1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2024, Alibaba Group Holding Limited. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "classfile/javaClasses.hpp" 28 #include "compiler/compileLog.hpp" 29 #include "gc/shared/barrierSet.hpp" 30 #include "gc/shared/c2/barrierSetC2.hpp" 31 #include "gc/shared/tlab_globals.hpp" 32 #include "memory/allocation.inline.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/objArrayKlass.hpp" 35 #include "opto/addnode.hpp" 36 #include "opto/arraycopynode.hpp" 37 #include "opto/cfgnode.hpp" 38 #include "opto/regalloc.hpp" 39 #include "opto/compile.hpp" 40 #include "opto/connode.hpp" 41 #include "opto/convertnode.hpp" 42 #include "opto/loopnode.hpp" 43 #include "opto/machnode.hpp" 44 #include "opto/matcher.hpp" 45 #include "opto/memnode.hpp" 46 #include "opto/mempointer.hpp" 47 #include "opto/mulnode.hpp" 48 #include "opto/narrowptrnode.hpp" 49 #include "opto/phaseX.hpp" 50 #include "opto/regmask.hpp" 51 #include "opto/rootnode.hpp" 52 #include "opto/traceMergeStoresTag.hpp" 53 #include "opto/vectornode.hpp" 54 #include "utilities/align.hpp" 55 #include "utilities/copy.hpp" 56 #include "utilities/macros.hpp" 57 #include "utilities/powerOfTwo.hpp" 58 #include "utilities/vmError.hpp" 59 60 // Portions of code courtesy of Clifford Click 61 62 // Optimization - Graph Style 63 64 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st); 65 66 //============================================================================= 67 uint MemNode::size_of() const { return sizeof(*this); } 68 69 const TypePtr *MemNode::adr_type() const { 70 Node* adr = in(Address); 71 if (adr == nullptr) return nullptr; // node is dead 72 const TypePtr* cross_check = nullptr; 73 DEBUG_ONLY(cross_check = _adr_type); 74 return calculate_adr_type(adr->bottom_type(), cross_check); 75 } 76 77 bool MemNode::check_if_adr_maybe_raw(Node* adr) { 78 if (adr != nullptr) { 79 if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) { 80 return true; 81 } 82 } 83 return false; 84 } 85 86 #ifndef PRODUCT 87 void MemNode::dump_spec(outputStream *st) const { 88 if (in(Address) == nullptr) return; // node is dead 89 #ifndef ASSERT 90 // fake the missing field 91 const TypePtr* _adr_type = nullptr; 92 if (in(Address) != nullptr) 93 _adr_type = in(Address)->bottom_type()->isa_ptr(); 94 #endif 95 dump_adr_type(this, _adr_type, st); 96 97 Compile* C = Compile::current(); 98 if (C->alias_type(_adr_type)->is_volatile()) { 99 st->print(" Volatile!"); 100 } 101 if (_unaligned_access) { 102 st->print(" unaligned"); 103 } 104 if (_mismatched_access) { 105 st->print(" mismatched"); 106 } 107 if (_unsafe_access) { 108 st->print(" unsafe"); 109 } 110 } 111 112 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) { 113 st->print(" @"); 114 if (adr_type == nullptr) { 115 st->print("null"); 116 } else { 117 adr_type->dump_on(st); 118 Compile* C = Compile::current(); 119 Compile::AliasType* atp = nullptr; 120 if (C->have_alias_type(adr_type)) atp = C->alias_type(adr_type); 121 if (atp == nullptr) 122 st->print(", idx=?\?;"); 123 else if (atp->index() == Compile::AliasIdxBot) 124 st->print(", idx=Bot;"); 125 else if (atp->index() == Compile::AliasIdxTop) 126 st->print(", idx=Top;"); 127 else if (atp->index() == Compile::AliasIdxRaw) 128 st->print(", idx=Raw;"); 129 else { 130 ciField* field = atp->field(); 131 if (field) { 132 st->print(", name="); 133 field->print_name_on(st); 134 } 135 st->print(", idx=%d;", atp->index()); 136 } 137 } 138 } 139 140 extern void print_alias_types(); 141 142 #endif 143 144 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) { 145 assert((t_oop != nullptr), "sanity"); 146 bool is_instance = t_oop->is_known_instance_field(); 147 bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() && 148 (load != nullptr) && load->is_Load() && 149 (phase->is_IterGVN() != nullptr); 150 if (!(is_instance || is_boxed_value_load)) 151 return mchain; // don't try to optimize non-instance types 152 uint instance_id = t_oop->instance_id(); 153 Node *start_mem = phase->C->start()->proj_out_or_null(TypeFunc::Memory); 154 Node *prev = nullptr; 155 Node *result = mchain; 156 while (prev != result) { 157 prev = result; 158 if (result == start_mem) 159 break; // hit one of our sentinels 160 // skip over a call which does not affect this memory slice 161 if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) { 162 Node *proj_in = result->in(0); 163 if (proj_in->is_Allocate() && proj_in->_idx == instance_id) { 164 break; // hit one of our sentinels 165 } else if (proj_in->is_Call()) { 166 // ArrayCopyNodes processed here as well 167 CallNode *call = proj_in->as_Call(); 168 if (!call->may_modify(t_oop, phase)) { // returns false for instances 169 result = call->in(TypeFunc::Memory); 170 } 171 } else if (proj_in->is_Initialize()) { 172 AllocateNode* alloc = proj_in->as_Initialize()->allocation(); 173 // Stop if this is the initialization for the object instance which 174 // contains this memory slice, otherwise skip over it. 175 if ((alloc == nullptr) || (alloc->_idx == instance_id)) { 176 break; 177 } 178 if (is_instance) { 179 result = proj_in->in(TypeFunc::Memory); 180 } else if (is_boxed_value_load) { 181 Node* klass = alloc->in(AllocateNode::KlassNode); 182 const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr(); 183 if (tklass->klass_is_exact() && !tklass->exact_klass()->equals(t_oop->is_instptr()->exact_klass())) { 184 result = proj_in->in(TypeFunc::Memory); // not related allocation 185 } 186 } 187 } else if (proj_in->is_MemBar()) { 188 ArrayCopyNode* ac = nullptr; 189 if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) { 190 break; 191 } 192 result = proj_in->in(TypeFunc::Memory); 193 } else if (proj_in->is_top()) { 194 break; // dead code 195 } else { 196 assert(false, "unexpected projection"); 197 } 198 } else if (result->is_ClearArray()) { 199 if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) { 200 // Can not bypass initialization of the instance 201 // we are looking for. 202 break; 203 } 204 // Otherwise skip it (the call updated 'result' value). 205 } else if (result->is_MergeMem()) { 206 result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, nullptr, tty); 207 } 208 } 209 return result; 210 } 211 212 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) { 213 const TypeOopPtr* t_oop = t_adr->isa_oopptr(); 214 if (t_oop == nullptr) 215 return mchain; // don't try to optimize non-oop types 216 Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase); 217 bool is_instance = t_oop->is_known_instance_field(); 218 PhaseIterGVN *igvn = phase->is_IterGVN(); 219 if (is_instance && igvn != nullptr && result->is_Phi()) { 220 PhiNode *mphi = result->as_Phi(); 221 assert(mphi->bottom_type() == Type::MEMORY, "memory phi required"); 222 const TypePtr *t = mphi->adr_type(); 223 bool do_split = false; 224 // In the following cases, Load memory input can be further optimized based on 225 // its precise address type 226 if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ) { 227 do_split = true; 228 } else if (t->isa_oopptr() && !t->is_oopptr()->is_known_instance()) { 229 const TypeOopPtr* mem_t = 230 t->is_oopptr()->cast_to_exactness(true) 231 ->is_oopptr()->cast_to_ptr_type(t_oop->ptr()) 232 ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()); 233 if (t_oop->isa_aryptr()) { 234 mem_t = mem_t->is_aryptr() 235 ->cast_to_stable(t_oop->is_aryptr()->is_stable()) 236 ->cast_to_size(t_oop->is_aryptr()->size()) 237 ->with_offset(t_oop->is_aryptr()->offset()) 238 ->is_aryptr(); 239 } 240 do_split = mem_t == t_oop; 241 } 242 if (do_split) { 243 // clone the Phi with our address type 244 result = mphi->split_out_instance(t_adr, igvn); 245 } else { 246 assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain"); 247 } 248 } 249 return result; 250 } 251 252 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem, const TypePtr *tp, const TypePtr *adr_check, outputStream *st) { 253 uint alias_idx = phase->C->get_alias_index(tp); 254 Node *mem = mmem; 255 #ifdef ASSERT 256 { 257 // Check that current type is consistent with the alias index used during graph construction 258 assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx"); 259 bool consistent = adr_check == nullptr || adr_check->empty() || 260 phase->C->must_alias(adr_check, alias_idx ); 261 // Sometimes dead array references collapse to a[-1], a[-2], or a[-3] 262 if( !consistent && adr_check != nullptr && !adr_check->empty() && 263 tp->isa_aryptr() && tp->offset() == Type::OffsetBot && 264 adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot && 265 ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() || 266 adr_check->offset() == Type::klass_offset() || 267 adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) { 268 // don't assert if it is dead code. 269 consistent = true; 270 } 271 if( !consistent ) { 272 st->print("alias_idx==%d, adr_check==", alias_idx); 273 if( adr_check == nullptr ) { 274 st->print("null"); 275 } else { 276 adr_check->dump(); 277 } 278 st->cr(); 279 print_alias_types(); 280 assert(consistent, "adr_check must match alias idx"); 281 } 282 } 283 #endif 284 // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally 285 // means an array I have not precisely typed yet. Do not do any 286 // alias stuff with it any time soon. 287 const TypeOopPtr *toop = tp->isa_oopptr(); 288 if (tp->base() != Type::AnyPtr && 289 !(toop && 290 toop->isa_instptr() && 291 toop->is_instptr()->instance_klass()->is_java_lang_Object() && 292 toop->offset() == Type::OffsetBot)) { 293 // compress paths and change unreachable cycles to TOP 294 // If not, we can update the input infinitely along a MergeMem cycle 295 // Equivalent code in PhiNode::Ideal 296 Node* m = phase->transform(mmem); 297 // If transformed to a MergeMem, get the desired slice 298 // Otherwise the returned node represents memory for every slice 299 mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m; 300 // Update input if it is progress over what we have now 301 } 302 return mem; 303 } 304 305 //--------------------------Ideal_common--------------------------------------- 306 // Look for degenerate control and memory inputs. Bypass MergeMem inputs. 307 // Unhook non-raw memories from complete (macro-expanded) initializations. 308 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) { 309 // If our control input is a dead region, kill all below the region 310 Node *ctl = in(MemNode::Control); 311 if (ctl && remove_dead_region(phase, can_reshape)) 312 return this; 313 ctl = in(MemNode::Control); 314 // Don't bother trying to transform a dead node 315 if (ctl && ctl->is_top()) return NodeSentinel; 316 317 PhaseIterGVN *igvn = phase->is_IterGVN(); 318 // Wait if control on the worklist. 319 if (ctl && can_reshape && igvn != nullptr) { 320 Node* bol = nullptr; 321 Node* cmp = nullptr; 322 if (ctl->in(0)->is_If()) { 323 assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity"); 324 bol = ctl->in(0)->in(1); 325 if (bol->is_Bool()) 326 cmp = ctl->in(0)->in(1)->in(1); 327 } 328 if (igvn->_worklist.member(ctl) || 329 (bol != nullptr && igvn->_worklist.member(bol)) || 330 (cmp != nullptr && igvn->_worklist.member(cmp)) ) { 331 // This control path may be dead. 332 // Delay this memory node transformation until the control is processed. 333 igvn->_worklist.push(this); 334 return NodeSentinel; // caller will return null 335 } 336 } 337 // Ignore if memory is dead, or self-loop 338 Node *mem = in(MemNode::Memory); 339 if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return null 340 assert(mem != this, "dead loop in MemNode::Ideal"); 341 342 if (can_reshape && igvn != nullptr && igvn->_worklist.member(mem)) { 343 // This memory slice may be dead. 344 // Delay this mem node transformation until the memory is processed. 345 igvn->_worklist.push(this); 346 return NodeSentinel; // caller will return null 347 } 348 349 Node *address = in(MemNode::Address); 350 const Type *t_adr = phase->type(address); 351 if (t_adr == Type::TOP) return NodeSentinel; // caller will return null 352 353 if (can_reshape && is_unsafe_access() && (t_adr == TypePtr::NULL_PTR)) { 354 // Unsafe off-heap access with zero address. Remove access and other control users 355 // to not confuse optimizations and add a HaltNode to fail if this is ever executed. 356 assert(ctl != nullptr, "unsafe accesses should be control dependent"); 357 for (DUIterator_Fast imax, i = ctl->fast_outs(imax); i < imax; i++) { 358 Node* u = ctl->fast_out(i); 359 if (u != ctl) { 360 igvn->rehash_node_delayed(u); 361 int nb = u->replace_edge(ctl, phase->C->top(), igvn); 362 --i, imax -= nb; 363 } 364 } 365 Node* frame = igvn->transform(new ParmNode(phase->C->start(), TypeFunc::FramePtr)); 366 Node* halt = igvn->transform(new HaltNode(ctl, frame, "unsafe off-heap access with zero address")); 367 phase->C->root()->add_req(halt); 368 return this; 369 } 370 371 if (can_reshape && igvn != nullptr && 372 (igvn->_worklist.member(address) || 373 (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) { 374 // The address's base and type may change when the address is processed. 375 // Delay this mem node transformation until the address is processed. 376 igvn->_worklist.push(this); 377 return NodeSentinel; // caller will return null 378 } 379 380 // Do NOT remove or optimize the next lines: ensure a new alias index 381 // is allocated for an oop pointer type before Escape Analysis. 382 // Note: C++ will not remove it since the call has side effect. 383 if (t_adr->isa_oopptr()) { 384 int alias_idx = phase->C->get_alias_index(t_adr->is_ptr()); 385 } 386 387 Node* base = nullptr; 388 if (address->is_AddP()) { 389 base = address->in(AddPNode::Base); 390 } 391 if (base != nullptr && phase->type(base)->higher_equal(TypePtr::NULL_PTR) && 392 !t_adr->isa_rawptr()) { 393 // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true. 394 // Skip this node optimization if its address has TOP base. 395 return NodeSentinel; // caller will return null 396 } 397 398 // Avoid independent memory operations 399 Node* old_mem = mem; 400 401 // The code which unhooks non-raw memories from complete (macro-expanded) 402 // initializations was removed. After macro-expansion all stores caught 403 // by Initialize node became raw stores and there is no information 404 // which memory slices they modify. So it is unsafe to move any memory 405 // operation above these stores. Also in most cases hooked non-raw memories 406 // were already unhooked by using information from detect_ptr_independence() 407 // and find_previous_store(). 408 409 if (mem->is_MergeMem()) { 410 MergeMemNode* mmem = mem->as_MergeMem(); 411 const TypePtr *tp = t_adr->is_ptr(); 412 413 mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty); 414 } 415 416 if (mem != old_mem) { 417 set_req_X(MemNode::Memory, mem, phase); 418 if (phase->type(mem) == Type::TOP) return NodeSentinel; 419 return this; 420 } 421 422 // let the subclass continue analyzing... 423 return nullptr; 424 } 425 426 // Helper function for proving some simple control dominations. 427 // Attempt to prove that all control inputs of 'dom' dominate 'sub'. 428 // Already assumes that 'dom' is available at 'sub', and that 'sub' 429 // is not a constant (dominated by the method's StartNode). 430 // Used by MemNode::find_previous_store to prove that the 431 // control input of a memory operation predates (dominates) 432 // an allocation it wants to look past. 433 // Returns 'DomResult::Dominate' if all control inputs of 'dom' 434 // dominate 'sub', 'DomResult::NotDominate' if not, 435 // and 'DomResult::EncounteredDeadCode' if we can't decide due to 436 // dead code, but at the end of IGVN, we know the definite result 437 // once the dead code is cleaned up. 438 Node::DomResult MemNode::maybe_all_controls_dominate(Node* dom, Node* sub) { 439 if (dom == nullptr || dom->is_top() || sub == nullptr || sub->is_top()) { 440 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 441 } 442 443 // Check 'dom'. Skip Proj and CatchProj nodes. 444 dom = dom->find_exact_control(dom); 445 if (dom == nullptr || dom->is_top()) { 446 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 447 } 448 449 if (dom == sub) { 450 // For the case when, for example, 'sub' is Initialize and the original 451 // 'dom' is Proj node of the 'sub'. 452 return DomResult::NotDominate; 453 } 454 455 if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub) { 456 return DomResult::Dominate; 457 } 458 459 // 'dom' dominates 'sub' if its control edge and control edges 460 // of all its inputs dominate or equal to sub's control edge. 461 462 // Currently 'sub' is either Allocate, Initialize or Start nodes. 463 // Or Region for the check in LoadNode::Ideal(); 464 // 'sub' should have sub->in(0) != nullptr. 465 assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() || 466 sub->is_Region() || sub->is_Call(), "expecting only these nodes"); 467 468 // Get control edge of 'sub'. 469 Node* orig_sub = sub; 470 sub = sub->find_exact_control(sub->in(0)); 471 if (sub == nullptr || sub->is_top()) { 472 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 473 } 474 475 assert(sub->is_CFG(), "expecting control"); 476 477 if (sub == dom) { 478 return DomResult::Dominate; 479 } 480 481 if (sub->is_Start() || sub->is_Root()) { 482 return DomResult::NotDominate; 483 } 484 485 { 486 // Check all control edges of 'dom'. 487 488 ResourceMark rm; 489 Node_List nlist; 490 Unique_Node_List dom_list; 491 492 dom_list.push(dom); 493 bool only_dominating_controls = false; 494 495 for (uint next = 0; next < dom_list.size(); next++) { 496 Node* n = dom_list.at(next); 497 if (n == orig_sub) { 498 return DomResult::NotDominate; // One of dom's inputs dominated by sub. 499 } 500 if (!n->is_CFG() && n->pinned()) { 501 // Check only own control edge for pinned non-control nodes. 502 n = n->find_exact_control(n->in(0)); 503 if (n == nullptr || n->is_top()) { 504 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 505 } 506 assert(n->is_CFG(), "expecting control"); 507 dom_list.push(n); 508 } else if (n->is_Con() || n->is_Start() || n->is_Root()) { 509 only_dominating_controls = true; 510 } else if (n->is_CFG()) { 511 DomResult dom_result = n->dominates(sub, nlist); 512 if (dom_result == DomResult::Dominate) { 513 only_dominating_controls = true; 514 } else { 515 return dom_result; 516 } 517 } else { 518 // First, own control edge. 519 Node* m = n->find_exact_control(n->in(0)); 520 if (m != nullptr) { 521 if (m->is_top()) { 522 return DomResult::EncounteredDeadCode; // Conservative answer for dead code 523 } 524 dom_list.push(m); 525 } 526 // Now, the rest of edges. 527 uint cnt = n->req(); 528 for (uint i = 1; i < cnt; i++) { 529 m = n->find_exact_control(n->in(i)); 530 if (m == nullptr || m->is_top()) { 531 continue; 532 } 533 dom_list.push(m); 534 } 535 } 536 } 537 return only_dominating_controls ? DomResult::Dominate : DomResult::NotDominate; 538 } 539 } 540 541 //---------------------detect_ptr_independence--------------------------------- 542 // Used by MemNode::find_previous_store to prove that two base 543 // pointers are never equal. 544 // The pointers are accompanied by their associated allocations, 545 // if any, which have been previously discovered by the caller. 546 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1, 547 Node* p2, AllocateNode* a2, 548 PhaseTransform* phase) { 549 // Attempt to prove that these two pointers cannot be aliased. 550 // They may both manifestly be allocations, and they should differ. 551 // Or, if they are not both allocations, they can be distinct constants. 552 // Otherwise, one is an allocation and the other a pre-existing value. 553 if (a1 == nullptr && a2 == nullptr) { // neither an allocation 554 return (p1 != p2) && p1->is_Con() && p2->is_Con(); 555 } else if (a1 != nullptr && a2 != nullptr) { // both allocations 556 return (a1 != a2); 557 } else if (a1 != nullptr) { // one allocation a1 558 // (Note: p2->is_Con implies p2->in(0)->is_Root, which dominates.) 559 return all_controls_dominate(p2, a1); 560 } else { //(a2 != null) // one allocation a2 561 return all_controls_dominate(p1, a2); 562 } 563 return false; 564 } 565 566 567 // Find an arraycopy ac that produces the memory state represented by parameter mem. 568 // Return ac if 569 // (a) can_see_stored_value=true and ac must have set the value for this load or if 570 // (b) can_see_stored_value=false and ac could have set the value for this load or if 571 // (c) can_see_stored_value=false and ac cannot have set the value for this load. 572 // In case (c) change the parameter mem to the memory input of ac to skip it 573 // when searching stored value. 574 // Otherwise return null. 575 Node* LoadNode::find_previous_arraycopy(PhaseValues* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const { 576 ArrayCopyNode* ac = find_array_copy_clone(ld_alloc, mem); 577 if (ac != nullptr) { 578 Node* ld_addp = in(MemNode::Address); 579 Node* src = ac->in(ArrayCopyNode::Src); 580 const TypeAryPtr* ary_t = phase->type(src)->isa_aryptr(); 581 582 // This is a load from a cloned array. The corresponding arraycopy ac must 583 // have set the value for the load and we can return ac but only if the load 584 // is known to be within bounds. This is checked below. 585 if (ary_t != nullptr && ld_addp->is_AddP()) { 586 Node* ld_offs = ld_addp->in(AddPNode::Offset); 587 BasicType ary_elem = ary_t->elem()->array_element_basic_type(); 588 jlong header = arrayOopDesc::base_offset_in_bytes(ary_elem); 589 jlong elemsize = type2aelembytes(ary_elem); 590 591 const TypeX* ld_offs_t = phase->type(ld_offs)->isa_intptr_t(); 592 const TypeInt* sizetype = ary_t->size(); 593 594 if (ld_offs_t->_lo >= header && ld_offs_t->_hi < (sizetype->_lo * elemsize + header)) { 595 // The load is known to be within bounds. It receives its value from ac. 596 return ac; 597 } 598 // The load is known to be out-of-bounds. 599 } 600 // The load could be out-of-bounds. It must not be hoisted but must remain 601 // dependent on the runtime range check. This is achieved by returning null. 602 } else if (mem->is_Proj() && mem->in(0) != nullptr && mem->in(0)->is_ArrayCopy()) { 603 ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy(); 604 605 if (ac->is_arraycopy_validated() || 606 ac->is_copyof_validated() || 607 ac->is_copyofrange_validated()) { 608 Node* ld_addp = in(MemNode::Address); 609 if (ld_addp->is_AddP()) { 610 Node* ld_base = ld_addp->in(AddPNode::Address); 611 Node* ld_offs = ld_addp->in(AddPNode::Offset); 612 613 Node* dest = ac->in(ArrayCopyNode::Dest); 614 615 if (dest == ld_base) { 616 const TypeX* ld_offs_t = phase->type(ld_offs)->isa_intptr_t(); 617 assert(!ld_offs_t->empty(), "dead reference should be checked already"); 618 // Take into account vector or unsafe access size 619 jlong ld_size_in_bytes = (jlong)memory_size(); 620 jlong offset_hi = ld_offs_t->_hi + ld_size_in_bytes - 1; 621 offset_hi = MIN2(offset_hi, (jlong)(TypeX::MAX->_hi)); // Take care for overflow in 32-bit VM 622 if (ac->modifies(ld_offs_t->_lo, (intptr_t)offset_hi, phase, can_see_stored_value)) { 623 return ac; 624 } 625 if (!can_see_stored_value) { 626 mem = ac->in(TypeFunc::Memory); 627 return ac; 628 } 629 } 630 } 631 } 632 } 633 return nullptr; 634 } 635 636 ArrayCopyNode* MemNode::find_array_copy_clone(Node* ld_alloc, Node* mem) const { 637 if (mem->is_Proj() && mem->in(0) != nullptr && (mem->in(0)->Opcode() == Op_MemBarStoreStore || 638 mem->in(0)->Opcode() == Op_MemBarCPUOrder)) { 639 if (ld_alloc != nullptr) { 640 // Check if there is an array copy for a clone 641 Node* mb = mem->in(0); 642 ArrayCopyNode* ac = nullptr; 643 if (mb->in(0) != nullptr && mb->in(0)->is_Proj() && 644 mb->in(0)->in(0) != nullptr && mb->in(0)->in(0)->is_ArrayCopy()) { 645 ac = mb->in(0)->in(0)->as_ArrayCopy(); 646 } else { 647 // Step over GC barrier when ReduceInitialCardMarks is disabled 648 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 649 Node* control_proj_ac = bs->step_over_gc_barrier(mb->in(0)); 650 651 if (control_proj_ac->is_Proj() && control_proj_ac->in(0)->is_ArrayCopy()) { 652 ac = control_proj_ac->in(0)->as_ArrayCopy(); 653 } 654 } 655 656 if (ac != nullptr && ac->is_clonebasic()) { 657 AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest)); 658 if (alloc != nullptr && alloc == ld_alloc) { 659 return ac; 660 } 661 } 662 } 663 } 664 return nullptr; 665 } 666 667 // The logic for reordering loads and stores uses four steps: 668 // (a) Walk carefully past stores and initializations which we 669 // can prove are independent of this load. 670 // (b) Observe that the next memory state makes an exact match 671 // with self (load or store), and locate the relevant store. 672 // (c) Ensure that, if we were to wire self directly to the store, 673 // the optimizer would fold it up somehow. 674 // (d) Do the rewiring, and return, depending on some other part of 675 // the optimizer to fold up the load. 676 // This routine handles steps (a) and (b). Steps (c) and (d) are 677 // specific to loads and stores, so they are handled by the callers. 678 // (Currently, only LoadNode::Ideal has steps (c), (d). More later.) 