1 /* 2 * Copyright (c) 2005, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "gc/shared/collectedHeap.inline.hpp" 28 #include "gc/shared/tlab_globals.hpp" 29 #include "libadt/vectset.hpp" 30 #include "memory/universe.hpp" 31 #include "opto/addnode.hpp" 32 #include "opto/arraycopynode.hpp" 33 #include "opto/callnode.hpp" 34 #include "opto/castnode.hpp" 35 #include "opto/cfgnode.hpp" 36 #include "opto/compile.hpp" 37 #include "opto/convertnode.hpp" 38 #include "opto/graphKit.hpp" 39 #include "opto/intrinsicnode.hpp" 40 #include "opto/locknode.hpp" 41 #include "opto/loopnode.hpp" 42 #include "opto/macro.hpp" 43 #include "opto/memnode.hpp" 44 #include "opto/narrowptrnode.hpp" 45 #include "opto/node.hpp" 46 #include "opto/opaquenode.hpp" 47 #include "opto/phaseX.hpp" 48 #include "opto/rootnode.hpp" 49 #include "opto/runtime.hpp" 50 #include "opto/subnode.hpp" 51 #include "opto/subtypenode.hpp" 52 #include "opto/type.hpp" 53 #include "prims/jvmtiExport.hpp" 54 #include "runtime/continuation.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "utilities/macros.hpp" 57 #include "utilities/powerOfTwo.hpp" 58 #if INCLUDE_G1GC 59 #include "gc/g1/g1ThreadLocalData.hpp" 60 #endif // INCLUDE_G1GC 61 62 63 // 64 // Replace any references to "oldref" in inputs to "use" with "newref". 65 // Returns the number of replacements made. 66 // 67 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) { 68 int nreplacements = 0; 69 uint req = use->req(); 70 for (uint j = 0; j < use->len(); j++) { 71 Node *uin = use->in(j); 72 if (uin == oldref) { 73 if (j < req) 74 use->set_req(j, newref); 75 else 76 use->set_prec(j, newref); 77 nreplacements++; 78 } else if (j >= req && uin == nullptr) { 79 break; 80 } 81 } 82 return nreplacements; 83 } 84 85 void PhaseMacroExpand::migrate_outs(Node *old, Node *target) { 86 assert(old != nullptr, "sanity"); 87 for (DUIterator_Fast imax, i = old->fast_outs(imax); i < imax; i++) { 88 Node* use = old->fast_out(i); 89 _igvn.rehash_node_delayed(use); 90 imax -= replace_input(use, old, target); 91 // back up iterator 92 --i; 93 } 94 assert(old->outcnt() == 0, "all uses must be deleted"); 95 } 96 97 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) { 98 Node* cmp; 99 if (mask != 0) { 100 Node* and_node = transform_later(new AndXNode(word, MakeConX(mask))); 101 cmp = transform_later(new CmpXNode(and_node, MakeConX(bits))); 102 } else { 103 cmp = word; 104 } 105 Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne)); 106 IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN ); 107 transform_later(iff); 108 109 // Fast path taken. 110 Node *fast_taken = transform_later(new IfFalseNode(iff)); 111 112 // Fast path not-taken, i.e. slow path 113 Node *slow_taken = transform_later(new IfTrueNode(iff)); 114 115 if (return_fast_path) { 116 region->init_req(edge, slow_taken); // Capture slow-control 117 return fast_taken; 118 } else { 119 region->init_req(edge, fast_taken); // Capture fast-control 120 return slow_taken; 121 } 122 } 123 124 //--------------------copy_predefined_input_for_runtime_call-------------------- 125 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) { 126 // Set fixed predefined input arguments 127 call->init_req( TypeFunc::Control, ctrl ); 128 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) ); 129 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ????? 130 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) ); 131 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) ); 132 } 133 134 //------------------------------make_slow_call--------------------------------- 135 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, 136 address slow_call, const char* leaf_name, Node* slow_path, 137 Node* parm0, Node* parm1, Node* parm2) { 138 139 // Slow-path call 140 CallNode *call = leaf_name 141 ? (CallNode*)new CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM ) 142 : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), TypeRawPtr::BOTTOM ); 143 144 // Slow path call has no side-effects, uses few values 145 copy_predefined_input_for_runtime_call(slow_path, oldcall, call ); 146 if (parm0 != nullptr) call->init_req(TypeFunc::Parms+0, parm0); 147 if (parm1 != nullptr) call->init_req(TypeFunc::Parms+1, parm1); 148 if (parm2 != nullptr) call->init_req(TypeFunc::Parms+2, parm2); 149 call->copy_call_debug_info(&_igvn, oldcall); 150 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 151 _igvn.replace_node(oldcall, call); 152 transform_later(call); 153 154 return call; 155 } 156 157 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) { 158 BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2(); 159 bs->eliminate_gc_barrier(this, p2x); 160 #ifndef PRODUCT 161 if (PrintOptoStatistics) { 162 Atomic::inc(&PhaseMacroExpand::_GC_barriers_removed_counter); 163 } 164 #endif 165 } 166 167 // Search for a memory operation for the specified memory slice. 168 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) { 169 Node *orig_mem = mem; 170 Node *alloc_mem = alloc->as_Allocate()->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false); 171 assert(alloc_mem != nullptr, "Allocation without a memory projection."); 172 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr(); 173 while (true) { 174 if (mem == alloc_mem || mem == start_mem ) { 175 return mem; // hit one of our sentinels 176 } else if (mem->is_MergeMem()) { 177 mem = mem->as_MergeMem()->memory_at(alias_idx); 178 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) { 179 Node *in = mem->in(0); 180 // we can safely skip over safepoints, calls, locks and membars because we 181 // already know that the object is safe to eliminate. 182 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) { 183 return in; 184 } else if (in->is_Call()) { 185 CallNode *call = in->as_Call(); 186 if (call->may_modify(tinst, phase)) { 187 assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape"); 188 if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) { 189 return in; 190 } 191 } 192 mem = in->in(TypeFunc::Memory); 193 } else if (in->is_MemBar()) { 194 ArrayCopyNode* ac = nullptr; 195 if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) { 196 if (ac != nullptr) { 197 assert(ac->is_clonebasic(), "Only basic clone is a non escaping clone"); 198 return ac; 199 } 200 } 201 mem = in->in(TypeFunc::Memory); 202 } else { 203 #ifdef ASSERT 204 in->dump(); 205 mem->dump(); 206 assert(false, "unexpected projection"); 207 #endif 208 } 209 } else if (mem->is_Store()) { 210 const TypePtr* atype = mem->as_Store()->adr_type(); 211 int adr_idx = phase->C->get_alias_index(atype); 212 if (adr_idx == alias_idx) { 213 assert(atype->isa_oopptr(), "address type must be oopptr"); 214 int adr_offset = atype->offset(); 215 uint adr_iid = atype->is_oopptr()->instance_id(); 216 // Array elements references have the same alias_idx 217 // but different offset and different instance_id. 218 if (adr_offset == offset && adr_iid == alloc->_idx) { 219 return mem; 220 } 221 } else { 222 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw"); 223 } 224 mem = mem->in(MemNode::Memory); 225 } else if (mem->is_ClearArray()) { 226 if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) { 227 // Can not bypass initialization of the instance 228 // we are looking. 229 debug_only(intptr_t offset;) 230 assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity"); 231 InitializeNode* init = alloc->as_Allocate()->initialization(); 232 // We are looking for stored value, return Initialize node 233 // or memory edge from Allocate node. 234 if (init != nullptr) { 235 return init; 236 } else { 237 return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers). 238 } 239 } 240 // Otherwise skip it (the call updated 'mem' value). 241 } else if (mem->Opcode() == Op_SCMemProj) { 242 mem = mem->in(0); 243 Node* adr = nullptr; 244 if (mem->is_LoadStore()) { 245 adr = mem->in(MemNode::Address); 246 } else { 247 assert(mem->Opcode() == Op_EncodeISOArray || 248 mem->Opcode() == Op_StrCompressedCopy, "sanity"); 249 adr = mem->in(3); // Destination array 250 } 251 const TypePtr* atype = adr->bottom_type()->is_ptr(); 252 int adr_idx = phase->C->get_alias_index(atype); 253 if (adr_idx == alias_idx) { 254 DEBUG_ONLY(mem->dump();) 255 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 256 return nullptr; 257 } 258 mem = mem->in(MemNode::Memory); 259 } else if (mem->Opcode() == Op_StrInflatedCopy) { 260 Node* adr = mem->in(3); // Destination array 261 const TypePtr* atype = adr->bottom_type()->is_ptr(); 262 int adr_idx = phase->C->get_alias_index(atype); 263 if (adr_idx == alias_idx) { 264 DEBUG_ONLY(mem->dump();) 265 assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field"); 266 return nullptr; 267 } 268 mem = mem->in(MemNode::Memory); 269 } else { 270 return mem; 271 } 272 assert(mem != orig_mem, "dead memory loop"); 273 } 274 } 275 276 // Generate loads from source of the arraycopy for fields of 277 // destination needed at a deoptimization point 278 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) { 279 BasicType bt = ft; 280 const Type *type = ftype; 281 if (ft == T_NARROWOOP) { 282 bt = T_OBJECT; 283 type = ftype->make_oopptr(); 284 } 285 Node* res = nullptr; 286 if (ac->is_clonebasic()) { 287 assert(ac->in(ArrayCopyNode::Src) != ac->in(ArrayCopyNode::Dest), "clone source equals destination"); 288 Node* base = ac->in(ArrayCopyNode::Src); 289 Node* adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(offset))); 290 const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset); 291 MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem(); 292 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 293 res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt); 294 } else { 295 if (ac->modifies(offset, offset, &_igvn, true)) { 296 assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result"); 297 uint shift = exact_log2(type2aelembytes(bt)); 298 Node* src_pos = ac->in(ArrayCopyNode::SrcPos); 299 Node* dest_pos = ac->in(ArrayCopyNode::DestPos); 300 const TypeInt* src_pos_t = _igvn.type(src_pos)->is_int(); 301 const TypeInt* dest_pos_t = _igvn.type(dest_pos)->is_int(); 302 303 Node* adr = nullptr; 304 const TypePtr* adr_type = nullptr; 305 if (src_pos_t->is_con() && dest_pos_t->is_con()) { 306 intptr_t off = ((src_pos_t->get_con() - dest_pos_t->get_con()) << shift) + offset; 307 Node* base = ac->in(ArrayCopyNode::Src); 308 adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(off))); 309 adr_type = _igvn.type(base)->is_ptr()->add_offset(off); 310 if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) { 311 // Don't emit a new load from src if src == dst but try to get the value from memory instead 312 return value_from_mem(ac->in(TypeFunc::Memory), ctl, ft, ftype, adr_type->isa_oopptr(), alloc); 313 } 314 } else { 315 Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); 316 #ifdef _LP64 317 diff = _igvn.transform(new ConvI2LNode(diff)); 318 #endif 319 diff = _igvn.transform(new LShiftXNode(diff, _igvn.intcon(shift))); 320 321 Node* off = _igvn.transform(new AddXNode(_igvn.MakeConX(offset), diff)); 322 Node* base = ac->in(ArrayCopyNode::Src); 323 adr = _igvn.transform(new AddPNode(base, base, off)); 324 adr_type = _igvn.type(base)->is_ptr()->add_offset(Type::OffsetBot); 325 if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) { 326 // Non constant offset in the array: we can't statically 327 // determine the value 328 return nullptr; 329 } 330 } 331 MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem(); 332 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 333 res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt); 334 } 335 } 336 if (res != nullptr) { 337 if (ftype->isa_narrowoop()) { 338 // PhaseMacroExpand::scalar_replacement adds DecodeN nodes 339 res = _igvn.transform(new EncodePNode(res, ftype)); 340 } 341 return res; 342 } 343 return nullptr; 344 } 345 346 // 347 // Given a Memory Phi, compute a value Phi containing the values from stores 348 // on the input paths. 349 // Note: this function is recursive, its depth is limited by the "level" argument 350 // Returns the computed Phi, or null if it cannot compute it. 351 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) { 352 assert(mem->is_Phi(), "sanity"); 353 int alias_idx = C->get_alias_index(adr_t); 354 int offset = adr_t->offset(); 355 int instance_id = adr_t->instance_id(); 356 357 // Check if an appropriate value phi already exists. 358 Node* region = mem->in(0); 359 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) { 360 Node* phi = region->fast_out(k); 361 if (phi->is_Phi() && phi != mem && 362 phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) { 363 return phi; 364 } 365 } 366 // Check if an appropriate new value phi already exists. 