks();
7712   stubName = "poly1305_processBlocks";
7713 
7714   if (!stubAddr) return false;
7715   null_check_receiver();  // null-check receiver
7716   if (stopped())  return true;
7717 
7718   Node* input = argument(1);
7719   Node* input_offset = argument(2);
7720   Node* len = argument(3);
7721   Node* alimbs = argument(4);
7722   Node* rlimbs = argument(5);
7723 
7724   input = must_be_not_null(input, true);
7725   alimbs = must_be_not_null(alimbs, true);
7726   rlimbs = must_be_not_null(rlimbs, true);
7727 
7728   Node* input_start = array_element_address(input, input_offset, T_BYTE);
7729   assert(input_start, "input array is null");
7730   Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG);
7731   assert(acc_start, "acc array is null");
7732   Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG);
7733   assert(r_start, "r array is null");
7734 
7735   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7736                                  OptoRuntime::poly1305_processBlocks_Type(),
7737                                  stubAddr, stubName, TypePtr::BOTTOM,
7738                                  input_start, len, acc_start, r_start);
7739   return true;
7740 }
7741 
7742 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() {
7743   address stubAddr;
7744   const char *stubName;
7745   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
7746   assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size());
7747   stubAddr = StubRoutines::intpoly_montgomeryMult_P256();
7748   stubName = "intpoly_montgomeryMult_P256";
7749 
7750   if (!stubAddr) return false;
7751   null_check_receiver();  // null-check receiver
7752   if (stopped())  return true;
7753 
7754   Node* a = argument(1);
7755   Node* b = argument(2);
7756   Node* r = argument(3);
7757 
7758   a = must_be_not_null(a, true);
7759   b = must_be_not_null(b, true);
7760   r = must_be_not_null(r, true);
7761 
7762   Node* a_start = array_element_address(a, intcon(0), T_LONG);
7763   assert(a_start, "a array is null");
7764   Node* b_start = array_element_address(b, intcon(0), T_LONG);
7765   assert(b_start, "b array is null");
7766   Node* r_start = array_element_address(r, intcon(0), T_LONG);
7767   assert(r_start, "r array is null");
7768 
7769   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7770                                  OptoRuntime::intpoly_montgomeryMult_P256_Type(),
7771                                  stubAddr, stubName, TypePtr::BOTTOM,
7772                                  a_start, b_start, r_start);
7773   return true;
7774 }
7775 
7776 bool LibraryCallKit::inline_intpoly_assign() {
7777   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
7778   assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size());
7779   const char *stubName = "intpoly_assign";
7780   address stubAddr = StubRoutines::intpoly_assign();
7781   if (!stubAddr) return false;
7782 
7783   Node* set = argument(0);
7784   Node* a = argument(1);
7785   Node* b = argument(2);
7786   Node* arr_length = load_array_length(a);
7787 
7788   a = must_be_not_null(a, true);
7789   b = must_be_not_null(b, true);
7790 
7791   Node* a_start = array_element_address(a, intcon(0), T_LONG);
7792   assert(a_start, "a array is null");
7793   Node* b_start = array_element_address(b, intcon(0), T_LONG);
7794   assert(b_start, "b array is null");
7795 
7796   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
7797                                  OptoRuntime::intpoly_assign_Type(),
7798                                  stubAddr, stubName, TypePtr::BOTTOM,
7799                                  set, a_start, b_start, arr_length);
7800   return true;
7801 }
7802 
7803 //------------------------------inline_digestBase_implCompress-----------------------
7804 //
7805 // Calculate MD5 for single-block byte[] array.
7806 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs)
7807 //
7808 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
7809 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
7810 //
7811 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
7812 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
7813 //
7814 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
7815 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
7816 //
7817 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array.
7818 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs)
7819 //
7820 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) {
7821   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
7822 
7823   Node* digestBase_obj = argument(0);
7824   Node* src            = argument(1); // type oop
7825   Node* ofs            = argument(2); // type int
7826 
7827   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7828   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7829     // failed array check
7830     return false;
7831   }
7832   // Figure out the size and type of the elements we will be copying.
