1 /*
   2  * Copyright (c) 1999, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "asm/macroAssembler.hpp"
  26 #include "ci/ciUtilities.inline.hpp"
  27 #include "ci/ciSymbols.hpp"
  28 #include "classfile/vmIntrinsics.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/barrierSet.hpp"
  32 #include "jfr/support/jfrIntrinsics.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "oops/objArrayKlass.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/arraycopynode.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/castnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/convertnode.hpp"
  42 #include "opto/countbitsnode.hpp"
  43 #include "opto/idealKit.hpp"
  44 #include "opto/library_call.hpp"
  45 #include "opto/mathexactnode.hpp"
  46 #include "opto/mulnode.hpp"
  47 #include "opto/narrowptrnode.hpp"
  48 #include "opto/opaquenode.hpp"
  49 #include "opto/parse.hpp"
  50 #include "opto/runtime.hpp"
  51 #include "opto/rootnode.hpp"
  52 #include "opto/subnode.hpp"
  53 #include "opto/vectornode.hpp"
  54 #include "prims/jvmtiExport.hpp"
  55 #include "prims/jvmtiThreadState.hpp"
  56 #include "prims/unsafe.hpp"
  57 #include "runtime/jniHandles.inline.hpp"
  58 #include "runtime/objectMonitor.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "utilities/macros.hpp"
  62 #include "utilities/powerOfTwo.hpp"
  63 
  64 //---------------------------make_vm_intrinsic----------------------------
  65 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  66   vmIntrinsicID id = m->intrinsic_id();
  67   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  68 
  69   if (!m->is_loaded()) {
  70     // Do not attempt to inline unloaded methods.
  71     return nullptr;
  72   }
  73 
  74   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  75   bool is_available = false;
  76 
  77   {
  78     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  79     // the compiler must transition to '_thread_in_vm' state because both
  80     // methods access VM-internal data.
  81     VM_ENTRY_MARK;
  82     methodHandle mh(THREAD, m->get_Method());
  83     is_available = compiler != nullptr && compiler->is_intrinsic_available(mh, C->directive());
  84     if (is_available && is_virtual) {
  85       is_available = vmIntrinsics::does_virtual_dispatch(id);
  86     }
  87   }
  88 
  89   if (is_available) {
  90     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
  91     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
  92     return new LibraryIntrinsic(m, is_virtual,
  93                                 vmIntrinsics::predicates_needed(id),
  94                                 vmIntrinsics::does_virtual_dispatch(id),
  95                                 id);
  96   } else {
  97     return nullptr;
  98   }
  99 }
 100 
 101 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 102   LibraryCallKit kit(jvms, this);
 103   Compile* C = kit.C;
 104   int nodes = C->unique();
 105 #ifndef PRODUCT
 106   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 107     char buf[1000];
 108     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 109     tty->print_cr("Intrinsic %s", str);
 110   }
 111 #endif
 112   ciMethod* callee = kit.callee();
 113   const int bci    = kit.bci();
 114 #ifdef ASSERT
 115   Node* ctrl = kit.control();
 116 #endif
 117   // Try to inline the intrinsic.
 118   if (callee->check_intrinsic_candidate() &&
 119       kit.try_to_inline(_last_predicate)) {
 120     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 121                                           : "(intrinsic)";
 122     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 123     C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg);
 124     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 125     if (C->log()) {
 126       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 127                      vmIntrinsics::name_at(intrinsic_id()),
 128                      (is_virtual() ? " virtual='1'" : ""),
 129                      C->unique() - nodes);
 130     }
 131     // Push the result from the inlined method onto the stack.
 132     kit.push_result();
 133     return kit.transfer_exceptions_into_jvms();
 134   }
 135 
 136   // The intrinsic bailed out
 137   assert(ctrl == kit.control(), "Control flow was added although the intrinsic bailed out");
 138   if (jvms->has_method()) {
 139     // Not a root compile.
 140     const char* msg;
 141     if (callee->intrinsic_candidate()) {
 142       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 143     } else {
 144       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 145                          : "failed to inline (intrinsic), method not annotated";
 146     }
 147     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 148     C->inline_printer()->record(callee, jvms, InliningResult::FAILURE, msg);
 149   } else {
 150     // Root compile
 151     ResourceMark rm;
 152     stringStream msg_stream;
 153     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 154                      vmIntrinsics::name_at(intrinsic_id()),
 155                      is_virtual() ? " (virtual)" : "", bci);
 156     const char *msg = msg_stream.freeze();
 157     log_debug(jit, inlining)("%s", msg);
 158     if (C->print_intrinsics() || C->print_inlining()) {
 159       tty->print("%s", msg);
 160     }
 161   }
 162   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 163 
 164   return nullptr;
 165 }
 166 
 167 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 168   LibraryCallKit kit(jvms, this);
 169   Compile* C = kit.C;
 170   int nodes = C->unique();
 171   _last_predicate = predicate;
 172 #ifndef PRODUCT
 173   assert(is_predicated() && predicate < predicates_count(), "sanity");
 174   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 175     char buf[1000];
 176     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 177     tty->print_cr("Predicate for intrinsic %s", str);
 178   }
 179 #endif
 180   ciMethod* callee = kit.callee();
 181   const int bci    = kit.bci();
 182 
 183   Node* slow_ctl = kit.try_to_predicate(predicate);
 184   if (!kit.failing()) {
 185     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 186                                           : "(intrinsic, predicate)";
 187     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, InliningResult::SUCCESS, inline_msg);
 188     C->inline_printer()->record(callee, jvms, InliningResult::SUCCESS, inline_msg);
 189 
 190     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 191     if (C->log()) {
 192       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 193                      vmIntrinsics::name_at(intrinsic_id()),
 194                      (is_virtual() ? " virtual='1'" : ""),
 195                      C->unique() - nodes);
 196     }
 197     return slow_ctl; // Could be null if the check folds.
 198   }
 199 
 200   // The intrinsic bailed out
 201   if (jvms->has_method()) {
 202     // Not a root compile.
 203     const char* msg = "failed to generate predicate for intrinsic";
 204     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, InliningResult::FAILURE, msg);
 205     C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg);
 206   } else {
 207     // Root compile
 208     ResourceMark rm;
 209     stringStream msg_stream;
 210     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 211                      vmIntrinsics::name_at(intrinsic_id()),
 212                      is_virtual() ? " (virtual)" : "", bci);
 213     const char *msg = msg_stream.freeze();
 214     log_debug(jit, inlining)("%s", msg);
 215     C->inline_printer()->record(kit.callee(), jvms, InliningResult::FAILURE, msg);
 216   }
 217   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 218   return nullptr;
 219 }
 220 
 221 bool LibraryCallKit::try_to_inline(int predicate) {
 222   // Handle symbolic names for otherwise undistinguished boolean switches:
 223   const bool is_store       = true;
 224   const bool is_compress    = true;
 225   const bool is_static      = true;
 226   const bool is_volatile    = true;
 227 
 228   if (!jvms()->has_method()) {
 229     // Root JVMState has a null method.
 230     assert(map()->memory()->Opcode() == Op_Parm, "");
 231     // Insert the memory aliasing node
 232     set_all_memory(reset_memory());
 233   }
 234   assert(merged_memory(), "");
 235 
 236   switch (intrinsic_id()) {
 237   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 238   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 239   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 240 
 241   case vmIntrinsics::_ceil:
 242   case vmIntrinsics::_floor:
 243   case vmIntrinsics::_rint:
 244   case vmIntrinsics::_dsin:
 245   case vmIntrinsics::_dcos:
 246   case vmIntrinsics::_dtan:
 247   case vmIntrinsics::_dtanh:
 248   case vmIntrinsics::_dabs:
 249   case vmIntrinsics::_fabs:
 250   case vmIntrinsics::_iabs:
 251   case vmIntrinsics::_labs:
 252   case vmIntrinsics::_datan2:
 253   case vmIntrinsics::_dsqrt:
 254   case vmIntrinsics::_dsqrt_strict:
 255   case vmIntrinsics::_dexp:
 256   case vmIntrinsics::_dlog:
 257   case vmIntrinsics::_dlog10:
 258   case vmIntrinsics::_dpow:
 259   case vmIntrinsics::_dcopySign:
 260   case vmIntrinsics::_fcopySign:
 261   case vmIntrinsics::_dsignum:
 262   case vmIntrinsics::_roundF:
 263   case vmIntrinsics::_roundD:
 264   case vmIntrinsics::_fsignum:                  return inline_math_native(intrinsic_id());
 265 
 266   case vmIntrinsics::_notify:
 267   case vmIntrinsics::_notifyAll:
 268     return inline_notify(intrinsic_id());
 269 
 270   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 271   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 272   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 273   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 274   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 275   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 276   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 277   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 278   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 279   case vmIntrinsics::_unsignedMultiplyHigh:     return inline_math_unsignedMultiplyHigh();
 280   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 281   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 282   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 283   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 284 
 285   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 286 
 287   case vmIntrinsics::_arraySort:                return inline_array_sort();
 288   case vmIntrinsics::_arrayPartition:           return inline_array_partition();
 289 
 290   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 291   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 292   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 293   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 294 
 295   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 296   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 297   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 298   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 299   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 300   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 301   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar(StrIntrinsicNode::U);
 302   case vmIntrinsics::_indexOfL_char:            return inline_string_indexOfChar(StrIntrinsicNode::L);
 303 
 304   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 305 
 306   case vmIntrinsics::_vectorizedHashCode:       return inline_vectorizedHashCode();
 307 
 308   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 309   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 310   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 311   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 312 
 313   case vmIntrinsics::_compressStringC:
 314   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 315   case vmIntrinsics::_inflateStringC:
 316   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 317 
 318   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 319   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 320   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 321   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 322   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 323   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 324   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 325   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 326   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 327 
 328   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 329   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 330   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 331   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 332   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 333   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 334   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 335   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 336   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 337 
 338   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 339   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 340   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 341   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 342   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 343   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 344   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 345   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 346   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 347 
 348   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 349   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 350   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 351   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 352   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 353   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 354   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 355   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 356   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 357 
 358   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 359   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 360   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 361   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 362 
 363   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 364   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 365   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 366   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 367 
 368   case vmIntrinsics::_getReferenceAcquire:      return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 369   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 370   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 371   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 372   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 373   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 374   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 375   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 376   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 377 
 378   case vmIntrinsics::_putReferenceRelease:      return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 379   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 380   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 381   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 382   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 383   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 384   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 385   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 386   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 387 
 388   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 389   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 390   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 391   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 392   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 393   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 394   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 395   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 396   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 397 
 398   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 399   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 400   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 401   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 402   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 403   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 404   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 405   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 406   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 407 
 408   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 409   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 410   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 411   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 412   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 413 
 414   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 415   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 416   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 417   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 418   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 419   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 420   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 421   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 422   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 423   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 424   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 425   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 426   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 427   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 428   case vmIntrinsics::_weakCompareAndSetIntRelease:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 429   case vmIntrinsics::_weakCompareAndSetInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 430   case vmIntrinsics::_weakCompareAndSetLongPlain:          return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 431   case vmIntrinsics::_weakCompareAndSetLongAcquire:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 432   case vmIntrinsics::_weakCompareAndSetLongRelease:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 433   case vmIntrinsics::_weakCompareAndSetLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 434 
 435   case vmIntrinsics::_compareAndExchangeReference:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 436   case vmIntrinsics::_compareAndExchangeReferenceAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 437   case vmIntrinsics::_compareAndExchangeReferenceRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 438   case vmIntrinsics::_compareAndExchangeByte:              return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 439   case vmIntrinsics::_compareAndExchangeByteAcquire:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 440   case vmIntrinsics::_compareAndExchangeByteRelease:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 441   case vmIntrinsics::_compareAndExchangeShort:             return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 442   case vmIntrinsics::_compareAndExchangeShortAcquire:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 443   case vmIntrinsics::_compareAndExchangeShortRelease:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 444   case vmIntrinsics::_compareAndExchangeInt:               return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 445   case vmIntrinsics::_compareAndExchangeIntAcquire:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 446   case vmIntrinsics::_compareAndExchangeIntRelease:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 447   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 448   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 449   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 450 
 451   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 452   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 453   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 454   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 455 
 456   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 457   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 458   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 459   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 460   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 461 
 462   case vmIntrinsics::_loadFence:
 463   case vmIntrinsics::_storeFence:
 464   case vmIntrinsics::_storeStoreFence:
 465   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 466 
 467   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 468 
 469   case vmIntrinsics::_currentCarrierThread:     return inline_native_currentCarrierThread();
 470   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 471   case vmIntrinsics::_setCurrentThread:         return inline_native_setCurrentThread();
 472 
 473   case vmIntrinsics::_scopedValueCache:          return inline_native_scopedValueCache();
 474   case vmIntrinsics::_setScopedValueCache:       return inline_native_setScopedValueCache();
 475 
 476   case vmIntrinsics::_Continuation_pin:          return inline_native_Continuation_pinning(false);
 477   case vmIntrinsics::_Continuation_unpin:        return inline_native_Continuation_pinning(true);
 478 
 479 #if INCLUDE_JVMTI
 480   case vmIntrinsics::_notifyJvmtiVThreadStart:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_start()),
 481                                                                                          "notifyJvmtiStart", true, false);
 482   case vmIntrinsics::_notifyJvmtiVThreadEnd:     return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_end()),
 483                                                                                          "notifyJvmtiEnd", false, true);
 484   case vmIntrinsics::_notifyJvmtiVThreadMount:   return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_mount()),
 485                                                                                          "notifyJvmtiMount", false, false);
 486   case vmIntrinsics::_notifyJvmtiVThreadUnmount: return inline_native_notify_jvmti_funcs(CAST_FROM_FN_PTR(address, OptoRuntime::notify_jvmti_vthread_unmount()),
 487                                                                                          "notifyJvmtiUnmount", false, false);
 488   case vmIntrinsics::_notifyJvmtiVThreadDisableSuspend: return inline_native_notify_jvmti_sync();
 489 #endif
 490 
 491 #ifdef JFR_HAVE_INTRINSICS
 492   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JfrTime::time_function()), "counterTime");
 493   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 494   case vmIntrinsics::_jvm_commit:               return inline_native_jvm_commit();
 495 #endif
 496   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 497   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 498   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 499   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 500   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 501   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 502   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 503   case vmIntrinsics::_setMemory:                return inline_unsafe_setMemory();
 504   case vmIntrinsics::_getLength:                return inline_native_getLength();
 505   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 506   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 507   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 508   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 509   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex(T_INT);
 510   case vmIntrinsics::_Preconditions_checkLongIndex: return inline_preconditions_checkIndex(T_LONG);
 511   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 512 
 513   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 514   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 515 
 516   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 517 
 518   case vmIntrinsics::_isInstance:
 519   case vmIntrinsics::_isHidden:
 520   case vmIntrinsics::_getSuperclass:
 521   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 522 
 523   case vmIntrinsics::_floatToRawIntBits:
 524   case vmIntrinsics::_floatToIntBits:
 525   case vmIntrinsics::_intBitsToFloat:
 526   case vmIntrinsics::_doubleToRawLongBits:
 527   case vmIntrinsics::_doubleToLongBits:
 528   case vmIntrinsics::_longBitsToDouble:
 529   case vmIntrinsics::_floatToFloat16:
 530   case vmIntrinsics::_float16ToFloat:           return inline_fp_conversions(intrinsic_id());
 531   case vmIntrinsics::_sqrt_float16:             return inline_fp16_operations(intrinsic_id(), 1);
 532   case vmIntrinsics::_fma_float16:              return inline_fp16_operations(intrinsic_id(), 3);
 533   case vmIntrinsics::_floatIsFinite:
 534   case vmIntrinsics::_floatIsInfinite:
 535   case vmIntrinsics::_doubleIsFinite:
 536   case vmIntrinsics::_doubleIsInfinite:         return inline_fp_range_check(intrinsic_id());
 537 
 538   case vmIntrinsics::_numberOfLeadingZeros_i:
 539   case vmIntrinsics::_numberOfLeadingZeros_l:
 540   case vmIntrinsics::_numberOfTrailingZeros_i:
 541   case vmIntrinsics::_numberOfTrailingZeros_l:
 542   case vmIntrinsics::_bitCount_i:
 543   case vmIntrinsics::_bitCount_l:
 544   case vmIntrinsics::_reverse_i:
 545   case vmIntrinsics::_reverse_l:
 546   case vmIntrinsics::_reverseBytes_i:
 547   case vmIntrinsics::_reverseBytes_l:
 548   case vmIntrinsics::_reverseBytes_s:
 549   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 550 
 551   case vmIntrinsics::_compress_i:
 552   case vmIntrinsics::_compress_l:
 553   case vmIntrinsics::_expand_i:
 554   case vmIntrinsics::_expand_l:                 return inline_bitshuffle_methods(intrinsic_id());
 555 
 556   case vmIntrinsics::_compareUnsigned_i:
 557   case vmIntrinsics::_compareUnsigned_l:        return inline_compare_unsigned(intrinsic_id());
 558 
 559   case vmIntrinsics::_divideUnsigned_i:
 560   case vmIntrinsics::_divideUnsigned_l:
 561   case vmIntrinsics::_remainderUnsigned_i:
 562   case vmIntrinsics::_remainderUnsigned_l:      return inline_divmod_methods(intrinsic_id());
 563 
 564   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 565 
 566   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 567   case vmIntrinsics::_Reference_refersTo0:      return inline_reference_refersTo0(false);
 568   case vmIntrinsics::_PhantomReference_refersTo0: return inline_reference_refersTo0(true);
 569   case vmIntrinsics::_Reference_clear0:         return inline_reference_clear0(false);
 570   case vmIntrinsics::_PhantomReference_clear0:  return inline_reference_clear0(true);
 571 
 572   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 573 
 574   case vmIntrinsics::_aescrypt_encryptBlock:
 575   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 576 
 577   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 578   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 579     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 580 
 581   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 582   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 583     return inline_electronicCodeBook_AESCrypt(intrinsic_id());
 584 
 585   case vmIntrinsics::_counterMode_AESCrypt:
 586     return inline_counterMode_AESCrypt(intrinsic_id());
 587 
 588   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 589     return inline_galoisCounterMode_AESCrypt();
 590 
 591   case vmIntrinsics::_md5_implCompress:
 592   case vmIntrinsics::_sha_implCompress:
 593   case vmIntrinsics::_sha2_implCompress:
 594   case vmIntrinsics::_sha5_implCompress:
 595   case vmIntrinsics::_sha3_implCompress:
 596     return inline_digestBase_implCompress(intrinsic_id());
 597   case vmIntrinsics::_double_keccak:
 598     return inline_double_keccak();
 599 
 600   case vmIntrinsics::_digestBase_implCompressMB:
 601     return inline_digestBase_implCompressMB(predicate);
 602 
 603   case vmIntrinsics::_multiplyToLen:
 604     return inline_multiplyToLen();
 605 
 606   case vmIntrinsics::_squareToLen:
 607     return inline_squareToLen();
 608 
 609   case vmIntrinsics::_mulAdd:
 610     return inline_mulAdd();
 611 
 612   case vmIntrinsics::_montgomeryMultiply:
 613     return inline_montgomeryMultiply();
 614   case vmIntrinsics::_montgomerySquare:
 615     return inline_montgomerySquare();
 616 
 617   case vmIntrinsics::_bigIntegerRightShiftWorker:
 618     return inline_bigIntegerShift(true);
 619   case vmIntrinsics::_bigIntegerLeftShiftWorker:
 620     return inline_bigIntegerShift(false);
 621 
 622   case vmIntrinsics::_vectorizedMismatch:
 623     return inline_vectorizedMismatch();
 624 
 625   case vmIntrinsics::_ghash_processBlocks:
 626     return inline_ghash_processBlocks();
 627   case vmIntrinsics::_chacha20Block:
 628     return inline_chacha20Block();
 629   case vmIntrinsics::_dilithiumAlmostNtt:
 630     return inline_dilithiumAlmostNtt();
 631   case vmIntrinsics::_dilithiumAlmostInverseNtt:
 632     return inline_dilithiumAlmostInverseNtt();
 633   case vmIntrinsics::_dilithiumNttMult:
 634     return inline_dilithiumNttMult();
 635   case vmIntrinsics::_dilithiumMontMulByConstant:
 636     return inline_dilithiumMontMulByConstant();
 637   case vmIntrinsics::_dilithiumDecomposePoly:
 638     return inline_dilithiumDecomposePoly();
 639   case vmIntrinsics::_base64_encodeBlock:
 640     return inline_base64_encodeBlock();
 641   case vmIntrinsics::_base64_decodeBlock:
 642     return inline_base64_decodeBlock();
 643   case vmIntrinsics::_poly1305_processBlocks:
 644     return inline_poly1305_processBlocks();
 645   case vmIntrinsics::_intpoly_montgomeryMult_P256:
 646     return inline_intpoly_montgomeryMult_P256();
 647   case vmIntrinsics::_intpoly_assign:
 648     return inline_intpoly_assign();
 649   case vmIntrinsics::_encodeISOArray:
 650   case vmIntrinsics::_encodeByteISOArray:
 651     return inline_encodeISOArray(false);
 652   case vmIntrinsics::_encodeAsciiArray:
 653     return inline_encodeISOArray(true);
 654 
 655   case vmIntrinsics::_updateCRC32:
 656     return inline_updateCRC32();
 657   case vmIntrinsics::_updateBytesCRC32:
 658     return inline_updateBytesCRC32();
 659   case vmIntrinsics::_updateByteBufferCRC32:
 660     return inline_updateByteBufferCRC32();
 661 
 662   case vmIntrinsics::_updateBytesCRC32C:
 663     return inline_updateBytesCRC32C();
 664   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 665     return inline_updateDirectByteBufferCRC32C();
 666 
 667   case vmIntrinsics::_updateBytesAdler32:
 668     return inline_updateBytesAdler32();
 669   case vmIntrinsics::_updateByteBufferAdler32:
 670     return inline_updateByteBufferAdler32();
 671 
 672   case vmIntrinsics::_profileBoolean:
 673     return inline_profileBoolean();
 674   case vmIntrinsics::_isCompileConstant:
 675     return inline_isCompileConstant();
 676 
 677   case vmIntrinsics::_countPositives:
 678     return inline_countPositives();
 679 
 680   case vmIntrinsics::_fmaD:
 681   case vmIntrinsics::_fmaF:
 682     return inline_fma(intrinsic_id());
 683 
 684   case vmIntrinsics::_isDigit:
 685   case vmIntrinsics::_isLowerCase:
 686   case vmIntrinsics::_isUpperCase:
 687   case vmIntrinsics::_isWhitespace:
 688     return inline_character_compare(intrinsic_id());
 689 
 690   case vmIntrinsics::_min:
 691   case vmIntrinsics::_max:
 692   case vmIntrinsics::_min_strict:
 693   case vmIntrinsics::_max_strict:
 694   case vmIntrinsics::_minL:
 695   case vmIntrinsics::_maxL:
 696   case vmIntrinsics::_minF:
 697   case vmIntrinsics::_maxF:
 698   case vmIntrinsics::_minD:
 699   case vmIntrinsics::_maxD:
 700   case vmIntrinsics::_minF_strict:
 701   case vmIntrinsics::_maxF_strict:
 702   case vmIntrinsics::_minD_strict:
 703   case vmIntrinsics::_maxD_strict:
 704     return inline_min_max(intrinsic_id());
 705 
 706   case vmIntrinsics::_VectorUnaryOp:
 707     return inline_vector_nary_operation(1);
 708   case vmIntrinsics::_VectorBinaryOp:
 709     return inline_vector_nary_operation(2);
 710   case vmIntrinsics::_VectorTernaryOp:
 711     return inline_vector_nary_operation(3);
 712   case vmIntrinsics::_VectorFromBitsCoerced:
 713     return inline_vector_frombits_coerced();
 714   case vmIntrinsics::_VectorMaskOp:
 715     return inline_vector_mask_operation();
 716   case vmIntrinsics::_VectorLoadOp:
 717     return inline_vector_mem_operation(/*is_store=*/false);
 718   case vmIntrinsics::_VectorLoadMaskedOp:
 719     return inline_vector_mem_masked_operation(/*is_store*/false);
 720   case vmIntrinsics::_VectorStoreOp:
 721     return inline_vector_mem_operation(/*is_store=*/true);
 722   case vmIntrinsics::_VectorStoreMaskedOp:
 723     return inline_vector_mem_masked_operation(/*is_store=*/true);
 724   case vmIntrinsics::_VectorGatherOp:
 725     return inline_vector_gather_scatter(/*is_scatter*/ false);
 726   case vmIntrinsics::_VectorScatterOp:
 727     return inline_vector_gather_scatter(/*is_scatter*/ true);
 728   case vmIntrinsics::_VectorReductionCoerced:
 729     return inline_vector_reduction();
 730   case vmIntrinsics::_VectorTest:
 731     return inline_vector_test();
 732   case vmIntrinsics::_VectorBlend:
 733     return inline_vector_blend();
 734   case vmIntrinsics::_VectorRearrange:
 735     return inline_vector_rearrange();
 736   case vmIntrinsics::_VectorSelectFrom:
 737     return inline_vector_select_from();
 738   case vmIntrinsics::_VectorCompare:
 739     return inline_vector_compare();
 740   case vmIntrinsics::_VectorBroadcastInt:
 741     return inline_vector_broadcast_int();
 742   case vmIntrinsics::_VectorConvert:
 743     return inline_vector_convert();
 744   case vmIntrinsics::_VectorInsert:
 745     return inline_vector_insert();
 746   case vmIntrinsics::_VectorExtract:
 747     return inline_vector_extract();
 748   case vmIntrinsics::_VectorCompressExpand:
 749     return inline_vector_compress_expand();
 750   case vmIntrinsics::_VectorSelectFromTwoVectorOp:
 751     return inline_vector_select_from_two_vectors();
 752   case vmIntrinsics::_IndexVector:
 753     return inline_index_vector();
 754   case vmIntrinsics::_IndexPartiallyInUpperRange:
 755     return inline_index_partially_in_upper_range();
 756 
 757   case vmIntrinsics::_getObjectSize:
 758     return inline_getObjectSize();
 759 
 760   case vmIntrinsics::_blackhole:
 761     return inline_blackhole();
 762 
 763   default:
 764     // If you get here, it may be that someone has added a new intrinsic
 765     // to the list in vmIntrinsics.hpp without implementing it here.
 766 #ifndef PRODUCT
 767     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 768       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 769                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 770     }
 771 #endif
 772     return false;
 773   }
 774 }
 775 
 776 Node* LibraryCallKit::try_to_predicate(int predicate) {
 777   if (!jvms()->has_method()) {
 778     // Root JVMState has a null method.
 779     assert(map()->memory()->Opcode() == Op_Parm, "");
 780     // Insert the memory aliasing node
 781     set_all_memory(reset_memory());
 782   }
 783   assert(merged_memory(), "");
 784 
 785   switch (intrinsic_id()) {
 786   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 787     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 788   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 789     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 790   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 791     return inline_electronicCodeBook_AESCrypt_predicate(false);
 792   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 793     return inline_electronicCodeBook_AESCrypt_predicate(true);
 794   case vmIntrinsics::_counterMode_AESCrypt:
 795     return inline_counterMode_AESCrypt_predicate();
 796   case vmIntrinsics::_digestBase_implCompressMB:
 797     return inline_digestBase_implCompressMB_predicate(predicate);
 798   case vmIntrinsics::_galoisCounterMode_AESCrypt:
 799     return inline_galoisCounterMode_AESCrypt_predicate();
 800 
 801   default:
 802     // If you get here, it may be that someone has added a new intrinsic
 803     // to the list in vmIntrinsics.hpp without implementing it here.
 804 #ifndef PRODUCT
 805     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 806       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 807                     vmIntrinsics::name_at(intrinsic_id()), vmIntrinsics::as_int(intrinsic_id()));
 808     }
 809 #endif
 810     Node* slow_ctl = control();
 811     set_control(top()); // No fast path intrinsic
 812     return slow_ctl;
 813   }
 814 }
 815 
 816 //------------------------------set_result-------------------------------
 817 // Helper function for finishing intrinsics.
 818 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 819   record_for_igvn(region);
 820   set_control(_gvn.transform(region));
 821   set_result( _gvn.transform(value));
 822   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 823 }
 824 
 825 //------------------------------generate_guard---------------------------
 826 // Helper function for generating guarded fast-slow graph structures.
 827 // The given 'test', if true, guards a slow path.  If the test fails
 828 // then a fast path can be taken.  (We generally hope it fails.)
 829 // In all cases, GraphKit::control() is updated to the fast path.
 830 // The returned value represents the control for the slow path.
 831 // The return value is never 'top'; it is either a valid control
 832 // or null if it is obvious that the slow path can never be taken.
 833 // Also, if region and the slow control are not null, the slow edge
 834 // is appended to the region.
 835 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 836   if (stopped()) {
 837     // Already short circuited.
 838     return nullptr;
 839   }
 840 
 841   // Build an if node and its projections.
 842   // If test is true we take the slow path, which we assume is uncommon.
 843   if (_gvn.type(test) == TypeInt::ZERO) {
 844     // The slow branch is never taken.  No need to build this guard.
 845     return nullptr;
 846   }
 847 
 848   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 849 
 850   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 851   if (if_slow == top()) {
 852     // The slow branch is never taken.  No need to build this guard.
 853     return nullptr;
 854   }
 855 
 856   if (region != nullptr)
 857     region->add_req(if_slow);
 858 
 859   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 860   set_control(if_fast);
 861 
 862   return if_slow;
 863 }
 864 
 865 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 866   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 867 }
 868 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 869   return generate_guard(test, region, PROB_FAIR);
 870 }
 871 
 872 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 873                                                      Node* *pos_index) {
 874   if (stopped())
 875     return nullptr;                // already stopped
 876   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 877     return nullptr;                // index is already adequately typed
 878   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 879   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 880   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 881   if (is_neg != nullptr && pos_index != nullptr) {
 882     // Emulate effect of Parse::adjust_map_after_if.
 883     Node* ccast = new CastIINode(control(), index, TypeInt::POS);
 884     (*pos_index) = _gvn.transform(ccast);
 885   }
 886   return is_neg;
 887 }
 888 
 889 // Make sure that 'position' is a valid limit index, in [0..length].
 890 // There are two equivalent plans for checking this:
 891 //   A. (offset + copyLength)  unsigned<=  arrayLength
 892 //   B. offset  <=  (arrayLength - copyLength)
 893 // We require that all of the values above, except for the sum and
 894 // difference, are already known to be non-negative.
 895 // Plan A is robust in the face of overflow, if offset and copyLength
 896 // are both hugely positive.
 897 //
 898 // Plan B is less direct and intuitive, but it does not overflow at
 899 // all, since the difference of two non-negatives is always
 900 // representable.  Whenever Java methods must perform the equivalent
 901 // check they generally use Plan B instead of Plan A.
 902 // For the moment we use Plan A.
 903 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 904                                                   Node* subseq_length,
 905                                                   Node* array_length,
 906                                                   RegionNode* region) {
 907   if (stopped())
 908     return nullptr;                // already stopped
 909   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 910   if (zero_offset && subseq_length->eqv_uncast(array_length))
 911     return nullptr;                // common case of whole-array copy
 912   Node* last = subseq_length;
 913   if (!zero_offset)             // last += offset
 914     last = _gvn.transform(new AddINode(last, offset));
 915   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 916   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 917   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 918   return is_over;
 919 }
 920 
 921 // Emit range checks for the given String.value byte array
 922 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 923   if (stopped()) {
 924     return; // already stopped
 925   }
 926   RegionNode* bailout = new RegionNode(1);
 927   record_for_igvn(bailout);
 928   if (char_count) {
 929     // Convert char count to byte count
 930     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 931   }
 932 
 933   // Offset and count must not be negative
 934   generate_negative_guard(offset, bailout);
 935   generate_negative_guard(count, bailout);
 936   // Offset + count must not exceed length of array
 937   generate_limit_guard(offset, count, load_array_length(array), bailout);
 938 
 939   if (bailout->req() > 1) {
 940     PreserveJVMState pjvms(this);
 941     set_control(_gvn.transform(bailout));
 942     uncommon_trap(Deoptimization::Reason_intrinsic,
 943                   Deoptimization::Action_maybe_recompile);
 944   }
 945 }
 946 
 947 Node* LibraryCallKit::current_thread_helper(Node*& tls_output, ByteSize handle_offset,
 948                                             bool is_immutable) {
 949   ciKlass* thread_klass = env()->Thread_klass();
 950   const Type* thread_type
 951     = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 952 
 953   Node* thread = _gvn.transform(new ThreadLocalNode());
 954   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(handle_offset));
 955   tls_output = thread;
 956 
 957   Node* thread_obj_handle
 958     = (is_immutable
 959       ? LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
 960         TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered)
 961       : make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered));
 962   thread_obj_handle = _gvn.transform(thread_obj_handle);
 963 
 964   DecoratorSet decorators = IN_NATIVE;
 965   if (is_immutable) {
 966     decorators |= C2_IMMUTABLE_MEMORY;
 967   }
 968   return access_load(thread_obj_handle, thread_type, T_OBJECT, decorators);
 969 }
 970 
 971 //--------------------------generate_current_thread--------------------
 972 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 973   return current_thread_helper(tls_output, JavaThread::threadObj_offset(),
 974                                /*is_immutable*/false);
 975 }
 976 
 977 //--------------------------generate_virtual_thread--------------------
 978 Node* LibraryCallKit::generate_virtual_thread(Node* tls_output) {
 979   return current_thread_helper(tls_output, JavaThread::vthread_offset(),
 980                                !C->method()->changes_current_thread());
 981 }
 982 
 983 //------------------------------make_string_method_node------------------------
 984 // Helper method for String intrinsic functions. This version is called with
 985 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
 986 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
 987 // containing the lengths of str1 and str2.
 988 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
 989   Node* result = nullptr;
 990   switch (opcode) {
 991   case Op_StrIndexOf:
 992     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
 993                                 str1_start, cnt1, str2_start, cnt2, ae);
 994     break;
 995   case Op_StrComp:
 996     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
 997                              str1_start, cnt1, str2_start, cnt2, ae);
 998     break;
 999   case Op_StrEquals:
1000     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1001     // Use the constant length if there is one because optimized match rule may exist.
1002     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1003                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1004     break;
1005   default:
1006     ShouldNotReachHere();
1007     return nullptr;
1008   }
1009 
1010   // All these intrinsics have checks.
1011   C->set_has_split_ifs(true); // Has chance for split-if optimization
1012   clear_upper_avx();
1013 
1014   return _gvn.transform(result);
1015 }
1016 
1017 //------------------------------inline_string_compareTo------------------------
1018 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1019   Node* arg1 = argument(0);
1020   Node* arg2 = argument(1);
1021 
1022   arg1 = must_be_not_null(arg1, true);
1023   arg2 = must_be_not_null(arg2, true);
1024 
1025   // Get start addr and length of first argument
1026   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1027   Node* arg1_cnt    = load_array_length(arg1);
1028 
1029   // Get start addr and length of second argument
1030   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1031   Node* arg2_cnt    = load_array_length(arg2);
1032 
1033   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1034   set_result(result);
1035   return true;
1036 }
1037 
1038 //------------------------------inline_string_equals------------------------
1039 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1040   Node* arg1 = argument(0);
1041   Node* arg2 = argument(1);
1042 
1043   // paths (plus control) merge
1044   RegionNode* region = new RegionNode(3);
1045   Node* phi = new PhiNode(region, TypeInt::BOOL);
1046 
1047   if (!stopped()) {
1048 
1049     arg1 = must_be_not_null(arg1, true);
1050     arg2 = must_be_not_null(arg2, true);
1051 
1052     // Get start addr and length of first argument
1053     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1054     Node* arg1_cnt    = load_array_length(arg1);
1055 
1056     // Get start addr and length of second argument
1057     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1058     Node* arg2_cnt    = load_array_length(arg2);
1059 
1060     // Check for arg1_cnt != arg2_cnt
1061     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1062     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1063     Node* if_ne = generate_slow_guard(bol, nullptr);
1064     if (if_ne != nullptr) {
1065       phi->init_req(2, intcon(0));
1066       region->init_req(2, if_ne);
1067     }
1068 
1069     // Check for count == 0 is done by assembler code for StrEquals.
1070 
1071     if (!stopped()) {
1072       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1073       phi->init_req(1, equals);
1074       region->init_req(1, control());
1075     }
1076   }
1077 
1078   // post merge
1079   set_control(_gvn.transform(region));
1080   record_for_igvn(region);
1081 
1082   set_result(_gvn.transform(phi));
1083   return true;
1084 }
1085 
1086 //------------------------------inline_array_equals----------------------------
1087 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1088   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1089   Node* arg1 = argument(0);
1090   Node* arg2 = argument(1);
1091 
1092   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1093   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1094   clear_upper_avx();
1095 
1096   return true;
1097 }
1098 
1099 
1100 //------------------------------inline_countPositives------------------------------
1101 bool LibraryCallKit::inline_countPositives() {
1102   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1103     return false;
1104   }
1105 
1106   assert(callee()->signature()->size() == 3, "countPositives has 3 parameters");
1107   // no receiver since it is static method
1108   Node* ba         = argument(0);
1109   Node* offset     = argument(1);
1110   Node* len        = argument(2);
1111 
1112   ba = must_be_not_null(ba, true);
1113 
1114   // Range checks
1115   generate_string_range_check(ba, offset, len, false);
1116   if (stopped()) {
1117     return true;
1118   }
1119   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1120   Node* result = new CountPositivesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1121   set_result(_gvn.transform(result));
1122   clear_upper_avx();
1123   return true;
1124 }
1125 
1126 bool LibraryCallKit::inline_preconditions_checkIndex(BasicType bt) {
1127   Node* index = argument(0);
1128   Node* length = bt == T_INT ? argument(1) : argument(2);
1129   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1130     return false;
1131   }
1132 
1133   // check that length is positive
1134   Node* len_pos_cmp = _gvn.transform(CmpNode::make(length, integercon(0, bt), bt));
1135   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1136 
1137   {
1138     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1139     uncommon_trap(Deoptimization::Reason_intrinsic,
1140                   Deoptimization::Action_make_not_entrant);
1141   }
1142 
1143   if (stopped()) {
1144     // Length is known to be always negative during compilation and the IR graph so far constructed is good so return success
1145     return true;
1146   }
1147 
1148   // length is now known positive, add a cast node to make this explicit
1149   jlong upper_bound = _gvn.type(length)->is_integer(bt)->hi_as_long();
1150   Node* casted_length = ConstraintCastNode::make_cast_for_basic_type(
1151       control(), length, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1152       ConstraintCastNode::RegularDependency, bt);
1153   casted_length = _gvn.transform(casted_length);
1154   replace_in_map(length, casted_length);
1155   length = casted_length;
1156 
1157   // Use an unsigned comparison for the range check itself
1158   Node* rc_cmp = _gvn.transform(CmpNode::make(index, length, bt, true));
1159   BoolTest::mask btest = BoolTest::lt;
1160   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1161   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1162   _gvn.set_type(rc, rc->Value(&_gvn));
1163   if (!rc_bool->is_Con()) {
1164     record_for_igvn(rc);
1165   }
1166   set_control(_gvn.transform(new IfTrueNode(rc)));
1167   {
1168     PreserveJVMState pjvms(this);
1169     set_control(_gvn.transform(new IfFalseNode(rc)));
1170     uncommon_trap(Deoptimization::Reason_range_check,
1171                   Deoptimization::Action_make_not_entrant);
1172   }
1173 
1174   if (stopped()) {
1175     // Range check is known to always fail during compilation and the IR graph so far constructed is good so return success
1176     return true;
1177   }
1178 
1179   // index is now known to be >= 0 and < length, cast it
1180   Node* result = ConstraintCastNode::make_cast_for_basic_type(
1181       control(), index, TypeInteger::make(0, upper_bound, Type::WidenMax, bt),
1182       ConstraintCastNode::RegularDependency, bt);
1183   result = _gvn.transform(result);
1184   set_result(result);
1185   replace_in_map(index, result);
1186   return true;
1187 }
1188 
1189 //------------------------------inline_string_indexOf------------------------
1190 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1191   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1192     return false;
1193   }
1194   Node* src = argument(0);
1195   Node* tgt = argument(1);
1196 
1197   // Make the merge point
1198   RegionNode* result_rgn = new RegionNode(4);
1199   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1200 
1201   src = must_be_not_null(src, true);
1202   tgt = must_be_not_null(tgt, true);
1203 
1204   // Get start addr and length of source string
1205   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1206   Node* src_count = load_array_length(src);
1207 
1208   // Get start addr and length of substring
1209   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1210   Node* tgt_count = load_array_length(tgt);
1211 
1212   Node* result = nullptr;
1213   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1214 
1215   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1216     // Divide src size by 2 if String is UTF16 encoded
1217     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1218   }
1219   if (ae == StrIntrinsicNode::UU) {
1220     // Divide substring size by 2 if String is UTF16 encoded
1221     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1222   }
1223 
1224   if (call_opt_stub) {
1225     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1226                                    StubRoutines::_string_indexof_array[ae],
1227                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1228                                    src_count, tgt_start, tgt_count);
1229     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1230   } else {
1231     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1232                                result_rgn, result_phi, ae);
1233   }
1234   if (result != nullptr) {
1235     result_phi->init_req(3, result);
1236     result_rgn->init_req(3, control());
1237   }
1238   set_control(_gvn.transform(result_rgn));
1239   record_for_igvn(result_rgn);
1240   set_result(_gvn.transform(result_phi));
1241 
1242   return true;
1243 }
1244 
1245 //-----------------------------inline_string_indexOfI-----------------------
1246 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1247   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1248     return false;
1249   }
1250   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1251     return false;
1252   }
1253 
1254   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1255   Node* src         = argument(0); // byte[]
1256   Node* src_count   = argument(1); // char count
1257   Node* tgt         = argument(2); // byte[]
1258   Node* tgt_count   = argument(3); // char count
1259   Node* from_index  = argument(4); // char index
1260 
1261   src = must_be_not_null(src, true);
1262   tgt = must_be_not_null(tgt, true);
1263 
1264   // Multiply byte array index by 2 if String is UTF16 encoded
1265   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1266   src_count = _gvn.transform(new SubINode(src_count, from_index));
1267   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1268   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1269 
1270   // Range checks
1271   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1272   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1273   if (stopped()) {
1274     return true;
1275   }
1276 
1277   RegionNode* region = new RegionNode(5);
1278   Node* phi = new PhiNode(region, TypeInt::INT);
1279   Node* result = nullptr;
1280 
1281   bool call_opt_stub = (StubRoutines::_string_indexof_array[ae] != nullptr);
1282 
1283   if (call_opt_stub) {
1284     Node* call = make_runtime_call(RC_LEAF, OptoRuntime::string_IndexOf_Type(),
1285                                    StubRoutines::_string_indexof_array[ae],
1286                                    "stringIndexOf", TypePtr::BOTTOM, src_start,
1287                                    src_count, tgt_start, tgt_count);
1288     result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1289   } else {
1290     result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count,
1291                                region, phi, ae);
1292   }
1293   if (result != nullptr) {
1294     // The result is index relative to from_index if substring was found, -1 otherwise.
1295     // Generate code which will fold into cmove.