679 // 680 Node* MemNode::find_previous_store(PhaseValues* phase) { 681 Node* ctrl = in(MemNode::Control); 682 Node* adr = in(MemNode::Address); 683 intptr_t offset = 0; 684 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 685 AllocateNode* alloc = AllocateNode::Ideal_allocation(base); 686 687 if (offset == Type::OffsetBot) 688 return nullptr; // cannot unalias unless there are precise offsets 689 690 const bool adr_maybe_raw = check_if_adr_maybe_raw(adr); 691 const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr(); 692 693 intptr_t size_in_bytes = memory_size(); 694 695 Node* mem = in(MemNode::Memory); // start searching here... 696 697 int cnt = 50; // Cycle limiter 698 for (;;) { // While we can dance past unrelated stores... 699 if (--cnt < 0) break; // Caught in cycle or a complicated dance? 700 701 Node* prev = mem; 702 if (mem->is_Store()) { 703 Node* st_adr = mem->in(MemNode::Address); 704 intptr_t st_offset = 0; 705 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset); 706 if (st_base == nullptr) 707 break; // inscrutable pointer 708 709 // For raw accesses it's not enough to prove that constant offsets don't intersect. 710 // We need the bases to be the equal in order for the offset check to make sense. 711 if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) { 712 break; 713 } 714 715 if (st_offset != offset && st_offset != Type::OffsetBot) { 716 const int MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize); 717 assert(mem->as_Store()->memory_size() <= MAX_STORE, ""); 718 if (st_offset >= offset + size_in_bytes || 719 st_offset <= offset - MAX_STORE || 720 st_offset <= offset - mem->as_Store()->memory_size()) { 721 // Success: The offsets are provably independent. 722 // (You may ask, why not just test st_offset != offset and be done? 723 // The answer is that stores of different sizes can co-exist 724 // in the same sequence of RawMem effects. We sometimes initialize 725 // a whole 'tile' of array elements with a single jint or jlong.) 726 mem = mem->in(MemNode::Memory); 727 continue; // (a) advance through independent store memory 728 } 729 } 730 if (st_base != base && 731 detect_ptr_independence(base, alloc, 732 st_base, 733 AllocateNode::Ideal_allocation(st_base), 734 phase)) { 735 // Success: The bases are provably independent. 736 mem = mem->in(MemNode::Memory); 737 continue; // (a) advance through independent store memory 738 } 739 740 // (b) At this point, if the bases or offsets do not agree, we lose, 741 // since we have not managed to prove 'this' and 'mem' independent. 742 if (st_base == base && st_offset == offset) { 743 return mem; // let caller handle steps (c), (d) 744 } 745 746 } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) { 747 InitializeNode* st_init = mem->in(0)->as_Initialize(); 748 AllocateNode* st_alloc = st_init->allocation(); 749 if (st_alloc == nullptr) { 750 break; // something degenerated 751 } 752 bool known_identical = false; 753 bool known_independent = false; 754 if (alloc == st_alloc) { 755 known_identical = true; 756 } else if (alloc != nullptr) { 757 known_independent = true; 758 } else if (all_controls_dominate(this, st_alloc)) { 759 known_independent = true; 760 } 761 762 if (known_independent) { 763 // The bases are provably independent: Either they are 764 // manifestly distinct allocations, or else the control 765 // of this load dominates the store's allocation. 766 int alias_idx = phase->C->get_alias_index(adr_type()); 767 if (alias_idx == Compile::AliasIdxRaw) { 768 mem = st_alloc->in(TypeFunc::Memory); 769 } else { 770 mem = st_init->memory(alias_idx); 771 } 772 continue; // (a) advance through independent store memory 773 } 774 775 // (b) at this point, if we are not looking at a store initializing 776 // the same allocation we are loading from, we lose. 777 if (known_identical) { 778 // From caller, can_see_stored_value will consult find_captured_store. 779 return mem; // let caller handle steps (c), (d) 780 } 781 782 } else if (find_previous_arraycopy(phase, alloc, mem, false) != nullptr) { 783 if (prev != mem) { 784 // Found an arraycopy but it doesn't affect that load 785 continue; 786 } 787 // Found an arraycopy that may affect that load 788 return mem; 789 } else if (addr_t != nullptr && addr_t->is_known_instance_field()) { 790 // Can't use optimize_simple_memory_chain() since it needs PhaseGVN. 791 if (mem->is_Proj() && mem->in(0)->is_Call()) { 792 // ArrayCopyNodes processed here as well. 793 CallNode *call = mem->in(0)->as_Call(); 794 if (!call->may_modify(addr_t, phase)) { 795 mem = call->in(TypeFunc::Memory); 796 continue; // (a) advance through independent call memory 797 } 798 } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) { 799 ArrayCopyNode* ac = nullptr; 800 if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) { 801 break; 802 } 803 mem = mem->in(0)->in(TypeFunc::Memory); 804 continue; // (a) advance through independent MemBar memory 805 } else if (mem->is_ClearArray()) { 806 if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) { 807 // (the call updated 'mem' value) 808 continue; // (a) advance through independent allocation memory 809 } else { 810 // Can not bypass initialization of the instance 811 // we are looking for. 812 return mem; 813 } 814 } else if (mem->is_MergeMem()) { 815 int alias_idx = phase->C->get_alias_index(adr_type()); 816 mem = mem->as_MergeMem()->memory_at(alias_idx); 817 continue; // (a) advance through independent MergeMem memory 818 } 819 } 820 821 // Unless there is an explicit 'continue', we must bail out here, 822 // because 'mem' is an inscrutable memory state (e.g., a call). 823 break; 824 } 825 826 return nullptr; // bail out 827 } 828 829 //----------------------calculate_adr_type------------------------------------- 830 // Helper function. Notices when the given type of address hits top or bottom. 831 // Also, asserts a cross-check of the type against the expected address type. 832 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) { 833 if (t == Type::TOP) return nullptr; // does not touch memory any more? 834 #ifdef ASSERT 835 if (!VerifyAliases || VMError::is_error_reported() || Node::in_dump()) cross_check = nullptr; 836 #endif 837 const TypePtr* tp = t->isa_ptr(); 838 if (tp == nullptr) { 839 assert(cross_check == nullptr || cross_check == TypePtr::BOTTOM, "expected memory type must be wide"); 840 return TypePtr::BOTTOM; // touches lots of memory 841 } else { 842 #ifdef ASSERT 843 // %%%% [phh] We don't check the alias index if cross_check is 844 // TypeRawPtr::BOTTOM. Needs to be investigated. 845 if (cross_check != nullptr && 846 cross_check != TypePtr::BOTTOM && 847 cross_check != TypeRawPtr::BOTTOM) { 848 // Recheck the alias index, to see if it has changed (due to a bug). 849 Compile* C = Compile::current(); 850 assert(C->get_alias_index(cross_check) == C->get_alias_index(tp), 851 "must stay in the original alias category"); 852 // The type of the address must be contained in the adr_type, 853 // disregarding "null"-ness. 854 // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.) 855 const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr(); 856 assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(), 857 "real address must not escape from expected memory type"); 858 } 859 #endif 860 return tp; 861 } 862 } 863 864 uint8_t MemNode::barrier_data(const Node* n) { 865 if (n->is_LoadStore()) { 866 return n->as_LoadStore()->barrier_data(); 867 } else if (n->is_Mem()) { 868 return n->as_Mem()->barrier_data(); 869 } 870 return 0; 871 } 872 873 //============================================================================= 874 // Should LoadNode::Ideal() attempt to remove control edges? 875 bool LoadNode::can_remove_control() const { 876 return !has_pinned_control_dependency(); 877 } 878 uint LoadNode::size_of() const { return sizeof(*this); } 879 bool LoadNode::cmp(const Node &n) const { 880 LoadNode& load = (LoadNode &)n; 881 return Type::equals(_type, load._type) && 882 _control_dependency == load._control_dependency && 883 _mo == load._mo; 884 } 885 const Type *LoadNode::bottom_type() const { return _type; } 886 uint LoadNode::ideal_reg() const { 887 return _type->ideal_reg(); 888 } 889 890 #ifndef PRODUCT 891 void LoadNode::dump_spec(outputStream *st) const { 892 MemNode::dump_spec(st); 893 if( !Verbose && !WizardMode ) { 894 // standard dump does this in Verbose and WizardMode 895 st->print(" #"); _type->dump_on(st); 896 } 897 if (!depends_only_on_test()) { 898 st->print(" (does not depend only on test, "); 899 if (control_dependency() == UnknownControl) { 900 st->print("unknown control"); 901 } else if (control_dependency() == Pinned) { 902 st->print("pinned"); 903 } else if (adr_type() == TypeRawPtr::BOTTOM) { 904 st->print("raw access"); 905 } else { 906 st->print("unknown reason"); 907 } 908 st->print(")"); 909 } 910 } 911 #endif 912 913 #ifdef ASSERT 914 //----------------------------is_immutable_value------------------------------- 915 // Helper function to allow a raw load without control edge for some cases 916 bool LoadNode::is_immutable_value(Node* adr) { 917 if (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() && 918 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal) { 919 920 jlong offset = adr->in(AddPNode::Offset)->find_intptr_t_con(-1); 921 int offsets[] = { 922 in_bytes(JavaThread::osthread_offset()), 923 in_bytes(JavaThread::threadObj_offset()), 924 in_bytes(JavaThread::vthread_offset()), 925 in_bytes(JavaThread::scopedValueCache_offset()), 926 }; 927 928 for (size_t i = 0; i < sizeof offsets / sizeof offsets[0]; i++) { 929 if (offset == offsets[i]) { 930 return true; 931 } 932 } 933 } 934 935 return false; 936 } 937 #endif 938 939 //----------------------------LoadNode::make----------------------------------- 940 // Polymorphic factory method: 941 Node* LoadNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, BasicType bt, MemOrd mo, 942 ControlDependency control_dependency, bool require_atomic_access, bool unaligned, bool mismatched, bool unsafe, uint8_t barrier_data) { 943 Compile* C = gvn.C; 944 945 // sanity check the alias category against the created node type 946 assert(!(adr_type->isa_oopptr() && 947 adr_type->offset() == Type::klass_offset()), 948 "use LoadKlassNode instead"); 949 assert(!(adr_type->isa_aryptr() && 950 adr_type->offset() == arrayOopDesc::length_offset_in_bytes()), 951 "use LoadRangeNode instead"); 952 // Check control edge of raw loads 953 assert( ctl != nullptr || C->get_alias_index(adr_type) != Compile::AliasIdxRaw || 954 // oop will be recorded in oop map if load crosses safepoint 955 rt->isa_oopptr() || is_immutable_value(adr), 956 "raw memory operations should have control edge"); 957 LoadNode* load = nullptr; 958 switch (bt) { 959 case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 960 case T_BYTE: load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 961 case T_INT: load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 962 case T_CHAR: load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 963 case T_SHORT: load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(), mo, control_dependency); break; 964 case T_LONG: load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic_access); break; 965 case T_FLOAT: load = new LoadFNode (ctl, mem, adr, adr_type, rt, mo, control_dependency); break; 966 case T_DOUBLE: load = new LoadDNode (ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic_access); break; 967 case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); break; 968 case T_OBJECT: 969 case T_NARROWOOP: 970 #ifdef _LP64 971 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 972 load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency); 973 } else 974 #endif 975 { 976 assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop"); 977 load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency); 978 } 979 break; 980 default: 981 ShouldNotReachHere(); 982 break; 983 } 984 assert(load != nullptr, "LoadNode should have been created"); 985 if (unaligned) { 986 load->set_unaligned_access(); 987 } 988 if (mismatched) { 989 load->set_mismatched_access(); 990 } 991 if (unsafe) { 992 load->set_unsafe_access(); 993 } 994 load->set_barrier_data(barrier_data); 995 if (load->Opcode() == Op_LoadN) { 996 Node* ld = gvn.transform(load); 997 return new DecodeNNode(ld, ld->bottom_type()->make_ptr()); 998 } 999 1000 return load; 1001 } 1002 1003 //------------------------------hash------------------------------------------- 1004 uint LoadNode::hash() const { 1005 // unroll addition of interesting fields 1006 return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address); 1007 } 1008 1009 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) { 1010 if ((atp != nullptr) && (atp->index() >= Compile::AliasIdxRaw)) { 1011 bool non_volatile = (atp->field() != nullptr) && !atp->field()->is_volatile(); 1012 bool is_stable_ary = FoldStableValues && 1013 (tp != nullptr) && (tp->isa_aryptr() != nullptr) && 1014 tp->isa_aryptr()->is_stable(); 1015 1016 return (eliminate_boxing && non_volatile) || is_stable_ary; 1017 } 1018 1019 return false; 1020 } 1021 1022 LoadNode* LoadNode::pin_array_access_node() const { 1023 const TypePtr* adr_type = this->adr_type(); 1024 if (adr_type != nullptr && adr_type->isa_aryptr()) { 1025 return clone_pinned(); 1026 } 1027 return nullptr; 1028 } 1029 1030 // Is the value loaded previously stored by an arraycopy? If so return 1031 // a load node that reads from the source array so we may be able to 1032 // optimize out the ArrayCopy node later. 1033 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseGVN* phase) const { 1034 Node* ld_adr = in(MemNode::Address); 1035 intptr_t ld_off = 0; 1036 AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off); 1037 Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true); 1038 if (ac != nullptr) { 1039 assert(ac->is_ArrayCopy(), "what kind of node can this be?"); 1040 1041 Node* mem = ac->in(TypeFunc::Memory); 1042 Node* ctl = ac->in(0); 1043 Node* src = ac->in(ArrayCopyNode::Src); 1044 1045 if (!ac->as_ArrayCopy()->is_clonebasic() && !phase->type(src)->isa_aryptr()) { 1046 return nullptr; 1047 } 1048 1049 // load depends on the tests that validate the arraycopy 1050 LoadNode* ld = clone_pinned(); 1051 Node* addp = in(MemNode::Address)->clone(); 1052 if (ac->as_ArrayCopy()->is_clonebasic()) { 1053 assert(ld_alloc != nullptr, "need an alloc"); 1054 assert(addp->is_AddP(), "address must be addp"); 1055 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1056 assert(bs->step_over_gc_barrier(addp->in(AddPNode::Base)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern"); 1057 assert(bs->step_over_gc_barrier(addp->in(AddPNode::Address)) == bs->step_over_gc_barrier(ac->in(ArrayCopyNode::Dest)), "strange pattern"); 1058 addp->set_req(AddPNode::Base, src); 1059 addp->set_req(AddPNode::Address, src); 1060 } else { 1061 assert(ac->as_ArrayCopy()->is_arraycopy_validated() || 1062 ac->as_ArrayCopy()->is_copyof_validated() || 1063 ac->as_ArrayCopy()->is_copyofrange_validated(), "only supported cases"); 1064 assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be"); 1065 addp->set_req(AddPNode::Base, src); 1066 addp->set_req(AddPNode::Address, src); 1067 1068 const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr(); 1069 BasicType ary_elem = ary_t->isa_aryptr()->elem()->array_element_basic_type(); 1070 if (is_reference_type(ary_elem, true)) ary_elem = T_OBJECT; 1071 1072 uint header = arrayOopDesc::base_offset_in_bytes(ary_elem); 1073 uint shift = exact_log2(type2aelembytes(ary_elem)); 1074 1075 Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos))); 1076 #ifdef _LP64 1077 diff = phase->transform(new ConvI2LNode(diff)); 1078 #endif 1079 diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift))); 1080 1081 Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff)); 1082 addp->set_req(AddPNode::Offset, offset); 1083 } 1084 addp = phase->transform(addp); 1085 #ifdef ASSERT 1086 const TypePtr* adr_type = phase->type(addp)->is_ptr(); 1087 ld->_adr_type = adr_type; 1088 #endif 1089 ld->set_req(MemNode::Address, addp); 1090 ld->set_req(0, ctl); 1091 ld->set_req(MemNode::Memory, mem); 1092 return ld; 1093 } 1094 return nullptr; 1095 } 1096 1097 1098 //---------------------------can_see_stored_value------------------------------ 1099 // This routine exists to make sure this set of tests is done the same 1100 // everywhere. We need to make a coordinated change: first LoadNode::Ideal 1101 // will change the graph shape in a way which makes memory alive twice at the 1102 // same time (uses the Oracle model of aliasing), then some 1103 // LoadXNode::Identity will fold things back to the equivalence-class model 1104 // of aliasing. 1105 Node* MemNode::can_see_stored_value(Node* st, PhaseValues* phase) const { 1106 Node* ld_adr = in(MemNode::Address); 1107 intptr_t ld_off = 0; 1108 Node* ld_base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ld_off); 1109 Node* ld_alloc = AllocateNode::Ideal_allocation(ld_base); 1110 const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr(); 1111 Compile::AliasType* atp = (tp != nullptr) ? phase->C->alias_type(tp) : nullptr; 1112 // This is more general than load from boxing objects. 1113 if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) { 1114 uint alias_idx = atp->index(); 1115 Node* result = nullptr; 1116 Node* current = st; 1117 // Skip through chains of MemBarNodes checking the MergeMems for 1118 // new states for the slice of this load. Stop once any other 1119 // kind of node is encountered. Loads from final memory can skip 1120 // through any kind of MemBar but normal loads shouldn't skip 1121 // through MemBarAcquire since the could allow them to move out of 1122 // a synchronized region. It is not safe to step over MemBarCPUOrder, 1123 // because alias info above them may be inaccurate (e.g., due to 1124 // mixed/mismatched unsafe accesses). 1125 bool is_final_mem = !atp->is_rewritable(); 1126 while (current->is_Proj()) { 1127 int opc = current->in(0)->Opcode(); 1128 if ((is_final_mem && (opc == Op_MemBarAcquire || 1129 opc == Op_MemBarAcquireLock || 1130 opc == Op_LoadFence)) || 1131 opc == Op_MemBarRelease || 1132 opc == Op_StoreFence || 1133 opc == Op_MemBarReleaseLock || 1134 opc == Op_MemBarStoreStore || 1135 opc == Op_StoreStoreFence) { 1136 Node* mem = current->in(0)->in(TypeFunc::Memory); 1137 if (mem->is_MergeMem()) { 1138 MergeMemNode* merge = mem->as_MergeMem(); 1139 Node* new_st = merge->memory_at(alias_idx); 1140 if (new_st == merge->base_memory()) { 1141 // Keep searching 1142 current = new_st; 1143 continue; 1144 } 1145 // Save the new memory state for the slice and fall through 1146 // to exit. 1147 result = new_st; 1148 } 1149 } 1150 break; 1151 } 1152 if (result != nullptr) { 1153 st = result; 1154 } 1155 } 1156 1157 // Loop around twice in the case Load -> Initialize -> Store. 1158 // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.) 1159 for (int trip = 0; trip <= 1; trip++) { 1160 1161 if (st->is_Store()) { 1162 Node* st_adr = st->in(MemNode::Address); 1163 if (st_adr != ld_adr) { 1164 // Try harder before giving up. Unify base pointers with casts (e.g., raw/non-raw pointers). 1165 intptr_t st_off = 0; 1166 Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_off); 1167 if (ld_base == nullptr) return nullptr; 1168 if (st_base == nullptr) return nullptr; 1169 if (!ld_base->eqv_uncast(st_base, /*keep_deps=*/true)) return nullptr; 1170 if (ld_off != st_off) return nullptr; 1171 if (ld_off == Type::OffsetBot) return nullptr; 1172 // Same base, same offset. 1173 // Possible improvement for arrays: check index value instead of absolute offset. 1174 1175 // At this point we have proven something like this setup: 1176 // B = << base >> 1177 // L = LoadQ(AddP(Check/CastPP(B), #Off)) 1178 // S = StoreQ(AddP( B , #Off), V) 1179 // (Actually, we haven't yet proven the Q's are the same.) 1180 // In other words, we are loading from a casted version of 1181 // the same pointer-and-offset that we stored to. 1182 // Casted version may carry a dependency and it is respected. 1183 // Thus, we are able to replace L by V. 1184 } 1185 // Now prove that we have a LoadQ matched to a StoreQ, for some Q. 1186 if (store_Opcode() != st->Opcode()) { 1187 return nullptr; 1188 } 1189 // LoadVector/StoreVector needs additional check to ensure the types match. 1190 if (st->is_StoreVector()) { 1191 const TypeVect* in_vt = st->as_StoreVector()->vect_type(); 1192 const TypeVect* out_vt = as_LoadVector()->vect_type(); 1193 if (in_vt != out_vt) { 1194 return nullptr; 1195 } 1196 } 1197 return st->in(MemNode::ValueIn); 1198 } 1199 1200 // A load from a freshly-created object always returns zero. 1201 // (This can happen after LoadNode::Ideal resets the load's memory input 1202 // to find_captured_store, which returned InitializeNode::zero_memory.) 1203 if (st->is_Proj() && st->in(0)->is_Allocate() && 1204 (st->in(0) == ld_alloc) && 1205 (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) { 1206 // return a zero value for the load's basic type 1207 // (This is one of the few places where a generic PhaseTransform 1208 // can create new nodes. Think of it as lazily manifesting 1209 // virtually pre-existing constants.) 1210 if (memory_type() != T_VOID) { 1211 if (ReduceBulkZeroing || find_array_copy_clone(ld_alloc, in(MemNode::Memory)) == nullptr) { 1212 // If ReduceBulkZeroing is disabled, we need to check if the allocation does not belong to an 1213 // ArrayCopyNode clone. If it does, then we cannot assume zero since the initialization is done 1214 // by the ArrayCopyNode. 1215 return phase->zerocon(memory_type()); 1216 } 1217 } else { 1218 // TODO: materialize all-zero vector constant 1219 assert(!isa_Load() || as_Load()->type()->isa_vect(), ""); 1220 } 1221 } 1222 1223 // A load from an initialization barrier can match a captured store. 1224 if (st->is_Proj() && st->in(0)->is_Initialize()) { 1225 InitializeNode* init = st->in(0)->as_Initialize(); 1226 AllocateNode* alloc = init->allocation(); 1227 if ((alloc != nullptr) && (alloc == ld_alloc)) { 1228 // examine a captured store value 1229 st = init->find_captured_store(ld_off, memory_size(), phase); 1230 if (st != nullptr) { 1231 continue; // take one more trip around 1232 } 1233 } 1234 } 1235 1236 // Load boxed value from result of valueOf() call is input parameter. 1237 if (this->is_Load() && ld_adr->is_AddP() && 1238 (tp != nullptr) && tp->is_ptr_to_boxed_value()) { 1239 intptr_t ignore = 0; 1240 Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore); 1241 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 1242 base = bs->step_over_gc_barrier(base); 1243 if (base != nullptr && base->is_Proj() && 1244 base->as_Proj()->_con == TypeFunc::Parms && 1245 base->in(0)->is_CallStaticJava() && 1246 base->in(0)->as_CallStaticJava()->is_boxing_method()) { 1247 return base->in(0)->in(TypeFunc::Parms); 1248 } 1249 } 1250 1251 break; 1252 } 1253 1254 return nullptr; 1255 } 1256 1257 //----------------------is_instance_field_load_with_local_phi------------------ 1258 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) { 1259 if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl && 1260 in(Address)->is_AddP() ) { 1261 const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr(); 1262 // Only instances and boxed values. 1263 if( t_oop != nullptr && 1264 (t_oop->is_ptr_to_boxed_value() || 1265 t_oop->is_known_instance_field()) && 1266 t_oop->offset() != Type::OffsetBot && 1267 t_oop->offset() != Type::OffsetTop) { 1268 return true; 1269 } 1270 } 1271 return false; 1272 } 1273 1274 //------------------------------Identity--------------------------------------- 1275 // Loads are identity if previous store is to same address 1276 Node* LoadNode::Identity(PhaseGVN* phase) { 1277 // If the previous store-maker is the right kind of Store, and the store is 1278 // to the same address, then we are equal to the value stored. 1279 Node* mem = in(Memory); 1280 Node* value = can_see_stored_value(mem, phase); 1281 if( value ) { 1282 // byte, short & char stores truncate naturally. 1283 // A load has to load the truncated value which requires 1284 // some sort of masking operation and that requires an 1285 // Ideal call instead of an Identity call. 1286 if (memory_size() < BytesPerInt) { 1287 // If the input to the store does not fit with the load's result type, 1288 // it must be truncated via an Ideal call. 1289 if (!phase->type(value)->higher_equal(phase->type(this))) 1290 return this; 1291 } 1292 // (This works even when value is a Con, but LoadNode::Value 1293 // usually runs first, producing the singleton type of the Con.) 1294 if (!has_pinned_control_dependency() || value->is_Con()) { 1295 return value; 1296 } else { 1297 return this; 1298 } 1299 } 1300 1301 if (has_pinned_control_dependency()) { 1302 return this; 1303 } 1304 // Search for an existing data phi which was generated before for the same 1305 // instance's field to avoid infinite generation of phis in a loop. 1306 Node *region = mem->in(0); 1307 if (is_instance_field_load_with_local_phi(region)) { 1308 const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr(); 1309 int this_index = phase->C->get_alias_index(addr_t); 1310 int this_offset = addr_t->offset(); 1311 int this_iid = addr_t->instance_id(); 1312 if (!addr_t->is_known_instance() && 1313 addr_t->is_ptr_to_boxed_value()) { 1314 // Use _idx of address base (could be Phi node) for boxed values. 