367 Node* new_phi = value_phis->find(mem->_idx); 368 if (new_phi != nullptr) 369 return new_phi; 370 371 if (level <= 0) { 372 return nullptr; // Give up: phi tree too deep 373 } 374 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 375 Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false); 376 assert(alloc_mem != nullptr, "Allocation without a memory projection."); 377 378 uint length = mem->req(); 379 GrowableArray <Node *> values(length, length, nullptr); 380 381 // create a new Phi for the value 382 PhiNode *phi = new PhiNode(mem->in(0), phi_type, nullptr, mem->_idx, instance_id, alias_idx, offset); 383 transform_later(phi); 384 value_phis->push(phi, mem->_idx); 385 386 for (uint j = 1; j < length; j++) { 387 Node *in = mem->in(j); 388 if (in == nullptr || in->is_top()) { 389 values.at_put(j, in); 390 } else { 391 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn); 392 if (val == start_mem || val == alloc_mem) { 393 // hit a sentinel, return appropriate 0 value 394 values.at_put(j, _igvn.zerocon(ft)); 395 continue; 396 } 397 if (val->is_Initialize()) { 398 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 399 } 400 if (val == nullptr) { 401 return nullptr; // can't find a value on this path 402 } 403 if (val == mem) { 404 values.at_put(j, mem); 405 } else if (val->is_Store()) { 406 Node* n = val->in(MemNode::ValueIn); 407 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 408 n = bs->step_over_gc_barrier(n); 409 if (is_subword_type(ft)) { 410 n = Compile::narrow_value(ft, n, phi_type, &_igvn, true); 411 } 412 values.at_put(j, n); 413 } else if(val->is_Proj() && val->in(0) == alloc) { 414 values.at_put(j, _igvn.zerocon(ft)); 415 } else if (val->is_Phi()) { 416 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1); 417 if (val == nullptr) { 418 return nullptr; 419 } 420 values.at_put(j, val); 421 } else if (val->Opcode() == Op_SCMemProj) { 422 assert(val->in(0)->is_LoadStore() || 423 val->in(0)->Opcode() == Op_EncodeISOArray || 424 val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity"); 425 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 426 return nullptr; 427 } else if (val->is_ArrayCopy()) { 428 Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc); 429 if (res == nullptr) { 430 return nullptr; 431 } 432 values.at_put(j, res); 433 } else { 434 DEBUG_ONLY( val->dump(); ) 435 assert(false, "unknown node on this path"); 436 return nullptr; // unknown node on this path 437 } 438 } 439 } 440 // Set Phi's inputs 441 for (uint j = 1; j < length; j++) { 442 if (values.at(j) == mem) { 443 phi->init_req(j, phi); 444 } else { 445 phi->init_req(j, values.at(j)); 446 } 447 } 448 return phi; 449 } 450 451 // Search the last value stored into the object's field. 452 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) { 453 assert(adr_t->is_known_instance_field(), "instance required"); 454 int instance_id = adr_t->instance_id(); 455 assert((uint)instance_id == alloc->_idx, "wrong allocation"); 456 457 int alias_idx = C->get_alias_index(adr_t); 458 int offset = adr_t->offset(); 459 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 460 Node *alloc_ctrl = alloc->in(TypeFunc::Control); 461 Node *alloc_mem = alloc->proj_out_or_null(TypeFunc::Memory, /*io_use:*/false); 462 assert(alloc_mem != nullptr, "Allocation without a memory projection."); 463 VectorSet visited; 464 465 bool done = sfpt_mem == alloc_mem; 466 Node *mem = sfpt_mem; 467 while (!done) { 468 if (visited.test_set(mem->_idx)) { 469 return nullptr; // found a loop, give up 470 } 471 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn); 472 if (mem == start_mem || mem == alloc_mem) { 473 done = true; // hit a sentinel, return appropriate 0 value 474 } else if (mem->is_Initialize()) { 475 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 476 if (mem == nullptr) { 477 done = true; // Something go wrong. 478 } else if (mem->is_Store()) { 479 const TypePtr* atype = mem->as_Store()->adr_type(); 480 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice"); 481 done = true; 482 } 483 } else if (mem->is_Store()) { 484 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr(); 485 assert(atype != nullptr, "address type must be oopptr"); 486 assert(C->get_alias_index(atype) == alias_idx && 487 atype->is_known_instance_field() && atype->offset() == offset && 488 atype->instance_id() == instance_id, "store is correct memory slice"); 489 done = true; 490 } else if (mem->is_Phi()) { 491 // try to find a phi's unique input 492 Node *unique_input = nullptr; 493 Node *top = C->top(); 494 for (uint i = 1; i < mem->req(); i++) { 495 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn); 496 if (n == nullptr || n == top || n == mem) { 497 continue; 498 } else if (unique_input == nullptr) { 499 unique_input = n; 500 } else if (unique_input != n) { 501 unique_input = top; 502 break; 503 } 504 } 505 if (unique_input != nullptr && unique_input != top) { 506 mem = unique_input; 507 } else { 508 done = true; 509 } 510 } else if (mem->is_ArrayCopy()) { 511 done = true; 512 } else { 513 DEBUG_ONLY( mem->dump(); ) 514 assert(false, "unexpected node"); 515 } 516 } 517 if (mem != nullptr) { 518 if (mem == start_mem || mem == alloc_mem) { 519 // hit a sentinel, return appropriate 0 value 520 return _igvn.zerocon(ft); 521 } else if (mem->is_Store()) { 522 Node* n = mem->in(MemNode::ValueIn); 523 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 524 n = bs->step_over_gc_barrier(n); 525 return n; 526 } else if (mem->is_Phi()) { 527 // attempt to produce a Phi reflecting the values on the input paths of the Phi 528 Node_Stack value_phis(8); 529 Node* phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit); 530 if (phi != nullptr) { 531 return phi; 532 } else { 533 // Kill all new Phis 534 while(value_phis.is_nonempty()) { 535 Node* n = value_phis.node(); 536 _igvn.replace_node(n, C->top()); 537 value_phis.pop(); 538 } 539 } 540 } else if (mem->is_ArrayCopy()) { 541 Node* ctl = mem->in(0); 542 Node* m = mem->in(TypeFunc::Memory); 543 if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj()) { 544 // pin the loads in the uncommon trap path 545 ctl = sfpt_ctl; 546 m = sfpt_mem; 547 } 548 return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc); 549 } 550 } 551 // Something go wrong. 552 return nullptr; 553 } 554 555 // Check the possibility of scalar replacement. 556 bool PhaseMacroExpand::can_eliminate_allocation(PhaseIterGVN* igvn, AllocateNode *alloc, GrowableArray <SafePointNode *>* safepoints) { 557 // Scan the uses of the allocation to check for anything that would 558 // prevent us from eliminating it. 559 NOT_PRODUCT( const char* fail_eliminate = nullptr; ) 560 DEBUG_ONLY( Node* disq_node = nullptr; ) 561 bool can_eliminate = true; 562 bool reduce_merge_precheck = (safepoints == nullptr); 563 564 Node* res = alloc->result_cast(); 565 const TypeOopPtr* res_type = nullptr; 566 if (res == nullptr) { 567 // All users were eliminated. 568 } else if (!res->is_CheckCastPP()) { 569 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";) 570 can_eliminate = false; 571 } else { 572 res_type = igvn->type(res)->isa_oopptr(); 573 if (res_type == nullptr) { 574 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";) 575 can_eliminate = false; 576 } else if (!res_type->klass_is_exact()) { 577 NOT_PRODUCT(fail_eliminate = "Not an exact type.";) 578 can_eliminate = false; 579 } else if (res_type->isa_aryptr()) { 580 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1); 581 if (length < 0) { 582 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";) 583 can_eliminate = false; 584 } 585 } 586 } 587 588 if (can_eliminate && res != nullptr) { 589 BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2(); 590 for (DUIterator_Fast jmax, j = res->fast_outs(jmax); 591 j < jmax && can_eliminate; j++) { 592 Node* use = res->fast_out(j); 593 594 if (use->is_AddP()) { 595 const TypePtr* addp_type = igvn->type(use)->is_ptr(); 596 int offset = addp_type->offset(); 597 598 if (offset == Type::OffsetTop || offset == Type::OffsetBot) { 599 NOT_PRODUCT(fail_eliminate = "Undefined field reference";) 600 can_eliminate = false; 601 break; 602 } 603 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); 604 k < kmax && can_eliminate; k++) { 605 Node* n = use->fast_out(k); 606 if (!n->is_Store() && n->Opcode() != Op_CastP2X && !bs->is_gc_pre_barrier_node(n) && !reduce_merge_precheck) { 607 DEBUG_ONLY(disq_node = n;) 608 if (n->is_Load() || n->is_LoadStore()) { 609 NOT_PRODUCT(fail_eliminate = "Field load";) 610 } else { 611 NOT_PRODUCT(fail_eliminate = "Not store field reference";) 612 } 613 can_eliminate = false; 614 } 615 } 616 } else if (use->is_ArrayCopy() && 617 (use->as_ArrayCopy()->is_clonebasic() || 618 use->as_ArrayCopy()->is_arraycopy_validated() || 619 use->as_ArrayCopy()->is_copyof_validated() || 620 use->as_ArrayCopy()->is_copyofrange_validated()) && 621 use->in(ArrayCopyNode::Dest) == res) { 622 // ok to eliminate 623 } else if (use->is_SafePoint()) { 624 SafePointNode* sfpt = use->as_SafePoint(); 625 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) { 626 // Object is passed as argument. 627 DEBUG_ONLY(disq_node = use;) 628 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";) 629 can_eliminate = false; 630 } 631 Node* sfptMem = sfpt->memory(); 632 if (sfptMem == nullptr || sfptMem->is_top()) { 633 DEBUG_ONLY(disq_node = use;) 634 NOT_PRODUCT(fail_eliminate = "null or TOP memory";) 635 can_eliminate = false; 636 } else if (!reduce_merge_precheck) { 637 safepoints->append_if_missing(sfpt); 638 } 639 } else if (reduce_merge_precheck && 640 (use->is_Phi() || use->is_EncodeP() || 641 use->Opcode() == Op_MemBarRelease || 642 (UseStoreStoreForCtor && use->Opcode() == Op_MemBarStoreStore))) { 643 // Nothing to do 644 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark 645 if (use->is_Phi()) { 646 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) { 647 NOT_PRODUCT(fail_eliminate = "Object is return value";) 648 } else { 649 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";) 650 } 651 DEBUG_ONLY(disq_node = use;) 652 } else { 653 if (use->Opcode() == Op_Return) { 654 NOT_PRODUCT(fail_eliminate = "Object is return value";) 655 } else { 656 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";) 657 } 658 DEBUG_ONLY(disq_node = use;) 659 } 660 can_eliminate = false; 661 } 662 } 663 } 664 665 #ifndef PRODUCT 666 if (PrintEliminateAllocations && safepoints != nullptr) { 667 if (can_eliminate) { 668 tty->print("Scalar "); 669 if (res == nullptr) 670 alloc->dump(); 671 else 672 res->dump(); 673 } else if (alloc->_is_scalar_replaceable) { 674 tty->print("NotScalar (%s)", fail_eliminate); 675 if (res == nullptr) 676 alloc->dump(); 677 else 678 res->dump(); 679 #ifdef ASSERT 680 if (disq_node != nullptr) { 681 tty->print(" >>>> "); 682 disq_node->dump(); 683 } 684 #endif /*ASSERT*/ 685 } 686 } 687 688 if (TraceReduceAllocationMerges && !can_eliminate && reduce_merge_precheck) { 689 tty->print_cr("\tCan't eliminate allocation because '%s': ", fail_eliminate != nullptr ? fail_eliminate : ""); 690 DEBUG_ONLY(if (disq_node != nullptr) disq_node->dump();) 691 } 692 #endif 693 return can_eliminate; 694 } 695 696 void PhaseMacroExpand::undo_previous_scalarizations(GrowableArray <SafePointNode *> safepoints_done, AllocateNode* alloc) { 697 Node* res = alloc->result_cast(); 698 int nfields = 0; 699 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 700 701 if (res != nullptr) { 702 const TypeOopPtr* res_type = _igvn.type(res)->isa_oopptr(); 703 704 if (res_type->isa_instptr()) { 705 // find the fields of the class which will be needed for safepoint debug information 706 ciInstanceKlass* iklass = res_type->is_instptr()->instance_klass(); 707 nfields = iklass->nof_nonstatic_fields(); 708 } else { 709 // find the array's elements which will be needed for safepoint debug information 710 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1); 711 assert(nfields >= 0, "must be an array klass."); 712 } 713 } 714 715 // rollback processed safepoints 716 while (safepoints_done.length() > 0) { 717 SafePointNode* sfpt_done = safepoints_done.pop(); 718 // remove any extra entries we added to the safepoint 719 uint last = sfpt_done->req() - 1; 720 for (int k = 0; k < nfields; k++) { 721 sfpt_done->del_req(last--); 722 } 723 JVMState *jvms = sfpt_done->jvms(); 724 jvms->set_endoff(sfpt_done->req()); 725 // Now make a pass over the debug information replacing any references 726 // to SafePointScalarObjectNode with the allocated object. 727 int start = jvms->debug_start(); 728 int end = jvms->debug_end(); 729 for (int i = start; i < end; i++) { 730 if (sfpt_done->in(i)->is_SafePointScalarObject()) { 731 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject(); 732 if (scobj->first_index(jvms) == sfpt_done->req() && 733 scobj->n_fields() == (uint)nfields) { 734 assert(scobj->alloc() == alloc, "sanity"); 735 sfpt_done->set_req(i, res); 736 } 737 } 738 } 739 _igvn._worklist.push(sfpt_done); 740 } 741 } 742 743 SafePointScalarObjectNode* PhaseMacroExpand::create_scalarized_object_description(AllocateNode *alloc, SafePointNode* sfpt) { 744 // Fields of scalar objs are referenced only at the end 745 // of regular debuginfo at the last (youngest) JVMS. 746 // Record relative start index. 