1296     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1297     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1298 
1299     Node* if_lt = generate_slow_guard(bol, nullptr);
1300     if (if_lt != nullptr) {
1301       // result == -1
1302       phi->init_req(3, result);
1303       region->init_req(3, if_lt);
1304     }
1305     if (!stopped()) {
1306       result = _gvn.transform(new AddINode(result, from_index));
1307       phi->init_req(4, result);
1308       region->init_req(4, control());
1309     }
1310   }
1311 
1312   set_control(_gvn.transform(region));
1313   record_for_igvn(region);
1314   set_result(_gvn.transform(phi));
1315   clear_upper_avx();
1316 
1317   return true;
1318 }
1319 
1320 // Create StrIndexOfNode with fast path checks
1321 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1322                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1323   // Check for substr count > string count
1324   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1325   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1326   Node* if_gt = generate_slow_guard(bol, nullptr);
1327   if (if_gt != nullptr) {
1328     phi->init_req(1, intcon(-1));
1329     region->init_req(1, if_gt);
1330   }
1331   if (!stopped()) {
1332     // Check for substr count == 0
1333     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1334     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1335     Node* if_zero = generate_slow_guard(bol, nullptr);
1336     if (if_zero != nullptr) {
1337       phi->init_req(2, intcon(0));
1338       region->init_req(2, if_zero);
1339     }
1340   }
1341   if (!stopped()) {
1342     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1343   }
1344   return nullptr;
1345 }
1346 
1347 //-----------------------------inline_string_indexOfChar-----------------------
1348 bool LibraryCallKit::inline_string_indexOfChar(StrIntrinsicNode::ArgEnc ae) {
1349   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1350     return false;
1351   }
1352   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1353     return false;
1354   }
1355   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1356   Node* src         = argument(0); // byte[]
1357   Node* int_ch      = argument(1);
1358   Node* from_index  = argument(2);
1359   Node* max         = argument(3);
1360 
1361   src = must_be_not_null(src, true);
1362 
1363   Node* src_offset = ae == StrIntrinsicNode::L ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1364   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1365   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1366 
1367   // Range checks
1368   generate_string_range_check(src, src_offset, src_count, ae == StrIntrinsicNode::U);
1369 
1370   // Check for int_ch >= 0
1371   Node* int_ch_cmp = _gvn.transform(new CmpINode(int_ch, intcon(0)));
1372   Node* int_ch_bol = _gvn.transform(new BoolNode(int_ch_cmp, BoolTest::ge));
1373   {
1374     BuildCutout unless(this, int_ch_bol, PROB_MAX);
1375     uncommon_trap(Deoptimization::Reason_intrinsic,
1376                   Deoptimization::Action_maybe_recompile);
1377   }
1378   if (stopped()) {
1379     return true;
1380   }
1381 
1382   RegionNode* region = new RegionNode(3);
1383   Node* phi = new PhiNode(region, TypeInt::INT);
1384 
1385   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, int_ch, ae);
1386   C->set_has_split_ifs(true); // Has chance for split-if optimization
1387   _gvn.transform(result);
1388 
1389   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1390   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1391 
1392   Node* if_lt = generate_slow_guard(bol, nullptr);
1393   if (if_lt != nullptr) {
1394     // result == -1
1395     phi->init_req(2, result);
1396     region->init_req(2, if_lt);
1397   }
1398   if (!stopped()) {
1399     result = _gvn.transform(new AddINode(result, from_index));
1400     phi->init_req(1, result);
1401     region->init_req(1, control());
1402   }
1403   set_control(_gvn.transform(region));
1404   record_for_igvn(region);
1405   set_result(_gvn.transform(phi));
1406   clear_upper_avx();
1407 
1408   return true;
1409 }
1410 //---------------------------inline_string_copy---------------------
1411 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1412 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1413 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1414 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1415 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1416 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1417 bool LibraryCallKit::inline_string_copy(bool compress) {
1418   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1419     return false;
1420   }
1421   int nargs = 5;  // 2 oops, 3 ints
1422   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1423 
1424   Node* src         = argument(0);
1425   Node* src_offset  = argument(1);
1426   Node* dst         = argument(2);
1427   Node* dst_offset  = argument(3);
1428   Node* length      = argument(4);
1429 
1430   // Check for allocation before we add nodes that would confuse
1431   // tightly_coupled_allocation()
1432   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1433 
1434   // Figure out the size and type of the elements we will be copying.
1435   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
1436   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
1437   if (src_type == nullptr || dst_type == nullptr) {
1438     return false;
1439   }
1440   BasicType src_elem = src_type->elem()->array_element_basic_type();
1441   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
1442   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1443          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1444          "Unsupported array types for inline_string_copy");
1445 
1446   src = must_be_not_null(src, true);
1447   dst = must_be_not_null(dst, true);
1448 
1449   // Convert char[] offsets to byte[] offsets
1450   bool convert_src = (compress && src_elem == T_BYTE);
1451   bool convert_dst = (!compress && dst_elem == T_BYTE);
1452   if (convert_src) {
1453     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1454   } else if (convert_dst) {
1455     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1456   }
1457 
1458   // Range checks
1459   generate_string_range_check(src, src_offset, length, convert_src);
1460   generate_string_range_check(dst, dst_offset, length, convert_dst);
1461   if (stopped()) {
1462     return true;
1463   }
1464 
1465   Node* src_start = array_element_address(src, src_offset, src_elem);
1466   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1467   // 'src_start' points to src array + scaled offset
1468   // 'dst_start' points to dst array + scaled offset
1469   Node* count = nullptr;
1470   if (compress) {
1471     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1472   } else {
1473     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1474   }
1475 
1476   if (alloc != nullptr) {
1477     if (alloc->maybe_set_complete(&_gvn)) {
1478       // "You break it, you buy it."
1479       InitializeNode* init = alloc->initialization();
1480       assert(init->is_complete(), "we just did this");
1481       init->set_complete_with_arraycopy();
1482       assert(dst->is_CheckCastPP(), "sanity");
1483       assert(dst->in(0)->in(0) == init, "dest pinned");
1484     }
1485     // Do not let stores that initialize this object be reordered with
1486     // a subsequent store that would make this object accessible by
1487     // other threads.
1488     // Record what AllocateNode this StoreStore protects so that
1489     // escape analysis can go from the MemBarStoreStoreNode to the
1490     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1491     // based on the escape status of the AllocateNode.
1492     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1493   }
1494   if (compress) {
1495     set_result(_gvn.transform(count));
1496   }
1497   clear_upper_avx();
1498 
1499   return true;
1500 }
1501 
1502 #ifdef _LP64
1503 #define XTOP ,top() /*additional argument*/
1504 #else  //_LP64
1505 #define XTOP        /*no additional argument*/
1506 #endif //_LP64
1507 
1508 //------------------------inline_string_toBytesU--------------------------
1509 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1510 bool LibraryCallKit::inline_string_toBytesU() {
1511   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1512     return false;
1513   }
1514   // Get the arguments.
1515   Node* value     = argument(0);
1516   Node* offset    = argument(1);
1517   Node* length    = argument(2);
1518 
1519   Node* newcopy = nullptr;
1520 
1521   // Set the original stack and the reexecute bit for the interpreter to reexecute
1522   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1523   { PreserveReexecuteState preexecs(this);
1524     jvms()->set_should_reexecute(true);
1525 
1526     // Check if a null path was taken unconditionally.
1527     value = null_check(value);
1528 
1529     RegionNode* bailout = new RegionNode(1);
1530     record_for_igvn(bailout);
1531 
1532     // Range checks
1533     generate_negative_guard(offset, bailout);
1534     generate_negative_guard(length, bailout);
1535     generate_limit_guard(offset, length, load_array_length(value), bailout);
1536     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1537     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1538 
1539     if (bailout->req() > 1) {
1540       PreserveJVMState pjvms(this);
1541       set_control(_gvn.transform(bailout));
1542       uncommon_trap(Deoptimization::Reason_intrinsic,
1543                     Deoptimization::Action_maybe_recompile);
1544     }
1545     if (stopped()) {
1546       return true;
1547     }
1548 
1549     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1550     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1551     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1552     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy);
1553     guarantee(alloc != nullptr, "created above");
1554 
1555     // Calculate starting addresses.
1556     Node* src_start = array_element_address(value, offset, T_CHAR);
1557     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1558 
1559     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1560     const TypeInt* toffset = gvn().type(offset)->is_int();
1561     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1562 
1563     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1564     const char* copyfunc_name = "arraycopy";
1565     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1566     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1567                       OptoRuntime::fast_arraycopy_Type(),
1568                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1569                       src_start, dst_start, ConvI2X(length) XTOP);
1570     // Do not let reads from the cloned object float above the arraycopy.
1571     if (alloc->maybe_set_complete(&_gvn)) {
1572       // "You break it, you buy it."
1573       InitializeNode* init = alloc->initialization();
1574       assert(init->is_complete(), "we just did this");
1575       init->set_complete_with_arraycopy();
1576       assert(newcopy->is_CheckCastPP(), "sanity");
1577       assert(newcopy->in(0)->in(0) == init, "dest pinned");
1578     }
1579     // Do not let stores that initialize this object be reordered with
1580     // a subsequent store that would make this object accessible by
1581     // other threads.
1582     // Record what AllocateNode this StoreStore protects so that
1583     // escape analysis can go from the MemBarStoreStoreNode to the
1584     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1585     // based on the escape status of the AllocateNode.
1586     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1587   } // original reexecute is set back here
1588 
1589   C->set_has_split_ifs(true); // Has chance for split-if optimization
1590   if (!stopped()) {
1591     set_result(newcopy);
1592   }
1593   clear_upper_avx();
1594 
1595   return true;
1596 }
1597 
1598 //------------------------inline_string_getCharsU--------------------------
1599 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1600 bool LibraryCallKit::inline_string_getCharsU() {
1601   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1602     return false;
1603   }
1604 
1605   // Get the arguments.
1606   Node* src       = argument(0);
1607   Node* src_begin = argument(1);
1608   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1609   Node* dst       = argument(3);
1610   Node* dst_begin = argument(4);
1611 
1612   // Check for allocation before we add nodes that would confuse
1613   // tightly_coupled_allocation()
1614   AllocateArrayNode* alloc = tightly_coupled_allocation(dst);
1615 
1616   // Check if a null path was taken unconditionally.
1617   src = null_check(src);
1618   dst = null_check(dst);
1619   if (stopped()) {
1620     return true;
1621   }
1622 
1623   // Get length and convert char[] offset to byte[] offset
1624   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1625   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1626 
1627   // Range checks
1628   generate_string_range_check(src, src_begin, length, true);
1629   generate_string_range_check(dst, dst_begin, length, false);
1630   if (stopped()) {
1631     return true;
1632   }
1633 
1634   if (!stopped()) {
1635     // Calculate starting addresses.
1636     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1637     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1638 
1639     // Check if array addresses are aligned to HeapWordSize
1640     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1641     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1642     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1643                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1644 
1645     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1646     const char* copyfunc_name = "arraycopy";
1647     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1648     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1649                       OptoRuntime::fast_arraycopy_Type(),
1650                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1651                       src_start, dst_start, ConvI2X(length) XTOP);
1652     // Do not let reads from the cloned object float above the arraycopy.
1653     if (alloc != nullptr) {
1654       if (alloc->maybe_set_complete(&_gvn)) {
1655         // "You break it, you buy it."
1656         InitializeNode* init = alloc->initialization();
1657         assert(init->is_complete(), "we just did this");
1658         init->set_complete_with_arraycopy();
1659         assert(dst->is_CheckCastPP(), "sanity");
1660         assert(dst->in(0)->in(0) == init, "dest pinned");
1661       }
1662       // Do not let stores that initialize this object be reordered with
1663       // a subsequent store that would make this object accessible by
1664       // other threads.
1665       // Record what AllocateNode this StoreStore protects so that
1666       // escape analysis can go from the MemBarStoreStoreNode to the
1667       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1668       // based on the escape status of the AllocateNode.
1669       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1670     } else {
1671       insert_mem_bar(Op_MemBarCPUOrder);
1672     }
1673   }
1674 
1675   C->set_has_split_ifs(true); // Has chance for split-if optimization
1676   return true;
1677 }
1678 
1679 //----------------------inline_string_char_access----------------------------
1680 // Store/Load char to/from byte[] array.
1681 // static void StringUTF16.putChar(byte[] val, int index, int c)
1682 // static char StringUTF16.getChar(byte[] val, int index)
1683 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1684   Node* value  = argument(0);
1685   Node* index  = argument(1);
1686   Node* ch = is_store ? argument(2) : nullptr;
1687 
1688   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1689   // correctly requires matched array shapes.
1690   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1691           "sanity: byte[] and char[] bases agree");
1692   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1693           "sanity: byte[] and char[] scales agree");
1694 
1695   // Bail when getChar over constants is requested: constant folding would
1696   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1697   // Java method would constant fold nicely instead.
1698   if (!is_store && value->is_Con() && index->is_Con()) {
1699     return false;
1700   }
1701 
1702   // Save state and restore on bailout
1703   uint old_sp = sp();
1704   SafePointNode* old_map = clone_map();
1705 
1706   value = must_be_not_null(value, true);
1707 
1708   Node* adr = array_element_address(value, index, T_CHAR);
1709   if (adr->is_top()) {
1710     set_map(old_map);
1711     set_sp(old_sp);
1712     return false;
1713   }
1714   destruct_map_clone(old_map);
1715   if (is_store) {
1716     access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1717   } else {
1718     ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD | C2_UNKNOWN_CONTROL_LOAD);
1719     set_result(ch);
1720   }
1721   return true;
1722 }
1723 
1724 
1725 //------------------------------inline_math-----------------------------------
1726 // public static double Math.abs(double)
1727 // public static double Math.sqrt(double)
1728 // public static double Math.log(double)
1729 // public static double Math.log10(double)
1730 // public static double Math.round(double)
1731 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1732   Node* arg = argument(0);
1733   Node* n = nullptr;
1734   switch (id) {
1735   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1736   case vmIntrinsics::_dsqrt:
1737   case vmIntrinsics::_dsqrt_strict:
1738                               n = new SqrtDNode(C, control(),  arg);  break;
1739   case vmIntrinsics::_ceil:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break;
1740   case vmIntrinsics::_floor:  n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break;
1741   case vmIntrinsics::_rint:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break;
1742   case vmIntrinsics::_roundD: n = new RoundDNode(arg); break;
1743   case vmIntrinsics::_dcopySign: n = CopySignDNode::make(_gvn, arg, argument(2)); break;
1744   case vmIntrinsics::_dsignum: n = SignumDNode::make(_gvn, arg); break;
1745   default:  fatal_unexpected_iid(id);  break;
1746   }
1747   set_result(_gvn.transform(n));
1748   return true;
1749 }
1750 
1751 //------------------------------inline_math-----------------------------------
1752 // public static float Math.abs(float)
1753 // public static int Math.abs(int)
1754 // public static long Math.abs(long)
1755 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1756   Node* arg = argument(0);
1757   Node* n = nullptr;
1758   switch (id) {
1759   case vmIntrinsics::_fabs:   n = new AbsFNode(                arg);  break;
1760   case vmIntrinsics::_iabs:   n = new AbsINode(                arg);  break;
1761   case vmIntrinsics::_labs:   n = new AbsLNode(                arg);  break;
1762   case vmIntrinsics::_fcopySign: n = new CopySignFNode(arg, argument(1)); break;
1763   case vmIntrinsics::_fsignum: n = SignumFNode::make(_gvn, arg); break;
1764   case vmIntrinsics::_roundF: n = new RoundFNode(arg); break;
1765   default:  fatal_unexpected_iid(id);  break;
1766   }
1767   set_result(_gvn.transform(n));
1768   return true;
1769 }
1770 
1771 //------------------------------runtime_math-----------------------------
1772 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1773   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1774          "must be (DD)D or (D)D type");
1775 
1776   // Inputs
1777   Node* a = argument(0);
1778   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? argument(2) : nullptr;
1779 
1780   const TypePtr* no_memory_effects = nullptr;
1781   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1782                                  no_memory_effects,
1783                                  a, top(), b, b ? top() : nullptr);
1784   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1785 #ifdef ASSERT
1786   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1787   assert(value_top == top(), "second value must be top");
1788 #endif
1789 
1790   set_result(value);
1791   return true;
1792 }
1793 
1794 //------------------------------inline_math_pow-----------------------------
1795 bool LibraryCallKit::inline_math_pow() {
1796   Node* exp = argument(2);
1797   const TypeD* d = _gvn.type(exp)->isa_double_constant();
1798   if (d != nullptr) {
1799     if (d->getd() == 2.0) {
1800       // Special case: pow(x, 2.0) => x * x
1801       Node* base = argument(0);
1802       set_result(_gvn.transform(new MulDNode(base, base)));
1803       return true;
1804     } else if (d->getd() == 0.5 && Matcher::match_rule_supported(Op_SqrtD)) {
1805       // Special case: pow(x, 0.5) => sqrt(x)
1806       Node* base = argument(0);
1807       Node* zero = _gvn.zerocon(T_DOUBLE);
1808 
1809       RegionNode* region = new RegionNode(3);
1810       Node* phi = new PhiNode(region, Type::DOUBLE);
1811 
1812       Node* cmp  = _gvn.transform(new CmpDNode(base, zero));
1813       // According to the API specs, pow(-0.0, 0.5) = 0.0 and sqrt(-0.0) = -0.0.
1814       // So pow(-0.0, 0.5) shouldn't be replaced with sqrt(-0.0).
1815       // -0.0/+0.0 are both excluded since floating-point comparison doesn't distinguish -0.0 from +0.0.
1816       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::le));
1817 
1818       Node* if_pow = generate_slow_guard(test, nullptr);
1819       Node* value_sqrt = _gvn.transform(new SqrtDNode(C, control(), base));
1820       phi->init_req(1, value_sqrt);
1821       region->init_req(1, control());
1822 
1823       if (if_pow != nullptr) {
1824         set_control(if_pow);
1825         address target = StubRoutines::dpow() != nullptr ? StubRoutines::dpow() :
1826                                                         CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
1827         const TypePtr* no_memory_effects = nullptr;
1828         Node* trig = make_runtime_call(RC_LEAF, OptoRuntime::Math_DD_D_Type(), target, "POW",
1829                                        no_memory_effects, base, top(), exp, top());
1830         Node* value_pow = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1831 #ifdef ASSERT
1832         Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1833         assert(value_top == top(), "second value must be top");
1834 #endif
1835         phi->init_req(2, value_pow);
1836         region->init_req(2, _gvn.transform(new ProjNode(trig, TypeFunc::Control)));
1837       }
1838 
1839       C->set_has_split_ifs(true); // Has chance for split-if optimization
1840       set_control(_gvn.transform(region));
1841       record_for_igvn(region);
1842       set_result(_gvn.transform(phi));
1843 
1844       return true;
1845     }
1846   }
1847 
1848   return StubRoutines::dpow() != nullptr ?
1849     runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1850     runtime_math(OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow),  "POW");
1851 }
1852 
1853 //------------------------------inline_math_native-----------------------------
1854 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1855   switch (id) {
1856   case vmIntrinsics::_dsin:
1857     return StubRoutines::dsin() != nullptr ?
1858       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1859       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dsin),   "SIN");
1860   case vmIntrinsics::_dcos:
1861     return StubRoutines::dcos() != nullptr ?
1862       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1863       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dcos),   "COS");
1864   case vmIntrinsics::_dtan:
1865     return StubRoutines::dtan() != nullptr ?
1866       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1867       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dtan), "TAN");
1868   case vmIntrinsics::_dtanh:
1869     return StubRoutines::dtanh() != nullptr ?
1870       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtanh(), "dtanh") : false;
1871   case vmIntrinsics::_dexp:
1872     return StubRoutines::dexp() != nullptr ?
1873       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1874       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp),  "EXP");
1875   case vmIntrinsics::_dlog:
1876     return StubRoutines::dlog() != nullptr ?
1877       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1878       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog),   "LOG");
1879   case vmIntrinsics::_dlog10:
1880     return StubRoutines::dlog10() != nullptr ?
1881       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1882       runtime_math(OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), "LOG10");
1883 
1884   case vmIntrinsics::_roundD: return Matcher::match_rule_supported(Op_RoundD) ? inline_double_math(id) : false;
1885   case vmIntrinsics::_ceil:
1886   case vmIntrinsics::_floor:
1887   case vmIntrinsics::_rint:   return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1888 
1889   case vmIntrinsics::_dsqrt:
1890   case vmIntrinsics::_dsqrt_strict:
1891                               return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1892   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_double_math(id) : false;
1893   case vmIntrinsics::_fabs:   return Matcher::match_rule_supported(Op_AbsF)   ? inline_math(id) : false;
1894   case vmIntrinsics::_iabs:   return Matcher::match_rule_supported(Op_AbsI)   ? inline_math(id) : false;
1895   case vmIntrinsics::_labs:   return Matcher::match_rule_supported(Op_AbsL)   ? inline_math(id) : false;
1896 
1897   case vmIntrinsics::_dpow:      return inline_math_pow();
1898   case vmIntrinsics::_dcopySign: return inline_double_math(id);
1899   case vmIntrinsics::_fcopySign: return inline_math(id);
1900   case vmIntrinsics::_dsignum: return Matcher::match_rule_supported(Op_SignumD) ? inline_double_math(id) : false;
1901   case vmIntrinsics::_fsignum: return Matcher::match_rule_supported(Op_SignumF) ? inline_math(id) : false;
1902   case vmIntrinsics::_roundF: return Matcher::match_rule_supported(Op_RoundF) ? inline_math(id) : false;
1903 
1904    // These intrinsics are not yet correctly implemented
1905   case vmIntrinsics::_datan2:
1906     return false;
1907 
1908   default:
1909     fatal_unexpected_iid(id);
1910     return false;
1911   }
1912 }
1913 
1914 //----------------------------inline_notify-----------------------------------*
1915 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1916   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1917   address func;
1918   if (id == vmIntrinsics::_notify) {
1919     func = OptoRuntime::monitor_notify_Java();
1920   } else {
1921     func = OptoRuntime::monitor_notifyAll_Java();
1922   }
1923   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, nullptr, TypeRawPtr::BOTTOM, argument(0));
1924   make_slow_call_ex(call, env()->Throwable_klass(), false);
1925   return true;
1926 }
1927 
1928 
1929 //----------------------------inline_min_max-----------------------------------
1930 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1931   Node* a = nullptr;
1932   Node* b = nullptr;
1933   Node* n = nullptr;
1934   switch (id) {
1935     case vmIntrinsics::_min:
1936     case vmIntrinsics::_max:
1937     case vmIntrinsics::_minF:
1938     case vmIntrinsics::_maxF:
1939     case vmIntrinsics::_minF_strict:
1940     case vmIntrinsics::_maxF_strict:
1941     case vmIntrinsics::_min_strict:
1942     case vmIntrinsics::_max_strict:
1943       assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
1944       a = argument(0);
1945       b = argument(1);
1946       break;
1947     case vmIntrinsics::_minD:
1948     case vmIntrinsics::_maxD:
1949     case vmIntrinsics::_minD_strict:
1950     case vmIntrinsics::_maxD_strict:
1951       assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
1952       a = argument(0);
1953       b = argument(2);
1954       break;
1955     case vmIntrinsics::_minL:
1956     case vmIntrinsics::_maxL:
1957       assert(callee()->signature()->size() == 4, "minL/maxL has 2 parameters of size 2 each.");
1958       a = argument(0);
1959       b = argument(2);
1960       break;
1961     default:
1962       fatal_unexpected_iid(id);
1963       break;
1964   }
1965 
1966   switch (id) {
1967     case vmIntrinsics::_min:
1968     case vmIntrinsics::_min_strict:
1969       n = new MinINode(a, b);
1970       break;
1971     case vmIntrinsics::_max:
1972     case vmIntrinsics::_max_strict:
1973       n = new MaxINode(a, b);
1974       break;
1975     case vmIntrinsics::_minF:
1976     case vmIntrinsics::_minF_strict:
1977       n = new MinFNode(a, b);
1978       break;
1979     case vmIntrinsics::_maxF:
1980     case vmIntrinsics::_maxF_strict:
1981       n = new MaxFNode(a, b);
1982       break;
1983     case vmIntrinsics::_minD:
1984     case vmIntrinsics::_minD_strict:
1985       n = new MinDNode(a, b);
1986       break;
1987     case vmIntrinsics::_maxD:
1988     case vmIntrinsics::_maxD_strict:
1989       n = new MaxDNode(a, b);
1990       break;
1991     case vmIntrinsics::_minL:
1992       n = new MinLNode(_gvn.C, a, b);
1993       break;
1994     case vmIntrinsics::_maxL:
1995       n = new MaxLNode(_gvn.C, a, b);
1996       break;
1997     default:
1998       fatal_unexpected_iid(id);
1999       break;
2000   }
2001 
2002   set_result(_gvn.transform(n));
2003   return true;
2004 }
2005 
2006 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2007   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
2008   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2009   Node* fast_path = _gvn.transform( new IfFalseNode(check));
2010   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
2011 
2012   {
2013     PreserveJVMState pjvms(this);
2014     PreserveReexecuteState preexecs(this);
2015     jvms()->set_should_reexecute(true);
2016 
2017     set_control(slow_path);
2018     set_i_o(i_o());
2019 
2020     uncommon_trap(Deoptimization::Reason_intrinsic,
2021                   Deoptimization::Action_none);
2022   }
2023 
2024   set_control(fast_path);
2025   set_result(math);
2026 }
2027 
2028 template <typename OverflowOp>
2029 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2030   typedef typename OverflowOp::MathOp MathOp;
2031 
2032   MathOp* mathOp = new MathOp(arg1, arg2);
2033   Node* operation = _gvn.transform( mathOp );
2034   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
2035   inline_math_mathExact(operation, ofcheck);
2036   return true;
2037 }
2038 
2039 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2040   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2041 }
2042 
2043 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2044   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2045 }
2046 
2047 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2048   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2049 }
2050 
2051 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2052   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2053 }
2054 
2055 bool LibraryCallKit::inline_math_negateExactI() {
2056   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2057 }
2058 
2059 bool LibraryCallKit::inline_math_negateExactL() {
2060   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2061 }
2062 
2063 bool LibraryCallKit::inline_math_multiplyExactI() {
2064   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2065 }
2066 
2067 bool LibraryCallKit::inline_math_multiplyExactL() {
2068   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2069 }
2070 
2071 bool LibraryCallKit::inline_math_multiplyHigh() {
2072   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
2073   return true;
2074 }
2075 
2076 bool LibraryCallKit::inline_math_unsignedMultiplyHigh() {
2077   set_result(_gvn.transform(new UMulHiLNode(argument(0), argument(2))));
2078   return true;
2079 }
2080 
2081 inline int
2082 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2083   const TypePtr* base_type = TypePtr::NULL_PTR;
2084   if (base != nullptr)  base_type = _gvn.type(base)->isa_ptr();
2085   if (base_type == nullptr) {
2086     // Unknown type.
2087     return Type::AnyPtr;
2088   } else if (_gvn.type(base->uncast()) == TypePtr::NULL_PTR) {
2089     // Since this is a null+long form, we have to switch to a rawptr.
2090     base   = _gvn.transform(new CastX2PNode(offset));
2091     offset = MakeConX(0);
2092     return Type::RawPtr;
2093   } else if (base_type->base() == Type::RawPtr) {
2094     return Type::RawPtr;
2095   } else if (base_type->isa_oopptr()) {
2096     // Base is never null => always a heap address.
2097     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2098       return Type::OopPtr;
2099     }
2100     // Offset is small => always a heap address.
2101     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2102     if (offset_type != nullptr &&
2103         base_type->offset() == 0 &&     // (should always be?)
2104         offset_type->_lo >= 0 &&
2105         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2106       return Type::OopPtr;
2107     } else if (type == T_OBJECT) {
2108       // off heap access to an oop doesn't make any sense. Has to be on
2109       // heap.
2110       return Type::OopPtr;
2111     }
2112     // Otherwise, it might either be oop+off or null+addr.
2113     return Type::AnyPtr;
2114   } else {
2115     // No information:
2116     return Type::AnyPtr;
2117   }
2118 }
2119 
2120 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2121   Node* uncasted_base = base;
2122   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2123   if (kind == Type::RawPtr) {
2124     return basic_plus_adr(top(), uncasted_base, offset);
2125   } else if (kind == Type::AnyPtr) {
2126     assert(base == uncasted_base, "unexpected base change");
2127     if (can_cast) {
2128       if (!_gvn.type(base)->speculative_maybe_null() &&
2129           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2130         // According to profiling, this access is always on
2131         // heap. Casting the base to not null and thus avoiding membars
2132         // around the access should allow better optimizations
2133         Node* null_ctl = top();
2134         base = null_check_oop(base, &null_ctl, true, true, true);
2135         assert(null_ctl->is_top(), "no null control here");
2136         return basic_plus_adr(base, offset);
2137       } else if (_gvn.type(base)->speculative_always_null() &&
2138                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2139         // According to profiling, this access is always off
2140         // heap.
2141         base = null_assert(base);
2142         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2143         offset = MakeConX(0);
2144         return basic_plus_adr(top(), raw_base, offset);
2145       }
2146     }
2147     // We don't know if it's an on heap or off heap access. Fall back
2148     // to raw memory access.
2149     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2150     return basic_plus_adr(top(), raw, offset);
2151   } else {
2152     assert(base == uncasted_base, "unexpected base change");
2153     // We know it's an on heap access so base can't be null
2154     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2155       base = must_be_not_null(base, true);
2156     }
2157     return basic_plus_adr(base, offset);
2158   }
2159 }
2160 
2161 //--------------------------inline_number_methods-----------------------------
2162 // inline int     Integer.numberOfLeadingZeros(int)
2163 // inline int        Long.numberOfLeadingZeros(long)
2164 //
2165 // inline int     Integer.numberOfTrailingZeros(int)
2166 // inline int        Long.numberOfTrailingZeros(long)
2167 //
2168 // inline int     Integer.bitCount(int)
2169 // inline int        Long.bitCount(long)
2170 //
2171 // inline char  Character.reverseBytes(char)
2172 // inline short     Short.reverseBytes(short)
2173 // inline int     Integer.reverseBytes(int)
2174 // inline long       Long.reverseBytes(long)
2175 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2176   Node* arg = argument(0);
2177   Node* n = nullptr;
2178   switch (id) {
2179   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg); break;
2180   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg); break;
2181   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg); break;
2182   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg); break;
2183   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg); break;
2184   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg); break;
2185   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(     arg); break;
2186   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode(      arg); break;
2187   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode(      arg); break;
2188   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode(      arg); break;
2189   case vmIntrinsics::_reverse_i:                n = new ReverseINode(           arg); break;
2190   case vmIntrinsics::_reverse_l:                n = new ReverseLNode(           arg); break;
2191   default:  fatal_unexpected_iid(id);  break;
2192   }
2193   set_result(_gvn.transform(n));
2194   return true;
2195 }
2196 
2197 //--------------------------inline_bitshuffle_methods-----------------------------
2198 // inline int Integer.compress(int, int)
2199 // inline int Integer.expand(int, int)
2200 // inline long Long.compress(long, long)
2201 // inline long Long.expand(long, long)
2202 bool LibraryCallKit::inline_bitshuffle_methods(vmIntrinsics::ID id) {
2203   Node* n = nullptr;
2204   switch (id) {
2205     case vmIntrinsics::_compress_i:  n = new CompressBitsNode(argument(0), argument(1), TypeInt::INT); break;
2206     case vmIntrinsics::_expand_i:    n = new ExpandBitsNode(argument(0),  argument(1), TypeInt::INT); break;
2207     case vmIntrinsics::_compress_l:  n = new CompressBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2208     case vmIntrinsics::_expand_l:    n = new ExpandBitsNode(argument(0), argument(2), TypeLong::LONG); break;
2209     default:  fatal_unexpected_iid(id);  break;
2210   }
2211   set_result(_gvn.transform(n));
2212   return true;
2213 }
2214 
2215 //--------------------------inline_number_methods-----------------------------
2216 // inline int Integer.compareUnsigned(int, int)
2217 // inline int    Long.compareUnsigned(long, long)
2218 bool LibraryCallKit::inline_compare_unsigned(vmIntrinsics::ID id) {
2219   Node* arg1 = argument(0);
2220   Node* arg2 = (id == vmIntrinsics::_compareUnsigned_l) ? argument(2) : argument(1);
2221   Node* n = nullptr;
2222   switch (id) {
2223     case vmIntrinsics::_compareUnsigned_i:   n = new CmpU3Node(arg1, arg2);  break;
2224     case vmIntrinsics::_compareUnsigned_l:   n = new CmpUL3Node(arg1, arg2); break;
2225     default:  fatal_unexpected_iid(id);  break;
2226   }
2227   set_result(_gvn.transform(n));
2228   return true;
2229 }
2230 
2231 //--------------------------inline_unsigned_divmod_methods-----------------------------
2232 // inline int Integer.divideUnsigned(int, int)
2233 // inline int Integer.remainderUnsigned(int, int)
2234 // inline long Long.divideUnsigned(long, long)
2235 // inline long Long.remainderUnsigned(long, long)
2236 bool LibraryCallKit::inline_divmod_methods(vmIntrinsics::ID id) {
2237   Node* n = nullptr;
2238   switch (id) {
2239     case vmIntrinsics::_divideUnsigned_i: {
2240       zero_check_int(argument(1));
2241       // Compile-time detect of null-exception
2242       if (stopped()) {
2243         return true; // keep the graph constructed so far
2244       }
2245       n = new UDivINode(control(), argument(0), argument(1));
2246       break;
2247     }
2248     case vmIntrinsics::_divideUnsigned_l: {
2249       zero_check_long(argument(2));
2250       // Compile-time detect of null-exception
2251       if (stopped()) {
2252         return true; // keep the graph constructed so far
2253       }
2254       n = new UDivLNode(control(), argument(0), argument(2));
2255       break;
2256     }
2257     case vmIntrinsics::_remainderUnsigned_i: {
2258       zero_check_int(argument(1));
2259       // Compile-time detect of null-exception
2260       if (stopped()) {
2261         return true; // keep the graph constructed so far
2262       }
2263       n = new UModINode(control(), argument(0), argument(1));
2264       break;
2265     }
2266     case vmIntrinsics::_remainderUnsigned_l: {
2267       zero_check_long(argument(2));
2268       // Compile-time detect of null-exception
2269       if (stopped()) {
2270         return true; // keep the graph constructed so far
2271       }
2272       n = new UModLNode(control(), argument(0), argument(2));
2273       break;
2274     }
2275     default:  fatal_unexpected_iid(id);  break;
2276   }
2277   set_result(_gvn.transform(n));
2278   return true;
2279 }
2280 
2281 //----------------------------inline_unsafe_access----------------------------
2282 
2283 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2284   // Attempt to infer a sharper value type from the offset and base type.
2285   ciKlass* sharpened_klass = nullptr;
2286 
2287   // See if it is an instance field, with an object type.
2288   if (alias_type->field() != nullptr) {
2289     if (alias_type->field()->type()->is_klass()) {
2290       sharpened_klass = alias_type->field()->type()->as_klass();
2291     }
2292   }
2293 
2294   const TypeOopPtr* result = nullptr;
2295   // See if it is a narrow oop array.
2296   if (adr_type->isa_aryptr()) {
2297     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2298       const TypeOopPtr* elem_type = adr_type->is_aryptr()->elem()->make_oopptr();
2299       if (elem_type != nullptr && elem_type->is_loaded()) {
2300         // Sharpen the value type.
2301         result = elem_type;
2302       }
2303     }
2304   }
2305 
2306   // The sharpened class might be unloaded if there is no class loader
2307   // contraint in place.
2308   if (result == nullptr && sharpened_klass != nullptr && sharpened_klass->is_loaded()) {
2309     // Sharpen the value type.
2310     result = TypeOopPtr::make_from_klass(sharpened_klass);
2311   }
2312   if (result != nullptr) {
2313 #ifndef PRODUCT
2314     if (C->print_intrinsics() || C->print_inlining()) {
2315       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2316       tty->print("  sharpened value: ");  result->dump();    tty->cr();
2317     }
2318 #endif
2319   }
2320   return result;
2321 }
2322 
2323 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2324   switch (kind) {
2325       case Relaxed:
2326         return MO_UNORDERED;
2327       case Opaque:
2328         return MO_RELAXED;
2329       case Acquire:
2330         return MO_ACQUIRE;
2331       case Release:
2332         return MO_RELEASE;
2333       case Volatile:
2334         return MO_SEQ_CST;
2335       default:
2336         ShouldNotReachHere();
2337         return 0;
2338   }
2339 }
2340 
2341 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2342   if (callee()->is_static())  return false;  // caller must have the capability!
2343   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2344   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2345   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2346   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2347 
2348   if (is_reference_type(type)) {
2349     decorators |= ON_UNKNOWN_OOP_REF;
2350   }
2351 
2352   if (unaligned) {
2353     decorators |= C2_UNALIGNED;
2354   }
2355 
2356 #ifndef PRODUCT
2357   {
2358     ResourceMark rm;
2359     // Check the signatures.
2360     ciSignature* sig = callee()->signature();
2361 #ifdef ASSERT
2362     if (!is_store) {
2363       // Object getReference(Object base, int/long offset), etc.
2364       BasicType rtype = sig->return_type()->basic_type();
2365       assert(rtype == type, "getter must return the expected value");
2366       assert(sig->count() == 2, "oop getter has 2 arguments");
2367       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2368       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2369     } else {
2370       // void putReference(Object base, int/long offset, Object x), etc.
2371       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2372       assert(sig->count() == 3, "oop putter has 3 arguments");
2373       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2374       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2375       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2376       assert(vtype == type, "putter must accept the expected value");
2377     }
2378 #endif // ASSERT
2379  }
2380 #endif //PRODUCT
2381 
2382   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2383 
2384   Node* receiver = argument(0);  // type: oop
2385 
2386   // Build address expression.
2387   Node* heap_base_oop = top();
2388 
2389   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2390   Node* base = argument(1);  // type: oop
2391   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2392   Node* offset = argument(2);  // type: long
2393   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2394   // to be plain byte offsets, which are also the same as those accepted
2395   // by oopDesc::field_addr.
2396   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2397          "fieldOffset must be byte-scaled");
2398   // 32-bit machines ignore the high half!
2399   offset = ConvL2X(offset);
2400 
2401   // Save state and restore on bailout
2402   uint old_sp = sp();
2403   SafePointNode* old_map = clone_map();
2404 
2405   Node* adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2406   assert(!stopped(), "Inlining of unsafe access failed: address construction stopped unexpectedly");
2407 
2408   if (_gvn.type(base->uncast())->isa_ptr() == TypePtr::NULL_PTR) {
2409     if (type != T_OBJECT) {
2410       decorators |= IN_NATIVE; // off-heap primitive access
2411     } else {
2412       set_map(old_map);
2413       set_sp(old_sp);
2414       return false; // off-heap oop accesses are not supported
2415     }
2416   } else {
2417     heap_base_oop = base; // on-heap or mixed access
2418   }
2419 
2420   // Can base be null? Otherwise, always on-heap access.
2421   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2422 
2423   if (!can_access_non_heap) {
2424     decorators |= IN_HEAP;
2425   }
2426 
2427   Node* val = is_store ? argument(4) : nullptr;
2428 
2429   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2430   if (adr_type == TypePtr::NULL_PTR) {
2431     set_map(old_map);
2432     set_sp(old_sp);
2433     return false; // off-heap access with zero address
2434   }
2435 
2436   // Try to categorize the address.
2437   Compile::AliasType* alias_type = C->alias_type(adr_type);
2438   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2439 
2440   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2441       alias_type->adr_type() == TypeAryPtr::RANGE) {
2442     set_map(old_map);
2443     set_sp(old_sp);
2444     return false; // not supported
2445   }
2446 
2447   bool mismatched = false;
2448   BasicType bt = alias_type->basic_type();
2449   if (bt != T_ILLEGAL) {
2450     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2451     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2452       // Alias type doesn't differentiate between byte[] and boolean[]).
2453       // Use address type to get the element type.
2454       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2455     }
2456     if (is_reference_type(bt, true)) {
2457       // accessing an array field with getReference is not a mismatch
2458       bt = T_OBJECT;
2459     }
2460     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2461       // Don't intrinsify mismatched object accesses
2462       set_map(old_map);
2463       set_sp(old_sp);
2464       return false;
2465     }
2466     mismatched = (bt != type);
2467   } else if (alias_type->adr_type()->isa_oopptr()) {
2468     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2469   }
2470 
2471   destruct_map_clone(old_map);
2472   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2473 
2474   if (mismatched) {
2475     decorators |= C2_MISMATCHED;
2476   }
2477 
2478   // First guess at the value type.
2479   const Type *value_type = Type::get_const_basic_type(type);
2480 
2481   // Figure out the memory ordering.
2482   decorators |= mo_decorator_for_access_kind(kind);
2483 
2484   if (!is_store && type == T_OBJECT) {
2485     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2486     if (tjp != nullptr) {
2487       value_type = tjp;
2488     }
2489   }
2490 
2491   receiver = null_check(receiver);
2492   if (stopped()) {
2493     return true;
2494   }
2495   // Heap pointers get a null-check from the interpreter,
2496   // as a courtesy.  However, this is not guaranteed by Unsafe,
2497   // and it is not possible to fully distinguish unintended nulls
2498   // from intended ones in this API.
2499 
2500   if (!is_store) {
2501     Node* p = nullptr;
2502     // Try to constant fold a load from a constant field
2503     ciField* field = alias_type->field();
2504     if (heap_base_oop != top() && field != nullptr && field->is_constant() && !mismatched) {
2505       // final or stable field
2506       p = make_constant_from_field(field, heap_base_oop);
2507     }
2508 
2509     if (p == nullptr) { // Could not constant fold the load
2510       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2511       // Normalize the value returned by getBoolean in the following cases
2512       if (type == T_BOOLEAN &&
2513           (mismatched ||
2514            heap_base_oop == top() ||                  // - heap_base_oop is null or
2515            (can_access_non_heap && field == nullptr)) // - heap_base_oop is potentially null
2516                                                       //   and the unsafe access is made to large offset
2517                                                       //   (i.e., larger than the maximum offset necessary for any
2518                                                       //   field access)
2519             ) {
2520           IdealKit ideal = IdealKit(this);
2521 #define __ ideal.
2522           IdealVariable normalized_result(ideal);
2523           __ declarations_done();
2524           __ set(normalized_result, p);
2525           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2526           __ set(normalized_result, ideal.ConI(1));
2527           ideal.end_if();
2528           final_sync(ideal);
2529           p = __ value(normalized_result);
2530 #undef __
2531       }
2532     }
2533     if (type == T_ADDRESS) {
2534       p = gvn().transform(new CastP2XNode(nullptr, p));
2535       p = ConvX2UL(p);
2536     }
2537     // The load node has the control of the preceding MemBarCPUOrder.  All
2538     // following nodes will have the control of the MemBarCPUOrder inserted at
2539     // the end of this method.  So, pushing the load onto the stack at a later
2540     // point is fine.
2541     set_result(p);
2542   } else {
2543     if (bt == T_ADDRESS) {
2544       // Repackage the long as a pointer.
2545       val = ConvL2X(val);
2546       val = gvn().transform(new CastX2PNode(val));
2547     }
2548     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2549   }
2550 
2551   return true;
2552 }
2553 
2554 //----------------------------inline_unsafe_load_store----------------------------
2555 // This method serves a couple of different customers (depending on LoadStoreKind):
2556 //
2557 // LS_cmp_swap:
2558 //
2559 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2560 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2561 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2562 //
2563 // LS_cmp_swap_weak:
2564 //
2565 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2566 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2567 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2568 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2569 //
2570 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2571 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2572 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2573 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2574 //
2575 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2576 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2577 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2578 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2579 //
2580 // LS_cmp_exchange:
2581 //
2582 //   Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2583 //   Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2584 //   Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2585 //
2586 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2587 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2588 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2589 //
2590 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2591 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2592 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2593 //
2594 // LS_get_add:
2595 //
2596 //   int  getAndAddInt( Object o, long offset, int  delta)
2597 //   long getAndAddLong(Object o, long offset, long delta)
2598 //
2599 // LS_get_set:
2600 //
2601 //   int    getAndSet(Object o, long offset, int    newValue)
2602 //   long   getAndSet(Object o, long offset, long   newValue)
2603 //   Object getAndSet(Object o, long offset, Object newValue)
2604 //
2605 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2606   // This basic scheme here is the same as inline_unsafe_access, but
2607   // differs in enough details that combining them would make the code
2608   // overly confusing.  (This is a true fact! I originally combined
2609   // them, but even I was confused by it!) As much code/comments as
2610   // possible are retained from inline_unsafe_access though to make
2611   // the correspondences clearer. - dl
2612 
2613   if (callee()->is_static())  return false;  // caller must have the capability!