1315 intptr_t ignore = 0; 1316 Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore); 1317 if (base == nullptr) { 1318 return this; 1319 } 1320 this_iid = base->_idx; 1321 } 1322 const Type* this_type = bottom_type(); 1323 for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) { 1324 Node* phi = region->fast_out(i); 1325 if (phi->is_Phi() && phi != mem && 1326 phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) { 1327 return phi; 1328 } 1329 } 1330 } 1331 1332 return this; 1333 } 1334 1335 // Construct an equivalent unsigned load. 1336 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) { 1337 BasicType bt = T_ILLEGAL; 1338 const Type* rt = nullptr; 1339 switch (Opcode()) { 1340 case Op_LoadUB: return this; 1341 case Op_LoadUS: return this; 1342 case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break; 1343 case Op_LoadS: bt = T_CHAR; rt = TypeInt::CHAR; break; 1344 default: 1345 assert(false, "no unsigned variant: %s", Name()); 1346 return nullptr; 1347 } 1348 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1349 raw_adr_type(), rt, bt, _mo, _control_dependency, 1350 false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access()); 1351 } 1352 1353 // Construct an equivalent signed load. 1354 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) { 1355 BasicType bt = T_ILLEGAL; 1356 const Type* rt = nullptr; 1357 switch (Opcode()) { 1358 case Op_LoadUB: bt = T_BYTE; rt = TypeInt::BYTE; break; 1359 case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break; 1360 case Op_LoadB: // fall through 1361 case Op_LoadS: // fall through 1362 case Op_LoadI: // fall through 1363 case Op_LoadL: return this; 1364 default: 1365 assert(false, "no signed variant: %s", Name()); 1366 return nullptr; 1367 } 1368 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1369 raw_adr_type(), rt, bt, _mo, _control_dependency, 1370 false /*require_atomic_access*/, is_unaligned_access(), is_mismatched_access()); 1371 } 1372 1373 bool LoadNode::has_reinterpret_variant(const Type* rt) { 1374 BasicType bt = rt->basic_type(); 1375 switch (Opcode()) { 1376 case Op_LoadI: return (bt == T_FLOAT); 1377 case Op_LoadL: return (bt == T_DOUBLE); 1378 case Op_LoadF: return (bt == T_INT); 1379 case Op_LoadD: return (bt == T_LONG); 1380 1381 default: return false; 1382 } 1383 } 1384 1385 Node* LoadNode::convert_to_reinterpret_load(PhaseGVN& gvn, const Type* rt) { 1386 BasicType bt = rt->basic_type(); 1387 assert(has_reinterpret_variant(rt), "no reinterpret variant: %s %s", Name(), type2name(bt)); 1388 bool is_mismatched = is_mismatched_access(); 1389 const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr(); 1390 if (raw_type == nullptr) { 1391 is_mismatched = true; // conservatively match all non-raw accesses as mismatched 1392 } 1393 const int op = Opcode(); 1394 bool require_atomic_access = (op == Op_LoadL && ((LoadLNode*)this)->require_atomic_access()) || 1395 (op == Op_LoadD && ((LoadDNode*)this)->require_atomic_access()); 1396 return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1397 raw_adr_type(), rt, bt, _mo, _control_dependency, 1398 require_atomic_access, is_unaligned_access(), is_mismatched); 1399 } 1400 1401 bool StoreNode::has_reinterpret_variant(const Type* vt) { 1402 BasicType bt = vt->basic_type(); 1403 switch (Opcode()) { 1404 case Op_StoreI: return (bt == T_FLOAT); 1405 case Op_StoreL: return (bt == T_DOUBLE); 1406 case Op_StoreF: return (bt == T_INT); 1407 case Op_StoreD: return (bt == T_LONG); 1408 1409 default: return false; 1410 } 1411 } 1412 1413 Node* StoreNode::convert_to_reinterpret_store(PhaseGVN& gvn, Node* val, const Type* vt) { 1414 BasicType bt = vt->basic_type(); 1415 assert(has_reinterpret_variant(vt), "no reinterpret variant: %s %s", Name(), type2name(bt)); 1416 const int op = Opcode(); 1417 bool require_atomic_access = (op == Op_StoreL && ((StoreLNode*)this)->require_atomic_access()) || 1418 (op == Op_StoreD && ((StoreDNode*)this)->require_atomic_access()); 1419 StoreNode* st = StoreNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address), 1420 raw_adr_type(), val, bt, _mo, require_atomic_access); 1421 1422 bool is_mismatched = is_mismatched_access(); 1423 const TypeRawPtr* raw_type = gvn.type(in(MemNode::Memory))->isa_rawptr(); 1424 if (raw_type == nullptr) { 1425 is_mismatched = true; // conservatively match all non-raw accesses as mismatched 1426 } 1427 if (is_mismatched) { 1428 st->set_mismatched_access(); 1429 } 1430 return st; 1431 } 1432 1433 // We're loading from an object which has autobox behaviour. 1434 // If this object is result of a valueOf call we'll have a phi 1435 // merging a newly allocated object and a load from the cache. 1436 // We want to replace this load with the original incoming 1437 // argument to the valueOf call. 1438 Node* LoadNode::eliminate_autobox(PhaseIterGVN* igvn) { 1439 assert(igvn->C->eliminate_boxing(), "sanity"); 1440 intptr_t ignore = 0; 1441 Node* base = AddPNode::Ideal_base_and_offset(in(Address), igvn, ignore); 1442 if ((base == nullptr) || base->is_Phi()) { 1443 // Push the loads from the phi that comes from valueOf up 1444 // through it to allow elimination of the loads and the recovery 1445 // of the original value. It is done in split_through_phi(). 1446 return nullptr; 1447 } else if (base->is_Load() || 1448 (base->is_DecodeN() && base->in(1)->is_Load())) { 1449 // Eliminate the load of boxed value for integer types from the cache 1450 // array by deriving the value from the index into the array. 1451 // Capture the offset of the load and then reverse the computation. 1452 1453 // Get LoadN node which loads a boxing object from 'cache' array. 1454 if (base->is_DecodeN()) { 1455 base = base->in(1); 1456 } 1457 if (!base->in(Address)->is_AddP()) { 1458 return nullptr; // Complex address 1459 } 1460 AddPNode* address = base->in(Address)->as_AddP(); 1461 Node* cache_base = address->in(AddPNode::Base); 1462 if ((cache_base != nullptr) && cache_base->is_DecodeN()) { 1463 // Get ConP node which is static 'cache' field. 1464 cache_base = cache_base->in(1); 1465 } 1466 if ((cache_base != nullptr) && cache_base->is_Con()) { 1467 const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr(); 1468 if ((base_type != nullptr) && base_type->is_autobox_cache()) { 1469 Node* elements[4]; 1470 int shift = exact_log2(type2aelembytes(T_OBJECT)); 1471 int count = address->unpack_offsets(elements, ARRAY_SIZE(elements)); 1472 if (count > 0 && elements[0]->is_Con() && 1473 (count == 1 || 1474 (count == 2 && elements[1]->Opcode() == Op_LShiftX && 1475 elements[1]->in(2) == igvn->intcon(shift)))) { 1476 ciObjArray* array = base_type->const_oop()->as_obj_array(); 1477 // Fetch the box object cache[0] at the base of the array and get its value 1478 ciInstance* box = array->obj_at(0)->as_instance(); 1479 ciInstanceKlass* ik = box->klass()->as_instance_klass(); 1480 assert(ik->is_box_klass(), "sanity"); 1481 assert(ik->nof_nonstatic_fields() == 1, "change following code"); 1482 if (ik->nof_nonstatic_fields() == 1) { 1483 // This should be true nonstatic_field_at requires calling 1484 // nof_nonstatic_fields so check it anyway 1485 ciConstant c = box->field_value(ik->nonstatic_field_at(0)); 1486 BasicType bt = c.basic_type(); 1487 // Only integer types have boxing cache. 1488 assert(bt == T_BOOLEAN || bt == T_CHAR || 1489 bt == T_BYTE || bt == T_SHORT || 1490 bt == T_INT || bt == T_LONG, "wrong type = %s", type2name(bt)); 1491 jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int(); 1492 if (cache_low != (int)cache_low) { 1493 return nullptr; // should not happen since cache is array indexed by value 1494 } 1495 jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift); 1496 if (offset != (int)offset) { 1497 return nullptr; // should not happen since cache is array indexed by value 1498 } 1499 // Add up all the offsets making of the address of the load 1500 Node* result = elements[0]; 1501 for (int i = 1; i < count; i++) { 1502 result = igvn->transform(new AddXNode(result, elements[i])); 1503 } 1504 // Remove the constant offset from the address and then 1505 result = igvn->transform(new AddXNode(result, igvn->MakeConX(-(int)offset))); 1506 // remove the scaling of the offset to recover the original index. 1507 if (result->Opcode() == Op_LShiftX && result->in(2) == igvn->intcon(shift)) { 1508 // Peel the shift off directly but wrap it in a dummy node 1509 // since Ideal can't return existing nodes 1510 igvn->_worklist.push(result); // remove dead node later 1511 result = new RShiftXNode(result->in(1), igvn->intcon(0)); 1512 } else if (result->is_Add() && result->in(2)->is_Con() && 1513 result->in(1)->Opcode() == Op_LShiftX && 1514 result->in(1)->in(2) == igvn->intcon(shift)) { 1515 // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z) 1516 // but for boxing cache access we know that X<<Z will not overflow 1517 // (there is range check) so we do this optimizatrion by hand here. 1518 igvn->_worklist.push(result); // remove dead node later 1519 Node* add_con = new RShiftXNode(result->in(2), igvn->intcon(shift)); 1520 result = new AddXNode(result->in(1)->in(1), igvn->transform(add_con)); 1521 } else { 1522 result = new RShiftXNode(result, igvn->intcon(shift)); 1523 } 1524 #ifdef _LP64 1525 if (bt != T_LONG) { 1526 result = new ConvL2INode(igvn->transform(result)); 1527 } 1528 #else 1529 if (bt == T_LONG) { 1530 result = new ConvI2LNode(igvn->transform(result)); 1531 } 1532 #endif 1533 // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair). 1534 // Need to preserve unboxing load type if it is unsigned. 1535 switch(this->Opcode()) { 1536 case Op_LoadUB: 1537 result = new AndINode(igvn->transform(result), igvn->intcon(0xFF)); 1538 break; 1539 case Op_LoadUS: 1540 result = new AndINode(igvn->transform(result), igvn->intcon(0xFFFF)); 1541 break; 1542 } 1543 return result; 1544 } 1545 } 1546 } 1547 } 1548 } 1549 return nullptr; 1550 } 1551 1552 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) { 1553 Node* region = phi->in(0); 1554 if (region == nullptr) { 1555 return false; // Wait stable graph 1556 } 1557 uint cnt = phi->req(); 1558 for (uint i = 1; i < cnt; i++) { 1559 Node* rc = region->in(i); 1560 if (rc == nullptr || phase->type(rc) == Type::TOP) 1561 return false; // Wait stable graph 1562 Node* in = phi->in(i); 1563 if (in == nullptr || phase->type(in) == Type::TOP) 1564 return false; // Wait stable graph 1565 } 1566 return true; 1567 } 1568 1569 //------------------------------split_through_phi------------------------------ 1570 // Check whether a call to 'split_through_phi' would split this load through the 1571 // Phi *base*. This method is essentially a copy of the validations performed 1572 // by 'split_through_phi'. The first use of this method was in EA code as part 1573 // of simplification of allocation merges. 1574 // Some differences from original method (split_through_phi): 1575 // - If base->is_CastPP(): base = base->in(1) 1576 bool LoadNode::can_split_through_phi_base(PhaseGVN* phase) { 1577 Node* mem = in(Memory); 1578 Node* address = in(Address); 1579 intptr_t ignore = 0; 1580 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1581 1582 if (base->is_CastPP()) { 1583 base = base->in(1); 1584 } 1585 1586 if (req() > 3 || base == nullptr || !base->is_Phi()) { 1587 return false; 1588 } 1589 1590 if (!mem->is_Phi()) { 1591 if (!MemNode::all_controls_dominate(mem, base->in(0))) { 1592 return false; 1593 } 1594 } else if (base->in(0) != mem->in(0)) { 1595 if (!MemNode::all_controls_dominate(mem, base->in(0))) { 1596 return false; 1597 } 1598 } 1599 1600 return true; 1601 } 1602 1603 //------------------------------split_through_phi------------------------------ 1604 // Split instance or boxed field load through Phi. 1605 Node* LoadNode::split_through_phi(PhaseGVN* phase, bool ignore_missing_instance_id) { 1606 if (req() > 3) { 1607 assert(is_LoadVector() && Opcode() != Op_LoadVector, "load has too many inputs"); 1608 // LoadVector subclasses such as LoadVectorMasked have extra inputs that the logic below doesn't take into account 1609 return nullptr; 1610 } 1611 Node* mem = in(Memory); 1612 Node* address = in(Address); 1613 const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr(); 1614 1615 assert((t_oop != nullptr) && 1616 (ignore_missing_instance_id || 1617 t_oop->is_known_instance_field() || 1618 t_oop->is_ptr_to_boxed_value()), "invalid conditions"); 1619 1620 Compile* C = phase->C; 1621 intptr_t ignore = 0; 1622 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1623 bool base_is_phi = (base != nullptr) && base->is_Phi(); 1624 bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() && 1625 (base != nullptr) && (base == address->in(AddPNode::Base)) && 1626 phase->type(base)->higher_equal(TypePtr::NOTNULL); 1627 1628 if (!((mem->is_Phi() || base_is_phi) && 1629 (ignore_missing_instance_id || load_boxed_values || t_oop->is_known_instance_field()))) { 1630 return nullptr; // Neither memory or base are Phi 1631 } 1632 1633 if (mem->is_Phi()) { 1634 if (!stable_phi(mem->as_Phi(), phase)) { 1635 return nullptr; // Wait stable graph 1636 } 1637 uint cnt = mem->req(); 1638 // Check for loop invariant memory. 1639 if (cnt == 3) { 1640 for (uint i = 1; i < cnt; i++) { 1641 Node* in = mem->in(i); 1642 Node* m = optimize_memory_chain(in, t_oop, this, phase); 1643 if (m == mem) { 1644 if (i == 1) { 1645 // if the first edge was a loop, check second edge too. 1646 // If both are replaceable - we are in an infinite loop 1647 Node *n = optimize_memory_chain(mem->in(2), t_oop, this, phase); 1648 if (n == mem) { 1649 break; 1650 } 1651 } 1652 set_req(Memory, mem->in(cnt - i)); 1653 return this; // made change 1654 } 1655 } 1656 } 1657 } 1658 if (base_is_phi) { 1659 if (!stable_phi(base->as_Phi(), phase)) { 1660 return nullptr; // Wait stable graph 1661 } 1662 uint cnt = base->req(); 1663 // Check for loop invariant memory. 1664 if (cnt == 3) { 1665 for (uint i = 1; i < cnt; i++) { 1666 if (base->in(i) == base) { 1667 return nullptr; // Wait stable graph 1668 } 1669 } 1670 } 1671 } 1672 1673 // Split through Phi (see original code in loopopts.cpp). 1674 assert(ignore_missing_instance_id || C->have_alias_type(t_oop), "instance should have alias type"); 1675 1676 // Do nothing here if Identity will find a value 1677 // (to avoid infinite chain of value phis generation). 1678 if (this != Identity(phase)) { 1679 return nullptr; 1680 } 1681 1682 // Select Region to split through. 1683 Node* region; 1684 DomResult dom_result = DomResult::Dominate; 1685 if (!base_is_phi) { 1686 assert(mem->is_Phi(), "sanity"); 1687 region = mem->in(0); 1688 // Skip if the region dominates some control edge of the address. 1689 // We will check `dom_result` later. 1690 dom_result = MemNode::maybe_all_controls_dominate(address, region); 1691 } else if (!mem->is_Phi()) { 1692 assert(base_is_phi, "sanity"); 1693 region = base->in(0); 1694 // Skip if the region dominates some control edge of the memory. 1695 // We will check `dom_result` later. 1696 dom_result = MemNode::maybe_all_controls_dominate(mem, region); 1697 } else if (base->in(0) != mem->in(0)) { 1698 assert(base_is_phi && mem->is_Phi(), "sanity"); 1699 dom_result = MemNode::maybe_all_controls_dominate(mem, base->in(0)); 1700 if (dom_result == DomResult::Dominate) { 1701 region = base->in(0); 1702 } else { 1703 dom_result = MemNode::maybe_all_controls_dominate(address, mem->in(0)); 1704 if (dom_result == DomResult::Dominate) { 1705 region = mem->in(0); 1706 } 1707 // Otherwise we encountered a complex graph. 1708 } 1709 } else { 1710 assert(base->in(0) == mem->in(0), "sanity"); 1711 region = mem->in(0); 1712 } 1713 1714 PhaseIterGVN* igvn = phase->is_IterGVN(); 1715 if (dom_result != DomResult::Dominate) { 1716 if (dom_result == DomResult::EncounteredDeadCode) { 1717 // There is some dead code which eventually will be removed in IGVN. 1718 // Once this is the case, we get an unambiguous dominance result. 1719 // Push the node to the worklist again until the dead code is removed. 1720 igvn->_worklist.push(this); 1721 } 1722 return nullptr; 1723 } 1724 1725 Node* phi = nullptr; 1726 const Type* this_type = this->bottom_type(); 1727 if (t_oop != nullptr && (t_oop->is_known_instance_field() || load_boxed_values)) { 1728 int this_index = C->get_alias_index(t_oop); 1729 int this_offset = t_oop->offset(); 1730 int this_iid = t_oop->is_known_instance_field() ? t_oop->instance_id() : base->_idx; 1731 phi = new PhiNode(region, this_type, nullptr, mem->_idx, this_iid, this_index, this_offset); 1732 } else if (ignore_missing_instance_id) { 1733 phi = new PhiNode(region, this_type, nullptr, mem->_idx); 1734 } else { 1735 return nullptr; 1736 } 1737 1738 for (uint i = 1; i < region->req(); i++) { 1739 Node* x; 1740 Node* the_clone = nullptr; 1741 Node* in = region->in(i); 1742 if (region->is_CountedLoop() && region->as_Loop()->is_strip_mined() && i == LoopNode::EntryControl && 1743 in != nullptr && in->is_OuterStripMinedLoop()) { 1744 // No node should go in the outer strip mined loop 1745 in = in->in(LoopNode::EntryControl); 1746 } 1747 if (in == nullptr || in == C->top()) { 1748 x = C->top(); // Dead path? Use a dead data op 1749 } else { 1750 x = this->clone(); // Else clone up the data op 1751 the_clone = x; // Remember for possible deletion. 1752 // Alter data node to use pre-phi inputs 1753 if (this->in(0) == region) { 1754 x->set_req(0, in); 1755 } else { 1756 x->set_req(0, nullptr); 1757 } 1758 if (mem->is_Phi() && (mem->in(0) == region)) { 1759 x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone. 1760 } 1761 if (address->is_Phi() && address->in(0) == region) { 1762 x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone 1763 } 1764 if (base_is_phi && (base->in(0) == region)) { 1765 Node* base_x = base->in(i); // Clone address for loads from boxed objects. 1766 Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset))); 1767 x->set_req(Address, adr_x); 1768 } 1769 } 1770 // Check for a 'win' on some paths 1771 const Type *t = x->Value(igvn); 1772 1773 bool singleton = t->singleton(); 1774 1775 // See comments in PhaseIdealLoop::split_thru_phi(). 1776 if (singleton && t == Type::TOP) { 1777 singleton &= region->is_Loop() && (i != LoopNode::EntryControl); 1778 } 1779 1780 if (singleton) { 1781 x = igvn->makecon(t); 1782 } else { 1783 // We now call Identity to try to simplify the cloned node. 1784 // Note that some Identity methods call phase->type(this). 1785 // Make sure that the type array is big enough for 1786 // our new node, even though we may throw the node away. 1787 // (This tweaking with igvn only works because x is a new node.) 1788 igvn->set_type(x, t); 1789 // If x is a TypeNode, capture any more-precise type permanently into Node 1790 // otherwise it will be not updated during igvn->transform since 1791 // igvn->type(x) is set to x->Value() already. 1792 x->raise_bottom_type(t); 1793 Node* y = x->Identity(igvn); 1794 if (y != x) { 1795 x = y; 1796 } else { 1797 y = igvn->hash_find_insert(x); 1798 if (y) { 1799 x = y; 1800 } else { 1801 // Else x is a new node we are keeping 1802 // We do not need register_new_node_with_optimizer 1803 // because set_type has already been called. 1804 igvn->_worklist.push(x); 1805 } 1806 } 1807 } 1808 if (x != the_clone && the_clone != nullptr) { 1809 igvn->remove_dead_node(the_clone); 1810 } 1811 phi->set_req(i, x); 1812 } 1813 // Record Phi 1814 igvn->register_new_node_with_optimizer(phi); 1815 return phi; 1816 } 1817 1818 AllocateNode* LoadNode::is_new_object_mark_load() const { 1819 if (Opcode() == Op_LoadX) { 1820 Node* address = in(MemNode::Address); 1821 AllocateNode* alloc = AllocateNode::Ideal_allocation(address); 1822 Node* mem = in(MemNode::Memory); 1823 if (alloc != nullptr && mem->is_Proj() && 1824 mem->in(0) != nullptr && 1825 mem->in(0) == alloc->initialization() && 1826 alloc->initialization()->proj_out_or_null(0) != nullptr) { 1827 return alloc; 1828 } 1829 } 1830 return nullptr; 1831 } 1832 1833 1834 //------------------------------Ideal------------------------------------------ 1835 // If the load is from Field memory and the pointer is non-null, it might be possible to 1836 // zero out the control input. 1837 // If the offset is constant and the base is an object allocation, 1838 // try to hook me up to the exact initializing store. 1839 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) { 1840 if (has_pinned_control_dependency()) { 1841 return nullptr; 1842 } 1843 Node* p = MemNode::Ideal_common(phase, can_reshape); 1844 if (p) return (p == NodeSentinel) ? nullptr : p; 1845 1846 Node* ctrl = in(MemNode::Control); 1847 Node* address = in(MemNode::Address); 1848 bool progress = false; 1849 1850 bool addr_mark = ((phase->type(address)->isa_oopptr() || phase->type(address)->isa_narrowoop()) && 1851 phase->type(address)->is_ptr()->offset() == oopDesc::mark_offset_in_bytes()); 1852 1853 // Skip up past a SafePoint control. Cannot do this for Stores because 1854 // pointer stores & cardmarks must stay on the same side of a SafePoint. 1855 if( ctrl != nullptr && ctrl->Opcode() == Op_SafePoint && 1856 phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw && 1857 !addr_mark && 1858 (depends_only_on_test() || has_unknown_control_dependency())) { 1859 ctrl = ctrl->in(0); 1860 set_req(MemNode::Control,ctrl); 1861 progress = true; 1862 } 1863 1864 intptr_t ignore = 0; 1865 Node* base = AddPNode::Ideal_base_and_offset(address, phase, ignore); 1866 if (base != nullptr 1867 && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) { 1868 // Check for useless control edge in some common special cases 1869 if (in(MemNode::Control) != nullptr 1870 && can_remove_control() 1871 && phase->type(base)->higher_equal(TypePtr::NOTNULL) 1872 && all_controls_dominate(base, phase->C->start())) { 1873 // A method-invariant, non-null address (constant or 'this' argument). 1874 set_req(MemNode::Control, nullptr); 1875 progress = true; 1876 } 1877 } 1878 1879 Node* mem = in(MemNode::Memory); 1880 const TypePtr *addr_t = phase->type(address)->isa_ptr(); 1881 1882 if (can_reshape && (addr_t != nullptr)) { 1883 // try to optimize our memory input 1884 Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase); 1885 if (opt_mem != mem) { 1886 set_req_X(MemNode::Memory, opt_mem, phase); 1887 if (phase->type( opt_mem ) == Type::TOP) return nullptr; 1888 return this; 1889 } 1890 const TypeOopPtr *t_oop = addr_t->isa_oopptr(); 1891 if ((t_oop != nullptr) && 1892 (t_oop->is_known_instance_field() || 1893 t_oop->is_ptr_to_boxed_value())) { 1894 PhaseIterGVN *igvn = phase->is_IterGVN(); 1895 assert(igvn != nullptr, "must be PhaseIterGVN when can_reshape is true"); 1896 if (igvn->_worklist.member(opt_mem)) { 1897 // Delay this transformation until memory Phi is processed. 1898 igvn->_worklist.push(this); 1899 return nullptr; 1900 } 1901 // Split instance field load through Phi. 1902 Node* result = split_through_phi(phase); 1903 if (result != nullptr) return result; 1904 1905 if (t_oop->is_ptr_to_boxed_value()) { 1906 Node* result = eliminate_autobox(igvn); 1907 if (result != nullptr) return result; 1908 } 1909 } 1910 } 1911 1912 // Is there a dominating load that loads the same value? Leave 1913 // anything that is not a load of a field/array element (like 1914 // barriers etc.) alone 1915 if (in(0) != nullptr && !adr_type()->isa_rawptr() && can_reshape) { 1916 for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) { 1917 Node *use = mem->fast_out(i); 1918 if (use != this && 1919 use->Opcode() == Opcode() && 1920 use->in(0) != nullptr && 1921 use->in(0) != in(0) && 1922 use->in(Address) == in(Address)) { 1923 Node* ctl = in(0); 1924 for (int i = 0; i < 10 && ctl != nullptr; i++) { 1925 ctl = IfNode::up_one_dom(ctl); 1926 if (ctl == use->in(0)) { 1927 set_req(0, use->in(0)); 1928 return this; 1929 } 1930 } 1931 } 1932 } 1933 } 1934 1935 // Check for prior store with a different base or offset; make Load 1936 // independent. Skip through any number of them. Bail out if the stores 1937 // are in an endless dead cycle and report no progress. This is a key 1938 // transform for Reflection. However, if after skipping through the Stores 1939 // we can't then fold up against a prior store do NOT do the transform as 1940 // this amounts to using the 'Oracle' model of aliasing. It leaves the same 1941 // array memory alive twice: once for the hoisted Load and again after the 1942 // bypassed Store. This situation only works if EVERYBODY who does 1943 // anti-dependence work knows how to bypass. I.e. we need all 1944 // anti-dependence checks to ask the same Oracle. Right now, that Oracle is 1945 // the alias index stuff. So instead, peek through Stores and IFF we can 1946 // fold up, do so. 1947 Node* prev_mem = find_previous_store(phase); 1948 if (prev_mem != nullptr) { 1949 Node* value = can_see_arraycopy_value(prev_mem, phase); 1950 if (value != nullptr) { 1951 return value; 1952 } 1953 } 1954 // Steps (a), (b): Walk past independent stores to find an exact match. 1955 if (prev_mem != nullptr && prev_mem != in(MemNode::Memory)) { 1956 // (c) See if we can fold up on the spot, but don't fold up here. 1957 // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or 1958 // just return a prior value, which is done by Identity calls. 