7833   BasicType src_elem = src_type->elem()->array_element_basic_type();
7834   if (src_elem != T_BYTE) {
7835     return false;
7836   }
7837   // 'src_start' points to src array + offset
7838   src = must_be_not_null(src, true);
7839   Node* src_start = array_element_address(src, ofs, src_elem);
7840   Node* state = nullptr;
7841   Node* block_size = nullptr;
7842   address stubAddr;
7843   const char *stubName;
7844 
7845   switch(id) {
7846   case vmIntrinsics::_md5_implCompress:
7847     assert(UseMD5Intrinsics, "need MD5 instruction support");
7848     state = get_state_from_digest_object(digestBase_obj, T_INT);
7849     stubAddr = StubRoutines::md5_implCompress();
7850     stubName = "md5_implCompress";
7851     break;
7852   case vmIntrinsics::_sha_implCompress:
7853     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
7854     state = get_state_from_digest_object(digestBase_obj, T_INT);
7855     stubAddr = StubRoutines::sha1_implCompress();
7856     stubName = "sha1_implCompress";
7857     break;
7858   case vmIntrinsics::_sha2_implCompress:
7859     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
7860     state = get_state_from_digest_object(digestBase_obj, T_INT);
7861     stubAddr = StubRoutines::sha256_implCompress();
7862     stubName = "sha256_implCompress";
7863     break;
7864   case vmIntrinsics::_sha5_implCompress:
7865     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
7866     state = get_state_from_digest_object(digestBase_obj, T_LONG);
7867     stubAddr = StubRoutines::sha512_implCompress();
7868     stubName = "sha512_implCompress";
7869     break;
7870   case vmIntrinsics::_sha3_implCompress:
7871     assert(UseSHA3Intrinsics, "need SHA3 instruction support");
7872     state = get_state_from_digest_object(digestBase_obj, T_LONG);
7873     stubAddr = StubRoutines::sha3_implCompress();
7874     stubName = "sha3_implCompress";
7875     block_size = get_block_size_from_digest_object(digestBase_obj);
7876     if (block_size == nullptr) return false;
7877     break;
7878   default:
7879     fatal_unexpected_iid(id);
7880     return false;
7881   }
7882   if (state == nullptr) return false;
7883 
7884   assert(stubAddr != nullptr, "Stub %s is not generated", stubName);
7885   if (stubAddr == nullptr) return false;
7886 
7887   // Call the stub.
7888   Node* call;
7889   if (block_size == nullptr) {
7890     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false),
7891                              stubAddr, stubName, TypePtr::BOTTOM,
7892                              src_start, state);
7893   } else {
7894     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true),
7895                              stubAddr, stubName, TypePtr::BOTTOM,
7896                              src_start, state, block_size);
7897   }
7898 
7899   return true;
7900 }
7901 
7902 //------------------------------inline_digestBase_implCompressMB-----------------------
7903 //
7904 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array.
7905 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
7906 //
7907 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
7908   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
7909          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
7910   assert((uint)predicate < 5, "sanity");
7911   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
7912 
7913   Node* digestBase_obj = argument(0); // The receiver was checked for null already.
7914   Node* src            = argument(1); // byte[] array
7915   Node* ofs            = argument(2); // type int
7916   Node* limit          = argument(3); // type int
7917 
7918   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7919   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
7920     // failed array check
7921     return false;
7922   }
7923   // Figure out the size and type of the elements we will be copying.
