1 /* 2 * Copyright (c) 2005, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "gc/shared/collectedHeap.inline.hpp" 28 #include "gc/shared/tlab_globals.hpp" 29 #include "libadt/vectset.hpp" 30 #include "memory/universe.hpp" 31 #include "opto/addnode.hpp" 32 #include "opto/arraycopynode.hpp" 33 #include "opto/callnode.hpp" 34 #include "opto/castnode.hpp" 35 #include "opto/cfgnode.hpp" 36 #include "opto/compile.hpp" 37 #include "opto/convertnode.hpp" 38 #include "opto/graphKit.hpp" 39 #include "opto/intrinsicnode.hpp" 40 #include "opto/locknode.hpp" 41 #include "opto/loopnode.hpp" 42 #include "opto/macro.hpp" 43 #include "opto/memnode.hpp" 44 #include "opto/narrowptrnode.hpp" 45 #include "opto/node.hpp" 46 #include "opto/opaquenode.hpp" 47 #include "opto/phaseX.hpp" 48 #include "opto/rootnode.hpp" 49 #include "opto/runtime.hpp" 50 #include "opto/subnode.hpp" 51 #include "opto/subtypenode.hpp" 52 #include "opto/type.hpp" 53 #include "prims/jvmtiExport.hpp" 54 #include "runtime/continuation.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "utilities/macros.hpp" 57 #include "utilities/powerOfTwo.hpp" 58 #if INCLUDE_G1GC 59 #include "gc/g1/g1ThreadLocalData.hpp" 60 #endif // INCLUDE_G1GC 61 62 63 // 64 // Replace any references to "oldref" in inputs to "use" with "newref". 65 // Returns the number of replacements made. 66 // 67 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) { 68 int nreplacements = 0; 69 uint req = use->req(); 70 for (uint j = 0; j < use->len(); j++) { 71 Node *uin = use->in(j); 72 if (uin == oldref) { 73 if (j < req) 74 use->set_req(j, newref); 75 else 76 use->set_prec(j, newref); 77 nreplacements++; 78 } else if (j >= req && uin == nullptr) { 79 break; 80 } 81 } 82 return nreplacements; 83 } 84 85 void PhaseMacroExpand::migrate_outs(Node *old, Node *target) { 86 assert(old != nullptr, "sanity"); 87 for (DUIterator_Fast imax, i = old->fast_outs(imax); i < imax; i++) { 88 Node* use = old->fast_out(i); 89 _igvn.rehash_node_delayed(use); 90 imax -= replace_input(use, old, target); 91 // back up iterator 92 --i; 93 } 94 assert(old->outcnt() == 0, "all uses must be deleted"); 95 } 96 97 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) { 98 Node* cmp; 99 if (mask != 0) { 100 Node* and_node = transform_later(new AndXNode(word, MakeConX(mask))); 101 cmp = transform_later(new CmpXNode(and_node, MakeConX(bits))); 102 } else { 103 cmp = word; 104 } 105 Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne)); 106 IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN ); 107 transform_later(iff); 108 109 // Fast path taken. 110 Node *fast_taken = transform_later(new IfFalseNode(iff)); 111 112 // Fast path not-taken, i.e. slow path 113 Node *slow_taken = transform_later(new IfTrueNode(iff)); 114 115 if (return_fast_path) { 116 region->init_req(edge, slow_taken); // Capture slow-control 117 return fast_taken; 118 } else { 119 region->init_req(edge, fast_taken); // Capture fast-control 120 return slow_taken; 121 } 122 } 123 124 //--------------------copy_predefined_input_for_runtime_call-------------------- 125 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) { 126 // Set fixed predefined input arguments 127 call->init_req( TypeFunc::Control, ctrl ); 128 call->init_req( TypeFunc::I_O , oldcall->in( TypeFunc::I_O) ); 129 call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ????? 130 call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) ); 131 call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) ); 132 } 133 134 //------------------------------make_slow_call--------------------------------- 135 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, 136 address slow_call, const char* leaf_name, Node* slow_path, 137 Node* parm0, Node* parm1, Node* parm2) { 138 139 // Slow-path call 140 CallNode *call = leaf_name 141 ? (CallNode*)new CallLeafNode ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM ) 142 : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), TypeRawPtr::BOTTOM ); 143 144 // Slow path call has no side-effects, uses few values 145 copy_predefined_input_for_runtime_call(slow_path, oldcall, call ); 146 if (parm0 != nullptr) call->init_req(TypeFunc::Parms+0, parm0); 147 if (parm1 != nullptr) call->init_req(TypeFunc::Parms+1, parm1); 148 if (parm2 != nullptr) call->init_req(TypeFunc::Parms+2, parm2); 149 call->copy_call_debug_info(&_igvn, oldcall); 150 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 151 _igvn.replace_node(oldcall, call); 152 transform_later(call); 153 154 return call; 155 } 156 157 void PhaseMacroExpand::eliminate_gc_barrier(Node* p2x) { 158 BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2(); 159 bs->eliminate_gc_barrier(this, p2x); 160 #ifndef PRODUCT 161 if (PrintOptoStatistics) { 162 Atomic::inc(&PhaseMacroExpand::_GC_barriers_removed_counter); 163 } 164 #endif 165 } 166 167 // Search for a memory operation for the specified memory slice. 168 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) { 169 Node *orig_mem = mem; 170 Node *alloc_mem = alloc->in(TypeFunc::Memory); 171 const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr(); 172 while (true) { 173 if (mem == alloc_mem || mem == start_mem ) { 174 return mem; // hit one of our sentinels 175 } else if (mem->is_MergeMem()) { 176 mem = mem->as_MergeMem()->memory_at(alias_idx); 177 } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) { 178 Node *in = mem->in(0); 179 // we can safely skip over safepoints, calls, locks and membars because we 180 // already know that the object is safe to eliminate. 181 if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) { 182 return in; 183 } else if (in->is_Call()) { 184 CallNode *call = in->as_Call(); 185 if (call->may_modify(tinst, phase)) { 186 assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape"); 187 if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) { 188 return in; 189 } 190 } 191 mem = in->in(TypeFunc::Memory); 192 } else if (in->is_MemBar()) { 193 ArrayCopyNode* ac = nullptr; 194 if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) { 195 if (ac != nullptr) { 196 assert(ac->is_clonebasic(), "Only basic clone is a non escaping clone"); 197 return ac; 198 } 199 } 200 mem = in->in(TypeFunc::Memory); 201 } else { 202 #ifdef ASSERT 203 in->dump(); 204 mem->dump(); 205 assert(false, "unexpected projection"); 206 #endif 207 } 208 } else if (mem->is_Store()) { 209 const TypePtr* atype = mem->as_Store()->adr_type(); 210 int adr_idx = phase->C->get_alias_index(atype); 211 if (adr_idx == alias_idx) { 212 assert(atype->isa_oopptr(), "address type must be oopptr"); 213 int adr_offset = atype->offset(); 214 uint adr_iid = atype->is_oopptr()->instance_id(); 215 // Array elements references have the same alias_idx 216 // but different offset and different instance_id. 217 if (adr_offset == offset && adr_iid == alloc->_idx) { 218 return mem; 219 } 220 } else { 221 assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw"); 222 } 223 mem = mem->in(MemNode::Memory); 224 } else if (mem->is_ClearArray()) { 225 if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) { 226 // Can not bypass initialization of the instance 227 // we are looking. 228 debug_only(intptr_t offset;) 229 assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity"); 230 InitializeNode* init = alloc->as_Allocate()->initialization(); 231 // We are looking for stored value, return Initialize node 232 // or memory edge from Allocate node. 233 if (init != nullptr) { 234 return init; 235 } else { 236 return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers). 237 } 238 } 239 // Otherwise skip it (the call updated 'mem' value). 240 } else if (mem->Opcode() == Op_SCMemProj) { 241 mem = mem->in(0); 242 Node* adr = nullptr; 243 if (mem->is_LoadStore()) { 244 adr = mem->in(MemNode::Address); 245 } else { 246 assert(mem->Opcode() == Op_EncodeISOArray || 247 mem->Opcode() == Op_StrCompressedCopy, "sanity"); 248 adr = mem->in(3); // Destination array 249 } 250 const TypePtr* atype = adr->bottom_type()->is_ptr(); 251 int adr_idx = phase->C->get_alias_index(atype); 252 if (adr_idx == alias_idx) { 253 DEBUG_ONLY(mem->dump();) 254 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 255 return nullptr; 256 } 257 mem = mem->in(MemNode::Memory); 258 } else if (mem->Opcode() == Op_StrInflatedCopy) { 259 Node* adr = mem->in(3); // Destination array 260 const TypePtr* atype = adr->bottom_type()->is_ptr(); 261 int adr_idx = phase->C->get_alias_index(atype); 262 if (adr_idx == alias_idx) { 263 DEBUG_ONLY(mem->dump();) 264 assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field"); 265 return nullptr; 266 } 267 mem = mem->in(MemNode::Memory); 268 } else { 269 return mem; 270 } 271 assert(mem != orig_mem, "dead memory loop"); 272 } 273 } 274 275 // Generate loads from source of the arraycopy for fields of 276 // destination needed at a deoptimization point 277 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) { 278 BasicType bt = ft; 279 const Type *type = ftype; 280 if (ft == T_NARROWOOP) { 281 bt = T_OBJECT; 282 type = ftype->make_oopptr(); 283 } 284 Node* res = nullptr; 285 if (ac->is_clonebasic()) { 286 assert(ac->in(ArrayCopyNode::Src) != ac->in(ArrayCopyNode::Dest), "clone source equals destination"); 287 Node* base = ac->in(ArrayCopyNode::Src); 288 Node* adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(offset))); 289 const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset); 290 MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem(); 291 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 292 res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt); 293 } else { 294 if (ac->modifies(offset, offset, &_igvn, true)) { 295 assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result"); 296 uint shift = exact_log2(type2aelembytes(bt)); 297 Node* src_pos = ac->in(ArrayCopyNode::SrcPos); 298 Node* dest_pos = ac->in(ArrayCopyNode::DestPos); 299 const TypeInt* src_pos_t = _igvn.type(src_pos)->is_int(); 300 const TypeInt* dest_pos_t = _igvn.type(dest_pos)->is_int(); 301 302 Node* adr = nullptr; 303 const TypePtr* adr_type = nullptr; 304 if (src_pos_t->is_con() && dest_pos_t->is_con()) { 305 intptr_t off = ((src_pos_t->get_con() - dest_pos_t->get_con()) << shift) + offset; 306 Node* base = ac->in(ArrayCopyNode::Src); 307 adr = _igvn.transform(new AddPNode(base, base, _igvn.MakeConX(off))); 308 adr_type = _igvn.type(base)->is_ptr()->add_offset(off); 309 if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) { 310 // Don't emit a new load from src if src == dst but try to get the value from memory instead 311 return value_from_mem(ac->in(TypeFunc::Memory), ctl, ft, ftype, adr_type->isa_oopptr(), alloc); 312 } 313 } else { 314 Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); 315 #ifdef _LP64 316 diff = _igvn.transform(new ConvI2LNode(diff)); 317 #endif 318 diff = _igvn.transform(new LShiftXNode(diff, _igvn.intcon(shift))); 319 320 Node* off = _igvn.transform(new AddXNode(_igvn.MakeConX(offset), diff)); 321 Node* base = ac->in(ArrayCopyNode::Src); 322 adr = _igvn.transform(new AddPNode(base, base, off)); 323 adr_type = _igvn.type(base)->is_ptr()->add_offset(Type::OffsetBot); 324 if (ac->in(ArrayCopyNode::Src) == ac->in(ArrayCopyNode::Dest)) { 325 // Non constant offset in the array: we can't statically 326 // determine the value 327 return nullptr; 328 } 329 } 330 MergeMemNode* mergemen = _igvn.transform(MergeMemNode::make(mem))->as_MergeMem(); 331 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 332 res = ArrayCopyNode::load(bs, &_igvn, ctl, mergemen, adr, adr_type, type, bt); 333 } 334 } 335 if (res != nullptr) { 336 if (ftype->isa_narrowoop()) { 337 // PhaseMacroExpand::scalar_replacement adds DecodeN nodes 338 res = _igvn.transform(new EncodePNode(res, ftype)); 339 } 340 return res; 341 } 342 return nullptr; 343 } 344 345 // 346 // Given a Memory Phi, compute a value Phi containing the values from stores 347 // on the input paths. 348 // Note: this function is recursive, its depth is limited by the "level" argument 349 // Returns the computed Phi, or null if it cannot compute it. 350 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) { 351 assert(mem->is_Phi(), "sanity"); 352 int alias_idx = C->get_alias_index(adr_t); 353 int offset = adr_t->offset(); 354 int instance_id = adr_t->instance_id(); 355 356 // Check if an appropriate value phi already exists. 357 Node* region = mem->in(0); 358 for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) { 359 Node* phi = region->fast_out(k); 360 if (phi->is_Phi() && phi != mem && 361 phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) { 362 return phi; 363 } 364 } 365 // Check if an appropriate new value phi already exists. 