1959 if (can_see_stored_value(prev_mem, phase)) { 1960 // Make ready for step (d): 1961 set_req_X(MemNode::Memory, prev_mem, phase); 1962 return this; 1963 } 1964 } 1965 1966 return progress ? this : nullptr; 1967 } 1968 1969 // Helper to recognize certain Klass fields which are invariant across 1970 // some group of array types (e.g., int[] or all T[] where T < Object). 1971 const Type* 1972 LoadNode::load_array_final_field(const TypeKlassPtr *tkls, 1973 ciKlass* klass) const { 1974 assert(!UseCompactObjectHeaders || tkls->offset() != in_bytes(Klass::prototype_header_offset()), 1975 "must not happen"); 1976 if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) { 1977 // The field is Klass::_modifier_flags. Return its (constant) value. 1978 // (Folds up the 2nd indirection in aClassConstant.getModifiers().) 1979 assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags"); 1980 return TypeInt::make(klass->modifier_flags()); 1981 } 1982 if (tkls->offset() == in_bytes(Klass::access_flags_offset())) { 1983 // The field is Klass::_access_flags. Return its (constant) value. 1984 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).) 1985 assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags"); 1986 return TypeInt::make(klass->access_flags()); 1987 } 1988 if (tkls->offset() == in_bytes(Klass::misc_flags_offset())) { 1989 // The field is Klass::_misc_flags. Return its (constant) value. 1990 // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).) 1991 assert(this->Opcode() == Op_LoadUB, "must load an unsigned byte from _misc_flags"); 1992 return TypeInt::make(klass->misc_flags()); 1993 } 1994 if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) { 1995 // The field is Klass::_layout_helper. Return its constant value if known. 1996 assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper"); 1997 return TypeInt::make(klass->layout_helper()); 1998 } 1999 2000 // No match. 2001 return nullptr; 2002 } 2003 2004 //------------------------------Value----------------------------------------- 2005 const Type* LoadNode::Value(PhaseGVN* phase) const { 2006 // Either input is TOP ==> the result is TOP 2007 Node* mem = in(MemNode::Memory); 2008 const Type *t1 = phase->type(mem); 2009 if (t1 == Type::TOP) return Type::TOP; 2010 Node* adr = in(MemNode::Address); 2011 const TypePtr* tp = phase->type(adr)->isa_ptr(); 2012 if (tp == nullptr || tp->empty()) return Type::TOP; 2013 int off = tp->offset(); 2014 assert(off != Type::OffsetTop, "case covered by TypePtr::empty"); 2015 Compile* C = phase->C; 2016 2017 // Try to guess loaded type from pointer type 2018 if (tp->isa_aryptr()) { 2019 const TypeAryPtr* ary = tp->is_aryptr(); 2020 const Type* t = ary->elem(); 2021 2022 // Determine whether the reference is beyond the header or not, by comparing 2023 // the offset against the offset of the start of the array's data. 2024 // Different array types begin at slightly different offsets (12 vs. 16). 2025 // We choose T_BYTE as an example base type that is least restrictive 2026 // as to alignment, which will therefore produce the smallest 2027 // possible base offset. 2028 const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE); 2029 const bool off_beyond_header = (off >= min_base_off); 2030 2031 // Try to constant-fold a stable array element. 2032 if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) { 2033 // Make sure the reference is not into the header and the offset is constant 2034 ciObject* aobj = ary->const_oop(); 2035 if (aobj != nullptr && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) { 2036 int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0); 2037 const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off, 2038 stable_dimension, 2039 memory_type(), is_unsigned()); 2040 if (con_type != nullptr) { 2041 return con_type; 2042 } 2043 } 2044 } 2045 2046 // Don't do this for integer types. There is only potential profit if 2047 // the element type t is lower than _type; that is, for int types, if _type is 2048 // more restrictive than t. This only happens here if one is short and the other 2049 // char (both 16 bits), and in those cases we've made an intentional decision 2050 // to use one kind of load over the other. See AndINode::Ideal and 4965907. 2051 // Also, do not try to narrow the type for a LoadKlass, regardless of offset. 2052 // 2053 // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8)) 2054 // where the _gvn.type of the AddP is wider than 8. This occurs when an earlier 2055 // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been 2056 // subsumed by p1. If p1 is on the worklist but has not yet been re-transformed, 2057 // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any. 2058 // In fact, that could have been the original type of p1, and p1 could have 2059 // had an original form like p1:(AddP x x (LShiftL quux 3)), where the 2060 // expression (LShiftL quux 3) independently optimized to the constant 8. 2061 if ((t->isa_int() == nullptr) && (t->isa_long() == nullptr) 2062 && (_type->isa_vect() == nullptr) 2063 && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) { 2064 // t might actually be lower than _type, if _type is a unique 2065 // concrete subclass of abstract class t. 2066 if (off_beyond_header || off == Type::OffsetBot) { // is the offset beyond the header? 2067 const Type* jt = t->join_speculative(_type); 2068 // In any case, do not allow the join, per se, to empty out the type. 2069 if (jt->empty() && !t->empty()) { 2070 // This can happen if a interface-typed array narrows to a class type. 2071 jt = _type; 2072 } 2073 #ifdef ASSERT 2074 if (phase->C->eliminate_boxing() && adr->is_AddP()) { 2075 // The pointers in the autobox arrays are always non-null 2076 Node* base = adr->in(AddPNode::Base); 2077 if ((base != nullptr) && base->is_DecodeN()) { 2078 // Get LoadN node which loads IntegerCache.cache field 2079 base = base->in(1); 2080 } 2081 if ((base != nullptr) && base->is_Con()) { 2082 const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr(); 2083 if ((base_type != nullptr) && base_type->is_autobox_cache()) { 2084 // It could be narrow oop 2085 assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity"); 2086 } 2087 } 2088 } 2089 #endif 2090 return jt; 2091 } 2092 } 2093 } else if (tp->base() == Type::InstPtr) { 2094 assert( off != Type::OffsetBot || 2095 // arrays can be cast to Objects 2096 !tp->isa_instptr() || 2097 tp->is_instptr()->instance_klass()->is_java_lang_Object() || 2098 // unsafe field access may not have a constant offset 2099 C->has_unsafe_access(), 2100 "Field accesses must be precise" ); 2101 // For oop loads, we expect the _type to be precise. 2102 2103 // Optimize loads from constant fields. 2104 const TypeInstPtr* tinst = tp->is_instptr(); 2105 ciObject* const_oop = tinst->const_oop(); 2106 if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != nullptr && const_oop->is_instance()) { 2107 const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type()); 2108 if (con_type != nullptr) { 2109 return con_type; 2110 } 2111 } 2112 } else if (tp->base() == Type::KlassPtr || tp->base() == Type::InstKlassPtr || tp->base() == Type::AryKlassPtr) { 2113 assert(off != Type::OffsetBot || 2114 !tp->isa_instklassptr() || 2115 // arrays can be cast to Objects 2116 tp->isa_instklassptr()->instance_klass()->is_java_lang_Object() || 2117 // also allow array-loading from the primary supertype 2118 // array during subtype checks 2119 Opcode() == Op_LoadKlass, 2120 "Field accesses must be precise"); 2121 // For klass/static loads, we expect the _type to be precise 2122 } else if (tp->base() == Type::RawPtr && adr->is_Load() && off == 0) { 2123 /* With mirrors being an indirect in the Klass* 2124 * the VM is now using two loads. LoadKlass(LoadP(LoadP(Klass, mirror_offset), zero_offset)) 2125 * The LoadP from the Klass has a RawPtr type (see LibraryCallKit::load_mirror_from_klass). 2126 * 2127 * So check the type and klass of the node before the LoadP. 2128 */ 2129 Node* adr2 = adr->in(MemNode::Address); 2130 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); 2131 if (tkls != nullptr && !StressReflectiveCode) { 2132 if (tkls->is_loaded() && tkls->klass_is_exact() && tkls->offset() == in_bytes(Klass::java_mirror_offset())) { 2133 ciKlass* klass = tkls->exact_klass(); 2134 assert(adr->Opcode() == Op_LoadP, "must load an oop from _java_mirror"); 2135 assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror"); 2136 return TypeInstPtr::make(klass->java_mirror()); 2137 } 2138 } 2139 } 2140 2141 const TypeKlassPtr *tkls = tp->isa_klassptr(); 2142 if (tkls != nullptr) { 2143 if (tkls->is_loaded() && tkls->klass_is_exact()) { 2144 ciKlass* klass = tkls->exact_klass(); 2145 // We are loading a field from a Klass metaobject whose identity 2146 // is known at compile time (the type is "exact" or "precise"). 2147 // Check for fields we know are maintained as constants by the VM. 2148 if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) { 2149 // The field is Klass::_super_check_offset. Return its (constant) value. 2150 // (Folds up type checking code.) 2151 assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset"); 2152 return TypeInt::make(klass->super_check_offset()); 2153 } 2154 if (UseCompactObjectHeaders) { 2155 if (tkls->offset() == in_bytes(Klass::prototype_header_offset())) { 2156 // The field is Klass::_prototype_header. Return its (constant) value. 2157 assert(this->Opcode() == Op_LoadX, "must load a proper type from _prototype_header"); 2158 return TypeX::make(klass->prototype_header()); 2159 } 2160 } 2161 // Compute index into primary_supers array 2162 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); 2163 // Check for overflowing; use unsigned compare to handle the negative case. 2164 if( depth < ciKlass::primary_super_limit() ) { 2165 // The field is an element of Klass::_primary_supers. Return its (constant) value. 2166 // (Folds up type checking code.) 2167 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers"); 2168 ciKlass *ss = klass->super_of_depth(depth); 2169 return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR; 2170 } 2171 const Type* aift = load_array_final_field(tkls, klass); 2172 if (aift != nullptr) return aift; 2173 } 2174 2175 // We can still check if we are loading from the primary_supers array at a 2176 // shallow enough depth. Even though the klass is not exact, entries less 2177 // than or equal to its super depth are correct. 2178 if (tkls->is_loaded()) { 2179 ciKlass* klass = nullptr; 2180 if (tkls->isa_instklassptr()) { 2181 klass = tkls->is_instklassptr()->instance_klass(); 2182 } else { 2183 int dims; 2184 const Type* inner = tkls->is_aryklassptr()->base_element_type(dims); 2185 if (inner->isa_instklassptr()) { 2186 klass = inner->is_instklassptr()->instance_klass(); 2187 klass = ciObjArrayKlass::make(klass, dims); 2188 } 2189 } 2190 if (klass != nullptr) { 2191 // Compute index into primary_supers array 2192 juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*); 2193 // Check for overflowing; use unsigned compare to handle the negative case. 2194 if (depth < ciKlass::primary_super_limit() && 2195 depth <= klass->super_depth()) { // allow self-depth checks to handle self-check case 2196 // The field is an element of Klass::_primary_supers. Return its (constant) value. 2197 // (Folds up type checking code.) 2198 assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers"); 2199 ciKlass *ss = klass->super_of_depth(depth); 2200 return ss ? TypeKlassPtr::make(ss, Type::trust_interfaces) : TypePtr::NULL_PTR; 2201 } 2202 } 2203 } 2204 2205 // If the type is enough to determine that the thing is not an array, 2206 // we can give the layout_helper a positive interval type. 2207 // This will help short-circuit some reflective code. 2208 if (tkls->offset() == in_bytes(Klass::layout_helper_offset()) && 2209 tkls->isa_instklassptr() && // not directly typed as an array 2210 !tkls->is_instklassptr()->instance_klass()->is_java_lang_Object() // not the supertype of all T[] and specifically not Serializable & Cloneable 2211 ) { 2212 // Note: When interfaces are reliable, we can narrow the interface 2213 // test to (klass != Serializable && klass != Cloneable). 2214 assert(Opcode() == Op_LoadI, "must load an int from _layout_helper"); 2215 jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false); 2216 // The key property of this type is that it folds up tests 2217 // for array-ness, since it proves that the layout_helper is positive. 2218 // Thus, a generic value like the basic object layout helper works fine. 2219 return TypeInt::make(min_size, max_jint, Type::WidenMin); 2220 } 2221 } 2222 2223 // If we are loading from a freshly-allocated object, produce a zero, 2224 // if the load is provably beyond the header of the object. 2225 // (Also allow a variable load from a fresh array to produce zero.) 2226 const TypeOopPtr *tinst = tp->isa_oopptr(); 2227 bool is_instance = (tinst != nullptr) && tinst->is_known_instance_field(); 2228 bool is_boxed_value = (tinst != nullptr) && tinst->is_ptr_to_boxed_value(); 2229 if (ReduceFieldZeroing || is_instance || is_boxed_value) { 2230 Node* value = can_see_stored_value(mem,phase); 2231 if (value != nullptr && value->is_Con()) { 2232 assert(value->bottom_type()->higher_equal(_type),"sanity"); 2233 return value->bottom_type(); 2234 } 2235 } 2236 2237 bool is_vect = (_type->isa_vect() != nullptr); 2238 if (is_instance && !is_vect) { 2239 // If we have an instance type and our memory input is the 2240 // programs's initial memory state, there is no matching store, 2241 // so just return a zero of the appropriate type - 2242 // except if it is vectorized - then we have no zero constant. 2243 Node *mem = in(MemNode::Memory); 2244 if (mem->is_Parm() && mem->in(0)->is_Start()) { 2245 assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm"); 2246 return Type::get_zero_type(_type->basic_type()); 2247 } 2248 } 2249 2250 if (!UseCompactObjectHeaders) { 2251 Node* alloc = is_new_object_mark_load(); 2252 if (alloc != nullptr) { 2253 return TypeX::make(markWord::prototype().value()); 2254 } 2255 } 2256 2257 return _type; 2258 } 2259 2260 //------------------------------match_edge------------------------------------- 2261 // Do we Match on this edge index or not? Match only the address. 2262 uint LoadNode::match_edge(uint idx) const { 2263 return idx == MemNode::Address; 2264 } 2265 2266 //--------------------------LoadBNode::Ideal-------------------------------------- 2267 // 2268 // If the previous store is to the same address as this load, 2269 // and the value stored was larger than a byte, replace this load 2270 // with the value stored truncated to a byte. If no truncation is 2271 // needed, the replacement is done in LoadNode::Identity(). 2272 // 2273 Node* LoadBNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2274 Node* mem = in(MemNode::Memory); 2275 Node* value = can_see_stored_value(mem,phase); 2276 if (value != nullptr) { 2277 Node* narrow = Compile::narrow_value(T_BYTE, value, _type, phase, false); 2278 if (narrow != value) { 2279 return narrow; 2280 } 2281 } 2282 // Identity call will handle the case where truncation is not needed. 2283 return LoadNode::Ideal(phase, can_reshape); 2284 } 2285 2286 const Type* LoadBNode::Value(PhaseGVN* phase) const { 2287 Node* mem = in(MemNode::Memory); 2288 Node* value = can_see_stored_value(mem,phase); 2289 if (value != nullptr && value->is_Con() && 2290 !value->bottom_type()->higher_equal(_type)) { 2291 // If the input to the store does not fit with the load's result type, 2292 // it must be truncated. We can't delay until Ideal call since 2293 // a singleton Value is needed for split_thru_phi optimization. 2294 int con = value->get_int(); 2295 return TypeInt::make((con << 24) >> 24); 2296 } 2297 return LoadNode::Value(phase); 2298 } 2299 2300 //--------------------------LoadUBNode::Ideal------------------------------------- 2301 // 2302 // If the previous store is to the same address as this load, 2303 // and the value stored was larger than a byte, replace this load 2304 // with the value stored truncated to a byte. If no truncation is 2305 // needed, the replacement is done in LoadNode::Identity(). 2306 // 2307 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2308 Node* mem = in(MemNode::Memory); 2309 Node* value = can_see_stored_value(mem, phase); 2310 if (value != nullptr) { 2311 Node* narrow = Compile::narrow_value(T_BOOLEAN, value, _type, phase, false); 2312 if (narrow != value) { 2313 return narrow; 2314 } 2315 } 2316 // Identity call will handle the case where truncation is not needed. 2317 return LoadNode::Ideal(phase, can_reshape); 2318 } 2319 2320 const Type* LoadUBNode::Value(PhaseGVN* phase) const { 2321 Node* mem = in(MemNode::Memory); 2322 Node* value = can_see_stored_value(mem,phase); 2323 if (value != nullptr && value->is_Con() && 2324 !value->bottom_type()->higher_equal(_type)) { 2325 // If the input to the store does not fit with the load's result type, 2326 // it must be truncated. We can't delay until Ideal call since 2327 // a singleton Value is needed for split_thru_phi optimization. 2328 int con = value->get_int(); 2329 return TypeInt::make(con & 0xFF); 2330 } 2331 return LoadNode::Value(phase); 2332 } 2333 2334 //--------------------------LoadUSNode::Ideal------------------------------------- 2335 // 2336 // If the previous store is to the same address as this load, 2337 // and the value stored was larger than a char, replace this load 2338 // with the value stored truncated to a char. If no truncation is 2339 // needed, the replacement is done in LoadNode::Identity(). 2340 // 2341 Node* LoadUSNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2342 Node* mem = in(MemNode::Memory); 2343 Node* value = can_see_stored_value(mem,phase); 2344 if (value != nullptr) { 2345 Node* narrow = Compile::narrow_value(T_CHAR, value, _type, phase, false); 2346 if (narrow != value) { 2347 return narrow; 2348 } 2349 } 2350 // Identity call will handle the case where truncation is not needed. 2351 return LoadNode::Ideal(phase, can_reshape); 2352 } 2353 2354 const Type* LoadUSNode::Value(PhaseGVN* phase) const { 2355 Node* mem = in(MemNode::Memory); 2356 Node* value = can_see_stored_value(mem,phase); 2357 if (value != nullptr && value->is_Con() && 2358 !value->bottom_type()->higher_equal(_type)) { 2359 // If the input to the store does not fit with the load's result type, 2360 // it must be truncated. We can't delay until Ideal call since 2361 // a singleton Value is needed for split_thru_phi optimization. 2362 int con = value->get_int(); 2363 return TypeInt::make(con & 0xFFFF); 2364 } 2365 return LoadNode::Value(phase); 2366 } 2367 2368 //--------------------------LoadSNode::Ideal-------------------------------------- 2369 // 2370 // If the previous store is to the same address as this load, 2371 // and the value stored was larger than a short, replace this load 2372 // with the value stored truncated to a short. If no truncation is 2373 // needed, the replacement is done in LoadNode::Identity(). 2374 // 2375 Node* LoadSNode::Ideal(PhaseGVN* phase, bool can_reshape) { 2376 Node* mem = in(MemNode::Memory); 2377 Node* value = can_see_stored_value(mem,phase); 2378 if (value != nullptr) { 2379 Node* narrow = Compile::narrow_value(T_SHORT, value, _type, phase, false); 2380 if (narrow != value) { 2381 return narrow; 2382 } 2383 } 2384 // Identity call will handle the case where truncation is not needed. 2385 return LoadNode::Ideal(phase, can_reshape); 2386 } 2387 2388 const Type* LoadSNode::Value(PhaseGVN* phase) const { 2389 Node* mem = in(MemNode::Memory); 2390 Node* value = can_see_stored_value(mem,phase); 2391 if (value != nullptr && value->is_Con() && 2392 !value->bottom_type()->higher_equal(_type)) { 2393 // If the input to the store does not fit with the load's result type, 2394 // it must be truncated. We can't delay until Ideal call since 2395 // a singleton Value is needed for split_thru_phi optimization. 2396 int con = value->get_int(); 2397 return TypeInt::make((con << 16) >> 16); 2398 } 2399 return LoadNode::Value(phase); 2400 } 2401 2402 //============================================================================= 2403 //----------------------------LoadKlassNode::make------------------------------ 2404 // Polymorphic factory method: 2405 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) { 2406 // sanity check the alias category against the created node type 2407 const TypePtr *adr_type = adr->bottom_type()->isa_ptr(); 2408 assert(adr_type != nullptr, "expecting TypeKlassPtr"); 2409 #ifdef _LP64 2410 if (adr_type->is_ptr_to_narrowklass()) { 2411 assert(UseCompressedClassPointers, "no compressed klasses"); 2412 Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered)); 2413 return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr()); 2414 } 2415 #endif 2416 assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop"); 2417 return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered); 2418 } 2419 2420 //------------------------------Value------------------------------------------ 2421 const Type* LoadKlassNode::Value(PhaseGVN* phase) const { 2422 return klass_value_common(phase); 2423 } 2424 2425 // In most cases, LoadKlassNode does not have the control input set. If the control 2426 // input is set, it must not be removed (by LoadNode::Ideal()). 2427 bool LoadKlassNode::can_remove_control() const { 2428 return false; 2429 } 2430 2431 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const { 2432 // Either input is TOP ==> the result is TOP 2433 const Type *t1 = phase->type( in(MemNode::Memory) ); 2434 if (t1 == Type::TOP) return Type::TOP; 2435 Node *adr = in(MemNode::Address); 2436 const Type *t2 = phase->type( adr ); 2437 if (t2 == Type::TOP) return Type::TOP; 2438 const TypePtr *tp = t2->is_ptr(); 2439 if (TypePtr::above_centerline(tp->ptr()) || 2440 tp->ptr() == TypePtr::Null) return Type::TOP; 2441 2442 // Return a more precise klass, if possible 2443 const TypeInstPtr *tinst = tp->isa_instptr(); 2444 if (tinst != nullptr) { 2445 ciInstanceKlass* ik = tinst->instance_klass(); 2446 int offset = tinst->offset(); 2447 if (ik == phase->C->env()->Class_klass() 2448 && (offset == java_lang_Class::klass_offset() || 2449 offset == java_lang_Class::array_klass_offset())) { 2450 // We are loading a special hidden field from a Class mirror object, 2451 // the field which points to the VM's Klass metaobject. 2452 ciType* t = tinst->java_mirror_type(); 2453 // java_mirror_type returns non-null for compile-time Class constants. 2454 if (t != nullptr) { 2455 // constant oop => constant klass 2456 if (offset == java_lang_Class::array_klass_offset()) { 2457 if (t->is_void()) { 2458 // We cannot create a void array. Since void is a primitive type return null 2459 // klass. Users of this result need to do a null check on the returned klass. 2460 return TypePtr::NULL_PTR; 2461 } 2462 return TypeKlassPtr::make(ciArrayKlass::make(t), Type::trust_interfaces); 2463 } 2464 if (!t->is_klass()) { 2465 // a primitive Class (e.g., int.class) has null for a klass field 2466 return TypePtr::NULL_PTR; 2467 } 2468 // (Folds up the 1st indirection in aClassConstant.getModifiers().) 2469 return TypeKlassPtr::make(t->as_klass(), Type::trust_interfaces); 2470 } 2471 // non-constant mirror, so we can't tell what's going on 2472 } 2473 if (!tinst->is_loaded()) 2474 return _type; // Bail out if not loaded 2475 if (offset == Type::klass_offset()) { 2476 return tinst->as_klass_type(true); 2477 } 2478 } 2479 2480 // Check for loading klass from an array 2481 const TypeAryPtr *tary = tp->isa_aryptr(); 2482 if (tary != nullptr && 2483 tary->offset() == Type::klass_offset()) { 2484 return tary->as_klass_type(true); 2485 } 2486 2487 // Check for loading klass from an array klass 2488 const TypeKlassPtr *tkls = tp->isa_klassptr(); 2489 if (tkls != nullptr && !StressReflectiveCode) { 2490 if (!tkls->is_loaded()) 2491 return _type; // Bail out if not loaded 2492 if (tkls->isa_aryklassptr() && tkls->is_aryklassptr()->elem()->isa_klassptr() && 2493 tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) { 2494 // // Always returning precise element type is incorrect, 2495 // // e.g., element type could be object and array may contain strings 2496 // return TypeKlassPtr::make(TypePtr::Constant, elem, 0); 2497 2498 // The array's TypeKlassPtr was declared 'precise' or 'not precise' 2499 // according to the element type's subclassing. 2500 return tkls->is_aryklassptr()->elem()->isa_klassptr()->cast_to_exactness(tkls->klass_is_exact()); 2501 } 2502 if (tkls->isa_instklassptr() != nullptr && tkls->klass_is_exact() && 2503 tkls->offset() == in_bytes(Klass::super_offset())) { 2504 ciKlass* sup = tkls->is_instklassptr()->instance_klass()->super(); 2505 // The field is Klass::_super. Return its (constant) value. 2506 // (Folds up the 2nd indirection in aClassConstant.getSuperClass().) 2507 return sup ? TypeKlassPtr::make(sup, Type::trust_interfaces) : TypePtr::NULL_PTR; 2508 } 2509 } 2510 2511 if (tkls != nullptr && !UseSecondarySupersCache 2512 && tkls->offset() == in_bytes(Klass::secondary_super_cache_offset())) { 2513 // Treat Klass::_secondary_super_cache as a constant when the cache is disabled. 