1 /* 2 * Copyright (c) 1999, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "asm/macroAssembler.hpp" 27 #include "ci/ciUtilities.inline.hpp" 28 #include "classfile/vmIntrinsics.hpp" 29 #include "compiler/compileBroker.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "gc/shared/barrierSet.hpp" 32 #include "jfr/support/jfrIntrinsics.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/klass.inline.hpp" 35 #include "oops/objArrayKlass.hpp" 36 #include "opto/addnode.hpp" 37 #include "opto/arraycopynode.hpp" 38 #include "opto/c2compiler.hpp" 39 #include "opto/castnode.hpp" 40 #include "opto/cfgnode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/countbitsnode.hpp" 43 #include "opto/idealKit.hpp" 44 #include "opto/library_call.hpp" 45 #include "opto/mathexactnode.hpp" 46 #include "opto/mulnode.hpp" 47 #include "opto/narrowptrnode.hpp" 48 #include "opto/opaquenode.hpp" 49 #include "opto/parse.hpp" 50 #include "opto/runtime.hpp" 51 #include "opto/rootnode.hpp" 52 #include "opto/subnode.hpp" 53 #include "prims/jvmtiThreadState.hpp" 54 #include "prims/unsafe.hpp" 55 #include "runtime/jniHandles.inline.hpp" 56 #include "runtime/objectMonitor.hpp" 57 #include "runtime/sharedRuntime.hpp" 58 #include "runtime/stubRoutines.hpp" 59 #include "utilities/macros.hpp" 60 #include "utilities/powerOfTwo.hpp" 61 62 //---------------------------make_vm_intrinsic---------------------------- 63 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) { 64 vmIntrinsicID id = m->intrinsic_id(); 65 assert(id != vmIntrinsics::_none, "must be a VM intrinsic"); 66 67 if (!m->is_loaded()) { 68 // Do not attempt to inline unloaded methods. 69 return nullptr; 70 } 71 72 C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization); 73 bool is_available = false; 74 75 { 76 // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag 77 // the compiler must transition to '_thread_in_vm' state because both 78 // methods access VM-internal data. 79 VM_ENTRY_MARK; 80 methodHandle mh(THREAD, m->get_Method()); 81 is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive()); 82 if (is_available && is_virtual) { 83 is_available = vmIntrinsics::does_virtual_dispatch(id); 84 } 85 } 86 87 if (is_available) { 88 assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility"); 89 assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?"); 90 return new LibraryIntrinsic(m, is_virtual, 91 vmIntrinsics::predicates_needed(id), 92 vmIntrinsics::does_virtual_dispatch(id), 93 id); 94 } else { 95 return nullptr; 96 } 97 } 98 99 JVMState* LibraryIntrinsic::generate(JVMState* jvms) { 100 LibraryCallKit kit(jvms, this); 101 Compile* C = kit.C; 102 int nodes = C->unique(); 103 #ifndef PRODUCT 104 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 105 char buf[1000]; 106 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 107 tty->print_cr("Intrinsic %s", str); 108 } 109 #endif 110 ciMethod* callee = kit.callee(); 111 const int bci = kit.bci(); 112 #ifdef ASSERT 113 Node* ctrl = kit.control(); 114 #endif 115 // Try to inline the intrinsic. 116 if (callee->check_intrinsic_candidate() && 117 kit.try_to_inline(_last_predicate)) { 118 const char *inline_msg = is_virtual() ? "(intrinsic, virtual)" 119 : "(intrinsic)"; 120 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 121 if (C->print_intrinsics() || C->print_inlining()) { 122 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 123 } 124 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 125 if (C->log()) { 126 C->log()->elem("intrinsic id='%s'%s nodes='%d'", 127 vmIntrinsics::name_at(intrinsic_id()), 128 (is_virtual() ? " virtual='1'" : ""), 129 C->unique() - nodes); 130 } 131 // Push the result from the inlined method onto the stack. 132 kit.push_result(); 133 C->print_inlining_update(this); 134 return kit.transfer_exceptions_into_jvms(); 135 } 136 137 // The intrinsic bailed out 138 assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out"); 139 if (jvms->has_method()) { 140 // Not a root compile. 141 const char* msg; 142 if (callee->intrinsic_candidate()) { 143 msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)"; 144 } else { 145 msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated" 146 : "failed to inline (intrinsic), method not annotated"; 147 } 148 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg); 149 if (C->print_intrinsics() || C->print_inlining()) { 150 C->print_inlining(callee, jvms->depth() - 1, bci, msg); 151 } 152 } else { 153 // Root compile 154 ResourceMark rm; 155 stringStream msg_stream; 156 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 157 vmIntrinsics::name_at(intrinsic_id()), 158 is_virtual() ? " (virtual)" : "", bci); 159 const char *msg = msg_stream.freeze(); 160 log_debug(jit, inlining)("%s", msg); 161 if (C->print_intrinsics() || C->print_inlining()) { 162 tty->print("%s", msg); 163 } 164 } 165 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 166 C->print_inlining_update(this); 167 168 return nullptr; 169 } 170 171 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) { 172 LibraryCallKit kit(jvms, this); 173 Compile* C = kit.C; 174 int nodes = C->unique(); 175 _last_predicate = predicate; 176 #ifndef PRODUCT 177 assert(is_predicated() && predicate < predicates_count(), "sanity"); 178 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 179 char buf[1000]; 180 const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf)); 181 tty->print_cr("Predicate for intrinsic %s", str); 182 } 183 #endif 184 ciMethod* callee = kit.callee(); 185 const int bci = kit.bci(); 186 187 Node* slow_ctl = kit.try_to_predicate(predicate); 188 if (!kit.failing()) { 189 const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)" 190 : "(intrinsic, predicate)"; 191 CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg); 192 if (C->print_intrinsics() || C->print_inlining()) { 193 C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg); 194 } 195 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked); 196 if (C->log()) { 197 C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'", 198 vmIntrinsics::name_at(intrinsic_id()), 199 (is_virtual() ? " virtual='1'" : ""), 200 C->unique() - nodes); 201 } 202 return slow_ctl; // Could be null if the check folds. 203 } 204 205 // The intrinsic bailed out 206 if (jvms->has_method()) { 207 // Not a root compile. 208 const char* msg = "failed to generate predicate for intrinsic"; 209 CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg); 210 if (C->print_intrinsics() || C->print_inlining()) { 211 C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg); 212 } 213 } else { 214 // Root compile 215 ResourceMark rm; 216 stringStream msg_stream; 217 msg_stream.print("Did not generate intrinsic %s%s at bci:%d in", 218 vmIntrinsics::name_at(intrinsic_id()), 219 is_virtual() ? " (virtual)" : "", bci); 220 const char *msg = msg_stream.freeze(); 221 log_debug(jit, inlining)("%s", msg); 222 if (C->print_intrinsics() || C->print_inlining()) { 223 C->print_inlining_stream()->print("%s", msg); 224 } 225 } 226 C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed); 227 return nullptr; 228 } 229 230 bool LibraryCallKit::try_to_inline(int predicate) { 231 // Handle symbolic names for otherwise undistinguished boolean switches: 232 const bool is_store = true; 233 const bool is_compress = true; 234 const bool is_static = true; 235 const bool is_volatile = true; 236 237 if (!jvms()->has_method()) { 238 // Root JVMState has a null method. 239 assert(map()->memory()->Opcode() == Op_Parm, ""); 240 // Insert the memory aliasing node 241 set_all_memory(reset_memory()); 242 } 243 assert(merged_memory(), ""); 244 245 switch (intrinsic_id()) { 246 case vmIntrinsics::_hashCode: return inline_native_hashcode(intrinsic()->is_virtual(), !is_static); 247 case vmIntrinsics::_identityHashCode: return inline_native_hashcode(/*!virtual*/ false, is_static); 248 case vmIntrinsics::_getClass: return inline_native_getClass(); 249 250 case vmIntrinsics::_ceil: 251 case vmIntrinsics::_floor: 252 case vmIntrinsics::_rint: 253 case vmIntrinsics::_dsin: 254 case vmIntrinsics::_dcos: 255 case vmIntrinsics::_dtan: 256 case vmIntrinsics::_dabs: 257 case vmIntrinsics::_fabs: 258 case vmIntrinsics::_iabs: 259 case vmIntrinsics::_labs: 260 case vmIntrinsics::_datan2: 261 case vmIntrinsics::_dsqrt: 262 case vmIntrinsics::_dsqrt_strict: 263 case vmIntrinsics::_dexp: 264 case vmIntrinsics::_dlog: 265 case vmIntrinsics::_dlog10: 266 case vmIntrinsics::_dpow: 267 case vmIntrinsics::_dcopySign: 268 case vmIntrinsics::_fcopySign: 269 case vmIntrinsics::_dsignum: 270 case vmIntrinsics::_roundF: 271 case vmIntrinsics::_roundD: 272 case vmIntrinsics::_fsignum: return inline_math_native(intrinsic_id()); 273 274 case vmIntrinsics::_notify: 275 case vmIntrinsics::_notifyAll: 276 return inline_notify(intrinsic_id()); 277 278 case vmIntrinsics::_addExactI: return inline_math_addExactI(false /* add */); 279 case vmIntrinsics::_addExactL: return inline_math_addExactL(false /* add */); 280 case vmIntrinsics::_decrementExactI: return inline_math_subtractExactI(true /* decrement */); 281 case vmIntrinsics::_decrementExactL: return inline_math_subtractExactL(true /* decrement */); 282 case vmIntrinsics::_incrementExactI: return inline_math_addExactI(true /* increment */); 283 case vmIntrinsics::_incrementExactL: return inline_math_addExactL(true /* increment */); 284 case vmIntrinsics::_multiplyExactI: return inline_math_multiplyExactI(); 285 case vmIntrinsics::_multiplyExactL: return inline_math_multiplyExactL(); 286 case vmIntrinsics::_multiplyHigh: return inline_math_multiplyHigh(); 287 case vmIntrinsics::_unsignedMultiplyHigh: return inline_math_unsignedMultiplyHigh(); 288 case vmIntrinsics::_negateExactI: return inline_math_negateExactI(); 289 case vmIntrinsics::_negateExactL: return inline_math_negateExactL(); 290 case vmIntrinsics::_subtractExactI: return inline_math_subtractExactI(false /* subtract */); 291 case vmIntrinsics::_subtractExactL: return inline_math_subtractExactL(false /* subtract */); 292 293 case vmIntrinsics::_arraycopy: return inline_arraycopy(); 294 295 case vmIntrinsics::_compareToL: return inline_string_compareTo(StrIntrinsicNode::LL); 296 case vmIntrinsics::_compareToU: return inline_string_compareTo(StrIntrinsicNode::UU); 297 case vmIntrinsics::_compareToLU: return inline_string_compareTo(StrIntrinsicNode::LU); 298 case vmIntrinsics::_compareToUL: return inline_string_compareTo(StrIntrinsicNode::UL); 299 300 case vmIntrinsics::_indexOfL: return inline_string_indexOf(StrIntrinsicNode::LL); 301 case vmIntrinsics::_indexOfU: return inline_string_indexOf(StrIntrinsicNode::UU); 302 case vmIntrinsics::_indexOfUL: return inline_string_indexOf(StrIntrinsicNode::UL); 303 case vmIntrinsics::_indexOfIL: return inline_string_indexOfI(StrIntrinsicNode::LL); 304 case vmIntrinsics::_indexOfIU: return inline_string_indexOfI(StrIntrinsicNode::UU); 305 case vmIntrinsics::_indexOfIUL: return inline_string_indexOfI(StrIntrinsicNode::UL); 306 case vmIntrinsics::_indexOfU_char: return inline_string_indexOfChar(StrIntrinsicNode::U); 307 case vmIntrinsics::_indexOfL_char: return inline_string_indexOfChar(StrIntrinsicNode::L); 308 309 case vmIntrinsics::_equalsL: return inline_string_equals(StrIntrinsicNode::LL); 310 case vmIntrinsics::_equalsU: return inline_string_equals(StrIntrinsicNode::UU); 311 312 case vmIntrinsics::_vectorizedHashCode: return inline_vectorizedHashCode(); 313 314 case vmIntrinsics::_toBytesStringU: return inline_string_toBytesU(); 315 case vmIntrinsics::_getCharsStringU: return inline_string_getCharsU(); 316 case vmIntrinsics::_getCharStringU: return inline_string_char_access(!is_store); 317 case vmIntrinsics::_putCharStringU: return inline_string_char_access( is_store); 318 319 case vmIntrinsics::_compressStringC: 320 case vmIntrinsics::_compressStringB: return inline_string_copy( is_compress); 321 case vmIntrinsics::_inflateStringC: 322 case vmIntrinsics::_inflateStringB: return inline_string_copy(!is_compress); 323 324 case vmIntrinsics::_getReference: return inline_unsafe_access(!is_store, T_OBJECT, Relaxed, false); 325 case vmIntrinsics::_getBoolean: return inline_unsafe_access(!is_store, T_BOOLEAN, Relaxed, false); 326 case vmIntrinsics::_getByte: return inline_unsafe_access(!is_store, T_BYTE, Relaxed, false); 327 case vmIntrinsics::_getShort: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, false); 328 case vmIntrinsics::_getChar: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, false); 329 case vmIntrinsics::_getInt: return inline_unsafe_access(!is_store, T_INT, Relaxed, false); 330 case vmIntrinsics::_getLong: return inline_unsafe_access(!is_store, T_LONG, Relaxed, false); 331 case vmIntrinsics::_getFloat: return inline_unsafe_access(!is_store, T_FLOAT, Relaxed, false); 332 case vmIntrinsics::_getDouble: return inline_unsafe_access(!is_store, T_DOUBLE, Relaxed, false); 333 334 case vmIntrinsics::_putReference: return inline_unsafe_access( is_store, T_OBJECT, Relaxed, false); 335 case vmIntrinsics::_putBoolean: return inline_unsafe_access( is_store, T_BOOLEAN, Relaxed, false); 336 case vmIntrinsics::_putByte: return inline_unsafe_access( is_store, T_BYTE, Relaxed, false); 337 case vmIntrinsics::_putShort: return inline_unsafe_access( is_store, T_SHORT, Relaxed, false); 338 case vmIntrinsics::_putChar: return inline_unsafe_access( is_store, T_CHAR, Relaxed, false); 339 case vmIntrinsics::_putInt: return inline_unsafe_access( is_store, T_INT, Relaxed, false); 340 case vmIntrinsics::_putLong: return inline_unsafe_access( is_store, T_LONG, Relaxed, false); 341 case vmIntrinsics::_putFloat: return inline_unsafe_access( is_store, T_FLOAT, Relaxed, false); 342 case vmIntrinsics::_putDouble: return inline_unsafe_access( is_store, T_DOUBLE, Relaxed, false); 343 344 case vmIntrinsics::_getReferenceVolatile: return inline_unsafe_access(!is_store, T_OBJECT, Volatile, false); 345 case vmIntrinsics::_getBooleanVolatile: return inline_unsafe_access(!is_store, T_BOOLEAN, Volatile, false); 346 case vmIntrinsics::_getByteVolatile: return inline_unsafe_access(!is_store, T_BYTE, Volatile, false); 347 case vmIntrinsics::_getShortVolatile: return inline_unsafe_access(!is_store, T_SHORT, Volatile, false); 348 case vmIntrinsics::_getCharVolatile: return inline_unsafe_access(!is_store, T_CHAR, Volatile, false); 349 case vmIntrinsics::_getIntVolatile: return inline_unsafe_access(!is_store, T_INT, Volatile, false); 350 case vmIntrinsics::_getLongVolatile: return inline_unsafe_access(!is_store, T_LONG, Volatile, false); 351 case vmIntrinsics::_getFloatVolatile: return inline_unsafe_access(!is_store, T_FLOAT, Volatile, false); 352 case vmIntrinsics::_getDoubleVolatile: return inline_unsafe_access(!is_store, T_DOUBLE, Volatile, false); 353 354 case vmIntrinsics::_putReferenceVolatile: return inline_unsafe_access( is_store, T_OBJECT, Volatile, false); 355 case vmIntrinsics::_putBooleanVolatile: return inline_unsafe_access( is_store, T_BOOLEAN, Volatile, false); 356 case vmIntrinsics::_putByteVolatile: return inline_unsafe_access( is_store, T_BYTE, Volatile, false); 357 case vmIntrinsics::_putShortVolatile: return inline_unsafe_access( is_store, T_SHORT, Volatile, false); 358 case vmIntrinsics::_putCharVolatile: return inline_unsafe_access( is_store, T_CHAR, Volatile, false); 359 case vmIntrinsics::_putIntVolatile: return inline_unsafe_access( is_store, T_INT, Volatile, false); 360 case vmIntrinsics::_putLongVolatile: return inline_unsafe_access( is_store, T_LONG, Volatile, false); 361 case vmIntrinsics::_putFloatVolatile: return inline_unsafe_access( is_store, T_FLOAT, Volatile, false); 362 case vmIntrinsics::_putDoubleVolatile: return inline_unsafe_access( is_store, T_DOUBLE, Volatile, false); 363 364 case vmIntrinsics::_getShortUnaligned: return inline_unsafe_access(!is_store, T_SHORT, Relaxed, true); 365 case vmIntrinsics::_getCharUnaligned: return inline_unsafe_access(!is_store, T_CHAR, Relaxed, true); 366 case vmIntrinsics::_getIntUnaligned: return inline_unsafe_access(!is_store, T_INT, Relaxed, true); 367 case vmIntrinsics::_getLongUnaligned: return inline_unsafe_access(!is_store, T_LONG, Relaxed, true); 368 369 case vmIntrinsics::_putShortUnaligned: return inline_unsafe_access( is_store, T_SHORT, Relaxed, true); 370 case vmIntrinsics::_putCharUnaligned: return inline_unsafe_access( is_store, T_CHAR, Relaxed, true); 371 case vmIntrinsics::_putIntUnaligned: return inline_unsafe_access( is_store, T_INT, Relaxed, true); 372 case vmIntrinsics::_putLongUnaligned: return inline_unsafe_access( is_store, T_LONG, Relaxed, true); 373 374 case vmIntrinsics::_getReferenceAcquire: return inline_unsafe_access(!is_store, T_OBJECT, Acquire, false); 375 case vmIntrinsics::_getBooleanAcquire: return inline_unsafe_access(!is_store, T_BOOLEAN, Acquire, false); 376 case vmIntrinsics::_getByteAcquire: return inline_unsafe_access(!is_store, T_BYTE, Acquire, false); 377 case vmIntrinsics::_getShortAcquire: return inline_unsafe_access(!is_store, T_SHORT, Acquire, false); 378 case vmIntrinsics::_getCharAcquire: return inline_unsafe_access(!is_store, T_CHAR, Acquire, false); 379 case vmIntrinsics::_getIntAcquire: return inline_unsafe_access(!is_store, T_INT, Acquire, false); 380 case vmIntrinsics::_getLongAcquire: return inline_unsafe_access(!is_store, T_LONG, Acquire, false); 381 case vmIntrinsics::_getFloatAcquire: return inline_unsafe_access(!is_store, T_FLOAT, Acquire, false); 382 case vmIntrinsics::_getDoubleAcquire: return inline_unsafe_access(!is_store, T_DOUBLE, Acquire, false); 383 384 case vmIntrinsics::_putReferenceRelease: return inline_unsafe_access( is_store, T_OBJECT, Release, false); 385 case vmIntrinsics::_putBooleanRelease: return inline_unsafe_access( is_store, T_BOOLEAN, Release, false); 386 case vmIntrinsics::_putByteRelease: return inline_unsafe_access( is_store, T_BYTE, Release, false); 387 case vmIntrinsics::_putShortRelease: return inline_unsafe_access( is_store, T_SHORT, Release, false); 388 case vmIntrinsics::_putCharRelease: return inline_unsafe_access( is_store, T_CHAR, Release, false); 389 case vmIntrinsics::_putIntRelease: return inline_unsafe_access( is_store, T_INT, Release, false); 390 case vmIntrinsics::_putLongRelease: return inline_unsafe_access( is_store, T_LONG, Release, false); 391 case vmIntrinsics::_putFloatRelease: return inline_unsafe_access( is_store, T_FLOAT, Release, false); 392 case vmIntrinsics::_putDoubleRelease: return inline_unsafe_access( is_store, T_DOUBLE, Release, false); 393 394 case vmIntrinsics::_getReferenceOpaque: return inline_unsafe_access(!is_store, T_OBJECT, Opaque, false); 395 case vmIntrinsics::_getBooleanOpaque: return inline_unsafe_access(!is_store, T_BOOLEAN, Opaque, false); 396 case vmIntrinsics::_getByteOpaque: return inline_unsafe_access(!is_store, T_BYTE, Opaque, false); 397 case vmIntrinsics::_getShortOpaque: return inline_unsafe_access(!is_store, T_SHORT, Opaque, false); 398 case vmIntrinsics::_getCharOpaque: return inline_unsafe_access(!is_store, T_CHAR, Opaque, false); 399 case vmIntrinsics::_getIntOpaque: return inline_unsafe_access(!is_store, T_INT, Opaque, false); 400 case vmIntrinsics::_getLongOpaque: return inline_unsafe_access(!is_store, T_LONG, Opaque, false); 401 case vmIntrinsics::_getFloatOpaque: return inline_unsafe_access(!is_store, T_FLOAT, Opaque, false); 402 case vmIntrinsics::_getDoubleOpaque: return inline_unsafe_access(!is_store, T_DOUBLE, Opaque, false); 403 404 case vmIntrinsics::_putReferenceOpaque: return inline_unsafe_access( is_store, T_OBJECT, Opaque, false); 405 case vmIntrinsics::_putBooleanOpaque: return inline_unsafe_access( is_store, T_BOOLEAN, Opaque, false); 406 case vmIntrinsics::_putByteOpaque: return inline_unsafe_access( is_store, T_BYTE, Opaque, false); 407 case vmIntrinsics::_putShortOpaque: return inline_unsafe_access( is_store, T_SHORT, Opaque, false); 408 case vmIntrinsics::_putCharOpaque: return inline_unsafe_access( is_store, T_CHAR, Opaque, false); 409 case vmIntrinsics::_putIntOpaque: return inline_unsafe_access( is_store, T_INT, Opaque, false); 410 case vmIntrinsics::_putLongOpaque: return inline_unsafe_access( is_store, T_LONG, Opaque, false); 411 case vmIntrinsics::_putFloatOpaque: return inline_unsafe_access( is_store, T_FLOAT, Opaque, false); 412 case vmIntrinsics::_putDoubleOpaque: return inline_unsafe_access( is_store, T_DOUBLE, Opaque, false); 413 414 case vmIntrinsics::_compareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap, Volatile); 415 case vmIntrinsics::_compareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap, Volatile); 416 case vmIntrinsics::_compareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap, Volatile); 417 case vmIntrinsics::_compareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap, Volatile); 418 case vmIntrinsics::_compareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap, Volatile); 419 420 case vmIntrinsics::_weakCompareAndSetReferencePlain: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed); 421 case vmIntrinsics::_weakCompareAndSetReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire); 422 case vmIntrinsics::_weakCompareAndSetReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release); 423 case vmIntrinsics::_weakCompareAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile); 424 case vmIntrinsics::_weakCompareAndSetBytePlain: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Relaxed); 425 case vmIntrinsics::_weakCompareAndSetByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Acquire); 426 case vmIntrinsics::_weakCompareAndSetByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Release); 427 case vmIntrinsics::_weakCompareAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_swap_weak, Volatile); 428 case vmIntrinsics::_weakCompareAndSetShortPlain: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Relaxed); 429 case vmIntrinsics::_weakCompareAndSetShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Acquire); 430 case vmIntrinsics::_weakCompareAndSetShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Release); 431 case vmIntrinsics::_weakCompareAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_swap_weak, Volatile); 432 case vmIntrinsics::_weakCompareAndSetIntPlain: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Relaxed); 433 case vmIntrinsics::_weakCompareAndSetIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Acquire); 434 case vmIntrinsics::_weakCompareAndSetIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Release); 435 case vmIntrinsics::_weakCompareAndSetInt: return inline_unsafe_load_store(T_INT, LS_cmp_swap_weak, Volatile); 436 case vmIntrinsics::_weakCompareAndSetLongPlain: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Relaxed); 437 case vmIntrinsics::_weakCompareAndSetLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Acquire); 438 case vmIntrinsics::_weakCompareAndSetLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Release); 439 case vmIntrinsics::_weakCompareAndSetLong: return inline_unsafe_load_store(T_LONG, LS_cmp_swap_weak, Volatile); 440 441 case vmIntrinsics::_compareAndExchangeReference: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Volatile); 442 case vmIntrinsics::_compareAndExchangeReferenceAcquire: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Acquire); 443 case vmIntrinsics::_compareAndExchangeReferenceRelease: return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange, Release); 444 case vmIntrinsics::_compareAndExchangeByte: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Volatile); 445 case vmIntrinsics::_compareAndExchangeByteAcquire: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Acquire); 446 case vmIntrinsics::_compareAndExchangeByteRelease: return inline_unsafe_load_store(T_BYTE, LS_cmp_exchange, Release); 447 case vmIntrinsics::_compareAndExchangeShort: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Volatile); 448 case vmIntrinsics::_compareAndExchangeShortAcquire: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Acquire); 449 case vmIntrinsics::_compareAndExchangeShortRelease: return inline_unsafe_load_store(T_SHORT, LS_cmp_exchange, Release); 450 case vmIntrinsics::_compareAndExchangeInt: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Volatile); 451 case vmIntrinsics::_compareAndExchangeIntAcquire: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Acquire); 452 case vmIntrinsics::_compareAndExchangeIntRelease: return inline_unsafe_load_store(T_INT, LS_cmp_exchange, Release); 453 case vmIntrinsics::_compareAndExchangeLong: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Volatile); 454 case vmIntrinsics::_compareAndExchangeLongAcquire: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Acquire); 455 case vmIntrinsics::_compareAndExchangeLongRelease: return inline_unsafe_load_store(T_LONG, LS_cmp_exchange, Release); 456 457 case vmIntrinsics::_getAndAddByte: return inline_unsafe_load_store(T_BYTE, LS_get_add, Volatile); 458 case vmIntrinsics::_getAndAddShort: return inline_unsafe_load_store(T_SHORT, LS_get_add, Volatile); 459 case vmIntrinsics::_getAndAddInt: return inline_unsafe_load_store(T_INT, LS_get_add, Volatile); 460 case vmIntrinsics::_getAndAddLong: return inline_unsafe_load_store(T_LONG, LS_get_add, Volatile); 461 462 case vmIntrinsics::_getAndSetByte: return inline_unsafe_load_store(T_BYTE, LS_get_set, Volatile); 463 case vmIntrinsics::_getAndSetShort: return inline_unsafe_load_store(T_SHORT, LS_get_set, Volatile); 464 case vmIntrinsics::_getAndSetInt: return inline_unsafe_load_store(T_INT, LS_get_set, Volatile); 465 case vmIntrinsics::_getAndSetLong: return inline_unsafe_load_store(T_LONG, LS_get_set, Volatile); 466 case vmIntrinsics::_getAndSetReference: return inline_unsafe_load_store(T_OBJECT, LS_get_set, Volatile); 467 468 case vmIntrinsics::_loadFence: 469 case vmIntrinsics::_storeFence: 470 case vmIntrinsics::_storeStoreFence: 471 case vmIntrinsics::_fullFence: return inline_unsafe_fence(intrinsic_id()); 472 473 case vmIntrinsics::_onSpinWait: return inline_onspinwait(); 474 475 case vmIntrinsics::_currentCarrierThread: return inline_native_currentCarrierThread(); 476 case vmIntrinsics::_currentThread: return inline_native_currentThread(); 477 case vmIntrinsics::_setCurrentThread: return inline_native_setCurrentThread(); 478 479 case vmIntrinsics::_scopedValueCache: return inline_native_scopedValueCache(); 480 case vmIntrinsics::_setScopedValueCache: return inline_native_setScopedValueCache(); 481 482 #if INCLUDE_JVMTI 483 case vmIntrinsics::_notifyJvmtiVThreadStart: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()), 484 "notifyJvmtiStart", true, false); 485 case vmIntrinsics::_notifyJvmtiVThreadEnd: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()), 486 "notifyJvmtiEnd", false, true); 487 case vmIntrinsics::_notifyJvmtiVThreadMount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()), 488 "notifyJvmtiMount", false, false); 489 case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()), 490 "notifyJvmtiUnmount", false, false); 491 case vmIntrinsics::_notifyJvmtiVThreadHideFrames: return inline_native_notify_jvmti_hide(); 492 #endif 493 494 #ifdef JFR_HAVE_INTRINSICS 495 case vmIntrinsics::_counterTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime"); 496 case vmIntrinsics::_getEventWriter: return inline_native_getEventWriter(); 497 #endif 498 case vmIntrinsics::_currentTimeMillis: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis"); 499 case vmIntrinsics::_nanoTime: return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime"); 500 case vmIntrinsics::_writeback0: return inline_unsafe_writeback0(); 501 case vmIntrinsics::_writebackPreSync0: return inline_unsafe_writebackSync0(true); 502 case vmIntrinsics::_writebackPostSync0: return inline_unsafe_writebackSync0(false); 503 case vmIntrinsics::_allocateInstance: return inline_unsafe_allocate(); 504 case vmIntrinsics::_copyMemory: return inline_unsafe_copyMemory(); 505 case vmIntrinsics::_getLength: return inline_native_getLength(); 506 case vmIntrinsics::_copyOf: return inline_array_copyOf(false); 507 case vmIntrinsics::_copyOfRange: return inline_array_copyOf(true); 508 case vmIntrinsics::_equalsB: return inline_array_equals(StrIntrinsicNode::LL); 509 case vmIntrinsics::_equalsC: return inline_array_equals(StrIntrinsicNode::UU); 510 case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT); 511 case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG); 512 case vmIntrinsics::_clone: return inline_native_clone(intrinsic()->is_virtual()); 513 514 case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true); 515 case vmIntrinsics::_newArray: return inline_unsafe_newArray(false); 516 517 case vmIntrinsics::_isAssignableFrom: return inline_native_subtype_check(); 518 519 case vmIntrinsics::_isInstance: 520 case vmIntrinsics::_getModifiers: 521 case vmIntrinsics::_isInterface: 522 case vmIntrinsics::_isArray: 523 case vmIntrinsics::_isPrimitive: 524 case vmIntrinsics::_isHidden: 525 case vmIntrinsics::_getSuperclass: 526 case vmIntrinsics::_getClassAccessFlags: return inline_native_Class_query(intrinsic_id()); 527 528 case vmIntrinsics::_floatToRawIntBits: 529 case vmIntrinsics::_floatToIntBits: 530 case vmIntrinsics::_intBitsToFloat: 531 case vmIntrinsics::_doubleToRawLongBits: 532 case vmIntrinsics::_doubleToLongBits: 533 case vmIntrinsics::_longBitsToDouble: 534 case vmIntrinsics::_floatToFloat16: 535 case vmIntrinsics::_float16ToFloat: return inline_fp_conversions(intrinsic_id()); 536 537 case vmIntrinsics::_floatIsFinite: 538 case vmIntrinsics::_floatIsInfinite: 539 case vmIntrinsics::_doubleIsFinite: 540 case vmIntrinsics::_doubleIsInfinite: return inline_fp_range_check(intrinsic_id()); 541 542 case vmIntrinsics::_numberOfLeadingZeros_i: 543 case vmIntrinsics::_numberOfLeadingZeros_l: 544 case vmIntrinsics::_numberOfTrailingZeros_i: 545 case vmIntrinsics::_numberOfTrailingZeros_l: 546 case vmIntrinsics::_bitCount_i: 547 case vmIntrinsics::_bitCount_l: 548 case vmIntrinsics::_reverse_i: 549 case vmIntrinsics::_reverse_l: 550 case vmIntrinsics::_reverseBytes_i: 551 case vmIntrinsics::_reverseBytes_l: 552 case vmIntrinsics::_reverseBytes_s: 553 case vmIntrinsics::_reverseBytes_c: return inline_number_methods(intrinsic_id()); 554 555 case vmIntrinsics::_compress_i: 556 case vmIntrinsics::_compress_l: 557 case vmIntrinsics::_expand_i: 558 case vmIntrinsics::_expand_l: return inline_bitshuffle_methods(intrinsic_id()); 559 560 case vmIntrinsics::_compareUnsigned_i: 561 case vmIntrinsics::_compareUnsigned_l: return inline_compare_unsigned(intrinsic_id()); 562 563 case vmIntrinsics::_divideUnsigned_i: 564 case vmIntrinsics::_divideUnsigned_l: 565 case vmIntrinsics::_remainderUnsigned_i: 566 case vmIntrinsics::_remainderUnsigned_l: return inline_divmod_methods(intrinsic_id()); 567 568 case vmIntrinsics::_getCallerClass: return inline_native_Reflection_getCallerClass(); 569 570 case vmIntrinsics::_Reference_get: return inline_reference_get(); 571 case vmIntrinsics::_Reference_refersTo0: return inline_reference_refersTo0(false); 572 case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true); 573 574 case vmIntrinsics::_Class_cast: return inline_Class_cast(); 575 576 case vmIntrinsics::_aescrypt_encryptBlock: 577 case vmIntrinsics::_aescrypt_decryptBlock: return inline_aescrypt_Block(intrinsic_id()); 578 579 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 580 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 581 return inline_cipherBlockChaining_AESCrypt(intrinsic_id()); 582 583 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 584 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 585 return inline_electronicCodeBook_AESCrypt(intrinsic_id()); 586 587 case vmIntrinsics::_counterMode_AESCrypt: 588 return inline_counterMode_AESCrypt(intrinsic_id()); 589 590 case vmIntrinsics::_galoisCounterMode_AESCrypt: 591 return inline_galoisCounterMode_AESCrypt(); 592 593 case vmIntrinsics::_md5_implCompress: 594 case vmIntrinsics::_sha_implCompress: 595 case vmIntrinsics::_sha2_implCompress: 596 case vmIntrinsics::_sha5_implCompress: 597 case vmIntrinsics::_sha3_implCompress: 598 return inline_digestBase_implCompress(intrinsic_id()); 599 600 case vmIntrinsics::_digestBase_implCompressMB: 601 return inline_digestBase_implCompressMB(predicate); 602 603 case vmIntrinsics::_multiplyToLen: 604 return inline_multiplyToLen(); 605 606 case vmIntrinsics::_squareToLen: 607 return inline_squareToLen(); 608 609 case vmIntrinsics::_mulAdd: 610 return inline_mulAdd(); 611 612 case vmIntrinsics::_montgomeryMultiply: 613 return inline_montgomeryMultiply(); 614 case vmIntrinsics::_montgomerySquare: 615 return inline_montgomerySquare(); 616 617 case vmIntrinsics::_bigIntegerRightShiftWorker: 618 return inline_bigIntegerShift(true); 619 case vmIntrinsics::_bigIntegerLeftShiftWorker: 620 return inline_bigIntegerShift(false); 621 622 case vmIntrinsics::_vectorizedMismatch: 623 return inline_vectorizedMismatch(); 624 625 case vmIntrinsics::_ghash_processBlocks: 626 return inline_ghash_processBlocks(); 627 case vmIntrinsics::_chacha20Block: 628 return inline_chacha20Block(); 629 case vmIntrinsics::_base64_encodeBlock: 630 return inline_base64_encodeBlock(); 631 case vmIntrinsics::_base64_decodeBlock: 632 return inline_base64_decodeBlock(); 633 case vmIntrinsics::_poly1305_processBlocks: 634 return inline_poly1305_processBlocks(); 635 636 case vmIntrinsics::_encodeISOArray: 637 case vmIntrinsics::_encodeByteISOArray: 638 return inline_encodeISOArray(false); 639 case vmIntrinsics::_encodeAsciiArray: 640 return inline_encodeISOArray(true); 641 642 case vmIntrinsics::_updateCRC32: 643 return inline_updateCRC32(); 644 case vmIntrinsics::_updateBytesCRC32: 645 return inline_updateBytesCRC32(); 646 case vmIntrinsics::_updateByteBufferCRC32: 647 return inline_updateByteBufferCRC32(); 648 649 case vmIntrinsics::_updateBytesCRC32C: 650 return inline_updateBytesCRC32C(); 651 case vmIntrinsics::_updateDirectByteBufferCRC32C: 652 return inline_updateDirectByteBufferCRC32C(); 653 654 case vmIntrinsics::_updateBytesAdler32: 655 return inline_updateBytesAdler32(); 656 case vmIntrinsics::_updateByteBufferAdler32: 657 return inline_updateByteBufferAdler32(); 658 659 case vmIntrinsics::_profileBoolean: 660 return inline_profileBoolean(); 661 case vmIntrinsics::_isCompileConstant: 662 return inline_isCompileConstant(); 663 664 case vmIntrinsics::_countPositives: 665 return inline_countPositives(); 666 667 case vmIntrinsics::_fmaD: 668 case vmIntrinsics::_fmaF: 669 return inline_fma(intrinsic_id()); 670 671 case vmIntrinsics::_isDigit: 672 case vmIntrinsics::_isLowerCase: 673 case vmIntrinsics::_isUpperCase: 674 case vmIntrinsics::_isWhitespace: 675 return inline_character_compare(intrinsic_id()); 676 677 case vmIntrinsics::_min: 678 case vmIntrinsics::_max: 679 case vmIntrinsics::_min_strict: 680 case vmIntrinsics::_max_strict: 681 return inline_min_max(intrinsic_id()); 682 683 case vmIntrinsics::_maxF: 684 case vmIntrinsics::_minF: 685 case vmIntrinsics::_maxD: 686 case vmIntrinsics::_minD: 687 case vmIntrinsics::_maxF_strict: 688 case vmIntrinsics::_minF_strict: 689 case vmIntrinsics::_maxD_strict: 690 case vmIntrinsics::_minD_strict: 691 return inline_fp_min_max(intrinsic_id()); 692 693 case vmIntrinsics::_VectorUnaryOp: 694 return inline_vector_nary_operation(1); 695 case vmIntrinsics::_VectorBinaryOp: 696 return inline_vector_nary_operation(2); 697 case vmIntrinsics::_VectorTernaryOp: 698 return inline_vector_nary_operation(3); 699 case vmIntrinsics::_VectorFromBitsCoerced: 700 return inline_vector_frombits_coerced(); 701 case vmIntrinsics::_VectorMaskOp: 702 return inline_vector_mask_operation(); 703 case vmIntrinsics::_VectorLoadOp: 704 return inline_vector_mem_operation(/*is_store=*/false); 705 case vmIntrinsics::_VectorLoadMaskedOp: 706 return inline_vector_mem_masked_operation(/*is_store*/false); 707 case vmIntrinsics::_VectorStoreOp: 708 return inline_vector_mem_operation(/*is_store=*/true); 709 case vmIntrinsics::_VectorStoreMaskedOp: 710 return inline_vector_mem_masked_operation(/*is_store=*/true); 711 case vmIntrinsics::_VectorGatherOp: 712 return inline_vector_gather_scatter(/*is_scatter*/ false); 713 case vmIntrinsics::_VectorScatterOp: 714 return inline_vector_gather_scatter(/*is_scatter*/ true); 715 case vmIntrinsics::_VectorReductionCoerced: 716 return inline_vector_reduction(); 717 case vmIntrinsics::_VectorTest: 718 return inline_vector_test(); 719 case vmIntrinsics::_VectorBlend: 720 return inline_vector_blend(); 721 case vmIntrinsics::_VectorRearrange: 722 return inline_vector_rearrange(); 723 case vmIntrinsics::_VectorCompare: 724 return inline_vector_compare(); 725 case vmIntrinsics::_VectorBroadcastInt: 726 return inline_vector_broadcast_int(); 727 case vmIntrinsics::_VectorConvert: 728 return inline_vector_convert(); 729 case vmIntrinsics::_VectorInsert: 730 return inline_vector_insert(); 731 case vmIntrinsics::_VectorExtract: 732 return inline_vector_extract(); 733 case vmIntrinsics::_VectorCompressExpand: 734 return inline_vector_compress_expand(); 735 case vmIntrinsics::_IndexVector: 736 return inline_index_vector(); 737 case vmIntrinsics::_IndexPartiallyInUpperRange: 738 return inline_index_partially_in_upper_range(); 739 740 case vmIntrinsics::_getObjectSize: 741 return inline_getObjectSize(); 742 743 case vmIntrinsics::_blackhole: 744 return inline_blackhole(); 745 746 default: 747 // If you get here, it may be that someone has added a new intrinsic 748 // to the list in vmIntrinsics.hpp without implementing it here. 749 #ifndef PRODUCT 750 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 751 tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)", 752 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 753 } 754 #endif 755 return false; 756 } 757 } 758 759 Node* LibraryCallKit::try_to_predicate(int predicate) { 760 if (!jvms()->has_method()) { 761 // Root JVMState has a null method. 762 assert(map()->memory()->Opcode() == Op_Parm, ""); 763 // Insert the memory aliasing node 764 set_all_memory(reset_memory()); 765 } 766 assert(merged_memory(), ""); 767 768 switch (intrinsic_id()) { 769 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 770 return inline_cipherBlockChaining_AESCrypt_predicate(false); 771 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 772 return inline_cipherBlockChaining_AESCrypt_predicate(true); 773 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 774 return inline_electronicCodeBook_AESCrypt_predicate(false); 775 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 776 return inline_electronicCodeBook_AESCrypt_predicate(true); 777 case vmIntrinsics::_counterMode_AESCrypt: 778 return inline_counterMode_AESCrypt_predicate(); 779 case vmIntrinsics::_digestBase_implCompressMB: 780 return inline_digestBase_implCompressMB_predicate(predicate); 781 case vmIntrinsics::_galoisCounterMode_AESCrypt: 782 return inline_galoisCounterMode_AESCrypt_predicate(); 783 784 default: 785 // If you get here, it may be that someone has added a new intrinsic 786 // to the list in vmIntrinsics.hpp without implementing it here. 787 #ifndef PRODUCT 788 if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) { 789 tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)", 790 vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id())); 791 } 792 #endif 793 Node* slow_ctl = control(); 794 set_control(top()); // No fast path intrinsic 795 return slow_ctl; 796 } 797 } 798 799 //------------------------------set_result------------------------------- 800 // Helper function for finishing intrinsics. 801 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) { 802 record_for_igvn(region); 803 set_control(_gvn.transform(region)); 804 set_result( _gvn.transform(value)); 805 assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity"); 806 } 807 808 //------------------------------generate_guard--------------------------- 809 // Helper function for generating guarded fast-slow graph structures. 810 // The given 'test', if true, guards a slow path. If the test fails 811 // then a fast path can be taken. (We generally hope it fails.) 