747 ciInstanceKlass* iklass = nullptr; 748 BasicType basic_elem_type = T_ILLEGAL; 749 const Type* field_type = nullptr; 750 const TypeOopPtr* res_type = nullptr; 751 int nfields = 0; 752 int array_base = 0; 753 int element_size = 0; 754 uint first_ind = (sfpt->req() - sfpt->jvms()->scloff()); 755 Node* res = alloc->result_cast(); 756 757 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 758 assert(sfpt->jvms() != nullptr, "missed JVMS"); 759 760 if (res != nullptr) { // Could be null when there are no users 761 res_type = _igvn.type(res)->isa_oopptr(); 762 763 if (res_type->isa_instptr()) { 764 // find the fields of the class which will be needed for safepoint debug information 765 iklass = res_type->is_instptr()->instance_klass(); 766 nfields = iklass->nof_nonstatic_fields(); 767 } else { 768 // find the array's elements which will be needed for safepoint debug information 769 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1); 770 assert(nfields >= 0, "must be an array klass."); 771 basic_elem_type = res_type->is_aryptr()->elem()->array_element_basic_type(); 772 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 773 element_size = type2aelembytes(basic_elem_type); 774 field_type = res_type->is_aryptr()->elem(); 775 } 776 } 777 778 SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type, alloc, first_ind, sfpt->jvms()->depth(), nfields); 779 sobj->init_req(0, C->root()); 780 transform_later(sobj); 781 782 // Scan object's fields adding an input to the safepoint for each field. 783 for (int j = 0; j < nfields; j++) { 784 intptr_t offset; 785 ciField* field = nullptr; 786 if (iklass != nullptr) { 787 field = iklass->nonstatic_field_at(j); 788 offset = field->offset_in_bytes(); 789 ciType* elem_type = field->type(); 790 basic_elem_type = field->layout_type(); 791 792 // The next code is taken from Parse::do_get_xxx(). 793 if (is_reference_type(basic_elem_type)) { 794 if (!elem_type->is_loaded()) { 795 field_type = TypeInstPtr::BOTTOM; 796 } else if (field != nullptr && field->is_static_constant()) { 797 ciObject* con = field->constant_value().as_object(); 798 // Do not "join" in the previous type; it doesn't add value, 799 // and may yield a vacuous result if the field is of interface type. 800 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr(); 801 assert(field_type != nullptr, "field singleton type must be consistent"); 802 } else { 803 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass()); 804 } 805 if (UseCompressedOops) { 806 field_type = field_type->make_narrowoop(); 807 basic_elem_type = T_NARROWOOP; 808 } 809 } else { 810 field_type = Type::get_const_basic_type(basic_elem_type); 811 } 812 } else { 813 offset = array_base + j * (intptr_t)element_size; 814 } 815 816 const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr(); 817 818 Node *field_val = value_from_mem(sfpt->memory(), sfpt->control(), basic_elem_type, field_type, field_addr_type, alloc); 819 820 // We weren't able to find a value for this field, 821 // give up on eliminating this allocation. 822 if (field_val == nullptr) { 823 uint last = sfpt->req() - 1; 824 for (int k = 0; k < j; k++) { 825 sfpt->del_req(last--); 826 } 827 _igvn._worklist.push(sfpt); 828 829 #ifndef PRODUCT 830 if (PrintEliminateAllocations) { 831 if (field != nullptr) { 832 tty->print("=== At SafePoint node %d can't find value of field: ", sfpt->_idx); 833 field->print(); 834 int field_idx = C->get_alias_index(field_addr_type); 835 tty->print(" (alias_idx=%d)", field_idx); 836 } else { // Array's element 837 tty->print("=== At SafePoint node %d can't find value of array element [%d]", sfpt->_idx, j); 838 } 839 tty->print(", which prevents elimination of: "); 840 if (res == nullptr) 841 alloc->dump(); 842 else 843 res->dump(); 844 } 845 #endif 846 847 return nullptr; 848 } 849 850 if (UseCompressedOops && field_type->isa_narrowoop()) { 851 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation 852 // to be able scalar replace the allocation. 853 if (field_val->is_EncodeP()) { 854 field_val = field_val->in(1); 855 } else { 856 field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type())); 857 } 858 } 859 sfpt->add_req(field_val); 860 } 861 862 sfpt->jvms()->set_endoff(sfpt->req()); 863 864 return sobj; 865 } 866 867 // Do scalar replacement. 868 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) { 869 GrowableArray <SafePointNode *> safepoints_done; 870 Node* res = alloc->result_cast(); 871 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 872 873 // Process the safepoint uses 874 while (safepoints.length() > 0) { 875 SafePointNode* sfpt = safepoints.pop(); 876 SafePointScalarObjectNode* sobj = create_scalarized_object_description(alloc, sfpt); 877 878 if (sobj == nullptr) { 879 undo_previous_scalarizations(safepoints_done, alloc); 880 return false; 881 } 882 883 // Now make a pass over the debug information replacing any references 884 // to the allocated object with "sobj" 885 JVMState *jvms = sfpt->jvms(); 886 sfpt->replace_edges_in_range(res, sobj, jvms->debug_start(), jvms->debug_end(), &_igvn); 887 _igvn._worklist.push(sfpt); 888 889 // keep it for rollback 890 safepoints_done.append_if_missing(sfpt); 891 } 892 893 return true; 894 } 895 896 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) { 897 Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control); 898 Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory); 899 if (ctl_proj != nullptr) { 900 igvn.replace_node(ctl_proj, n->in(0)); 901 } 902 if (mem_proj != nullptr) { 903 igvn.replace_node(mem_proj, n->in(TypeFunc::Memory)); 904 } 905 } 906 907 // Process users of eliminated allocation. 908 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) { 909 Node* res = alloc->result_cast(); 910 if (res != nullptr) { 911 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) { 912 Node *use = res->last_out(j); 913 uint oc1 = res->outcnt(); 914 915 if (use->is_AddP()) { 916 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) { 917 Node *n = use->last_out(k); 918 uint oc2 = use->outcnt(); 919 if (n->is_Store()) { 920 #ifdef ASSERT 921 // Verify that there is no dependent MemBarVolatile nodes, 922 // they should be removed during IGVN, see MemBarNode::Ideal(). 923 for (DUIterator_Fast pmax, p = n->fast_outs(pmax); 924 p < pmax; p++) { 925 Node* mb = n->fast_out(p); 926 assert(mb->is_Initialize() || !mb->is_MemBar() || 927 mb->req() <= MemBarNode::Precedent || 928 mb->in(MemBarNode::Precedent) != n, 929 "MemBarVolatile should be eliminated for non-escaping object"); 930 } 931 #endif 932 _igvn.replace_node(n, n->in(MemNode::Memory)); 933 } else { 934 eliminate_gc_barrier(n); 935 } 936 k -= (oc2 - use->outcnt()); 937 } 938 _igvn.remove_dead_node(use); 939 } else if (use->is_ArrayCopy()) { 940 // Disconnect ArrayCopy node 941 ArrayCopyNode* ac = use->as_ArrayCopy(); 942 if (ac->is_clonebasic()) { 943 Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out(); 944 disconnect_projections(ac, _igvn); 945 assert(alloc->in(TypeFunc::Memory)->is_Proj() && alloc->in(TypeFunc::Memory)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation"); 946 Node* membar_before = alloc->in(TypeFunc::Memory)->in(0); 947 disconnect_projections(membar_before->as_MemBar(), _igvn); 948 if (membar_after->is_MemBar()) { 949 disconnect_projections(membar_after->as_MemBar(), _igvn); 950 } 951 } else { 952 assert(ac->is_arraycopy_validated() || 953 ac->is_copyof_validated() || 954 ac->is_copyofrange_validated(), "unsupported"); 955 CallProjections callprojs; 956 ac->extract_projections(&callprojs, true); 957 958 _igvn.replace_node(callprojs.fallthrough_ioproj, ac->in(TypeFunc::I_O)); 959 _igvn.replace_node(callprojs.fallthrough_memproj, ac->in(TypeFunc::Memory)); 960 _igvn.replace_node(callprojs.fallthrough_catchproj, ac->in(TypeFunc::Control)); 961 962 // Set control to top. IGVN will remove the remaining projections 963 ac->set_req(0, top()); 964 ac->replace_edge(res, top(), &_igvn); 965 966 // Disconnect src right away: it can help find new 967 // opportunities for allocation elimination 968 Node* src = ac->in(ArrayCopyNode::Src); 969 ac->replace_edge(src, top(), &_igvn); 970 // src can be top at this point if src and dest of the 971 // arraycopy were the same 972 if (src->outcnt() == 0 && !src->is_top()) { 973 _igvn.remove_dead_node(src); 974 } 975 } 976 _igvn._worklist.push(ac); 977 } else { 978 eliminate_gc_barrier(use); 979 } 980 j -= (oc1 - res->outcnt()); 981 } 982 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted"); 983 _igvn.remove_dead_node(res); 984 } 985 986 // 987 // Process other users of allocation's projections 988 // 989 if (_callprojs.resproj != nullptr && _callprojs.resproj->outcnt() != 0) { 990 // First disconnect stores captured by Initialize node. 991 // If Initialize node is eliminated first in the following code, 992 // it will kill such stores and DUIterator_Last will assert. 993 for (DUIterator_Fast jmax, j = _callprojs.resproj->fast_outs(jmax); j < jmax; j++) { 994 Node* use = _callprojs.resproj->fast_out(j); 995 if (use->is_AddP()) { 996 // raw memory addresses used only by the initialization 997 _igvn.replace_node(use, C->top()); 998 --j; --jmax; 999 } 1000 } 1001 for (DUIterator_Last jmin, j = _callprojs.resproj->last_outs(jmin); j >= jmin; ) { 1002 Node* use = _callprojs.resproj->last_out(j); 1003 uint oc1 = _callprojs.resproj->outcnt(); 1004 if (use->is_Initialize()) { 1005 // Eliminate Initialize node. 1006 InitializeNode *init = use->as_Initialize(); 1007 assert(init->outcnt() <= 2, "only a control and memory projection expected"); 1008 Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control); 1009 if (ctrl_proj != nullptr) { 1010 _igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control)); 1011 #ifdef ASSERT 1012 // If the InitializeNode has no memory out, it will die, and tmp will become null 1013 Node* tmp = init->in(TypeFunc::Control); 1014 assert(tmp == nullptr || tmp == _callprojs.fallthrough_catchproj, "allocation control projection"); 1015 #endif 1016 } 1017 Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory); 1018 if (mem_proj != nullptr) { 1019 Node *mem = init->in(TypeFunc::Memory); 1020 #ifdef ASSERT 1021 if (mem->is_MergeMem()) { 1022 assert(mem->in(TypeFunc::Memory) == _callprojs.fallthrough_memproj, "allocation memory projection"); 1023 } else { 1024 assert(mem == _callprojs.fallthrough_memproj, "allocation memory projection"); 1025 } 1026 #endif 1027 _igvn.replace_node(mem_proj, mem); 1028 } 1029 } else { 1030 assert(false, "only Initialize or AddP expected"); 1031 } 1032 j -= (oc1 - _callprojs.resproj->outcnt()); 1033 } 1034 } 1035 if (_callprojs.fallthrough_catchproj != nullptr) { 1036 _igvn.replace_node(_callprojs.fallthrough_catchproj, alloc->in(TypeFunc::Control)); 1037 } 1038 if (_callprojs.fallthrough_memproj != nullptr) { 1039 _igvn.replace_node(_callprojs.fallthrough_memproj, alloc->in(TypeFunc::Memory)); 1040 } 1041 if (_callprojs.catchall_memproj != nullptr) { 1042 _igvn.replace_node(_callprojs.catchall_memproj, C->top()); 1043 } 1044 if (_callprojs.fallthrough_ioproj != nullptr) { 1045 _igvn.replace_node(_callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 1046 } 1047 if (_callprojs.catchall_ioproj != nullptr) { 1048 _igvn.replace_node(_callprojs.catchall_ioproj, C->top()); 1049 } 1050 if (_callprojs.catchall_catchproj != nullptr) { 1051 _igvn.replace_node(_callprojs.catchall_catchproj, C->top()); 1052 } 1053 } 1054 1055 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) { 1056 // If reallocation fails during deoptimization we'll pop all 1057 // interpreter frames for this compiled frame and that won't play 1058 // nice with JVMTI popframe. 1059 // We avoid this issue by eager reallocation when the popframe request 1060 // is received. 1061 if (!EliminateAllocations || !alloc->_is_non_escaping) { 1062 return false; 1063 } 1064 Node* klass = alloc->in(AllocateNode::KlassNode); 1065 const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr(); 1066 Node* res = alloc->result_cast(); 1067 // Eliminate boxing allocations which are not used 1068 // regardless scalar replaceable status. 1069 bool boxing_alloc = C->eliminate_boxing() && 1070 tklass->isa_instklassptr() && 1071 tklass->is_instklassptr()->instance_klass()->is_box_klass(); 1072 if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != nullptr))) { 1073 return false; 1074 } 1075 1076 alloc->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 1077 1078 GrowableArray <SafePointNode *> safepoints; 1079 if (!can_eliminate_allocation(&_igvn, alloc, &safepoints)) { 1080 return false; 1081 } 1082 1083 if (!alloc->_is_scalar_replaceable) { 1084 assert(res == nullptr, "sanity"); 1085 // We can only eliminate allocation if all debug info references 1086 // are already replaced with SafePointScalarObject because 1087 // we can't search for a fields value without instance_id. 1088 if (safepoints.length() > 0) { 1089 return false; 1090 } 1091 } 1092 1093 if (!scalar_replacement(alloc, safepoints)) { 1094 return false; 1095 } 1096 1097 CompileLog* log = C->log(); 1098 if (log != nullptr) { 1099 log->head("eliminate_allocation type='%d'", 1100 log->identify(tklass->exact_klass())); 1101 JVMState* p = alloc->jvms(); 1102 while (p != nullptr) { 1103 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1104 p = p->caller(); 1105 } 1106 log->tail("eliminate_allocation"); 1107 } 1108 1109 process_users_of_allocation(alloc); 1110 1111 #ifndef PRODUCT 1112 if (PrintEliminateAllocations) { 1113 if (alloc->is_AllocateArray()) 1114 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx); 1115 else 1116 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx); 1117 } 1118 #endif 1119 1120 return true; 1121 } 1122 1123 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) { 1124 // EA should remove all uses of non-escaping boxing node. 1125 if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != nullptr) { 1126 return false; 1127 } 1128 1129 assert(boxing->result_cast() == nullptr, "unexpected boxing node result"); 1130 1131 boxing->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 1132 1133 const TypeTuple* r = boxing->tf()->range(); 1134 assert(r->cnt() > TypeFunc::Parms, "sanity"); 1135 const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr(); 1136 assert(t != nullptr, "sanity"); 1137 1138 CompileLog* log = C->log(); 1139 if (log != nullptr) { 1140 log->head("eliminate_boxing type='%d'", 1141 log->identify(t->instance_klass())); 1142 JVMState* p = boxing->jvms(); 1143 while (p != nullptr) { 1144 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1145 p = p->caller(); 1146 } 1147 log->tail("eliminate_boxing"); 1148 } 1149 1150 process_users_of_allocation(boxing); 1151 1152 #ifndef PRODUCT 1153 if (PrintEliminateAllocations) { 1154 tty->print("++++ Eliminated: %d ", boxing->_idx); 1155 boxing->method()->print_short_name(tty); 1156 tty->cr(); 1157 } 1158 #endif 1159 1160 return true; 1161 } 1162 1163 1164 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) { 1165 Node* adr = basic_plus_adr(base, offset); 1166 const TypePtr* adr_type = adr->bottom_type()->is_ptr(); 1167 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered); 1168 transform_later(value); 1169 return value; 1170 } 1171 1172 1173 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) { 1174 Node* adr = basic_plus_adr(base, offset); 1175 mem = StoreNode::make(_igvn, ctl, mem, adr, nullptr, value, bt, MemNode::unordered); 1176 transform_later(mem); 1177 return mem; 1178 } 1179 1180 //============================================================================= 1181 // 1182 // A L L O C A T I O N 1183 // 1184 // Allocation attempts to be fast in the case of frequent small objects. 1185 // It breaks down like this: 1186 // 1187 // 1) Size in doublewords is computed. This is a constant for objects and 1188 // variable for most arrays. Doubleword units are used to avoid size 1189 // overflow of huge doubleword arrays. We need doublewords in the end for 1190 // rounding. 1191 // 1192 // 2) Size is checked for being 'too large'. Too-large allocations will go 1193 // the slow path into the VM. The slow path can throw any required 1194 // exceptions, and does all the special checks for very large arrays. The 1195 // size test can constant-fold away for objects. For objects with 1196 // finalizers it constant-folds the otherway: you always go slow with 1197 // finalizers. 1198 // 1199 // 3) If NOT using TLABs, this is the contended loop-back point. 1200 // Load-Locked the heap top. If using TLABs normal-load the heap top. 1201 // 1202 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route. 1203 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish 1204 // "size*8" we always enter the VM, where "largish" is a constant picked small 1205 // enough that there's always space between the eden max and 4Gig (old space is 1206 // there so it's quite large) and large enough that the cost of entering the VM 1207 // is dwarfed by the cost to initialize the space. 1208 // 1209 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back 1210 // down. If contended, repeat at step 3. If using TLABs normal-store 1211 // adjusted heap top back down; there is no contention. 1212 // 1213 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark 1214 // fields. 1215 // 1216 // 7) Merge with the slow-path; cast the raw memory pointer to the correct 1217 // oop flavor. 1218 // 1219 //============================================================================= 1220 // FastAllocateSizeLimit value is in DOUBLEWORDS. 1221 // Allocations bigger than this always go the slow route. 1222 // This value must be small enough that allocation attempts that need to 1223 // trigger exceptions go the slow route. Also, it must be small enough so 1224 // that heap_top + size_in_bytes does not wrap around the 4Gig limit. 1225 //=============================================================================j// 1226 // %%% Here is an old comment from parseHelper.cpp; is it outdated? 1227 // The allocator will coalesce int->oop copies away. See comment in 1228 // coalesce.cpp about how this works. It depends critically on the exact 1229 // code shape produced here, so if you are changing this code shape 1230 // make sure the GC info for the heap-top is correct in and around the 1231 // slow-path call. 1232 // 1233 1234 void PhaseMacroExpand::expand_allocate_common( 1235 AllocateNode* alloc, // allocation node to be expanded 1236 Node* length, // array length for an array allocation 1237 const TypeFunc* slow_call_type, // Type of slow call 1238 address slow_call_address, // Address of slow call 1239 Node* valid_length_test // whether length is valid or not 1240 ) 1241 { 1242 Node* ctrl = alloc->in(TypeFunc::Control); 1243 Node* mem = alloc->in(TypeFunc::Memory); 1244 Node* i_o = alloc->in(TypeFunc::I_O); 1245 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize); 1246 Node* klass_node = alloc->in(AllocateNode::KlassNode); 1247 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest); 1248 assert(ctrl != nullptr, "must have control"); 1249 1250 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results. 1251 // they will not be used if "always_slow" is set 1252 enum { slow_result_path = 1, fast_result_path = 2 }; 1253 Node *result_region = nullptr; 1254 Node *result_phi_rawmem = nullptr; 1255 Node *result_phi_rawoop = nullptr; 1256 Node *result_phi_i_o = nullptr; 1257 1258 // The initial slow comparison is a size check, the comparison 1259 // we want to do is a BoolTest::gt 1260 bool expand_fast_path = true; 1261 int tv = _igvn.find_int_con(initial_slow_test, -1); 1262 if (tv >= 0) { 1263 // InitialTest has constant result 1264 // 0 - can fit in TLAB 1265 // 1 - always too big or negative 1266 assert(tv <= 1, "0 or 1 if a constant"); 1267 expand_fast_path = (tv == 0); 1268 initial_slow_test = nullptr; 1269 } else { 1270 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn); 1271 } 1272 1273 if (!UseTLAB) { 1274 // Force slow-path allocation 1275 expand_fast_path = false; 1276 initial_slow_test = nullptr; 1277 } 1278 1279 bool allocation_has_use = (alloc->result_cast() != nullptr); 1280 if (!allocation_has_use) { 1281 InitializeNode* init = alloc->initialization(); 1282 if (init != nullptr) { 1283 init->remove(&_igvn); 1284 } 1285 if (expand_fast_path && (initial_slow_test == nullptr)) { 1286 // Remove allocation node and return. 1287 // Size is a non-negative constant -> no initial check needed -> directly to fast path. 1288 // Also, no usages -> empty fast path -> no fall out to slow path -> nothing left. 1289 #ifndef PRODUCT 1290 if (PrintEliminateAllocations) { 1291 tty->print("NotUsed "); 1292 Node* res = alloc->proj_out_or_null(TypeFunc::Parms); 1293 if (res != nullptr) { 1294 res->dump(); 1295 } else { 1296 alloc->dump(); 1297 } 1298 } 1299 #endif 1300 yank_alloc_node(alloc); 1301 return; 1302 } 1303 } 1304 1305 enum { too_big_or_final_path = 1, need_gc_path = 2 }; 1306 Node *slow_region = nullptr; 1307 Node *toobig_false = ctrl; 1308 1309 // generate the initial test if necessary 1310 if (initial_slow_test != nullptr ) { 1311 assert (expand_fast_path, "Only need test if there is a fast path"); 1312 slow_region = new RegionNode(3); 1313 1314 // Now make the initial failure test. Usually a too-big test but 1315 // might be a TRUE for finalizers. 1316 IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 1317 transform_later(toobig_iff); 1318 // Plug the failing-too-big test into the slow-path region 1319 Node *toobig_true = new IfTrueNode( toobig_iff ); 1320 transform_later(toobig_true); 1321 slow_region ->init_req( too_big_or_final_path, toobig_true ); 1322 toobig_false = new IfFalseNode( toobig_iff ); 1323 transform_later(toobig_false); 1324 } else { 1325 // No initial test, just fall into next case 1326 assert(allocation_has_use || !expand_fast_path, "Should already have been handled"); 1327 toobig_false = ctrl; 1328 debug_only(slow_region = NodeSentinel); 1329 } 1330 1331 // If we are here there are several possibilities 1332 // - expand_fast_path is false - then only a slow path is expanded. That's it. 1333 // no_initial_check means a constant allocation. 1334 // - If check always evaluates to false -> expand_fast_path is false (see above) 1335 // - If check always evaluates to true -> directly into fast path (but may bailout to slowpath) 1336 // if !allocation_has_use the fast path is empty 1337 // if !allocation_has_use && no_initial_check 1338 // - Then there are no fastpath that can fall out to slowpath -> no allocation code at all. 1339 // removed by yank_alloc_node above. 1340 1341 Node *slow_mem = mem; // save the current memory state for slow path 1342 // generate the fast allocation code unless we know that the initial test will always go slow 1343 if (expand_fast_path) { 1344 // Fast path modifies only raw memory. 1345 if (mem->is_MergeMem()) { 1346 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw); 1347 } 1348 1349 // allocate the Region and Phi nodes for the result 1350 result_region = new RegionNode(3); 1351 result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM); 1352 result_phi_i_o = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch 1353 1354 // Grab regular I/O before optional prefetch may change it. 1355 // Slow-path does no I/O so just set it to the original I/O. 1356 result_phi_i_o->init_req(slow_result_path, i_o); 1357 1358 // Name successful fast-path variables 1359 Node* fast_oop_ctrl; 1360 Node* fast_oop_rawmem; 1361 if (allocation_has_use) { 1362 Node* needgc_ctrl = nullptr; 1363 result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM); 1364 1365 intx prefetch_lines = length != nullptr ? AllocatePrefetchLines : AllocateInstancePrefetchLines; 1366 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1367 Node* fast_oop = bs->obj_allocate(this, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl, 1368 fast_oop_ctrl, fast_oop_rawmem, 1369 prefetch_lines); 1370 1371 if (initial_slow_test != nullptr) { 1372 // This completes all paths into the slow merge point 1373 slow_region->init_req(need_gc_path, needgc_ctrl); 1374 transform_later(slow_region); 1375 } else { 1376 // No initial slow path needed! 1377 // Just fall from the need-GC path straight into the VM call. 1378 slow_region = needgc_ctrl; 1379 } 1380 1381 InitializeNode* init = alloc->initialization(); 1382 fast_oop_rawmem = initialize_object(alloc, 1383 fast_oop_ctrl, fast_oop_rawmem, fast_oop, 1384 klass_node, length, size_in_bytes); 1385 expand_initialize_membar(alloc, init, fast_oop_ctrl, fast_oop_rawmem); 1386 expand_dtrace_alloc_probe(alloc, fast_oop, fast_oop_ctrl, fast_oop_rawmem); 1387 1388 result_phi_rawoop->init_req(fast_result_path, fast_oop); 1389 } else { 1390 assert (initial_slow_test != nullptr, "sanity"); 1391 fast_oop_ctrl = toobig_false; 1392 fast_oop_rawmem = mem; 1393 transform_later(slow_region); 1394 } 1395 1396 // Plug in the successful fast-path into the result merge point 1397 result_region ->init_req(fast_result_path, fast_oop_ctrl); 1398 result_phi_i_o ->init_req(fast_result_path, i_o); 1399 result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem); 1400 } else { 1401 slow_region = ctrl; 1402 result_phi_i_o = i_o; // Rename it to use in the following code. 1403 } 1404 1405 // Generate slow-path call 1406 CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address, 1407 OptoRuntime::stub_name(slow_call_address), 1408 TypePtr::BOTTOM); 1409 call->init_req(TypeFunc::Control, slow_region); 1410 call->init_req(TypeFunc::I_O, top()); // does no i/o 1411 call->init_req(TypeFunc::Memory, slow_mem); // may gc ptrs 1412 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); 1413 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); 1414 1415 call->init_req(TypeFunc::Parms+0, klass_node); 1416 if (length != nullptr) { 1417 call->init_req(TypeFunc::Parms+1, length); 1418 } 1419 1420 // Copy debug information and adjust JVMState information, then replace 1421 // allocate node with the call 1422 call->copy_call_debug_info(&_igvn, alloc); 1423 // For array allocations, copy the valid length check to the call node so Compile::final_graph_reshaping() can verify 1424 // that the call has the expected number of CatchProj nodes (in case the allocation always fails and the fallthrough 1425 // path dies). 