1 /* 2 * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "asm/macroAssembler.hpp" 26 #include "ci/ciUtilities.inline.hpp" 27 #include "ci/ciSymbols.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "jfr/support/jfrIntrinsics.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/klass.inline.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/countbitsnode.hpp" 43 #include "opto/idealKit.hpp" 44 #include "opto/library_call.hpp" 45 #include "opto/mathexactnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/parse.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/rootnode.hpp" 52 #include "opto/subnode.hpp" 53 #include "opto/vectornode.hpp" 54 #include "prims/jvmtiExport.hpp" 55 #include "prims/jvmtiThreadState.hpp" 56 #include "prims/unsafe.hpp" 57 #include "runtime/jniHandles.inline.hpp" 58 #include "runtime/objectMonitor.hpp" 59 #include "runtime/sharedRuntime.hpp" 60 #include "runtime/stubRoutines.hpp" 61 #include "utilities/macros.hpp" 62 #include "utilities/powerOfTwo.hpp" 63 64 //---------------------------make_vm_intrinsic---------------------------- 65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 66 vmIntrinsicID id = m->intrinsic_id(); 67 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 68 69 if (!m->is_loaded()) { 70 // Do not attempt to inline unloaded methods. 71 return nullptr; 72 } 73 74 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 75 bool is_available = false; 76 77 { 78 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 79 // the compiler must transition to '_thread_in_vm' state because both 80 // methods access VM-internal data. 81 VM_ENTRY_MARK; 82 methodHandle mh(THREAD, m->get_Method()); 83 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 84 if (is_available && is_virtual) { 85 is_available = vmIntrinsics::does_virtual_dispatch(id); 86 } 87 } 88 89 if (is_available) { 90 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 91 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 92 return new LibraryIntrinsic(m, is_virtual, 93 vmIntrinsics::predicates_needed(id), 94 vmIntrinsics::does_virtual_dispatch(id), 95 id); 96 } else { 97 return nullptr; 98 } 99 } 100 101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 102 LibraryCallKit kit(jvms, this); 103 Compile* C = kit.C; 104 int nodes = C->unique(); 105 #ifndef PRODUCT 106 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 107 char buf[1000]; 108 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 109 tty->print_cr("Intrinsic %s", str); 110 } 111 #endif 112 ciMethod* callee = kit.callee(); 113 const int bci = kit.bci(); 114 #ifdef ASSERT 115 Node* ctrl = kit.control(); 116 #endif 117 // Try to inline the intrinsic. 118 if (callee->check_intrinsic_candidate() && 119 kit.try_to_inline(_last_predicate)) { 120 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 121 : "(intrinsic)"; 122 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 123 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 124 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 125 if (C->log()) { 126 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 127 vmIntrinsics::name_at(intrinsic_id()), 128 (is_virtual() ? " virtual='1'" : ""), 129 C->unique() - nodes); 130 } 131 // Push the result from the inlined method onto the stack. 132 kit.push_result(); 133 return kit.transfer_exceptions_into_jvms(); 134 } 135 136 // The intrinsic bailed out 137 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 138 if (jvms->has_method()) { 139 // Not a root compile. 140 const char* msg; 141 if (callee->intrinsic_candidate()) { 142 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 143 } else { 144 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 145 : "failed to inline (intrinsic), method not annotated"; 146 } 147 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 148 C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg); 149 } else { 150 // Root compile 151 ResourceMark rm; 152 stringStream msg_stream; 153 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 154 vmIntrinsics::name_at(intrinsic_id()), 155 is_virtual() ? " (virtual)" : "", bci); 156 const char *msg = msg_stream.freeze(); 157 log_debug(jit, inlining)("%s", msg); 158 if (C->print_intrinsics() || C->print_inlining()) { 159 tty->print("%s", msg); 160 } 161 } 162 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 163 164 return nullptr; 165 } 166 167 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 168 LibraryCallKit kit(jvms, this); 169 Compile* C = kit.C; 170 int nodes = C->unique(); 171 _last_predicate = predicate; 172 #ifndef PRODUCT 173 assert(is_predicated() && predicate < predicates_count(), "sanity"); 174 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 175 char buf[1000]; 176 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 177 tty->print_cr("Predicate for intrinsic %s", str); 178 } 179 #endif 180 ciMethod* callee = kit.callee(); 181 const int bci = kit.bci(); 182 183 Node* slow_ctl = kit.try_to_predicate(predicate); 184 if (!kit.failing()) { 185 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 186 : "(intrinsic, predicate)"; 187 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg); 188 C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg); 189 190 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 191 if (C->log()) { 192 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 193 vmIntrinsics::name_at(intrinsic_id()), 194 (is_virtual() ? " virtual='1'" : ""), 195 C->unique() - nodes); 196 } 197 return slow_ctl; // Could be null if the check folds. 198 } 199 200 // The intrinsic bailed out 201 if (jvms->has_method()) { 202 // Not a root compile. 203 const char* msg = "failed to generate predicate for intrinsic"; 204 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg); 205 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 206 } else { 207 // Root compile 208 ResourceMark rm; 209 stringStream msg_stream; 210 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 211 vmIntrinsics::name_at(intrinsic_id()), 212 is_virtual() ? " (virtual)" : "", bci); 213 const char *msg = msg_stream.freeze(); 214 log_debug(jit, inlining)("%s", msg); 215 C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg); 216 } 217 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 218 return nullptr; 219 } 220 221 bool LibraryCallKit::try_to_inline(int predicate) { 222 // Handle symbolic names for otherwise undistinguished boolean switches: 223 const bool is_store = true; 224 const bool is_compress = true; 225 const bool is_static = true; 226 const bool is_volatile = true; 227 228 if (!jvms()->has_method()) { 229 // Root JVMState has a null method. 230 assert(map()->memory()->Opcode() == Op_Parm, ""); 231 // Insert the memory aliasing node 232 set_all_memory(reset_memory()); 233 } 234 assert(merged_memory(), ""); 235 236 switch (intrinsic_id()) { 237 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 238 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 239 case vmIntrinsics::_getClass: return inline_native_getClass(); 240 241 case vmIntrinsics::_ceil: 242 case vmIntrinsics::_floor: 243 case vmIntrinsics::_rint: 244 case vmIntrinsics::_dsin: 245 case vmIntrinsics::_dcos: 246 case vmIntrinsics::_dtan: 247 case vmIntrinsics::_dtanh: 248 case vmIntrinsics::_dabs: 249 case vmIntrinsics::_fabs: 250 case vmIntrinsics::_iabs: 251 case vmIntrinsics::_labs: 252 case vmIntrinsics::_datan2: 253 case vmIntrinsics::_dsqrt: 254 case vmIntrinsics::_dsqrt_strict: 255 case vmIntrinsics::_dexp: 256 case vmIntrinsics::_dlog: 257 case vmIntrinsics::_dlog10: 258 case vmIntrinsics::_dpow: 259 case vmIntrinsics::_dcopySign: 260 case vmIntrinsics::_fcopySign: 261 case vmIntrinsics::_dsignum: 262 case vmIntrinsics::_roundF: 263 case vmIntrinsics::_roundD: 264 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 265 266 case vmIntrinsics::_notify: 267 case vmIntrinsics::_notifyAll: 268 return inline_notify(intrinsic_id()); 269 270 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 271 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 272 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 273 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 274 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 275 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 276 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 277 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 278 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 279 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 280 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 281 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 282 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 283 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 284 285 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 286 287 case vmIntrinsics::_arraySort: return inline_array_sort(); 288 case vmIntrinsics::_arrayPartition: return inline_array_partition(); 289 290 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 291 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 292 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 293 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 294 295 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 296 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 297 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 298 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 299 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 300 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 301 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 302 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 303 304 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 305 306 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 307 308 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 309 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 310 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 311 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 312 313 case vmIntrinsics::_compressStringC: 314 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 315 case vmIntrinsics::_inflateStringC: 316 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 317 318 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 319 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 320 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 321 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 322 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 323 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 324 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 325 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 326 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 327 328 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 329 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 330 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 331 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 332 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 333 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 334 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 335 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 336 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 337 338 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 339 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 340 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 341 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 342 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 343 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 344 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 345 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 346 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 347 348 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 349 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 350 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 351 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 352 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 353 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 354 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 355 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 356 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 357 358 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 359 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 360 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 361 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 362 363 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 364 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 365 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 366 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 367 368 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 369 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 370 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 371 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 372 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 373 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 374 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 375 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 376 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 377 378 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 379 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 380 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 381 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 382 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 383 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 384 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 385 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 386 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 387 388 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 389 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 390 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 391 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 392 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 393 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 394 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 395 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 396 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 397 398 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 399 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 400 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 401 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 402 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 403 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 404 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 405 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 406 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 407 408 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 409 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 410 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 411 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 412 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 413 414 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 415 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 416 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 417 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 418 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 419 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 420 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 421 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 422 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 423 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 424 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 425 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 426 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 427 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 428 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 429 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 430 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 431 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 432 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 433 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 434 435 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 436 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 437 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 438 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 439 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 440 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 441 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 442 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 443 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 444 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 445 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 446 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 447 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 448 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 449 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 450 451 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 452 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 453 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 454 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 455 456 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 457 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 458 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 459 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 460 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 461 462 case vmIntrinsics::_loadFence: 463 case vmIntrinsics::_storeFence: 464 case vmIntrinsics::_storeStoreFence: 465 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 466 467 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 468 469 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 470 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 471 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 472 473 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 474 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 475 476 case vmIntrinsics::_Continuation_pin: return inline_native_Continuation_pinning(false); 477 case vmIntrinsics::_Continuation_unpin: return inline_native_Continuation_pinning(true); 478 479 #if INCLUDE_JVMTI 480 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 481 "notifyJvmtiStart", true, false); 482 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 483 "notifyJvmtiEnd", false, true); 484 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 485 "notifyJvmtiMount", false, false); 486 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 487 "notifyJvmtiUnmount", false, false); 488 case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync(); 489 #endif 490 491 #ifdef JFR_HAVE_INTRINSICS 492 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 493 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 494 case vmIntrinsics::_jvm_commit: return inline_native_jvm_commit(); 495 #endif 496 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 497 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 498 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 499 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 500 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 501 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 502 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 503 case vmIntrinsics::_setMemory: return inline_unsafe_setMemory(); 504 case vmIntrinsics::_getLength: return inline_native_getLength(); 505 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 506 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 507 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 508 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 509 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 510 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 511 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 512 513 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 514 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 515 516 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 517 518 case vmIntrinsics::_isInstance: 519 case vmIntrinsics::_isHidden: 520 case vmIntrinsics::_getSuperclass: 521 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 522 523 case vmIntrinsics::_floatToRawIntBits: 524 case vmIntrinsics::_floatToIntBits: 525 case vmIntrinsics::_intBitsToFloat: 526 case vmIntrinsics::_doubleToRawLongBits: 527 case vmIntrinsics::_doubleToLongBits: 528 case vmIntrinsics::_longBitsToDouble: 529 case vmIntrinsics::_floatToFloat16: 530 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 531 case vmIntrinsics::_sqrt_float16: return inline_fp16_operations(intrinsic_id(), 1); 532 case vmIntrinsics::_fma_float16: return inline_fp16_operations(intrinsic_id(), 3); 533 case vmIntrinsics::_floatIsFinite: 534 case vmIntrinsics::_floatIsInfinite: 535 case vmIntrinsics::_doubleIsFinite: 536 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 537 538 case vmIntrinsics::_numberOfLeadingZeros_i: 539 case vmIntrinsics::_numberOfLeadingZeros_l: 540 case vmIntrinsics::_numberOfTrailingZeros_i: 541 case vmIntrinsics::_numberOfTrailingZeros_l: 542 case vmIntrinsics::_bitCount_i: 543 case vmIntrinsics::_bitCount_l: 544 case vmIntrinsics::_reverse_i: 545 case vmIntrinsics::_reverse_l: 546 case vmIntrinsics::_reverseBytes_i: 547 case vmIntrinsics::_reverseBytes_l: 548 case vmIntrinsics::_reverseBytes_s: 549 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 550 551 case vmIntrinsics::_compress_i: 552 case vmIntrinsics::_compress_l: 553 case vmIntrinsics::_expand_i: 554 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 555 556 case vmIntrinsics::_compareUnsigned_i: 557 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 558 559 case vmIntrinsics::_divideUnsigned_i: 560 case vmIntrinsics::_divideUnsigned_l: 561 case vmIntrinsics::_remainderUnsigned_i: 562 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 563 564 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 565 566 case vmIntrinsics::_Reference_get: return inline_reference_get(); 567 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 568 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 569 case vmIntrinsics::_Reference_clear0: return inline_reference_clear0(false); 570 case vmIntrinsics::_PhantomReference_clear0: return inline_reference_clear0(true); 571 572 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 573 574 case vmIntrinsics::_aescrypt_encryptBlock: 575 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 576 577 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 578 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 579 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 580 581 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 582 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 583 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 584 585 case vmIntrinsics::_counterMode_AESCrypt: 586 return inline_counterMode_AESCrypt(intrinsic_id()); 587 588 case vmIntrinsics::_galoisCounterMode_AESCrypt: 589 return inline_galoisCounterMode_AESCrypt(); 590 591 case vmIntrinsics::_md5_implCompress: 592 case vmIntrinsics::_sha_implCompress: 593 case vmIntrinsics::_sha2_implCompress: 594 case vmIntrinsics::_sha5_implCompress: 595 case vmIntrinsics::_sha3_implCompress: 596 return inline_digestBase_implCompress(intrinsic_id()); 597 case vmIntrinsics::_double_keccak: 598 return inline_double_keccak(); 599 600 case vmIntrinsics::_digestBase_implCompressMB: 601 return inline_digestBase_implCompressMB(predicate); 602 603 case vmIntrinsics::_multiplyToLen: 604 return inline_multiplyToLen(); 605 606 case vmIntrinsics::_squareToLen: 607 return inline_squareToLen(); 608 609 case vmIntrinsics::_mulAdd: 610 return inline_mulAdd(); 611 612 case vmIntrinsics::_montgomeryMultiply: 613 return inline_montgomeryMultiply(); 614 case vmIntrinsics::_montgomerySquare: 615 return inline_montgomerySquare(); 616 617 case vmIntrinsics::_bigIntegerRightShiftWorker: 618 return inline_bigIntegerShift(true); 619 case vmIntrinsics::_bigIntegerLeftShiftWorker: 620 return inline_bigIntegerShift(false); 621 622 case vmIntrinsics::_vectorizedMismatch: 623 return inline_vectorizedMismatch(); 624 625 case vmIntrinsics::_ghash_processBlocks: 626 return inline_ghash_processBlocks(); 627 case vmIntrinsics::_chacha20Block: 628 return inline_chacha20Block(); 629 case vmIntrinsics::_kyberNtt: 630 return inline_kyberNtt(); 631 case vmIntrinsics::_kyberInverseNtt: 632 return inline_kyberInverseNtt(); 633 case vmIntrinsics::_kyberNttMult: 634 return inline_kyberNttMult(); 635 case vmIntrinsics::_kyberAddPoly_2: 636 return inline_kyberAddPoly_2(); 637 case vmIntrinsics::_kyberAddPoly_3: 638 return inline_kyberAddPoly_3(); 639 case vmIntrinsics::_kyber12To16: 640 return inline_kyber12To16(); 641 case vmIntrinsics::_kyberBarrettReduce: 642 return inline_kyberBarrettReduce(); 643 case vmIntrinsics::_dilithiumAlmostNtt: 644 return inline_dilithiumAlmostNtt(); 645 case vmIntrinsics::_dilithiumAlmostInverseNtt: 646 return inline_dilithiumAlmostInverseNtt(); 647 case vmIntrinsics::_dilithiumNttMult: 648 return inline_dilithiumNttMult(); 649 case vmIntrinsics::_dilithiumMontMulByConstant: 650 return inline_dilithiumMontMulByConstant(); 651 case vmIntrinsics::_dilithiumDecomposePoly: 652 return inline_dilithiumDecomposePoly(); 653 case vmIntrinsics::_base64_encodeBlock: 654 return inline_base64_encodeBlock(); 655 case vmIntrinsics::_base64_decodeBlock: 656 return inline_base64_decodeBlock(); 657 case vmIntrinsics::_poly1305_processBlocks: 658 return inline_poly1305_processBlocks(); 659 case vmIntrinsics::_intpoly_montgomeryMult_P256: 660 return inline_intpoly_montgomeryMult_P256(); 661 case vmIntrinsics::_intpoly_assign: 662 return inline_intpoly_assign(); 663 case vmIntrinsics::_encodeISOArray: 664 case vmIntrinsics::_encodeByteISOArray: 665 return inline_encodeISOArray(false); 666 case vmIntrinsics::_encodeAsciiArray: 667 return inline_encodeISOArray(true); 668 669 case vmIntrinsics::_updateCRC32: 670 return inline_updateCRC32(); 671 case vmIntrinsics::_updateBytesCRC32: 672 return inline_updateBytesCRC32(); 673 case vmIntrinsics::_updateByteBufferCRC32: 674 return inline_updateByteBufferCRC32(); 675 676 case vmIntrinsics::_updateBytesCRC32C: 677 return inline_updateBytesCRC32C(); 678 case vmIntrinsics::_updateDirectByteBufferCRC32C: 679 return inline_updateDirectByteBufferCRC32C(); 680 681 case vmIntrinsics::_updateBytesAdler32: 682 return inline_updateBytesAdler32(); 683 case vmIntrinsics::_updateByteBufferAdler32: 684 return inline_updateByteBufferAdler32(); 685 686 case vmIntrinsics::_profileBoolean: 687 return inline_profileBoolean(); 688 case vmIntrinsics::_isCompileConstant: 689 return inline_isCompileConstant(); 690 691 case vmIntrinsics::_countPositives: 692 return inline_countPositives(); 693 694 case vmIntrinsics::_fmaD: 695 case vmIntrinsics::_fmaF: 696 return inline_fma(intrinsic_id()); 697 698 case vmIntrinsics::_isDigit: 699 case vmIntrinsics::_isLowerCase: 700 case vmIntrinsics::_isUpperCase: 701 case vmIntrinsics::_isWhitespace: 702 return inline_character_compare(intrinsic_id()); 703 704 case vmIntrinsics::_min: 705 case vmIntrinsics::_max: 706 case vmIntrinsics::_min_strict: 707 case vmIntrinsics::_max_strict: 708 case vmIntrinsics::_minL: 709 case vmIntrinsics::_maxL: 710 case vmIntrinsics::_minF: 711 case vmIntrinsics::_maxF: 712 case vmIntrinsics::_minD: 713 case vmIntrinsics::_maxD: 714 case vmIntrinsics::_minF_strict: 715 case vmIntrinsics::_maxF_strict: 716 case vmIntrinsics::_minD_strict: 717 case vmIntrinsics::_maxD_strict: 718 return inline_min_max(intrinsic_id()); 719 720 case vmIntrinsics::_VectorUnaryOp: 721 return inline_vector_nary_operation(1); 722 case vmIntrinsics::_VectorBinaryOp: 723 return inline_vector_nary_operation(2); 724 case vmIntrinsics::_VectorUnaryLibOp: 725 return inline_vector_call(1); 726 case vmIntrinsics::_VectorBinaryLibOp: 727 return inline_vector_call(2); 728 case vmIntrinsics::_VectorTernaryOp: 729 return inline_vector_nary_operation(3); 730 case vmIntrinsics::_VectorFromBitsCoerced: 731 return inline_vector_frombits_coerced(); 732 case vmIntrinsics::_VectorMaskOp: 733 return inline_vector_mask_operation(); 734 case vmIntrinsics::_VectorLoadOp: 735 return inline_vector_mem_operation(/*is_store=*/false); 736 case vmIntrinsics::_VectorLoadMaskedOp: 737 return inline_vector_mem_masked_operation(/*is_store*/false); 738 case vmIntrinsics::_VectorStoreOp: 739 return inline_vector_mem_operation(/*is_store=*/true); 740 case vmIntrinsics::_VectorStoreMaskedOp: 741 return inline_vector_mem_masked_operation(/*is_store=*/true); 742 case vmIntrinsics::_VectorGatherOp: 743 return inline_vector_gather_scatter(/*is_scatter*/ false); 744 case vmIntrinsics::_VectorScatterOp: 745 return inline_vector_gather_scatter(/*is_scatter*/ true); 746 case vmIntrinsics::_VectorReductionCoerced: 747 return inline_vector_reduction(); 748 case vmIntrinsics::_VectorTest: 749 return inline_vector_test(); 750 case vmIntrinsics::_VectorBlend: 751 return inline_vector_blend(); 752 case vmIntrinsics::_VectorRearrange: 753 return inline_vector_rearrange(); 754 case vmIntrinsics::_VectorSelectFrom: 755 return inline_vector_select_from(); 756 case vmIntrinsics::_VectorCompare: 757 return inline_vector_compare(); 758 case vmIntrinsics::_VectorBroadcastInt: 759 return inline_vector_broadcast_int(); 760 case vmIntrinsics::_VectorConvert: 761 return inline_vector_convert(); 762 case vmIntrinsics::_VectorInsert: 763 return inline_vector_insert(); 764 case vmIntrinsics::_VectorExtract: 765 return inline_vector_extract(); 766 case vmIntrinsics::_VectorCompressExpand: 767 return inline_vector_compress_expand(); 768 case vmIntrinsics::_VectorSelectFromTwoVectorOp: 769 return inline_vector_select_from_two_vectors(); 770 case vmIntrinsics::_IndexVector: 771 return inline_index_vector(); 772 case vmIntrinsics::_IndexPartiallyInUpperRange: 773 return inline_index_partially_in_upper_range(); 774 775 case vmIntrinsics::_getObjectSize: 776 return inline_getObjectSize(); 777 778 case vmIntrinsics::_blackhole: 779 return inline_blackhole(); 780 781 default: 782 // If you get here, it may be that someone has added a new intrinsic 783 // to the list in vmIntrinsics.hpp without implementing it here. 784 #ifndef PRODUCT 785 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 786 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 787 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 788 } 789 #endif 790 return false; 791 } 792 } 793 794 Node* LibraryCallKit::try_to_predicate(int predicate) { 795 if (!jvms()->has_method()) { 796 // Root JVMState has a null method. 797 assert(map()->memory()->Opcode() == Op_Parm, ""); 798 // Insert the memory aliasing node 799 set_all_memory(reset_memory()); 800 } 801 assert(merged_memory(), ""); 802 803 switch (intrinsic_id()) { 804 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 805 return inline_cipherBlockChaining_AESCrypt_predicate(false); 806 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 807 return inline_cipherBlockChaining_AESCrypt_predicate(true); 808 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 809 return inline_electronicCodeBook_AESCrypt_predicate(false); 810 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 811 return inline_electronicCodeBook_AESCrypt_predicate(true); 812 case vmIntrinsics::_counterMode_AESCrypt: 813 return inline_counterMode_AESCrypt_predicate(); 814 case vmIntrinsics::_digestBase_implCompressMB: 815 return inline_digestBase_implCompressMB_predicate(predicate); 816 case vmIntrinsics::_galoisCounterMode_AESCrypt: 817 return inline_galoisCounterMode_AESCrypt_predicate(); 818 819 default: 820 // If you get here, it may be that someone has added a new intrinsic 821 // to the list in vmIntrinsics.hpp without implementing it here. 822 #ifndef PRODUCT 823 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 824 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 825 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 826 } 827 #endif 828 Node* slow_ctl = control(); 829 set_control(top()); // No fast path intrinsic 830 return slow_ctl; 831 } 832 } 833 834 //------------------------------set_result------------------------------- 835 // Helper function for finishing intrinsics. 836 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 837 record_for_igvn(region); 838 set_control(_gvn.transform(region)); 839 set_result( _gvn.transform(value)); 840 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 841 } 842 843 //------------------------------generate_guard--------------------------- 844 // Helper function for generating guarded fast-slow graph structures. 845 // The given 'test', if true, guards a slow path. If the test fails 846 // then a fast path can be taken. (We generally hope it fails.) 847 // In all cases, GraphKit::control() is updated to the fast path. 848 // The returned value represents the control for the slow path. 849 // The return value is never 'top'; it is either a valid control 850 // or null if it is obvious that the slow path can never be taken. 851 // Also, if region and the slow control are not null, the slow edge 852 // is appended to the region. 853 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 854 if (stopped()) { 855 // Already short circuited. 856 return nullptr; 857 } 858 859 // Build an if node and its projections. 860 // If test is true we take the slow path, which we assume is uncommon. 861 if (_gvn.type(test) == TypeInt::ZERO) { 862 // The slow branch is never taken. No need to build this guard. 863 return nullptr; 864 } 865 866 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 867 868 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 869 if (if_slow == top()) { 870 // The slow branch is never taken. No need to build this guard. 871 return nullptr; 872 } 873 874 if (region != nullptr) 875 region->add_req(if_slow); 876 877 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 878 set_control(if_fast); 879 880 return if_slow; 881 } 882 883 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 884 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 885 } 886 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 887 return generate_guard(test, region, PROB_FAIR); 888 } 889 890 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 891 Node* *pos_index) { 892 if (stopped()) 893 return nullptr; // already stopped 894 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 895 return nullptr; // index is already adequately typed 896 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 897 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 898 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 899 if (is_neg != nullptr && pos_index != nullptr) { 900 // Emulate effect of Parse::adjust_map_after_if. 901 Node* ccast = new CastIINode(control(), index, TypeInt::POS); 902 (*pos_index) = _gvn.transform(ccast); 903 } 904 return is_neg; 905 } 906 907 // Make sure that 'position' is a valid limit index, in [0..length]. 908 // There are two equivalent plans for checking this: 909 // A. (offset + copyLength) unsigned<= arrayLength 910 // B. offset <= (arrayLength - copyLength) 911 // We require that all of the values above, except for the sum and 912 // difference, are already known to be non-negative. 913 // Plan A is robust in the face of overflow, if offset and copyLength 914 // are both hugely positive. 915 // 916 // Plan B is less direct and intuitive, but it does not overflow at 917 // all, since the difference of two non-negatives is always 918 // representable. Whenever Java methods must perform the equivalent 919 // check they generally use Plan B instead of Plan A. 920 // For the moment we use Plan A. 921 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 922 Node* subseq_length, 923 Node* array_length, 924 RegionNode* region) { 925 if (stopped()) 926 return nullptr; // already stopped 927 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 928 if (zero_offset && subseq_length->eqv_uncast(array_length)) 929 return nullptr; // common case of whole-array copy 930 Node* last = subseq_length; 931 if (!zero_offset) // last += offset 932 last = _gvn.transform(new AddINode(last, offset)); 933 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 934 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 935 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 936 return is_over; 937 } 938 939 // Emit range checks for the given String.value byte array 940 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 941 if (stopped()) { 942 return; // already stopped 943 } 944 RegionNode* bailout = new RegionNode(1); 945 record_for_igvn(bailout); 946 if (char_count) { 947 // Convert char count to byte count 948 count = _gvn.transform(new LShiftINode(count, intcon(1))); 949 } 950 951 // Offset and count must not be negative 952 generate_negative_guard(offset, bailout); 953 generate_negative_guard(count, bailout); 954 // Offset + count must not exceed length of array 955 generate_limit_guard(offset, count, load_array_length(array), bailout); 956 957 if (bailout->req() > 1) { 958 PreserveJVMState pjvms(this); 959 set_control(_gvn.transform(bailout)); 960 uncommon_trap(Deoptimization::Reason_intrinsic, 961 Deoptimization::Action_maybe_recompile); 962 } 963 } 964 965 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 966 bool is_immutable) { 967 ciKlass* thread_klass = env()->Thread_klass(); 968 const Type* thread_type 969 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 970 971 Node* thread = _gvn.transform(new ThreadLocalNode()); 972 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 973 tls_output = thread; 974 975 Node* thread_obj_handle 976 = (is_immutable 977 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 978 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 979 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 980 thread_obj_handle = _gvn.transform(thread_obj_handle); 981 982 DecoratorSet decorators = IN_NATIVE; 983 if (is_immutable) { 984 decorators |= C2_IMMUTABLE_MEMORY; 985 } 986 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 987 } 988 989 //--------------------------generate_current_thread-------------------- 990 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 991 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 992 /*is_immutable*/false); 993 } 994 995 //--------------------------generate_virtual_thread-------------------- 996 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 997 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 998 !C->method()->changes_current_thread()); 999 } 1000 1001 //------------------------------make_string_method_node------------------------ 1002 // Helper method for String intrinsic functions. This version is called with 1003 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 1004 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 1005 // containing the lengths of str1 and str2. 1006 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 1007 Node* result = nullptr; 1008 switch (opcode) { 1009 case Op_StrIndexOf: 1010 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 1011 str1_start, cnt1, str2_start, cnt2, ae); 1012 break; 1013 case Op_StrComp: 1014 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 1015 str1_start, cnt1, str2_start, cnt2, ae); 1016 break; 1017 case Op_StrEquals: 1018 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 1019 // Use the constant length if there is one because optimized match rule may exist. 1020 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 1021 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 1022 break; 1023 default: 1024 ShouldNotReachHere(); 1025 return nullptr; 1026 } 1027 1028 // All these intrinsics have checks. 1029 C->set_has_split_ifs(true); // Has chance for split-if optimization 1030 clear_upper_avx(); 1031 1032 return _gvn.transform(result); 1033 } 1034 1035 //------------------------------inline_string_compareTo------------------------ 1036 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1037 Node* arg1 = argument(0); 1038 Node* arg2 = argument(1); 1039 1040 arg1 = must_be_not_null(arg1, true); 1041 arg2 = must_be_not_null(arg2, true); 1042 1043 // Get start addr and length of first argument 1044 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1045 Node* arg1_cnt = load_array_length(arg1); 1046 1047 // Get start addr and length of second argument 1048 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1049 Node* arg2_cnt = load_array_length(arg2); 1050 1051 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1052 set_result(result); 1053 return true; 1054 } 1055 1056 //------------------------------inline_string_equals------------------------ 1057 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1058 Node* arg1 = argument(0); 1059 Node* arg2 = argument(1); 1060 1061 // paths (plus control) merge 1062 RegionNode* region = new RegionNode(3); 1063 Node* phi = new PhiNode(region, TypeInt::BOOL); 1064 1065 if (!stopped()) { 1066 1067 arg1 = must_be_not_null(arg1, true); 1068 arg2 = must_be_not_null(arg2, true); 1069 1070 // Get start addr and length of first argument 1071 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1072 Node* arg1_cnt = load_array_length(arg1); 1073 1074 // Get start addr and length of second argument 1075 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1076 Node* arg2_cnt = load_array_length(arg2); 1077 1078 // Check for arg1_cnt != arg2_cnt 1079 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1080 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1081 Node* if_ne = generate_slow_guard(bol, nullptr); 1082 if (if_ne != nullptr) { 1083 phi->init_req(2, intcon(0)); 1084 region->init_req(2, if_ne); 1085 } 1086 1087 // Check for count == 0 is done by assembler code for StrEquals. 