1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "gc/shared/barrierSet.hpp" 27 #include "gc/shared/c2/barrierSetC2.hpp" 28 #include "gc/shared/collectedHeap.hpp" 29 #include "memory/universe.hpp" 30 #include "oops/compressedOops.hpp" 31 #include "opto/machnode.hpp" 32 #include "opto/output.hpp" 33 #include "opto/regalloc.hpp" 34 #include "utilities/vmError.hpp" 35 36 //============================================================================= 37 // Return the value requested 38 // result register lookup, corresponding to int_format 39 int MachOper::reg(PhaseRegAlloc *ra_, const Node *node) const { 40 return (int)ra_->get_encode(node); 41 } 42 // input register lookup, corresponding to ext_format 43 int MachOper::reg(PhaseRegAlloc *ra_, const Node *node, int idx) const { 44 return (int)(ra_->get_encode(node->in(idx))); 45 } 46 intptr_t MachOper::constant() const { return 0x00; } 47 relocInfo::relocType MachOper::constant_reloc() const { return relocInfo::none; } 48 jdouble MachOper::constantD() const { ShouldNotReachHere(); return 0.0; } 49 jfloat MachOper::constantF() const { ShouldNotReachHere(); return 0.0; } 50 jlong MachOper::constantL() const { ShouldNotReachHere(); return CONST64(0) ; } 51 TypeOopPtr *MachOper::oop() const { return nullptr; } 52 int MachOper::ccode() const { return 0x00; } 53 // A zero, default, indicates this value is not needed. 54 // May need to lookup the base register, as done in int_ and ext_format 55 int MachOper::base (PhaseRegAlloc *ra_, const Node *node, int idx) const { return 0x00; } 56 int MachOper::index(PhaseRegAlloc *ra_, const Node *node, int idx) const { return 0x00; } 57 int MachOper::scale() const { return 0x00; } 58 int MachOper::disp (PhaseRegAlloc *ra_, const Node *node, int idx) const { return 0x00; } 59 int MachOper::constant_disp() const { return 0; } 60 int MachOper::base_position() const { return -1; } // no base input 61 int MachOper::index_position() const { return -1; } // no index input 62 // Check for PC-Relative displacement 63 relocInfo::relocType MachOper::disp_reloc() const { return relocInfo::none; } 64 // Return the label 65 Label* MachOper::label() const { ShouldNotReachHere(); return 0; } 66 intptr_t MachOper::method() const { ShouldNotReachHere(); return 0; } 67 68 69 //------------------------------negate----------------------------------------- 70 // Negate conditional branches. Error for non-branch operands 71 void MachOper::negate() { 72 ShouldNotCallThis(); 73 } 74 75 //-----------------------------type-------------------------------------------- 76 const Type *MachOper::type() const { 77 return Type::BOTTOM; 78 } 79 80 //------------------------------in_RegMask------------------------------------- 81 const RegMask *MachOper::in_RegMask(int index) const { 82 ShouldNotReachHere(); 83 return nullptr; 84 } 85 86 //------------------------------dump_spec-------------------------------------- 87 // Print any per-operand special info 88 #ifndef PRODUCT 89 void MachOper::dump_spec(outputStream *st) const { } 90 #endif 91 92 //------------------------------hash------------------------------------------- 93 // Print any per-operand special info 94 uint MachOper::hash() const { 95 ShouldNotCallThis(); 96 return 5; 97 } 98 99 //------------------------------cmp-------------------------------------------- 100 // Print any per-operand special info 101 bool MachOper::cmp( const MachOper &oper ) const { 102 ShouldNotCallThis(); 103 return opcode() == oper.opcode(); 104 } 105 106 //------------------------------hash------------------------------------------- 107 // Print any per-operand special info 108 uint labelOper::hash() const { 109 return _block_num; 110 } 111 112 //------------------------------cmp-------------------------------------------- 113 // Print any per-operand special info 114 bool labelOper::cmp( const MachOper &oper ) const { 115 return (opcode() == oper.opcode()) && (_label == oper.label()); 