1426 if (valid_length_test != nullptr) { 1427 call->add_req(valid_length_test); 1428 } 1429 if (expand_fast_path) { 1430 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 1431 } else { 1432 // Hook i_o projection to avoid its elimination during allocation 1433 // replacement (when only a slow call is generated). 1434 call->set_req(TypeFunc::I_O, result_phi_i_o); 1435 } 1436 _igvn.replace_node(alloc, call); 1437 transform_later(call); 1438 1439 // Identify the output projections from the allocate node and 1440 // adjust any references to them. 1441 // The control and io projections look like: 1442 // 1443 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl) 1444 // Allocate Catch 1445 // ^---Proj(io) <-------+ ^---CatchProj(io) 1446 // 1447 // We are interested in the CatchProj nodes. 1448 // 1449 call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 1450 1451 // An allocate node has separate memory projections for the uses on 1452 // the control and i_o paths. Replace the control memory projection with 1453 // result_phi_rawmem (unless we are only generating a slow call when 1454 // both memory projections are combined) 1455 if (expand_fast_path && _callprojs.fallthrough_memproj != nullptr) { 1456 migrate_outs(_callprojs.fallthrough_memproj, result_phi_rawmem); 1457 } 1458 // Now change uses of catchall_memproj to use fallthrough_memproj and delete 1459 // catchall_memproj so we end up with a call that has only 1 memory projection. 1460 if (_callprojs.catchall_memproj != nullptr ) { 1461 if (_callprojs.fallthrough_memproj == nullptr) { 1462 _callprojs.fallthrough_memproj = new ProjNode(call, TypeFunc::Memory); 1463 transform_later(_callprojs.fallthrough_memproj); 1464 } 1465 migrate_outs(_callprojs.catchall_memproj, _callprojs.fallthrough_memproj); 1466 _igvn.remove_dead_node(_callprojs.catchall_memproj); 1467 } 1468 1469 // An allocate node has separate i_o projections for the uses on the control 1470 // and i_o paths. Always replace the control i_o projection with result i_o 1471 // otherwise incoming i_o become dead when only a slow call is generated 1472 // (it is different from memory projections where both projections are 1473 // combined in such case). 1474 if (_callprojs.fallthrough_ioproj != nullptr) { 1475 migrate_outs(_callprojs.fallthrough_ioproj, result_phi_i_o); 1476 } 1477 // Now change uses of catchall_ioproj to use fallthrough_ioproj and delete 1478 // catchall_ioproj so we end up with a call that has only 1 i_o projection. 1479 if (_callprojs.catchall_ioproj != nullptr ) { 1480 if (_callprojs.fallthrough_ioproj == nullptr) { 1481 _callprojs.fallthrough_ioproj = new ProjNode(call, TypeFunc::I_O); 1482 transform_later(_callprojs.fallthrough_ioproj); 1483 } 1484 migrate_outs(_callprojs.catchall_ioproj, _callprojs.fallthrough_ioproj); 1485 _igvn.remove_dead_node(_callprojs.catchall_ioproj); 1486 } 1487 1488 // if we generated only a slow call, we are done 1489 if (!expand_fast_path) { 1490 // Now we can unhook i_o. 1491 if (result_phi_i_o->outcnt() > 1) { 1492 call->set_req(TypeFunc::I_O, top()); 1493 } else { 1494 assert(result_phi_i_o->unique_ctrl_out() == call, "sanity"); 1495 // Case of new array with negative size known during compilation. 1496 // AllocateArrayNode::Ideal() optimization disconnect unreachable 1497 // following code since call to runtime will throw exception. 1498 // As result there will be no users of i_o after the call. 1499 // Leave i_o attached to this call to avoid problems in preceding graph. 1500 } 1501 return; 1502 } 1503 1504 if (_callprojs.fallthrough_catchproj != nullptr) { 1505 ctrl = _callprojs.fallthrough_catchproj->clone(); 1506 transform_later(ctrl); 1507 _igvn.replace_node(_callprojs.fallthrough_catchproj, result_region); 1508 } else { 1509 ctrl = top(); 1510 } 1511 Node *slow_result; 1512 if (_callprojs.resproj == nullptr) { 1513 // no uses of the allocation result 1514 slow_result = top(); 1515 } else { 1516 slow_result = _callprojs.resproj->clone(); 1517 transform_later(slow_result); 1518 _igvn.replace_node(_callprojs.resproj, result_phi_rawoop); 1519 } 1520 1521 // Plug slow-path into result merge point 1522 result_region->init_req( slow_result_path, ctrl); 1523 transform_later(result_region); 1524 if (allocation_has_use) { 1525 result_phi_rawoop->init_req(slow_result_path, slow_result); 1526 transform_later(result_phi_rawoop); 1527 } 1528 result_phi_rawmem->init_req(slow_result_path, _callprojs.fallthrough_memproj); 1529 transform_later(result_phi_rawmem); 1530 transform_later(result_phi_i_o); 1531 // This completes all paths into the result merge point 1532 } 1533 1534 // Remove alloc node that has no uses. 1535 void PhaseMacroExpand::yank_alloc_node(AllocateNode* alloc) { 1536 Node* ctrl = alloc->in(TypeFunc::Control); 1537 Node* mem = alloc->in(TypeFunc::Memory); 1538 Node* i_o = alloc->in(TypeFunc::I_O); 1539 1540 alloc->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 1541 if (_callprojs.resproj != nullptr) { 1542 for (DUIterator_Fast imax, i = _callprojs.resproj->fast_outs(imax); i < imax; i++) { 1543 Node* use = _callprojs.resproj->fast_out(i); 1544 use->isa_MemBar()->remove(&_igvn); 1545 --imax; 1546 --i; // back up iterator 1547 } 1548 assert(_callprojs.resproj->outcnt() == 0, "all uses must be deleted"); 1549 _igvn.remove_dead_node(_callprojs.resproj); 1550 } 1551 if (_callprojs.fallthrough_catchproj != nullptr) { 1552 migrate_outs(_callprojs.fallthrough_catchproj, ctrl); 1553 _igvn.remove_dead_node(_callprojs.fallthrough_catchproj); 1554 } 1555 if (_callprojs.catchall_catchproj != nullptr) { 1556 _igvn.rehash_node_delayed(_callprojs.catchall_catchproj); 1557 _callprojs.catchall_catchproj->set_req(0, top()); 1558 } 1559 if (_callprojs.fallthrough_proj != nullptr) { 1560 Node* catchnode = _callprojs.fallthrough_proj->unique_ctrl_out(); 1561 _igvn.remove_dead_node(catchnode); 1562 _igvn.remove_dead_node(_callprojs.fallthrough_proj); 1563 } 1564 if (_callprojs.fallthrough_memproj != nullptr) { 1565 migrate_outs(_callprojs.fallthrough_memproj, mem); 1566 _igvn.remove_dead_node(_callprojs.fallthrough_memproj); 1567 } 1568 if (_callprojs.fallthrough_ioproj != nullptr) { 1569 migrate_outs(_callprojs.fallthrough_ioproj, i_o); 1570 _igvn.remove_dead_node(_callprojs.fallthrough_ioproj); 1571 } 1572 if (_callprojs.catchall_memproj != nullptr) { 1573 _igvn.rehash_node_delayed(_callprojs.catchall_memproj); 1574 _callprojs.catchall_memproj->set_req(0, top()); 1575 } 1576 if (_callprojs.catchall_ioproj != nullptr) { 1577 _igvn.rehash_node_delayed(_callprojs.catchall_ioproj); 1578 _callprojs.catchall_ioproj->set_req(0, top()); 1579 } 1580 #ifndef PRODUCT 1581 if (PrintEliminateAllocations) { 1582 if (alloc->is_AllocateArray()) { 1583 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx); 1584 } else { 1585 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx); 1586 } 1587 } 1588 #endif 1589 _igvn.remove_dead_node(alloc); 1590 } 1591 1592 void PhaseMacroExpand::expand_initialize_membar(AllocateNode* alloc, InitializeNode* init, 1593 Node*& fast_oop_ctrl, Node*& fast_oop_rawmem) { 1594 // If initialization is performed by an array copy, any required 1595 // MemBarStoreStore was already added. If the object does not 1596 // escape no need for a MemBarStoreStore. If the object does not 1597 // escape in its initializer and memory barrier (MemBarStoreStore or 1598 // stronger) is already added at exit of initializer, also no need 1599 // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore 1600 // so that stores that initialize this object can't be reordered 1601 // with a subsequent store that makes this object accessible by 1602 // other threads. 1603 // Other threads include java threads and JVM internal threads 1604 // (for example concurrent GC threads). Current concurrent GC 1605 // implementation: G1 will not scan newly created object, 1606 // so it's safe to skip storestore barrier when allocation does 1607 // not escape. 1608 if (!alloc->does_not_escape_thread() && 1609 !alloc->is_allocation_MemBar_redundant() && 1610 (init == nullptr || !init->is_complete_with_arraycopy())) { 1611 if (init == nullptr || init->req() < InitializeNode::RawStores) { 1612 // No InitializeNode or no stores captured by zeroing 1613 // elimination. Simply add the MemBarStoreStore after object 1614 // initialization. 1615 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1616 transform_later(mb); 1617 1618 mb->init_req(TypeFunc::Memory, fast_oop_rawmem); 1619 mb->init_req(TypeFunc::Control, fast_oop_ctrl); 1620 fast_oop_ctrl = new ProjNode(mb, TypeFunc::Control); 1621 transform_later(fast_oop_ctrl); 1622 fast_oop_rawmem = new ProjNode(mb, TypeFunc::Memory); 1623 transform_later(fast_oop_rawmem); 1624 } else { 1625 // Add the MemBarStoreStore after the InitializeNode so that 1626 // all stores performing the initialization that were moved 1627 // before the InitializeNode happen before the storestore 1628 // barrier. 1629 1630 Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control); 1631 Node* init_mem = init->proj_out_or_null(TypeFunc::Memory); 1632 1633 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1634 transform_later(mb); 1635 1636 Node* ctrl = new ProjNode(init, TypeFunc::Control); 1637 transform_later(ctrl); 1638 Node* mem = new ProjNode(init, TypeFunc::Memory); 1639 transform_later(mem); 1640 1641 // The MemBarStoreStore depends on control and memory coming 1642 // from the InitializeNode 1643 mb->init_req(TypeFunc::Memory, mem); 1644 mb->init_req(TypeFunc::Control, ctrl); 1645 1646 ctrl = new ProjNode(mb, TypeFunc::Control); 1647 transform_later(ctrl); 1648 mem = new ProjNode(mb, TypeFunc::Memory); 1649 transform_later(mem); 1650 1651 // All nodes that depended on the InitializeNode for control 1652 // and memory must now depend on the MemBarNode that itself 1653 // depends on the InitializeNode 1654 if (init_ctrl != nullptr) { 1655 _igvn.replace_node(init_ctrl, ctrl); 1656 } 1657 if (init_mem != nullptr) { 1658 _igvn.replace_node(init_mem, mem); 1659 } 1660 } 1661 } 1662 } 1663 1664 void PhaseMacroExpand::expand_dtrace_alloc_probe(AllocateNode* alloc, Node* oop, 1665 Node*& ctrl, Node*& rawmem) { 1666 if (C->env()->dtrace_alloc_probes()) { 1667 // Slow-path call 1668 int size = TypeFunc::Parms + 2; 1669 CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(), 1670 CAST_FROM_FN_PTR(address, 1671 static_cast<int (*)(JavaThread*, oopDesc*)>(SharedRuntime::dtrace_object_alloc)), 1672 "dtrace_object_alloc", 1673 TypeRawPtr::BOTTOM); 1674 1675 // Get base of thread-local storage area 1676 Node* thread = new ThreadLocalNode(); 1677 transform_later(thread); 1678 1679 call->init_req(TypeFunc::Parms + 0, thread); 1680 call->init_req(TypeFunc::Parms + 1, oop); 1681 call->init_req(TypeFunc::Control, ctrl); 1682 call->init_req(TypeFunc::I_O , top()); // does no i/o 1683 call->init_req(TypeFunc::Memory , rawmem); 1684 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); 1685 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); 1686 transform_later(call); 1687 ctrl = new ProjNode(call, TypeFunc::Control); 1688 transform_later(ctrl); 1689 rawmem = new ProjNode(call, TypeFunc::Memory); 1690 transform_later(rawmem); 1691 } 1692 } 1693 1694 // Helper for PhaseMacroExpand::expand_allocate_common. 1695 // Initializes the newly-allocated storage. 