2514 return TypePtr::NULL_PTR; 2515 } 2516 2517 // Bailout case 2518 return LoadNode::Value(phase); 2519 } 2520 2521 //------------------------------Identity--------------------------------------- 2522 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k. 2523 // Also feed through the klass in Allocate(...klass...)._klass. 2524 Node* LoadKlassNode::Identity(PhaseGVN* phase) { 2525 return klass_identity_common(phase); 2526 } 2527 2528 Node* LoadNode::klass_identity_common(PhaseGVN* phase) { 2529 Node* x = LoadNode::Identity(phase); 2530 if (x != this) return x; 2531 2532 // Take apart the address into an oop and offset. 2533 // Return 'this' if we cannot. 2534 Node* adr = in(MemNode::Address); 2535 intptr_t offset = 0; 2536 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2537 if (base == nullptr) return this; 2538 const TypeOopPtr* toop = phase->type(adr)->isa_oopptr(); 2539 if (toop == nullptr) return this; 2540 2541 // Step over potential GC barrier for OopHandle resolve 2542 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 2543 if (bs->is_gc_barrier_node(base)) { 2544 base = bs->step_over_gc_barrier(base); 2545 } 2546 2547 // We can fetch the klass directly through an AllocateNode. 2548 // This works even if the klass is not constant (clone or newArray). 2549 if (offset == Type::klass_offset()) { 2550 Node* allocated_klass = AllocateNode::Ideal_klass(base, phase); 2551 if (allocated_klass != nullptr) { 2552 return allocated_klass; 2553 } 2554 } 2555 2556 // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*. 2557 // See inline_native_Class_query for occurrences of these patterns. 2558 // Java Example: x.getClass().isAssignableFrom(y) 2559 // 2560 // This improves reflective code, often making the Class 2561 // mirror go completely dead. (Current exception: Class 2562 // mirrors may appear in debug info, but we could clean them out by 2563 // introducing a new debug info operator for Klass.java_mirror). 2564 2565 if (toop->isa_instptr() && toop->is_instptr()->instance_klass() == phase->C->env()->Class_klass() 2566 && offset == java_lang_Class::klass_offset()) { 2567 if (base->is_Load()) { 2568 Node* base2 = base->in(MemNode::Address); 2569 if (base2->is_Load()) { /* direct load of a load which is the OopHandle */ 2570 Node* adr2 = base2->in(MemNode::Address); 2571 const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr(); 2572 if (tkls != nullptr && !tkls->empty() 2573 && (tkls->isa_instklassptr() || tkls->isa_aryklassptr()) 2574 && adr2->is_AddP() 2575 ) { 2576 int mirror_field = in_bytes(Klass::java_mirror_offset()); 2577 if (tkls->offset() == mirror_field) { 2578 return adr2->in(AddPNode::Base); 2579 } 2580 } 2581 } 2582 } 2583 } 2584 2585 return this; 2586 } 2587 2588 LoadNode* LoadNode::clone_pinned() const { 2589 LoadNode* ld = clone()->as_Load(); 2590 ld->_control_dependency = UnknownControl; 2591 return ld; 2592 } 2593 2594 2595 //------------------------------Value------------------------------------------ 2596 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const { 2597 const Type *t = klass_value_common(phase); 2598 if (t == Type::TOP) 2599 return t; 2600 2601 return t->make_narrowklass(); 2602 } 2603 2604 //------------------------------Identity--------------------------------------- 2605 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k. 2606 // Also feed through the klass in Allocate(...klass...)._klass. 2607 Node* LoadNKlassNode::Identity(PhaseGVN* phase) { 2608 Node *x = klass_identity_common(phase); 2609 2610 const Type *t = phase->type( x ); 2611 if( t == Type::TOP ) return x; 2612 if( t->isa_narrowklass()) return x; 2613 assert (!t->isa_narrowoop(), "no narrow oop here"); 2614 2615 return phase->transform(new EncodePKlassNode(x, t->make_narrowklass())); 2616 } 2617 2618 //------------------------------Value----------------------------------------- 2619 const Type* LoadRangeNode::Value(PhaseGVN* phase) const { 2620 // Either input is TOP ==> the result is TOP 2621 const Type *t1 = phase->type( in(MemNode::Memory) ); 2622 if( t1 == Type::TOP ) return Type::TOP; 2623 Node *adr = in(MemNode::Address); 2624 const Type *t2 = phase->type( adr ); 2625 if( t2 == Type::TOP ) return Type::TOP; 2626 const TypePtr *tp = t2->is_ptr(); 2627 if (TypePtr::above_centerline(tp->ptr())) return Type::TOP; 2628 const TypeAryPtr *tap = tp->isa_aryptr(); 2629 if( !tap ) return _type; 2630 return tap->size(); 2631 } 2632 2633 //-------------------------------Ideal--------------------------------------- 2634 // Feed through the length in AllocateArray(...length...)._length. 2635 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) { 2636 Node* p = MemNode::Ideal_common(phase, can_reshape); 2637 if (p) return (p == NodeSentinel) ? nullptr : p; 2638 2639 // Take apart the address into an oop and offset. 2640 // Return 'this' if we cannot. 2641 Node* adr = in(MemNode::Address); 2642 intptr_t offset = 0; 2643 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2644 if (base == nullptr) return nullptr; 2645 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); 2646 if (tary == nullptr) return nullptr; 2647 2648 // We can fetch the length directly through an AllocateArrayNode. 2649 // This works even if the length is not constant (clone or newArray). 2650 if (offset == arrayOopDesc::length_offset_in_bytes()) { 2651 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base); 2652 if (alloc != nullptr) { 2653 Node* allocated_length = alloc->Ideal_length(); 2654 Node* len = alloc->make_ideal_length(tary, phase); 2655 if (allocated_length != len) { 2656 // New CastII improves on this. 2657 return len; 2658 } 2659 } 2660 } 2661 2662 return nullptr; 2663 } 2664 2665 //------------------------------Identity--------------------------------------- 2666 // Feed through the length in AllocateArray(...length...)._length. 2667 Node* LoadRangeNode::Identity(PhaseGVN* phase) { 2668 Node* x = LoadINode::Identity(phase); 2669 if (x != this) return x; 2670 2671 // Take apart the address into an oop and offset. 2672 // Return 'this' if we cannot. 2673 Node* adr = in(MemNode::Address); 2674 intptr_t offset = 0; 2675 Node* base = AddPNode::Ideal_base_and_offset(adr, phase, offset); 2676 if (base == nullptr) return this; 2677 const TypeAryPtr* tary = phase->type(adr)->isa_aryptr(); 2678 if (tary == nullptr) return this; 2679 2680 // We can fetch the length directly through an AllocateArrayNode. 2681 // This works even if the length is not constant (clone or newArray). 2682 if (offset == arrayOopDesc::length_offset_in_bytes()) { 2683 AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base); 2684 if (alloc != nullptr) { 2685 Node* allocated_length = alloc->Ideal_length(); 2686 // Do not allow make_ideal_length to allocate a CastII node. 2687 Node* len = alloc->make_ideal_length(tary, phase, false); 2688 if (allocated_length == len) { 2689 // Return allocated_length only if it would not be improved by a CastII. 2690 return allocated_length; 2691 } 2692 } 2693 } 2694 2695 return this; 2696 2697 } 2698 2699 //============================================================================= 2700 //---------------------------StoreNode::make----------------------------------- 2701 // Polymorphic factory method: 2702 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo, bool require_atomic_access) { 2703 assert((mo == unordered || mo == release), "unexpected"); 2704 Compile* C = gvn.C; 2705 assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw || 2706 ctl != nullptr, "raw memory operations should have control edge"); 2707 2708 switch (bt) { 2709 case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case 2710 case T_BYTE: return new StoreBNode(ctl, mem, adr, adr_type, val, mo); 2711 case T_INT: return new StoreINode(ctl, mem, adr, adr_type, val, mo); 2712 case T_CHAR: 2713 case T_SHORT: return new StoreCNode(ctl, mem, adr, adr_type, val, mo); 2714 case T_LONG: return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access); 2715 case T_FLOAT: return new StoreFNode(ctl, mem, adr, adr_type, val, mo); 2716 case T_DOUBLE: return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic_access); 2717 case T_METADATA: 2718 case T_ADDRESS: 2719 case T_OBJECT: 2720 #ifdef _LP64 2721 if (adr->bottom_type()->is_ptr_to_narrowoop()) { 2722 val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop())); 2723 return new StoreNNode(ctl, mem, adr, adr_type, val, mo); 2724 } else if (adr->bottom_type()->is_ptr_to_narrowklass() || 2725 (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() && 2726 adr->bottom_type()->isa_rawptr())) { 2727 val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass())); 2728 return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo); 2729 } 2730 #endif 2731 { 2732 return new StorePNode(ctl, mem, adr, adr_type, val, mo); 2733 } 2734 default: 2735 ShouldNotReachHere(); 2736 return (StoreNode*)nullptr; 2737 } 2738 } 2739 2740 //--------------------------bottom_type---------------------------------------- 2741 const Type *StoreNode::bottom_type() const { 2742 return Type::MEMORY; 2743 } 2744 2745 //------------------------------hash------------------------------------------- 2746 uint StoreNode::hash() const { 2747 // unroll addition of interesting fields 2748 //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn); 2749 2750 // Since they are not commoned, do not hash them: 2751 return NO_HASH; 2752 } 2753 2754 // Link together multiple stores (B/S/C/I) into a longer one. 2755 // 2756 // Example: _store = StoreB[i+3] 2757 // 2758 // RangeCheck[i+0] RangeCheck[i+0] 2759 // StoreB[i+0] 2760 // RangeCheck[i+3] RangeCheck[i+3] 2761 // StoreB[i+1] --> pass: fail: 2762 // StoreB[i+2] StoreI[i+0] StoreB[i+0] 2763 // StoreB[i+3] 2764 // 2765 // The 4 StoreB are merged into a single StoreI node. We have to be careful with RangeCheck[i+1]: before 2766 // the optimization, if this RangeCheck[i+1] fails, then we execute only StoreB[i+0], and then trap. After 2767 // the optimization, the new StoreI[i+0] is on the passing path of RangeCheck[i+3], and StoreB[i+0] on the 2768 // failing path. 2769 // 2770 // Note: For normal array stores, every store at first has a RangeCheck. But they can be removed with: 2771 // - RCE (RangeCheck Elimination): the RangeChecks in the loop are hoisted out and before the loop, 2772 // and possibly no RangeChecks remain between the stores. 2773 // - RangeCheck smearing: the earlier RangeChecks are adjusted such that they cover later RangeChecks, 2774 // and those later RangeChecks can be removed. Example: 2775 // 2776 // RangeCheck[i+0] RangeCheck[i+0] <- before first store 2777 // StoreB[i+0] StoreB[i+0] <- first store 2778 // RangeCheck[i+1] --> smeared --> RangeCheck[i+3] <- only RC between first and last store 2779 // StoreB[i+1] StoreB[i+1] <- second store 2780 // RangeCheck[i+2] --> removed 2781 // StoreB[i+2] StoreB[i+2] 2782 // RangeCheck[i+3] --> removed 2783 // StoreB[i+3] StoreB[i+3] <- last store 2784 // 2785 // Thus, it is a common pattern that between the first and last store in a chain 2786 // of adjacent stores there remains exactly one RangeCheck, located between the 2787 // first and the second store (e.g. RangeCheck[i+3]). 2788 // 2789 class MergePrimitiveStores : public StackObj { 2790 private: 2791 PhaseGVN* const _phase; 2792 StoreNode* const _store; 2793 2794 NOT_PRODUCT( const CHeapBitMap &_trace_tags; ) 2795 2796 public: 2797 MergePrimitiveStores(PhaseGVN* phase, StoreNode* store) : 2798 _phase(phase), _store(store) 2799 NOT_PRODUCT( COMMA _trace_tags(Compile::current()->directive()->trace_merge_stores_tags()) ) 2800 {} 2801 2802 StoreNode* run(); 2803 2804 private: 2805 bool is_compatible_store(const StoreNode* other_store) const; 2806 bool is_adjacent_pair(const StoreNode* use_store, const StoreNode* def_store) const; 2807 bool is_adjacent_input_pair(const Node* n1, const Node* n2, const int memory_size) const; 2808 static bool is_con_RShift(const Node* n, Node const*& base_out, jint& shift_out); 2809 enum CFGStatus { SuccessNoRangeCheck, SuccessWithRangeCheck, Failure }; 2810 static CFGStatus cfg_status_for_pair(const StoreNode* use_store, const StoreNode* def_store); 2811 2812 class Status { 2813 private: 2814 StoreNode* _found_store; 2815 bool _found_range_check; 2816 2817 Status(StoreNode* found_store, bool found_range_check) 2818 : _found_store(found_store), _found_range_check(found_range_check) {} 2819 2820 public: 2821 StoreNode* found_store() const { return _found_store; } 2822 bool found_range_check() const { return _found_range_check; } 2823 static Status make_failure() { return Status(nullptr, false); } 2824 2825 static Status make(StoreNode* found_store, const CFGStatus cfg_status) { 2826 if (cfg_status == CFGStatus::Failure) { 2827 return Status::make_failure(); 2828 } 2829 return Status(found_store, cfg_status == CFGStatus::SuccessWithRangeCheck); 2830 } 2831 2832 #ifndef PRODUCT 2833 void print_on(outputStream* st) const { 2834 if (_found_store == nullptr) { 2835 st->print_cr("None"); 2836 } else { 2837 st->print_cr("Found[%d %s, %s]", _found_store->_idx, _found_store->Name(), 2838 _found_range_check ? "RC" : "no-RC"); 2839 } 2840 } 2841 #endif 2842 }; 2843 2844 Status find_adjacent_use_store(const StoreNode* def_store) const; 2845 Status find_adjacent_def_store(const StoreNode* use_store) const; 2846 Status find_use_store(const StoreNode* def_store) const; 2847 Status find_def_store(const StoreNode* use_store) const; 2848 Status find_use_store_unidirectional(const StoreNode* def_store) const; 2849 Status find_def_store_unidirectional(const StoreNode* use_store) const; 2850 2851 void collect_merge_list(Node_List& merge_list) const; 2852 Node* make_merged_input_value(const Node_List& merge_list); 2853 StoreNode* make_merged_store(const Node_List& merge_list, Node* merged_input_value); 2854 2855 #ifndef PRODUCT 2856 // Access to TraceMergeStores tags 2857 bool is_trace(TraceMergeStores::Tag tag) const { 2858 return _trace_tags.at(tag); 2859 } 2860 2861 bool is_trace_basic() const { 2862 return is_trace(TraceMergeStores::Tag::BASIC); 2863 } 2864 2865 bool is_trace_pointer() const { 2866 return is_trace(TraceMergeStores::Tag::POINTER); 2867 } 2868 2869 bool is_trace_aliasing() const { 2870 return is_trace(TraceMergeStores::Tag::ALIASING); 2871 } 2872 2873 bool is_trace_adjacency() const { 2874 return is_trace(TraceMergeStores::Tag::ADJACENCY); 2875 } 2876 2877 bool is_trace_success() const { 2878 return is_trace(TraceMergeStores::Tag::SUCCESS); 2879 } 2880 #endif 2881 2882 NOT_PRODUCT( void trace(const Node_List& merge_list, const Node* merged_input_value, const StoreNode* merged_store) const; ) 2883 }; 2884 2885 StoreNode* MergePrimitiveStores::run() { 2886 // Check for B/S/C/I 2887 int opc = _store->Opcode(); 2888 if (opc != Op_StoreB && opc != Op_StoreC && opc != Op_StoreI) { 2889 return nullptr; 2890 } 2891 2892 NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] MergePrimitiveStores::run: "); _store->dump(); }) 2893 2894 // The _store must be the "last" store in a chain. If we find a use we could merge with 2895 // then that use or a store further down is the "last" store. 2896 Status status_use = find_adjacent_use_store(_store); 2897 NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] expect no use: "); status_use.print_on(tty); }) 2898 if (status_use.found_store() != nullptr) { 2899 return nullptr; 2900 } 2901 2902 // Check if we can merge with at least one def, so that we have at least 2 stores to merge. 2903 Status status_def = find_adjacent_def_store(_store); 2904 NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] expect def: "); status_def.print_on(tty); }) 2905 if (status_def.found_store() == nullptr) { 2906 return nullptr; 2907 } 2908 2909 ResourceMark rm; 2910 Node_List merge_list; 2911 collect_merge_list(merge_list); 2912 2913 Node* merged_input_value = make_merged_input_value(merge_list); 2914 if (merged_input_value == nullptr) { return nullptr; } 2915 2916 StoreNode* merged_store = make_merged_store(merge_list, merged_input_value); 2917 2918 NOT_PRODUCT( if (is_trace_success()) { trace(merge_list, merged_input_value, merged_store); } ) 2919 2920 return merged_store; 2921 } 2922 2923 // Check compatibility between _store and other_store. 2924 bool MergePrimitiveStores::is_compatible_store(const StoreNode* other_store) const { 2925 int opc = _store->Opcode(); 2926 assert(opc == Op_StoreB || opc == Op_StoreC || opc == Op_StoreI, "precondition"); 2927 2928 if (other_store == nullptr || 2929 _store->Opcode() != other_store->Opcode()) { 2930 return false; 2931 } 2932 2933 return true; 2934 } 2935 2936 bool MergePrimitiveStores::is_adjacent_pair(const StoreNode* use_store, const StoreNode* def_store) const { 2937 if (!is_adjacent_input_pair(def_store->in(MemNode::ValueIn), 2938 use_store->in(MemNode::ValueIn), 2939 def_store->memory_size())) { 2940 return false; 2941 } 2942 2943 ResourceMark rm; 2944 #ifndef PRODUCT 2945 const TraceMemPointer trace(is_trace_pointer(), 2946 is_trace_aliasing(), 2947 is_trace_adjacency()); 2948 #endif 2949 const MemPointer pointer_use(use_store NOT_PRODUCT( COMMA trace )); 2950 const MemPointer pointer_def(def_store NOT_PRODUCT( COMMA trace )); 2951 return pointer_def.is_adjacent_to_and_before(pointer_use); 2952 } 2953 2954 bool MergePrimitiveStores::is_adjacent_input_pair(const Node* n1, const Node* n2, const int memory_size) const { 2955 // Pattern: [n1 = ConI, n2 = ConI] 2956 if (n1->Opcode() == Op_ConI) { 2957 return n2->Opcode() == Op_ConI; 2958 } 2959 2960 // Pattern: [n1 = base >> shift, n2 = base >> (shift + memory_size)] 2961 #ifndef VM_LITTLE_ENDIAN 2962 // Pattern: [n1 = base >> (shift + memory_size), n2 = base >> shift] 2963 // Swapping n1 with n2 gives same pattern as on little endian platforms. 2964 swap(n1, n2); 2965 #endif // !VM_LITTLE_ENDIAN 2966 Node const* base_n2; 2967 jint shift_n2; 2968 if (!is_con_RShift(n2, base_n2, shift_n2)) { 2969 return false; 2970 } 2971 if (n1->Opcode() == Op_ConvL2I) { 2972 // look through 2973 n1 = n1->in(1); 2974 } 2975 Node const* base_n1; 2976 jint shift_n1; 2977 if (n1 == base_n2) { 2978 // n1 = base = base >> 0 2979 base_n1 = n1; 2980 shift_n1 = 0; 2981 } else if (!is_con_RShift(n1, base_n1, shift_n1)) { 2982 return false; 2983 } 2984 int bits_per_store = memory_size * 8; 2985 if (base_n1 != base_n2 || 2986 shift_n1 + bits_per_store != shift_n2 || 2987 shift_n1 % bits_per_store != 0) { 2988 return false; 2989 } 2990 2991 // both load from same value with correct shift 2992 return true; 2993 } 2994 2995 // Detect pattern: n = base_out >> shift_out 2996 bool MergePrimitiveStores::is_con_RShift(const Node* n, Node const*& base_out, jint& shift_out) { 2997 assert(n != nullptr, "precondition"); 2998 2999 int opc = n->Opcode(); 3000 if (opc == Op_ConvL2I) { 3001 n = n->in(1); 3002 opc = n->Opcode(); 3003 } 3004 3005 if ((opc == Op_RShiftI || 3006 opc == Op_RShiftL || 3007 opc == Op_URShiftI || 3008 opc == Op_URShiftL) && 3009 n->in(2)->is_ConI()) { 3010 base_out = n->in(1); 3011 shift_out = n->in(2)->get_int(); 3012 // The shift must be positive: 3013 return shift_out >= 0; 3014 } 3015 return false; 3016 } 3017 3018 // Check if there is nothing between the two stores, except optionally a RangeCheck leading to an uncommon trap. 3019 MergePrimitiveStores::CFGStatus MergePrimitiveStores::cfg_status_for_pair(const StoreNode* use_store, const StoreNode* def_store) { 3020 assert(use_store->in(MemNode::Memory) == def_store, "use-def relationship"); 3021 3022 Node* ctrl_use = use_store->in(MemNode::Control); 3023 Node* ctrl_def = def_store->in(MemNode::Control); 3024 if (ctrl_use == nullptr || ctrl_def == nullptr) { 3025 return CFGStatus::Failure; 3026 } 3027 3028 if (ctrl_use == ctrl_def) { 3029 // Same ctrl -> no RangeCheck in between. 3030 // Check: use_store must be the only use of def_store. 3031 if (def_store->outcnt() > 1) { 3032 return CFGStatus::Failure; 3033 } 3034 return CFGStatus::SuccessNoRangeCheck; 3035 } 3036 3037 // Different ctrl -> could have RangeCheck in between. 3038 // Check: 1. def_store only has these uses: use_store and MergeMem for uncommon trap, and 3039 // 2. ctrl separated by RangeCheck. 3040 if (def_store->outcnt() != 2) { 3041 return CFGStatus::Failure; // Cannot have exactly these uses: use_store and MergeMem for uncommon trap. 3042 } 3043 int use_store_out_idx = def_store->raw_out(0) == use_store ? 0 : 1; 3044 Node* merge_mem = def_store->raw_out(1 - use_store_out_idx)->isa_MergeMem(); 3045 if (merge_mem == nullptr || 3046 merge_mem->outcnt() != 1) { 3047 return CFGStatus::Failure; // Does not have MergeMem for uncommon trap. 3048 } 3049 if (!ctrl_use->is_IfProj() || 3050 !ctrl_use->in(0)->is_RangeCheck() || 3051 ctrl_use->in(0)->outcnt() != 2) { 3052 return CFGStatus::Failure; // Not RangeCheck. 3053 } 3054 ProjNode* other_proj = ctrl_use->as_IfProj()->other_if_proj(); 3055 Node* trap = other_proj->is_uncommon_trap_proj(Deoptimization::Reason_range_check); 3056 if (trap != merge_mem->unique_out() || 3057 ctrl_use->in(0)->in(0) != ctrl_def) { 3058 return CFGStatus::Failure; // Not RangeCheck with merge_mem leading to uncommon trap. 3059 } 3060 3061 return CFGStatus::SuccessWithRangeCheck; 3062 } 3063 3064 MergePrimitiveStores::Status MergePrimitiveStores::find_adjacent_use_store(const StoreNode* def_store) const { 3065 Status status_use = find_use_store(def_store); 3066 StoreNode* use_store = status_use.found_store(); 3067 if (use_store != nullptr && !is_adjacent_pair(use_store, def_store)) { 3068 return Status::make_failure(); 3069 } 3070 return status_use; 3071 } 3072 3073 MergePrimitiveStores::Status MergePrimitiveStores::find_adjacent_def_store(const StoreNode* use_store) const { 3074 Status status_def = find_def_store(use_store); 3075 StoreNode* def_store = status_def.found_store(); 3076 if (def_store != nullptr && !is_adjacent_pair(use_store, def_store)) { 3077 return Status::make_failure(); 3078 } 3079 return status_def; 3080 } 3081 3082 MergePrimitiveStores::Status MergePrimitiveStores::find_use_store(const StoreNode* def_store) const { 3083 Status status_use = find_use_store_unidirectional(def_store); 3084 3085 #ifdef ASSERT 3086 StoreNode* use_store = status_use.found_store(); 3087 if (use_store != nullptr) { 3088 Status status_def = find_def_store_unidirectional(use_store); 3089 assert(status_def.found_store() == def_store && 3090 status_def.found_range_check() == status_use.found_range_check(), 3091 "find_use_store and find_def_store must be symmetric"); 3092 } 3093 #endif 3094 3095 return status_use; 3096 } 3097 3098 MergePrimitiveStores::Status MergePrimitiveStores::find_def_store(const StoreNode* use_store) const { 3099 Status status_def = find_def_store_unidirectional(use_store); 3100 3101 #ifdef ASSERT 3102 StoreNode* def_store = status_def.found_store(); 3103 if (def_store != nullptr) { 3104 Status status_use = find_use_store_unidirectional(def_store); 3105 assert(status_use.found_store() == use_store && 3106 status_use.found_range_check() == status_def.found_range_check(), 3107 "find_use_store and find_def_store must be symmetric"); 3108 } 3109 #endif 3110 3111 return status_def; 3112 } 3113 3114 MergePrimitiveStores::Status MergePrimitiveStores::find_use_store_unidirectional(const StoreNode* def_store) const { 3115 assert(is_compatible_store(def_store), "precondition: must be compatible with _store"); 3116 3117 for (DUIterator_Fast imax, i = def_store->fast_outs(imax); i < imax; i++) { 3118 StoreNode* use_store = def_store->fast_out(i)->isa_Store(); 3119 if (is_compatible_store(use_store)) { 3120 return Status::make(use_store, cfg_status_for_pair(use_store, def_store)); 3121 } 3122 } 3123 3124 return Status::make_failure(); 3125 } 3126 3127 MergePrimitiveStores::Status MergePrimitiveStores::find_def_store_unidirectional(const StoreNode* use_store) const { 3128 assert(is_compatible_store(use_store), "precondition: must be compatible with _store"); 3129 3130 StoreNode* def_store = use_store->in(MemNode::Memory)->isa_Store(); 3131 if (!is_compatible_store(def_store)) { 3132 return Status::make_failure(); 3133 } 3134 3135 return Status::make(def_store, cfg_status_for_pair(use_store, def_store)); 3136 } 3137 3138 void MergePrimitiveStores::collect_merge_list(Node_List& merge_list) const { 3139 // The merged store can be at most 8 bytes. 3140 const uint merge_list_max_size = 8 / _store->memory_size(); 3141 assert(merge_list_max_size >= 2 && 3142 merge_list_max_size <= 8 && 3143 is_power_of_2(merge_list_max_size), 3144 "must be 2, 4 or 8"); 3145 3146 // Traverse up the chain of adjacent def stores. 3147 StoreNode* current = _store; 3148 merge_list.push(current); 3149 while (current != nullptr && merge_list.size() < merge_list_max_size) { 3150 Status status = find_adjacent_def_store(current); 3151 NOT_PRODUCT( if (is_trace_basic()) { tty->print("[TraceMergeStores] find def: "); status.print_on(tty); }) 3152 3153 current = status.found_store(); 3154 if (current != nullptr) { 3155 merge_list.push(current); 3156 3157 // We can have at most one RangeCheck. 3158 if (status.found_range_check()) { 3159 NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] found RangeCheck, stop traversal."); }) 3160 break; 3161 } 3162 } 3163 } 3164 3165 NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] found:"); merge_list.dump(); }) 3166 3167 // Truncate the merge_list to a power of 2. 