2614 
2615   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2616   decorators |= mo_decorator_for_access_kind(access_kind);
2617 
2618 #ifndef PRODUCT
2619   BasicType rtype;
2620   {
2621     ResourceMark rm;
2622     // Check the signatures.
2623     ciSignature* sig = callee()->signature();
2624     rtype = sig->return_type()->basic_type();
2625     switch(kind) {
2626       case LS_get_add:
2627       case LS_get_set: {
2628       // Check the signatures.
2629 #ifdef ASSERT
2630       assert(rtype == type, "get and set must return the expected type");
2631       assert(sig->count() == 3, "get and set has 3 arguments");
2632       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2633       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2634       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2635       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2636 #endif // ASSERT
2637         break;
2638       }
2639       case LS_cmp_swap:
2640       case LS_cmp_swap_weak: {
2641       // Check the signatures.
2642 #ifdef ASSERT
2643       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2644       assert(sig->count() == 4, "CAS has 4 arguments");
2645       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2646       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2647 #endif // ASSERT
2648         break;
2649       }
2650       case LS_cmp_exchange: {
2651       // Check the signatures.
2652 #ifdef ASSERT
2653       assert(rtype == type, "CAS must return the expected type");
2654       assert(sig->count() == 4, "CAS has 4 arguments");
2655       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2656       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2657 #endif // ASSERT
2658         break;
2659       }
2660       default:
2661         ShouldNotReachHere();
2662     }
2663   }
2664 #endif //PRODUCT
2665 
2666   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2667 
2668   // Get arguments:
2669   Node* receiver = nullptr;
2670   Node* base     = nullptr;
2671   Node* offset   = nullptr;
2672   Node* oldval   = nullptr;
2673   Node* newval   = nullptr;
2674   switch(kind) {
2675     case LS_cmp_swap:
2676     case LS_cmp_swap_weak:
2677     case LS_cmp_exchange: {
2678       const bool two_slot_type = type2size[type] == 2;
2679       receiver = argument(0);  // type: oop
2680       base     = argument(1);  // type: oop
2681       offset   = argument(2);  // type: long
2682       oldval   = argument(4);  // type: oop, int, or long
2683       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2684       break;
2685     }
2686     case LS_get_add:
2687     case LS_get_set: {
2688       receiver = argument(0);  // type: oop
2689       base     = argument(1);  // type: oop
2690       offset   = argument(2);  // type: long
2691       oldval   = nullptr;
2692       newval   = argument(4);  // type: oop, int, or long
2693       break;
2694     }
2695     default:
2696       ShouldNotReachHere();
2697   }
2698 
2699   // Build field offset expression.
2700   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2701   // to be plain byte offsets, which are also the same as those accepted
2702   // by oopDesc::field_addr.
2703   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2704   // 32-bit machines ignore the high half of long offsets
2705   offset = ConvL2X(offset);
2706   // Save state and restore on bailout
2707   uint old_sp = sp();
2708   SafePointNode* old_map = clone_map();
2709   Node* adr = make_unsafe_address(base, offset,type, false);
2710   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2711 
2712   Compile::AliasType* alias_type = C->alias_type(adr_type);
2713   BasicType bt = alias_type->basic_type();
2714   if (bt != T_ILLEGAL &&
2715       (is_reference_type(bt) != (type == T_OBJECT))) {
2716     // Don't intrinsify mismatched object accesses.
2717     set_map(old_map);
2718     set_sp(old_sp);
2719     return false;
2720   }
2721 
2722   destruct_map_clone(old_map);
2723 
2724   // For CAS, unlike inline_unsafe_access, there seems no point in
2725   // trying to refine types. Just use the coarse types here.
2726   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2727   const Type *value_type = Type::get_const_basic_type(type);
2728 
2729   switch (kind) {
2730     case LS_get_set:
2731     case LS_cmp_exchange: {
2732       if (type == T_OBJECT) {
2733         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2734         if (tjp != nullptr) {
2735           value_type = tjp;
2736         }
2737       }
2738       break;
2739     }
2740     case LS_cmp_swap:
2741     case LS_cmp_swap_weak:
2742     case LS_get_add:
2743       break;
2744     default:
2745       ShouldNotReachHere();
2746   }
2747 
2748   // Null check receiver.
2749   receiver = null_check(receiver);
2750   if (stopped()) {
2751     return true;
2752   }
2753 
2754   int alias_idx = C->get_alias_index(adr_type);
2755 
2756   if (is_reference_type(type)) {
2757     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2758 
2759     // Transformation of a value which could be null pointer (CastPP #null)
2760     // could be delayed during Parse (for example, in adjust_map_after_if()).
2761     // Execute transformation here to avoid barrier generation in such case.
2762     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2763       newval = _gvn.makecon(TypePtr::NULL_PTR);
2764 
2765     if (oldval != nullptr && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2766       // Refine the value to a null constant, when it is known to be null
2767       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2768     }
2769   }
2770 
2771   Node* result = nullptr;
2772   switch (kind) {
2773     case LS_cmp_exchange: {
2774       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2775                                             oldval, newval, value_type, type, decorators);
2776       break;
2777     }
2778     case LS_cmp_swap_weak:
2779       decorators |= C2_WEAK_CMPXCHG;
2780     case LS_cmp_swap: {
2781       result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
2782                                              oldval, newval, value_type, type, decorators);
2783       break;
2784     }
2785     case LS_get_set: {
2786       result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
2787                                      newval, value_type, type, decorators);
2788       break;
2789     }
2790     case LS_get_add: {
2791       result = access_atomic_add_at(base, adr, adr_type, alias_idx,
2792                                     newval, value_type, type, decorators);
2793       break;
2794     }
2795     default:
2796       ShouldNotReachHere();
2797   }
2798 
2799   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2800   set_result(result);
2801   return true;
2802 }
2803 
2804 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2805   // Regardless of form, don't allow previous ld/st to move down,
2806   // then issue acquire, release, or volatile mem_bar.
2807   insert_mem_bar(Op_MemBarCPUOrder);
2808   switch(id) {
2809     case vmIntrinsics::_loadFence:
2810       insert_mem_bar(Op_LoadFence);
2811       return true;
2812     case vmIntrinsics::_storeFence:
2813       insert_mem_bar(Op_StoreFence);
2814       return true;
2815     case vmIntrinsics::_storeStoreFence:
2816       insert_mem_bar(Op_StoreStoreFence);
2817       return true;
2818     case vmIntrinsics::_fullFence:
2819       insert_mem_bar(Op_MemBarVolatile);
2820       return true;
2821     default:
2822       fatal_unexpected_iid(id);
2823       return false;
2824   }
2825 }
2826 
2827 bool LibraryCallKit::inline_onspinwait() {
2828   insert_mem_bar(Op_OnSpinWait);
2829   return true;
2830 }
2831 
2832 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2833   if (!kls->is_Con()) {
2834     return true;
2835   }
2836   const TypeInstKlassPtr* klsptr = kls->bottom_type()->isa_instklassptr();
2837   if (klsptr == nullptr) {
2838     return true;
2839   }
2840   ciInstanceKlass* ik = klsptr->instance_klass();
2841   // don't need a guard for a klass that is already initialized
2842   return !ik->is_initialized();
2843 }
2844 
2845 //----------------------------inline_unsafe_writeback0-------------------------
2846 // public native void Unsafe.writeback0(long address)
2847 bool LibraryCallKit::inline_unsafe_writeback0() {
2848   if (!Matcher::has_match_rule(Op_CacheWB)) {
2849     return false;
2850   }
2851 #ifndef PRODUCT
2852   assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync");
2853   assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync");
2854   ciSignature* sig = callee()->signature();
2855   assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!");
2856 #endif
2857   null_check_receiver();  // null-check, then ignore
2858   Node *addr = argument(1);
2859   addr = new CastX2PNode(addr);
2860   addr = _gvn.transform(addr);
2861   Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr);
2862   flush = _gvn.transform(flush);
2863   set_memory(flush, TypeRawPtr::BOTTOM);
2864   return true;
2865 }
2866 
2867 //----------------------------inline_unsafe_writeback0-------------------------
2868 // public native void Unsafe.writeback0(long address)
2869 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) {
2870   if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) {
2871     return false;
2872   }
2873   if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) {
2874     return false;
2875   }
2876 #ifndef PRODUCT
2877   assert(Matcher::has_match_rule(Op_CacheWB),
2878          (is_pre ? "found match rule for CacheWBPreSync but not CacheWB"
2879                 : "found match rule for CacheWBPostSync but not CacheWB"));
2880 
2881 #endif
2882   null_check_receiver();  // null-check, then ignore
2883   Node *sync;
2884   if (is_pre) {
2885     sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2886   } else {
2887     sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2888   }
2889   sync = _gvn.transform(sync);
2890   set_memory(sync, TypeRawPtr::BOTTOM);
2891   return true;
2892 }
2893 
2894 //----------------------------inline_unsafe_allocate---------------------------
2895 // public native Object Unsafe.allocateInstance(Class<?> cls);
2896 bool LibraryCallKit::inline_unsafe_allocate() {
2897 
2898 #if INCLUDE_JVMTI
2899   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
2900     return false;
2901   }
2902 #endif //INCLUDE_JVMTI
2903 
2904   if (callee()->is_static())  return false;  // caller must have the capability!
2905 
2906   null_check_receiver();  // null-check, then ignore
2907   Node* cls = null_check(argument(1));
2908   if (stopped())  return true;
2909 
2910   Node* kls = load_klass_from_mirror(cls, false, nullptr, 0);
2911   kls = null_check(kls);
2912   if (stopped())  return true;  // argument was like int.class
2913 
2914 #if INCLUDE_JVMTI
2915     // Don't try to access new allocated obj in the intrinsic.
2916     // It causes perfomance issues even when jvmti event VmObjectAlloc is disabled.
2917     // Deoptimize and allocate in interpreter instead.
2918     Node* addr = makecon(TypeRawPtr::make((address) &JvmtiExport::_should_notify_object_alloc));
2919     Node* should_post_vm_object_alloc = make_load(this->control(), addr, TypeInt::INT, T_INT, MemNode::unordered);
2920     Node* chk = _gvn.transform(new CmpINode(should_post_vm_object_alloc, intcon(0)));
2921     Node* tst = _gvn.transform(new BoolNode(chk, BoolTest::eq));
2922     {
2923       BuildCutout unless(this, tst, PROB_MAX);
2924       uncommon_trap(Deoptimization::Reason_intrinsic,
2925                     Deoptimization::Action_make_not_entrant);
2926     }
2927     if (stopped()) {
2928       return true;
2929     }
2930 #endif //INCLUDE_JVMTI
2931 
2932   Node* test = nullptr;
2933   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2934     // Note:  The argument might still be an illegal value like
2935     // Serializable.class or Object[].class.   The runtime will handle it.
2936     // But we must make an explicit check for initialization.
2937     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2938     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2939     // can generate code to load it as unsigned byte.
2940     Node* inst = make_load(nullptr, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::acquire);
2941     Node* bits = intcon(InstanceKlass::fully_initialized);
2942     test = _gvn.transform(new SubINode(inst, bits));
2943     // The 'test' is non-zero if we need to take a slow path.
2944   }
2945 
2946   Node* obj = new_instance(kls, test);
2947   set_result(obj);
2948   return true;
2949 }
2950 
2951 //------------------------inline_native_time_funcs--------------
2952 // inline code for System.currentTimeMillis() and System.nanoTime()
2953 // these have the same type and signature
2954 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2955   const TypeFunc* tf = OptoRuntime::void_long_Type();
2956   const TypePtr* no_memory_effects = nullptr;
2957   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2958   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2959 #ifdef ASSERT
2960   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2961   assert(value_top == top(), "second value must be top");
2962 #endif
2963   set_result(value);
2964   return true;
2965 }
2966 
2967 
2968 #if INCLUDE_JVMTI
2969 
2970 // When notifications are disabled then just update the VTMS transition bit and return.
2971 // Otherwise, the bit is updated in the given function call implementing JVMTI notification protocol.
2972 bool LibraryCallKit::inline_native_notify_jvmti_funcs(address funcAddr, const char* funcName, bool is_start, bool is_end) {
2973   if (!DoJVMTIVirtualThreadTransitions) {
2974     return true;
2975   }
2976   Node* vt_oop = _gvn.transform(must_be_not_null(argument(0), true)); // VirtualThread this argument
2977   IdealKit ideal(this);
2978 
2979   Node* ONE = ideal.ConI(1);
2980   Node* hide = is_start ? ideal.ConI(0) : (is_end ? ideal.ConI(1) : _gvn.transform(argument(1)));
2981   Node* addr = makecon(TypeRawPtr::make((address)&JvmtiVTMSTransitionDisabler::_VTMS_notify_jvmti_events));
2982   Node* notify_jvmti_enabled = ideal.load(ideal.ctrl(), addr, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
2983 
2984   ideal.if_then(notify_jvmti_enabled, BoolTest::eq, ONE); {
2985     sync_kit(ideal);
2986     // if notifyJvmti enabled then make a call to the given SharedRuntime function
2987     const TypeFunc* tf = OptoRuntime::notify_jvmti_vthread_Type();
2988     make_runtime_call(RC_NO_LEAF, tf, funcAddr, funcName, TypePtr::BOTTOM, vt_oop, hide);
2989     ideal.sync_kit(this);
2990   } ideal.else_(); {
2991     // set hide value to the VTMS transition bit in current JavaThread and VirtualThread object
2992     Node* thread = ideal.thread();
2993     Node* jt_addr = basic_plus_adr(thread, in_bytes(JavaThread::is_in_VTMS_transition_offset()));
2994     Node* vt_addr = basic_plus_adr(vt_oop, java_lang_Thread::is_in_VTMS_transition_offset());
2995 
2996     sync_kit(ideal);
2997     access_store_at(nullptr, jt_addr, _gvn.type(jt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2998     access_store_at(nullptr, vt_addr, _gvn.type(vt_addr)->is_ptr(), hide, _gvn.type(hide), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
2999 
3000     ideal.sync_kit(this);
3001   } ideal.end_if();
3002   final_sync(ideal);
3003 
3004   return true;
3005 }
3006 
3007 // Always update the is_disable_suspend bit.
3008 bool LibraryCallKit::inline_native_notify_jvmti_sync() {
3009   if (!DoJVMTIVirtualThreadTransitions) {
3010     return true;
3011   }
3012   IdealKit ideal(this);
3013 
3014   {
3015     // unconditionally update the is_disable_suspend bit in current JavaThread
3016     Node* thread = ideal.thread();
3017     Node* arg = _gvn.transform(argument(0)); // argument for notification
3018     Node* addr = basic_plus_adr(thread, in_bytes(JavaThread::is_disable_suspend_offset()));
3019     const TypePtr *addr_type = _gvn.type(addr)->isa_ptr();
3020 
3021     sync_kit(ideal);
3022     access_store_at(nullptr, addr, addr_type, arg, _gvn.type(arg), T_BOOLEAN, IN_NATIVE | MO_UNORDERED);
3023     ideal.sync_kit(this);
3024   }
3025   final_sync(ideal);
3026 
3027   return true;
3028 }
3029 
3030 #endif // INCLUDE_JVMTI
3031 
3032 #ifdef JFR_HAVE_INTRINSICS
3033 
3034 /**
3035  * if oop->klass != null
3036  *   // normal class
3037  *   epoch = _epoch_state ? 2 : 1
3038  *   if oop->klass->trace_id & ((epoch << META_SHIFT) | epoch)) != epoch {
3039  *     ... // enter slow path when the klass is first recorded or the epoch of JFR shifts
3040  *   }
3041  *   id = oop->klass->trace_id >> TRACE_ID_SHIFT // normal class path
3042  * else
3043  *   // primitive class
3044  *   if oop->array_klass != null
3045  *     id = (oop->array_klass->trace_id >> TRACE_ID_SHIFT) + 1 // primitive class path
3046  *   else
3047  *     id = LAST_TYPE_ID + 1 // void class path
3048  *   if (!signaled)
3049  *     signaled = true
3050  */
3051 bool LibraryCallKit::inline_native_classID() {
3052   Node* cls = argument(0);
3053 
3054   IdealKit ideal(this);
3055 #define __ ideal.
3056   IdealVariable result(ideal); __ declarations_done();
3057   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(),
3058                                                  basic_plus_adr(cls, java_lang_Class::klass_offset()),
3059                                                  TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3060 
3061 
3062   __ if_then(kls, BoolTest::ne, null()); {
3063     Node* kls_trace_id_addr = basic_plus_adr(kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3064     Node* kls_trace_id_raw = ideal.load(ideal.ctrl(), kls_trace_id_addr,TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3065 
3066     Node* epoch_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_address()));
3067     Node* epoch = ideal.load(ideal.ctrl(), epoch_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw);
3068     epoch = _gvn.transform(new LShiftLNode(longcon(1), epoch));
3069     Node* mask = _gvn.transform(new LShiftLNode(epoch, intcon(META_SHIFT)));
3070     mask = _gvn.transform(new OrLNode(mask, epoch));
3071     Node* kls_trace_id_raw_and_mask = _gvn.transform(new AndLNode(kls_trace_id_raw, mask));
3072 
3073     float unlikely  = PROB_UNLIKELY(0.999);
3074     __ if_then(kls_trace_id_raw_and_mask, BoolTest::ne, epoch, unlikely); {
3075       sync_kit(ideal);
3076       make_runtime_call(RC_LEAF,
3077                         OptoRuntime::class_id_load_barrier_Type(),
3078                         CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::load_barrier),
3079                         "class id load barrier",
3080                         TypePtr::BOTTOM,
3081                         kls);
3082       ideal.sync_kit(this);
3083     } __ end_if();
3084 
3085     ideal.set(result,  _gvn.transform(new URShiftLNode(kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT))));
3086   } __ else_(); {
3087     Node* array_kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(),
3088                                                    basic_plus_adr(cls, java_lang_Class::array_klass_offset()),
3089                                                    TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
3090     __ if_then(array_kls, BoolTest::ne, null()); {
3091       Node* array_kls_trace_id_addr = basic_plus_adr(array_kls, in_bytes(KLASS_TRACE_ID_OFFSET));
3092       Node* array_kls_trace_id_raw = ideal.load(ideal.ctrl(), array_kls_trace_id_addr, TypeLong::LONG, T_LONG, Compile::AliasIdxRaw);
3093       Node* array_kls_trace_id = _gvn.transform(new URShiftLNode(array_kls_trace_id_raw, ideal.ConI(TRACE_ID_SHIFT)));
3094       ideal.set(result, _gvn.transform(new AddLNode(array_kls_trace_id, longcon(1))));
3095     } __ else_(); {
3096       // void class case
3097       ideal.set(result, _gvn.transform(longcon(LAST_TYPE_ID + 1)));
3098     } __ end_if();
3099 
3100     Node* signaled_flag_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::signal_address()));
3101     Node* signaled = ideal.load(ideal.ctrl(), signaled_flag_address, TypeInt::BOOL, T_BOOLEAN, Compile::AliasIdxRaw, true, MemNode::acquire);
3102     __ if_then(signaled, BoolTest::ne, ideal.ConI(1)); {
3103       ideal.store(ideal.ctrl(), signaled_flag_address, ideal.ConI(1), T_BOOLEAN, Compile::AliasIdxRaw, MemNode::release, true);
3104     } __ end_if();
3105   } __ end_if();
3106 
3107   final_sync(ideal);
3108   set_result(ideal.value(result));
3109 #undef __
3110   return true;
3111 }
3112 
3113 //------------------------inline_native_jvm_commit------------------
3114 bool LibraryCallKit::inline_native_jvm_commit() {
3115   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3116 
3117   // Save input memory and i_o state.
3118   Node* input_memory_state = reset_memory();
3119   set_all_memory(input_memory_state);
3120   Node* input_io_state = i_o();
3121 
3122   // TLS.
3123   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3124   // Jfr java buffer.
3125   Node* java_buffer_offset = _gvn.transform(new AddPNode(top(), tls_ptr, _gvn.transform(MakeConX(in_bytes(JAVA_BUFFER_OFFSET_JFR)))));
3126   Node* java_buffer = _gvn.transform(new LoadPNode(control(), input_memory_state, java_buffer_offset, TypePtr::BOTTOM, TypeRawPtr::NOTNULL, MemNode::unordered));
3127   Node* java_buffer_pos_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_POS_OFFSET)))));
3128 
3129   // Load the current value of the notified field in the JfrThreadLocal.
3130   Node* notified_offset = basic_plus_adr(top(), tls_ptr, in_bytes(NOTIFY_OFFSET_JFR));
3131   Node* notified = make_load(control(), notified_offset, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3132 
3133   // Test for notification.
3134   Node* notified_cmp = _gvn.transform(new CmpINode(notified, _gvn.intcon(1)));
3135   Node* test_notified = _gvn.transform(new BoolNode(notified_cmp, BoolTest::eq));
3136   IfNode* iff_notified = create_and_map_if(control(), test_notified, PROB_MIN, COUNT_UNKNOWN);
3137 
3138   // True branch, is notified.
3139   Node* is_notified = _gvn.transform(new IfTrueNode(iff_notified));
3140   set_control(is_notified);
3141 
3142   // Reset notified state.
3143   store_to_memory(control(), notified_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::unordered);
3144   Node* notified_reset_memory = reset_memory();
3145 
3146   // Iff notified, the return address of the commit method is the current position of the backing java buffer. This is used to reset the event writer.
3147   Node* current_pos_X = _gvn.transform(new LoadXNode(control(), input_memory_state, java_buffer_pos_offset, TypeRawPtr::NOTNULL, TypeX_X, MemNode::unordered));
3148   // Convert the machine-word to a long.
3149   Node* current_pos = _gvn.transform(ConvX2L(current_pos_X));
3150 
3151   // False branch, not notified.
3152   Node* not_notified = _gvn.transform(new IfFalseNode(iff_notified));
3153   set_control(not_notified);
3154   set_all_memory(input_memory_state);
3155 
3156   // Arg is the next position as a long.
3157   Node* arg = argument(0);
3158   // Convert long to machine-word.
3159   Node* next_pos_X = _gvn.transform(ConvL2X(arg));
3160 
3161   // Store the next_position to the underlying jfr java buffer.
3162   store_to_memory(control(), java_buffer_pos_offset, next_pos_X, LP64_ONLY(T_LONG) NOT_LP64(T_INT), MemNode::release);
3163 
3164   Node* commit_memory = reset_memory();
3165   set_all_memory(commit_memory);
3166 
3167   // Now load the flags from off the java buffer and decide if the buffer is a lease. If so, it needs to be returned post-commit.
3168   Node* java_buffer_flags_offset = _gvn.transform(new AddPNode(top(), java_buffer, _gvn.transform(MakeConX(in_bytes(JFR_BUFFER_FLAGS_OFFSET)))));
3169   Node* flags = make_load(control(), java_buffer_flags_offset, TypeInt::UBYTE, T_BYTE, MemNode::unordered);
3170   Node* lease_constant = _gvn.transform(_gvn.intcon(4));
3171 
3172   // And flags with lease constant.
3173   Node* lease = _gvn.transform(new AndINode(flags, lease_constant));
3174 
3175   // Branch on lease to conditionalize returning the leased java buffer.
3176   Node* lease_cmp = _gvn.transform(new CmpINode(lease, lease_constant));
3177   Node* test_lease = _gvn.transform(new BoolNode(lease_cmp, BoolTest::eq));
3178   IfNode* iff_lease = create_and_map_if(control(), test_lease, PROB_MIN, COUNT_UNKNOWN);
3179 
3180   // False branch, not a lease.
3181   Node* not_lease = _gvn.transform(new IfFalseNode(iff_lease));
3182 
3183   // True branch, is lease.
3184   Node* is_lease = _gvn.transform(new IfTrueNode(iff_lease));
3185   set_control(is_lease);
3186 
3187   // Make a runtime call, which can safepoint, to return the leased buffer. This updates both the JfrThreadLocal and the Java event writer oop.
3188   Node* call_return_lease = make_runtime_call(RC_NO_LEAF,
3189                                               OptoRuntime::void_void_Type(),
3190                                               SharedRuntime::jfr_return_lease(),
3191                                               "return_lease", TypePtr::BOTTOM);
3192   Node* call_return_lease_control = _gvn.transform(new ProjNode(call_return_lease, TypeFunc::Control));
3193 
3194   RegionNode* lease_compare_rgn = new RegionNode(PATH_LIMIT);
3195   record_for_igvn(lease_compare_rgn);
3196   PhiNode* lease_compare_mem = new PhiNode(lease_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3197   record_for_igvn(lease_compare_mem);
3198   PhiNode* lease_compare_io = new PhiNode(lease_compare_rgn, Type::ABIO);
3199   record_for_igvn(lease_compare_io);
3200   PhiNode* lease_result_value = new PhiNode(lease_compare_rgn, TypeLong::LONG);
3201   record_for_igvn(lease_result_value);
3202 
3203   // Update control and phi nodes.
3204   lease_compare_rgn->init_req(_true_path, call_return_lease_control);
3205   lease_compare_rgn->init_req(_false_path, not_lease);
3206 
3207   lease_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3208   lease_compare_mem->init_req(_false_path, commit_memory);
3209 
3210   lease_compare_io->init_req(_true_path, i_o());
3211   lease_compare_io->init_req(_false_path, input_io_state);
3212 
3213   lease_result_value->init_req(_true_path, null()); // if the lease was returned, return 0.
3214   lease_result_value->init_req(_false_path, arg); // if not lease, return new updated position.
3215 
3216   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3217   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3218   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3219   PhiNode* result_value = new PhiNode(result_rgn, TypeLong::LONG);
3220 
3221   // Update control and phi nodes.
3222   result_rgn->init_req(_true_path, is_notified);
3223   result_rgn->init_req(_false_path, _gvn.transform(lease_compare_rgn));
3224 
3225   result_mem->init_req(_true_path, notified_reset_memory);
3226   result_mem->init_req(_false_path, _gvn.transform(lease_compare_mem));
3227 
3228   result_io->init_req(_true_path, input_io_state);
3229   result_io->init_req(_false_path, _gvn.transform(lease_compare_io));
3230 
3231   result_value->init_req(_true_path, current_pos);
3232   result_value->init_req(_false_path, _gvn.transform(lease_result_value));
3233 
3234   // Set output state.
3235   set_control(_gvn.transform(result_rgn));
3236   set_all_memory(_gvn.transform(result_mem));
3237   set_i_o(_gvn.transform(result_io));
3238   set_result(result_rgn, result_value);
3239   return true;
3240 }
3241 
3242 /*
3243  * The intrinsic is a model of this pseudo-code:
3244  *
3245  * JfrThreadLocal* const tl = Thread::jfr_thread_local()
3246  * jobject h_event_writer = tl->java_event_writer();
3247  * if (h_event_writer == nullptr) {
3248  *   return nullptr;
3249  * }
3250  * oop threadObj = Thread::threadObj();
3251  * oop vthread = java_lang_Thread::vthread(threadObj);
3252  * traceid tid;
3253  * bool pinVirtualThread;
3254  * bool excluded;
3255  * if (vthread != threadObj) {  // i.e. current thread is virtual
3256  *   tid = java_lang_Thread::tid(vthread);
3257  *   u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(vthread);
3258  *   pinVirtualThread = VMContinuations;
3259  *   excluded = vthread_epoch_raw & excluded_mask;
3260  *   if (!excluded) {
3261  *     traceid current_epoch = JfrTraceIdEpoch::current_generation();
3262  *     u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3263  *     if (vthread_epoch != current_epoch) {
3264  *       write_checkpoint();
3265  *     }
3266  *   }
3267  * } else {
3268  *   tid = java_lang_Thread::tid(threadObj);
3269  *   u2 thread_epoch_raw = java_lang_Thread::jfr_epoch(threadObj);
3270  *   pinVirtualThread = false;
3271  *   excluded = thread_epoch_raw & excluded_mask;
3272  * }
3273  * oop event_writer = JNIHandles::resolve_non_null(h_event_writer);
3274  * traceid tid_in_event_writer = getField(event_writer, "threadID");
3275  * if (tid_in_event_writer != tid) {
3276  *   setField(event_writer, "pinVirtualThread", pinVirtualThread);
3277  *   setField(event_writer, "excluded", excluded);
3278  *   setField(event_writer, "threadID", tid);
3279  * }
3280  * return event_writer
3281  */
3282 bool LibraryCallKit::inline_native_getEventWriter() {
3283   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3284 
3285   // Save input memory and i_o state.
3286   Node* input_memory_state = reset_memory();
3287   set_all_memory(input_memory_state);
3288   Node* input_io_state = i_o();
3289 
3290   // The most significant bit of the u2 is used to denote thread exclusion
3291   Node* excluded_shift = _gvn.intcon(15);
3292   Node* excluded_mask = _gvn.intcon(1 << 15);
3293   // The epoch generation is the range [1-32767]
3294   Node* epoch_mask = _gvn.intcon(32767);
3295 
3296   // TLS
3297   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3298 
3299   // Load the address of java event writer jobject handle from the jfr_thread_local structure.
3300   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr, in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
3301 
3302   // Load the eventwriter jobject handle.
3303   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3304 
3305   // Null check the jobject handle.
3306   Node* jobj_cmp_null = _gvn.transform(new CmpPNode(jobj, null()));
3307   Node* test_jobj_not_equal_null = _gvn.transform(new BoolNode(jobj_cmp_null, BoolTest::ne));
3308   IfNode* iff_jobj_not_equal_null = create_and_map_if(control(), test_jobj_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3309 
3310   // False path, jobj is null.
3311   Node* jobj_is_null = _gvn.transform(new IfFalseNode(iff_jobj_not_equal_null));
3312 
3313   // True path, jobj is not null.
3314   Node* jobj_is_not_null = _gvn.transform(new IfTrueNode(iff_jobj_not_equal_null));
3315 
3316   set_control(jobj_is_not_null);
3317 
3318   // Load the threadObj for the CarrierThread.
3319   Node* threadObj = generate_current_thread(tls_ptr);
3320 
3321   // Load the vthread.
3322   Node* vthread = generate_virtual_thread(tls_ptr);
3323 
3324   // If vthread != threadObj, this is a virtual thread.
3325   Node* vthread_cmp_threadObj = _gvn.transform(new CmpPNode(vthread, threadObj));
3326   Node* test_vthread_not_equal_threadObj = _gvn.transform(new BoolNode(vthread_cmp_threadObj, BoolTest::ne));
3327   IfNode* iff_vthread_not_equal_threadObj =
3328     create_and_map_if(jobj_is_not_null, test_vthread_not_equal_threadObj, PROB_FAIR, COUNT_UNKNOWN);
3329 
3330   // False branch, fallback to threadObj.
3331   Node* vthread_equal_threadObj = _gvn.transform(new IfFalseNode(iff_vthread_not_equal_threadObj));
3332   set_control(vthread_equal_threadObj);
3333 
3334   // Load the tid field from the vthread object.
3335   Node* thread_obj_tid = load_field_from_object(threadObj, "tid", "J");
3336 
3337   // Load the raw epoch value from the threadObj.
3338   Node* threadObj_epoch_offset = basic_plus_adr(threadObj, java_lang_Thread::jfr_epoch_offset());
3339   Node* threadObj_epoch_raw = access_load_at(threadObj, threadObj_epoch_offset,
3340                                              _gvn.type(threadObj_epoch_offset)->isa_ptr(),
3341                                              TypeInt::CHAR, T_CHAR,
3342                                              IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3343 
3344   // Mask off the excluded information from the epoch.
3345   Node * threadObj_is_excluded = _gvn.transform(new AndINode(threadObj_epoch_raw, excluded_mask));
3346 
3347   // True branch, this is a virtual thread.
3348   Node* vthread_not_equal_threadObj = _gvn.transform(new IfTrueNode(iff_vthread_not_equal_threadObj));
3349   set_control(vthread_not_equal_threadObj);
3350 
3351   // Load the tid field from the vthread object.
3352   Node* vthread_tid = load_field_from_object(vthread, "tid", "J");
3353 
3354   // Continuation support determines if a virtual thread should be pinned.
3355   Node* global_addr = makecon(TypeRawPtr::make((address)&VMContinuations));
3356   Node* continuation_support = make_load(control(), global_addr, TypeInt::BOOL, T_BOOLEAN, MemNode::unordered);
3357 
3358   // Load the raw epoch value from the vthread.
3359   Node* vthread_epoch_offset = basic_plus_adr(vthread, java_lang_Thread::jfr_epoch_offset());
3360   Node* vthread_epoch_raw = access_load_at(vthread, vthread_epoch_offset, _gvn.type(vthread_epoch_offset)->is_ptr(),
3361                                            TypeInt::CHAR, T_CHAR,
3362                                            IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3363 
3364   // Mask off the excluded information from the epoch.
3365   Node * vthread_is_excluded = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(excluded_mask)));
3366 
3367   // Branch on excluded to conditionalize updating the epoch for the virtual thread.
3368   Node* is_excluded_cmp = _gvn.transform(new CmpINode(vthread_is_excluded, _gvn.transform(excluded_mask)));
3369   Node* test_not_excluded = _gvn.transform(new BoolNode(is_excluded_cmp, BoolTest::ne));
3370   IfNode* iff_not_excluded = create_and_map_if(control(), test_not_excluded, PROB_MAX, COUNT_UNKNOWN);
3371 
3372   // False branch, vthread is excluded, no need to write epoch info.
3373   Node* excluded = _gvn.transform(new IfFalseNode(iff_not_excluded));
3374 
3375   // True branch, vthread is included, update epoch info.
3376   Node* included = _gvn.transform(new IfTrueNode(iff_not_excluded));
3377   set_control(included);
3378 
3379   // Get epoch value.
3380   Node* epoch = _gvn.transform(new AndINode(vthread_epoch_raw, _gvn.transform(epoch_mask)));
3381 
3382   // Load the current epoch generation. The value is unsigned 16-bit, so we type it as T_CHAR.
3383   Node* epoch_generation_address = makecon(TypeRawPtr::make(JfrIntrinsicSupport::epoch_generation_address()));
3384   Node* current_epoch_generation = make_load(control(), epoch_generation_address, TypeInt::CHAR, T_CHAR, MemNode::unordered);
3385 
3386   // Compare the epoch in the vthread to the current epoch generation.
3387   Node* const epoch_cmp = _gvn.transform(new CmpUNode(current_epoch_generation, epoch));
3388   Node* test_epoch_not_equal = _gvn.transform(new BoolNode(epoch_cmp, BoolTest::ne));
3389   IfNode* iff_epoch_not_equal = create_and_map_if(control(), test_epoch_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3390 
3391   // False path, epoch is equal, checkpoint information is valid.
3392   Node* epoch_is_equal = _gvn.transform(new IfFalseNode(iff_epoch_not_equal));
3393 
3394   // True path, epoch is not equal, write a checkpoint for the vthread.
3395   Node* epoch_is_not_equal = _gvn.transform(new IfTrueNode(iff_epoch_not_equal));
3396 
3397   set_control(epoch_is_not_equal);
3398 
3399   // Make a runtime call, which can safepoint, to write a checkpoint for the vthread for this epoch.
3400   // The call also updates the native thread local thread id and the vthread with the current epoch.
3401   Node* call_write_checkpoint = make_runtime_call(RC_NO_LEAF,
3402                                                   OptoRuntime::jfr_write_checkpoint_Type(),
3403                                                   SharedRuntime::jfr_write_checkpoint(),
3404                                                   "write_checkpoint", TypePtr::BOTTOM);
3405   Node* call_write_checkpoint_control = _gvn.transform(new ProjNode(call_write_checkpoint, TypeFunc::Control));
3406 
3407   // vthread epoch != current epoch
3408   RegionNode* epoch_compare_rgn = new RegionNode(PATH_LIMIT);
3409   record_for_igvn(epoch_compare_rgn);
3410   PhiNode* epoch_compare_mem = new PhiNode(epoch_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3411   record_for_igvn(epoch_compare_mem);
3412   PhiNode* epoch_compare_io = new PhiNode(epoch_compare_rgn, Type::ABIO);
3413   record_for_igvn(epoch_compare_io);
3414 
3415   // Update control and phi nodes.
3416   epoch_compare_rgn->init_req(_true_path, call_write_checkpoint_control);
3417   epoch_compare_rgn->init_req(_false_path, epoch_is_equal);
3418   epoch_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3419   epoch_compare_mem->init_req(_false_path, input_memory_state);
3420   epoch_compare_io->init_req(_true_path, i_o());
3421   epoch_compare_io->init_req(_false_path, input_io_state);
3422 
3423   // excluded != true
3424   RegionNode* exclude_compare_rgn = new RegionNode(PATH_LIMIT);
3425   record_for_igvn(exclude_compare_rgn);
3426   PhiNode* exclude_compare_mem = new PhiNode(exclude_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3427   record_for_igvn(exclude_compare_mem);
3428   PhiNode* exclude_compare_io = new PhiNode(exclude_compare_rgn, Type::ABIO);
3429   record_for_igvn(exclude_compare_io);
3430 
3431   // Update control and phi nodes.
3432   exclude_compare_rgn->init_req(_true_path, _gvn.transform(epoch_compare_rgn));
3433   exclude_compare_rgn->init_req(_false_path, excluded);
3434   exclude_compare_mem->init_req(_true_path, _gvn.transform(epoch_compare_mem));
3435   exclude_compare_mem->init_req(_false_path, input_memory_state);
3436   exclude_compare_io->init_req(_true_path, _gvn.transform(epoch_compare_io));
3437   exclude_compare_io->init_req(_false_path, input_io_state);
3438 
3439   // vthread != threadObj
3440   RegionNode* vthread_compare_rgn = new RegionNode(PATH_LIMIT);
3441   record_for_igvn(vthread_compare_rgn);
3442   PhiNode* vthread_compare_mem = new PhiNode(vthread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3443   PhiNode* vthread_compare_io = new PhiNode(vthread_compare_rgn, Type::ABIO);
3444   record_for_igvn(vthread_compare_io);
3445   PhiNode* tid = new PhiNode(vthread_compare_rgn, TypeLong::LONG);
3446   record_for_igvn(tid);
3447   PhiNode* exclusion = new PhiNode(vthread_compare_rgn, TypeInt::CHAR);
3448   record_for_igvn(exclusion);
3449   PhiNode* pinVirtualThread = new PhiNode(vthread_compare_rgn, TypeInt::BOOL);
3450   record_for_igvn(pinVirtualThread);
3451 
3452   // Update control and phi nodes.
3453   vthread_compare_rgn->init_req(_true_path, _gvn.transform(exclude_compare_rgn));
3454   vthread_compare_rgn->init_req(_false_path, vthread_equal_threadObj);
3455   vthread_compare_mem->init_req(_true_path, _gvn.transform(exclude_compare_mem));
3456   vthread_compare_mem->init_req(_false_path, input_memory_state);
3457   vthread_compare_io->init_req(_true_path, _gvn.transform(exclude_compare_io));
3458   vthread_compare_io->init_req(_false_path, input_io_state);
3459   tid->init_req(_true_path, _gvn.transform(vthread_tid));
3460   tid->init_req(_false_path, _gvn.transform(thread_obj_tid));
3461   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3462   exclusion->init_req(_false_path, _gvn.transform(threadObj_is_excluded));
3463   pinVirtualThread->init_req(_true_path, _gvn.transform(continuation_support));
3464   pinVirtualThread->init_req(_false_path, _gvn.intcon(0));
3465 
3466   // Update branch state.
3467   set_control(_gvn.transform(vthread_compare_rgn));
3468   set_all_memory(_gvn.transform(vthread_compare_mem));
3469   set_i_o(_gvn.transform(vthread_compare_io));
3470 
3471   // Load the event writer oop by dereferencing the jobject handle.
3472   ciKlass* klass_EventWriter = env()->find_system_klass(ciSymbol::make("jdk/jfr/internal/event/EventWriter"));
3473   assert(klass_EventWriter->is_loaded(), "invariant");
3474   ciInstanceKlass* const instklass_EventWriter = klass_EventWriter->as_instance_klass();
3475   const TypeKlassPtr* const aklass = TypeKlassPtr::make(instklass_EventWriter);
3476   const TypeOopPtr* const xtype = aklass->as_instance_type();
3477   Node* jobj_untagged = _gvn.transform(new AddPNode(top(), jobj, _gvn.MakeConX(-JNIHandles::TypeTag::global)));
3478   Node* event_writer = access_load(jobj_untagged, xtype, T_OBJECT, IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
3479 
3480   // Load the current thread id from the event writer object.
3481   Node* const event_writer_tid = load_field_from_object(event_writer, "threadID", "J");
3482   // Get the field offset to, conditionally, store an updated tid value later.
3483   Node* const event_writer_tid_field = field_address_from_object(event_writer, "threadID", "J", false);
3484   // Get the field offset to, conditionally, store an updated exclusion value later.
3485   Node* const event_writer_excluded_field = field_address_from_object(event_writer, "excluded", "Z", false);
3486   // Get the field offset to, conditionally, store an updated pinVirtualThread value later.
3487   Node* const event_writer_pin_field = field_address_from_object(event_writer, "pinVirtualThread", "Z", false);
3488 
3489   RegionNode* event_writer_tid_compare_rgn = new RegionNode(PATH_LIMIT);
3490   record_for_igvn(event_writer_tid_compare_rgn);
3491   PhiNode* event_writer_tid_compare_mem = new PhiNode(event_writer_tid_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3492   record_for_igvn(event_writer_tid_compare_mem);
3493   PhiNode* event_writer_tid_compare_io = new PhiNode(event_writer_tid_compare_rgn, Type::ABIO);
3494   record_for_igvn(event_writer_tid_compare_io);
3495 
3496   // Compare the current tid from the thread object to what is currently stored in the event writer object.
3497   Node* const tid_cmp = _gvn.transform(new CmpLNode(event_writer_tid, _gvn.transform(tid)));
3498   Node* test_tid_not_equal = _gvn.transform(new BoolNode(tid_cmp, BoolTest::ne));
3499   IfNode* iff_tid_not_equal = create_and_map_if(_gvn.transform(vthread_compare_rgn), test_tid_not_equal, PROB_FAIR, COUNT_UNKNOWN);
3500 
3501   // False path, tids are the same.
3502   Node* tid_is_equal = _gvn.transform(new IfFalseNode(iff_tid_not_equal));
3503 
3504   // True path, tid is not equal, need to update the tid in the event writer.
3505   Node* tid_is_not_equal = _gvn.transform(new IfTrueNode(iff_tid_not_equal));
3506   record_for_igvn(tid_is_not_equal);
3507 
3508   // Store the pin state to the event writer.
3509   store_to_memory(tid_is_not_equal, event_writer_pin_field, _gvn.transform(pinVirtualThread), T_BOOLEAN, MemNode::unordered);
3510 
3511   // Store the exclusion state to the event writer.
3512   Node* excluded_bool = _gvn.transform(new URShiftINode(_gvn.transform(exclusion), excluded_shift));
3513   store_to_memory(tid_is_not_equal, event_writer_excluded_field, excluded_bool, T_BOOLEAN, MemNode::unordered);
3514 
3515   // Store the tid to the event writer.