366 Node* new_phi = value_phis->find(mem->_idx); 367 if (new_phi != nullptr) 368 return new_phi; 369 370 if (level <= 0) { 371 return nullptr; // Give up: phi tree too deep 372 } 373 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 374 Node *alloc_mem = alloc->in(TypeFunc::Memory); 375 376 uint length = mem->req(); 377 GrowableArray <Node *> values(length, length, nullptr); 378 379 // create a new Phi for the value 380 PhiNode *phi = new PhiNode(mem->in(0), phi_type, nullptr, mem->_idx, instance_id, alias_idx, offset); 381 transform_later(phi); 382 value_phis->push(phi, mem->_idx); 383 384 for (uint j = 1; j < length; j++) { 385 Node *in = mem->in(j); 386 if (in == nullptr || in->is_top()) { 387 values.at_put(j, in); 388 } else { 389 Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn); 390 if (val == start_mem || val == alloc_mem) { 391 // hit a sentinel, return appropriate 0 value 392 values.at_put(j, _igvn.zerocon(ft)); 393 continue; 394 } 395 if (val->is_Initialize()) { 396 val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 397 } 398 if (val == nullptr) { 399 return nullptr; // can't find a value on this path 400 } 401 if (val == mem) { 402 values.at_put(j, mem); 403 } else if (val->is_Store()) { 404 Node* n = val->in(MemNode::ValueIn); 405 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 406 n = bs->step_over_gc_barrier(n); 407 if (is_subword_type(ft)) { 408 n = Compile::narrow_value(ft, n, phi_type, &_igvn, true); 409 } 410 values.at_put(j, n); 411 } else if(val->is_Proj() && val->in(0) == alloc) { 412 values.at_put(j, _igvn.zerocon(ft)); 413 } else if (val->is_Phi()) { 414 val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1); 415 if (val == nullptr) { 416 return nullptr; 417 } 418 values.at_put(j, val); 419 } else if (val->Opcode() == Op_SCMemProj) { 420 assert(val->in(0)->is_LoadStore() || 421 val->in(0)->Opcode() == Op_EncodeISOArray || 422 val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity"); 423 assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field"); 424 return nullptr; 425 } else if (val->is_ArrayCopy()) { 426 Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc); 427 if (res == nullptr) { 428 return nullptr; 429 } 430 values.at_put(j, res); 431 } else { 432 DEBUG_ONLY( val->dump(); ) 433 assert(false, "unknown node on this path"); 434 return nullptr; // unknown node on this path 435 } 436 } 437 } 438 // Set Phi's inputs 439 for (uint j = 1; j < length; j++) { 440 if (values.at(j) == mem) { 441 phi->init_req(j, phi); 442 } else { 443 phi->init_req(j, values.at(j)); 444 } 445 } 446 return phi; 447 } 448 449 // Search the last value stored into the object's field. 450 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) { 451 assert(adr_t->is_known_instance_field(), "instance required"); 452 int instance_id = adr_t->instance_id(); 453 assert((uint)instance_id == alloc->_idx, "wrong allocation"); 454 455 int alias_idx = C->get_alias_index(adr_t); 456 int offset = adr_t->offset(); 457 Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory); 458 Node *alloc_ctrl = alloc->in(TypeFunc::Control); 459 Node *alloc_mem = alloc->in(TypeFunc::Memory); 460 VectorSet visited; 461 462 bool done = sfpt_mem == alloc_mem; 463 Node *mem = sfpt_mem; 464 while (!done) { 465 if (visited.test_set(mem->_idx)) { 466 return nullptr; // found a loop, give up 467 } 468 mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn); 469 if (mem == start_mem || mem == alloc_mem) { 470 done = true; // hit a sentinel, return appropriate 0 value 471 } else if (mem->is_Initialize()) { 472 mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn); 473 if (mem == nullptr) { 474 done = true; // Something go wrong. 475 } else if (mem->is_Store()) { 476 const TypePtr* atype = mem->as_Store()->adr_type(); 477 assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice"); 478 done = true; 479 } 480 } else if (mem->is_Store()) { 481 const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr(); 482 assert(atype != nullptr, "address type must be oopptr"); 483 assert(C->get_alias_index(atype) == alias_idx && 484 atype->is_known_instance_field() && atype->offset() == offset && 485 atype->instance_id() == instance_id, "store is correct memory slice"); 486 done = true; 487 } else if (mem->is_Phi()) { 488 // try to find a phi's unique input 489 Node *unique_input = nullptr; 490 Node *top = C->top(); 491 for (uint i = 1; i < mem->req(); i++) { 492 Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn); 493 if (n == nullptr || n == top || n == mem) { 494 continue; 495 } else if (unique_input == nullptr) { 496 unique_input = n; 497 } else if (unique_input != n) { 498 unique_input = top; 499 break; 500 } 501 } 502 if (unique_input != nullptr && unique_input != top) { 503 mem = unique_input; 504 } else { 505 done = true; 506 } 507 } else if (mem->is_ArrayCopy()) { 508 done = true; 509 } else { 510 DEBUG_ONLY( mem->dump(); ) 511 assert(false, "unexpected node"); 512 } 513 } 514 if (mem != nullptr) { 515 if (mem == start_mem || mem == alloc_mem) { 516 // hit a sentinel, return appropriate 0 value 517 return _igvn.zerocon(ft); 518 } else if (mem->is_Store()) { 519 Node* n = mem->in(MemNode::ValueIn); 520 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 521 n = bs->step_over_gc_barrier(n); 522 return n; 523 } else if (mem->is_Phi()) { 524 // attempt to produce a Phi reflecting the values on the input paths of the Phi 525 Node_Stack value_phis(8); 526 Node* phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit); 527 if (phi != nullptr) { 528 return phi; 529 } else { 530 // Kill all new Phis 531 while(value_phis.is_nonempty()) { 532 Node* n = value_phis.node(); 533 _igvn.replace_node(n, C->top()); 534 value_phis.pop(); 535 } 536 } 537 } else if (mem->is_ArrayCopy()) { 538 Node* ctl = mem->in(0); 539 Node* m = mem->in(TypeFunc::Memory); 540 if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) { 541 // pin the loads in the uncommon trap path 542 ctl = sfpt_ctl; 543 m = sfpt_mem; 544 } 545 return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc); 546 } 547 } 548 // Something go wrong. 549 return nullptr; 550 } 551 552 // Check the possibility of scalar replacement. 553 bool PhaseMacroExpand::can_eliminate_allocation(PhaseIterGVN* igvn, AllocateNode *alloc, GrowableArray <SafePointNode *>* safepoints) { 554 // Scan the uses of the allocation to check for anything that would 555 // prevent us from eliminating it. 556 NOT_PRODUCT( const char* fail_eliminate = nullptr; ) 557 DEBUG_ONLY( Node* disq_node = nullptr; ) 558 bool can_eliminate = true; 559 bool reduce_merge_precheck = (safepoints == nullptr); 560 561 Node* res = alloc->result_cast(); 562 const TypeOopPtr* res_type = nullptr; 563 if (res == nullptr) { 564 // All users were eliminated. 565 } else if (!res->is_CheckCastPP()) { 566 NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";) 567 can_eliminate = false; 568 } else { 569 res_type = igvn->type(res)->isa_oopptr(); 570 if (res_type == nullptr) { 571 NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";) 572 can_eliminate = false; 573 } else if (res_type->isa_aryptr()) { 574 int length = alloc->in(AllocateNode::ALength)->find_int_con(-1); 575 if (length < 0) { 576 NOT_PRODUCT(fail_eliminate = "Array's size is not constant";) 577 can_eliminate = false; 578 } 579 } 580 } 581 582 if (can_eliminate && res != nullptr) { 583 BarrierSetC2 *bs = BarrierSet::barrier_set()->barrier_set_c2(); 584 for (DUIterator_Fast jmax, j = res->fast_outs(jmax); 585 j < jmax && can_eliminate; j++) { 586 Node* use = res->fast_out(j); 587 588 if (use->is_AddP()) { 589 const TypePtr* addp_type = igvn->type(use)->is_ptr(); 590 int offset = addp_type->offset(); 591 592 if (offset == Type::OffsetTop || offset == Type::OffsetBot) { 593 NOT_PRODUCT(fail_eliminate = "Undefined field reference";) 594 can_eliminate = false; 595 break; 596 } 597 for (DUIterator_Fast kmax, k = use->fast_outs(kmax); 598 k < kmax && can_eliminate; k++) { 599 Node* n = use->fast_out(k); 600 if (!n->is_Store() && n->Opcode() != Op_CastP2X && !bs->is_gc_pre_barrier_node(n)) { 601 DEBUG_ONLY(disq_node = n;) 602 if (n->is_Load() || n->is_LoadStore()) { 603 NOT_PRODUCT(fail_eliminate = "Field load";) 604 } else { 605 NOT_PRODUCT(fail_eliminate = "Not store field reference";) 606 } 607 can_eliminate = false; 608 } 609 } 610 } else if (use->is_ArrayCopy() && 611 (use->as_ArrayCopy()->is_clonebasic() || 612 use->as_ArrayCopy()->is_arraycopy_validated() || 613 use->as_ArrayCopy()->is_copyof_validated() || 614 use->as_ArrayCopy()->is_copyofrange_validated()) && 615 use->in(ArrayCopyNode::Dest) == res) { 616 // ok to eliminate 617 } else if (use->is_SafePoint()) { 618 SafePointNode* sfpt = use->as_SafePoint(); 619 if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) { 620 // Object is passed as argument. 621 DEBUG_ONLY(disq_node = use;) 622 NOT_PRODUCT(fail_eliminate = "Object is passed as argument";) 623 can_eliminate = false; 624 } 625 Node* sfptMem = sfpt->memory(); 626 if (sfptMem == nullptr || sfptMem->is_top()) { 627 DEBUG_ONLY(disq_node = use;) 628 NOT_PRODUCT(fail_eliminate = "null or TOP memory";) 629 can_eliminate = false; 630 } else if (!reduce_merge_precheck) { 631 safepoints->append_if_missing(sfpt); 632 } 633 } else if (reduce_merge_precheck && (use->is_Phi() || use->is_EncodeP() || use->Opcode() == Op_MemBarRelease)) { 634 // Nothing to do 635 } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark 636 if (use->is_Phi()) { 637 if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) { 638 NOT_PRODUCT(fail_eliminate = "Object is return value";) 639 } else { 640 NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";) 641 } 642 DEBUG_ONLY(disq_node = use;) 643 } else { 644 if (use->Opcode() == Op_Return) { 645 NOT_PRODUCT(fail_eliminate = "Object is return value";) 646 } else { 647 NOT_PRODUCT(fail_eliminate = "Object is referenced by node";) 648 } 649 DEBUG_ONLY(disq_node = use;) 650 } 651 can_eliminate = false; 652 } 653 } 654 } 655 656 #ifndef PRODUCT 657 if (PrintEliminateAllocations && safepoints != nullptr) { 658 if (can_eliminate) { 659 tty->print("Scalar "); 660 if (res == nullptr) 661 alloc->dump(); 662 else 663 res->dump(); 664 } else if (alloc->_is_scalar_replaceable) { 665 tty->print("NotScalar (%s)", fail_eliminate); 666 if (res == nullptr) 667 alloc->dump(); 668 else 669 res->dump(); 670 #ifdef ASSERT 671 if (disq_node != nullptr) { 672 tty->print(" >>>> "); 673 disq_node->dump(); 674 } 675 #endif /*ASSERT*/ 676 } 677 } 678 #endif 679 return can_eliminate; 680 } 681 682 void PhaseMacroExpand::undo_previous_scalarizations(GrowableArray <SafePointNode *> safepoints_done, AllocateNode* alloc) { 683 Node* res = alloc->result_cast(); 684 int nfields = 0; 685 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 686 687 if (res != nullptr) { 688 const TypeOopPtr* res_type = _igvn.type(res)->isa_oopptr(); 689 690 if (res_type->isa_instptr()) { 691 // find the fields of the class which will be needed for safepoint debug information 692 ciInstanceKlass* iklass = res_type->is_instptr()->instance_klass(); 693 nfields = iklass->nof_nonstatic_fields(); 694 } else { 695 // find the array's elements which will be needed for safepoint debug information 696 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1); 697 assert(nfields >= 0, "must be an array klass."); 698 } 699 } 700 701 // rollback processed safepoints 702 while (safepoints_done.length() > 0) { 703 SafePointNode* sfpt_done = safepoints_done.pop(); 704 // remove any extra entries we added to the safepoint 705 uint last = sfpt_done->req() - 1; 706 for (int k = 0; k < nfields; k++) { 707 sfpt_done->del_req(last--); 708 } 709 JVMState *jvms = sfpt_done->jvms(); 710 jvms->set_endoff(sfpt_done->req()); 711 // Now make a pass over the debug information replacing any references 712 // to SafePointScalarObjectNode with the allocated object. 713 int start = jvms->debug_start(); 714 int end = jvms->debug_end(); 715 for (int i = start; i < end; i++) { 716 if (sfpt_done->in(i)->is_SafePointScalarObject()) { 717 SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject(); 718 if (scobj->first_index(jvms) == sfpt_done->req() && 719 scobj->n_fields() == (uint)nfields) { 720 assert(scobj->alloc() == alloc, "sanity"); 721 sfpt_done->set_req(i, res); 722 } 723 } 724 } 725 _igvn._worklist.push(sfpt_done); 726 } 727 } 728 729 SafePointScalarObjectNode* PhaseMacroExpand::create_scalarized_object_description(AllocateNode *alloc, SafePointNode* sfpt) { 730 // Fields of scalar objs are referenced only at the end 731 // of regular debuginfo at the last (youngest) JVMS. 732 // Record relative start index. 