3168 const uint pow2size = round_down_power_of_2(merge_list.size()); 3169 assert(pow2size >= 2, "must be merging at least 2 stores"); 3170 while (merge_list.size() > pow2size) { merge_list.pop(); } 3171 3172 NOT_PRODUCT( if (is_trace_basic()) { tty->print_cr("[TraceMergeStores] truncated:"); merge_list.dump(); }) 3173 } 3174 3175 // Merge the input values of the smaller stores to a single larger input value. 3176 Node* MergePrimitiveStores::make_merged_input_value(const Node_List& merge_list) { 3177 int new_memory_size = _store->memory_size() * merge_list.size(); 3178 Node* first = merge_list.at(merge_list.size()-1); 3179 Node* merged_input_value = nullptr; 3180 if (_store->in(MemNode::ValueIn)->Opcode() == Op_ConI) { 3181 // Pattern: [ConI, ConI, ...] -> new constant 3182 jlong con = 0; 3183 jlong bits_per_store = _store->memory_size() * 8; 3184 jlong mask = (((jlong)1) << bits_per_store) - 1; 3185 for (uint i = 0; i < merge_list.size(); i++) { 3186 jlong con_i = merge_list.at(i)->in(MemNode::ValueIn)->get_int(); 3187 #ifdef VM_LITTLE_ENDIAN 3188 con = con << bits_per_store; 3189 con = con | (mask & con_i); 3190 #else // VM_LITTLE_ENDIAN 3191 con_i = (mask & con_i) << (i * bits_per_store); 3192 con = con | con_i; 3193 #endif // VM_LITTLE_ENDIAN 3194 } 3195 merged_input_value = _phase->longcon(con); 3196 } else { 3197 // Pattern: [base >> 24, base >> 16, base >> 8, base] -> base 3198 // | | 3199 // _store first 3200 // 3201 Node* hi = _store->in(MemNode::ValueIn); 3202 Node* lo = first->in(MemNode::ValueIn); 3203 #ifndef VM_LITTLE_ENDIAN 3204 // `_store` and `first` are swapped in the diagram above 3205 swap(hi, lo); 3206 #endif // !VM_LITTLE_ENDIAN 3207 Node const* hi_base; 3208 jint hi_shift; 3209 merged_input_value = lo; 3210 bool is_true = is_con_RShift(hi, hi_base, hi_shift); 3211 assert(is_true, "must detect con RShift"); 3212 if (merged_input_value != hi_base && merged_input_value->Opcode() == Op_ConvL2I) { 3213 // look through 3214 merged_input_value = merged_input_value->in(1); 3215 } 3216 if (merged_input_value != hi_base) { 3217 // merged_input_value is not the base 3218 return nullptr; 3219 } 3220 } 3221 3222 if (_phase->type(merged_input_value)->isa_long() != nullptr && new_memory_size <= 4) { 3223 // Example: 3224 // 3225 // long base = ...; 3226 // a[0] = (byte)(base >> 0); 3227 // a[1] = (byte)(base >> 8); 3228 // 3229 merged_input_value = _phase->transform(new ConvL2INode(merged_input_value)); 3230 } 3231 3232 assert((_phase->type(merged_input_value)->isa_int() != nullptr && new_memory_size <= 4) || 3233 (_phase->type(merged_input_value)->isa_long() != nullptr && new_memory_size == 8), 3234 "merged_input_value is either int or long, and new_memory_size is small enough"); 3235 3236 return merged_input_value; 3237 } 3238 3239 // // 3240 // first_ctrl first_mem first_adr first_ctrl first_mem first_adr // 3241 // | | | | | | // 3242 // | | | | +---------------+ | // 3243 // | | | | | | | // 3244 // | | +---------+ | | +---------------+ // 3245 // | | | | | | | | // 3246 // +--------------+ | | v1 +------------------------------+ | | v1 // 3247 // | | | | | | | | | | | | // 3248 // RangeCheck first_store RangeCheck | | first_store // 3249 // | | | | | | | // 3250 // last_ctrl | +----> unc_trap last_ctrl | | +----> unc_trap // 3251 // | | ===> | | | // 3252 // +--------------+ | a2 v2 | | | // 3253 // | | | | | | | | // 3254 // | second_store | | | // 3255 // | | | | | [v1 v2 ... vn] // 3256 // ... ... | | | | // 3257 // | | | | | v // 3258 // +--------------+ | an vn +--------------+ | | merged_input_value // 3259 // | | | | | | | | // 3260 // last_store (= _store) merged_store // 3261 // // 3262 StoreNode* MergePrimitiveStores::make_merged_store(const Node_List& merge_list, Node* merged_input_value) { 3263 Node* first_store = merge_list.at(merge_list.size()-1); 3264 Node* last_ctrl = _store->in(MemNode::Control); // after (optional) RangeCheck 3265 Node* first_mem = first_store->in(MemNode::Memory); 3266 Node* first_adr = first_store->in(MemNode::Address); 3267 3268 const TypePtr* new_adr_type = _store->adr_type(); 3269 3270 int new_memory_size = _store->memory_size() * merge_list.size(); 3271 BasicType bt = T_ILLEGAL; 3272 switch (new_memory_size) { 3273 case 2: bt = T_SHORT; break; 3274 case 4: bt = T_INT; break; 3275 case 8: bt = T_LONG; break; 3276 } 3277 3278 StoreNode* merged_store = StoreNode::make(*_phase, last_ctrl, first_mem, first_adr, 3279 new_adr_type, merged_input_value, bt, MemNode::unordered); 3280 3281 // Marking the store mismatched is sufficient to prevent reordering, since array stores 3282 // are all on the same slice. Hence, we need no barriers. 3283 merged_store->set_mismatched_access(); 3284 3285 // Constants above may now also be be packed -> put candidate on worklist 3286 _phase->is_IterGVN()->_worklist.push(first_mem); 3287 3288 return merged_store; 3289 } 3290 3291 #ifndef PRODUCT 3292 void MergePrimitiveStores::trace(const Node_List& merge_list, const Node* merged_input_value, const StoreNode* merged_store) const { 3293 stringStream ss; 3294 ss.print_cr("[TraceMergeStores]: Replace"); 3295 for (int i = (int)merge_list.size() - 1; i >= 0; i--) { 3296 merge_list.at(i)->dump("\n", false, &ss); 3297 } 3298 ss.print_cr("[TraceMergeStores]: with"); 3299 merged_input_value->dump("\n", false, &ss); 3300 merged_store->dump("\n", false, &ss); 3301 tty->print("%s", ss.as_string()); 3302 } 3303 #endif 3304 3305 //------------------------------Ideal------------------------------------------ 3306 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x). 3307 // When a store immediately follows a relevant allocation/initialization, 3308 // try to capture it into the initialization, or hoist it above. 3309 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) { 3310 Node* p = MemNode::Ideal_common(phase, can_reshape); 3311 if (p) return (p == NodeSentinel) ? nullptr : p; 3312 3313 Node* mem = in(MemNode::Memory); 3314 Node* address = in(MemNode::Address); 3315 Node* value = in(MemNode::ValueIn); 3316 // Back-to-back stores to same address? Fold em up. Generally 3317 // unsafe if I have intervening uses. 3318 { 3319 Node* st = mem; 3320 // If Store 'st' has more than one use, we cannot fold 'st' away. 3321 // For example, 'st' might be the final state at a conditional 3322 // return. Or, 'st' might be used by some node which is live at 3323 // the same time 'st' is live, which might be unschedulable. So, 3324 // require exactly ONE user until such time as we clone 'mem' for 3325 // each of 'mem's uses (thus making the exactly-1-user-rule hold 3326 // true). 3327 while (st->is_Store() && st->outcnt() == 1) { 3328 // Looking at a dead closed cycle of memory? 3329 assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal"); 3330 assert(Opcode() == st->Opcode() || 3331 st->Opcode() == Op_StoreVector || 3332 Opcode() == Op_StoreVector || 3333 st->Opcode() == Op_StoreVectorScatter || 3334 Opcode() == Op_StoreVectorScatter || 3335 phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw || 3336 (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode 3337 (Opcode() == Op_StoreI && st->Opcode() == Op_StoreL) || // initialization by arraycopy 3338 (is_mismatched_access() || st->as_Store()->is_mismatched_access()), 3339 "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]); 3340 3341 if (st->in(MemNode::Address)->eqv_uncast(address) && 3342 st->as_Store()->memory_size() <= this->memory_size()) { 3343 Node* use = st->raw_out(0); 3344 if (phase->is_IterGVN()) { 3345 phase->is_IterGVN()->rehash_node_delayed(use); 3346 } 3347 // It's OK to do this in the parser, since DU info is always accurate, 3348 // and the parser always refers to nodes via SafePointNode maps. 3349 use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase); 3350 return this; 3351 } 3352 st = st->in(MemNode::Memory); 3353 } 3354 } 3355 3356 3357 // Capture an unaliased, unconditional, simple store into an initializer. 3358 // Or, if it is independent of the allocation, hoist it above the allocation. 3359 if (ReduceFieldZeroing && /*can_reshape &&*/ 3360 mem->is_Proj() && mem->in(0)->is_Initialize()) { 3361 InitializeNode* init = mem->in(0)->as_Initialize(); 3362 intptr_t offset = init->can_capture_store(this, phase, can_reshape); 3363 if (offset > 0) { 3364 Node* moved = init->capture_store(this, offset, phase, can_reshape); 3365 // If the InitializeNode captured me, it made a raw copy of me, 3366 // and I need to disappear. 3367 if (moved != nullptr) { 3368 // %%% hack to ensure that Ideal returns a new node: 3369 mem = MergeMemNode::make(mem); 3370 return mem; // fold me away 3371 } 3372 } 3373 } 3374 3375 // Fold reinterpret cast into memory operation: 3376 // StoreX mem (MoveY2X v) => StoreY mem v 3377 if (value->is_Move()) { 3378 const Type* vt = value->in(1)->bottom_type(); 3379 if (has_reinterpret_variant(vt)) { 3380 if (phase->C->post_loop_opts_phase()) { 3381 return convert_to_reinterpret_store(*phase, value->in(1), vt); 3382 } else { 3383 phase->C->record_for_post_loop_opts_igvn(this); // attempt the transformation once loop opts are over 3384 } 3385 } 3386 } 3387 3388 if (MergeStores && UseUnalignedAccesses) { 3389 if (phase->C->post_loop_opts_phase()) { 3390 MergePrimitiveStores merge(phase, this); 3391 Node* progress = merge.run(); 3392 if (progress != nullptr) { return progress; } 3393 } else { 3394 phase->C->record_for_post_loop_opts_igvn(this); 3395 } 3396 } 3397 3398 return nullptr; // No further progress 3399 } 3400 3401 //------------------------------Value----------------------------------------- 3402 const Type* StoreNode::Value(PhaseGVN* phase) const { 3403 // Either input is TOP ==> the result is TOP 3404 const Type *t1 = phase->type( in(MemNode::Memory) ); 3405 if( t1 == Type::TOP ) return Type::TOP; 3406 const Type *t2 = phase->type( in(MemNode::Address) ); 3407 if( t2 == Type::TOP ) return Type::TOP; 3408 const Type *t3 = phase->type( in(MemNode::ValueIn) ); 3409 if( t3 == Type::TOP ) return Type::TOP; 3410 return Type::MEMORY; 3411 } 3412 3413 //------------------------------Identity--------------------------------------- 3414 // Remove redundant stores: 3415 // Store(m, p, Load(m, p)) changes to m. 3416 // Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x). 3417 Node* StoreNode::Identity(PhaseGVN* phase) { 3418 Node* mem = in(MemNode::Memory); 3419 Node* adr = in(MemNode::Address); 3420 Node* val = in(MemNode::ValueIn); 3421 3422 Node* result = this; 3423 3424 // Load then Store? Then the Store is useless 3425 if (val->is_Load() && 3426 val->in(MemNode::Address)->eqv_uncast(adr) && 3427 val->in(MemNode::Memory )->eqv_uncast(mem) && 3428 val->as_Load()->store_Opcode() == Opcode()) { 3429 // Ensure vector type is the same 3430 if (!is_StoreVector() || (mem->is_LoadVector() && as_StoreVector()->vect_type() == mem->as_LoadVector()->vect_type())) { 3431 result = mem; 3432 } 3433 } 3434 3435 // Two stores in a row of the same value? 3436 if (result == this && 3437 mem->is_Store() && 3438 mem->in(MemNode::Address)->eqv_uncast(adr) && 3439 mem->in(MemNode::ValueIn)->eqv_uncast(val) && 3440 mem->Opcode() == Opcode()) { 3441 if (!is_StoreVector()) { 3442 result = mem; 3443 } else { 3444 const StoreVectorNode* store_vector = as_StoreVector(); 3445 const StoreVectorNode* mem_vector = mem->as_StoreVector(); 3446 const Node* store_indices = store_vector->indices(); 3447 const Node* mem_indices = mem_vector->indices(); 3448 const Node* store_mask = store_vector->mask(); 3449 const Node* mem_mask = mem_vector->mask(); 3450 // Ensure types, indices, and masks match 3451 if (store_vector->vect_type() == mem_vector->vect_type() && 3452 ((store_indices == nullptr) == (mem_indices == nullptr) && 3453 (store_indices == nullptr || store_indices->eqv_uncast(mem_indices))) && 3454 ((store_mask == nullptr) == (mem_mask == nullptr) && 3455 (store_mask == nullptr || store_mask->eqv_uncast(mem_mask)))) { 3456 result = mem; 3457 } 3458 } 3459 } 3460 3461 // Store of zero anywhere into a freshly-allocated object? 3462 // Then the store is useless. 3463 // (It must already have been captured by the InitializeNode.) 3464 if (result == this && 3465 ReduceFieldZeroing && phase->type(val)->is_zero_type()) { 3466 // a newly allocated object is already all-zeroes everywhere 3467 if (mem->is_Proj() && mem->in(0)->is_Allocate()) { 3468 result = mem; 3469 } 3470 3471 if (result == this) { 3472 // the store may also apply to zero-bits in an earlier object 3473 Node* prev_mem = find_previous_store(phase); 3474 // Steps (a), (b): Walk past independent stores to find an exact match. 3475 if (prev_mem != nullptr) { 3476 Node* prev_val = can_see_stored_value(prev_mem, phase); 3477 if (prev_val != nullptr && prev_val == val) { 3478 // prev_val and val might differ by a cast; it would be good 3479 // to keep the more informative of the two. 3480 result = mem; 3481 } 3482 } 3483 } 3484 } 3485 3486 PhaseIterGVN* igvn = phase->is_IterGVN(); 3487 if (result != this && igvn != nullptr) { 3488 MemBarNode* trailing = trailing_membar(); 3489 if (trailing != nullptr) { 3490 #ifdef ASSERT 3491 const TypeOopPtr* t_oop = phase->type(in(Address))->isa_oopptr(); 3492 assert(t_oop == nullptr || t_oop->is_known_instance_field(), "only for non escaping objects"); 3493 #endif 3494 trailing->remove(igvn); 3495 } 3496 } 3497 3498 return result; 3499 } 3500 3501 //------------------------------match_edge------------------------------------- 3502 // Do we Match on this edge index or not? Match only memory & value 3503 uint StoreNode::match_edge(uint idx) const { 3504 return idx == MemNode::Address || idx == MemNode::ValueIn; 3505 } 3506 3507 //------------------------------cmp-------------------------------------------- 3508 // Do not common stores up together. They generally have to be split 3509 // back up anyways, so do not bother. 3510 bool StoreNode::cmp( const Node &n ) const { 3511 return (&n == this); // Always fail except on self 3512 } 3513 3514 //------------------------------Ideal_masked_input----------------------------- 3515 // Check for a useless mask before a partial-word store 3516 // (StoreB ... (AndI valIn conIa) ) 3517 // If (conIa & mask == mask) this simplifies to 3518 // (StoreB ... (valIn) ) 3519 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) { 3520 Node *val = in(MemNode::ValueIn); 3521 if( val->Opcode() == Op_AndI ) { 3522 const TypeInt *t = phase->type( val->in(2) )->isa_int(); 3523 if( t && t->is_con() && (t->get_con() & mask) == mask ) { 3524 set_req_X(MemNode::ValueIn, val->in(1), phase); 3525 return this; 3526 } 3527 } 3528 return nullptr; 3529 } 3530 3531 3532 //------------------------------Ideal_sign_extended_input---------------------- 3533 // Check for useless sign-extension before a partial-word store 3534 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) ) 3535 // If (conIL == conIR && conIR <= num_bits) this simplifies to 3536 // (StoreB ... (valIn) ) 3537 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) { 3538 Node *val = in(MemNode::ValueIn); 3539 if( val->Opcode() == Op_RShiftI ) { 3540 const TypeInt *t = phase->type( val->in(2) )->isa_int(); 3541 if( t && t->is_con() && (t->get_con() <= num_bits) ) { 3542 Node *shl = val->in(1); 3543 if( shl->Opcode() == Op_LShiftI ) { 3544 const TypeInt *t2 = phase->type( shl->in(2) )->isa_int(); 3545 if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) { 3546 set_req_X(MemNode::ValueIn, shl->in(1), phase); 3547 return this; 3548 } 3549 } 3550 } 3551 } 3552 return nullptr; 3553 } 3554 3555 //------------------------------value_never_loaded----------------------------------- 3556 // Determine whether there are any possible loads of the value stored. 3557 // For simplicity, we actually check if there are any loads from the 3558 // address stored to, not just for loads of the value stored by this node. 3559 // 3560 bool StoreNode::value_never_loaded(PhaseValues* phase) const { 3561 Node *adr = in(Address); 3562 const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr(); 3563 if (adr_oop == nullptr) 3564 return false; 3565 if (!adr_oop->is_known_instance_field()) 3566 return false; // if not a distinct instance, there may be aliases of the address 3567 for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) { 3568 Node *use = adr->fast_out(i); 3569 if (use->is_Load() || use->is_LoadStore()) { 3570 return false; 3571 } 3572 } 3573 return true; 3574 } 3575 3576 MemBarNode* StoreNode::trailing_membar() const { 3577 if (is_release()) { 3578 MemBarNode* trailing_mb = nullptr; 3579 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 3580 Node* u = fast_out(i); 3581 if (u->is_MemBar()) { 3582 if (u->as_MemBar()->trailing_store()) { 3583 assert(u->Opcode() == Op_MemBarVolatile, ""); 3584 assert(trailing_mb == nullptr, "only one"); 3585 trailing_mb = u->as_MemBar(); 3586 #ifdef ASSERT 3587 Node* leading = u->as_MemBar()->leading_membar(); 3588 assert(leading->Opcode() == Op_MemBarRelease, "incorrect membar"); 3589 assert(leading->as_MemBar()->leading_store(), "incorrect membar pair"); 3590 assert(leading->as_MemBar()->trailing_membar() == u, "incorrect membar pair"); 3591 #endif 3592 } else { 3593 assert(u->as_MemBar()->standalone(), ""); 3594 } 3595 } 3596 } 3597 return trailing_mb; 3598 } 3599 return nullptr; 3600 } 3601 3602 3603 //============================================================================= 3604 //------------------------------Ideal------------------------------------------ 3605 // If the store is from an AND mask that leaves the low bits untouched, then 3606 // we can skip the AND operation. If the store is from a sign-extension 3607 // (a left shift, then right shift) we can skip both. 3608 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){ 3609 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF); 3610 if( progress != nullptr ) return progress; 3611 3612 progress = StoreNode::Ideal_sign_extended_input(phase, 24); 3613 if( progress != nullptr ) return progress; 3614 3615 // Finally check the default case 3616 return StoreNode::Ideal(phase, can_reshape); 3617 } 3618 3619 //============================================================================= 3620 //------------------------------Ideal------------------------------------------ 3621 // If the store is from an AND mask that leaves the low bits untouched, then 3622 // we can skip the AND operation 3623 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){ 3624 Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF); 3625 if( progress != nullptr ) return progress; 3626 3627 progress = StoreNode::Ideal_sign_extended_input(phase, 16); 3628 if( progress != nullptr ) return progress; 3629 3630 // Finally check the default case 3631 return StoreNode::Ideal(phase, can_reshape); 3632 } 3633 3634 //============================================================================= 3635 //----------------------------------SCMemProjNode------------------------------ 3636 const Type* SCMemProjNode::Value(PhaseGVN* phase) const 3637 { 3638 if (in(0) == nullptr || phase->type(in(0)) == Type::TOP) { 3639 return Type::TOP; 3640 } 3641 return bottom_type(); 3642 } 3643 3644 //============================================================================= 3645 //----------------------------------LoadStoreNode------------------------------ 3646 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required ) 3647 : Node(required), 3648 _type(rt), 3649 _adr_type(at), 3650 _barrier_data(0) 3651 { 3652 init_req(MemNode::Control, c ); 3653 init_req(MemNode::Memory , mem); 3654 init_req(MemNode::Address, adr); 3655 init_req(MemNode::ValueIn, val); 3656 init_class_id(Class_LoadStore); 3657 } 3658 3659 //------------------------------Value----------------------------------------- 3660 const Type* LoadStoreNode::Value(PhaseGVN* phase) const { 3661 // Either input is TOP ==> the result is TOP 3662 if (!in(MemNode::Control) || phase->type(in(MemNode::Control)) == Type::TOP) { 3663 return Type::TOP; 3664 } 3665 const Type* t = phase->type(in(MemNode::Memory)); 3666 if (t == Type::TOP) { 3667 return Type::TOP; 3668 } 3669 t = phase->type(in(MemNode::Address)); 3670 if (t == Type::TOP) { 3671 return Type::TOP; 3672 } 3673 t = phase->type(in(MemNode::ValueIn)); 3674 if (t == Type::TOP) { 3675 return Type::TOP; 3676 } 3677 return bottom_type(); 3678 } 3679 3680 uint LoadStoreNode::ideal_reg() const { 3681 return _type->ideal_reg(); 3682 } 3683 3684 // This method conservatively checks if the result of a LoadStoreNode is 3685 // used, that is, if it returns true, then it is definitely the case that 3686 // the result of the node is not needed. 3687 // For example, GetAndAdd can be matched into a lock_add instead of a 3688 // lock_xadd if the result of LoadStoreNode::result_not_used() is true 3689 bool LoadStoreNode::result_not_used() const { 3690 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 3691 Node *x = fast_out(i); 3692 if (x->Opcode() == Op_SCMemProj) { 3693 continue; 3694 } 3695 if (x->bottom_type() == TypeTuple::MEMBAR && 3696 !x->is_Call() && 3697 x->Opcode() != Op_Blackhole) { 3698 continue; 3699 } 3700 return false; 3701 } 3702 return true; 3703 } 3704 3705 MemBarNode* LoadStoreNode::trailing_membar() const { 3706 MemBarNode* trailing = nullptr; 3707 for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) { 3708 Node* u = fast_out(i); 3709 if (u->is_MemBar()) { 3710 if (u->as_MemBar()->trailing_load_store()) { 3711 assert(u->Opcode() == Op_MemBarAcquire, ""); 3712 assert(trailing == nullptr, "only one"); 3713 trailing = u->as_MemBar(); 3714 #ifdef ASSERT 3715 Node* leading = trailing->leading_membar(); 3716 assert(support_IRIW_for_not_multiple_copy_atomic_cpu || leading->Opcode() == Op_MemBarRelease, "incorrect membar"); 3717 assert(leading->as_MemBar()->leading_load_store(), "incorrect membar pair"); 3718 assert(leading->as_MemBar()->trailing_membar() == trailing, "incorrect membar pair"); 3719 #endif 3720 } else { 3721 assert(u->as_MemBar()->standalone(), "wrong barrier kind"); 3722 } 3723 } 3724 } 3725 3726 return trailing; 3727 } 3728 3729 uint LoadStoreNode::size_of() const { return sizeof(*this); } 3730 3731 //============================================================================= 3732 //----------------------------------LoadStoreConditionalNode-------------------- 3733 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, nullptr, TypeInt::BOOL, 5) { 3734 init_req(ExpectedIn, ex ); 3735 } 3736 3737 const Type* LoadStoreConditionalNode::Value(PhaseGVN* phase) const { 3738 // Either input is TOP ==> the result is TOP 3739 const Type* t = phase->type(in(ExpectedIn)); 3740 if (t == Type::TOP) { 3741 return Type::TOP; 3742 } 3743 return LoadStoreNode::Value(phase); 3744 } 3745 3746 //============================================================================= 3747 //-------------------------------adr_type-------------------------------------- 3748 const TypePtr* ClearArrayNode::adr_type() const { 3749 Node *adr = in(3); 3750 if (adr == nullptr) return nullptr; // node is dead 3751 return MemNode::calculate_adr_type(adr->bottom_type()); 3752 } 3753 3754 //------------------------------match_edge------------------------------------- 3755 // Do we Match on this edge index or not? Do not match memory 3756 uint ClearArrayNode::match_edge(uint idx) const { 3757 return idx > 1; 3758 } 3759 3760 //------------------------------Identity--------------------------------------- 3761 // Clearing a zero length array does nothing 3762 Node* ClearArrayNode::Identity(PhaseGVN* phase) { 3763 return phase->type(in(2))->higher_equal(TypeX::ZERO) ? in(1) : this; 3764 } 3765 3766 //------------------------------Idealize--------------------------------------- 3767 // Clearing a short array is faster with stores 3768 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) { 3769 // Already know this is a large node, do not try to ideal it 3770 if (_is_large) return nullptr; 3771 3772 const int unit = BytesPerLong; 3773 const TypeX* t = phase->type(in(2))->isa_intptr_t(); 3774 if (!t) return nullptr; 3775 if (!t->is_con()) return nullptr; 3776 intptr_t raw_count = t->get_con(); 3777 intptr_t size = raw_count; 3778 if (!Matcher::init_array_count_is_in_bytes) size *= unit; 3779 // Clearing nothing uses the Identity call. 3780 // Negative clears are possible on dead ClearArrays 3781 // (see jck test stmt114.stmt11402.val). 3782 if (size <= 0 || size % unit != 0) return nullptr; 3783 intptr_t count = size / unit; 3784 // Length too long; communicate this to matchers and assemblers. 