116 } 117 118 //------------------------------hash------------------------------------------- 119 // Print any per-operand special info 120 uint methodOper::hash() const { 121 return (uint)_method; 122 } 123 124 //------------------------------cmp-------------------------------------------- 125 // Print any per-operand special info 126 bool methodOper::cmp( const MachOper &oper ) const { 127 return (opcode() == oper.opcode()) && (_method == oper.method()); 128 } 129 130 131 //============================================================================= 132 //------------------------------MachNode--------------------------------------- 133 134 //------------------------------emit------------------------------------------- 135 void MachNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 136 #ifdef ASSERT 137 tty->print("missing MachNode emit function: "); 138 dump(); 139 #endif 140 ShouldNotCallThis(); 141 } 142 143 //---------------------------postalloc_expand---------------------------------- 144 // Expand node after register allocation. 145 void MachNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {} 146 147 //------------------------------size------------------------------------------- 148 // Size of instruction in bytes 149 uint MachNode::size(PhaseRegAlloc *ra_) const { 150 // If a virtual was not defined for this specific instruction, 151 // Call the helper which finds the size by emitting the bits. 152 return MachNode::emit_size(ra_); 153 } 154 155 //------------------------------size------------------------------------------- 156 // Helper function that computes size by emitting code 157 uint MachNode::emit_size(PhaseRegAlloc *ra_) const { 158 // Emit into a trash buffer and count bytes emitted. 159 assert(ra_ == ra_->C->regalloc(), "sanity"); 160 return ra_->C->output()->scratch_emit_size(this); 161 } 162 163 164 165 //------------------------------hash------------------------------------------- 166 uint MachNode::hash() const { 167 uint no = num_opnds(); 168 uint sum = rule(); 169 for( uint i=0; i<no; i++ ) 170 sum += _opnds[i]->hash(); 171 return sum+Node::hash(); 172 } 173 174 //-----------------------------cmp--------------------------------------------- 175 bool MachNode::cmp( const Node &node ) const { 176 MachNode& n = *((Node&)node).as_Mach(); 177 uint no = num_opnds(); 178 if( no != n.num_opnds() ) return false; 179 if( rule() != n.rule() ) return false; 180 for( uint i=0; i<no; i++ ) // All operands must match 181 if( !_opnds[i]->cmp( *n._opnds[i] ) ) 182 return false; // mis-matched operands 183 return true; // match 184 } 185 186 void MachNode::fill_new_machnode(MachNode* node) const { 187 // New node must use same node index 188 node->set_idx(_idx); 189 // Copy machine-independent inputs 190 for (uint j = 0; j < req(); j++) { 191 node->add_req(in(j)); 192 } 193 // Copy my operands, except for cisc position 194 int nopnds = num_opnds(); 195 assert(node->num_opnds() == (uint)nopnds, "Must have same number of operands"); 196 MachOper** to = node->_opnds; 197 for (int i = 0; i < nopnds; i++) { 198 if (i != cisc_operand()) { 199 to[i] = _opnds[i]->clone(); 200 } 201 } 202 // Do not increment node index counter, since node reuses my index 203 Compile* C = Compile::current(); 204 C->set_unique(C->unique() - 1); 205 } 206 207 // Return an equivalent instruction using memory for cisc_operand position 208 MachNode *MachNode::cisc_version(int offset) { 209 ShouldNotCallThis(); 210 return nullptr; 211 } 212 213 void MachNode::use_cisc_RegMask() { 214 ShouldNotReachHere(); 215 } 216 217 218 //-----------------------------in_RegMask-------------------------------------- 219 const RegMask &MachNode::in_RegMask( uint idx ) const { 220 uint numopnds = num_opnds(); // Virtual call for number of operands 221 uint skipped = oper_input_base(); // Sum of leaves skipped so far 222 if( idx < skipped ) { 223 assert( ideal_Opcode() == Op_AddP, "expected base ptr here" ); 