733 ciInstanceKlass* iklass = nullptr; 734 BasicType basic_elem_type = T_ILLEGAL; 735 const Type* field_type = nullptr; 736 const TypeOopPtr* res_type = nullptr; 737 int nfields = 0; 738 int array_base = 0; 739 int element_size = 0; 740 uint first_ind = (sfpt->req() - sfpt->jvms()->scloff()); 741 Node* res = alloc->result_cast(); 742 743 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 744 assert(sfpt->jvms() != nullptr, "missed JVMS"); 745 746 if (res != nullptr) { // Could be null when there are no users 747 res_type = _igvn.type(res)->isa_oopptr(); 748 749 if (res_type->isa_instptr()) { 750 // find the fields of the class which will be needed for safepoint debug information 751 iklass = res_type->is_instptr()->instance_klass(); 752 nfields = iklass->nof_nonstatic_fields(); 753 } else { 754 // find the array's elements which will be needed for safepoint debug information 755 nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1); 756 assert(nfields >= 0, "must be an array klass."); 757 basic_elem_type = res_type->is_aryptr()->elem()->array_element_basic_type(); 758 array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 759 element_size = type2aelembytes(basic_elem_type); 760 field_type = res_type->is_aryptr()->elem(); 761 } 762 } 763 764 SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type, alloc, first_ind, nfields); 765 sobj->init_req(0, C->root()); 766 transform_later(sobj); 767 768 // Scan object's fields adding an input to the safepoint for each field. 769 for (int j = 0; j < nfields; j++) { 770 intptr_t offset; 771 ciField* field = nullptr; 772 if (iklass != nullptr) { 773 field = iklass->nonstatic_field_at(j); 774 offset = field->offset_in_bytes(); 775 ciType* elem_type = field->type(); 776 basic_elem_type = field->layout_type(); 777 778 // The next code is taken from Parse::do_get_xxx(). 779 if (is_reference_type(basic_elem_type)) { 780 if (!elem_type->is_loaded()) { 781 field_type = TypeInstPtr::BOTTOM; 782 } else if (field != nullptr && field->is_static_constant()) { 783 ciObject* con = field->constant_value().as_object(); 784 // Do not "join" in the previous type; it doesn't add value, 785 // and may yield a vacuous result if the field is of interface type. 786 field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr(); 787 assert(field_type != nullptr, "field singleton type must be consistent"); 788 } else { 789 field_type = TypeOopPtr::make_from_klass(elem_type->as_klass()); 790 } 791 if (UseCompressedOops) { 792 field_type = field_type->make_narrowoop(); 793 basic_elem_type = T_NARROWOOP; 794 } 795 } else { 796 field_type = Type::get_const_basic_type(basic_elem_type); 797 } 798 } else { 799 offset = array_base + j * (intptr_t)element_size; 800 } 801 802 const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr(); 803 804 Node *field_val = value_from_mem(sfpt->memory(), sfpt->control(), basic_elem_type, field_type, field_addr_type, alloc); 805 806 // We weren't able to find a value for this field, 807 // give up on eliminating this allocation. 808 if (field_val == nullptr) { 809 uint last = sfpt->req() - 1; 810 for (int k = 0; k < j; k++) { 811 sfpt->del_req(last--); 812 } 813 _igvn._worklist.push(sfpt); 814 815 #ifndef PRODUCT 816 if (PrintEliminateAllocations) { 817 if (field != nullptr) { 818 tty->print("=== At SafePoint node %d can't find value of field: ", sfpt->_idx); 819 field->print(); 820 int field_idx = C->get_alias_index(field_addr_type); 821 tty->print(" (alias_idx=%d)", field_idx); 822 } else { // Array's element 823 tty->print("=== At SafePoint node %d can't find value of array element [%d]", sfpt->_idx, j); 824 } 825 tty->print(", which prevents elimination of: "); 826 if (res == nullptr) 827 alloc->dump(); 828 else 829 res->dump(); 830 } 831 #endif 832 833 return nullptr; 834 } 835 836 if (UseCompressedOops && field_type->isa_narrowoop()) { 837 // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation 838 // to be able scalar replace the allocation. 839 if (field_val->is_EncodeP()) { 840 field_val = field_val->in(1); 841 } else { 842 field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type())); 843 } 844 } 845 sfpt->add_req(field_val); 846 } 847 848 sfpt->jvms()->set_endoff(sfpt->req()); 849 850 return sobj; 851 } 852 853 // Do scalar replacement. 854 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) { 855 GrowableArray <SafePointNode *> safepoints_done; 856 Node* res = alloc->result_cast(); 857 assert(res == nullptr || res->is_CheckCastPP(), "unexpected AllocateNode result"); 858 859 // Process the safepoint uses 860 while (safepoints.length() > 0) { 861 SafePointNode* sfpt = safepoints.pop(); 862 SafePointScalarObjectNode* sobj = create_scalarized_object_description(alloc, sfpt); 863 864 if (sobj == nullptr) { 865 undo_previous_scalarizations(safepoints_done, alloc); 866 return false; 867 } 868 869 // Now make a pass over the debug information replacing any references 870 // to the allocated object with "sobj" 871 JVMState *jvms = sfpt->jvms(); 872 sfpt->replace_edges_in_range(res, sobj, jvms->debug_start(), jvms->debug_end(), &_igvn); 873 _igvn._worklist.push(sfpt); 874 875 // keep it for rollback 876 safepoints_done.append_if_missing(sfpt); 877 } 878 879 return true; 880 } 881 882 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) { 883 Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control); 884 Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory); 885 if (ctl_proj != nullptr) { 886 igvn.replace_node(ctl_proj, n->in(0)); 887 } 888 if (mem_proj != nullptr) { 889 igvn.replace_node(mem_proj, n->in(TypeFunc::Memory)); 890 } 891 } 892 893 // Process users of eliminated allocation. 894 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) { 895 Node* res = alloc->result_cast(); 896 if (res != nullptr) { 897 for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) { 898 Node *use = res->last_out(j); 899 uint oc1 = res->outcnt(); 900 901 if (use->is_AddP()) { 902 for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) { 903 Node *n = use->last_out(k); 904 uint oc2 = use->outcnt(); 905 if (n->is_Store()) { 906 #ifdef ASSERT 907 // Verify that there is no dependent MemBarVolatile nodes, 908 // they should be removed during IGVN, see MemBarNode::Ideal(). 909 for (DUIterator_Fast pmax, p = n->fast_outs(pmax); 910 p < pmax; p++) { 911 Node* mb = n->fast_out(p); 912 assert(mb->is_Initialize() || !mb->is_MemBar() || 913 mb->req() <= MemBarNode::Precedent || 914 mb->in(MemBarNode::Precedent) != n, 915 "MemBarVolatile should be eliminated for non-escaping object"); 916 } 917 #endif 918 _igvn.replace_node(n, n->in(MemNode::Memory)); 919 } else { 920 eliminate_gc_barrier(n); 921 } 922 k -= (oc2 - use->outcnt()); 923 } 924 _igvn.remove_dead_node(use); 925 } else if (use->is_ArrayCopy()) { 926 // Disconnect ArrayCopy node 927 ArrayCopyNode* ac = use->as_ArrayCopy(); 928 if (ac->is_clonebasic()) { 929 Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out(); 930 disconnect_projections(ac, _igvn); 931 assert(alloc->in(TypeFunc::Memory)->is_Proj() && alloc->in(TypeFunc::Memory)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation"); 932 Node* membar_before = alloc->in(TypeFunc::Memory)->in(0); 933 disconnect_projections(membar_before->as_MemBar(), _igvn); 934 if (membar_after->is_MemBar()) { 935 disconnect_projections(membar_after->as_MemBar(), _igvn); 936 } 937 } else { 938 assert(ac->is_arraycopy_validated() || 939 ac->is_copyof_validated() || 940 ac->is_copyofrange_validated(), "unsupported"); 941 CallProjections callprojs; 942 ac->extract_projections(&callprojs, true); 943 944 _igvn.replace_node(callprojs.fallthrough_ioproj, ac->in(TypeFunc::I_O)); 945 _igvn.replace_node(callprojs.fallthrough_memproj, ac->in(TypeFunc::Memory)); 946 _igvn.replace_node(callprojs.fallthrough_catchproj, ac->in(TypeFunc::Control)); 947 948 // Set control to top. IGVN will remove the remaining projections 949 ac->set_req(0, top()); 950 ac->replace_edge(res, top(), &_igvn); 951 952 // Disconnect src right away: it can help find new 953 // opportunities for allocation elimination 954 Node* src = ac->in(ArrayCopyNode::Src); 955 ac->replace_edge(src, top(), &_igvn); 956 // src can be top at this point if src and dest of the 957 // arraycopy were the same 958 if (src->outcnt() == 0 && !src->is_top()) { 959 _igvn.remove_dead_node(src); 960 } 961 } 962 _igvn._worklist.push(ac); 963 } else { 964 eliminate_gc_barrier(use); 965 } 966 j -= (oc1 - res->outcnt()); 967 } 968 assert(res->outcnt() == 0, "all uses of allocated objects must be deleted"); 969 _igvn.remove_dead_node(res); 970 } 971 972 // 973 // Process other users of allocation's projections 974 // 975 if (_callprojs.resproj != nullptr && _callprojs.resproj->outcnt() != 0) { 976 // First disconnect stores captured by Initialize node. 977 // If Initialize node is eliminated first in the following code, 978 // it will kill such stores and DUIterator_Last will assert. 979 for (DUIterator_Fast jmax, j = _callprojs.resproj->fast_outs(jmax); j < jmax; j++) { 980 Node* use = _callprojs.resproj->fast_out(j); 981 if (use->is_AddP()) { 982 // raw memory addresses used only by the initialization 983 _igvn.replace_node(use, C->top()); 984 --j; --jmax; 985 } 986 } 987 for (DUIterator_Last jmin, j = _callprojs.resproj->last_outs(jmin); j >= jmin; ) { 988 Node* use = _callprojs.resproj->last_out(j); 989 uint oc1 = _callprojs.resproj->outcnt(); 990 if (use->is_Initialize()) { 991 // Eliminate Initialize node. 992 InitializeNode *init = use->as_Initialize(); 993 assert(init->outcnt() <= 2, "only a control and memory projection expected"); 994 Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control); 995 if (ctrl_proj != nullptr) { 996 _igvn.replace_node(ctrl_proj, init->in(TypeFunc::Control)); 997 #ifdef ASSERT 998 // If the InitializeNode has no memory out, it will die, and tmp will become null 999 Node* tmp = init->in(TypeFunc::Control); 1000 assert(tmp == nullptr || tmp == _callprojs.fallthrough_catchproj, "allocation control projection"); 1001 #endif 1002 } 1003 Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory); 1004 if (mem_proj != nullptr) { 1005 Node *mem = init->in(TypeFunc::Memory); 1006 #ifdef ASSERT 1007 if (mem->is_MergeMem()) { 1008 assert(mem->in(TypeFunc::Memory) == _callprojs.fallthrough_memproj, "allocation memory projection"); 1009 } else { 1010 assert(mem == _callprojs.fallthrough_memproj, "allocation memory projection"); 1011 } 1012 #endif 1013 _igvn.replace_node(mem_proj, mem); 1014 } 1015 } else { 1016 assert(false, "only Initialize or AddP expected"); 1017 } 1018 j -= (oc1 - _callprojs.resproj->outcnt()); 1019 } 1020 } 1021 if (_callprojs.fallthrough_catchproj != nullptr) { 1022 _igvn.replace_node(_callprojs.fallthrough_catchproj, alloc->in(TypeFunc::Control)); 1023 } 1024 if (_callprojs.fallthrough_memproj != nullptr) { 1025 _igvn.replace_node(_callprojs.fallthrough_memproj, alloc->in(TypeFunc::Memory)); 1026 } 1027 if (_callprojs.catchall_memproj != nullptr) { 1028 _igvn.replace_node(_callprojs.catchall_memproj, C->top()); 1029 } 1030 if (_callprojs.fallthrough_ioproj != nullptr) { 1031 _igvn.replace_node(_callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O)); 1032 } 1033 if (_callprojs.catchall_ioproj != nullptr) { 1034 _igvn.replace_node(_callprojs.catchall_ioproj, C->top()); 1035 } 1036 if (_callprojs.catchall_catchproj != nullptr) { 1037 _igvn.replace_node(_callprojs.catchall_catchproj, C->top()); 1038 } 1039 } 1040 1041 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) { 1042 // If reallocation fails during deoptimization we'll pop all 1043 // interpreter frames for this compiled frame and that won't play 1044 // nice with JVMTI popframe. 1045 // We avoid this issue by eager reallocation when the popframe request 1046 // is received. 1047 if (!EliminateAllocations || !alloc->_is_non_escaping) { 1048 return false; 1049 } 1050 Node* klass = alloc->in(AllocateNode::KlassNode); 1051 const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr(); 1052 Node* res = alloc->result_cast(); 1053 // Eliminate boxing allocations which are not used 1054 // regardless scalar replaceable status. 1055 bool boxing_alloc = C->eliminate_boxing() && 1056 tklass->isa_instklassptr() && 1057 tklass->is_instklassptr()->instance_klass()->is_box_klass(); 1058 if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != nullptr))) { 1059 return false; 1060 } 1061 1062 alloc->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 1063 1064 GrowableArray <SafePointNode *> safepoints; 1065 if (!can_eliminate_allocation(&_igvn, alloc, &safepoints)) { 1066 return false; 1067 } 1068 1069 if (!alloc->_is_scalar_replaceable) { 1070 assert(res == nullptr, "sanity"); 1071 // We can only eliminate allocation if all debug info references 1072 // are already replaced with SafePointScalarObject because 1073 // we can't search for a fields value without instance_id. 1074 if (safepoints.length() > 0) { 1075 return false; 1076 } 1077 } 1078 1079 if (!scalar_replacement(alloc, safepoints)) { 1080 return false; 1081 } 1082 1083 CompileLog* log = C->log(); 1084 if (log != nullptr) { 1085 log->head("eliminate_allocation type='%d'", 1086 log->identify(tklass->exact_klass())); 1087 JVMState* p = alloc->jvms(); 1088 while (p != nullptr) { 1089 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1090 p = p->caller(); 1091 } 1092 log->tail("eliminate_allocation"); 1093 } 1094 1095 process_users_of_allocation(alloc); 1096 1097 #ifndef PRODUCT 1098 if (PrintEliminateAllocations) { 1099 if (alloc->is_AllocateArray()) 1100 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx); 1101 else 1102 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx); 1103 } 1104 #endif 1105 1106 return true; 1107 } 1108 1109 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) { 1110 // EA should remove all uses of non-escaping boxing node. 1111 if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != nullptr) { 1112 return false; 1113 } 1114 1115 assert(boxing->result_cast() == nullptr, "unexpected boxing node result"); 1116 1117 boxing->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 1118 1119 const TypeTuple* r = boxing->tf()->range(); 1120 assert(r->cnt() > TypeFunc::Parms, "sanity"); 1121 const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr(); 1122 assert(t != nullptr, "sanity"); 1123 1124 CompileLog* log = C->log(); 1125 if (log != nullptr) { 1126 log->head("eliminate_boxing type='%d'", 1127 log->identify(t->instance_klass())); 1128 JVMState* p = boxing->jvms(); 1129 while (p != nullptr) { 1130 log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method())); 1131 p = p->caller(); 1132 } 1133 log->tail("eliminate_boxing"); 1134 } 1135 1136 process_users_of_allocation(boxing); 1137 1138 #ifndef PRODUCT 1139 if (PrintEliminateAllocations) { 1140 tty->print("++++ Eliminated: %d ", boxing->_idx); 1141 boxing->method()->print_short_name(tty); 1142 tty->cr(); 1143 } 1144 #endif 1145 1146 return true; 1147 } 1148 1149 1150 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) { 1151 Node* adr = basic_plus_adr(base, offset); 1152 const TypePtr* adr_type = adr->bottom_type()->is_ptr(); 1153 Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered); 1154 transform_later(value); 1155 return value; 1156 } 1157 1158 1159 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) { 1160 Node* adr = basic_plus_adr(base, offset); 1161 mem = StoreNode::make(_igvn, ctl, mem, adr, nullptr, value, bt, MemNode::unordered); 1162 transform_later(mem); 1163 return mem; 1164 } 1165 1166 //============================================================================= 1167 // 1168 // A L L O C A T I O N 1169 // 1170 // Allocation attempts to be fast in the case of frequent small objects. 1171 // It breaks down like this: 1172 // 1173 // 1) Size in doublewords is computed. This is a constant for objects and 1174 // variable for most arrays. Doubleword units are used to avoid size 1175 // overflow of huge doubleword arrays. We need doublewords in the end for 1176 // rounding. 1177 // 1178 // 2) Size is checked for being 'too large'. Too-large allocations will go 1179 // the slow path into the VM. The slow path can throw any required 1180 // exceptions, and does all the special checks for very large arrays. The 1181 // size test can constant-fold away for objects. For objects with 1182 // finalizers it constant-folds the otherway: you always go slow with 1183 // finalizers. 1184 // 1185 // 3) If NOT using TLABs, this is the contended loop-back point. 1186 // Load-Locked the heap top. If using TLABs normal-load the heap top. 1187 // 1188 // 4) Check that heap top + size*8 < max. If we fail go the slow ` route. 1189 // NOTE: "top+size*8" cannot wrap the 4Gig line! Here's why: for largish 1190 // "size*8" we always enter the VM, where "largish" is a constant picked small 1191 // enough that there's always space between the eden max and 4Gig (old space is 1192 // there so it's quite large) and large enough that the cost of entering the VM 1193 // is dwarfed by the cost to initialize the space. 1194 // 1195 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back 1196 // down. If contended, repeat at step 3. If using TLABs normal-store 1197 // adjusted heap top back down; there is no contention. 1198 // 1199 // 6) If !ZeroTLAB then Bulk-clear the object/array. Fill in klass & mark 1200 // fields. 1201 // 1202 // 7) Merge with the slow-path; cast the raw memory pointer to the correct 1203 // oop flavor. 1204 // 1205 //============================================================================= 1206 // FastAllocateSizeLimit value is in DOUBLEWORDS. 1207 // Allocations bigger than this always go the slow route. 1208 // This value must be small enough that allocation attempts that need to 1209 // trigger exceptions go the slow route. Also, it must be small enough so 1210 // that heap_top + size_in_bytes does not wrap around the 4Gig limit. 1211 //=============================================================================j// 1212 // %%% Here is an old comment from parseHelper.cpp; is it outdated? 1213 // The allocator will coalesce int->oop copies away. See comment in 1214 // coalesce.cpp about how this works. It depends critically on the exact 1215 // code shape produced here, so if you are changing this code shape 1216 // make sure the GC info for the heap-top is correct in and around the 1217 // slow-path call. 1218 // 1219 1220 void PhaseMacroExpand::expand_allocate_common( 1221 AllocateNode* alloc, // allocation node to be expanded 1222 Node* length, // array length for an array allocation 1223 const TypeFunc* slow_call_type, // Type of slow call 1224 address slow_call_address, // Address of slow call 1225 Node* valid_length_test // whether length is valid or not 1226 ) 1227 { 1228 Node* ctrl = alloc->in(TypeFunc::Control); 1229 Node* mem = alloc->in(TypeFunc::Memory); 1230 Node* i_o = alloc->in(TypeFunc::I_O); 1231 Node* size_in_bytes = alloc->in(AllocateNode::AllocSize); 1232 Node* klass_node = alloc->in(AllocateNode::KlassNode); 1233 Node* initial_slow_test = alloc->in(AllocateNode::InitialTest); 1234 assert(ctrl != nullptr, "must have control"); 1235 1236 // We need a Region and corresponding Phi's to merge the slow-path and fast-path results. 1237 // they will not be used if "always_slow" is set 1238 enum { slow_result_path = 1, fast_result_path = 2 }; 1239 Node *result_region = nullptr; 1240 Node *result_phi_rawmem = nullptr; 1241 Node *result_phi_rawoop = nullptr; 1242 Node *result_phi_i_o = nullptr; 1243 1244 // The initial slow comparison is a size check, the comparison 1245 // we want to do is a BoolTest::gt 1246 bool expand_fast_path = true; 1247 int tv = _igvn.find_int_con(initial_slow_test, -1); 1248 if (tv >= 0) { 1249 // InitialTest has constant result 1250 // 0 - can fit in TLAB 1251 // 1 - always too big or negative 1252 assert(tv <= 1, "0 or 1 if a constant"); 1253 expand_fast_path = (tv == 0); 1254 initial_slow_test = nullptr; 1255 } else { 1256 initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn); 1257 } 1258 1259 if (!UseTLAB) { 1260 // Force slow-path allocation 1261 expand_fast_path = false; 1262 initial_slow_test = nullptr; 1263 } 1264 1265 bool allocation_has_use = (alloc->result_cast() != nullptr); 1266 if (!allocation_has_use) { 1267 InitializeNode* init = alloc->initialization(); 1268 if (init != nullptr) { 1269 init->remove(&_igvn); 1270 } 1271 if (expand_fast_path && (initial_slow_test == nullptr)) { 1272 // Remove allocation node and return. 1273 // Size is a non-negative constant -> no initial check needed -> directly to fast path. 1274 // Also, no usages -> empty fast path -> no fall out to slow path -> nothing left. 1275 #ifndef PRODUCT 1276 if (PrintEliminateAllocations) { 1277 tty->print("NotUsed "); 1278 Node* res = alloc->proj_out_or_null(TypeFunc::Parms); 1279 if (res != nullptr) { 1280 res->dump(); 1281 } else { 1282 alloc->dump(); 1283 } 1284 } 1285 #endif 1286 yank_alloc_node(alloc); 1287 return; 1288 } 1289 } 1290 1291 enum { too_big_or_final_path = 1, need_gc_path = 2 }; 1292 Node *slow_region = nullptr; 1293 Node *toobig_false = ctrl; 1294 1295 // generate the initial test if necessary 1296 if (initial_slow_test != nullptr ) { 1297 assert (expand_fast_path, "Only need test if there is a fast path"); 1298 slow_region = new RegionNode(3); 1299 1300 // Now make the initial failure test. Usually a too-big test but 1301 // might be a TRUE for finalizers or a fancy class check for 1302 // newInstance0. 1303 IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN); 1304 transform_later(toobig_iff); 1305 // Plug the failing-too-big test into the slow-path region 1306 Node *toobig_true = new IfTrueNode( toobig_iff ); 1307 transform_later(toobig_true); 1308 slow_region ->init_req( too_big_or_final_path, toobig_true ); 1309 toobig_false = new IfFalseNode( toobig_iff ); 1310 transform_later(toobig_false); 1311 } else { 1312 // No initial test, just fall into next case 1313 assert(allocation_has_use || !expand_fast_path, "Should already have been handled"); 1314 toobig_false = ctrl; 1315 debug_only(slow_region = NodeSentinel); 1316 } 1317 1318 // If we are here there are several possibilities 1319 // - expand_fast_path is false - then only a slow path is expanded. That's it. 1320 // no_initial_check means a constant allocation. 1321 // - If check always evaluates to false -> expand_fast_path is false (see above) 1322 // - If check always evaluates to true -> directly into fast path (but may bailout to slowpath) 1323 // if !allocation_has_use the fast path is empty 1324 // if !allocation_has_use && no_initial_check 1325 // - Then there are no fastpath that can fall out to slowpath -> no allocation code at all. 1326 // removed by yank_alloc_node above. 1327 1328 Node *slow_mem = mem; // save the current memory state for slow path 1329 // generate the fast allocation code unless we know that the initial test will always go slow 1330 if (expand_fast_path) { 1331 // Fast path modifies only raw memory. 1332 if (mem->is_MergeMem()) { 1333 mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw); 1334 } 1335 1336 // allocate the Region and Phi nodes for the result 1337 result_region = new RegionNode(3); 1338 result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM); 1339 result_phi_i_o = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch 1340 1341 // Grab regular I/O before optional prefetch may change it. 1342 // Slow-path does no I/O so just set it to the original I/O. 1343 result_phi_i_o->init_req(slow_result_path, i_o); 1344 1345 // Name successful fast-path variables 1346 Node* fast_oop_ctrl; 1347 Node* fast_oop_rawmem; 1348 if (allocation_has_use) { 1349 Node* needgc_ctrl = nullptr; 1350 result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM); 1351 1352 intx prefetch_lines = length != nullptr ? AllocatePrefetchLines : AllocateInstancePrefetchLines; 1353 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1354 Node* fast_oop = bs->obj_allocate(this, mem, toobig_false, size_in_bytes, i_o, needgc_ctrl, 1355 fast_oop_ctrl, fast_oop_rawmem, 1356 prefetch_lines); 1357 1358 if (initial_slow_test != nullptr) { 1359 // This completes all paths into the slow merge point 1360 slow_region->init_req(need_gc_path, needgc_ctrl); 1361 transform_later(slow_region); 1362 } else { 1363 // No initial slow path needed! 1364 // Just fall from the need-GC path straight into the VM call. 1365 slow_region = needgc_ctrl; 1366 } 1367 1368 InitializeNode* init = alloc->initialization(); 1369 fast_oop_rawmem = initialize_object(alloc, 1370 fast_oop_ctrl, fast_oop_rawmem, fast_oop, 1371 klass_node, length, size_in_bytes); 1372 expand_initialize_membar(alloc, init, fast_oop_ctrl, fast_oop_rawmem); 1373 expand_dtrace_alloc_probe(alloc, fast_oop, fast_oop_ctrl, fast_oop_rawmem); 1374 1375 result_phi_rawoop->init_req(fast_result_path, fast_oop); 1376 } else { 1377 assert (initial_slow_test != nullptr, "sanity"); 1378 fast_oop_ctrl = toobig_false; 1379 fast_oop_rawmem = mem; 1380 transform_later(slow_region); 1381 } 1382 1383 // Plug in the successful fast-path into the result merge point 1384 result_region ->init_req(fast_result_path, fast_oop_ctrl); 1385 result_phi_i_o ->init_req(fast_result_path, i_o); 1386 result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem); 1387 } else { 1388 slow_region = ctrl; 1389 result_phi_i_o = i_o; // Rename it to use in the following code. 1390 } 1391 1392 // Generate slow-path call 1393 CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address, 1394 OptoRuntime::stub_name(slow_call_address), 1395 TypePtr::BOTTOM); 1396 call->init_req(TypeFunc::Control, slow_region); 1397 call->init_req(TypeFunc::I_O, top()); // does no i/o 1398 call->init_req(TypeFunc::Memory, slow_mem); // may gc ptrs 1399 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); 1400 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); 1401 1402 call->init_req(TypeFunc::Parms+0, klass_node); 1403 if (length != nullptr) { 1404 call->init_req(TypeFunc::Parms+1, length); 1405 } 1406 1407 // Copy debug information and adjust JVMState information, then replace 1408 // allocate node with the call 1409 call->copy_call_debug_info(&_igvn, alloc); 1410 // For array allocations, copy the valid length check to the call node so Compile::final_graph_reshaping() can verify 1411 // that the call has the expected number of CatchProj nodes (in case the allocation always fails and the fallthrough 1412 // path dies). 