812 // In all cases, GraphKit::control() is updated to the fast path. 813 // The returned value represents the control for the slow path. 814 // The return value is never 'top'; it is either a valid control 815 // or null if it is obvious that the slow path can never be taken. 816 // Also, if region and the slow control are not null, the slow edge 817 // is appended to the region. 818 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) { 819 if (stopped()) { 820 // Already short circuited. 821 return nullptr; 822 } 823 824 // Build an if node and its projections. 825 // If test is true we take the slow path, which we assume is uncommon. 826 if (_gvn.type(test) == TypeInt::ZERO) { 827 // The slow branch is never taken. No need to build this guard. 828 return nullptr; 829 } 830 831 IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN); 832 833 Node* if_slow = _gvn.transform(new IfTrueNode(iff)); 834 if (if_slow == top()) { 835 // The slow branch is never taken. No need to build this guard. 836 return nullptr; 837 } 838 839 if (region != nullptr) 840 region->add_req(if_slow); 841 842 Node* if_fast = _gvn.transform(new IfFalseNode(iff)); 843 set_control(if_fast); 844 845 return if_slow; 846 } 847 848 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) { 849 return generate_guard(test, region, PROB_UNLIKELY_MAG(3)); 850 } 851 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) { 852 return generate_guard(test, region, PROB_FAIR); 853 } 854 855 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region, 856 Node* *pos_index) { 857 if (stopped()) 858 return nullptr; // already stopped 859 if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint] 860 return nullptr; // index is already adequately typed 861 Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0))); 862 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 863 Node* is_neg = generate_guard(bol_lt, region, PROB_MIN); 864 if (is_neg != nullptr && pos_index != nullptr) { 865 // Emulate effect of Parse::adjust_map_after_if. 866 Node* ccast = new CastIINode(index, TypeInt::POS); 867 ccast->set_req(0, control()); 868 (*pos_index) = _gvn.transform(ccast); 869 } 870 return is_neg; 871 } 872 873 // Make sure that 'position' is a valid limit index, in [0..length]. 874 // There are two equivalent plans for checking this: 875 // A. (offset + copyLength) unsigned<= arrayLength 876 // B. offset <= (arrayLength - copyLength) 877 // We require that all of the values above, except for the sum and 878 // difference, are already known to be non-negative. 879 // Plan A is robust in the face of overflow, if offset and copyLength 880 // are both hugely positive. 881 // 882 // Plan B is less direct and intuitive, but it does not overflow at 883 // all, since the difference of two non-negatives is always 884 // representable. Whenever Java methods must perform the equivalent 885 // check they generally use Plan B instead of Plan A. 886 // For the moment we use Plan A. 887 inline Node* LibraryCallKit::generate_limit_guard(Node* offset, 888 Node* subseq_length, 889 Node* array_length, 890 RegionNode* region) { 891 if (stopped()) 892 return nullptr; // already stopped 893 bool zero_offset = _gvn.type(offset) == TypeInt::ZERO; 894 if (zero_offset && subseq_length->eqv_uncast(array_length)) 895 return nullptr; // common case of whole-array copy 896 Node* last = subseq_length; 897 if (!zero_offset) // last += offset 898 last = _gvn.transform(new AddINode(last, offset)); 899 Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last)); 900 Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt)); 901 Node* is_over = generate_guard(bol_lt, region, PROB_MIN); 902 return is_over; 903 } 904 905 // Emit range checks for the given String.value byte array 906 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) { 907 if (stopped()) { 908 return; // already stopped 909 } 910 RegionNode* bailout = new RegionNode(1); 911 record_for_igvn(bailout); 912 if (char_count) { 913 // Convert char count to byte count 914 count = _gvn.transform(new LShiftINode(count, intcon(1))); 915 } 916 917 // Offset and count must not be negative 918 generate_negative_guard(offset, bailout); 919 generate_negative_guard(count, bailout); 920 // Offset + count must not exceed length of array 921 generate_limit_guard(offset, count, load_array_length(array), bailout); 922 923 if (bailout->req() > 1) { 924 PreserveJVMState pjvms(this); 925 set_control(_gvn.transform(bailout)); 926 uncommon_trap(Deoptimization::Reason_intrinsic, 927 Deoptimization::Action_maybe_recompile); 928 } 929 } 930 931 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset, 932 bool is_immutable) { 933 ciKlass* thread_klass = env()->Thread_klass(); 934 const Type* thread_type 935 = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull); 936 937 Node* thread = _gvn.transform(new ThreadLocalNode()); 938 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset)); 939 tls_output = thread; 940 941 Node* thread_obj_handle 942 = (is_immutable 943 ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 944 TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered) 945 : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered)); 946 thread_obj_handle = _gvn.transform(thread_obj_handle); 947 948 DecoratorSet decorators = IN_NATIVE; 949 if (is_immutable) { 950 decorators |= C2_IMMUTABLE_MEMORY; 951 } 952 return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators); 953 } 954 955 //--------------------------generate_current_thread-------------------- 956 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) { 957 return current_thread_helper(tls_output, JavaThread::threadObj_offset(), 958 /*is_immutable*/false); 959 } 960 961 //--------------------------generate_virtual_thread-------------------- 962 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) { 963 return current_thread_helper(tls_output, JavaThread::vthread_offset(), 964 !C->method()->changes_current_thread()); 965 } 966 967 //------------------------------make_string_method_node------------------------ 968 // Helper method for String intrinsic functions. This version is called with 969 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded 970 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes 971 // containing the lengths of str1 and str2. 972 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) { 973 Node* result = nullptr; 974 switch (opcode) { 975 case Op_StrIndexOf: 976 result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES), 977 str1_start, cnt1, str2_start, cnt2, ae); 978 break; 979 case Op_StrComp: 980 result = new StrCompNode(control(), memory(TypeAryPtr::BYTES), 981 str1_start, cnt1, str2_start, cnt2, ae); 982 break; 983 case Op_StrEquals: 984 // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals'). 985 // Use the constant length if there is one because optimized match rule may exist. 986 result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES), 987 str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae); 988 break; 989 default: 990 ShouldNotReachHere(); 991 return nullptr; 992 } 993 994 // All these intrinsics have checks. 995 C->set_has_split_ifs(true); // Has chance for split-if optimization 996 clear_upper_avx(); 997 998 return _gvn.transform(result); 999 } 1000 1001 //------------------------------inline_string_compareTo------------------------ 1002 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) { 1003 Node* arg1 = argument(0); 1004 Node* arg2 = argument(1); 1005 1006 arg1 = must_be_not_null(arg1, true); 1007 arg2 = must_be_not_null(arg2, true); 1008 1009 // Get start addr and length of first argument 1010 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1011 Node* arg1_cnt = load_array_length(arg1); 1012 1013 // Get start addr and length of second argument 1014 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1015 Node* arg2_cnt = load_array_length(arg2); 1016 1017 Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1018 set_result(result); 1019 return true; 1020 } 1021 1022 //------------------------------inline_string_equals------------------------ 1023 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) { 1024 Node* arg1 = argument(0); 1025 Node* arg2 = argument(1); 1026 1027 // paths (plus control) merge 1028 RegionNode* region = new RegionNode(3); 1029 Node* phi = new PhiNode(region, TypeInt::BOOL); 1030 1031 if (!stopped()) { 1032 1033 arg1 = must_be_not_null(arg1, true); 1034 arg2 = must_be_not_null(arg2, true); 1035 1036 // Get start addr and length of first argument 1037 Node* arg1_start = array_element_address(arg1, intcon(0), T_BYTE); 1038 Node* arg1_cnt = load_array_length(arg1); 1039 1040 // Get start addr and length of second argument 1041 Node* arg2_start = array_element_address(arg2, intcon(0), T_BYTE); 1042 Node* arg2_cnt = load_array_length(arg2); 1043 1044 // Check for arg1_cnt != arg2_cnt 1045 Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt)); 1046 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 1047 Node* if_ne = generate_slow_guard(bol, nullptr); 1048 if (if_ne != nullptr) { 1049 phi->init_req(2, intcon(0)); 1050 region->init_req(2, if_ne); 1051 } 1052 1053 // Check for count == 0 is done by assembler code for StrEquals. 1054 1055 if (!stopped()) { 1056 Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae); 1057 phi->init_req(1, equals); 1058 region->init_req(1, control()); 1059 } 1060 } 1061 1062 // post merge 1063 set_control(_gvn.transform(region)); 1064 record_for_igvn(region); 1065 1066 set_result(_gvn.transform(phi)); 1067 return true; 1068 } 1069 1070 //------------------------------inline_array_equals---------------------------- 1071 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) { 1072 assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types"); 1073 Node* arg1 = argument(0); 1074 Node* arg2 = argument(1); 1075 1076 const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES; 1077 set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae))); 1078 clear_upper_avx(); 1079 1080 return true; 1081 } 1082 1083 1084 //------------------------------inline_countPositives------------------------------ 1085 bool LibraryCallKit::inline_countPositives() { 1086 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1087 return false; 1088 } 1089 1090 assert(callee()->signature()->size() == 3, "countPositives has 3 parameters"); 1091 // no receiver since it is static method 1092 Node* ba = argument(0); 1093 Node* offset = argument(1); 1094 Node* len = argument(2); 1095 1096 ba = must_be_not_null(ba, true); 1097 1098 // Range checks 1099 generate_string_range_check(ba, offset, len, false); 1100 if (stopped()) { 1101 return true; 1102 } 1103 Node* ba_start = array_element_address(ba, offset, T_BYTE); 1104 Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len); 1105 set_result(_gvn.transform(result)); 1106 return true; 1107 } 1108 1109 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) { 1110 Node* index = argument(0); 1111 Node* length = bt == T_INT ? argument(1) : argument(2); 1112 if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) { 1113 return false; 1114 } 1115 1116 // check that length is positive 1117 Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt)); 1118 Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge)); 1119 1120 { 1121 BuildCutout unless(this, len_pos_bol, PROB_MAX); 1122 uncommon_trap(Deoptimization::Reason_intrinsic, 1123 Deoptimization::Action_make_not_entrant); 1124 } 1125 1126 if (stopped()) { 1127 // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success 1128 return true; 1129 } 1130 1131 // length is now known positive, add a cast node to make this explicit 1132 jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long(); 1133 Node* casted_length = ConstraintCastNode::make(control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt); 1134 casted_length = _gvn.transform(casted_length); 1135 replace_in_map(length, casted_length); 1136 length = casted_length; 1137 1138 // Use an unsigned comparison for the range check itself 1139 Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true)); 1140 BoolTest::mask btest = BoolTest::lt; 1141 Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest)); 1142 RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN); 1143 _gvn.set_type(rc, rc->Value(&_gvn)); 1144 if (!rc_bool->is_Con()) { 1145 record_for_igvn(rc); 1146 } 1147 set_control(_gvn.transform(new IfTrueNode(rc))); 1148 { 1149 PreserveJVMState pjvms(this); 1150 set_control(_gvn.transform(new IfFalseNode(rc))); 1151 uncommon_trap(Deoptimization::Reason_range_check, 1152 Deoptimization::Action_make_not_entrant); 1153 } 1154 1155 if (stopped()) { 1156 // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success 1157 return true; 1158 } 1159 1160 // index is now known to be >= 0 and < length, cast it 1161 Node* result = ConstraintCastNode::make(control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt), ConstraintCastNode::RegularDependency, bt); 1162 result = _gvn.transform(result); 1163 set_result(result); 1164 replace_in_map(index, result); 1165 return true; 1166 } 1167 1168 //------------------------------inline_string_indexOf------------------------ 1169 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) { 1170 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1171 return false; 1172 } 1173 Node* src = argument(0); 1174 Node* tgt = argument(1); 1175 1176 // Make the merge point 1177 RegionNode* result_rgn = new RegionNode(4); 1178 Node* result_phi = new PhiNode(result_rgn, TypeInt::INT); 1179 1180 src = must_be_not_null(src, true); 1181 tgt = must_be_not_null(tgt, true); 1182 1183 // Get start addr and length of source string 1184 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 1185 Node* src_count = load_array_length(src); 1186 1187 // Get start addr and length of substring 1188 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1189 Node* tgt_count = load_array_length(tgt); 1190 1191 if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) { 1192 // Divide src size by 2 if String is UTF16 encoded 1193 src_count = _gvn.transform(new RShiftINode(src_count, intcon(1))); 1194 } 1195 if (ae == StrIntrinsicNode::UU) { 1196 // Divide substring size by 2 if String is UTF16 encoded 1197 tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1))); 1198 } 1199 1200 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae); 1201 if (result != nullptr) { 1202 result_phi->init_req(3, result); 1203 result_rgn->init_req(3, control()); 1204 } 1205 set_control(_gvn.transform(result_rgn)); 1206 record_for_igvn(result_rgn); 1207 set_result(_gvn.transform(result_phi)); 1208 1209 return true; 1210 } 1211 1212 //-----------------------------inline_string_indexOf----------------------- 1213 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) { 1214 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1215 return false; 1216 } 1217 if (!Matcher::match_rule_supported(Op_StrIndexOf)) { 1218 return false; 1219 } 1220 assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments"); 1221 Node* src = argument(0); // byte[] 1222 Node* src_count = argument(1); // char count 1223 Node* tgt = argument(2); // byte[] 1224 Node* tgt_count = argument(3); // char count 1225 Node* from_index = argument(4); // char index 1226 1227 src = must_be_not_null(src, true); 1228 tgt = must_be_not_null(tgt, true); 1229 1230 // Multiply byte array index by 2 if String is UTF16 encoded 1231 Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1232 src_count = _gvn.transform(new SubINode(src_count, from_index)); 1233 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1234 Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE); 1235 1236 // Range checks 1237 generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL); 1238 generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU); 1239 if (stopped()) { 1240 return true; 1241 } 1242 1243 RegionNode* region = new RegionNode(5); 1244 Node* phi = new PhiNode(region, TypeInt::INT); 1245 1246 Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae); 1247 if (result != nullptr) { 1248 // The result is index relative to from_index if substring was found, -1 otherwise. 1249 // Generate code which will fold into cmove. 1250 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1251 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1252 1253 Node* if_lt = generate_slow_guard(bol, nullptr); 1254 if (if_lt != nullptr) { 1255 // result == -1 1256 phi->init_req(3, result); 1257 region->init_req(3, if_lt); 1258 } 1259 if (!stopped()) { 1260 result = _gvn.transform(new AddINode(result, from_index)); 1261 phi->init_req(4, result); 1262 region->init_req(4, control()); 1263 } 1264 } 1265 1266 set_control(_gvn.transform(region)); 1267 record_for_igvn(region); 1268 set_result(_gvn.transform(phi)); 1269 clear_upper_avx(); 1270 1271 return true; 1272 } 1273 1274 // Create StrIndexOfNode with fast path checks 1275 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count, 1276 RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) { 1277 // Check for substr count > string count 1278 Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count)); 1279 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt)); 1280 Node* if_gt = generate_slow_guard(bol, nullptr); 1281 if (if_gt != nullptr) { 1282 phi->init_req(1, intcon(-1)); 1283 region->init_req(1, if_gt); 1284 } 1285 if (!stopped()) { 1286 // Check for substr count == 0 1287 cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0))); 1288 bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 1289 Node* if_zero = generate_slow_guard(bol, nullptr); 1290 if (if_zero != nullptr) { 1291 phi->init_req(2, intcon(0)); 1292 region->init_req(2, if_zero); 1293 } 1294 } 1295 if (!stopped()) { 1296 return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae); 1297 } 1298 return nullptr; 1299 } 1300 1301 //-----------------------------inline_string_indexOfChar----------------------- 1302 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) { 1303 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1304 return false; 1305 } 1306 if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) { 1307 return false; 1308 } 1309 assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments"); 1310 Node* src = argument(0); // byte[] 1311 Node* int_ch = argument(1); 1312 Node* from_index = argument(2); 1313 Node* max = argument(3); 1314 1315 src = must_be_not_null(src, true); 1316 1317 Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1))); 1318 Node* src_start = array_element_address(src, src_offset, T_BYTE); 1319 Node* src_count = _gvn.transform(new SubINode(max, from_index)); 1320 1321 // Range checks 1322 generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U); 1323 1324 // Check for int_ch >= 0 1325 Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0))); 1326 Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge)); 1327 { 1328 BuildCutout unless(this, int_ch_bol, PROB_MAX); 1329 uncommon_trap(Deoptimization::Reason_intrinsic, 1330 Deoptimization::Action_maybe_recompile); 1331 } 1332 if (stopped()) { 1333 return true; 1334 } 1335 1336 RegionNode* region = new RegionNode(3); 1337 Node* phi = new PhiNode(region, TypeInt::INT); 1338 1339 Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae); 1340 C->set_has_split_ifs(true); // Has chance for split-if optimization 1341 _gvn.transform(result); 1342 1343 Node* cmp = _gvn.transform(new CmpINode(result, intcon(0))); 1344 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt)); 1345 1346 Node* if_lt = generate_slow_guard(bol, nullptr); 1347 if (if_lt != nullptr) { 1348 // result == -1 1349 phi->init_req(2, result); 1350 region->init_req(2, if_lt); 1351 } 1352 if (!stopped()) { 1353 result = _gvn.transform(new AddINode(result, from_index)); 1354 phi->init_req(1, result); 1355 region->init_req(1, control()); 1356 } 1357 set_control(_gvn.transform(region)); 1358 record_for_igvn(region); 1359 set_result(_gvn.transform(phi)); 1360 1361 return true; 1362 } 1363 //---------------------------inline_string_copy--------------------- 1364 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[]) 1365 // int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 1366 // int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1367 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[]) 1368 // void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) 1369 // void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len) 1370 bool LibraryCallKit::inline_string_copy(bool compress) { 1371 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1372 return false; 1373 } 1374 int nargs = 5; // 2 oops, 3 ints 1375 assert(callee()->signature()->size() == nargs, "string copy has 5 arguments"); 1376 1377 Node* src = argument(0); 1378 Node* src_offset = argument(1); 1379 Node* dst = argument(2); 1380 Node* dst_offset = argument(3); 1381 Node* length = argument(4); 1382 1383 // Check for allocation before we add nodes that would confuse 1384 // tightly_coupled_allocation() 1385 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1386 1387 // Figure out the size and type of the elements we will be copying. 1388 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 1389 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 1390 if (src_type == nullptr || dst_type == nullptr) { 1391 return false; 1392 } 1393 BasicType src_elem = src_type->elem()->array_element_basic_type(); 1394 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 1395 assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) || 1396 (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)), 1397 "Unsupported array types for inline_string_copy"); 1398 1399 src = must_be_not_null(src, true); 1400 dst = must_be_not_null(dst, true); 1401 1402 // Convert char[] offsets to byte[] offsets 1403 bool convert_src = (compress && src_elem == T_BYTE); 1404 bool convert_dst = (!compress && dst_elem == T_BYTE); 1405 if (convert_src) { 1406 src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1))); 1407 } else if (convert_dst) { 1408 dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1))); 1409 } 1410 1411 // Range checks 1412 generate_string_range_check(src, src_offset, length, convert_src); 1413 generate_string_range_check(dst, dst_offset, length, convert_dst); 1414 if (stopped()) { 1415 return true; 1416 } 1417 1418 Node* src_start = array_element_address(src, src_offset, src_elem); 1419 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 1420 // 'src_start' points to src array + scaled offset 1421 // 'dst_start' points to dst array + scaled offset 1422 Node* count = nullptr; 1423 if (compress) { 1424 count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length); 1425 } else { 1426 inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length); 1427 } 1428 1429 if (alloc != nullptr) { 1430 if (alloc->maybe_set_complete(&_gvn)) { 1431 // "You break it, you buy it." 1432 InitializeNode* init = alloc->initialization(); 1433 assert(init->is_complete(), "we just did this"); 1434 init->set_complete_with_arraycopy(); 1435 assert(dst->is_CheckCastPP(), "sanity"); 1436 assert(dst->in(0)->in(0) == init, "dest pinned"); 1437 } 1438 // Do not let stores that initialize this object be reordered with 1439 // a subsequent store that would make this object accessible by 1440 // other threads. 1441 // Record what AllocateNode this StoreStore protects so that 1442 // escape analysis can go from the MemBarStoreStoreNode to the 1443 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1444 // based on the escape status of the AllocateNode. 1445 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1446 } 1447 if (compress) { 1448 set_result(_gvn.transform(count)); 1449 } 1450 clear_upper_avx(); 1451 1452 return true; 1453 } 1454 1455 #ifdef _LP64 1456 #define XTOP ,top() /*additional argument*/ 1457 #else //_LP64 1458 #define XTOP /*no additional argument*/ 1459 #endif //_LP64 1460 1461 //------------------------inline_string_toBytesU-------------------------- 1462 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len) 1463 bool LibraryCallKit::inline_string_toBytesU() { 1464 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1465 return false; 1466 } 1467 // Get the arguments. 1468 Node* value = argument(0); 1469 Node* offset = argument(1); 1470 Node* length = argument(2); 1471 1472 Node* newcopy = nullptr; 1473 1474 // Set the original stack and the reexecute bit for the interpreter to reexecute 1475 // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens. 1476 { PreserveReexecuteState preexecs(this); 1477 jvms()->set_should_reexecute(true); 1478 1479 // Check if a null path was taken unconditionally. 1480 value = null_check(value); 1481 1482 RegionNode* bailout = new RegionNode(1); 1483 record_for_igvn(bailout); 1484 1485 // Range checks 1486 generate_negative_guard(offset, bailout); 1487 generate_negative_guard(length, bailout); 1488 generate_limit_guard(offset, length, load_array_length(value), bailout); 1489 // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE 1490 generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout); 1491 1492 if (bailout->req() > 1) { 1493 PreserveJVMState pjvms(this); 1494 set_control(_gvn.transform(bailout)); 1495 uncommon_trap(Deoptimization::Reason_intrinsic, 1496 Deoptimization::Action_maybe_recompile); 1497 } 1498 if (stopped()) { 1499 return true; 1500 } 1501 1502 Node* size = _gvn.transform(new LShiftINode(length, intcon(1))); 1503 Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE))); 1504 newcopy = new_array(klass_node, size, 0); // no arguments to push 1505 AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy); 1506 guarantee(alloc != nullptr, "created above"); 1507 1508 // Calculate starting addresses. 1509 Node* src_start = array_element_address(value, offset, T_CHAR); 1510 Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE)); 1511 1512 // Check if src array address is aligned to HeapWordSize (dst is always aligned) 1513 const TypeInt* toffset = gvn().type(offset)->is_int(); 1514 bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1515 1516 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1517 const char* copyfunc_name = "arraycopy"; 1518 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1519 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1520 OptoRuntime::fast_arraycopy_Type(), 1521 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1522 src_start, dst_start, ConvI2X(length) XTOP); 1523 // Do not let reads from the cloned object float above the arraycopy. 1524 if (alloc->maybe_set_complete(&_gvn)) { 1525 // "You break it, you buy it." 1526 InitializeNode* init = alloc->initialization(); 1527 assert(init->is_complete(), "we just did this"); 1528 init->set_complete_with_arraycopy(); 1529 assert(newcopy->is_CheckCastPP(), "sanity"); 1530 assert(newcopy->in(0)->in(0) == init, "dest pinned"); 1531 } 1532 // Do not let stores that initialize this object be reordered with 1533 // a subsequent store that would make this object accessible by 1534 // other threads. 1535 // Record what AllocateNode this StoreStore protects so that 1536 // escape analysis can go from the MemBarStoreStoreNode to the 1537 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1538 // based on the escape status of the AllocateNode. 1539 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1540 } // original reexecute is set back here 1541 1542 C->set_has_split_ifs(true); // Has chance for split-if optimization 1543 if (!stopped()) { 1544 set_result(newcopy); 1545 } 1546 clear_upper_avx(); 1547 1548 return true; 1549 } 1550 1551 //------------------------inline_string_getCharsU-------------------------- 1552 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin) 1553 bool LibraryCallKit::inline_string_getCharsU() { 1554 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 1555 return false; 1556 } 1557 1558 // Get the arguments. 1559 Node* src = argument(0); 1560 Node* src_begin = argument(1); 1561 Node* src_end = argument(2); // exclusive offset (i < src_end) 1562 Node* dst = argument(3); 1563 Node* dst_begin = argument(4); 1564 1565 // Check for allocation before we add nodes that would confuse 1566 // tightly_coupled_allocation() 1567 AllocateArrayNode* alloc = tightly_coupled_allocation(dst); 1568 1569 // Check if a null path was taken unconditionally. 1570 src = null_check(src); 1571 dst = null_check(dst); 1572 if (stopped()) { 1573 return true; 1574 } 1575 1576 // Get length and convert char[] offset to byte[] offset 1577 Node* length = _gvn.transform(new SubINode(src_end, src_begin)); 1578 src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1))); 1579 1580 // Range checks 1581 generate_string_range_check(src, src_begin, length, true); 1582 generate_string_range_check(dst, dst_begin, length, false); 1583 if (stopped()) { 1584 return true; 1585 } 1586 1587 if (!stopped()) { 1588 // Calculate starting addresses. 1589 Node* src_start = array_element_address(src, src_begin, T_BYTE); 1590 Node* dst_start = array_element_address(dst, dst_begin, T_CHAR); 1591 1592 // Check if array addresses are aligned to HeapWordSize 1593 const TypeInt* tsrc = gvn().type(src_begin)->is_int(); 1594 const TypeInt* tdst = gvn().type(dst_begin)->is_int(); 1595 bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) && 1596 tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0); 1597 1598 // Figure out which arraycopy runtime method to call (disjoint, uninitialized). 1599 const char* copyfunc_name = "arraycopy"; 1600 address copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true); 1601 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 1602 OptoRuntime::fast_arraycopy_Type(), 1603 copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM, 1604 src_start, dst_start, ConvI2X(length) XTOP); 1605 // Do not let reads from the cloned object float above the arraycopy. 1606 if (alloc != nullptr) { 1607 if (alloc->maybe_set_complete(&_gvn)) { 1608 // "You break it, you buy it." 1609 InitializeNode* init = alloc->initialization(); 1610 assert(init->is_complete(), "we just did this"); 1611 init->set_complete_with_arraycopy(); 1612 assert(dst->is_CheckCastPP(), "sanity"); 1613 assert(dst->in(0)->in(0) == init, "dest pinned"); 1614 } 1615 // Do not let stores that initialize this object be reordered with 1616 // a subsequent store that would make this object accessible by 1617 // other threads. 1618 // Record what AllocateNode this StoreStore protects so that 1619 // escape analysis can go from the MemBarStoreStoreNode to the 1620 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 1621 // based on the escape status of the AllocateNode. 1622 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 1623 } else { 1624 insert_mem_bar(Op_MemBarCPUOrder); 1625 } 1626 } 1627 1628 C->set_has_split_ifs(true); // Has chance for split-if optimization 1629 return true; 1630 } 1631 1632 //----------------------inline_string_char_access---------------------------- 1633 // Store/Load char to/from byte[] array. 1634 // static void StringUTF16.putChar(byte[] val, int index, int c) 1635 // static char StringUTF16.getChar(byte[] val, int index) 1636 bool LibraryCallKit::inline_string_char_access(bool is_store) { 1637 Node* value = argument(0); 1638 Node* index = argument(1); 1639 Node* ch = is_store ? argument(2) : nullptr; 1640 1641 // This intrinsic accesses byte[] array as char[] array. Computing the offsets 1642 // correctly requires matched array shapes. 1643 assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE), 1644 "sanity: byte[] and char[] bases agree"); 1645 assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2, 1646 "sanity: byte[] and char[] scales agree"); 1647 1648 // Bail when getChar over constants is requested: constant folding would 1649 // reject folding mismatched char access over byte[]. A normal inlining for getChar 1650 // Java method would constant fold nicely instead. 1651 if (!is_store && value->is_Con() && index->is_Con()) { 1652 return false; 1653 } 1654 1655 // Save state and restore on bailout 1656 uint old_sp = sp(); 1657 SafePointNode* old_map = clone_map(); 1658 1659 value = must_be_not_null(value, true); 1660 1661 Node* adr = array_element_address(value, index, T_CHAR); 1662 if (adr->is_top()) { 1663 set_map(old_map); 1664 set_sp(old_sp); 1665 return false; 1666 } 1667 destruct_map_clone(old_map); 1668 if (is_store) { 1669 access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED); 1670 } else { 1671 ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD); 1672 set_result(ch); 1673 } 1674 return true; 1675 } 1676 1677 //--------------------------round_double_node-------------------------------- 1678 // Round a double node if necessary. 1679 Node* LibraryCallKit::round_double_node(Node* n) { 1680 if (Matcher::strict_fp_requires_explicit_rounding) { 1681 #ifdef IA32 1682 if (UseSSE < 2) { 1683 n = _gvn.transform(new RoundDoubleNode(nullptr, n)); 1684 } 1685 #else 1686 Unimplemented(); 1687 #endif // IA32 1688 } 1689 return n; 1690 } 1691 1692 //------------------------------inline_math----------------------------------- 1693 // public static double Math.abs(double) 1694 // public static double Math.sqrt(double) 1695 // public static double Math.log(double) 1696 // public static double Math.log10(double) 1697 // public static double Math.round(double) 1698 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) { 1699 Node* arg = round_double_node(argument(0)); 1700 Node* n = nullptr; 1701 switch (id) { 1702 case vmIntrinsics::_dabs: n = new AbsDNode( arg); break; 1703 case vmIntrinsics::_dsqrt: 1704 case vmIntrinsics::_dsqrt_strict: 1705 n = new SqrtDNode(C, control(), arg); break; 1706 case vmIntrinsics::_ceil: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break; 1707 case vmIntrinsics::_floor: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break; 1708 case vmIntrinsics::_rint: n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break; 1709 case vmIntrinsics::_roundD: n = new RoundDNode(arg); break; 1710 case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, round_double_node(argument(2))); break; 1711 case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break; 1712 default: fatal_unexpected_iid(id); break; 1713 } 1714 set_result(_gvn.transform(n)); 1715 return true; 1716 } 1717 1718 //------------------------------inline_math----------------------------------- 1719 // public static float Math.abs(float) 1720 // public static int Math.abs(int) 1721 // public static long Math.abs(long) 1722 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) { 1723 Node* arg = argument(0); 1724 Node* n = nullptr; 1725 switch (id) { 1726 case vmIntrinsics::_fabs: n = new AbsFNode( arg); break; 1727 case vmIntrinsics::_iabs: n = new AbsINode( arg); break; 1728 case vmIntrinsics::_labs: n = new AbsLNode( arg); break; 1729 case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break; 1730 case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break; 1731 case vmIntrinsics::_roundF: n = new RoundFNode(arg); break; 1732 default: fatal_unexpected_iid(id); break; 1733 } 1734 set_result(_gvn.transform(n)); 1735 return true; 1736 } 1737 1738 //------------------------------runtime_math----------------------------- 1739 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) { 1740 assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(), 1741 "must be (DD)D or (D)D type"); 1742 1743 // Inputs 1744 Node* a = round_double_node(argument(0)); 1745 Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : nullptr; 1746 1747 const TypePtr* no_memory_effects = nullptr; 1748 Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName, 1749 no_memory_effects, 1750 a, top(), b, b ? top() : nullptr); 1751 Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1752 #ifdef ASSERT 1753 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1754 assert(value_top == top(), "second value must be top"); 1755 #endif 1756 1757 set_result(value); 1758 return true; 1759 } 1760 1761 //------------------------------inline_math_pow----------------------------- 1762 bool LibraryCallKit::inline_math_pow() { 1763 Node* exp = round_double_node(argument(2)); 1764 const TypeD* d = _gvn.type(exp)->isa_double_constant(); 1765 if (d != nullptr) { 1766 if (d->getd() == 2.0) { 1767 // Special case: pow(x, 2.0) => x * x 1768 Node* base = round_double_node(argument(0)); 1769 set_result(_gvn.transform(new MulDNode(base, base))); 1770 return true; 1771 } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) { 1772 // Special case: pow(x, 0.5) => sqrt(x) 1773 Node* base = round_double_node(argument(0)); 1774 Node* zero = _gvn.zerocon(T_DOUBLE); 1775 1776 RegionNode* region = new RegionNode(3); 1777 Node* phi = new PhiNode(region, Type::DOUBLE); 1778 1779 Node* cmp = _gvn.transform(new CmpDNode(base, zero)); 1780 // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0. 1781 // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0). 1782 // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0. 1783 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le)); 1784 1785 Node* if_pow = generate_slow_guard(test, nullptr); 1786 Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base)); 1787 phi->init_req(1, value_sqrt); 1788 region->init_req(1, control()); 1789 1790 if (if_pow != nullptr) { 1791 set_control(if_pow); 1792 address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() : 1793 CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 1794 const TypePtr* no_memory_effects = nullptr; 1795 Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW", 1796 no_memory_effects, base, top(), exp, top()); 1797 Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0)); 1798 #ifdef ASSERT 1799 Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1)); 1800 assert(value_top == top(), "second value must be top"); 1801 #endif 1802 phi->init_req(2, value_pow); 1803 region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control))); 1804 } 1805 1806 C->set_has_split_ifs(true); // Has chance for split-if optimization 1807 set_control(_gvn.transform(region)); 1808 record_for_igvn(region); 1809 set_result(_gvn.transform(phi)); 1810 1811 return true; 1812 } 1813 } 1814 1815 return StubRoutines::dpow() != nullptr ? 1816 runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") : 1817 runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW"); 1818 } 1819 1820 //------------------------------inline_math_native----------------------------- 1821 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) { 1822 switch (id) { 1823 case vmIntrinsics::_dsin: 1824 return StubRoutines::dsin() != nullptr ? 1825 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") : 1826 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin), "SIN"); 1827 case vmIntrinsics::_dcos: 1828 return StubRoutines::dcos() != nullptr ? 1829 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") : 1830 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos), "COS"); 1831 case vmIntrinsics::_dtan: 1832 return StubRoutines::dtan() != nullptr ? 1833 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") : 1834 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN"); 1835 case vmIntrinsics::_dexp: 1836 return StubRoutines::dexp() != nullptr ? 1837 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(), "dexp") : 1838 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP"); 1839 case vmIntrinsics::_dlog: 1840 return StubRoutines::dlog() != nullptr ? 1841 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") : 1842 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog), "LOG"); 1843 case vmIntrinsics::_dlog10: 1844 return StubRoutines::dlog10() != nullptr ? 