1696 Node* 1697 PhaseMacroExpand::initialize_object(AllocateNode* alloc, 1698 Node* control, Node* rawmem, Node* object, 1699 Node* klass_node, Node* length, 1700 Node* size_in_bytes) { 1701 InitializeNode* init = alloc->initialization(); 1702 // Store the klass & mark bits 1703 Node* mark_node = alloc->make_ideal_mark(&_igvn, object, control, rawmem); 1704 if (!mark_node->is_Con()) { 1705 transform_later(mark_node); 1706 } 1707 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, TypeX_X->basic_type()); 1708 1709 if (!UseCompactObjectHeaders) { 1710 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA); 1711 } 1712 int header_size = alloc->minimum_header_size(); // conservatively small 1713 1714 // Array length 1715 if (length != nullptr) { // Arrays need length field 1716 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT); 1717 // conservatively small header size: 1718 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1719 if (_igvn.type(klass_node)->isa_aryklassptr()) { // we know the exact header size in most cases: 1720 BasicType elem = _igvn.type(klass_node)->is_klassptr()->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type(); 1721 if (is_reference_type(elem, true)) { 1722 elem = T_OBJECT; 1723 } 1724 header_size = Klass::layout_helper_header_size(Klass::array_layout_helper(elem)); 1725 } 1726 } 1727 1728 // Clear the object body, if necessary. 1729 if (init == nullptr) { 1730 // The init has somehow disappeared; be cautious and clear everything. 1731 // 1732 // This can happen if a node is allocated but an uncommon trap occurs 1733 // immediately. In this case, the Initialize gets associated with the 1734 // trap, and may be placed in a different (outer) loop, if the Allocate 1735 // is in a loop. If (this is rare) the inner loop gets unrolled, then 1736 // there can be two Allocates to one Initialize. The answer in all these 1737 // edge cases is safety first. It is always safe to clear immediately 1738 // within an Allocate, and then (maybe or maybe not) clear some more later. 1739 if (!(UseTLAB && ZeroTLAB)) { 1740 rawmem = ClearArrayNode::clear_memory(control, rawmem, object, 1741 header_size, size_in_bytes, 1742 &_igvn); 1743 } 1744 } else { 1745 if (!init->is_complete()) { 1746 // Try to win by zeroing only what the init does not store. 1747 // We can also try to do some peephole optimizations, 1748 // such as combining some adjacent subword stores. 1749 rawmem = init->complete_stores(control, rawmem, object, 1750 header_size, size_in_bytes, &_igvn); 1751 } 1752 // We have no more use for this link, since the AllocateNode goes away: 1753 init->set_req(InitializeNode::RawAddress, top()); 1754 // (If we keep the link, it just confuses the register allocator, 1755 // who thinks he sees a real use of the address by the membar.) 1756 } 1757 1758 return rawmem; 1759 } 1760 1761 // Generate prefetch instructions for next allocations. 1762 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false, 1763 Node*& contended_phi_rawmem, 1764 Node* old_eden_top, Node* new_eden_top, 1765 intx lines) { 1766 enum { fall_in_path = 1, pf_path = 2 }; 1767 if( UseTLAB && AllocatePrefetchStyle == 2 ) { 1768 // Generate prefetch allocation with watermark check. 1769 // As an allocation hits the watermark, we will prefetch starting 1770 // at a "distance" away from watermark. 1771 1772 Node *pf_region = new RegionNode(3); 1773 Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY, 1774 TypeRawPtr::BOTTOM ); 1775 // I/O is used for Prefetch 1776 Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO ); 1777 1778 Node *thread = new ThreadLocalNode(); 1779 transform_later(thread); 1780 1781 Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread, 1782 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) ); 1783 transform_later(eden_pf_adr); 1784 1785 Node *old_pf_wm = new LoadPNode(needgc_false, 1786 contended_phi_rawmem, eden_pf_adr, 1787 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, 1788 MemNode::unordered); 1789 transform_later(old_pf_wm); 1790 1791 // check against new_eden_top 1792 Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm ); 1793 transform_later(need_pf_cmp); 1794 Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge ); 1795 transform_later(need_pf_bol); 1796 IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol, 1797 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN ); 1798 transform_later(need_pf_iff); 1799 1800 // true node, add prefetchdistance 1801 Node *need_pf_true = new IfTrueNode( need_pf_iff ); 1802 transform_later(need_pf_true); 1803 1804 Node *need_pf_false = new IfFalseNode( need_pf_iff ); 1805 transform_later(need_pf_false); 1806 1807 Node *new_pf_wmt = new AddPNode( top(), old_pf_wm, 1808 _igvn.MakeConX(AllocatePrefetchDistance) ); 1809 transform_later(new_pf_wmt ); 1810 new_pf_wmt->set_req(0, need_pf_true); 1811 1812 Node *store_new_wmt = new StorePNode(need_pf_true, 1813 contended_phi_rawmem, eden_pf_adr, 1814 TypeRawPtr::BOTTOM, new_pf_wmt, 1815 MemNode::unordered); 1816 transform_later(store_new_wmt); 1817 1818 // adding prefetches 1819 pf_phi_abio->init_req( fall_in_path, i_o ); 1820 1821 Node *prefetch_adr; 1822 Node *prefetch; 1823 uint step_size = AllocatePrefetchStepSize; 1824 uint distance = 0; 1825 1826 for ( intx i = 0; i < lines; i++ ) { 1827 prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt, 1828 _igvn.MakeConX(distance) ); 1829 transform_later(prefetch_adr); 1830 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 1831 transform_later(prefetch); 1832 distance += step_size; 1833 i_o = prefetch; 1834 } 1835 pf_phi_abio->set_req( pf_path, i_o ); 1836 1837 pf_region->init_req( fall_in_path, need_pf_false ); 1838 pf_region->init_req( pf_path, need_pf_true ); 1839 1840 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem ); 1841 pf_phi_rawmem->init_req( pf_path, store_new_wmt ); 1842 1843 transform_later(pf_region); 1844 transform_later(pf_phi_rawmem); 1845 transform_later(pf_phi_abio); 1846 1847 needgc_false = pf_region; 1848 contended_phi_rawmem = pf_phi_rawmem; 1849 i_o = pf_phi_abio; 1850 } else if( UseTLAB && AllocatePrefetchStyle == 3 ) { 1851 // Insert a prefetch instruction for each allocation. 1852 // This code is used to generate 1 prefetch instruction per cache line. 1853 1854 // Generate several prefetch instructions. 1855 uint step_size = AllocatePrefetchStepSize; 1856 uint distance = AllocatePrefetchDistance; 1857 1858 // Next cache address. 1859 Node *cache_adr = new AddPNode(old_eden_top, old_eden_top, 1860 _igvn.MakeConX(step_size + distance)); 1861 transform_later(cache_adr); 1862 cache_adr = new CastP2XNode(needgc_false, cache_adr); 1863 transform_later(cache_adr); 1864 // Address is aligned to execute prefetch to the beginning of cache line size 1865 // (it is important when BIS instruction is used on SPARC as prefetch). 1866 Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1)); 1867 cache_adr = new AndXNode(cache_adr, mask); 1868 transform_later(cache_adr); 1869 cache_adr = new CastX2PNode(cache_adr); 1870 transform_later(cache_adr); 1871 1872 // Prefetch 1873 Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr ); 1874 prefetch->set_req(0, needgc_false); 1875 transform_later(prefetch); 1876 contended_phi_rawmem = prefetch; 1877 Node *prefetch_adr; 1878 distance = step_size; 1879 for ( intx i = 1; i < lines; i++ ) { 1880 prefetch_adr = new AddPNode( cache_adr, cache_adr, 1881 _igvn.MakeConX(distance) ); 1882 transform_later(prefetch_adr); 1883 prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr ); 1884 transform_later(prefetch); 1885 distance += step_size; 1886 contended_phi_rawmem = prefetch; 1887 } 1888 } else if( AllocatePrefetchStyle > 0 ) { 1889 // Insert a prefetch for each allocation only on the fast-path 1890 Node *prefetch_adr; 1891 Node *prefetch; 1892 // Generate several prefetch instructions. 1893 uint step_size = AllocatePrefetchStepSize; 1894 uint distance = AllocatePrefetchDistance; 1895 for ( intx i = 0; i < lines; i++ ) { 1896 prefetch_adr = new AddPNode( old_eden_top, new_eden_top, 1897 _igvn.MakeConX(distance) ); 1898 transform_later(prefetch_adr); 1899 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 1900 // Do not let it float too high, since if eden_top == eden_end, 1901 // both might be null. 1902 if( i == 0 ) { // Set control for first prefetch, next follows it 1903 prefetch->init_req(0, needgc_false); 1904 } 1905 transform_later(prefetch); 1906 distance += step_size; 1907 i_o = prefetch; 1908 } 1909 } 1910 return i_o; 1911 } 1912 1913 1914 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) { 1915 expand_allocate_common(alloc, nullptr, 1916 OptoRuntime::new_instance_Type(), 1917 OptoRuntime::new_instance_Java(), nullptr); 1918 } 1919 1920 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) { 1921 Node* length = alloc->in(AllocateNode::ALength); 1922 Node* valid_length_test = alloc->in(AllocateNode::ValidLengthTest); 1923 InitializeNode* init = alloc->initialization(); 1924 Node* klass_node = alloc->in(AllocateNode::KlassNode); 1925 const TypeAryKlassPtr* ary_klass_t = _igvn.type(klass_node)->isa_aryklassptr(); 1926 address slow_call_address; // Address of slow call 1927 if (init != nullptr && init->is_complete_with_arraycopy() && 1928 ary_klass_t && ary_klass_t->elem()->isa_klassptr() == nullptr) { 1929 // Don't zero type array during slow allocation in VM since 1930 // it will be initialized later by arraycopy in compiled code. 1931 slow_call_address = OptoRuntime::new_array_nozero_Java(); 1932 } else { 1933 slow_call_address = OptoRuntime::new_array_Java(); 1934 } 1935 expand_allocate_common(alloc, length, 1936 OptoRuntime::new_array_Type(), 1937 slow_call_address, valid_length_test); 1938 } 1939 1940 //-------------------mark_eliminated_box---------------------------------- 1941 // 1942 // During EA obj may point to several objects but after few ideal graph 1943 // transformations (CCP) it may point to only one non escaping object 1944 // (but still using phi), corresponding locks and unlocks will be marked 1945 // for elimination. Later obj could be replaced with a new node (new phi) 1946 // and which does not have escape information. And later after some graph 1947 // reshape other locks and unlocks (which were not marked for elimination 1948 // before) are connected to this new obj (phi) but they still will not be 1949 // marked for elimination since new obj has no escape information. 1950 // Mark all associated (same box and obj) lock and unlock nodes for 1951 // elimination if some of them marked already. 1952 void PhaseMacroExpand::mark_eliminated_box(Node* box, Node* obj) { 1953 BoxLockNode* oldbox = box->as_BoxLock(); 1954 if (oldbox->is_eliminated()) { 1955 return; // This BoxLock node was processed already. 1956 } 1957 assert(!oldbox->is_unbalanced(), "this should not be called for unbalanced region"); 1958 // New implementation (EliminateNestedLocks) has separate BoxLock 1959 // node for each locked region so mark all associated locks/unlocks as 1960 // eliminated even if different objects are referenced in one locked region 1961 // (for example, OSR compilation of nested loop inside locked scope). 1962 if (EliminateNestedLocks || 1963 oldbox->as_BoxLock()->is_simple_lock_region(nullptr, obj, nullptr)) { 1964 // Box is used only in one lock region. Mark this box as eliminated. 1965 oldbox->set_local(); // This verifies correct state of BoxLock 1966 _igvn.hash_delete(oldbox); 1967 oldbox->set_eliminated(); // This changes box's hash value 1968 _igvn.hash_insert(oldbox); 1969 1970 for (uint i = 0; i < oldbox->outcnt(); i++) { 1971 Node* u = oldbox->raw_out(i); 1972 if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) { 1973 AbstractLockNode* alock = u->as_AbstractLock(); 1974 // Check lock's box since box could be referenced by Lock's debug info. 1975 if (alock->box_node() == oldbox) { 1976 // Mark eliminated all related locks and unlocks. 1977 #ifdef ASSERT 1978 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4"); 1979 #endif 1980 alock->set_non_esc_obj(); 1981 } 1982 } 1983 } 1984 return; 1985 } 1986 1987 // Create new "eliminated" BoxLock node and use it in monitor debug info 1988 // instead of oldbox for the same object. 1989 BoxLockNode* newbox = oldbox->clone()->as_BoxLock(); 1990 1991 // Note: BoxLock node is marked eliminated only here and it is used 1992 // to indicate that all associated lock and unlock nodes are marked 1993 // for elimination. 1994 newbox->set_local(); // This verifies correct state of BoxLock 1995 newbox->set_eliminated(); 1996 transform_later(newbox); 1997 1998 // Replace old box node with new box for all users of the same object. 1999 for (uint i = 0; i < oldbox->outcnt();) { 2000 bool next_edge = true; 2001 2002 Node* u = oldbox->raw_out(i); 2003 if (u->is_AbstractLock()) { 2004 AbstractLockNode* alock = u->as_AbstractLock(); 2005 if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) { 2006 // Replace Box and mark eliminated all related locks and unlocks. 