224 assert( idx == 1, "expected base ptr here" ); 225 // debug info can be anywhere 226 return *Compile::current()->matcher()->idealreg2spillmask[Op_RegP]; 227 } 228 uint opcnt = 1; // First operand 229 uint num_edges = _opnds[1]->num_edges(); // leaves for first operand 230 while( idx >= skipped+num_edges ) { 231 skipped += num_edges; 232 opcnt++; // Bump operand count 233 assert( opcnt < numopnds, "Accessing non-existent operand" ); 234 num_edges = _opnds[opcnt]->num_edges(); // leaves for next operand 235 } 236 237 const RegMask *rm = cisc_RegMask(); 238 if( rm == nullptr || (int)opcnt != cisc_operand() ) { 239 rm = _opnds[opcnt]->in_RegMask(idx-skipped); 240 } 241 return *rm; 242 } 243 244 //-----------------------------memory_inputs-------------------------------- 245 const MachOper* MachNode::memory_inputs(Node* &base, Node* &index) const { 246 const MachOper* oper = memory_operand(); 247 248 if (oper == (MachOper*)-1) { 249 base = NodeSentinel; 250 index = NodeSentinel; 251 } else { 252 base = nullptr; 253 index = nullptr; 254 if (oper != nullptr) { 255 // It has a unique memory operand. Find its index. 256 int oper_idx = num_opnds(); 257 while (--oper_idx >= 0) { 258 if (_opnds[oper_idx] == oper) break; 259 } 260 int oper_pos = operand_index(oper_idx); 261 int base_pos = oper->base_position(); 262 if (base_pos >= 0) { 263 base = _in[oper_pos+base_pos]; 264 } 265 int index_pos = oper->index_position(); 266 if (index_pos >= 0) { 267 index = _in[oper_pos+index_pos]; 268 } 269 } 270 } 271 272 return oper; 273 } 274 275 //-----------------------------get_base_and_disp---------------------------- 276 const Node* MachNode::get_base_and_disp(intptr_t &offset, const TypePtr* &adr_type) const { 277 278 // Find the memory inputs using our helper function 279 Node* base; 280 Node* index; 281 const MachOper* oper = memory_inputs(base, index); 282 283 if (oper == nullptr) { 284 // Base has been set to null 285 offset = 0; 286 } else if (oper == (MachOper*)-1) { 287 // Base has been set to NodeSentinel 288 // There is not a unique memory use here. We will fall to AliasIdxBot. 289 offset = Type::OffsetBot; 290 } else { 291 // Base may be null, even if offset turns out to be != 0 292 293 intptr_t disp = oper->constant_disp(); 294 int scale = oper->scale(); 295 // Now we have collected every part of the ADLC MEMORY_INTER. 296 // See if it adds up to a base + offset. 297 if (index != nullptr) { 298 const Type* t_index = index->bottom_type(); 299 if (t_index->isa_narrowoop() || t_index->isa_narrowklass()) { // EncodeN, LoadN, LoadConN, LoadNKlass, 300 // EncodeNKlass, LoadConNklass. 301 // Memory references through narrow oops have a 302 // funny base so grab the type from the index: 303 // [R12 + narrow_oop_reg<<3 + offset] 304 assert(base == nullptr, "Memory references through narrow oops have no base"); 305 offset = disp; 306 adr_type = t_index->make_ptr()->add_offset(offset); 307 return nullptr; 308 } else if (!index->is_Con()) { 309 disp = Type::OffsetBot; 310 } else if (disp != Type::OffsetBot) { 311 const TypeX* ti = t_index->isa_intptr_t(); 312 if (ti == nullptr) { 313 disp = Type::OffsetBot; // a random constant?? 314 } else { 315 disp += ti->get_con() << scale; 316 } 317 } 318 } 319 offset = disp; 320 321 // In x86_32.ad, indOffset32X uses base==RegI and disp==RegP, 322 // this will prevent alias analysis without the following support: 323 // Lookup the TypePtr used by indOffset32X, a compile-time constant oop, 324 // Add the offset determined by the "base", or use Type::OffsetBot. 