3785 // Assemblers are responsible to produce fast hardware clears for it. 3786 if (size > InitArrayShortSize) { 3787 return new ClearArrayNode(in(0), in(1), in(2), in(3), true); 3788 } else if (size > 2 && Matcher::match_rule_supported_vector(Op_ClearArray, 4, T_LONG)) { 3789 return nullptr; 3790 } 3791 if (!IdealizeClearArrayNode) return nullptr; 3792 Node *mem = in(1); 3793 if( phase->type(mem)==Type::TOP ) return nullptr; 3794 Node *adr = in(3); 3795 const Type* at = phase->type(adr); 3796 if( at==Type::TOP ) return nullptr; 3797 const TypePtr* atp = at->isa_ptr(); 3798 // adjust atp to be the correct array element address type 3799 if (atp == nullptr) atp = TypePtr::BOTTOM; 3800 else atp = atp->add_offset(Type::OffsetBot); 3801 // Get base for derived pointer purposes 3802 if( adr->Opcode() != Op_AddP ) Unimplemented(); 3803 Node *base = adr->in(1); 3804 3805 Node *zero = phase->makecon(TypeLong::ZERO); 3806 Node *off = phase->MakeConX(BytesPerLong); 3807 mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false); 3808 count--; 3809 while( count-- ) { 3810 mem = phase->transform(mem); 3811 adr = phase->transform(new AddPNode(base,adr,off)); 3812 mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false); 3813 } 3814 return mem; 3815 } 3816 3817 //----------------------------step_through---------------------------------- 3818 // Return allocation input memory edge if it is different instance 3819 // or itself if it is the one we are looking for. 3820 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseValues* phase) { 3821 Node* n = *np; 3822 assert(n->is_ClearArray(), "sanity"); 3823 intptr_t offset; 3824 AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset); 3825 // This method is called only before Allocate nodes are expanded 3826 // during macro nodes expansion. Before that ClearArray nodes are 3827 // only generated in PhaseMacroExpand::generate_arraycopy() (before 3828 // Allocate nodes are expanded) which follows allocations. 3829 assert(alloc != nullptr, "should have allocation"); 3830 if (alloc->_idx == instance_id) { 3831 // Can not bypass initialization of the instance we are looking for. 3832 return false; 3833 } 3834 // Otherwise skip it. 3835 InitializeNode* init = alloc->initialization(); 3836 if (init != nullptr) 3837 *np = init->in(TypeFunc::Memory); 3838 else 3839 *np = alloc->in(TypeFunc::Memory); 3840 return true; 3841 } 3842 3843 //----------------------------clear_memory------------------------------------- 3844 // Generate code to initialize object storage to zero. 3845 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 3846 intptr_t start_offset, 3847 Node* end_offset, 3848 PhaseGVN* phase) { 3849 intptr_t offset = start_offset; 3850 3851 int unit = BytesPerLong; 3852 if ((offset % unit) != 0) { 3853 Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset)); 3854 adr = phase->transform(adr); 3855 const TypePtr* atp = TypeRawPtr::BOTTOM; 3856 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); 3857 mem = phase->transform(mem); 3858 offset += BytesPerInt; 3859 } 3860 assert((offset % unit) == 0, ""); 3861 3862 // Initialize the remaining stuff, if any, with a ClearArray. 3863 return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase); 3864 } 3865 3866 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 3867 Node* start_offset, 3868 Node* end_offset, 3869 PhaseGVN* phase) { 3870 if (start_offset == end_offset) { 3871 // nothing to do 3872 return mem; 3873 } 3874 3875 int unit = BytesPerLong; 3876 Node* zbase = start_offset; 3877 Node* zend = end_offset; 3878 3879 // Scale to the unit required by the CPU: 3880 if (!Matcher::init_array_count_is_in_bytes) { 3881 Node* shift = phase->intcon(exact_log2(unit)); 3882 zbase = phase->transform(new URShiftXNode(zbase, shift) ); 3883 zend = phase->transform(new URShiftXNode(zend, shift) ); 3884 } 3885 3886 // Bulk clear double-words 3887 Node* zsize = phase->transform(new SubXNode(zend, zbase) ); 3888 Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) ); 3889 mem = new ClearArrayNode(ctl, mem, zsize, adr, false); 3890 return phase->transform(mem); 3891 } 3892 3893 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest, 3894 intptr_t start_offset, 3895 intptr_t end_offset, 3896 PhaseGVN* phase) { 3897 if (start_offset == end_offset) { 3898 // nothing to do 3899 return mem; 3900 } 3901 3902 assert((end_offset % BytesPerInt) == 0, "odd end offset"); 3903 intptr_t done_offset = end_offset; 3904 if ((done_offset % BytesPerLong) != 0) { 3905 done_offset -= BytesPerInt; 3906 } 3907 if (done_offset > start_offset) { 3908 mem = clear_memory(ctl, mem, dest, 3909 start_offset, phase->MakeConX(done_offset), phase); 3910 } 3911 if (done_offset < end_offset) { // emit the final 32-bit store 3912 Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset)); 3913 adr = phase->transform(adr); 3914 const TypePtr* atp = TypeRawPtr::BOTTOM; 3915 mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered); 3916 mem = phase->transform(mem); 3917 done_offset += BytesPerInt; 3918 } 3919 assert(done_offset == end_offset, ""); 3920 return mem; 3921 } 3922 3923 //============================================================================= 3924 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent) 3925 : MultiNode(TypeFunc::Parms + (precedent == nullptr? 0: 1)), 3926 _adr_type(C->get_adr_type(alias_idx)), _kind(Standalone) 3927 #ifdef ASSERT 3928 , _pair_idx(0) 3929 #endif 3930 { 3931 init_class_id(Class_MemBar); 3932 Node* top = C->top(); 3933 init_req(TypeFunc::I_O,top); 3934 init_req(TypeFunc::FramePtr,top); 3935 init_req(TypeFunc::ReturnAdr,top); 3936 if (precedent != nullptr) 3937 init_req(TypeFunc::Parms, precedent); 3938 } 3939 3940 //------------------------------cmp-------------------------------------------- 3941 uint MemBarNode::hash() const { return NO_HASH; } 3942 bool MemBarNode::cmp( const Node &n ) const { 3943 return (&n == this); // Always fail except on self 3944 } 3945 3946 //------------------------------make------------------------------------------- 3947 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) { 3948 switch (opcode) { 3949 case Op_MemBarAcquire: return new MemBarAcquireNode(C, atp, pn); 3950 case Op_LoadFence: return new LoadFenceNode(C, atp, pn); 3951 case Op_MemBarRelease: return new MemBarReleaseNode(C, atp, pn); 3952 case Op_StoreFence: return new StoreFenceNode(C, atp, pn); 3953 case Op_MemBarStoreStore: return new MemBarStoreStoreNode(C, atp, pn); 3954 case Op_StoreStoreFence: return new StoreStoreFenceNode(C, atp, pn); 3955 case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn); 3956 case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn); 3957 case Op_MemBarVolatile: return new MemBarVolatileNode(C, atp, pn); 3958 case Op_MemBarCPUOrder: return new MemBarCPUOrderNode(C, atp, pn); 3959 case Op_OnSpinWait: return new OnSpinWaitNode(C, atp, pn); 3960 case Op_Initialize: return new InitializeNode(C, atp, pn); 3961 default: ShouldNotReachHere(); return nullptr; 3962 } 3963 } 3964 3965 void MemBarNode::remove(PhaseIterGVN *igvn) { 3966 if (outcnt() != 2) { 3967 assert(Opcode() == Op_Initialize, "Only seen when there are no use of init memory"); 3968 assert(outcnt() == 1, "Only control then"); 3969 } 3970 if (trailing_store() || trailing_load_store()) { 3971 MemBarNode* leading = leading_membar(); 3972 if (leading != nullptr) { 3973 assert(leading->trailing_membar() == this, "inconsistent leading/trailing membars"); 3974 leading->remove(igvn); 3975 } 3976 } 3977 if (proj_out_or_null(TypeFunc::Memory) != nullptr) { 3978 igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory)); 3979 } 3980 if (proj_out_or_null(TypeFunc::Control) != nullptr) { 3981 igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control)); 3982 } 3983 } 3984 3985 //------------------------------Ideal------------------------------------------ 3986 // Return a node which is more "ideal" than the current node. Strip out 3987 // control copies 3988 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) { 3989 if (remove_dead_region(phase, can_reshape)) return this; 3990 // Don't bother trying to transform a dead node 3991 if (in(0) && in(0)->is_top()) { 3992 return nullptr; 3993 } 3994 3995 bool progress = false; 3996 // Eliminate volatile MemBars for scalar replaced objects. 3997 if (can_reshape && req() == (Precedent+1)) { 3998 bool eliminate = false; 3999 int opc = Opcode(); 4000 if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) { 4001 // Volatile field loads and stores. 4002 Node* my_mem = in(MemBarNode::Precedent); 4003 // The MembarAquire may keep an unused LoadNode alive through the Precedent edge 4004 if ((my_mem != nullptr) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) { 4005 // if the Precedent is a decodeN and its input (a Load) is used at more than one place, 4006 // replace this Precedent (decodeN) with the Load instead. 4007 if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1)) { 4008 Node* load_node = my_mem->in(1); 4009 set_req(MemBarNode::Precedent, load_node); 4010 phase->is_IterGVN()->_worklist.push(my_mem); 4011 my_mem = load_node; 4012 } else { 4013 assert(my_mem->unique_out() == this, "sanity"); 4014 assert(!trailing_load_store(), "load store node can't be eliminated"); 4015 del_req(Precedent); 4016 phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later 4017 my_mem = nullptr; 4018 } 4019 progress = true; 4020 } 4021 if (my_mem != nullptr && my_mem->is_Mem()) { 4022 const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr(); 4023 // Check for scalar replaced object reference. 4024 if( t_oop != nullptr && t_oop->is_known_instance_field() && 4025 t_oop->offset() != Type::OffsetBot && 4026 t_oop->offset() != Type::OffsetTop) { 4027 eliminate = true; 4028 } 4029 } 4030 } else if (opc == Op_MemBarRelease || (UseStoreStoreForCtor && opc == Op_MemBarStoreStore)) { 4031 // Final field stores. 4032 Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent)); 4033 if ((alloc != nullptr) && alloc->is_Allocate() && 4034 alloc->as_Allocate()->does_not_escape_thread()) { 4035 // The allocated object does not escape. 4036 eliminate = true; 4037 } 4038 } 4039 if (eliminate) { 4040 // Replace MemBar projections by its inputs. 4041 PhaseIterGVN* igvn = phase->is_IterGVN(); 4042 remove(igvn); 4043 // Must return either the original node (now dead) or a new node 4044 // (Do not return a top here, since that would break the uniqueness of top.) 4045 return new ConINode(TypeInt::ZERO); 4046 } 4047 } 4048 return progress ? this : nullptr; 4049 } 4050 4051 //------------------------------Value------------------------------------------ 4052 const Type* MemBarNode::Value(PhaseGVN* phase) const { 4053 if( !in(0) ) return Type::TOP; 4054 if( phase->type(in(0)) == Type::TOP ) 4055 return Type::TOP; 4056 return TypeTuple::MEMBAR; 4057 } 4058 4059 //------------------------------match------------------------------------------ 4060 // Construct projections for memory. 4061 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) { 4062 switch (proj->_con) { 4063 case TypeFunc::Control: 4064 case TypeFunc::Memory: 4065 return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj); 4066 } 4067 ShouldNotReachHere(); 4068 return nullptr; 4069 } 4070 4071 void MemBarNode::set_store_pair(MemBarNode* leading, MemBarNode* trailing) { 4072 trailing->_kind = TrailingStore; 4073 leading->_kind = LeadingStore; 4074 #ifdef ASSERT 4075 trailing->_pair_idx = leading->_idx; 4076 leading->_pair_idx = leading->_idx; 4077 #endif 4078 } 4079 4080 void MemBarNode::set_load_store_pair(MemBarNode* leading, MemBarNode* trailing) { 4081 trailing->_kind = TrailingLoadStore; 4082 leading->_kind = LeadingLoadStore; 4083 #ifdef ASSERT 4084 trailing->_pair_idx = leading->_idx; 4085 leading->_pair_idx = leading->_idx; 4086 #endif 4087 } 4088 4089 MemBarNode* MemBarNode::trailing_membar() const { 4090 ResourceMark rm; 4091 Node* trailing = (Node*)this; 4092 VectorSet seen; 4093 Node_Stack multis(0); 4094 do { 4095 Node* c = trailing; 4096 uint i = 0; 4097 do { 4098 trailing = nullptr; 4099 for (; i < c->outcnt(); i++) { 4100 Node* next = c->raw_out(i); 4101 if (next != c && next->is_CFG()) { 4102 if (c->is_MultiBranch()) { 4103 if (multis.node() == c) { 4104 multis.set_index(i+1); 4105 } else { 4106 multis.push(c, i+1); 4107 } 4108 } 4109 trailing = next; 4110 break; 4111 } 4112 } 4113 if (trailing != nullptr && !seen.test_set(trailing->_idx)) { 4114 break; 4115 } 4116 while (multis.size() > 0) { 4117 c = multis.node(); 4118 i = multis.index(); 4119 if (i < c->req()) { 4120 break; 4121 } 4122 multis.pop(); 4123 } 4124 } while (multis.size() > 0); 4125 } while (!trailing->is_MemBar() || !trailing->as_MemBar()->trailing()); 4126 4127 MemBarNode* mb = trailing->as_MemBar(); 4128 assert((mb->_kind == TrailingStore && _kind == LeadingStore) || 4129 (mb->_kind == TrailingLoadStore && _kind == LeadingLoadStore), "bad trailing membar"); 4130 assert(mb->_pair_idx == _pair_idx, "bad trailing membar"); 4131 return mb; 4132 } 4133 4134 MemBarNode* MemBarNode::leading_membar() const { 4135 ResourceMark rm; 4136 VectorSet seen; 4137 Node_Stack regions(0); 4138 Node* leading = in(0); 4139 while (leading != nullptr && (!leading->is_MemBar() || !leading->as_MemBar()->leading())) { 4140 while (leading == nullptr || leading->is_top() || seen.test_set(leading->_idx)) { 4141 leading = nullptr; 4142 while (regions.size() > 0 && leading == nullptr) { 4143 Node* r = regions.node(); 4144 uint i = regions.index(); 4145 if (i < r->req()) { 4146 leading = r->in(i); 4147 regions.set_index(i+1); 4148 } else { 4149 regions.pop(); 4150 } 4151 } 4152 if (leading == nullptr) { 4153 assert(regions.size() == 0, "all paths should have been tried"); 4154 return nullptr; 4155 } 4156 } 4157 if (leading->is_Region()) { 4158 regions.push(leading, 2); 4159 leading = leading->in(1); 4160 } else { 4161 leading = leading->in(0); 4162 } 4163 } 4164 #ifdef ASSERT 4165 Unique_Node_List wq; 4166 wq.push((Node*)this); 4167 uint found = 0; 4168 for (uint i = 0; i < wq.size(); i++) { 4169 Node* n = wq.at(i); 4170 if (n->is_Region()) { 4171 for (uint j = 1; j < n->req(); j++) { 4172 Node* in = n->in(j); 4173 if (in != nullptr && !in->is_top()) { 4174 wq.push(in); 4175 } 4176 } 4177 } else { 4178 if (n->is_MemBar() && n->as_MemBar()->leading()) { 4179 assert(n == leading, "consistency check failed"); 4180 found++; 4181 } else { 4182 Node* in = n->in(0); 4183 if (in != nullptr && !in->is_top()) { 4184 wq.push(in); 4185 } 4186 } 4187 } 4188 } 4189 assert(found == 1 || (found == 0 && leading == nullptr), "consistency check failed"); 4190 #endif 4191 if (leading == nullptr) { 4192 return nullptr; 4193 } 4194 MemBarNode* mb = leading->as_MemBar(); 4195 assert((mb->_kind == LeadingStore && _kind == TrailingStore) || 4196 (mb->_kind == LeadingLoadStore && _kind == TrailingLoadStore), "bad leading membar"); 4197 assert(mb->_pair_idx == _pair_idx, "bad leading membar"); 4198 return mb; 4199 } 4200 4201 4202 //===========================InitializeNode==================================== 4203 // SUMMARY: 4204 // This node acts as a memory barrier on raw memory, after some raw stores. 4205 // The 'cooked' oop value feeds from the Initialize, not the Allocation. 4206 // The Initialize can 'capture' suitably constrained stores as raw inits. 4207 // It can coalesce related raw stores into larger units (called 'tiles'). 4208 // It can avoid zeroing new storage for memory units which have raw inits. 4209 // At macro-expansion, it is marked 'complete', and does not optimize further. 4210 // 4211 // EXAMPLE: 4212 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine. 4213 // ctl = incoming control; mem* = incoming memory 4214 // (Note: A star * on a memory edge denotes I/O and other standard edges.) 4215 // First allocate uninitialized memory and fill in the header: 4216 // alloc = (Allocate ctl mem* 16 #short[].klass ...) 4217 // ctl := alloc.Control; mem* := alloc.Memory* 4218 // rawmem = alloc.Memory; rawoop = alloc.RawAddress 4219 // Then initialize to zero the non-header parts of the raw memory block: 4220 // init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress) 4221 // ctl := init.Control; mem.SLICE(#short[*]) := init.Memory 4222 // After the initialize node executes, the object is ready for service: 4223 // oop := (CheckCastPP init.Control alloc.RawAddress #short[]) 4224 // Suppose its body is immediately initialized as {1,2}: 4225 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1) 4226 // store2 = (StoreC init.Control store1 (+ oop 14) 2) 4227 // mem.SLICE(#short[*]) := store2 4228 // 4229 // DETAILS: 4230 // An InitializeNode collects and isolates object initialization after 4231 // an AllocateNode and before the next possible safepoint. As a 4232 // memory barrier (MemBarNode), it keeps critical stores from drifting 4233 // down past any safepoint or any publication of the allocation. 4234 // Before this barrier, a newly-allocated object may have uninitialized bits. 4235 // After this barrier, it may be treated as a real oop, and GC is allowed. 4236 // 4237 // The semantics of the InitializeNode include an implicit zeroing of 4238 // the new object from object header to the end of the object. 4239 // (The object header and end are determined by the AllocateNode.) 4240 // 4241 // Certain stores may be added as direct inputs to the InitializeNode. 4242 // These stores must update raw memory, and they must be to addresses 4243 // derived from the raw address produced by AllocateNode, and with 4244 // a constant offset. They must be ordered by increasing offset. 4245 // The first one is at in(RawStores), the last at in(req()-1). 4246 // Unlike most memory operations, they are not linked in a chain, 4247 // but are displayed in parallel as users of the rawmem output of 4248 // the allocation. 4249 // 4250 // (See comments in InitializeNode::capture_store, which continue 4251 // the example given above.) 4252 // 4253 // When the associated Allocate is macro-expanded, the InitializeNode 4254 // may be rewritten to optimize collected stores. A ClearArrayNode 4255 // may also be created at that point to represent any required zeroing. 4256 // The InitializeNode is then marked 'complete', prohibiting further 4257 // capturing of nearby memory operations. 4258 // 4259 // During macro-expansion, all captured initializations which store 4260 // constant values of 32 bits or smaller are coalesced (if advantageous) 4261 // into larger 'tiles' 32 or 64 bits. This allows an object to be 4262 // initialized in fewer memory operations. Memory words which are 4263 // covered by neither tiles nor non-constant stores are pre-zeroed 4264 // by explicit stores of zero. (The code shape happens to do all 4265 // zeroing first, then all other stores, with both sequences occurring 4266 // in order of ascending offsets.) 4267 // 4268 // Alternatively, code may be inserted between an AllocateNode and its 4269 // InitializeNode, to perform arbitrary initialization of the new object. 4270 // E.g., the object copying intrinsics insert complex data transfers here. 4271 // The initialization must then be marked as 'complete' disable the 4272 // built-in zeroing semantics and the collection of initializing stores. 4273 // 4274 // While an InitializeNode is incomplete, reads from the memory state 4275 // produced by it are optimizable if they match the control edge and 4276 // new oop address associated with the allocation/initialization. 4277 // They return a stored value (if the offset matches) or else zero. 4278 // A write to the memory state, if it matches control and address, 4279 // and if it is to a constant offset, may be 'captured' by the 4280 // InitializeNode. It is cloned as a raw memory operation and rewired 4281 // inside the initialization, to the raw oop produced by the allocation. 4282 // Operations on addresses which are provably distinct (e.g., to 4283 // other AllocateNodes) are allowed to bypass the initialization. 4284 // 4285 // The effect of all this is to consolidate object initialization 4286 // (both arrays and non-arrays, both piecewise and bulk) into a 4287 // single location, where it can be optimized as a unit. 4288 // 4289 // Only stores with an offset less than TrackedInitializationLimit words 4290 // will be considered for capture by an InitializeNode. This puts a 4291 // reasonable limit on the complexity of optimized initializations. 4292 4293 //---------------------------InitializeNode------------------------------------ 4294 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop) 4295 : MemBarNode(C, adr_type, rawoop), 4296 _is_complete(Incomplete), _does_not_escape(false) 4297 { 4298 init_class_id(Class_Initialize); 4299 4300 assert(adr_type == Compile::AliasIdxRaw, "only valid atp"); 4301 assert(in(RawAddress) == rawoop, "proper init"); 4302 // Note: allocation() can be null, for secondary initialization barriers 4303 } 4304 4305 // Since this node is not matched, it will be processed by the 4306 // register allocator. Declare that there are no constraints 4307 // on the allocation of the RawAddress edge. 4308 const RegMask &InitializeNode::in_RegMask(uint idx) const { 4309 // This edge should be set to top, by the set_complete. But be conservative. 4310 if (idx == InitializeNode::RawAddress) 4311 return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]); 4312 return RegMask::Empty; 4313 } 4314 4315 Node* InitializeNode::memory(uint alias_idx) { 4316 Node* mem = in(Memory); 4317 if (mem->is_MergeMem()) { 4318 return mem->as_MergeMem()->memory_at(alias_idx); 4319 } else { 4320 // incoming raw memory is not split 4321 return mem; 4322 } 4323 } 4324 4325 bool InitializeNode::is_non_zero() { 4326 if (is_complete()) return false; 4327 remove_extra_zeroes(); 4328 return (req() > RawStores); 4329 } 4330 4331 void InitializeNode::set_complete(PhaseGVN* phase) { 4332 assert(!is_complete(), "caller responsibility"); 4333 _is_complete = Complete; 4334 4335 // After this node is complete, it contains a bunch of 4336 // raw-memory initializations. There is no need for 4337 // it to have anything to do with non-raw memory effects. 4338 // Therefore, tell all non-raw users to re-optimize themselves, 4339 // after skipping the memory effects of this initialization. 4340 PhaseIterGVN* igvn = phase->is_IterGVN(); 4341 if (igvn) igvn->add_users_to_worklist(this); 4342 } 4343 4344 // convenience function 4345 // return false if the init contains any stores already 4346 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) { 4347 InitializeNode* init = initialization(); 4348 if (init == nullptr || init->is_complete()) return false; 4349 init->remove_extra_zeroes(); 4350 // for now, if this allocation has already collected any inits, bail: 4351 if (init->is_non_zero()) return false; 4352 init->set_complete(phase); 4353 return true; 4354 } 4355 4356 void InitializeNode::remove_extra_zeroes() { 4357 if (req() == RawStores) return; 4358 Node* zmem = zero_memory(); 4359 uint fill = RawStores; 4360 for (uint i = fill; i < req(); i++) { 4361 Node* n = in(i); 4362 if (n->is_top() || n == zmem) continue; // skip 4363 if (fill < i) set_req(fill, n); // compact 4364 ++fill; 4365 } 4366 // delete any empty spaces created: 4367 while (fill < req()) { 4368 del_req(fill); 4369 } 4370 } 4371 4372 // Helper for remembering which stores go with which offsets. 4373 intptr_t InitializeNode::get_store_offset(Node* st, PhaseValues* phase) { 4374 if (!st->is_Store()) return -1; // can happen to dead code via subsume_node 4375 intptr_t offset = -1; 4376 Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address), 4377 phase, offset); 4378 if (base == nullptr) return -1; // something is dead, 4379 if (offset < 0) return -1; // dead, dead 4380 return offset; 4381 } 4382 4383 // Helper for proving that an initialization expression is 4384 // "simple enough" to be folded into an object initialization. 4385 // Attempts to prove that a store's initial value 'n' can be captured 4386 // within the initialization without creating a vicious cycle, such as: 4387 // { Foo p = new Foo(); p.next = p; } 4388 // True for constants and parameters and small combinations thereof. 4389 bool InitializeNode::detect_init_independence(Node* value, PhaseGVN* phase) { 4390 ResourceMark rm; 4391 Unique_Node_List worklist; 4392 worklist.push(value); 4393 4394 uint complexity_limit = 20; 4395 for (uint j = 0; j < worklist.size(); j++) { 4396 if (j >= complexity_limit) { 4397 return false; // Bail out if processed too many nodes 4398 } 4399 4400 Node* n = worklist.at(j); 4401 if (n == nullptr) continue; // (can this really happen?) 4402 if (n->is_Proj()) n = n->in(0); 4403 if (n == this) return false; // found a cycle 4404 if (n->is_Con()) continue; 4405 if (n->is_Start()) continue; // params, etc., are OK 4406 if (n->is_Root()) continue; // even better 4407 4408 // There cannot be any dependency if 'n' is a CFG node that dominates the current allocation 4409 if (n->is_CFG() && phase->is_dominator(n, allocation())) { 4410 continue; 4411 } 4412 4413 Node* ctl = n->in(0); 4414 if (ctl != nullptr && !ctl->is_top()) { 4415 if (ctl->is_Proj()) ctl = ctl->in(0); 4416 if (ctl == this) return false; 4417 4418 // If we already know that the enclosing memory op is pinned right after 4419 // the init, then any control flow that the store has picked up 4420 // must have preceded the init, or else be equal to the init. 4421 // Even after loop optimizations (which might change control edges) 4422 // a store is never pinned *before* the availability of its inputs. 4423 if (!MemNode::all_controls_dominate(n, this)) { 4424 return false; // failed to prove a good control 4425 } 4426 } 4427 4428 // Check data edges for possible dependencies on 'this'. 4429 for (uint i = 1; i < n->req(); i++) { 4430 Node* m = n->in(i); 4431 if (m == nullptr || m == n || m->is_top()) continue; 4432 4433 // Only process data inputs once 4434 worklist.push(m); 4435 } 4436 } 4437 4438 return true; 4439 } 4440 4441 // Here are all the checks a Store must pass before it can be moved into 4442 // an initialization. Returns zero if a check fails. 