7924   BasicType src_elem = src_type->elem()->array_element_basic_type();
7925   if (src_elem != T_BYTE) {
7926     return false;
7927   }
7928   // 'src_start' points to src array + offset
7929   src = must_be_not_null(src, false);
7930   Node* src_start = array_element_address(src, ofs, src_elem);
7931 
7932   const char* klass_digestBase_name = nullptr;
7933   const char* stub_name = nullptr;
7934   address     stub_addr = nullptr;
7935   BasicType elem_type = T_INT;
7936 
7937   switch (predicate) {
7938   case 0:
7939     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) {
7940       klass_digestBase_name = "sun/security/provider/MD5";
7941       stub_name = "md5_implCompressMB";
7942       stub_addr = StubRoutines::md5_implCompressMB();
7943     }
7944     break;
7945   case 1:
7946     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) {
7947       klass_digestBase_name = "sun/security/provider/SHA";
7948       stub_name = "sha1_implCompressMB";
7949       stub_addr = StubRoutines::sha1_implCompressMB();
7950     }
7951     break;
7952   case 2:
7953     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) {
7954       klass_digestBase_name = "sun/security/provider/SHA2";
7955       stub_name = "sha256_implCompressMB";
7956       stub_addr = StubRoutines::sha256_implCompressMB();
7957     }
7958     break;
7959   case 3:
7960     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) {
7961       klass_digestBase_name = "sun/security/provider/SHA5";
7962       stub_name = "sha512_implCompressMB";
7963       stub_addr = StubRoutines::sha512_implCompressMB();
7964       elem_type = T_LONG;
7965     }
7966     break;
7967   case 4:
7968     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) {
7969       klass_digestBase_name = "sun/security/provider/SHA3";
7970       stub_name = "sha3_implCompressMB";
7971       stub_addr = StubRoutines::sha3_implCompressMB();
7972       elem_type = T_LONG;
7973     }
7974     break;
7975   default:
7976     fatal("unknown DigestBase intrinsic predicate: %d", predicate);
7977   }
7978   if (klass_digestBase_name != nullptr) {
7979     assert(stub_addr != nullptr, "Stub is generated");
7980     if (stub_addr == nullptr) return false;
7981 
7982     // get DigestBase klass to lookup for SHA klass
7983     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
7984     assert(tinst != nullptr, "digestBase_obj is not instance???");
7985     assert(tinst->is_loaded(), "DigestBase is not loaded");
7986 
7987     ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name));
7988     assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded");
7989     ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass();
7990     return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit);
7991   }
7992   return false;
7993 }
7994 
7995 //------------------------------inline_digestBase_implCompressMB-----------------------
7996 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase,
7997                                                       BasicType elem_type, address stubAddr, const char *stubName,
7998                                                       Node* src_start, Node* ofs, Node* limit) {
7999   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase);
8000   const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
8001   Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
8002   digest_obj = _gvn.transform(digest_obj);
8003 
8004   Node* state = get_state_from_digest_object(digest_obj, elem_type);
8005   if (state == nullptr) return false;
8006 
8007   Node* block_size = nullptr;
8008   if (strcmp("sha3_implCompressMB", stubName) == 0) {
8009     block_size = get_block_size_from_digest_object(digest_obj);
8010     if (block_size == nullptr) return false;
8011   }
8012 
8013   // Call the stub.
8014   Node* call;
8015   if (block_size == nullptr) {
8016     call = make_runtime_call(RC_LEAF|RC_NO_FP,
8017                              OptoRuntime::digestBase_implCompressMB_Type(false),
8018                              stubAddr, stubName, TypePtr::BOTTOM,
8019                              src_start, state, ofs, limit);
8020   } else {
8021      call = make_runtime_call(RC_LEAF|RC_NO_FP,
8022                              OptoRuntime::digestBase_implCompressMB_Type(true),
8023                              stubAddr, stubName, TypePtr::BOTTOM,
8024                              src_start, state, block_size, ofs, limit);
8025   }
8026 
8027   // return ofs (int)
8028   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
8029   set_result(result);
8030 
8031   return true;
8032 }
8033 
8034 //------------------------------inline_galoisCounterMode_AESCrypt-----------------------
8035 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() {
8036   assert(UseAES, "need AES instruction support");
8037   address stubAddr = nullptr;
8038   const char *stubName = nullptr;
8039   stubAddr = StubRoutines::galoisCounterMode_AESCrypt();
8040   stubName = "galoisCounterMode_AESCrypt";
8041 
8042   if (stubAddr == nullptr) return false;
8043 
8044   Node* in      = argument(0);
8045   Node* inOfs   = argument(1);
8046   Node* len     = argument(2);
8047   Node* ct      = argument(3);
8048   Node* ctOfs   = argument(4);
8049   Node* out     = argument(5);
8050   Node* outOfs  = argument(6);
8051   Node* gctr_object = argument(7);
8052   Node* ghash_object = argument(8);
8053 
8054   // (1) in, ct and out are arrays.