1845 runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") : 1846 runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10"); 1847 1848 case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false; 1849 case vmIntrinsics::_ceil: 1850 case vmIntrinsics::_floor: 1851 case vmIntrinsics::_rint: return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false; 1852 1853 case vmIntrinsics::_dsqrt: 1854 case vmIntrinsics::_dsqrt_strict: 1855 return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false; 1856 case vmIntrinsics::_dabs: return Matcher::has_match_rule(Op_AbsD) ? inline_double_math(id) : false; 1857 case vmIntrinsics::_fabs: return Matcher::match_rule_supported(Op_AbsF) ? inline_math(id) : false; 1858 case vmIntrinsics::_iabs: return Matcher::match_rule_supported(Op_AbsI) ? inline_math(id) : false; 1859 case vmIntrinsics::_labs: return Matcher::match_rule_supported(Op_AbsL) ? inline_math(id) : false; 1860 1861 case vmIntrinsics::_dpow: return inline_math_pow(); 1862 case vmIntrinsics::_dcopySign: return inline_double_math(id); 1863 case vmIntrinsics::_fcopySign: return inline_math(id); 1864 case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false; 1865 case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false; 1866 case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false; 1867 1868 // These intrinsics are not yet correctly implemented 1869 case vmIntrinsics::_datan2: 1870 return false; 1871 1872 default: 1873 fatal_unexpected_iid(id); 1874 return false; 1875 } 1876 } 1877 1878 //----------------------------inline_notify-----------------------------------* 1879 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) { 1880 const TypeFunc* ftype = OptoRuntime::monitor_notify_Type(); 1881 address func; 1882 if (id == vmIntrinsics::_notify) { 1883 func = OptoRuntime::monitor_notify_Java(); 1884 } else { 1885 func = OptoRuntime::monitor_notifyAll_Java(); 1886 } 1887 Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0)); 1888 make_slow_call_ex(call, env()->Throwable_klass(), false); 1889 return true; 1890 } 1891 1892 1893 //----------------------------inline_min_max----------------------------------- 1894 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) { 1895 set_result(generate_min_max(id, argument(0), argument(1))); 1896 return true; 1897 } 1898 1899 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) { 1900 Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) ); 1901 IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN); 1902 Node* fast_path = _gvn.transform( new IfFalseNode(check)); 1903 Node* slow_path = _gvn.transform( new IfTrueNode(check) ); 1904 1905 { 1906 PreserveJVMState pjvms(this); 1907 PreserveReexecuteState preexecs(this); 1908 jvms()->set_should_reexecute(true); 1909 1910 set_control(slow_path); 1911 set_i_o(i_o()); 1912 1913 uncommon_trap(Deoptimization::Reason_intrinsic, 1914 Deoptimization::Action_none); 1915 } 1916 1917 set_control(fast_path); 1918 set_result(math); 1919 } 1920 1921 template <typename OverflowOp> 1922 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) { 1923 typedef typename OverflowOp::MathOp MathOp; 1924 1925 MathOp* mathOp = new MathOp(arg1, arg2); 1926 Node* operation = _gvn.transform( mathOp ); 1927 Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) ); 1928 inline_math_mathExact(operation, ofcheck); 1929 return true; 1930 } 1931 1932 bool LibraryCallKit::inline_math_addExactI(bool is_increment) { 1933 return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1)); 1934 } 1935 1936 bool LibraryCallKit::inline_math_addExactL(bool is_increment) { 1937 return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2)); 1938 } 1939 1940 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) { 1941 return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1)); 1942 } 1943 1944 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) { 1945 return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2)); 1946 } 1947 1948 bool LibraryCallKit::inline_math_negateExactI() { 1949 return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0)); 1950 } 1951 1952 bool LibraryCallKit::inline_math_negateExactL() { 1953 return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0)); 1954 } 1955 1956 bool LibraryCallKit::inline_math_multiplyExactI() { 1957 return inline_math_overflow<OverflowMulINode>(argument(0), argument(1)); 1958 } 1959 1960 bool LibraryCallKit::inline_math_multiplyExactL() { 1961 return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2)); 1962 } 1963 1964 bool LibraryCallKit::inline_math_multiplyHigh() { 1965 set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2)))); 1966 return true; 1967 } 1968 1969 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() { 1970 set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2)))); 1971 return true; 1972 } 1973 1974 Node* 1975 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) { 1976 Node* result_val = nullptr; 1977 switch (id) { 1978 case vmIntrinsics::_min: 1979 case vmIntrinsics::_min_strict: 1980 result_val = _gvn.transform(new MinINode(x0, y0)); 1981 break; 1982 case vmIntrinsics::_max: 1983 case vmIntrinsics::_max_strict: 1984 result_val = _gvn.transform(new MaxINode(x0, y0)); 1985 break; 1986 default: 1987 fatal_unexpected_iid(id); 1988 break; 1989 } 1990 return result_val; 1991 } 1992 1993 inline int 1994 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) { 1995 const TypePtr* base_type = TypePtr::NULL_PTR; 1996 if (base != nullptr) base_type = _gvn.type(base)->isa_ptr(); 1997 if (base_type == nullptr) { 1998 // Unknown type. 1999 return Type::AnyPtr; 2000 } else if (base_type == TypePtr::NULL_PTR) { 2001 // Since this is a null+long form, we have to switch to a rawptr. 2002 base = _gvn.transform(new CastX2PNode(offset)); 2003 offset = MakeConX(0); 2004 return Type::RawPtr; 2005 } else if (base_type->base() == Type::RawPtr) { 2006 return Type::RawPtr; 2007 } else if (base_type->isa_oopptr()) { 2008 // Base is never null => always a heap address. 2009 if (!TypePtr::NULL_PTR->higher_equal(base_type)) { 2010 return Type::OopPtr; 2011 } 2012 // Offset is small => always a heap address. 2013 const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t(); 2014 if (offset_type != nullptr && 2015 base_type->offset() == 0 && // (should always be?) 2016 offset_type->_lo >= 0 && 2017 !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) { 2018 return Type::OopPtr; 2019 } else if (type == T_OBJECT) { 2020 // off heap access to an oop doesn't make any sense. Has to be on 2021 // heap. 2022 return Type::OopPtr; 2023 } 2024 // Otherwise, it might either be oop+off or null+addr. 2025 return Type::AnyPtr; 2026 } else { 2027 // No information: 2028 return Type::AnyPtr; 2029 } 2030 } 2031 2032 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) { 2033 Node* uncasted_base = base; 2034 int kind = classify_unsafe_addr(uncasted_base, offset, type); 2035 if (kind == Type::RawPtr) { 2036 return basic_plus_adr(top(), uncasted_base, offset); 2037 } else if (kind == Type::AnyPtr) { 2038 assert(base == uncasted_base, "unexpected base change"); 2039 if (can_cast) { 2040 if (!_gvn.type(base)->speculative_maybe_null() && 2041 !too_many_traps(Deoptimization::Reason_speculate_null_check)) { 2042 // According to profiling, this access is always on 2043 // heap. Casting the base to not null and thus avoiding membars 2044 // around the access should allow better optimizations 2045 Node* null_ctl = top(); 2046 base = null_check_oop(base, &null_ctl, true, true, true); 2047 assert(null_ctl->is_top(), "no null control here"); 2048 return basic_plus_adr(base, offset); 2049 } else if (_gvn.type(base)->speculative_always_null() && 2050 !too_many_traps(Deoptimization::Reason_speculate_null_assert)) { 2051 // According to profiling, this access is always off 2052 // heap. 2053 base = null_assert(base); 2054 Node* raw_base = _gvn.transform(new CastX2PNode(offset)); 2055 offset = MakeConX(0); 2056 return basic_plus_adr(top(), raw_base, offset); 2057 } 2058 } 2059 // We don't know if it's an on heap or off heap access. Fall back 2060 // to raw memory access. 2061 Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM)); 2062 return basic_plus_adr(top(), raw, offset); 2063 } else { 2064 assert(base == uncasted_base, "unexpected base change"); 2065 // We know it's an on heap access so base can't be null 2066 if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) { 2067 base = must_be_not_null(base, true); 2068 } 2069 return basic_plus_adr(base, offset); 2070 } 2071 } 2072 2073 //--------------------------inline_number_methods----------------------------- 2074 // inline int Integer.numberOfLeadingZeros(int) 2075 // inline int Long.numberOfLeadingZeros(long) 2076 // 2077 // inline int Integer.numberOfTrailingZeros(int) 2078 // inline int Long.numberOfTrailingZeros(long) 2079 // 2080 // inline int Integer.bitCount(int) 2081 // inline int Long.bitCount(long) 2082 // 2083 // inline char Character.reverseBytes(char) 2084 // inline short Short.reverseBytes(short) 2085 // inline int Integer.reverseBytes(int) 2086 // inline long Long.reverseBytes(long) 2087 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) { 2088 Node* arg = argument(0); 2089 Node* n = nullptr; 2090 switch (id) { 2091 case vmIntrinsics::_numberOfLeadingZeros_i: n = new CountLeadingZerosINode( arg); break; 2092 case vmIntrinsics::_numberOfLeadingZeros_l: n = new CountLeadingZerosLNode( arg); break; 2093 case vmIntrinsics::_numberOfTrailingZeros_i: n = new CountTrailingZerosINode(arg); break; 2094 case vmIntrinsics::_numberOfTrailingZeros_l: n = new CountTrailingZerosLNode(arg); break; 2095 case vmIntrinsics::_bitCount_i: n = new PopCountINode( arg); break; 2096 case vmIntrinsics::_bitCount_l: n = new PopCountLNode( arg); break; 2097 case vmIntrinsics::_reverseBytes_c: n = new ReverseBytesUSNode(0, arg); break; 2098 case vmIntrinsics::_reverseBytes_s: n = new ReverseBytesSNode( 0, arg); break; 2099 case vmIntrinsics::_reverseBytes_i: n = new ReverseBytesINode( 0, arg); break; 2100 case vmIntrinsics::_reverseBytes_l: n = new ReverseBytesLNode( 0, arg); break; 2101 case vmIntrinsics::_reverse_i: n = new ReverseINode(0, arg); break; 2102 case vmIntrinsics::_reverse_l: n = new ReverseLNode(0, arg); break; 2103 default: fatal_unexpected_iid(id); break; 2104 } 2105 set_result(_gvn.transform(n)); 2106 return true; 2107 } 2108 2109 //--------------------------inline_bitshuffle_methods----------------------------- 2110 // inline int Integer.compress(int, int) 2111 // inline int Integer.expand(int, int) 2112 // inline long Long.compress(long, long) 2113 // inline long Long.expand(long, long) 2114 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) { 2115 Node* n = nullptr; 2116 switch (id) { 2117 case vmIntrinsics::_compress_i: n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break; 2118 case vmIntrinsics::_expand_i: n = new ExpandBitsNode(argument(0), argument(1), TypeInt::INT); break; 2119 case vmIntrinsics::_compress_l: n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2120 case vmIntrinsics::_expand_l: n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break; 2121 default: fatal_unexpected_iid(id); break; 2122 } 2123 set_result(_gvn.transform(n)); 2124 return true; 2125 } 2126 2127 //--------------------------inline_number_methods----------------------------- 2128 // inline int Integer.compareUnsigned(int, int) 2129 // inline int Long.compareUnsigned(long, long) 2130 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) { 2131 Node* arg1 = argument(0); 2132 Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1); 2133 Node* n = nullptr; 2134 switch (id) { 2135 case vmIntrinsics::_compareUnsigned_i: n = new CmpU3Node(arg1, arg2); break; 2136 case vmIntrinsics::_compareUnsigned_l: n = new CmpUL3Node(arg1, arg2); break; 2137 default: fatal_unexpected_iid(id); break; 2138 } 2139 set_result(_gvn.transform(n)); 2140 return true; 2141 } 2142 2143 //--------------------------inline_unsigned_divmod_methods----------------------------- 2144 // inline int Integer.divideUnsigned(int, int) 2145 // inline int Integer.remainderUnsigned(int, int) 2146 // inline long Long.divideUnsigned(long, long) 2147 // inline long Long.remainderUnsigned(long, long) 2148 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) { 2149 Node* n = nullptr; 2150 switch (id) { 2151 case vmIntrinsics::_divideUnsigned_i: { 2152 zero_check_int(argument(1)); 2153 // Compile-time detect of null-exception 2154 if (stopped()) { 2155 return true; // keep the graph constructed so far 2156 } 2157 n = new UDivINode(control(), argument(0), argument(1)); 2158 break; 2159 } 2160 case vmIntrinsics::_divideUnsigned_l: { 2161 zero_check_long(argument(2)); 2162 // Compile-time detect of null-exception 2163 if (stopped()) { 2164 return true; // keep the graph constructed so far 2165 } 2166 n = new UDivLNode(control(), argument(0), argument(2)); 2167 break; 2168 } 2169 case vmIntrinsics::_remainderUnsigned_i: { 2170 zero_check_int(argument(1)); 2171 // Compile-time detect of null-exception 2172 if (stopped()) { 2173 return true; // keep the graph constructed so far 2174 } 2175 n = new UModINode(control(), argument(0), argument(1)); 2176 break; 2177 } 2178 case vmIntrinsics::_remainderUnsigned_l: { 2179 zero_check_long(argument(2)); 2180 // Compile-time detect of null-exception 2181 if (stopped()) { 2182 return true; // keep the graph constructed so far 2183 } 2184 n = new UModLNode(control(), argument(0), argument(2)); 2185 break; 2186 } 2187 default: fatal_unexpected_iid(id); break; 2188 } 2189 set_result(_gvn.transform(n)); 2190 return true; 2191 } 2192 2193 //----------------------------inline_unsafe_access---------------------------- 2194 2195 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) { 2196 // Attempt to infer a sharper value type from the offset and base type. 2197 ciKlass* sharpened_klass = nullptr; 2198 2199 // See if it is an instance field, with an object type. 2200 if (alias_type->field() != nullptr) { 2201 if (alias_type->field()->type()->is_klass()) { 2202 sharpened_klass = alias_type->field()->type()->as_klass(); 2203 } 2204 } 2205 2206 const TypeOopPtr* result = nullptr; 2207 // See if it is a narrow oop array. 2208 if (adr_type->isa_aryptr()) { 2209 if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) { 2210 const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr(); 2211 if (elem_type != nullptr && elem_type->is_loaded()) { 2212 // Sharpen the value type. 2213 result = elem_type; 2214 } 2215 } 2216 } 2217 2218 // The sharpened class might be unloaded if there is no class loader 2219 // contraint in place. 2220 if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) { 2221 // Sharpen the value type. 2222 result = TypeOopPtr::make_from_klass(sharpened_klass); 2223 } 2224 if (result != nullptr) { 2225 #ifndef PRODUCT 2226 if (C->print_intrinsics() || C->print_inlining()) { 2227 tty->print(" from base type: "); adr_type->dump(); tty->cr(); 2228 tty->print(" sharpened value: "); result->dump(); tty->cr(); 2229 } 2230 #endif 2231 } 2232 return result; 2233 } 2234 2235 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) { 2236 switch (kind) { 2237 case Relaxed: 2238 return MO_UNORDERED; 2239 case Opaque: 2240 return MO_RELAXED; 2241 case Acquire: 2242 return MO_ACQUIRE; 2243 case Release: 2244 return MO_RELEASE; 2245 case Volatile: 2246 return MO_SEQ_CST; 2247 default: 2248 ShouldNotReachHere(); 2249 return 0; 2250 } 2251 } 2252 2253 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) { 2254 if (callee()->is_static()) return false; // caller must have the capability! 2255 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2256 guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads"); 2257 guarantee( is_store || kind != Release, "Release accesses can be produced only for stores"); 2258 assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type"); 2259 2260 if (is_reference_type(type)) { 2261 decorators |= ON_UNKNOWN_OOP_REF; 2262 } 2263 2264 if (unaligned) { 2265 decorators |= C2_UNALIGNED; 2266 } 2267 2268 #ifndef PRODUCT 2269 { 2270 ResourceMark rm; 2271 // Check the signatures. 2272 ciSignature* sig = callee()->signature(); 2273 #ifdef ASSERT 2274 if (!is_store) { 2275 // Object getReference(Object base, int/long offset), etc. 2276 BasicType rtype = sig->return_type()->basic_type(); 2277 assert(rtype == type, "getter must return the expected value"); 2278 assert(sig->count() == 2, "oop getter has 2 arguments"); 2279 assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object"); 2280 assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct"); 2281 } else { 2282 // void putReference(Object base, int/long offset, Object x), etc. 2283 assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value"); 2284 assert(sig->count() == 3, "oop putter has 3 arguments"); 2285 assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object"); 2286 assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct"); 2287 BasicType vtype = sig->type_at(sig->count()-1)->basic_type(); 2288 assert(vtype == type, "putter must accept the expected value"); 2289 } 2290 #endif // ASSERT 2291 } 2292 #endif //PRODUCT 2293 2294 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2295 2296 Node* receiver = argument(0); // type: oop 2297 2298 // Build address expression. 2299 Node* heap_base_oop = top(); 2300 2301 // The base is either a Java object or a value produced by Unsafe.staticFieldBase 2302 Node* base = argument(1); // type: oop 2303 // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset 2304 Node* offset = argument(2); // type: long 2305 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2306 // to be plain byte offsets, which are also the same as those accepted 2307 // by oopDesc::field_addr. 2308 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 2309 "fieldOffset must be byte-scaled"); 2310 // 32-bit machines ignore the high half! 2311 offset = ConvL2X(offset); 2312 2313 // Save state and restore on bailout 2314 uint old_sp = sp(); 2315 SafePointNode* old_map = clone_map(); 2316 2317 Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed); 2318 2319 if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) { 2320 if (type != T_OBJECT) { 2321 decorators |= IN_NATIVE; // off-heap primitive access 2322 } else { 2323 set_map(old_map); 2324 set_sp(old_sp); 2325 return false; // off-heap oop accesses are not supported 2326 } 2327 } else { 2328 heap_base_oop = base; // on-heap or mixed access 2329 } 2330 2331 // Can base be null? Otherwise, always on-heap access. 2332 bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base)); 2333 2334 if (!can_access_non_heap) { 2335 decorators |= IN_HEAP; 2336 } 2337 2338 Node* val = is_store ? argument(4) : nullptr; 2339 2340 const TypePtr* adr_type = _gvn.type(adr)->isa_ptr(); 2341 if (adr_type == TypePtr::NULL_PTR) { 2342 set_map(old_map); 2343 set_sp(old_sp); 2344 return false; // off-heap access with zero address 2345 } 2346 2347 // Try to categorize the address. 2348 Compile::AliasType* alias_type = C->alias_type(adr_type); 2349 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2350 2351 if (alias_type->adr_type() == TypeInstPtr::KLASS || 2352 alias_type->adr_type() == TypeAryPtr::RANGE) { 2353 set_map(old_map); 2354 set_sp(old_sp); 2355 return false; // not supported 2356 } 2357 2358 bool mismatched = false; 2359 BasicType bt = alias_type->basic_type(); 2360 if (bt != T_ILLEGAL) { 2361 assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access"); 2362 if (bt == T_BYTE && adr_type->isa_aryptr()) { 2363 // Alias type doesn't differentiate between byte[] and boolean[]). 2364 // Use address type to get the element type. 2365 bt = adr_type->is_aryptr()->elem()->array_element_basic_type(); 2366 } 2367 if (is_reference_type(bt, true)) { 2368 // accessing an array field with getReference is not a mismatch 2369 bt = T_OBJECT; 2370 } 2371 if ((bt == T_OBJECT) != (type == T_OBJECT)) { 2372 // Don't intrinsify mismatched object accesses 2373 set_map(old_map); 2374 set_sp(old_sp); 2375 return false; 2376 } 2377 mismatched = (bt != type); 2378 } else if (alias_type->adr_type()->isa_oopptr()) { 2379 mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched 2380 } 2381 2382 destruct_map_clone(old_map); 2383 assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched"); 2384 2385 if (mismatched) { 2386 decorators |= C2_MISMATCHED; 2387 } 2388 2389 // First guess at the value type. 2390 const Type *value_type = Type::get_const_basic_type(type); 2391 2392 // Figure out the memory ordering. 2393 decorators |= mo_decorator_for_access_kind(kind); 2394 2395 if (!is_store && type == T_OBJECT) { 2396 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2397 if (tjp != nullptr) { 2398 value_type = tjp; 2399 } 2400 } 2401 2402 receiver = null_check(receiver); 2403 if (stopped()) { 2404 return true; 2405 } 2406 // Heap pointers get a null-check from the interpreter, 2407 // as a courtesy. However, this is not guaranteed by Unsafe, 2408 // and it is not possible to fully distinguish unintended nulls 2409 // from intended ones in this API. 2410 2411 if (!is_store) { 2412 Node* p = nullptr; 2413 // Try to constant fold a load from a constant field 2414 ciField* field = alias_type->field(); 2415 if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) { 2416 // final or stable field 2417 p = make_constant_from_field(field, heap_base_oop); 2418 } 2419 2420 if (p == nullptr) { // Could not constant fold the load 2421 p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators); 2422 // Normalize the value returned by getBoolean in the following cases 2423 if (type == T_BOOLEAN && 2424 (mismatched || 2425 heap_base_oop == top() || // - heap_base_oop is null or 2426 (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null 2427 // and the unsafe access is made to large offset 2428 // (i.e., larger than the maximum offset necessary for any 2429 // field access) 2430 ) { 2431 IdealKit ideal = IdealKit(this); 2432 #define __ ideal. 2433 IdealVariable normalized_result(ideal); 2434 __ declarations_done(); 2435 __ set(normalized_result, p); 2436 __ if_then(p, BoolTest::ne, ideal.ConI(0)); 2437 __ set(normalized_result, ideal.ConI(1)); 2438 ideal.end_if(); 2439 final_sync(ideal); 2440 p = __ value(normalized_result); 2441 #undef __ 2442 } 2443 } 2444 if (type == T_ADDRESS) { 2445 p = gvn().transform(new CastP2XNode(nullptr, p)); 2446 p = ConvX2UL(p); 2447 } 2448 // The load node has the control of the preceding MemBarCPUOrder. All 2449 // following nodes will have the control of the MemBarCPUOrder inserted at 2450 // the end of this method. So, pushing the load onto the stack at a later 2451 // point is fine. 2452 set_result(p); 2453 } else { 2454 if (bt == T_ADDRESS) { 2455 // Repackage the long as a pointer. 2456 val = ConvL2X(val); 2457 val = gvn().transform(new CastX2PNode(val)); 2458 } 2459 access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators); 2460 } 2461 2462 return true; 2463 } 2464 2465 //----------------------------inline_unsafe_load_store---------------------------- 2466 // This method serves a couple of different customers (depending on LoadStoreKind): 2467 // 2468 // LS_cmp_swap: 2469 // 2470 // boolean compareAndSetReference(Object o, long offset, Object expected, Object x); 2471 // boolean compareAndSetInt( Object o, long offset, int expected, int x); 2472 // boolean compareAndSetLong( Object o, long offset, long expected, long x); 2473 // 2474 // LS_cmp_swap_weak: 2475 // 2476 // boolean weakCompareAndSetReference( Object o, long offset, Object expected, Object x); 2477 // boolean weakCompareAndSetReferencePlain( Object o, long offset, Object expected, Object x); 2478 // boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x); 2479 // boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x); 2480 // 2481 // boolean weakCompareAndSetInt( Object o, long offset, int expected, int x); 2482 // boolean weakCompareAndSetIntPlain( Object o, long offset, int expected, int x); 2483 // boolean weakCompareAndSetIntAcquire( Object o, long offset, int expected, int x); 2484 // boolean weakCompareAndSetIntRelease( Object o, long offset, int expected, int x); 2485 // 2486 // boolean weakCompareAndSetLong( Object o, long offset, long expected, long x); 2487 // boolean weakCompareAndSetLongPlain( Object o, long offset, long expected, long x); 2488 // boolean weakCompareAndSetLongAcquire( Object o, long offset, long expected, long x); 2489 // boolean weakCompareAndSetLongRelease( Object o, long offset, long expected, long x); 2490 // 2491 // LS_cmp_exchange: 2492 // 2493 // Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x); 2494 // Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x); 2495 // Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x); 2496 // 2497 // Object compareAndExchangeIntVolatile( Object o, long offset, Object expected, Object x); 2498 // Object compareAndExchangeIntAcquire( Object o, long offset, Object expected, Object x); 2499 // Object compareAndExchangeIntRelease( Object o, long offset, Object expected, Object x); 2500 // 2501 // Object compareAndExchangeLongVolatile( Object o, long offset, Object expected, Object x); 2502 // Object compareAndExchangeLongAcquire( Object o, long offset, Object expected, Object x); 2503 // Object compareAndExchangeLongRelease( Object o, long offset, Object expected, Object x); 2504 // 2505 // LS_get_add: 2506 // 2507 // int getAndAddInt( Object o, long offset, int delta) 2508 // long getAndAddLong(Object o, long offset, long delta) 2509 // 2510 // LS_get_set: 2511 // 2512 // int getAndSet(Object o, long offset, int newValue) 2513 // long getAndSet(Object o, long offset, long newValue) 2514 // Object getAndSet(Object o, long offset, Object newValue) 2515 // 2516 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) { 2517 // This basic scheme here is the same as inline_unsafe_access, but 2518 // differs in enough details that combining them would make the code 2519 // overly confusing. (This is a true fact! I originally combined 2520 // them, but even I was confused by it!) As much code/comments as 2521 // possible are retained from inline_unsafe_access though to make 2522 // the correspondences clearer. - dl 2523 2524 if (callee()->is_static()) return false; // caller must have the capability! 2525 2526 DecoratorSet decorators = C2_UNSAFE_ACCESS; 2527 decorators |= mo_decorator_for_access_kind(access_kind); 2528 2529 #ifndef PRODUCT 2530 BasicType rtype; 2531 { 2532 ResourceMark rm; 2533 // Check the signatures. 2534 ciSignature* sig = callee()->signature(); 2535 rtype = sig->return_type()->basic_type(); 2536 switch(kind) { 2537 case LS_get_add: 2538 case LS_get_set: { 2539 // Check the signatures. 2540 #ifdef ASSERT 2541 assert(rtype == type, "get and set must return the expected type"); 2542 assert(sig->count() == 3, "get and set has 3 arguments"); 2543 assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object"); 2544 assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long"); 2545 assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta"); 2546 assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation"); 2547 #endif // ASSERT 2548 break; 2549 } 2550 case LS_cmp_swap: 2551 case LS_cmp_swap_weak: { 2552 // Check the signatures. 2553 #ifdef ASSERT 2554 assert(rtype == T_BOOLEAN, "CAS must return boolean"); 2555 assert(sig->count() == 4, "CAS has 4 arguments"); 2556 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2557 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2558 #endif // ASSERT 2559 break; 2560 } 2561 case LS_cmp_exchange: { 2562 // Check the signatures. 2563 #ifdef ASSERT 2564 assert(rtype == type, "CAS must return the expected type"); 2565 assert(sig->count() == 4, "CAS has 4 arguments"); 2566 assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object"); 2567 assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long"); 2568 #endif // ASSERT 2569 break; 2570 } 2571 default: 2572 ShouldNotReachHere(); 2573 } 2574 } 2575 #endif //PRODUCT 2576 2577 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 2578 2579 // Get arguments: 2580 Node* receiver = nullptr; 2581 Node* base = nullptr; 2582 Node* offset = nullptr; 2583 Node* oldval = nullptr; 2584 Node* newval = nullptr; 2585 switch(kind) { 2586 case LS_cmp_swap: 2587 case LS_cmp_swap_weak: 2588 case LS_cmp_exchange: { 2589 const bool two_slot_type = type2size[type] == 2; 2590 receiver = argument(0); // type: oop 2591 base = argument(1); // type: oop 2592 offset = argument(2); // type: long 2593 oldval = argument(4); // type: oop, int, or long 2594 newval = argument(two_slot_type ? 6 : 5); // type: oop, int, or long 2595 break; 2596 } 2597 case LS_get_add: 2598 case LS_get_set: { 2599 receiver = argument(0); // type: oop 2600 base = argument(1); // type: oop 2601 offset = argument(2); // type: long 2602 oldval = nullptr; 2603 newval = argument(4); // type: oop, int, or long 2604 break; 2605 } 2606 default: 2607 ShouldNotReachHere(); 2608 } 2609 2610 // Build field offset expression. 2611 // We currently rely on the cookies produced by Unsafe.xxxFieldOffset 2612 // to be plain byte offsets, which are also the same as those accepted 2613 // by oopDesc::field_addr. 2614 assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled"); 2615 // 32-bit machines ignore the high half of long offsets 2616 offset = ConvL2X(offset); 2617 // Save state and restore on bailout 2618 uint old_sp = sp(); 2619 SafePointNode* old_map = clone_map(); 2620 Node* adr = make_unsafe_address(base, offset,type, false); 2621 const TypePtr *adr_type = _gvn.type(adr)->isa_ptr(); 2622 2623 Compile::AliasType* alias_type = C->alias_type(adr_type); 2624 BasicType bt = alias_type->basic_type(); 2625 if (bt != T_ILLEGAL && 2626 (is_reference_type(bt) != (type == T_OBJECT))) { 2627 // Don't intrinsify mismatched object accesses. 2628 set_map(old_map); 2629 set_sp(old_sp); 2630 return false; 2631 } 2632 2633 destruct_map_clone(old_map); 2634 2635 // For CAS, unlike inline_unsafe_access, there seems no point in 2636 // trying to refine types. Just use the coarse types here. 2637 assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here"); 2638 const Type *value_type = Type::get_const_basic_type(type); 2639 2640 switch (kind) { 2641 case LS_get_set: 2642 case LS_cmp_exchange: { 2643 if (type == T_OBJECT) { 2644 const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type); 2645 if (tjp != nullptr) { 2646 value_type = tjp; 2647 } 2648 } 2649 break; 2650 } 2651 case LS_cmp_swap: 2652 case LS_cmp_swap_weak: 2653 case LS_get_add: 2654 break; 2655 default: 2656 ShouldNotReachHere(); 2657 } 2658 2659 // Null check receiver. 2660 receiver = null_check(receiver); 2661 if (stopped()) { 2662 return true; 2663 } 2664 2665 int alias_idx = C->get_alias_index(adr_type); 2666 2667 if (is_reference_type(type)) { 2668 decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF; 2669 2670 // Transformation of a value which could be null pointer (CastPP #null) 2671 // could be delayed during Parse (for example, in adjust_map_after_if()). 2672 // Execute transformation here to avoid barrier generation in such case. 2673 if (_gvn.type(newval) == TypePtr::NULL_PTR) 2674 newval = _gvn.makecon(TypePtr::NULL_PTR); 2675 2676 if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) { 2677 // Refine the value to a null constant, when it is known to be null 2678 oldval = _gvn.makecon(TypePtr::NULL_PTR); 2679 } 2680 } 2681 2682 Node* result = nullptr; 2683 switch (kind) { 2684 case LS_cmp_exchange: { 2685 result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx, 2686 oldval, newval, value_type, type, decorators); 2687 break; 2688 } 2689 case LS_cmp_swap_weak: 2690 decorators |= C2_WEAK_CMPXCHG; 2691 case LS_cmp_swap: { 2692 result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx, 2693 oldval, newval, value_type, type, decorators); 2694 break; 2695 } 2696 case LS_get_set: { 2697 result = access_atomic_xchg_at(base, adr, adr_type, alias_idx, 2698 newval, value_type, type, decorators); 2699 break; 2700 } 2701 case LS_get_add: { 2702 result = access_atomic_add_at(base, adr, adr_type, alias_idx, 2703 newval, value_type, type, decorators); 2704 break; 2705 } 2706 default: 2707 ShouldNotReachHere(); 2708 } 2709 2710 assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match"); 2711 set_result(result); 2712 return true; 2713 } 2714 2715 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) { 2716 // Regardless of form, don't allow previous ld/st to move down, 2717 // then issue acquire, release, or volatile mem_bar. 2718 insert_mem_bar(Op_MemBarCPUOrder); 2719 switch(id) { 2720 case vmIntrinsics::_loadFence: 2721 insert_mem_bar(Op_LoadFence); 2722 return true; 2723 case vmIntrinsics::_storeFence: 2724 insert_mem_bar(Op_StoreFence); 2725 return true; 2726 case vmIntrinsics::_storeStoreFence: 2727 insert_mem_bar(Op_StoreStoreFence); 2728 return true; 2729 case vmIntrinsics::_fullFence: 2730 insert_mem_bar(Op_MemBarVolatile); 2731 return true; 2732 default: 2733 fatal_unexpected_iid(id); 2734 return false; 2735 } 2736 } 2737 2738 bool LibraryCallKit::inline_onspinwait() { 2739 insert_mem_bar(Op_OnSpinWait); 2740 return true; 2741 } 2742 2743 bool LibraryCallKit::klass_needs_init_guard(Node* kls) { 2744 if (!kls->is_Con()) { 2745 return true; 2746 } 2747 const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr(); 2748 if (klsptr == nullptr) { 2749 return true; 2750 } 2751 ciInstanceKlass* ik = klsptr->instance_klass(); 2752 // don't need a guard for a klass that is already initialized 2753 return !ik->is_initialized(); 2754 } 2755 2756 //----------------------------inline_unsafe_writeback0------------------------- 2757 // public native void Unsafe.writeback0(long address) 2758 bool LibraryCallKit::inline_unsafe_writeback0() { 2759 if (!Matcher::has_match_rule(Op_CacheWB)) { 2760 return false; 2761 } 2762 #ifndef PRODUCT 2763 assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync"); 2764 assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync"); 2765 ciSignature* sig = callee()->signature(); 2766 assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!"); 2767 #endif 2768 null_check_receiver(); // null-check, then ignore 2769 Node *addr = argument(1); 2770 addr = new CastX2PNode(addr); 2771 addr = _gvn.transform(addr); 2772 Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr); 2773 flush = _gvn.transform(flush); 2774 set_memory(flush, TypeRawPtr::BOTTOM); 2775 return true; 2776 } 2777 2778 //----------------------------inline_unsafe_writeback0------------------------- 2779 // public native void Unsafe.writeback0(long address) 2780 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) { 2781 if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) { 2782 return false; 2783 } 2784 if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) { 2785 return false; 2786 } 2787 #ifndef PRODUCT 2788 assert(Matcher::has_match_rule(Op_CacheWB), 2789 (is_pre ? "found match rule for CacheWBPreSync but not CacheWB" 2790 : "found match rule for CacheWBPostSync but not CacheWB")); 2791 2792 #endif 2793 null_check_receiver(); // null-check, then ignore 2794 Node *sync; 2795 if (is_pre) { 2796 sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2797 } else { 2798 sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM)); 2799 } 2800 sync = _gvn.transform(sync); 2801 set_memory(sync, TypeRawPtr::BOTTOM); 2802 return true; 2803 } 2804 2805 //----------------------------inline_unsafe_allocate--------------------------- 2806 // public native Object Unsafe.allocateInstance(Class<?> cls); 2807 bool LibraryCallKit::inline_unsafe_allocate() { 2808 if (callee()->is_static()) return false; // caller must have the capability! 2809 2810 null_check_receiver(); // null-check, then ignore 2811 Node* cls = null_check(argument(1)); 2812 if (stopped()) return true; 2813 2814 Node* kls = load_klass_from_mirror(cls, false, nullptr, 0); 2815 kls = null_check(kls); 2816 if (stopped()) return true; // argument was like int.class 2817 2818 Node* test = nullptr; 2819 if (LibraryCallKit::klass_needs_init_guard(kls)) { 2820 // Note: The argument might still be an illegal value like 2821 // Serializable.class or Object[].class. The runtime will handle it. 2822 // But we must make an explicit check for initialization. 2823 Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset())); 2824 // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler 2825 // can generate code to load it as unsigned byte. 2826 Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered); 2827 Node* bits = intcon(InstanceKlass::fully_initialized); 2828 test = _gvn.transform(new SubINode(inst, bits)); 2829 // The 'test' is non-zero if we need to take a slow path. 2830 } 2831 2832 Node* obj = new_instance(kls, test); 2833 set_result(obj); 2834 return true; 2835 } 2836 2837 //------------------------inline_native_time_funcs-------------- 2838 // inline code for System.currentTimeMillis() and System.nanoTime() 2839 // these have the same type and signature 2840 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) { 2841 const TypeFunc* tf = OptoRuntime::void_long_Type(); 2842 const TypePtr* no_memory_effects = nullptr; 2843 Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects); 2844 Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0)); 2845 #ifdef ASSERT 2846 Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1)); 2847 assert(value_top == top(), "second value must be top"); 2848 #endif 2849 set_result(value); 2850 return true; 2851 } 2852 2853 2854 #if INCLUDE_JVMTI 2855 2856 // When notifications are disabled then just update the VTMS transition bit and return. 2857 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol. 2858 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) { 2859 if (!DoJVMTIVirtualThreadTransitions) { 2860 return true; 2861 } 2862 IdealKit ideal(this); 2863 2864 Node* ONE = ideal.ConI(1); 2865 Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1))); 2866 Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events)); 2867 Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 2868 2869 ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); { 2870 // if notifyJvmti enabled then make a call to the given SharedRuntime function 2871 const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type(); 2872 Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument 2873 2874 sync_kit(ideal); 2875 make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide); 2876 ideal.sync_kit(this); 2877 } ideal.else_(); { 2878 // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object 2879 Node* vt_oop = _gvn.transform(argument(0)); // this argument - VirtualThread oop 2880 Node* thread = ideal.thread(); 2881 Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset())); 2882 Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset()); 2883 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 2884 2885 sync_kit(ideal); 2886 access_store_at(nullptr, jt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2887 access_store_at(nullptr, vt_addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2888 2889 ideal.sync_kit(this); 2890 } ideal.end_if(); 2891 final_sync(ideal); 2892 2893 return true; 2894 } 2895 2896 // Always update the temporary VTMS transition bit. 2897 bool LibraryCallKit::inline_native_notify_jvmti_hide() { 2898 if (!DoJVMTIVirtualThreadTransitions) { 2899 return true; 2900 } 2901 IdealKit ideal(this); 2902 2903 { 2904 // unconditionally update the temporary VTMS transition bit in current JavaThread 2905 Node* thread = ideal.thread(); 2906 Node* hide = _gvn.transform(argument(1)); // hide argument for temporary VTMS transition notification 2907 Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_tmp_VTMS_transition_offset())); 2908 const TypePtr *addr_type = _gvn.type(addr)->isa_ptr(); 2909 2910 sync_kit(ideal); 2911 access_store_at(nullptr, addr, addr_type, hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED); 2912 ideal.sync_kit(this); 2913 } 2914 final_sync(ideal); 2915 2916 return true; 2917 } 2918 2919 #endif // INCLUDE_JVMTI 2920 2921 #ifdef JFR_HAVE_INTRINSICS 2922 2923 /** 2924 * if oop->klass != null 2925 * // normal class 2926 * epoch = _epoch_state ? 2 : 1 2927 * if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch { 2928 * ... // enter slow path when the klass is first recorded or the epoch of JFR shifts 2929 * } 2930 * id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path 2931 * else 2932 * // primitive class 2933 * if oop->array_klass != null 2934 * id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path 2935 * else 2936 * id = LAST_TYPE_ID + 1 // void class path 2937 * if (!signaled) 2938 * signaled = true 2939 */ 2940 bool LibraryCallKit::inline_native_classID() { 2941 Node* cls = argument(0); 2942 2943 IdealKit ideal(this); 2944 #define __ ideal. 