3516   store_to_memory(tid_is_not_equal, event_writer_tid_field, tid, T_LONG, MemNode::unordered);
3517 
3518   // Update control and phi nodes.
3519   event_writer_tid_compare_rgn->init_req(_true_path, tid_is_not_equal);
3520   event_writer_tid_compare_rgn->init_req(_false_path, tid_is_equal);
3521   event_writer_tid_compare_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3522   event_writer_tid_compare_mem->init_req(_false_path, _gvn.transform(vthread_compare_mem));
3523   event_writer_tid_compare_io->init_req(_true_path, _gvn.transform(i_o()));
3524   event_writer_tid_compare_io->init_req(_false_path, _gvn.transform(vthread_compare_io));
3525 
3526   // Result of top level CFG, Memory, IO and Value.
3527   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3528   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3529   PhiNode* result_io = new PhiNode(result_rgn, Type::ABIO);
3530   PhiNode* result_value = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
3531 
3532   // Result control.
3533   result_rgn->init_req(_true_path, _gvn.transform(event_writer_tid_compare_rgn));
3534   result_rgn->init_req(_false_path, jobj_is_null);
3535 
3536   // Result memory.
3537   result_mem->init_req(_true_path, _gvn.transform(event_writer_tid_compare_mem));
3538   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3539 
3540   // Result IO.
3541   result_io->init_req(_true_path, _gvn.transform(event_writer_tid_compare_io));
3542   result_io->init_req(_false_path, _gvn.transform(input_io_state));
3543 
3544   // Result value.
3545   result_value->init_req(_true_path, _gvn.transform(event_writer)); // return event writer oop
3546   result_value->init_req(_false_path, null()); // return null
3547 
3548   // Set output state.
3549   set_control(_gvn.transform(result_rgn));
3550   set_all_memory(_gvn.transform(result_mem));
3551   set_i_o(_gvn.transform(result_io));
3552   set_result(result_rgn, result_value);
3553   return true;
3554 }
3555 
3556 /*
3557  * The intrinsic is a model of this pseudo-code:
3558  *
3559  * JfrThreadLocal* const tl = thread->jfr_thread_local();
3560  * if (carrierThread != thread) { // is virtual thread
3561  *   const u2 vthread_epoch_raw = java_lang_Thread::jfr_epoch(thread);
3562  *   bool excluded = vthread_epoch_raw & excluded_mask;
3563  *   Atomic::store(&tl->_contextual_tid, java_lang_Thread::tid(thread));
3564  *   Atomic::store(&tl->_contextual_thread_excluded, is_excluded);
3565  *   if (!excluded) {
3566  *     const u2 vthread_epoch = vthread_epoch_raw & epoch_mask;
3567  *     Atomic::store(&tl->_vthread_epoch, vthread_epoch);
3568  *   }
3569  *   Atomic::release_store(&tl->_vthread, true);
3570  *   return;
3571  * }
3572  * Atomic::release_store(&tl->_vthread, false);
3573  */
3574 void LibraryCallKit::extend_setCurrentThread(Node* jt, Node* thread) {
3575   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3576 
3577   Node* input_memory_state = reset_memory();
3578   set_all_memory(input_memory_state);
3579 
3580   // The most significant bit of the u2 is used to denote thread exclusion
3581   Node* excluded_mask = _gvn.intcon(1 << 15);
3582   // The epoch generation is the range [1-32767]
3583   Node* epoch_mask = _gvn.intcon(32767);
3584 
3585   Node* const carrierThread = generate_current_thread(jt);
3586   // If thread != carrierThread, this is a virtual thread.
3587   Node* thread_cmp_carrierThread = _gvn.transform(new CmpPNode(thread, carrierThread));
3588   Node* test_thread_not_equal_carrierThread = _gvn.transform(new BoolNode(thread_cmp_carrierThread, BoolTest::ne));
3589   IfNode* iff_thread_not_equal_carrierThread =
3590     create_and_map_if(control(), test_thread_not_equal_carrierThread, PROB_FAIR, COUNT_UNKNOWN);
3591 
3592   Node* vthread_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_OFFSET_JFR));
3593 
3594   // False branch, is carrierThread.
3595   Node* thread_equal_carrierThread = _gvn.transform(new IfFalseNode(iff_thread_not_equal_carrierThread));
3596   // Store release
3597   Node* vthread_false_memory = store_to_memory(thread_equal_carrierThread, vthread_offset, _gvn.intcon(0), T_BOOLEAN, MemNode::release, true);
3598 
3599   set_all_memory(input_memory_state);
3600 
3601   // True branch, is virtual thread.
3602   Node* thread_not_equal_carrierThread = _gvn.transform(new IfTrueNode(iff_thread_not_equal_carrierThread));
3603   set_control(thread_not_equal_carrierThread);
3604 
3605   // Load the raw epoch value from the vthread.
3606   Node* epoch_offset = basic_plus_adr(thread, java_lang_Thread::jfr_epoch_offset());
3607   Node* epoch_raw = access_load_at(thread, epoch_offset, _gvn.type(epoch_offset)->is_ptr(), TypeInt::CHAR, T_CHAR,
3608                                    IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
3609 
3610   // Mask off the excluded information from the epoch.
3611   Node * const is_excluded = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(excluded_mask)));
3612 
3613   // Load the tid field from the thread.
3614   Node* tid = load_field_from_object(thread, "tid", "J");
3615 
3616   // Store the vthread tid to the jfr thread local.
3617   Node* thread_id_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_ID_OFFSET_JFR));
3618   Node* tid_memory = store_to_memory(control(), thread_id_offset, tid, T_LONG, MemNode::unordered, true);
3619 
3620   // Branch is_excluded to conditionalize updating the epoch .
3621   Node* excluded_cmp = _gvn.transform(new CmpINode(is_excluded, _gvn.transform(excluded_mask)));
3622   Node* test_excluded = _gvn.transform(new BoolNode(excluded_cmp, BoolTest::eq));
3623   IfNode* iff_excluded = create_and_map_if(control(), test_excluded, PROB_MIN, COUNT_UNKNOWN);
3624 
3625   // True branch, vthread is excluded, no need to write epoch info.
3626   Node* excluded = _gvn.transform(new IfTrueNode(iff_excluded));
3627   set_control(excluded);
3628   Node* vthread_is_excluded = _gvn.intcon(1);
3629 
3630   // False branch, vthread is included, update epoch info.
3631   Node* included = _gvn.transform(new IfFalseNode(iff_excluded));
3632   set_control(included);
3633   Node* vthread_is_included = _gvn.intcon(0);
3634 
3635   // Get epoch value.
3636   Node* epoch = _gvn.transform(new AndINode(epoch_raw, _gvn.transform(epoch_mask)));
3637 
3638   // Store the vthread epoch to the jfr thread local.
3639   Node* vthread_epoch_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EPOCH_OFFSET_JFR));
3640   Node* included_memory = store_to_memory(control(), vthread_epoch_offset, epoch, T_CHAR, MemNode::unordered, true);
3641 
3642   RegionNode* excluded_rgn = new RegionNode(PATH_LIMIT);
3643   record_for_igvn(excluded_rgn);
3644   PhiNode* excluded_mem = new PhiNode(excluded_rgn, Type::MEMORY, TypePtr::BOTTOM);
3645   record_for_igvn(excluded_mem);
3646   PhiNode* exclusion = new PhiNode(excluded_rgn, TypeInt::BOOL);
3647   record_for_igvn(exclusion);
3648 
3649   // Merge the excluded control and memory.
3650   excluded_rgn->init_req(_true_path, excluded);
3651   excluded_rgn->init_req(_false_path, included);
3652   excluded_mem->init_req(_true_path, tid_memory);
3653   excluded_mem->init_req(_false_path, included_memory);
3654   exclusion->init_req(_true_path, _gvn.transform(vthread_is_excluded));
3655   exclusion->init_req(_false_path, _gvn.transform(vthread_is_included));
3656 
3657   // Set intermediate state.
3658   set_control(_gvn.transform(excluded_rgn));
3659   set_all_memory(excluded_mem);
3660 
3661   // Store the vthread exclusion state to the jfr thread local.
3662   Node* thread_local_excluded_offset = basic_plus_adr(jt, in_bytes(THREAD_LOCAL_OFFSET_JFR + VTHREAD_EXCLUDED_OFFSET_JFR));
3663   store_to_memory(control(), thread_local_excluded_offset, _gvn.transform(exclusion), T_BOOLEAN, MemNode::unordered, true);
3664 
3665   // Store release
3666   Node * vthread_true_memory = store_to_memory(control(), vthread_offset, _gvn.intcon(1), T_BOOLEAN, MemNode::release, true);
3667 
3668   RegionNode* thread_compare_rgn = new RegionNode(PATH_LIMIT);
3669   record_for_igvn(thread_compare_rgn);
3670   PhiNode* thread_compare_mem = new PhiNode(thread_compare_rgn, Type::MEMORY, TypePtr::BOTTOM);
3671   record_for_igvn(thread_compare_mem);
3672   PhiNode* vthread = new PhiNode(thread_compare_rgn, TypeInt::BOOL);
3673   record_for_igvn(vthread);
3674 
3675   // Merge the thread_compare control and memory.
3676   thread_compare_rgn->init_req(_true_path, control());
3677   thread_compare_rgn->init_req(_false_path, thread_equal_carrierThread);
3678   thread_compare_mem->init_req(_true_path, vthread_true_memory);
3679   thread_compare_mem->init_req(_false_path, vthread_false_memory);
3680 
3681   // Set output state.
3682   set_control(_gvn.transform(thread_compare_rgn));
3683   set_all_memory(_gvn.transform(thread_compare_mem));
3684 }
3685 
3686 #endif // JFR_HAVE_INTRINSICS
3687 
3688 //------------------------inline_native_currentCarrierThread------------------
3689 bool LibraryCallKit::inline_native_currentCarrierThread() {
3690   Node* junk = nullptr;
3691   set_result(generate_current_thread(junk));
3692   return true;
3693 }
3694 
3695 //------------------------inline_native_currentThread------------------
3696 bool LibraryCallKit::inline_native_currentThread() {
3697   Node* junk = nullptr;
3698   set_result(generate_virtual_thread(junk));
3699   return true;
3700 }
3701 
3702 //------------------------inline_native_setVthread------------------
3703 bool LibraryCallKit::inline_native_setCurrentThread() {
3704   assert(C->method()->changes_current_thread(),
3705          "method changes current Thread but is not annotated ChangesCurrentThread");
3706   Node* arr = argument(1);
3707   Node* thread = _gvn.transform(new ThreadLocalNode());
3708   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::vthread_offset()));
3709   Node* thread_obj_handle
3710     = make_load(nullptr, p, p->bottom_type()->is_ptr(), T_OBJECT, MemNode::unordered);
3711   thread_obj_handle = _gvn.transform(thread_obj_handle);
3712   const TypePtr *adr_type = _gvn.type(thread_obj_handle)->isa_ptr();
3713   access_store_at(nullptr, thread_obj_handle, adr_type, arr, _gvn.type(arr), T_OBJECT, IN_NATIVE | MO_UNORDERED);
3714 
3715   // Change the _monitor_owner_id of the JavaThread
3716   Node* tid = load_field_from_object(arr, "tid", "J");
3717   Node* monitor_owner_id_offset = basic_plus_adr(thread, in_bytes(JavaThread::monitor_owner_id_offset()));
3718   store_to_memory(control(), monitor_owner_id_offset, tid, T_LONG, MemNode::unordered, true);
3719 
3720   JFR_ONLY(extend_setCurrentThread(thread, arr);)
3721   return true;
3722 }
3723 
3724 const Type* LibraryCallKit::scopedValueCache_type() {
3725   ciKlass* objects_klass = ciObjArrayKlass::make(env()->Object_klass());
3726   const TypeOopPtr* etype = TypeOopPtr::make_from_klass(env()->Object_klass());
3727   const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3728 
3729   // Because we create the scopedValue cache lazily we have to make the
3730   // type of the result BotPTR.
3731   bool xk = etype->klass_is_exact();
3732   const Type* objects_type = TypeAryPtr::make(TypePtr::BotPTR, arr0, objects_klass, xk, 0);
3733   return objects_type;
3734 }
3735 
3736 Node* LibraryCallKit::scopedValueCache_helper() {
3737   Node* thread = _gvn.transform(new ThreadLocalNode());
3738   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::scopedValueCache_offset()));
3739   // We cannot use immutable_memory() because we might flip onto a
3740   // different carrier thread, at which point we'll need to use that
3741   // carrier thread's cache.
3742   // return _gvn.transform(LoadNode::make(_gvn, nullptr, immutable_memory(), p, p->bottom_type()->is_ptr(),
3743   //       TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered));
3744   return make_load(nullptr, p, p->bottom_type()->is_ptr(), T_ADDRESS, MemNode::unordered);
3745 }
3746 
3747 //------------------------inline_native_scopedValueCache------------------
3748 bool LibraryCallKit::inline_native_scopedValueCache() {
3749   Node* cache_obj_handle = scopedValueCache_helper();
3750   const Type* objects_type = scopedValueCache_type();
3751   set_result(access_load(cache_obj_handle, objects_type, T_OBJECT, IN_NATIVE));
3752 
3753   return true;
3754 }
3755 
3756 //------------------------inline_native_setScopedValueCache------------------
3757 bool LibraryCallKit::inline_native_setScopedValueCache() {
3758   Node* arr = argument(0);
3759   Node* cache_obj_handle = scopedValueCache_helper();
3760   const Type* objects_type = scopedValueCache_type();
3761 
3762   const TypePtr *adr_type = _gvn.type(cache_obj_handle)->isa_ptr();
3763   access_store_at(nullptr, cache_obj_handle, adr_type, arr, objects_type, T_OBJECT, IN_NATIVE | MO_UNORDERED);
3764 
3765   return true;
3766 }
3767 
3768 //------------------------inline_native_Continuation_pin and unpin-----------
3769 
3770 // Shared implementation routine for both pin and unpin.
3771 bool LibraryCallKit::inline_native_Continuation_pinning(bool unpin) {
3772   enum { _true_path = 1, _false_path = 2, PATH_LIMIT };
3773 
3774   // Save input memory.
3775   Node* input_memory_state = reset_memory();
3776   set_all_memory(input_memory_state);
3777 
3778   // TLS
3779   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3780   Node* last_continuation_offset = basic_plus_adr(top(), tls_ptr, in_bytes(JavaThread::cont_entry_offset()));
3781   Node* last_continuation = make_load(control(), last_continuation_offset, last_continuation_offset->get_ptr_type(), T_ADDRESS, MemNode::unordered);
3782 
3783   // Null check the last continuation object.
3784   Node* continuation_cmp_null = _gvn.transform(new CmpPNode(last_continuation, null()));
3785   Node* test_continuation_not_equal_null = _gvn.transform(new BoolNode(continuation_cmp_null, BoolTest::ne));
3786   IfNode* iff_continuation_not_equal_null = create_and_map_if(control(), test_continuation_not_equal_null, PROB_MAX, COUNT_UNKNOWN);
3787 
3788   // False path, last continuation is null.
3789   Node* continuation_is_null = _gvn.transform(new IfFalseNode(iff_continuation_not_equal_null));
3790 
3791   // True path, last continuation is not null.
3792   Node* continuation_is_not_null = _gvn.transform(new IfTrueNode(iff_continuation_not_equal_null));
3793 
3794   set_control(continuation_is_not_null);
3795 
3796   // Load the pin count from the last continuation.
3797   Node* pin_count_offset = basic_plus_adr(top(), last_continuation, in_bytes(ContinuationEntry::pin_count_offset()));
3798   Node* pin_count = make_load(control(), pin_count_offset, TypeInt::INT, T_INT, MemNode::unordered);
3799 
3800   // The loaded pin count is compared against a context specific rhs for over/underflow detection.
3801   Node* pin_count_rhs;
3802   if (unpin) {
3803     pin_count_rhs = _gvn.intcon(0);
3804   } else {
3805     pin_count_rhs = _gvn.intcon(UINT32_MAX);
3806   }
3807   Node* pin_count_cmp = _gvn.transform(new CmpUNode(_gvn.transform(pin_count), pin_count_rhs));
3808   Node* test_pin_count_over_underflow = _gvn.transform(new BoolNode(pin_count_cmp, BoolTest::eq));
3809   IfNode* iff_pin_count_over_underflow = create_and_map_if(control(), test_pin_count_over_underflow, PROB_MIN, COUNT_UNKNOWN);
3810 
3811   // True branch, pin count over/underflow.
3812   Node* pin_count_over_underflow = _gvn.transform(new IfTrueNode(iff_pin_count_over_underflow));
3813   {
3814     // Trap (but not deoptimize (Action_none)) and continue in the interpreter
3815     // which will throw IllegalStateException for pin count over/underflow.
3816     // No memory changed so far - we can use memory create by reset_memory()
3817     // at the beginning of this intrinsic. No need to call reset_memory() again.
3818     PreserveJVMState pjvms(this);
3819     set_control(pin_count_over_underflow);
3820     uncommon_trap(Deoptimization::Reason_intrinsic,
3821                   Deoptimization::Action_none);
3822     assert(stopped(), "invariant");
3823   }
3824 
3825   // False branch, no pin count over/underflow. Increment or decrement pin count and store back.
3826   Node* valid_pin_count = _gvn.transform(new IfFalseNode(iff_pin_count_over_underflow));
3827   set_control(valid_pin_count);
3828 
3829   Node* next_pin_count;
3830   if (unpin) {
3831     next_pin_count = _gvn.transform(new SubINode(pin_count, _gvn.intcon(1)));
3832   } else {
3833     next_pin_count = _gvn.transform(new AddINode(pin_count, _gvn.intcon(1)));
3834   }
3835 
3836   store_to_memory(control(), pin_count_offset, next_pin_count, T_INT, MemNode::unordered);
3837 
3838   // Result of top level CFG and Memory.
3839   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3840   record_for_igvn(result_rgn);
3841   PhiNode* result_mem = new PhiNode(result_rgn, Type::MEMORY, TypePtr::BOTTOM);
3842   record_for_igvn(result_mem);
3843 
3844   result_rgn->init_req(_true_path, _gvn.transform(valid_pin_count));
3845   result_rgn->init_req(_false_path, _gvn.transform(continuation_is_null));
3846   result_mem->init_req(_true_path, _gvn.transform(reset_memory()));
3847   result_mem->init_req(_false_path, _gvn.transform(input_memory_state));
3848 
3849   // Set output state.
3850   set_control(_gvn.transform(result_rgn));
3851   set_all_memory(_gvn.transform(result_mem));
3852 
3853   return true;
3854 }
3855 
3856 //---------------------------load_mirror_from_klass----------------------------
3857 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3858 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3859   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3860   Node* load = make_load(nullptr, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3861   // mirror = ((OopHandle)mirror)->resolve();
3862   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
3863 }
3864 
3865 //-----------------------load_klass_from_mirror_common-------------------------
3866 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3867 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3868 // and branch to the given path on the region.
3869 // If never_see_null, take an uncommon trap on null, so we can optimistically
3870 // compile for the non-null case.
3871 // If the region is null, force never_see_null = true.
3872 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3873                                                     bool never_see_null,
3874                                                     RegionNode* region,
3875                                                     int null_path,
3876                                                     int offset) {
3877   if (region == nullptr)  never_see_null = true;
3878   Node* p = basic_plus_adr(mirror, offset);
3879   const TypeKlassPtr*  kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
3880   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3881   Node* null_ctl = top();
3882   kls = null_check_oop(kls, &null_ctl, never_see_null);
3883   if (region != nullptr) {
3884     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3885     region->init_req(null_path, null_ctl);
3886   } else {
3887     assert(null_ctl == top(), "no loose ends");
3888   }
3889   return kls;
3890 }
3891 
3892 //--------------------(inline_native_Class_query helpers)---------------------
3893 // Use this for JVM_ACC_INTERFACE.
3894 // Fall through if (mods & mask) == bits, take the guard otherwise.
3895 Node* LibraryCallKit::generate_klass_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region,
3896                                                  ByteSize offset, const Type* type, BasicType bt) {
3897   // Branch around if the given klass has the given modifier bit set.
3898   // Like generate_guard, adds a new path onto the region.
3899   Node* modp = basic_plus_adr(kls, in_bytes(offset));
3900   Node* mods = make_load(nullptr, modp, type, bt, MemNode::unordered);
3901   Node* mask = intcon(modifier_mask);
3902   Node* bits = intcon(modifier_bits);
3903   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3904   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3905   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3906   return generate_fair_guard(bol, region);
3907 }
3908 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3909   return generate_klass_flags_guard(kls, JVM_ACC_INTERFACE, 0, region,
3910                                     Klass::access_flags_offset(), TypeInt::CHAR, T_CHAR);
3911 }
3912 
3913 // Use this for testing if Klass is_hidden, has_finalizer, and is_cloneable_fast.
3914 Node* LibraryCallKit::generate_misc_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3915   return generate_klass_flags_guard(kls, modifier_mask, modifier_bits, region,
3916                                     Klass::misc_flags_offset(), TypeInt::UBYTE, T_BOOLEAN);
3917 }
3918 
3919 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
3920   return generate_misc_flags_guard(kls, KlassFlags::_misc_is_hidden_class, 0, region);
3921 }
3922 
3923 //-------------------------inline_native_Class_query-------------------
3924 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3925   const Type* return_type = TypeInt::BOOL;
3926   Node* prim_return_value = top();  // what happens if it's a primitive class?
3927   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3928   bool expect_prim = false;     // most of these guys expect to work on refs
3929 
3930   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3931 
3932   Node* mirror = argument(0);
3933   Node* obj    = top();
3934 
3935   switch (id) {
3936   case vmIntrinsics::_isInstance:
3937     // nothing is an instance of a primitive type
3938     prim_return_value = intcon(0);
3939     obj = argument(1);
3940     break;
3941   case vmIntrinsics::_isHidden:
3942     prim_return_value = intcon(0);
3943     break;
3944   case vmIntrinsics::_getSuperclass:
3945     prim_return_value = null();
3946     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3947     break;
3948   case vmIntrinsics::_getClassAccessFlags:
3949     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3950     return_type = TypeInt::CHAR;
3951     break;
3952   default:
3953     fatal_unexpected_iid(id);
3954     break;
3955   }
3956 
3957   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3958   if (mirror_con == nullptr)  return false;  // cannot happen?
3959 
3960 #ifndef PRODUCT
3961   if (C->print_intrinsics() || C->print_inlining()) {
3962     ciType* k = mirror_con->java_mirror_type();
3963     if (k) {
3964       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3965       k->print_name();
3966       tty->cr();
3967     }
3968   }
3969 #endif
3970 
3971   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3972   RegionNode* region = new RegionNode(PATH_LIMIT);
3973   record_for_igvn(region);
3974   PhiNode* phi = new PhiNode(region, return_type);
3975 
3976   // The mirror will never be null of Reflection.getClassAccessFlags, however
3977   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3978   // if it is. See bug 4774291.
3979 
3980   // For Reflection.getClassAccessFlags(), the null check occurs in
3981   // the wrong place; see inline_unsafe_access(), above, for a similar
3982   // situation.
3983   mirror = null_check(mirror);
3984   // If mirror or obj is dead, only null-path is taken.
3985   if (stopped())  return true;
3986 
3987   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3988 
3989   // Now load the mirror's klass metaobject, and null-check it.
3990   // Side-effects region with the control path if the klass is null.
3991   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3992   // If kls is null, we have a primitive mirror.
3993   phi->init_req(_prim_path, prim_return_value);
3994   if (stopped()) { set_result(region, phi); return true; }
3995   bool safe_for_replace = (region->in(_prim_path) == top());
3996 
3997   Node* p;  // handy temp
3998   Node* null_ctl;
3999 
4000   // Now that we have the non-null klass, we can perform the real query.
4001   // For constant classes, the query will constant-fold in LoadNode::Value.
4002   Node* query_value = top();
4003   switch (id) {
4004   case vmIntrinsics::_isInstance:
4005     // nothing is an instance of a primitive type
4006     query_value = gen_instanceof(obj, kls, safe_for_replace);
4007     break;
4008 
4009   case vmIntrinsics::_isHidden:
4010     // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.)
4011     if (generate_hidden_class_guard(kls, region) != nullptr)
4012       // A guard was added.  If the guard is taken, it was an hidden class.
4013       phi->add_req(intcon(1));
4014     // If we fall through, it's a plain class.
4015     query_value = intcon(0);
4016     break;
4017 
4018 
4019   case vmIntrinsics::_getSuperclass:
4020     // The rules here are somewhat unfortunate, but we can still do better
4021     // with random logic than with a JNI call.
4022     // Interfaces store null or Object as _super, but must report null.
4023     // Arrays store an intermediate super as _super, but must report Object.
4024     // Other types can report the actual _super.
4025     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
4026     if (generate_interface_guard(kls, region) != nullptr)
4027       // A guard was added.  If the guard is taken, it was an interface.
4028       phi->add_req(null());
4029     if (generate_array_guard(kls, region) != nullptr)
4030       // A guard was added.  If the guard is taken, it was an array.
4031       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
4032     // If we fall through, it's a plain class.  Get its _super.
4033     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
4034     kls = _gvn.transform(LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeInstKlassPtr::OBJECT_OR_NULL));
4035     null_ctl = top();
4036     kls = null_check_oop(kls, &null_ctl);
4037     if (null_ctl != top()) {
4038       // If the guard is taken, Object.superClass is null (both klass and mirror).
4039       region->add_req(null_ctl);
4040       phi   ->add_req(null());
4041     }
4042     if (!stopped()) {
4043       query_value = load_mirror_from_klass(kls);
4044     }
4045     break;
4046 
4047   case vmIntrinsics::_getClassAccessFlags:
4048     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
4049     query_value = make_load(nullptr, p, TypeInt::CHAR, T_CHAR, MemNode::unordered);
4050     break;
4051 
4052   default:
4053     fatal_unexpected_iid(id);
4054     break;
4055   }
4056 
4057   // Fall-through is the normal case of a query to a real class.
4058   phi->init_req(1, query_value);
4059   region->init_req(1, control());
4060 
4061   C->set_has_split_ifs(true); // Has chance for split-if optimization
4062   set_result(region, phi);
4063   return true;
4064 }
4065 
4066 //-------------------------inline_Class_cast-------------------
4067 bool LibraryCallKit::inline_Class_cast() {
4068   Node* mirror = argument(0); // Class
4069   Node* obj    = argument(1);
4070   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
4071   if (mirror_con == nullptr) {
4072     return false;  // dead path (mirror->is_top()).
4073   }
4074   if (obj == nullptr || obj->is_top()) {
4075     return false;  // dead path
4076   }
4077   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
4078 
4079   // First, see if Class.cast() can be folded statically.
4080   // java_mirror_type() returns non-null for compile-time Class constants.
4081   ciType* tm = mirror_con->java_mirror_type();
4082   if (tm != nullptr && tm->is_klass() &&
4083       tp != nullptr) {
4084     if (!tp->is_loaded()) {
4085       // Don't use intrinsic when class is not loaded.
4086       return false;
4087     } else {
4088       int static_res = C->static_subtype_check(TypeKlassPtr::make(tm->as_klass(), Type::trust_interfaces), tp->as_klass_type());
4089       if (static_res == Compile::SSC_always_true) {
4090         // isInstance() is true - fold the code.
4091         set_result(obj);
4092         return true;
4093       } else if (static_res == Compile::SSC_always_false) {
4094         // Don't use intrinsic, have to throw ClassCastException.
4095         // If the reference is null, the non-intrinsic bytecode will
4096         // be optimized appropriately.
4097         return false;
4098       }
4099     }
4100   }
4101 
4102   // Bailout intrinsic and do normal inlining if exception path is frequent.
4103   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
4104     return false;
4105   }
4106 
4107   // Generate dynamic checks.
4108   // Class.cast() is java implementation of _checkcast bytecode.
4109   // Do checkcast (Parse::do_checkcast()) optimizations here.
4110 
4111   mirror = null_check(mirror);
4112   // If mirror is dead, only null-path is taken.
4113   if (stopped()) {
4114     return true;
4115   }
4116 
4117   // Not-subtype or the mirror's klass ptr is null (in case it is a primitive).
4118   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
4119   RegionNode* region = new RegionNode(PATH_LIMIT);
4120   record_for_igvn(region);
4121 
4122   // Now load the mirror's klass metaobject, and null-check it.
4123   // If kls is null, we have a primitive mirror and
4124   // nothing is an instance of a primitive type.
4125   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
4126 
4127   Node* res = top();
4128   if (!stopped()) {
4129     Node* bad_type_ctrl = top();
4130     // Do checkcast optimizations.
4131     res = gen_checkcast(obj, kls, &bad_type_ctrl);
4132     region->init_req(_bad_type_path, bad_type_ctrl);
4133   }
4134   if (region->in(_prim_path) != top() ||
4135       region->in(_bad_type_path) != top()) {
4136     // Let Interpreter throw ClassCastException.
4137     PreserveJVMState pjvms(this);
4138     set_control(_gvn.transform(region));
4139     uncommon_trap(Deoptimization::Reason_intrinsic,
4140                   Deoptimization::Action_maybe_recompile);
4141   }
4142   if (!stopped()) {
4143     set_result(res);
4144   }
4145   return true;
4146 }
4147 
4148 
4149 //--------------------------inline_native_subtype_check------------------------
4150 // This intrinsic takes the JNI calls out of the heart of
4151 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
4152 bool LibraryCallKit::inline_native_subtype_check() {
4153   // Pull both arguments off the stack.
4154   Node* args[2];                // two java.lang.Class mirrors: superc, subc
4155   args[0] = argument(0);
4156   args[1] = argument(1);
4157   Node* klasses[2];             // corresponding Klasses: superk, subk
4158   klasses[0] = klasses[1] = top();
4159 
4160   enum {
4161     // A full decision tree on {superc is prim, subc is prim}:
4162     _prim_0_path = 1,           // {P,N} => false
4163                                 // {P,P} & superc!=subc => false
4164     _prim_same_path,            // {P,P} & superc==subc => true
4165     _prim_1_path,               // {N,P} => false
4166     _ref_subtype_path,          // {N,N} & subtype check wins => true
4167     _both_ref_path,             // {N,N} & subtype check loses => false
4168     PATH_LIMIT
4169   };
4170 
4171   RegionNode* region = new RegionNode(PATH_LIMIT);
4172   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
4173   record_for_igvn(region);
4174 
4175   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
4176   const TypeKlassPtr* kls_type = TypeInstKlassPtr::OBJECT_OR_NULL;
4177   int class_klass_offset = java_lang_Class::klass_offset();
4178 
4179   // First null-check both mirrors and load each mirror's klass metaobject.
4180   int which_arg;
4181   for (which_arg = 0; which_arg <= 1; which_arg++) {
4182     Node* arg = args[which_arg];
4183     arg = null_check(arg);
4184     if (stopped())  break;
4185     args[which_arg] = arg;
4186 
4187     Node* p = basic_plus_adr(arg, class_klass_offset);
4188     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
4189     klasses[which_arg] = _gvn.transform(kls);
4190   }
4191 
4192   // Having loaded both klasses, test each for null.
4193   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4194   for (which_arg = 0; which_arg <= 1; which_arg++) {
4195     Node* kls = klasses[which_arg];
4196     Node* null_ctl = top();
4197     kls = null_check_oop(kls, &null_ctl, never_see_null);
4198     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
4199     region->init_req(prim_path, null_ctl);
4200     if (stopped())  break;
4201     klasses[which_arg] = kls;
4202   }
4203 
4204   if (!stopped()) {
4205     // now we have two reference types, in klasses[0..1]
4206     Node* subk   = klasses[1];  // the argument to isAssignableFrom
4207     Node* superk = klasses[0];  // the receiver
4208     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
4209     // now we have a successful reference subtype check
4210     region->set_req(_ref_subtype_path, control());
4211   }
4212 
4213   // If both operands are primitive (both klasses null), then
4214   // we must return true when they are identical primitives.
4215   // It is convenient to test this after the first null klass check.
4216   set_control(region->in(_prim_0_path)); // go back to first null check
4217   if (!stopped()) {
4218     // Since superc is primitive, make a guard for the superc==subc case.
4219     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
4220     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
4221     generate_guard(bol_eq, region, PROB_FAIR);
4222     if (region->req() == PATH_LIMIT+1) {
4223       // A guard was added.  If the added guard is taken, superc==subc.
4224       region->swap_edges(PATH_LIMIT, _prim_same_path);
4225       region->del_req(PATH_LIMIT);
4226     }
4227     region->set_req(_prim_0_path, control()); // Not equal after all.
4228   }
4229 
4230   // these are the only paths that produce 'true':
4231   phi->set_req(_prim_same_path,   intcon(1));
4232   phi->set_req(_ref_subtype_path, intcon(1));
4233 
4234   // pull together the cases:
4235   assert(region->req() == PATH_LIMIT, "sane region");
4236   for (uint i = 1; i < region->req(); i++) {
4237     Node* ctl = region->in(i);
4238     if (ctl == nullptr || ctl == top()) {
4239       region->set_req(i, top());
4240       phi   ->set_req(i, top());
4241     } else if (phi->in(i) == nullptr) {
4242       phi->set_req(i, intcon(0)); // all other paths produce 'false'
4243     }
4244   }
4245 
4246   set_control(_gvn.transform(region));
4247   set_result(_gvn.transform(phi));
4248   return true;
4249 }
4250 
4251 //---------------------generate_array_guard_common------------------------
4252 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
4253                                                   bool obj_array, bool not_array, Node** obj) {
4254 
4255   if (stopped()) {
4256     return nullptr;
4257   }
4258 
4259   // If obj_array/non_array==false/false:
4260   // Branch around if the given klass is in fact an array (either obj or prim).
4261   // If obj_array/non_array==false/true:
4262   // Branch around if the given klass is not an array klass of any kind.
4263   // If obj_array/non_array==true/true:
4264   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
4265   // If obj_array/non_array==true/false:
4266   // Branch around if the kls is an oop array (Object[] or subtype)
4267   //
4268   // Like generate_guard, adds a new path onto the region.
4269   jint  layout_con = 0;
4270   Node* layout_val = get_layout_helper(kls, layout_con);
4271   if (layout_val == nullptr) {
4272     bool query = (obj_array
4273                   ? Klass::layout_helper_is_objArray(layout_con)
4274                   : Klass::layout_helper_is_array(layout_con));
4275     if (query == not_array) {
4276       return nullptr;                       // never a branch
4277     } else {                             // always a branch
4278       Node* always_branch = control();
4279       if (region != nullptr)
4280         region->add_req(always_branch);
4281       set_control(top());
4282       return always_branch;
4283     }
4284   }
4285   // Now test the correct condition.
4286   jint  nval = (obj_array
4287                 ? (jint)(Klass::_lh_array_tag_type_value
4288                    <<    Klass::_lh_array_tag_shift)
4289                 : Klass::_lh_neutral_value);
4290   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
4291   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
4292   // invert the test if we are looking for a non-array
4293   if (not_array)  btest = BoolTest(btest).negate();
4294   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
4295   Node* ctrl = generate_fair_guard(bol, region);
4296   Node* is_array_ctrl = not_array ? control() : ctrl;
4297   if (obj != nullptr && is_array_ctrl != nullptr && is_array_ctrl != top()) {
4298     // Keep track of the fact that 'obj' is an array to prevent
4299     // array specific accesses from floating above the guard.
4300     Node* cast = _gvn.transform(new CastPPNode(is_array_ctrl, *obj, TypeAryPtr::BOTTOM));
4301     // Check for top because in rare cases, the type system can determine that
4302     // the object can't be an array but the layout helper check is not folded.
4303     if (!cast->is_top()) {
4304       *obj = cast;
4305     }
4306   }
4307   return ctrl;
4308 }
4309 
4310 
4311 //-----------------------inline_native_newArray--------------------------
4312 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
4313 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
4314 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
4315   Node* mirror;
4316   Node* count_val;
4317   if (uninitialized) {
4318     null_check_receiver();
4319     mirror    = argument(1);
4320     count_val = argument(2);
4321   } else {
4322     mirror    = argument(0);
4323     count_val = argument(1);
4324   }
4325 
4326   mirror = null_check(mirror);
4327   // If mirror or obj is dead, only null-path is taken.
4328   if (stopped())  return true;
4329 
4330   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
4331   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4332   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4333   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4334   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4335 
4336   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
4337   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
4338                                                   result_reg, _slow_path);
4339   Node* normal_ctl   = control();
4340   Node* no_array_ctl = result_reg->in(_slow_path);
4341 
4342   // Generate code for the slow case.  We make a call to newArray().
4343   set_control(no_array_ctl);
4344   if (!stopped()) {
4345     // Either the input type is void.class, or else the
4346     // array klass has not yet been cached.  Either the
4347     // ensuing call will throw an exception, or else it
4348     // will cache the array klass for next time.
4349     PreserveJVMState pjvms(this);
4350     CallJavaNode* slow_call = nullptr;
4351     if (uninitialized) {
4352       // Generate optimized virtual call (holder class 'Unsafe' is final)
4353       slow_call = generate_method_call(vmIntrinsics::_allocateUninitializedArray, false, false, true);
4354     } else {
4355       slow_call = generate_method_call_static(vmIntrinsics::_newArray, true);
4356     }
4357     Node* slow_result = set_results_for_java_call(slow_call);
4358     // this->control() comes from set_results_for_java_call
4359     result_reg->set_req(_slow_path, control());
4360     result_val->set_req(_slow_path, slow_result);
4361     result_io ->set_req(_slow_path, i_o());
4362     result_mem->set_req(_slow_path, reset_memory());
4363   }
4364 
4365   set_control(normal_ctl);
4366   if (!stopped()) {
4367     // Normal case:  The array type has been cached in the java.lang.Class.
4368     // The following call works fine even if the array type is polymorphic.
4369     // It could be a dynamic mix of int[], boolean[], Object[], etc.
4370     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
4371     result_reg->init_req(_normal_path, control());
4372     result_val->init_req(_normal_path, obj);
4373     result_io ->init_req(_normal_path, i_o());
4374     result_mem->init_req(_normal_path, reset_memory());
4375 
4376     if (uninitialized) {
4377       // Mark the allocation so that zeroing is skipped
4378       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj);
4379       alloc->maybe_set_complete(&_gvn);
4380     }
4381   }
4382 
4383   // Return the combined state.
4384   set_i_o(        _gvn.transform(result_io)  );
4385   set_all_memory( _gvn.transform(result_mem));
4386 
4387   C->set_has_split_ifs(true); // Has chance for split-if optimization
4388   set_result(result_reg, result_val);
4389   return true;
4390 }
4391 
4392 //----------------------inline_native_getLength--------------------------
4393 // public static native int java.lang.reflect.Array.getLength(Object array);
4394 bool LibraryCallKit::inline_native_getLength() {
4395   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4396 
4397   Node* array = null_check(argument(0));
4398   // If array is dead, only null-path is taken.
4399   if (stopped())  return true;
4400 
4401   // Deoptimize if it is a non-array.
4402   Node* non_array = generate_non_array_guard(load_object_klass(array), nullptr, &array);
4403 
4404   if (non_array != nullptr) {
4405     PreserveJVMState pjvms(this);
4406     set_control(non_array);
4407     uncommon_trap(Deoptimization::Reason_intrinsic,
4408                   Deoptimization::Action_maybe_recompile);
4409   }
4410 
4411   // If control is dead, only non-array-path is taken.
4412   if (stopped())  return true;
4413 
4414   // The works fine even if the array type is polymorphic.
4415   // It could be a dynamic mix of int[], boolean[], Object[], etc.
4416   Node* result = load_array_length(array);
4417 
4418   C->set_has_split_ifs(true);  // Has chance for split-if optimization
4419   set_result(result);
4420   return true;
4421 }
4422 
4423 //------------------------inline_array_copyOf----------------------------
4424 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
4425 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
4426 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4427   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4428 
4429   // Get the arguments.
4430   Node* original          = argument(0);
4431   Node* start             = is_copyOfRange? argument(1): intcon(0);
4432   Node* end               = is_copyOfRange? argument(2): argument(1);
4433   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4434 
4435   Node* newcopy = nullptr;
4436 
4437   // Set the original stack and the reexecute bit for the interpreter to reexecute
4438   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4439   { PreserveReexecuteState preexecs(this);
4440     jvms()->set_should_reexecute(true);
4441 
4442     array_type_mirror = null_check(array_type_mirror);
4443     original          = null_check(original);
4444 
4445     // Check if a null path was taken unconditionally.
4446     if (stopped())  return true;
4447 
4448     Node* orig_length = load_array_length(original);
4449 
4450     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, nullptr, 0);
4451     klass_node = null_check(klass_node);
4452 
4453     RegionNode* bailout = new RegionNode(1);
4454     record_for_igvn(bailout);
4455 
4456     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4457     // Bail out if that is so.
4458     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
4459     if (not_objArray != nullptr) {
4460       // Improve the klass node's type from the new optimistic assumption:
4461       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4462       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4463       Node* cast = new CastPPNode(control(), klass_node, akls);
4464       klass_node = _gvn.transform(cast);
4465     }
4466 
4467     // Bail out if either start or end is negative.
4468     generate_negative_guard(start, bailout, &start);
4469     generate_negative_guard(end,   bailout, &end);
4470 
4471     Node* length = end;
4472     if (_gvn.type(start) != TypeInt::ZERO) {
4473       length = _gvn.transform(new SubINode(end, start));
4474     }
4475 
4476     // Bail out if length is negative (i.e., if start > end).
4477     // Without this the new_array would throw
4478     // NegativeArraySizeException but IllegalArgumentException is what
4479     // should be thrown
4480     generate_negative_guard(length, bailout, &length);
4481 
4482     // Bail out if start is larger than the original length
4483     Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4484     generate_negative_guard(orig_tail, bailout, &orig_tail);
4485 
4486     if (bailout->req() > 1) {
4487       PreserveJVMState pjvms(this);
4488       set_control(_gvn.transform(bailout));
4489       uncommon_trap(Deoptimization::Reason_intrinsic,
4490                     Deoptimization::Action_maybe_recompile);
4491     }
4492 
4493     if (!stopped()) {
4494       // How many elements will we copy from the original?
4495       // The answer is MinI(orig_tail, length).
4496       Node* moved = _gvn.transform(new MinINode(orig_tail, length));
4497 
4498       // Generate a direct call to the right arraycopy function(s).
4499       // We know the copy is disjoint but we might not know if the
4500       // oop stores need checking.
4501       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4502       // This will fail a store-check if x contains any non-nulls.
4503 
4504       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4505       // loads/stores but it is legal only if we're sure the
4506       // Arrays.copyOf would succeed. So we need all input arguments
4507       // to the copyOf to be validated, including that the copy to the
4508       // new array won't trigger an ArrayStoreException. That subtype
4509       // check can be optimized if we know something on the type of
4510       // the input array from type speculation.
4511       if (_gvn.type(klass_node)->singleton()) {
4512         const TypeKlassPtr* subk = _gvn.type(load_object_klass(original))->is_klassptr();
4513         const TypeKlassPtr* superk = _gvn.type(klass_node)->is_klassptr();
4514 
4515         int test = C->static_subtype_check(superk, subk);
4516         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4517           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4518           if (t_original->speculative_type() != nullptr) {
4519             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4520           }
4521         }
4522       }
4523 
4524       bool validated = false;
4525       // Reason_class_check rather than Reason_intrinsic because we
4526       // want to intrinsify even if this traps.