1413 if (valid_length_test != nullptr) { 1414 call->add_req(valid_length_test); 1415 } 1416 if (expand_fast_path) { 1417 call->set_cnt(PROB_UNLIKELY_MAG(4)); // Same effect as RC_UNCOMMON. 1418 } else { 1419 // Hook i_o projection to avoid its elimination during allocation 1420 // replacement (when only a slow call is generated). 1421 call->set_req(TypeFunc::I_O, result_phi_i_o); 1422 } 1423 _igvn.replace_node(alloc, call); 1424 transform_later(call); 1425 1426 // Identify the output projections from the allocate node and 1427 // adjust any references to them. 1428 // The control and io projections look like: 1429 // 1430 // v---Proj(ctrl) <-----+ v---CatchProj(ctrl) 1431 // Allocate Catch 1432 // ^---Proj(io) <-------+ ^---CatchProj(io) 1433 // 1434 // We are interested in the CatchProj nodes. 1435 // 1436 call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 1437 1438 // An allocate node has separate memory projections for the uses on 1439 // the control and i_o paths. Replace the control memory projection with 1440 // result_phi_rawmem (unless we are only generating a slow call when 1441 // both memory projections are combined) 1442 if (expand_fast_path && _callprojs.fallthrough_memproj != nullptr) { 1443 migrate_outs(_callprojs.fallthrough_memproj, result_phi_rawmem); 1444 } 1445 // Now change uses of catchall_memproj to use fallthrough_memproj and delete 1446 // catchall_memproj so we end up with a call that has only 1 memory projection. 1447 if (_callprojs.catchall_memproj != nullptr ) { 1448 if (_callprojs.fallthrough_memproj == nullptr) { 1449 _callprojs.fallthrough_memproj = new ProjNode(call, TypeFunc::Memory); 1450 transform_later(_callprojs.fallthrough_memproj); 1451 } 1452 migrate_outs(_callprojs.catchall_memproj, _callprojs.fallthrough_memproj); 1453 _igvn.remove_dead_node(_callprojs.catchall_memproj); 1454 } 1455 1456 // An allocate node has separate i_o projections for the uses on the control 1457 // and i_o paths. Always replace the control i_o projection with result i_o 1458 // otherwise incoming i_o become dead when only a slow call is generated 1459 // (it is different from memory projections where both projections are 1460 // combined in such case). 1461 if (_callprojs.fallthrough_ioproj != nullptr) { 1462 migrate_outs(_callprojs.fallthrough_ioproj, result_phi_i_o); 1463 } 1464 // Now change uses of catchall_ioproj to use fallthrough_ioproj and delete 1465 // catchall_ioproj so we end up with a call that has only 1 i_o projection. 1466 if (_callprojs.catchall_ioproj != nullptr ) { 1467 if (_callprojs.fallthrough_ioproj == nullptr) { 1468 _callprojs.fallthrough_ioproj = new ProjNode(call, TypeFunc::I_O); 1469 transform_later(_callprojs.fallthrough_ioproj); 1470 } 1471 migrate_outs(_callprojs.catchall_ioproj, _callprojs.fallthrough_ioproj); 1472 _igvn.remove_dead_node(_callprojs.catchall_ioproj); 1473 } 1474 1475 // if we generated only a slow call, we are done 1476 if (!expand_fast_path) { 1477 // Now we can unhook i_o. 1478 if (result_phi_i_o->outcnt() > 1) { 1479 call->set_req(TypeFunc::I_O, top()); 1480 } else { 1481 assert(result_phi_i_o->unique_ctrl_out() == call, "sanity"); 1482 // Case of new array with negative size known during compilation. 1483 // AllocateArrayNode::Ideal() optimization disconnect unreachable 1484 // following code since call to runtime will throw exception. 1485 // As result there will be no users of i_o after the call. 1486 // Leave i_o attached to this call to avoid problems in preceding graph. 1487 } 1488 return; 1489 } 1490 1491 if (_callprojs.fallthrough_catchproj != nullptr) { 1492 ctrl = _callprojs.fallthrough_catchproj->clone(); 1493 transform_later(ctrl); 1494 _igvn.replace_node(_callprojs.fallthrough_catchproj, result_region); 1495 } else { 1496 ctrl = top(); 1497 } 1498 Node *slow_result; 1499 if (_callprojs.resproj == nullptr) { 1500 // no uses of the allocation result 1501 slow_result = top(); 1502 } else { 1503 slow_result = _callprojs.resproj->clone(); 1504 transform_later(slow_result); 1505 _igvn.replace_node(_callprojs.resproj, result_phi_rawoop); 1506 } 1507 1508 // Plug slow-path into result merge point 1509 result_region->init_req( slow_result_path, ctrl); 1510 transform_later(result_region); 1511 if (allocation_has_use) { 1512 result_phi_rawoop->init_req(slow_result_path, slow_result); 1513 transform_later(result_phi_rawoop); 1514 } 1515 result_phi_rawmem->init_req(slow_result_path, _callprojs.fallthrough_memproj); 1516 transform_later(result_phi_rawmem); 1517 transform_later(result_phi_i_o); 1518 // This completes all paths into the result merge point 1519 } 1520 1521 // Remove alloc node that has no uses. 1522 void PhaseMacroExpand::yank_alloc_node(AllocateNode* alloc) { 1523 Node* ctrl = alloc->in(TypeFunc::Control); 1524 Node* mem = alloc->in(TypeFunc::Memory); 1525 Node* i_o = alloc->in(TypeFunc::I_O); 1526 1527 alloc->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 1528 if (_callprojs.resproj != nullptr) { 1529 for (DUIterator_Fast imax, i = _callprojs.resproj->fast_outs(imax); i < imax; i++) { 1530 Node* use = _callprojs.resproj->fast_out(i); 1531 use->isa_MemBar()->remove(&_igvn); 1532 --imax; 1533 --i; // back up iterator 1534 } 1535 assert(_callprojs.resproj->outcnt() == 0, "all uses must be deleted"); 1536 _igvn.remove_dead_node(_callprojs.resproj); 1537 } 1538 if (_callprojs.fallthrough_catchproj != nullptr) { 1539 migrate_outs(_callprojs.fallthrough_catchproj, ctrl); 1540 _igvn.remove_dead_node(_callprojs.fallthrough_catchproj); 1541 } 1542 if (_callprojs.catchall_catchproj != nullptr) { 1543 _igvn.rehash_node_delayed(_callprojs.catchall_catchproj); 1544 _callprojs.catchall_catchproj->set_req(0, top()); 1545 } 1546 if (_callprojs.fallthrough_proj != nullptr) { 1547 Node* catchnode = _callprojs.fallthrough_proj->unique_ctrl_out(); 1548 _igvn.remove_dead_node(catchnode); 1549 _igvn.remove_dead_node(_callprojs.fallthrough_proj); 1550 } 1551 if (_callprojs.fallthrough_memproj != nullptr) { 1552 migrate_outs(_callprojs.fallthrough_memproj, mem); 1553 _igvn.remove_dead_node(_callprojs.fallthrough_memproj); 1554 } 1555 if (_callprojs.fallthrough_ioproj != nullptr) { 1556 migrate_outs(_callprojs.fallthrough_ioproj, i_o); 1557 _igvn.remove_dead_node(_callprojs.fallthrough_ioproj); 1558 } 1559 if (_callprojs.catchall_memproj != nullptr) { 1560 _igvn.rehash_node_delayed(_callprojs.catchall_memproj); 1561 _callprojs.catchall_memproj->set_req(0, top()); 1562 } 1563 if (_callprojs.catchall_ioproj != nullptr) { 1564 _igvn.rehash_node_delayed(_callprojs.catchall_ioproj); 1565 _callprojs.catchall_ioproj->set_req(0, top()); 1566 } 1567 #ifndef PRODUCT 1568 if (PrintEliminateAllocations) { 1569 if (alloc->is_AllocateArray()) { 1570 tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx); 1571 } else { 1572 tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx); 1573 } 1574 } 1575 #endif 1576 _igvn.remove_dead_node(alloc); 1577 } 1578 1579 void PhaseMacroExpand::expand_initialize_membar(AllocateNode* alloc, InitializeNode* init, 1580 Node*& fast_oop_ctrl, Node*& fast_oop_rawmem) { 1581 // If initialization is performed by an array copy, any required 1582 // MemBarStoreStore was already added. If the object does not 1583 // escape no need for a MemBarStoreStore. If the object does not 1584 // escape in its initializer and memory barrier (MemBarStoreStore or 1585 // stronger) is already added at exit of initializer, also no need 1586 // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore 1587 // so that stores that initialize this object can't be reordered 1588 // with a subsequent store that makes this object accessible by 1589 // other threads. 1590 // Other threads include java threads and JVM internal threads 1591 // (for example concurrent GC threads). Current concurrent GC 1592 // implementation: G1 will not scan newly created object, 1593 // so it's safe to skip storestore barrier when allocation does 1594 // not escape. 1595 if (!alloc->does_not_escape_thread() && 1596 !alloc->is_allocation_MemBar_redundant() && 1597 (init == nullptr || !init->is_complete_with_arraycopy())) { 1598 if (init == nullptr || init->req() < InitializeNode::RawStores) { 1599 // No InitializeNode or no stores captured by zeroing 1600 // elimination. Simply add the MemBarStoreStore after object 1601 // initialization. 1602 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1603 transform_later(mb); 1604 1605 mb->init_req(TypeFunc::Memory, fast_oop_rawmem); 1606 mb->init_req(TypeFunc::Control, fast_oop_ctrl); 1607 fast_oop_ctrl = new ProjNode(mb, TypeFunc::Control); 1608 transform_later(fast_oop_ctrl); 1609 fast_oop_rawmem = new ProjNode(mb, TypeFunc::Memory); 1610 transform_later(fast_oop_rawmem); 1611 } else { 1612 // Add the MemBarStoreStore after the InitializeNode so that 1613 // all stores performing the initialization that were moved 1614 // before the InitializeNode happen before the storestore 1615 // barrier. 1616 1617 Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control); 1618 Node* init_mem = init->proj_out_or_null(TypeFunc::Memory); 1619 1620 MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot); 1621 transform_later(mb); 1622 1623 Node* ctrl = new ProjNode(init, TypeFunc::Control); 1624 transform_later(ctrl); 1625 Node* mem = new ProjNode(init, TypeFunc::Memory); 1626 transform_later(mem); 1627 1628 // The MemBarStoreStore depends on control and memory coming 1629 // from the InitializeNode 1630 mb->init_req(TypeFunc::Memory, mem); 1631 mb->init_req(TypeFunc::Control, ctrl); 1632 1633 ctrl = new ProjNode(mb, TypeFunc::Control); 1634 transform_later(ctrl); 1635 mem = new ProjNode(mb, TypeFunc::Memory); 1636 transform_later(mem); 1637 1638 // All nodes that depended on the InitializeNode for control 1639 // and memory must now depend on the MemBarNode that itself 1640 // depends on the InitializeNode 1641 if (init_ctrl != nullptr) { 1642 _igvn.replace_node(init_ctrl, ctrl); 1643 } 1644 if (init_mem != nullptr) { 1645 _igvn.replace_node(init_mem, mem); 1646 } 1647 } 1648 } 1649 } 1650 1651 void PhaseMacroExpand::expand_dtrace_alloc_probe(AllocateNode* alloc, Node* oop, 1652 Node*& ctrl, Node*& rawmem) { 1653 if (C->env()->dtrace_alloc_probes()) { 1654 // Slow-path call 1655 int size = TypeFunc::Parms + 2; 1656 CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(), 1657 CAST_FROM_FN_PTR(address, 1658 static_cast<int (*)(JavaThread*, oopDesc*)>(SharedRuntime::dtrace_object_alloc)), 1659 "dtrace_object_alloc", 1660 TypeRawPtr::BOTTOM); 1661 1662 // Get base of thread-local storage area 1663 Node* thread = new ThreadLocalNode(); 1664 transform_later(thread); 1665 1666 call->init_req(TypeFunc::Parms + 0, thread); 1667 call->init_req(TypeFunc::Parms + 1, oop); 1668 call->init_req(TypeFunc::Control, ctrl); 1669 call->init_req(TypeFunc::I_O , top()); // does no i/o 1670 call->init_req(TypeFunc::Memory , rawmem); 1671 call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr)); 1672 call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr)); 1673 transform_later(call); 1674 ctrl = new ProjNode(call, TypeFunc::Control); 1675 transform_later(ctrl); 1676 rawmem = new ProjNode(call, TypeFunc::Memory); 1677 transform_later(rawmem); 1678 } 1679 } 1680 1681 // Helper for PhaseMacroExpand::expand_allocate_common. 1682 // Initializes the newly-allocated storage. 