1088 1089 if (!stopped()) { 1090 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1091 phi->init_req(1, equals); 1092 region->init_req(1, control()); 1093 } 1094 } 1095 1096 // post merge 1097 set_control(_gvn.transform(region)); 1098 record_for_igvn(region); 1099 1100 set_result(_gvn.transform(phi)); 1101 return true; 1102 } 1103 1104 //------------------------------inline_array_equals---------------------------- 1105 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1106 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1107 Node* arg1 = argument(0); 1108 Node* arg2 = argument(1); 1109 1110 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1111 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1112 clear_upper_avx(); 1113 1114 return true; 1115 } 1116 1117 1118 //------------------------------inline_countPositives------------------------------ 1119 bool LibraryCallKit::inline_countPositives() { 1120 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1121 return false; 1122 } 1123 1124 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1125 // no receiver since it is static method 1126 Node* ba = argument(0); 1127 Node* offset = argument(1); 1128 Node* len = argument(2); 1129 1130 ba = must_be_not_null(ba, true); 1131 1132 // Range checks 1133 generate_string_range_check(ba, offset, len, false); 1134 if (stopped()) { 1135 return true; 1136 } 1137 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1138 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1139 set_result(_gvn.transform(result)); 1140 clear_upper_avx(); 1141 return true; 1142 } 1143 1144 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1145 Node* index = argument(0); 1146 Node* length = bt == T_INT ? argument(1) : argument(2); 1147 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1148 return false; 1149 } 1150 1151 // check that length is positive 1152 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1153 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1154 1155 { 1156 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1157 uncommon_trap(Deoptimization::Reason_intrinsic, 1158 Deoptimization::Action_make_not_entrant); 1159 } 1160 1161 if (stopped()) { 1162 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1163 return true; 1164 } 1165 1166 // length is now known positive, add a cast node to make this explicit 1167 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1168 Node* casted_length = ConstraintCastNode::make_cast_for_basic_type( 1169 control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1170 ConstraintCastNode::RegularDependency, bt); 1171 casted_length = _gvn.transform(casted_length); 1172 replace_in_map(length, casted_length); 1173 length = casted_length; 1174 1175 // Use an unsigned comparison for the range check itself 1176 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1177 BoolTest::mask btest = BoolTest::lt; 1178 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1179 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1180 _gvn.set_type(rc, rc->Value(&_gvn)); 1181 if (!rc_bool->is_Con()) { 1182 record_for_igvn(rc); 1183 } 1184 set_control(_gvn.transform(new IfTrueNode(rc))); 1185 { 1186 PreserveJVMState pjvms(this); 1187 set_control(_gvn.transform(new IfFalseNode(rc))); 1188 uncommon_trap(Deoptimization::Reason_range_check, 1189 Deoptimization::Action_make_not_entrant); 1190 } 1191 1192 if (stopped()) { 1193 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1194 return true; 1195 } 1196 1197 // index is now known to be >= 0 and < length, cast it 1198 Node* result = ConstraintCastNode::make_cast_for_basic_type( 1199 control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), 1200 ConstraintCastNode::RegularDependency, bt); 1201 result = _gvn.transform(result); 1202 set_result(result); 1203 replace_in_map(index, result); 1204 return true; 1205 } 1206 1207 //------------------------------inline_string_indexOf------------------------ 1208 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1209 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1210 return false; 1211 } 1212 Node* src = argument(0); 1213 Node* tgt = argument(1); 1214 1215 // Make the merge point 1216 RegionNode* result_rgn = new RegionNode(4); 1217 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1218 1219 src = must_be_not_null(src, true); 1220 tgt = must_be_not_null(tgt, true); 1221 1222 // Get start addr and length of source string 1223 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1224 Node* src_count = load_array_length(src); 1225 1226 // Get start addr and length of substring 1227 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1228 Node* tgt_count = load_array_length(tgt); 1229 1230 Node* result = nullptr; 1231 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1232 1233 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1234 // Divide src size by 2 if String is UTF16 encoded 1235 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1236 } 1237 if (ae == StrIntrinsicNode::UU) { 1238 // Divide substring size by 2 if String is UTF16 encoded 1239 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1240 } 1241 1242 if (call_opt_stub) { 1243 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1244 StubRoutines::_string_indexof_array[ae], 1245 "stringIndexOf", TypePtr::BOTTOM, src_start, 1246 src_count, tgt_start, tgt_count); 1247 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1248 } else { 1249 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1250 result_rgn, result_phi, ae); 1251 } 1252 if (result != nullptr) { 1253 result_phi->init_req(3, result); 1254 result_rgn->init_req(3, control()); 1255 } 1256 set_control(_gvn.transform(result_rgn)); 1257 record_for_igvn(result_rgn); 1258 set_result(_gvn.transform(result_phi)); 1259 1260 return true; 1261 } 1262 1263 //-----------------------------inline_string_indexOfI----------------------- 1264 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1265 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1266 return false; 1267 } 1268 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1269 return false; 1270 } 1271 1272 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1273 Node* src = argument(0); // byte[] 1274 Node* src_count = argument(1); // char count 1275 Node* tgt = argument(2); // byte[] 1276 Node* tgt_count = argument(3); // char count 1277 Node* from_index = argument(4); // char index 1278 1279 src = must_be_not_null(src, true); 1280 tgt = must_be_not_null(tgt, true); 1281 1282 // Multiply byte array index by 2 if String is UTF16 encoded 1283 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1284 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1285 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1286 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1287 1288 // Range checks 1289 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1290 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1291 if (stopped()) { 1292 return true; 1293 } 1294 1295 RegionNode* region = new RegionNode(5); 1296 Node* phi = new PhiNode(region, TypeInt::INT); 1297 Node* result = nullptr; 1298 1299 bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr); 1300 1301 if (call_opt_stub) { 1302 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(), 1303 StubRoutines::_string_indexof_array[ae], 1304 "stringIndexOf", TypePtr::BOTTOM, src_start, 1305 src_count, tgt_start, tgt_count); 1306 result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 1307 } else { 1308 result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, 1309 region, phi, ae); 1310 } 1311 if (result != nullptr) { 1312 // The result is index relative to from_index if substring was found, -1 otherwise. 1313 // Generate code which will fold into cmove. 1314 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1315 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1316 1317 Node* if_lt = generate_slow_guard(bol, nullptr); 1318 if (if_lt != nullptr) { 1319 // result == -1 1320 phi->init_req(3, result); 1321 region->init_req(3, if_lt); 1322 } 1323 if (!stopped()) { 1324 result = _gvn.transform(new AddINode(result, from_index)); 1325 phi->init_req(4, result); 1326 region->init_req(4, control()); 1327 } 1328 } 1329 1330 set_control(_gvn.transform(region)); 1331 record_for_igvn(region); 1332 set_result(_gvn.transform(phi)); 1333 clear_upper_avx(); 1334 1335 return true; 1336 } 1337 1338 // Create StrIndexOfNode with fast path checks 1339 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1340 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1341 // Check for substr count > string count 1342 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1343 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1344 Node* if_gt = generate_slow_guard(bol, nullptr); 1345 if (if_gt != nullptr) { 1346 phi->init_req(1, intcon(-1)); 1347 region->init_req(1, if_gt); 1348 } 1349 if (!stopped()) { 1350 // Check for substr count == 0 1351 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1352 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1353 Node* if_zero = generate_slow_guard(bol, nullptr); 1354 if (if_zero != nullptr) { 1355 phi->init_req(2, intcon(0)); 1356 region->init_req(2, if_zero); 1357 } 1358 } 1359 if (!stopped()) { 1360 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1361 } 1362 return nullptr; 1363 } 1364 1365 //-----------------------------inline_string_indexOfChar----------------------- 1366 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1367 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1368 return false; 1369 } 1370 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1371 return false; 1372 } 1373 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1374 Node* src = argument(0); // byte[] 1375 Node* int_ch = argument(1); 1376 Node* from_index = argument(2); 1377 Node* max = argument(3); 1378 1379 src = must_be_not_null(src, true); 1380 1381 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1382 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1383 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1384 1385 // Range checks 1386 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1387 1388 // Check for int_ch >= 0 1389 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1390 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1391 { 1392 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1393 uncommon_trap(Deoptimization::Reason_intrinsic, 1394 Deoptimization::Action_maybe_recompile); 1395 } 1396 if (stopped()) { 1397 return true; 1398 } 1399 1400 RegionNode* region = new RegionNode(3); 1401 Node* phi = new PhiNode(region, TypeInt::INT); 1402 1403 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1404 C->set_has_split_ifs(true); // Has chance for split-if optimization 1405 _gvn.transform(result); 1406 1407 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1408 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1409 1410 Node* if_lt = generate_slow_guard(bol, nullptr); 1411 if (if_lt != nullptr) { 1412 // result == -1 1413 phi->init_req(2, result); 1414 region->init_req(2, if_lt); 1415 } 1416 if (!stopped()) { 1417 result = _gvn.transform(new AddINode(result, from_index)); 1418 phi->init_req(1, result); 1419 region->init_req(1, control()); 1420 } 1421 set_control(_gvn.transform(region)); 1422 record_for_igvn(region); 1423 set_result(_gvn.transform(phi)); 1424 clear_upper_avx(); 1425 1426 return true; 1427 } 1428 //---------------------------inline_string_copy--------------------- 1429 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1430 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1431 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1432 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1433 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1434 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1435 bool LibraryCallKit::inline_string_copy(bool compress) { 1436 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1437 return false; 1438 } 1439 int nargs = 5; // 2 oops, 3 ints 1440 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1441 1442 Node* src = argument(0); 1443 Node* src_offset = argument(1); 1444 Node* dst = argument(2); 1445 Node* dst_offset = argument(3); 1446 Node* length = argument(4); 1447 1448 // Check for allocation before we add nodes that would confuse 1449 // tightly_coupled_allocation() 1450 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1451 1452 // Figure out the size and type of the elements we will be copying. 1453 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1454 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1455 if (src_type == nullptr || dst_type == nullptr) { 1456 return false; 1457 } 1458 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1459 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1460 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1461 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1462 "Unsupported array types for inline_string_copy"); 1463 1464 src = must_be_not_null(src, true); 1465 dst = must_be_not_null(dst, true); 1466 1467 // Convert char[] offsets to byte[] offsets 1468 bool convert_src = (compress && src_elem == T_BYTE); 1469 bool convert_dst = (!compress && dst_elem == T_BYTE); 1470 if (convert_src) { 1471 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1472 } else if (convert_dst) { 1473 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1474 } 1475 1476 // Range checks 1477 generate_string_range_check(src, src_offset, length, convert_src); 1478 generate_string_range_check(dst, dst_offset, length, convert_dst); 1479 if (stopped()) { 1480 return true; 1481 } 1482 1483 Node* src_start = array_element_address(src, src_offset, src_elem); 1484 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1485 // 'src_start' points to src array + scaled offset 1486 // 'dst_start' points to dst array + scaled offset 1487 Node* count = nullptr; 1488 if (compress) { 1489 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1490 } else { 1491 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1492 } 1493 1494 if (alloc != nullptr) { 1495 if (alloc->maybe_set_complete(&_gvn)) { 1496 // "You break it, you buy it." 1497 InitializeNode* init = alloc->initialization(); 1498 assert(init->is_complete(), "we just did this"); 1499 init->set_complete_with_arraycopy(); 1500 assert(dst->is_CheckCastPP(), "sanity"); 1501 assert(dst->in(0)->in(0) == init, "dest pinned"); 1502 } 1503 // Do not let stores that initialize this object be reordered with 1504 // a subsequent store that would make this object accessible by 1505 // other threads. 1506 // Record what AllocateNode this StoreStore protects so that 1507 // escape analysis can go from the MemBarStoreStoreNode to the 1508 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1509 // based on the escape status of the AllocateNode. 1510 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1511 } 1512 if (compress) { 1513 set_result(_gvn.transform(count)); 1514 } 1515 clear_upper_avx(); 1516 1517 return true; 1518 } 1519 1520 #ifdef _LP64 1521 #define XTOP ,top() /*additional argument*/ 1522 #else //_LP64 1523 #define XTOP /*no additional argument*/ 1524 #endif //_LP64 1525 1526 //------------------------inline_string_toBytesU-------------------------- 1527 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1528 bool LibraryCallKit::inline_string_toBytesU() { 1529 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1530 return false; 1531 } 1532 // Get the arguments. 1533 Node* value = argument(0); 1534 Node* offset = argument(1); 1535 Node* length = argument(2); 1536 1537 Node* newcopy = nullptr; 1538 1539 // Set the original stack and the reexecute bit for the interpreter to reexecute 1540 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1541 { PreserveReexecuteState preexecs(this); 1542 jvms()->set_should_reexecute(true); 1543 1544 // Check if a null path was taken unconditionally. 1545 value = null_check(value); 1546 1547 RegionNode* bailout = new RegionNode(1); 1548 record_for_igvn(bailout); 1549 1550 // Range checks 1551 generate_negative_guard(offset, bailout); 1552 generate_negative_guard(length, bailout); 1553 generate_limit_guard(offset, length, load_array_length(value), bailout); 1554 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1555 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1556 1557 if (bailout->req() > 1) { 1558 PreserveJVMState pjvms(this); 1559 set_control(_gvn.transform(bailout)); 1560 uncommon_trap(Deoptimization::Reason_intrinsic, 1561 Deoptimization::Action_maybe_recompile); 1562 } 1563 if (stopped()) { 1564 return true; 1565 } 1566 1567 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1568 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1569 newcopy = new_array(klass_node, size, 0); // no arguments to push 1570 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1571 guarantee(alloc != nullptr, "created above"); 1572 1573 // Calculate starting addresses. 1574 Node* src_start = array_element_address(value, offset, T_CHAR); 1575 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1576 1577 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1578 const TypeInt* toffset = gvn().type(offset)->is_int(); 1579 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1580 1581 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1582 const char* copyfunc_name = "arraycopy"; 1583 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1584 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1585 OptoRuntime::fast_arraycopy_Type(), 1586 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1587 src_start, dst_start, ConvI2X(length) XTOP); 1588 // Do not let reads from the cloned object float above the arraycopy. 1589 if (alloc->maybe_set_complete(&_gvn)) { 1590 // "You break it, you buy it." 1591 InitializeNode* init = alloc->initialization(); 1592 assert(init->is_complete(), "we just did this"); 1593 init->set_complete_with_arraycopy(); 1594 assert(newcopy->is_CheckCastPP(), "sanity"); 1595 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1596 } 1597 // Do not let stores that initialize this object be reordered with 1598 // a subsequent store that would make this object accessible by 1599 // other threads. 1600 // Record what AllocateNode this StoreStore protects so that 1601 // escape analysis can go from the MemBarStoreStoreNode to the 1602 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1603 // based on the escape status of the AllocateNode. 1604 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1605 } // original reexecute is set back here 1606 1607 C->set_has_split_ifs(true); // Has chance for split-if optimization 1608 if (!stopped()) { 1609 set_result(newcopy); 1610 } 1611 clear_upper_avx(); 1612 1613 return true; 1614 } 1615 1616 //------------------------inline_string_getCharsU-------------------------- 1617 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1618 bool LibraryCallKit::inline_string_getCharsU() { 1619 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1620 return false; 1621 } 1622 1623 // Get the arguments. 1624 Node* src = argument(0); 1625 Node* src_begin = argument(1); 1626 Node* src_end = argument(2); // exclusive offset (i < src_end) 1627 Node* dst = argument(3); 1628 Node* dst_begin = argument(4); 1629 1630 // Check for allocation before we add nodes that would confuse 1631 // tightly_coupled_allocation() 1632 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1633 1634 // Check if a null path was taken unconditionally. 1635 src = null_check(src); 1636 dst = null_check(dst); 1637 if (stopped()) { 1638 return true; 1639 } 1640 1641 // Get length and convert char[] offset to byte[] offset 1642 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1643 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1644 1645 // Range checks 1646 generate_string_range_check(src, src_begin, length, true); 1647 generate_string_range_check(dst, dst_begin, length, false); 1648 if (stopped()) { 1649 return true; 1650 } 1651 1652 if (!stopped()) { 1653 // Calculate starting addresses. 1654 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1655 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1656 1657 // Check if array addresses are aligned to HeapWordSize 1658 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1659 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1660 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1661 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1662 1663 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1664 const char* copyfunc_name = "arraycopy"; 1665 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1666 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1667 OptoRuntime::fast_arraycopy_Type(), 1668 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1669 src_start, dst_start, ConvI2X(length) XTOP); 1670 // Do not let reads from the cloned object float above the arraycopy. 1671 if (alloc != nullptr) { 1672 if (alloc->maybe_set_complete(&_gvn)) { 1673 // "You break it, you buy it." 1674 InitializeNode* init = alloc->initialization(); 1675 assert(init->is_complete(), "we just did this"); 1676 init->set_complete_with_arraycopy(); 1677 assert(dst->is_CheckCastPP(), "sanity"); 1678 assert(dst->in(0)->in(0) == init, "dest pinned"); 1679 } 1680 // Do not let stores that initialize this object be reordered with 1681 // a subsequent store that would make this object accessible by 1682 // other threads. 1683 // Record what AllocateNode this StoreStore protects so that 1684 // escape analysis can go from the MemBarStoreStoreNode to the 1685 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1686 // based on the escape status of the AllocateNode. 1687 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1688 } else { 1689 insert_mem_bar(Op_MemBarCPUOrder); 1690 } 1691 } 1692 1693 C->set_has_split_ifs(true); // Has chance for split-if optimization 1694 return true; 1695 } 1696 1697 //----------------------inline_string_char_access---------------------------- 1698 // Store/Load char to/from byte[] array. 1699 // static void StringUTF16.putChar(byte[] val, int index, int c) 1700 // static char StringUTF16.getChar(byte[] val, int index) 1701 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1702 Node* value = argument(0); 1703 Node* index = argument(1); 1704 Node* ch = is_store ? argument(2) : nullptr; 1705 1706 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1707 // correctly requires matched array shapes. 1708 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1709 "sanity: byte[] and char[] bases agree"); 1710 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1711 "sanity: byte[] and char[] scales agree"); 1712 1713 // Bail when getChar over constants is requested: constant folding would 1714 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1715 // Java method would constant fold nicely instead. 1716 if (!is_store && value->is_Con() && index->is_Con()) { 1717 return false; 1718 } 1719 1720 // Save state and restore on bailout 1721 uint old_sp = sp(); 1722 SafePointNode* old_map = clone_map(); 1723 1724 value = must_be_not_null(value, true); 1725 1726 Node* adr = array_element_address(value, index, T_CHAR); 1727 if (adr->is_top()) { 1728 set_map(old_map); 1729 set_sp(old_sp); 1730 return false; 1731 } 1732 destruct_map_clone(old_map); 1733 if (is_store) { 1734 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1735 } else { 1736 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1737 set_result(ch); 1738 } 1739 return true; 1740 } 1741 1742 1743 //------------------------------inline_math----------------------------------- 1744 // public static double Math.abs(double) 1745 // public static double Math.sqrt(double) 1746 // public static double Math.log(double) 1747 // public static double Math.log10(double) 1748 // public static double Math.round(double) 1749 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1750 Node* arg = argument(0); 1751 Node* n = nullptr; 1752 switch (id) { 1753 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1754 case vmIntrinsics::_dsqrt: 1755 case vmIntrinsics::_dsqrt_strict: 1756 n = new SqrtDNode(C, control(), arg); break; 1757 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1758 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1759 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1760 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1761 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, argument(2)); break; 1762 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1763 default: fatal_unexpected_iid(id); break; 1764 } 1765 set_result(_gvn.transform(n)); 1766 return true; 1767 } 1768 1769 //------------------------------inline_math----------------------------------- 1770 // public static float Math.abs(float) 1771 // public static int Math.abs(int) 1772 // public static long Math.abs(long) 1773 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1774 Node* arg = argument(0); 1775 Node* n = nullptr; 1776 switch (id) { 1777 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1778 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1779 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1780 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1781 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1782 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1783 default: fatal_unexpected_iid(id); break; 1784 } 1785 set_result(_gvn.transform(n)); 1786 return true; 1787 } 1788 1789 //------------------------------runtime_math----------------------------- 1790 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1791 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1792 "must be (DD)D or (D)D type"); 1793 1794 // Inputs 1795 Node* a = argument(0); 1796 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? argument(2) : nullptr; 1797 1798 const TypePtr* no_memory_effects = nullptr; 1799 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1800 no_memory_effects, 1801 a, top(), b, b ? top() : nullptr); 1802 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1803 #ifdef ASSERT 1804 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1805 assert(value_top == top(), "second value must be top"); 1806 #endif 1807 1808 set_result(value); 1809 return true; 1810 } 1811 1812 //------------------------------inline_math_pow----------------------------- 1813 bool LibraryCallKit::inline_math_pow() { 1814 Node* exp = argument(2); 1815 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1816 if (d != nullptr) { 1817 if (d->getd() == 2.0) { 1818 // Special case: pow(x, 2.0) => x * x 1819 Node* base = argument(0); 1820 set_result(_gvn.transform(new MulDNode(base, base))); 1821 return true; 1822 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1823 // Special case: pow(x, 0.5) => sqrt(x) 1824 Node* base = argument(0); 1825 Node* zero = _gvn.zerocon(T_DOUBLE); 1826 1827 RegionNode* region = new RegionNode(3); 1828 Node* phi = new PhiNode(region, Type::DOUBLE); 1829 1830 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1831 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1832 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1833 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1834 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1835 1836 Node* if_pow = generate_slow_guard(test, nullptr); 1837 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1838 phi->init_req(1, value_sqrt); 1839 region->init_req(1, control()); 1840 1841 if (if_pow != nullptr) { 1842 set_control(if_pow); 1843 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1844 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1845 const TypePtr* no_memory_effects = nullptr; 1846 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1847 no_memory_effects, base, top(), exp, top()); 1848 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1849 #ifdef ASSERT 1850 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1851 assert(value_top == top(), "second value must be top"); 1852 #endif 1853 phi->init_req(2, value_pow); 1854 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1855 } 1856 1857 C->set_has_split_ifs(true); // Has chance for split-if optimization 1858 set_control(_gvn.transform(region)); 1859 record_for_igvn(region); 1860 set_result(_gvn.transform(phi)); 1861 1862 return true; 1863 } 1864 } 1865 1866 return StubRoutines::dpow() != nullptr ? 1867 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1868 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1869 } 1870 1871 //------------------------------inline_math_native----------------------------- 1872 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1873 switch (id) { 1874 case vmIntrinsics::_dsin: 1875 return StubRoutines::dsin() != nullptr ? 1876 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1877 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1878 case vmIntrinsics::_dcos: 1879 return StubRoutines::dcos() != nullptr ? 1880 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1881 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1882 case vmIntrinsics::_dtan: 1883 return StubRoutines::dtan() != nullptr ? 1884 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1885 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1886 case vmIntrinsics::_dtanh: 1887 return StubRoutines::dtanh() != nullptr ? 1888 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false; 1889 case vmIntrinsics::_dexp: 1890 return StubRoutines::dexp() != nullptr ? 1891 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1892 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1893 case vmIntrinsics::_dlog: 1894 return StubRoutines::dlog() != nullptr ? 1895 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1896 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1897 case vmIntrinsics::_dlog10: 1898 return StubRoutines::dlog10() != nullptr ? 1899 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1900 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1901 1902 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1903 case vmIntrinsics::_ceil: 1904 case vmIntrinsics::_floor: 1905 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1906 1907 case vmIntrinsics::_dsqrt: 1908 case vmIntrinsics::_dsqrt_strict: 1909 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1910 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1911 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1912 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1913 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1914 1915 case vmIntrinsics::_dpow: return inline_math_pow(); 1916 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1917 case vmIntrinsics::_fcopySign: return inline_math(id); 1918 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1919 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1920 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1921 1922 // These intrinsics are not yet correctly implemented 1923 case vmIntrinsics::_datan2: 1924 return false; 1925 1926 default: 1927 fatal_unexpected_iid(id); 1928 return false; 1929 } 1930 } 1931 1932 //----------------------------inline_notify-----------------------------------* 1933 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1934 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1935 address func; 1936 if (id == vmIntrinsics::_notify) { 1937 func = OptoRuntime::monitor_notify_Java(); 1938 } else { 1939 func = OptoRuntime::monitor_notifyAll_Java(); 1940 } 1941 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1942 make_slow_call_ex(call, env()->Throwable_klass(), false); 1943 return true; 1944 } 1945 1946 1947 //----------------------------inline_min_max----------------------------------- 1948 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1949 Node* a = nullptr; 1950 Node* b = nullptr; 1951 Node* n = nullptr; 1952 switch (id) { 1953 case vmIntrinsics::_min: 1954 case vmIntrinsics::_max: 1955 case vmIntrinsics::_minF: 1956 case vmIntrinsics::_maxF: 1957 case vmIntrinsics::_minF_strict: 1958 case vmIntrinsics::_maxF_strict: 1959 case vmIntrinsics::_min_strict: 1960 case vmIntrinsics::_max_strict: 1961 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 1962 a = argument(0); 1963 b = argument(1); 1964 break; 1965 case vmIntrinsics::_minD: 1966 case vmIntrinsics::_maxD: 1967 case vmIntrinsics::_minD_strict: 1968 case vmIntrinsics::_maxD_strict: 1969 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 1970 a = argument(0); 1971 b = argument(2); 1972 break; 1973 case vmIntrinsics::_minL: 1974 case vmIntrinsics::_maxL: 1975 assert(callee()->signature()->size() == 4, "minL/maxL has 2 parameters of size 2 each."); 1976 a = argument(0); 1977 b = argument(2); 1978 break; 1979 default: 1980 fatal_unexpected_iid(id); 1981 break; 1982 } 1983 1984 switch (id) { 1985 case vmIntrinsics::_min: 1986 case vmIntrinsics::_min_strict: 1987 n = new MinINode(a, b); 1988 break; 1989 case vmIntrinsics::_max: 1990 case vmIntrinsics::_max_strict: 1991 n = new MaxINode(a, b); 1992 break; 1993 case vmIntrinsics::_minF: 1994 case vmIntrinsics::_minF_strict: 1995 n = new MinFNode(a, b); 1996 break; 1997 case vmIntrinsics::_maxF: 1998 case vmIntrinsics::_maxF_strict: 1999 n = new MaxFNode(a, b); 2000 break; 2001 case vmIntrinsics::_minD: 2002 case vmIntrinsics::_minD_strict: 2003 n = new MinDNode(a, b); 2004 break; 2005 case vmIntrinsics::_maxD: 2006 case vmIntrinsics::_maxD_strict: 2007 n = new MaxDNode(a, b); 2008 break; 2009 case vmIntrinsics::_minL: 2010 n = new MinLNode(_gvn.C, a, b); 2011 break; 2012 case vmIntrinsics::_maxL: 2013 n = new MaxLNode(_gvn.C, a, b); 2014 break; 2015 default: 2016 fatal_unexpected_iid(id); 2017 break; 2018 } 2019 2020 set_result(_gvn.transform(n)); 2021 return true; 2022 } 2023 2024 bool LibraryCallKit::inline_math_mathExact(Node* math, Node* test) { 2025 if (builtin_throw_too_many_traps(Deoptimization::Reason_intrinsic, 2026 env()->ArithmeticException_instance())) { 2027 // It has been already too many times, but we cannot use builtin_throw (e.g. we care about backtraces), 2028 // so let's bail out intrinsic rather than risking deopting again. 2029 return false; 2030 } 2031 2032 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 2033 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 2034 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 2035 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 2036 2037 { 2038 PreserveJVMState pjvms(this); 2039 PreserveReexecuteState preexecs(this); 2040 jvms()->set_should_reexecute(true); 2041 2042 set_control(slow_path); 2043 set_i_o(i_o()); 2044 2045 builtin_throw(Deoptimization::Reason_intrinsic, 2046 env()->ArithmeticException_instance(), 2047 /*allow_too_many_traps*/ false); 2048 } 2049 2050 set_control(fast_path); 2051 set_result(math); 2052 return true; 2053 } 2054 2055 template <typename OverflowOp> 2056 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 2057 typedef typename OverflowOp::MathOp MathOp; 2058 2059 MathOp* mathOp = new MathOp(arg1, arg2); 2060 Node* operation = _gvn.transform( mathOp ); 2061 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 2062 return inline_math_mathExact(operation, ofcheck); 2063 } 2064 2065 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 2066 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 2067 } 2068 2069 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 2070 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 2071 } 2072 2073 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 2074 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 2075 } 2076 2077 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 2078 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 2079 } 2080 2081 bool LibraryCallKit::inline_math_negateExactI() { 2082 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 2083 } 2084 2085 bool LibraryCallKit::inline_math_negateExactL() { 2086 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 2087 } 2088 2089 bool LibraryCallKit::inline_math_multiplyExactI() { 2090 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 2091 } 2092 2093 bool LibraryCallKit::inline_math_multiplyExactL() { 2094 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 2095 } 2096 2097 bool LibraryCallKit::inline_math_multiplyHigh() { 2098 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 2099 return true; 2100 } 2101 2102 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 2103 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 2104 return true; 2105 } 2106 2107 inline int 2108 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 2109 const TypePtr* base_type = TypePtr::NULL_PTR; 2110 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 2111 if (base_type == nullptr) { 2112 // Unknown type. 2113 return Type::AnyPtr; 2114 } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) { 2115 // Since this is a null+long form, we have to switch to a rawptr. 2116 base = _gvn.transform(new CastX2PNode(offset)); 2117 offset = MakeConX(0); 2118 return Type::RawPtr; 2119 } else if (base_type->base() == Type::RawPtr) { 2120 return Type::RawPtr; 2121 } else if (base_type->isa_oopptr()) { 2122 // Base is never null => always a heap address. 2123 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2124 return Type::OopPtr; 2125 } 2126 // Offset is small => always a heap address. 2127 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2128 if (offset_type != nullptr && 2129 base_type->offset() == 0 && // (should always be?) 2130 offset_type->_lo >= 0 && 2131 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2132 return Type::OopPtr; 2133 } else if (type == T_OBJECT) { 2134 // off heap access to an oop doesn't make any sense. Has to be on 2135 // heap. 2136 return Type::OopPtr; 2137 } 2138 // Otherwise, it might either be oop+off or null+addr. 2139 return Type::AnyPtr; 2140 } else { 2141 // No information: 2142 return Type::AnyPtr; 2143 } 2144 } 2145 2146 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2147 Node* uncasted_base = base; 2148 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2149 if (kind == Type::RawPtr) { 2150 return basic_plus_adr(top(), uncasted_base, offset); 2151 } else if (kind == Type::AnyPtr) { 2152 assert(base == uncasted_base, "unexpected base change"); 2153 if (can_cast) { 2154 if (!_gvn.type(base)->speculative_maybe_null() && 2155 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2156 // According to profiling, this access is always on 2157 // heap. Casting the base to not null and thus avoiding membars 2158 // around the access should allow better optimizations 2159 Node* null_ctl = top(); 2160 base = null_check_oop(base, &null_ctl, true, true, true); 2161 assert(null_ctl->is_top(), "no null control here"); 2162 return basic_plus_adr(base, offset); 2163 } else if (_gvn.type(base)->speculative_always_null() && 2164 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2165 // According to profiling, this access is always off 2166 // heap. 2167 base = null_assert(base); 2168 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2169 offset = MakeConX(0); 2170 return basic_plus_adr(top(), raw_base, offset); 2171 } 2172 } 2173 // We don't know if it's an on heap or off heap access. Fall back 2174 // to raw memory access. 2175 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2176 return basic_plus_adr(top(), raw, offset); 2177 } else { 2178 assert(base == uncasted_base, "unexpected base change"); 2179 // We know it's an on heap access so base can't be null 2180 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2181 base = must_be_not_null(base, true); 2182 } 2183 return basic_plus_adr(base, offset); 2184 } 2185 } 2186 2187 //--------------------------inline_number_methods----------------------------- 2188 // inline int Integer.numberOfLeadingZeros(int) 2189 // inline int Long.numberOfLeadingZeros(long) 2190 // 2191 // inline int Integer.numberOfTrailingZeros(int) 2192 // inline int Long.numberOfTrailingZeros(long) 2193 // 2194 // inline int Integer.bitCount(int) 2195 // inline int Long.bitCount(long) 2196 // 2197 // inline char Character.reverseBytes(char) 2198 // inline short Short.reverseBytes(short) 2199 // inline int Integer.reverseBytes(int) 2200 // inline long Long.reverseBytes(long) 2201 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2202 Node* arg = argument(0); 2203 Node* n = nullptr; 2204 switch (id) { 2205 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2206 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2207 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2208 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2209 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2210 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2211 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode( arg); break; 2212 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( arg); break; 2213 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( arg); break; 2214 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( arg); break; 2215 case vmIntrinsics::_reverse_i: n = new ReverseINode( arg); break; 2216 case vmIntrinsics::_reverse_l: n = new ReverseLNode( arg); break; 2217 default: fatal_unexpected_iid(id); break; 2218 } 2219 set_result(_gvn.transform(n)); 2220 return true; 2221 } 2222 2223 //--------------------------inline_bitshuffle_methods----------------------------- 2224 // inline int Integer.compress(int, int) 2225 // inline int Integer.expand(int, int) 2226 // inline long Long.compress(long, long) 2227 // inline long Long.expand(long, long) 2228 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2229 Node* n = nullptr; 2230 switch (id) { 2231 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2232 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2233 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2234 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2235 default: fatal_unexpected_iid(id); break; 2236 } 2237 set_result(_gvn.transform(n)); 2238 return true; 2239 } 2240 2241 //--------------------------inline_number_methods----------------------------- 2242 // inline int Integer.compareUnsigned(int, int) 2243 // inline int Long.compareUnsigned(long, long) 2244 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2245 Node* arg1 = argument(0); 2246 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2247 Node* n = nullptr; 2248 switch (id) { 2249 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2250 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2251 default: fatal_unexpected_iid(id); break; 2252 } 2253 set_result(_gvn.transform(n)); 2254 return true; 2255 } 2256 2257 //--------------------------inline_unsigned_divmod_methods----------------------------- 2258 // inline int Integer.divideUnsigned(int, int) 2259 // inline int Integer.remainderUnsigned(int, int) 2260 // inline long Long.divideUnsigned(long, long) 2261 // inline long Long.remainderUnsigned(long, long) 2262 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2263 Node* n = nullptr; 2264 switch (id) { 2265 case vmIntrinsics::_divideUnsigned_i: { 2266 zero_check_int(argument(1)); 2267 // Compile-time detect of null-exception 2268 if (stopped()) { 2269 return true; // keep the graph constructed so far 2270 } 2271 n = new UDivINode(control(), argument(0), argument(1)); 2272 break; 2273 } 2274 case vmIntrinsics::_divideUnsigned_l: { 2275 zero_check_long(argument(2)); 2276 // Compile-time detect of null-exception 2277 if (stopped()) { 2278 return true; // keep the graph constructed so far 2279 } 2280 n = new UDivLNode(control(), argument(0), argument(2)); 2281 break; 2282 } 2283 case vmIntrinsics::_remainderUnsigned_i: { 2284 zero_check_int(argument(1)); 2285 // Compile-time detect of null-exception 2286 if (stopped()) { 2287 return true; // keep the graph constructed so far 2288 } 2289 n = new UModINode(control(), argument(0), argument(1)); 2290 break; 2291 } 2292 case vmIntrinsics::_remainderUnsigned_l: { 2293 zero_check_long(argument(2)); 2294 // Compile-time detect of null-exception 2295 if (stopped()) { 2296 return true; // keep the graph constructed so far 2297 } 2298 n = new UModLNode(control(), argument(0), argument(2)); 2299 break; 2300 } 2301 default: fatal_unexpected_iid(id); break; 2302 } 2303 set_result(_gvn.transform(n)); 2304 return true; 2305 } 2306 2307 //----------------------------inline_unsafe_access---------------------------- 2308 2309 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2310 // Attempt to infer a sharper value type from the offset and base type. 2311 ciKlass* sharpened_klass = nullptr; 2312 2313 // See if it is an instance field, with an object type. 2314 if (alias_type->field() != nullptr) { 2315 if (alias_type->field()->type()->is_klass()) { 2316 sharpened_klass = alias_type->field()->type()->as_klass(); 2317 } 2318 } 2319 2320 const TypeOopPtr* result = nullptr; 2321 // See if it is a narrow oop array. 