4527       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4528         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
4529 
4530         if (not_subtype_ctrl != top()) {
4531           PreserveJVMState pjvms(this);
4532           set_control(not_subtype_ctrl);
4533           uncommon_trap(Deoptimization::Reason_class_check,
4534                         Deoptimization::Action_make_not_entrant);
4535           assert(stopped(), "Should be stopped");
4536         }
4537         validated = true;
4538       }
4539 
4540       if (!stopped()) {
4541         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4542 
4543         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, true,
4544                                                 load_object_klass(original), klass_node);
4545         if (!is_copyOfRange) {
4546           ac->set_copyof(validated);
4547         } else {
4548           ac->set_copyofrange(validated);
4549         }
4550         Node* n = _gvn.transform(ac);
4551         if (n == ac) {
4552           ac->connect_outputs(this);
4553         } else {
4554           assert(validated, "shouldn't transform if all arguments not validated");
4555           set_all_memory(n);
4556         }
4557       }
4558     }
4559   } // original reexecute is set back here
4560 
4561   C->set_has_split_ifs(true); // Has chance for split-if optimization
4562   if (!stopped()) {
4563     set_result(newcopy);
4564   }
4565   return true;
4566 }
4567 
4568 
4569 //----------------------generate_virtual_guard---------------------------
4570 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4571 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4572                                              RegionNode* slow_region) {
4573   ciMethod* method = callee();
4574   int vtable_index = method->vtable_index();
4575   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4576          "bad index %d", vtable_index);
4577   // Get the Method* out of the appropriate vtable entry.
4578   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4579                      vtable_index*vtableEntry::size_in_bytes() +
4580                      in_bytes(vtableEntry::method_offset());
4581   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4582   Node* target_call = make_load(nullptr, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4583 
4584   // Compare the target method with the expected method (e.g., Object.hashCode).
4585   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4586 
4587   Node* native_call = makecon(native_call_addr);
4588   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4589   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4590 
4591   return generate_slow_guard(test_native, slow_region);
4592 }
4593 
4594 //-----------------------generate_method_call----------------------------
4595 // Use generate_method_call to make a slow-call to the real
4596 // method if the fast path fails.  An alternative would be to
4597 // use a stub like OptoRuntime::slow_arraycopy_Java.
4598 // This only works for expanding the current library call,
4599 // not another intrinsic.  (E.g., don't use this for making an
4600 // arraycopy call inside of the copyOf intrinsic.)
4601 CallJavaNode*
4602 LibraryCallKit::generate_method_call(vmIntrinsicID method_id, bool is_virtual, bool is_static, bool res_not_null) {
4603   // When compiling the intrinsic method itself, do not use this technique.
4604   guarantee(callee() != C->method(), "cannot make slow-call to self");
4605 
4606   ciMethod* method = callee();
4607   // ensure the JVMS we have will be correct for this call
4608   guarantee(method_id == method->intrinsic_id(), "must match");
4609 
4610   const TypeFunc* tf = TypeFunc::make(method);
4611   if (res_not_null) {
4612     assert(tf->return_type() == T_OBJECT, "");
4613     const TypeTuple* range = tf->range();
4614     const Type** fields = TypeTuple::fields(range->cnt());
4615     fields[TypeFunc::Parms] = range->field_at(TypeFunc::Parms)->filter_speculative(TypePtr::NOTNULL);
4616     const TypeTuple* new_range = TypeTuple::make(range->cnt(), fields);
4617     tf = TypeFunc::make(tf->domain(), new_range);
4618   }
4619   CallJavaNode* slow_call;
4620   if (is_static) {
4621     assert(!is_virtual, "");
4622     slow_call = new CallStaticJavaNode(C, tf,
4623                            SharedRuntime::get_resolve_static_call_stub(), method);
4624   } else if (is_virtual) {
4625     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4626     int vtable_index = Method::invalid_vtable_index;
4627     if (UseInlineCaches) {
4628       // Suppress the vtable call
4629     } else {
4630       // hashCode and clone are not a miranda methods,
4631       // so the vtable index is fixed.
4632       // No need to use the linkResolver to get it.
4633        vtable_index = method->vtable_index();
4634        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4635               "bad index %d", vtable_index);
4636     }
4637     slow_call = new CallDynamicJavaNode(tf,
4638                           SharedRuntime::get_resolve_virtual_call_stub(),
4639                           method, vtable_index);
4640   } else {  // neither virtual nor static:  opt_virtual
4641     assert(!gvn().type(argument(0))->maybe_null(), "should not be null");
4642     slow_call = new CallStaticJavaNode(C, tf,
4643                                 SharedRuntime::get_resolve_opt_virtual_call_stub(), method);
4644     slow_call->set_optimized_virtual(true);
4645   }
4646   if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
4647     // To be able to issue a direct call (optimized virtual or virtual)
4648     // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
4649     // about the method being invoked should be attached to the call site to
4650     // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
4651     slow_call->set_override_symbolic_info(true);
4652   }
4653   set_arguments_for_java_call(slow_call);
4654   set_edges_for_java_call(slow_call);
4655   return slow_call;
4656 }
4657 
4658 
4659 /**
4660  * Build special case code for calls to hashCode on an object. This call may
4661  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4662  * slightly different code.
4663  */
4664 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4665   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4666   assert(!(is_virtual && is_static), "either virtual, special, or static");
4667 
4668   enum { _slow_path = 1, _null_path, _fast_path, _fast_path2, PATH_LIMIT };
4669 
4670   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4671   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4672   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4673   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4674   Node* obj = nullptr;
4675   if (!is_static) {
4676     // Check for hashing null object
4677     obj = null_check_receiver();
4678     if (stopped())  return true;        // unconditionally null
4679     result_reg->init_req(_null_path, top());
4680     result_val->init_req(_null_path, top());
4681   } else {
4682     // Do a null check, and return zero if null.
4683     // System.identityHashCode(null) == 0
4684     obj = argument(0);
4685     Node* null_ctl = top();
4686     obj = null_check_oop(obj, &null_ctl);
4687     result_reg->init_req(_null_path, null_ctl);
4688     result_val->init_req(_null_path, _gvn.intcon(0));
4689   }
4690 
4691   // Unconditionally null?  Then return right away.
4692   if (stopped()) {
4693     set_control( result_reg->in(_null_path));
4694     if (!stopped())
4695       set_result(result_val->in(_null_path));
4696     return true;
4697   }
4698 
4699   // We only go to the fast case code if we pass a number of guards.  The
4700   // paths which do not pass are accumulated in the slow_region.
4701   RegionNode* slow_region = new RegionNode(1);
4702   record_for_igvn(slow_region);
4703 
4704   // If this is a virtual call, we generate a funny guard.  We pull out
4705   // the vtable entry corresponding to hashCode() from the target object.
4706   // If the target method which we are calling happens to be the native
4707   // Object hashCode() method, we pass the guard.  We do not need this
4708   // guard for non-virtual calls -- the caller is known to be the native
4709   // Object hashCode().
4710   if (is_virtual) {
4711     // After null check, get the object's klass.
4712     Node* obj_klass = load_object_klass(obj);
4713     generate_virtual_guard(obj_klass, slow_region);
4714   }
4715 
4716   if (UseCompactObjectHeaders) {
4717     // Get the header out of the object.
4718     Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4719     // The control of the load must be null. Otherwise, the load can move before
4720     // the null check after castPP removal.
4721     Node* no_ctrl = nullptr;
4722     Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4723 
4724     // Test the header to see if the object is in hashed or copied state.
4725     Node* hashctrl_mask  = _gvn.MakeConX(markWord::hashctrl_mask_in_place);
4726     Node* masked_header  = _gvn.transform(new AndXNode(header, hashctrl_mask));
4727 
4728     // Take slow-path when the object has not been hashed.
4729     Node* not_hashed_val = _gvn.MakeConX(0);
4730     Node* chk_hashed     = _gvn.transform(new CmpXNode(masked_header, not_hashed_val));
4731     Node* test_hashed    = _gvn.transform(new BoolNode(chk_hashed, BoolTest::eq));
4732 
4733     generate_slow_guard(test_hashed, slow_region);
4734 
4735     // Test whether the object is hashed or hashed&copied.
4736     Node* hashed_copied = _gvn.MakeConX(markWord::hashctrl_expanded_mask_in_place | markWord::hashctrl_hashed_mask_in_place);
4737     Node* chk_copied    = _gvn.transform(new CmpXNode(masked_header, hashed_copied));
4738     // If true, then object has been hashed&copied, otherwise it's only hashed.
4739     Node* test_copied   = _gvn.transform(new BoolNode(chk_copied, BoolTest::eq));
4740     IfNode* if_copied   = create_and_map_if(control(), test_copied, PROB_FAIR, COUNT_UNKNOWN);
4741     Node* if_true = _gvn.transform(new IfTrueNode(if_copied));
4742     Node* if_false = _gvn.transform(new IfFalseNode(if_copied));
4743 
4744     // Hashed&Copied path: read hash-code out of the object.
4745     set_control(if_true);
4746     // result_val->del_req(_fast_path2);
4747     // result_reg->del_req(_fast_path2);
4748     // result_io->del_req(_fast_path2);
4749     // result_mem->del_req(_fast_path2);
4750 
4751     Node* obj_klass = load_object_klass(obj);
4752     Node* hash_addr;
4753     const TypeKlassPtr* klass_t = _gvn.type(obj_klass)->isa_klassptr();
4754     bool load_offset_runtime = true;
4755 
4756     if (klass_t != nullptr) {
4757       if (klass_t->klass_is_exact()  && klass_t->isa_instklassptr()) {
4758         ciInstanceKlass* ciKlass = reinterpret_cast<ciInstanceKlass*>(klass_t->is_instklassptr()->exact_klass());
4759         if (!ciKlass->is_mirror_instance_klass() && !ciKlass->is_reference_instance_klass()) {
4760           // We know the InstanceKlass, load hash_offset from there at compile-time.
4761           int hash_offset = ciKlass->hash_offset_in_bytes();
4762           hash_addr = basic_plus_adr(obj, hash_offset);
4763           Node* loaded_hash = make_load(control(), hash_addr, TypeInt::INT, T_INT, MemNode::unordered);
4764           result_val->init_req(_fast_path2, loaded_hash);
4765           result_reg->init_req(_fast_path2, control());
4766           load_offset_runtime = false;
4767         }
4768       }
4769     }
4770 
4771     //tty->print_cr("Load hash-offset at runtime: %s", BOOL_TO_STR(load_offset_runtime));
4772 
4773     if (load_offset_runtime) {
4774       // We don't know if it is an array or an exact type, figure it out at run-time.
4775       // If not an ordinary instance, then we need to take slow-path.
4776       Node* kind_addr = basic_plus_adr(obj_klass, Klass::kind_offset_in_bytes());
4777       Node* kind = make_load(control(), kind_addr, TypeInt::INT, T_INT, MemNode::unordered);
4778       Node* instance_val = _gvn.intcon(Klass::InstanceKlassKind);
4779       Node* chk_inst     = _gvn.transform(new CmpINode(kind, instance_val));
4780       Node* test_inst    = _gvn.transform(new BoolNode(chk_inst, BoolTest::ne));
4781       generate_slow_guard(test_inst, slow_region);
4782 
4783       // Otherwise it's an instance and we can read the hash_offset from the InstanceKlass.
4784       Node* hash_offset_addr = basic_plus_adr(obj_klass, InstanceKlass::hash_offset_offset_in_bytes());
4785       Node* hash_offset = make_load(control(), hash_offset_addr, TypeInt::INT, T_INT, MemNode::unordered);
4786       // hash_offset->dump();
4787       Node* hash_addr = basic_plus_adr(obj, ConvI2X(hash_offset));
4788       Compile::current()->set_has_unsafe_access(true);
4789       Node* loaded_hash = make_load(control(), hash_addr, TypeInt::INT, T_INT, MemNode::unordered);
4790       result_val->init_req(_fast_path2, loaded_hash);
4791       result_reg->init_req(_fast_path2, control());
4792     }
4793 
4794     // Hashed-only path: recompute hash-code from object address.
4795     set_control(if_false);
4796     // Our constants.
4797     Node* M = _gvn.intcon(0x337954D5);
4798     Node* A = _gvn.intcon(0xAAAAAAAA);
4799     // Split object address into lo and hi 32 bits.
4800     Node* obj_addr = _gvn.transform(new CastP2XNode(nullptr, obj));
4801     Node* x = _gvn.transform(new ConvL2INode(obj_addr));
4802     Node* upper_addr = _gvn.transform(new URShiftLNode(obj_addr, _gvn.intcon(32)));
4803     Node* y = _gvn.transform(new ConvL2INode(upper_addr));
4804 
4805     Node* H0 = _gvn.transform(new XorINode(x, y));
4806     Node* L0 = _gvn.transform(new XorINode(x, A));
4807 
4808     // Full multiplication of two 32 bit values L0 and M into a hi/lo result in two 32 bit values V0 and U0.
4809     Node* L0_64 = _gvn.transform(new ConvI2LNode(L0));
4810     L0_64 = _gvn.transform(new AndLNode(L0_64, _gvn.longcon(0xFFFFFFFF)));
4811     Node* M_64 = _gvn.transform(new ConvI2LNode(M));
4812     // M_64 = _gvn.transform(new AndLNode(M_64, _gvn.longcon(0xFFFFFFFF)));
4813     Node* prod64 = _gvn.transform(new MulLNode(L0_64, M_64));
4814     Node* V0 = _gvn.transform(new ConvL2INode(prod64));
4815     Node* prod_upper = _gvn.transform(new URShiftLNode(prod64, _gvn.intcon(32)));
4816     Node* U0 = _gvn.transform(new ConvL2INode(prod_upper));
4817 
4818     Node* Q0 = _gvn.transform(new MulINode(H0, M));
4819     Node* L1 = _gvn.transform(new XorINode(Q0, U0));
4820 
4821     // Full multiplication of two 32 bit values L1 and M into a hi/lo result in two 32 bit values V1 and U1.
4822     Node* L1_64 = _gvn.transform(new ConvI2LNode(L1));
4823     L1_64 = _gvn.transform(new AndLNode(L1_64, _gvn.longcon(0xFFFFFFFF)));
4824     prod64 = _gvn.transform(new MulLNode(L1_64, M_64));
4825     Node* V1 = _gvn.transform(new ConvL2INode(prod64));
4826     prod_upper = _gvn.transform(new URShiftLNode(prod64, _gvn.intcon(32)));
4827     Node* U1 = _gvn.transform(new ConvL2INode(prod_upper));
4828 
4829     Node* P1 = _gvn.transform(new XorINode(V0, M));
4830 
4831     // Right rotate P1 by distance L1.
4832     Node* distance = _gvn.transform(new AndINode(L1, _gvn.intcon(32 - 1)));
4833     Node* inverse_distance = _gvn.transform(new SubINode(_gvn.intcon(32), distance));
4834     Node* ror_part1 = _gvn.transform(new URShiftINode(P1, distance));
4835     Node* ror_part2 = _gvn.transform(new LShiftINode(P1, inverse_distance));
4836     Node* Q1 = _gvn.transform(new OrINode(ror_part1, ror_part2));
4837 
4838     Node* L2 = _gvn.transform(new XorINode(Q1, U1));
4839     Node* hash = _gvn.transform(new XorINode(V1, L2));
4840     Node* hash_truncated = _gvn.transform(new AndINode(hash, _gvn.intcon(markWord::hash_mask)));
4841 
4842     // TODO: We could generate a fast case here under the following conditions:
4843     // - The hashctrl is set to hash_is_copied (see markWord::hash_is_copied())
4844     // - The type of the object is known
4845     // Then we can load the identity hashcode from the int field at Klass::hash_offset_in_bytes() of the object.
4846     result_val->init_req(_fast_path, hash_truncated);
4847   } else {
4848     // Get the header out of the object, use LoadMarkNode when available
4849     Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4850     // The control of the load must be null. Otherwise, the load can move before
4851     // the null check after castPP removal.
4852     Node* no_ctrl = nullptr;
4853     Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4854 
4855     if (!UseObjectMonitorTable) {
4856       // Test the header to see if it is safe to read w.r.t. locking.
4857       Node *lock_mask      = _gvn.MakeConX(markWord::lock_mask_in_place);
4858       Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4859       if (LockingMode == LM_LIGHTWEIGHT) {
4860         Node *monitor_val   = _gvn.MakeConX(markWord::monitor_value);
4861         Node *chk_monitor   = _gvn.transform(new CmpXNode(lmasked_header, monitor_val));
4862         Node *test_monitor  = _gvn.transform(new BoolNode(chk_monitor, BoolTest::eq));
4863 
4864         generate_slow_guard(test_monitor, slow_region);
4865       } else {
4866         Node *unlocked_val      = _gvn.MakeConX(markWord::unlocked_value);
4867         Node *chk_unlocked      = _gvn.transform(new CmpXNode(lmasked_header, unlocked_val));
4868         Node *test_not_unlocked = _gvn.transform(new BoolNode(chk_unlocked, BoolTest::ne));
4869 
4870         generate_slow_guard(test_not_unlocked, slow_region);
4871       }
4872     }
4873 
4874     // Get the hash value and check to see that it has been properly assigned.
4875     // We depend on hash_mask being at most 32 bits and avoid the use of
4876     // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4877     // vm: see markWord.hpp.
4878     Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
4879     Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
4880     Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4881     // This hack lets the hash bits live anywhere in the mark object now, as long
4882     // as the shift drops the relevant bits into the low 32 bits.  Note that
4883     // Java spec says that HashCode is an int so there's no point in capturing
4884     // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4885     hshifted_header      = ConvX2I(hshifted_header);
4886     Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4887 
4888     Node *no_hash_val    = _gvn.intcon(markWord::no_hash);
4889     Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4890     Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4891 
4892     generate_slow_guard(test_assigned, slow_region);
4893 
4894     result_val->init_req(_fast_path, hash_val);
4895 
4896     // _fast_path2 is not used here.
4897     result_val->del_req(_fast_path2);
4898     result_reg->del_req(_fast_path2);
4899     result_io->del_req(_fast_path2);
4900     result_mem->del_req(_fast_path2);
4901   }
4902 
4903   Node* init_mem = reset_memory();
4904   // fill in the rest of the null path:
4905   result_io ->init_req(_null_path, i_o());
4906   result_mem->init_req(_null_path, init_mem);
4907 
4908   result_reg->init_req(_fast_path, control());
4909   result_io ->init_req(_fast_path, i_o());
4910   result_mem->init_req(_fast_path, init_mem);
4911 
4912   if (UseCompactObjectHeaders) {
4913     result_io->init_req(_fast_path2, i_o());
4914     result_mem->init_req(_fast_path2, init_mem);
4915   }
4916 
4917   // Generate code for the slow case.  We make a call to hashCode().
4918   assert(slow_region != nullptr, "must have slow_region");
4919   set_control(_gvn.transform(slow_region));
4920   if (!stopped()) {
4921     // No need for PreserveJVMState, because we're using up the present state.
4922     set_all_memory(init_mem);
4923     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4924     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static, false);
4925     Node* slow_result = set_results_for_java_call(slow_call);
4926     // this->control() comes from set_results_for_java_call
4927     result_reg->init_req(_slow_path, control());
4928     result_val->init_req(_slow_path, slow_result);
4929     result_io  ->set_req(_slow_path, i_o());
4930     result_mem ->set_req(_slow_path, reset_memory());
4931   }
4932 
4933   // Return the combined state.
4934   set_i_o(        _gvn.transform(result_io)  );
4935   set_all_memory( _gvn.transform(result_mem));
4936 
4937   set_result(result_reg, result_val);
4938   return true;
4939 }
4940 
4941 //---------------------------inline_native_getClass----------------------------
4942 // public final native Class<?> java.lang.Object.getClass();
4943 //
4944 // Build special case code for calls to getClass on an object.
4945 bool LibraryCallKit::inline_native_getClass() {
4946   Node* obj = null_check_receiver();
4947   if (stopped())  return true;
4948   set_result(load_mirror_from_klass(load_object_klass(obj)));
4949   return true;
4950 }
4951 
4952 //-----------------inline_native_Reflection_getCallerClass---------------------
4953 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4954 //
4955 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4956 //
4957 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4958 // in that it must skip particular security frames and checks for
4959 // caller sensitive methods.
4960 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4961 #ifndef PRODUCT
4962   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4963     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4964   }
4965 #endif
4966 
4967   if (!jvms()->has_method()) {
4968 #ifndef PRODUCT
4969     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4970       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4971     }
4972 #endif
4973     return false;
4974   }
4975 
4976   // Walk back up the JVM state to find the caller at the required
4977   // depth.
4978   JVMState* caller_jvms = jvms();
4979 
4980   // Cf. JVM_GetCallerClass
4981   // NOTE: Start the loop at depth 1 because the current JVM state does
4982   // not include the Reflection.getCallerClass() frame.
4983   for (int n = 1; caller_jvms != nullptr; caller_jvms = caller_jvms->caller(), n++) {
4984     ciMethod* m = caller_jvms->method();
4985     switch (n) {
4986     case 0:
4987       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4988       break;
4989     case 1:
4990       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4991       if (!m->caller_sensitive()) {
4992 #ifndef PRODUCT
4993         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4994           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4995         }
4996 #endif
4997         return false;  // bail-out; let JVM_GetCallerClass do the work
4998       }
4999       break;
5000     default:
5001       if (!m->is_ignored_by_security_stack_walk()) {
5002         // We have reached the desired frame; return the holder class.
5003         // Acquire method holder as java.lang.Class and push as constant.
5004         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
5005         ciInstance* caller_mirror = caller_klass->java_mirror();
5006         set_result(makecon(TypeInstPtr::make(caller_mirror)));
5007 
5008 #ifndef PRODUCT
5009         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5010           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
5011           tty->print_cr("  JVM state at this point:");
5012           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
5013             ciMethod* m = jvms()->of_depth(i)->method();
5014             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
5015           }
5016         }
5017 #endif
5018         return true;
5019       }
5020       break;
5021     }
5022   }
5023 
5024 #ifndef PRODUCT
5025   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
5026     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
5027     tty->print_cr("  JVM state at this point:");
5028     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
5029       ciMethod* m = jvms()->of_depth(i)->method();
5030       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
5031     }
5032   }
5033 #endif
5034 
5035   return false;  // bail-out; let JVM_GetCallerClass do the work
5036 }
5037 
5038 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
5039   Node* arg = argument(0);
5040   Node* result = nullptr;
5041 
5042   switch (id) {
5043   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
5044   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
5045   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
5046   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
5047   case vmIntrinsics::_floatToFloat16:       result = new ConvF2HFNode(arg); break;
5048   case vmIntrinsics::_float16ToFloat:       result = new ConvHF2FNode(arg); break;
5049 
5050   case vmIntrinsics::_doubleToLongBits: {
5051     // two paths (plus control) merge in a wood
5052     RegionNode *r = new RegionNode(3);
5053     Node *phi = new PhiNode(r, TypeLong::LONG);
5054 
5055     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
5056     // Build the boolean node
5057     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
5058 
5059     // Branch either way.
5060     // NaN case is less traveled, which makes all the difference.
5061     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
5062     Node *opt_isnan = _gvn.transform(ifisnan);
5063     assert( opt_isnan->is_If(), "Expect an IfNode");
5064     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
5065     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
5066 
5067     set_control(iftrue);
5068 
5069     static const jlong nan_bits = CONST64(0x7ff8000000000000);
5070     Node *slow_result = longcon(nan_bits); // return NaN
5071     phi->init_req(1, _gvn.transform( slow_result ));
5072     r->init_req(1, iftrue);
5073 
5074     // Else fall through
5075     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
5076     set_control(iffalse);
5077 
5078     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
5079     r->init_req(2, iffalse);
5080 
5081     // Post merge
5082     set_control(_gvn.transform(r));
5083     record_for_igvn(r);
5084 
5085     C->set_has_split_ifs(true); // Has chance for split-if optimization
5086     result = phi;
5087     assert(result->bottom_type()->isa_long(), "must be");
5088     break;
5089   }
5090 
5091   case vmIntrinsics::_floatToIntBits: {
5092     // two paths (plus control) merge in a wood
5093     RegionNode *r = new RegionNode(3);
5094     Node *phi = new PhiNode(r, TypeInt::INT);
5095 
5096     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
5097     // Build the boolean node
5098     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
5099 
5100     // Branch either way.
5101     // NaN case is less traveled, which makes all the difference.
5102     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
5103     Node *opt_isnan = _gvn.transform(ifisnan);
5104     assert( opt_isnan->is_If(), "Expect an IfNode");
5105     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
5106     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
5107 
5108     set_control(iftrue);
5109 
5110     static const jint nan_bits = 0x7fc00000;
5111     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
5112     phi->init_req(1, _gvn.transform( slow_result ));
5113     r->init_req(1, iftrue);
5114 
5115     // Else fall through
5116     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
5117     set_control(iffalse);
5118 
5119     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
5120     r->init_req(2, iffalse);
5121 
5122     // Post merge
5123     set_control(_gvn.transform(r));
5124     record_for_igvn(r);
5125 
5126     C->set_has_split_ifs(true); // Has chance for split-if optimization
5127     result = phi;
5128     assert(result->bottom_type()->isa_int(), "must be");
5129     break;
5130   }
5131 
5132   default:
5133     fatal_unexpected_iid(id);
5134     break;
5135   }
5136   set_result(_gvn.transform(result));
5137   return true;
5138 }
5139 
5140 bool LibraryCallKit::inline_fp_range_check(vmIntrinsics::ID id) {
5141   Node* arg = argument(0);
5142   Node* result = nullptr;
5143 
5144   switch (id) {
5145   case vmIntrinsics::_floatIsInfinite:
5146     result = new IsInfiniteFNode(arg);
5147     break;
5148   case vmIntrinsics::_floatIsFinite:
5149     result = new IsFiniteFNode(arg);
5150     break;
5151   case vmIntrinsics::_doubleIsInfinite:
5152     result = new IsInfiniteDNode(arg);
5153     break;
5154   case vmIntrinsics::_doubleIsFinite:
5155     result = new IsFiniteDNode(arg);
5156     break;
5157   default:
5158     fatal_unexpected_iid(id);
5159     break;
5160   }
5161   set_result(_gvn.transform(result));
5162   return true;
5163 }
5164 
5165 //----------------------inline_unsafe_copyMemory-------------------------
5166 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
5167 
5168 static bool has_wide_mem(PhaseGVN& gvn, Node* addr, Node* base) {
5169   const TypeAryPtr* addr_t = gvn.type(addr)->isa_aryptr();
5170   const Type*       base_t = gvn.type(base);
5171 
5172   bool in_native = (base_t == TypePtr::NULL_PTR);
5173   bool in_heap   = !TypePtr::NULL_PTR->higher_equal(base_t);
5174   bool is_mixed  = !in_heap && !in_native;
5175 
5176   if (is_mixed) {
5177     return true; // mixed accesses can touch both on-heap and off-heap memory
5178   }
5179   if (in_heap) {
5180     bool is_prim_array = (addr_t != nullptr) && (addr_t->elem() != Type::BOTTOM);
5181     if (!is_prim_array) {
5182       // Though Unsafe.copyMemory() ensures at runtime for on-heap accesses that base is a primitive array,
5183       // there's not enough type information available to determine proper memory slice for it.
5184       return true;
5185     }
5186   }
5187   return false;
5188 }
5189 
5190 bool LibraryCallKit::inline_unsafe_copyMemory() {
5191   if (callee()->is_static())  return false;  // caller must have the capability!
5192   null_check_receiver();  // null-check receiver
5193   if (stopped())  return true;
5194 
5195   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5196 
5197   Node* src_base =         argument(1);  // type: oop
5198   Node* src_off  = ConvL2X(argument(2)); // type: long
5199   Node* dst_base =         argument(4);  // type: oop
5200   Node* dst_off  = ConvL2X(argument(5)); // type: long
5201   Node* size     = ConvL2X(argument(7)); // type: long
5202 
5203   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5204          "fieldOffset must be byte-scaled");
5205 
5206   Node* src_addr = make_unsafe_address(src_base, src_off);
5207   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5208 
5209   Node* thread = _gvn.transform(new ThreadLocalNode());
5210   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5211   BasicType doing_unsafe_access_bt = T_BYTE;
5212   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5213 
5214   // update volatile field
5215   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered);
5216 
5217   int flags = RC_LEAF | RC_NO_FP;
5218 
5219   const TypePtr* dst_type = TypePtr::BOTTOM;
5220 
5221   // Adjust memory effects of the runtime call based on input values.
5222   if (!has_wide_mem(_gvn, src_addr, src_base) &&
5223       !has_wide_mem(_gvn, dst_addr, dst_base)) {
5224     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5225 
5226     const TypePtr* src_type = _gvn.type(src_addr)->is_ptr();
5227     if (C->get_alias_index(src_type) == C->get_alias_index(dst_type)) {
5228       flags |= RC_NARROW_MEM; // narrow in memory
5229     }
5230   }
5231 
5232   // Call it.  Note that the length argument is not scaled.
5233   make_runtime_call(flags,
5234                     OptoRuntime::fast_arraycopy_Type(),
5235                     StubRoutines::unsafe_arraycopy(),
5236                     "unsafe_arraycopy",
5237                     dst_type,
5238                     src_addr, dst_addr, size XTOP);
5239 
5240   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5241 
5242   return true;
5243 }
5244 
5245 // unsafe_setmemory(void *base, ulong offset, size_t length, char fill_value);
5246 // Fill 'length' bytes starting from 'base[offset]' with 'fill_value'
5247 bool LibraryCallKit::inline_unsafe_setMemory() {
5248   if (callee()->is_static())  return false;  // caller must have the capability!
5249   null_check_receiver();  // null-check receiver
5250   if (stopped())  return true;
5251 
5252   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
5253 
5254   Node* dst_base =         argument(1);  // type: oop
5255   Node* dst_off  = ConvL2X(argument(2)); // type: long
5256   Node* size     = ConvL2X(argument(4)); // type: long
5257   Node* byte     =         argument(6);  // type: byte
5258 
5259   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
5260          "fieldOffset must be byte-scaled");
5261 
5262   Node* dst_addr = make_unsafe_address(dst_base, dst_off);
5263 
5264   Node* thread = _gvn.transform(new ThreadLocalNode());
5265   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
5266   BasicType doing_unsafe_access_bt = T_BYTE;
5267   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
5268 
5269   // update volatile field
5270   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, MemNode::unordered);
5271 
5272   int flags = RC_LEAF | RC_NO_FP;
5273 
5274   const TypePtr* dst_type = TypePtr::BOTTOM;
5275 
5276   // Adjust memory effects of the runtime call based on input values.
5277   if (!has_wide_mem(_gvn, dst_addr, dst_base)) {
5278     dst_type = _gvn.type(dst_addr)->is_ptr(); // narrow out memory
5279 
5280     flags |= RC_NARROW_MEM; // narrow in memory
5281   }
5282 
5283   // Call it.  Note that the length argument is not scaled.
5284   make_runtime_call(flags,
5285                     OptoRuntime::unsafe_setmemory_Type(),
5286                     StubRoutines::unsafe_setmemory(),
5287                     "unsafe_setmemory",
5288                     dst_type,
5289                     dst_addr, size XTOP, byte);
5290 
5291   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, MemNode::unordered);
5292 
5293   return true;
5294 }
5295 
5296 #undef XTOP
5297 
5298 //------------------------clone_coping-----------------------------------
5299 // Helper function for inline_native_clone.
5300 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
5301   assert(obj_size != nullptr, "");
5302   Node* raw_obj = alloc_obj->in(1);
5303   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
5304 
5305   AllocateNode* alloc = nullptr;
5306   if (ReduceBulkZeroing &&
5307       // If we are implementing an array clone without knowing its source type
5308       // (can happen when compiling the array-guarded branch of a reflective
5309       // Object.clone() invocation), initialize the array within the allocation.
5310       // This is needed because some GCs (e.g. ZGC) might fall back in this case
5311       // to a runtime clone call that assumes fully initialized source arrays.
5312       (!is_array || obj->get_ptr_type()->isa_aryptr() != nullptr)) {
5313     // We will be completely responsible for initializing this object -
5314     // mark Initialize node as complete.
5315     alloc = AllocateNode::Ideal_allocation(alloc_obj);
5316     // The object was just allocated - there should be no any stores!
5317     guarantee(alloc != nullptr && alloc->maybe_set_complete(&_gvn), "");
5318     // Mark as complete_with_arraycopy so that on AllocateNode
5319     // expansion, we know this AllocateNode is initialized by an array
5320     // copy and a StoreStore barrier exists after the array copy.
5321     alloc->initialization()->set_complete_with_arraycopy();
5322   }
5323 
5324   Node* size = _gvn.transform(obj_size);
5325   access_clone(obj, alloc_obj, size, is_array);
5326 
5327   // Do not let reads from the cloned object float above the arraycopy.
5328   if (alloc != nullptr) {
5329     // Do not let stores that initialize this object be reordered with
5330     // a subsequent store that would make this object accessible by
5331     // other threads.
5332     // Record what AllocateNode this StoreStore protects so that
5333     // escape analysis can go from the MemBarStoreStoreNode to the
5334     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5335     // based on the escape status of the AllocateNode.
5336     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
5337   } else {
5338     insert_mem_bar(Op_MemBarCPUOrder);
5339   }
5340 }
5341 
5342 //------------------------inline_native_clone----------------------------
5343 // protected native Object java.lang.Object.clone();
5344 //
5345 // Here are the simple edge cases:
5346 //  null receiver => normal trap
5347 //  virtual and clone was overridden => slow path to out-of-line clone
5348 //  not cloneable or finalizer => slow path to out-of-line Object.clone
5349 //
5350 // The general case has two steps, allocation and copying.
5351 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
5352 //
5353 // Copying also has two cases, oop arrays and everything else.
5354 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
5355 // Everything else uses the tight inline loop supplied by CopyArrayNode.
5356 //
5357 // These steps fold up nicely if and when the cloned object's klass
5358 // can be sharply typed as an object array, a type array, or an instance.
5359 //
5360 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
5361   PhiNode* result_val;
5362 
5363   // Set the reexecute bit for the interpreter to reexecute
5364   // the bytecode that invokes Object.clone if deoptimization happens.
5365   { PreserveReexecuteState preexecs(this);
5366     jvms()->set_should_reexecute(true);
5367 
5368     Node* obj = null_check_receiver();
5369     if (stopped())  return true;
5370 
5371     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
5372 
5373     // If we are going to clone an instance, we need its exact type to
5374     // know the number and types of fields to convert the clone to
5375     // loads/stores. Maybe a speculative type can help us.
5376     if (!obj_type->klass_is_exact() &&
5377         obj_type->speculative_type() != nullptr &&
5378         obj_type->speculative_type()->is_instance_klass()) {
5379       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
5380       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
5381           !spec_ik->has_injected_fields()) {
5382         if (!obj_type->isa_instptr() ||
5383             obj_type->is_instptr()->instance_klass()->has_subklass()) {
5384           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
5385         }
5386       }
5387     }
5388 
5389     // Conservatively insert a memory barrier on all memory slices.
5390     // Do not let writes into the original float below the clone.
5391     insert_mem_bar(Op_MemBarCPUOrder);
5392 
5393     // paths into result_reg:
5394     enum {
5395       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
5396       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
5397       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
5398       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
5399       PATH_LIMIT
5400     };
5401     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
5402     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
5403     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
5404     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
5405     record_for_igvn(result_reg);
5406 
5407     Node* obj_klass = load_object_klass(obj);
5408     Node* array_obj = obj;
5409     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)nullptr, &array_obj);
5410     if (array_ctl != nullptr) {
5411       // It's an array.
5412       PreserveJVMState pjvms(this);
5413       set_control(array_ctl);
5414       Node* obj_length = load_array_length(array_obj);
5415       Node* array_size = nullptr; // Size of the array without object alignment padding.
5416       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &array_size, /*deoptimize_on_exception=*/true);
5417 
5418       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
5419       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, false, BarrierSetC2::Parsing)) {
5420         // If it is an oop array, it requires very special treatment,
5421         // because gc barriers are required when accessing the array.
5422         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)nullptr);
5423         if (is_obja != nullptr) {
5424           PreserveJVMState pjvms2(this);
5425           set_control(is_obja);
5426           // Generate a direct call to the right arraycopy function(s).
5427           // Clones are always tightly coupled.
5428           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, array_obj, intcon(0), alloc_obj, intcon(0), obj_length, true, false);
5429           ac->set_clone_oop_array();
5430           Node* n = _gvn.transform(ac);
5431           assert(n == ac, "cannot disappear");
5432           ac->connect_outputs(this, /*deoptimize_on_exception=*/true);
5433 
5434           result_reg->init_req(_objArray_path, control());
5435           result_val->init_req(_objArray_path, alloc_obj);
5436           result_i_o ->set_req(_objArray_path, i_o());
5437           result_mem ->set_req(_objArray_path, reset_memory());
5438         }
5439       }
5440       // Otherwise, there are no barriers to worry about.
5441       // (We can dispense with card marks if we know the allocation
5442       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
5443       //  causes the non-eden paths to take compensating steps to
5444       //  simulate a fresh allocation, so that no further
5445       //  card marks are required in compiled code to initialize
5446       //  the object.)
5447 
5448       if (!stopped()) {
5449         copy_to_clone(array_obj, alloc_obj, array_size, true);
5450 
5451         // Present the results of the copy.
5452         result_reg->init_req(_array_path, control());
5453         result_val->init_req(_array_path, alloc_obj);
5454         result_i_o ->set_req(_array_path, i_o());
5455         result_mem ->set_req(_array_path, reset_memory());
5456       }
5457     }
5458 
5459     // We only go to the instance fast case code if we pass a number of guards.
5460     // The paths which do not pass are accumulated in the slow_region.
5461     RegionNode* slow_region = new RegionNode(1);
5462     record_for_igvn(slow_region);
5463     if (!stopped()) {
5464       // It's an instance (we did array above).  Make the slow-path tests.
5465       // If this is a virtual call, we generate a funny guard.  We grab
5466       // the vtable entry corresponding to clone() from the target object.
5467       // If the target method which we are calling happens to be the
5468       // Object clone() method, we pass the guard.  We do not need this
5469       // guard for non-virtual calls; the caller is known to be the native
5470       // Object clone().
5471       if (is_virtual) {
5472         generate_virtual_guard(obj_klass, slow_region);
5473       }
5474 
5475       // The object must be easily cloneable and must not have a finalizer.
5476       // Both of these conditions may be checked in a single test.
5477       // We could optimize the test further, but we don't care.
5478       generate_misc_flags_guard(obj_klass,
5479                                 // Test both conditions:
5480                                 KlassFlags::_misc_is_cloneable_fast | KlassFlags::_misc_has_finalizer,
5481                                 // Must be cloneable but not finalizer:
5482                                 KlassFlags::_misc_is_cloneable_fast,
5483                                 slow_region);
5484     }
5485 
5486     if (!stopped()) {
5487       // It's an instance, and it passed the slow-path tests.
5488       PreserveJVMState pjvms(this);
5489       Node* obj_size = nullptr; // Total object size, including object alignment padding.
5490       // Need to deoptimize on exception from allocation since Object.clone intrinsic
5491       // is reexecuted if deoptimization occurs and there could be problems when merging
5492       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
5493       Node* alloc_obj = new_instance(obj_klass, nullptr, &obj_size, /*deoptimize_on_exception=*/true);
5494 
5495       copy_to_clone(obj, alloc_obj, obj_size, false);
5496 
5497       // Present the results of the slow call.
5498       result_reg->init_req(_instance_path, control());
5499       result_val->init_req(_instance_path, alloc_obj);
5500       result_i_o ->set_req(_instance_path, i_o());
5501       result_mem ->set_req(_instance_path, reset_memory());
5502     }
5503 
5504     // Generate code for the slow case.  We make a call to clone().
5505     set_control(_gvn.transform(slow_region));
5506     if (!stopped()) {
5507       PreserveJVMState pjvms(this);
5508       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual, false, true);
5509       // We need to deoptimize on exception (see comment above)
5510       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
5511       // this->control() comes from set_results_for_java_call
5512       result_reg->init_req(_slow_path, control());
5513       result_val->init_req(_slow_path, slow_result);
5514       result_i_o ->set_req(_slow_path, i_o());
5515       result_mem ->set_req(_slow_path, reset_memory());
5516     }
5517 
5518     // Return the combined state.
5519     set_control(    _gvn.transform(result_reg));
5520     set_i_o(        _gvn.transform(result_i_o));
5521     set_all_memory( _gvn.transform(result_mem));
5522   } // original reexecute is set back here
5523 
5524   set_result(_gvn.transform(result_val));
5525   return true;
5526 }
5527 
5528 // If we have a tightly coupled allocation, the arraycopy may take care
5529 // of the array initialization. If one of the guards we insert between
5530 // the allocation and the arraycopy causes a deoptimization, an
5531 // uninitialized array will escape the compiled method. To prevent that
5532 // we set the JVM state for uncommon traps between the allocation and
5533 // the arraycopy to the state before the allocation so, in case of
5534 // deoptimization, we'll reexecute the allocation and the
5535 // initialization.
5536 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
5537   if (alloc != nullptr) {
5538     ciMethod* trap_method = alloc->jvms()->method();
5539     int trap_bci = alloc->jvms()->bci();
5540 
5541     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5542         !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
5543       // Make sure there's no store between the allocation and the
5544       // arraycopy otherwise visible side effects could be rexecuted
5545       // in case of deoptimization and cause incorrect execution.
5546       bool no_interfering_store = true;
5547       Node* mem = alloc->in(TypeFunc::Memory);
5548       if (mem->is_MergeMem()) {
5549         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
5550           Node* n = mms.memory();
5551           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5552             assert(n->is_Store(), "what else?");
5553             no_interfering_store = false;
5554             break;
5555           }
5556         }
5557       } else {
5558         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
5559           Node* n = mms.memory();
5560           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
5561             assert(n->is_Store(), "what else?");
5562             no_interfering_store = false;
5563             break;
5564           }
5565         }
5566       }
5567 
5568       if (no_interfering_store) {
5569         SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5570 
5571         JVMState* saved_jvms = jvms();
5572         saved_reexecute_sp = _reexecute_sp;
5573 
5574         set_jvms(sfpt->jvms());
5575         _reexecute_sp = jvms()->sp();
5576 
5577         return saved_jvms;
5578       }
5579     }
5580   }
5581   return nullptr;
5582 }
5583 
5584 // Clone the JVMState of the array allocation and create a new safepoint with it. Re-push the array length to the stack
5585 // such that uncommon traps can be emitted to re-execute the array allocation in the interpreter.
5586 SafePointNode* LibraryCallKit::create_safepoint_with_state_before_array_allocation(const AllocateArrayNode* alloc) const {
5587   JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
5588   uint size = alloc->req();
5589   SafePointNode* sfpt = new SafePointNode(size, old_jvms);
5590   old_jvms->set_map(sfpt);
5591   for (uint i = 0; i < size; i++) {
5592     sfpt->init_req(i, alloc->in(i));
5593   }
5594   // re-push array length for deoptimization
5595   sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
5596   old_jvms->set_sp(old_jvms->sp()+1);
5597   old_jvms->set_monoff(old_jvms->monoff()+1);
5598   old_jvms->set_scloff(old_jvms->scloff()+1);
5599   old_jvms->set_endoff(old_jvms->endoff()+1);
5600   old_jvms->set_should_reexecute(true);
5601 
5602   sfpt->set_i_o(map()->i_o());
5603   sfpt->set_memory(map()->memory());
5604   sfpt->set_control(map()->control());
5605   return sfpt;
5606 }
5607 
5608 // In case of a deoptimization, we restart execution at the
5609 // allocation, allocating a new array. We would leave an uninitialized
5610 // array in the heap that GCs wouldn't expect. Move the allocation
5611 // after the traps so we don't allocate the array if we
5612 // deoptimize. This is possible because tightly_coupled_allocation()
5613 // guarantees there's no observer of the allocated array at this point
5614 // and the control flow is simple enough.