2945 IdealVariable result(ideal); __ declarations_done(); 2946 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 2947 basic_plus_adr(cls, java_lang_Class::klass_offset()), 2948 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 2949 2950 2951 __ if_then(kls, BoolTest::ne, null()); { 2952 Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 2953 Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 2954 2955 Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address())); 2956 Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw); 2957 epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch)); 2958 Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT))); 2959 mask = _gvn.transform(new OrLNode(mask, epoch)); 2960 Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask)); 2961 2962 float unlikely = PROB_UNLIKELY(0.999); 2963 __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); { 2964 sync_kit(ideal); 2965 make_runtime_call(RC_LEAF, 2966 OptoRuntime::class_id_load_barrier_Type(), 2967 CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier), 2968 "class id load barrier", 2969 TypePtr::BOTTOM, 2970 kls); 2971 ideal.sync_kit(this); 2972 } __ end_if(); 2973 2974 ideal.set(result, _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)))); 2975 } __ else_(); { 2976 Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), 2977 basic_plus_adr(cls, java_lang_Class::array_klass_offset()), 2978 TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 2979 __ if_then(array_kls, BoolTest::ne, null()); { 2980 Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET)); 2981 Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw); 2982 Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))); 2983 ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1)))); 2984 } __ else_(); { 2985 // void class case 2986 ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1))); 2987 } __ end_if(); 2988 2989 Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address())); 2990 Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire); 2991 __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); { 2992 ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 2993 } __ end_if(); 2994 } __ end_if(); 2995 2996 final_sync(ideal); 2997 set_result(ideal.value(result)); 2998 #undef __ 2999 return true; 3000 } 3001 3002 /* 3003 * The intrinsic is a model of this pseudo-code: 3004 * 3005 * JfrThreadLocal* const tl = Thread::jfr_thread_local() 3006 * jobject h_event_writer = tl->java_event_writer(); 3007 * if (h_event_writer == nullptr) { 3008 * return nullptr; 3009 * } 3010 * oop threadObj = Thread::threadObj(); 3011 * oop vthread = java_lang_Thread::vthread(threadObj); 3012 * traceid tid; 3013 * bool excluded; 3014 * if (vthread != threadObj) { // i.e. current thread is virtual 3015 * tid = java_lang_Thread::tid(vthread); 3016 * u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread); 3017 * excluded = vthread_epoch_raw & excluded_mask; 3018 * if (!excluded) { 3019 * traceid current_epoch = JfrTraceIdEpoch::current_generation(); 3020 * u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3021 * if (vthread_epoch != current_epoch) { 3022 * write_checkpoint(); 3023 * } 3024 * } 3025 * } else { 3026 * tid = java_lang_Thread::tid(threadObj); 3027 * u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj); 3028 * excluded = thread_epoch_raw & excluded_mask; 3029 * } 3030 * oop event_writer = JNIHandles::resolve_non_null(h_event_writer); 3031 * traceid tid_in_event_writer = getField(event_writer, "threadID"); 3032 * if (tid_in_event_writer != tid) { 3033 * setField(event_writer, "threadID", tid); 3034 * setField(event_writer, "excluded", excluded); 3035 * } 3036 * return event_writer 3037 */ 3038 bool LibraryCallKit::inline_native_getEventWriter() { 3039 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3040 3041 // Save input memory and i_o state. 3042 Node* input_memory_state = reset_memory(); 3043 set_all_memory(input_memory_state); 3044 Node* input_io_state = i_o(); 3045 3046 Node* excluded_mask = _gvn.intcon(32768); 3047 Node* epoch_mask = _gvn.intcon(32767); 3048 3049 // TLS 3050 Node* tls_ptr = _gvn.transform(new ThreadLocalNode()); 3051 3052 // Load the address of java event writer jobject handle from the jfr_thread_local structure. 3053 Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR)); 3054 3055 // Load the eventwriter jobject handle. 3056 Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered); 3057 3058 // Null check the jobject handle. 3059 Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null())); 3060 Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne)); 3061 IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN); 3062 3063 // False path, jobj is null. 3064 Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null)); 3065 3066 // True path, jobj is not null. 3067 Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null)); 3068 3069 set_control(jobj_is_not_null); 3070 3071 // Load the threadObj for the CarrierThread. 3072 Node* threadObj = generate_current_thread(tls_ptr); 3073 3074 // Load the vthread. 3075 Node* vthread = generate_virtual_thread(tls_ptr); 3076 3077 // If vthread != threadObj, this is a virtual thread. 3078 Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj)); 3079 Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne)); 3080 IfNode* iff_vthread_not_equal_threadObj = 3081 create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN); 3082 3083 // False branch, fallback to threadObj. 3084 Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj)); 3085 set_control(vthread_equal_threadObj); 3086 3087 // Load the tid field from the vthread object. 3088 Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J"); 3089 3090 // Load the raw epoch value from the threadObj. 3091 Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset()); 3092 Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3093 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3094 3095 // Mask off the excluded information from the epoch. 3096 Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask)); 3097 3098 // True branch, this is a virtual thread. 3099 Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj)); 3100 set_control(vthread_not_equal_threadObj); 3101 3102 // Load the tid field from the vthread object. 3103 Node* vthread_tid = load_field_from_object(vthread, "tid", "J"); 3104 3105 // Load the raw epoch value from the vthread. 3106 Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset()); 3107 Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3108 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3109 3110 // Mask off the excluded information from the epoch. 3111 Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask))); 3112 3113 // Branch on excluded to conditionalize updating the epoch for the virtual thread. 3114 Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask))); 3115 Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne)); 3116 IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN); 3117 3118 // False branch, vthread is excluded, no need to write epoch info. 3119 Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded)); 3120 3121 // True branch, vthread is included, update epoch info. 3122 Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded)); 3123 set_control(included); 3124 3125 // Get epoch value. 3126 Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask))); 3127 3128 // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR. 3129 Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address())); 3130 Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered); 3131 3132 // Compare the epoch in the vthread to the current epoch generation. 3133 Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch)); 3134 Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne)); 3135 IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3136 3137 // False path, epoch is equal, checkpoint information is valid. 3138 Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal)); 3139 3140 // True path, epoch is not equal, write a checkpoint for the vthread. 3141 Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal)); 3142 3143 set_control(epoch_is_not_equal); 3144 3145 // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch. 3146 // The call also updates the native thread local thread id and the vthread with the current epoch. 3147 Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF, 3148 OptoRuntime::jfr_write_checkpoint_Type(), 3149 StubRoutines::jfr_write_checkpoint(), 3150 "write_checkpoint", TypePtr::BOTTOM); 3151 Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control)); 3152 3153 // vthread epoch != current epoch 3154 RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT); 3155 record_for_igvn(epoch_compare_rgn); 3156 PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3157 record_for_igvn(epoch_compare_mem); 3158 PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO); 3159 record_for_igvn(epoch_compare_io); 3160 3161 // Update control and phi nodes. 3162 epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control); 3163 epoch_compare_rgn->init_req(_false_path, epoch_is_equal); 3164 epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3165 epoch_compare_mem->init_req(_false_path, input_memory_state); 3166 epoch_compare_io->init_req(_true_path, i_o()); 3167 epoch_compare_io->init_req(_false_path, input_io_state); 3168 3169 // excluded != true 3170 RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT); 3171 record_for_igvn(exclude_compare_rgn); 3172 PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3173 record_for_igvn(exclude_compare_mem); 3174 PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO); 3175 record_for_igvn(exclude_compare_io); 3176 3177 // Update control and phi nodes. 3178 exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn)); 3179 exclude_compare_rgn->init_req(_false_path, excluded); 3180 exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem)); 3181 exclude_compare_mem->init_req(_false_path, input_memory_state); 3182 exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io)); 3183 exclude_compare_io->init_req(_false_path, input_io_state); 3184 3185 // vthread != threadObj 3186 RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT); 3187 record_for_igvn(vthread_compare_rgn); 3188 PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3189 PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO); 3190 record_for_igvn(vthread_compare_io); 3191 PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG); 3192 record_for_igvn(tid); 3193 PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::BOOL); 3194 record_for_igvn(exclusion); 3195 3196 // Update control and phi nodes. 3197 vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn)); 3198 vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj); 3199 vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem)); 3200 vthread_compare_mem->init_req(_false_path, input_memory_state); 3201 vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io)); 3202 vthread_compare_io->init_req(_false_path, input_io_state); 3203 tid->init_req(_true_path, _gvn.transform(vthread_tid)); 3204 tid->init_req(_false_path, _gvn.transform(thread_obj_tid)); 3205 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3206 exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded)); 3207 3208 // Update branch state. 3209 set_control(_gvn.transform(vthread_compare_rgn)); 3210 set_all_memory(_gvn.transform(vthread_compare_mem)); 3211 set_i_o(_gvn.transform(vthread_compare_io)); 3212 3213 // Load the event writer oop by dereferencing the jobject handle. 3214 ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter")); 3215 assert(klass_EventWriter->is_loaded(), "invariant"); 3216 ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass(); 3217 const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter); 3218 const TypeOopPtr* const xtype = aklass->as_instance_type(); 3219 Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global))); 3220 Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD); 3221 3222 // Load the current thread id from the event writer object. 3223 Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J"); 3224 // Get the field offset to, conditionally, store an updated tid value later. 3225 Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false); 3226 const TypePtr* event_writer_tid_field_type = _gvn.type(event_writer_tid_field)->isa_ptr(); 3227 // Get the field offset to, conditionally, store an updated exclusion value later. 3228 Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false); 3229 const TypePtr* event_writer_excluded_field_type = _gvn.type(event_writer_excluded_field)->isa_ptr(); 3230 3231 RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT); 3232 record_for_igvn(event_writer_tid_compare_rgn); 3233 PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3234 record_for_igvn(event_writer_tid_compare_mem); 3235 PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO); 3236 record_for_igvn(event_writer_tid_compare_io); 3237 3238 // Compare the current tid from the thread object to what is currently stored in the event writer object. 3239 Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid))); 3240 Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne)); 3241 IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN); 3242 3243 // False path, tids are the same. 3244 Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal)); 3245 3246 // True path, tid is not equal, need to update the tid in the event writer. 3247 Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal)); 3248 record_for_igvn(tid_is_not_equal); 3249 3250 // Store the exclusion state to the event writer. 3251 store_to_memory(tid_is_not_equal, event_writer_excluded_field, _gvn.transform(exclusion), T_BOOLEAN, event_writer_excluded_field_type, MemNode::unordered); 3252 3253 // Store the tid to the event writer. 3254 store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, event_writer_tid_field_type, MemNode::unordered); 3255 3256 // Update control and phi nodes. 3257 event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal); 3258 event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal); 3259 event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory())); 3260 event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem)); 3261 event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o())); 3262 event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io)); 3263 3264 // Result of top level CFG, Memory, IO and Value. 3265 RegionNode* result_rgn = new RegionNode(PATH_LIMIT); 3266 PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM); 3267 PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO); 3268 PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM); 3269 3270 // Result control. 3271 result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn)); 3272 result_rgn->init_req(_false_path, jobj_is_null); 3273 3274 // Result memory. 3275 result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem)); 3276 result_mem->init_req(_false_path, _gvn.transform(input_memory_state)); 3277 3278 // Result IO. 3279 result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io)); 3280 result_io->init_req(_false_path, _gvn.transform(input_io_state)); 3281 3282 // Result value. 3283 result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop 3284 result_value->init_req(_false_path, null()); // return null 3285 3286 // Set output state. 3287 set_control(_gvn.transform(result_rgn)); 3288 set_all_memory(_gvn.transform(result_mem)); 3289 set_i_o(_gvn.transform(result_io)); 3290 set_result(result_rgn, result_value); 3291 return true; 3292 } 3293 3294 /* 3295 * The intrinsic is a model of this pseudo-code: 3296 * 3297 * JfrThreadLocal* const tl = thread->jfr_thread_local(); 3298 * if (carrierThread != thread) { // is virtual thread 3299 * const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread); 3300 * bool excluded = vthread_epoch_raw & excluded_mask; 3301 * Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread)); 3302 * Atomic::store(&tl->_contextual_thread_excluded, is_excluded); 3303 * if (!excluded) { 3304 * const u2 vthread_epoch = vthread_epoch_raw & epoch_mask; 3305 * Atomic::store(&tl->_vthread_epoch, vthread_epoch); 3306 * } 3307 * Atomic::release_store(&tl->_vthread, true); 3308 * return; 3309 * } 3310 * Atomic::release_store(&tl->_vthread, false); 3311 */ 3312 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) { 3313 enum { _true_path = 1, _false_path = 2, PATH_LIMIT }; 3314 3315 Node* input_memory_state = reset_memory(); 3316 set_all_memory(input_memory_state); 3317 3318 Node* excluded_mask = _gvn.intcon(32768); 3319 Node* epoch_mask = _gvn.intcon(32767); 3320 3321 Node* const carrierThread = generate_current_thread(jt); 3322 // If thread != carrierThread, this is a virtual thread. 3323 Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread)); 3324 Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne)); 3325 IfNode* iff_thread_not_equal_carrierThread = 3326 create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN); 3327 3328 Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR)); 3329 3330 // False branch, is carrierThread. 3331 Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread)); 3332 // Store release 3333 Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3334 3335 set_all_memory(input_memory_state); 3336 3337 // True branch, is virtual thread. 3338 Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread)); 3339 set_control(thread_not_equal_carrierThread); 3340 3341 // Load the raw epoch value from the vthread. 3342 Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset()); 3343 Node* epoch_raw = access_load_at(thread, epoch_offset, TypeRawPtr::BOTTOM, TypeInt::CHAR, T_CHAR, 3344 IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD); 3345 3346 // Mask off the excluded information from the epoch. 3347 Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask))); 3348 3349 // Load the tid field from the thread. 3350 Node* tid = load_field_from_object(thread, "tid", "J"); 3351 3352 // Store the vthread tid to the jfr thread local. 3353 Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR)); 3354 Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, Compile::AliasIdxRaw, MemNode::unordered, true); 3355 3356 // Branch is_excluded to conditionalize updating the epoch . 3357 Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask))); 3358 Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq)); 3359 IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN); 3360 3361 // True branch, vthread is excluded, no need to write epoch info. 3362 Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded)); 3363 set_control(excluded); 3364 Node* vthread_is_excluded = _gvn.intcon(1); 3365 3366 // False branch, vthread is included, update epoch info. 3367 Node* included = _gvn.transform(new IfFalseNode(iff_excluded)); 3368 set_control(included); 3369 Node* vthread_is_included = _gvn.intcon(0); 3370 3371 // Get epoch value. 3372 Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask))); 3373 3374 // Store the vthread epoch to the jfr thread local. 3375 Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR)); 3376 Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, Compile::AliasIdxRaw, MemNode::unordered, true); 3377 3378 RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT); 3379 record_for_igvn(excluded_rgn); 3380 PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM); 3381 record_for_igvn(excluded_mem); 3382 PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL); 3383 record_for_igvn(exclusion); 3384 3385 // Merge the excluded control and memory. 3386 excluded_rgn->init_req(_true_path, excluded); 3387 excluded_rgn->init_req(_false_path, included); 3388 excluded_mem->init_req(_true_path, tid_memory); 3389 excluded_mem->init_req(_false_path, included_memory); 3390 exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded)); 3391 exclusion->init_req(_false_path, _gvn.transform(vthread_is_included)); 3392 3393 // Set intermediate state. 3394 set_control(_gvn.transform(excluded_rgn)); 3395 set_all_memory(excluded_mem); 3396 3397 // Store the vthread exclusion state to the jfr thread local. 3398 Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR)); 3399 store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::unordered, true); 3400 3401 // Store release 3402 Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true); 3403 3404 RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT); 3405 record_for_igvn(thread_compare_rgn); 3406 PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM); 3407 record_for_igvn(thread_compare_mem); 3408 PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL); 3409 record_for_igvn(vthread); 3410 3411 // Merge the thread_compare control and memory. 3412 thread_compare_rgn->init_req(_true_path, control()); 3413 thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread); 3414 thread_compare_mem->init_req(_true_path, vthread_true_memory); 3415 thread_compare_mem->init_req(_false_path, vthread_false_memory); 3416 3417 // Set output state. 3418 set_control(_gvn.transform(thread_compare_rgn)); 3419 set_all_memory(_gvn.transform(thread_compare_mem)); 3420 } 3421 3422 #endif // JFR_HAVE_INTRINSICS 3423 3424 //------------------------inline_native_currentCarrierThread------------------ 3425 bool LibraryCallKit::inline_native_currentCarrierThread() { 3426 Node* junk = nullptr; 3427 set_result(generate_current_thread(junk)); 3428 return true; 3429 } 3430 3431 //------------------------inline_native_currentThread------------------ 3432 bool LibraryCallKit::inline_native_currentThread() { 3433 Node* junk = nullptr; 3434 set_result(generate_virtual_thread(junk)); 3435 return true; 3436 } 3437 3438 //------------------------inline_native_setVthread------------------ 3439 bool LibraryCallKit::inline_native_setCurrentThread() { 3440 assert(C->method()->changes_current_thread(), 3441 "method changes current Thread but is not annotated ChangesCurrentThread"); 3442 Node* arr = argument(1); 3443 Node* thread = _gvn.transform(new ThreadLocalNode()); 3444 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset())); 3445 Node* thread_obj_handle 3446 = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered); 3447 thread_obj_handle = _gvn.transform(thread_obj_handle); 3448 const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr(); 3449 access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3450 JFR_ONLY(extend_setCurrentThread(thread, arr);) 3451 return true; 3452 } 3453 3454 Node* LibraryCallKit::scopedValueCache_helper() { 3455 ciKlass *objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3456 const TypeOopPtr *etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3457 3458 bool xk = etype->klass_is_exact(); 3459 3460 Node* thread = _gvn.transform(new ThreadLocalNode()); 3461 Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset())); 3462 // We cannot use immutable_memory() because we might flip onto a 3463 // different carrier thread, at which point we'll need to use that 3464 // carrier thread's cache. 3465 // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(), 3466 // TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)); 3467 return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered); 3468 } 3469 3470 //------------------------inline_native_scopedValueCache------------------ 3471 bool LibraryCallKit::inline_native_scopedValueCache() { 3472 ciKlass *objects_klass = ciObjArrayKlass::make(env()->Object_klass()); 3473 const TypeOopPtr *etype = TypeOopPtr::make_from_klass(env()->Object_klass()); 3474 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3475 3476 // Because we create the scopedValue cache lazily we have to make the 3477 // type of the result BotPTR. 3478 bool xk = etype->klass_is_exact(); 3479 const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0); 3480 Node* cache_obj_handle = scopedValueCache_helper(); 3481 set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE)); 3482 3483 return true; 3484 } 3485 3486 //------------------------inline_native_setScopedValueCache------------------ 3487 bool LibraryCallKit::inline_native_setScopedValueCache() { 3488 Node* arr = argument(0); 3489 Node* cache_obj_handle = scopedValueCache_helper(); 3490 3491 const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr(); 3492 access_store_at(nullptr, cache_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED); 3493 3494 return true; 3495 } 3496 3497 //---------------------------load_mirror_from_klass---------------------------- 3498 // Given a klass oop, load its java mirror (a java.lang.Class oop). 3499 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) { 3500 Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset())); 3501 Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered); 3502 // mirror = ((OopHandle)mirror)->resolve(); 3503 return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE); 3504 } 3505 3506 //-----------------------load_klass_from_mirror_common------------------------- 3507 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop. 3508 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE), 3509 // and branch to the given path on the region. 3510 // If never_see_null, take an uncommon trap on null, so we can optimistically 3511 // compile for the non-null case. 3512 // If the region is null, force never_see_null = true. 3513 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror, 3514 bool never_see_null, 3515 RegionNode* region, 3516 int null_path, 3517 int offset) { 3518 if (region == nullptr) never_see_null = true; 3519 Node* p = basic_plus_adr(mirror, offset); 3520 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3521 Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type)); 3522 Node* null_ctl = top(); 3523 kls = null_check_oop(kls, &null_ctl, never_see_null); 3524 if (region != nullptr) { 3525 // Set region->in(null_path) if the mirror is a primitive (e.g, int.class). 3526 region->init_req(null_path, null_ctl); 3527 } else { 3528 assert(null_ctl == top(), "no loose ends"); 3529 } 3530 return kls; 3531 } 3532 3533 //--------------------(inline_native_Class_query helpers)--------------------- 3534 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER. 3535 // Fall through if (mods & mask) == bits, take the guard otherwise. 3536 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) { 3537 // Branch around if the given klass has the given modifier bit set. 3538 // Like generate_guard, adds a new path onto the region. 3539 Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3540 Node* mods = make_load(nullptr, modp, TypeInt::INT, T_INT, MemNode::unordered); 3541 Node* mask = intcon(modifier_mask); 3542 Node* bits = intcon(modifier_bits); 3543 Node* mbit = _gvn.transform(new AndINode(mods, mask)); 3544 Node* cmp = _gvn.transform(new CmpINode(mbit, bits)); 3545 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne)); 3546 return generate_fair_guard(bol, region); 3547 } 3548 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) { 3549 return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region); 3550 } 3551 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) { 3552 return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region); 3553 } 3554 3555 //-------------------------inline_native_Class_query------------------- 3556 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) { 3557 const Type* return_type = TypeInt::BOOL; 3558 Node* prim_return_value = top(); // what happens if it's a primitive class? 3559 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3560 bool expect_prim = false; // most of these guys expect to work on refs 3561 3562 enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT }; 3563 3564 Node* mirror = argument(0); 3565 Node* obj = top(); 3566 3567 switch (id) { 3568 case vmIntrinsics::_isInstance: 3569 // nothing is an instance of a primitive type 3570 prim_return_value = intcon(0); 3571 obj = argument(1); 3572 break; 3573 case vmIntrinsics::_getModifiers: 3574 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3575 assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line"); 3576 return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin); 3577 break; 3578 case vmIntrinsics::_isInterface: 3579 prim_return_value = intcon(0); 3580 break; 3581 case vmIntrinsics::_isArray: 3582 prim_return_value = intcon(0); 3583 expect_prim = true; // cf. ObjectStreamClass.getClassSignature 3584 break; 3585 case vmIntrinsics::_isPrimitive: 3586 prim_return_value = intcon(1); 3587 expect_prim = true; // obviously 3588 break; 3589 case vmIntrinsics::_isHidden: 3590 prim_return_value = intcon(0); 3591 break; 3592 case vmIntrinsics::_getSuperclass: 3593 prim_return_value = null(); 3594 return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR); 3595 break; 3596 case vmIntrinsics::_getClassAccessFlags: 3597 prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC); 3598 return_type = TypeInt::INT; // not bool! 6297094 3599 break; 3600 default: 3601 fatal_unexpected_iid(id); 3602 break; 3603 } 3604 3605 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3606 if (mirror_con == nullptr) return false; // cannot happen? 3607 3608 #ifndef PRODUCT 3609 if (C->print_intrinsics() || C->print_inlining()) { 3610 ciType* k = mirror_con->java_mirror_type(); 3611 if (k) { 3612 tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id())); 3613 k->print_name(); 3614 tty->cr(); 3615 } 3616 } 3617 #endif 3618 3619 // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive). 3620 RegionNode* region = new RegionNode(PATH_LIMIT); 3621 record_for_igvn(region); 3622 PhiNode* phi = new PhiNode(region, return_type); 3623 3624 // The mirror will never be null of Reflection.getClassAccessFlags, however 3625 // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE 3626 // if it is. See bug 4774291. 3627 3628 // For Reflection.getClassAccessFlags(), the null check occurs in 3629 // the wrong place; see inline_unsafe_access(), above, for a similar 3630 // situation. 3631 mirror = null_check(mirror); 3632 // If mirror or obj is dead, only null-path is taken. 3633 if (stopped()) return true; 3634 3635 if (expect_prim) never_see_null = false; // expect nulls (meaning prims) 3636 3637 // Now load the mirror's klass metaobject, and null-check it. 3638 // Side-effects region with the control path if the klass is null. 3639 Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path); 3640 // If kls is null, we have a primitive mirror. 3641 phi->init_req(_prim_path, prim_return_value); 3642 if (stopped()) { set_result(region, phi); return true; } 3643 bool safe_for_replace = (region->in(_prim_path) == top()); 3644 3645 Node* p; // handy temp 3646 Node* null_ctl; 3647 3648 // Now that we have the non-null klass, we can perform the real query. 3649 // For constant classes, the query will constant-fold in LoadNode::Value. 3650 Node* query_value = top(); 3651 switch (id) { 3652 case vmIntrinsics::_isInstance: 3653 // nothing is an instance of a primitive type 3654 query_value = gen_instanceof(obj, kls, safe_for_replace); 3655 break; 3656 3657 case vmIntrinsics::_getModifiers: 3658 p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset())); 3659 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 3660 break; 3661 3662 case vmIntrinsics::_isInterface: 3663 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3664 if (generate_interface_guard(kls, region) != nullptr) 3665 // A guard was added. If the guard is taken, it was an interface. 3666 phi->add_req(intcon(1)); 3667 // If we fall through, it's a plain class. 3668 query_value = intcon(0); 3669 break; 3670 3671 case vmIntrinsics::_isArray: 3672 // (To verify this code sequence, check the asserts in JVM_IsArrayClass.) 3673 if (generate_array_guard(kls, region) != nullptr) 3674 // A guard was added. If the guard is taken, it was an array. 3675 phi->add_req(intcon(1)); 3676 // If we fall through, it's a plain class. 3677 query_value = intcon(0); 3678 break; 3679 3680 case vmIntrinsics::_isPrimitive: 3681 query_value = intcon(0); // "normal" path produces false 3682 break; 3683 3684 case vmIntrinsics::_isHidden: 3685 // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.) 3686 if (generate_hidden_class_guard(kls, region) != nullptr) 3687 // A guard was added. If the guard is taken, it was an hidden class. 3688 phi->add_req(intcon(1)); 3689 // If we fall through, it's a plain class. 3690 query_value = intcon(0); 3691 break; 3692 3693 3694 case vmIntrinsics::_getSuperclass: 3695 // The rules here are somewhat unfortunate, but we can still do better 3696 // with random logic than with a JNI call. 3697 // Interfaces store null or Object as _super, but must report null. 3698 // Arrays store an intermediate super as _super, but must report Object. 3699 // Other types can report the actual _super. 3700 // (To verify this code sequence, check the asserts in JVM_IsInterface.) 3701 if (generate_interface_guard(kls, region) != nullptr) 3702 // A guard was added. If the guard is taken, it was an interface. 3703 phi->add_req(null()); 3704 if (generate_array_guard(kls, region) != nullptr) 3705 // A guard was added. If the guard is taken, it was an array. 3706 phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror()))); 3707 // If we fall through, it's a plain class. Get its _super. 3708 p = basic_plus_adr(kls, in_bytes(Klass::super_offset())); 3709 kls = _gvn.transform(LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL)); 3710 null_ctl = top(); 3711 kls = null_check_oop(kls, &null_ctl); 3712 if (null_ctl != top()) { 3713 // If the guard is taken, Object.superClass is null (both klass and mirror). 3714 region->add_req(null_ctl); 3715 phi ->add_req(null()); 3716 } 3717 if (!stopped()) { 3718 query_value = load_mirror_from_klass(kls); 3719 } 3720 break; 3721 3722 case vmIntrinsics::_getClassAccessFlags: 3723 p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset())); 3724 query_value = make_load(nullptr, p, TypeInt::INT, T_INT, MemNode::unordered); 3725 break; 3726 3727 default: 3728 fatal_unexpected_iid(id); 3729 break; 3730 } 3731 3732 // Fall-through is the normal case of a query to a real class. 3733 phi->init_req(1, query_value); 3734 region->init_req(1, control()); 3735 3736 C->set_has_split_ifs(true); // Has chance for split-if optimization 3737 set_result(region, phi); 3738 return true; 3739 } 3740 3741 //-------------------------inline_Class_cast------------------- 3742 bool LibraryCallKit::inline_Class_cast() { 3743 Node* mirror = argument(0); // Class 3744 Node* obj = argument(1); 3745 const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr(); 3746 if (mirror_con == nullptr) { 3747 return false; // dead path (mirror->is_top()). 3748 } 3749 if (obj == nullptr || obj->is_top()) { 3750 return false; // dead path 3751 } 3752 const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr(); 3753 3754 // First, see if Class.cast() can be folded statically. 3755 // java_mirror_type() returns non-null for compile-time Class constants. 3756 ciType* tm = mirror_con->java_mirror_type(); 3757 if (tm != nullptr && tm->is_klass() && 3758 tp != nullptr) { 3759 if (!tp->is_loaded()) { 3760 // Don't use intrinsic when class is not loaded. 3761 return false; 3762 } else { 3763 int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type()); 3764 if (static_res == Compile::SSC_always_true) { 3765 // isInstance() is true - fold the code. 3766 set_result(obj); 3767 return true; 3768 } else if (static_res == Compile::SSC_always_false) { 3769 // Don't use intrinsic, have to throw ClassCastException. 3770 // If the reference is null, the non-intrinsic bytecode will 3771 // be optimized appropriately. 3772 return false; 3773 } 3774 } 3775 } 3776 3777 // Bailout intrinsic and do normal inlining if exception path is frequent. 3778 if (too_many_traps(Deoptimization::Reason_intrinsic)) { 3779 return false; 3780 } 3781 3782 // Generate dynamic checks. 3783 // Class.cast() is java implementation of _checkcast bytecode. 3784 // Do checkcast (Parse::do_checkcast()) optimizations here. 3785 3786 mirror = null_check(mirror); 3787 // If mirror is dead, only null-path is taken. 3788 if (stopped()) { 3789 return true; 3790 } 3791 3792 // Not-subtype or the mirror's klass ptr is null (in case it is a primitive). 3793 enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT }; 3794 RegionNode* region = new RegionNode(PATH_LIMIT); 3795 record_for_igvn(region); 3796 3797 // Now load the mirror's klass metaobject, and null-check it. 3798 // If kls is null, we have a primitive mirror and 3799 // nothing is an instance of a primitive type. 3800 Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path); 3801 3802 Node* res = top(); 3803 if (!stopped()) { 3804 Node* bad_type_ctrl = top(); 3805 // Do checkcast optimizations. 3806 res = gen_checkcast(obj, kls, &bad_type_ctrl); 3807 region->init_req(_bad_type_path, bad_type_ctrl); 3808 } 3809 if (region->in(_prim_path) != top() || 3810 region->in(_bad_type_path) != top()) { 3811 // Let Interpreter throw ClassCastException. 3812 PreserveJVMState pjvms(this); 3813 set_control(_gvn.transform(region)); 3814 uncommon_trap(Deoptimization::Reason_intrinsic, 3815 Deoptimization::Action_maybe_recompile); 3816 } 3817 if (!stopped()) { 3818 set_result(res); 3819 } 3820 return true; 3821 } 3822 3823 3824 //--------------------------inline_native_subtype_check------------------------ 3825 // This intrinsic takes the JNI calls out of the heart of 3826 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc. 3827 bool LibraryCallKit::inline_native_subtype_check() { 3828 // Pull both arguments off the stack. 3829 Node* args[2]; // two java.lang.Class mirrors: superc, subc 3830 args[0] = argument(0); 3831 args[1] = argument(1); 3832 Node* klasses[2]; // corresponding Klasses: superk, subk 3833 klasses[0] = klasses[1] = top(); 3834 3835 enum { 3836 // A full decision tree on {superc is prim, subc is prim}: 3837 _prim_0_path = 1, // {P,N} => false 3838 // {P,P} & superc!=subc => false 3839 _prim_same_path, // {P,P} & superc==subc => true 3840 _prim_1_path, // {N,P} => false 3841 _ref_subtype_path, // {N,N} & subtype check wins => true 3842 _both_ref_path, // {N,N} & subtype check loses => false 3843 PATH_LIMIT 3844 }; 3845 3846 RegionNode* region = new RegionNode(PATH_LIMIT); 3847 Node* phi = new PhiNode(region, TypeInt::BOOL); 3848 record_for_igvn(region); 3849 3850 const TypePtr* adr_type = TypeRawPtr::BOTTOM; // memory type of loads 3851 const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL; 3852 int class_klass_offset = java_lang_Class::klass_offset(); 3853 3854 // First null-check both mirrors and load each mirror's klass metaobject. 3855 int which_arg; 3856 for (which_arg = 0; which_arg <= 1; which_arg++) { 3857 Node* arg = args[which_arg]; 3858 arg = null_check(arg); 3859 if (stopped()) break; 3860 args[which_arg] = arg; 3861 3862 Node* p = basic_plus_adr(arg, class_klass_offset); 3863 Node* kls = LoadKlassNode::make(_gvn, nullptr, immutable_memory(), p, adr_type, kls_type); 3864 klasses[which_arg] = _gvn.transform(kls); 3865 } 3866 3867 // Having loaded both klasses, test each for null. 3868 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3869 for (which_arg = 0; which_arg <= 1; which_arg++) { 3870 Node* kls = klasses[which_arg]; 3871 Node* null_ctl = top(); 3872 kls = null_check_oop(kls, &null_ctl, never_see_null); 3873 int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path); 3874 region->init_req(prim_path, null_ctl); 3875 if (stopped()) break; 3876 klasses[which_arg] = kls; 3877 } 3878 3879 if (!stopped()) { 3880 // now we have two reference types, in klasses[0..1] 3881 Node* subk = klasses[1]; // the argument to isAssignableFrom 3882 Node* superk = klasses[0]; // the receiver 3883 region->set_req(_both_ref_path, gen_subtype_check(subk, superk)); 3884 // now we have a successful reference subtype check 3885 region->set_req(_ref_subtype_path, control()); 3886 } 3887 3888 // If both operands are primitive (both klasses null), then 3889 // we must return true when they are identical primitives. 