2322 if (adr_type->isa_aryptr()) { 2323 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2324 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2325 if (elem_type != nullptr && elem_type->is_loaded()) { 2326 // Sharpen the value type. 2327 result = elem_type; 2328 } 2329 } 2330 } 2331 2332 // The sharpened class might be unloaded if there is no class loader 2333 // contraint in place. 2334 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2335 // Sharpen the value type. 2336 result = TypeOopPtr::make_from_klass(sharpened_klass); 2337 } 2338 if (result != nullptr) { 2339 #ifndef PRODUCT 2340 if (C->print_intrinsics() || C->print_inlining()) { 2341 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2342 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2343 } 2344 #endif 2345 } 2346 return result; 2347 } 2348 2349 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2350 switch (kind) { 2351 case Relaxed: 2352 return MO_UNORDERED; 2353 case Opaque: 2354 return MO_RELAXED; 2355 case Acquire: 2356 return MO_ACQUIRE; 2357 case Release: 2358 return MO_RELEASE; 2359 case Volatile: 2360 return MO_SEQ_CST; 2361 default: 2362 ShouldNotReachHere(); 2363 return 0; 2364 } 2365 } 2366 2367 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2368 if (callee()->is_static()) return false; // caller must have the capability! 2369 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2370 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2371 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2372 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2373 2374 if (is_reference_type(type)) { 2375 decorators |= ON_UNKNOWN_OOP_REF; 2376 } 2377 2378 if (unaligned) { 2379 decorators |= C2_UNALIGNED; 2380 } 2381 2382 #ifndef PRODUCT 2383 { 2384 ResourceMark rm; 2385 // Check the signatures. 2386 ciSignature* sig = callee()->signature(); 2387 #ifdef ASSERT 2388 if (!is_store) { 2389 // Object getReference(Object base, int/long offset), etc. 2390 BasicType rtype = sig->return_type()->basic_type(); 2391 assert(rtype == type, "getter must return the expected value"); 2392 assert(sig->count() == 2, "oop getter has 2 arguments"); 2393 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2394 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2395 } else { 2396 // void putReference(Object base, int/long offset, Object x), etc. 2397 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2398 assert(sig->count() == 3, "oop putter has 3 arguments"); 2399 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2400 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2401 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2402 assert(vtype == type, "putter must accept the expected value"); 2403 } 2404 #endif // ASSERT 2405 } 2406 #endif //PRODUCT 2407 2408 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2409 2410 Node* receiver = argument(0); // type: oop 2411 2412 // Build address expression. 2413 Node* heap_base_oop = top(); 2414 2415 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2416 Node* base = argument(1); // type: oop 2417 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2418 Node* offset = argument(2); // type: long 2419 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2420 // to be plain byte offsets, which are also the same as those accepted 2421 // by oopDesc::field_addr. 2422 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2423 "fieldOffset must be byte-scaled"); 2424 // 32-bit machines ignore the high half! 2425 offset = ConvL2X(offset); 2426 2427 // Save state and restore on bailout 2428 uint old_sp = sp(); 2429 SafePointNode* old_map = clone_map(); 2430 2431 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2432 assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly"); 2433 2434 if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) { 2435 if (type != T_OBJECT) { 2436 decorators |= IN_NATIVE; // off-heap primitive access 2437 } else { 2438 set_map(old_map); 2439 set_sp(old_sp); 2440 return false; // off-heap oop accesses are not supported 2441 } 2442 } else { 2443 heap_base_oop = base; // on-heap or mixed access 2444 } 2445 2446 // Can base be null? Otherwise, always on-heap access. 2447 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2448 2449 if (!can_access_non_heap) { 2450 decorators |= IN_HEAP; 2451 } 2452 2453 Node* val = is_store ? argument(4) : nullptr; 2454 2455 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2456 if (adr_type == TypePtr::NULL_PTR) { 2457 set_map(old_map); 2458 set_sp(old_sp); 2459 return false; // off-heap access with zero address 2460 } 2461 2462 // Try to categorize the address. 2463 Compile::AliasType* alias_type = C->alias_type(adr_type); 2464 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2465 2466 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2467 alias_type->adr_type() == TypeAryPtr::RANGE) { 2468 set_map(old_map); 2469 set_sp(old_sp); 2470 return false; // not supported 2471 } 2472 2473 bool mismatched = false; 2474 BasicType bt = alias_type->basic_type(); 2475 if (bt != T_ILLEGAL) { 2476 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2477 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2478 // Alias type doesn't differentiate between byte[] and boolean[]). 2479 // Use address type to get the element type. 2480 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2481 } 2482 if (is_reference_type(bt, true)) { 2483 // accessing an array field with getReference is not a mismatch 2484 bt = T_OBJECT; 2485 } 2486 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2487 // Don't intrinsify mismatched object accesses 2488 set_map(old_map); 2489 set_sp(old_sp); 2490 return false; 2491 } 2492 mismatched = (bt != type); 2493 } else if (alias_type->adr_type()->isa_oopptr()) { 2494 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2495 } 2496 2497 destruct_map_clone(old_map); 2498 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2499 2500 if (mismatched) { 2501 decorators |= C2_MISMATCHED; 2502 } 2503 2504 // First guess at the value type. 2505 const Type *value_type = Type::get_const_basic_type(type); 2506 2507 // Figure out the memory ordering. 2508 decorators |= mo_decorator_for_access_kind(kind); 2509 2510 if (!is_store && type == T_OBJECT) { 2511 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2512 if (tjp != nullptr) { 2513 value_type = tjp; 2514 } 2515 } 2516 2517 receiver = null_check(receiver); 2518 if (stopped()) { 2519 return true; 2520 } 2521 // Heap pointers get a null-check from the interpreter, 2522 // as a courtesy. However, this is not guaranteed by Unsafe, 2523 // and it is not possible to fully distinguish unintended nulls 2524 // from intended ones in this API. 2525 2526 if (!is_store) { 2527 Node* p = nullptr; 2528 // Try to constant fold a load from a constant field 2529 ciField* field = alias_type->field(); 2530 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) { 2531 // final or stable field 2532 p = make_constant_from_field(field, heap_base_oop); 2533 } 2534 2535 if (p == nullptr) { // Could not constant fold the load 2536 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2537 // Normalize the value returned by getBoolean in the following cases 2538 if (type == T_BOOLEAN && 2539 (mismatched || 2540 heap_base_oop == top() || // - heap_base_oop is null or 2541 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2542 // and the unsafe access is made to large offset 2543 // (i.e., larger than the maximum offset necessary for any 2544 // field access) 2545 ) { 2546 IdealKit ideal = IdealKit(this); 2547 #define __ ideal. 2548 IdealVariable normalized_result(ideal); 2549 __ declarations_done(); 2550 __ set(normalized_result, p); 2551 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2552 __ set(normalized_result, ideal.ConI(1)); 2553 ideal.end_if(); 2554 final_sync(ideal); 2555 p = __ value(normalized_result); 2556 #undef __ 2557 } 2558 } 2559 if (type == T_ADDRESS) { 2560 p = gvn().transform(new CastP2XNode(nullptr, p)); 2561 p = ConvX2UL(p); 2562 } 2563 // The load node has the control of the preceding MemBarCPUOrder. All 2564 // following nodes will have the control of the MemBarCPUOrder inserted at 2565 // the end of this method. So, pushing the load onto the stack at a later 2566 // point is fine. 2567 set_result(p); 2568 } else { 2569 if (bt == T_ADDRESS) { 2570 // Repackage the long as a pointer. 2571 val = ConvL2X(val); 2572 val = gvn().transform(new CastX2PNode(val)); 2573 } 2574 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2575 } 2576 2577 return true; 2578 } 2579 2580 //----------------------------inline_unsafe_load_store---------------------------- 2581 // This method serves a couple of different customers (depending on LoadStoreKind): 2582 // 2583 // LS_cmp_swap: 2584 // 2585 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2586 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2587 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2588 // 2589 // LS_cmp_swap_weak: 2590 // 2591 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2592 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2593 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2594 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2595 // 2596 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2597 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2598 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2599 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2600 // 2601 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2602 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2603 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2604 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2605 // 2606 // LS_cmp_exchange: 2607 // 2608 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2609 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2610 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2611 // 2612 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2613 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2614 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2615 // 2616 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2617 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2618 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2619 // 2620 // LS_get_add: 2621 // 2622 // int getAndAddInt( Object o, long offset, int delta) 2623 // long getAndAddLong(Object o, long offset, long delta) 2624 // 2625 // LS_get_set: 2626 // 2627 // int getAndSet(Object o, long offset, int newValue) 2628 // long getAndSet(Object o, long offset, long newValue) 2629 // Object getAndSet(Object o, long offset, Object newValue) 2630 // 2631 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2632 // This basic scheme here is the same as inline_unsafe_access, but 2633 // differs in enough details that combining them would make the code 2634 // overly confusing. (This is a true fact! I originally combined 2635 // them, but even I was confused by it!) As much code/comments as 2636 // possible are retained from inline_unsafe_access though to make 2637 // the correspondences clearer. - dl 2638 2639 if (callee()->is_static()) return false; // caller must have the capability! 2640 2641 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2642 decorators |= mo_decorator_for_access_kind(access_kind); 2643 2644 #ifndef PRODUCT 2645 BasicType rtype; 2646 { 2647 ResourceMark rm; 2648 // Check the signatures. 2649 ciSignature* sig = callee()->signature(); 2650 rtype = sig->return_type()->basic_type(); 2651 switch(kind) { 2652 case LS_get_add: 2653 case LS_get_set: { 2654 // Check the signatures. 2655 #ifdef ASSERT 2656 assert(rtype == type, "get and set must return the expected type"); 2657 assert(sig->count() == 3, "get and set has 3 arguments"); 2658 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2659 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2660 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2661 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2662 #endif // ASSERT 2663 break; 2664 } 2665 case LS_cmp_swap: 2666 case LS_cmp_swap_weak: { 2667 // Check the signatures. 2668 #ifdef ASSERT 2669 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2670 assert(sig->count() == 4, "CAS has 4 arguments"); 2671 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2672 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2673 #endif // ASSERT 2674 break; 2675 } 2676 case LS_cmp_exchange: { 2677 // Check the signatures. 2678 #ifdef ASSERT 2679 assert(rtype == type, "CAS must return the expected type"); 2680 assert(sig->count() == 4, "CAS has 4 arguments"); 2681 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2682 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2683 #endif // ASSERT 2684 break; 2685 } 2686 default: 2687 ShouldNotReachHere(); 2688 } 2689 } 2690 #endif //PRODUCT 2691 2692 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2693 2694 // Get arguments: 2695 Node* receiver = nullptr; 2696 Node* base = nullptr; 2697 Node* offset = nullptr; 2698 Node* oldval = nullptr; 2699 Node* newval = nullptr; 2700 switch(kind) { 2701 case LS_cmp_swap: 2702 case LS_cmp_swap_weak: 2703 case LS_cmp_exchange: { 2704 const bool two_slot_type = type2size[type] == 2; 2705 receiver = argument(0); // type: oop 2706 base = argument(1); // type: oop 2707 offset = argument(2); // type: long 2708 oldval = argument(4); // type: oop, int, or long 2709 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2710 break; 2711 } 2712 case LS_get_add: 2713 case LS_get_set: { 2714 receiver = argument(0); // type: oop 2715 base = argument(1); // type: oop 2716 offset = argument(2); // type: long 2717 oldval = nullptr; 2718 newval = argument(4); // type: oop, int, or long 2719 break; 2720 } 2721 default: 2722 ShouldNotReachHere(); 2723 } 2724 2725 // Build field offset expression. 2726 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2727 // to be plain byte offsets, which are also the same as those accepted 2728 // by oopDesc::field_addr. 2729 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2730 // 32-bit machines ignore the high half of long offsets 2731 offset = ConvL2X(offset); 2732 // Save state and restore on bailout 2733 uint old_sp = sp(); 2734 SafePointNode* old_map = clone_map(); 2735 Node* adr = make_unsafe_address(base, offset,type, false); 2736 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2737 2738 Compile::AliasType* alias_type = C->alias_type(adr_type); 2739 BasicType bt = alias_type->basic_type(); 2740 if (bt != T_ILLEGAL && 2741 (is_reference_type(bt) != (type == T_OBJECT))) { 2742 // Don't intrinsify mismatched object accesses. 2743 set_map(old_map); 2744 set_sp(old_sp); 2745 return false; 2746 } 2747 2748 destruct_map_clone(old_map); 2749 2750 // For CAS, unlike inline_unsafe_access, there seems no point in 2751 // trying to refine types. Just use the coarse types here. 2752 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2753 const Type *value_type = Type::get_const_basic_type(type); 2754 2755 switch (kind) { 2756 case LS_get_set: 2757 case LS_cmp_exchange: { 2758 if (type == T_OBJECT) { 2759 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2760 if (tjp != nullptr) { 2761 value_type = tjp; 2762 } 2763 } 2764 break; 2765 } 2766 case LS_cmp_swap: 2767 case LS_cmp_swap_weak: 2768 case LS_get_add: 2769 break; 2770 default: 2771 ShouldNotReachHere(); 2772 } 2773 2774 // Null check receiver. 2775 receiver = null_check(receiver); 2776 if (stopped()) { 2777 return true; 2778 } 2779 2780 int alias_idx = C->get_alias_index(adr_type); 2781 2782 if (is_reference_type(type)) { 2783 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2784 2785 // Transformation of a value which could be null pointer (CastPP #null) 2786 // could be delayed during Parse (for example, in adjust_map_after_if()). 2787 // Execute transformation here to avoid barrier generation in such case. 2788 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2789 newval = _gvn.makecon(TypePtr::NULL_PTR); 2790 2791 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2792 // Refine the value to a null constant, when it is known to be null 2793 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2794 } 2795 } 2796 2797 Node* result = nullptr; 2798 switch (kind) { 2799 case LS_cmp_exchange: { 2800 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2801 oldval, newval, value_type, type, decorators); 2802 break; 2803 } 2804 case LS_cmp_swap_weak: 2805 decorators |= C2_WEAK_CMPXCHG; 2806 case LS_cmp_swap: { 2807 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2808 oldval, newval, value_type, type, decorators); 2809 break; 2810 } 2811 case LS_get_set: { 2812 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2813 newval, value_type, type, decorators); 2814 break; 2815 } 2816 case LS_get_add: { 2817 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2818 newval, value_type, type, decorators); 2819 break; 2820 } 2821 default: 2822 ShouldNotReachHere(); 2823 } 2824 2825 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2826 set_result(result); 2827 return true; 2828 } 2829 2830 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2831 // Regardless of form, don't allow previous ld/st to move down, 2832 // then issue acquire, release, or volatile mem_bar. 2833 insert_mem_bar(Op_MemBarCPUOrder); 2834 switch(id) { 2835 case vmIntrinsics::_loadFence: 2836 insert_mem_bar(Op_LoadFence); 2837 return true; 2838 case vmIntrinsics::_storeFence: 2839 insert_mem_bar(Op_StoreFence); 2840 return true; 2841 case vmIntrinsics::_storeStoreFence: 2842 insert_mem_bar(Op_StoreStoreFence); 2843 return true; 2844 case vmIntrinsics::_fullFence: 2845 insert_mem_bar(Op_MemBarVolatile); 2846 return true; 2847 default: 2848 fatal_unexpected_iid(id); 2849 return false; 2850 } 2851 } 2852 2853 bool LibraryCallKit::inline_onspinwait() { 2854 insert_mem_bar(Op_OnSpinWait); 2855 return true; 2856 } 2857 2858 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2859 if (!kls->is_Con()) { 2860 return true; 2861 } 2862 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2863 if (klsptr == nullptr) { 2864 return true; 2865 } 2866 ciInstanceKlass* ik = klsptr->instance_klass(); 2867 // don't need a guard for a klass that is already initialized 2868 return !ik->is_initialized(); 2869 } 2870 2871 //----------------------------inline_unsafe_writeback0------------------------- 2872 // public native void Unsafe.writeback0(long address) 2873 bool LibraryCallKit::inline_unsafe_writeback0() { 2874 if (!Matcher::has_match_rule(Op_CacheWB)) { 2875 return false; 2876 } 2877 #ifndef PRODUCT 2878 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2879 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2880 ciSignature* sig = callee()->signature(); 2881 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2882 #endif 2883 null_check_receiver(); // null-check, then ignore 2884 Node *addr = argument(1); 2885 addr = new CastX2PNode(addr); 2886 addr = _gvn.transform(addr); 2887 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2888 flush = _gvn.transform(flush); 2889 set_memory(flush, TypeRawPtr::BOTTOM); 2890 return true; 2891 } 2892 2893 //----------------------------inline_unsafe_writeback0------------------------- 2894 // public native void Unsafe.writeback0(long address) 2895 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2896 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2897 return false; 2898 } 2899 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2900 return false; 2901 } 2902 #ifndef PRODUCT 2903 assert(Matcher::has_match_rule(Op_CacheWB), 2904 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2905 : "found match rule for CacheWBPostSync but not CacheWB")); 2906 2907 #endif 2908 null_check_receiver(); // null-check, then ignore 2909 Node *sync; 2910 if (is_pre) { 2911 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2912 } else { 2913 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2914 } 2915 sync = _gvn.transform(sync); 2916 set_memory(sync, TypeRawPtr::BOTTOM); 2917 return true; 2918 } 2919 2920 //----------------------------inline_unsafe_allocate--------------------------- 2921 // public native Object Unsafe.allocateInstance(Class<?> cls); 2922 bool LibraryCallKit::inline_unsafe_allocate() { 2923 2924 #if INCLUDE_JVMTI 2925 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 2926 return false; 2927 } 2928 #endif //INCLUDE_JVMTI 2929 2930 if (callee()->is_static()) return false; // caller must have the capability! 2931 2932 null_check_receiver(); // null-check, then ignore 2933 Node* cls = null_check(argument(1)); 2934 if (stopped()) return true; 2935 2936 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 2937 kls = null_check(kls); 2938 if (stopped()) return true; // argument was like int.class 2939 2940 #if INCLUDE_JVMTI 2941 // Don't try to access new allocated obj in the intrinsic. 2942 // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled. 2943 // Deoptimize and allocate in interpreter instead. 2944 Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc)); 2945 Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered); 2946 Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0))); 2947 Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq)); 2948 { 2949 BuildCutout unless(this, tst, PROB_MAX); 2950 uncommon_trap(Deoptimization::Reason_intrinsic, 2951 Deoptimization::Action_make_not_entrant); 2952 } 2953 if (stopped()) { 2954 return true; 2955 } 2956 #endif //INCLUDE_JVMTI 2957 2958 Node* test = nullptr; 2959 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2960 // Note: The argument might still be an illegal value like 2961 // Serializable.class or Object[].class. The runtime will handle it. 2962 // But we must make an explicit check for initialization. 2963 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2964 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2965 // can generate code to load it as unsigned byte. 2966 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire); 2967 Node* bits = intcon(InstanceKlass::fully_initialized); 2968 test = _gvn.transform(new SubINode(inst, bits)); 2969 // The 'test' is non-zero if we need to take a slow path. 2970 } 2971 2972 Node* obj = new_instance(kls, test); 2973 set_result(obj); 2974 return true; 2975 } 2976 2977 //------------------------inline_native_time_funcs-------------- 2978 // inline code for System.currentTimeMillis() and System.nanoTime() 2979 // these have the same type and signature 2980 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2981 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2982 const TypePtr* no_memory_effects = nullptr; 2983 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2984 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2985 #ifdef ASSERT 2986 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2987 assert(value_top == top(), "second value must be top"); 2988 #endif 2989 set_result(value); 2990 return true; 2991 } 2992 2993 2994 #if INCLUDE_JVMTI 2995 2996 // When notifications are disabled then just update the VTMS transition bit and return. 2997 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 2998 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 2999 if (!DoJVMTIVirtualThreadTransitions) { 3000 return true; 3001 } 3002 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 3003 IdealKit ideal(this); 3004 3005 Node* ONE = ideal.ConI(1); 3006 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 3007 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 3008 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3009 3010 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 3011 sync_kit(ideal); 3012 // if notifyJvmti enabled then make a call to the given SharedRuntime function 3013 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 3014 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 3015 ideal.sync_kit(this); 3016 } ideal.else_(); { 3017 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 3018 Node* thread = ideal.thread(); 3019 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 3020 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 3021 3022 sync_kit(ideal); 3023 access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3024 access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3025 3026 ideal.sync_kit(this); 3027 } ideal.end_if(); 3028 final_sync(ideal); 3029 3030 return true; 3031 } 3032 3033 // Always update the is_disable_suspend bit. 3034 bool LibraryCallKit::inline_native_notify_jvmti_sync() { 3035 if (!DoJVMTIVirtualThreadTransitions) { 3036 return true; 3037 } 3038 IdealKit ideal(this); 3039 3040 { 3041 // unconditionally update the is_disable_suspend bit in current JavaThread 3042 Node* thread = ideal.thread(); 3043 Node* arg = _gvn.transform(argument(0)); // argument for notification 3044 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset())); 3045 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 3046 3047 sync_kit(ideal); 3048 access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 3049 ideal.sync_kit(this); 3050 } 3051 final_sync(ideal); 3052 3053 return true; 3054 } 3055 3056 #endif // INCLUDE_JVMTI 3057 3058 #ifdef JFR_HAVE_INTRINSICS 3059 3060 /** 3061 * if oop->klass != null 3062 * // normal class 3063 * epoch = _epoch_state ? 2 : 1 3064 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 3065 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 3066 * } 3067 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 3068 * else 3069 * // primitive class 3070 * if oop->array_klass != null 3071 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 3072 * else 3073 * id = LAST_TYPE_ID + 1 // void class path 3074 * if (!signaled) 3075 * signaled = true 3076 */ 3077 bool LibraryCallKit::inline_native_classID() { 3078 Node* cls = argument(0); 3079 3080 IdealKit ideal(this); 3081 #define __ ideal. 3082 IdealVariable result(ideal); __ declarations_done(); 3083 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3084 basic_plus_adr(cls, java_lang_Class::klass_offset()), 3085 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3086 3087 3088 __ if_then(kls, BoolTest::ne, null()); { 3089 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3090 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3091 3092 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 3093 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 3094 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 3095 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 3096 mask = _gvn.transform(new OrLNode(mask, epoch)); 3097 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 3098 3099 float unlikely = PROB_UNLIKELY(0.999); 3100 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 3101 sync_kit(ideal); 3102 make_runtime_call(RC_LEAF, 3103 OptoRuntime::class_id_load_barrier_Type(), 3104 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 3105 "class id load barrier", 3106 TypePtr::BOTTOM, 3107 kls); 3108 ideal.sync_kit(this); 3109 } __ end_if(); 3110 3111 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 3112 } __ else_(); { 3113 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), 3114 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 3115 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3116 __ if_then(array_kls, BoolTest::ne, null()); { 3117 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 3118 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 3119 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 3120 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 3121 } __ else_(); { 3122 // void class case 3123 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 3124 } __ end_if(); 3125 3126 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 3127 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 3128 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 3129 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3130 } __ end_if(); 3131 } __ end_if(); 3132 3133 final_sync(ideal); 3134 set_result(ideal.value(result)); 3135 #undef __ 3136 return true; 3137 } 3138 3139 //------------------------inline_native_jvm_commit------------------ 3140 bool LibraryCallKit::inline_native_jvm_commit() { 3141 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3142 3143 // Save input memory and i_o state. 3144 Node* input_memory_state = reset_memory(); 3145 set_all_memory(input_memory_state); 3146 Node* input_io_state = i_o(); 3147 3148 // TLS. 3149 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3150 // Jfr java buffer. 3151 Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR))))); 3152 Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered)); 3153 Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET))))); 3154 3155 // Load the current value of the notified field in the JfrThreadLocal. 3156 Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR)); 3157 Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3158 3159 // Test for notification. 3160 Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1))); 3161 Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq)); 3162 IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN); 3163 3164 // True branch, is notified. 3165 Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified)); 3166 set_control(is_notified); 3167 3168 // Reset notified state. 3169 store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered); 3170 Node* notified_reset_memory = reset_memory(); 3171 3172 // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer. 3173 Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered)); 3174 // Convert the machine-word to a long. 3175 Node* current_pos = _gvn.transform(ConvX2L(current_pos_X)); 3176 3177 // False branch, not notified. 3178 Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified)); 3179 set_control(not_notified); 3180 set_all_memory(input_memory_state); 3181 3182 // Arg is the next position as a long. 3183 Node* arg = argument(0); 3184 // Convert long to machine-word. 3185 Node* next_pos_X = _gvn.transform(ConvL2X(arg)); 3186 3187 // Store the next_position to the underlying jfr java buffer. 3188 store_to_memory(control(), java_buffer_pos_offset, next_pos_X, LP64_ONLY(T_LONG) NOT_LP64(T_INT), MemNode::release); 3189 3190 Node* commit_memory = reset_memory(); 3191 set_all_memory(commit_memory); 3192 3193 // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit. 3194 Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET))))); 3195 Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered); 3196 Node* lease_constant = _gvn.transform(_gvn.intcon(4)); 3197 3198 // And flags with lease constant. 3199 Node* lease = _gvn.transform(new AndINode(flags, lease_constant)); 3200 3201 // Branch on lease to conditionalize returning the leased java buffer. 3202 Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant)); 3203 Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq)); 3204 IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN); 3205 3206 // False branch, not a lease. 3207 Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease)); 3208 3209 // True branch, is lease. 3210 Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease)); 3211 set_control(is_lease); 3212 3213 // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop. 3214 Node* call_return_lease = make_runtime_call(RC_NO_LEAF, 3215 OptoRuntime::void_void_Type(), 3216 SharedRuntime::jfr_return_lease(), 3217 "return_lease", TypePtr::BOTTOM); 3218 Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control)); 3219 3220 RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT); 3221 record_for_igvn(lease_compare_rgn); 3222 PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3223 record_for_igvn(lease_compare_mem); 3224 PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO); 3225 record_for_igvn(lease_compare_io); 3226 PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG); 3227 record_for_igvn(lease_result_value); 3228 3229 // Update control and phi nodes. 3230 lease_compare_rgn->init_req(_true_path, call_return_lease_control); 3231 lease_compare_rgn->init_req(_false_path, not_lease); 3232 3233 lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3234 lease_compare_mem->init_req(_false_path, commit_memory); 3235 3236 lease_compare_io->init_req(_true_path, i_o()); 3237 lease_compare_io->init_req(_false_path, input_io_state); 3238 3239 lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0. 3240 lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position. 3241 3242 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3243 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3244 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3245 PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG); 3246 3247 // Update control and phi nodes. 3248 result_rgn->init_req(_true_path, is_notified); 3249 result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn)); 3250 3251 result_mem->init_req(_true_path, notified_reset_memory); 3252 result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem)); 3253 3254 result_io->init_req(_true_path, input_io_state); 3255 result_io->init_req(_false_path, _gvn.transform(lease_compare_io)); 3256 3257 result_value->init_req(_true_path, current_pos); 3258 result_value->init_req(_false_path, _gvn.transform(lease_result_value)); 3259 3260 // Set output state. 3261 set_control(_gvn.transform(result_rgn)); 3262 set_all_memory(_gvn.transform(result_mem)); 3263 set_i_o(_gvn.transform(result_io)); 3264 set_result(result_rgn, result_value); 3265 return true; 3266 } 3267 3268 /* 3269 * The intrinsic is a model of this pseudo-code: 3270 * 3271 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3272 * jobject h_event_writer = tl->java_event_writer(); 3273 * if (h_event_writer == nullptr) { 3274 * return nullptr; 3275 * } 3276 * oop threadObj = Thread::threadObj(); 3277 * oop vthread = java_lang_Thread::vthread(threadObj); 3278 * traceid tid; 3279 * bool pinVirtualThread; 3280 * bool excluded; 3281 * if (vthread != threadObj) { // i.e. current thread is virtual 3282 * tid = java_lang_Thread::tid(vthread); 3283 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3284 * pinVirtualThread = VMContinuations; 3285 * excluded = vthread_epoch_raw & excluded_mask; 3286 * if (!excluded) { 3287 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3288 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3289 * if (vthread_epoch != current_epoch) { 3290 * write_checkpoint(); 3291 * } 3292 * } 3293 * } else { 3294 * tid = java_lang_Thread::tid(threadObj); 3295 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3296 * pinVirtualThread = false; 3297 * excluded = thread_epoch_raw & excluded_mask; 3298 * } 3299 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3300 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3301 * if (tid_in_event_writer != tid) { 3302 * setField(event_writer, "pinVirtualThread", pinVirtualThread); 3303 * setField(event_writer, "excluded", excluded); 3304 * setField(event_writer, "threadID", tid); 3305 * } 3306 * return event_writer 3307 */ 3308 bool LibraryCallKit::inline_native_getEventWriter() { 3309 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3310 3311 // Save input memory and i_o state. 3312 Node* input_memory_state = reset_memory(); 3313 set_all_memory(input_memory_state); 3314 Node* input_io_state = i_o(); 3315 3316 // The most significant bit of the u2 is used to denote thread exclusion 3317 Node* excluded_shift = _gvn.intcon(15); 3318 Node* excluded_mask = _gvn.intcon(1 << 15); 3319 // The epoch generation is the range [1-32767] 3320 Node* epoch_mask = _gvn.intcon(32767); 3321 3322 // TLS 3323 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3324 3325 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3326 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3327 3328 // Load the eventwriter jobject handle. 3329 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3330 3331 // Null check the jobject handle. 3332 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3333 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3334 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3335 3336 // False path, jobj is null. 3337 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3338 3339 // True path, jobj is not null. 3340 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3341 3342 set_control(jobj_is_not_null); 3343 3344 // Load the threadObj for the CarrierThread. 3345 Node* threadObj = generate_current_thread(tls_ptr); 3346 3347 // Load the vthread. 3348 Node* vthread = generate_virtual_thread(tls_ptr); 3349 3350 // If vthread != threadObj, this is a virtual thread. 3351 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3352 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3353 IfNode* iff_vthread_not_equal_threadObj = 3354 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3355 3356 // False branch, fallback to threadObj. 3357 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3358 set_control(vthread_equal_threadObj); 3359 3360 // Load the tid field from the vthread object. 3361 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3362 3363 // Load the raw epoch value from the threadObj. 3364 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3365 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, 3366 _gvn.type(threadObj_epoch_offset)->isa_ptr(), 3367 TypeInt::CHAR, T_CHAR, 3368 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3369 3370 // Mask off the excluded information from the epoch. 3371 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3372 3373 // True branch, this is a virtual thread. 3374 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3375 set_control(vthread_not_equal_threadObj); 3376 3377 // Load the tid field from the vthread object. 3378 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3379 3380 // Continuation support determines if a virtual thread should be pinned. 3381 Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations)); 3382 Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered); 3383 3384 // Load the raw epoch value from the vthread. 3385 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3386 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(), 3387 TypeInt::CHAR, T_CHAR, 3388 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3389 3390 // Mask off the excluded information from the epoch. 3391 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3392 3393 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3394 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3395 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3396 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3397 3398 // False branch, vthread is excluded, no need to write epoch info. 3399 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3400 3401 // True branch, vthread is included, update epoch info. 3402 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3403 set_control(included); 3404 3405 // Get epoch value. 3406 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3407 3408 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3409 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3410 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3411 3412 // Compare the epoch in the vthread to the current epoch generation. 3413 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3414 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3415 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3416 3417 // False path, epoch is equal, checkpoint information is valid. 3418 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3419 3420 // True path, epoch is not equal, write a checkpoint for the vthread. 3421 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3422 3423 set_control(epoch_is_not_equal); 3424 3425 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3426 // The call also updates the native thread local thread id and the vthread with the current epoch. 3427 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3428 OptoRuntime::jfr_write_checkpoint_Type(), 3429 SharedRuntime::jfr_write_checkpoint(), 3430 "write_checkpoint", TypePtr::BOTTOM); 3431 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3432 3433 // vthread epoch != current epoch 3434 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3435 record_for_igvn(epoch_compare_rgn); 3436 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3437 record_for_igvn(epoch_compare_mem); 3438 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3439 record_for_igvn(epoch_compare_io); 3440 3441 // Update control and phi nodes. 3442 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3443 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3444 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3445 epoch_compare_mem->init_req(_false_path, input_memory_state); 3446 epoch_compare_io->init_req(_true_path, i_o()); 3447 epoch_compare_io->init_req(_false_path, input_io_state); 3448 3449 // excluded != true 3450 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3451 record_for_igvn(exclude_compare_rgn); 3452 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3453 record_for_igvn(exclude_compare_mem); 3454 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3455 record_for_igvn(exclude_compare_io); 3456 3457 // Update control and phi nodes. 3458 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3459 exclude_compare_rgn->init_req(_false_path, excluded); 3460 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3461 exclude_compare_mem->init_req(_false_path, input_memory_state); 3462 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3463 exclude_compare_io->init_req(_false_path, input_io_state); 3464 3465 // vthread != threadObj 3466 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3467 record_for_igvn(vthread_compare_rgn); 3468 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3469 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3470 record_for_igvn(vthread_compare_io); 3471 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3472 record_for_igvn(tid); 3473 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR); 3474 record_for_igvn(exclusion); 3475 PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3476 record_for_igvn(pinVirtualThread); 3477 3478 // Update control and phi nodes. 