8055   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
8056   const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr();
8057   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
8058   assert( in_type != nullptr &&  in_type->elem() != Type::BOTTOM &&
8059           ct_type != nullptr &&  ct_type->elem() != Type::BOTTOM &&
8060          out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange");
8061 
8062   // checks are the responsibility of the caller
8063   Node* in_start = in;
8064   Node* ct_start = ct;
8065   Node* out_start = out;
8066   if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) {
8067     assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, "");
8068     in_start = array_element_address(in, inOfs, T_BYTE);
8069     ct_start = array_element_address(ct, ctOfs, T_BYTE);
8070     out_start = array_element_address(out, outOfs, T_BYTE);
8071   }
8072 
8073   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
8074   // (because of the predicated logic executed earlier).
8075   // so we cast it here safely.
8076   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
8077   Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8078   Node* counter = load_field_from_object(gctr_object, "counter", "[B");
8079   Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J");
8080   Node* state = load_field_from_object(ghash_object, "state", "[J");
8081 
8082   if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) {
8083     return false;
8084   }
8085   // cast it to what we know it will be at runtime
8086   const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr();
8087   assert(tinst != nullptr, "GCTR obj is null");
8088   assert(tinst->is_loaded(), "GCTR obj is not loaded");
8089   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8090   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
8091   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8092   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
8093   const TypeOopPtr* xtype = aklass->as_instance_type();
8094   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
8095   aescrypt_object = _gvn.transform(aescrypt_object);
8096   // we need to get the start of the aescrypt_object's expanded key array
8097   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
8098   if (k_start == nullptr) return false;
8099   // similarly, get the start address of the r vector
8100   Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE);
8101   Node* state_start = array_element_address(state, intcon(0), T_LONG);
8102   Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG);
8103 
8104 
8105   // Call the stub, passing params
8106   Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
8107                                OptoRuntime::galoisCounterMode_aescrypt_Type(),
8108                                stubAddr, stubName, TypePtr::BOTTOM,
8109                                in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start);
8110 
8111   // return cipher length (int)
8112   Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms));
8113   set_result(retvalue);
8114 
8115   return true;
8116 }
8117 
8118 //----------------------------inline_galoisCounterMode_AESCrypt_predicate----------------------------
8119 // Return node representing slow path of predicate check.
8120 // the pseudo code we want to emulate with this predicate is:
8121 // for encryption:
8122 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
8123 // for decryption:
8124 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
8125 //    note cipher==plain is more conservative than the original java code but that's OK
8126 //
8127 
8128 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() {
8129   // The receiver was checked for null already.
8130   Node* objGCTR = argument(7);
8131   // Load embeddedCipher field of GCTR object.
8132   Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8133   assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null");
8134 
8135   // get AESCrypt klass for instanceOf check
8136   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
8137   // will have same classloader as CipherBlockChaining object
8138   const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr();
8139   assert(tinst != nullptr, "GCTR obj is null");
8140   assert(tinst->is_loaded(), "GCTR obj is not loaded");
8141 
8142   // we want to do an instanceof comparison against the AESCrypt class
8143   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8144   if (!klass_AESCrypt->is_loaded()) {
8145     // if AESCrypt is not even loaded, we never take the intrinsic fast path
8146     Node* ctrl = control();
8147     set_control(top()); // no regular fast path
8148     return ctrl;
8149   }
8150 
8151   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8152   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
8153   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8154   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8155   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8156 
8157   return instof_false; // even if it is null
8158 }
8159 
8160 //------------------------------get_state_from_digest_object-----------------------
8161 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) {
8162   const char* state_type;
8163   switch (elem_type) {
8164     case T_BYTE: state_type = "[B"; break;
8165     case T_INT:  state_type = "[I"; break;
8166     case T_LONG: state_type = "[J"; break;
8167     default: ShouldNotReachHere();
8168   }
8169   Node* digest_state = load_field_from_object(digest_object, "state", state_type);
8170   assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3");
8171   if (digest_state == nullptr) return (Node *) nullptr;
8172 
8173   // now have the array, need to get the start address of the state array
8174   Node* state = array_element_address(digest_state, intcon(0), elem_type);
8175   return state;
8176 }
8177 
8178 //------------------------------get_block_size_from_sha3_object----------------------------------
8179 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) {
8180   Node* block_size = load_field_from_object(digest_object, "blockSize", "I");
8181   assert (block_size != nullptr, "sanity");
8182   return block_size;
8183 }
8184 
8185 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
8186 // Return node representing slow path of predicate check.