1683 Node* 1684 PhaseMacroExpand::initialize_object(AllocateNode* alloc, 1685 Node* control, Node* rawmem, Node* object, 1686 Node* klass_node, Node* length, 1687 Node* size_in_bytes) { 1688 InitializeNode* init = alloc->initialization(); 1689 // Store the klass & mark bits 1690 Node* mark_node = alloc->make_ideal_mark(&_igvn, object, control, rawmem); 1691 if (!mark_node->is_Con()) { 1692 transform_later(mark_node); 1693 } 1694 rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, TypeX_X->basic_type()); 1695 1696 if (!UseCompactObjectHeaders) { 1697 rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA); 1698 } 1699 1700 int header_size = alloc->minimum_header_size(); // conservatively small 1701 1702 // Array length 1703 if (length != nullptr) { // Arrays need length field 1704 rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT); 1705 // conservatively small header size: 1706 header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE); 1707 if (_igvn.type(klass_node)->isa_aryklassptr()) { // we know the exact header size in most cases: 1708 BasicType elem = _igvn.type(klass_node)->is_klassptr()->as_instance_type()->isa_aryptr()->elem()->array_element_basic_type(); 1709 if (is_reference_type(elem, true)) { 1710 elem = T_OBJECT; 1711 } 1712 header_size = Klass::layout_helper_header_size(Klass::array_layout_helper(elem)); 1713 } 1714 } 1715 1716 // Clear the object body, if necessary. 1717 if (init == nullptr) { 1718 // The init has somehow disappeared; be cautious and clear everything. 1719 // 1720 // This can happen if a node is allocated but an uncommon trap occurs 1721 // immediately. In this case, the Initialize gets associated with the 1722 // trap, and may be placed in a different (outer) loop, if the Allocate 1723 // is in a loop. If (this is rare) the inner loop gets unrolled, then 1724 // there can be two Allocates to one Initialize. The answer in all these 1725 // edge cases is safety first. It is always safe to clear immediately 1726 // within an Allocate, and then (maybe or maybe not) clear some more later. 1727 if (!(UseTLAB && ZeroTLAB)) { 1728 rawmem = ClearArrayNode::clear_memory(control, rawmem, object, 1729 header_size, size_in_bytes, 1730 &_igvn); 1731 } 1732 } else { 1733 if (!init->is_complete()) { 1734 // Try to win by zeroing only what the init does not store. 1735 // We can also try to do some peephole optimizations, 1736 // such as combining some adjacent subword stores. 1737 rawmem = init->complete_stores(control, rawmem, object, 1738 header_size, size_in_bytes, &_igvn); 1739 } 1740 // We have no more use for this link, since the AllocateNode goes away: 1741 init->set_req(InitializeNode::RawAddress, top()); 1742 // (If we keep the link, it just confuses the register allocator, 1743 // who thinks he sees a real use of the address by the membar.) 1744 } 1745 1746 return rawmem; 1747 } 1748 1749 // Generate prefetch instructions for next allocations. 1750 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false, 1751 Node*& contended_phi_rawmem, 1752 Node* old_eden_top, Node* new_eden_top, 1753 intx lines) { 1754 enum { fall_in_path = 1, pf_path = 2 }; 1755 if( UseTLAB && AllocatePrefetchStyle == 2 ) { 1756 // Generate prefetch allocation with watermark check. 1757 // As an allocation hits the watermark, we will prefetch starting 1758 // at a "distance" away from watermark. 1759 1760 Node *pf_region = new RegionNode(3); 1761 Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY, 1762 TypeRawPtr::BOTTOM ); 1763 // I/O is used for Prefetch 1764 Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO ); 1765 1766 Node *thread = new ThreadLocalNode(); 1767 transform_later(thread); 1768 1769 Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread, 1770 _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) ); 1771 transform_later(eden_pf_adr); 1772 1773 Node *old_pf_wm = new LoadPNode(needgc_false, 1774 contended_phi_rawmem, eden_pf_adr, 1775 TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, 1776 MemNode::unordered); 1777 transform_later(old_pf_wm); 1778 1779 // check against new_eden_top 1780 Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm ); 1781 transform_later(need_pf_cmp); 1782 Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge ); 1783 transform_later(need_pf_bol); 1784 IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol, 1785 PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN ); 1786 transform_later(need_pf_iff); 1787 1788 // true node, add prefetchdistance 1789 Node *need_pf_true = new IfTrueNode( need_pf_iff ); 1790 transform_later(need_pf_true); 1791 1792 Node *need_pf_false = new IfFalseNode( need_pf_iff ); 1793 transform_later(need_pf_false); 1794 1795 Node *new_pf_wmt = new AddPNode( top(), old_pf_wm, 1796 _igvn.MakeConX(AllocatePrefetchDistance) ); 1797 transform_later(new_pf_wmt ); 1798 new_pf_wmt->set_req(0, need_pf_true); 1799 1800 Node *store_new_wmt = new StorePNode(need_pf_true, 1801 contended_phi_rawmem, eden_pf_adr, 1802 TypeRawPtr::BOTTOM, new_pf_wmt, 1803 MemNode::unordered); 1804 transform_later(store_new_wmt); 1805 1806 // adding prefetches 1807 pf_phi_abio->init_req( fall_in_path, i_o ); 1808 1809 Node *prefetch_adr; 1810 Node *prefetch; 1811 uint step_size = AllocatePrefetchStepSize; 1812 uint distance = 0; 1813 1814 for ( intx i = 0; i < lines; i++ ) { 1815 prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt, 1816 _igvn.MakeConX(distance) ); 1817 transform_later(prefetch_adr); 1818 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 1819 transform_later(prefetch); 1820 distance += step_size; 1821 i_o = prefetch; 1822 } 1823 pf_phi_abio->set_req( pf_path, i_o ); 1824 1825 pf_region->init_req( fall_in_path, need_pf_false ); 1826 pf_region->init_req( pf_path, need_pf_true ); 1827 1828 pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem ); 1829 pf_phi_rawmem->init_req( pf_path, store_new_wmt ); 1830 1831 transform_later(pf_region); 1832 transform_later(pf_phi_rawmem); 1833 transform_later(pf_phi_abio); 1834 1835 needgc_false = pf_region; 1836 contended_phi_rawmem = pf_phi_rawmem; 1837 i_o = pf_phi_abio; 1838 } else if( UseTLAB && AllocatePrefetchStyle == 3 ) { 1839 // Insert a prefetch instruction for each allocation. 1840 // This code is used to generate 1 prefetch instruction per cache line. 1841 1842 // Generate several prefetch instructions. 1843 uint step_size = AllocatePrefetchStepSize; 1844 uint distance = AllocatePrefetchDistance; 1845 1846 // Next cache address. 1847 Node *cache_adr = new AddPNode(old_eden_top, old_eden_top, 1848 _igvn.MakeConX(step_size + distance)); 1849 transform_later(cache_adr); 1850 cache_adr = new CastP2XNode(needgc_false, cache_adr); 1851 transform_later(cache_adr); 1852 // Address is aligned to execute prefetch to the beginning of cache line size 1853 // (it is important when BIS instruction is used on SPARC as prefetch). 1854 Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1)); 1855 cache_adr = new AndXNode(cache_adr, mask); 1856 transform_later(cache_adr); 1857 cache_adr = new CastX2PNode(cache_adr); 1858 transform_later(cache_adr); 1859 1860 // Prefetch 1861 Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr ); 1862 prefetch->set_req(0, needgc_false); 1863 transform_later(prefetch); 1864 contended_phi_rawmem = prefetch; 1865 Node *prefetch_adr; 1866 distance = step_size; 1867 for ( intx i = 1; i < lines; i++ ) { 1868 prefetch_adr = new AddPNode( cache_adr, cache_adr, 1869 _igvn.MakeConX(distance) ); 1870 transform_later(prefetch_adr); 1871 prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr ); 1872 transform_later(prefetch); 1873 distance += step_size; 1874 contended_phi_rawmem = prefetch; 1875 } 1876 } else if( AllocatePrefetchStyle > 0 ) { 1877 // Insert a prefetch for each allocation only on the fast-path 1878 Node *prefetch_adr; 1879 Node *prefetch; 1880 // Generate several prefetch instructions. 1881 uint step_size = AllocatePrefetchStepSize; 1882 uint distance = AllocatePrefetchDistance; 1883 for ( intx i = 0; i < lines; i++ ) { 1884 prefetch_adr = new AddPNode( old_eden_top, new_eden_top, 1885 _igvn.MakeConX(distance) ); 1886 transform_later(prefetch_adr); 1887 prefetch = new PrefetchAllocationNode( i_o, prefetch_adr ); 1888 // Do not let it float too high, since if eden_top == eden_end, 1889 // both might be null. 1890 if( i == 0 ) { // Set control for first prefetch, next follows it 1891 prefetch->init_req(0, needgc_false); 1892 } 1893 transform_later(prefetch); 1894 distance += step_size; 1895 i_o = prefetch; 1896 } 1897 } 1898 return i_o; 1899 } 1900 1901 1902 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) { 1903 expand_allocate_common(alloc, nullptr, 1904 OptoRuntime::new_instance_Type(), 1905 OptoRuntime::new_instance_Java(), nullptr); 1906 } 1907 1908 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) { 1909 Node* length = alloc->in(AllocateNode::ALength); 1910 Node* valid_length_test = alloc->in(AllocateNode::ValidLengthTest); 1911 InitializeNode* init = alloc->initialization(); 1912 Node* klass_node = alloc->in(AllocateNode::KlassNode); 1913 const TypeAryKlassPtr* ary_klass_t = _igvn.type(klass_node)->isa_aryklassptr(); 1914 address slow_call_address; // Address of slow call 1915 if (init != nullptr && init->is_complete_with_arraycopy() && 1916 ary_klass_t && ary_klass_t->elem()->isa_klassptr() == nullptr) { 1917 // Don't zero type array during slow allocation in VM since 1918 // it will be initialized later by arraycopy in compiled code. 1919 slow_call_address = OptoRuntime::new_array_nozero_Java(); 1920 } else { 1921 slow_call_address = OptoRuntime::new_array_Java(); 1922 } 1923 expand_allocate_common(alloc, length, 1924 OptoRuntime::new_array_Type(), 1925 slow_call_address, valid_length_test); 1926 } 1927 1928 //-------------------mark_eliminated_box---------------------------------- 1929 // 1930 // During EA obj may point to several objects but after few ideal graph 1931 // transformations (CCP) it may point to only one non escaping object 1932 // (but still using phi), corresponding locks and unlocks will be marked 1933 // for elimination. Later obj could be replaced with a new node (new phi) 1934 // and which does not have escape information. And later after some graph 1935 // reshape other locks and unlocks (which were not marked for elimination 1936 // before) are connected to this new obj (phi) but they still will not be 1937 // marked for elimination since new obj has no escape information. 1938 // Mark all associated (same box and obj) lock and unlock nodes for 1939 // elimination if some of them marked already. 1940 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) { 1941 if (oldbox->as_BoxLock()->is_eliminated()) { 1942 return; // This BoxLock node was processed already. 1943 } 1944 // New implementation (EliminateNestedLocks) has separate BoxLock 1945 // node for each locked region so mark all associated locks/unlocks as 1946 // eliminated even if different objects are referenced in one locked region 1947 // (for example, OSR compilation of nested loop inside locked scope). 1948 if (EliminateNestedLocks || 1949 oldbox->as_BoxLock()->is_simple_lock_region(nullptr, obj, nullptr)) { 1950 // Box is used only in one lock region. Mark this box as eliminated. 1951 _igvn.hash_delete(oldbox); 1952 oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value 1953 _igvn.hash_insert(oldbox); 1954 1955 for (uint i = 0; i < oldbox->outcnt(); i++) { 1956 Node* u = oldbox->raw_out(i); 1957 if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) { 1958 AbstractLockNode* alock = u->as_AbstractLock(); 1959 // Check lock's box since box could be referenced by Lock's debug info. 1960 if (alock->box_node() == oldbox) { 1961 // Mark eliminated all related locks and unlocks. 1962 #ifdef ASSERT 1963 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4"); 1964 #endif 1965 alock->set_non_esc_obj(); 1966 } 1967 } 1968 } 1969 return; 1970 } 1971 1972 // Create new "eliminated" BoxLock node and use it in monitor debug info 1973 // instead of oldbox for the same object. 1974 BoxLockNode* newbox = oldbox->clone()->as_BoxLock(); 1975 1976 // Note: BoxLock node is marked eliminated only here and it is used 1977 // to indicate that all associated lock and unlock nodes are marked 1978 // for elimination. 1979 newbox->set_eliminated(); 1980 transform_later(newbox); 1981 1982 // Replace old box node with new box for all users of the same object. 1983 for (uint i = 0; i < oldbox->outcnt();) { 1984 bool next_edge = true; 1985 1986 Node* u = oldbox->raw_out(i); 1987 if (u->is_AbstractLock()) { 1988 AbstractLockNode* alock = u->as_AbstractLock(); 1989 if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) { 1990 // Replace Box and mark eliminated all related locks and unlocks. 