3479 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3480 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3481 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3482 vthread_compare_mem->init_req(_false_path, input_memory_state); 3483 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3484 vthread_compare_io->init_req(_false_path, input_io_state); 3485 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3486 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3487 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3488 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3489 pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support)); 3490 pinVirtualThread->init_req(_false_path, _gvn.intcon(0)); 3491 3492 // Update branch state. 3493 set_control(_gvn.transform(vthread_compare_rgn)); 3494 set_all_memory(_gvn.transform(vthread_compare_mem)); 3495 set_i_o(_gvn.transform(vthread_compare_io)); 3496 3497 // Load the event writer oop by dereferencing the jobject handle. 3498 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3499 assert(klass_EventWriter->is_loaded(), "invariant"); 3500 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3501 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3502 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3503 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3504 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3505 3506 // Load the current thread id from the event writer object. 3507 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3508 // Get the field offset to, conditionally, store an updated tid value later. 3509 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3510 // Get the field offset to, conditionally, store an updated exclusion value later. 3511 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3512 // Get the field offset to, conditionally, store an updated pinVirtualThread value later. 3513 Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false); 3514 3515 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3516 record_for_igvn(event_writer_tid_compare_rgn); 3517 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3518 record_for_igvn(event_writer_tid_compare_mem); 3519 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3520 record_for_igvn(event_writer_tid_compare_io); 3521 3522 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3523 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3524 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3525 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3526 3527 // False path, tids are the same. 3528 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3529 3530 // True path, tid is not equal, need to update the tid in the event writer. 3531 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3532 record_for_igvn(tid_is_not_equal); 3533 3534 // Store the pin state to the event writer. 3535 store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered); 3536 3537 // Store the exclusion state to the event writer. 3538 Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift)); 3539 store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered); 3540 3541 // Store the tid to the event writer. 3542 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered); 3543 3544 // Update control and phi nodes. 3545 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3546 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3547 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3548 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3549 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3550 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3551 3552 // Result of top level CFG, Memory, IO and Value. 3553 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3554 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3555 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3556 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3557 3558 // Result control. 3559 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3560 result_rgn->init_req(_false_path, jobj_is_null); 3561 3562 // Result memory. 3563 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3564 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3565 3566 // Result IO. 3567 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3568 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3569 3570 // Result value. 3571 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3572 result_value->init_req(_false_path, null()); // return null 3573 3574 // Set output state. 3575 set_control(_gvn.transform(result_rgn)); 3576 set_all_memory(_gvn.transform(result_mem)); 3577 set_i_o(_gvn.transform(result_io)); 3578 set_result(result_rgn, result_value); 3579 return true; 3580 } 3581 3582 /* 3583 * The intrinsic is a model of this pseudo-code: 3584 * 3585 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3586 * if (carrierThread != thread) { // is virtual thread 3587 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3588 * bool excluded = vthread_epoch_raw & excluded_mask; 3589 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3590 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3591 * if (!excluded) { 3592 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3593 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3594 * } 3595 * Atomic::release_store(&tl->_vthread, true); 3596 * return; 3597 * } 3598 * Atomic::release_store(&tl->_vthread, false); 3599 */ 3600 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3601 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3602 3603 Node* input_memory_state = reset_memory(); 3604 set_all_memory(input_memory_state); 3605 3606 // The most significant bit of the u2 is used to denote thread exclusion 3607 Node* excluded_mask = _gvn.intcon(1 << 15); 3608 // The epoch generation is the range [1-32767] 3609 Node* epoch_mask = _gvn.intcon(32767); 3610 3611 Node* const carrierThread = generate_current_thread(jt); 3612 // If thread != carrierThread, this is a virtual thread. 3613 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3614 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3615 IfNode* iff_thread_not_equal_carrierThread = 3616 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3617 3618 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3619 3620 // False branch, is carrierThread. 3621 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3622 // Store release 3623 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true); 3624 3625 set_all_memory(input_memory_state); 3626 3627 // True branch, is virtual thread. 3628 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3629 set_control(thread_not_equal_carrierThread); 3630 3631 // Load the raw epoch value from the vthread. 3632 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3633 Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR, 3634 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3635 3636 // Mask off the excluded information from the epoch. 3637 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3638 3639 // Load the tid field from the thread. 3640 Node* tid = load_field_from_object(thread, "tid", "J"); 3641 3642 // Store the vthread tid to the jfr thread local. 3643 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3644 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true); 3645 3646 // Branch is_excluded to conditionalize updating the epoch . 3647 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3648 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3649 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3650 3651 // True branch, vthread is excluded, no need to write epoch info. 3652 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3653 set_control(excluded); 3654 Node* vthread_is_excluded = _gvn.intcon(1); 3655 3656 // False branch, vthread is included, update epoch info. 3657 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3658 set_control(included); 3659 Node* vthread_is_included = _gvn.intcon(0); 3660 3661 // Get epoch value. 3662 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3663 3664 // Store the vthread epoch to the jfr thread local. 3665 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3666 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true); 3667 3668 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3669 record_for_igvn(excluded_rgn); 3670 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3671 record_for_igvn(excluded_mem); 3672 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3673 record_for_igvn(exclusion); 3674 3675 // Merge the excluded control and memory. 3676 excluded_rgn->init_req(_true_path, excluded); 3677 excluded_rgn->init_req(_false_path, included); 3678 excluded_mem->init_req(_true_path, tid_memory); 3679 excluded_mem->init_req(_false_path, included_memory); 3680 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3681 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3682 3683 // Set intermediate state. 3684 set_control(_gvn.transform(excluded_rgn)); 3685 set_all_memory(excluded_mem); 3686 3687 // Store the vthread exclusion state to the jfr thread local. 3688 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3689 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true); 3690 3691 // Store release 3692 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true); 3693 3694 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3695 record_for_igvn(thread_compare_rgn); 3696 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3697 record_for_igvn(thread_compare_mem); 3698 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3699 record_for_igvn(vthread); 3700 3701 // Merge the thread_compare control and memory. 3702 thread_compare_rgn->init_req(_true_path, control()); 3703 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3704 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3705 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3706 3707 // Set output state. 3708 set_control(_gvn.transform(thread_compare_rgn)); 3709 set_all_memory(_gvn.transform(thread_compare_mem)); 3710 } 3711 3712 #endif // JFR_HAVE_INTRINSICS 3713 3714 //------------------------inline_native_currentCarrierThread------------------ 3715 bool LibraryCallKit::inline_native_currentCarrierThread() { 3716 Node* junk = nullptr; 3717 set_result(generate_current_thread(junk)); 3718 return true; 3719 } 3720 3721 //------------------------inline_native_currentThread------------------ 3722 bool LibraryCallKit::inline_native_currentThread() { 3723 Node* junk = nullptr; 3724 set_result(generate_virtual_thread(junk)); 3725 return true; 3726 } 3727 3728 //------------------------inline_native_setVthread------------------ 3729 bool LibraryCallKit::inline_native_setCurrentThread() { 3730 assert(C->method()->changes_current_thread(), 3731 "method changes current Thread but is not annotated ChangesCurrentThread"); 3732 Node* arr = argument(1); 3733 Node* thread = _gvn.transform(new ThreadLocalNode()); 3734 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3735 Node* thread_obj_handle 3736 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3737 thread_obj_handle = _gvn.transform(thread_obj_handle); 3738 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3739 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3740 3741 // Change the _monitor_owner_id of the JavaThread 3742 Node* tid = load_field_from_object(arr, "tid", "J"); 3743 Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset())); 3744 store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true); 3745 3746 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3747 return true; 3748 } 3749 3750 const Type* LibraryCallKit::scopedValueCache_type() { 3751 ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3752 const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3753 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3754 3755 // Because we create the scopedValue cache lazily we have to make the 3756 // type of the result BotPTR. 3757 bool xk = etype->klass_is_exact(); 3758 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); 3759 return objects_type; 3760 } 3761 3762 Node* LibraryCallKit::scopedValueCache_helper() { 3763 Node* thread = _gvn.transform(new ThreadLocalNode()); 3764 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3765 // We cannot use immutable_memory() because we might flip onto a 3766 // different carrier thread, at which point we'll need to use that 3767 // carrier thread's cache. 3768 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3769 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3770 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3771 } 3772 3773 //------------------------inline_native_scopedValueCache------------------ 3774 bool LibraryCallKit::inline_native_scopedValueCache() { 3775 Node* cache_obj_handle = scopedValueCache_helper(); 3776 const Type* objects_type = scopedValueCache_type(); 3777 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3778 3779 return true; 3780 } 3781 3782 //------------------------inline_native_setScopedValueCache------------------ 3783 bool LibraryCallKit::inline_native_setScopedValueCache() { 3784 Node* arr = argument(0); 3785 Node* cache_obj_handle = scopedValueCache_helper(); 3786 const Type* objects_type = scopedValueCache_type(); 3787 3788 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3789 access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED); 3790 3791 return true; 3792 } 3793 3794 //------------------------inline_native_Continuation_pin and unpin----------- 3795 3796 // Shared implementation routine for both pin and unpin. 3797 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) { 3798 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3799 3800 // Save input memory. 3801 Node* input_memory_state = reset_memory(); 3802 set_all_memory(input_memory_state); 3803 3804 // TLS 3805 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3806 Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset())); 3807 Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered); 3808 3809 // Null check the last continuation object. 3810 Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null())); 3811 Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne)); 3812 IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3813 3814 // False path, last continuation is null. 3815 Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null)); 3816 3817 // True path, last continuation is not null. 3818 Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null)); 3819 3820 set_control(continuation_is_not_null); 3821 3822 // Load the pin count from the last continuation. 3823 Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset())); 3824 Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered); 3825 3826 // The loaded pin count is compared against a context specific rhs for over/underflow detection. 3827 Node* pin_count_rhs; 3828 if (unpin) { 3829 pin_count_rhs = _gvn.intcon(0); 3830 } else { 3831 pin_count_rhs = _gvn.intcon(UINT32_MAX); 3832 } 3833 Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs)); 3834 Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq)); 3835 IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN); 3836 3837 // True branch, pin count over/underflow. 3838 Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow)); 3839 { 3840 // Trap (but not deoptimize (Action_none)) and continue in the interpreter 3841 // which will throw IllegalStateException for pin count over/underflow. 3842 // No memory changed so far - we can use memory create by reset_memory() 3843 // at the beginning of this intrinsic. No need to call reset_memory() again. 3844 PreserveJVMState pjvms(this); 3845 set_control(pin_count_over_underflow); 3846 uncommon_trap(Deoptimization::Reason_intrinsic, 3847 Deoptimization::Action_none); 3848 assert(stopped(), "invariant"); 3849 } 3850 3851 // False branch, no pin count over/underflow. Increment or decrement pin count and store back. 3852 Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow)); 3853 set_control(valid_pin_count); 3854 3855 Node* next_pin_count; 3856 if (unpin) { 3857 next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1))); 3858 } else { 3859 next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1))); 3860 } 3861 3862 store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered); 3863 3864 // Result of top level CFG and Memory. 3865 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3866 record_for_igvn(result_rgn); 3867 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3868 record_for_igvn(result_mem); 3869 3870 result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count)); 3871 result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null)); 3872 result_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3873 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3874 3875 // Set output state. 3876 set_control(_gvn.transform(result_rgn)); 3877 set_all_memory(_gvn.transform(result_mem)); 3878 3879 return true; 3880 } 3881 3882 //---------------------------load_mirror_from_klass---------------------------- 3883 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3884 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3885 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3886 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3887 // mirror = ((OopHandle)mirror)->resolve(); 3888 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3889 } 3890 3891 //-----------------------load_klass_from_mirror_common------------------------- 3892 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3893 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3894 // and branch to the given path on the region. 3895 // If never_see_null, take an uncommon trap on null, so we can optimistically 3896 // compile for the non-null case. 3897 // If the region is null, force never_see_null = true. 3898 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3899 bool never_see_null, 3900 RegionNode* region, 3901 int null_path, 3902 int offset) { 3903 if (region == nullptr) never_see_null = true; 3904 Node* p = basic_plus_adr(mirror, offset); 3905 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3906 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3907 Node* null_ctl = top(); 3908 kls = null_check_oop(kls, &null_ctl, never_see_null); 3909 if (region != nullptr) { 3910 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3911 region->init_req(null_path, null_ctl); 3912 } else { 3913 assert(null_ctl == top(), "no loose ends"); 3914 } 3915 return kls; 3916 } 3917 3918 //--------------------(inline_native_Class_query helpers)--------------------- 3919 // Use this for JVM_ACC_INTERFACE. 3920 // Fall through if (mods & mask) == bits, take the guard otherwise. 3921 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region, 3922 ByteSize offset, const Type* type, BasicType bt) { 3923 // Branch around if the given klass has the given modifier bit set. 3924 // Like generate_guard, adds a new path onto the region. 3925 Node* modp = basic_plus_adr(kls, in_bytes(offset)); 3926 Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered); 3927 Node* mask = intcon(modifier_mask); 3928 Node* bits = intcon(modifier_bits); 3929 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3930 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3931 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3932 return generate_fair_guard(bol, region); 3933 } 3934 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3935 return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region, 3936 Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR); 3937 } 3938 3939 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast. 3940 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3941 return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region, 3942 Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN); 3943 } 3944 3945 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3946 return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region); 3947 } 3948 3949 //-------------------------inline_native_Class_query------------------- 3950 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3951 const Type* return_type = TypeInt::BOOL; 3952 Node* prim_return_value = top(); // what happens if it's a primitive class? 3953 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3954 bool expect_prim = false; // most of these guys expect to work on refs 3955 3956 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3957 3958 Node* mirror = argument(0); 3959 Node* obj = top(); 3960 3961 switch (id) { 3962 case vmIntrinsics::_isInstance: 3963 // nothing is an instance of a primitive type 3964 prim_return_value = intcon(0); 3965 obj = argument(1); 3966 break; 3967 case vmIntrinsics::_isHidden: 3968 prim_return_value = intcon(0); 3969 break; 3970 case vmIntrinsics::_getSuperclass: 3971 prim_return_value = null(); 3972 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3973 break; 3974 case vmIntrinsics::_getClassAccessFlags: 3975 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3976 return_type = TypeInt::CHAR; 3977 break; 3978 default: 3979 fatal_unexpected_iid(id); 3980 break; 3981 } 3982 3983 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3984 if (mirror_con == nullptr) return false; // cannot happen? 3985 3986 #ifndef PRODUCT 3987 if (C->print_intrinsics() || C->print_inlining()) { 3988 ciType* k = mirror_con->java_mirror_type(); 3989 if (k) { 3990 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3991 k->print_name(); 3992 tty->cr(); 3993 } 3994 } 3995 #endif 3996 3997 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3998 RegionNode* region = new RegionNode(PATH_LIMIT); 3999 record_for_igvn(region); 4000 PhiNode* phi = new PhiNode(region, return_type); 4001 4002 // The mirror will never be null of Reflection.getClassAccessFlags, however 4003 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 4004 // if it is. See bug 4774291. 4005 4006 // For Reflection.getClassAccessFlags(), the null check occurs in 4007 // the wrong place; see inline_unsafe_access(), above, for a similar 4008 // situation. 4009 mirror = null_check(mirror); 4010 // If mirror or obj is dead, only null-path is taken. 4011 if (stopped()) return true; 4012 4013 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 4014 4015 // Now load the mirror's klass metaobject, and null-check it. 4016 // Side-effects region with the control path if the klass is null. 4017 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 4018 // If kls is null, we have a primitive mirror. 4019 phi->init_req(_prim_path, prim_return_value); 4020 if (stopped()) { set_result(region, phi); return true; } 4021 bool safe_for_replace = (region->in(_prim_path) == top()); 4022 4023 Node* p; // handy temp 4024 Node* null_ctl; 4025 4026 // Now that we have the non-null klass, we can perform the real query. 4027 // For constant classes, the query will constant-fold in LoadNode::Value. 4028 Node* query_value = top(); 4029 switch (id) { 4030 case vmIntrinsics::_isInstance: 4031 // nothing is an instance of a primitive type 4032 query_value = gen_instanceof(obj, kls, safe_for_replace); 4033 break; 4034 4035 case vmIntrinsics::_isHidden: 4036 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 4037 if (generate_hidden_class_guard(kls, region) != nullptr) 4038 // A guard was added. If the guard is taken, it was an hidden class. 4039 phi->add_req(intcon(1)); 4040 // If we fall through, it's a plain class. 4041 query_value = intcon(0); 4042 break; 4043 4044 4045 case vmIntrinsics::_getSuperclass: 4046 // The rules here are somewhat unfortunate, but we can still do better 4047 // with random logic than with a JNI call. 4048 // Interfaces store null or Object as _super, but must report null. 4049 // Arrays store an intermediate super as _super, but must report Object. 4050 // Other types can report the actual _super. 4051 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 4052 if (generate_interface_guard(kls, region) != nullptr) 4053 // A guard was added. If the guard is taken, it was an interface. 4054 phi->add_req(null()); 4055 if (generate_array_guard(kls, region) != nullptr) 4056 // A guard was added. If the guard is taken, it was an array. 4057 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 4058 // If we fall through, it's a plain class. Get its _super. 4059 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 4060 kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 4061 null_ctl = top(); 4062 kls = null_check_oop(kls, &null_ctl); 4063 if (null_ctl != top()) { 4064 // If the guard is taken, Object.superClass is null (both klass and mirror). 4065 region->add_req(null_ctl); 4066 phi ->add_req(null()); 4067 } 4068 if (!stopped()) { 4069 query_value = load_mirror_from_klass(kls); 4070 } 4071 break; 4072 4073 case vmIntrinsics::_getClassAccessFlags: 4074 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 4075 query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered); 4076 break; 4077 4078 default: 4079 fatal_unexpected_iid(id); 4080 break; 4081 } 4082 4083 // Fall-through is the normal case of a query to a real class. 4084 phi->init_req(1, query_value); 4085 region->init_req(1, control()); 4086 4087 C->set_has_split_ifs(true); // Has chance for split-if optimization 4088 set_result(region, phi); 4089 return true; 4090 } 4091 4092 //-------------------------inline_Class_cast------------------- 4093 bool LibraryCallKit::inline_Class_cast() { 4094 Node* mirror = argument(0); // Class 4095 Node* obj = argument(1); 4096 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 4097 if (mirror_con == nullptr) { 4098 return false; // dead path (mirror->is_top()). 4099 } 4100 if (obj == nullptr || obj->is_top()) { 4101 return false; // dead path 4102 } 4103 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 4104 4105 // First, see if Class.cast() can be folded statically. 4106 // java_mirror_type() returns non-null for compile-time Class constants. 4107 ciType* tm = mirror_con->java_mirror_type(); 4108 if (tm != nullptr && tm->is_klass() && 4109 tp != nullptr) { 4110 if (!tp->is_loaded()) { 4111 // Don't use intrinsic when class is not loaded. 4112 return false; 4113 } else { 4114 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 4115 if (static_res == Compile::SSC_always_true) { 4116 // isInstance() is true - fold the code. 4117 set_result(obj); 4118 return true; 4119 } else if (static_res == Compile::SSC_always_false) { 4120 // Don't use intrinsic, have to throw ClassCastException. 4121 // If the reference is null, the non-intrinsic bytecode will 4122 // be optimized appropriately. 4123 return false; 4124 } 4125 } 4126 } 4127 4128 // Bailout intrinsic and do normal inlining if exception path is frequent. 4129 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 4130 return false; 4131 } 4132 4133 // Generate dynamic checks. 4134 // Class.cast() is java implementation of _checkcast bytecode. 4135 // Do checkcast (Parse::do_checkcast()) optimizations here. 4136 4137 mirror = null_check(mirror); 4138 // If mirror is dead, only null-path is taken. 4139 if (stopped()) { 4140 return true; 4141 } 4142 4143 // Not-subtype or the mirror's klass ptr is null (in case it is a primitive). 4144 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 4145 RegionNode* region = new RegionNode(PATH_LIMIT); 4146 record_for_igvn(region); 4147 4148 // Now load the mirror's klass metaobject, and null-check it. 4149 // If kls is null, we have a primitive mirror and 4150 // nothing is an instance of a primitive type. 4151 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 4152 4153 Node* res = top(); 4154 if (!stopped()) { 4155 Node* bad_type_ctrl = top(); 4156 // Do checkcast optimizations. 4157 res = gen_checkcast(obj, kls, &bad_type_ctrl); 4158 region->init_req(_bad_type_path, bad_type_ctrl); 4159 } 4160 if (region->in(_prim_path) != top() || 4161 region->in(_bad_type_path) != top()) { 4162 // Let Interpreter throw ClassCastException. 4163 PreserveJVMState pjvms(this); 4164 set_control(_gvn.transform(region)); 4165 uncommon_trap(Deoptimization::Reason_intrinsic, 4166 Deoptimization::Action_maybe_recompile); 4167 } 4168 if (!stopped()) { 4169 set_result(res); 4170 } 4171 return true; 4172 } 4173 4174 4175 //--------------------------inline_native_subtype_check------------------------ 4176 // This intrinsic takes the JNI calls out of the heart of 4177 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 4178 bool LibraryCallKit::inline_native_subtype_check() { 4179 // Pull both arguments off the stack. 4180 Node* args[2]; // two java.lang.Class mirrors: superc, subc 4181 args[0] = argument(0); 4182 args[1] = argument(1); 4183 Node* klasses[2]; // corresponding Klasses: superk, subk 4184 klasses[0] = klasses[1] = top(); 4185 4186 enum { 4187 // A full decision tree on {superc is prim, subc is prim}: 4188 _prim_0_path = 1, // {P,N} => false 4189 // {P,P} & superc!=subc => false 4190 _prim_same_path, // {P,P} & superc==subc => true 4191 _prim_1_path, // {N,P} => false 4192 _ref_subtype_path, // {N,N} & subtype check wins => true 4193 _both_ref_path, // {N,N} & subtype check loses => false 4194 PATH_LIMIT 4195 }; 4196 4197 RegionNode* region = new RegionNode(PATH_LIMIT); 4198 Node* phi = new PhiNode(region, TypeInt::BOOL); 4199 record_for_igvn(region); 4200 4201 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 4202 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 4203 int class_klass_offset = java_lang_Class::klass_offset(); 4204 4205 // First null-check both mirrors and load each mirror's klass metaobject. 4206 int which_arg; 4207 for (which_arg = 0; which_arg <= 1; which_arg++) { 4208 Node* arg = args[which_arg]; 4209 arg = null_check(arg); 4210 if (stopped()) break; 4211 args[which_arg] = arg; 4212 4213 Node* p = basic_plus_adr(arg, class_klass_offset); 4214 Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type); 4215 klasses[which_arg] = _gvn.transform(kls); 4216 } 4217 4218 // Having loaded both klasses, test each for null. 4219 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4220 for (which_arg = 0; which_arg <= 1; which_arg++) { 4221 Node* kls = klasses[which_arg]; 4222 Node* null_ctl = top(); 4223 kls = null_check_oop(kls, &null_ctl, never_see_null); 4224 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 4225 region->init_req(prim_path, null_ctl); 4226 if (stopped()) break; 4227 klasses[which_arg] = kls; 4228 } 4229 4230 if (!stopped()) { 4231 // now we have two reference types, in klasses[0..1] 4232 Node* subk = klasses[1]; // the argument to isAssignableFrom 4233 Node* superk = klasses[0]; // the receiver 4234 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 4235 // now we have a successful reference subtype check 4236 region->set_req(_ref_subtype_path, control()); 4237 } 4238 4239 // If both operands are primitive (both klasses null), then 4240 // we must return true when they are identical primitives. 4241 // It is convenient to test this after the first null klass check. 4242 set_control(region->in(_prim_0_path)); // go back to first null check 4243 if (!stopped()) { 4244 // Since superc is primitive, make a guard for the superc==subc case. 4245 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 4246 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 4247 generate_guard(bol_eq, region, PROB_FAIR); 4248 if (region->req() == PATH_LIMIT+1) { 4249 // A guard was added. If the added guard is taken, superc==subc. 4250 region->swap_edges(PATH_LIMIT, _prim_same_path); 4251 region->del_req(PATH_LIMIT); 4252 } 4253 region->set_req(_prim_0_path, control()); // Not equal after all. 4254 } 4255 4256 // these are the only paths that produce 'true': 4257 phi->set_req(_prim_same_path, intcon(1)); 4258 phi->set_req(_ref_subtype_path, intcon(1)); 4259 4260 // pull together the cases: 4261 assert(region->req() == PATH_LIMIT, "sane region"); 4262 for (uint i = 1; i < region->req(); i++) { 4263 Node* ctl = region->in(i); 4264 if (ctl == nullptr || ctl == top()) { 4265 region->set_req(i, top()); 4266 phi ->set_req(i, top()); 4267 } else if (phi->in(i) == nullptr) { 4268 phi->set_req(i, intcon(0)); // all other paths produce 'false' 4269 } 4270 } 4271 4272 set_control(_gvn.transform(region)); 4273 set_result(_gvn.transform(phi)); 4274 return true; 4275 } 4276 4277 //---------------------generate_array_guard_common------------------------ 4278 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 4279 bool obj_array, bool not_array, Node** obj) { 4280 4281 if (stopped()) { 4282 return nullptr; 4283 } 4284 4285 // If obj_array/non_array==false/false: 4286 // Branch around if the given klass is in fact an array (either obj or prim). 4287 // If obj_array/non_array==false/true: 4288 // Branch around if the given klass is not an array klass of any kind. 4289 // If obj_array/non_array==true/true: 4290 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 4291 // If obj_array/non_array==true/false: 4292 // Branch around if the kls is an oop array (Object[] or subtype) 4293 // 4294 // Like generate_guard, adds a new path onto the region. 4295 jint layout_con = 0; 4296 Node* layout_val = get_layout_helper(kls, layout_con); 4297 if (layout_val == nullptr) { 4298 bool query = (obj_array 4299 ? Klass::layout_helper_is_objArray(layout_con) 4300 : Klass::layout_helper_is_array(layout_con)); 4301 if (query == not_array) { 4302 return nullptr; // never a branch 4303 } else { // always a branch 4304 Node* always_branch = control(); 4305 if (region != nullptr) 4306 region->add_req(always_branch); 4307 set_control(top()); 4308 return always_branch; 4309 } 4310 } 4311 // Now test the correct condition. 4312 jint nval = (obj_array 4313 ? (jint)(Klass::_lh_array_tag_type_value 4314 << Klass::_lh_array_tag_shift) 4315 : Klass::_lh_neutral_value); 4316 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 4317 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 4318 // invert the test if we are looking for a non-array 4319 if (not_array) btest = BoolTest(btest).negate(); 4320 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 4321 Node* ctrl = generate_fair_guard(bol, region); 4322 Node* is_array_ctrl = not_array ? control() : ctrl; 4323 if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) { 4324 // Keep track of the fact that 'obj' is an array to prevent 4325 // array specific accesses from floating above the guard. 4326 *obj = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM)); 4327 } 4328 return ctrl; 4329 } 4330 4331 4332 //-----------------------inline_native_newArray-------------------------- 4333 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 4334 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 4335 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 4336 Node* mirror; 4337 Node* count_val; 4338 if (uninitialized) { 4339 null_check_receiver(); 4340 mirror = argument(1); 4341 count_val = argument(2); 4342 } else { 4343 mirror = argument(0); 4344 count_val = argument(1); 4345 } 4346 4347 mirror = null_check(mirror); 4348 // If mirror or obj is dead, only null-path is taken. 4349 if (stopped()) return true; 4350 4351 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 4352 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4353 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4354 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4355 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4356 4357 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 4358 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4359 result_reg, _slow_path); 4360 Node* normal_ctl = control(); 4361 Node* no_array_ctl = result_reg->in(_slow_path); 4362 4363 // Generate code for the slow case. We make a call to newArray(). 4364 set_control(no_array_ctl); 4365 if (!stopped()) { 4366 // Either the input type is void.class, or else the 4367 // array klass has not yet been cached. Either the 4368 // ensuing call will throw an exception, or else it 4369 // will cache the array klass for next time. 4370 PreserveJVMState pjvms(this); 4371 CallJavaNode* slow_call = nullptr; 4372 if (uninitialized) { 4373 // Generate optimized virtual call (holder class 'Unsafe' is final) 4374 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true); 4375 } else { 4376 slow_call = generate_method_call_static(vmIntrinsics::_newArray, true); 4377 } 4378 Node* slow_result = set_results_for_java_call(slow_call); 4379 // this->control() comes from set_results_for_java_call 4380 result_reg->set_req(_slow_path, control()); 4381 result_val->set_req(_slow_path, slow_result); 4382 result_io ->set_req(_slow_path, i_o()); 4383 result_mem->set_req(_slow_path, reset_memory()); 4384 } 4385 4386 set_control(normal_ctl); 4387 if (!stopped()) { 4388 // Normal case: The array type has been cached in the java.lang.Class. 4389 // The following call works fine even if the array type is polymorphic. 4390 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4391 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4392 result_reg->init_req(_normal_path, control()); 4393 result_val->init_req(_normal_path, obj); 4394 result_io ->init_req(_normal_path, i_o()); 4395 result_mem->init_req(_normal_path, reset_memory()); 4396 4397 if (uninitialized) { 4398 // Mark the allocation so that zeroing is skipped 4399 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj); 4400 alloc->maybe_set_complete(&_gvn); 4401 } 4402 } 4403 4404 // Return the combined state. 4405 set_i_o( _gvn.transform(result_io) ); 4406 set_all_memory( _gvn.transform(result_mem)); 4407 4408 C->set_has_split_ifs(true); // Has chance for split-if optimization 4409 set_result(result_reg, result_val); 4410 return true; 4411 } 4412 4413 //----------------------inline_native_getLength-------------------------- 4414 // public static native int java.lang.reflect.Array.getLength(Object array); 4415 bool LibraryCallKit::inline_native_getLength() { 4416 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4417 4418 Node* array = null_check(argument(0)); 4419 // If array is dead, only null-path is taken. 4420 if (stopped()) return true; 4421 4422 // Deoptimize if it is a non-array. 4423 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array); 4424 4425 if (non_array != nullptr) { 4426 PreserveJVMState pjvms(this); 4427 set_control(non_array); 4428 uncommon_trap(Deoptimization::Reason_intrinsic, 4429 Deoptimization::Action_maybe_recompile); 4430 } 4431 4432 // If control is dead, only non-array-path is taken. 4433 if (stopped()) return true; 4434 4435 // The works fine even if the array type is polymorphic. 4436 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4437 Node* result = load_array_length(array); 4438 4439 C->set_has_split_ifs(true); // Has chance for split-if optimization 4440 set_result(result); 4441 return true; 4442 } 4443 4444 //------------------------inline_array_copyOf---------------------------- 4445 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4446 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4447 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4448 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4449 4450 // Get the arguments. 4451 Node* original = argument(0); 4452 Node* start = is_copyOfRange? argument(1): intcon(0); 4453 Node* end = is_copyOfRange? argument(2): argument(1); 4454 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4455 4456 Node* newcopy = nullptr; 4457 4458 // Set the original stack and the reexecute bit for the interpreter to reexecute 4459 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4460 { PreserveReexecuteState preexecs(this); 4461 jvms()->set_should_reexecute(true); 4462 4463 array_type_mirror = null_check(array_type_mirror); 4464 original = null_check(original); 4465 4466 // Check if a null path was taken unconditionally. 4467 if (stopped()) return true; 4468 4469 Node* orig_length = load_array_length(original); 4470 4471 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4472 klass_node = null_check(klass_node); 4473 4474 RegionNode* bailout = new RegionNode(1); 4475 record_for_igvn(bailout); 4476 4477 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4478 // Bail out if that is so. 4479 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 4480 if (not_objArray != nullptr) { 4481 // Improve the klass node's type from the new optimistic assumption: 4482 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4483 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 4484 Node* cast = new CastPPNode(control(), klass_node, akls); 4485 klass_node = _gvn.transform(cast); 4486 } 4487 4488 // Bail out if either start or end is negative. 4489 generate_negative_guard(start, bailout, &start); 4490 generate_negative_guard(end, bailout, &end); 4491 4492 Node* length = end; 4493 if (_gvn.type(start) != TypeInt::ZERO) { 4494 length = _gvn.transform(new SubINode(end, start)); 4495 } 4496 4497 // Bail out if length is negative (i.e., if start > end). 4498 // Without this the new_array would throw 4499 // NegativeArraySizeException but IllegalArgumentException is what 4500 // should be thrown 4501 generate_negative_guard(length, bailout, &length); 4502 4503 // Bail out if start is larger than the original length 4504 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4505 generate_negative_guard(orig_tail, bailout, &orig_tail); 4506 4507 if (bailout->req() > 1) { 4508 PreserveJVMState pjvms(this); 4509 set_control(_gvn.transform(bailout)); 4510 uncommon_trap(Deoptimization::Reason_intrinsic, 4511 Deoptimization::Action_maybe_recompile); 4512 } 4513 4514 if (!stopped()) { 4515 // How many elements will we copy from the original? 4516 // The answer is MinI(orig_tail, length). 4517 Node* moved = _gvn.transform(new MinINode(orig_tail, length)); 4518 4519 // Generate a direct call to the right arraycopy function(s). 4520 // We know the copy is disjoint but we might not know if the 4521 // oop stores need checking. 4522 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4523 // This will fail a store-check if x contains any non-nulls. 4524 4525 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4526 // loads/stores but it is legal only if we're sure the 4527 // Arrays.copyOf would succeed. So we need all input arguments 4528 // to the copyOf to be validated, including that the copy to the 4529 // new array won't trigger an ArrayStoreException. That subtype 4530 // check can be optimized if we know something on the type of 4531 // the input array from type speculation. 