3890 // It is convenient to test this after the first null klass check. 3891 set_control(region->in(_prim_0_path)); // go back to first null check 3892 if (!stopped()) { 3893 // Since superc is primitive, make a guard for the superc==subc case. 3894 Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1])); 3895 Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq)); 3896 generate_guard(bol_eq, region, PROB_FAIR); 3897 if (region->req() == PATH_LIMIT+1) { 3898 // A guard was added. If the added guard is taken, superc==subc. 3899 region->swap_edges(PATH_LIMIT, _prim_same_path); 3900 region->del_req(PATH_LIMIT); 3901 } 3902 region->set_req(_prim_0_path, control()); // Not equal after all. 3903 } 3904 3905 // these are the only paths that produce 'true': 3906 phi->set_req(_prim_same_path, intcon(1)); 3907 phi->set_req(_ref_subtype_path, intcon(1)); 3908 3909 // pull together the cases: 3910 assert(region->req() == PATH_LIMIT, "sane region"); 3911 for (uint i = 1; i < region->req(); i++) { 3912 Node* ctl = region->in(i); 3913 if (ctl == nullptr || ctl == top()) { 3914 region->set_req(i, top()); 3915 phi ->set_req(i, top()); 3916 } else if (phi->in(i) == nullptr) { 3917 phi->set_req(i, intcon(0)); // all other paths produce 'false' 3918 } 3919 } 3920 3921 set_control(_gvn.transform(region)); 3922 set_result(_gvn.transform(phi)); 3923 return true; 3924 } 3925 3926 //---------------------generate_array_guard_common------------------------ 3927 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region, 3928 bool obj_array, bool not_array) { 3929 3930 if (stopped()) { 3931 return nullptr; 3932 } 3933 3934 // If obj_array/non_array==false/false: 3935 // Branch around if the given klass is in fact an array (either obj or prim). 3936 // If obj_array/non_array==false/true: 3937 // Branch around if the given klass is not an array klass of any kind. 3938 // If obj_array/non_array==true/true: 3939 // Branch around if the kls is not an oop array (kls is int[], String, etc.) 3940 // If obj_array/non_array==true/false: 3941 // Branch around if the kls is an oop array (Object[] or subtype) 3942 // 3943 // Like generate_guard, adds a new path onto the region. 3944 jint layout_con = 0; 3945 Node* layout_val = get_layout_helper(kls, layout_con); 3946 if (layout_val == nullptr) { 3947 bool query = (obj_array 3948 ? Klass::layout_helper_is_objArray(layout_con) 3949 : Klass::layout_helper_is_array(layout_con)); 3950 if (query == not_array) { 3951 return nullptr; // never a branch 3952 } else { // always a branch 3953 Node* always_branch = control(); 3954 if (region != nullptr) 3955 region->add_req(always_branch); 3956 set_control(top()); 3957 return always_branch; 3958 } 3959 } 3960 // Now test the correct condition. 3961 jint nval = (obj_array 3962 ? (jint)(Klass::_lh_array_tag_type_value 3963 << Klass::_lh_array_tag_shift) 3964 : Klass::_lh_neutral_value); 3965 Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval))); 3966 BoolTest::mask btest = BoolTest::lt; // correct for testing is_[obj]array 3967 // invert the test if we are looking for a non-array 3968 if (not_array) btest = BoolTest(btest).negate(); 3969 Node* bol = _gvn.transform(new BoolNode(cmp, btest)); 3970 return generate_fair_guard(bol, region); 3971 } 3972 3973 3974 //-----------------------inline_native_newArray-------------------------- 3975 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length); 3976 // private native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size); 3977 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) { 3978 Node* mirror; 3979 Node* count_val; 3980 if (uninitialized) { 3981 mirror = argument(1); 3982 count_val = argument(2); 3983 } else { 3984 mirror = argument(0); 3985 count_val = argument(1); 3986 } 3987 3988 mirror = null_check(mirror); 3989 // If mirror or obj is dead, only null-path is taken. 3990 if (stopped()) return true; 3991 3992 enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT }; 3993 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 3994 PhiNode* result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 3995 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 3996 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 3997 3998 bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check); 3999 Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null, 4000 result_reg, _slow_path); 4001 Node* normal_ctl = control(); 4002 Node* no_array_ctl = result_reg->in(_slow_path); 4003 4004 // Generate code for the slow case. We make a call to newArray(). 4005 set_control(no_array_ctl); 4006 if (!stopped()) { 4007 // Either the input type is void.class, or else the 4008 // array klass has not yet been cached. Either the 4009 // ensuing call will throw an exception, or else it 4010 // will cache the array klass for next time. 4011 PreserveJVMState pjvms(this); 4012 CallJavaNode* slow_call = nullptr; 4013 if (uninitialized) { 4014 // Generate optimized virtual call (holder class 'Unsafe' is final) 4015 slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false); 4016 } else { 4017 slow_call = generate_method_call_static(vmIntrinsics::_newArray); 4018 } 4019 Node* slow_result = set_results_for_java_call(slow_call); 4020 // this->control() comes from set_results_for_java_call 4021 result_reg->set_req(_slow_path, control()); 4022 result_val->set_req(_slow_path, slow_result); 4023 result_io ->set_req(_slow_path, i_o()); 4024 result_mem->set_req(_slow_path, reset_memory()); 4025 } 4026 4027 set_control(normal_ctl); 4028 if (!stopped()) { 4029 // Normal case: The array type has been cached in the java.lang.Class. 4030 // The following call works fine even if the array type is polymorphic. 4031 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4032 Node* obj = new_array(klass_node, count_val, 0); // no arguments to push 4033 result_reg->init_req(_normal_path, control()); 4034 result_val->init_req(_normal_path, obj); 4035 result_io ->init_req(_normal_path, i_o()); 4036 result_mem->init_req(_normal_path, reset_memory()); 4037 4038 if (uninitialized) { 4039 // Mark the allocation so that zeroing is skipped 4040 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn); 4041 alloc->maybe_set_complete(&_gvn); 4042 } 4043 } 4044 4045 // Return the combined state. 4046 set_i_o( _gvn.transform(result_io) ); 4047 set_all_memory( _gvn.transform(result_mem)); 4048 4049 C->set_has_split_ifs(true); // Has chance for split-if optimization 4050 set_result(result_reg, result_val); 4051 return true; 4052 } 4053 4054 //----------------------inline_native_getLength-------------------------- 4055 // public static native int java.lang.reflect.Array.getLength(Object array); 4056 bool LibraryCallKit::inline_native_getLength() { 4057 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4058 4059 Node* array = null_check(argument(0)); 4060 // If array is dead, only null-path is taken. 4061 if (stopped()) return true; 4062 4063 // Deoptimize if it is a non-array. 4064 Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr); 4065 4066 if (non_array != nullptr) { 4067 PreserveJVMState pjvms(this); 4068 set_control(non_array); 4069 uncommon_trap(Deoptimization::Reason_intrinsic, 4070 Deoptimization::Action_maybe_recompile); 4071 } 4072 4073 // If control is dead, only non-array-path is taken. 4074 if (stopped()) return true; 4075 4076 // The works fine even if the array type is polymorphic. 4077 // It could be a dynamic mix of int[], boolean[], Object[], etc. 4078 Node* result = load_array_length(array); 4079 4080 C->set_has_split_ifs(true); // Has chance for split-if optimization 4081 set_result(result); 4082 return true; 4083 } 4084 4085 //------------------------inline_array_copyOf---------------------------- 4086 // public static <T,U> T[] java.util.Arrays.copyOf( U[] original, int newLength, Class<? extends T[]> newType); 4087 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType); 4088 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) { 4089 if (too_many_traps(Deoptimization::Reason_intrinsic)) return false; 4090 4091 // Get the arguments. 4092 Node* original = argument(0); 4093 Node* start = is_copyOfRange? argument(1): intcon(0); 4094 Node* end = is_copyOfRange? argument(2): argument(1); 4095 Node* array_type_mirror = is_copyOfRange? argument(3): argument(2); 4096 4097 Node* newcopy = nullptr; 4098 4099 // Set the original stack and the reexecute bit for the interpreter to reexecute 4100 // the bytecode that invokes Arrays.copyOf if deoptimization happens. 4101 { PreserveReexecuteState preexecs(this); 4102 jvms()->set_should_reexecute(true); 4103 4104 array_type_mirror = null_check(array_type_mirror); 4105 original = null_check(original); 4106 4107 // Check if a null path was taken unconditionally. 4108 if (stopped()) return true; 4109 4110 Node* orig_length = load_array_length(original); 4111 4112 Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0); 4113 klass_node = null_check(klass_node); 4114 4115 RegionNode* bailout = new RegionNode(1); 4116 record_for_igvn(bailout); 4117 4118 // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc. 4119 // Bail out if that is so. 4120 Node* not_objArray = generate_non_objArray_guard(klass_node, bailout); 4121 if (not_objArray != nullptr) { 4122 // Improve the klass node's type from the new optimistic assumption: 4123 ciKlass* ak = ciArrayKlass::make(env()->Object_klass()); 4124 const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/); 4125 Node* cast = new CastPPNode(klass_node, akls); 4126 cast->init_req(0, control()); 4127 klass_node = _gvn.transform(cast); 4128 } 4129 4130 // Bail out if either start or end is negative. 4131 generate_negative_guard(start, bailout, &start); 4132 generate_negative_guard(end, bailout, &end); 4133 4134 Node* length = end; 4135 if (_gvn.type(start) != TypeInt::ZERO) { 4136 length = _gvn.transform(new SubINode(end, start)); 4137 } 4138 4139 // Bail out if length is negative. 4140 // Without this the new_array would throw 4141 // NegativeArraySizeException but IllegalArgumentException is what 4142 // should be thrown 4143 generate_negative_guard(length, bailout, &length); 4144 4145 if (bailout->req() > 1) { 4146 PreserveJVMState pjvms(this); 4147 set_control(_gvn.transform(bailout)); 4148 uncommon_trap(Deoptimization::Reason_intrinsic, 4149 Deoptimization::Action_maybe_recompile); 4150 } 4151 4152 if (!stopped()) { 4153 // How many elements will we copy from the original? 4154 // The answer is MinI(orig_length - start, length). 4155 Node* orig_tail = _gvn.transform(new SubINode(orig_length, start)); 4156 Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length); 4157 4158 // Generate a direct call to the right arraycopy function(s). 4159 // We know the copy is disjoint but we might not know if the 4160 // oop stores need checking. 4161 // Extreme case: Arrays.copyOf((Integer[])x, 10, String[].class). 4162 // This will fail a store-check if x contains any non-nulls. 4163 4164 // ArrayCopyNode:Ideal may transform the ArrayCopyNode to 4165 // loads/stores but it is legal only if we're sure the 4166 // Arrays.copyOf would succeed. So we need all input arguments 4167 // to the copyOf to be validated, including that the copy to the 4168 // new array won't trigger an ArrayStoreException. That subtype 4169 // check can be optimized if we know something on the type of 4170 // the input array from type speculation. 4171 if (_gvn.type(klass_node)->singleton()) { 4172 const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr(); 4173 const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr(); 4174 4175 int test = C->static_subtype_check(superk, subk); 4176 if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) { 4177 const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr(); 4178 if (t_original->speculative_type() != nullptr) { 4179 original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true); 4180 } 4181 } 4182 } 4183 4184 bool validated = false; 4185 // Reason_class_check rather than Reason_intrinsic because we 4186 // want to intrinsify even if this traps. 4187 if (!too_many_traps(Deoptimization::Reason_class_check)) { 4188 Node* not_subtype_ctrl = gen_subtype_check(original, klass_node); 4189 4190 if (not_subtype_ctrl != top()) { 4191 PreserveJVMState pjvms(this); 4192 set_control(not_subtype_ctrl); 4193 uncommon_trap(Deoptimization::Reason_class_check, 4194 Deoptimization::Action_make_not_entrant); 4195 assert(stopped(), "Should be stopped"); 4196 } 4197 validated = true; 4198 } 4199 4200 if (!stopped()) { 4201 newcopy = new_array(klass_node, length, 0); // no arguments to push 4202 4203 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false, 4204 load_object_klass(original), klass_node); 4205 if (!is_copyOfRange) { 4206 ac->set_copyof(validated); 4207 } else { 4208 ac->set_copyofrange(validated); 4209 } 4210 Node* n = _gvn.transform(ac); 4211 if (n == ac) { 4212 ac->connect_outputs(this); 4213 } else { 4214 assert(validated, "shouldn't transform if all arguments not validated"); 4215 set_all_memory(n); 4216 } 4217 } 4218 } 4219 } // original reexecute is set back here 4220 4221 C->set_has_split_ifs(true); // Has chance for split-if optimization 4222 if (!stopped()) { 4223 set_result(newcopy); 4224 } 4225 return true; 4226 } 4227 4228 4229 //----------------------generate_virtual_guard--------------------------- 4230 // Helper for hashCode and clone. Peeks inside the vtable to avoid a call. 4231 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass, 4232 RegionNode* slow_region) { 4233 ciMethod* method = callee(); 4234 int vtable_index = method->vtable_index(); 4235 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4236 "bad index %d", vtable_index); 4237 // Get the Method* out of the appropriate vtable entry. 4238 int entry_offset = in_bytes(Klass::vtable_start_offset()) + 4239 vtable_index*vtableEntry::size_in_bytes() + 4240 vtableEntry::method_offset_in_bytes(); 4241 Node* entry_addr = basic_plus_adr(obj_klass, entry_offset); 4242 Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered); 4243 4244 // Compare the target method with the expected method (e.g., Object.hashCode). 4245 const TypePtr* native_call_addr = TypeMetadataPtr::make(method); 4246 4247 Node* native_call = makecon(native_call_addr); 4248 Node* chk_native = _gvn.transform(new CmpPNode(target_call, native_call)); 4249 Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne)); 4250 4251 return generate_slow_guard(test_native, slow_region); 4252 } 4253 4254 //-----------------------generate_method_call---------------------------- 4255 // Use generate_method_call to make a slow-call to the real 4256 // method if the fast path fails. An alternative would be to 4257 // use a stub like OptoRuntime::slow_arraycopy_Java. 4258 // This only works for expanding the current library call, 4259 // not another intrinsic. (E.g., don't use this for making an 4260 // arraycopy call inside of the copyOf intrinsic.) 4261 CallJavaNode* 4262 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) { 4263 // When compiling the intrinsic method itself, do not use this technique. 4264 guarantee(callee() != C->method(), "cannot make slow-call to self"); 4265 4266 ciMethod* method = callee(); 4267 // ensure the JVMS we have will be correct for this call 4268 guarantee(method_id == method->intrinsic_id(), "must match"); 4269 4270 const TypeFunc* tf = TypeFunc::make(method); 4271 CallJavaNode* slow_call; 4272 if (is_static) { 4273 assert(!is_virtual, ""); 4274 slow_call = new CallStaticJavaNode(C, tf, 4275 SharedRuntime::get_resolve_static_call_stub(), method); 4276 } else if (is_virtual) { 4277 null_check_receiver(); 4278 int vtable_index = Method::invalid_vtable_index; 4279 if (UseInlineCaches) { 4280 // Suppress the vtable call 4281 } else { 4282 // hashCode and clone are not a miranda methods, 4283 // so the vtable index is fixed. 4284 // No need to use the linkResolver to get it. 4285 vtable_index = method->vtable_index(); 4286 assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index, 4287 "bad index %d", vtable_index); 4288 } 4289 slow_call = new CallDynamicJavaNode(tf, 4290 SharedRuntime::get_resolve_virtual_call_stub(), 4291 method, vtable_index); 4292 } else { // neither virtual nor static: opt_virtual 4293 null_check_receiver(); 4294 slow_call = new CallStaticJavaNode(C, tf, 4295 SharedRuntime::get_resolve_opt_virtual_call_stub(), method); 4296 slow_call->set_optimized_virtual(true); 4297 } 4298 if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) { 4299 // To be able to issue a direct call (optimized virtual or virtual) 4300 // and skip a call to MH.linkTo*/invokeBasic adapter, additional information 4301 // about the method being invoked should be attached to the call site to 4302 // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C). 4303 slow_call->set_override_symbolic_info(true); 4304 } 4305 set_arguments_for_java_call(slow_call); 4306 set_edges_for_java_call(slow_call); 4307 return slow_call; 4308 } 4309 4310 4311 /** 4312 * Build special case code for calls to hashCode on an object. This call may 4313 * be virtual (invokevirtual) or bound (invokespecial). For each case we generate 4314 * slightly different code. 4315 */ 4316 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) { 4317 assert(is_static == callee()->is_static(), "correct intrinsic selection"); 4318 assert(!(is_virtual && is_static), "either virtual, special, or static"); 4319 4320 enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT }; 4321 4322 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4323 PhiNode* result_val = new PhiNode(result_reg, TypeInt::INT); 4324 PhiNode* result_io = new PhiNode(result_reg, Type::ABIO); 4325 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4326 Node* obj = nullptr; 4327 if (!is_static) { 4328 // Check for hashing null object 4329 obj = null_check_receiver(); 4330 if (stopped()) return true; // unconditionally null 4331 result_reg->init_req(_null_path, top()); 4332 result_val->init_req(_null_path, top()); 4333 } else { 4334 // Do a null check, and return zero if null. 4335 // System.identityHashCode(null) == 0 4336 obj = argument(0); 4337 Node* null_ctl = top(); 4338 obj = null_check_oop(obj, &null_ctl); 4339 result_reg->init_req(_null_path, null_ctl); 4340 result_val->init_req(_null_path, _gvn.intcon(0)); 4341 } 4342 4343 // Unconditionally null? Then return right away. 4344 if (stopped()) { 4345 set_control( result_reg->in(_null_path)); 4346 if (!stopped()) 4347 set_result(result_val->in(_null_path)); 4348 return true; 4349 } 4350 4351 // We only go to the fast case code if we pass a number of guards. The 4352 // paths which do not pass are accumulated in the slow_region. 4353 RegionNode* slow_region = new RegionNode(1); 4354 record_for_igvn(slow_region); 4355 4356 // If this is a virtual call, we generate a funny guard. We pull out 4357 // the vtable entry corresponding to hashCode() from the target object. 4358 // If the target method which we are calling happens to be the native 4359 // Object hashCode() method, we pass the guard. We do not need this 4360 // guard for non-virtual calls -- the caller is known to be the native 4361 // Object hashCode(). 4362 if (is_virtual) { 4363 // After null check, get the object's klass. 4364 Node* obj_klass = load_object_klass(obj); 4365 generate_virtual_guard(obj_klass, slow_region); 4366 } 4367 4368 // Get the header out of the object, use LoadMarkNode when available 4369 Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes()); 4370 // The control of the load must be null. Otherwise, the load can move before 4371 // the null check after castPP removal. 4372 Node* no_ctrl = nullptr; 4373 Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered); 4374 4375 // Test the header to see if it is unlocked. 4376 Node *lock_mask = _gvn.MakeConX(markWord::lock_mask_in_place); 4377 Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask)); 4378 Node *unlocked_val = _gvn.MakeConX(markWord::unlocked_value); 4379 Node *chk_unlocked = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val)); 4380 Node *test_unlocked = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne)); 4381 4382 generate_slow_guard(test_unlocked, slow_region); 4383 4384 // Get the hash value and check to see that it has been properly assigned. 4385 // We depend on hash_mask being at most 32 bits and avoid the use of 4386 // hash_mask_in_place because it could be larger than 32 bits in a 64-bit 4387 // vm: see markWord.hpp. 4388 Node *hash_mask = _gvn.intcon(UseCompactObjectHeaders ? markWord::hash_mask_compact : markWord::hash_mask); 4389 Node *hash_shift = _gvn.intcon(UseCompactObjectHeaders ? markWord::hash_shift_compact : markWord::hash_shift); 4390 Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift)); 4391 // This hack lets the hash bits live anywhere in the mark object now, as long 4392 // as the shift drops the relevant bits into the low 32 bits. Note that 4393 // Java spec says that HashCode is an int so there's no point in capturing 4394 // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build). 4395 hshifted_header = ConvX2I(hshifted_header); 4396 Node *hash_val = _gvn.transform(new AndINode(hshifted_header, hash_mask)); 4397 4398 Node *no_hash_val = _gvn.intcon(markWord::no_hash); 4399 Node *chk_assigned = _gvn.transform(new CmpINode( hash_val, no_hash_val)); 4400 Node *test_assigned = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq)); 4401 4402 generate_slow_guard(test_assigned, slow_region); 4403 4404 Node* init_mem = reset_memory(); 4405 // fill in the rest of the null path: 4406 result_io ->init_req(_null_path, i_o()); 4407 result_mem->init_req(_null_path, init_mem); 4408 4409 result_val->init_req(_fast_path, hash_val); 4410 result_reg->init_req(_fast_path, control()); 4411 result_io ->init_req(_fast_path, i_o()); 4412 result_mem->init_req(_fast_path, init_mem); 4413 4414 // Generate code for the slow case. We make a call to hashCode(). 4415 set_control(_gvn.transform(slow_region)); 4416 if (!stopped()) { 4417 // No need for PreserveJVMState, because we're using up the present state. 4418 set_all_memory(init_mem); 4419 vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode; 4420 CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static); 4421 Node* slow_result = set_results_for_java_call(slow_call); 4422 // this->control() comes from set_results_for_java_call 4423 result_reg->init_req(_slow_path, control()); 4424 result_val->init_req(_slow_path, slow_result); 4425 result_io ->set_req(_slow_path, i_o()); 4426 result_mem ->set_req(_slow_path, reset_memory()); 4427 } 4428 4429 // Return the combined state. 4430 set_i_o( _gvn.transform(result_io) ); 4431 set_all_memory( _gvn.transform(result_mem)); 4432 4433 set_result(result_reg, result_val); 4434 return true; 4435 } 4436 4437 //---------------------------inline_native_getClass---------------------------- 4438 // public final native Class<?> java.lang.Object.getClass(); 4439 // 4440 // Build special case code for calls to getClass on an object. 4441 bool LibraryCallKit::inline_native_getClass() { 4442 Node* obj = null_check_receiver(); 4443 if (stopped()) return true; 4444 set_result(load_mirror_from_klass(load_object_klass(obj))); 4445 return true; 4446 } 4447 4448 //-----------------inline_native_Reflection_getCallerClass--------------------- 4449 // public static native Class<?> sun.reflect.Reflection.getCallerClass(); 4450 // 4451 // In the presence of deep enough inlining, getCallerClass() becomes a no-op. 4452 // 4453 // NOTE: This code must perform the same logic as JVM_GetCallerClass 4454 // in that it must skip particular security frames and checks for 4455 // caller sensitive methods. 4456 bool LibraryCallKit::inline_native_Reflection_getCallerClass() { 4457 #ifndef PRODUCT 4458 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4459 tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass"); 4460 } 4461 #endif 4462 4463 if (!jvms()->has_method()) { 4464 #ifndef PRODUCT 4465 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4466 tty->print_cr(" Bailing out because intrinsic was inlined at top level"); 4467 } 4468 #endif 4469 return false; 4470 } 4471 4472 // Walk back up the JVM state to find the caller at the required 4473 // depth. 4474 JVMState* caller_jvms = jvms(); 4475 4476 // Cf. JVM_GetCallerClass 4477 // NOTE: Start the loop at depth 1 because the current JVM state does 4478 // not include the Reflection.getCallerClass() frame. 4479 for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) { 4480 ciMethod* m = caller_jvms->method(); 4481 switch (n) { 4482 case 0: 4483 fatal("current JVM state does not include the Reflection.getCallerClass frame"); 4484 break; 4485 case 1: 4486 // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass). 4487 if (!m->caller_sensitive()) { 4488 #ifndef PRODUCT 4489 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4490 tty->print_cr(" Bailing out: CallerSensitive annotation expected at frame %d", n); 4491 } 4492 #endif 4493 return false; // bail-out; let JVM_GetCallerClass do the work 4494 } 4495 break; 4496 default: 4497 if (!m->is_ignored_by_security_stack_walk()) { 4498 // We have reached the desired frame; return the holder class. 4499 // Acquire method holder as java.lang.Class and push as constant. 4500 ciInstanceKlass* caller_klass = caller_jvms->method()->holder(); 4501 ciInstance* caller_mirror = caller_klass->java_mirror(); 4502 set_result(makecon(TypeInstPtr::make(caller_mirror))); 4503 4504 #ifndef PRODUCT 4505 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4506 tty->print_cr(" Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth()); 4507 tty->print_cr(" JVM state at this point:"); 4508 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4509 ciMethod* m = jvms()->of_depth(i)->method(); 4510 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4511 } 4512 } 4513 #endif 4514 return true; 4515 } 4516 break; 4517 } 4518 } 4519 4520 #ifndef PRODUCT 4521 if ((C->print_intrinsics() || C->print_inlining()) && Verbose) { 4522 tty->print_cr(" Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth()); 4523 tty->print_cr(" JVM state at this point:"); 4524 for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) { 4525 ciMethod* m = jvms()->of_depth(i)->method(); 4526 tty->print_cr(" %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8()); 4527 } 4528 } 4529 #endif 4530 4531 return false; // bail-out; let JVM_GetCallerClass do the work 4532 } 4533 4534 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) { 4535 Node* arg = argument(0); 4536 Node* result = nullptr; 4537 4538 switch (id) { 4539 case vmIntrinsics::_floatToRawIntBits: result = new MoveF2INode(arg); break; 4540 case vmIntrinsics::_intBitsToFloat: result = new MoveI2FNode(arg); break; 4541 case vmIntrinsics::_doubleToRawLongBits: result = new MoveD2LNode(arg); break; 4542 case vmIntrinsics::_longBitsToDouble: result = new MoveL2DNode(arg); break; 4543 case vmIntrinsics::_floatToFloat16: result = new ConvF2HFNode(arg); break; 4544 case vmIntrinsics::_float16ToFloat: result = new ConvHF2FNode(arg); break; 4545 4546 case vmIntrinsics::_doubleToLongBits: { 4547 // two paths (plus control) merge in a wood 4548 RegionNode *r = new RegionNode(3); 4549 Node *phi = new PhiNode(r, TypeLong::LONG); 4550 4551 Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg)); 4552 // Build the boolean node 4553 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4554 4555 // Branch either way. 4556 // NaN case is less traveled, which makes all the difference. 4557 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4558 Node *opt_isnan = _gvn.transform(ifisnan); 4559 assert( opt_isnan->is_If(), "Expect an IfNode"); 4560 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4561 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4562 4563 set_control(iftrue); 4564 4565 static const jlong nan_bits = CONST64(0x7ff8000000000000); 4566 Node *slow_result = longcon(nan_bits); // return NaN 4567 phi->init_req(1, _gvn.transform( slow_result )); 4568 r->init_req(1, iftrue); 4569 4570 // Else fall through 4571 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4572 set_control(iffalse); 4573 4574 phi->init_req(2, _gvn.transform(new MoveD2LNode(arg))); 4575 r->init_req(2, iffalse); 4576 4577 // Post merge 4578 set_control(_gvn.transform(r)); 4579 record_for_igvn(r); 4580 4581 C->set_has_split_ifs(true); // Has chance for split-if optimization 4582 result = phi; 4583 assert(result->bottom_type()->isa_long(), "must be"); 4584 break; 4585 } 4586 4587 case vmIntrinsics::_floatToIntBits: { 4588 // two paths (plus control) merge in a wood 4589 RegionNode *r = new RegionNode(3); 4590 Node *phi = new PhiNode(r, TypeInt::INT); 4591 4592 Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg)); 4593 // Build the boolean node 4594 Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne)); 4595 4596 // Branch either way. 4597 // NaN case is less traveled, which makes all the difference. 4598 IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN); 4599 Node *opt_isnan = _gvn.transform(ifisnan); 4600 assert( opt_isnan->is_If(), "Expect an IfNode"); 4601 IfNode *opt_ifisnan = (IfNode*)opt_isnan; 4602 Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan)); 4603 4604 set_control(iftrue); 4605 4606 static const jint nan_bits = 0x7fc00000; 4607 Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN 4608 phi->init_req(1, _gvn.transform( slow_result )); 4609 r->init_req(1, iftrue); 4610 4611 // Else fall through 4612 Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan)); 4613 set_control(iffalse); 4614 4615 phi->init_req(2, _gvn.transform(new MoveF2INode(arg))); 4616 r->init_req(2, iffalse); 4617 4618 // Post merge 4619 set_control(_gvn.transform(r)); 4620 record_for_igvn(r); 4621 4622 C->set_has_split_ifs(true); // Has chance for split-if optimization 4623 result = phi; 4624 assert(result->bottom_type()->isa_int(), "must be"); 4625 break; 4626 } 4627 4628 default: 4629 fatal_unexpected_iid(id); 4630 break; 4631 } 4632 set_result(_gvn.transform(result)); 4633 return true; 4634 } 4635 4636 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) { 4637 Node* arg = argument(0); 4638 Node* result = nullptr; 4639 4640 switch (id) { 4641 case vmIntrinsics::_floatIsInfinite: 4642 result = new IsInfiniteFNode(arg); 4643 break; 4644 case vmIntrinsics::_floatIsFinite: 4645 result = new IsFiniteFNode(arg); 4646 break; 4647 case vmIntrinsics::_doubleIsInfinite: 4648 result = new IsInfiniteDNode(arg); 4649 break; 4650 case vmIntrinsics::_doubleIsFinite: 4651 result = new IsFiniteDNode(arg); 4652 break; 4653 default: 4654 fatal_unexpected_iid(id); 4655 break; 4656 } 4657 set_result(_gvn.transform(result)); 4658 return true; 4659 } 4660 4661 //----------------------inline_unsafe_copyMemory------------------------- 4662 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); 4663 4664 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) { 4665 const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr(); 4666 const Type* base_t = gvn.type(base); 4667 4668 bool in_native = (base_t == TypePtr::NULL_PTR); 4669 bool in_heap = !TypePtr::NULL_PTR->higher_equal(base_t); 4670 bool is_mixed = !in_heap && !in_native; 4671 4672 if (is_mixed) { 4673 return true; // mixed accesses can touch both on-heap and off-heap memory 4674 } 4675 if (in_heap) { 4676 bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM); 4677 if (!is_prim_array) { 4678 // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array, 4679 // there's not enough type information available to determine proper memory slice for it. 4680 return true; 4681 } 4682 } 4683 return false; 4684 } 4685 4686 bool LibraryCallKit::inline_unsafe_copyMemory() { 4687 if (callee()->is_static()) return false; // caller must have the capability! 4688 null_check_receiver(); // null-check receiver 4689 if (stopped()) return true; 4690 4691 C->set_has_unsafe_access(true); // Mark eventual nmethod as "unsafe". 4692 4693 Node* src_base = argument(1); // type: oop 4694 Node* src_off = ConvL2X(argument(2)); // type: long 4695 Node* dst_base = argument(4); // type: oop 4696 Node* dst_off = ConvL2X(argument(5)); // type: long 4697 Node* size = ConvL2X(argument(7)); // type: long 4698 4699 assert(Unsafe_field_offset_to_byte_offset(11) == 11, 4700 "fieldOffset must be byte-scaled"); 4701 4702 Node* src_addr = make_unsafe_address(src_base, src_off); 4703 Node* dst_addr = make_unsafe_address(dst_base, dst_off); 4704 4705 Node* thread = _gvn.transform(new ThreadLocalNode()); 4706 Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset())); 4707 BasicType doing_unsafe_access_bt = T_BYTE; 4708 assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented"); 4709 4710 // update volatile field 4711 store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4712 4713 int flags = RC_LEAF | RC_NO_FP; 4714 4715 const TypePtr* dst_type = TypePtr::BOTTOM; 4716 4717 // Adjust memory effects of the runtime call based on input values. 4718 if (!has_wide_mem(_gvn, src_addr, src_base) && 4719 !has_wide_mem(_gvn, dst_addr, dst_base)) { 4720 dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory 4721 4722 const TypePtr* src_type = _gvn.type(src_addr)->is_ptr(); 4723 if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) { 4724 flags |= RC_NARROW_MEM; // narrow in memory 4725 } 4726 } 4727 4728 // Call it. Note that the length argument is not scaled. 4729 make_runtime_call(flags, 4730 OptoRuntime::fast_arraycopy_Type(), 4731 StubRoutines::unsafe_arraycopy(), 4732 "unsafe_arraycopy", 4733 dst_type, 4734 src_addr, dst_addr, size XTOP); 4735 4736 store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered); 4737 4738 return true; 4739 } 4740 4741 #undef XTOP 4742 4743 //------------------------clone_coping----------------------------------- 4744 // Helper function for inline_native_clone. 4745 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) { 4746 assert(obj_size != nullptr, ""); 4747 Node* raw_obj = alloc_obj->in(1); 4748 assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), ""); 4749 4750 AllocateNode* alloc = nullptr; 4751 if (ReduceBulkZeroing) { 4752 // We will be completely responsible for initializing this object - 4753 // mark Initialize node as complete. 4754 alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn); 4755 // The object was just allocated - there should be no any stores! 4756 guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), ""); 4757 // Mark as complete_with_arraycopy so that on AllocateNode 4758 // expansion, we know this AllocateNode is initialized by an array 4759 // copy and a StoreStore barrier exists after the array copy. 4760 alloc->initialization()->set_complete_with_arraycopy(); 4761 } 4762 4763 Node* size = _gvn.transform(obj_size); 4764 access_clone(obj, alloc_obj, size, is_array); 4765 4766 // Do not let reads from the cloned object float above the arraycopy. 4767 if (alloc != nullptr) { 4768 // Do not let stores that initialize this object be reordered with 4769 // a subsequent store that would make this object accessible by 4770 // other threads. 4771 // Record what AllocateNode this StoreStore protects so that 4772 // escape analysis can go from the MemBarStoreStoreNode to the 4773 // AllocateNode and eliminate the MemBarStoreStoreNode if possible 4774 // based on the escape status of the AllocateNode. 4775 insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress)); 4776 } else { 4777 insert_mem_bar(Op_MemBarCPUOrder); 4778 } 4779 } 4780 4781 //------------------------inline_native_clone---------------------------- 4782 // protected native Object java.lang.Object.clone(); 4783 // 4784 // Here are the simple edge cases: 4785 // null receiver => normal trap 4786 // virtual and clone was overridden => slow path to out-of-line clone 4787 // not cloneable or finalizer => slow path to out-of-line Object.clone 4788 // 4789 // The general case has two steps, allocation and copying. 4790 // Allocation has two cases, and uses GraphKit::new_instance or new_array. 4791 // 4792 // Copying also has two cases, oop arrays and everything else. 4793 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy). 4794 // Everything else uses the tight inline loop supplied by CopyArrayNode. 4795 // 4796 // These steps fold up nicely if and when the cloned object's klass 4797 // can be sharply typed as an object array, a type array, or an instance. 4798 // 4799 bool LibraryCallKit::inline_native_clone(bool is_virtual) { 4800 PhiNode* result_val; 4801 4802 // Set the reexecute bit for the interpreter to reexecute 4803 // the bytecode that invokes Object.clone if deoptimization happens. 4804 { PreserveReexecuteState preexecs(this); 4805 jvms()->set_should_reexecute(true); 4806 4807 Node* obj = null_check_receiver(); 4808 if (stopped()) return true; 4809 4810 const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr(); 4811 4812 // If we are going to clone an instance, we need its exact type to 4813 // know the number and types of fields to convert the clone to 4814 // loads/stores. Maybe a speculative type can help us. 4815 if (!obj_type->klass_is_exact() && 4816 obj_type->speculative_type() != nullptr && 4817 obj_type->speculative_type()->is_instance_klass()) { 4818 ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass(); 4819 if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem && 4820 !spec_ik->has_injected_fields()) { 4821 if (!obj_type->isa_instptr() || 4822 obj_type->is_instptr()->instance_klass()->has_subklass()) { 4823 obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false); 4824 } 4825 } 4826 } 4827 4828 // Conservatively insert a memory barrier on all memory slices. 4829 // Do not let writes into the original float below the clone. 4830 insert_mem_bar(Op_MemBarCPUOrder); 4831 4832 // paths into result_reg: 4833 enum { 4834 _slow_path = 1, // out-of-line call to clone method (virtual or not) 4835 _objArray_path, // plain array allocation, plus arrayof_oop_arraycopy 4836 _array_path, // plain array allocation, plus arrayof_long_arraycopy 4837 _instance_path, // plain instance allocation, plus arrayof_long_arraycopy 4838 PATH_LIMIT 4839 }; 4840 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 4841 result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL); 4842 PhiNode* result_i_o = new PhiNode(result_reg, Type::ABIO); 4843 PhiNode* result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM); 4844 record_for_igvn(result_reg); 4845 4846 Node* obj_klass = load_object_klass(obj); 4847 Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr); 4848 if (array_ctl != nullptr) { 4849 // It's an array. 4850 PreserveJVMState pjvms(this); 4851 set_control(array_ctl); 4852 Node* obj_length = load_array_length(obj); 4853 Node* obj_size = nullptr; 4854 Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size, /*deoptimize_on_exception=*/true); 4855 4856 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4857 if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) { 4858 // If it is an oop array, it requires very special treatment, 4859 // because gc barriers are required when accessing the array. 4860 Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr); 4861 if (is_obja != nullptr) { 4862 PreserveJVMState pjvms2(this); 4863 set_control(is_obja); 4864 // Generate a direct call to the right arraycopy function(s). 4865 // Clones are always tightly coupled. 4866 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false); 4867 ac->set_clone_oop_array(); 4868 Node* n = _gvn.transform(ac); 4869 assert(n == ac, "cannot disappear"); 4870 ac->connect_outputs(this, /*deoptimize_on_exception=*/true); 4871 4872 result_reg->init_req(_objArray_path, control()); 4873 result_val->init_req(_objArray_path, alloc_obj); 4874 result_i_o ->set_req(_objArray_path, i_o()); 4875 result_mem ->set_req(_objArray_path, reset_memory()); 4876 } 4877 } 4878 // Otherwise, there are no barriers to worry about. 4879 // (We can dispense with card marks if we know the allocation 4880 // comes out of eden (TLAB)... In fact, ReduceInitialCardMarks 4881 // causes the non-eden paths to take compensating steps to 4882 // simulate a fresh allocation, so that no further 4883 // card marks are required in compiled code to initialize 4884 // the object.) 