5615 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms_before_guards,
5616                                                     int saved_reexecute_sp, uint new_idx) {
5617   if (saved_jvms_before_guards != nullptr && !stopped()) {
5618     replace_unrelated_uncommon_traps_with_alloc_state(alloc, saved_jvms_before_guards);
5619 
5620     assert(alloc != nullptr, "only with a tightly coupled allocation");
5621     // restore JVM state to the state at the arraycopy
5622     saved_jvms_before_guards->map()->set_control(map()->control());
5623     assert(saved_jvms_before_guards->map()->memory() == map()->memory(), "memory state changed?");
5624     assert(saved_jvms_before_guards->map()->i_o() == map()->i_o(), "IO state changed?");
5625     // If we've improved the types of some nodes (null check) while
5626     // emitting the guards, propagate them to the current state
5627     map()->replaced_nodes().apply(saved_jvms_before_guards->map(), new_idx);
5628     set_jvms(saved_jvms_before_guards);
5629     _reexecute_sp = saved_reexecute_sp;
5630 
5631     // Remove the allocation from above the guards
5632     CallProjections callprojs;
5633     alloc->extract_projections(&callprojs, true);
5634     InitializeNode* init = alloc->initialization();
5635     Node* alloc_mem = alloc->in(TypeFunc::Memory);
5636     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
5637     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
5638 
5639     // The CastIINode created in GraphKit::new_array (in AllocateArrayNode::make_ideal_length) must stay below
5640     // the allocation (i.e. is only valid if the allocation succeeds):
5641     // 1) replace CastIINode with AllocateArrayNode's length here
5642     // 2) Create CastIINode again once allocation has moved (see below) at the end of this method
5643     //
5644     // Multiple identical CastIINodes might exist here. Each GraphKit::load_array_length() call will generate
5645     // new separate CastIINode (arraycopy guard checks or any array length use between array allocation and ararycopy)
5646     Node* init_control = init->proj_out(TypeFunc::Control);
5647     Node* alloc_length = alloc->Ideal_length();
5648 #ifdef ASSERT
5649     Node* prev_cast = nullptr;
5650 #endif
5651     for (uint i = 0; i < init_control->outcnt(); i++) {
5652       Node* init_out = init_control->raw_out(i);
5653       if (init_out->is_CastII() && init_out->in(TypeFunc::Control) == init_control && init_out->in(1) == alloc_length) {
5654 #ifdef ASSERT
5655         if (prev_cast == nullptr) {
5656           prev_cast = init_out;
5657         } else {
5658           if (prev_cast->cmp(*init_out) == false) {
5659             prev_cast->dump();
5660             init_out->dump();
5661             assert(false, "not equal CastIINode");
5662           }
5663         }
5664 #endif
5665         C->gvn_replace_by(init_out, alloc_length);
5666       }
5667     }
5668     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
5669 
5670     // move the allocation here (after the guards)
5671     _gvn.hash_delete(alloc);
5672     alloc->set_req(TypeFunc::Control, control());
5673     alloc->set_req(TypeFunc::I_O, i_o());
5674     Node *mem = reset_memory();
5675     set_all_memory(mem);
5676     alloc->set_req(TypeFunc::Memory, mem);
5677     set_control(init->proj_out_or_null(TypeFunc::Control));
5678     set_i_o(callprojs.fallthrough_ioproj);
5679 
5680     // Update memory as done in GraphKit::set_output_for_allocation()
5681     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5682     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5683     if (ary_type->isa_aryptr() && length_type != nullptr) {
5684       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5685     }
5686     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5687     int            elemidx  = C->get_alias_index(telemref);
5688     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
5689     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
5690 
5691     Node* allocx = _gvn.transform(alloc);
5692     assert(allocx == alloc, "where has the allocation gone?");
5693     assert(dest->is_CheckCastPP(), "not an allocation result?");
5694 
5695     _gvn.hash_delete(dest);
5696     dest->set_req(0, control());
5697     Node* destx = _gvn.transform(dest);
5698     assert(destx == dest, "where has the allocation result gone?");
5699 
5700     array_ideal_length(alloc, ary_type, true);
5701   }
5702 }
5703 
5704 // Unrelated UCTs between the array allocation and the array copy, which are considered safe by tightly_coupled_allocation(),
5705 // need to be replaced by an UCT with a state before the array allocation (including the array length). This is necessary
5706 // because we could hit one of these UCTs (which are executed before the emitted array copy guards and the actual array
5707 // allocation which is moved down in arraycopy_move_allocation_here()). When later resuming execution in the interpreter,
5708 // we would have wrongly skipped the array allocation. To prevent this, we resume execution at the array allocation in
5709 // the interpreter similar to what we are doing for the newly emitted guards for the array copy.
5710 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(AllocateArrayNode* alloc,
5711                                                                        JVMState* saved_jvms_before_guards) {
5712   if (saved_jvms_before_guards->map()->control()->is_IfProj()) {
5713     // There is at least one unrelated uncommon trap which needs to be replaced.
5714     SafePointNode* sfpt = create_safepoint_with_state_before_array_allocation(alloc);
5715 
5716     JVMState* saved_jvms = jvms();
5717     const int saved_reexecute_sp = _reexecute_sp;
5718     set_jvms(sfpt->jvms());
5719     _reexecute_sp = jvms()->sp();
5720 
5721     replace_unrelated_uncommon_traps_with_alloc_state(saved_jvms_before_guards);
5722 
5723     // Restore state
5724     set_jvms(saved_jvms);
5725     _reexecute_sp = saved_reexecute_sp;
5726   }
5727 }
5728 
5729 // Replace the unrelated uncommon traps with new uncommon trap nodes by reusing the action and reason. The new uncommon
5730 // traps will have the state of the array allocation. Let the old uncommon trap nodes die.
5731 void LibraryCallKit::replace_unrelated_uncommon_traps_with_alloc_state(JVMState* saved_jvms_before_guards) {
5732   Node* if_proj = saved_jvms_before_guards->map()->control(); // Start the search right before the newly emitted guards
5733   while (if_proj->is_IfProj()) {
5734     CallStaticJavaNode* uncommon_trap = get_uncommon_trap_from_success_proj(if_proj);
5735     if (uncommon_trap != nullptr) {
5736       create_new_uncommon_trap(uncommon_trap);
5737     }
5738     assert(if_proj->in(0)->is_If(), "must be If");
5739     if_proj = if_proj->in(0)->in(0);
5740   }
5741   assert(if_proj->is_Proj() && if_proj->in(0)->is_Initialize(),
5742          "must have reached control projection of init node");
5743 }
5744 
5745 void LibraryCallKit::create_new_uncommon_trap(CallStaticJavaNode* uncommon_trap_call) {
5746   const int trap_request = uncommon_trap_call->uncommon_trap_request();
5747   assert(trap_request != 0, "no valid UCT trap request");
5748   PreserveJVMState pjvms(this);
5749   set_control(uncommon_trap_call->in(0));
5750   uncommon_trap(Deoptimization::trap_request_reason(trap_request),
5751                 Deoptimization::trap_request_action(trap_request));
5752   assert(stopped(), "Should be stopped");
5753   _gvn.hash_delete(uncommon_trap_call);
5754   uncommon_trap_call->set_req(0, top()); // not used anymore, kill it
5755 }
5756 
5757 // Common checks for array sorting intrinsics arguments.
5758 // Returns `true` if checks passed.
5759 bool LibraryCallKit::check_array_sort_arguments(Node* elementType, Node* obj, BasicType& bt) {
5760   // check address of the class
5761   if (elementType == nullptr || elementType->is_top()) {
5762     return false;  // dead path
5763   }
5764   const TypeInstPtr* elem_klass = gvn().type(elementType)->isa_instptr();
5765   if (elem_klass == nullptr) {
5766     return false;  // dead path
5767   }
5768   // java_mirror_type() returns non-null for compile-time Class constants only
5769   ciType* elem_type = elem_klass->java_mirror_type();
5770   if (elem_type == nullptr) {
5771     return false;
5772   }
5773   bt = elem_type->basic_type();
5774   // Disable the intrinsic if the CPU does not support SIMD sort
5775   if (!Matcher::supports_simd_sort(bt)) {
5776     return false;
5777   }
5778   // check address of the array
5779   if (obj == nullptr || obj->is_top()) {
5780     return false;  // dead path
5781   }
5782   const TypeAryPtr* obj_t = _gvn.type(obj)->isa_aryptr();
5783   if (obj_t == nullptr || obj_t->elem() == Type::BOTTOM) {
5784     return false; // failed input validation
5785   }
5786   return true;
5787 }
5788 
5789 //------------------------------inline_array_partition-----------------------
5790 bool LibraryCallKit::inline_array_partition() {
5791   address stubAddr = StubRoutines::select_array_partition_function();
5792   if (stubAddr == nullptr) {
5793     return false; // Intrinsic's stub is not implemented on this platform
5794   }
5795   assert(callee()->signature()->size() == 9, "arrayPartition has 8 parameters (one long)");
5796 
5797   // no receiver because it is a static method
5798   Node* elementType     = argument(0);
5799   Node* obj             = argument(1);
5800   Node* offset          = argument(2); // long
5801   Node* fromIndex       = argument(4);
5802   Node* toIndex         = argument(5);
5803   Node* indexPivot1     = argument(6);
5804   Node* indexPivot2     = argument(7);
5805   // PartitionOperation:  argument(8) is ignored
5806 
5807   Node* pivotIndices = nullptr;
5808   BasicType bt = T_ILLEGAL;
5809 
5810   if (!check_array_sort_arguments(elementType, obj, bt)) {
5811     return false;
5812   }
5813   null_check(obj);
5814   // If obj is dead, only null-path is taken.
5815   if (stopped()) {
5816     return true;
5817   }
5818   // Set the original stack and the reexecute bit for the interpreter to reexecute
5819   // the bytecode that invokes DualPivotQuicksort.partition() if deoptimization happens.
5820   { PreserveReexecuteState preexecs(this);
5821     jvms()->set_should_reexecute(true);
5822 
5823     Node* obj_adr = make_unsafe_address(obj, offset);
5824 
5825     // create the pivotIndices array of type int and size = 2
5826     Node* size = intcon(2);
5827     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_INT)));
5828     pivotIndices = new_array(klass_node, size, 0);  // no arguments to push
5829     AllocateArrayNode* alloc = tightly_coupled_allocation(pivotIndices);
5830     guarantee(alloc != nullptr, "created above");
5831     Node* pivotIndices_adr = basic_plus_adr(pivotIndices, arrayOopDesc::base_offset_in_bytes(T_INT));
5832 
5833     // pass the basic type enum to the stub
5834     Node* elemType = intcon(bt);
5835 
5836     // Call the stub
5837     const char *stubName = "array_partition_stub";
5838     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_partition_Type(),
5839                       stubAddr, stubName, TypePtr::BOTTOM,
5840                       obj_adr, elemType, fromIndex, toIndex, pivotIndices_adr,
5841                       indexPivot1, indexPivot2);
5842 
5843   } // original reexecute is set back here
5844 
5845   if (!stopped()) {
5846     set_result(pivotIndices);
5847   }
5848 
5849   return true;
5850 }
5851 
5852 
5853 //------------------------------inline_array_sort-----------------------
5854 bool LibraryCallKit::inline_array_sort() {
5855   address stubAddr = StubRoutines::select_arraysort_function();
5856   if (stubAddr == nullptr) {
5857     return false; // Intrinsic's stub is not implemented on this platform
5858   }
5859   assert(callee()->signature()->size() == 7, "arraySort has 6 parameters (one long)");
5860 
5861   // no receiver because it is a static method
5862   Node* elementType     = argument(0);
5863   Node* obj             = argument(1);
5864   Node* offset          = argument(2); // long
5865   Node* fromIndex       = argument(4);
5866   Node* toIndex         = argument(5);
5867   // SortOperation:       argument(6) is ignored
5868 
5869   BasicType bt = T_ILLEGAL;
5870 
5871   if (!check_array_sort_arguments(elementType, obj, bt)) {
5872     return false;
5873   }
5874   null_check(obj);
5875   // If obj is dead, only null-path is taken.
5876   if (stopped()) {
5877     return true;
5878   }
5879   Node* obj_adr = make_unsafe_address(obj, offset);
5880 
5881   // pass the basic type enum to the stub
5882   Node* elemType = intcon(bt);
5883 
5884   // Call the stub.
5885   const char *stubName = "arraysort_stub";
5886   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::array_sort_Type(),
5887                     stubAddr, stubName, TypePtr::BOTTOM,
5888                     obj_adr, elemType, fromIndex, toIndex);
5889 
5890   return true;
5891 }
5892 
5893 
5894 //------------------------------inline_arraycopy-----------------------
5895 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
5896 //                                                      Object dest, int destPos,
5897 //                                                      int length);
5898 bool LibraryCallKit::inline_arraycopy() {
5899   // Get the arguments.
5900   Node* src         = argument(0);  // type: oop
5901   Node* src_offset  = argument(1);  // type: int
5902   Node* dest        = argument(2);  // type: oop
5903   Node* dest_offset = argument(3);  // type: int
5904   Node* length      = argument(4);  // type: int
5905 
5906   uint new_idx = C->unique();
5907 
5908   // Check for allocation before we add nodes that would confuse
5909   // tightly_coupled_allocation()
5910   AllocateArrayNode* alloc = tightly_coupled_allocation(dest);
5911 
5912   int saved_reexecute_sp = -1;
5913   JVMState* saved_jvms_before_guards = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
5914   // See arraycopy_restore_alloc_state() comment
5915   // if alloc == null we don't have to worry about a tightly coupled allocation so we can emit all needed guards
5916   // if saved_jvms_before_guards is not null (then alloc is not null) then we can handle guards and a tightly coupled allocation
5917   // if saved_jvms_before_guards is null and alloc is not null, we can't emit any guards
5918   bool can_emit_guards = (alloc == nullptr || saved_jvms_before_guards != nullptr);
5919 
5920   // The following tests must be performed
5921   // (1) src and dest are arrays.
5922   // (2) src and dest arrays must have elements of the same BasicType
5923   // (3) src and dest must not be null.
5924   // (4) src_offset must not be negative.
5925   // (5) dest_offset must not be negative.
5926   // (6) length must not be negative.
5927   // (7) src_offset + length must not exceed length of src.
5928   // (8) dest_offset + length must not exceed length of dest.
5929   // (9) each element of an oop array must be assignable
5930 
5931   // (3) src and dest must not be null.
5932   // always do this here because we need the JVM state for uncommon traps
5933   Node* null_ctl = top();
5934   src  = saved_jvms_before_guards != nullptr ? null_check_oop(src, &null_ctl, true, true) : null_check(src, T_ARRAY);
5935   assert(null_ctl->is_top(), "no null control here");
5936   dest = null_check(dest, T_ARRAY);
5937 
5938   if (!can_emit_guards) {
5939     // if saved_jvms_before_guards is null and alloc is not null, we don't emit any
5940     // guards but the arraycopy node could still take advantage of a
5941     // tightly allocated allocation. tightly_coupled_allocation() is
5942     // called again to make sure it takes the null check above into
5943     // account: the null check is mandatory and if it caused an
5944     // uncommon trap to be emitted then the allocation can't be
5945     // considered tightly coupled in this context.
5946     alloc = tightly_coupled_allocation(dest);
5947   }
5948 
5949   bool validated = false;
5950 
5951   const Type* src_type  = _gvn.type(src);
5952   const Type* dest_type = _gvn.type(dest);
5953   const TypeAryPtr* top_src  = src_type->isa_aryptr();
5954   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5955 
5956   // Do we have the type of src?
5957   bool has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5958   // Do we have the type of dest?
5959   bool has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
5960   // Is the type for src from speculation?
5961   bool src_spec = false;
5962   // Is the type for dest from speculation?
5963   bool dest_spec = false;
5964 
5965   if ((!has_src || !has_dest) && can_emit_guards) {
5966     // We don't have sufficient type information, let's see if
5967     // speculative types can help. We need to have types for both src
5968     // and dest so that it pays off.
5969 
5970     // Do we already have or could we have type information for src
5971     bool could_have_src = has_src;
5972     // Do we already have or could we have type information for dest
5973     bool could_have_dest = has_dest;
5974 
5975     ciKlass* src_k = nullptr;
5976     if (!has_src) {
5977       src_k = src_type->speculative_type_not_null();
5978       if (src_k != nullptr && src_k->is_array_klass()) {
5979         could_have_src = true;
5980       }
5981     }
5982 
5983     ciKlass* dest_k = nullptr;
5984     if (!has_dest) {
5985       dest_k = dest_type->speculative_type_not_null();
5986       if (dest_k != nullptr && dest_k->is_array_klass()) {
5987         could_have_dest = true;
5988       }
5989     }
5990 
5991     if (could_have_src && could_have_dest) {
5992       // This is going to pay off so emit the required guards
5993       if (!has_src) {
5994         src = maybe_cast_profiled_obj(src, src_k, true);
5995         src_type  = _gvn.type(src);
5996         top_src  = src_type->isa_aryptr();
5997         has_src = (top_src != nullptr && top_src->elem() != Type::BOTTOM);
5998         src_spec = true;
5999       }
6000       if (!has_dest) {
6001         dest = maybe_cast_profiled_obj(dest, dest_k, true);
6002         dest_type  = _gvn.type(dest);
6003         top_dest  = dest_type->isa_aryptr();
6004         has_dest = (top_dest != nullptr && top_dest->elem() != Type::BOTTOM);
6005         dest_spec = true;
6006       }
6007     }
6008   }
6009 
6010   if (has_src && has_dest && can_emit_guards) {
6011     BasicType src_elem = top_src->isa_aryptr()->elem()->array_element_basic_type();
6012     BasicType dest_elem = top_dest->isa_aryptr()->elem()->array_element_basic_type();
6013     if (is_reference_type(src_elem, true)) src_elem = T_OBJECT;
6014     if (is_reference_type(dest_elem, true)) dest_elem = T_OBJECT;
6015 
6016     if (src_elem == dest_elem && src_elem == T_OBJECT) {
6017       // If both arrays are object arrays then having the exact types
6018       // for both will remove the need for a subtype check at runtime
6019       // before the call and may make it possible to pick a faster copy
6020       // routine (without a subtype check on every element)
6021       // Do we have the exact type of src?
6022       bool could_have_src = src_spec;
6023       // Do we have the exact type of dest?
6024       bool could_have_dest = dest_spec;
6025       ciKlass* src_k = nullptr;
6026       ciKlass* dest_k = nullptr;
6027       if (!src_spec) {
6028         src_k = src_type->speculative_type_not_null();
6029         if (src_k != nullptr && src_k->is_array_klass()) {
6030           could_have_src = true;
6031         }
6032       }
6033       if (!dest_spec) {
6034         dest_k = dest_type->speculative_type_not_null();
6035         if (dest_k != nullptr && dest_k->is_array_klass()) {
6036           could_have_dest = true;
6037         }
6038       }
6039       if (could_have_src && could_have_dest) {
6040         // If we can have both exact types, emit the missing guards
6041         if (could_have_src && !src_spec) {
6042           src = maybe_cast_profiled_obj(src, src_k, true);
6043         }
6044         if (could_have_dest && !dest_spec) {
6045           dest = maybe_cast_profiled_obj(dest, dest_k, true);
6046         }
6047       }
6048     }
6049   }
6050 
6051   ciMethod* trap_method = method();
6052   int trap_bci = bci();
6053   if (saved_jvms_before_guards != nullptr) {
6054     trap_method = alloc->jvms()->method();
6055     trap_bci = alloc->jvms()->bci();
6056   }
6057 
6058   bool negative_length_guard_generated = false;
6059 
6060   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
6061       can_emit_guards &&
6062       !src->is_top() && !dest->is_top()) {
6063     // validate arguments: enables transformation the ArrayCopyNode
6064     validated = true;
6065 
6066     RegionNode* slow_region = new RegionNode(1);
6067     record_for_igvn(slow_region);
6068 
6069     // (1) src and dest are arrays.
6070     generate_non_array_guard(load_object_klass(src), slow_region, &src);
6071     generate_non_array_guard(load_object_klass(dest), slow_region, &dest);
6072 
6073     // (2) src and dest arrays must have elements of the same BasicType
6074     // done at macro expansion or at Ideal transformation time
6075 
6076     // (4) src_offset must not be negative.
6077     generate_negative_guard(src_offset, slow_region);
6078 
6079     // (5) dest_offset must not be negative.
6080     generate_negative_guard(dest_offset, slow_region);
6081 
6082     // (7) src_offset + length must not exceed length of src.
6083     generate_limit_guard(src_offset, length,
6084                          load_array_length(src),
6085                          slow_region);
6086 
6087     // (8) dest_offset + length must not exceed length of dest.
6088     generate_limit_guard(dest_offset, length,
6089                          load_array_length(dest),
6090                          slow_region);
6091 
6092     // (6) length must not be negative.
6093     // This is also checked in generate_arraycopy() during macro expansion, but
6094     // we also have to check it here for the case where the ArrayCopyNode will
6095     // be eliminated by Escape Analysis.
6096     if (EliminateAllocations) {
6097       generate_negative_guard(length, slow_region);
6098       negative_length_guard_generated = true;
6099     }
6100 
6101     // (9) each element of an oop array must be assignable
6102     Node* dest_klass = load_object_klass(dest);
6103     if (src != dest) {
6104       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
6105 
6106       if (not_subtype_ctrl != top()) {
6107         PreserveJVMState pjvms(this);
6108         set_control(not_subtype_ctrl);
6109         uncommon_trap(Deoptimization::Reason_intrinsic,
6110                       Deoptimization::Action_make_not_entrant);
6111         assert(stopped(), "Should be stopped");
6112       }
6113     }
6114     {
6115       PreserveJVMState pjvms(this);
6116       set_control(_gvn.transform(slow_region));
6117       uncommon_trap(Deoptimization::Reason_intrinsic,
6118                     Deoptimization::Action_make_not_entrant);
6119       assert(stopped(), "Should be stopped");
6120     }
6121 
6122     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
6123     const Type *toop = dest_klass_t->cast_to_exactness(false)->as_instance_type();
6124     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
6125     arraycopy_move_allocation_here(alloc, dest, saved_jvms_before_guards, saved_reexecute_sp, new_idx);
6126   }
6127 
6128   if (stopped()) {
6129     return true;
6130   }
6131 
6132   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != nullptr, negative_length_guard_generated,
6133                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
6134                                           // so the compiler has a chance to eliminate them: during macro expansion,
6135                                           // we have to set their control (CastPP nodes are eliminated).
6136                                           load_object_klass(src), load_object_klass(dest),
6137                                           load_array_length(src), load_array_length(dest));
6138 
6139   ac->set_arraycopy(validated);
6140 
6141   Node* n = _gvn.transform(ac);
6142   if (n == ac) {
6143     ac->connect_outputs(this);
6144   } else {
6145     assert(validated, "shouldn't transform if all arguments not validated");
6146     set_all_memory(n);
6147   }
6148   clear_upper_avx();
6149 
6150 
6151   return true;
6152 }
6153 
6154 
6155 // Helper function which determines if an arraycopy immediately follows
6156 // an allocation, with no intervening tests or other escapes for the object.
6157 AllocateArrayNode*
6158 LibraryCallKit::tightly_coupled_allocation(Node* ptr) {
6159   if (stopped())             return nullptr;  // no fast path
6160   if (!C->do_aliasing())     return nullptr;  // no MergeMems around
6161 
6162   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr);
6163   if (alloc == nullptr)  return nullptr;
6164 
6165   Node* rawmem = memory(Compile::AliasIdxRaw);
6166   // Is the allocation's memory state untouched?
6167   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
6168     // Bail out if there have been raw-memory effects since the allocation.
6169     // (Example:  There might have been a call or safepoint.)
6170     return nullptr;
6171   }
6172   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
6173   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
6174     return nullptr;
6175   }
6176 
6177   // There must be no unexpected observers of this allocation.
6178   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
6179     Node* obs = ptr->fast_out(i);
6180     if (obs != this->map()) {
6181       return nullptr;
6182     }
6183   }
6184 
6185   // This arraycopy must unconditionally follow the allocation of the ptr.
6186   Node* alloc_ctl = ptr->in(0);
6187   Node* ctl = control();
6188   while (ctl != alloc_ctl) {
6189     // There may be guards which feed into the slow_region.
6190     // Any other control flow means that we might not get a chance
6191     // to finish initializing the allocated object.
6192     // Various low-level checks bottom out in uncommon traps. These
6193     // are considered safe since we've already checked above that
6194     // there is no unexpected observer of this allocation.
6195     if (get_uncommon_trap_from_success_proj(ctl) != nullptr) {
6196       assert(ctl->in(0)->is_If(), "must be If");
6197       ctl = ctl->in(0)->in(0);
6198     } else {
6199       return nullptr;
6200     }
6201   }
6202 
6203   // If we get this far, we have an allocation which immediately
6204   // precedes the arraycopy, and we can take over zeroing the new object.
6205   // The arraycopy will finish the initialization, and provide
6206   // a new control state to which we will anchor the destination pointer.
6207 
6208   return alloc;
6209 }
6210 
6211 CallStaticJavaNode* LibraryCallKit::get_uncommon_trap_from_success_proj(Node* node) {
6212   if (node->is_IfProj()) {
6213     Node* other_proj = node->as_IfProj()->other_if_proj();
6214     for (DUIterator_Fast jmax, j = other_proj->fast_outs(jmax); j < jmax; j++) {
6215       Node* obs = other_proj->fast_out(j);
6216       if (obs->in(0) == other_proj && obs->is_CallStaticJava() &&
6217           (obs->as_CallStaticJava()->entry_point() == OptoRuntime::uncommon_trap_blob()->entry_point())) {
6218         return obs->as_CallStaticJava();
6219       }
6220     }
6221   }
6222   return nullptr;
6223 }
6224 
6225 //-------------inline_encodeISOArray-----------------------------------
6226 // encode char[] to byte[] in ISO_8859_1 or ASCII
6227 bool LibraryCallKit::inline_encodeISOArray(bool ascii) {
6228   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
6229   // no receiver since it is static method
6230   Node *src         = argument(0);
6231   Node *src_offset  = argument(1);
6232   Node *dst         = argument(2);
6233   Node *dst_offset  = argument(3);
6234   Node *length      = argument(4);
6235 
6236   src = must_be_not_null(src, true);
6237   dst = must_be_not_null(dst, true);
6238 
6239   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6240   const TypeAryPtr* dst_type = dst->Value(&_gvn)->isa_aryptr();
6241   if (src_type == nullptr || src_type->elem() == Type::BOTTOM ||
6242       dst_type == nullptr || dst_type->elem() == Type::BOTTOM) {
6243     // failed array check
6244     return false;
6245   }
6246 
6247   // Figure out the size and type of the elements we will be copying.
6248   BasicType src_elem = src_type->elem()->array_element_basic_type();
6249   BasicType dst_elem = dst_type->elem()->array_element_basic_type();
6250   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
6251     return false;
6252   }
6253 
6254   Node* src_start = array_element_address(src, src_offset, T_CHAR);
6255   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
6256   // 'src_start' points to src array + scaled offset
6257   // 'dst_start' points to dst array + scaled offset
6258 
6259   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
6260   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length, ascii);
6261   enc = _gvn.transform(enc);
6262   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
6263   set_memory(res_mem, mtype);
6264   set_result(enc);
6265   clear_upper_avx();
6266 
6267   return true;
6268 }
6269 
6270 //-------------inline_multiplyToLen-----------------------------------
6271 bool LibraryCallKit::inline_multiplyToLen() {
6272   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
6273 
6274   address stubAddr = StubRoutines::multiplyToLen();
6275   if (stubAddr == nullptr) {
6276     return false; // Intrinsic's stub is not implemented on this platform
6277   }
6278   const char* stubName = "multiplyToLen";
6279 
6280   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
6281 
6282   // no receiver because it is a static method
6283   Node* x    = argument(0);
6284   Node* xlen = argument(1);
6285   Node* y    = argument(2);
6286   Node* ylen = argument(3);
6287   Node* z    = argument(4);
6288 
6289   x = must_be_not_null(x, true);
6290   y = must_be_not_null(y, true);
6291 
6292   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6293   const TypeAryPtr* y_type = y->Value(&_gvn)->isa_aryptr();
6294   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6295       y_type == nullptr || y_type->elem() == Type::BOTTOM) {
6296     // failed array check
6297     return false;
6298   }
6299 
6300   BasicType x_elem = x_type->elem()->array_element_basic_type();
6301   BasicType y_elem = y_type->elem()->array_element_basic_type();
6302   if (x_elem != T_INT || y_elem != T_INT) {
6303     return false;
6304   }
6305 
6306   Node* x_start = array_element_address(x, intcon(0), x_elem);
6307   Node* y_start = array_element_address(y, intcon(0), y_elem);
6308   // 'x_start' points to x array + scaled xlen
6309   // 'y_start' points to y array + scaled ylen
6310 
6311   Node* z_start = array_element_address(z, intcon(0), T_INT);
6312 
6313   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6314                                  OptoRuntime::multiplyToLen_Type(),
6315                                  stubAddr, stubName, TypePtr::BOTTOM,
6316                                  x_start, xlen, y_start, ylen, z_start);
6317 
6318   C->set_has_split_ifs(true); // Has chance for split-if optimization
6319   set_result(z);
6320   return true;
6321 }
6322 
6323 //-------------inline_squareToLen------------------------------------
6324 bool LibraryCallKit::inline_squareToLen() {
6325   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
6326 
6327   address stubAddr = StubRoutines::squareToLen();
6328   if (stubAddr == nullptr) {
6329     return false; // Intrinsic's stub is not implemented on this platform
6330   }
6331   const char* stubName = "squareToLen";
6332 
6333   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
6334 
6335   Node* x    = argument(0);
6336   Node* len  = argument(1);
6337   Node* z    = argument(2);
6338   Node* zlen = argument(3);
6339 
6340   x = must_be_not_null(x, true);
6341   z = must_be_not_null(z, true);
6342 
6343   const TypeAryPtr* x_type = x->Value(&_gvn)->isa_aryptr();
6344   const TypeAryPtr* z_type = z->Value(&_gvn)->isa_aryptr();
6345   if (x_type == nullptr || x_type->elem() == Type::BOTTOM ||
6346       z_type == nullptr || z_type->elem() == Type::BOTTOM) {
6347     // failed array check
6348     return false;
6349   }
6350 
6351   BasicType x_elem = x_type->elem()->array_element_basic_type();
6352   BasicType z_elem = z_type->elem()->array_element_basic_type();
6353   if (x_elem != T_INT || z_elem != T_INT) {
6354     return false;
6355   }
6356 
6357 
6358   Node* x_start = array_element_address(x, intcon(0), x_elem);
6359   Node* z_start = array_element_address(z, intcon(0), z_elem);
6360 
6361   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6362                                   OptoRuntime::squareToLen_Type(),
6363                                   stubAddr, stubName, TypePtr::BOTTOM,
6364                                   x_start, len, z_start, zlen);
6365 
6366   set_result(z);
6367   return true;
6368 }
6369 
6370 //-------------inline_mulAdd------------------------------------------
6371 bool LibraryCallKit::inline_mulAdd() {
6372   assert(UseMulAddIntrinsic, "not implemented on this platform");
6373 
6374   address stubAddr = StubRoutines::mulAdd();
6375   if (stubAddr == nullptr) {
6376     return false; // Intrinsic's stub is not implemented on this platform
6377   }
6378   const char* stubName = "mulAdd";
6379 
6380   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
6381 
6382   Node* out      = argument(0);
6383   Node* in       = argument(1);
6384   Node* offset   = argument(2);
6385   Node* len      = argument(3);
6386   Node* k        = argument(4);
6387 
6388   in = must_be_not_null(in, true);
6389   out = must_be_not_null(out, true);
6390 
6391   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
6392   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
6393   if (out_type == nullptr || out_type->elem() == Type::BOTTOM ||
6394        in_type == nullptr ||  in_type->elem() == Type::BOTTOM) {
6395     // failed array check
6396     return false;
6397   }
6398 
6399   BasicType out_elem = out_type->elem()->array_element_basic_type();
6400   BasicType in_elem = in_type->elem()->array_element_basic_type();
6401   if (out_elem != T_INT || in_elem != T_INT) {
6402     return false;
6403   }
6404 
6405   Node* outlen = load_array_length(out);
6406   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
6407   Node* out_start = array_element_address(out, intcon(0), out_elem);
6408   Node* in_start = array_element_address(in, intcon(0), in_elem);
6409 
6410   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
6411                                   OptoRuntime::mulAdd_Type(),
6412                                   stubAddr, stubName, TypePtr::BOTTOM,
6413                                   out_start,in_start, new_offset, len, k);
6414   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6415   set_result(result);
6416   return true;
6417 }
6418 
6419 //-------------inline_montgomeryMultiply-----------------------------------
6420 bool LibraryCallKit::inline_montgomeryMultiply() {
6421   address stubAddr = StubRoutines::montgomeryMultiply();
6422   if (stubAddr == nullptr) {
6423     return false; // Intrinsic's stub is not implemented on this platform
6424   }
6425 
6426   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
6427   const char* stubName = "montgomery_multiply";
6428 
6429   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
6430 
6431   Node* a    = argument(0);
6432   Node* b    = argument(1);
6433   Node* n    = argument(2);
6434   Node* len  = argument(3);
6435   Node* inv  = argument(4);
6436   Node* m    = argument(6);
6437 
6438   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6439   const TypeAryPtr* b_type = b->Value(&_gvn)->isa_aryptr();
6440   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6441   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6442   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6443       b_type == nullptr || b_type->elem() == Type::BOTTOM ||
6444       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6445       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6446     // failed array check
6447     return false;
6448   }
6449 
6450   BasicType a_elem = a_type->elem()->array_element_basic_type();
6451   BasicType b_elem = b_type->elem()->array_element_basic_type();
6452   BasicType n_elem = n_type->elem()->array_element_basic_type();
6453   BasicType m_elem = m_type->elem()->array_element_basic_type();
6454   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6455     return false;
6456   }
6457 
6458   // Make the call
6459   {
6460     Node* a_start = array_element_address(a, intcon(0), a_elem);
6461     Node* b_start = array_element_address(b, intcon(0), b_elem);
6462     Node* n_start = array_element_address(n, intcon(0), n_elem);
6463     Node* m_start = array_element_address(m, intcon(0), m_elem);
6464 
6465     Node* call = make_runtime_call(RC_LEAF,
6466                                    OptoRuntime::montgomeryMultiply_Type(),
6467                                    stubAddr, stubName, TypePtr::BOTTOM,
6468                                    a_start, b_start, n_start, len, inv, top(),
6469                                    m_start);
6470     set_result(m);
6471   }
6472 
6473   return true;
6474 }
6475 
6476 bool LibraryCallKit::inline_montgomerySquare() {
6477   address stubAddr = StubRoutines::montgomerySquare();
6478   if (stubAddr == nullptr) {
6479     return false; // Intrinsic's stub is not implemented on this platform
6480   }
6481 
6482   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
6483   const char* stubName = "montgomery_square";
6484 
6485   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
6486 
6487   Node* a    = argument(0);
6488   Node* n    = argument(1);
6489   Node* len  = argument(2);
6490   Node* inv  = argument(3);
6491   Node* m    = argument(5);
6492 
6493   const TypeAryPtr* a_type = a->Value(&_gvn)->isa_aryptr();
6494   const TypeAryPtr* n_type = n->Value(&_gvn)->isa_aryptr();
6495   const TypeAryPtr* m_type = m->Value(&_gvn)->isa_aryptr();
6496   if (a_type == nullptr || a_type->elem() == Type::BOTTOM ||
6497       n_type == nullptr || n_type->elem() == Type::BOTTOM ||
6498       m_type == nullptr || m_type->elem() == Type::BOTTOM) {
6499     // failed array check
6500     return false;
6501   }
6502 
6503   BasicType a_elem = a_type->elem()->array_element_basic_type();
6504   BasicType n_elem = n_type->elem()->array_element_basic_type();
6505   BasicType m_elem = m_type->elem()->array_element_basic_type();
6506   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
6507     return false;
6508   }
6509 
6510   // Make the call
6511   {
6512     Node* a_start = array_element_address(a, intcon(0), a_elem);
6513     Node* n_start = array_element_address(n, intcon(0), n_elem);
6514     Node* m_start = array_element_address(m, intcon(0), m_elem);
6515 
6516     Node* call = make_runtime_call(RC_LEAF,
6517                                    OptoRuntime::montgomerySquare_Type(),
6518                                    stubAddr, stubName, TypePtr::BOTTOM,
6519                                    a_start, n_start, len, inv, top(),
6520                                    m_start);
6521     set_result(m);
6522   }
6523 
6524   return true;
6525 }
6526 
6527 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) {
6528   address stubAddr = nullptr;
6529   const char* stubName = nullptr;
6530 
6531   stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift();
6532   if (stubAddr == nullptr) {
6533     return false; // Intrinsic's stub is not implemented on this platform
6534   }
6535 
6536   stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker";
6537 
6538   assert(callee()->signature()->size() == 5, "expected 5 arguments");
6539 
6540   Node* newArr = argument(0);
6541   Node* oldArr = argument(1);
6542   Node* newIdx = argument(2);
6543   Node* shiftCount = argument(3);
6544   Node* numIter = argument(4);
6545 
6546   const TypeAryPtr* newArr_type = newArr->Value(&_gvn)->isa_aryptr();
6547   const TypeAryPtr* oldArr_type = oldArr->Value(&_gvn)->isa_aryptr();
6548   if (newArr_type == nullptr || newArr_type->elem() == Type::BOTTOM ||
6549       oldArr_type == nullptr || oldArr_type->elem() == Type::BOTTOM) {
6550     return false;
6551   }
6552 
6553   BasicType newArr_elem = newArr_type->elem()->array_element_basic_type();
6554   BasicType oldArr_elem = oldArr_type->elem()->array_element_basic_type();
6555   if (newArr_elem != T_INT || oldArr_elem != T_INT) {
6556     return false;
6557   }
6558 
6559   // Make the call
6560   {
6561     Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem);
6562     Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem);
6563 
6564     Node* call = make_runtime_call(RC_LEAF,
6565                                    OptoRuntime::bigIntegerShift_Type(),
6566                                    stubAddr,
6567                                    stubName,
6568                                    TypePtr::BOTTOM,
6569                                    newArr_start,
6570                                    oldArr_start,
6571                                    newIdx,
6572                                    shiftCount,
6573                                    numIter);
6574   }
6575 
6576   return true;
6577 }
6578 
6579 //-------------inline_vectorizedMismatch------------------------------
6580 bool LibraryCallKit::inline_vectorizedMismatch() {
6581   assert(UseVectorizedMismatchIntrinsic, "not implemented on this platform");
6582 
6583   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
6584   Node* obja    = argument(0); // Object
6585   Node* aoffset = argument(1); // long
6586   Node* objb    = argument(3); // Object
6587   Node* boffset = argument(4); // long
6588   Node* length  = argument(6); // int
6589   Node* scale   = argument(7); // int
6590 
6591   const TypeAryPtr* obja_t = _gvn.type(obja)->isa_aryptr();
6592   const TypeAryPtr* objb_t = _gvn.type(objb)->isa_aryptr();
6593   if (obja_t == nullptr || obja_t->elem() == Type::BOTTOM ||
6594       objb_t == nullptr || objb_t->elem() == Type::BOTTOM ||
6595       scale == top()) {
6596     return false; // failed input validation
6597   }
6598 
6599   Node* obja_adr = make_unsafe_address(obja, aoffset);
6600   Node* objb_adr = make_unsafe_address(objb, boffset);
6601 
6602   // Partial inlining handling for inputs smaller than ArrayOperationPartialInlineSize bytes in size.
6603   //
6604   //    inline_limit = ArrayOperationPartialInlineSize / element_size;
6605   //    if (length <= inline_limit) {
6606   //      inline_path:
6607   //        vmask   = VectorMaskGen length
6608   //        vload1  = LoadVectorMasked obja, vmask
6609   //        vload2  = LoadVectorMasked objb, vmask
6610   //        result1 = VectorCmpMasked vload1, vload2, vmask
6611   //    } else {
6612   //      call_stub_path:
6613   //        result2 = call vectorizedMismatch_stub(obja, objb, length, scale)
6614   //    }
6615   //    exit_block:
6616   //      return Phi(result1, result2);
6617   //
6618   enum { inline_path = 1,  // input is small enough to process it all at once
6619          stub_path   = 2,  // input is too large; call into the VM
6620          PATH_LIMIT  = 3
6621   };
6622 
6623   Node* exit_block = new RegionNode(PATH_LIMIT);
6624   Node* result_phi = new PhiNode(exit_block, TypeInt::INT);
6625   Node* memory_phi = new PhiNode(exit_block, Type::MEMORY, TypePtr::BOTTOM);
6626 
6627   Node* call_stub_path = control();
6628 
6629   BasicType elem_bt = T_ILLEGAL;
6630 
6631   const TypeInt* scale_t = _gvn.type(scale)->is_int();
6632   if (scale_t->is_con()) {
6633     switch (scale_t->get_con()) {
6634       case 0: elem_bt = T_BYTE;  break;
6635       case 1: elem_bt = T_SHORT; break;
6636       case 2: elem_bt = T_INT;   break;
6637       case 3: elem_bt = T_LONG;  break;
6638 
6639       default: elem_bt = T_ILLEGAL; break; // not supported
6640     }
6641   }
6642 
6643   int inline_limit = 0;
6644   bool do_partial_inline = false;
6645 
6646   if (elem_bt != T_ILLEGAL && ArrayOperationPartialInlineSize > 0) {
6647     inline_limit = ArrayOperationPartialInlineSize / type2aelembytes(elem_bt);
6648     do_partial_inline = inline_limit >= 16;
6649   }
6650 
6651   if (do_partial_inline) {
6652     assert(elem_bt != T_ILLEGAL, "sanity");
6653 
6654     if (Matcher::match_rule_supported_vector(Op_VectorMaskGen,    inline_limit, elem_bt) &&
6655         Matcher::match_rule_supported_vector(Op_LoadVectorMasked, inline_limit, elem_bt) &&
6656         Matcher::match_rule_supported_vector(Op_VectorCmpMasked,  inline_limit, elem_bt)) {
6657 
6658       const TypeVect* vt = TypeVect::make(elem_bt, inline_limit);
6659       Node* cmp_length = _gvn.transform(new CmpINode(length, intcon(inline_limit)));
6660       Node* bol_gt     = _gvn.transform(new BoolNode(cmp_length, BoolTest::gt));
6661 
6662       call_stub_path = generate_guard(bol_gt, nullptr, PROB_MIN);
6663 
6664       if (!stopped()) {
6665         Node* casted_length = _gvn.transform(new CastIINode(control(), length, TypeInt::make(0, inline_limit, Type::WidenMin)));
6666 
6667         const TypePtr* obja_adr_t = _gvn.type(obja_adr)->isa_ptr();
6668         const TypePtr* objb_adr_t = _gvn.type(objb_adr)->isa_ptr();
6669         Node* obja_adr_mem = memory(C->get_alias_index(obja_adr_t));
6670         Node* objb_adr_mem = memory(C->get_alias_index(objb_adr_t));
6671 
6672         Node* vmask      = _gvn.transform(VectorMaskGenNode::make(ConvI2X(casted_length), elem_bt));
6673         Node* vload_obja = _gvn.transform(new LoadVectorMaskedNode(control(), obja_adr_mem, obja_adr, obja_adr_t, vt, vmask));
6674         Node* vload_objb = _gvn.transform(new LoadVectorMaskedNode(control(), objb_adr_mem, objb_adr, objb_adr_t, vt, vmask));
6675         Node* result     = _gvn.transform(new VectorCmpMaskedNode(vload_obja, vload_objb, vmask, TypeInt::INT));
6676 
6677         exit_block->init_req(inline_path, control());
6678         memory_phi->init_req(inline_path, map()->memory());
6679         result_phi->init_req(inline_path, result);
6680 
6681         C->set_max_vector_size(MAX2((uint)ArrayOperationPartialInlineSize, C->max_vector_size()));
6682         clear_upper_avx();
6683       }
6684     }
6685   }
6686 
6687   if (call_stub_path != nullptr) {
6688     set_control(call_stub_path);
6689 
6690     Node* call = make_runtime_call(RC_LEAF,
6691                                    OptoRuntime::vectorizedMismatch_Type(),
6692                                    StubRoutines::vectorizedMismatch(), "vectorizedMismatch", TypePtr::BOTTOM,
6693                                    obja_adr, objb_adr, length, scale);
6694 
6695     exit_block->init_req(stub_path, control());
6696     memory_phi->init_req(stub_path, map()->memory());
6697     result_phi->init_req(stub_path, _gvn.transform(new ProjNode(call, TypeFunc::Parms)));
6698   }
6699 
6700   exit_block = _gvn.transform(exit_block);
6701   memory_phi = _gvn.transform(memory_phi);
6702   result_phi = _gvn.transform(result_phi);
6703 
6704   set_control(exit_block);
6705   set_all_memory(memory_phi);
6706   set_result(result_phi);
6707 
6708   return true;
6709 }
6710 
6711 //------------------------------inline_vectorizedHashcode----------------------------
6712 bool LibraryCallKit::inline_vectorizedHashCode() {
6713   assert(UseVectorizedHashCodeIntrinsic, "not implemented on this platform");
6714 
6715   assert(callee()->signature()->size() == 5, "vectorizedHashCode has 5 parameters");
6716   Node* array          = argument(0);
6717   Node* offset         = argument(1);
6718   Node* length         = argument(2);
6719   Node* initialValue   = argument(3);
6720   Node* basic_type     = argument(4);
6721 
6722   if (basic_type == top()) {
6723     return false; // failed input validation
6724   }
6725 
6726   const TypeInt* basic_type_t = _gvn.type(basic_type)->is_int();
6727   if (!basic_type_t->is_con()) {
6728     return false; // Only intrinsify if mode argument is constant
6729   }
6730 
6731   array = must_be_not_null(array, true);
6732 
6733   BasicType bt = (BasicType)basic_type_t->get_con();
6734 
6735   // Resolve address of first element
6736   Node* array_start = array_element_address(array, offset, bt);
6737 
6738   set_result(_gvn.transform(new VectorizedHashCodeNode(control(), memory(TypeAryPtr::get_array_body_type(bt)),
6739     array_start, length, initialValue, basic_type)));
6740   clear_upper_avx();
6741 
6742   return true;
6743 }
6744 
6745 /**
6746  * Calculate CRC32 for byte.