4532 if (_gvn.type(klass_node)->singleton()) { 4533 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4534 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4535 4536 int test = C->static_subtype_check(superk, subk); 4537 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4538 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4539 if (t_original->speculative_type() != nullptr) { 4540 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4541 } 4542 } 4543 } 4544 4545 bool validated = false; 4546 // Reason_class_check rather than Reason_intrinsic because we 4547 // want to intrinsify even if this traps. 4548 if (!too_many_traps(Deoptimization::Reason_class_check)) { 4549 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4550 4551 if (not_subtype_ctrl != top()) { 4552 PreserveJVMState pjvms(this); 4553 set_control(not_subtype_ctrl); 4554 uncommon_trap(Deoptimization::Reason_class_check, 4555 Deoptimization::Action_make_not_entrant); 4556 assert(stopped(), "Should be stopped"); 4557 } 4558 validated = true; 4559 } 4560 4561 if (!stopped()) { 4562 newcopy = new_array(klass_node, length, 0); // no arguments to push 4563 4564 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true, 4565 load_object_klass(original), klass_node); 4566 if (!is_copyOfRange) { 4567 ac->set_copyof(validated); 4568 } else { 4569 ac->set_copyofrange(validated); 4570 } 4571 Node* n = _gvn.transform(ac); 4572 if (n == ac) { 4573 ac->connect_outputs(this); 4574 } else { 4575 assert(validated, "shouldn't transform if all arguments not validated"); 4576 set_all_memory(n); 4577 } 4578 } 4579 } 4580 } // original reexecute is set back here 4581 4582 C->set_has_split_ifs(true); // Has chance for split-if optimization 4583 if (!stopped()) { 4584 set_result(newcopy); 4585 } 4586 return true; 4587 } 4588 4589 4590 //----------------------generate_virtual_guard--------------------------- 4591 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4592 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4593 RegionNode* slow_region) { 4594 ciMethod* method = callee(); 4595 int vtable_index = method->vtable_index(); 4596 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4597 "bad index %d", vtable_index); 4598 // Get the Method* out of the appropriate vtable entry. 4599 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4600 vtable_index*vtableEntry::size_in_bytes() + 4601 in_bytes(vtableEntry::method_offset()); 4602 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4603 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4604 4605 // Compare the target method with the expected method (e.g., Object.hashCode). 4606 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4607 4608 Node* native_call = makecon(native_call_addr); 4609 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4610 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4611 4612 return generate_slow_guard(test_native, slow_region); 4613 } 4614 4615 //-----------------------generate_method_call---------------------------- 4616 // Use generate_method_call to make a slow-call to the real 4617 // method if the fast path fails. An alternative would be to 4618 // use a stub like OptoRuntime::slow_arraycopy_Java. 4619 // This only works for expanding the current library call, 4620 // not another intrinsic. (E.g., don't use this for making an 4621 // arraycopy call inside of the copyOf intrinsic.) 4622 CallJavaNode* 4623 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) { 4624 // When compiling the intrinsic method itself, do not use this technique. 4625 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4626 4627 ciMethod* method = callee(); 4628 // ensure the JVMS we have will be correct for this call 4629 guarantee(method_id == method->intrinsic_id(), "must match"); 4630 4631 const TypeFunc* tf = TypeFunc::make(method); 4632 if (res_not_null) { 4633 assert(tf->return_type() == T_OBJECT, ""); 4634 const TypeTuple* range = tf->range(); 4635 const Type** fields = TypeTuple::fields(range->cnt()); 4636 fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL); 4637 const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields); 4638 tf = TypeFunc::make(tf->domain(), new_range); 4639 } 4640 CallJavaNode* slow_call; 4641 if (is_static) { 4642 assert(!is_virtual, ""); 4643 slow_call = new CallStaticJavaNode(C, tf, 4644 SharedRuntime::get_resolve_static_call_stub(), method); 4645 } else if (is_virtual) { 4646 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4647 int vtable_index = Method::invalid_vtable_index; 4648 if (UseInlineCaches) { 4649 // Suppress the vtable call 4650 } else { 4651 // hashCode and clone are not a miranda methods, 4652 // so the vtable index is fixed. 4653 // No need to use the linkResolver to get it. 4654 vtable_index = method->vtable_index(); 4655 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4656 "bad index %d", vtable_index); 4657 } 4658 slow_call = new CallDynamicJavaNode(tf, 4659 SharedRuntime::get_resolve_virtual_call_stub(), 4660 method, vtable_index); 4661 } else { // neither virtual nor static: opt_virtual 4662 assert(!gvn().type(argument(0))->maybe_null(), "should not be null"); 4663 slow_call = new CallStaticJavaNode(C, tf, 4664 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4665 slow_call->set_optimized_virtual(true); 4666 } 4667 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4668 // To be able to issue a direct call (optimized virtual or virtual) 4669 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4670 // about the method being invoked should be attached to the call site to 4671 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4672 slow_call->set_override_symbolic_info(true); 4673 } 4674 set_arguments_for_java_call(slow_call); 4675 set_edges_for_java_call(slow_call); 4676 return slow_call; 4677 } 4678 4679 4680 /** 4681 * Build special case code for calls to hashCode on an object. This call may 4682 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4683 * slightly different code. 4684 */ 4685 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4686 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4687 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4688 4689 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4690 4691 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4692 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4693 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4694 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4695 Node* obj = nullptr; 4696 if (!is_static) { 4697 // Check for hashing null object 4698 obj = null_check_receiver(); 4699 if (stopped()) return true; // unconditionally null 4700 result_reg->init_req(_null_path, top()); 4701 result_val->init_req(_null_path, top()); 4702 } else { 4703 // Do a null check, and return zero if null. 4704 // System.identityHashCode(null) == 0 4705 obj = argument(0); 4706 Node* null_ctl = top(); 4707 obj = null_check_oop(obj, &null_ctl); 4708 result_reg->init_req(_null_path, null_ctl); 4709 result_val->init_req(_null_path, _gvn.intcon(0)); 4710 } 4711 4712 // Unconditionally null? Then return right away. 4713 if (stopped()) { 4714 set_control( result_reg->in(_null_path)); 4715 if (!stopped()) 4716 set_result(result_val->in(_null_path)); 4717 return true; 4718 } 4719 4720 // We only go to the fast case code if we pass a number of guards. The 4721 // paths which do not pass are accumulated in the slow_region. 4722 RegionNode* slow_region = new RegionNode(1); 4723 record_for_igvn(slow_region); 4724 4725 // If this is a virtual call, we generate a funny guard. We pull out 4726 // the vtable entry corresponding to hashCode() from the target object. 4727 // If the target method which we are calling happens to be the native 4728 // Object hashCode() method, we pass the guard. We do not need this 4729 // guard for non-virtual calls -- the caller is known to be the native 4730 // Object hashCode(). 4731 if (is_virtual) { 4732 // After null check, get the object's klass. 4733 Node* obj_klass = load_object_klass(obj); 4734 generate_virtual_guard(obj_klass, slow_region); 4735 } 4736 4737 // Get the header out of the object, use LoadMarkNode when available 4738 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4739 // The control of the load must be null. Otherwise, the load can move before 4740 // the null check after castPP removal. 4741 Node* no_ctrl = nullptr; 4742 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4743 4744 if (!UseObjectMonitorTable) { 4745 // Test the header to see if it is safe to read w.r.t. locking. 4746 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); 4747 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4748 if (LockingMode == LM_LIGHTWEIGHT) { 4749 Node *monitor_val = _gvn.MakeConX(markWord::monitor_value); 4750 Node *chk_monitor = _gvn.transform(new CmpXNode(lmasked_header, monitor_val)); 4751 Node *test_monitor = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq)); 4752 4753 generate_slow_guard(test_monitor, slow_region); 4754 } else { 4755 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4756 Node *chk_unlocked = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val)); 4757 Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne)); 4758 4759 generate_slow_guard(test_not_unlocked, slow_region); 4760 } 4761 } 4762 4763 // Get the hash value and check to see that it has been properly assigned. 4764 // We depend on hash_mask being at most 32 bits and avoid the use of 4765 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4766 // vm: see markWord.hpp. 4767 Node *hash_mask = _gvn.intcon(markWord::hash_mask); 4768 Node *hash_shift = _gvn.intcon(markWord::hash_shift); 4769 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4770 // This hack lets the hash bits live anywhere in the mark object now, as long 4771 // as the shift drops the relevant bits into the low 32 bits. Note that 4772 // Java spec says that HashCode is an int so there's no point in capturing 4773 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4774 hshifted_header = ConvX2I(hshifted_header); 4775 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4776 4777 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4778 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4779 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4780 4781 generate_slow_guard(test_assigned, slow_region); 4782 4783 Node* init_mem = reset_memory(); 4784 // fill in the rest of the null path: 4785 result_io ->init_req(_null_path, i_o()); 4786 result_mem->init_req(_null_path, init_mem); 4787 4788 result_val->init_req(_fast_path, hash_val); 4789 result_reg->init_req(_fast_path, control()); 4790 result_io ->init_req(_fast_path, i_o()); 4791 result_mem->init_req(_fast_path, init_mem); 4792 4793 // Generate code for the slow case. We make a call to hashCode(). 4794 set_control(_gvn.transform(slow_region)); 4795 if (!stopped()) { 4796 // No need for PreserveJVMState, because we're using up the present state. 4797 set_all_memory(init_mem); 4798 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4799 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false); 4800 Node* slow_result = set_results_for_java_call(slow_call); 4801 // this->control() comes from set_results_for_java_call 4802 result_reg->init_req(_slow_path, control()); 4803 result_val->init_req(_slow_path, slow_result); 4804 result_io ->set_req(_slow_path, i_o()); 4805 result_mem ->set_req(_slow_path, reset_memory()); 4806 } 4807 4808 // Return the combined state. 4809 set_i_o( _gvn.transform(result_io) ); 4810 set_all_memory( _gvn.transform(result_mem)); 4811 4812 set_result(result_reg, result_val); 4813 return true; 4814 } 4815 4816 //---------------------------inline_native_getClass---------------------------- 4817 // public final native Class<?> java.lang.Object.getClass(); 4818 // 4819 // Build special case code for calls to getClass on an object. 4820 bool LibraryCallKit::inline_native_getClass() { 4821 Node* obj = null_check_receiver(); 4822 if (stopped()) return true; 4823 set_result(load_mirror_from_klass(load_object_klass(obj))); 4824 return true; 4825 } 4826 4827 //-----------------inline_native_Reflection_getCallerClass--------------------- 4828 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4829 // 4830 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4831 // 4832 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4833 // in that it must skip particular security frames and checks for 4834 // caller sensitive methods. 4835 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4836 #ifndef PRODUCT 4837 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4838 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4839 } 4840 #endif 4841 4842 if (!jvms()->has_method()) { 4843 #ifndef PRODUCT 4844 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4845 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4846 } 4847 #endif 4848 return false; 4849 } 4850 4851 // Walk back up the JVM state to find the caller at the required 4852 // depth. 4853 JVMState* caller_jvms = jvms(); 4854 4855 // Cf. JVM_GetCallerClass 4856 // NOTE: Start the loop at depth 1 because the current JVM state does 4857 // not include the Reflection.getCallerClass() frame. 4858 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 4859 ciMethod* m = caller_jvms->method(); 4860 switch (n) { 4861 case 0: 4862 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4863 break; 4864 case 1: 4865 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4866 if (!m->caller_sensitive()) { 4867 #ifndef PRODUCT 4868 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4869 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4870 } 4871 #endif 4872 return false; // bail-out; let JVM_GetCallerClass do the work 4873 } 4874 break; 4875 default: 4876 if (!m->is_ignored_by_security_stack_walk()) { 4877 // We have reached the desired frame; return the holder class. 4878 // Acquire method holder as java.lang.Class and push as constant. 4879 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4880 ciInstance* caller_mirror = caller_klass->java_mirror(); 4881 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4882 4883 #ifndef PRODUCT 4884 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4885 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4886 tty->print_cr(" JVM state at this point:"); 4887 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4888 ciMethod* m = jvms()->of_depth(i)->method(); 4889 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4890 } 4891 } 4892 #endif 4893 return true; 4894 } 4895 break; 4896 } 4897 } 4898 4899 #ifndef PRODUCT 4900 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4901 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4902 tty->print_cr(" JVM state at this point:"); 4903 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4904 ciMethod* m = jvms()->of_depth(i)->method(); 4905 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4906 } 4907 } 4908 #endif 4909 4910 return false; // bail-out; let JVM_GetCallerClass do the work 4911 } 4912 4913 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4914 Node* arg = argument(0); 4915 Node* result = nullptr; 4916 4917 switch (id) { 4918 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4919 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4920 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4921 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4922 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 4923 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 4924 4925 case vmIntrinsics::_doubleToLongBits: { 4926 // two paths (plus control) merge in a wood 4927 RegionNode *r = new RegionNode(3); 4928 Node *phi = new PhiNode(r, TypeLong::LONG); 4929 4930 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4931 // Build the boolean node 4932 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4933 4934 // Branch either way. 4935 // NaN case is less traveled, which makes all the difference. 4936 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4937 Node *opt_isnan = _gvn.transform(ifisnan); 4938 assert( opt_isnan->is_If(), "Expect an IfNode"); 4939 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4940 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4941 4942 set_control(iftrue); 4943 4944 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4945 Node *slow_result = longcon(nan_bits); // return NaN 4946 phi->init_req(1, _gvn.transform( slow_result )); 4947 r->init_req(1, iftrue); 4948 4949 // Else fall through 4950 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4951 set_control(iffalse); 4952 4953 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4954 r->init_req(2, iffalse); 4955 4956 // Post merge 4957 set_control(_gvn.transform(r)); 4958 record_for_igvn(r); 4959 4960 C->set_has_split_ifs(true); // Has chance for split-if optimization 4961 result = phi; 4962 assert(result->bottom_type()->isa_long(), "must be"); 4963 break; 4964 } 4965 4966 case vmIntrinsics::_floatToIntBits: { 4967 // two paths (plus control) merge in a wood 4968 RegionNode *r = new RegionNode(3); 4969 Node *phi = new PhiNode(r, TypeInt::INT); 4970 4971 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4972 // Build the boolean node 4973 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4974 4975 // Branch either way. 4976 // NaN case is less traveled, which makes all the difference. 4977 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4978 Node *opt_isnan = _gvn.transform(ifisnan); 4979 assert( opt_isnan->is_If(), "Expect an IfNode"); 4980 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4981 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4982 4983 set_control(iftrue); 4984 4985 static const jint nan_bits = 0x7fc00000; 4986 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4987 phi->init_req(1, _gvn.transform( slow_result )); 4988 r->init_req(1, iftrue); 4989 4990 // Else fall through 4991 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4992 set_control(iffalse); 4993 4994 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4995 r->init_req(2, iffalse); 4996 4997 // Post merge 4998 set_control(_gvn.transform(r)); 4999 record_for_igvn(r); 5000 5001 C->set_has_split_ifs(true); // Has chance for split-if optimization 5002 result = phi; 5003 assert(result->bottom_type()->isa_int(), "must be"); 5004 break; 5005 } 5006 5007 default: 5008 fatal_unexpected_iid(id); 5009 break; 5010 } 5011 set_result(_gvn.transform(result)); 5012 return true; 5013 } 5014 5015 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 5016 Node* arg = argument(0); 5017 Node* result = nullptr; 5018 5019 switch (id) { 5020 case vmIntrinsics::_floatIsInfinite: 5021 result = new IsInfiniteFNode(arg); 5022 break; 5023 case vmIntrinsics::_floatIsFinite: 5024 result = new IsFiniteFNode(arg); 5025 break; 5026 case vmIntrinsics::_doubleIsInfinite: 5027 result = new IsInfiniteDNode(arg); 5028 break; 5029 case vmIntrinsics::_doubleIsFinite: 5030 result = new IsFiniteDNode(arg); 5031 break; 5032 default: 5033 fatal_unexpected_iid(id); 5034 break; 5035 } 5036 set_result(_gvn.transform(result)); 5037 return true; 5038 } 5039 5040 //----------------------inline_unsafe_copyMemory------------------------- 5041 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 5042 5043 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 5044 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 5045 const Type* base_t = gvn.type(base); 5046 5047 bool in_native = (base_t == TypePtr::NULL_PTR); 5048 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 5049 bool is_mixed = !in_heap && !in_native; 5050 5051 if (is_mixed) { 5052 return true; // mixed accesses can touch both on-heap and off-heap memory 5053 } 5054 if (in_heap) { 5055 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 5056 if (!is_prim_array) { 5057 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 5058 // there's not enough type information available to determine proper memory slice for it. 5059 return true; 5060 } 5061 } 5062 return false; 5063 } 5064 5065 bool LibraryCallKit::inline_unsafe_copyMemory() { 5066 if (callee()->is_static()) return false; // caller must have the capability! 5067 null_check_receiver(); // null-check receiver 5068 if (stopped()) return true; 5069 5070 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5071 5072 Node* src_base = argument(1); // type: oop 5073 Node* src_off = ConvL2X(argument(2)); // type: long 5074 Node* dst_base = argument(4); // type: oop 5075 Node* dst_off = ConvL2X(argument(5)); // type: long 5076 Node* size = ConvL2X(argument(7)); // type: long 5077 5078 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5079 "fieldOffset must be byte-scaled"); 5080 5081 Node* src_addr = make_unsafe_address(src_base, src_off); 5082 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5083 5084 Node* thread = _gvn.transform(new ThreadLocalNode()); 5085 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5086 BasicType doing_unsafe_access_bt = T_BYTE; 5087 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5088 5089 // update volatile field 5090 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5091 5092 int flags = RC_LEAF | RC_NO_FP; 5093 5094 const TypePtr* dst_type = TypePtr::BOTTOM; 5095 5096 // Adjust memory effects of the runtime call based on input values. 5097 if (!has_wide_mem(_gvn, src_addr, src_base) && 5098 !has_wide_mem(_gvn, dst_addr, dst_base)) { 5099 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5100 5101 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 5102 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 5103 flags |= RC_NARROW_MEM; // narrow in memory 5104 } 5105 } 5106 5107 // Call it. Note that the length argument is not scaled. 5108 make_runtime_call(flags, 5109 OptoRuntime::fast_arraycopy_Type(), 5110 StubRoutines::unsafe_arraycopy(), 5111 "unsafe_arraycopy", 5112 dst_type, 5113 src_addr, dst_addr, size XTOP); 5114 5115 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5116 5117 return true; 5118 } 5119 5120 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value); 5121 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value' 5122 bool LibraryCallKit::inline_unsafe_setMemory() { 5123 if (callee()->is_static()) return false; // caller must have the capability! 5124 null_check_receiver(); // null-check receiver 5125 if (stopped()) return true; 5126 5127 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 5128 5129 Node* dst_base = argument(1); // type: oop 5130 Node* dst_off = ConvL2X(argument(2)); // type: long 5131 Node* size = ConvL2X(argument(4)); // type: long 5132 Node* byte = argument(6); // type: byte 5133 5134 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 5135 "fieldOffset must be byte-scaled"); 5136 5137 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 5138 5139 Node* thread = _gvn.transform(new ThreadLocalNode()); 5140 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 5141 BasicType doing_unsafe_access_bt = T_BYTE; 5142 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 5143 5144 // update volatile field 5145 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered); 5146 5147 int flags = RC_LEAF | RC_NO_FP; 5148 5149 const TypePtr* dst_type = TypePtr::BOTTOM; 5150 5151 // Adjust memory effects of the runtime call based on input values. 5152 if (!has_wide_mem(_gvn, dst_addr, dst_base)) { 5153 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 5154 5155 flags |= RC_NARROW_MEM; // narrow in memory 5156 } 5157 5158 // Call it. Note that the length argument is not scaled. 5159 make_runtime_call(flags, 5160 OptoRuntime::unsafe_setmemory_Type(), 5161 StubRoutines::unsafe_setmemory(), 5162 "unsafe_setmemory", 5163 dst_type, 5164 dst_addr, size XTOP, byte); 5165 5166 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered); 5167 5168 return true; 5169 } 5170 5171 #undef XTOP 5172 5173 //------------------------clone_coping----------------------------------- 5174 // Helper function for inline_native_clone. 5175 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 5176 assert(obj_size != nullptr, ""); 5177 Node* raw_obj = alloc_obj->in(1); 5178 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 5179 5180 AllocateNode* alloc = nullptr; 5181 if (ReduceBulkZeroing && 5182 // If we are implementing an array clone without knowing its source type 5183 // (can happen when compiling the array-guarded branch of a reflective 5184 // Object.clone() invocation), initialize the array within the allocation. 5185 // This is needed because some GCs (e.g. ZGC) might fall back in this case 5186 // to a runtime clone call that assumes fully initialized source arrays. 5187 (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) { 5188 // We will be completely responsible for initializing this object - 5189 // mark Initialize node as complete. 5190 alloc = AllocateNode::Ideal_allocation(alloc_obj); 5191 // The object was just allocated - there should be no any stores! 5192 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 5193 // Mark as complete_with_arraycopy so that on AllocateNode 5194 // expansion, we know this AllocateNode is initialized by an array 5195 // copy and a StoreStore barrier exists after the array copy. 5196 alloc->initialization()->set_complete_with_arraycopy(); 5197 } 5198 5199 Node* size = _gvn.transform(obj_size); 5200 access_clone(obj, alloc_obj, size, is_array); 5201 5202 // Do not let reads from the cloned object float above the arraycopy. 5203 if (alloc != nullptr) { 5204 // Do not let stores that initialize this object be reordered with 5205 // a subsequent store that would make this object accessible by 5206 // other threads. 5207 // Record what AllocateNode this StoreStore protects so that 5208 // escape analysis can go from the MemBarStoreStoreNode to the 5209 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 5210 // based on the escape status of the AllocateNode. 5211 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 5212 } else { 5213 insert_mem_bar(Op_MemBarCPUOrder); 5214 } 5215 } 5216 5217 //------------------------inline_native_clone---------------------------- 5218 // protected native Object java.lang.Object.clone(); 5219 // 5220 // Here are the simple edge cases: 5221 // null receiver => normal trap 5222 // virtual and clone was overridden => slow path to out-of-line clone 5223 // not cloneable or finalizer => slow path to out-of-line Object.clone 5224 // 5225 // The general case has two steps, allocation and copying. 5226 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 5227 // 5228 // Copying also has two cases, oop arrays and everything else. 5229 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 5230 // Everything else uses the tight inline loop supplied by CopyArrayNode. 5231 // 5232 // These steps fold up nicely if and when the cloned object's klass 5233 // can be sharply typed as an object array, a type array, or an instance. 5234 // 5235 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 5236 PhiNode* result_val; 5237 5238 // Set the reexecute bit for the interpreter to reexecute 5239 // the bytecode that invokes Object.clone if deoptimization happens. 5240 { PreserveReexecuteState preexecs(this); 5241 jvms()->set_should_reexecute(true); 5242 5243 Node* obj = null_check_receiver(); 5244 if (stopped()) return true; 5245 5246 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 5247 5248 // If we are going to clone an instance, we need its exact type to 5249 // know the number and types of fields to convert the clone to 5250 // loads/stores. Maybe a speculative type can help us. 5251 if (!obj_type->klass_is_exact() && 5252 obj_type->speculative_type() != nullptr && 5253 obj_type->speculative_type()->is_instance_klass()) { 5254 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 5255 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 5256 !spec_ik->has_injected_fields()) { 5257 if (!obj_type->isa_instptr() || 5258 obj_type->is_instptr()->instance_klass()->has_subklass()) { 5259 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 5260 } 5261 } 5262 } 5263 5264 // Conservatively insert a memory barrier on all memory slices. 5265 // Do not let writes into the original float below the clone. 5266 insert_mem_bar(Op_MemBarCPUOrder); 5267 5268 // paths into result_reg: 5269 enum { 5270 _slow_path = 1, // out-of-line call to clone method (virtual or not) 5271 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 5272 _array_path, // plain array allocation, plus arrayof_long_arraycopy 5273 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 5274 PATH_LIMIT 5275 }; 5276 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 5277 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 5278 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 5279 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 5280 record_for_igvn(result_reg); 5281 5282 Node* obj_klass = load_object_klass(obj); 5283 Node* array_obj = obj; 5284 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj); 5285 if (array_ctl != nullptr) { 5286 // It's an array. 5287 PreserveJVMState pjvms(this); 5288 set_control(array_ctl); 5289 Node* obj_length = load_array_length(array_obj); 5290 Node* array_size = nullptr; // Size of the array without object alignment padding. 5291 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true); 5292 5293 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 5294 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 5295 // If it is an oop array, it requires very special treatment, 5296 // because gc barriers are required when accessing the array. 5297 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 5298 if (is_obja != nullptr) { 5299 PreserveJVMState pjvms2(this); 5300 set_control(is_obja); 5301 // Generate a direct call to the right arraycopy function(s). 5302 // Clones are always tightly coupled. 5303 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 5304 ac->set_clone_oop_array(); 5305 Node* n = _gvn.transform(ac); 5306 assert(n == ac, "cannot disappear"); 5307 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 5308 5309 result_reg->init_req(_objArray_path, control()); 5310 result_val->init_req(_objArray_path, alloc_obj); 5311 result_i_o ->set_req(_objArray_path, i_o()); 5312 result_mem ->set_req(_objArray_path, reset_memory()); 5313 } 5314 } 5315 // Otherwise, there are no barriers to worry about. 5316 // (We can dispense with card marks if we know the allocation 5317 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 5318 // causes the non-eden paths to take compensating steps to 5319 // simulate a fresh allocation, so that no further 5320 // card marks are required in compiled code to initialize 5321 // the object.) 5322 5323 if (!stopped()) { 5324 copy_to_clone(array_obj, alloc_obj, array_size, true); 5325 5326 // Present the results of the copy. 5327 result_reg->init_req(_array_path, control()); 5328 result_val->init_req(_array_path, alloc_obj); 5329 result_i_o ->set_req(_array_path, i_o()); 5330 result_mem ->set_req(_array_path, reset_memory()); 5331 } 5332 } 5333 5334 // We only go to the instance fast case code if we pass a number of guards. 5335 // The paths which do not pass are accumulated in the slow_region. 5336 RegionNode* slow_region = new RegionNode(1); 5337 record_for_igvn(slow_region); 5338 if (!stopped()) { 5339 // It's an instance (we did array above). Make the slow-path tests. 5340 // If this is a virtual call, we generate a funny guard. We grab 5341 // the vtable entry corresponding to clone() from the target object. 5342 // If the target method which we are calling happens to be the 5343 // Object clone() method, we pass the guard. We do not need this 5344 // guard for non-virtual calls; the caller is known to be the native 5345 // Object clone(). 5346 if (is_virtual) { 5347 generate_virtual_guard(obj_klass, slow_region); 5348 } 5349 5350 // The object must be easily cloneable and must not have a finalizer. 5351 // Both of these conditions may be checked in a single test. 5352 // We could optimize the test further, but we don't care. 5353 generate_misc_flags_guard(obj_klass, 5354 // Test both conditions: 5355 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer, 5356 // Must be cloneable but not finalizer: 5357 KlassFlags::_misc_is_cloneable_fast, 5358 slow_region); 5359 } 5360 5361 if (!stopped()) { 5362 // It's an instance, and it passed the slow-path tests. 5363 PreserveJVMState pjvms(this); 5364 Node* obj_size = nullptr; // Total object size, including object alignment padding. 5365 // Need to deoptimize on exception from allocation since Object.clone intrinsic 5366 // is reexecuted if deoptimization occurs and there could be problems when merging 5367 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 5368 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 5369 5370 copy_to_clone(obj, alloc_obj, obj_size, false); 5371 5372 // Present the results of the slow call. 5373 result_reg->init_req(_instance_path, control()); 5374 result_val->init_req(_instance_path, alloc_obj); 5375 result_i_o ->set_req(_instance_path, i_o()); 5376 result_mem ->set_req(_instance_path, reset_memory()); 5377 } 5378 5379 // Generate code for the slow case. We make a call to clone(). 5380 set_control(_gvn.transform(slow_region)); 5381 if (!stopped()) { 5382 PreserveJVMState pjvms(this); 5383 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true); 5384 // We need to deoptimize on exception (see comment above) 5385 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 5386 // this->control() comes from set_results_for_java_call 5387 result_reg->init_req(_slow_path, control()); 5388 result_val->init_req(_slow_path, slow_result); 5389 result_i_o ->set_req(_slow_path, i_o()); 5390 result_mem ->set_req(_slow_path, reset_memory()); 5391 } 5392 5393 // Return the combined state. 5394 set_control( _gvn.transform(result_reg)); 5395 set_i_o( _gvn.transform(result_i_o)); 5396 set_all_memory( _gvn.transform(result_mem)); 5397 } // original reexecute is set back here 5398 5399 set_result(_gvn.transform(result_val)); 5400 return true; 5401 } 5402 5403 // If we have a tightly coupled allocation, the arraycopy may take care 5404 // of the array initialization. If one of the guards we insert between 5405 // the allocation and the arraycopy causes a deoptimization, an 5406 // uninitialized array will escape the compiled method. To prevent that 5407 // we set the JVM state for uncommon traps between the allocation and 5408 // the arraycopy to the state before the allocation so, in case of 5409 // deoptimization, we'll reexecute the allocation and the 5410 // initialization. 5411 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 5412 if (alloc != nullptr) { 5413 ciMethod* trap_method = alloc->jvms()->method(); 5414 int trap_bci = alloc->jvms()->bci(); 5415 5416 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5417 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 5418 // Make sure there's no store between the allocation and the 5419 // arraycopy otherwise visible side effects could be rexecuted 5420 // in case of deoptimization and cause incorrect execution. 5421 bool no_interfering_store = true; 5422 Node* mem = alloc->in(TypeFunc::Memory); 5423 if (mem->is_MergeMem()) { 5424 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 5425 Node* n = mms.memory(); 5426 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5427 assert(n->is_Store(), "what else?"); 5428 no_interfering_store = false; 5429 break; 5430 } 5431 } 5432 } else { 5433 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 5434 Node* n = mms.memory(); 5435 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 5436 assert(n->is_Store(), "what else?"); 5437 no_interfering_store = false; 5438 break; 5439 } 5440 } 5441 } 5442 5443 if (no_interfering_store) { 5444 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5445 5446 JVMState* saved_jvms = jvms(); 5447 saved_reexecute_sp = _reexecute_sp; 5448 5449 set_jvms(sfpt->jvms()); 5450 _reexecute_sp = jvms()->sp(); 5451 5452 return saved_jvms; 5453 } 5454 } 5455 } 5456 return nullptr; 5457 } 5458 5459 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5460 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5461 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5462 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5463 uint size = alloc->req(); 5464 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5465 old_jvms->set_map(sfpt); 5466 for (uint i = 0; i < size; i++) { 5467 sfpt->init_req(i, alloc->in(i)); 5468 } 5469 // re-push array length for deoptimization 5470 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5471 old_jvms->set_sp(old_jvms->sp()+1); 5472 old_jvms->set_monoff(old_jvms->monoff()+1); 5473 old_jvms->set_scloff(old_jvms->scloff()+1); 5474 old_jvms->set_endoff(old_jvms->endoff()+1); 5475 old_jvms->set_should_reexecute(true); 5476 5477 sfpt->set_i_o(map()->i_o()); 5478 sfpt->set_memory(map()->memory()); 5479 sfpt->set_control(map()->control()); 5480 return sfpt; 5481 } 5482 5483 // In case of a deoptimization, we restart execution at the 5484 // allocation, allocating a new array. We would leave an uninitialized 5485 // array in the heap that GCs wouldn't expect. Move the allocation 5486 // after the traps so we don't allocate the array if we 5487 // deoptimize. This is possible because tightly_coupled_allocation() 5488 // guarantees there's no observer of the allocated array at this point 5489 // and the control flow is simple enough. 5490 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5491 int saved_reexecute_sp, uint new_idx) { 5492 if (saved_jvms_before_guards != nullptr && !stopped()) { 5493 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5494 5495 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5496 // restore JVM state to the state at the arraycopy 5497 saved_jvms_before_guards->map()->set_control(map()->control()); 5498 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5499 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5500 // If we've improved the types of some nodes (null check) while 5501 // emitting the guards, propagate them to the current state 5502 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5503 set_jvms(saved_jvms_before_guards); 5504 _reexecute_sp = saved_reexecute_sp; 5505 5506 // Remove the allocation from above the guards 5507 CallProjections callprojs; 5508 alloc->extract_projections(&callprojs, true); 5509 InitializeNode* init = alloc->initialization(); 5510 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5511 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5512 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5513 5514 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5515 // the allocation (i.e. is only valid if the allocation succeeds): 5516 // 1) replace CastIINode with AllocateArrayNode's length here 5517 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5518 // 5519 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5520 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5521 Node* init_control = init->proj_out(TypeFunc::Control); 5522 Node* alloc_length = alloc->Ideal_length(); 5523 #ifdef ASSERT 5524 Node* prev_cast = nullptr; 5525 #endif 5526 for (uint i = 0; i < init_control->outcnt(); i++) { 5527 Node* init_out = init_control->raw_out(i); 5528 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5529 #ifdef ASSERT 5530 if (prev_cast == nullptr) { 5531 prev_cast = init_out; 5532 } else { 5533 if (prev_cast->cmp(*init_out) == false) { 5534 prev_cast->dump(); 5535 init_out->dump(); 5536 assert(false, "not equal CastIINode"); 5537 } 5538 } 5539 #endif 5540 C->gvn_replace_by(init_out, alloc_length); 5541 } 5542 } 5543 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5544 5545 // move the allocation here (after the guards) 5546 _gvn.hash_delete(alloc); 5547 alloc->set_req(TypeFunc::Control, control()); 5548 alloc->set_req(TypeFunc::I_O, i_o()); 5549 Node *mem = reset_memory(); 5550 set_all_memory(mem); 5551 alloc->set_req(TypeFunc::Memory, mem); 5552 set_control(init->proj_out_or_null(TypeFunc::Control)); 5553 set_i_o(callprojs.fallthrough_ioproj); 5554 5555 // Update memory as done in GraphKit::set_output_for_allocation() 5556 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5557 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5558 if (ary_type->isa_aryptr() && length_type != nullptr) { 5559 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5560 } 5561 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5562 int elemidx = C->get_alias_index(telemref); 5563 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5564 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5565 5566 Node* allocx = _gvn.transform(alloc); 5567 assert(allocx == alloc, "where has the allocation gone?"); 5568 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5569 5570 _gvn.hash_delete(dest); 5571 dest->set_req(0, control()); 5572 Node* destx = _gvn.transform(dest); 5573 assert(destx == dest, "where has the allocation result gone?"); 5574 5575 array_ideal_length(alloc, ary_type, true); 5576 } 5577 } 5578 5579 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5580 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5581 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5582 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5583 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5584 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5585 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5586 JVMState* saved_jvms_before_guards) { 5587 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5588 // There is at least one unrelated uncommon trap which needs to be replaced. 5589 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5590 5591 JVMState* saved_jvms = jvms(); 5592 const int saved_reexecute_sp = _reexecute_sp; 5593 set_jvms(sfpt->jvms()); 5594 _reexecute_sp = jvms()->sp(); 5595 5596 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5597 5598 // Restore state 5599 set_jvms(saved_jvms); 5600 _reexecute_sp = saved_reexecute_sp; 5601 } 5602 } 5603 5604 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5605 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5606 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5607 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5608 while (if_proj->is_IfProj()) { 5609 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5610 if (uncommon_trap != nullptr) { 5611 create_new_uncommon_trap(uncommon_trap); 5612 } 5613 assert(if_proj->in(0)->is_If(), "must be If"); 5614 if_proj = if_proj->in(0)->in(0); 5615 } 5616 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5617 "must have reached control projection of init node"); 5618 } 5619 5620 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5621 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5622 assert(trap_request != 0, "no valid UCT trap request"); 5623 PreserveJVMState pjvms(this); 5624 set_control(uncommon_trap_call->in(0)); 5625 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5626 Deoptimization::trap_request_action(trap_request)); 5627 assert(stopped(), "Should be stopped"); 5628 _gvn.hash_delete(uncommon_trap_call); 5629 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5630 } 5631 5632 // Common checks for array sorting intrinsics arguments. 