325 if( adr_type == TYPE_PTR_SENTINAL ) { 326 const TypePtr *t_disp = oper->disp_as_type(); // only not null for indOffset32X 327 if (t_disp != nullptr) { 328 offset = Type::OffsetBot; 329 const Type* t_base = base->bottom_type(); 330 if (t_base->isa_intptr_t()) { 331 const TypeX *t_offset = t_base->is_intptr_t(); 332 if( t_offset->is_con() ) { 333 offset = t_offset->get_con(); 334 } 335 } 336 adr_type = t_disp->add_offset(offset); 337 } else if( base == nullptr && offset != 0 && offset != Type::OffsetBot ) { 338 // Use ideal type if it is oop ptr. 339 const TypePtr *tp = oper->type()->isa_ptr(); 340 if( tp != nullptr) { 341 adr_type = tp; 342 } 343 } 344 } 345 346 } 347 return base; 348 } 349 350 351 //---------------------------------adr_type--------------------------------- 352 const class TypePtr *MachNode::adr_type() const { 353 intptr_t offset = 0; 354 const TypePtr *adr_type = TYPE_PTR_SENTINAL; // attempt computing adr_type 355 const Node *base = get_base_and_disp(offset, adr_type); 356 if( adr_type != TYPE_PTR_SENTINAL ) { 357 return adr_type; // get_base_and_disp has the answer 358 } 359 360 #ifdef ASSERT 361 if (base != nullptr && base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_VerifyVectorAlignment) { 362 // For VerifyVectorAlignment we just pass the type through 363 return base->bottom_type()->is_ptr(); 364 } 365 #endif 366 367 // Direct addressing modes have no base node, simply an indirect 368 // offset, which is always to raw memory. 369 // %%%%% Someday we'd like to allow constant oop offsets which 370 // would let Intel load from static globals in 1 instruction. 371 // Currently Intel requires 2 instructions and a register temp. 372 if (base == nullptr) { 373 // null base, zero offset means no memory at all (a null pointer!) 374 if (offset == 0) { 375 return nullptr; 376 } 377 // null base, any offset means any pointer whatever 378 if (offset == Type::OffsetBot) { 379 return TypePtr::BOTTOM; 380 } 381 // %%% make offset be intptr_t 382 assert(!Universe::heap()->is_in(cast_to_oop(offset)), "must be a raw ptr"); 383 return TypeRawPtr::BOTTOM; 384 } 385 386 // base of -1 with no particular offset means all of memory 387 if (base == NodeSentinel) return TypePtr::BOTTOM; 388 389 const Type* t = base->bottom_type(); 390 if (t->isa_narrowoop() && CompressedOops::shift() == 0) { 391 // 32-bit unscaled narrow oop can be the base of any address expression 392 t = t->make_ptr(); 393 } 394 if (t->isa_narrowklass() && UseCompressedClassPointers && CompressedKlassPointers::shift() == 0) { 395 // 32-bit unscaled narrow oop can be the base of any address expression 396 t = t->make_ptr(); 397 } 398 if (t->isa_intptr_t() && offset != 0 && offset != Type::OffsetBot) { 399 // We cannot assert that the offset does not look oop-ish here. 400 // Depending on the heap layout the cardmark base could land 401 // inside some oopish region. It definitely does for Win2K. 402 // The sum of cardmark-base plus shift-by-9-oop lands outside 403 // the oop-ish area but we can't assert for that statically. 404 return TypeRawPtr::BOTTOM; 405 } 406 407 const TypePtr *tp = t->isa_ptr(); 408 409 // be conservative if we do not recognize the type 410 if (tp == nullptr) { 411 assert(false, "this path may produce not optimal code"); 412 return TypePtr::BOTTOM; 413 } 414 assert(tp->base() != Type::AnyPtr, "not a bare pointer"); 415 416 return tp->add_offset(offset); 417 } 418 419 420 //-----------------------------operand_index--------------------------------- 421 int MachNode::operand_index(uint operand) const { 422 if (operand < 1) return -1; 423 assert(operand < num_opnds(), "oob"); 424 if (_opnds[operand]->num_edges() == 0) return -1; 425 426 uint skipped = oper_input_base(); // Sum of leaves skipped so far 427 for (uint opcnt = 1; opcnt < operand; opcnt++) { 428 uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand 429 skipped += num_edges; 430 } 431 return skipped; 432 } 433 434 int MachNode::operand_index(const MachOper *oper) const { 435 uint skipped = oper_input_base(); // Sum of leaves skipped so far 436 uint opcnt; 437 for (opcnt = 1; opcnt < num_opnds(); opcnt++) { 438 if (_opnds[opcnt] == oper) break; 439 uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand 440 skipped += num_edges; 441 } 442 if (_opnds[opcnt] != oper) return -1; 443 return skipped; 444 } 445 