6747  * int java.util.zip.CRC32.update(int crc, int b)
6748  */
6749 bool LibraryCallKit::inline_updateCRC32() {
6750   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support");
6751   assert(callee()->signature()->size() == 2, "update has 2 parameters");
6752   // no receiver since it is static method
6753   Node* crc  = argument(0); // type: int
6754   Node* b    = argument(1); // type: int
6755 
6756   /*
6757    *    int c = ~ crc;
6758    *    b = timesXtoThe32[(b ^ c) & 0xFF];
6759    *    b = b ^ (c >>> 8);
6760    *    crc = ~b;
6761    */
6762 
6763   Node* M1 = intcon(-1);
6764   crc = _gvn.transform(new XorINode(crc, M1));
6765   Node* result = _gvn.transform(new XorINode(crc, b));
6766   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
6767 
6768   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
6769   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
6770   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
6771   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
6772 
6773   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
6774   result = _gvn.transform(new XorINode(crc, result));
6775   result = _gvn.transform(new XorINode(result, M1));
6776   set_result(result);
6777   return true;
6778 }
6779 
6780 /**
6781  * Calculate CRC32 for byte[] array.
6782  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
6783  */
6784 bool LibraryCallKit::inline_updateBytesCRC32() {
6785   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support");
6786   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6787   // no receiver since it is static method
6788   Node* crc     = argument(0); // type: int
6789   Node* src     = argument(1); // type: oop
6790   Node* offset  = argument(2); // type: int
6791   Node* length  = argument(3); // type: int
6792 
6793   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6794   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6795     // failed array check
6796     return false;
6797   }
6798 
6799   // Figure out the size and type of the elements we will be copying.
6800   BasicType src_elem = src_type->elem()->array_element_basic_type();
6801   if (src_elem != T_BYTE) {
6802     return false;
6803   }
6804 
6805   // 'src_start' points to src array + scaled offset
6806   src = must_be_not_null(src, true);
6807   Node* src_start = array_element_address(src, offset, src_elem);
6808 
6809   // We assume that range check is done by caller.
6810   // TODO: generate range check (offset+length < src.length) in debug VM.
6811 
6812   // Call the stub.
6813   address stubAddr = StubRoutines::updateBytesCRC32();
6814   const char *stubName = "updateBytesCRC32";
6815 
6816   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6817                                  stubAddr, stubName, TypePtr::BOTTOM,
6818                                  crc, src_start, length);
6819   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6820   set_result(result);
6821   return true;
6822 }
6823 
6824 /**
6825  * Calculate CRC32 for ByteBuffer.
6826  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
6827  */
6828 bool LibraryCallKit::inline_updateByteBufferCRC32() {
6829   assert(UseCRC32Intrinsics, "need AVX and CLMUL instructions support");
6830   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6831   // no receiver since it is static method
6832   Node* crc     = argument(0); // type: int
6833   Node* src     = argument(1); // type: long
6834   Node* offset  = argument(3); // type: int
6835   Node* length  = argument(4); // type: int
6836 
6837   src = ConvL2X(src);  // adjust Java long to machine word
6838   Node* base = _gvn.transform(new CastX2PNode(src));
6839   offset = ConvI2X(offset);
6840 
6841   // 'src_start' points to src array + scaled offset
6842   Node* src_start = basic_plus_adr(top(), base, offset);
6843 
6844   // Call the stub.
6845   address stubAddr = StubRoutines::updateBytesCRC32();
6846   const char *stubName = "updateBytesCRC32";
6847 
6848   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
6849                                  stubAddr, stubName, TypePtr::BOTTOM,
6850                                  crc, src_start, length);
6851   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6852   set_result(result);
6853   return true;
6854 }
6855 
6856 //------------------------------get_table_from_crc32c_class-----------------------
6857 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
6858   Node* table = load_field_from_object(nullptr, "byteTable", "[I", /*decorators*/ IN_HEAP, /*is_static*/ true, crc32c_class);
6859   assert (table != nullptr, "wrong version of java.util.zip.CRC32C");
6860 
6861   return table;
6862 }
6863 
6864 //------------------------------inline_updateBytesCRC32C-----------------------
6865 //
6866 // Calculate CRC32C for byte[] array.
6867 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
6868 //
6869 bool LibraryCallKit::inline_updateBytesCRC32C() {
6870   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6871   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6872   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6873   // no receiver since it is a static method
6874   Node* crc     = argument(0); // type: int
6875   Node* src     = argument(1); // type: oop
6876   Node* offset  = argument(2); // type: int
6877   Node* end     = argument(3); // type: int
6878 
6879   Node* length = _gvn.transform(new SubINode(end, offset));
6880 
6881   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6882   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6883     // failed array check
6884     return false;
6885   }
6886 
6887   // Figure out the size and type of the elements we will be copying.
6888   BasicType src_elem = src_type->elem()->array_element_basic_type();
6889   if (src_elem != T_BYTE) {
6890     return false;
6891   }
6892 
6893   // 'src_start' points to src array + scaled offset
6894   src = must_be_not_null(src, true);
6895   Node* src_start = array_element_address(src, offset, src_elem);
6896 
6897   // static final int[] byteTable in class CRC32C
6898   Node* table = get_table_from_crc32c_class(callee()->holder());
6899   table = must_be_not_null(table, true);
6900   Node* table_start = array_element_address(table, intcon(0), T_INT);
6901 
6902   // We assume that range check is done by caller.
6903   // TODO: generate range check (offset+length < src.length) in debug VM.
6904 
6905   // Call the stub.
6906   address stubAddr = StubRoutines::updateBytesCRC32C();
6907   const char *stubName = "updateBytesCRC32C";
6908 
6909   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6910                                  stubAddr, stubName, TypePtr::BOTTOM,
6911                                  crc, src_start, length, table_start);
6912   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6913   set_result(result);
6914   return true;
6915 }
6916 
6917 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
6918 //
6919 // Calculate CRC32C for DirectByteBuffer.
6920 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
6921 //
6922 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
6923   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
6924   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
6925   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
6926   // no receiver since it is a static method
6927   Node* crc     = argument(0); // type: int
6928   Node* src     = argument(1); // type: long
6929   Node* offset  = argument(3); // type: int
6930   Node* end     = argument(4); // type: int
6931 
6932   Node* length = _gvn.transform(new SubINode(end, offset));
6933 
6934   src = ConvL2X(src);  // adjust Java long to machine word
6935   Node* base = _gvn.transform(new CastX2PNode(src));
6936   offset = ConvI2X(offset);
6937 
6938   // 'src_start' points to src array + scaled offset
6939   Node* src_start = basic_plus_adr(top(), base, offset);
6940 
6941   // static final int[] byteTable in class CRC32C
6942   Node* table = get_table_from_crc32c_class(callee()->holder());
6943   table = must_be_not_null(table, true);
6944   Node* table_start = array_element_address(table, intcon(0), T_INT);
6945 
6946   // Call the stub.
6947   address stubAddr = StubRoutines::updateBytesCRC32C();
6948   const char *stubName = "updateBytesCRC32C";
6949 
6950   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
6951                                  stubAddr, stubName, TypePtr::BOTTOM,
6952                                  crc, src_start, length, table_start);
6953   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6954   set_result(result);
6955   return true;
6956 }
6957 
6958 //------------------------------inline_updateBytesAdler32----------------------
6959 //
6960 // Calculate Adler32 checksum for byte[] array.
6961 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
6962 //
6963 bool LibraryCallKit::inline_updateBytesAdler32() {
6964   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
6965   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
6966   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6967   // no receiver since it is static method
6968   Node* crc     = argument(0); // type: int
6969   Node* src     = argument(1); // type: oop
6970   Node* offset  = argument(2); // type: int
6971   Node* length  = argument(3); // type: int
6972 
6973   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
6974   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
6975     // failed array check
6976     return false;
6977   }
6978 
6979   // Figure out the size and type of the elements we will be copying.
6980   BasicType src_elem = src_type->elem()->array_element_basic_type();
6981   if (src_elem != T_BYTE) {
6982     return false;
6983   }
6984 
6985   // 'src_start' points to src array + scaled offset
6986   Node* src_start = array_element_address(src, offset, src_elem);
6987 
6988   // We assume that range check is done by caller.
6989   // TODO: generate range check (offset+length < src.length) in debug VM.
6990 
6991   // Call the stub.
6992   address stubAddr = StubRoutines::updateBytesAdler32();
6993   const char *stubName = "updateBytesAdler32";
6994 
6995   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6996                                  stubAddr, stubName, TypePtr::BOTTOM,
6997                                  crc, src_start, length);
6998   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6999   set_result(result);
7000   return true;
7001 }
7002 
7003 //------------------------------inline_updateByteBufferAdler32---------------
7004 //
7005 // Calculate Adler32 checksum for DirectByteBuffer.
7006 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
7007 //
7008 bool LibraryCallKit::inline_updateByteBufferAdler32() {
7009   assert(UseAdler32Intrinsics, "Adler32 Intrinsic support need"); // check if we actually need to check this flag or check a different one
7010   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
7011   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
7012   // no receiver since it is static method
7013   Node* crc     = argument(0); // type: int
7014   Node* src     = argument(1); // type: long
7015   Node* offset  = argument(3); // type: int
7016   Node* length  = argument(4); // type: int
7017 
7018   src = ConvL2X(src);  // adjust Java long to machine word
7019   Node* base = _gvn.transform(new CastX2PNode(src));
7020   offset = ConvI2X(offset);
7021 
7022   // 'src_start' points to src array + scaled offset
7023   Node* src_start = basic_plus_adr(top(), base, offset);
7024 
7025   // Call the stub.
7026   address stubAddr = StubRoutines::updateBytesAdler32();
7027   const char *stubName = "updateBytesAdler32";
7028 
7029   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
7030                                  stubAddr, stubName, TypePtr::BOTTOM,
7031                                  crc, src_start, length);
7032 
7033   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
7034   set_result(result);
7035   return true;
7036 }
7037 
7038 //----------------------------inline_reference_get----------------------------
7039 // public T java.lang.ref.Reference.get();
7040 bool LibraryCallKit::inline_reference_get() {
7041   const int referent_offset = java_lang_ref_Reference::referent_offset();
7042 
7043   // Get the argument:
7044   Node* reference_obj = null_check_receiver();
7045   if (stopped()) return true;
7046 
7047   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
7048   Node* result = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
7049                                         decorators, /*is_static*/ false, nullptr);
7050   if (result == nullptr) return false;
7051 
7052   // Add memory barrier to prevent commoning reads from this field
7053   // across safepoint since GC can change its value.
7054   insert_mem_bar(Op_MemBarCPUOrder);
7055 
7056   set_result(result);
7057   return true;
7058 }
7059 
7060 //----------------------------inline_reference_refersTo0----------------------------
7061 // bool java.lang.ref.Reference.refersTo0();
7062 // bool java.lang.ref.PhantomReference.refersTo0();
7063 bool LibraryCallKit::inline_reference_refersTo0(bool is_phantom) {
7064   // Get arguments:
7065   Node* reference_obj = null_check_receiver();
7066   Node* other_obj = argument(1);
7067   if (stopped()) return true;
7068 
7069   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
7070   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
7071   Node* referent = load_field_from_object(reference_obj, "referent", "Ljava/lang/Object;",
7072                                           decorators, /*is_static*/ false, nullptr);
7073   if (referent == nullptr) return false;
7074 
7075   // Add memory barrier to prevent commoning reads from this field
7076   // across safepoint since GC can change its value.
7077   insert_mem_bar(Op_MemBarCPUOrder);
7078 
7079   Node* cmp = _gvn.transform(new CmpPNode(referent, other_obj));
7080   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
7081   IfNode* if_node = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
7082 
7083   RegionNode* region = new RegionNode(3);
7084   PhiNode* phi = new PhiNode(region, TypeInt::BOOL);
7085 
7086   Node* if_true = _gvn.transform(new IfTrueNode(if_node));
7087   region->init_req(1, if_true);
7088   phi->init_req(1, intcon(1));
7089 
7090   Node* if_false = _gvn.transform(new IfFalseNode(if_node));
7091   region->init_req(2, if_false);
7092   phi->init_req(2, intcon(0));
7093 
7094   set_control(_gvn.transform(region));
7095   record_for_igvn(region);
7096   set_result(_gvn.transform(phi));
7097   return true;
7098 }
7099 
7100 //----------------------------inline_reference_clear0----------------------------
7101 // void java.lang.ref.Reference.clear0();
7102 // void java.lang.ref.PhantomReference.clear0();
7103 bool LibraryCallKit::inline_reference_clear0(bool is_phantom) {
7104   // This matches the implementation in JVM_ReferenceClear, see the comments there.
7105 
7106   // Get arguments
7107   Node* reference_obj = null_check_receiver();
7108   if (stopped()) return true;
7109 
7110   // Common access parameters
7111   DecoratorSet decorators = IN_HEAP | AS_NO_KEEPALIVE;
7112   decorators |= (is_phantom ? ON_PHANTOM_OOP_REF : ON_WEAK_OOP_REF);
7113   Node* referent_field_addr = basic_plus_adr(reference_obj, java_lang_ref_Reference::referent_offset());
7114   const TypePtr* referent_field_addr_type = _gvn.type(referent_field_addr)->isa_ptr();
7115   const Type* val_type = TypeOopPtr::make_from_klass(env()->Object_klass());
7116 
7117   Node* referent = access_load_at(reference_obj,
7118                                   referent_field_addr,
7119                                   referent_field_addr_type,
7120                                   val_type,
7121                                   T_OBJECT,
7122                                   decorators);
7123 
7124   IdealKit ideal(this);
7125 #define __ ideal.
7126   __ if_then(referent, BoolTest::ne, null());
7127     sync_kit(ideal);
7128     access_store_at(reference_obj,
7129                     referent_field_addr,
7130                     referent_field_addr_type,
7131                     null(),
7132                     val_type,
7133                     T_OBJECT,
7134                     decorators);
7135     __ sync_kit(this);
7136   __ end_if();
7137   final_sync(ideal);
7138 #undef __
7139 
7140   return true;
7141 }
7142 
7143 Node* LibraryCallKit::load_field_from_object(Node* fromObj, const char* fieldName, const char* fieldTypeString,
7144                                              DecoratorSet decorators, bool is_static,
7145                                              ciInstanceKlass* fromKls) {
7146   if (fromKls == nullptr) {
7147     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7148     assert(tinst != nullptr, "obj is null");
7149     assert(tinst->is_loaded(), "obj is not loaded");
7150     fromKls = tinst->instance_klass();
7151   } else {
7152     assert(is_static, "only for static field access");
7153   }
7154   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7155                                               ciSymbol::make(fieldTypeString),
7156                                               is_static);
7157 
7158   assert(field != nullptr, "undefined field %s %s %s", fieldTypeString, fromKls->name()->as_utf8(), fieldName);
7159   if (field == nullptr) return (Node *) nullptr;
7160 
7161   if (is_static) {
7162     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7163     fromObj = makecon(tip);
7164   }
7165 
7166   // Next code  copied from Parse::do_get_xxx():
7167 
7168   // Compute address and memory type.
7169   int offset  = field->offset_in_bytes();
7170   bool is_vol = field->is_volatile();
7171   ciType* field_klass = field->type();
7172   assert(field_klass->is_loaded(), "should be loaded");
7173   const TypePtr* adr_type = C->alias_type(field)->adr_type();
7174   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7175   assert(C->get_alias_index(adr_type) == C->get_alias_index(_gvn.type(adr)->isa_ptr()),
7176     "slice of address and input slice don't match");
7177   BasicType bt = field->layout_type();
7178 
7179   // Build the resultant type of the load
7180   const Type *type;
7181   if (bt == T_OBJECT) {
7182     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
7183   } else {
7184     type = Type::get_const_basic_type(bt);
7185   }
7186 
7187   if (is_vol) {
7188     decorators |= MO_SEQ_CST;
7189   }
7190 
7191   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
7192 }
7193 
7194 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
7195                                                  bool is_exact /* true */, bool is_static /* false */,
7196                                                  ciInstanceKlass * fromKls /* nullptr */) {
7197   if (fromKls == nullptr) {
7198     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
7199     assert(tinst != nullptr, "obj is null");
7200     assert(tinst->is_loaded(), "obj is not loaded");
7201     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
7202     fromKls = tinst->instance_klass();
7203   }
7204   else {
7205     assert(is_static, "only for static field access");
7206   }
7207   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
7208     ciSymbol::make(fieldTypeString),
7209     is_static);
7210 
7211   assert(field != nullptr, "undefined field");
7212   assert(!field->is_volatile(), "not defined for volatile fields");
7213 
7214   if (is_static) {
7215     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
7216     fromObj = makecon(tip);
7217   }
7218 
7219   // Next code  copied from Parse::do_get_xxx():
7220 
7221   // Compute address and memory type.
7222   int offset = field->offset_in_bytes();
7223   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
7224 
7225   return adr;
7226 }
7227 
7228 //------------------------------inline_aescrypt_Block-----------------------
7229 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
7230   address stubAddr = nullptr;
7231   const char *stubName;
7232   assert(UseAES, "need AES instruction support");
7233 
7234   switch(id) {
7235   case vmIntrinsics::_aescrypt_encryptBlock:
7236     stubAddr = StubRoutines::aescrypt_encryptBlock();
7237     stubName = "aescrypt_encryptBlock";
7238     break;
7239   case vmIntrinsics::_aescrypt_decryptBlock:
7240     stubAddr = StubRoutines::aescrypt_decryptBlock();
7241     stubName = "aescrypt_decryptBlock";
7242     break;
7243   default:
7244     break;
7245   }
7246   if (stubAddr == nullptr) return false;
7247 
7248   Node* aescrypt_object = argument(0);
7249   Node* src             = argument(1);
7250   Node* src_offset      = argument(2);
7251   Node* dest            = argument(3);
7252   Node* dest_offset     = argument(4);
7253 
7254   src = must_be_not_null(src, true);
7255   dest = must_be_not_null(dest, true);
7256 
7257   // (1) src and dest are arrays.
7258   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7259   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7260   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7261          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7262 
7263   // for the quick and dirty code we will skip all the checks.
7264   // we are just trying to get the call to be generated.
7265   Node* src_start  = src;
7266   Node* dest_start = dest;
7267   if (src_offset != nullptr || dest_offset != nullptr) {
7268     assert(src_offset != nullptr && dest_offset != nullptr, "");
7269     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7270     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7271   }
7272 
7273   // now need to get the start of its expanded key array
7274   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7275   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7276   if (k_start == nullptr) return false;
7277 
7278   // Call the stub.
7279   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
7280                     stubAddr, stubName, TypePtr::BOTTOM,
7281                     src_start, dest_start, k_start);
7282 
7283   return true;
7284 }
7285 
7286 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
7287 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
7288   address stubAddr = nullptr;
7289   const char *stubName = nullptr;
7290 
7291   assert(UseAES, "need AES instruction support");
7292 
7293   switch(id) {
7294   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
7295     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
7296     stubName = "cipherBlockChaining_encryptAESCrypt";
7297     break;
7298   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
7299     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
7300     stubName = "cipherBlockChaining_decryptAESCrypt";
7301     break;
7302   default:
7303     break;
7304   }
7305   if (stubAddr == nullptr) return false;
7306 
7307   Node* cipherBlockChaining_object = argument(0);
7308   Node* src                        = argument(1);
7309   Node* src_offset                 = argument(2);
7310   Node* len                        = argument(3);
7311   Node* dest                       = argument(4);
7312   Node* dest_offset                = argument(5);
7313 
7314   src = must_be_not_null(src, false);
7315   dest = must_be_not_null(dest, false);
7316 
7317   // (1) src and dest are arrays.
7318   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7319   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7320   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7321          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7322 
7323   // checks are the responsibility of the caller
7324   Node* src_start  = src;
7325   Node* dest_start = dest;
7326   if (src_offset != nullptr || dest_offset != nullptr) {
7327     assert(src_offset != nullptr && dest_offset != nullptr, "");
7328     src_start  = array_element_address(src,  src_offset,  T_BYTE);
7329     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7330   }
7331 
7332   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7333   // (because of the predicated logic executed earlier).
7334   // so we cast it here safely.
7335   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7336 
7337   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7338   if (embeddedCipherObj == nullptr) return false;
7339 
7340   // cast it to what we know it will be at runtime
7341   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
7342   assert(tinst != nullptr, "CBC obj is null");
7343   assert(tinst->is_loaded(), "CBC obj is not loaded");
7344   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7345   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7346 
7347   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7348   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7349   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7350   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7351   aescrypt_object = _gvn.transform(aescrypt_object);
7352 
7353   // we need to get the start of the aescrypt_object's expanded key array
7354   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7355   if (k_start == nullptr) return false;
7356 
7357   // similarly, get the start address of the r vector
7358   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B");
7359   if (objRvec == nullptr) return false;
7360   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
7361 
7362   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7363   Node* cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7364                                      OptoRuntime::cipherBlockChaining_aescrypt_Type(),
7365                                      stubAddr, stubName, TypePtr::BOTTOM,
7366                                      src_start, dest_start, k_start, r_start, len);
7367 
7368   // return cipher length (int)
7369   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
7370   set_result(retvalue);
7371   return true;
7372 }
7373 
7374 //------------------------------inline_electronicCodeBook_AESCrypt-----------------------
7375 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) {
7376   address stubAddr = nullptr;
7377   const char *stubName = nullptr;
7378 
7379   assert(UseAES, "need AES instruction support");
7380 
7381   switch (id) {
7382   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
7383     stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt();
7384     stubName = "electronicCodeBook_encryptAESCrypt";
7385     break;
7386   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
7387     stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt();
7388     stubName = "electronicCodeBook_decryptAESCrypt";
7389     break;
7390   default:
7391     break;
7392   }
7393 
7394   if (stubAddr == nullptr) return false;
7395 
7396   Node* electronicCodeBook_object = argument(0);
7397   Node* src                       = argument(1);
7398   Node* src_offset                = argument(2);
7399   Node* len                       = argument(3);
7400   Node* dest                      = argument(4);
7401   Node* dest_offset               = argument(5);
7402 
7403   // (1) src and dest are arrays.
7404   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7405   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7406   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7407          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7408 
7409   // checks are the responsibility of the caller
7410   Node* src_start = src;
7411   Node* dest_start = dest;
7412   if (src_offset != nullptr || dest_offset != nullptr) {
7413     assert(src_offset != nullptr && dest_offset != nullptr, "");
7414     src_start = array_element_address(src, src_offset, T_BYTE);
7415     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7416   }
7417 
7418   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7419   // (because of the predicated logic executed earlier).
7420   // so we cast it here safely.
7421   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7422 
7423   Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7424   if (embeddedCipherObj == nullptr) return false;
7425 
7426   // cast it to what we know it will be at runtime
7427   const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr();
7428   assert(tinst != nullptr, "ECB obj is null");
7429   assert(tinst->is_loaded(), "ECB obj is not loaded");
7430   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7431   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7432 
7433   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7434   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7435   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7436   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7437   aescrypt_object = _gvn.transform(aescrypt_object);
7438 
7439   // we need to get the start of the aescrypt_object's expanded key array
7440   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7441   if (k_start == nullptr) return false;
7442 
7443   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7444   Node* ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP,
7445                                      OptoRuntime::electronicCodeBook_aescrypt_Type(),
7446                                      stubAddr, stubName, TypePtr::BOTTOM,
7447                                      src_start, dest_start, k_start, len);
7448 
7449   // return cipher length (int)
7450   Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms));
7451   set_result(retvalue);
7452   return true;
7453 }
7454 
7455 //------------------------------inline_counterMode_AESCrypt-----------------------
7456 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
7457   assert(UseAES, "need AES instruction support");
7458   if (!UseAESCTRIntrinsics) return false;
7459 
7460   address stubAddr = nullptr;
7461   const char *stubName = nullptr;
7462   if (id == vmIntrinsics::_counterMode_AESCrypt) {
7463     stubAddr = StubRoutines::counterMode_AESCrypt();
7464     stubName = "counterMode_AESCrypt";
7465   }
7466   if (stubAddr == nullptr) return false;
7467 
7468   Node* counterMode_object = argument(0);
7469   Node* src = argument(1);
7470   Node* src_offset = argument(2);
7471   Node* len = argument(3);
7472   Node* dest = argument(4);
7473   Node* dest_offset = argument(5);
7474 
7475   // (1) src and dest are arrays.
7476   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
7477   const TypeAryPtr* dest_type = dest->Value(&_gvn)->isa_aryptr();
7478   assert( src_type != nullptr &&  src_type->elem() != Type::BOTTOM &&
7479          dest_type != nullptr && dest_type->elem() != Type::BOTTOM, "args are strange");
7480 
7481   // checks are the responsibility of the caller
7482   Node* src_start = src;
7483   Node* dest_start = dest;
7484   if (src_offset != nullptr || dest_offset != nullptr) {
7485     assert(src_offset != nullptr && dest_offset != nullptr, "");
7486     src_start = array_element_address(src, src_offset, T_BYTE);
7487     dest_start = array_element_address(dest, dest_offset, T_BYTE);
7488   }
7489 
7490   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
7491   // (because of the predicated logic executed earlier).
7492   // so we cast it here safely.
7493   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
7494   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7495   if (embeddedCipherObj == nullptr) return false;
7496   // cast it to what we know it will be at runtime
7497   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
7498   assert(tinst != nullptr, "CTR obj is null");
7499   assert(tinst->is_loaded(), "CTR obj is not loaded");
7500   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7501   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
7502   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7503   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
7504   const TypeOopPtr* xtype = aklass->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
7505   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
7506   aescrypt_object = _gvn.transform(aescrypt_object);
7507   // we need to get the start of the aescrypt_object's expanded key array
7508   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
7509   if (k_start == nullptr) return false;
7510   // similarly, get the start address of the r vector
7511   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B");
7512   if (obj_counter == nullptr) return false;
7513   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
7514 
7515   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B");
7516   if (saved_encCounter == nullptr) return false;
7517   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
7518   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
7519 
7520   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
7521   Node* ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
7522                                      OptoRuntime::counterMode_aescrypt_Type(),
7523                                      stubAddr, stubName, TypePtr::BOTTOM,
7524                                      src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
7525 
7526   // return cipher length (int)
7527   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
7528   set_result(retvalue);
7529   return true;
7530 }
7531 
7532 //------------------------------get_key_start_from_aescrypt_object-----------------------
7533 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
7534 #if defined(PPC64) || defined(S390) || defined(RISCV64)
7535   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
7536   // Intel's extension is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
7537   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
7538   // The ppc64 and riscv64 stubs of encryption and decryption use the same round keys (sessionK[0]).
7539   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I");
7540   assert (objSessionK != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7541   if (objSessionK == nullptr) {
7542     return (Node *) nullptr;
7543   }
7544   Node* objAESCryptKey = load_array_element(objSessionK, intcon(0), TypeAryPtr::OOPS, /* set_ctrl */ true);
7545 #else
7546   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I");
7547 #endif // PPC64
7548   assert (objAESCryptKey != nullptr, "wrong version of com.sun.crypto.provider.AESCrypt");
7549   if (objAESCryptKey == nullptr) return (Node *) nullptr;
7550 
7551   // now have the array, need to get the start address of the K array
7552   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
7553   return k_start;
7554 }
7555 
7556 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
7557 // Return node representing slow path of predicate check.
7558 // the pseudo code we want to emulate with this predicate is:
7559 // for encryption:
7560 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7561 // for decryption:
7562 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7563 //    note cipher==plain is more conservative than the original java code but that's OK
7564 //
7565 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
7566   // The receiver was checked for null already.
7567   Node* objCBC = argument(0);
7568 
7569   Node* src = argument(1);
7570   Node* dest = argument(4);
7571 
7572   // Load embeddedCipher field of CipherBlockChaining object.
7573   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7574 
7575   // get AESCrypt klass for instanceOf check
7576   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7577   // will have same classloader as CipherBlockChaining object
7578   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
7579   assert(tinst != nullptr, "CBCobj is null");
7580   assert(tinst->is_loaded(), "CBCobj is not loaded");
7581 
7582   // we want to do an instanceof comparison against the AESCrypt class
7583   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7584   if (!klass_AESCrypt->is_loaded()) {
7585     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7586     Node* ctrl = control();
7587     set_control(top()); // no regular fast path
7588     return ctrl;
7589   }
7590 
7591   src = must_be_not_null(src, true);
7592   dest = must_be_not_null(dest, true);
7593 
7594   // Resolve oops to stable for CmpP below.
7595   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7596 
7597   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7598   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
7599   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7600 
7601   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7602 
7603   // for encryption, we are done
7604   if (!decrypting)
7605     return instof_false;  // even if it is null
7606 
7607   // for decryption, we need to add a further check to avoid
7608   // taking the intrinsic path when cipher and plain are the same
7609   // see the original java code for why.
7610   RegionNode* region = new RegionNode(3);
7611   region->init_req(1, instof_false);
7612 
7613   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7614   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7615   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7616   region->init_req(2, src_dest_conjoint);
7617 
7618   record_for_igvn(region);
7619   return _gvn.transform(region);
7620 }
7621 
7622 //----------------------------inline_electronicCodeBook_AESCrypt_predicate----------------------------
7623 // Return node representing slow path of predicate check.
7624 // the pseudo code we want to emulate with this predicate is:
7625 // for encryption:
7626 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7627 // for decryption:
7628 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7629 //    note cipher==plain is more conservative than the original java code but that's OK
7630 //
7631 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) {
7632   // The receiver was checked for null already.
7633   Node* objECB = argument(0);
7634 
7635   // Load embeddedCipher field of ElectronicCodeBook object.
7636   Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7637 
7638   // get AESCrypt klass for instanceOf check
7639   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7640   // will have same classloader as ElectronicCodeBook object
7641   const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr();
7642   assert(tinst != nullptr, "ECBobj is null");
7643   assert(tinst->is_loaded(), "ECBobj is not loaded");
7644 
7645   // we want to do an instanceof comparison against the AESCrypt class
7646   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7647   if (!klass_AESCrypt->is_loaded()) {
7648     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7649     Node* ctrl = control();
7650     set_control(top()); // no regular fast path
7651     return ctrl;
7652   }
7653   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7654 
7655   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7656   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7657   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7658 
7659   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7660 
7661   // for encryption, we are done
7662   if (!decrypting)
7663     return instof_false;  // even if it is null
7664 
7665   // for decryption, we need to add a further check to avoid
7666   // taking the intrinsic path when cipher and plain are the same
7667   // see the original java code for why.
7668   RegionNode* region = new RegionNode(3);
7669   region->init_req(1, instof_false);
7670   Node* src = argument(1);
7671   Node* dest = argument(4);
7672   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
7673   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
7674   Node* src_dest_conjoint = generate_guard(bool_src_dest, nullptr, PROB_MIN);
7675   region->init_req(2, src_dest_conjoint);
7676 
7677   record_for_igvn(region);
7678   return _gvn.transform(region);
7679 }
7680 
7681 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
7682 // Return node representing slow path of predicate check.
7683 // the pseudo code we want to emulate with this predicate is:
7684 // for encryption:
7685 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
7686 // for decryption:
7687 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
7688 //    note cipher==plain is more conservative than the original java code but that's OK
7689 //
7690 
7691 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
7692   // The receiver was checked for null already.
7693   Node* objCTR = argument(0);
7694 
7695   // Load embeddedCipher field of CipherBlockChaining object.
7696   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
7697 
7698   // get AESCrypt klass for instanceOf check
7699   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
7700   // will have same classloader as CipherBlockChaining object
7701   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
7702   assert(tinst != nullptr, "CTRobj is null");
7703   assert(tinst->is_loaded(), "CTRobj is not loaded");
7704 
7705   // we want to do an instanceof comparison against the AESCrypt class
7706   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
7707   if (!klass_AESCrypt->is_loaded()) {
7708     // if AESCrypt is not even loaded, we never take the intrinsic fast path
7709     Node* ctrl = control();
7710     set_control(top()); // no regular fast path
7711     return ctrl;
7712   }
7713 
7714   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
7715   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
7716   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
7717   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
7718   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
7719 
7720   return instof_false; // even if it is null
7721 }
7722 
7723 //------------------------------inline_ghash_processBlocks
7724 bool LibraryCallKit::inline_ghash_processBlocks() {
7725   address stubAddr;
7726   const char *stubName;
7727   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
7728 
7729   stubAddr = StubRoutines::ghash_processBlocks();
7730   stubName = "ghash_processBlocks";
7731 
7732   Node* data           = argument(0);
7733   Node* offset         = argument(1);
7734   Node* len            = argument(2);
7735   Node* state          = argument(3);
7736   Node* subkeyH        = argument(4);
7737 
7738   state = must_be_not_null(state, true);
7739   subkeyH = must_be_not_null(subkeyH, true);
7740   data = must_be_not_null(data, true);
7741 
7742   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
7743   assert(state_start, "state is null");
7744   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
7745   assert(subkeyH_start, "subkeyH is null");
7746   Node* data_start  = array_element_address(data, offset, T_BYTE);
7747   assert(data_start, "data is null");
7748 
7749   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
7750                                   OptoRuntime::ghash_processBlocks_Type(),
7751                                   stubAddr, stubName, TypePtr::BOTTOM,
7752                                   state_start, subkeyH_start, data_start, len);
7753   return true;
7754 }
7755 
7756 //------------------------------inline_chacha20Block
7757 bool LibraryCallKit::inline_chacha20Block() {
7758   address stubAddr;
7759   const char *stubName;
7760   assert(UseChaCha20Intrinsics, "need ChaCha20 intrinsics support");
7761 
7762   stubAddr = StubRoutines::chacha20Block();
7763   stubName = "chacha20Block";
7764 
7765   Node* state          = argument(0);
7766   Node* result         = argument(1);
7767 
7768   state = must_be_not_null(state, true);
7769   result = must_be_not_null(result, true);
7770 
7771   Node* state_start  = array_element_address(state, intcon(0), T_INT);
7772   assert(state_start, "state is null");
7773   Node* result_start  = array_element_address(result, intcon(0), T_BYTE);
7774   assert(result_start, "result is null");
7775 
7776   Node* cc20Blk = make_runtime_call(RC_LEAF|RC_NO_FP,
7777                                   OptoRuntime::chacha20Block_Type(),
7778                                   stubAddr, stubName, TypePtr::BOTTOM,
7779                                   state_start, result_start);
7780   // return key stream length (int)
7781   Node* retvalue = _gvn.transform(new ProjNode(cc20Blk, TypeFunc::Parms));
7782   set_result(retvalue);
7783   return true;
7784 }
7785 
7786 //------------------------------inline_dilithiumAlmostNtt
7787 bool LibraryCallKit::inline_dilithiumAlmostNtt() {
7788   address stubAddr;
7789   const char *stubName;
7790   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
7791   assert(callee()->signature()->size() == 2, "dilithiumAlmostNtt has 2 parameters");
7792 
7793   stubAddr = StubRoutines::dilithiumAlmostNtt();
7794   stubName = "dilithiumAlmostNtt";
7795   if (!stubAddr) return false;
7796 
7797   Node* coeffs          = argument(0);
7798   Node* ntt_zetas        = argument(1);
7799 
7800   coeffs = must_be_not_null(coeffs, true);
7801   ntt_zetas = must_be_not_null(ntt_zetas, true);
7802 
7803   Node* coeffs_start  = array_element_address(coeffs, intcon(0), T_INT);
7804   assert(coeffs_start, "coeffs is null");
7805   Node* ntt_zetas_start  = array_element_address(ntt_zetas, intcon(0), T_INT);
7806   assert(ntt_zetas_start, "ntt_zetas is null");
7807   Node* dilithiumAlmostNtt = make_runtime_call(RC_LEAF|RC_NO_FP,
7808                                   OptoRuntime::dilithiumAlmostNtt_Type(),
7809                                   stubAddr, stubName, TypePtr::BOTTOM,
7810                                   coeffs_start, ntt_zetas_start);
7811   // return an int
7812   Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostNtt, TypeFunc::Parms));
7813   set_result(retvalue);
7814   return true;
7815 }
7816 
7817 //------------------------------inline_dilithiumAlmostInverseNtt
7818 bool LibraryCallKit::inline_dilithiumAlmostInverseNtt() {
7819   address stubAddr;
7820   const char *stubName;
7821   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
7822   assert(callee()->signature()->size() == 2, "dilithiumAlmostInverseNtt has 2 parameters");
7823 
7824   stubAddr = StubRoutines::dilithiumAlmostInverseNtt();
7825   stubName = "dilithiumAlmostInverseNtt";
7826   if (!stubAddr) return false;
7827 
7828   Node* coeffs          = argument(0);
7829   Node* zetas           = argument(1);
7830 
7831   coeffs = must_be_not_null(coeffs, true);
7832   zetas = must_be_not_null(zetas, true);
7833 
7834   Node* coeffs_start  = array_element_address(coeffs, intcon(0), T_INT);
7835   assert(coeffs_start, "coeffs is null");
7836   Node* zetas_start  = array_element_address(zetas, intcon(0), T_INT);
7837   assert(zetas_start, "inverseNtt_zetas is null");
7838   Node* dilithiumAlmostInverseNtt = make_runtime_call(RC_LEAF|RC_NO_FP,
7839                                   OptoRuntime::dilithiumAlmostInverseNtt_Type(),
7840                                   stubAddr, stubName, TypePtr::BOTTOM,
7841                                   coeffs_start, zetas_start);
7842 
7843   // return an int
7844   Node* retvalue = _gvn.transform(new ProjNode(dilithiumAlmostInverseNtt, TypeFunc::Parms));
7845   set_result(retvalue);
7846   return true;
7847 }
7848 
7849 //------------------------------inline_dilithiumNttMult
7850 bool LibraryCallKit::inline_dilithiumNttMult() {
7851   address stubAddr;
7852   const char *stubName;
7853   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
7854   assert(callee()->signature()->size() == 3, "dilithiumNttMult has 3 parameters");
7855 
7856   stubAddr = StubRoutines::dilithiumNttMult();
7857   stubName = "dilithiumNttMult";
7858   if (!stubAddr) return false;
7859 
7860   Node* result          = argument(0);
7861   Node* ntta            = argument(1);
7862   Node* nttb            = argument(2);
7863 
7864   result = must_be_not_null(result, true);
7865   ntta = must_be_not_null(ntta, true);
7866   nttb = must_be_not_null(nttb, true);
7867 
7868   Node* result_start  = array_element_address(result, intcon(0), T_INT);
7869   assert(result_start, "result is null");
7870   Node* ntta_start  = array_element_address(ntta, intcon(0), T_INT);
7871   assert(ntta_start, "ntta is null");
7872   Node* nttb_start  = array_element_address(nttb, intcon(0), T_INT);
7873   assert(nttb_start, "nttb is null");
7874   Node* dilithiumNttMult = make_runtime_call(RC_LEAF|RC_NO_FP,
7875                                   OptoRuntime::dilithiumNttMult_Type(),
7876                                   stubAddr, stubName, TypePtr::BOTTOM,
7877                                   result_start, ntta_start, nttb_start);
7878 
7879   // return an int
7880   Node* retvalue = _gvn.transform(new ProjNode(dilithiumNttMult, TypeFunc::Parms));
7881   set_result(retvalue);
7882 
7883   return true;
7884 }
7885 
7886 //------------------------------inline_dilithiumMontMulByConstant
7887 bool LibraryCallKit::inline_dilithiumMontMulByConstant() {
7888   address stubAddr;
7889   const char *stubName;
7890   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
7891   assert(callee()->signature()->size() == 2, "dilithiumMontMulByConstant has 2 parameters");
7892 
7893   stubAddr = StubRoutines::dilithiumMontMulByConstant();
7894   stubName = "dilithiumMontMulByConstant";
7895   if (!stubAddr) return false;
7896 
7897   Node* coeffs          = argument(0);
7898   Node* constant        = argument(1);
7899 
7900   coeffs = must_be_not_null(coeffs, true);
7901 
7902   Node* coeffs_start  = array_element_address(coeffs, intcon(0), T_INT);
7903   assert(coeffs_start, "coeffs is null");
7904   Node* dilithiumMontMulByConstant = make_runtime_call(RC_LEAF|RC_NO_FP,
7905                                   OptoRuntime::dilithiumMontMulByConstant_Type(),
7906                                   stubAddr, stubName, TypePtr::BOTTOM,
7907                                   coeffs_start, constant);
7908 
7909   // return an int
7910   Node* retvalue = _gvn.transform(new ProjNode(dilithiumMontMulByConstant, TypeFunc::Parms));
7911   set_result(retvalue);
7912   return true;
7913 }
7914 
7915 
7916 //------------------------------inline_dilithiumDecomposePoly
7917 bool LibraryCallKit::inline_dilithiumDecomposePoly() {
7918   address stubAddr;
7919   const char *stubName;
7920   assert(UseDilithiumIntrinsics, "need Dilithium intrinsics support");
7921   assert(callee()->signature()->size() == 5, "dilithiumDecomposePoly has 5 parameters");
7922 
7923   stubAddr = StubRoutines::dilithiumDecomposePoly();
7924   stubName = "dilithiumDecomposePoly";
7925   if (!stubAddr) return false;
7926 
7927   Node* input          = argument(0);
7928   Node* lowPart        = argument(1);
7929   Node* highPart       = argument(2);
7930   Node* twoGamma2      = argument(3);
7931   Node* multiplier     = argument(4);
7932 
7933   input = must_be_not_null(input, true);
7934   lowPart = must_be_not_null(lowPart, true);
7935   highPart = must_be_not_null(highPart, true);
7936 
7937   Node* input_start  = array_element_address(input, intcon(0), T_INT);
7938   assert(input_start, "input is null");
7939   Node* lowPart_start  = array_element_address(lowPart, intcon(0), T_INT);
7940   assert(lowPart_start, "lowPart is null");
7941   Node* highPart_start  = array_element_address(highPart, intcon(0), T_INT);
7942   assert(highPart_start, "highPart is null");
7943 
7944   Node* dilithiumDecomposePoly = make_runtime_call(RC_LEAF|RC_NO_FP,
7945                                   OptoRuntime::dilithiumDecomposePoly_Type(),
7946                                   stubAddr, stubName, TypePtr::BOTTOM,
7947                                   input_start, lowPart_start, highPart_start,
7948                                   twoGamma2, multiplier);
7949 
7950   // return an int
7951   Node* retvalue = _gvn.transform(new ProjNode(dilithiumDecomposePoly, TypeFunc::Parms));
7952   set_result(retvalue);
7953   return true;
7954 }
7955 
7956 bool LibraryCallKit::inline_base64_encodeBlock() {
7957   address stubAddr;
7958   const char *stubName;
7959   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7960   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
7961   stubAddr = StubRoutines::base64_encodeBlock();
7962   stubName = "encodeBlock";
7963 
7964   if (!stubAddr) return false;
7965   Node* base64obj = argument(0);
7966   Node* src = argument(1);
7967   Node* offset = argument(2);
7968   Node* len = argument(3);
7969   Node* dest = argument(4);
7970   Node* dp = argument(5);
7971   Node* isURL = argument(6);
7972 
7973   src = must_be_not_null(src, true);
7974   dest = must_be_not_null(dest, true);
7975 
7976   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
7977   assert(src_start, "source array is null");
7978   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
7979   assert(dest_start, "destination array is null");
7980 
7981   Node* base64 = make_runtime_call(RC_LEAF,
7982                                    OptoRuntime::base64_encodeBlock_Type(),
7983                                    stubAddr, stubName, TypePtr::BOTTOM,
7984                                    src_start, offset, len, dest_start, dp, isURL);
7985   return true;
7986 }
7987 
7988 bool LibraryCallKit::inline_base64_decodeBlock() {
7989   address stubAddr;
7990   const char *stubName;
7991   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
7992   assert(callee()->signature()->size() == 7, "base64_decodeBlock has 7 parameters");
7993   stubAddr = StubRoutines::base64_decodeBlock();
7994   stubName = "decodeBlock";
7995 
7996   if (!stubAddr) return false;
7997   Node* base64obj = argument(0);
7998   Node* src = argument(1);
7999   Node* src_offset = argument(2);
8000   Node* len = argument(3);
8001   Node* dest = argument(4);
8002   Node* dest_offset = argument(5);
8003   Node* isURL = argument(6);
8004   Node* isMIME = argument(7);
8005 
8006   src = must_be_not_null(src, true);
8007   dest = must_be_not_null(dest, true);
8008 
8009   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
8010   assert(src_start, "source array is null");
8011   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
8012   assert(dest_start, "destination array is null");
8013 
8014   Node* call = make_runtime_call(RC_LEAF,
8015                                  OptoRuntime::base64_decodeBlock_Type(),
8016                                  stubAddr, stubName, TypePtr::BOTTOM,
8017                                  src_start, src_offset, len, dest_start, dest_offset, isURL, isMIME);
8018   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
8019   set_result(result);
8020   return true;
8021 }
8022 
8023 bool LibraryCallKit::inline_poly1305_processBlocks() {
8024   address stubAddr;
8025   const char *stubName;
8026   assert(UsePoly1305Intrinsics, "need Poly intrinsics support");
8027   assert(callee()->signature()->size() == 5, "poly1305_processBlocks has %d parameters", callee()->signature()->size());
8028   stubAddr = StubRoutines::poly1305_processBlocks();
8029   stubName = "poly1305_processBlocks";
8030 
8031   if (!stubAddr) return false;
8032   null_check_receiver();  // null-check receiver
8033   if (stopped())  return true;
8034 
8035   Node* input = argument(1);
8036   Node* input_offset = argument(2);
8037   Node* len = argument(3);
8038   Node* alimbs = argument(4);
8039   Node* rlimbs = argument(5);
8040 
8041   input = must_be_not_null(input, true);
8042   alimbs = must_be_not_null(alimbs, true);
8043   rlimbs = must_be_not_null(rlimbs, true);
8044 
8045   Node* input_start = array_element_address(input, input_offset, T_BYTE);
8046   assert(input_start, "input array is null");
8047   Node* acc_start = array_element_address(alimbs, intcon(0), T_LONG);
8048   assert(acc_start, "acc array is null");
8049   Node* r_start = array_element_address(rlimbs, intcon(0), T_LONG);
8050   assert(r_start, "r array is null");
8051 
8052   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
8053                                  OptoRuntime::poly1305_processBlocks_Type(),
8054                                  stubAddr, stubName, TypePtr::BOTTOM,
8055                                  input_start, len, acc_start, r_start);
8056   return true;
8057 }
8058 
8059 bool LibraryCallKit::inline_intpoly_montgomeryMult_P256() {
8060   address stubAddr;
8061   const char *stubName;
8062   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
8063   assert(callee()->signature()->size() == 3, "intpoly_montgomeryMult_P256 has %d parameters", callee()->signature()->size());
8064   stubAddr = StubRoutines::intpoly_montgomeryMult_P256();
8065   stubName = "intpoly_montgomeryMult_P256";
8066 
8067   if (!stubAddr) return false;
8068   null_check_receiver();  // null-check receiver
8069   if (stopped())  return true;
8070 
8071   Node* a = argument(1);
8072   Node* b = argument(2);
8073   Node* r = argument(3);
8074 
8075   a = must_be_not_null(a, true);
8076   b = must_be_not_null(b, true);
8077   r = must_be_not_null(r, true);
8078 
8079   Node* a_start = array_element_address(a, intcon(0), T_LONG);
8080   assert(a_start, "a array is null");
8081   Node* b_start = array_element_address(b, intcon(0), T_LONG);
8082   assert(b_start, "b array is null");
8083   Node* r_start = array_element_address(r, intcon(0), T_LONG);
8084   assert(r_start, "r array is null");
8085 
8086   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
8087                                  OptoRuntime::intpoly_montgomeryMult_P256_Type(),
8088                                  stubAddr, stubName, TypePtr::BOTTOM,
8089                                  a_start, b_start, r_start);
8090   return true;
8091 }
8092 
8093 bool LibraryCallKit::inline_intpoly_assign() {
8094   assert(UseIntPolyIntrinsics, "need intpoly intrinsics support");
8095   assert(callee()->signature()->size() == 3, "intpoly_assign has %d parameters", callee()->signature()->size());
8096   const char *stubName = "intpoly_assign";
8097   address stubAddr = StubRoutines::intpoly_assign();
8098   if (!stubAddr) return false;
8099 
8100   Node* set = argument(0);
8101   Node* a = argument(1);
8102   Node* b = argument(2);
8103   Node* arr_length = load_array_length(a);
8104 
8105   a = must_be_not_null(a, true);
8106   b = must_be_not_null(b, true);
8107 
8108   Node* a_start = array_element_address(a, intcon(0), T_LONG);
8109   assert(a_start, "a array is null");
8110   Node* b_start = array_element_address(b, intcon(0), T_LONG);
8111   assert(b_start, "b array is null");
8112 
8113   Node* call = make_runtime_call(RC_LEAF | RC_NO_FP,
8114                                  OptoRuntime::intpoly_assign_Type(),
8115                                  stubAddr, stubName, TypePtr::BOTTOM,
8116                                  set, a_start, b_start, arr_length);
8117   return true;
8118 }
8119 
8120 //------------------------------inline_digestBase_implCompress-----------------------
8121 //
8122 // Calculate MD5 for single-block byte[] array.