1991 #ifdef ASSERT 1992 alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5"); 1993 #endif 1994 alock->set_non_esc_obj(); 1995 _igvn.rehash_node_delayed(alock); 1996 alock->set_box_node(newbox); 1997 next_edge = false; 1998 } 1999 } 2000 if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) { 2001 FastLockNode* flock = u->as_FastLock(); 2002 assert(flock->box_node() == oldbox, "sanity"); 2003 _igvn.rehash_node_delayed(flock); 2004 flock->set_box_node(newbox); 2005 next_edge = false; 2006 } 2007 2008 // Replace old box in monitor debug info. 2009 if (u->is_SafePoint() && u->as_SafePoint()->jvms()) { 2010 SafePointNode* sfn = u->as_SafePoint(); 2011 JVMState* youngest_jvms = sfn->jvms(); 2012 int max_depth = youngest_jvms->depth(); 2013 for (int depth = 1; depth <= max_depth; depth++) { 2014 JVMState* jvms = youngest_jvms->of_depth(depth); 2015 int num_mon = jvms->nof_monitors(); 2016 // Loop over monitors 2017 for (int idx = 0; idx < num_mon; idx++) { 2018 Node* obj_node = sfn->monitor_obj(jvms, idx); 2019 Node* box_node = sfn->monitor_box(jvms, idx); 2020 if (box_node == oldbox && obj_node->eqv_uncast(obj)) { 2021 int j = jvms->monitor_box_offset(idx); 2022 _igvn.replace_input_of(u, j, newbox); 2023 next_edge = false; 2024 } 2025 } 2026 } 2027 } 2028 if (next_edge) i++; 2029 } 2030 } 2031 2032 //-----------------------mark_eliminated_locking_nodes----------------------- 2033 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) { 2034 if (EliminateNestedLocks) { 2035 if (alock->is_nested()) { 2036 assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity"); 2037 return; 2038 } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened 2039 // Only Lock node has JVMState needed here. 2040 // Not that preceding claim is documented anywhere else. 2041 if (alock->jvms() != nullptr) { 2042 if (alock->as_Lock()->is_nested_lock_region()) { 2043 // Mark eliminated related nested locks and unlocks. 2044 Node* obj = alock->obj_node(); 2045 BoxLockNode* box_node = alock->box_node()->as_BoxLock(); 2046 assert(!box_node->is_eliminated(), "should not be marked yet"); 2047 // Note: BoxLock node is marked eliminated only here 2048 // and it is used to indicate that all associated lock 2049 // and unlock nodes are marked for elimination. 2050 box_node->set_eliminated(); // Box's hash is always NO_HASH here 2051 for (uint i = 0; i < box_node->outcnt(); i++) { 2052 Node* u = box_node->raw_out(i); 2053 if (u->is_AbstractLock()) { 2054 alock = u->as_AbstractLock(); 2055 if (alock->box_node() == box_node) { 2056 // Verify that this Box is referenced only by related locks. 2057 assert(alock->obj_node()->eqv_uncast(obj), ""); 2058 // Mark all related locks and unlocks. 2059 #ifdef ASSERT 2060 alock->log_lock_optimization(C, "eliminate_lock_set_nested"); 2061 #endif 2062 alock->set_nested(); 2063 } 2064 } 2065 } 2066 } else { 2067 #ifdef ASSERT 2068 alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region"); 2069 if (C->log() != nullptr) 2070 alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output 2071 #endif 2072 } 2073 } 2074 return; 2075 } 2076 // Process locks for non escaping object 2077 assert(alock->is_non_esc_obj(), ""); 2078 } // EliminateNestedLocks 2079 2080 if (alock->is_non_esc_obj()) { // Lock is used for non escaping object 2081 // Look for all locks of this object and mark them and 2082 // corresponding BoxLock nodes as eliminated. 2083 Node* obj = alock->obj_node(); 2084 for (uint j = 0; j < obj->outcnt(); j++) { 2085 Node* o = obj->raw_out(j); 2086 if (o->is_AbstractLock() && 2087 o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) { 2088 alock = o->as_AbstractLock(); 2089 Node* box = alock->box_node(); 2090 // Replace old box node with new eliminated box for all users 2091 // of the same object and mark related locks as eliminated. 2092 mark_eliminated_box(box, obj); 2093 } 2094 } 2095 } 2096 } 2097 2098 // we have determined that this lock/unlock can be eliminated, we simply 2099 // eliminate the node without expanding it. 2100 // 2101 // Note: The membar's associated with the lock/unlock are currently not 2102 // eliminated. This should be investigated as a future enhancement. 2103 // 2104 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) { 2105 2106 if (!alock->is_eliminated()) { 2107 return false; 2108 } 2109 #ifdef ASSERT 2110 if (!alock->is_coarsened()) { 2111 // Check that new "eliminated" BoxLock node is created. 2112 BoxLockNode* oldbox = alock->box_node()->as_BoxLock(); 2113 assert(oldbox->is_eliminated(), "should be done already"); 2114 } 2115 #endif 2116 2117 alock->log_lock_optimization(C, "eliminate_lock"); 2118 2119 #ifndef PRODUCT 2120 if (PrintEliminateLocks) { 2121 tty->print_cr("++++ Eliminated: %d %s '%s'", alock->_idx, (alock->is_Lock() ? "Lock" : "Unlock"), alock->kind_as_string()); 2122 } 2123 #endif 2124 2125 Node* mem = alock->in(TypeFunc::Memory); 2126 Node* ctrl = alock->in(TypeFunc::Control); 2127 guarantee(ctrl != nullptr, "missing control projection, cannot replace_node() with null"); 2128 2129 alock->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 2130 // There are 2 projections from the lock. The lock node will 2131 // be deleted when its last use is subsumed below. 2132 assert(alock->outcnt() == 2 && 2133 _callprojs.fallthrough_proj != nullptr && 2134 _callprojs.fallthrough_memproj != nullptr, 2135 "Unexpected projections from Lock/Unlock"); 2136 2137 Node* fallthroughproj = _callprojs.fallthrough_proj; 2138 Node* memproj_fallthrough = _callprojs.fallthrough_memproj; 2139 2140 // The memory projection from a lock/unlock is RawMem 2141 // The input to a Lock is merged memory, so extract its RawMem input 2142 // (unless the MergeMem has been optimized away.) 2143 if (alock->is_Lock()) { 2144 // Search for MemBarAcquireLock node and delete it also. 2145 MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar(); 2146 assert(membar != nullptr && membar->Opcode() == Op_MemBarAcquireLock, ""); 2147 Node* ctrlproj = membar->proj_out(TypeFunc::Control); 2148 Node* memproj = membar->proj_out(TypeFunc::Memory); 2149 _igvn.replace_node(ctrlproj, fallthroughproj); 2150 _igvn.replace_node(memproj, memproj_fallthrough); 2151 2152 // Delete FastLock node also if this Lock node is unique user 2153 // (a loop peeling may clone a Lock node). 2154 Node* flock = alock->as_Lock()->fastlock_node(); 2155 if (flock->outcnt() == 1) { 2156 assert(flock->unique_out() == alock, "sanity"); 2157 _igvn.replace_node(flock, top()); 2158 } 2159 } 2160 2161 // Search for MemBarReleaseLock node and delete it also. 2162 if (alock->is_Unlock() && ctrl->is_Proj() && ctrl->in(0)->is_MemBar()) { 2163 MemBarNode* membar = ctrl->in(0)->as_MemBar(); 2164 assert(membar->Opcode() == Op_MemBarReleaseLock && 2165 mem->is_Proj() && membar == mem->in(0), ""); 2166 _igvn.replace_node(fallthroughproj, ctrl); 2167 _igvn.replace_node(memproj_fallthrough, mem); 2168 fallthroughproj = ctrl; 2169 memproj_fallthrough = mem; 2170 ctrl = membar->in(TypeFunc::Control); 2171 mem = membar->in(TypeFunc::Memory); 2172 } 2173 2174 _igvn.replace_node(fallthroughproj, ctrl); 2175 _igvn.replace_node(memproj_fallthrough, mem); 2176 return true; 2177 } 2178 2179 2180 //------------------------------expand_lock_node---------------------- 2181 void PhaseMacroExpand::expand_lock_node(LockNode *lock) { 2182 2183 Node* ctrl = lock->in(TypeFunc::Control); 2184 Node* mem = lock->in(TypeFunc::Memory); 2185 Node* obj = lock->obj_node(); 2186 Node* box = lock->box_node(); 2187 Node* flock = lock->fastlock_node(); 2188 2189 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2190 2191 // Make the merge point 2192 Node *region; 2193 Node *mem_phi; 2194 Node *slow_path; 2195 2196 region = new RegionNode(3); 2197 // create a Phi for the memory state 2198 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2199 2200 // Optimize test; set region slot 2 2201 slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0); 2202 mem_phi->init_req(2, mem); 2203 2204 // Make slow path call 2205 CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), 2206 OptoRuntime::complete_monitor_locking_Java(), nullptr, slow_path, 2207 obj, box, nullptr); 2208 2209 call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 2210 2211 // Slow path can only throw asynchronous exceptions, which are always 2212 // de-opted. So the compiler thinks the slow-call can never throw an 2213 // exception. If it DOES throw an exception we would need the debug 2214 // info removed first (since if it throws there is no monitor). 2215 assert(_callprojs.fallthrough_ioproj == nullptr && _callprojs.catchall_ioproj == nullptr && 2216 _callprojs.catchall_memproj == nullptr && _callprojs.catchall_catchproj == nullptr, "Unexpected projection from Lock"); 2217 2218 // Capture slow path 2219 // disconnect fall-through projection from call and create a new one 2220 // hook up users of fall-through projection to region 2221 Node *slow_ctrl = _callprojs.fallthrough_proj->clone(); 2222 transform_later(slow_ctrl); 2223 _igvn.hash_delete(_callprojs.fallthrough_proj); 2224 _callprojs.fallthrough_proj->disconnect_inputs(C); 2225 region->init_req(1, slow_ctrl); 2226 // region inputs are now complete 2227 transform_later(region); 2228 _igvn.replace_node(_callprojs.fallthrough_proj, region); 2229 2230 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory)); 2231 2232 mem_phi->init_req(1, memproj); 2233 2234 transform_later(mem_phi); 2235 2236 _igvn.replace_node(_callprojs.fallthrough_memproj, mem_phi); 2237 } 2238 2239 //------------------------------expand_unlock_node---------------------- 2240 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) { 2241 2242 Node* ctrl = unlock->in(TypeFunc::Control); 2243 Node* mem = unlock->in(TypeFunc::Memory); 2244 Node* obj = unlock->obj_node(); 2245 Node* box = unlock->box_node(); 2246 2247 assert(!box->as_BoxLock()->is_eliminated(), "sanity"); 2248 2249 // No need for a null check on unlock 2250 2251 // Make the merge point 2252 Node *region; 2253 Node *mem_phi; 2254 2255 region = new RegionNode(3); 2256 // create a Phi for the memory state 2257 mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM); 2258 2259 FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box ); 2260 funlock = transform_later( funlock )->as_FastUnlock(); 2261 // Optimize test; set region slot 2 2262 Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0); 2263 Node *thread = transform_later(new ThreadLocalNode()); 2264 2265 CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), 2266 CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), 2267 "complete_monitor_unlocking_C", slow_path, obj, box, thread); 2268 2269 call->extract_projections(&_callprojs, false /*separate_io_proj*/, false /*do_asserts*/); 2270 assert(_callprojs.fallthrough_ioproj == nullptr && _callprojs.catchall_ioproj == nullptr && 2271 _callprojs.catchall_memproj == nullptr && _callprojs.catchall_catchproj == nullptr, "Unexpected projection from Lock"); 2272 2273 // No exceptions for unlocking 2274 // Capture slow path 2275 // disconnect fall-through projection from call and create a new one 2276 // hook up users of fall-through projection to region 2277 Node *slow_ctrl = _callprojs.fallthrough_proj->clone(); 2278 transform_later(slow_ctrl); 2279 _igvn.hash_delete(_callprojs.fallthrough_proj); 2280 _callprojs.fallthrough_proj->disconnect_inputs(C); 2281 region->init_req(1, slow_ctrl); 2282 // region inputs are now complete 2283 transform_later(region); 2284 _igvn.replace_node(_callprojs.fallthrough_proj, region); 2285 2286 Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) ); 2287 mem_phi->init_req(1, memproj ); 2288 mem_phi->init_req(2, mem); 2289 transform_later(mem_phi); 2290 2291 _igvn.replace_node(_callprojs.fallthrough_memproj, mem_phi); 2292 } 2293 2294 void PhaseMacroExpand::expand_subtypecheck_node(SubTypeCheckNode *check) { 2295 assert(check->in(SubTypeCheckNode::Control) == nullptr, "should be pinned"); 2296 Node* bol = check->unique_out(); 2297 Node* obj_or_subklass = check->in(SubTypeCheckNode::ObjOrSubKlass); 2298 Node* superklass = check->in(SubTypeCheckNode::SuperKlass); 2299 assert(bol->is_Bool() && bol->as_Bool()->_test._test == BoolTest::ne, "unexpected bool node"); 2300 2301 for (DUIterator_Last imin, i = bol->last_outs(imin); i >= imin; --i) { 2302 Node* iff = bol->last_out(i); 2303 assert(iff->is_If(), "where's the if?"); 2304 2305 if (iff->in(0)->is_top()) { 2306 _igvn.replace_input_of(iff, 1, C->top()); 2307 continue; 2308 } 2309 2310 Node* iftrue = iff->as_If()->proj_out(1); 2311 Node* iffalse = iff->as_If()->proj_out(0); 2312 Node* ctrl = iff->in(0); 2313 2314 Node* subklass = nullptr; 2315 if (_igvn.type(obj_or_subklass)->isa_klassptr()) { 2316 subklass = obj_or_subklass; 2317 } else { 2318 Node* k_adr = basic_plus_adr(obj_or_subklass, oopDesc::klass_offset_in_bytes()); 2319 subklass = _igvn.transform(LoadKlassNode::make(_igvn, nullptr, C->immutable_memory(), k_adr, TypeInstPtr::KLASS)); 2320 } 2321 2322 Node* not_subtype_ctrl = Phase::gen_subtype_check(subklass, superklass, &ctrl, nullptr, _igvn); 2323 2324 _igvn.replace_input_of(iff, 0, C->top()); 2325 _igvn.replace_node(iftrue, not_subtype_ctrl); 2326 _igvn.replace_node(iffalse, ctrl); 2327 } 2328 _igvn.replace_node(check, C->top()); 2329 } 2330 2331 //---------------------------eliminate_macro_nodes---------------------- 2332 // Eliminate scalar replaced allocations and associated locks. 