5633 // Returns `true` if checks passed. 5634 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) { 5635 // check address of the class 5636 if (elementType == nullptr || elementType->is_top()) { 5637 return false; // dead path 5638 } 5639 const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr(); 5640 if (elem_klass == nullptr) { 5641 return false; // dead path 5642 } 5643 // java_mirror_type() returns non-null for compile-time Class constants only 5644 ciType* elem_type = elem_klass->java_mirror_type(); 5645 if (elem_type == nullptr) { 5646 return false; 5647 } 5648 bt = elem_type->basic_type(); 5649 // Disable the intrinsic if the CPU does not support SIMD sort 5650 if (!Matcher::supports_simd_sort(bt)) { 5651 return false; 5652 } 5653 // check address of the array 5654 if (obj == nullptr || obj->is_top()) { 5655 return false; // dead path 5656 } 5657 const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr(); 5658 if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) { 5659 return false; // failed input validation 5660 } 5661 return true; 5662 } 5663 5664 //------------------------------inline_array_partition----------------------- 5665 bool LibraryCallKit::inline_array_partition() { 5666 address stubAddr = StubRoutines::select_array_partition_function(); 5667 if (stubAddr == nullptr) { 5668 return false; // Intrinsic's stub is not implemented on this platform 5669 } 5670 assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)"); 5671 5672 // no receiver because it is a static method 5673 Node* elementType = argument(0); 5674 Node* obj = argument(1); 5675 Node* offset = argument(2); // long 5676 Node* fromIndex = argument(4); 5677 Node* toIndex = argument(5); 5678 Node* indexPivot1 = argument(6); 5679 Node* indexPivot2 = argument(7); 5680 // PartitionOperation: argument(8) is ignored 5681 5682 Node* pivotIndices = nullptr; 5683 BasicType bt = T_ILLEGAL; 5684 5685 if (!check_array_sort_arguments(elementType, obj, bt)) { 5686 return false; 5687 } 5688 null_check(obj); 5689 // If obj is dead, only null-path is taken. 5690 if (stopped()) { 5691 return true; 5692 } 5693 // Set the original stack and the reexecute bit for the interpreter to reexecute 5694 // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens. 5695 { PreserveReexecuteState preexecs(this); 5696 jvms()->set_should_reexecute(true); 5697 5698 Node* obj_adr = make_unsafe_address(obj, offset); 5699 5700 // create the pivotIndices array of type int and size = 2 5701 Node* size = intcon(2); 5702 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT))); 5703 pivotIndices = new_array(klass_node, size, 0); // no arguments to push 5704 AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices); 5705 guarantee(alloc != nullptr, "created above"); 5706 Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT)); 5707 5708 // pass the basic type enum to the stub 5709 Node* elemType = intcon(bt); 5710 5711 // Call the stub 5712 const char *stubName = "array_partition_stub"; 5713 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(), 5714 stubAddr, stubName, TypePtr::BOTTOM, 5715 obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr, 5716 indexPivot1, indexPivot2); 5717 5718 } // original reexecute is set back here 5719 5720 if (!stopped()) { 5721 set_result(pivotIndices); 5722 } 5723 5724 return true; 5725 } 5726 5727 5728 //------------------------------inline_array_sort----------------------- 5729 bool LibraryCallKit::inline_array_sort() { 5730 address stubAddr = StubRoutines::select_arraysort_function(); 5731 if (stubAddr == nullptr) { 5732 return false; // Intrinsic's stub is not implemented on this platform 5733 } 5734 assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)"); 5735 5736 // no receiver because it is a static method 5737 Node* elementType = argument(0); 5738 Node* obj = argument(1); 5739 Node* offset = argument(2); // long 5740 Node* fromIndex = argument(4); 5741 Node* toIndex = argument(5); 5742 // SortOperation: argument(6) is ignored 5743 5744 BasicType bt = T_ILLEGAL; 5745 5746 if (!check_array_sort_arguments(elementType, obj, bt)) { 5747 return false; 5748 } 5749 null_check(obj); 5750 // If obj is dead, only null-path is taken. 5751 if (stopped()) { 5752 return true; 5753 } 5754 Node* obj_adr = make_unsafe_address(obj, offset); 5755 5756 // pass the basic type enum to the stub 5757 Node* elemType = intcon(bt); 5758 5759 // Call the stub. 5760 const char *stubName = "arraysort_stub"; 5761 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(), 5762 stubAddr, stubName, TypePtr::BOTTOM, 5763 obj_adr, elemType, fromIndex, toIndex); 5764 5765 return true; 5766 } 5767 5768 5769 //------------------------------inline_arraycopy----------------------- 5770 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5771 // Object dest, int destPos, 5772 // int length); 5773 bool LibraryCallKit::inline_arraycopy() { 5774 // Get the arguments. 5775 Node* src = argument(0); // type: oop 5776 Node* src_offset = argument(1); // type: int 5777 Node* dest = argument(2); // type: oop 5778 Node* dest_offset = argument(3); // type: int 5779 Node* length = argument(4); // type: int 5780 5781 uint new_idx = C->unique(); 5782 5783 // Check for allocation before we add nodes that would confuse 5784 // tightly_coupled_allocation() 5785 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5786 5787 int saved_reexecute_sp = -1; 5788 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5789 // See arraycopy_restore_alloc_state() comment 5790 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5791 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 5792 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 5793 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 5794 5795 // The following tests must be performed 5796 // (1) src and dest are arrays. 5797 // (2) src and dest arrays must have elements of the same BasicType 5798 // (3) src and dest must not be null. 5799 // (4) src_offset must not be negative. 5800 // (5) dest_offset must not be negative. 5801 // (6) length must not be negative. 5802 // (7) src_offset + length must not exceed length of src. 5803 // (8) dest_offset + length must not exceed length of dest. 5804 // (9) each element of an oop array must be assignable 5805 5806 // (3) src and dest must not be null. 5807 // always do this here because we need the JVM state for uncommon traps 5808 Node* null_ctl = top(); 5809 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5810 assert(null_ctl->is_top(), "no null control here"); 5811 dest = null_check(dest, T_ARRAY); 5812 5813 if (!can_emit_guards) { 5814 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 5815 // guards but the arraycopy node could still take advantage of a 5816 // tightly allocated allocation. tightly_coupled_allocation() is 5817 // called again to make sure it takes the null check above into 5818 // account: the null check is mandatory and if it caused an 5819 // uncommon trap to be emitted then the allocation can't be 5820 // considered tightly coupled in this context. 5821 alloc = tightly_coupled_allocation(dest); 5822 } 5823 5824 bool validated = false; 5825 5826 const Type* src_type = _gvn.type(src); 5827 const Type* dest_type = _gvn.type(dest); 5828 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5829 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5830 5831 // Do we have the type of src? 5832 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5833 // Do we have the type of dest? 5834 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5835 // Is the type for src from speculation? 5836 bool src_spec = false; 5837 // Is the type for dest from speculation? 5838 bool dest_spec = false; 5839 5840 if ((!has_src || !has_dest) && can_emit_guards) { 5841 // We don't have sufficient type information, let's see if 5842 // speculative types can help. We need to have types for both src 5843 // and dest so that it pays off. 5844 5845 // Do we already have or could we have type information for src 5846 bool could_have_src = has_src; 5847 // Do we already have or could we have type information for dest 5848 bool could_have_dest = has_dest; 5849 5850 ciKlass* src_k = nullptr; 5851 if (!has_src) { 5852 src_k = src_type->speculative_type_not_null(); 5853 if (src_k != nullptr && src_k->is_array_klass()) { 5854 could_have_src = true; 5855 } 5856 } 5857 5858 ciKlass* dest_k = nullptr; 5859 if (!has_dest) { 5860 dest_k = dest_type->speculative_type_not_null(); 5861 if (dest_k != nullptr && dest_k->is_array_klass()) { 5862 could_have_dest = true; 5863 } 5864 } 5865 5866 if (could_have_src && could_have_dest) { 5867 // This is going to pay off so emit the required guards 5868 if (!has_src) { 5869 src = maybe_cast_profiled_obj(src, src_k, true); 5870 src_type = _gvn.type(src); 5871 top_src = src_type->isa_aryptr(); 5872 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5873 src_spec = true; 5874 } 5875 if (!has_dest) { 5876 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5877 dest_type = _gvn.type(dest); 5878 top_dest = dest_type->isa_aryptr(); 5879 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5880 dest_spec = true; 5881 } 5882 } 5883 } 5884 5885 if (has_src && has_dest && can_emit_guards) { 5886 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5887 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5888 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5889 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5890 5891 if (src_elem == dest_elem && src_elem == T_OBJECT) { 5892 // If both arrays are object arrays then having the exact types 5893 // for both will remove the need for a subtype check at runtime 5894 // before the call and may make it possible to pick a faster copy 5895 // routine (without a subtype check on every element) 5896 // Do we have the exact type of src? 5897 bool could_have_src = src_spec; 5898 // Do we have the exact type of dest? 5899 bool could_have_dest = dest_spec; 5900 ciKlass* src_k = nullptr; 5901 ciKlass* dest_k = nullptr; 5902 if (!src_spec) { 5903 src_k = src_type->speculative_type_not_null(); 5904 if (src_k != nullptr && src_k->is_array_klass()) { 5905 could_have_src = true; 5906 } 5907 } 5908 if (!dest_spec) { 5909 dest_k = dest_type->speculative_type_not_null(); 5910 if (dest_k != nullptr && dest_k->is_array_klass()) { 5911 could_have_dest = true; 5912 } 5913 } 5914 if (could_have_src && could_have_dest) { 5915 // If we can have both exact types, emit the missing guards 5916 if (could_have_src && !src_spec) { 5917 src = maybe_cast_profiled_obj(src, src_k, true); 5918 } 5919 if (could_have_dest && !dest_spec) { 5920 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5921 } 5922 } 5923 } 5924 } 5925 5926 ciMethod* trap_method = method(); 5927 int trap_bci = bci(); 5928 if (saved_jvms_before_guards != nullptr) { 5929 trap_method = alloc->jvms()->method(); 5930 trap_bci = alloc->jvms()->bci(); 5931 } 5932 5933 bool negative_length_guard_generated = false; 5934 5935 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5936 can_emit_guards && 5937 !src->is_top() && !dest->is_top()) { 5938 // validate arguments: enables transformation the ArrayCopyNode 5939 validated = true; 5940 5941 RegionNode* slow_region = new RegionNode(1); 5942 record_for_igvn(slow_region); 5943 5944 // (1) src and dest are arrays. 5945 generate_non_array_guard(load_object_klass(src), slow_region, &src); 5946 generate_non_array_guard(load_object_klass(dest), slow_region, &dest); 5947 5948 // (2) src and dest arrays must have elements of the same BasicType 5949 // done at macro expansion or at Ideal transformation time 5950 5951 // (4) src_offset must not be negative. 5952 generate_negative_guard(src_offset, slow_region); 5953 5954 // (5) dest_offset must not be negative. 5955 generate_negative_guard(dest_offset, slow_region); 5956 5957 // (7) src_offset + length must not exceed length of src. 5958 generate_limit_guard(src_offset, length, 5959 load_array_length(src), 5960 slow_region); 5961 5962 // (8) dest_offset + length must not exceed length of dest. 5963 generate_limit_guard(dest_offset, length, 5964 load_array_length(dest), 5965 slow_region); 5966 5967 // (6) length must not be negative. 5968 // This is also checked in generate_arraycopy() during macro expansion, but 5969 // we also have to check it here for the case where the ArrayCopyNode will 5970 // be eliminated by Escape Analysis. 5971 if (EliminateAllocations) { 5972 generate_negative_guard(length, slow_region); 5973 negative_length_guard_generated = true; 5974 } 5975 5976 // (9) each element of an oop array must be assignable 5977 Node* dest_klass = load_object_klass(dest); 5978 if (src != dest) { 5979 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 5980 5981 if (not_subtype_ctrl != top()) { 5982 PreserveJVMState pjvms(this); 5983 set_control(not_subtype_ctrl); 5984 uncommon_trap(Deoptimization::Reason_intrinsic, 5985 Deoptimization::Action_make_not_entrant); 5986 assert(stopped(), "Should be stopped"); 5987 } 5988 } 5989 { 5990 PreserveJVMState pjvms(this); 5991 set_control(_gvn.transform(slow_region)); 5992 uncommon_trap(Deoptimization::Reason_intrinsic, 5993 Deoptimization::Action_make_not_entrant); 5994 assert(stopped(), "Should be stopped"); 5995 } 5996 5997 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 5998 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 5999 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 6000 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 6001 } 6002 6003 if (stopped()) { 6004 return true; 6005 } 6006 6007 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 6008 // Create LoadRange and LoadKlass nodes for use during macro expansion here 6009 // so the compiler has a chance to eliminate them: during macro expansion, 6010 // we have to set their control (CastPP nodes are eliminated). 6011 load_object_klass(src), load_object_klass(dest), 6012 load_array_length(src), load_array_length(dest)); 6013 6014 ac->set_arraycopy(validated); 6015 6016 Node* n = _gvn.transform(ac); 6017 if (n == ac) { 6018 ac->connect_outputs(this); 6019 } else { 6020 assert(validated, "shouldn't transform if all arguments not validated"); 6021 set_all_memory(n); 6022 } 6023 clear_upper_avx(); 6024 6025 6026 return true; 6027 } 6028 6029 6030 // Helper function which determines if an arraycopy immediately follows 6031 // an allocation, with no intervening tests or other escapes for the object. 6032 AllocateArrayNode* 6033 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 6034 if (stopped()) return nullptr; // no fast path 6035 if (!C->do_aliasing()) return nullptr; // no MergeMems around 6036 6037 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr); 6038 if (alloc == nullptr) return nullptr; 6039 6040 Node* rawmem = memory(Compile::AliasIdxRaw); 6041 // Is the allocation's memory state untouched? 6042 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 6043 // Bail out if there have been raw-memory effects since the allocation. 6044 // (Example: There might have been a call or safepoint.) 6045 return nullptr; 6046 } 6047 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 6048 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 6049 return nullptr; 6050 } 6051 6052 // There must be no unexpected observers of this allocation. 6053 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 6054 Node* obs = ptr->fast_out(i); 6055 if (obs != this->map()) { 6056 return nullptr; 6057 } 6058 } 6059 6060 // This arraycopy must unconditionally follow the allocation of the ptr. 6061 Node* alloc_ctl = ptr->in(0); 6062 Node* ctl = control(); 6063 while (ctl != alloc_ctl) { 6064 // There may be guards which feed into the slow_region. 6065 // Any other control flow means that we might not get a chance 6066 // to finish initializing the allocated object. 6067 // Various low-level checks bottom out in uncommon traps. These 6068 // are considered safe since we've already checked above that 6069 // there is no unexpected observer of this allocation. 6070 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 6071 assert(ctl->in(0)->is_If(), "must be If"); 6072 ctl = ctl->in(0)->in(0); 6073 } else { 6074 return nullptr; 6075 } 6076 } 6077 6078 // If we get this far, we have an allocation which immediately 6079 // precedes the arraycopy, and we can take over zeroing the new object. 6080 // The arraycopy will finish the initialization, and provide 6081 // a new control state to which we will anchor the destination pointer. 6082 6083 return alloc; 6084 } 6085 6086 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 6087 if (node->is_IfProj()) { 6088 Node* other_proj = node->as_IfProj()->other_if_proj(); 6089 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 6090 Node* obs = other_proj->fast_out(j); 6091 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 6092 (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) { 6093 return obs->as_CallStaticJava(); 6094 } 6095 } 6096 } 6097 return nullptr; 6098 } 6099 6100 //-------------inline_encodeISOArray----------------------------------- 6101 // encode char[] to byte[] in ISO_8859_1 or ASCII 6102 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 6103 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 6104 // no receiver since it is static method 6105 Node *src = argument(0); 6106 Node *src_offset = argument(1); 6107 Node *dst = argument(2); 6108 Node *dst_offset = argument(3); 6109 Node *length = argument(4); 6110 6111 src = must_be_not_null(src, true); 6112 dst = must_be_not_null(dst, true); 6113 6114 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6115 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 6116 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 6117 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 6118 // failed array check 6119 return false; 6120 } 6121 6122 // Figure out the size and type of the elements we will be copying. 6123 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6124 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 6125 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 6126 return false; 6127 } 6128 6129 Node* src_start = array_element_address(src, src_offset, T_CHAR); 6130 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 6131 // 'src_start' points to src array + scaled offset 6132 // 'dst_start' points to dst array + scaled offset 6133 6134 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 6135 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 6136 enc = _gvn.transform(enc); 6137 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 6138 set_memory(res_mem, mtype); 6139 set_result(enc); 6140 clear_upper_avx(); 6141 6142 return true; 6143 } 6144 6145 //-------------inline_multiplyToLen----------------------------------- 6146 bool LibraryCallKit::inline_multiplyToLen() { 6147 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 6148 6149 address stubAddr = StubRoutines::multiplyToLen(); 6150 if (stubAddr == nullptr) { 6151 return false; // Intrinsic's stub is not implemented on this platform 6152 } 6153 const char* stubName = "multiplyToLen"; 6154 6155 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 6156 6157 // no receiver because it is a static method 6158 Node* x = argument(0); 6159 Node* xlen = argument(1); 6160 Node* y = argument(2); 6161 Node* ylen = argument(3); 6162 Node* z = argument(4); 6163 6164 x = must_be_not_null(x, true); 6165 y = must_be_not_null(y, true); 6166 6167 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6168 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 6169 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6170 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 6171 // failed array check 6172 return false; 6173 } 6174 6175 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6176 BasicType y_elem = y_type->elem()->array_element_basic_type(); 6177 if (x_elem != T_INT || y_elem != T_INT) { 6178 return false; 6179 } 6180 6181 Node* x_start = array_element_address(x, intcon(0), x_elem); 6182 Node* y_start = array_element_address(y, intcon(0), y_elem); 6183 // 'x_start' points to x array + scaled xlen 6184 // 'y_start' points to y array + scaled ylen 6185 6186 Node* z_start = array_element_address(z, intcon(0), T_INT); 6187 6188 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6189 OptoRuntime::multiplyToLen_Type(), 6190 stubAddr, stubName, TypePtr::BOTTOM, 6191 x_start, xlen, y_start, ylen, z_start); 6192 6193 C->set_has_split_ifs(true); // Has chance for split-if optimization 6194 set_result(z); 6195 return true; 6196 } 6197 6198 //-------------inline_squareToLen------------------------------------ 6199 bool LibraryCallKit::inline_squareToLen() { 6200 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 6201 6202 address stubAddr = StubRoutines::squareToLen(); 6203 if (stubAddr == nullptr) { 6204 return false; // Intrinsic's stub is not implemented on this platform 6205 } 6206 const char* stubName = "squareToLen"; 6207 6208 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 6209 6210 Node* x = argument(0); 6211 Node* len = argument(1); 6212 Node* z = argument(2); 6213 Node* zlen = argument(3); 6214 6215 x = must_be_not_null(x, true); 6216 z = must_be_not_null(z, true); 6217 6218 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 6219 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 6220 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 6221 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 6222 // failed array check 6223 return false; 6224 } 6225 6226 BasicType x_elem = x_type->elem()->array_element_basic_type(); 6227 BasicType z_elem = z_type->elem()->array_element_basic_type(); 6228 if (x_elem != T_INT || z_elem != T_INT) { 6229 return false; 6230 } 6231 6232 6233 Node* x_start = array_element_address(x, intcon(0), x_elem); 6234 Node* z_start = array_element_address(z, intcon(0), z_elem); 6235 6236 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6237 OptoRuntime::squareToLen_Type(), 6238 stubAddr, stubName, TypePtr::BOTTOM, 6239 x_start, len, z_start, zlen); 6240 6241 set_result(z); 6242 return true; 6243 } 6244 6245 //-------------inline_mulAdd------------------------------------------ 6246 bool LibraryCallKit::inline_mulAdd() { 6247 assert(UseMulAddIntrinsic, "not implemented on this platform"); 6248 6249 address stubAddr = StubRoutines::mulAdd(); 6250 if (stubAddr == nullptr) { 6251 return false; // Intrinsic's stub is not implemented on this platform 6252 } 6253 const char* stubName = "mulAdd"; 6254 6255 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 6256 6257 Node* out = argument(0); 6258 Node* in = argument(1); 6259 Node* offset = argument(2); 6260 Node* len = argument(3); 6261 Node* k = argument(4); 6262 6263 in = must_be_not_null(in, true); 6264 out = must_be_not_null(out, true); 6265 6266 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 6267 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 6268 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 6269 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 6270 // failed array check 6271 return false; 6272 } 6273 6274 BasicType out_elem = out_type->elem()->array_element_basic_type(); 6275 BasicType in_elem = in_type->elem()->array_element_basic_type(); 6276 if (out_elem != T_INT || in_elem != T_INT) { 6277 return false; 6278 } 6279 6280 Node* outlen = load_array_length(out); 6281 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 6282 Node* out_start = array_element_address(out, intcon(0), out_elem); 6283 Node* in_start = array_element_address(in, intcon(0), in_elem); 6284 6285 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 6286 OptoRuntime::mulAdd_Type(), 6287 stubAddr, stubName, TypePtr::BOTTOM, 6288 out_start,in_start, new_offset, len, k); 6289 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6290 set_result(result); 6291 return true; 6292 } 6293 6294 //-------------inline_montgomeryMultiply----------------------------------- 6295 bool LibraryCallKit::inline_montgomeryMultiply() { 6296 address stubAddr = StubRoutines::montgomeryMultiply(); 6297 if (stubAddr == nullptr) { 6298 return false; // Intrinsic's stub is not implemented on this platform 6299 } 6300 6301 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 6302 const char* stubName = "montgomery_multiply"; 6303 6304 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 6305 6306 Node* a = argument(0); 6307 Node* b = argument(1); 6308 Node* n = argument(2); 6309 Node* len = argument(3); 6310 Node* inv = argument(4); 6311 Node* m = argument(6); 6312 6313 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6314 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 6315 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6316 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6317 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6318 b_type == nullptr || b_type->elem() == Type::BOTTOM || 6319 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6320 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6321 // failed array check 6322 return false; 6323 } 6324 6325 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6326 BasicType b_elem = b_type->elem()->array_element_basic_type(); 6327 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6328 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6329 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6330 return false; 6331 } 6332 6333 // Make the call 6334 { 6335 Node* a_start = array_element_address(a, intcon(0), a_elem); 6336 Node* b_start = array_element_address(b, intcon(0), b_elem); 6337 Node* n_start = array_element_address(n, intcon(0), n_elem); 6338 Node* m_start = array_element_address(m, intcon(0), m_elem); 6339 6340 Node* call = make_runtime_call(RC_LEAF, 6341 OptoRuntime::montgomeryMultiply_Type(), 6342 stubAddr, stubName, TypePtr::BOTTOM, 6343 a_start, b_start, n_start, len, inv, top(), 6344 m_start); 6345 set_result(m); 6346 } 6347 6348 return true; 6349 } 6350 6351 bool LibraryCallKit::inline_montgomerySquare() { 6352 address stubAddr = StubRoutines::montgomerySquare(); 6353 if (stubAddr == nullptr) { 6354 return false; // Intrinsic's stub is not implemented on this platform 6355 } 6356 6357 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 6358 const char* stubName = "montgomery_square"; 6359 6360 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 6361 6362 Node* a = argument(0); 6363 Node* n = argument(1); 6364 Node* len = argument(2); 6365 Node* inv = argument(3); 6366 Node* m = argument(5); 6367 6368 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 6369 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 6370 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 6371 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 6372 n_type == nullptr || n_type->elem() == Type::BOTTOM || 6373 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 6374 // failed array check 6375 return false; 6376 } 6377 6378 BasicType a_elem = a_type->elem()->array_element_basic_type(); 6379 BasicType n_elem = n_type->elem()->array_element_basic_type(); 6380 BasicType m_elem = m_type->elem()->array_element_basic_type(); 6381 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 6382 return false; 6383 } 6384 6385 // Make the call 6386 { 6387 Node* a_start = array_element_address(a, intcon(0), a_elem); 6388 Node* n_start = array_element_address(n, intcon(0), n_elem); 6389 Node* m_start = array_element_address(m, intcon(0), m_elem); 6390 6391 Node* call = make_runtime_call(RC_LEAF, 6392 OptoRuntime::montgomerySquare_Type(), 6393 stubAddr, stubName, TypePtr::BOTTOM, 6394 a_start, n_start, len, inv, top(), 6395 m_start); 6396 set_result(m); 6397 } 6398 6399 return true; 6400 } 6401 6402 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 6403 address stubAddr = nullptr; 6404 const char* stubName = nullptr; 6405 6406 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 6407 if (stubAddr == nullptr) { 6408 return false; // Intrinsic's stub is not implemented on this platform 6409 } 6410 6411 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 6412 6413 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 6414 6415 Node* newArr = argument(0); 6416 Node* oldArr = argument(1); 6417 Node* newIdx = argument(2); 6418 Node* shiftCount = argument(3); 6419 Node* numIter = argument(4); 6420 6421 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 6422 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 6423 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 6424 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 6425 return false; 6426 } 6427 6428 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 6429 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 6430 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 6431 return false; 6432 } 6433 6434 // Make the call 6435 { 6436 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 6437 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 6438 6439 Node* call = make_runtime_call(RC_LEAF, 6440 OptoRuntime::bigIntegerShift_Type(), 6441 stubAddr, 6442 stubName, 6443 TypePtr::BOTTOM, 6444 newArr_start, 6445 oldArr_start, 6446 newIdx, 6447 shiftCount, 6448 numIter); 6449 } 6450 6451 return true; 6452 } 6453 6454 //-------------inline_vectorizedMismatch------------------------------ 6455 bool LibraryCallKit::inline_vectorizedMismatch() { 6456 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 6457 6458 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 6459 Node* obja = argument(0); // Object 6460 Node* aoffset = argument(1); // long 6461 Node* objb = argument(3); // Object 6462 Node* boffset = argument(4); // long 6463 Node* length = argument(6); // int 6464 Node* scale = argument(7); // int 6465 6466 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 6467 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 6468 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 6469 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 6470 scale == top()) { 6471 return false; // failed input validation 6472 } 6473 6474 Node* obja_adr = make_unsafe_address(obja, aoffset); 6475 Node* objb_adr = make_unsafe_address(objb, boffset); 6476 6477 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 6478 // 6479 // inline_limit = ArrayOperationPartialInlineSize / element_size; 6480 // if (length <= inline_limit) { 6481 // inline_path: 6482 // vmask = VectorMaskGen length 6483 // vload1 = LoadVectorMasked obja, vmask 6484 // vload2 = LoadVectorMasked objb, vmask 6485 // result1 = VectorCmpMasked vload1, vload2, vmask 6486 // } else { 6487 // call_stub_path: 6488 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 6489 // } 6490 // exit_block: 6491 // return Phi(result1, result2); 6492 // 6493 enum { inline_path = 1, // input is small enough to process it all at once 6494 stub_path = 2, // input is too large; call into the VM 6495 PATH_LIMIT = 3 6496 }; 6497 6498 Node* exit_block = new RegionNode(PATH_LIMIT); 6499 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 6500 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 6501 6502 Node* call_stub_path = control(); 6503 6504 BasicType elem_bt = T_ILLEGAL; 6505 6506 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 6507 if (scale_t->is_con()) { 6508 switch (scale_t->get_con()) { 6509 case 0: elem_bt = T_BYTE; break; 6510 case 1: elem_bt = T_SHORT; break; 6511 case 2: elem_bt = T_INT; break; 6512 case 3: elem_bt = T_LONG; break; 6513 6514 default: elem_bt = T_ILLEGAL; break; // not supported 6515 } 6516 } 6517 6518 int inline_limit = 0; 6519 bool do_partial_inline = false; 6520 6521 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6522 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6523 do_partial_inline = inline_limit >= 16; 6524 } 6525 6526 if (do_partial_inline) { 6527 assert(elem_bt != T_ILLEGAL, "sanity"); 6528 6529 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6530 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6531 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6532 6533 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6534 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6535 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6536 6537 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6538 6539 if (!stopped()) { 6540 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6541 6542 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6543 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6544 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6545 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6546 6547 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6548 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6549 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6550 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6551 6552 exit_block->init_req(inline_path, control()); 6553 memory_phi->init_req(inline_path, map()->memory()); 6554 result_phi->init_req(inline_path, result); 6555 6556 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6557 clear_upper_avx(); 6558 } 6559 } 6560 } 6561 6562 if (call_stub_path != nullptr) { 6563 set_control(call_stub_path); 6564 6565 Node* call = make_runtime_call(RC_LEAF, 6566 OptoRuntime::vectorizedMismatch_Type(), 6567 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6568 obja_adr, objb_adr, length, scale); 6569 6570 exit_block->init_req(stub_path, control()); 6571 memory_phi->init_req(stub_path, map()->memory()); 6572 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6573 } 6574 6575 exit_block = _gvn.transform(exit_block); 6576 memory_phi = _gvn.transform(memory_phi); 6577 result_phi = _gvn.transform(result_phi); 6578 6579 set_control(exit_block); 6580 set_all_memory(memory_phi); 6581 set_result(result_phi); 6582 6583 return true; 6584 } 6585 6586 //------------------------------inline_vectorizedHashcode---------------------------- 6587 bool LibraryCallKit::inline_vectorizedHashCode() { 6588 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6589 6590 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6591 Node* array = argument(0); 6592 Node* offset = argument(1); 6593 Node* length = argument(2); 6594 Node* initialValue = argument(3); 6595 Node* basic_type = argument(4); 6596 6597 if (basic_type == top()) { 6598 return false; // failed input validation 6599 } 6600 6601 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6602 if (!basic_type_t->is_con()) { 6603 return false; // Only intrinsify if mode argument is constant 6604 } 6605 6606 array = must_be_not_null(array, true); 6607 6608 BasicType bt = (BasicType)basic_type_t->get_con(); 6609 6610 // Resolve address of first element 6611 Node* array_start = array_element_address(array, offset, bt); 6612 6613 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6614 array_start, length, initialValue, basic_type))); 6615 clear_upper_avx(); 6616 6617 return true; 6618 } 6619 6620 /** 6621 * Calculate CRC32 for byte. 6622 * int java.util.zip.CRC32.update(int crc, int b) 6623 */ 6624 bool LibraryCallKit::inline_updateCRC32() { 6625 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6626 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6627 // no receiver since it is static method 6628 Node* crc = argument(0); // type: int 6629 Node* b = argument(1); // type: int 6630 6631 /* 6632 * int c = ~ crc; 6633 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6634 * b = b ^ (c >>> 8); 6635 * crc = ~b; 6636 */ 6637 6638 Node* M1 = intcon(-1); 6639 crc = _gvn.transform(new XorINode(crc, M1)); 6640 Node* result = _gvn.transform(new XorINode(crc, b)); 6641 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6642 6643 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6644 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6645 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6646 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6647 6648 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6649 result = _gvn.transform(new XorINode(crc, result)); 6650 result = _gvn.transform(new XorINode(result, M1)); 6651 set_result(result); 6652 return true; 6653 } 6654 6655 /** 6656 * Calculate CRC32 for byte[] array. 6657 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6658 */ 6659 bool LibraryCallKit::inline_updateBytesCRC32() { 6660 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6661 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6662 // no receiver since it is static method 6663 Node* crc = argument(0); // type: int 6664 Node* src = argument(1); // type: oop 6665 Node* offset = argument(2); // type: int 6666 Node* length = argument(3); // type: int 6667 6668 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6669 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6670 // failed array check 6671 return false; 6672 } 6673 6674 // Figure out the size and type of the elements we will be copying. 6675 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6676 if (src_elem != T_BYTE) { 6677 return false; 6678 } 6679 6680 // 'src_start' points to src array + scaled offset 6681 src = must_be_not_null(src, true); 6682 Node* src_start = array_element_address(src, offset, src_elem); 6683 6684 // We assume that range check is done by caller. 6685 // TODO: generate range check (offset+length < src.length) in debug VM. 6686 6687 // Call the stub. 6688 address stubAddr = StubRoutines::updateBytesCRC32(); 6689 const char *stubName = "updateBytesCRC32"; 6690 6691 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6692 stubAddr, stubName, TypePtr::BOTTOM, 6693 crc, src_start, length); 6694 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6695 set_result(result); 6696 return true; 6697 } 6698 6699 /** 6700 * Calculate CRC32 for ByteBuffer. 6701 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6702 */ 6703 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6704 assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support"); 6705 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6706 // no receiver since it is static method 6707 Node* crc = argument(0); // type: int 6708 Node* src = argument(1); // type: long 6709 Node* offset = argument(3); // type: int 6710 Node* length = argument(4); // type: int 6711 6712 src = ConvL2X(src); // adjust Java long to machine word 6713 Node* base = _gvn.transform(new CastX2PNode(src)); 6714 offset = ConvI2X(offset); 6715 6716 // 'src_start' points to src array + scaled offset 6717 Node* src_start = basic_plus_adr(top(), base, offset); 6718 6719 // Call the stub. 6720 address stubAddr = StubRoutines::updateBytesCRC32(); 6721 const char *stubName = "updateBytesCRC32"; 6722 6723 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6724 stubAddr, stubName, TypePtr::BOTTOM, 6725 crc, src_start, length); 6726 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6727 set_result(result); 6728 return true; 6729 } 6730 6731 //------------------------------get_table_from_crc32c_class----------------------- 6732 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6733 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6734 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 6735 6736 return table; 6737 } 6738 6739 //------------------------------inline_updateBytesCRC32C----------------------- 6740 // 6741 // Calculate CRC32C for byte[] array. 6742 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6743 // 6744 bool LibraryCallKit::inline_updateBytesCRC32C() { 6745 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6746 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6747 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6748 // no receiver since it is a static method 6749 Node* crc = argument(0); // type: int 6750 Node* src = argument(1); // type: oop 6751 Node* offset = argument(2); // type: int 6752 Node* end = argument(3); // type: int 6753 6754 Node* length = _gvn.transform(new SubINode(end, offset)); 6755 6756 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6757 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6758 // failed array check 6759 return false; 6760 } 6761 6762 // Figure out the size and type of the elements we will be copying. 6763 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6764 if (src_elem != T_BYTE) { 6765 return false; 6766 } 6767 6768 // 'src_start' points to src array + scaled offset 6769 src = must_be_not_null(src, true); 6770 Node* src_start = array_element_address(src, offset, src_elem); 6771 6772 // static final int[] byteTable in class CRC32C 6773 Node* table = get_table_from_crc32c_class(callee()->holder()); 6774 table = must_be_not_null(table, true); 6775 Node* table_start = array_element_address(table, intcon(0), T_INT); 6776 6777 // We assume that range check is done by caller. 6778 // TODO: generate range check (offset+length < src.length) in debug VM. 6779 6780 // Call the stub. 6781 address stubAddr = StubRoutines::updateBytesCRC32C(); 6782 const char *stubName = "updateBytesCRC32C"; 6783 6784 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6785 stubAddr, stubName, TypePtr::BOTTOM, 6786 crc, src_start, length, table_start); 6787 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6788 set_result(result); 6789 return true; 6790 } 6791 6792 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6793 // 6794 // Calculate CRC32C for DirectByteBuffer. 6795 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6796 // 6797 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6798 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6799 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6800 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6801 // no receiver since it is a static method 6802 Node* crc = argument(0); // type: int 6803 Node* src = argument(1); // type: long 6804 Node* offset = argument(3); // type: int 6805 Node* end = argument(4); // type: int 6806 6807 Node* length = _gvn.transform(new SubINode(end, offset)); 6808 6809 src = ConvL2X(src); // adjust Java long to machine word 6810 Node* base = _gvn.transform(new CastX2PNode(src)); 6811 offset = ConvI2X(offset); 6812 6813 // 'src_start' points to src array + scaled offset 6814 Node* src_start = basic_plus_adr(top(), base, offset); 6815 6816 // static final int[] byteTable in class CRC32C 6817 Node* table = get_table_from_crc32c_class(callee()->holder()); 6818 table = must_be_not_null(table, true); 6819 Node* table_start = array_element_address(table, intcon(0), T_INT); 6820 6821 // Call the stub. 6822 address stubAddr = StubRoutines::updateBytesCRC32C(); 6823 const char *stubName = "updateBytesCRC32C"; 6824 6825 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6826 stubAddr, stubName, TypePtr::BOTTOM, 6827 crc, src_start, length, table_start); 6828 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6829 set_result(result); 6830 return true; 6831 } 6832 6833 //------------------------------inline_updateBytesAdler32---------------------- 6834 // 6835 // Calculate Adler32 checksum for byte[] array. 