446 int MachNode::operand_index(Node* def) const { 447 uint skipped = oper_input_base(); // Sum of leaves skipped so far 448 for (uint opcnt = 1; opcnt < num_opnds(); opcnt++) { 449 uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand 450 for (uint i = 0; i < num_edges; i++) { 451 if (in(skipped + i) == def) { 452 return opcnt; 453 } 454 } 455 skipped += num_edges; 456 } 457 return -1; 458 } 459 460 //------------------------------peephole--------------------------------------- 461 // Apply peephole rule(s) to this instruction 462 int MachNode::peephole(Block *block, int block_index, PhaseCFG* cfg_, PhaseRegAlloc *ra_) { 463 return -1; 464 } 465 466 //------------------------------add_case_label--------------------------------- 467 // Adds the label for the case 468 void MachNode::add_case_label( int index_num, Label* blockLabel) { 469 ShouldNotCallThis(); 470 } 471 472 //------------------------------method_set------------------------------------- 473 // Set the absolute address of a method 474 void MachNode::method_set( intptr_t addr ) { 475 ShouldNotCallThis(); 476 } 477 478 //------------------------------rematerialize---------------------------------- 479 bool MachNode::rematerialize() const { 480 // Temps are always rematerializable 481 if (is_MachTemp()) return true; 482 483 uint r = rule(); // Match rule 484 if (r < Matcher::_begin_rematerialize || 485 r >= Matcher::_end_rematerialize) { 486 return false; 487 } 488 489 // For 2-address instructions, the input live range is also the output 490 // live range. Remateralizing does not make progress on the that live range. 491 if (two_adr()) return false; 492 493 // Check for rematerializing float constants, or not 494 if (!Matcher::rematerialize_float_constants) { 495 int op = ideal_Opcode(); 496 if (op == Op_ConF || op == Op_ConD) { 497 return false; 498 } 499 } 500 501 // Defining flags - can't spill these! Must remateralize. 502 if (ideal_reg() == Op_RegFlags) { 503 return true; 504 } 505 506 // Stretching lots of inputs - don't do it. 507 // A MachContant has the last input being the constant base 508 if (req() > (is_MachConstant() ? 3U : 2U)) { 509 return false; 510 } 511 512 if (req() >= 2 && in(1) && in(1)->ideal_reg() == Op_RegFlags) { 513 // In(1) will be rematerialized, too. 514 // Stretching lots of inputs - don't do it. 515 if (in(1)->req() > (in(1)->is_MachConstant() ? 3U : 2U)) { 516 return false; 517 } 518 } 519 520 // Don't remateralize somebody with bound inputs - it stretches a 521 // fixed register lifetime. 522 uint idx = oper_input_base(); 523 if (req() > idx) { 524 const RegMask &rm = in_RegMask(idx); 525 if (rm.is_NotEmpty() && rm.is_bound(ideal_reg())) { 526 return false; 527 } 528 } 529 530 return true; 531 } 532 533 #ifndef PRODUCT 534 //------------------------------dump_spec-------------------------------------- 535 // Print any per-operand special info 536 void MachNode::dump_spec(outputStream *st) const { 537 uint cnt = num_opnds(); 538 for( uint i=0; i<cnt; i++ ) { 539 if (_opnds[i] != nullptr) { 540 _opnds[i]->dump_spec(st); 541 } else { 542 st->print(" _"); 543 } 544 } 545 const TypePtr *t = adr_type(); 546 if( t ) { 547 Compile* C = Compile::current(); 548 if( C->alias_type(t)->is_volatile() ) 549 st->print(" Volatile!"); 550 } 551 if (barrier_data() != 0) { 552 st->print(" barrier("); 553 BarrierSet::barrier_set()->barrier_set_c2()->dump_barrier_data(this, st); 554 st->print(") "); 555 } 556 } 557 558 //------------------------------dump_format------------------------------------ 559 // access to virtual 560 void MachNode::dump_format(PhaseRegAlloc *ra, outputStream *st) const { 561 format(ra, st); // access to virtual 562 } 563 #endif 564 565 //============================================================================= 566 #ifndef PRODUCT 567 void MachTypeNode::dump_spec(outputStream *st) const { 568 MachNode::dump_spec(st); 569 if (_bottom_type != nullptr) { 570 _bottom_type->dump_on(st); 571 } else { 572 st->print(" null"); 573 } 574 } 575 #endif 576 577 578 //============================================================================= 579 int MachConstantNode::constant_offset() { 580 // Bind the offset lazily. 