4885 4886 if (!stopped()) { 4887 copy_to_clone(obj, alloc_obj, obj_size, true); 4888 4889 // Present the results of the copy. 4890 result_reg->init_req(_array_path, control()); 4891 result_val->init_req(_array_path, alloc_obj); 4892 result_i_o ->set_req(_array_path, i_o()); 4893 result_mem ->set_req(_array_path, reset_memory()); 4894 } 4895 } 4896 4897 // We only go to the instance fast case code if we pass a number of guards. 4898 // The paths which do not pass are accumulated in the slow_region. 4899 RegionNode* slow_region = new RegionNode(1); 4900 record_for_igvn(slow_region); 4901 if (!stopped()) { 4902 // It's an instance (we did array above). Make the slow-path tests. 4903 // If this is a virtual call, we generate a funny guard. We grab 4904 // the vtable entry corresponding to clone() from the target object. 4905 // If the target method which we are calling happens to be the 4906 // Object clone() method, we pass the guard. We do not need this 4907 // guard for non-virtual calls; the caller is known to be the native 4908 // Object clone(). 4909 if (is_virtual) { 4910 generate_virtual_guard(obj_klass, slow_region); 4911 } 4912 4913 // The object must be easily cloneable and must not have a finalizer. 4914 // Both of these conditions may be checked in a single test. 4915 // We could optimize the test further, but we don't care. 4916 generate_access_flags_guard(obj_klass, 4917 // Test both conditions: 4918 JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER, 4919 // Must be cloneable but not finalizer: 4920 JVM_ACC_IS_CLONEABLE_FAST, 4921 slow_region); 4922 } 4923 4924 if (!stopped()) { 4925 // It's an instance, and it passed the slow-path tests. 4926 PreserveJVMState pjvms(this); 4927 Node* obj_size = nullptr; 4928 // Need to deoptimize on exception from allocation since Object.clone intrinsic 4929 // is reexecuted if deoptimization occurs and there could be problems when merging 4930 // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false). 4931 Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true); 4932 4933 copy_to_clone(obj, alloc_obj, obj_size, false); 4934 4935 // Present the results of the slow call. 4936 result_reg->init_req(_instance_path, control()); 4937 result_val->init_req(_instance_path, alloc_obj); 4938 result_i_o ->set_req(_instance_path, i_o()); 4939 result_mem ->set_req(_instance_path, reset_memory()); 4940 } 4941 4942 // Generate code for the slow case. We make a call to clone(). 4943 set_control(_gvn.transform(slow_region)); 4944 if (!stopped()) { 4945 PreserveJVMState pjvms(this); 4946 CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual); 4947 // We need to deoptimize on exception (see comment above) 4948 Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true); 4949 // this->control() comes from set_results_for_java_call 4950 result_reg->init_req(_slow_path, control()); 4951 result_val->init_req(_slow_path, slow_result); 4952 result_i_o ->set_req(_slow_path, i_o()); 4953 result_mem ->set_req(_slow_path, reset_memory()); 4954 } 4955 4956 // Return the combined state. 4957 set_control( _gvn.transform(result_reg)); 4958 set_i_o( _gvn.transform(result_i_o)); 4959 set_all_memory( _gvn.transform(result_mem)); 4960 } // original reexecute is set back here 4961 4962 set_result(_gvn.transform(result_val)); 4963 return true; 4964 } 4965 4966 // If we have a tightly coupled allocation, the arraycopy may take care 4967 // of the array initialization. If one of the guards we insert between 4968 // the allocation and the arraycopy causes a deoptimization, an 4969 // uninitialized array will escape the compiled method. To prevent that 4970 // we set the JVM state for uncommon traps between the allocation and 4971 // the arraycopy to the state before the allocation so, in case of 4972 // deoptimization, we'll reexecute the allocation and the 4973 // initialization. 4974 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) { 4975 if (alloc != nullptr) { 4976 ciMethod* trap_method = alloc->jvms()->method(); 4977 int trap_bci = alloc->jvms()->bci(); 4978 4979 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 4980 !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) { 4981 // Make sure there's no store between the allocation and the 4982 // arraycopy otherwise visible side effects could be rexecuted 4983 // in case of deoptimization and cause incorrect execution. 4984 bool no_interfering_store = true; 4985 Node* mem = alloc->in(TypeFunc::Memory); 4986 if (mem->is_MergeMem()) { 4987 for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) { 4988 Node* n = mms.memory(); 4989 if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 4990 assert(n->is_Store(), "what else?"); 4991 no_interfering_store = false; 4992 break; 4993 } 4994 } 4995 } else { 4996 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 4997 Node* n = mms.memory(); 4998 if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) { 4999 assert(n->is_Store(), "what else?"); 5000 no_interfering_store = false; 5001 break; 5002 } 5003 } 5004 } 5005 5006 if (no_interfering_store) { 5007 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5008 5009 JVMState* saved_jvms = jvms(); 5010 saved_reexecute_sp = _reexecute_sp; 5011 5012 set_jvms(sfpt->jvms()); 5013 _reexecute_sp = jvms()->sp(); 5014 5015 return saved_jvms; 5016 } 5017 } 5018 } 5019 return nullptr; 5020 } 5021 5022 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack 5023 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter. 5024 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const { 5025 JVMState* old_jvms = alloc->jvms()->clone_shallow(C); 5026 uint size = alloc->req(); 5027 SafePointNode* sfpt = new SafePointNode(size, old_jvms); 5028 old_jvms->set_map(sfpt); 5029 for (uint i = 0; i < size; i++) { 5030 sfpt->init_req(i, alloc->in(i)); 5031 } 5032 // re-push array length for deoptimization 5033 sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength)); 5034 old_jvms->set_sp(old_jvms->sp()+1); 5035 old_jvms->set_monoff(old_jvms->monoff()+1); 5036 old_jvms->set_scloff(old_jvms->scloff()+1); 5037 old_jvms->set_endoff(old_jvms->endoff()+1); 5038 old_jvms->set_should_reexecute(true); 5039 5040 sfpt->set_i_o(map()->i_o()); 5041 sfpt->set_memory(map()->memory()); 5042 sfpt->set_control(map()->control()); 5043 return sfpt; 5044 } 5045 5046 // In case of a deoptimization, we restart execution at the 5047 // allocation, allocating a new array. We would leave an uninitialized 5048 // array in the heap that GCs wouldn't expect. Move the allocation 5049 // after the traps so we don't allocate the array if we 5050 // deoptimize. This is possible because tightly_coupled_allocation() 5051 // guarantees there's no observer of the allocated array at this point 5052 // and the control flow is simple enough. 5053 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards, 5054 int saved_reexecute_sp, uint new_idx) { 5055 if (saved_jvms_before_guards != nullptr && !stopped()) { 5056 replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards); 5057 5058 assert(alloc != nullptr, "only with a tightly coupled allocation"); 5059 // restore JVM state to the state at the arraycopy 5060 saved_jvms_before_guards->map()->set_control(map()->control()); 5061 assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?"); 5062 assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?"); 5063 // If we've improved the types of some nodes (null check) while 5064 // emitting the guards, propagate them to the current state 5065 map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx); 5066 set_jvms(saved_jvms_before_guards); 5067 _reexecute_sp = saved_reexecute_sp; 5068 5069 // Remove the allocation from above the guards 5070 CallProjections callprojs; 5071 alloc->extract_projections(&callprojs, true); 5072 InitializeNode* init = alloc->initialization(); 5073 Node* alloc_mem = alloc->in(TypeFunc::Memory); 5074 C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 5075 C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem); 5076 5077 // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below 5078 // the allocation (i.e. is only valid if the allocation succeeds): 5079 // 1) replace CastIINode with AllocateArrayNode's length here 5080 // 2) Create CastIINode again once allocation has moved (see below) at the end of this method 5081 // 5082 // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate 5083 // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy) 5084 Node* init_control = init->proj_out(TypeFunc::Control); 5085 Node* alloc_length = alloc->Ideal_length(); 5086 #ifdef ASSERT 5087 Node* prev_cast = nullptr; 5088 #endif 5089 for (uint i = 0; i < init_control->outcnt(); i++) { 5090 Node* init_out = init_control->raw_out(i); 5091 if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) { 5092 #ifdef ASSERT 5093 if (prev_cast == nullptr) { 5094 prev_cast = init_out; 5095 } else { 5096 if (prev_cast->cmp(*init_out) == false) { 5097 prev_cast->dump(); 5098 init_out->dump(); 5099 assert(false, "not equal CastIINode"); 5100 } 5101 } 5102 #endif 5103 C->gvn_replace_by(init_out, alloc_length); 5104 } 5105 } 5106 C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0)); 5107 5108 // move the allocation here (after the guards) 5109 _gvn.hash_delete(alloc); 5110 alloc->set_req(TypeFunc::Control, control()); 5111 alloc->set_req(TypeFunc::I_O, i_o()); 5112 Node *mem = reset_memory(); 5113 set_all_memory(mem); 5114 alloc->set_req(TypeFunc::Memory, mem); 5115 set_control(init->proj_out_or_null(TypeFunc::Control)); 5116 set_i_o(callprojs.fallthrough_ioproj); 5117 5118 // Update memory as done in GraphKit::set_output_for_allocation() 5119 const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength)); 5120 const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type(); 5121 if (ary_type->isa_aryptr() && length_type != nullptr) { 5122 ary_type = ary_type->is_aryptr()->cast_to_size(length_type); 5123 } 5124 const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot); 5125 int elemidx = C->get_alias_index(telemref); 5126 set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw); 5127 set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx); 5128 5129 Node* allocx = _gvn.transform(alloc); 5130 assert(allocx == alloc, "where has the allocation gone?"); 5131 assert(dest->is_CheckCastPP(), "not an allocation result?"); 5132 5133 _gvn.hash_delete(dest); 5134 dest->set_req(0, control()); 5135 Node* destx = _gvn.transform(dest); 5136 assert(destx == dest, "where has the allocation result gone?"); 5137 5138 array_ideal_length(alloc, ary_type, true); 5139 } 5140 } 5141 5142 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(), 5143 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary 5144 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array 5145 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter, 5146 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in 5147 // the interpreter similar to what we are doing for the newly emitted guards for the array copy. 5148 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc, 5149 JVMState* saved_jvms_before_guards) { 5150 if (saved_jvms_before_guards->map()->control()->is_IfProj()) { 5151 // There is at least one unrelated uncommon trap which needs to be replaced. 5152 SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc); 5153 5154 JVMState* saved_jvms = jvms(); 5155 const int saved_reexecute_sp = _reexecute_sp; 5156 set_jvms(sfpt->jvms()); 5157 _reexecute_sp = jvms()->sp(); 5158 5159 replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards); 5160 5161 // Restore state 5162 set_jvms(saved_jvms); 5163 _reexecute_sp = saved_reexecute_sp; 5164 } 5165 } 5166 5167 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon 5168 // traps will have the state of the array allocation. Let the old uncommon trap nodes die. 5169 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) { 5170 Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards 5171 while (if_proj->is_IfProj()) { 5172 CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj); 5173 if (uncommon_trap != nullptr) { 5174 create_new_uncommon_trap(uncommon_trap); 5175 } 5176 assert(if_proj->in(0)->is_If(), "must be If"); 5177 if_proj = if_proj->in(0)->in(0); 5178 } 5179 assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(), 5180 "must have reached control projection of init node"); 5181 } 5182 5183 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) { 5184 const int trap_request = uncommon_trap_call->uncommon_trap_request(); 5185 assert(trap_request != 0, "no valid UCT trap request"); 5186 PreserveJVMState pjvms(this); 5187 set_control(uncommon_trap_call->in(0)); 5188 uncommon_trap(Deoptimization::trap_request_reason(trap_request), 5189 Deoptimization::trap_request_action(trap_request)); 5190 assert(stopped(), "Should be stopped"); 5191 _gvn.hash_delete(uncommon_trap_call); 5192 uncommon_trap_call->set_req(0, top()); // not used anymore, kill it 5193 } 5194 5195 //------------------------------inline_arraycopy----------------------- 5196 // public static native void java.lang.System.arraycopy(Object src, int srcPos, 5197 // Object dest, int destPos, 5198 // int length); 5199 bool LibraryCallKit::inline_arraycopy() { 5200 // Get the arguments. 5201 Node* src = argument(0); // type: oop 5202 Node* src_offset = argument(1); // type: int 5203 Node* dest = argument(2); // type: oop 5204 Node* dest_offset = argument(3); // type: int 5205 Node* length = argument(4); // type: int 5206 5207 uint new_idx = C->unique(); 5208 5209 // Check for allocation before we add nodes that would confuse 5210 // tightly_coupled_allocation() 5211 AllocateArrayNode* alloc = tightly_coupled_allocation(dest); 5212 5213 int saved_reexecute_sp = -1; 5214 JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp); 5215 // See arraycopy_restore_alloc_state() comment 5216 // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards 5217 // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation 5218 // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards 5219 bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr); 5220 5221 // The following tests must be performed 5222 // (1) src and dest are arrays. 5223 // (2) src and dest arrays must have elements of the same BasicType 5224 // (3) src and dest must not be null. 5225 // (4) src_offset must not be negative. 5226 // (5) dest_offset must not be negative. 5227 // (6) length must not be negative. 5228 // (7) src_offset + length must not exceed length of src. 5229 // (8) dest_offset + length must not exceed length of dest. 5230 // (9) each element of an oop array must be assignable 5231 5232 // (3) src and dest must not be null. 5233 // always do this here because we need the JVM state for uncommon traps 5234 Node* null_ctl = top(); 5235 src = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY); 5236 assert(null_ctl->is_top(), "no null control here"); 5237 dest = null_check(dest, T_ARRAY); 5238 5239 if (!can_emit_guards) { 5240 // if saved_jvms_before_guards is null and alloc is not null, we don't emit any 5241 // guards but the arraycopy node could still take advantage of a 5242 // tightly allocated allocation. tightly_coupled_allocation() is 5243 // called again to make sure it takes the null check above into 5244 // account: the null check is mandatory and if it caused an 5245 // uncommon trap to be emitted then the allocation can't be 5246 // considered tightly coupled in this context. 5247 alloc = tightly_coupled_allocation(dest); 5248 } 5249 5250 bool validated = false; 5251 5252 const Type* src_type = _gvn.type(src); 5253 const Type* dest_type = _gvn.type(dest); 5254 const TypeAryPtr* top_src = src_type->isa_aryptr(); 5255 const TypeAryPtr* top_dest = dest_type->isa_aryptr(); 5256 5257 // Do we have the type of src? 5258 bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5259 // Do we have the type of dest? 5260 bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5261 // Is the type for src from speculation? 5262 bool src_spec = false; 5263 // Is the type for dest from speculation? 5264 bool dest_spec = false; 5265 5266 if ((!has_src || !has_dest) && can_emit_guards) { 5267 // We don't have sufficient type information, let's see if 5268 // speculative types can help. We need to have types for both src 5269 // and dest so that it pays off. 5270 5271 // Do we already have or could we have type information for src 5272 bool could_have_src = has_src; 5273 // Do we already have or could we have type information for dest 5274 bool could_have_dest = has_dest; 5275 5276 ciKlass* src_k = nullptr; 5277 if (!has_src) { 5278 src_k = src_type->speculative_type_not_null(); 5279 if (src_k != nullptr && src_k->is_array_klass()) { 5280 could_have_src = true; 5281 } 5282 } 5283 5284 ciKlass* dest_k = nullptr; 5285 if (!has_dest) { 5286 dest_k = dest_type->speculative_type_not_null(); 5287 if (dest_k != nullptr && dest_k->is_array_klass()) { 5288 could_have_dest = true; 5289 } 5290 } 5291 5292 if (could_have_src && could_have_dest) { 5293 // This is going to pay off so emit the required guards 5294 if (!has_src) { 5295 src = maybe_cast_profiled_obj(src, src_k, true); 5296 src_type = _gvn.type(src); 5297 top_src = src_type->isa_aryptr(); 5298 has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM); 5299 src_spec = true; 5300 } 5301 if (!has_dest) { 5302 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5303 dest_type = _gvn.type(dest); 5304 top_dest = dest_type->isa_aryptr(); 5305 has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM); 5306 dest_spec = true; 5307 } 5308 } 5309 } 5310 5311 if (has_src && has_dest && can_emit_guards) { 5312 BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type(); 5313 BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type(); 5314 if (is_reference_type(src_elem, true)) src_elem = T_OBJECT; 5315 if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT; 5316 5317 if (src_elem == dest_elem && src_elem == T_OBJECT) { 5318 // If both arrays are object arrays then having the exact types 5319 // for both will remove the need for a subtype check at runtime 5320 // before the call and may make it possible to pick a faster copy 5321 // routine (without a subtype check on every element) 5322 // Do we have the exact type of src? 5323 bool could_have_src = src_spec; 5324 // Do we have the exact type of dest? 5325 bool could_have_dest = dest_spec; 5326 ciKlass* src_k = nullptr; 5327 ciKlass* dest_k = nullptr; 5328 if (!src_spec) { 5329 src_k = src_type->speculative_type_not_null(); 5330 if (src_k != nullptr && src_k->is_array_klass()) { 5331 could_have_src = true; 5332 } 5333 } 5334 if (!dest_spec) { 5335 dest_k = dest_type->speculative_type_not_null(); 5336 if (dest_k != nullptr && dest_k->is_array_klass()) { 5337 could_have_dest = true; 5338 } 5339 } 5340 if (could_have_src && could_have_dest) { 5341 // If we can have both exact types, emit the missing guards 5342 if (could_have_src && !src_spec) { 5343 src = maybe_cast_profiled_obj(src, src_k, true); 5344 } 5345 if (could_have_dest && !dest_spec) { 5346 dest = maybe_cast_profiled_obj(dest, dest_k, true); 5347 } 5348 } 5349 } 5350 } 5351 5352 ciMethod* trap_method = method(); 5353 int trap_bci = bci(); 5354 if (saved_jvms_before_guards != nullptr) { 5355 trap_method = alloc->jvms()->method(); 5356 trap_bci = alloc->jvms()->bci(); 5357 } 5358 5359 bool negative_length_guard_generated = false; 5360 5361 if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) && 5362 can_emit_guards && 5363 !src->is_top() && !dest->is_top()) { 5364 // validate arguments: enables transformation the ArrayCopyNode 5365 validated = true; 5366 5367 RegionNode* slow_region = new RegionNode(1); 5368 record_for_igvn(slow_region); 5369 5370 // (1) src and dest are arrays. 5371 generate_non_array_guard(load_object_klass(src), slow_region); 5372 generate_non_array_guard(load_object_klass(dest), slow_region); 5373 5374 // (2) src and dest arrays must have elements of the same BasicType 5375 // done at macro expansion or at Ideal transformation time 5376 5377 // (4) src_offset must not be negative. 5378 generate_negative_guard(src_offset, slow_region); 5379 5380 // (5) dest_offset must not be negative. 5381 generate_negative_guard(dest_offset, slow_region); 5382 5383 // (7) src_offset + length must not exceed length of src. 5384 generate_limit_guard(src_offset, length, 5385 load_array_length(src), 5386 slow_region); 5387 5388 // (8) dest_offset + length must not exceed length of dest. 5389 generate_limit_guard(dest_offset, length, 5390 load_array_length(dest), 5391 slow_region); 5392 5393 // (6) length must not be negative. 5394 // This is also checked in generate_arraycopy() during macro expansion, but 5395 // we also have to check it here for the case where the ArrayCopyNode will 5396 // be eliminated by Escape Analysis. 5397 if (EliminateAllocations) { 5398 generate_negative_guard(length, slow_region); 5399 negative_length_guard_generated = true; 5400 } 5401 5402 // (9) each element of an oop array must be assignable 5403 Node* dest_klass = load_object_klass(dest); 5404 if (src != dest) { 5405 Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass); 5406 5407 if (not_subtype_ctrl != top()) { 5408 PreserveJVMState pjvms(this); 5409 set_control(not_subtype_ctrl); 5410 uncommon_trap(Deoptimization::Reason_intrinsic, 5411 Deoptimization::Action_make_not_entrant); 5412 assert(stopped(), "Should be stopped"); 5413 } 5414 } 5415 { 5416 PreserveJVMState pjvms(this); 5417 set_control(_gvn.transform(slow_region)); 5418 uncommon_trap(Deoptimization::Reason_intrinsic, 5419 Deoptimization::Action_make_not_entrant); 5420 assert(stopped(), "Should be stopped"); 5421 } 5422 5423 const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr(); 5424 const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type(); 5425 src = _gvn.transform(new CheckCastPPNode(control(), src, toop)); 5426 arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx); 5427 } 5428 5429 if (stopped()) { 5430 return true; 5431 } 5432 5433 ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated, 5434 // Create LoadRange and LoadKlass nodes for use during macro expansion here 5435 // so the compiler has a chance to eliminate them: during macro expansion, 5436 // we have to set their control (CastPP nodes are eliminated). 5437 load_object_klass(src), load_object_klass(dest), 5438 load_array_length(src), load_array_length(dest)); 5439 5440 ac->set_arraycopy(validated); 5441 5442 Node* n = _gvn.transform(ac); 5443 if (n == ac) { 5444 ac->connect_outputs(this); 5445 } else { 5446 assert(validated, "shouldn't transform if all arguments not validated"); 5447 set_all_memory(n); 5448 } 5449 clear_upper_avx(); 5450 5451 5452 return true; 5453 } 5454 5455 5456 // Helper function which determines if an arraycopy immediately follows 5457 // an allocation, with no intervening tests or other escapes for the object. 5458 AllocateArrayNode* 5459 LibraryCallKit::tightly_coupled_allocation(Node* ptr) { 5460 if (stopped()) return nullptr; // no fast path 5461 if (!C->do_aliasing()) return nullptr; // no MergeMems around 5462 5463 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn); 5464 if (alloc == nullptr) return nullptr; 5465 5466 Node* rawmem = memory(Compile::AliasIdxRaw); 5467 // Is the allocation's memory state untouched? 5468 if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) { 5469 // Bail out if there have been raw-memory effects since the allocation. 5470 // (Example: There might have been a call or safepoint.) 5471 return nullptr; 5472 } 5473 rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw); 5474 if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) { 5475 return nullptr; 5476 } 5477 5478 // There must be no unexpected observers of this allocation. 5479 for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) { 5480 Node* obs = ptr->fast_out(i); 5481 if (obs != this->map()) { 5482 return nullptr; 5483 } 5484 } 5485 5486 // This arraycopy must unconditionally follow the allocation of the ptr. 5487 Node* alloc_ctl = ptr->in(0); 5488 Node* ctl = control(); 5489 while (ctl != alloc_ctl) { 5490 // There may be guards which feed into the slow_region. 5491 // Any other control flow means that we might not get a chance 5492 // to finish initializing the allocated object. 5493 // Various low-level checks bottom out in uncommon traps. These 5494 // are considered safe since we've already checked above that 5495 // there is no unexpected observer of this allocation. 5496 if (get_uncommon_trap_from_success_proj(ctl) != nullptr) { 5497 assert(ctl->in(0)->is_If(), "must be If"); 5498 ctl = ctl->in(0)->in(0); 5499 } else { 5500 return nullptr; 5501 } 5502 } 5503 5504 // If we get this far, we have an allocation which immediately 5505 // precedes the arraycopy, and we can take over zeroing the new object. 5506 // The arraycopy will finish the initialization, and provide 5507 // a new control state to which we will anchor the destination pointer. 5508 5509 return alloc; 5510 } 5511 5512 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) { 5513 if (node->is_IfProj()) { 5514 Node* other_proj = node->as_IfProj()->other_if_proj(); 5515 for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) { 5516 Node* obs = other_proj->fast_out(j); 5517 if (obs->in(0) == other_proj && obs->is_CallStaticJava() && 5518 (obs->as_CallStaticJava()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) { 5519 return obs->as_CallStaticJava(); 5520 } 5521 } 5522 } 5523 return nullptr; 5524 } 5525 5526 //-------------inline_encodeISOArray----------------------------------- 5527 // encode char[] to byte[] in ISO_8859_1 or ASCII 5528 bool LibraryCallKit::inline_encodeISOArray(bool ascii) { 5529 assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters"); 5530 // no receiver since it is static method 5531 Node *src = argument(0); 5532 Node *src_offset = argument(1); 5533 Node *dst = argument(2); 5534 Node *dst_offset = argument(3); 5535 Node *length = argument(4); 5536 5537 src = must_be_not_null(src, true); 5538 dst = must_be_not_null(dst, true); 5539 5540 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 5541 const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr(); 5542 if (src_type == nullptr || src_type->elem() == Type::BOTTOM || 5543 dst_type == nullptr || dst_type->elem() == Type::BOTTOM) { 5544 // failed array check 5545 return false; 5546 } 5547 5548 // Figure out the size and type of the elements we will be copying. 5549 BasicType src_elem = src_type->elem()->array_element_basic_type(); 5550 BasicType dst_elem = dst_type->elem()->array_element_basic_type(); 5551 if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) { 5552 return false; 5553 } 5554 5555 Node* src_start = array_element_address(src, src_offset, T_CHAR); 5556 Node* dst_start = array_element_address(dst, dst_offset, dst_elem); 5557 // 'src_start' points to src array + scaled offset 5558 // 'dst_start' points to dst array + scaled offset 5559 5560 const TypeAryPtr* mtype = TypeAryPtr::BYTES; 5561 Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii); 5562 enc = _gvn.transform(enc); 5563 Node* res_mem = _gvn.transform(new SCMemProjNode(enc)); 5564 set_memory(res_mem, mtype); 5565 set_result(enc); 5566 clear_upper_avx(); 5567 5568 return true; 5569 } 5570 5571 //-------------inline_multiplyToLen----------------------------------- 5572 bool LibraryCallKit::inline_multiplyToLen() { 5573 assert(UseMultiplyToLenIntrinsic, "not implemented on this platform"); 5574 5575 address stubAddr = StubRoutines::multiplyToLen(); 5576 if (stubAddr == nullptr) { 5577 return false; // Intrinsic's stub is not implemented on this platform 5578 } 5579 const char* stubName = "multiplyToLen"; 5580 5581 assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters"); 5582 5583 // no receiver because it is a static method 5584 Node* x = argument(0); 5585 Node* xlen = argument(1); 5586 Node* y = argument(2); 5587 Node* ylen = argument(3); 5588 Node* z = argument(4); 5589 5590 x = must_be_not_null(x, true); 5591 y = must_be_not_null(y, true); 5592 5593 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 5594 const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr(); 5595 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 5596 y_type == nullptr || y_type->elem() == Type::BOTTOM) { 5597 // failed array check 5598 return false; 5599 } 5600 5601 BasicType x_elem = x_type->elem()->array_element_basic_type(); 5602 BasicType y_elem = y_type->elem()->array_element_basic_type(); 5603 if (x_elem != T_INT || y_elem != T_INT) { 5604 return false; 5605 } 5606 5607 // Set the original stack and the reexecute bit for the interpreter to reexecute 5608 // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens 5609 // on the return from z array allocation in runtime. 5610 { PreserveReexecuteState preexecs(this); 5611 jvms()->set_should_reexecute(true); 5612 5613 Node* x_start = array_element_address(x, intcon(0), x_elem); 5614 Node* y_start = array_element_address(y, intcon(0), y_elem); 5615 // 'x_start' points to x array + scaled xlen 5616 // 'y_start' points to y array + scaled ylen 5617 5618 // Allocate the result array 5619 Node* zlen = _gvn.transform(new AddINode(xlen, ylen)); 5620 ciKlass* klass = ciTypeArrayKlass::make(T_INT); 5621 Node* klass_node = makecon(TypeKlassPtr::make(klass)); 5622 5623 IdealKit ideal(this); 5624 5625 #define __ ideal. 5626 Node* one = __ ConI(1); 5627 Node* zero = __ ConI(0); 5628 IdealVariable need_alloc(ideal), z_alloc(ideal); __ declarations_done(); 5629 __ set(need_alloc, zero); 5630 __ set(z_alloc, z); 5631 __ if_then(z, BoolTest::eq, null()); { 5632 __ increment (need_alloc, one); 5633 } __ else_(); { 5634 // Update graphKit memory and control from IdealKit. 5635 sync_kit(ideal); 5636 Node *cast = new CastPPNode(z, TypePtr::NOTNULL); 5637 cast->init_req(0, control()); 5638 _gvn.set_type(cast, cast->bottom_type()); 5639 C->record_for_igvn(cast); 5640 5641 Node* zlen_arg = load_array_length(cast); 5642 // Update IdealKit memory and control from graphKit. 5643 __ sync_kit(this); 5644 __ if_then(zlen_arg, BoolTest::lt, zlen); { 5645 __ increment (need_alloc, one); 5646 } __ end_if(); 5647 } __ end_if(); 5648 5649 __ if_then(__ value(need_alloc), BoolTest::ne, zero); { 5650 // Update graphKit memory and control from IdealKit. 5651 sync_kit(ideal); 5652 Node * narr = new_array(klass_node, zlen, 1); 5653 // Update IdealKit memory and control from graphKit. 5654 __ sync_kit(this); 5655 __ set(z_alloc, narr); 5656 } __ end_if(); 5657 5658 sync_kit(ideal); 5659 z = __ value(z_alloc); 5660 // Can't use TypeAryPtr::INTS which uses Bottom offset. 5661 _gvn.set_type(z, TypeOopPtr::make_from_klass(klass)); 5662 // Final sync IdealKit and GraphKit. 5663 final_sync(ideal); 5664 #undef __ 5665 5666 Node* z_start = array_element_address(z, intcon(0), T_INT); 5667 5668 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5669 OptoRuntime::multiplyToLen_Type(), 5670 stubAddr, stubName, TypePtr::BOTTOM, 5671 x_start, xlen, y_start, ylen, z_start, zlen); 5672 } // original reexecute is set back here 5673 5674 C->set_has_split_ifs(true); // Has chance for split-if optimization 5675 set_result(z); 5676 return true; 5677 } 5678 5679 //-------------inline_squareToLen------------------------------------ 5680 bool LibraryCallKit::inline_squareToLen() { 5681 assert(UseSquareToLenIntrinsic, "not implemented on this platform"); 5682 5683 address stubAddr = StubRoutines::squareToLen(); 5684 if (stubAddr == nullptr) { 5685 return false; // Intrinsic's stub is not implemented on this platform 5686 } 5687 const char* stubName = "squareToLen"; 5688 5689 assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters"); 5690 5691 Node* x = argument(0); 5692 Node* len = argument(1); 5693 Node* z = argument(2); 5694 Node* zlen = argument(3); 5695 5696 x = must_be_not_null(x, true); 5697 z = must_be_not_null(z, true); 5698 5699 const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr(); 5700 const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr(); 5701 if (x_type == nullptr || x_type->elem() == Type::BOTTOM || 5702 z_type == nullptr || z_type->elem() == Type::BOTTOM) { 5703 // failed array check 5704 return false; 5705 } 5706 5707 BasicType x_elem = x_type->elem()->array_element_basic_type(); 5708 BasicType z_elem = z_type->elem()->array_element_basic_type(); 5709 if (x_elem != T_INT || z_elem != T_INT) { 5710 return false; 5711 } 5712 5713 5714 Node* x_start = array_element_address(x, intcon(0), x_elem); 5715 Node* z_start = array_element_address(z, intcon(0), z_elem); 5716 5717 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5718 OptoRuntime::squareToLen_Type(), 5719 stubAddr, stubName, TypePtr::BOTTOM, 5720 x_start, len, z_start, zlen); 5721 5722 set_result(z); 5723 return true; 5724 } 5725 5726 //-------------inline_mulAdd------------------------------------------ 5727 bool LibraryCallKit::inline_mulAdd() { 5728 assert(UseMulAddIntrinsic, "not implemented on this platform"); 5729 5730 address stubAddr = StubRoutines::mulAdd(); 5731 if (stubAddr == nullptr) { 5732 return false; // Intrinsic's stub is not implemented on this platform 5733 } 5734 const char* stubName = "mulAdd"; 5735 5736 assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters"); 5737 5738 Node* out = argument(0); 5739 Node* in = argument(1); 5740 Node* offset = argument(2); 5741 Node* len = argument(3); 5742 Node* k = argument(4); 5743 5744 in = must_be_not_null(in, true); 5745 out = must_be_not_null(out, true); 5746 5747 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 5748 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 5749 if (out_type == nullptr || out_type->elem() == Type::BOTTOM || 5750 in_type == nullptr || in_type->elem() == Type::BOTTOM) { 5751 // failed array check 5752 return false; 5753 } 5754 5755 BasicType out_elem = out_type->elem()->array_element_basic_type(); 5756 BasicType in_elem = in_type->elem()->array_element_basic_type(); 5757 if (out_elem != T_INT || in_elem != T_INT) { 5758 return false; 5759 } 5760 5761 Node* outlen = load_array_length(out); 5762 Node* new_offset = _gvn.transform(new SubINode(outlen, offset)); 5763 Node* out_start = array_element_address(out, intcon(0), out_elem); 5764 Node* in_start = array_element_address(in, intcon(0), in_elem); 5765 5766 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, 5767 OptoRuntime::mulAdd_Type(), 5768 stubAddr, stubName, TypePtr::BOTTOM, 5769 out_start,in_start, new_offset, len, k); 5770 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 5771 set_result(result); 5772 return true; 5773 } 5774 5775 //-------------inline_montgomeryMultiply----------------------------------- 5776 bool LibraryCallKit::inline_montgomeryMultiply() { 5777 address stubAddr = StubRoutines::montgomeryMultiply(); 5778 if (stubAddr == nullptr) { 5779 return false; // Intrinsic's stub is not implemented on this platform 5780 } 5781 5782 assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform"); 5783 const char* stubName = "montgomery_multiply"; 5784 5785 assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters"); 5786 5787 Node* a = argument(0); 5788 Node* b = argument(1); 5789 Node* n = argument(2); 5790 Node* len = argument(3); 5791 Node* inv = argument(4); 5792 Node* m = argument(6); 5793 5794 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 5795 const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr(); 5796 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 5797 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 5798 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 5799 b_type == nullptr || b_type->elem() == Type::BOTTOM || 5800 n_type == nullptr || n_type->elem() == Type::BOTTOM || 5801 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 5802 // failed array check 5803 return false; 5804 } 5805 5806 BasicType a_elem = a_type->elem()->array_element_basic_type(); 5807 BasicType b_elem = b_type->elem()->array_element_basic_type(); 5808 BasicType n_elem = n_type->elem()->array_element_basic_type(); 5809 BasicType m_elem = m_type->elem()->array_element_basic_type(); 5810 if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5811 return false; 5812 } 5813 5814 // Make the call 5815 { 5816 Node* a_start = array_element_address(a, intcon(0), a_elem); 5817 Node* b_start = array_element_address(b, intcon(0), b_elem); 5818 Node* n_start = array_element_address(n, intcon(0), n_elem); 5819 Node* m_start = array_element_address(m, intcon(0), m_elem); 5820 5821 Node* call = make_runtime_call(RC_LEAF, 5822 OptoRuntime::montgomeryMultiply_Type(), 5823 stubAddr, stubName, TypePtr::BOTTOM, 5824 a_start, b_start, n_start, len, inv, top(), 5825 m_start); 5826 set_result(m); 5827 } 5828 5829 return true; 5830 } 5831 5832 bool LibraryCallKit::inline_montgomerySquare() { 5833 address stubAddr = StubRoutines::montgomerySquare(); 5834 if (stubAddr == nullptr) { 5835 return false; // Intrinsic's stub is not implemented on this platform 5836 } 5837 5838 assert(UseMontgomerySquareIntrinsic, "not implemented on this platform"); 5839 const char* stubName = "montgomery_square"; 5840 5841 assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters"); 5842 5843 Node* a = argument(0); 5844 Node* n = argument(1); 5845 Node* len = argument(2); 5846 Node* inv = argument(3); 5847 Node* m = argument(5); 5848 5849 const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr(); 5850 const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr(); 5851 const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr(); 5852 if (a_type == nullptr || a_type->elem() == Type::BOTTOM || 5853 n_type == nullptr || n_type->elem() == Type::BOTTOM || 5854 m_type == nullptr || m_type->elem() == Type::BOTTOM) { 5855 // failed array check 5856 return false; 5857 } 5858 5859 BasicType a_elem = a_type->elem()->array_element_basic_type(); 5860 BasicType n_elem = n_type->elem()->array_element_basic_type(); 5861 BasicType m_elem = m_type->elem()->array_element_basic_type(); 5862 if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) { 5863 return false; 5864 } 5865 5866 // Make the call 5867 { 5868 Node* a_start = array_element_address(a, intcon(0), a_elem); 5869 Node* n_start = array_element_address(n, intcon(0), n_elem); 5870 Node* m_start = array_element_address(m, intcon(0), m_elem); 5871 5872 Node* call = make_runtime_call(RC_LEAF, 5873 OptoRuntime::montgomerySquare_Type(), 5874 stubAddr, stubName, TypePtr::BOTTOM, 5875 a_start, n_start, len, inv, top(), 5876 m_start); 5877 set_result(m); 5878 } 5879 5880 return true; 5881 } 5882 5883 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) { 5884 address stubAddr = nullptr; 5885 const char* stubName = nullptr; 5886 5887 stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift(); 5888 if (stubAddr == nullptr) { 5889 return false; // Intrinsic's stub is not implemented on this platform 5890 } 5891 5892 stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker"; 5893 5894 assert(callee()->signature()->size() == 5, "expected 5 arguments"); 5895 5896 Node* newArr = argument(0); 5897 Node* oldArr = argument(1); 5898 Node* newIdx = argument(2); 5899 Node* shiftCount = argument(3); 5900 Node* numIter = argument(4); 5901 5902 const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr(); 5903 const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr(); 5904 if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM || 5905 oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) { 5906 return false; 5907 } 5908 5909 BasicType newArr_elem = newArr_type->elem()->array_element_basic_type(); 5910 BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type(); 5911 if (newArr_elem != T_INT || oldArr_elem != T_INT) { 5912 return false; 5913 } 5914 5915 // Make the call 5916 { 5917 Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem); 5918 Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem); 5919 5920 Node* call = make_runtime_call(RC_LEAF, 5921 OptoRuntime::bigIntegerShift_Type(), 5922 stubAddr, 5923 stubName, 5924 TypePtr::BOTTOM, 5925 newArr_start, 5926 oldArr_start, 5927 newIdx, 5928 shiftCount, 5929 numIter); 5930 } 5931 5932 return true; 5933 } 5934 5935 //-------------inline_vectorizedMismatch------------------------------ 5936 bool LibraryCallKit::inline_vectorizedMismatch() { 5937 assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform"); 5938 5939 assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters"); 5940 Node* obja = argument(0); // Object 5941 Node* aoffset = argument(1); // long 5942 Node* objb = argument(3); // Object 5943 Node* boffset = argument(4); // long 5944 Node* length = argument(6); // int 5945 Node* scale = argument(7); // int 5946 5947 const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr(); 5948 const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr(); 5949 if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM || 5950 objb_t == nullptr || objb_t->elem() == Type::BOTTOM || 5951 scale == top()) { 5952 return false; // failed input validation 5953 } 5954 5955 Node* obja_adr = make_unsafe_address(obja, aoffset); 5956 Node* objb_adr = make_unsafe_address(objb, boffset); 5957 5958 // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size. 5959 // 5960 // inline_limit = ArrayOperationPartialInlineSize / element_size; 5961 // if (length <= inline_limit) { 5962 // inline_path: 5963 // vmask = VectorMaskGen length 5964 // vload1 = LoadVectorMasked obja, vmask 5965 // vload2 = LoadVectorMasked objb, vmask 5966 // result1 = VectorCmpMasked vload1, vload2, vmask 5967 // } else { 5968 // call_stub_path: 5969 // result2 = call vectorizedMismatch_stub(obja, objb, length, scale) 5970 // } 5971 // exit_block: 5972 // return Phi(result1, result2); 5973 // 5974 enum { inline_path = 1, // input is small enough to process it all at once 5975 stub_path = 2, // input is too large; call into the VM 5976 PATH_LIMIT = 3 5977 }; 5978 5979 Node* exit_block = new RegionNode(PATH_LIMIT); 5980 Node* result_phi = new PhiNode(exit_block, TypeInt::INT); 5981 Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM); 5982 5983 Node* call_stub_path = control(); 5984 5985 BasicType elem_bt = T_ILLEGAL; 5986 5987 const TypeInt* scale_t = _gvn.type(scale)->is_int(); 5988 if (scale_t->is_con()) { 5989 switch (scale_t->get_con()) { 5990 case 0: elem_bt = T_BYTE; break; 5991 case 1: elem_bt = T_SHORT; break; 5992 case 2: elem_bt = T_INT; break; 5993 case 3: elem_bt = T_LONG; break; 5994 5995 default: elem_bt = T_ILLEGAL; break; // not supported 5996 } 5997 } 5998 5999 int inline_limit = 0; 6000 bool do_partial_inline = false; 6001 6002 if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) { 6003 inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt); 6004 do_partial_inline = inline_limit >= 16; 6005 } 6006 6007 if (do_partial_inline) { 6008 assert(elem_bt != T_ILLEGAL, "sanity"); 6009 6010 if (Matcher::match_rule_supported_vector(Op_VectorMaskGen, inline_limit, elem_bt) && 6011 Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) && 6012 Matcher::match_rule_supported_vector(Op_VectorCmpMasked, inline_limit, elem_bt)) { 6013 6014 const TypeVect* vt = TypeVect::make(elem_bt, inline_limit); 6015 Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit))); 6016 Node* bol_gt = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt)); 6017 6018 call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN); 6019 6020 if (!stopped()) { 6021 Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin))); 6022 6023 const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr(); 6024 const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr(); 6025 Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t)); 6026 Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t)); 6027 6028 Node* vmask = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt)); 6029 Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask)); 6030 Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask)); 6031 Node* result = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT)); 6032 6033 exit_block->init_req(inline_path, control()); 6034 memory_phi->init_req(inline_path, map()->memory()); 6035 result_phi->init_req(inline_path, result); 6036 6037 C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size())); 6038 clear_upper_avx(); 6039 } 6040 } 6041 } 6042 6043 if (call_stub_path != nullptr) { 6044 set_control(call_stub_path); 6045 6046 Node* call = make_runtime_call(RC_LEAF, 6047 OptoRuntime::vectorizedMismatch_Type(), 6048 StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM, 6049 obja_adr, objb_adr, length, scale); 6050 6051 exit_block->init_req(stub_path, control()); 6052 memory_phi->init_req(stub_path, map()->memory()); 6053 result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms))); 6054 } 6055 6056 exit_block = _gvn.transform(exit_block); 6057 memory_phi = _gvn.transform(memory_phi); 6058 result_phi = _gvn.transform(result_phi); 6059 6060 set_control(exit_block); 6061 set_all_memory(memory_phi); 6062 set_result(result_phi); 6063 6064 return true; 6065 } 6066 6067 //------------------------------inline_vectorizedHashcode---------------------------- 6068 bool LibraryCallKit::inline_vectorizedHashCode() { 6069 assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform"); 6070 6071 assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters"); 6072 Node* array = argument(0); 6073 Node* offset = argument(1); 6074 Node* length = argument(2); 6075 Node* initialValue = argument(3); 6076 Node* basic_type = argument(4); 6077 6078 if (basic_type == top()) { 6079 return false; // failed input validation 6080 } 6081 6082 const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int(); 6083 if (!basic_type_t->is_con()) { 6084 return false; // Only intrinsify if mode argument is constant 6085 } 6086 6087 array = must_be_not_null(array, true); 6088 6089 BasicType bt = (BasicType)basic_type_t->get_con(); 6090 6091 // Resolve address of first element 6092 Node* array_start = array_element_address(array, offset, bt); 6093 6094 set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)), 6095 array_start, length, initialValue, basic_type))); 6096 clear_upper_avx(); 6097 6098 return true; 6099 } 6100 6101 /** 6102 * Calculate CRC32 for byte. 6103 * int java.util.zip.CRC32.update(int crc, int b) 6104 */ 6105 bool LibraryCallKit::inline_updateCRC32() { 6106 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6107 assert(callee()->signature()->size() == 2, "update has 2 parameters"); 6108 // no receiver since it is static method 6109 Node* crc = argument(0); // type: int 6110 Node* b = argument(1); // type: int 6111 6112 /* 6113 * int c = ~ crc; 6114 * b = timesXtoThe32[(b ^ c) & 0xFF]; 6115 * b = b ^ (c >>> 8); 6116 * crc = ~b; 6117 */ 6118 6119 Node* M1 = intcon(-1); 6120 crc = _gvn.transform(new XorINode(crc, M1)); 6121 Node* result = _gvn.transform(new XorINode(crc, b)); 6122 result = _gvn.transform(new AndINode(result, intcon(0xFF))); 6123 6124 Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr())); 6125 Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2))); 6126 Node* adr = basic_plus_adr(top(), base, ConvI2X(offset)); 6127 result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered); 6128 6129 crc = _gvn.transform(new URShiftINode(crc, intcon(8))); 6130 result = _gvn.transform(new XorINode(crc, result)); 6131 result = _gvn.transform(new XorINode(result, M1)); 6132 set_result(result); 6133 return true; 6134 } 6135 6136 /** 6137 * Calculate CRC32 for byte[] array. 6138 * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len) 6139 */ 6140 bool LibraryCallKit::inline_updateBytesCRC32() { 6141 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6142 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6143 // no receiver since it is static method 6144 Node* crc = argument(0); // type: int 6145 Node* src = argument(1); // type: oop 6146 Node* offset = argument(2); // type: int 6147 Node* length = argument(3); // type: int 6148 6149 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6150 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6151 // failed array check 6152 return false; 6153 } 6154 6155 // Figure out the size and type of the elements we will be copying. 6156 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6157 if (src_elem != T_BYTE) { 6158 return false; 6159 } 6160 6161 // 'src_start' points to src array + scaled offset 6162 src = must_be_not_null(src, true); 6163 Node* src_start = array_element_address(src, offset, src_elem); 6164 6165 // We assume that range check is done by caller. 6166 // TODO: generate range check (offset+length < src.length) in debug VM. 6167 6168 // Call the stub. 6169 address stubAddr = StubRoutines::updateBytesCRC32(); 6170 const char *stubName = "updateBytesCRC32"; 6171 6172 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6173 stubAddr, stubName, TypePtr::BOTTOM, 6174 crc, src_start, length); 6175 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6176 set_result(result); 6177 return true; 6178 } 6179 6180 /** 6181 * Calculate CRC32 for ByteBuffer. 6182 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 6183 */ 6184 bool LibraryCallKit::inline_updateByteBufferCRC32() { 6185 assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support"); 6186 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6187 // no receiver since it is static method 6188 Node* crc = argument(0); // type: int 6189 Node* src = argument(1); // type: long 6190 Node* offset = argument(3); // type: int 6191 Node* length = argument(4); // type: int 6192 6193 src = ConvL2X(src); // adjust Java long to machine word 6194 Node* base = _gvn.transform(new CastX2PNode(src)); 6195 offset = ConvI2X(offset); 6196 6197 // 'src_start' points to src array + scaled offset 6198 Node* src_start = basic_plus_adr(top(), base, offset); 6199 6200 // Call the stub. 6201 address stubAddr = StubRoutines::updateBytesCRC32(); 6202 const char *stubName = "updateBytesCRC32"; 6203 6204 Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(), 6205 stubAddr, stubName, TypePtr::BOTTOM, 6206 crc, src_start, length); 6207 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6208 set_result(result); 6209 return true; 6210 } 6211 6212 //------------------------------get_table_from_crc32c_class----------------------- 6213 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) { 6214 Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class); 6215 assert (table != nullptr, "wrong version of java.util.zip.CRC32C"); 6216 6217 return table; 6218 } 6219 6220 //------------------------------inline_updateBytesCRC32C----------------------- 6221 // 6222 // Calculate CRC32C for byte[] array. 6223 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end) 6224 // 6225 bool LibraryCallKit::inline_updateBytesCRC32C() { 6226 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6227 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6228 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6229 // no receiver since it is a static method 6230 Node* crc = argument(0); // type: int 6231 Node* src = argument(1); // type: oop 6232 Node* offset = argument(2); // type: int 6233 Node* end = argument(3); // type: int 6234 6235 Node* length = _gvn.transform(new SubINode(end, offset)); 6236 6237 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6238 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6239 // failed array check 6240 return false; 6241 } 6242 6243 // Figure out the size and type of the elements we will be copying. 6244 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6245 if (src_elem != T_BYTE) { 6246 return false; 6247 } 6248 6249 // 'src_start' points to src array + scaled offset 6250 src = must_be_not_null(src, true); 6251 Node* src_start = array_element_address(src, offset, src_elem); 6252 6253 // static final int[] byteTable in class CRC32C 6254 Node* table = get_table_from_crc32c_class(callee()->holder()); 6255 table = must_be_not_null(table, true); 6256 Node* table_start = array_element_address(table, intcon(0), T_INT); 6257 6258 // We assume that range check is done by caller. 6259 // TODO: generate range check (offset+length < src.length) in debug VM. 6260 6261 // Call the stub. 6262 address stubAddr = StubRoutines::updateBytesCRC32C(); 6263 const char *stubName = "updateBytesCRC32C"; 6264 6265 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6266 stubAddr, stubName, TypePtr::BOTTOM, 6267 crc, src_start, length, table_start); 6268 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6269 set_result(result); 6270 return true; 6271 } 6272 6273 //------------------------------inline_updateDirectByteBufferCRC32C----------------------- 6274 // 6275 // Calculate CRC32C for DirectByteBuffer. 6276 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 6277 // 6278 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() { 6279 assert(UseCRC32CIntrinsics, "need CRC32C instruction support"); 6280 assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long"); 6281 assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded"); 6282 // no receiver since it is a static method 6283 Node* crc = argument(0); // type: int 6284 Node* src = argument(1); // type: long 6285 Node* offset = argument(3); // type: int 6286 Node* end = argument(4); // type: int 6287 6288 Node* length = _gvn.transform(new SubINode(end, offset)); 6289 6290 src = ConvL2X(src); // adjust Java long to machine word 6291 Node* base = _gvn.transform(new CastX2PNode(src)); 6292 offset = ConvI2X(offset); 6293 6294 // 'src_start' points to src array + scaled offset 6295 Node* src_start = basic_plus_adr(top(), base, offset); 6296 6297 // static final int[] byteTable in class CRC32C 6298 Node* table = get_table_from_crc32c_class(callee()->holder()); 6299 table = must_be_not_null(table, true); 6300 Node* table_start = array_element_address(table, intcon(0), T_INT); 6301 6302 // Call the stub. 6303 address stubAddr = StubRoutines::updateBytesCRC32C(); 6304 const char *stubName = "updateBytesCRC32C"; 6305 6306 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(), 6307 stubAddr, stubName, TypePtr::BOTTOM, 6308 crc, src_start, length, table_start); 6309 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6310 set_result(result); 6311 return true; 6312 } 6313 6314 //------------------------------inline_updateBytesAdler32---------------------- 6315 // 6316 // Calculate Adler32 checksum for byte[] array. 6317 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len) 6318 // 6319 bool LibraryCallKit::inline_updateBytesAdler32() { 6320 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6321 assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters"); 6322 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6323 // no receiver since it is static method 6324 Node* crc = argument(0); // type: int 6325 Node* src = argument(1); // type: oop 6326 Node* offset = argument(2); // type: int 6327 Node* length = argument(3); // type: int 6328 6329 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6330 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 6331 // failed array check 6332 return false; 6333 } 6334 6335 // Figure out the size and type of the elements we will be copying. 6336 BasicType src_elem = src_type->elem()->array_element_basic_type(); 6337 if (src_elem != T_BYTE) { 6338 return false; 6339 } 6340 6341 // 'src_start' points to src array + scaled offset 6342 Node* src_start = array_element_address(src, offset, src_elem); 6343 6344 // We assume that range check is done by caller. 6345 // TODO: generate range check (offset+length < src.length) in debug VM. 6346 6347 // Call the stub. 6348 address stubAddr = StubRoutines::updateBytesAdler32(); 6349 const char *stubName = "updateBytesAdler32"; 6350 6351 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6352 stubAddr, stubName, TypePtr::BOTTOM, 6353 crc, src_start, length); 6354 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6355 set_result(result); 6356 return true; 6357 } 6358 6359 //------------------------------inline_updateByteBufferAdler32--------------- 6360 // 6361 // Calculate Adler32 checksum for DirectByteBuffer. 6362 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len) 6363 // 6364 bool LibraryCallKit::inline_updateByteBufferAdler32() { 6365 assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one 6366 assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long"); 6367 assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded"); 6368 // no receiver since it is static method 6369 Node* crc = argument(0); // type: int 6370 Node* src = argument(1); // type: long 6371 Node* offset = argument(3); // type: int 6372 Node* length = argument(4); // type: int 6373 6374 src = ConvL2X(src); // adjust Java long to machine word 6375 Node* base = _gvn.transform(new CastX2PNode(src)); 6376 offset = ConvI2X(offset); 6377 6378 // 'src_start' points to src array + scaled offset 6379 Node* src_start = basic_plus_adr(top(), base, offset); 6380 6381 // Call the stub. 6382 address stubAddr = StubRoutines::updateBytesAdler32(); 6383 const char *stubName = "updateBytesAdler32"; 6384 6385 Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(), 6386 stubAddr, stubName, TypePtr::BOTTOM, 6387 crc, src_start, length); 6388 6389 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 6390 set_result(result); 6391 return true; 6392 } 6393 6394 //----------------------------inline_reference_get---------------------------- 6395 // public T java.lang.ref.Reference.get(); 6396 bool LibraryCallKit::inline_reference_get() { 6397 const int referent_offset = java_lang_ref_Reference::referent_offset(); 6398 6399 // Get the argument: 6400 Node* reference_obj = null_check_receiver(); 6401 if (stopped()) return true; 6402 6403 DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF; 6404 Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6405 decorators, /*is_static*/ false, nullptr); 6406 if (result == nullptr) return false; 6407 6408 // Add memory barrier to prevent commoning reads from this field 6409 // across safepoint since GC can change its value. 6410 insert_mem_bar(Op_MemBarCPUOrder); 6411 6412 set_result(result); 6413 return true; 6414 } 6415 6416 //----------------------------inline_reference_refersTo0---------------------------- 6417 // bool java.lang.ref.Reference.refersTo0(); 6418 // bool java.lang.ref.PhantomReference.refersTo0(); 6419 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) { 6420 // Get arguments: 6421 Node* reference_obj = null_check_receiver(); 6422 Node* other_obj = argument(1); 6423 if (stopped()) return true; 6424 6425 DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE; 6426 decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF); 6427 Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;", 6428 decorators, /*is_static*/ false, nullptr); 6429 if (referent == nullptr) return false; 6430 6431 // Add memory barrier to prevent commoning reads from this field 6432 // across safepoint since GC can change its value. 6433 insert_mem_bar(Op_MemBarCPUOrder); 6434 6435 Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj)); 6436 Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 6437 IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN); 6438 6439 RegionNode* region = new RegionNode(3); 6440 PhiNode* phi = new PhiNode(region, TypeInt::BOOL); 6441 6442 Node* if_true = _gvn.transform(new IfTrueNode(if_node)); 6443 region->init_req(1, if_true); 6444 phi->init_req(1, intcon(1)); 6445 6446 Node* if_false = _gvn.transform(new IfFalseNode(if_node)); 6447 region->init_req(2, if_false); 6448 phi->init_req(2, intcon(0)); 6449 6450 set_control(_gvn.transform(region)); 6451 record_for_igvn(region); 6452 set_result(_gvn.transform(phi)); 6453 return true; 6454 } 6455 6456 6457 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString, 6458 DecoratorSet decorators, bool is_static, 6459 ciInstanceKlass* fromKls) { 6460 if (fromKls == nullptr) { 6461 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 6462 assert(tinst != nullptr, "obj is null"); 6463 assert(tinst->is_loaded(), "obj is not loaded"); 6464 fromKls = tinst->instance_klass(); 6465 } else { 6466 assert(is_static, "only for static field access"); 6467 } 6468 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 6469 ciSymbol::make(fieldTypeString), 6470 is_static); 6471 6472 assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName); 6473 if (field == nullptr) return (Node *) nullptr; 6474 6475 if (is_static) { 6476 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 6477 fromObj = makecon(tip); 6478 } 6479 6480 // Next code copied from Parse::do_get_xxx(): 6481 6482 // Compute address and memory type. 6483 int offset = field->offset_in_bytes(); 6484 bool is_vol = field->is_volatile(); 6485 ciType* field_klass = field->type(); 6486 assert(field_klass->is_loaded(), "should be loaded"); 6487 const TypePtr* adr_type = C->alias_type(field)->adr_type(); 6488 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 6489 BasicType bt = field->layout_type(); 6490 6491 // Build the resultant type of the load 6492 const Type *type; 6493 if (bt == T_OBJECT) { 6494 type = TypeOopPtr::make_from_klass(field_klass->as_klass()); 6495 } else { 6496 type = Type::get_const_basic_type(bt); 6497 } 6498 6499 if (is_vol) { 6500 decorators |= MO_SEQ_CST; 6501 } 6502 6503 return access_load_at(fromObj, adr, adr_type, type, bt, decorators); 6504 } 6505 6506 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, 6507 bool is_exact /* true */, bool is_static /* false */, 6508 ciInstanceKlass * fromKls /* nullptr */) { 6509 if (fromKls == nullptr) { 6510 const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr(); 6511 assert(tinst != nullptr, "obj is null"); 6512 assert(tinst->is_loaded(), "obj is not loaded"); 6513 assert(!is_exact || tinst->klass_is_exact(), "klass not exact"); 6514 fromKls = tinst->instance_klass(); 6515 } 6516 else { 6517 assert(is_static, "only for static field access"); 6518 } 6519 ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName), 6520 ciSymbol::make(fieldTypeString), 6521 is_static); 6522 6523 assert(field != nullptr, "undefined field"); 6524 assert(!field->is_volatile(), "not defined for volatile fields"); 6525 6526 if (is_static) { 6527 const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror()); 6528 fromObj = makecon(tip); 6529 } 6530 6531 // Next code copied from Parse::do_get_xxx(): 6532 6533 // Compute address and memory type. 6534 int offset = field->offset_in_bytes(); 6535 Node *adr = basic_plus_adr(fromObj, fromObj, offset); 6536 6537 return adr; 6538 } 6539 6540 //------------------------------inline_aescrypt_Block----------------------- 6541 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) { 6542 address stubAddr = nullptr; 6543 const char *stubName; 6544 assert(UseAES, "need AES instruction support"); 6545 6546 switch(id) { 6547 case vmIntrinsics::_aescrypt_encryptBlock: 6548 stubAddr = StubRoutines::aescrypt_encryptBlock(); 6549 stubName = "aescrypt_encryptBlock"; 6550 break; 6551 case vmIntrinsics::_aescrypt_decryptBlock: 6552 stubAddr = StubRoutines::aescrypt_decryptBlock(); 6553 stubName = "aescrypt_decryptBlock"; 6554 break; 6555 default: 6556 break; 6557 } 6558 if (stubAddr == nullptr) return false; 6559 6560 Node* aescrypt_object = argument(0); 6561 Node* src = argument(1); 6562 Node* src_offset = argument(2); 6563 Node* dest = argument(3); 6564 Node* dest_offset = argument(4); 6565 6566 src = must_be_not_null(src, true); 6567 dest = must_be_not_null(dest, true); 6568 6569 // (1) src and dest are arrays. 6570 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6571 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6572 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6573 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6574 6575 // for the quick and dirty code we will skip all the checks. 6576 // we are just trying to get the call to be generated. 6577 Node* src_start = src; 6578 Node* dest_start = dest; 6579 if (src_offset != nullptr || dest_offset != nullptr) { 6580 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6581 src_start = array_element_address(src, src_offset, T_BYTE); 6582 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6583 } 6584 6585 // now need to get the start of its expanded key array 6586 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6587 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6588 if (k_start == nullptr) return false; 6589 6590 // Call the stub. 6591 make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(), 6592 stubAddr, stubName, TypePtr::BOTTOM, 6593 src_start, dest_start, k_start); 6594 6595 return true; 6596 } 6597 6598 //------------------------------inline_cipherBlockChaining_AESCrypt----------------------- 6599 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) { 6600 address stubAddr = nullptr; 6601 const char *stubName = nullptr; 6602 6603 assert(UseAES, "need AES instruction support"); 6604 6605 switch(id) { 6606 case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt: 6607 stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt(); 6608 stubName = "cipherBlockChaining_encryptAESCrypt"; 6609 break; 6610 case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt: 6611 stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt(); 6612 stubName = "cipherBlockChaining_decryptAESCrypt"; 6613 break; 6614 default: 6615 break; 6616 } 6617 if (stubAddr == nullptr) return false; 6618 6619 Node* cipherBlockChaining_object = argument(0); 6620 Node* src = argument(1); 6621 Node* src_offset = argument(2); 6622 Node* len = argument(3); 6623 Node* dest = argument(4); 6624 Node* dest_offset = argument(5); 6625 6626 src = must_be_not_null(src, false); 6627 dest = must_be_not_null(dest, false); 6628 6629 // (1) src and dest are arrays. 6630 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6631 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6632 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6633 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6634 6635 // checks are the responsibility of the caller 6636 Node* src_start = src; 6637 Node* dest_start = dest; 6638 if (src_offset != nullptr || dest_offset != nullptr) { 6639 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6640 src_start = array_element_address(src, src_offset, T_BYTE); 6641 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6642 } 6643 6644 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6645 // (because of the predicated logic executed earlier). 6646 // so we cast it here safely. 6647 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6648 6649 Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6650 if (embeddedCipherObj == nullptr) return false; 6651 6652 // cast it to what we know it will be at runtime 6653 const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr(); 6654 assert(tinst != nullptr, "CBC obj is null"); 6655 assert(tinst->is_loaded(), "CBC obj is not loaded"); 6656 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6657 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6658 6659 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6660 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6661 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6662 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6663 aescrypt_object = _gvn.transform(aescrypt_object); 6664 6665 // we need to get the start of the aescrypt_object's expanded key array 6666 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6667 if (k_start == nullptr) return false; 6668 6669 // similarly, get the start address of the r vector 6670 Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B"); 6671 if (objRvec == nullptr) return false; 6672 Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE); 6673 6674 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6675 Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6676 OptoRuntime::cipherBlockChaining_aescrypt_Type(), 6677 stubAddr, stubName, TypePtr::BOTTOM, 6678 src_start, dest_start, k_start, r_start, len); 6679 6680 // return cipher length (int) 6681 Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms)); 6682 set_result(retvalue); 6683 return true; 6684 } 6685 6686 //------------------------------inline_electronicCodeBook_AESCrypt----------------------- 6687 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) { 6688 address stubAddr = nullptr; 6689 const char *stubName = nullptr; 6690 6691 assert(UseAES, "need AES instruction support"); 6692 6693 switch (id) { 6694 case vmIntrinsics::_electronicCodeBook_encryptAESCrypt: 6695 stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt(); 6696 stubName = "electronicCodeBook_encryptAESCrypt"; 6697 break; 6698 case vmIntrinsics::_electronicCodeBook_decryptAESCrypt: 6699 stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt(); 6700 stubName = "electronicCodeBook_decryptAESCrypt"; 6701 break; 6702 default: 6703 break; 6704 } 6705 6706 if (stubAddr == nullptr) return false; 6707 6708 Node* electronicCodeBook_object = argument(0); 6709 Node* src = argument(1); 6710 Node* src_offset = argument(2); 6711 Node* len = argument(3); 6712 Node* dest = argument(4); 6713 Node* dest_offset = argument(5); 6714 6715 // (1) src and dest are arrays. 6716 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6717 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6718 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6719 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6720 6721 // checks are the responsibility of the caller 6722 Node* src_start = src; 6723 Node* dest_start = dest; 6724 if (src_offset != nullptr || dest_offset != nullptr) { 6725 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6726 src_start = array_element_address(src, src_offset, T_BYTE); 6727 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6728 } 6729 6730 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6731 // (because of the predicated logic executed earlier). 6732 // so we cast it here safely. 6733 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6734 6735 Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6736 if (embeddedCipherObj == nullptr) return false; 6737 6738 // cast it to what we know it will be at runtime 6739 const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr(); 6740 assert(tinst != nullptr, "ECB obj is null"); 6741 assert(tinst->is_loaded(), "ECB obj is not loaded"); 6742 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6743 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6744 6745 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6746 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6747 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6748 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6749 aescrypt_object = _gvn.transform(aescrypt_object); 6750 6751 // we need to get the start of the aescrypt_object's expanded key array 6752 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6753 if (k_start == nullptr) return false; 6754 6755 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6756 Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP, 6757 OptoRuntime::electronicCodeBook_aescrypt_Type(), 6758 stubAddr, stubName, TypePtr::BOTTOM, 6759 src_start, dest_start, k_start, len); 6760 6761 // return cipher length (int) 6762 Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms)); 6763 set_result(retvalue); 6764 return true; 6765 } 6766 6767 //------------------------------inline_counterMode_AESCrypt----------------------- 6768 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) { 6769 assert(UseAES, "need AES instruction support"); 6770 if (!UseAESCTRIntrinsics) return false; 6771 6772 address stubAddr = nullptr; 6773 const char *stubName = nullptr; 6774 if (id == vmIntrinsics::_counterMode_AESCrypt) { 6775 stubAddr = StubRoutines::counterMode_AESCrypt(); 6776 stubName = "counterMode_AESCrypt"; 6777 } 6778 if (stubAddr == nullptr) return false; 6779 6780 Node* counterMode_object = argument(0); 6781 Node* src = argument(1); 6782 Node* src_offset = argument(2); 6783 Node* len = argument(3); 6784 Node* dest = argument(4); 6785 Node* dest_offset = argument(5); 6786 6787 // (1) src and dest are arrays. 6788 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 6789 const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr(); 6790 assert( src_type != nullptr && src_type->elem() != Type::BOTTOM && 6791 dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange"); 6792 6793 // checks are the responsibility of the caller 6794 Node* src_start = src; 6795 Node* dest_start = dest; 6796 if (src_offset != nullptr || dest_offset != nullptr) { 6797 assert(src_offset != nullptr && dest_offset != nullptr, ""); 6798 src_start = array_element_address(src, src_offset, T_BYTE); 6799 dest_start = array_element_address(dest, dest_offset, T_BYTE); 6800 } 6801 6802 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 6803 // (because of the predicated logic executed earlier). 6804 // so we cast it here safely. 6805 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 6806 Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6807 if (embeddedCipherObj == nullptr) return false; 6808 // cast it to what we know it will be at runtime 6809 const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr(); 6810 assert(tinst != nullptr, "CTR obj is null"); 6811 assert(tinst->is_loaded(), "CTR obj is not loaded"); 6812 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6813 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 6814 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6815 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 6816 const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 6817 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 6818 aescrypt_object = _gvn.transform(aescrypt_object); 6819 // we need to get the start of the aescrypt_object's expanded key array 6820 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 6821 if (k_start == nullptr) return false; 6822 // similarly, get the start address of the r vector 6823 Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B"); 6824 if (obj_counter == nullptr) return false; 6825 Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE); 6826 6827 Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B"); 6828 if (saved_encCounter == nullptr) return false; 6829 Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE); 6830 Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false); 6831 6832 // Call the stub, passing src_start, dest_start, k_start, r_start and src_len 6833 Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 6834 OptoRuntime::counterMode_aescrypt_Type(), 6835 stubAddr, stubName, TypePtr::BOTTOM, 6836 src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used); 6837 6838 // return cipher length (int) 6839 Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms)); 6840 set_result(retvalue); 6841 return true; 6842 } 6843 6844 //------------------------------get_key_start_from_aescrypt_object----------------------- 6845 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) { 6846 #if defined(PPC64) || defined(S390) 6847 // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys. 6848 // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns. 6849 // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption. 6850 // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]). 6851 Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I"); 6852 assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 6853 if (objSessionK == nullptr) { 6854 return (Node *) nullptr; 6855 } 6856 Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true); 6857 #else 6858 Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I"); 6859 #endif // PPC64 6860 assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt"); 6861 if (objAESCryptKey == nullptr) return (Node *) nullptr; 6862 6863 // now have the array, need to get the start address of the K array 6864 Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT); 6865 return k_start; 6866 } 6867 6868 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate---------------------------- 6869 // Return node representing slow path of predicate check. 6870 // the pseudo code we want to emulate with this predicate is: 6871 // for encryption: 6872 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6873 // for decryption: 6874 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6875 // note cipher==plain is more conservative than the original java code but that's OK 6876 // 6877 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) { 6878 // The receiver was checked for null already. 6879 Node* objCBC = argument(0); 6880 6881 Node* src = argument(1); 6882 Node* dest = argument(4); 6883 6884 // Load embeddedCipher field of CipherBlockChaining object. 6885 Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6886 6887 // get AESCrypt klass for instanceOf check 6888 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6889 // will have same classloader as CipherBlockChaining object 6890 const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr(); 6891 assert(tinst != nullptr, "CBCobj is null"); 6892 assert(tinst->is_loaded(), "CBCobj is not loaded"); 6893 6894 // we want to do an instanceof comparison against the AESCrypt class 6895 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6896 if (!klass_AESCrypt->is_loaded()) { 6897 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6898 Node* ctrl = control(); 6899 set_control(top()); // no regular fast path 6900 return ctrl; 6901 } 6902 6903 src = must_be_not_null(src, true); 6904 dest = must_be_not_null(dest, true); 6905 6906 // Resolve oops to stable for CmpP below. 6907 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6908 6909 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6910 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6911 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6912 6913 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 6914 6915 // for encryption, we are done 6916 if (!decrypting) 6917 return instof_false; // even if it is null 6918 6919 // for decryption, we need to add a further check to avoid 6920 // taking the intrinsic path when cipher and plain are the same 6921 // see the original java code for why. 6922 RegionNode* region = new RegionNode(3); 6923 region->init_req(1, instof_false); 6924 6925 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 6926 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 6927 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 6928 region->init_req(2, src_dest_conjoint); 6929 6930 record_for_igvn(region); 6931 return _gvn.transform(region); 6932 } 6933 6934 //----------------------------inline_electronicCodeBook_AESCrypt_predicate---------------------------- 6935 // Return node representing slow path of predicate check. 6936 // the pseudo code we want to emulate with this predicate is: 6937 // for encryption: 6938 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6939 // for decryption: 6940 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 6941 // note cipher==plain is more conservative than the original java code but that's OK 6942 // 6943 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) { 6944 // The receiver was checked for null already. 6945 Node* objECB = argument(0); 6946 6947 // Load embeddedCipher field of ElectronicCodeBook object. 6948 Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 6949 6950 // get AESCrypt klass for instanceOf check 6951 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 6952 // will have same classloader as ElectronicCodeBook object 6953 const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr(); 6954 assert(tinst != nullptr, "ECBobj is null"); 6955 assert(tinst->is_loaded(), "ECBobj is not loaded"); 6956 6957 // we want to do an instanceof comparison against the AESCrypt class 6958 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 6959 if (!klass_AESCrypt->is_loaded()) { 6960 // if AESCrypt is not even loaded, we never take the intrinsic fast path 6961 Node* ctrl = control(); 6962 set_control(top()); // no regular fast path 6963 return ctrl; 6964 } 6965 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 6966 6967 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 6968 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 6969 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 6970 6971 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 6972 6973 // for encryption, we are done 6974 if (!decrypting) 6975 return instof_false; // even if it is null 6976 6977 // for decryption, we need to add a further check to avoid 6978 // taking the intrinsic path when cipher and plain are the same 6979 // see the original java code for why. 6980 RegionNode* region = new RegionNode(3); 6981 region->init_req(1, instof_false); 6982 Node* src = argument(1); 6983 Node* dest = argument(4); 6984 Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest)); 6985 Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq)); 6986 Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN); 6987 region->init_req(2, src_dest_conjoint); 6988 6989 record_for_igvn(region); 6990 return _gvn.transform(region); 6991 } 6992 6993 //----------------------------inline_counterMode_AESCrypt_predicate---------------------------- 6994 // Return node representing slow path of predicate check. 