6836 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6837 // 6838 bool LibraryCallKit::inline_updateBytesAdler32() { 6839 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6840 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6841 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6842 // no receiver since it is static method 6843 Node* crc = argument(0); // type: int 6844 Node* src = argument(1); // type: oop 6845 Node* offset = argument(2); // type: int 6846 Node* length = argument(3); // type: int 6847 6848 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6849 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6850 // failed array check 6851 return false; 6852 } 6853 6854 // Figure out the size and type of the elements we will be copying. 6855 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6856 if (src_elem != T_BYTE) { 6857 return false; 6858 } 6859 6860 // 'src_start' points to src array + scaled offset 6861 Node* src_start = array_element_address(src, offset, src_elem); 6862 6863 // We assume that range check is done by caller. 6864 // TODO: generate range check (offset+length < src.length) in debug VM. 6865 6866 // Call the stub. 6867 address stubAddr = StubRoutines::updateBytesAdler32(); 6868 const char *stubName = "updateBytesAdler32"; 6869 6870 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6871 stubAddr, stubName, TypePtr::BOTTOM, 6872 crc, src_start, length); 6873 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6874 set_result(result); 6875 return true; 6876 } 6877 6878 //------------------------------inline_updateByteBufferAdler32--------------- 6879 // 6880 // Calculate Adler32 checksum for DirectByteBuffer. 6881 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6882 // 6883 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6884 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6885 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6886 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6887 // no receiver since it is static method 6888 Node* crc = argument(0); // type: int 6889 Node* src = argument(1); // type: long 6890 Node* offset = argument(3); // type: int 6891 Node* length = argument(4); // type: int 6892 6893 src = ConvL2X(src); // adjust Java long to machine word 6894 Node* base = _gvn.transform(new CastX2PNode(src)); 6895 offset = ConvI2X(offset); 6896 6897 // 'src_start' points to src array + scaled offset 6898 Node* src_start = basic_plus_adr(top(), base, offset); 6899 6900 // Call the stub. 6901 address stubAddr = StubRoutines::updateBytesAdler32(); 6902 const char *stubName = "updateBytesAdler32"; 6903 6904 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6905 stubAddr, stubName, TypePtr::BOTTOM, 6906 crc, src_start, length); 6907 6908 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6909 set_result(result); 6910 return true; 6911 } 6912 6913 //----------------------------inline_reference_get---------------------------- 6914 // public T java.lang.ref.Reference.get(); 6915 bool LibraryCallKit::inline_reference_get() { 6916 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6917 6918 // Get the argument: 6919 Node* reference_obj = null_check_receiver(); 6920 if (stopped()) return true; 6921 6922 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6923 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6924 decorators, /*is_static*/ false, nullptr); 6925 if (result == nullptr) return false; 6926 6927 // Add memory barrier to prevent commoning reads from this field 6928 // across safepoint since GC can change its value. 6929 insert_mem_bar(Op_MemBarCPUOrder); 6930 6931 set_result(result); 6932 return true; 6933 } 6934 6935 //----------------------------inline_reference_refersTo0---------------------------- 6936 // bool java.lang.ref.Reference.refersTo0(); 6937 // bool java.lang.ref.PhantomReference.refersTo0(); 6938 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 6939 // Get arguments: 6940 Node* reference_obj = null_check_receiver(); 6941 Node* other_obj = argument(1); 6942 if (stopped()) return true; 6943 6944 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6945 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6946 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6947 decorators, /*is_static*/ false, nullptr); 6948 if (referent == nullptr) return false; 6949 6950 // Add memory barrier to prevent commoning reads from this field 6951 // across safepoint since GC can change its value. 6952 insert_mem_bar(Op_MemBarCPUOrder); 6953 6954 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 6955 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6956 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 6957 6958 RegionNode* region = new RegionNode(3); 6959 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 6960 6961 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 6962 region->init_req(1, if_true); 6963 phi->init_req(1, intcon(1)); 6964 6965 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 6966 region->init_req(2, if_false); 6967 phi->init_req(2, intcon(0)); 6968 6969 set_control(_gvn.transform(region)); 6970 record_for_igvn(region); 6971 set_result(_gvn.transform(phi)); 6972 return true; 6973 } 6974 6975 //----------------------------inline_reference_clear0---------------------------- 6976 // void java.lang.ref.Reference.clear0(); 6977 // void java.lang.ref.PhantomReference.clear0(); 6978 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) { 6979 // This matches the implementation in JVM_ReferenceClear, see the comments there. 6980 6981 // Get arguments 6982 Node* reference_obj = null_check_receiver(); 6983 if (stopped()) return true; 6984 6985 // Common access parameters 6986 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6987 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6988 Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset()); 6989 const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr(); 6990 const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass()); 6991 6992 Node* referent = access_load_at(reference_obj, 6993 referent_field_addr, 6994 referent_field_addr_type, 6995 val_type, 6996 T_OBJECT, 6997 decorators); 6998 6999 IdealKit ideal(this); 7000 #define __ ideal. 7001 __ if_then(referent, BoolTest::ne, null()); 7002 sync_kit(ideal); 7003 access_store_at(reference_obj, 7004 referent_field_addr, 7005 referent_field_addr_type, 7006 null(), 7007 val_type, 7008 T_OBJECT, 7009 decorators); 7010 __ sync_kit(this); 7011 __ end_if(); 7012 final_sync(ideal); 7013 #undef __ 7014 7015 return true; 7016 } 7017 7018 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 7019 DecoratorSet decorators, bool is_static, 7020 ciInstanceKlass* fromKls) { 7021 if (fromKls == nullptr) { 7022 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7023 assert(tinst != nullptr, "obj is null"); 7024 assert(tinst->is_loaded(), "obj is not loaded"); 7025 fromKls = tinst->instance_klass(); 7026 } else { 7027 assert(is_static, "only for static field access"); 7028 } 7029 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7030 ciSymbol::make(fieldTypeString), 7031 is_static); 7032 7033 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 7034 if (field == nullptr) return (Node *) nullptr; 7035 7036 if (is_static) { 7037 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7038 fromObj = makecon(tip); 7039 } 7040 7041 // Next code copied from Parse::do_get_xxx(): 7042 7043 // Compute address and memory type. 7044 int offset = field->offset_in_bytes(); 7045 bool is_vol = field->is_volatile(); 7046 ciType* field_klass = field->type(); 7047 assert(field_klass->is_loaded(), "should be loaded"); 7048 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 7049 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7050 assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()), 7051 "slice of address and input slice don't match"); 7052 BasicType bt = field->layout_type(); 7053 7054 // Build the resultant type of the load 7055 const Type *type; 7056 if (bt == T_OBJECT) { 7057 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 7058 } else { 7059 type = Type::get_const_basic_type(bt); 7060 } 7061 7062 if (is_vol) { 7063 decorators |= MO_SEQ_CST; 7064 } 7065 7066 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 7067 } 7068 7069 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 7070 bool is_exact /* true */, bool is_static /* false */, 7071 ciInstanceKlass * fromKls /* nullptr */) { 7072 if (fromKls == nullptr) { 7073 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 7074 assert(tinst != nullptr, "obj is null"); 7075 assert(tinst->is_loaded(), "obj is not loaded"); 7076 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 7077 fromKls = tinst->instance_klass(); 7078 } 7079 else { 7080 assert(is_static, "only for static field access"); 7081 } 7082 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 7083 ciSymbol::make(fieldTypeString), 7084 is_static); 7085 7086 assert(field != nullptr, "undefined field"); 7087 assert(!field->is_volatile(), "not defined for volatile fields"); 7088 7089 if (is_static) { 7090 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 7091 fromObj = makecon(tip); 7092 } 7093 7094 // Next code copied from Parse::do_get_xxx(): 7095 7096 // Compute address and memory type. 7097 int offset = field->offset_in_bytes(); 7098 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 7099 7100 return adr; 7101 } 7102 7103 //------------------------------inline_aescrypt_Block----------------------- 7104 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 7105 address stubAddr = nullptr; 7106 const char *stubName; 7107 assert(UseAES, "need AES instruction support"); 7108 7109 switch(id) { 7110 case vmIntrinsics::_aescrypt_encryptBlock: 7111 stubAddr = StubRoutines::aescrypt_encryptBlock(); 7112 stubName = "aescrypt_encryptBlock"; 7113 break; 7114 case vmIntrinsics::_aescrypt_decryptBlock: 7115 stubAddr = StubRoutines::aescrypt_decryptBlock(); 7116 stubName = "aescrypt_decryptBlock"; 7117 break; 7118 default: 7119 break; 7120 } 7121 if (stubAddr == nullptr) return false; 7122 7123 Node* aescrypt_object = argument(0); 7124 Node* src = argument(1); 7125 Node* src_offset = argument(2); 7126 Node* dest = argument(3); 7127 Node* dest_offset = argument(4); 7128 7129 src = must_be_not_null(src, true); 7130 dest = must_be_not_null(dest, true); 7131 7132 // (1) src and dest are arrays. 7133 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7134 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7135 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7136 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7137 7138 // for the quick and dirty code we will skip all the checks. 7139 // we are just trying to get the call to be generated. 7140 Node* src_start = src; 7141 Node* dest_start = dest; 7142 if (src_offset != nullptr || dest_offset != nullptr) { 7143 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7144 src_start = array_element_address(src, src_offset, T_BYTE); 7145 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7146 } 7147 7148 // now need to get the start of its expanded key array 7149 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7150 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7151 if (k_start == nullptr) return false; 7152 7153 // Call the stub. 7154 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 7155 stubAddr, stubName, TypePtr::BOTTOM, 7156 src_start, dest_start, k_start); 7157 7158 return true; 7159 } 7160 7161 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 7162 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 7163 address stubAddr = nullptr; 7164 const char *stubName = nullptr; 7165 7166 assert(UseAES, "need AES instruction support"); 7167 7168 switch(id) { 7169 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 7170 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 7171 stubName = "cipherBlockChaining_encryptAESCrypt"; 7172 break; 7173 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 7174 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 7175 stubName = "cipherBlockChaining_decryptAESCrypt"; 7176 break; 7177 default: 7178 break; 7179 } 7180 if (stubAddr == nullptr) return false; 7181 7182 Node* cipherBlockChaining_object = argument(0); 7183 Node* src = argument(1); 7184 Node* src_offset = argument(2); 7185 Node* len = argument(3); 7186 Node* dest = argument(4); 7187 Node* dest_offset = argument(5); 7188 7189 src = must_be_not_null(src, false); 7190 dest = must_be_not_null(dest, false); 7191 7192 // (1) src and dest are arrays. 7193 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7194 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7195 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7196 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7197 7198 // checks are the responsibility of the caller 7199 Node* src_start = src; 7200 Node* dest_start = dest; 7201 if (src_offset != nullptr || dest_offset != nullptr) { 7202 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7203 src_start = array_element_address(src, src_offset, T_BYTE); 7204 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7205 } 7206 7207 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7208 // (because of the predicated logic executed earlier). 7209 // so we cast it here safely. 7210 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7211 7212 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7213 if (embeddedCipherObj == nullptr) return false; 7214 7215 // cast it to what we know it will be at runtime 7216 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 7217 assert(tinst != nullptr, "CBC obj is null"); 7218 assert(tinst->is_loaded(), "CBC obj is not loaded"); 7219 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7220 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7221 7222 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7223 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7224 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7225 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7226 aescrypt_object = _gvn.transform(aescrypt_object); 7227 7228 // we need to get the start of the aescrypt_object's expanded key array 7229 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7230 if (k_start == nullptr) return false; 7231 7232 // similarly, get the start address of the r vector 7233 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 7234 if (objRvec == nullptr) return false; 7235 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 7236 7237 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7238 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7239 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 7240 stubAddr, stubName, TypePtr::BOTTOM, 7241 src_start, dest_start, k_start, r_start, len); 7242 7243 // return cipher length (int) 7244 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 7245 set_result(retvalue); 7246 return true; 7247 } 7248 7249 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 7250 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 7251 address stubAddr = nullptr; 7252 const char *stubName = nullptr; 7253 7254 assert(UseAES, "need AES instruction support"); 7255 7256 switch (id) { 7257 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 7258 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 7259 stubName = "electronicCodeBook_encryptAESCrypt"; 7260 break; 7261 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 7262 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 7263 stubName = "electronicCodeBook_decryptAESCrypt"; 7264 break; 7265 default: 7266 break; 7267 } 7268 7269 if (stubAddr == nullptr) return false; 7270 7271 Node* electronicCodeBook_object = argument(0); 7272 Node* src = argument(1); 7273 Node* src_offset = argument(2); 7274 Node* len = argument(3); 7275 Node* dest = argument(4); 7276 Node* dest_offset = argument(5); 7277 7278 // (1) src and dest are arrays. 7279 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7280 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7281 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7282 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7283 7284 // checks are the responsibility of the caller 7285 Node* src_start = src; 7286 Node* dest_start = dest; 7287 if (src_offset != nullptr || dest_offset != nullptr) { 7288 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7289 src_start = array_element_address(src, src_offset, T_BYTE); 7290 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7291 } 7292 7293 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7294 // (because of the predicated logic executed earlier). 7295 // so we cast it here safely. 7296 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7297 7298 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7299 if (embeddedCipherObj == nullptr) return false; 7300 7301 // cast it to what we know it will be at runtime 7302 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 7303 assert(tinst != nullptr, "ECB obj is null"); 7304 assert(tinst->is_loaded(), "ECB obj is not loaded"); 7305 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7306 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7307 7308 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7309 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7310 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7311 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7312 aescrypt_object = _gvn.transform(aescrypt_object); 7313 7314 // we need to get the start of the aescrypt_object's expanded key array 7315 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7316 if (k_start == nullptr) return false; 7317 7318 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7319 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 7320 OptoRuntime::electronicCodeBook_aescrypt_Type(), 7321 stubAddr, stubName, TypePtr::BOTTOM, 7322 src_start, dest_start, k_start, len); 7323 7324 // return cipher length (int) 7325 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 7326 set_result(retvalue); 7327 return true; 7328 } 7329 7330 //------------------------------inline_counterMode_AESCrypt----------------------- 7331 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 7332 assert(UseAES, "need AES instruction support"); 7333 if (!UseAESCTRIntrinsics) return false; 7334 7335 address stubAddr = nullptr; 7336 const char *stubName = nullptr; 7337 if (id == vmIntrinsics::_counterMode_AESCrypt) { 7338 stubAddr = StubRoutines::counterMode_AESCrypt(); 7339 stubName = "counterMode_AESCrypt"; 7340 } 7341 if (stubAddr == nullptr) return false; 7342 7343 Node* counterMode_object = argument(0); 7344 Node* src = argument(1); 7345 Node* src_offset = argument(2); 7346 Node* len = argument(3); 7347 Node* dest = argument(4); 7348 Node* dest_offset = argument(5); 7349 7350 // (1) src and dest are arrays. 7351 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7352 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 7353 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 7354 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 7355 7356 // checks are the responsibility of the caller 7357 Node* src_start = src; 7358 Node* dest_start = dest; 7359 if (src_offset != nullptr || dest_offset != nullptr) { 7360 assert(src_offset != nullptr && dest_offset != nullptr, ""); 7361 src_start = array_element_address(src, src_offset, T_BYTE); 7362 dest_start = array_element_address(dest, dest_offset, T_BYTE); 7363 } 7364 7365 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7366 // (because of the predicated logic executed earlier). 7367 // so we cast it here safely. 7368 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7369 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7370 if (embeddedCipherObj == nullptr) return false; 7371 // cast it to what we know it will be at runtime 7372 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 7373 assert(tinst != nullptr, "CTR obj is null"); 7374 assert(tinst->is_loaded(), "CTR obj is not loaded"); 7375 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7376 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7377 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7378 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7379 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7380 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7381 aescrypt_object = _gvn.transform(aescrypt_object); 7382 // we need to get the start of the aescrypt_object's expanded key array 7383 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7384 if (k_start == nullptr) return false; 7385 // similarly, get the start address of the r vector 7386 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 7387 if (obj_counter == nullptr) return false; 7388 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 7389 7390 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 7391 if (saved_encCounter == nullptr) return false; 7392 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 7393 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 7394 7395 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 7396 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7397 OptoRuntime::counterMode_aescrypt_Type(), 7398 stubAddr, stubName, TypePtr::BOTTOM, 7399 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 7400 7401 // return cipher length (int) 7402 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 7403 set_result(retvalue); 7404 return true; 7405 } 7406 7407 //------------------------------get_key_start_from_aescrypt_object----------------------- 7408 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 7409 #if defined(PPC64) || defined(S390) || defined(RISCV64) 7410 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 7411 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 7412 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 7413 // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]). 7414 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 7415 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7416 if (objSessionK == nullptr) { 7417 return (Node *) nullptr; 7418 } 7419 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 7420 #else 7421 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 7422 #endif // PPC64 7423 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 7424 if (objAESCryptKey == nullptr) return (Node *) nullptr; 7425 7426 // now have the array, need to get the start address of the K array 7427 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 7428 return k_start; 7429 } 7430 7431 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 7432 // Return node representing slow path of predicate check. 7433 // the pseudo code we want to emulate with this predicate is: 7434 // for encryption: 7435 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7436 // for decryption: 7437 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7438 // note cipher==plain is more conservative than the original java code but that's OK 7439 // 7440 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 7441 // The receiver was checked for null already. 7442 Node* objCBC = argument(0); 7443 7444 Node* src = argument(1); 7445 Node* dest = argument(4); 7446 7447 // Load embeddedCipher field of CipherBlockChaining object. 7448 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7449 7450 // get AESCrypt klass for instanceOf check 7451 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7452 // will have same classloader as CipherBlockChaining object 7453 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 7454 assert(tinst != nullptr, "CBCobj is null"); 7455 assert(tinst->is_loaded(), "CBCobj is not loaded"); 7456 7457 // we want to do an instanceof comparison against the AESCrypt class 7458 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7459 if (!klass_AESCrypt->is_loaded()) { 7460 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7461 Node* ctrl = control(); 7462 set_control(top()); // no regular fast path 7463 return ctrl; 7464 } 7465 7466 src = must_be_not_null(src, true); 7467 dest = must_be_not_null(dest, true); 7468 7469 // Resolve oops to stable for CmpP below. 7470 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7471 7472 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7473 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7474 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7475 7476 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7477 7478 // for encryption, we are done 7479 if (!decrypting) 7480 return instof_false; // even if it is null 7481 7482 // for decryption, we need to add a further check to avoid 7483 // taking the intrinsic path when cipher and plain are the same 7484 // see the original java code for why. 7485 RegionNode* region = new RegionNode(3); 7486 region->init_req(1, instof_false); 7487 7488 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7489 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7490 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7491 region->init_req(2, src_dest_conjoint); 7492 7493 record_for_igvn(region); 7494 return _gvn.transform(region); 7495 } 7496 7497 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 7498 // Return node representing slow path of predicate check. 7499 // the pseudo code we want to emulate with this predicate is: 7500 // for encryption: 7501 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7502 // for decryption: 7503 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7504 // note cipher==plain is more conservative than the original java code but that's OK 7505 // 7506 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 7507 // The receiver was checked for null already. 7508 Node* objECB = argument(0); 7509 7510 // Load embeddedCipher field of ElectronicCodeBook object. 7511 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7512 7513 // get AESCrypt klass for instanceOf check 7514 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7515 // will have same classloader as ElectronicCodeBook object 7516 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 7517 assert(tinst != nullptr, "ECBobj is null"); 7518 assert(tinst->is_loaded(), "ECBobj is not loaded"); 7519 7520 // we want to do an instanceof comparison against the AESCrypt class 7521 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7522 if (!klass_AESCrypt->is_loaded()) { 7523 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7524 Node* ctrl = control(); 7525 set_control(top()); // no regular fast path 7526 return ctrl; 7527 } 7528 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7529 7530 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7531 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7532 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7533 7534 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7535 7536 // for encryption, we are done 7537 if (!decrypting) 7538 return instof_false; // even if it is null 7539 7540 // for decryption, we need to add a further check to avoid 7541 // taking the intrinsic path when cipher and plain are the same 7542 // see the original java code for why. 7543 RegionNode* region = new RegionNode(3); 7544 region->init_req(1, instof_false); 7545 Node* src = argument(1); 7546 Node* dest = argument(4); 7547 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 7548 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 7549 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 7550 region->init_req(2, src_dest_conjoint); 7551 7552 record_for_igvn(region); 7553 return _gvn.transform(region); 7554 } 7555 7556 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 7557 // Return node representing slow path of predicate check. 7558 // the pseudo code we want to emulate with this predicate is: 7559 // for encryption: 7560 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7561 // for decryption: 7562 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7563 // note cipher==plain is more conservative than the original java code but that's OK 7564 // 7565 7566 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7567 // The receiver was checked for null already. 7568 Node* objCTR = argument(0); 7569 7570 // Load embeddedCipher field of CipherBlockChaining object. 7571 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7572 7573 // get AESCrypt klass for instanceOf check 7574 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7575 // will have same classloader as CipherBlockChaining object 7576 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7577 assert(tinst != nullptr, "CTRobj is null"); 7578 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7579 7580 // we want to do an instanceof comparison against the AESCrypt class 7581 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7582 if (!klass_AESCrypt->is_loaded()) { 7583 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7584 Node* ctrl = control(); 7585 set_control(top()); // no regular fast path 7586 return ctrl; 7587 } 7588 7589 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7590 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7591 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7592 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7593 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7594 7595 return instof_false; // even if it is null 7596 } 7597 7598 //------------------------------inline_ghash_processBlocks 7599 bool LibraryCallKit::inline_ghash_processBlocks() { 7600 address stubAddr; 7601 const char *stubName; 7602 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7603 7604 stubAddr = StubRoutines::ghash_processBlocks(); 7605 stubName = "ghash_processBlocks"; 7606 7607 Node* data = argument(0); 7608 Node* offset = argument(1); 7609 Node* len = argument(2); 7610 Node* state = argument(3); 7611 Node* subkeyH = argument(4); 7612 7613 state = must_be_not_null(state, true); 7614 subkeyH = must_be_not_null(subkeyH, true); 7615 data = must_be_not_null(data, true); 7616 7617 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7618 assert(state_start, "state is null"); 7619 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7620 assert(subkeyH_start, "subkeyH is null"); 7621 Node* data_start = array_element_address(data, offset, T_BYTE); 7622 assert(data_start, "data is null"); 7623 7624 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7625 OptoRuntime::ghash_processBlocks_Type(), 7626 stubAddr, stubName, TypePtr::BOTTOM, 7627 state_start, subkeyH_start, data_start, len); 7628 return true; 7629 } 7630 7631 //------------------------------inline_chacha20Block 7632 bool LibraryCallKit::inline_chacha20Block() { 7633 address stubAddr; 7634 const char *stubName; 7635 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7636 7637 stubAddr = StubRoutines::chacha20Block(); 7638 stubName = "chacha20Block"; 7639 7640 Node* state = argument(0); 7641 Node* result = argument(1); 7642 7643 state = must_be_not_null(state, true); 7644 result = must_be_not_null(result, true); 7645 7646 Node* state_start = array_element_address(state, intcon(0), T_INT); 7647 assert(state_start, "state is null"); 7648 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 7649 assert(result_start, "result is null"); 7650 7651 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7652 OptoRuntime::chacha20Block_Type(), 7653 stubAddr, stubName, TypePtr::BOTTOM, 7654 state_start, result_start); 7655 // return key stream length (int) 7656 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7657 set_result(retvalue); 7658 return true; 7659 } 7660 7661 //------------------------------inline_kyberNtt 7662 bool LibraryCallKit::inline_kyberNtt() { 7663 address stubAddr; 7664 const char *stubName; 7665 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7666 assert(callee()->signature()->size() == 2, "kyberNtt has 2 parameters"); 7667 7668 stubAddr = StubRoutines::kyberNtt(); 7669 stubName = "kyberNtt"; 7670 if (!stubAddr) return false; 7671 7672 Node* coeffs = argument(0); 7673 Node* ntt_zetas = argument(1); 7674 7675 coeffs = must_be_not_null(coeffs, true); 7676 ntt_zetas = must_be_not_null(ntt_zetas, true); 7677 7678 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 7679 assert(coeffs_start, "coeffs is null"); 7680 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_SHORT); 7681 assert(ntt_zetas_start, "ntt_zetas is null"); 7682 Node* kyberNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7683 OptoRuntime::kyberNtt_Type(), 7684 stubAddr, stubName, TypePtr::BOTTOM, 7685 coeffs_start, ntt_zetas_start); 7686 // return an int 7687 Node* retvalue = _gvn.transform(new ProjNode(kyberNtt, TypeFunc::Parms)); 7688 set_result(retvalue); 7689 return true; 7690 } 7691 7692 //------------------------------inline_kyberInverseNtt 7693 bool LibraryCallKit::inline_kyberInverseNtt() { 7694 address stubAddr; 7695 const char *stubName; 7696 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7697 assert(callee()->signature()->size() == 2, "kyberInverseNtt has 2 parameters"); 7698 7699 stubAddr = StubRoutines::kyberInverseNtt(); 7700 stubName = "kyberInverseNtt"; 7701 if (!stubAddr) return false; 7702 7703 Node* coeffs = argument(0); 7704 Node* zetas = argument(1); 7705 7706 coeffs = must_be_not_null(coeffs, true); 7707 zetas = must_be_not_null(zetas, true); 7708 7709 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 7710 assert(coeffs_start, "coeffs is null"); 7711 Node* zetas_start = array_element_address(zetas, intcon(0), T_SHORT); 7712 assert(zetas_start, "inverseNtt_zetas is null"); 7713 Node* kyberInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7714 OptoRuntime::kyberInverseNtt_Type(), 7715 stubAddr, stubName, TypePtr::BOTTOM, 7716 coeffs_start, zetas_start); 7717 7718 // return an int 7719 Node* retvalue = _gvn.transform(new ProjNode(kyberInverseNtt, TypeFunc::Parms)); 7720 set_result(retvalue); 7721 return true; 7722 } 7723 7724 //------------------------------inline_kyberNttMult 7725 bool LibraryCallKit::inline_kyberNttMult() { 7726 address stubAddr; 7727 const char *stubName; 7728 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7729 assert(callee()->signature()->size() == 4, "kyberNttMult has 4 parameters"); 7730 7731 stubAddr = StubRoutines::kyberNttMult(); 7732 stubName = "kyberNttMult"; 7733 if (!stubAddr) return false; 7734 7735 Node* result = argument(0); 7736 Node* ntta = argument(1); 7737 Node* nttb = argument(2); 7738 Node* zetas = argument(3); 7739 7740 result = must_be_not_null(result, true); 7741 ntta = must_be_not_null(ntta, true); 7742 nttb = must_be_not_null(nttb, true); 7743 zetas = must_be_not_null(zetas, true); 7744 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 7745 assert(result_start, "result is null"); 7746 Node* ntta_start = array_element_address(ntta, intcon(0), T_SHORT); 7747 assert(ntta_start, "ntta is null"); 7748 Node* nttb_start = array_element_address(nttb, intcon(0), T_SHORT); 7749 assert(nttb_start, "nttb is null"); 7750 Node* zetas_start = array_element_address(zetas, intcon(0), T_SHORT); 7751 assert(zetas_start, "nttMult_zetas is null"); 7752 Node* kyberNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 7753 OptoRuntime::kyberNttMult_Type(), 7754 stubAddr, stubName, TypePtr::BOTTOM, 7755 result_start, ntta_start, nttb_start, 7756 zetas_start); 7757 7758 // return an int 7759 Node* retvalue = _gvn.transform(new ProjNode(kyberNttMult, TypeFunc::Parms)); 7760 set_result(retvalue); 7761 7762 return true; 7763 } 7764 7765 //------------------------------inline_kyberAddPoly_2 7766 bool LibraryCallKit::inline_kyberAddPoly_2() { 7767 address stubAddr; 7768 const char *stubName; 7769 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7770 assert(callee()->signature()->size() == 3, "kyberAddPoly_2 has 3 parameters"); 7771 7772 stubAddr = StubRoutines::kyberAddPoly_2(); 7773 stubName = "kyberAddPoly_2"; 7774 if (!stubAddr) return false; 7775 7776 Node* result = argument(0); 7777 Node* a = argument(1); 7778 Node* b = argument(2); 7779 7780 result = must_be_not_null(result, true); 7781 a = must_be_not_null(a, true); 7782 b = must_be_not_null(b, true); 7783 7784 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 7785 assert(result_start, "result is null"); 7786 Node* a_start = array_element_address(a, intcon(0), T_SHORT); 7787 assert(a_start, "a is null"); 7788 Node* b_start = array_element_address(b, intcon(0), T_SHORT); 7789 assert(b_start, "b is null"); 7790 Node* kyberAddPoly_2 = make_runtime_call(RC_LEAF|RC_NO_FP, 7791 OptoRuntime::kyberAddPoly_2_Type(), 7792 stubAddr, stubName, TypePtr::BOTTOM, 7793 result_start, a_start, b_start); 7794 // return an int 7795 Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_2, TypeFunc::Parms)); 7796 set_result(retvalue); 7797 return true; 7798 } 7799 7800 //------------------------------inline_kyberAddPoly_3 7801 bool LibraryCallKit::inline_kyberAddPoly_3() { 7802 address stubAddr; 7803 const char *stubName; 7804 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7805 assert(callee()->signature()->size() == 4, "kyberAddPoly_3 has 4 parameters"); 7806 7807 stubAddr = StubRoutines::kyberAddPoly_3(); 7808 stubName = "kyberAddPoly_3"; 7809 if (!stubAddr) return false; 7810 7811 Node* result = argument(0); 7812 Node* a = argument(1); 7813 Node* b = argument(2); 7814 Node* c = argument(3); 7815 7816 result = must_be_not_null(result, true); 7817 a = must_be_not_null(a, true); 7818 b = must_be_not_null(b, true); 7819 c = must_be_not_null(c, true); 7820 7821 Node* result_start = array_element_address(result, intcon(0), T_SHORT); 7822 assert(result_start, "result is null"); 7823 Node* a_start = array_element_address(a, intcon(0), T_SHORT); 7824 assert(a_start, "a is null"); 7825 Node* b_start = array_element_address(b, intcon(0), T_SHORT); 7826 assert(b_start, "b is null"); 7827 Node* c_start = array_element_address(c, intcon(0), T_SHORT); 7828 assert(c_start, "c is null"); 7829 Node* kyberAddPoly_3 = make_runtime_call(RC_LEAF|RC_NO_FP, 7830 OptoRuntime::kyberAddPoly_3_Type(), 7831 stubAddr, stubName, TypePtr::BOTTOM, 7832 result_start, a_start, b_start, c_start); 7833 // return an int 7834 Node* retvalue = _gvn.transform(new ProjNode(kyberAddPoly_3, TypeFunc::Parms)); 7835 set_result(retvalue); 7836 return true; 7837 } 7838 7839 //------------------------------inline_kyber12To16 7840 bool LibraryCallKit::inline_kyber12To16() { 7841 address stubAddr; 7842 const char *stubName; 7843 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7844 assert(callee()->signature()->size() == 4, "kyber12To16 has 4 parameters"); 7845 7846 stubAddr = StubRoutines::kyber12To16(); 7847 stubName = "kyber12To16"; 7848 if (!stubAddr) return false; 7849 7850 Node* condensed = argument(0); 7851 Node* condensedOffs = argument(1); 7852 Node* parsed = argument(2); 7853 Node* parsedLength = argument(3); 7854 7855 condensed = must_be_not_null(condensed, true); 7856 parsed = must_be_not_null(parsed, true); 7857 7858 Node* condensed_start = array_element_address(condensed, intcon(0), T_BYTE); 7859 assert(condensed_start, "condensed is null"); 7860 Node* parsed_start = array_element_address(parsed, intcon(0), T_SHORT); 7861 assert(parsed_start, "parsed is null"); 7862 Node* kyber12To16 = make_runtime_call(RC_LEAF|RC_NO_FP, 7863 OptoRuntime::kyber12To16_Type(), 7864 stubAddr, stubName, TypePtr::BOTTOM, 7865 condensed_start, condensedOffs, parsed_start, parsedLength); 7866 // return an int 7867 Node* retvalue = _gvn.transform(new ProjNode(kyber12To16, TypeFunc::Parms)); 7868 set_result(retvalue); 7869 return true; 7870 7871 } 7872 7873 //------------------------------inline_kyberBarrettReduce 7874 bool LibraryCallKit::inline_kyberBarrettReduce() { 7875 address stubAddr; 7876 const char *stubName; 7877 assert(UseKyberIntrinsics, "need Kyber intrinsics support"); 7878 assert(callee()->signature()->size() == 1, "kyberBarrettReduce has 1 parameters"); 7879 7880 stubAddr = StubRoutines::kyberBarrettReduce(); 7881 stubName = "kyberBarrettReduce"; 7882 if (!stubAddr) return false; 7883 7884 Node* coeffs = argument(0); 7885 7886 coeffs = must_be_not_null(coeffs, true); 7887 7888 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_SHORT); 7889 assert(coeffs_start, "coeffs is null"); 7890 Node* kyberBarrettReduce = make_runtime_call(RC_LEAF|RC_NO_FP, 7891 OptoRuntime::kyberBarrettReduce_Type(), 7892 stubAddr, stubName, TypePtr::BOTTOM, 7893 coeffs_start); 7894 // return an int 7895 Node* retvalue = _gvn.transform(new ProjNode(kyberBarrettReduce, TypeFunc::Parms)); 7896 set_result(retvalue); 7897 return true; 7898 } 7899 7900 //------------------------------inline_dilithiumAlmostNtt 7901 bool LibraryCallKit::inline_dilithiumAlmostNtt() { 7902 address stubAddr; 7903 const char *stubName; 7904 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7905 assert(callee()->signature()->size() == 2, "dilithiumAlmostNtt has 2 parameters"); 7906 7907 stubAddr = StubRoutines::dilithiumAlmostNtt(); 7908 stubName = "dilithiumAlmostNtt"; 7909 if (!stubAddr) return false; 7910 7911 Node* coeffs = argument(0); 7912 Node* ntt_zetas = argument(1); 7913 7914 coeffs = must_be_not_null(coeffs, true); 7915 ntt_zetas = must_be_not_null(ntt_zetas, true); 7916 7917 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 7918 assert(coeffs_start, "coeffs is null"); 7919 Node* ntt_zetas_start = array_element_address(ntt_zetas, intcon(0), T_INT); 7920 assert(ntt_zetas_start, "ntt_zetas is null"); 7921 Node* dilithiumAlmostNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7922 OptoRuntime::dilithiumAlmostNtt_Type(), 7923 stubAddr, stubName, TypePtr::BOTTOM, 7924 coeffs_start, ntt_zetas_start); 7925 // return an int 7926 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostNtt, TypeFunc::Parms)); 7927 set_result(retvalue); 7928 return true; 7929 } 7930 7931 //------------------------------inline_dilithiumAlmostInverseNtt 7932 bool LibraryCallKit::inline_dilithiumAlmostInverseNtt() { 7933 address stubAddr; 7934 const char *stubName; 7935 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7936 assert(callee()->signature()->size() == 2, "dilithiumAlmostInverseNtt has 2 parameters"); 7937 7938 stubAddr = StubRoutines::dilithiumAlmostInverseNtt(); 7939 stubName = "dilithiumAlmostInverseNtt"; 7940 if (!stubAddr) return false; 7941 7942 Node* coeffs = argument(0); 7943 Node* zetas = argument(1); 7944 7945 coeffs = must_be_not_null(coeffs, true); 7946 zetas = must_be_not_null(zetas, true); 7947 7948 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 7949 assert(coeffs_start, "coeffs is null"); 7950 Node* zetas_start = array_element_address(zetas, intcon(0), T_INT); 7951 assert(zetas_start, "inverseNtt_zetas is null"); 7952 Node* dilithiumAlmostInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP, 7953 OptoRuntime::dilithiumAlmostInverseNtt_Type(), 7954 stubAddr, stubName, TypePtr::BOTTOM, 