581 if (_constant.offset() == -1) { 582 ConstantTable& constant_table = Compile::current()->output()->constant_table(); 583 int offset = constant_table.find_offset(_constant); 584 // If called from Compile::scratch_emit_size return the 585 // pre-calculated offset. 586 // NOTE: If the AD file does some table base offset optimizations 587 // later the AD file needs to take care of this fact. 588 if (Compile::current()->output()->in_scratch_emit_size()) { 589 return constant_table.calculate_table_base_offset() + offset; 590 } 591 _constant.set_offset(constant_table.table_base_offset() + offset); 592 } 593 return _constant.offset(); 594 } 595 596 int MachConstantNode::constant_offset_unchecked() const { 597 return _constant.offset(); 598 } 599 600 //============================================================================= 601 #ifndef PRODUCT 602 void MachNullCheckNode::format( PhaseRegAlloc *ra_, outputStream *st ) const { 603 int reg = ra_->get_reg_first(in(1)->in(_vidx)); 604 st->print("%s %s", Name(), Matcher::regName[reg]); 605 } 606 #endif 607 608 void MachNullCheckNode::emit(C2_MacroAssembler *masm, PhaseRegAlloc *ra_) const { 609 // only emits entries in the null-pointer exception handler table 610 } 611 void MachNullCheckNode::label_set(Label* label, uint block_num) { 612 // Nothing to emit 613 } 614 void MachNullCheckNode::save_label( Label** label, uint* block_num ) { 615 // Nothing to emit 616 } 617 618 const RegMask &MachNullCheckNode::in_RegMask( uint idx ) const { 619 if( idx == 0 ) return RegMask::Empty; 620 else return in(1)->as_Mach()->out_RegMask(); 621 } 622 623 //============================================================================= 624 const Type *MachProjNode::bottom_type() const { 625 if( _ideal_reg == fat_proj ) return Type::BOTTOM; 626 // Try the normal mechanism first 627 const Type *t = in(0)->bottom_type(); 628 if( t->base() == Type::Tuple ) { 629 const TypeTuple *tt = t->is_tuple(); 630 if (_con < tt->cnt()) 631 return tt->field_at(_con); 632 } 633 // Else use generic type from ideal register set 634 assert((uint)_ideal_reg < (uint)_last_machine_leaf && Type::mreg2type[_ideal_reg], "in bounds"); 635 return Type::mreg2type[_ideal_reg]; 636 } 637 638 const TypePtr *MachProjNode::adr_type() const { 639 if (bottom_type() == Type::MEMORY) { 640 // in(0) might be a narrow MemBar; otherwise we will report TypePtr::BOTTOM 641 Node* ctrl = in(0); 642 if (ctrl == nullptr) return nullptr; // node is dead 643 const TypePtr* adr_type = ctrl->adr_type(); 644 #ifdef ASSERT 645 if (!VMError::is_error_reported() && !Node::in_dump()) 646 assert(adr_type != nullptr, "source must have adr_type"); 647 #endif 648 return adr_type; 649 } 650 assert(bottom_type()->base() != Type::Memory, "no other memories?"); 651 return nullptr; 652 } 653 654 #ifndef PRODUCT 655 void MachProjNode::dump_spec(outputStream *st) const { 656 ProjNode::dump_spec(st); 657 switch (_ideal_reg) { 658 case unmatched_proj: st->print("/unmatched"); break; 659 case fat_proj: st->print("/fat"); if (WizardMode) _rout.dump(st); break; 660 } 661 } 662 #endif 663 664 //============================================================================= 665 #ifndef PRODUCT 666 void MachIfNode::dump_spec(outputStream *st) const { 667 st->print("P=%f, C=%f",_prob, _fcnt); 668 } 669 #endif 670 671 //============================================================================= 672 uint MachReturnNode::size_of() const { return sizeof(*this); } 673 674 //------------------------------Registers-------------------------------------- 675 const RegMask &MachReturnNode::in_RegMask( uint idx ) const { 676 return _in_rms[idx]; 677 } 678 679 const TypePtr *MachReturnNode::adr_type() const { 680 // most returns and calls are assumed to consume & modify all of memory 681 // the matcher will copy non-wide adr_types from ideal originals 682 return _adr_type; 683 } 684 685 //============================================================================= 686 const Type *MachSafePointNode::bottom_type() const { return TypeTuple::MEMBAR; } 687 688 //------------------------------Registers-------------------------------------- 689 const RegMask &MachSafePointNode::in_RegMask( uint idx ) const { 690 // Values in the domain use the users calling convention, embodied in the 691 // _in_rms array of RegMasks. 692 if( idx < TypeFunc::Parms ) return _in_rms[idx]; 693 694 if (idx == TypeFunc::Parms && 695 ideal_Opcode() == Op_SafePoint) { 696 return MachNode::in_RegMask(idx); 697 } 698 699 // Values outside the domain represent debug info 700 assert(in(idx)->ideal_reg() != Op_RegFlags, "flags register is not spillable"); 701 return *Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]; 702 } 703 704 705 //============================================================================= 706 707 bool MachCallNode::cmp( const Node &n ) const 708 { return _tf == ((MachCallNode&)n)._tf; } 709 const Type *MachCallNode::bottom_type() const { return tf()->range(); } 710 const Type* MachCallNode::Value(PhaseGVN* phase) const { return tf()->range(); } 711 712 #ifndef PRODUCT 713 void MachCallNode::dump_spec(outputStream *st) const { 714 st->print("# "); 715 if (tf() != nullptr) tf()->dump_on(st); 716 if (_cnt != COUNT_UNKNOWN) st->print(" C=%f",_cnt); 717 if (jvms() != nullptr) jvms()->dump_spec(st); 718 } 719 #endif 720 721 #ifndef _LP64 722 bool MachCallNode::return_value_is_used() const { 723 if (tf()->range()->cnt() == TypeFunc::Parms) { 724 // void return 725 return false; 726 } 727 728 // find the projection corresponding to the return value 729 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 730 Node *use = fast_out(i); 731 if (!use->is_Proj()) continue; 732 if (use->as_Proj()->_con == TypeFunc::Parms) { 733 return true; 734 } 735 } 736 return false; 737 } 738 #endif 739 740 // Similar to cousin class CallNode::returns_pointer 741 // Because this is used in deoptimization, we want the type info, not the data 742 // flow info; the interpreter will "use" things that are dead to the optimizer. 743 bool MachCallNode::returns_pointer() const { 744 const TypeTuple *r = tf()->range(); 745 return (r->cnt() > TypeFunc::Parms && 746 r->field_at(TypeFunc::Parms)->isa_ptr()); 747 } 748 749 //------------------------------Registers-------------------------------------- 750 const RegMask &MachCallNode::in_RegMask(uint idx) const { 751 // Values in the domain use the users calling convention, embodied in the 752 // _in_rms array of RegMasks. 753 if (idx < tf()->domain()->cnt()) { 754 return _in_rms[idx]; 755 } 756 if (idx == mach_constant_base_node_input()) { 757 return MachConstantBaseNode::static_out_RegMask(); 758 } 759 // Values outside the domain represent debug info 760 return *Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]; 761 } 762 763 //============================================================================= 764 uint MachCallJavaNode::size_of() const { return sizeof(*this); } 765 bool MachCallJavaNode::cmp( const Node &n ) const { 766 MachCallJavaNode &call = (MachCallJavaNode&)n; 767 return MachCallNode::cmp(call) && _method->equals(call._method) && 768 _override_symbolic_info == call._override_symbolic_info; 769 } 770 #ifndef PRODUCT 771 void MachCallJavaNode::dump_spec(outputStream *st) const { 772 if (_method_handle_invoke) 773 st->print("MethodHandle "); 774 if (_method) { 775 _method->print_short_name(st); 776 st->print(" "); 777 } 778 MachCallNode::dump_spec(st); 779 } 780 #endif 781 782 //------------------------------Registers-------------------------------------- 783 const RegMask &MachCallJavaNode::in_RegMask(uint idx) const { 784 // Values in the domain use the users calling convention, embodied in the 785 // _in_rms array of RegMasks. 