2333 void PhaseMacroExpand::eliminate_macro_nodes() { 2334 if (C->macro_count() == 0) 2335 return; 2336 NOT_PRODUCT(int membar_before = count_MemBar(C);) 2337 2338 // Before elimination may re-mark (change to Nested or NonEscObj) 2339 // all associated (same box and obj) lock and unlock nodes. 2340 int cnt = C->macro_count(); 2341 for (int i=0; i < cnt; i++) { 2342 Node *n = C->macro_node(i); 2343 if (n->is_AbstractLock()) { // Lock and Unlock nodes 2344 mark_eliminated_locking_nodes(n->as_AbstractLock()); 2345 } 2346 } 2347 // Re-marking may break consistency of Coarsened locks. 2348 if (!C->coarsened_locks_consistent()) { 2349 return; // recompile without Coarsened locks if broken 2350 } 2351 2352 // First, attempt to eliminate locks 2353 bool progress = true; 2354 while (progress) { 2355 progress = false; 2356 for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once 2357 Node* n = C->macro_node(i - 1); 2358 bool success = false; 2359 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2360 if (n->is_AbstractLock()) { 2361 success = eliminate_locking_node(n->as_AbstractLock()); 2362 #ifndef PRODUCT 2363 if (success && PrintOptoStatistics) { 2364 Atomic::inc(&PhaseMacroExpand::_monitor_objects_removed_counter); 2365 } 2366 #endif 2367 } 2368 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2369 progress = progress || success; 2370 } 2371 } 2372 // Next, attempt to eliminate allocations 2373 _has_locks = false; 2374 progress = true; 2375 while (progress) { 2376 progress = false; 2377 for (int i = C->macro_count(); i > 0; i = MIN2(i - 1, C->macro_count())) { // more than 1 element can be eliminated at once 2378 Node* n = C->macro_node(i - 1); 2379 bool success = false; 2380 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2381 switch (n->class_id()) { 2382 case Node::Class_Allocate: 2383 case Node::Class_AllocateArray: 2384 success = eliminate_allocate_node(n->as_Allocate()); 2385 #ifndef PRODUCT 2386 if (success && PrintOptoStatistics) { 2387 Atomic::inc(&PhaseMacroExpand::_objs_scalar_replaced_counter); 2388 } 2389 #endif 2390 break; 2391 case Node::Class_CallStaticJava: 2392 success = eliminate_boxing_node(n->as_CallStaticJava()); 2393 break; 2394 case Node::Class_Lock: 2395 case Node::Class_Unlock: 2396 assert(!n->as_AbstractLock()->is_eliminated(), "sanity"); 2397 _has_locks = true; 2398 break; 2399 case Node::Class_ArrayCopy: 2400 break; 2401 case Node::Class_OuterStripMinedLoop: 2402 break; 2403 case Node::Class_SubTypeCheck: 2404 break; 2405 case Node::Class_Opaque1: 2406 break; 2407 default: 2408 assert(n->Opcode() == Op_LoopLimit || 2409 n->Opcode() == Op_Opaque3 || 2410 n->Opcode() == Op_Opaque4 || 2411 n->Opcode() == Op_MaxL || 2412 n->Opcode() == Op_MinL || 2413 BarrierSet::barrier_set()->barrier_set_c2()->is_gc_barrier_node(n), 2414 "unknown node type in macro list"); 2415 } 2416 assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count"); 2417 progress = progress || success; 2418 } 2419 } 2420 #ifndef PRODUCT 2421 if (PrintOptoStatistics) { 2422 int membar_after = count_MemBar(C); 2423 Atomic::add(&PhaseMacroExpand::_memory_barriers_removed_counter, membar_before - membar_after); 2424 } 2425 #endif 2426 } 2427 2428 //------------------------------expand_macro_nodes---------------------- 2429 // Returns true if a failure occurred. 2430 bool PhaseMacroExpand::expand_macro_nodes() { 2431 // Last attempt to eliminate macro nodes. 2432 eliminate_macro_nodes(); 2433 if (C->failing()) return true; 2434 2435 // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations. 2436 bool progress = true; 2437 while (progress) { 2438 progress = false; 2439 for (int i = C->macro_count(); i > 0; i--) { 2440 Node* n = C->macro_node(i-1); 2441 bool success = false; 2442 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2443 if (n->Opcode() == Op_LoopLimit) { 2444 // Remove it from macro list and put on IGVN worklist to optimize. 2445 C->remove_macro_node(n); 2446 _igvn._worklist.push(n); 2447 success = true; 2448 } else if (n->Opcode() == Op_CallStaticJava) { 2449 // Remove it from macro list and put on IGVN worklist to optimize. 2450 C->remove_macro_node(n); 2451 _igvn._worklist.push(n); 2452 success = true; 2453 } else if (n->is_Opaque1()) { 2454 _igvn.replace_node(n, n->in(1)); 2455 success = true; 2456 #if INCLUDE_RTM_OPT 2457 } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) { 2458 assert(C->profile_rtm(), "should be used only in rtm deoptimization code"); 2459 assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), ""); 2460 Node* cmp = n->unique_out(); 2461 #ifdef ASSERT 2462 // Validate graph. 2463 assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), ""); 2464 BoolNode* bol = cmp->unique_out()->as_Bool(); 2465 assert((bol->outcnt() == 1) && bol->unique_out()->is_If() && 2466 (bol->_test._test == BoolTest::ne), ""); 2467 IfNode* ifn = bol->unique_out()->as_If(); 2468 assert((ifn->outcnt() == 2) && 2469 ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change) != nullptr, ""); 2470 #endif 2471 Node* repl = n->in(1); 2472 if (!_has_locks) { 2473 // Remove RTM state check if there are no locks in the code. 2474 // Replace input to compare the same value. 2475 repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1); 2476 } 2477 _igvn.replace_node(n, repl); 2478 success = true; 2479 #endif 2480 } else if (n->Opcode() == Op_Opaque4) { 2481 // With Opaque4 nodes, the expectation is that the test of input 1 2482 // is always equal to the constant value of input 2. So we can 2483 // remove the Opaque4 and replace it by input 2. In debug builds, 2484 // leave the non constant test in instead to sanity check that it 2485 // never fails (if it does, that subgraph was constructed so, at 2486 // runtime, a Halt node is executed). 2487 #ifdef ASSERT 2488 _igvn.replace_node(n, n->in(1)); 2489 #else 2490 _igvn.replace_node(n, n->in(2)); 2491 #endif 2492 success = true; 2493 } else if (n->Opcode() == Op_OuterStripMinedLoop) { 2494 n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn); 2495 C->remove_macro_node(n); 2496 success = true; 2497 } else if (n->Opcode() == Op_MaxL) { 2498 // Since MaxL and MinL are not implemented in the backend, we expand them to 2499 // a CMoveL construct now. At least until here, the type could be computed 2500 // precisely. CMoveL is not so smart, but we can give it at least the best 2501 // type we know abouot n now. 2502 Node* repl = MaxNode::signed_max(n->in(1), n->in(2), _igvn.type(n), _igvn); 2503 _igvn.replace_node(n, repl); 2504 success = true; 2505 } else if (n->Opcode() == Op_MinL) { 2506 Node* repl = MaxNode::signed_min(n->in(1), n->in(2), _igvn.type(n), _igvn); 2507 _igvn.replace_node(n, repl); 2508 success = true; 2509 } 2510 assert(!success || (C->macro_count() == (old_macro_count - 1)), "elimination must have deleted one node from macro list"); 2511 progress = progress || success; 2512 } 2513 } 2514 2515 // Clean up the graph so we're less likely to hit the maximum node 2516 // limit 2517 _igvn.set_delay_transform(false); 2518 _igvn.optimize(); 2519 if (C->failing()) return true; 2520 _igvn.set_delay_transform(true); 2521 2522 2523 // Because we run IGVN after each expansion, some macro nodes may go 2524 // dead and be removed from the list as we iterate over it. Move 2525 // Allocate nodes (processed in a second pass) at the beginning of 2526 // the list and then iterate from the last element of the list until 2527 // an Allocate node is seen. This is robust to random deletion in 2528 // the list due to nodes going dead. 2529 C->sort_macro_nodes(); 2530 2531 // expand arraycopy "macro" nodes first 2532 // For ReduceBulkZeroing, we must first process all arraycopy nodes 2533 // before the allocate nodes are expanded. 2534 while (C->macro_count() > 0) { 2535 int macro_count = C->macro_count(); 2536 Node * n = C->macro_node(macro_count-1); 2537 assert(n->is_macro(), "only macro nodes expected here"); 2538 if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) { 2539 // node is unreachable, so don't try to expand it 2540 C->remove_macro_node(n); 2541 continue; 2542 } 2543 if (n->is_Allocate()) { 2544 break; 2545 } 2546 // Make sure expansion will not cause node limit to be exceeded. 2547 // Worst case is a macro node gets expanded into about 200 nodes. 2548 // Allow 50% more for optimization. 2549 if (C->check_node_count(300, "out of nodes before macro expansion")) { 2550 return true; 2551 } 2552 2553 DEBUG_ONLY(int old_macro_count = C->macro_count();) 2554 switch (n->class_id()) { 2555 case Node::Class_Lock: 2556 expand_lock_node(n->as_Lock()); 2557 break; 2558 case Node::Class_Unlock: 2559 expand_unlock_node(n->as_Unlock()); 2560 break; 2561 case Node::Class_ArrayCopy: 2562 expand_arraycopy_node(n->as_ArrayCopy()); 2563 break; 2564 case Node::Class_SubTypeCheck: 2565 expand_subtypecheck_node(n->as_SubTypeCheck()); 2566 break; 2567 default: 2568 assert(false, "unknown node type in macro list"); 2569 } 2570 assert(C->macro_count() == (old_macro_count - 1), "expansion must have deleted one node from macro list"); 2571 if (C->failing()) return true; 2572 2573 // Clean up the graph so we're less likely to hit the maximum node 2574 // limit 2575 _igvn.set_delay_transform(false); 2576 _igvn.optimize(); 2577 if (C->failing()) return true; 2578 _igvn.set_delay_transform(true); 2579 } 2580 2581 // All nodes except Allocate nodes are expanded now. There could be 2582 // new optimization opportunities (such as folding newly created 2583 // load from a just allocated object). Run IGVN. 2584 2585 // expand "macro" nodes 2586 // nodes are removed from the macro list as they are processed 2587 while (C->macro_count() > 0) { 2588 int macro_count = C->macro_count(); 2589 Node * n = C->macro_node(macro_count-1); 2590 assert(n->is_macro(), "only macro nodes expected here"); 2591 if (_igvn.type(n) == Type::TOP || (n->in(0) != nullptr && n->in(0)->is_top())) { 2592 // node is unreachable, so don't try to expand it 2593 C->remove_macro_node(n); 2594 continue; 2595 } 2596 // Make sure expansion will not cause node limit to be exceeded. 2597 // Worst case is a macro node gets expanded into about 200 nodes. 2598 // Allow 50% more for optimization. 2599 if (C->check_node_count(300, "out of nodes before macro expansion")) { 2600 return true; 2601 } 2602 switch (n->class_id()) { 2603 case Node::Class_Allocate: 2604 expand_allocate(n->as_Allocate()); 2605 break; 2606 case Node::Class_AllocateArray: 2607 expand_allocate_array(n->as_AllocateArray()); 2608 break; 2609 default: 2610 assert(false, "unknown node type in macro list"); 2611 } 2612 assert(C->macro_count() < macro_count, "must have deleted a node from macro list"); 2613 if (C->failing()) return true; 2614 2615 // Clean up the graph so we're less likely to hit the maximum node 2616 // limit 2617 _igvn.set_delay_transform(false); 2618 _igvn.optimize(); 2619 if (C->failing()) return true; 2620 _igvn.set_delay_transform(true); 2621 } 2622 2623 _igvn.set_delay_transform(false); 2624 return false; 2625 } 2626 2627 #ifndef PRODUCT 2628 int PhaseMacroExpand::_objs_scalar_replaced_counter = 0; 2629 int PhaseMacroExpand::_monitor_objects_removed_counter = 0; 2630 int PhaseMacroExpand::_GC_barriers_removed_counter = 0; 2631 int PhaseMacroExpand::_memory_barriers_removed_counter = 0; 2632 2633 void PhaseMacroExpand::print_statistics() { 2634 tty->print("Objects scalar replaced = %d, ", Atomic::load(&_objs_scalar_replaced_counter)); 2635 tty->print("Monitor objects removed = %d, ", Atomic::load(&_monitor_objects_removed_counter)); 2636 tty->print("GC barriers removed = %d, ", Atomic::load(&_GC_barriers_removed_counter)); 2637 tty->print_cr("Memory barriers removed = %d", Atomic::load(&_memory_barriers_removed_counter)); 2638 } 2639 2640 int PhaseMacroExpand::count_MemBar(Compile *C) { 2641 if (!PrintOptoStatistics) { 2642 return 0; 2643 } 2644 Unique_Node_List ideal_nodes; 2645 int total = 0; 2646 ideal_nodes.map(C->live_nodes(), nullptr); 2647 ideal_nodes.push(C->root()); 2648 for (uint next = 0; next < ideal_nodes.size(); ++next) { 2649 Node* n = ideal_nodes.at(next); 2650 if (n->is_MemBar()) { 2651 total++; 2652 } 2653 for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) { 2654 Node* m = n->fast_out(i); 2655 ideal_nodes.push(m); 2656 } 2657 } 2658 return total; 2659 } 2660 #endif