8187 // the pseudo code we want to emulate with this predicate is:
8188 //    if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath
8189 //
8190 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
8191   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
8192          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
8193   assert((uint)predicate < 5, "sanity");
8194 
8195   // The receiver was checked for null already.
8196   Node* digestBaseObj = argument(0);
8197 
8198   // get DigestBase klass for instanceOf check
8199   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
8200   assert(tinst != nullptr, "digestBaseObj is null");
8201   assert(tinst->is_loaded(), "DigestBase is not loaded");
8202 
8203   const char* klass_name = nullptr;
8204   switch (predicate) {
8205   case 0:
8206     if (UseMD5Intrinsics) {
8207       // we want to do an instanceof comparison against the MD5 class
8208       klass_name = "sun/security/provider/MD5";
8209     }
8210     break;
8211   case 1:
8212     if (UseSHA1Intrinsics) {
8213       // we want to do an instanceof comparison against the SHA class
8214       klass_name = "sun/security/provider/SHA";
8215     }
8216     break;
8217   case 2:
8218     if (UseSHA256Intrinsics) {
8219       // we want to do an instanceof comparison against the SHA2 class
8220       klass_name = "sun/security/provider/SHA2";
8221     }
8222     break;
8223   case 3:
8224     if (UseSHA512Intrinsics) {
8225       // we want to do an instanceof comparison against the SHA5 class
8226       klass_name = "sun/security/provider/SHA5";
8227     }
8228     break;
8229   case 4:
8230     if (UseSHA3Intrinsics) {
8231       // we want to do an instanceof comparison against the SHA3 class
8232       klass_name = "sun/security/provider/SHA3";
8233     }
8234     break;
8235   default:
8236     fatal("unknown SHA intrinsic predicate: %d", predicate);
8237   }
8238 
8239   ciKlass* klass = nullptr;
8240   if (klass_name != nullptr) {
8241     klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name));
8242   }
8243   if ((klass == nullptr) || !klass->is_loaded()) {
8244     // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
8245     Node* ctrl = control();
8246     set_control(top()); // no intrinsic path
8247     return ctrl;
8248   }
8249   ciInstanceKlass* instklass = klass->as_instance_klass();
8250 
8251   Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass)));
8252   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8253   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8254   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8255 
8256   return instof_false;  // even if it is null
8257 }
8258 
8259 //-------------inline_fma-----------------------------------
8260 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
8261   Node *a = nullptr;
8262   Node *b = nullptr;
8263   Node *c = nullptr;
8264   Node* result = nullptr;
8265   switch (id) {
8266   case vmIntrinsics::_fmaD:
8267     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
8268     // no receiver since it is static method
8269     a = round_double_node(argument(0));
8270     b = round_double_node(argument(2));
8271     c = round_double_node(argument(4));
8272     result = _gvn.transform(new FmaDNode(control(), a, b, c));
8273     break;
8274   case vmIntrinsics::_fmaF:
8275     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
8276     a = argument(0);
8277     b = argument(1);
8278     c = argument(2);
8279     result = _gvn.transform(new FmaFNode(control(), a, b, c));
8280     break;
8281   default:
8282     fatal_unexpected_iid(id);  break;
8283   }
8284   set_result(result);
8285   return true;
8286 }
8287 
8288 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
8289   // argument(0) is receiver
8290   Node* codePoint = argument(1);
8291   Node* n = nullptr;
8292 
8293   switch (id) {
8294     case vmIntrinsics::_isDigit :
8295       n = new DigitNode(control(), codePoint);
8296       break;
8297     case vmIntrinsics::_isLowerCase :
8298       n = new LowerCaseNode(control(), codePoint);
8299       break;
8300     case vmIntrinsics::_isUpperCase :
8301       n = new UpperCaseNode(control(), codePoint);
8302       break;
8303     case vmIntrinsics::_isWhitespace :
8304       n = new WhitespaceNode(control(), codePoint);
8305       break;
8306     default:
8307       fatal_unexpected_iid(id);
8308   }
8309 
8310   set_result(_gvn.transform(n));
8311   return true;
8312 }
8313 
8314 //------------------------------inline_fp_min_max------------------------------
8315 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) {
8316 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416.