786 if (idx < tf()->domain()->cnt()) { 787 return _in_rms[idx]; 788 } 789 if (idx == mach_constant_base_node_input()) { 790 return MachConstantBaseNode::static_out_RegMask(); 791 } 792 // Values outside the domain represent debug info 793 Matcher* m = Compile::current()->matcher(); 794 // If this call is a MethodHandle invoke we have to use a different 795 // debugmask which does not include the register we use to save the 796 // SP over MH invokes. 797 RegMask** debugmask = _method_handle_invoke ? m->idealreg2mhdebugmask : m->idealreg2debugmask; 798 return *debugmask[in(idx)->ideal_reg()]; 799 } 800 801 //============================================================================= 802 uint MachCallStaticJavaNode::size_of() const { return sizeof(*this); } 803 bool MachCallStaticJavaNode::cmp( const Node &n ) const { 804 MachCallStaticJavaNode &call = (MachCallStaticJavaNode&)n; 805 return MachCallJavaNode::cmp(call) && _name == call._name; 806 } 807 808 //----------------------------uncommon_trap_request---------------------------- 809 // If this is an uncommon trap, return the request code, else zero. 810 int MachCallStaticJavaNode::uncommon_trap_request() const { 811 if (_name != nullptr && !strcmp(_name, "uncommon_trap")) { 812 return CallStaticJavaNode::extract_uncommon_trap_request(this); 813 } 814 return 0; 815 } 816 817 #ifndef PRODUCT 818 // Helper for summarizing uncommon_trap arguments. 819 void MachCallStaticJavaNode::dump_trap_args(outputStream *st) const { 820 int trap_req = uncommon_trap_request(); 821 if (trap_req != 0) { 822 char buf[100]; 823 st->print("(%s)", 824 Deoptimization::format_trap_request(buf, sizeof(buf), 825 trap_req)); 826 } 827 } 828 829 void MachCallStaticJavaNode::dump_spec(outputStream *st) const { 830 st->print("Static "); 831 if (_name != nullptr) { 832 st->print("wrapper for: %s", _name ); 833 dump_trap_args(st); 834 st->print(" "); 835 } 836 MachCallJavaNode::dump_spec(st); 837 } 838 #endif 839 840 //============================================================================= 841 #ifndef PRODUCT 842 void MachCallDynamicJavaNode::dump_spec(outputStream *st) const { 843 st->print("Dynamic "); 844 MachCallJavaNode::dump_spec(st); 845 } 846 #endif 847 //============================================================================= 848 uint MachCallRuntimeNode::size_of() const { return sizeof(*this); } 849 bool MachCallRuntimeNode::cmp( const Node &n ) const { 850 MachCallRuntimeNode &call = (MachCallRuntimeNode&)n; 851 return MachCallNode::cmp(call) && !strcmp(_name,call._name); 852 } 853 #ifndef PRODUCT 854 void MachCallRuntimeNode::dump_spec(outputStream *st) const { 855 st->print("%s ",_name); 856 MachCallNode::dump_spec(st); 857 } 858 #endif 859 //============================================================================= 860 // A shared JVMState for all HaltNodes. Indicates the start of debug info 861 // is at TypeFunc::Parms. Only required for SOE register spill handling - 862 // to indicate where the stack-slot-only debug info inputs begin. 863 // There is no other JVM state needed here. 864 JVMState jvms_for_throw(0); 865 JVMState *MachHaltNode::jvms() const { 866 return &jvms_for_throw; 867 } 868 869 uint MachMemBarNode::size_of() const { return sizeof(*this); } 870 871 const TypePtr *MachMemBarNode::adr_type() const { 872 return _adr_type; 873 } 874 875 876 //============================================================================= 877 #ifndef PRODUCT 878 void labelOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const { 879 st->print("B%d", _block_num); 880 } 881 #endif // PRODUCT 882 883 //============================================================================= 884 #ifndef PRODUCT 885 void methodOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const { 886 st->print(INTPTR_FORMAT, _method); 887 } 888 #endif // PRODUCT