2007 #ifdef ASSERT 2008 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5"); 2009 #endif 2010 alock->set_non_esc_obj(); 2011 _igvn.rehash_node_delayed(alock); 2012 alock->set_box_node(newbox); 2013 next_edge = false; 2014 } 2015 } 2016 if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) { 2017 FastLockNode* flock = u->as_FastLock(); 2018 assert(flock->box_node() == oldbox, "sanity"); 2019 _igvn.rehash_node_delayed(flock); 2020 flock->set_box_node(newbox); 2021 next_edge = false; 2022 } 2023 2024 // Replace old box in monitor debug info. 2025 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) { 2026 SafePointNode* sfn = u->as_SafePoint(); 2027 JVMState* youngest_jvms = sfn->jvms(); 2028 int max_depth = youngest_jvms->depth(); 2029 for (int depth = 1; depth <= max_depth; depth++) { 2030 JVMState* jvms = youngest_jvms->of_depth(depth); 2031 int num_mon = jvms->nof_monitors(); 2032 // Loop over monitors 2033 for (int idx = 0; idx < num_mon; idx++) { 2034 Node* obj_node = sfn->monitor_obj(jvms, idx); 2035 Node* box_node = sfn->monitor_box(jvms, idx); 2036 if (box_node == oldbox && obj_node->eqv_uncast(obj)) { 2037 int j = jvms->monitor_box_offset(idx); 2038 _igvn.replace_input_of(u, j, newbox); 2039 next_edge = false; 2040 } 2041 } 2042 } 2043 } 2044 if (next_edge) i++; 2045 } 2046 } 2047 2048 //-----------------------mark_eliminated_locking_nodes----------------------- 2049 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) { 2050 if (alock->box_node()->as_BoxLock()->is_unbalanced()) { 2051 return; // Can't do any more elimination for this locking region 2052 } 2053 if (EliminateNestedLocks) { 2054 if (alock->is_nested()) { 2055 assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity"); 2056 return; 2057 } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened 2058 // Only Lock node has JVMState needed here. 2059 // Not that preceding claim is documented anywhere else. 2060 if (alock->jvms() != nullptr) { 2061 if (alock->as_Lock()->is_nested_lock_region()) { 2062 // Mark eliminated related nested locks and unlocks. 2063 Node* obj = alock->obj_node(); 2064 BoxLockNode* box_node = alock->box_node()->as_BoxLock(); 2065 assert(!box_node->is_eliminated(), "should not be marked yet"); 2066 // Note: BoxLock node is marked eliminated only here 2067 // and it is used to indicate that all associated lock 2068 // and unlock nodes are marked for elimination. 2069 box_node->set_eliminated(); // Box's hash is always NO_HASH here 2070 for (uint i = 0; i < box_node->outcnt(); i++) { 2071 Node* u = box_node->raw_out(i); 2072 if (u->is_AbstractLock()) { 2073 alock = u->as_AbstractLock(); 2074 if (alock->box_node() == box_node) { 2075 // Verify that this Box is referenced only by related locks. 2076 assert(alock->obj_node()->eqv_uncast(obj), ""); 2077 // Mark all related locks and unlocks. 2078 #ifdef ASSERT 2079 alock->log_lock_optimization(C, "eliminate_lock_set_nested"); 2080 #endif 2081 alock->set_nested(); 2082 } 2083 } 2084 } 2085 } else { 2086 #ifdef ASSERT 2087 alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region"); 2088 if (C->log() != nullptr) 2089 alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output 2090 #endif 2091 } 2092 } 2093 return; 2094 } 2095 // Process locks for non escaping object 2096 assert(alock->is_non_esc_obj(), ""); 2097 } // EliminateNestedLocks 2098 2099 if (alock->is_non_esc_obj()) { // Lock is used for non escaping object 2100 // Look for all locks of this object and mark them and 2101 // corresponding BoxLock nodes as eliminated. 2102 Node* obj = alock->obj_node(); 2103 for (uint j = 0; j < obj->outcnt(); j++) { 2104 Node* o = obj->raw_out(j); 2105 if (o->is_AbstractLock() && 2106 o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) { 2107 alock = o->as_AbstractLock(); 2108 Node* box = alock->box_node(); 2109 // Replace old box node with new eliminated box for all users 2110 // of the same object and mark related locks as eliminated. 2111 mark_eliminated_box(box, obj); 2112 } 2113 } 2114 } 2115 } 2116 2117 // we have determined that this lock/unlock can be eliminated, we simply 2118 // eliminate the node without expanding it. 2119 // 2120 // Note: The membar's associated with the lock/unlock are currently not 2121 // eliminated. This should be investigated as a future enhancement. 2122 // 2123 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) { 2124 2125 if (!alock->is_eliminated()) { 2126 return false; 2127 } 2128 #ifdef ASSERT 2129 if (!alock->is_coarsened()) { 2130 // Check that new "eliminated" BoxLock node is created. 2131 BoxLockNode* oldbox = alock->box_node()->as_BoxLock(); 2132 assert(oldbox->is_eliminated(), "should be done already"); 2133 } 2134 #endif 2135 2136 alock->log_lock_optimization(C, "eliminate_lock"); 2137 2138 #ifndef PRODUCT 2139 if (PrintEliminateLocks) { 2140 tty->print_cr("++++ Eliminated: %d %s '%s'", alock->_idx, (alock->is_Lock() ? "Lock" : "Unlock"), alock->kind_as_string()); 2141 } 2142 #endif 2143 2144 Node* mem = alock->in(TypeFunc::Memory); 2145 Node* ctrl = alock->in(TypeFunc::Control); 2146 guarantee(ctrl != nullptr, "missing control projection, cannot replace_node() with null"); 2147 2148 alock->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 2149 // There are 2 projections from the lock. The lock node will 2150 // be deleted when its last use is subsumed below. 2151 assert(alock->outcnt() == 2 && 2152 _callprojs.fallthrough_proj != nullptr && 2153 _callprojs.fallthrough_memproj != nullptr, 2154 "Unexpected projections from Lock/Unlock"); 2155 2156 Node* fallthroughproj = _callprojs.fallthrough_proj; 2157 Node* memproj_fallthrough = _callprojs.fallthrough_memproj; 2158 2159 // The memory projection from a lock/unlock is RawMem 2160 // The input to a Lock is merged memory, so extract its RawMem input 2161 // (unless the MergeMem has been optimized away.) 2162 if (alock->is_Lock()) { 2163 // Search for MemBarAcquireLock node and delete it also. 2164 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar(); 2165 assert(membar != nullptr && membar->Opcode() == Op_MemBarAcquireLock, ""); 2166 Node* ctrlproj = membar->proj_out(TypeFunc::Control); 2167 Node* memproj = membar->proj_out(TypeFunc::Memory); 2168 _igvn.replace_node(ctrlproj, fallthroughproj); 2169 _igvn.replace_node(memproj, memproj_fallthrough); 2170 2171 // Delete FastLock node also if this Lock node is unique user 2172 // (a loop peeling may clone a Lock node). 2173 Node* flock = alock->as_Lock()->fastlock_node(); 2174 if (flock->outcnt() == 1) { 2175 assert(flock->unique_out() == alock, "sanity"); 2176 _igvn.replace_node(flock, top()); 2177 } 2178 } 2179 2180 // Search for MemBarReleaseLock node and delete it also. 2181 if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) { 2182 MemBarNode* membar = ctrl->in(0)->as_MemBar(); 2183 assert(membar->Opcode() == Op_MemBarReleaseLock && 2184 mem->is_Proj() && membar == mem->in(0), ""); 2185 _igvn.replace_node(fallthroughproj, ctrl); 2186 _igvn.replace_node(memproj_fallthrough, mem); 2187 fallthroughproj = ctrl; 2188 memproj_fallthrough = mem; 2189 ctrl = membar->in(TypeFunc::Control); 2190 mem = membar->in(TypeFunc::Memory); 2191 } 2192 2193 _igvn.replace_node(fallthroughproj, ctrl); 2194 _igvn.replace_node(memproj_fallthrough, mem); 2195 return true; 2196 } 2197 2198 2199 //------------------------------expand_lock_node---------------------- 2200 void PhaseMacroExpand::expand_lock_node(LockNode *lock) { 2201 2202 Node* ctrl = lock->in(TypeFunc::Control); 2203 Node* mem = lock->in(TypeFunc::Memory); 2204 Node* obj = lock->obj_node(); 2205 Node* box = lock->box_node(); 2206 Node* flock = lock->fastlock_node(); 2207 2208 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2209 2210 // Make the merge point 2211 Node *region; 2212 Node *mem_phi; 2213 Node *slow_path; 2214 2215 region = new RegionNode(3); 2216 // create a Phi for the memory state 2217 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2218 2219 // Optimize test; set region slot 2 2220 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0); 2221 mem_phi->init_req(2, mem); 2222 2223 // Make slow path call 2224 CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), 2225 OptoRuntime::complete_monitor_locking_Java(), nullptr, slow_path, 2226 obj, box, nullptr); 2227 2228 call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 2229 2230 // Slow path can only throw asynchronous exceptions, which are always 2231 // de-opted. So the compiler thinks the slow-call can never throw an 2232 // exception. If it DOES throw an exception we would need the debug 2233 // info removed first (since if it throws there is no monitor). 2234 assert(_callprojs.fallthrough_ioproj == nullptr && _callprojs.catchall_ioproj == nullptr && 2235 _callprojs.catchall_memproj == nullptr && _callprojs.catchall_catchproj == nullptr, "Unexpected projection from Lock"); 2236 2237 // Capture slow path 2238 // disconnect fall-through projection from call and create a new one 2239 // hook up users of fall-through projection to region 2240 Node *slow_ctrl = _callprojs.fallthrough_proj->clone(); 2241 transform_later(slow_ctrl); 2242 _igvn.hash_delete(_callprojs.fallthrough_proj); 2243 _callprojs.fallthrough_proj->disconnect_inputs(C); 2244 region->init_req(1, slow_ctrl); 2245 // region inputs are now complete 2246 transform_later(region); 2247 _igvn.replace_node(_callprojs.fallthrough_proj, region); 2248 2249 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory)); 2250 2251 mem_phi->init_req(1, memproj); 2252 2253 transform_later(mem_phi); 2254 2255 _igvn.replace_node(_callprojs.fallthrough_memproj, mem_phi); 2256 } 2257 2258 //------------------------------expand_unlock_node---------------------- 2259 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) { 2260 2261 Node* ctrl = unlock->in(TypeFunc::Control); 2262 Node* mem = unlock->in(TypeFunc::Memory); 2263 Node* obj = unlock->obj_node(); 2264 Node* box = unlock->box_node(); 2265 2266 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2267 2268 // No need for a null check on unlock 2269 2270 // Make the merge point 2271 Node *region; 2272 Node *mem_phi; 2273 2274 region = new RegionNode(3); 2275 // create a Phi for the memory state 2276 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2277 2278 FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box ); 2279 funlock = transform_later( funlock )->as_FastUnlock(); 2280 // Optimize test; set region slot 2 2281 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0); 2282 Node *thread = transform_later(new ThreadLocalNode()); 2283 2284 CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), 2285 CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), 2286 "complete_monitor_unlocking_C", slow_path, obj, box, thread); 2287 2288 call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 2289 assert(_callprojs.fallthrough_ioproj == nullptr && _callprojs.catchall_ioproj == nullptr && 2290 _callprojs.catchall_memproj == nullptr && _callprojs.catchall_catchproj == nullptr, "Unexpected projection from Lock"); 2291 2292 // No exceptions for unlocking 2293 // Capture slow path 2294 // disconnect fall-through projection from call and create a new one 2295 // hook up users of fall-through projection to region 2296 Node *slow_ctrl = _callprojs.fallthrough_proj->clone(); 2297 transform_later(slow_ctrl); 2298 _igvn.hash_delete(_callprojs.fallthrough_proj); 2299 _callprojs.fallthrough_proj->disconnect_inputs(C); 2300 region->init_req(1, slow_ctrl); 2301 // region inputs are now complete 2302 transform_later(region); 2303 _igvn.replace_node(_callprojs.fallthrough_proj, region); 2304 2305 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) ); 2306 mem_phi->init_req(1, memproj ); 2307 mem_phi->init_req(2, mem); 2308 transform_later(mem_phi); 2309 2310 _igvn.replace_node(_callprojs.fallthrough_memproj, mem_phi); 2311 } 2312 2313 void PhaseMacroExpand::expand_subtypecheck_node(SubTypeCheckNode *check) { 2314 assert(check->in(SubTypeCheckNode::Control) == nullptr, "should be pinned"); 2315 Node* bol = check->unique_out(); 2316 Node* obj_or_subklass = check->in(SubTypeCheckNode::ObjOrSubKlass); 2317 Node* superklass = check->in(SubTypeCheckNode::SuperKlass); 2318 assert(bol->is_Bool() && bol->as_Bool()->_test._test == BoolTest::ne, "unexpected bool node"); 2319 2320 for (DUIterator_Last imin, i = bol->last_outs(imin); i >= imin; --i) { 2321 Node* iff = bol->last_out(i); 2322 assert(iff->is_If(), "where's the if?"); 2323 2324 if (iff->in(0)->is_top()) { 2325 _igvn.replace_input_of(iff, 1, C->top()); 2326 continue; 2327 } 2328 2329 Node* iftrue = iff->as_If()->proj_out(1); 2330 Node* iffalse = iff->as_If()->proj_out(0); 2331 Node* ctrl = iff->in(0); 2332 2333 Node* subklass = nullptr; 2334 if (_igvn.type(obj_or_subklass)->isa_klassptr()) { 2335 subklass = obj_or_subklass; 2336 } else { 2337 Node* k_adr = basic_plus_adr(obj_or_subklass, oopDesc::klass_offset_in_bytes()); 2338 subklass = _igvn.transform(LoadKlassNode::make(_igvn, nullptr, C->immutable_memory(), k_adr, TypeInstPtr::KLASS)); 2339 } 2340 2341 Node* not_subtype_ctrl = Phase::gen_subtype_check(subklass, superklass, &ctrl, nullptr, _igvn, check->method(), check->bci()); 2342 2343 _igvn.replace_input_of(iff, 0, C->top()); 2344 _igvn.replace_node(iftrue, not_subtype_ctrl); 2345 _igvn.replace_node(iffalse, ctrl); 2346 } 2347 _igvn.replace_node(check, C->top()); 2348 } 2349 2350 //---------------------------eliminate_macro_nodes---------------------- 2351 // Eliminate scalar replaced allocations and associated locks. 