8317 
8318   // The intrinsic should be used only when the API branches aren't predictable,
8319   // the last one performing the most important comparison. The following heuristic
8320   // uses the branch statistics to eventually bail out if necessary.
8321 
8322   ciMethodData *md = callee()->method_data();
8323 
8324   if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) {
8325     ciCallProfile cp = caller()->call_profile_at_bci(bci());
8326 
8327     if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) {
8328       // Bail out if the call-site didn't contribute enough to the statistics.
8329       return false;
8330     }
8331 
8332     uint taken = 0, not_taken = 0;
8333 
8334     for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) {
8335       if (p->is_BranchData()) {
8336         taken = ((ciBranchData*)p)->taken();
8337         not_taken = ((ciBranchData*)p)->not_taken();
8338       }
8339     }
8340 
8341     double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count());
8342     balance = balance < 0 ? -balance : balance;
8343     if ( balance > 0.2 ) {
8344       // Bail out if the most important branch is predictable enough.
8345       return false;
8346     }
8347   }
8348 */
8349 
8350   Node *a = nullptr;
8351   Node *b = nullptr;
8352   Node *n = nullptr;
8353   switch (id) {
8354   case vmIntrinsics::_maxF:
8355   case vmIntrinsics::_minF:
8356   case vmIntrinsics::_maxF_strict:
8357   case vmIntrinsics::_minF_strict:
8358     assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
8359     a = argument(0);
8360     b = argument(1);
8361     break;
8362   case vmIntrinsics::_maxD:
8363   case vmIntrinsics::_minD:
8364   case vmIntrinsics::_maxD_strict:
8365   case vmIntrinsics::_minD_strict:
8366     assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
8367     a = round_double_node(argument(0));
8368     b = round_double_node(argument(2));
8369     break;
8370   default:
8371     fatal_unexpected_iid(id);
8372     break;
8373   }
8374   switch (id) {
8375   case vmIntrinsics::_maxF:
8376   case vmIntrinsics::_maxF_strict:
8377     n = new MaxFNode(a, b);
8378     break;
8379   case vmIntrinsics::_minF:
8380   case vmIntrinsics::_minF_strict:
8381     n = new MinFNode(a, b);
8382     break;
8383   case vmIntrinsics::_maxD:
8384   case vmIntrinsics::_maxD_strict:
8385     n = new MaxDNode(a, b);
8386     break;
8387   case vmIntrinsics::_minD:
8388   case vmIntrinsics::_minD_strict:
8389     n = new MinDNode(a, b);
8390     break;
8391   default:
8392     fatal_unexpected_iid(id);
8393     break;
8394   }
8395   set_result(_gvn.transform(n));
8396   return true;
8397 }
8398 
8399 bool LibraryCallKit::inline_profileBoolean() {
8400   Node* counts = argument(1);
8401   const TypeAryPtr* ary = nullptr;
8402   ciArray* aobj = nullptr;
8403   if (counts->is_Con()
8404       && (ary = counts->bottom_type()->isa_aryptr()) != nullptr
8405       && (aobj = ary->const_oop()->as_array()) != nullptr
8406       && (aobj->length() == 2)) {
8407     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
8408     jint false_cnt = aobj->element_value(0).as_int();
8409     jint  true_cnt = aobj->element_value(1).as_int();
8410 
8411     if (C->log() != nullptr) {
8412       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
8413                      false_cnt, true_cnt);
8414     }
8415 
8416     if (false_cnt + true_cnt == 0) {
8417       // According to profile, never executed.