7955 coeffs_start, zetas_start); 7956 // return an int 7957 Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostInverseNtt, TypeFunc::Parms)); 7958 set_result(retvalue); 7959 return true; 7960 } 7961 7962 //------------------------------inline_dilithiumNttMult 7963 bool LibraryCallKit::inline_dilithiumNttMult() { 7964 address stubAddr; 7965 const char *stubName; 7966 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 7967 assert(callee()->signature()->size() == 3, "dilithiumNttMult has 3 parameters"); 7968 7969 stubAddr = StubRoutines::dilithiumNttMult(); 7970 stubName = "dilithiumNttMult"; 7971 if (!stubAddr) return false; 7972 7973 Node* result = argument(0); 7974 Node* ntta = argument(1); 7975 Node* nttb = argument(2); 7976 Node* zetas = argument(3); 7977 7978 result = must_be_not_null(result, true); 7979 ntta = must_be_not_null(ntta, true); 7980 nttb = must_be_not_null(nttb, true); 7981 zetas = must_be_not_null(zetas, true); 7982 7983 Node* result_start = array_element_address(result, intcon(0), T_INT); 7984 assert(result_start, "result is null"); 7985 Node* ntta_start = array_element_address(ntta, intcon(0), T_INT); 7986 assert(ntta_start, "ntta is null"); 7987 Node* nttb_start = array_element_address(nttb, intcon(0), T_INT); 7988 assert(nttb_start, "nttb is null"); 7989 Node* dilithiumNttMult = make_runtime_call(RC_LEAF|RC_NO_FP, 7990 OptoRuntime::dilithiumNttMult_Type(), 7991 stubAddr, stubName, TypePtr::BOTTOM, 7992 result_start, ntta_start, nttb_start); 7993 7994 // return an int 7995 Node* retvalue = _gvn.transform(new ProjNode(dilithiumNttMult, TypeFunc::Parms)); 7996 set_result(retvalue); 7997 7998 return true; 7999 } 8000 8001 //------------------------------inline_dilithiumMontMulByConstant 8002 bool LibraryCallKit::inline_dilithiumMontMulByConstant() { 8003 address stubAddr; 8004 const char *stubName; 8005 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8006 assert(callee()->signature()->size() == 2, "dilithiumMontMulByConstant has 2 parameters"); 8007 8008 stubAddr = StubRoutines::dilithiumMontMulByConstant(); 8009 stubName = "dilithiumMontMulByConstant"; 8010 if (!stubAddr) return false; 8011 8012 Node* coeffs = argument(0); 8013 Node* constant = argument(1); 8014 8015 coeffs = must_be_not_null(coeffs, true); 8016 8017 Node* coeffs_start = array_element_address(coeffs, intcon(0), T_INT); 8018 assert(coeffs_start, "coeffs is null"); 8019 Node* dilithiumMontMulByConstant = make_runtime_call(RC_LEAF|RC_NO_FP, 8020 OptoRuntime::dilithiumMontMulByConstant_Type(), 8021 stubAddr, stubName, TypePtr::BOTTOM, 8022 coeffs_start, constant); 8023 8024 // return an int 8025 Node* retvalue = _gvn.transform(new ProjNode(dilithiumMontMulByConstant, TypeFunc::Parms)); 8026 set_result(retvalue); 8027 return true; 8028 } 8029 8030 8031 //------------------------------inline_dilithiumDecomposePoly 8032 bool LibraryCallKit::inline_dilithiumDecomposePoly() { 8033 address stubAddr; 8034 const char *stubName; 8035 assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support"); 8036 assert(callee()->signature()->size() == 5, "dilithiumDecomposePoly has 5 parameters"); 8037 8038 stubAddr = StubRoutines::dilithiumDecomposePoly(); 8039 stubName = "dilithiumDecomposePoly"; 8040 if (!stubAddr) return false; 8041 8042 Node* input = argument(0); 8043 Node* lowPart = argument(1); 8044 Node* highPart = argument(2); 8045 Node* twoGamma2 = argument(3); 8046 Node* multiplier = argument(4); 8047 8048 input = must_be_not_null(input, true); 8049 lowPart = must_be_not_null(lowPart, true); 8050 highPart = must_be_not_null(highPart, true); 8051 8052 Node* input_start = array_element_address(input, intcon(0), T_INT); 8053 assert(input_start, "input is null"); 8054 Node* lowPart_start = array_element_address(lowPart, intcon(0), T_INT); 8055 assert(lowPart_start, "lowPart is null"); 8056 Node* highPart_start = array_element_address(highPart, intcon(0), T_INT); 8057 assert(highPart_start, "highPart is null"); 8058 8059 Node* dilithiumDecomposePoly = make_runtime_call(RC_LEAF|RC_NO_FP, 8060 OptoRuntime::dilithiumDecomposePoly_Type(), 8061 stubAddr, stubName, TypePtr::BOTTOM, 8062 input_start, lowPart_start, highPart_start, 8063 twoGamma2, multiplier); 8064 8065 // return an int 8066 Node* retvalue = _gvn.transform(new ProjNode(dilithiumDecomposePoly, TypeFunc::Parms)); 8067 set_result(retvalue); 8068 return true; 8069 } 8070 8071 bool LibraryCallKit::inline_base64_encodeBlock() { 8072 address stubAddr; 8073 const char *stubName; 8074 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8075 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 8076 stubAddr = StubRoutines::base64_encodeBlock(); 8077 stubName = "encodeBlock"; 8078 8079 if (!stubAddr) return false; 8080 Node* base64obj = argument(0); 8081 Node* src = argument(1); 8082 Node* offset = argument(2); 8083 Node* len = argument(3); 8084 Node* dest = argument(4); 8085 Node* dp = argument(5); 8086 Node* isURL = argument(6); 8087 8088 src = must_be_not_null(src, true); 8089 dest = must_be_not_null(dest, true); 8090 8091 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8092 assert(src_start, "source array is null"); 8093 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8094 assert(dest_start, "destination array is null"); 8095 8096 Node* base64 = make_runtime_call(RC_LEAF, 8097 OptoRuntime::base64_encodeBlock_Type(), 8098 stubAddr, stubName, TypePtr::BOTTOM, 8099 src_start, offset, len, dest_start, dp, isURL); 8100 return true; 8101 } 8102 8103 bool LibraryCallKit::inline_base64_decodeBlock() { 8104 address stubAddr; 8105 const char *stubName; 8106 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 8107 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 8108 stubAddr = StubRoutines::base64_decodeBlock(); 8109 stubName = "decodeBlock"; 8110 8111 if (!stubAddr) return false; 8112 Node* base64obj = argument(0); 8113 Node* src = argument(1); 8114 Node* src_offset = argument(2); 8115 Node* len = argument(3); 8116 Node* dest = argument(4); 8117 Node* dest_offset = argument(5); 8118 Node* isURL = argument(6); 8119 Node* isMIME = argument(7); 8120 8121 src = must_be_not_null(src, true); 8122 dest = must_be_not_null(dest, true); 8123 8124 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 8125 assert(src_start, "source array is null"); 8126 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 8127 assert(dest_start, "destination array is null"); 8128 8129 Node* call = make_runtime_call(RC_LEAF, 8130 OptoRuntime::base64_decodeBlock_Type(), 8131 stubAddr, stubName, TypePtr::BOTTOM, 8132 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 8133 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8134 set_result(result); 8135 return true; 8136 } 8137 8138 bool LibraryCallKit::inline_poly1305_processBlocks() { 8139 address stubAddr; 8140 const char *stubName; 8141 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 8142 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 8143 stubAddr = StubRoutines::poly1305_processBlocks(); 8144 stubName = "poly1305_processBlocks"; 8145 8146 if (!stubAddr) return false; 8147 null_check_receiver(); // null-check receiver 8148 if (stopped()) return true; 8149 8150 Node* input = argument(1); 8151 Node* input_offset = argument(2); 8152 Node* len = argument(3); 8153 Node* alimbs = argument(4); 8154 Node* rlimbs = argument(5); 8155 8156 input = must_be_not_null(input, true); 8157 alimbs = must_be_not_null(alimbs, true); 8158 rlimbs = must_be_not_null(rlimbs, true); 8159 8160 Node* input_start = array_element_address(input, input_offset, T_BYTE); 8161 assert(input_start, "input array is null"); 8162 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 8163 assert(acc_start, "acc array is null"); 8164 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 8165 assert(r_start, "r array is null"); 8166 8167 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8168 OptoRuntime::poly1305_processBlocks_Type(), 8169 stubAddr, stubName, TypePtr::BOTTOM, 8170 input_start, len, acc_start, r_start); 8171 return true; 8172 } 8173 8174 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() { 8175 address stubAddr; 8176 const char *stubName; 8177 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8178 assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size()); 8179 stubAddr = StubRoutines::intpoly_montgomeryMult_P256(); 8180 stubName = "intpoly_montgomeryMult_P256"; 8181 8182 if (!stubAddr) return false; 8183 null_check_receiver(); // null-check receiver 8184 if (stopped()) return true; 8185 8186 Node* a = argument(1); 8187 Node* b = argument(2); 8188 Node* r = argument(3); 8189 8190 a = must_be_not_null(a, true); 8191 b = must_be_not_null(b, true); 8192 r = must_be_not_null(r, true); 8193 8194 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8195 assert(a_start, "a array is null"); 8196 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8197 assert(b_start, "b array is null"); 8198 Node* r_start = array_element_address(r, intcon(0), T_LONG); 8199 assert(r_start, "r array is null"); 8200 8201 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8202 OptoRuntime::intpoly_montgomeryMult_P256_Type(), 8203 stubAddr, stubName, TypePtr::BOTTOM, 8204 a_start, b_start, r_start); 8205 return true; 8206 } 8207 8208 bool LibraryCallKit::inline_intpoly_assign() { 8209 assert(UseIntPolyIntrinsics, "need intpoly intrinsics support"); 8210 assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size()); 8211 const char *stubName = "intpoly_assign"; 8212 address stubAddr = StubRoutines::intpoly_assign(); 8213 if (!stubAddr) return false; 8214 8215 Node* set = argument(0); 8216 Node* a = argument(1); 8217 Node* b = argument(2); 8218 Node* arr_length = load_array_length(a); 8219 8220 a = must_be_not_null(a, true); 8221 b = must_be_not_null(b, true); 8222 8223 Node* a_start = array_element_address(a, intcon(0), T_LONG); 8224 assert(a_start, "a array is null"); 8225 Node* b_start = array_element_address(b, intcon(0), T_LONG); 8226 assert(b_start, "b array is null"); 8227 8228 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 8229 OptoRuntime::intpoly_assign_Type(), 8230 stubAddr, stubName, TypePtr::BOTTOM, 8231 set, a_start, b_start, arr_length); 8232 return true; 8233 } 8234 8235 //------------------------------inline_digestBase_implCompress----------------------- 8236 // 8237 // Calculate MD5 for single-block byte[] array. 8238 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 8239 // 8240 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 8241 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 8242 // 8243 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 8244 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 8245 // 8246 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 8247 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 8248 // 8249 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 8250 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 8251 // 8252 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 8253 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 8254 8255 Node* digestBase_obj = argument(0); 8256 Node* src = argument(1); // type oop 8257 Node* ofs = argument(2); // type int 8258 8259 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8260 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8261 // failed array check 8262 return false; 8263 } 8264 // Figure out the size and type of the elements we will be copying. 8265 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8266 if (src_elem != T_BYTE) { 8267 return false; 8268 } 8269 // 'src_start' points to src array + offset 8270 src = must_be_not_null(src, true); 8271 Node* src_start = array_element_address(src, ofs, src_elem); 8272 Node* state = nullptr; 8273 Node* block_size = nullptr; 8274 address stubAddr; 8275 const char *stubName; 8276 8277 switch(id) { 8278 case vmIntrinsics::_md5_implCompress: 8279 assert(UseMD5Intrinsics, "need MD5 instruction support"); 8280 state = get_state_from_digest_object(digestBase_obj, T_INT); 8281 stubAddr = StubRoutines::md5_implCompress(); 8282 stubName = "md5_implCompress"; 8283 break; 8284 case vmIntrinsics::_sha_implCompress: 8285 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 8286 state = get_state_from_digest_object(digestBase_obj, T_INT); 8287 stubAddr = StubRoutines::sha1_implCompress(); 8288 stubName = "sha1_implCompress"; 8289 break; 8290 case vmIntrinsics::_sha2_implCompress: 8291 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 8292 state = get_state_from_digest_object(digestBase_obj, T_INT); 8293 stubAddr = StubRoutines::sha256_implCompress(); 8294 stubName = "sha256_implCompress"; 8295 break; 8296 case vmIntrinsics::_sha5_implCompress: 8297 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 8298 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8299 stubAddr = StubRoutines::sha512_implCompress(); 8300 stubName = "sha512_implCompress"; 8301 break; 8302 case vmIntrinsics::_sha3_implCompress: 8303 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 8304 state = get_state_from_digest_object(digestBase_obj, T_LONG); 8305 stubAddr = StubRoutines::sha3_implCompress(); 8306 stubName = "sha3_implCompress"; 8307 block_size = get_block_size_from_digest_object(digestBase_obj); 8308 if (block_size == nullptr) return false; 8309 break; 8310 default: 8311 fatal_unexpected_iid(id); 8312 return false; 8313 } 8314 if (state == nullptr) return false; 8315 8316 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 8317 if (stubAddr == nullptr) return false; 8318 8319 // Call the stub. 8320 Node* call; 8321 if (block_size == nullptr) { 8322 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 8323 stubAddr, stubName, TypePtr::BOTTOM, 8324 src_start, state); 8325 } else { 8326 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 8327 stubAddr, stubName, TypePtr::BOTTOM, 8328 src_start, state, block_size); 8329 } 8330 8331 return true; 8332 } 8333 8334 //------------------------------inline_double_keccak 8335 bool LibraryCallKit::inline_double_keccak() { 8336 address stubAddr; 8337 const char *stubName; 8338 assert(UseSHA3Intrinsics, "need SHA3 intrinsics support"); 8339 assert(callee()->signature()->size() == 2, "double_keccak has 2 parameters"); 8340 8341 stubAddr = StubRoutines::double_keccak(); 8342 stubName = "double_keccak"; 8343 if (!stubAddr) return false; 8344 8345 Node* status0 = argument(0); 8346 Node* status1 = argument(1); 8347 8348 status0 = must_be_not_null(status0, true); 8349 status1 = must_be_not_null(status1, true); 8350 8351 Node* status0_start = array_element_address(status0, intcon(0), T_LONG); 8352 assert(status0_start, "status0 is null"); 8353 Node* status1_start = array_element_address(status1, intcon(0), T_LONG); 8354 assert(status1_start, "status1 is null"); 8355 Node* double_keccak = make_runtime_call(RC_LEAF|RC_NO_FP, 8356 OptoRuntime::double_keccak_Type(), 8357 stubAddr, stubName, TypePtr::BOTTOM, 8358 status0_start, status1_start); 8359 // return an int 8360 Node* retvalue = _gvn.transform(new ProjNode(double_keccak, TypeFunc::Parms)); 8361 set_result(retvalue); 8362 return true; 8363 } 8364 8365 8366 //------------------------------inline_digestBase_implCompressMB----------------------- 8367 // 8368 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 8369 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 8370 // 8371 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 8372 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8373 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8374 assert((uint)predicate < 5, "sanity"); 8375 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 8376 8377 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 8378 Node* src = argument(1); // byte[] array 8379 Node* ofs = argument(2); // type int 8380 Node* limit = argument(3); // type int 8381 8382 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 8383 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 8384 // failed array check 8385 return false; 8386 } 8387 // Figure out the size and type of the elements we will be copying. 8388 BasicType src_elem = src_type->elem()->array_element_basic_type(); 8389 if (src_elem != T_BYTE) { 8390 return false; 8391 } 8392 // 'src_start' points to src array + offset 8393 src = must_be_not_null(src, false); 8394 Node* src_start = array_element_address(src, ofs, src_elem); 8395 8396 const char* klass_digestBase_name = nullptr; 8397 const char* stub_name = nullptr; 8398 address stub_addr = nullptr; 8399 BasicType elem_type = T_INT; 8400 8401 switch (predicate) { 8402 case 0: 8403 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 8404 klass_digestBase_name = "sun/security/provider/MD5"; 8405 stub_name = "md5_implCompressMB"; 8406 stub_addr = StubRoutines::md5_implCompressMB(); 8407 } 8408 break; 8409 case 1: 8410 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 8411 klass_digestBase_name = "sun/security/provider/SHA"; 8412 stub_name = "sha1_implCompressMB"; 8413 stub_addr = StubRoutines::sha1_implCompressMB(); 8414 } 8415 break; 8416 case 2: 8417 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 8418 klass_digestBase_name = "sun/security/provider/SHA2"; 8419 stub_name = "sha256_implCompressMB"; 8420 stub_addr = StubRoutines::sha256_implCompressMB(); 8421 } 8422 break; 8423 case 3: 8424 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 8425 klass_digestBase_name = "sun/security/provider/SHA5"; 8426 stub_name = "sha512_implCompressMB"; 8427 stub_addr = StubRoutines::sha512_implCompressMB(); 8428 elem_type = T_LONG; 8429 } 8430 break; 8431 case 4: 8432 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 8433 klass_digestBase_name = "sun/security/provider/SHA3"; 8434 stub_name = "sha3_implCompressMB"; 8435 stub_addr = StubRoutines::sha3_implCompressMB(); 8436 elem_type = T_LONG; 8437 } 8438 break; 8439 default: 8440 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 8441 } 8442 if (klass_digestBase_name != nullptr) { 8443 assert(stub_addr != nullptr, "Stub is generated"); 8444 if (stub_addr == nullptr) return false; 8445 8446 // get DigestBase klass to lookup for SHA klass 8447 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 8448 assert(tinst != nullptr, "digestBase_obj is not instance???"); 8449 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8450 8451 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 8452 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 8453 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 8454 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 8455 } 8456 return false; 8457 } 8458 8459 //------------------------------inline_digestBase_implCompressMB----------------------- 8460 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 8461 BasicType elem_type, address stubAddr, const char *stubName, 8462 Node* src_start, Node* ofs, Node* limit) { 8463 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 8464 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 8465 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 8466 digest_obj = _gvn.transform(digest_obj); 8467 8468 Node* state = get_state_from_digest_object(digest_obj, elem_type); 8469 if (state == nullptr) return false; 8470 8471 Node* block_size = nullptr; 8472 if (strcmp("sha3_implCompressMB", stubName) == 0) { 8473 block_size = get_block_size_from_digest_object(digest_obj); 8474 if (block_size == nullptr) return false; 8475 } 8476 8477 // Call the stub. 8478 Node* call; 8479 if (block_size == nullptr) { 8480 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8481 OptoRuntime::digestBase_implCompressMB_Type(false), 8482 stubAddr, stubName, TypePtr::BOTTOM, 8483 src_start, state, ofs, limit); 8484 } else { 8485 call = make_runtime_call(RC_LEAF|RC_NO_FP, 8486 OptoRuntime::digestBase_implCompressMB_Type(true), 8487 stubAddr, stubName, TypePtr::BOTTOM, 8488 src_start, state, block_size, ofs, limit); 8489 } 8490 8491 // return ofs (int) 8492 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 8493 set_result(result); 8494 8495 return true; 8496 } 8497 8498 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 8499 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 8500 assert(UseAES, "need AES instruction support"); 8501 address stubAddr = nullptr; 8502 const char *stubName = nullptr; 8503 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 8504 stubName = "galoisCounterMode_AESCrypt"; 8505 8506 if (stubAddr == nullptr) return false; 8507 8508 Node* in = argument(0); 8509 Node* inOfs = argument(1); 8510 Node* len = argument(2); 8511 Node* ct = argument(3); 8512 Node* ctOfs = argument(4); 8513 Node* out = argument(5); 8514 Node* outOfs = argument(6); 8515 Node* gctr_object = argument(7); 8516 Node* ghash_object = argument(8); 8517 8518 // (1) in, ct and out are arrays. 8519 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 8520 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 8521 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 8522 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 8523 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 8524 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 8525 8526 // checks are the responsibility of the caller 8527 Node* in_start = in; 8528 Node* ct_start = ct; 8529 Node* out_start = out; 8530 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 8531 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 8532 in_start = array_element_address(in, inOfs, T_BYTE); 8533 ct_start = array_element_address(ct, ctOfs, T_BYTE); 8534 out_start = array_element_address(out, outOfs, T_BYTE); 8535 } 8536 8537 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 8538 // (because of the predicated logic executed earlier). 8539 // so we cast it here safely. 8540 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 8541 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8542 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 8543 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 8544 Node* state = load_field_from_object(ghash_object, "state", "[J"); 8545 8546 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 8547 return false; 8548 } 8549 // cast it to what we know it will be at runtime 8550 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 8551 assert(tinst != nullptr, "GCTR obj is null"); 8552 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8553 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8554 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 8555 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8556 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 8557 const TypeOopPtr* xtype = aklass->as_instance_type(); 8558 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 8559 aescrypt_object = _gvn.transform(aescrypt_object); 8560 // we need to get the start of the aescrypt_object's expanded key array 8561 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 8562 if (k_start == nullptr) return false; 8563 // similarly, get the start address of the r vector 8564 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 8565 Node* state_start = array_element_address(state, intcon(0), T_LONG); 8566 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 8567 8568 8569 // Call the stub, passing params 8570 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 8571 OptoRuntime::galoisCounterMode_aescrypt_Type(), 8572 stubAddr, stubName, TypePtr::BOTTOM, 8573 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 8574 8575 // return cipher length (int) 8576 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 8577 set_result(retvalue); 8578 8579 return true; 8580 } 8581 8582 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 8583 // Return node representing slow path of predicate check. 8584 // the pseudo code we want to emulate with this predicate is: 8585 // for encryption: 8586 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 8587 // for decryption: 8588 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 8589 // note cipher==plain is more conservative than the original java code but that's OK 8590 // 8591 8592 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 8593 // The receiver was checked for null already. 8594 Node* objGCTR = argument(7); 8595 // Load embeddedCipher field of GCTR object. 8596 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 8597 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 8598 8599 // get AESCrypt klass for instanceOf check 8600 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 8601 // will have same classloader as CipherBlockChaining object 8602 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 8603 assert(tinst != nullptr, "GCTR obj is null"); 8604 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 8605 8606 // we want to do an instanceof comparison against the AESCrypt class 8607 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 8608 if (!klass_AESCrypt->is_loaded()) { 8609 // if AESCrypt is not even loaded, we never take the intrinsic fast path 8610 Node* ctrl = control(); 8611 set_control(top()); // no regular fast path 8612 return ctrl; 8613 } 8614 8615 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 8616 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 8617 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8618 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8619 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8620 8621 return instof_false; // even if it is null 8622 } 8623 8624 //------------------------------get_state_from_digest_object----------------------- 8625 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 8626 const char* state_type; 8627 switch (elem_type) { 8628 case T_BYTE: state_type = "[B"; break; 8629 case T_INT: state_type = "[I"; break; 8630 case T_LONG: state_type = "[J"; break; 8631 default: ShouldNotReachHere(); 8632 } 8633 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 8634 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 8635 if (digest_state == nullptr) return (Node *) nullptr; 8636 8637 // now have the array, need to get the start address of the state array 8638 Node* state = array_element_address(digest_state, intcon(0), elem_type); 8639 return state; 8640 } 8641 8642 //------------------------------get_block_size_from_sha3_object---------------------------------- 8643 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 8644 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 8645 assert (block_size != nullptr, "sanity"); 8646 return block_size; 8647 } 8648 8649 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 8650 // Return node representing slow path of predicate check. 8651 // the pseudo code we want to emulate with this predicate is: 8652 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 8653 // 8654 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 8655 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 8656 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 8657 assert((uint)predicate < 5, "sanity"); 8658 8659 // The receiver was checked for null already. 8660 Node* digestBaseObj = argument(0); 8661 8662 // get DigestBase klass for instanceOf check 8663 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 8664 assert(tinst != nullptr, "digestBaseObj is null"); 8665 assert(tinst->is_loaded(), "DigestBase is not loaded"); 8666 8667 const char* klass_name = nullptr; 8668 switch (predicate) { 8669 case 0: 8670 if (UseMD5Intrinsics) { 8671 // we want to do an instanceof comparison against the MD5 class 8672 klass_name = "sun/security/provider/MD5"; 8673 } 8674 break; 8675 case 1: 8676 if (UseSHA1Intrinsics) { 8677 // we want to do an instanceof comparison against the SHA class 8678 klass_name = "sun/security/provider/SHA"; 8679 } 8680 break; 8681 case 2: 8682 if (UseSHA256Intrinsics) { 8683 // we want to do an instanceof comparison against the SHA2 class 8684 klass_name = "sun/security/provider/SHA2"; 8685 } 8686 break; 8687 case 3: 8688 if (UseSHA512Intrinsics) { 8689 // we want to do an instanceof comparison against the SHA5 class 8690 klass_name = "sun/security/provider/SHA5"; 8691 } 8692 break; 8693 case 4: 8694 if (UseSHA3Intrinsics) { 8695 // we want to do an instanceof comparison against the SHA3 class 8696 klass_name = "sun/security/provider/SHA3"; 8697 } 8698 break; 8699 default: 8700 fatal("unknown SHA intrinsic predicate: %d", predicate); 8701 } 8702 8703 ciKlass* klass = nullptr; 8704 if (klass_name != nullptr) { 8705 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 8706 } 8707 if ((klass == nullptr) || !klass->is_loaded()) { 8708 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 8709 Node* ctrl = control(); 8710 set_control(top()); // no intrinsic path 8711 return ctrl; 8712 } 8713 ciInstanceKlass* instklass = klass->as_instance_klass(); 8714 8715 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 8716 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 8717 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 8718 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 8719 8720 return instof_false; // even if it is null 8721 } 8722 8723 //-------------inline_fma----------------------------------- 8724 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 8725 Node *a = nullptr; 8726 Node *b = nullptr; 8727 Node *c = nullptr; 8728 Node* result = nullptr; 8729 switch (id) { 8730 case vmIntrinsics::_fmaD: 8731 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 8732 // no receiver since it is static method 8733 a = argument(0); 8734 b = argument(2); 8735 c = argument(4); 8736 result = _gvn.transform(new FmaDNode(a, b, c)); 8737 break; 8738 case vmIntrinsics::_fmaF: 8739 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 8740 a = argument(0); 8741 b = argument(1); 8742 c = argument(2); 8743 result = _gvn.transform(new FmaFNode(a, b, c)); 8744 break; 8745 default: 8746 fatal_unexpected_iid(id); break; 8747 } 8748 set_result(result); 8749 return true; 8750 } 8751 8752 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 8753 // argument(0) is receiver 8754 Node* codePoint = argument(1); 8755 Node* n = nullptr; 8756 8757 switch (id) { 8758 case vmIntrinsics::_isDigit : 8759 n = new DigitNode(control(), codePoint); 8760 break; 8761 case vmIntrinsics::_isLowerCase : 8762 n = new LowerCaseNode(control(), codePoint); 8763 break; 8764 case vmIntrinsics::_isUpperCase : 8765 n = new UpperCaseNode(control(), codePoint); 8766 break; 8767 case vmIntrinsics::_isWhitespace : 8768 n = new WhitespaceNode(control(), codePoint); 8769 break; 8770 default: 8771 fatal_unexpected_iid(id); 8772 } 8773 8774 set_result(_gvn.transform(n)); 8775 return true; 8776 } 8777 8778 bool LibraryCallKit::inline_profileBoolean() { 8779 Node* counts = argument(1); 8780 const TypeAryPtr* ary = nullptr; 8781 ciArray* aobj = nullptr; 8782 if (counts->is_Con() 8783 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 8784 && (aobj = ary->const_oop()->as_array()) != nullptr 8785 && (aobj->length() == 2)) { 8786 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 8787 jint false_cnt = aobj->element_value(0).as_int(); 8788 jint true_cnt = aobj->element_value(1).as_int(); 8789 8790 if (C->log() != nullptr) { 8791 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 8792 false_cnt, true_cnt); 8793 } 8794 8795 if (false_cnt + true_cnt == 0) { 8796 // According to profile, never executed. 8797 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8798 Deoptimization::Action_reinterpret); 8799 return true; 8800 } 8801 8802 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 8803 // is a number of each value occurrences. 8804 Node* result = argument(0); 8805 if (false_cnt == 0 || true_cnt == 0) { 8806 // According to profile, one value has been never seen. 8807 int expected_val = (false_cnt == 0) ? 1 : 0; 8808 8809 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 8810 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 8811 8812 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 8813 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 8814 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 8815 8816 { // Slow path: uncommon trap for never seen value and then reexecute 8817 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 8818 // the value has been seen at least once. 8819 PreserveJVMState pjvms(this); 8820 PreserveReexecuteState preexecs(this); 8821 jvms()->set_should_reexecute(true); 8822 8823 set_control(slow_path); 8824 set_i_o(i_o()); 8825 8826 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 8827 Deoptimization::Action_reinterpret); 8828 } 8829 // The guard for never seen value enables sharpening of the result and 8830 // returning a constant. It allows to eliminate branches on the same value 8831 // later on. 8832 set_control(fast_path); 8833 result = intcon(expected_val); 8834 } 8835 // Stop profiling. 8836 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 8837 // By replacing method body with profile data (represented as ProfileBooleanNode 8838 // on IR level) we effectively disable profiling. 8839 // It enables full speed execution once optimized code is generated. 8840 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 8841 C->record_for_igvn(profile); 8842 set_result(profile); 8843 return true; 8844 } else { 8845 // Continue profiling. 8846 // Profile data isn't available at the moment. So, execute method's bytecode version. 8847 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 8848 // is compiled and counters aren't available since corresponding MethodHandle 8849 // isn't a compile-time constant. 8850 return false; 8851 } 8852 } 8853 8854 bool LibraryCallKit::inline_isCompileConstant() { 8855 Node* n = argument(0); 8856 set_result(n->is_Con() ? intcon(1) : intcon(0)); 8857 return true; 8858 } 8859 8860 //------------------------------- inline_getObjectSize -------------------------------------- 8861 // 8862 // Calculate the runtime size of the object/array. 8863 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 8864 // 8865 bool LibraryCallKit::inline_getObjectSize() { 8866 Node* obj = argument(3); 8867 Node* klass_node = load_object_klass(obj); 8868 8869 jint layout_con = Klass::_lh_neutral_value; 8870 Node* layout_val = get_layout_helper(klass_node, layout_con); 8871 int layout_is_con = (layout_val == nullptr); 8872 8873 if (layout_is_con) { 8874 // Layout helper is constant, can figure out things at compile time. 8875 8876 if (Klass::layout_helper_is_instance(layout_con)) { 8877 // Instance case: layout_con contains the size itself. 8878 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 8879 set_result(size); 8880 } else { 8881 // Array case: size is round(header + element_size*arraylength). 8882 // Since arraylength is different for every array instance, we have to 8883 // compute the whole thing at runtime. 8884 8885 Node* arr_length = load_array_length(obj); 8886 8887 int round_mask = MinObjAlignmentInBytes - 1; 8888 int hsize = Klass::layout_helper_header_size(layout_con); 8889 int eshift = Klass::layout_helper_log2_element_size(layout_con); 8890 8891 if ((round_mask & ~right_n_bits(eshift)) == 0) { 8892 round_mask = 0; // strength-reduce it if it goes away completely 8893 } 8894 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 8895 Node* header_size = intcon(hsize + round_mask); 8896 8897 Node* lengthx = ConvI2X(arr_length); 8898 Node* headerx = ConvI2X(header_size); 8899 8900 Node* abody = lengthx; 8901 if (eshift != 0) { 8902 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 8903 } 8904 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 8905 if (round_mask != 0) { 8906 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 8907 } 8908 size = ConvX2L(size); 8909 set_result(size); 8910 } 8911 } else { 8912 // Layout helper is not constant, need to test for array-ness at runtime. 8913 8914 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 8915 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 8916 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 8917 record_for_igvn(result_reg); 8918 8919 Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj); 8920 if (array_ctl != nullptr) { 8921 // Array case: size is round(header + element_size*arraylength). 8922 // Since arraylength is different for every array instance, we have to 8923 // compute the whole thing at runtime. 8924 8925 PreserveJVMState pjvms(this); 8926 set_control(array_ctl); 8927 Node* arr_length = load_array_length(obj); 8928 8929 int round_mask = MinObjAlignmentInBytes - 1; 8930 Node* mask = intcon(round_mask); 8931 8932 Node* hss = intcon(Klass::_lh_header_size_shift); 8933 Node* hsm = intcon(Klass::_lh_header_size_mask); 8934 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 8935 header_size = _gvn.transform(new AndINode(header_size, hsm)); 8936 header_size = _gvn.transform(new AddINode(header_size, mask)); 8937 8938 // There is no need to mask or shift this value. 8939 // The semantics of LShiftINode include an implicit mask to 0x1F. 8940 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 8941 Node* elem_shift = layout_val; 8942 8943 Node* lengthx = ConvI2X(arr_length); 8944 Node* headerx = ConvI2X(header_size); 8945 8946 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 8947 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 8948 if (round_mask != 0) { 8949 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 8950 } 8951 size = ConvX2L(size); 8952 8953 result_reg->init_req(_array_path, control()); 8954 result_val->init_req(_array_path, size); 8955 } 8956 8957 if (!stopped()) { 8958 // Instance case: the layout helper gives us instance size almost directly, 8959 // but we need to mask out the _lh_instance_slow_path_bit. 8960 Node* size = ConvI2X(layout_val); 8961 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 8962 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 8963 size = _gvn.transform(new AndXNode(size, mask)); 8964 size = ConvX2L(size); 8965 8966 result_reg->init_req(_instance_path, control()); 8967 result_val->init_req(_instance_path, size); 8968 } 8969 8970 set_result(result_reg, result_val); 8971 } 8972 8973 return true; 8974 } 8975 8976 //------------------------------- inline_blackhole -------------------------------------- 8977 // 8978 // Make sure all arguments to this node are alive. 8979 // This matches methods that were requested to be blackholed through compile commands. 8980 // 8981 bool LibraryCallKit::inline_blackhole() { 8982 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 8983 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 8984 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 8985 8986 // Blackhole node pinches only the control, not memory. This allows 8987 // the blackhole to be pinned in the loop that computes blackholed 8988 // values, but have no other side effects, like breaking the optimizations 8989 // across the blackhole. 8990 8991 Node* bh = _gvn.transform(new BlackholeNode(control())); 8992 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 8993 8994 // Bind call arguments as blackhole arguments to keep them alive 8995 uint nargs = callee()->arg_size(); 8996 for (uint i = 0; i < nargs; i++) { 8997 bh->add_req(argument(i)); 8998 } 8999 9000 return true; 9001 } 9002 9003 Node* LibraryCallKit::unbox_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* box) { 9004 const TypeInstPtr* box_type = _gvn.type(box)->isa_instptr(); 9005 if (box_type == nullptr || box_type->instance_klass() != float16_box_type->instance_klass()) { 9006 return nullptr; // box klass is not Float16 9007 } 9008 9009 // Null check; get notnull casted pointer 9010 Node* null_ctl = top(); 9011 Node* not_null_box = null_check_oop(box, &null_ctl, true); 9012 // If not_null_box is dead, only null-path is taken 9013 if (stopped()) { 9014 set_control(null_ctl); 9015 return nullptr; 9016 } 9017 assert(not_null_box->bottom_type()->is_instptr()->maybe_null() == false, ""); 9018 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 9019 Node* adr = basic_plus_adr(not_null_box, field->offset_in_bytes()); 9020 return access_load_at(not_null_box, adr, adr_type, TypeInt::SHORT, T_SHORT, IN_HEAP); 9021 } 9022 9023 Node* LibraryCallKit::box_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* value) { 9024 PreserveReexecuteState preexecs(this); 9025 jvms()->set_should_reexecute(true); 9026 9027 const TypeKlassPtr* klass_type = float16_box_type->as_klass_type(); 9028 Node* klass_node = makecon(klass_type); 9029 Node* box = new_instance(klass_node); 9030 9031 Node* value_field = basic_plus_adr(box, field->offset_in_bytes()); 9032 const TypePtr* value_adr_type = value_field->bottom_type()->is_ptr(); 9033 9034 Node* field_store = _gvn.transform(access_store_at(box, 9035 value_field, 9036 value_adr_type, 9037 value, 9038 TypeInt::SHORT, 9039 T_SHORT, 9040 IN_HEAP)); 9041 set_memory(field_store, value_adr_type); 9042 return box; 9043 } 9044 9045 bool LibraryCallKit::inline_fp16_operations(vmIntrinsics::ID id, int num_args) { 9046 if (!Matcher::match_rule_supported(Op_ReinterpretS2HF) || 9047 !Matcher::match_rule_supported(Op_ReinterpretHF2S)) { 9048 return false; 9049 } 9050 9051 const TypeInstPtr* box_type = _gvn.type(argument(0))->isa_instptr(); 9052 if (box_type == nullptr || box_type->const_oop() == nullptr) { 9053 return false; 9054 } 9055 9056 ciInstanceKlass* float16_klass = box_type->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 9057 const TypeInstPtr* float16_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, float16_klass); 9058 ciField* field = float16_klass->get_field_by_name(ciSymbols::value_name(), 9059 ciSymbols::short_signature(), 9060 false); 9061 assert(field != nullptr, ""); 9062 9063 // Transformed nodes 9064 Node* fld1 = nullptr; 9065 Node* fld2 = nullptr; 9066 Node* fld3 = nullptr; 9067 switch(num_args) { 9068 case 3: 9069 fld3 = unbox_fp16_value(float16_box_type, field, argument(3)); 9070 if (fld3 == nullptr) { 9071 return false; 9072 } 9073 fld3 = _gvn.transform(new ReinterpretS2HFNode(fld3)); 9074 // fall-through 9075 case 2: 9076 fld2 = unbox_fp16_value(float16_box_type, field, argument(2)); 9077 if (fld2 == nullptr) { 9078 return false; 9079 } 9080 fld2 = _gvn.transform(new ReinterpretS2HFNode(fld2)); 9081 // fall-through 9082 case 1: 9083 fld1 = unbox_fp16_value(float16_box_type, field, argument(1)); 9084 if (fld1 == nullptr) { 9085 return false; 9086 } 9087 fld1 = _gvn.transform(new ReinterpretS2HFNode(fld1)); 9088 break; 9089 default: fatal("Unsupported number of arguments %d", num_args); 9090 } 9091 9092 Node* result = nullptr; 9093 switch (id) { 9094 // Unary operations 9095 case vmIntrinsics::_sqrt_float16: 9096 result = _gvn.transform(new SqrtHFNode(C, control(), fld1)); 9097 break; 9098 // Ternary operations 9099 case vmIntrinsics::_fma_float16: 9100 result = _gvn.transform(new FmaHFNode(fld1, fld2, fld3)); 9101 break; 9102 default: 9103 fatal_unexpected_iid(id); 9104 break; 9105 } 9106 result = _gvn.transform(new ReinterpretHF2SNode(result)); 9107 set_result(box_fp16_value(float16_box_type, field, result)); 9108 return true; 9109 } 9110