2352 void PhaseMacroExpand::eliminate_macro_nodes() { 2353 if (C->macro_count() == 0) 2354 return; 2355 NOT_PRODUCT(int membar_before = count_MemBar(C);) 2356 2357 // Before elimination may re-mark (change to Nested or NonEscObj) 2358 // all associated (same box and obj) lock and unlock nodes. 2359 int cnt = C->macro_count(); 2360 for (int i=0; i < cnt; i++) { 2361 Node *n = C->macro_node(i); 2362 if (n->is_AbstractLock()) { // Lock and Unlock nodes 2363 mark_eliminated_locking_nodes(n->as_AbstractLock()); 2364 } 2365 } 2366 // Re-marking may break consistency of Coarsened locks. 2367 if (!C->coarsened_locks_consistent()) { 2368 return; // recompile without Coarsened locks if broken 2369 } else { 2370 // After coarsened locks are eliminated locking regions 2371 // become unbalanced. We should not execute any more 2372 // locks elimination optimizations on them. 2373 C->mark_unbalanced_boxes(); 2374 } 2375 2376 // First, attempt to eliminate locks 2377 bool progress = true; 2378 while (progress) { 2379 progress = false; 2380 for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once 2381 Node* n = C->macro_node(i - 1); 2382 bool success = false; 2383 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2384 if (n->is_AbstractLock()) { 2385 success = eliminate_locking_node(n->as_AbstractLock()); 2386 #ifndef PRODUCT 2387 if (success && PrintOptoStatistics) { 2388 Atomic::inc(&PhaseMacroExpand::_monitor_objects_removed_counter); 2389 } 2390 #endif 2391 } 2392 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2393 progress = progress || success; 2394 } 2395 } 2396 // Next, attempt to eliminate allocations 2397 _has_locks = false; 2398 progress = true; 2399 while (progress) { 2400 progress = false; 2401 for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once 2402 Node* n = C->macro_node(i - 1); 2403 bool success = false; 2404 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2405 switch (n->class_id()) { 2406 case Node::Class_Allocate: 2407 case Node::Class_AllocateArray: 2408 success = eliminate_allocate_node(n->as_Allocate()); 2409 #ifndef PRODUCT 2410 if (success && PrintOptoStatistics) { 2411 Atomic::inc(&PhaseMacroExpand::_objs_scalar_replaced_counter); 2412 } 2413 #endif 2414 break; 2415 case Node::Class_CallStaticJava: 2416 success = eliminate_boxing_node(n->as_CallStaticJava()); 2417 break; 2418 case Node::Class_Lock: 2419 case Node::Class_Unlock: 2420 assert(!n->as_AbstractLock()->is_eliminated(), "sanity"); 2421 _has_locks = true; 2422 break; 2423 case Node::Class_ArrayCopy: 2424 break; 2425 case Node::Class_OuterStripMinedLoop: 2426 break; 2427 case Node::Class_SubTypeCheck: 2428 break; 2429 case Node::Class_Opaque1: 2430 break; 2431 default: 2432 assert(n->Opcode() == Op_LoopLimit || 2433 n->is_Opaque4() || 2434 n->is_OpaqueInitializedAssertionPredicate() || 2435 n->Opcode() == Op_MaxL || 2436 n->Opcode() == Op_MinL || 2437 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n), 2438 "unknown node type in macro list"); 2439 } 2440 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2441 progress = progress || success; 2442 } 2443 } 2444 #ifndef PRODUCT 2445 if (PrintOptoStatistics) { 2446 int membar_after = count_MemBar(C); 2447 Atomic::add(&PhaseMacroExpand::_memory_barriers_removed_counter, membar_before - membar_after); 2448 } 2449 #endif 2450 } 2451 2452 //------------------------------expand_macro_nodes---------------------- 2453 // Returns true if a failure occurred. 2454 bool PhaseMacroExpand::expand_macro_nodes() { 2455 // Do not allow new macro nodes once we started to expand 2456 C->reset_allow_macro_nodes(); 2457 if (StressMacroExpansion) { 2458 C->shuffle_macro_nodes(); 2459 } 2460 // Last attempt to eliminate macro nodes. 2461 eliminate_macro_nodes(); 2462 if (C->failing()) return true; 2463 2464 // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations. 2465 bool progress = true; 2466 while (progress) { 2467 progress = false; 2468 for (int i = C->macro_count(); i > 0; i--) { 2469 Node* n = C->macro_node(i-1); 2470 bool success = false; 2471 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2472 if (n->Opcode() == Op_LoopLimit) { 2473 // Remove it from macro list and put on IGVN worklist to optimize. 2474 C->remove_macro_node(n); 2475 _igvn._worklist.push(n); 2476 success = true; 2477 } else if (n->Opcode() == Op_CallStaticJava) { 2478 // Remove it from macro list and put on IGVN worklist to optimize. 2479 C->remove_macro_node(n); 2480 _igvn._worklist.push(n); 2481 success = true; 2482 } else if (n->is_Opaque1()) { 2483 _igvn.replace_node(n, n->in(1)); 2484 success = true; 2485 } else if (n->is_Opaque4()) { 2486 // With Opaque4 nodes, the expectation is that the test of input 1 2487 // is always equal to the constant value of input 2. So we can 2488 // remove the Opaque4 and replace it by input 2. In debug builds, 2489 // leave the non constant test in instead to sanity check that it 2490 // never fails (if it does, that subgraph was constructed so, at 2491 // runtime, a Halt node is executed). 2492 #ifdef ASSERT 2493 _igvn.replace_node(n, n->in(1)); 2494 #else 2495 _igvn.replace_node(n, n->in(2)); 2496 #endif 2497 success = true; 2498 } else if (n->is_OpaqueInitializedAssertionPredicate()) { 2499 // Initialized Assertion Predicates must always evaluate to true. Therefore, we get rid of them in product 2500 // builds as they are useless. In debug builds we keep them as additional verification code. Even though 2501 // loop opts are already over, we want to keep Initialized Assertion Predicates alive as long as possible to 2502 // enable folding of dead control paths within which cast nodes become top after due to impossible types - 2503 // even after loop opts are over. Therefore, we delay the removal of these opaque nodes until now. 2504 #ifdef ASSERT 2505 _igvn.replace_node(n, n->in(1)); 2506 #else 2507 _igvn.replace_node(n, _igvn.intcon(1)); 2508 #endif // ASSERT 2509 } else if (n->Opcode() == Op_OuterStripMinedLoop) { 2510 n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn); 2511 C->remove_macro_node(n); 2512 success = true; 2513 } else if (n->Opcode() == Op_MaxL) { 2514 // Since MaxL and MinL are not implemented in the backend, we expand them to 2515 // a CMoveL construct now. At least until here, the type could be computed 2516 // precisely. CMoveL is not so smart, but we can give it at least the best 2517 // type we know abouot n now. 2518 Node* repl = MaxNode::signed_max(n->in(1), n->in(2), _igvn.type(n), _igvn); 2519 _igvn.replace_node(n, repl); 2520 success = true; 2521 } else if (n->Opcode() == Op_MinL) { 2522 Node* repl = MaxNode::signed_min(n->in(1), n->in(2), _igvn.type(n), _igvn); 2523 _igvn.replace_node(n, repl); 2524 success = true; 2525 } 2526 assert(!success || (C->macro_count() == (old_macro_count - 1)), "elimination must have deleted one node from macro list"); 2527 progress = progress || success; 2528 if (success) { 2529 C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n); 2530 } 2531 } 2532 } 2533 2534 // Clean up the graph so we're less likely to hit the maximum node 2535 // limit 2536 _igvn.set_delay_transform(false); 2537 _igvn.optimize(); 2538 if (C->failing()) return true; 2539 _igvn.set_delay_transform(true); 2540 2541 2542 // Because we run IGVN after each expansion, some macro nodes may go 2543 // dead and be removed from the list as we iterate over it. Move 2544 // Allocate nodes (processed in a second pass) at the beginning of 2545 // the list and then iterate from the last element of the list until 2546 // an Allocate node is seen. This is robust to random deletion in 2547 // the list due to nodes going dead. 2548 C->sort_macro_nodes(); 2549 2550 // expand arraycopy "macro" nodes first 2551 // For ReduceBulkZeroing, we must first process all arraycopy nodes 2552 // before the allocate nodes are expanded. 2553 while (C->macro_count() > 0) { 2554 int macro_count = C->macro_count(); 2555 Node * n = C->macro_node(macro_count-1); 2556 assert(n->is_macro(), "only macro nodes expected here"); 2557 if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) { 2558 // node is unreachable, so don't try to expand it 2559 C->remove_macro_node(n); 2560 continue; 2561 } 2562 if (n->is_Allocate()) { 2563 break; 2564 } 2565 // Make sure expansion will not cause node limit to be exceeded. 2566 // Worst case is a macro node gets expanded into about 200 nodes. 2567 // Allow 50% more for optimization. 2568 if (C->check_node_count(300, "out of nodes before macro expansion")) { 2569 return true; 2570 } 2571 2572 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2573 switch (n->class_id()) { 2574 case Node::Class_Lock: 2575 expand_lock_node(n->as_Lock()); 2576 break; 2577 case Node::Class_Unlock: 2578 expand_unlock_node(n->as_Unlock()); 2579 break; 2580 case Node::Class_ArrayCopy: 2581 expand_arraycopy_node(n->as_ArrayCopy()); 2582 break; 2583 case Node::Class_SubTypeCheck: 2584 expand_subtypecheck_node(n->as_SubTypeCheck()); 2585 break; 2586 default: 2587 assert(false, "unknown node type in macro list"); 2588 } 2589 assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list"); 2590 if (C->failing()) return true; 2591 C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n); 2592 2593 // Clean up the graph so we're less likely to hit the maximum node 2594 // limit 2595 _igvn.set_delay_transform(false); 2596 _igvn.optimize(); 2597 if (C->failing()) return true; 2598 _igvn.set_delay_transform(true); 2599 } 2600 2601 // All nodes except Allocate nodes are expanded now. There could be 2602 // new optimization opportunities (such as folding newly created 2603 // load from a just allocated object). Run IGVN. 2604 2605 // expand "macro" nodes 2606 // nodes are removed from the macro list as they are processed 2607 while (C->macro_count() > 0) { 2608 int macro_count = C->macro_count(); 2609 Node * n = C->macro_node(macro_count-1); 2610 assert(n->is_macro(), "only macro nodes expected here"); 2611 if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) { 2612 // node is unreachable, so don't try to expand it 2613 C->remove_macro_node(n); 2614 continue; 2615 } 2616 // Make sure expansion will not cause node limit to be exceeded. 2617 // Worst case is a macro node gets expanded into about 200 nodes. 2618 // Allow 50% more for optimization. 2619 if (C->check_node_count(300, "out of nodes before macro expansion")) { 2620 return true; 2621 } 2622 switch (n->class_id()) { 2623 case Node::Class_Allocate: 2624 expand_allocate(n->as_Allocate()); 2625 break; 2626 case Node::Class_AllocateArray: 2627 expand_allocate_array(n->as_AllocateArray()); 2628 break; 2629 default: 2630 assert(false, "unknown node type in macro list"); 2631 } 2632 assert(C->macro_count() < macro_count, "must have deleted a node from macro list"); 2633 if (C->failing()) return true; 2634 C->print_method(PHASE_AFTER_MACRO_EXPANSION_STEP, 5, n); 2635 2636 // Clean up the graph so we're less likely to hit the maximum node 2637 // limit 2638 _igvn.set_delay_transform(false); 2639 _igvn.optimize(); 2640 if (C->failing()) return true; 2641 _igvn.set_delay_transform(true); 2642 } 2643 2644 _igvn.set_delay_transform(false); 2645 return false; 2646 } 2647 2648 #ifndef PRODUCT 2649 int PhaseMacroExpand::_objs_scalar_replaced_counter = 0; 2650 int PhaseMacroExpand::_monitor_objects_removed_counter = 0; 2651 int PhaseMacroExpand::_GC_barriers_removed_counter = 0; 2652 int PhaseMacroExpand::_memory_barriers_removed_counter = 0; 2653 2654 void PhaseMacroExpand::print_statistics() { 2655 tty->print("Objects scalar replaced = %d, ", Atomic::load(&_objs_scalar_replaced_counter)); 2656 tty->print("Monitor objects removed = %d, ", Atomic::load(&_monitor_objects_removed_counter)); 2657 tty->print("GC barriers removed = %d, ", Atomic::load(&_GC_barriers_removed_counter)); 2658 tty->print_cr("Memory barriers removed = %d", Atomic::load(&_memory_barriers_removed_counter)); 2659 } 2660 2661 int PhaseMacroExpand::count_MemBar(Compile *C) { 2662 if (!PrintOptoStatistics) { 2663 return 0; 2664 } 2665 Unique_Node_List ideal_nodes; 2666 int total = 0; 2667 ideal_nodes.map(C->live_nodes(), nullptr); 2668 ideal_nodes.push(C->root()); 2669 for (uint next = 0; next < ideal_nodes.size(); ++next) { 2670 Node* n = ideal_nodes.at(next); 2671 if (n->is_MemBar()) { 2672 total++; 2673 } 2674 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2675 Node* m = n->fast_out(i); 2676 ideal_nodes.push(m); 2677 } 2678 } 2679 return total; 2680 } 2681 #endif