8418       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8419                           Deoptimization::Action_reinterpret);
8420       return true;
8421     }
8422 
8423     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
8424     // is a number of each value occurrences.
8425     Node* result = argument(0);
8426     if (false_cnt == 0 || true_cnt == 0) {
8427       // According to profile, one value has been never seen.
8428       int expected_val = (false_cnt == 0) ? 1 : 0;
8429 
8430       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
8431       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
8432 
8433       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
8434       Node* fast_path = _gvn.transform(new IfTrueNode(check));
8435       Node* slow_path = _gvn.transform(new IfFalseNode(check));
8436 
8437       { // Slow path: uncommon trap for never seen value and then reexecute
8438         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
8439         // the value has been seen at least once.
8440         PreserveJVMState pjvms(this);
8441         PreserveReexecuteState preexecs(this);
8442         jvms()->set_should_reexecute(true);
8443 
8444         set_control(slow_path);
8445         set_i_o(i_o());
8446 
8447         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8448                             Deoptimization::Action_reinterpret);
8449       }
8450       // The guard for never seen value enables sharpening of the result and
8451       // returning a constant. It allows to eliminate branches on the same value
8452       // later on.
8453       set_control(fast_path);
8454       result = intcon(expected_val);
8455     }
8456     // Stop profiling.
8457     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
8458     // By replacing method body with profile data (represented as ProfileBooleanNode
8459     // on IR level) we effectively disable profiling.
8460     // It enables full speed execution once optimized code is generated.
8461     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
8462     C->record_for_igvn(profile);
8463     set_result(profile);
8464     return true;
8465   } else {
8466     // Continue profiling.
8467     // Profile data isn't available at the moment. So, execute method's bytecode version.
8468     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
8469     // is compiled and counters aren't available since corresponding MethodHandle
8470     // isn't a compile-time constant.
8471     return false;
8472   }
8473 }
8474 
8475 bool LibraryCallKit::inline_isCompileConstant() {
8476   Node* n = argument(0);
8477   set_result(n->is_Con() ? intcon(1) : intcon(0));
8478   return true;
8479 }
8480 
8481 //------------------------------- inline_getObjectSize --------------------------------------
8482 //
8483 // Calculate the runtime size of the object/array.
8484 //   native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize);
8485 //
8486 bool LibraryCallKit::inline_getObjectSize() {
8487   Node* obj = argument(3);
8488   Node* klass_node = load_object_klass(obj);
8489 
8490   jint  layout_con = Klass::_lh_neutral_value;
8491   Node* layout_val = get_layout_helper(klass_node, layout_con);
8492   int   layout_is_con = (layout_val == nullptr);
8493 
8494   if (layout_is_con) {
8495     // Layout helper is constant, can figure out things at compile time.
8496 
8497     if (Klass::layout_helper_is_instance(layout_con)) {
8498       // Instance case:  layout_con contains the size itself.
8499       Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con));
8500       set_result(size);
8501     } else {
8502       // Array case: size is round(header + element_size*arraylength).
8503       // Since arraylength is different for every array instance, we have to
8504       // compute the whole thing at runtime.