8123 // void com.sun.security.provider.MD5.implCompress(byte[] buf, int ofs)
8124 //
8125 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
8126 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
8127 //
8128 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
8129 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
8130 //
8131 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
8132 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
8133 //
8134 // Calculate SHA3 (i.e., SHA3-224 or SHA3-256 or SHA3-384 or SHA3-512) for single-block byte[] array.
8135 // void com.sun.security.provider.SHA3.implCompress(byte[] buf, int ofs)
8136 //
8137 bool LibraryCallKit::inline_digestBase_implCompress(vmIntrinsics::ID id) {
8138   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
8139 
8140   Node* digestBase_obj = argument(0);
8141   Node* src            = argument(1); // type oop
8142   Node* ofs            = argument(2); // type int
8143 
8144   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
8145   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
8146     // failed array check
8147     return false;
8148   }
8149   // Figure out the size and type of the elements we will be copying.
8150   BasicType src_elem = src_type->elem()->array_element_basic_type();
8151   if (src_elem != T_BYTE) {
8152     return false;
8153   }
8154   // 'src_start' points to src array + offset
8155   src = must_be_not_null(src, true);
8156   Node* src_start = array_element_address(src, ofs, src_elem);
8157   Node* state = nullptr;
8158   Node* block_size = nullptr;
8159   address stubAddr;
8160   const char *stubName;
8161 
8162   switch(id) {
8163   case vmIntrinsics::_md5_implCompress:
8164     assert(UseMD5Intrinsics, "need MD5 instruction support");
8165     state = get_state_from_digest_object(digestBase_obj, T_INT);
8166     stubAddr = StubRoutines::md5_implCompress();
8167     stubName = "md5_implCompress";
8168     break;
8169   case vmIntrinsics::_sha_implCompress:
8170     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
8171     state = get_state_from_digest_object(digestBase_obj, T_INT);
8172     stubAddr = StubRoutines::sha1_implCompress();
8173     stubName = "sha1_implCompress";
8174     break;
8175   case vmIntrinsics::_sha2_implCompress:
8176     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
8177     state = get_state_from_digest_object(digestBase_obj, T_INT);
8178     stubAddr = StubRoutines::sha256_implCompress();
8179     stubName = "sha256_implCompress";
8180     break;
8181   case vmIntrinsics::_sha5_implCompress:
8182     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
8183     state = get_state_from_digest_object(digestBase_obj, T_LONG);
8184     stubAddr = StubRoutines::sha512_implCompress();
8185     stubName = "sha512_implCompress";
8186     break;
8187   case vmIntrinsics::_sha3_implCompress:
8188     assert(UseSHA3Intrinsics, "need SHA3 instruction support");
8189     state = get_state_from_digest_object(digestBase_obj, T_LONG);
8190     stubAddr = StubRoutines::sha3_implCompress();
8191     stubName = "sha3_implCompress";
8192     block_size = get_block_size_from_digest_object(digestBase_obj);
8193     if (block_size == nullptr) return false;
8194     break;
8195   default:
8196     fatal_unexpected_iid(id);
8197     return false;
8198   }
8199   if (state == nullptr) return false;
8200 
8201   assert(stubAddr != nullptr, "Stub %s is not generated", stubName);
8202   if (stubAddr == nullptr) return false;
8203 
8204   // Call the stub.
8205   Node* call;
8206   if (block_size == nullptr) {
8207     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(false),
8208                              stubAddr, stubName, TypePtr::BOTTOM,
8209                              src_start, state);
8210   } else {
8211     call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::digestBase_implCompress_Type(true),
8212                              stubAddr, stubName, TypePtr::BOTTOM,
8213                              src_start, state, block_size);
8214   }
8215 
8216   return true;
8217 }
8218 
8219 //------------------------------inline_double_keccak
8220 bool LibraryCallKit::inline_double_keccak() {
8221   address stubAddr;
8222   const char *stubName;
8223   assert(UseSHA3Intrinsics, "need SHA3 intrinsics support");
8224   assert(callee()->signature()->size() == 2, "double_keccak has 2 parameters");
8225 
8226   stubAddr = StubRoutines::double_keccak();
8227   stubName = "double_keccak";
8228   if (!stubAddr) return false;
8229 
8230   Node* status0        = argument(0);
8231   Node* status1        = argument(1);
8232 
8233   status0 = must_be_not_null(status0, true);
8234   status1 = must_be_not_null(status1, true);
8235 
8236   Node* status0_start  = array_element_address(status0, intcon(0), T_LONG);
8237   assert(status0_start, "status0 is null");
8238   Node* status1_start  = array_element_address(status1, intcon(0), T_LONG);
8239   assert(status1_start, "status1 is null");
8240   Node* double_keccak = make_runtime_call(RC_LEAF|RC_NO_FP,
8241                                   OptoRuntime::double_keccak_Type(),
8242                                   stubAddr, stubName, TypePtr::BOTTOM,
8243                                   status0_start, status1_start);
8244   // return an int
8245   Node* retvalue = _gvn.transform(new ProjNode(double_keccak, TypeFunc::Parms));
8246   set_result(retvalue);
8247   return true;
8248 }
8249 
8250 
8251 //------------------------------inline_digestBase_implCompressMB-----------------------
8252 //
8253 // Calculate MD5/SHA/SHA2/SHA5/SHA3 for multi-block byte[] array.
8254 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
8255 //
8256 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
8257   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
8258          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
8259   assert((uint)predicate < 5, "sanity");
8260   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
8261 
8262   Node* digestBase_obj = argument(0); // The receiver was checked for null already.
8263   Node* src            = argument(1); // byte[] array
8264   Node* ofs            = argument(2); // type int
8265   Node* limit          = argument(3); // type int
8266 
8267   const TypeAryPtr* src_type = src->Value(&_gvn)->isa_aryptr();
8268   if (src_type == nullptr || src_type->elem() == Type::BOTTOM) {
8269     // failed array check
8270     return false;
8271   }
8272   // Figure out the size and type of the elements we will be copying.
8273   BasicType src_elem = src_type->elem()->array_element_basic_type();
8274   if (src_elem != T_BYTE) {
8275     return false;
8276   }
8277   // 'src_start' points to src array + offset
8278   src = must_be_not_null(src, false);
8279   Node* src_start = array_element_address(src, ofs, src_elem);
8280 
8281   const char* klass_digestBase_name = nullptr;
8282   const char* stub_name = nullptr;
8283   address     stub_addr = nullptr;
8284   BasicType elem_type = T_INT;
8285 
8286   switch (predicate) {
8287   case 0:
8288     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_md5_implCompress)) {
8289       klass_digestBase_name = "sun/security/provider/MD5";
8290       stub_name = "md5_implCompressMB";
8291       stub_addr = StubRoutines::md5_implCompressMB();
8292     }
8293     break;
8294   case 1:
8295     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha_implCompress)) {
8296       klass_digestBase_name = "sun/security/provider/SHA";
8297       stub_name = "sha1_implCompressMB";
8298       stub_addr = StubRoutines::sha1_implCompressMB();
8299     }
8300     break;
8301   case 2:
8302     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha2_implCompress)) {
8303       klass_digestBase_name = "sun/security/provider/SHA2";
8304       stub_name = "sha256_implCompressMB";
8305       stub_addr = StubRoutines::sha256_implCompressMB();
8306     }
8307     break;
8308   case 3:
8309     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha5_implCompress)) {
8310       klass_digestBase_name = "sun/security/provider/SHA5";
8311       stub_name = "sha512_implCompressMB";
8312       stub_addr = StubRoutines::sha512_implCompressMB();
8313       elem_type = T_LONG;
8314     }
8315     break;
8316   case 4:
8317     if (vmIntrinsics::is_intrinsic_available(vmIntrinsics::_sha3_implCompress)) {
8318       klass_digestBase_name = "sun/security/provider/SHA3";
8319       stub_name = "sha3_implCompressMB";
8320       stub_addr = StubRoutines::sha3_implCompressMB();
8321       elem_type = T_LONG;
8322     }
8323     break;
8324   default:
8325     fatal("unknown DigestBase intrinsic predicate: %d", predicate);
8326   }
8327   if (klass_digestBase_name != nullptr) {
8328     assert(stub_addr != nullptr, "Stub is generated");
8329     if (stub_addr == nullptr) return false;
8330 
8331     // get DigestBase klass to lookup for SHA klass
8332     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
8333     assert(tinst != nullptr, "digestBase_obj is not instance???");
8334     assert(tinst->is_loaded(), "DigestBase is not loaded");
8335 
8336     ciKlass* klass_digestBase = tinst->instance_klass()->find_klass(ciSymbol::make(klass_digestBase_name));
8337     assert(klass_digestBase->is_loaded(), "predicate checks that this class is loaded");
8338     ciInstanceKlass* instklass_digestBase = klass_digestBase->as_instance_klass();
8339     return inline_digestBase_implCompressMB(digestBase_obj, instklass_digestBase, elem_type, stub_addr, stub_name, src_start, ofs, limit);
8340   }
8341   return false;
8342 }
8343 
8344 //------------------------------inline_digestBase_implCompressMB-----------------------
8345 bool LibraryCallKit::inline_digestBase_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_digestBase,
8346                                                       BasicType elem_type, address stubAddr, const char *stubName,
8347                                                       Node* src_start, Node* ofs, Node* limit) {
8348   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_digestBase);
8349   const TypeOopPtr* xtype = aklass->cast_to_exactness(false)->as_instance_type()->cast_to_ptr_type(TypePtr::NotNull);
8350   Node* digest_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
8351   digest_obj = _gvn.transform(digest_obj);
8352 
8353   Node* state = get_state_from_digest_object(digest_obj, elem_type);
8354   if (state == nullptr) return false;
8355 
8356   Node* block_size = nullptr;
8357   if (strcmp("sha3_implCompressMB", stubName) == 0) {
8358     block_size = get_block_size_from_digest_object(digest_obj);
8359     if (block_size == nullptr) return false;
8360   }
8361 
8362   // Call the stub.
8363   Node* call;
8364   if (block_size == nullptr) {
8365     call = make_runtime_call(RC_LEAF|RC_NO_FP,
8366                              OptoRuntime::digestBase_implCompressMB_Type(false),
8367                              stubAddr, stubName, TypePtr::BOTTOM,
8368                              src_start, state, ofs, limit);
8369   } else {
8370      call = make_runtime_call(RC_LEAF|RC_NO_FP,
8371                              OptoRuntime::digestBase_implCompressMB_Type(true),
8372                              stubAddr, stubName, TypePtr::BOTTOM,
8373                              src_start, state, block_size, ofs, limit);
8374   }
8375 
8376   // return ofs (int)
8377   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
8378   set_result(result);
8379 
8380   return true;
8381 }
8382 
8383 //------------------------------inline_galoisCounterMode_AESCrypt-----------------------
8384 bool LibraryCallKit::inline_galoisCounterMode_AESCrypt() {
8385   assert(UseAES, "need AES instruction support");
8386   address stubAddr = nullptr;
8387   const char *stubName = nullptr;
8388   stubAddr = StubRoutines::galoisCounterMode_AESCrypt();
8389   stubName = "galoisCounterMode_AESCrypt";
8390 
8391   if (stubAddr == nullptr) return false;
8392 
8393   Node* in      = argument(0);
8394   Node* inOfs   = argument(1);
8395   Node* len     = argument(2);
8396   Node* ct      = argument(3);
8397   Node* ctOfs   = argument(4);
8398   Node* out     = argument(5);
8399   Node* outOfs  = argument(6);
8400   Node* gctr_object = argument(7);
8401   Node* ghash_object = argument(8);
8402 
8403   // (1) in, ct and out are arrays.
8404   const TypeAryPtr* in_type = in->Value(&_gvn)->isa_aryptr();
8405   const TypeAryPtr* ct_type = ct->Value(&_gvn)->isa_aryptr();
8406   const TypeAryPtr* out_type = out->Value(&_gvn)->isa_aryptr();
8407   assert( in_type != nullptr &&  in_type->elem() != Type::BOTTOM &&
8408           ct_type != nullptr &&  ct_type->elem() != Type::BOTTOM &&
8409          out_type != nullptr && out_type->elem() != Type::BOTTOM, "args are strange");
8410 
8411   // checks are the responsibility of the caller
8412   Node* in_start = in;
8413   Node* ct_start = ct;
8414   Node* out_start = out;
8415   if (inOfs != nullptr || ctOfs != nullptr || outOfs != nullptr) {
8416     assert(inOfs != nullptr && ctOfs != nullptr && outOfs != nullptr, "");
8417     in_start = array_element_address(in, inOfs, T_BYTE);
8418     ct_start = array_element_address(ct, ctOfs, T_BYTE);
8419     out_start = array_element_address(out, outOfs, T_BYTE);
8420   }
8421 
8422   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
8423   // (because of the predicated logic executed earlier).
8424   // so we cast it here safely.
8425   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
8426   Node* embeddedCipherObj = load_field_from_object(gctr_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8427   Node* counter = load_field_from_object(gctr_object, "counter", "[B");
8428   Node* subkeyHtbl = load_field_from_object(ghash_object, "subkeyHtbl", "[J");
8429   Node* state = load_field_from_object(ghash_object, "state", "[J");
8430 
8431   if (embeddedCipherObj == nullptr || counter == nullptr || subkeyHtbl == nullptr || state == nullptr) {
8432     return false;
8433   }
8434   // cast it to what we know it will be at runtime
8435   const TypeInstPtr* tinst = _gvn.type(gctr_object)->isa_instptr();
8436   assert(tinst != nullptr, "GCTR obj is null");
8437   assert(tinst->is_loaded(), "GCTR obj is not loaded");
8438   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8439   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
8440   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8441   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
8442   const TypeOopPtr* xtype = aklass->as_instance_type();
8443   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
8444   aescrypt_object = _gvn.transform(aescrypt_object);
8445   // we need to get the start of the aescrypt_object's expanded key array
8446   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
8447   if (k_start == nullptr) return false;
8448   // similarly, get the start address of the r vector
8449   Node* cnt_start = array_element_address(counter, intcon(0), T_BYTE);
8450   Node* state_start = array_element_address(state, intcon(0), T_LONG);
8451   Node* subkeyHtbl_start = array_element_address(subkeyHtbl, intcon(0), T_LONG);
8452 
8453 
8454   // Call the stub, passing params
8455   Node* gcmCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
8456                                OptoRuntime::galoisCounterMode_aescrypt_Type(),
8457                                stubAddr, stubName, TypePtr::BOTTOM,
8458                                in_start, len, ct_start, out_start, k_start, state_start, subkeyHtbl_start, cnt_start);
8459 
8460   // return cipher length (int)
8461   Node* retvalue = _gvn.transform(new ProjNode(gcmCrypt, TypeFunc::Parms));
8462   set_result(retvalue);
8463 
8464   return true;
8465 }
8466 
8467 //----------------------------inline_galoisCounterMode_AESCrypt_predicate----------------------------
8468 // Return node representing slow path of predicate check.
8469 // the pseudo code we want to emulate with this predicate is:
8470 // for encryption:
8471 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
8472 // for decryption:
8473 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
8474 //    note cipher==plain is more conservative than the original java code but that's OK
8475 //
8476 
8477 Node* LibraryCallKit::inline_galoisCounterMode_AESCrypt_predicate() {
8478   // The receiver was checked for null already.
8479   Node* objGCTR = argument(7);
8480   // Load embeddedCipher field of GCTR object.
8481   Node* embeddedCipherObj = load_field_from_object(objGCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;");
8482   assert(embeddedCipherObj != nullptr, "embeddedCipherObj is null");
8483 
8484   // get AESCrypt klass for instanceOf check
8485   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
8486   // will have same classloader as CipherBlockChaining object
8487   const TypeInstPtr* tinst = _gvn.type(objGCTR)->isa_instptr();
8488   assert(tinst != nullptr, "GCTR obj is null");
8489   assert(tinst->is_loaded(), "GCTR obj is not loaded");
8490 
8491   // we want to do an instanceof comparison against the AESCrypt class
8492   ciKlass* klass_AESCrypt = tinst->instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
8493   if (!klass_AESCrypt->is_loaded()) {
8494     // if AESCrypt is not even loaded, we never take the intrinsic fast path
8495     Node* ctrl = control();
8496     set_control(top()); // no regular fast path
8497     return ctrl;
8498   }
8499 
8500   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
8501   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
8502   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8503   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8504   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8505 
8506   return instof_false; // even if it is null
8507 }
8508 
8509 //------------------------------get_state_from_digest_object-----------------------
8510 Node * LibraryCallKit::get_state_from_digest_object(Node *digest_object, BasicType elem_type) {
8511   const char* state_type;
8512   switch (elem_type) {
8513     case T_BYTE: state_type = "[B"; break;
8514     case T_INT:  state_type = "[I"; break;
8515     case T_LONG: state_type = "[J"; break;
8516     default: ShouldNotReachHere();
8517   }
8518   Node* digest_state = load_field_from_object(digest_object, "state", state_type);
8519   assert (digest_state != nullptr, "wrong version of sun.security.provider.MD5/SHA/SHA2/SHA5/SHA3");
8520   if (digest_state == nullptr) return (Node *) nullptr;
8521 
8522   // now have the array, need to get the start address of the state array
8523   Node* state = array_element_address(digest_state, intcon(0), elem_type);
8524   return state;
8525 }
8526 
8527 //------------------------------get_block_size_from_sha3_object----------------------------------
8528 Node * LibraryCallKit::get_block_size_from_digest_object(Node *digest_object) {
8529   Node* block_size = load_field_from_object(digest_object, "blockSize", "I");
8530   assert (block_size != nullptr, "sanity");
8531   return block_size;
8532 }
8533 
8534 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
8535 // Return node representing slow path of predicate check.
8536 // the pseudo code we want to emulate with this predicate is:
8537 //    if (digestBaseObj instanceof MD5/SHA/SHA2/SHA5/SHA3) do_intrinsic, else do_javapath
8538 //
8539 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
8540   assert(UseMD5Intrinsics || UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics || UseSHA3Intrinsics,
8541          "need MD5/SHA1/SHA256/SHA512/SHA3 instruction support");
8542   assert((uint)predicate < 5, "sanity");
8543 
8544   // The receiver was checked for null already.
8545   Node* digestBaseObj = argument(0);
8546 
8547   // get DigestBase klass for instanceOf check
8548   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
8549   assert(tinst != nullptr, "digestBaseObj is null");
8550   assert(tinst->is_loaded(), "DigestBase is not loaded");
8551 
8552   const char* klass_name = nullptr;
8553   switch (predicate) {
8554   case 0:
8555     if (UseMD5Intrinsics) {
8556       // we want to do an instanceof comparison against the MD5 class
8557       klass_name = "sun/security/provider/MD5";
8558     }
8559     break;
8560   case 1:
8561     if (UseSHA1Intrinsics) {
8562       // we want to do an instanceof comparison against the SHA class
8563       klass_name = "sun/security/provider/SHA";
8564     }
8565     break;
8566   case 2:
8567     if (UseSHA256Intrinsics) {
8568       // we want to do an instanceof comparison against the SHA2 class
8569       klass_name = "sun/security/provider/SHA2";
8570     }
8571     break;
8572   case 3:
8573     if (UseSHA512Intrinsics) {
8574       // we want to do an instanceof comparison against the SHA5 class
8575       klass_name = "sun/security/provider/SHA5";
8576     }
8577     break;
8578   case 4:
8579     if (UseSHA3Intrinsics) {
8580       // we want to do an instanceof comparison against the SHA3 class
8581       klass_name = "sun/security/provider/SHA3";
8582     }
8583     break;
8584   default:
8585     fatal("unknown SHA intrinsic predicate: %d", predicate);
8586   }
8587 
8588   ciKlass* klass = nullptr;
8589   if (klass_name != nullptr) {
8590     klass = tinst->instance_klass()->find_klass(ciSymbol::make(klass_name));
8591   }
8592   if ((klass == nullptr) || !klass->is_loaded()) {
8593     // if none of MD5/SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
8594     Node* ctrl = control();
8595     set_control(top()); // no intrinsic path
8596     return ctrl;
8597   }
8598   ciInstanceKlass* instklass = klass->as_instance_klass();
8599 
8600   Node* instof = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass)));
8601   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
8602   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
8603   Node* instof_false = generate_guard(bool_instof, nullptr, PROB_MIN);
8604 
8605   return instof_false;  // even if it is null
8606 }
8607 
8608 //-------------inline_fma-----------------------------------
8609 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
8610   Node *a = nullptr;
8611   Node *b = nullptr;
8612   Node *c = nullptr;
8613   Node* result = nullptr;
8614   switch (id) {
8615   case vmIntrinsics::_fmaD:
8616     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
8617     // no receiver since it is static method
8618     a = argument(0);
8619     b = argument(2);
8620     c = argument(4);
8621     result = _gvn.transform(new FmaDNode(a, b, c));
8622     break;
8623   case vmIntrinsics::_fmaF:
8624     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
8625     a = argument(0);
8626     b = argument(1);
8627     c = argument(2);
8628     result = _gvn.transform(new FmaFNode(a, b, c));
8629     break;
8630   default:
8631     fatal_unexpected_iid(id);  break;
8632   }
8633   set_result(result);
8634   return true;
8635 }
8636 
8637 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
8638   // argument(0) is receiver
8639   Node* codePoint = argument(1);
8640   Node* n = nullptr;
8641 
8642   switch (id) {
8643     case vmIntrinsics::_isDigit :
8644       n = new DigitNode(control(), codePoint);
8645       break;
8646     case vmIntrinsics::_isLowerCase :
8647       n = new LowerCaseNode(control(), codePoint);
8648       break;
8649     case vmIntrinsics::_isUpperCase :
8650       n = new UpperCaseNode(control(), codePoint);
8651       break;
8652     case vmIntrinsics::_isWhitespace :
8653       n = new WhitespaceNode(control(), codePoint);
8654       break;
8655     default:
8656       fatal_unexpected_iid(id);
8657   }
8658 
8659   set_result(_gvn.transform(n));
8660   return true;
8661 }
8662 
8663 bool LibraryCallKit::inline_profileBoolean() {
8664   Node* counts = argument(1);
8665   const TypeAryPtr* ary = nullptr;
8666   ciArray* aobj = nullptr;
8667   if (counts->is_Con()
8668       && (ary = counts->bottom_type()->isa_aryptr()) != nullptr
8669       && (aobj = ary->const_oop()->as_array()) != nullptr
8670       && (aobj->length() == 2)) {
8671     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
8672     jint false_cnt = aobj->element_value(0).as_int();
8673     jint  true_cnt = aobj->element_value(1).as_int();
8674 
8675     if (C->log() != nullptr) {
8676       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
8677                      false_cnt, true_cnt);
8678     }
8679 
8680     if (false_cnt + true_cnt == 0) {
8681       // According to profile, never executed.
8682       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8683                           Deoptimization::Action_reinterpret);
8684       return true;
8685     }
8686 
8687     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
8688     // is a number of each value occurrences.
8689     Node* result = argument(0);
8690     if (false_cnt == 0 || true_cnt == 0) {
8691       // According to profile, one value has been never seen.
8692       int expected_val = (false_cnt == 0) ? 1 : 0;
8693 
8694       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
8695       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
8696 
8697       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
8698       Node* fast_path = _gvn.transform(new IfTrueNode(check));
8699       Node* slow_path = _gvn.transform(new IfFalseNode(check));
8700 
8701       { // Slow path: uncommon trap for never seen value and then reexecute
8702         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
8703         // the value has been seen at least once.
8704         PreserveJVMState pjvms(this);
8705         PreserveReexecuteState preexecs(this);
8706         jvms()->set_should_reexecute(true);
8707 
8708         set_control(slow_path);
8709         set_i_o(i_o());
8710 
8711         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
8712                             Deoptimization::Action_reinterpret);
8713       }
8714       // The guard for never seen value enables sharpening of the result and
8715       // returning a constant. It allows to eliminate branches on the same value
8716       // later on.
8717       set_control(fast_path);
8718       result = intcon(expected_val);
8719     }
8720     // Stop profiling.
8721     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
8722     // By replacing method body with profile data (represented as ProfileBooleanNode
8723     // on IR level) we effectively disable profiling.
8724     // It enables full speed execution once optimized code is generated.
8725     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
8726     C->record_for_igvn(profile);
8727     set_result(profile);
8728     return true;
8729   } else {
8730     // Continue profiling.
8731     // Profile data isn't available at the moment. So, execute method's bytecode version.
8732     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
8733     // is compiled and counters aren't available since corresponding MethodHandle
8734     // isn't a compile-time constant.
8735     return false;
8736   }
8737 }
8738 
8739 bool LibraryCallKit::inline_isCompileConstant() {
8740   Node* n = argument(0);
8741   set_result(n->is_Con() ? intcon(1) : intcon(0));
8742   return true;
8743 }
8744 
8745 //------------------------------- inline_getObjectSize --------------------------------------
8746 //
8747 // Calculate the runtime size of the object/array.
8748 //   native long sun.instrument.InstrumentationImpl.getObjectSize0(long nativeAgent, Object objectToSize);
8749 //
8750 bool LibraryCallKit::inline_getObjectSize() {
8751   Node* obj = argument(3);
8752   Node* klass_node = load_object_klass(obj);
8753 
8754   jint  layout_con = Klass::_lh_neutral_value;
8755   Node* layout_val = get_layout_helper(klass_node, layout_con);
8756   int   layout_is_con = (layout_val == nullptr);
8757 
8758   if (layout_is_con) {
8759     // Layout helper is constant, can figure out things at compile time.
8760 
8761     if (Klass::layout_helper_is_instance(layout_con)) {
8762       // Instance case:  layout_con contains the size itself.
8763       Node *size = longcon(Klass::layout_helper_size_in_bytes(layout_con));
8764       set_result(size);
8765     } else {
8766       // Array case: size is round(header + element_size*arraylength).
8767       // Since arraylength is different for every array instance, we have to
8768       // compute the whole thing at runtime.
8769 
8770       Node* arr_length = load_array_length(obj);
8771 
8772       int round_mask = MinObjAlignmentInBytes - 1;
8773       int hsize  = Klass::layout_helper_header_size(layout_con);
8774       int eshift = Klass::layout_helper_log2_element_size(layout_con);
8775 
8776       if ((round_mask & ~right_n_bits(eshift)) == 0) {
8777         round_mask = 0;  // strength-reduce it if it goes away completely
8778       }
8779       assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
8780       Node* header_size = intcon(hsize + round_mask);
8781 
8782       Node* lengthx = ConvI2X(arr_length);
8783       Node* headerx = ConvI2X(header_size);
8784 
8785       Node* abody = lengthx;
8786       if (eshift != 0) {
8787         abody = _gvn.transform(new LShiftXNode(lengthx, intcon(eshift)));
8788       }
8789       Node* size = _gvn.transform( new AddXNode(headerx, abody) );
8790       if (round_mask != 0) {
8791         size = _gvn.transform( new AndXNode(size, MakeConX(~round_mask)) );
8792       }
8793       size = ConvX2L(size);
8794       set_result(size);
8795     }
8796   } else {
8797     // Layout helper is not constant, need to test for array-ness at runtime.
8798 
8799     enum { _instance_path = 1, _array_path, PATH_LIMIT };
8800     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
8801     PhiNode* result_val = new PhiNode(result_reg, TypeLong::LONG);
8802     record_for_igvn(result_reg);
8803 
8804     Node* array_ctl = generate_array_guard(klass_node, nullptr, &obj);
8805     if (array_ctl != nullptr) {
8806       // Array case: size is round(header + element_size*arraylength).
8807       // Since arraylength is different for every array instance, we have to
8808       // compute the whole thing at runtime.
8809 
8810       PreserveJVMState pjvms(this);
8811       set_control(array_ctl);
8812       Node* arr_length = load_array_length(obj);
8813 
8814       int round_mask = MinObjAlignmentInBytes - 1;
8815       Node* mask = intcon(round_mask);
8816 
8817       Node* hss = intcon(Klass::_lh_header_size_shift);
8818       Node* hsm = intcon(Klass::_lh_header_size_mask);
8819       Node* header_size = _gvn.transform(new URShiftINode(layout_val, hss));
8820       header_size = _gvn.transform(new AndINode(header_size, hsm));
8821       header_size = _gvn.transform(new AddINode(header_size, mask));
8822 
8823       // There is no need to mask or shift this value.
8824       // The semantics of LShiftINode include an implicit mask to 0x1F.
8825       assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
8826       Node* elem_shift = layout_val;
8827 
8828       Node* lengthx = ConvI2X(arr_length);
8829       Node* headerx = ConvI2X(header_size);
8830 
8831       Node* abody = _gvn.transform(new LShiftXNode(lengthx, elem_shift));
8832       Node* size = _gvn.transform(new AddXNode(headerx, abody));
8833       if (round_mask != 0) {
8834         size = _gvn.transform(new AndXNode(size, MakeConX(~round_mask)));
8835       }
8836       size = ConvX2L(size);
8837 
8838       result_reg->init_req(_array_path, control());
8839       result_val->init_req(_array_path, size);
8840     }
8841 
8842     if (!stopped()) {
8843       // Instance case: the layout helper gives us instance size almost directly,
8844       // but we need to mask out the _lh_instance_slow_path_bit.
8845       Node* size = ConvI2X(layout_val);
8846       assert((int) Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
8847       Node* mask = MakeConX(~(intptr_t) right_n_bits(LogBytesPerLong));
8848       size = _gvn.transform(new AndXNode(size, mask));
8849       size = ConvX2L(size);
8850 
8851       result_reg->init_req(_instance_path, control());
8852       result_val->init_req(_instance_path, size);
8853     }
8854 
8855     set_result(result_reg, result_val);
8856   }
8857 
8858   return true;
8859 }
8860 
8861 //------------------------------- inline_blackhole --------------------------------------
8862 //
8863 // Make sure all arguments to this node are alive.
8864 // This matches methods that were requested to be blackholed through compile commands.
8865 //
8866 bool LibraryCallKit::inline_blackhole() {
8867   assert(callee()->is_static(), "Should have been checked before: only static methods here");
8868   assert(callee()->is_empty(), "Should have been checked before: only empty methods here");
8869   assert(callee()->holder()->is_loaded(), "Should have been checked before: only methods for loaded classes here");
8870 
8871   // Blackhole node pinches only the control, not memory. This allows
8872   // the blackhole to be pinned in the loop that computes blackholed
8873   // values, but have no other side effects, like breaking the optimizations
8874   // across the blackhole.
8875 
8876   Node* bh = _gvn.transform(new BlackholeNode(control()));
8877   set_control(_gvn.transform(new ProjNode(bh, TypeFunc::Control)));
8878 
8879   // Bind call arguments as blackhole arguments to keep them alive
8880   uint nargs = callee()->arg_size();
8881   for (uint i = 0; i < nargs; i++) {
8882     bh->add_req(argument(i));
8883   }
8884 
8885   return true;
8886 }
8887 
8888 Node* LibraryCallKit::unbox_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* box) {
8889   const TypeInstPtr* box_type = _gvn.type(box)->isa_instptr();
8890   if (box_type == nullptr || box_type->instance_klass() != float16_box_type->instance_klass()) {
8891     return nullptr; // box klass is not Float16
8892   }
8893 
8894   // Null check; get notnull casted pointer
8895   Node* null_ctl = top();
8896   Node* not_null_box = null_check_oop(box, &null_ctl, true);
8897   // If not_null_box is dead, only null-path is taken
8898   if (stopped()) {
8899     set_control(null_ctl);
8900     return nullptr;
8901   }
8902   assert(not_null_box->bottom_type()->is_instptr()->maybe_null() == false, "");
8903   const TypePtr* adr_type = C->alias_type(field)->adr_type();
8904   Node* adr = basic_plus_adr(not_null_box, field->offset_in_bytes());
8905   return access_load_at(not_null_box, adr, adr_type, TypeInt::SHORT, T_SHORT, IN_HEAP);
8906 }
8907 
8908 Node* LibraryCallKit::box_fp16_value(const TypeInstPtr* float16_box_type, ciField* field, Node* value) {
8909   PreserveReexecuteState preexecs(this);
8910   jvms()->set_should_reexecute(true);
8911 
8912   const TypeKlassPtr* klass_type = float16_box_type->as_klass_type();
8913   Node* klass_node = makecon(klass_type);
8914   Node* box = new_instance(klass_node);
8915 
8916   Node* value_field = basic_plus_adr(box, field->offset_in_bytes());
8917   const TypePtr* value_adr_type = value_field->bottom_type()->is_ptr();
8918 
8919   Node* field_store = _gvn.transform(access_store_at(box,
8920                                                      value_field,
8921                                                      value_adr_type,
8922                                                      value,
8923                                                      TypeInt::SHORT,
8924                                                      T_SHORT,
8925                                                      IN_HEAP));
8926   set_memory(field_store, value_adr_type);
8927   return box;
8928 }
8929 
8930 bool LibraryCallKit::inline_fp16_operations(vmIntrinsics::ID id, int num_args) {
8931   if (!Matcher::match_rule_supported(Op_ReinterpretS2HF) ||
8932       !Matcher::match_rule_supported(Op_ReinterpretHF2S)) {
8933     return false;
8934   }
8935 
8936   const TypeInstPtr* box_type = _gvn.type(argument(0))->isa_instptr();
8937   if (box_type == nullptr || box_type->const_oop() == nullptr) {
8938     return false;
8939   }
8940 
8941   ciInstanceKlass* float16_klass = box_type->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
8942   const TypeInstPtr* float16_box_type = TypeInstPtr::make_exact(TypePtr::NotNull, float16_klass);
8943   ciField* field = float16_klass->get_field_by_name(ciSymbols::value_name(),
8944                                                     ciSymbols::short_signature(),
8945                                                     false);
8946   assert(field != nullptr, "");
8947 
8948   // Transformed nodes
8949   Node* fld1 = nullptr;
8950   Node* fld2 = nullptr;
8951   Node* fld3 = nullptr;
8952   switch(num_args) {
8953     case 3:
8954       fld3 = unbox_fp16_value(float16_box_type, field, argument(3));
8955       if (fld3 == nullptr) {
8956         return false;
8957       }
8958       fld3 = _gvn.transform(new ReinterpretS2HFNode(fld3));
8959     // fall-through
8960     case 2:
8961       fld2 = unbox_fp16_value(float16_box_type, field, argument(2));
8962       if (fld2 == nullptr) {
8963         return false;
8964       }
8965       fld2 = _gvn.transform(new ReinterpretS2HFNode(fld2));
8966     // fall-through
8967     case 1:
8968       fld1 = unbox_fp16_value(float16_box_type, field, argument(1));
8969       if (fld1 == nullptr) {
8970         return false;
8971       }
8972       fld1 = _gvn.transform(new ReinterpretS2HFNode(fld1));
8973       break;
8974     default: fatal("Unsupported number of arguments %d", num_args);
8975   }
8976 
8977   Node* result = nullptr;
8978   switch (id) {
8979     // Unary operations
8980     case vmIntrinsics::_sqrt_float16:
8981       result = _gvn.transform(new SqrtHFNode(C, control(), fld1));
8982       break;
8983     // Ternary operations
8984     case vmIntrinsics::_fma_float16:
8985       result = _gvn.transform(new FmaHFNode(fld1, fld2, fld3));
8986       break;
8987     default:
8988       fatal_unexpected_iid(id);
8989       break;
8990   }
8991   result = _gvn.transform(new ReinterpretHF2SNode(result));
8992   set_result(box_fp16_value(float16_box_type, field, result));
8993   return true;
8994 }
8995