6995 // the pseudo code we want to emulate with this predicate is: 6996 // for encryption: 6997 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 6998 // for decryption: 6999 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7000 // note cipher==plain is more conservative than the original java code but that's OK 7001 // 7002 7003 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() { 7004 // The receiver was checked for null already. 7005 Node* objCTR = argument(0); 7006 7007 // Load embeddedCipher field of CipherBlockChaining object. 7008 Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7009 7010 // get AESCrypt klass for instanceOf check 7011 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7012 // will have same classloader as CipherBlockChaining object 7013 const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr(); 7014 assert(tinst != nullptr, "CTRobj is null"); 7015 assert(tinst->is_loaded(), "CTRobj is not loaded"); 7016 7017 // we want to do an instanceof comparison against the AESCrypt class 7018 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7019 if (!klass_AESCrypt->is_loaded()) { 7020 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7021 Node* ctrl = control(); 7022 set_control(top()); // no regular fast path 7023 return ctrl; 7024 } 7025 7026 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7027 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7028 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7029 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7030 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7031 7032 return instof_false; // even if it is null 7033 } 7034 7035 //------------------------------inline_ghash_processBlocks 7036 bool LibraryCallKit::inline_ghash_processBlocks() { 7037 address stubAddr; 7038 const char *stubName; 7039 assert(UseGHASHIntrinsics, "need GHASH intrinsics support"); 7040 7041 stubAddr = StubRoutines::ghash_processBlocks(); 7042 stubName = "ghash_processBlocks"; 7043 7044 Node* data = argument(0); 7045 Node* offset = argument(1); 7046 Node* len = argument(2); 7047 Node* state = argument(3); 7048 Node* subkeyH = argument(4); 7049 7050 state = must_be_not_null(state, true); 7051 subkeyH = must_be_not_null(subkeyH, true); 7052 data = must_be_not_null(data, true); 7053 7054 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7055 assert(state_start, "state is null"); 7056 Node* subkeyH_start = array_element_address(subkeyH, intcon(0), T_LONG); 7057 assert(subkeyH_start, "subkeyH is null"); 7058 Node* data_start = array_element_address(data, offset, T_BYTE); 7059 assert(data_start, "data is null"); 7060 7061 Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP, 7062 OptoRuntime::ghash_processBlocks_Type(), 7063 stubAddr, stubName, TypePtr::BOTTOM, 7064 state_start, subkeyH_start, data_start, len); 7065 return true; 7066 } 7067 7068 //------------------------------inline_chacha20Block 7069 bool LibraryCallKit::inline_chacha20Block() { 7070 address stubAddr; 7071 const char *stubName; 7072 assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support"); 7073 7074 stubAddr = StubRoutines::chacha20Block(); 7075 stubName = "chacha20Block"; 7076 7077 Node* state = argument(0); 7078 Node* result = argument(1); 7079 7080 state = must_be_not_null(state, true); 7081 result = must_be_not_null(result, true); 7082 7083 Node* state_start = array_element_address(state, intcon(0), T_INT); 7084 assert(state_start, "state is null"); 7085 Node* result_start = array_element_address(result, intcon(0), T_BYTE); 7086 assert(result_start, "result is null"); 7087 7088 Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP, 7089 OptoRuntime::chacha20Block_Type(), 7090 stubAddr, stubName, TypePtr::BOTTOM, 7091 state_start, result_start); 7092 // return key stream length (int) 7093 Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms)); 7094 set_result(retvalue); 7095 return true; 7096 } 7097 7098 bool LibraryCallKit::inline_base64_encodeBlock() { 7099 address stubAddr; 7100 const char *stubName; 7101 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7102 assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters"); 7103 stubAddr = StubRoutines::base64_encodeBlock(); 7104 stubName = "encodeBlock"; 7105 7106 if (!stubAddr) return false; 7107 Node* base64obj = argument(0); 7108 Node* src = argument(1); 7109 Node* offset = argument(2); 7110 Node* len = argument(3); 7111 Node* dest = argument(4); 7112 Node* dp = argument(5); 7113 Node* isURL = argument(6); 7114 7115 src = must_be_not_null(src, true); 7116 dest = must_be_not_null(dest, true); 7117 7118 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7119 assert(src_start, "source array is null"); 7120 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7121 assert(dest_start, "destination array is null"); 7122 7123 Node* base64 = make_runtime_call(RC_LEAF, 7124 OptoRuntime::base64_encodeBlock_Type(), 7125 stubAddr, stubName, TypePtr::BOTTOM, 7126 src_start, offset, len, dest_start, dp, isURL); 7127 return true; 7128 } 7129 7130 bool LibraryCallKit::inline_base64_decodeBlock() { 7131 address stubAddr; 7132 const char *stubName; 7133 assert(UseBASE64Intrinsics, "need Base64 intrinsics support"); 7134 assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters"); 7135 stubAddr = StubRoutines::base64_decodeBlock(); 7136 stubName = "decodeBlock"; 7137 7138 if (!stubAddr) return false; 7139 Node* base64obj = argument(0); 7140 Node* src = argument(1); 7141 Node* src_offset = argument(2); 7142 Node* len = argument(3); 7143 Node* dest = argument(4); 7144 Node* dest_offset = argument(5); 7145 Node* isURL = argument(6); 7146 Node* isMIME = argument(7); 7147 7148 src = must_be_not_null(src, true); 7149 dest = must_be_not_null(dest, true); 7150 7151 Node* src_start = array_element_address(src, intcon(0), T_BYTE); 7152 assert(src_start, "source array is null"); 7153 Node* dest_start = array_element_address(dest, intcon(0), T_BYTE); 7154 assert(dest_start, "destination array is null"); 7155 7156 Node* call = make_runtime_call(RC_LEAF, 7157 OptoRuntime::base64_decodeBlock_Type(), 7158 stubAddr, stubName, TypePtr::BOTTOM, 7159 src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME); 7160 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7161 set_result(result); 7162 return true; 7163 } 7164 7165 bool LibraryCallKit::inline_poly1305_processBlocks() { 7166 address stubAddr; 7167 const char *stubName; 7168 assert(UsePoly1305Intrinsics, "need Poly intrinsics support"); 7169 assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size()); 7170 stubAddr = StubRoutines::poly1305_processBlocks(); 7171 stubName = "poly1305_processBlocks"; 7172 7173 if (!stubAddr) return false; 7174 null_check_receiver(); // null-check receiver 7175 if (stopped()) return true; 7176 7177 Node* input = argument(1); 7178 Node* input_offset = argument(2); 7179 Node* len = argument(3); 7180 Node* alimbs = argument(4); 7181 Node* rlimbs = argument(5); 7182 7183 input = must_be_not_null(input, true); 7184 alimbs = must_be_not_null(alimbs, true); 7185 rlimbs = must_be_not_null(rlimbs, true); 7186 7187 Node* input_start = array_element_address(input, input_offset, T_BYTE); 7188 assert(input_start, "input array is null"); 7189 Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG); 7190 assert(acc_start, "acc array is null"); 7191 Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG); 7192 assert(r_start, "r array is null"); 7193 7194 Node* call = make_runtime_call(RC_LEAF | RC_NO_FP, 7195 OptoRuntime::poly1305_processBlocks_Type(), 7196 stubAddr, stubName, TypePtr::BOTTOM, 7197 input_start, len, acc_start, r_start); 7198 return true; 7199 } 7200 7201 //------------------------------inline_digestBase_implCompress----------------------- 7202 // 7203 // Calculate MD5 for single-block byte[] array. 7204 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs) 7205 // 7206 // Calculate SHA (i.e., SHA-1) for single-block byte[] array. 7207 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs) 7208 // 7209 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array. 7210 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs) 7211 // 7212 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array. 7213 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs) 7214 // 7215 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array. 7216 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs) 7217 // 7218 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) { 7219 assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters"); 7220 7221 Node* digestBase_obj = argument(0); 7222 Node* src = argument(1); // type oop 7223 Node* ofs = argument(2); // type int 7224 7225 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7226 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7227 // failed array check 7228 return false; 7229 } 7230 // Figure out the size and type of the elements we will be copying. 7231 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7232 if (src_elem != T_BYTE) { 7233 return false; 7234 } 7235 // 'src_start' points to src array + offset 7236 src = must_be_not_null(src, true); 7237 Node* src_start = array_element_address(src, ofs, src_elem); 7238 Node* state = nullptr; 7239 Node* block_size = nullptr; 7240 address stubAddr; 7241 const char *stubName; 7242 7243 switch(id) { 7244 case vmIntrinsics::_md5_implCompress: 7245 assert(UseMD5Intrinsics, "need MD5 instruction support"); 7246 state = get_state_from_digest_object(digestBase_obj, T_INT); 7247 stubAddr = StubRoutines::md5_implCompress(); 7248 stubName = "md5_implCompress"; 7249 break; 7250 case vmIntrinsics::_sha_implCompress: 7251 assert(UseSHA1Intrinsics, "need SHA1 instruction support"); 7252 state = get_state_from_digest_object(digestBase_obj, T_INT); 7253 stubAddr = StubRoutines::sha1_implCompress(); 7254 stubName = "sha1_implCompress"; 7255 break; 7256 case vmIntrinsics::_sha2_implCompress: 7257 assert(UseSHA256Intrinsics, "need SHA256 instruction support"); 7258 state = get_state_from_digest_object(digestBase_obj, T_INT); 7259 stubAddr = StubRoutines::sha256_implCompress(); 7260 stubName = "sha256_implCompress"; 7261 break; 7262 case vmIntrinsics::_sha5_implCompress: 7263 assert(UseSHA512Intrinsics, "need SHA512 instruction support"); 7264 state = get_state_from_digest_object(digestBase_obj, T_LONG); 7265 stubAddr = StubRoutines::sha512_implCompress(); 7266 stubName = "sha512_implCompress"; 7267 break; 7268 case vmIntrinsics::_sha3_implCompress: 7269 assert(UseSHA3Intrinsics, "need SHA3 instruction support"); 7270 state = get_state_from_digest_object(digestBase_obj, T_BYTE); 7271 stubAddr = StubRoutines::sha3_implCompress(); 7272 stubName = "sha3_implCompress"; 7273 block_size = get_block_size_from_digest_object(digestBase_obj); 7274 if (block_size == nullptr) return false; 7275 break; 7276 default: 7277 fatal_unexpected_iid(id); 7278 return false; 7279 } 7280 if (state == nullptr) return false; 7281 7282 assert(stubAddr != nullptr, "Stub %s is not generated", stubName); 7283 if (stubAddr == nullptr) return false; 7284 7285 // Call the stub. 7286 Node* call; 7287 if (block_size == nullptr) { 7288 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false), 7289 stubAddr, stubName, TypePtr::BOTTOM, 7290 src_start, state); 7291 } else { 7292 call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true), 7293 stubAddr, stubName, TypePtr::BOTTOM, 7294 src_start, state, block_size); 7295 } 7296 7297 return true; 7298 } 7299 7300 //------------------------------inline_digestBase_implCompressMB----------------------- 7301 // 7302 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array. 7303 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit) 7304 // 7305 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) { 7306 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7307 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7308 assert((uint)predicate < 5, "sanity"); 7309 assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters"); 7310 7311 Node* digestBase_obj = argument(0); // The receiver was checked for null already. 7312 Node* src = argument(1); // byte[] array 7313 Node* ofs = argument(2); // type int 7314 Node* limit = argument(3); // type int 7315 7316 const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr(); 7317 if (src_type == nullptr || src_type->elem() == Type::BOTTOM) { 7318 // failed array check 7319 return false; 7320 } 7321 // Figure out the size and type of the elements we will be copying. 7322 BasicType src_elem = src_type->elem()->array_element_basic_type(); 7323 if (src_elem != T_BYTE) { 7324 return false; 7325 } 7326 // 'src_start' points to src array + offset 7327 src = must_be_not_null(src, false); 7328 Node* src_start = array_element_address(src, ofs, src_elem); 7329 7330 const char* klass_digestBase_name = nullptr; 7331 const char* stub_name = nullptr; 7332 address stub_addr = nullptr; 7333 BasicType elem_type = T_INT; 7334 7335 switch (predicate) { 7336 case 0: 7337 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) { 7338 klass_digestBase_name = "sun/security/provider/MD5"; 7339 stub_name = "md5_implCompressMB"; 7340 stub_addr = StubRoutines::md5_implCompressMB(); 7341 } 7342 break; 7343 case 1: 7344 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) { 7345 klass_digestBase_name = "sun/security/provider/SHA"; 7346 stub_name = "sha1_implCompressMB"; 7347 stub_addr = StubRoutines::sha1_implCompressMB(); 7348 } 7349 break; 7350 case 2: 7351 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) { 7352 klass_digestBase_name = "sun/security/provider/SHA2"; 7353 stub_name = "sha256_implCompressMB"; 7354 stub_addr = StubRoutines::sha256_implCompressMB(); 7355 } 7356 break; 7357 case 3: 7358 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) { 7359 klass_digestBase_name = "sun/security/provider/SHA5"; 7360 stub_name = "sha512_implCompressMB"; 7361 stub_addr = StubRoutines::sha512_implCompressMB(); 7362 elem_type = T_LONG; 7363 } 7364 break; 7365 case 4: 7366 if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) { 7367 klass_digestBase_name = "sun/security/provider/SHA3"; 7368 stub_name = "sha3_implCompressMB"; 7369 stub_addr = StubRoutines::sha3_implCompressMB(); 7370 elem_type = T_BYTE; 7371 } 7372 break; 7373 default: 7374 fatal("unknown DigestBase intrinsic predicate: %d", predicate); 7375 } 7376 if (klass_digestBase_name != nullptr) { 7377 assert(stub_addr != nullptr, "Stub is generated"); 7378 if (stub_addr == nullptr) return false; 7379 7380 // get DigestBase klass to lookup for SHA klass 7381 const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr(); 7382 assert(tinst != nullptr, "digestBase_obj is not instance???"); 7383 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7384 7385 ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name)); 7386 assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded"); 7387 ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass(); 7388 return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit); 7389 } 7390 return false; 7391 } 7392 7393 //------------------------------inline_digestBase_implCompressMB----------------------- 7394 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase, 7395 BasicType elem_type, address stubAddr, const char *stubName, 7396 Node* src_start, Node* ofs, Node* limit) { 7397 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase); 7398 const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull); 7399 Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype); 7400 digest_obj = _gvn.transform(digest_obj); 7401 7402 Node* state = get_state_from_digest_object(digest_obj, elem_type); 7403 if (state == nullptr) return false; 7404 7405 Node* block_size = nullptr; 7406 if (strcmp("sha3_implCompressMB", stubName) == 0) { 7407 block_size = get_block_size_from_digest_object(digest_obj); 7408 if (block_size == nullptr) return false; 7409 } 7410 7411 // Call the stub. 7412 Node* call; 7413 if (block_size == nullptr) { 7414 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7415 OptoRuntime::digestBase_implCompressMB_Type(false), 7416 stubAddr, stubName, TypePtr::BOTTOM, 7417 src_start, state, ofs, limit); 7418 } else { 7419 call = make_runtime_call(RC_LEAF|RC_NO_FP, 7420 OptoRuntime::digestBase_implCompressMB_Type(true), 7421 stubAddr, stubName, TypePtr::BOTTOM, 7422 src_start, state, block_size, ofs, limit); 7423 } 7424 7425 // return ofs (int) 7426 Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms)); 7427 set_result(result); 7428 7429 return true; 7430 } 7431 7432 //------------------------------inline_galoisCounterMode_AESCrypt----------------------- 7433 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() { 7434 assert(UseAES, "need AES instruction support"); 7435 address stubAddr = nullptr; 7436 const char *stubName = nullptr; 7437 stubAddr = StubRoutines::galoisCounterMode_AESCrypt(); 7438 stubName = "galoisCounterMode_AESCrypt"; 7439 7440 if (stubAddr == nullptr) return false; 7441 7442 Node* in = argument(0); 7443 Node* inOfs = argument(1); 7444 Node* len = argument(2); 7445 Node* ct = argument(3); 7446 Node* ctOfs = argument(4); 7447 Node* out = argument(5); 7448 Node* outOfs = argument(6); 7449 Node* gctr_object = argument(7); 7450 Node* ghash_object = argument(8); 7451 7452 // (1) in, ct and out are arrays. 7453 const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr(); 7454 const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr(); 7455 const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr(); 7456 assert( in_type != nullptr && in_type->elem() != Type::BOTTOM && 7457 ct_type != nullptr && ct_type->elem() != Type::BOTTOM && 7458 out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange"); 7459 7460 // checks are the responsibility of the caller 7461 Node* in_start = in; 7462 Node* ct_start = ct; 7463 Node* out_start = out; 7464 if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) { 7465 assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, ""); 7466 in_start = array_element_address(in, inOfs, T_BYTE); 7467 ct_start = array_element_address(ct, ctOfs, T_BYTE); 7468 out_start = array_element_address(out, outOfs, T_BYTE); 7469 } 7470 7471 // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object 7472 // (because of the predicated logic executed earlier). 7473 // so we cast it here safely. 7474 // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java 7475 Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7476 Node* counter = load_field_from_object(gctr_object, "counter", "[B"); 7477 Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J"); 7478 Node* state = load_field_from_object(ghash_object, "state", "[J"); 7479 7480 if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) { 7481 return false; 7482 } 7483 // cast it to what we know it will be at runtime 7484 const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr(); 7485 assert(tinst != nullptr, "GCTR obj is null"); 7486 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 7487 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7488 assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded"); 7489 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7490 const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt); 7491 const TypeOopPtr* xtype = aklass->as_instance_type(); 7492 Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype); 7493 aescrypt_object = _gvn.transform(aescrypt_object); 7494 // we need to get the start of the aescrypt_object's expanded key array 7495 Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object); 7496 if (k_start == nullptr) return false; 7497 // similarly, get the start address of the r vector 7498 Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE); 7499 Node* state_start = array_element_address(state, intcon(0), T_LONG); 7500 Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG); 7501 7502 7503 // Call the stub, passing params 7504 Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP, 7505 OptoRuntime::galoisCounterMode_aescrypt_Type(), 7506 stubAddr, stubName, TypePtr::BOTTOM, 7507 in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start); 7508 7509 // return cipher length (int) 7510 Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms)); 7511 set_result(retvalue); 7512 7513 return true; 7514 } 7515 7516 //----------------------------inline_galoisCounterMode_AESCrypt_predicate---------------------------- 7517 // Return node representing slow path of predicate check. 7518 // the pseudo code we want to emulate with this predicate is: 7519 // for encryption: 7520 // if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath 7521 // for decryption: 7522 // if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath 7523 // note cipher==plain is more conservative than the original java code but that's OK 7524 // 7525 7526 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() { 7527 // The receiver was checked for null already. 7528 Node* objGCTR = argument(7); 7529 // Load embeddedCipher field of GCTR object. 7530 Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;"); 7531 assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null"); 7532 7533 // get AESCrypt klass for instanceOf check 7534 // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point 7535 // will have same classloader as CipherBlockChaining object 7536 const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr(); 7537 assert(tinst != nullptr, "GCTR obj is null"); 7538 assert(tinst->is_loaded(), "GCTR obj is not loaded"); 7539 7540 // we want to do an instanceof comparison against the AESCrypt class 7541 ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt")); 7542 if (!klass_AESCrypt->is_loaded()) { 7543 // if AESCrypt is not even loaded, we never take the intrinsic fast path 7544 Node* ctrl = control(); 7545 set_control(top()); // no regular fast path 7546 return ctrl; 7547 } 7548 7549 ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass(); 7550 Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt))); 7551 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7552 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7553 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7554 7555 return instof_false; // even if it is null 7556 } 7557 7558 //------------------------------get_state_from_digest_object----------------------- 7559 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) { 7560 const char* state_type; 7561 switch (elem_type) { 7562 case T_BYTE: state_type = "[B"; break; 7563 case T_INT: state_type = "[I"; break; 7564 case T_LONG: state_type = "[J"; break; 7565 default: ShouldNotReachHere(); 7566 } 7567 Node* digest_state = load_field_from_object(digest_object, "state", state_type); 7568 assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3"); 7569 if (digest_state == nullptr) return (Node *) nullptr; 7570 7571 // now have the array, need to get the start address of the state array 7572 Node* state = array_element_address(digest_state, intcon(0), elem_type); 7573 return state; 7574 } 7575 7576 //------------------------------get_block_size_from_sha3_object---------------------------------- 7577 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) { 7578 Node* block_size = load_field_from_object(digest_object, "blockSize", "I"); 7579 assert (block_size != nullptr, "sanity"); 7580 return block_size; 7581 } 7582 7583 //----------------------------inline_digestBase_implCompressMB_predicate---------------------------- 7584 // Return node representing slow path of predicate check. 7585 // the pseudo code we want to emulate with this predicate is: 7586 // if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath 7587 // 7588 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) { 7589 assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics, 7590 "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support"); 7591 assert((uint)predicate < 5, "sanity"); 7592 7593 // The receiver was checked for null already. 7594 Node* digestBaseObj = argument(0); 7595 7596 // get DigestBase klass for instanceOf check 7597 const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr(); 7598 assert(tinst != nullptr, "digestBaseObj is null"); 7599 assert(tinst->is_loaded(), "DigestBase is not loaded"); 7600 7601 const char* klass_name = nullptr; 7602 switch (predicate) { 7603 case 0: 7604 if (UseMD5Intrinsics) { 7605 // we want to do an instanceof comparison against the MD5 class 7606 klass_name = "sun/security/provider/MD5"; 7607 } 7608 break; 7609 case 1: 7610 if (UseSHA1Intrinsics) { 7611 // we want to do an instanceof comparison against the SHA class 7612 klass_name = "sun/security/provider/SHA"; 7613 } 7614 break; 7615 case 2: 7616 if (UseSHA256Intrinsics) { 7617 // we want to do an instanceof comparison against the SHA2 class 7618 klass_name = "sun/security/provider/SHA2"; 7619 } 7620 break; 7621 case 3: 7622 if (UseSHA512Intrinsics) { 7623 // we want to do an instanceof comparison against the SHA5 class 7624 klass_name = "sun/security/provider/SHA5"; 7625 } 7626 break; 7627 case 4: 7628 if (UseSHA3Intrinsics) { 7629 // we want to do an instanceof comparison against the SHA3 class 7630 klass_name = "sun/security/provider/SHA3"; 7631 } 7632 break; 7633 default: 7634 fatal("unknown SHA intrinsic predicate: %d", predicate); 7635 } 7636 7637 ciKlass* klass = nullptr; 7638 if (klass_name != nullptr) { 7639 klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name)); 7640 } 7641 if ((klass == nullptr) || !klass->is_loaded()) { 7642 // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path 7643 Node* ctrl = control(); 7644 set_control(top()); // no intrinsic path 7645 return ctrl; 7646 } 7647 ciInstanceKlass* instklass = klass->as_instance_klass(); 7648 7649 Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass))); 7650 Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1))); 7651 Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne)); 7652 Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN); 7653 7654 return instof_false; // even if it is null 7655 } 7656 7657 //-------------inline_fma----------------------------------- 7658 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) { 7659 Node *a = nullptr; 7660 Node *b = nullptr; 7661 Node *c = nullptr; 7662 Node* result = nullptr; 7663 switch (id) { 7664 case vmIntrinsics::_fmaD: 7665 assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each."); 7666 // no receiver since it is static method 7667 a = round_double_node(argument(0)); 7668 b = round_double_node(argument(2)); 7669 c = round_double_node(argument(4)); 7670 result = _gvn.transform(new FmaDNode(control(), a, b, c)); 7671 break; 7672 case vmIntrinsics::_fmaF: 7673 assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each."); 7674 a = argument(0); 7675 b = argument(1); 7676 c = argument(2); 7677 result = _gvn.transform(new FmaFNode(control(), a, b, c)); 7678 break; 7679 default: 7680 fatal_unexpected_iid(id); break; 7681 } 7682 set_result(result); 7683 return true; 7684 } 7685 7686 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) { 7687 // argument(0) is receiver 7688 Node* codePoint = argument(1); 7689 Node* n = nullptr; 7690 7691 switch (id) { 7692 case vmIntrinsics::_isDigit : 7693 n = new DigitNode(control(), codePoint); 7694 break; 7695 case vmIntrinsics::_isLowerCase : 7696 n = new LowerCaseNode(control(), codePoint); 7697 break; 7698 case vmIntrinsics::_isUpperCase : 7699 n = new UpperCaseNode(control(), codePoint); 7700 break; 7701 case vmIntrinsics::_isWhitespace : 7702 n = new WhitespaceNode(control(), codePoint); 7703 break; 7704 default: 7705 fatal_unexpected_iid(id); 7706 } 7707 7708 set_result(_gvn.transform(n)); 7709 return true; 7710 } 7711 7712 //------------------------------inline_fp_min_max------------------------------ 7713 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) { 7714 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416. 7715 7716 // The intrinsic should be used only when the API branches aren't predictable, 7717 // the last one performing the most important comparison. The following heuristic 7718 // uses the branch statistics to eventually bail out if necessary. 7719 7720 ciMethodData *md = callee()->method_data(); 7721 7722 if ( md != nullptr && md->is_mature() && md->invocation_count() > 0 ) { 7723 ciCallProfile cp = caller()->call_profile_at_bci(bci()); 7724 7725 if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) { 7726 // Bail out if the call-site didn't contribute enough to the statistics. 7727 return false; 7728 } 7729 7730 uint taken = 0, not_taken = 0; 7731 7732 for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) { 7733 if (p->is_BranchData()) { 7734 taken = ((ciBranchData*)p)->taken(); 7735 not_taken = ((ciBranchData*)p)->not_taken(); 7736 } 7737 } 7738 7739 double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count()); 7740 balance = balance < 0 ? -balance : balance; 7741 if ( balance > 0.2 ) { 7742 // Bail out if the most important branch is predictable enough. 7743 return false; 7744 } 7745 } 7746 */ 7747 7748 Node *a = nullptr; 7749 Node *b = nullptr; 7750 Node *n = nullptr; 7751 switch (id) { 7752 case vmIntrinsics::_maxF: 7753 case vmIntrinsics::_minF: 7754 case vmIntrinsics::_maxF_strict: 7755 case vmIntrinsics::_minF_strict: 7756 assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each."); 7757 a = argument(0); 7758 b = argument(1); 7759 break; 7760 case vmIntrinsics::_maxD: 7761 case vmIntrinsics::_minD: 7762 case vmIntrinsics::_maxD_strict: 7763 case vmIntrinsics::_minD_strict: 7764 assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each."); 7765 a = round_double_node(argument(0)); 7766 b = round_double_node(argument(2)); 7767 break; 7768 default: 7769 fatal_unexpected_iid(id); 7770 break; 7771 } 7772 switch (id) { 7773 case vmIntrinsics::_maxF: 7774 case vmIntrinsics::_maxF_strict: 7775 n = new MaxFNode(a, b); 7776 break; 7777 case vmIntrinsics::_minF: 7778 case vmIntrinsics::_minF_strict: 7779 n = new MinFNode(a, b); 7780 break; 7781 case vmIntrinsics::_maxD: 7782 case vmIntrinsics::_maxD_strict: 7783 n = new MaxDNode(a, b); 7784 break; 7785 case vmIntrinsics::_minD: 7786 case vmIntrinsics::_minD_strict: 7787 n = new MinDNode(a, b); 7788 break; 7789 default: 7790 fatal_unexpected_iid(id); 7791 break; 7792 } 7793 set_result(_gvn.transform(n)); 7794 return true; 7795 } 7796 7797 bool LibraryCallKit::inline_profileBoolean() { 7798 Node* counts = argument(1); 7799 const TypeAryPtr* ary = nullptr; 7800 ciArray* aobj = nullptr; 7801 if (counts->is_Con() 7802 && (ary = counts->bottom_type()->isa_aryptr()) != nullptr 7803 && (aobj = ary->const_oop()->as_array()) != nullptr 7804 && (aobj->length() == 2)) { 7805 // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively. 7806 jint false_cnt = aobj->element_value(0).as_int(); 7807 jint true_cnt = aobj->element_value(1).as_int(); 7808 7809 if (C->log() != nullptr) { 7810 C->log()->elem("observe source='profileBoolean' false='%d' true='%d'", 7811 false_cnt, true_cnt); 7812 } 7813 7814 if (false_cnt + true_cnt == 0) { 7815 // According to profile, never executed. 7816 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 7817 Deoptimization::Action_reinterpret); 7818 return true; 7819 } 7820 7821 // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt) 7822 // is a number of each value occurrences. 7823 Node* result = argument(0); 7824 if (false_cnt == 0 || true_cnt == 0) { 7825 // According to profile, one value has been never seen. 7826 int expected_val = (false_cnt == 0) ? 1 : 0; 7827 7828 Node* cmp = _gvn.transform(new CmpINode(result, intcon(expected_val))); 7829 Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq)); 7830 7831 IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN); 7832 Node* fast_path = _gvn.transform(new IfTrueNode(check)); 7833 Node* slow_path = _gvn.transform(new IfFalseNode(check)); 7834 7835 { // Slow path: uncommon trap for never seen value and then reexecute 7836 // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows 7837 // the value has been seen at least once. 7838 PreserveJVMState pjvms(this); 7839 PreserveReexecuteState preexecs(this); 7840 jvms()->set_should_reexecute(true); 7841 7842 set_control(slow_path); 7843 set_i_o(i_o()); 7844 7845 uncommon_trap_exact(Deoptimization::Reason_intrinsic, 7846 Deoptimization::Action_reinterpret); 7847 } 7848 // The guard for never seen value enables sharpening of the result and 7849 // returning a constant. It allows to eliminate branches on the same value 7850 // later on. 7851 set_control(fast_path); 7852 result = intcon(expected_val); 7853 } 7854 // Stop profiling. 7855 // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode. 7856 // By replacing method body with profile data (represented as ProfileBooleanNode 7857 // on IR level) we effectively disable profiling. 7858 // It enables full speed execution once optimized code is generated. 7859 Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt)); 7860 C->record_for_igvn(profile); 7861 set_result(profile); 7862 return true; 7863 } else { 7864 // Continue profiling. 7865 // Profile data isn't available at the moment. So, execute method's bytecode version. 7866 // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod 7867 // is compiled and counters aren't available since corresponding MethodHandle 7868 // isn't a compile-time constant. 7869 return false; 7870 } 7871 } 7872 7873 bool LibraryCallKit::inline_isCompileConstant() { 7874 Node* n = argument(0); 7875 set_result(n->is_Con() ? intcon(1) : intcon(0)); 7876 return true; 7877 } 7878 7879 //------------------------------- inline_getObjectSize -------------------------------------- 7880 // 7881 // Calculate the runtime size of the object/array. 7882 // native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize); 7883 // 7884 bool LibraryCallKit::inline_getObjectSize() { 7885 Node* obj = argument(3); 7886 Node* klass_node = load_object_klass(obj); 7887 7888 jint layout_con = Klass::_lh_neutral_value; 7889 Node* layout_val = get_layout_helper(klass_node, layout_con); 7890 int layout_is_con = (layout_val == nullptr); 7891 7892 if (layout_is_con) { 7893 // Layout helper is constant, can figure out things at compile time. 7894 7895 if (Klass::layout_helper_is_instance(layout_con)) { 7896 // Instance case: layout_con contains the size itself. 7897 Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con)); 7898 set_result(size); 7899 } else { 7900 // Array case: size is round(header + element_size*arraylength). 7901 // Since arraylength is different for every array instance, we have to 7902 // compute the whole thing at runtime. 7903 7904 Node* arr_length = load_array_length(obj); 7905 7906 int round_mask = MinObjAlignmentInBytes - 1; 7907 int hsize = Klass::layout_helper_header_size(layout_con); 7908 int eshift = Klass::layout_helper_log2_element_size(layout_con); 7909 7910 if ((round_mask & ~right_n_bits(eshift)) == 0) { 7911 round_mask = 0; // strength-reduce it if it goes away completely 7912 } 7913 assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded"); 7914 Node* header_size = intcon(hsize + round_mask); 7915 7916 Node* lengthx = ConvI2X(arr_length); 7917 Node* headerx = ConvI2X(header_size); 7918 7919 Node* abody = lengthx; 7920 if (eshift != 0) { 7921 abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift))); 7922 } 7923 Node* size = _gvn.transform( new AddXNode(headerx, abody) ); 7924 if (round_mask != 0) { 7925 size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) ); 7926 } 7927 size = ConvX2L(size); 7928 set_result(size); 7929 } 7930 } else { 7931 // Layout helper is not constant, need to test for array-ness at runtime. 7932 7933 enum { _instance_path = 1, _array_path, PATH_LIMIT }; 7934 RegionNode* result_reg = new RegionNode(PATH_LIMIT); 7935 PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG); 7936 record_for_igvn(result_reg); 7937 7938 Node* array_ctl = generate_array_guard(klass_node, nullptr); 7939 if (array_ctl != nullptr) { 7940 // Array case: size is round(header + element_size*arraylength). 7941 // Since arraylength is different for every array instance, we have to 7942 // compute the whole thing at runtime. 7943 7944 PreserveJVMState pjvms(this); 7945 set_control(array_ctl); 7946 Node* arr_length = load_array_length(obj); 7947 7948 int round_mask = MinObjAlignmentInBytes - 1; 7949 Node* mask = intcon(round_mask); 7950 7951 Node* hss = intcon(Klass::_lh_header_size_shift); 7952 Node* hsm = intcon(Klass::_lh_header_size_mask); 7953 Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss)); 7954 header_size = _gvn.transform(new AndINode(header_size, hsm)); 7955 header_size = _gvn.transform(new AddINode(header_size, mask)); 7956 7957 // There is no need to mask or shift this value. 7958 // The semantics of LShiftINode include an implicit mask to 0x1F. 7959 assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place"); 7960 Node* elem_shift = layout_val; 7961 7962 Node* lengthx = ConvI2X(arr_length); 7963 Node* headerx = ConvI2X(header_size); 7964 7965 Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift)); 7966 Node* size = _gvn.transform(new AddXNode(headerx, abody)); 7967 if (round_mask != 0) { 7968 size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask))); 7969 } 7970 size = ConvX2L(size); 7971 7972 result_reg->init_req(_array_path, control()); 7973 result_val->init_req(_array_path, size); 7974 } 7975 7976 if (!stopped()) { 7977 // Instance case: the layout helper gives us instance size almost directly, 7978 // but we need to mask out the _lh_instance_slow_path_bit. 7979 Node* size = ConvI2X(layout_val); 7980 assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit"); 7981 Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong)); 7982 size = _gvn.transform(new AndXNode(size, mask)); 7983 size = ConvX2L(size); 7984 7985 result_reg->init_req(_instance_path, control()); 7986 result_val->init_req(_instance_path, size); 7987 } 7988 7989 set_result(result_reg, result_val); 7990 } 7991 7992 return true; 7993 } 7994 7995 //------------------------------- inline_blackhole -------------------------------------- 7996 // 7997 // Make sure all arguments to this node are alive. 7998 // This matches methods that were requested to be blackholed through compile commands. 7999 // 8000 bool LibraryCallKit::inline_blackhole() { 8001 assert(callee()->is_static(), "Should have been checked before: only static methods here"); 8002 assert(callee()->is_empty(), "Should have been checked before: only empty methods here"); 8003 assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here"); 8004 8005 // Blackhole node pinches only the control, not memory. This allows 8006 // the blackhole to be pinned in the loop that computes blackholed 8007 // values, but have no other side effects, like breaking the optimizations 8008 // across the blackhole. 8009 8010 Node* bh = _gvn.transform(new BlackholeNode(control())); 8011 set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control))); 8012 8013 // Bind call arguments as blackhole arguments to keep them alive 8014 uint nargs = callee()->arg_size(); 8015 for (uint i = 0; i < nargs; i++) { 8016 bh->add_req(argument(i)); 8017 } 8018 8019 return true; 8020 }