8505 
8506       Node* arr_length = load_array_length(obj);
8507 
8508       int round_mask = MinObjAlignmentInBytes - 1;
8509       int hsize  = Klass::layout_helper_header_size(layout_con);
8510       int eshift = Klass::layout_helper_log2_element_size(layout_con);
8511 
8512       if ((round_mask & ~right_n_bits(eshift)) == 0) {
8513         round_mask = 0;  // strength-reduce it if it goes away completely
8514       }
8515       assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
8516       Node* header_size = intcon(hsize + round_mask);
8517 
8518       Node* lengthx = ConvI2X(arr_length);
8519       Node* headerx = ConvI2X(header_size);
8520 
8521       Node* abody = lengthx;
8522       if (eshift != 0) {
8523         abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift)));
8524       }
8525       Node* size = _gvn.transform( new AddXNode(headerx, abody) );
8526       if (round_mask != 0) {
8527         size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) );
8528       }
8529       size = ConvX2L(size);
8530       set_result(size);
8531     }
8532   } else {
8533     // Layout helper is not constant, need to test for array-ness at runtime.
8534 
8535     enum { _instance_path = 1, _array_path, PATH_LIMIT };
8536     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
8537     PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG);
8538     record_for_igvn(result_reg);
8539 
8540     Node* array_ctl = generate_array_guard(klass_node, nullptr);
8541     if (array_ctl != nullptr) {
8542       // Array case: size is round(header + element_size*arraylength).
8543       // Since arraylength is different for every array instance, we have to
8544       // compute the whole thing at runtime.
8545 
8546       PreserveJVMState pjvms(this);
8547       set_control(array_ctl);
8548       Node* arr_length = load_array_length(obj);
8549 
8550       int round_mask = MinObjAlignmentInBytes - 1;
8551       Node* mask = intcon(round_mask);
8552 
8553       Node* hss = intcon(Klass::_lh_header_size_shift);
8554       Node* hsm = intcon(Klass::_lh_header_size_mask);
8555       Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss));
8556       header_size = _gvn.transform(new AndINode(header_size, hsm));
8557       header_size = _gvn.transform(new AddINode(header_size, mask));
8558 
8559       // There is no need to mask or shift this value.
8560       // The semantics of LShiftINode include an implicit mask to 0x1F.
8561       assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
8562       Node* elem_shift = layout_val;
8563 
8564       Node* lengthx = ConvI2X(arr_length);
8565       Node* headerx = ConvI2X(header_size);
8566 
8567       Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
8568       Node* size = _gvn.transform(new AddXNode(headerx, abody));
8569       if (round_mask != 0) {
8570         size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask)));
8571       }
8572       size = ConvX2L(size);
8573 
8574       result_reg->init_req(_array_path, control());
8575       result_val->init_req(_array_path, size);
8576     }
8577 
8578     if (!stopped()) {
8579       // Instance case: the layout helper gives us instance size almost directly,
8580       // but we need to mask out the _lh_instance_slow_path_bit.
8581       Node* size = ConvI2X(layout_val);
8582       assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
8583       Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong));
8584       size = _gvn.transform(new AndXNode(size, mask));
8585       size = ConvX2L(size);
8586 
8587       result_reg->init_req(_instance_path, control());
8588       result_val->init_req(_instance_path, size);
8589     }
8590 
8591     set_result(result_reg, result_val);
8592   }
8593 
8594   return true;
8595 }
8596 
8597 //------------------------------- inline_blackhole --------------------------------------
8598 //
8599 // Make sure all arguments to this node are alive.
8600 // This matches methods that were requested to be blackholed through compile commands.
8601 //
8602 bool LibraryCallKit::inline_blackhole() {
8603   assert(callee()->is_static(), "Should have been checked before: only static methods here");
8604   assert(callee()->is_empty(), "Should have been checked before: only empty methods here");
8605   assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here");
8606 
8607   // Blackhole node pinches only the control, not memory. This allows
8608   // the blackhole to be pinned in the loop that computes blackholed
8609   // values, but have no other side effects, like breaking the optimizations
8610   // across the blackhole.
8611 
8612   Node* bh = _gvn.transform(new BlackholeNode(control()));
8613   set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control)));
8614 
8615   // Bind call arguments as blackhole arguments to keep them alive
8616   uint nargs = callee()->arg_size();
8617   for (uint i = 0; i < nargs; i++) {
8618     bh->add_req(argument(i));
8619   }
8620 
8621   return true;
8622 }