4443 // On success, returns the (constant) offset to which the store applies, 4444 // within the initialized memory. 4445 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseGVN* phase, bool can_reshape) { 4446 const int FAIL = 0; 4447 if (st->req() != MemNode::ValueIn + 1) 4448 return FAIL; // an inscrutable StoreNode (card mark?) 4449 Node* ctl = st->in(MemNode::Control); 4450 if (!(ctl != nullptr && ctl->is_Proj() && ctl->in(0) == this)) 4451 return FAIL; // must be unconditional after the initialization 4452 Node* mem = st->in(MemNode::Memory); 4453 if (!(mem->is_Proj() && mem->in(0) == this)) 4454 return FAIL; // must not be preceded by other stores 4455 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4456 if ((st->Opcode() == Op_StoreP || st->Opcode() == Op_StoreN) && 4457 !bs->can_initialize_object(st)) { 4458 return FAIL; 4459 } 4460 Node* adr = st->in(MemNode::Address); 4461 intptr_t offset; 4462 AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset); 4463 if (alloc == nullptr) 4464 return FAIL; // inscrutable address 4465 if (alloc != allocation()) 4466 return FAIL; // wrong allocation! (store needs to float up) 4467 int size_in_bytes = st->memory_size(); 4468 if ((size_in_bytes != 0) && (offset % size_in_bytes) != 0) { 4469 return FAIL; // mismatched access 4470 } 4471 Node* val = st->in(MemNode::ValueIn); 4472 4473 if (!detect_init_independence(val, phase)) 4474 return FAIL; // stored value must be 'simple enough' 4475 4476 // The Store can be captured only if nothing after the allocation 4477 // and before the Store is using the memory location that the store 4478 // overwrites. 4479 bool failed = false; 4480 // If is_complete_with_arraycopy() is true the shape of the graph is 4481 // well defined and is safe so no need for extra checks. 4482 if (!is_complete_with_arraycopy()) { 4483 // We are going to look at each use of the memory state following 4484 // the allocation to make sure nothing reads the memory that the 4485 // Store writes. 4486 const TypePtr* t_adr = phase->type(adr)->isa_ptr(); 4487 int alias_idx = phase->C->get_alias_index(t_adr); 4488 ResourceMark rm; 4489 Unique_Node_List mems; 4490 mems.push(mem); 4491 Node* unique_merge = nullptr; 4492 for (uint next = 0; next < mems.size(); ++next) { 4493 Node *m = mems.at(next); 4494 for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) { 4495 Node *n = m->fast_out(j); 4496 if (n->outcnt() == 0) { 4497 continue; 4498 } 4499 if (n == st) { 4500 continue; 4501 } else if (n->in(0) != nullptr && n->in(0) != ctl) { 4502 // If the control of this use is different from the control 4503 // of the Store which is right after the InitializeNode then 4504 // this node cannot be between the InitializeNode and the 4505 // Store. 4506 continue; 4507 } else if (n->is_MergeMem()) { 4508 if (n->as_MergeMem()->memory_at(alias_idx) == m) { 4509 // We can hit a MergeMemNode (that will likely go away 4510 // later) that is a direct use of the memory state 4511 // following the InitializeNode on the same slice as the 4512 // store node that we'd like to capture. We need to check 4513 // the uses of the MergeMemNode. 4514 mems.push(n); 4515 } 4516 } else if (n->is_Mem()) { 4517 Node* other_adr = n->in(MemNode::Address); 4518 if (other_adr == adr) { 4519 failed = true; 4520 break; 4521 } else { 4522 const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr(); 4523 if (other_t_adr != nullptr) { 4524 int other_alias_idx = phase->C->get_alias_index(other_t_adr); 4525 if (other_alias_idx == alias_idx) { 4526 // A load from the same memory slice as the store right 4527 // after the InitializeNode. We check the control of the 4528 // object/array that is loaded from. If it's the same as 4529 // the store control then we cannot capture the store. 4530 assert(!n->is_Store(), "2 stores to same slice on same control?"); 4531 Node* base = other_adr; 4532 assert(base->is_AddP(), "should be addp but is %s", base->Name()); 4533 base = base->in(AddPNode::Base); 4534 if (base != nullptr) { 4535 base = base->uncast(); 4536 if (base->is_Proj() && base->in(0) == alloc) { 4537 failed = true; 4538 break; 4539 } 4540 } 4541 } 4542 } 4543 } 4544 } else { 4545 failed = true; 4546 break; 4547 } 4548 } 4549 } 4550 } 4551 if (failed) { 4552 if (!can_reshape) { 4553 // We decided we couldn't capture the store during parsing. We 4554 // should try again during the next IGVN once the graph is 4555 // cleaner. 4556 phase->C->record_for_igvn(st); 4557 } 4558 return FAIL; 4559 } 4560 4561 return offset; // success 4562 } 4563 4564 // Find the captured store in(i) which corresponds to the range 4565 // [start..start+size) in the initialized object. 4566 // If there is one, return its index i. If there isn't, return the 4567 // negative of the index where it should be inserted. 4568 // Return 0 if the queried range overlaps an initialization boundary 4569 // or if dead code is encountered. 4570 // If size_in_bytes is zero, do not bother with overlap checks. 4571 int InitializeNode::captured_store_insertion_point(intptr_t start, 4572 int size_in_bytes, 4573 PhaseValues* phase) { 4574 const int FAIL = 0, MAX_STORE = MAX2(BytesPerLong, (int)MaxVectorSize); 4575 4576 if (is_complete()) 4577 return FAIL; // arraycopy got here first; punt 4578 4579 assert(allocation() != nullptr, "must be present"); 4580 4581 // no negatives, no header fields: 4582 if (start < (intptr_t) allocation()->minimum_header_size()) return FAIL; 4583 4584 // after a certain size, we bail out on tracking all the stores: 4585 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); 4586 if (start >= ti_limit) return FAIL; 4587 4588 for (uint i = InitializeNode::RawStores, limit = req(); ; ) { 4589 if (i >= limit) return -(int)i; // not found; here is where to put it 4590 4591 Node* st = in(i); 4592 intptr_t st_off = get_store_offset(st, phase); 4593 if (st_off < 0) { 4594 if (st != zero_memory()) { 4595 return FAIL; // bail out if there is dead garbage 4596 } 4597 } else if (st_off > start) { 4598 // ...we are done, since stores are ordered 4599 if (st_off < start + size_in_bytes) { 4600 return FAIL; // the next store overlaps 4601 } 4602 return -(int)i; // not found; here is where to put it 4603 } else if (st_off < start) { 4604 assert(st->as_Store()->memory_size() <= MAX_STORE, ""); 4605 if (size_in_bytes != 0 && 4606 start < st_off + MAX_STORE && 4607 start < st_off + st->as_Store()->memory_size()) { 4608 return FAIL; // the previous store overlaps 4609 } 4610 } else { 4611 if (size_in_bytes != 0 && 4612 st->as_Store()->memory_size() != size_in_bytes) { 4613 return FAIL; // mismatched store size 4614 } 4615 return i; 4616 } 4617 4618 ++i; 4619 } 4620 } 4621 4622 // Look for a captured store which initializes at the offset 'start' 4623 // with the given size. If there is no such store, and no other 4624 // initialization interferes, then return zero_memory (the memory 4625 // projection of the AllocateNode). 4626 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes, 4627 PhaseValues* phase) { 4628 assert(stores_are_sane(phase), ""); 4629 int i = captured_store_insertion_point(start, size_in_bytes, phase); 4630 if (i == 0) { 4631 return nullptr; // something is dead 4632 } else if (i < 0) { 4633 return zero_memory(); // just primordial zero bits here 4634 } else { 4635 Node* st = in(i); // here is the store at this position 4636 assert(get_store_offset(st->as_Store(), phase) == start, "sanity"); 4637 return st; 4638 } 4639 } 4640 4641 // Create, as a raw pointer, an address within my new object at 'offset'. 4642 Node* InitializeNode::make_raw_address(intptr_t offset, 4643 PhaseGVN* phase) { 4644 Node* addr = in(RawAddress); 4645 if (offset != 0) { 4646 Compile* C = phase->C; 4647 addr = phase->transform( new AddPNode(C->top(), addr, 4648 phase->MakeConX(offset)) ); 4649 } 4650 return addr; 4651 } 4652 4653 // Clone the given store, converting it into a raw store 4654 // initializing a field or element of my new object. 4655 // Caller is responsible for retiring the original store, 4656 // with subsume_node or the like. 4657 // 4658 // From the example above InitializeNode::InitializeNode, 4659 // here are the old stores to be captured: 4660 // store1 = (StoreC init.Control init.Memory (+ oop 12) 1) 4661 // store2 = (StoreC init.Control store1 (+ oop 14) 2) 4662 // 4663 // Here is the changed code; note the extra edges on init: 4664 // alloc = (Allocate ...) 4665 // rawoop = alloc.RawAddress 4666 // rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1) 4667 // rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2) 4668 // init = (Initialize alloc.Control alloc.Memory rawoop 4669 // rawstore1 rawstore2) 4670 // 4671 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start, 4672 PhaseGVN* phase, bool can_reshape) { 4673 assert(stores_are_sane(phase), ""); 4674 4675 if (start < 0) return nullptr; 4676 assert(can_capture_store(st, phase, can_reshape) == start, "sanity"); 4677 4678 Compile* C = phase->C; 4679 int size_in_bytes = st->memory_size(); 4680 int i = captured_store_insertion_point(start, size_in_bytes, phase); 4681 if (i == 0) return nullptr; // bail out 4682 Node* prev_mem = nullptr; // raw memory for the captured store 4683 if (i > 0) { 4684 prev_mem = in(i); // there is a pre-existing store under this one 4685 set_req(i, C->top()); // temporarily disconnect it 4686 // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect. 4687 } else { 4688 i = -i; // no pre-existing store 4689 prev_mem = zero_memory(); // a slice of the newly allocated object 4690 if (i > InitializeNode::RawStores && in(i-1) == prev_mem) 4691 set_req(--i, C->top()); // reuse this edge; it has been folded away 4692 else 4693 ins_req(i, C->top()); // build a new edge 4694 } 4695 Node* new_st = st->clone(); 4696 BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2(); 4697 new_st->set_req(MemNode::Control, in(Control)); 4698 new_st->set_req(MemNode::Memory, prev_mem); 4699 new_st->set_req(MemNode::Address, make_raw_address(start, phase)); 4700 bs->eliminate_gc_barrier_data(new_st); 4701 new_st = phase->transform(new_st); 4702 4703 // At this point, new_st might have swallowed a pre-existing store 4704 // at the same offset, or perhaps new_st might have disappeared, 4705 // if it redundantly stored the same value (or zero to fresh memory). 4706 4707 // In any case, wire it in: 4708 PhaseIterGVN* igvn = phase->is_IterGVN(); 4709 if (igvn) { 4710 igvn->rehash_node_delayed(this); 4711 } 4712 set_req(i, new_st); 4713 4714 // The caller may now kill the old guy. 4715 DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase)); 4716 assert(check_st == new_st || check_st == nullptr, "must be findable"); 4717 assert(!is_complete(), ""); 4718 return new_st; 4719 } 4720 4721 static bool store_constant(jlong* tiles, int num_tiles, 4722 intptr_t st_off, int st_size, 4723 jlong con) { 4724 if ((st_off & (st_size-1)) != 0) 4725 return false; // strange store offset (assume size==2**N) 4726 address addr = (address)tiles + st_off; 4727 assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob"); 4728 switch (st_size) { 4729 case sizeof(jbyte): *(jbyte*) addr = (jbyte) con; break; 4730 case sizeof(jchar): *(jchar*) addr = (jchar) con; break; 4731 case sizeof(jint): *(jint*) addr = (jint) con; break; 4732 case sizeof(jlong): *(jlong*) addr = (jlong) con; break; 4733 default: return false; // strange store size (detect size!=2**N here) 4734 } 4735 return true; // return success to caller 4736 } 4737 4738 // Coalesce subword constants into int constants and possibly 4739 // into long constants. The goal, if the CPU permits, 4740 // is to initialize the object with a small number of 64-bit tiles. 4741 // Also, convert floating-point constants to bit patterns. 4742 // Non-constants are not relevant to this pass. 4743 // 4744 // In terms of the running example on InitializeNode::InitializeNode 4745 // and InitializeNode::capture_store, here is the transformation 4746 // of rawstore1 and rawstore2 into rawstore12: 4747 // alloc = (Allocate ...) 4748 // rawoop = alloc.RawAddress 4749 // tile12 = 0x00010002 4750 // rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12) 4751 // init = (Initialize alloc.Control alloc.Memory rawoop rawstore12) 4752 // 4753 void 4754 InitializeNode::coalesce_subword_stores(intptr_t header_size, 4755 Node* size_in_bytes, 4756 PhaseGVN* phase) { 4757 Compile* C = phase->C; 4758 4759 assert(stores_are_sane(phase), ""); 4760 // Note: After this pass, they are not completely sane, 4761 // since there may be some overlaps. 4762 4763 int old_subword = 0, old_long = 0, new_int = 0, new_long = 0; 4764 4765 intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize); 4766 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit); 4767 size_limit = MIN2(size_limit, ti_limit); 4768 size_limit = align_up(size_limit, BytesPerLong); 4769 int num_tiles = size_limit / BytesPerLong; 4770 4771 // allocate space for the tile map: 4772 const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small 4773 jlong tiles_buf[small_len]; 4774 Node* nodes_buf[small_len]; 4775 jlong inits_buf[small_len]; 4776 jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0] 4777 : NEW_RESOURCE_ARRAY(jlong, num_tiles)); 4778 Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0] 4779 : NEW_RESOURCE_ARRAY(Node*, num_tiles)); 4780 jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0] 4781 : NEW_RESOURCE_ARRAY(jlong, num_tiles)); 4782 // tiles: exact bitwise model of all primitive constants 4783 // nodes: last constant-storing node subsumed into the tiles model 4784 // inits: which bytes (in each tile) are touched by any initializations 4785 4786 //// Pass A: Fill in the tile model with any relevant stores. 4787 4788 Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles); 4789 Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles); 4790 Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles); 4791 Node* zmem = zero_memory(); // initially zero memory state 4792 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { 4793 Node* st = in(i); 4794 intptr_t st_off = get_store_offset(st, phase); 4795 4796 // Figure out the store's offset and constant value: 4797 if (st_off < header_size) continue; //skip (ignore header) 4798 if (st->in(MemNode::Memory) != zmem) continue; //skip (odd store chain) 4799 int st_size = st->as_Store()->memory_size(); 4800 if (st_off + st_size > size_limit) break; 4801 4802 // Record which bytes are touched, whether by constant or not. 4803 if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1)) 4804 continue; // skip (strange store size) 4805 4806 const Type* val = phase->type(st->in(MemNode::ValueIn)); 4807 if (!val->singleton()) continue; //skip (non-con store) 4808 BasicType type = val->basic_type(); 4809 4810 jlong con = 0; 4811 switch (type) { 4812 case T_INT: con = val->is_int()->get_con(); break; 4813 case T_LONG: con = val->is_long()->get_con(); break; 4814 case T_FLOAT: con = jint_cast(val->getf()); break; 4815 case T_DOUBLE: con = jlong_cast(val->getd()); break; 4816 default: continue; //skip (odd store type) 4817 } 4818 4819 if (type == T_LONG && Matcher::isSimpleConstant64(con) && 4820 st->Opcode() == Op_StoreL) { 4821 continue; // This StoreL is already optimal. 4822 } 4823 4824 // Store down the constant. 4825 store_constant(tiles, num_tiles, st_off, st_size, con); 4826 4827 intptr_t j = st_off >> LogBytesPerLong; 4828 4829 if (type == T_INT && st_size == BytesPerInt 4830 && (st_off & BytesPerInt) == BytesPerInt) { 4831 jlong lcon = tiles[j]; 4832 if (!Matcher::isSimpleConstant64(lcon) && 4833 st->Opcode() == Op_StoreI) { 4834 // This StoreI is already optimal by itself. 4835 jint* intcon = (jint*) &tiles[j]; 4836 intcon[1] = 0; // undo the store_constant() 4837 4838 // If the previous store is also optimal by itself, back up and 4839 // undo the action of the previous loop iteration... if we can. 4840 // But if we can't, just let the previous half take care of itself. 4841 st = nodes[j]; 4842 st_off -= BytesPerInt; 4843 con = intcon[0]; 4844 if (con != 0 && st != nullptr && st->Opcode() == Op_StoreI) { 4845 assert(st_off >= header_size, "still ignoring header"); 4846 assert(get_store_offset(st, phase) == st_off, "must be"); 4847 assert(in(i-1) == zmem, "must be"); 4848 DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn))); 4849 assert(con == tcon->is_int()->get_con(), "must be"); 4850 // Undo the effects of the previous loop trip, which swallowed st: 4851 intcon[0] = 0; // undo store_constant() 4852 set_req(i-1, st); // undo set_req(i, zmem) 4853 nodes[j] = nullptr; // undo nodes[j] = st 4854 --old_subword; // undo ++old_subword 4855 } 4856 continue; // This StoreI is already optimal. 4857 } 4858 } 4859 4860 // This store is not needed. 4861 set_req(i, zmem); 4862 nodes[j] = st; // record for the moment 4863 if (st_size < BytesPerLong) // something has changed 4864 ++old_subword; // includes int/float, but who's counting... 4865 else ++old_long; 4866 } 4867 4868 if ((old_subword + old_long) == 0) 4869 return; // nothing more to do 4870 4871 //// Pass B: Convert any non-zero tiles into optimal constant stores. 4872 // Be sure to insert them before overlapping non-constant stores. 4873 // (E.g., byte[] x = { 1,2,y,4 } => x[int 0] = 0x01020004, x[2]=y.) 4874 for (int j = 0; j < num_tiles; j++) { 4875 jlong con = tiles[j]; 4876 jlong init = inits[j]; 4877 if (con == 0) continue; 4878 jint con0, con1; // split the constant, address-wise 4879 jint init0, init1; // split the init map, address-wise 4880 { union { jlong con; jint intcon[2]; } u; 4881 u.con = con; 4882 con0 = u.intcon[0]; 4883 con1 = u.intcon[1]; 4884 u.con = init; 4885 init0 = u.intcon[0]; 4886 init1 = u.intcon[1]; 4887 } 4888 4889 Node* old = nodes[j]; 4890 assert(old != nullptr, "need the prior store"); 4891 intptr_t offset = (j * BytesPerLong); 4892 4893 bool split = !Matcher::isSimpleConstant64(con); 4894 4895 if (offset < header_size) { 4896 assert(offset + BytesPerInt >= header_size, "second int counts"); 4897 assert(*(jint*)&tiles[j] == 0, "junk in header"); 4898 split = true; // only the second word counts 4899 // Example: int a[] = { 42 ... } 4900 } else if (con0 == 0 && init0 == -1) { 4901 split = true; // first word is covered by full inits 4902 // Example: int a[] = { ... foo(), 42 ... } 4903 } else if (con1 == 0 && init1 == -1) { 4904 split = true; // second word is covered by full inits 4905 // Example: int a[] = { ... 42, foo() ... } 4906 } 4907 4908 // Here's a case where init0 is neither 0 nor -1: 4909 // byte a[] = { ... 0,0,foo(),0, 0,0,0,42 ... } 4910 // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF. 4911 // In this case the tile is not split; it is (jlong)42. 4912 // The big tile is stored down, and then the foo() value is inserted. 4913 // (If there were foo(),foo() instead of foo(),0, init0 would be -1.) 4914 4915 Node* ctl = old->in(MemNode::Control); 4916 Node* adr = make_raw_address(offset, phase); 4917 const TypePtr* atp = TypeRawPtr::BOTTOM; 4918 4919 // One or two coalesced stores to plop down. 4920 Node* st[2]; 4921 intptr_t off[2]; 4922 int nst = 0; 4923 if (!split) { 4924 ++new_long; 4925 off[nst] = offset; 4926 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 4927 phase->longcon(con), T_LONG, MemNode::unordered); 4928 } else { 4929 // Omit either if it is a zero. 4930 if (con0 != 0) { 4931 ++new_int; 4932 off[nst] = offset; 4933 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 4934 phase->intcon(con0), T_INT, MemNode::unordered); 4935 } 4936 if (con1 != 0) { 4937 ++new_int; 4938 offset += BytesPerInt; 4939 adr = make_raw_address(offset, phase); 4940 off[nst] = offset; 4941 st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp, 4942 phase->intcon(con1), T_INT, MemNode::unordered); 4943 } 4944 } 4945 4946 // Insert second store first, then the first before the second. 4947 // Insert each one just before any overlapping non-constant stores. 4948 while (nst > 0) { 4949 Node* st1 = st[--nst]; 4950 C->copy_node_notes_to(st1, old); 4951 st1 = phase->transform(st1); 4952 offset = off[nst]; 4953 assert(offset >= header_size, "do not smash header"); 4954 int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase); 4955 guarantee(ins_idx != 0, "must re-insert constant store"); 4956 if (ins_idx < 0) ins_idx = -ins_idx; // never overlap 4957 if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem) 4958 set_req(--ins_idx, st1); 4959 else 4960 ins_req(ins_idx, st1); 4961 } 4962 } 4963 4964 if (PrintCompilation && WizardMode) 4965 tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long", 4966 old_subword, old_long, new_int, new_long); 4967 if (C->log() != nullptr) 4968 C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'", 4969 old_subword, old_long, new_int, new_long); 4970 4971 // Clean up any remaining occurrences of zmem: 4972 remove_extra_zeroes(); 4973 } 4974 4975 // Explore forward from in(start) to find the first fully initialized 4976 // word, and return its offset. Skip groups of subword stores which 4977 // together initialize full words. If in(start) is itself part of a 4978 // fully initialized word, return the offset of in(start). If there 4979 // are no following full-word stores, or if something is fishy, return 4980 // a negative value. 4981 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) { 4982 int int_map = 0; 4983 intptr_t int_map_off = 0; 4984 const int FULL_MAP = right_n_bits(BytesPerInt); // the int_map we hope for 4985 4986 for (uint i = start, limit = req(); i < limit; i++) { 4987 Node* st = in(i); 4988 4989 intptr_t st_off = get_store_offset(st, phase); 4990 if (st_off < 0) break; // return conservative answer 4991 4992 int st_size = st->as_Store()->memory_size(); 4993 if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) { 4994 return st_off; // we found a complete word init 4995 } 4996 4997 // update the map: 4998 4999 intptr_t this_int_off = align_down(st_off, BytesPerInt); 5000 if (this_int_off != int_map_off) { 5001 // reset the map: 5002 int_map = 0; 5003 int_map_off = this_int_off; 5004 } 5005 5006 int subword_off = st_off - this_int_off; 5007 int_map |= right_n_bits(st_size) << subword_off; 5008 if ((int_map & FULL_MAP) == FULL_MAP) { 5009 return this_int_off; // we found a complete word init 5010 } 5011 5012 // Did this store hit or cross the word boundary? 5013 intptr_t next_int_off = align_down(st_off + st_size, BytesPerInt); 5014 if (next_int_off == this_int_off + BytesPerInt) { 5015 // We passed the current int, without fully initializing it. 5016 int_map_off = next_int_off; 5017 int_map >>= BytesPerInt; 5018 } else if (next_int_off > this_int_off + BytesPerInt) { 5019 // We passed the current and next int. 5020 return this_int_off + BytesPerInt; 5021 } 5022 } 5023 5024 return -1; 5025 } 5026 5027 5028 // Called when the associated AllocateNode is expanded into CFG. 5029 // At this point, we may perform additional optimizations. 5030 // Linearize the stores by ascending offset, to make memory 5031 // activity as coherent as possible. 5032 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr, 5033 intptr_t header_size, 5034 Node* size_in_bytes, 5035 PhaseIterGVN* phase) { 5036 assert(!is_complete(), "not already complete"); 5037 assert(stores_are_sane(phase), ""); 5038 assert(allocation() != nullptr, "must be present"); 5039 5040 remove_extra_zeroes(); 5041 5042 if (ReduceFieldZeroing || ReduceBulkZeroing) 5043 // reduce instruction count for common initialization patterns 5044 coalesce_subword_stores(header_size, size_in_bytes, phase); 5045 5046 Node* zmem = zero_memory(); // initially zero memory state 5047 Node* inits = zmem; // accumulating a linearized chain of inits 5048 #ifdef ASSERT 5049 intptr_t first_offset = allocation()->minimum_header_size(); 5050 intptr_t last_init_off = first_offset; // previous init offset 5051 intptr_t last_init_end = first_offset; // previous init offset+size 5052 intptr_t last_tile_end = first_offset; // previous tile offset+size 5053 #endif 5054 intptr_t zeroes_done = header_size; 5055 5056 bool do_zeroing = true; // we might give up if inits are very sparse 5057 int big_init_gaps = 0; // how many large gaps have we seen? 5058 5059 if (UseTLAB && ZeroTLAB) do_zeroing = false; 5060 if (!ReduceFieldZeroing && !ReduceBulkZeroing) do_zeroing = false; 5061 5062 for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) { 5063 Node* st = in(i); 5064 intptr_t st_off = get_store_offset(st, phase); 5065 if (st_off < 0) 5066 break; // unknown junk in the inits 5067 if (st->in(MemNode::Memory) != zmem) 5068 break; // complicated store chains somehow in list 5069 5070 int st_size = st->as_Store()->memory_size(); 5071 intptr_t next_init_off = st_off + st_size; 5072 5073 if (do_zeroing && zeroes_done < next_init_off) { 5074 // See if this store needs a zero before it or under it. 5075 intptr_t zeroes_needed = st_off; 5076 5077 if (st_size < BytesPerInt) { 5078 // Look for subword stores which only partially initialize words. 5079 // If we find some, we must lay down some word-level zeroes first, 5080 // underneath the subword stores. 5081 // 5082 // Examples: 5083 // byte[] a = { p,q,r,s } => a[0]=p,a[1]=q,a[2]=r,a[3]=s 5084 // byte[] a = { x,y,0,0 } => a[0..3] = 0, a[0]=x,a[1]=y 5085 // byte[] a = { 0,0,z,0 } => a[0..3] = 0, a[2]=z 5086 // 5087 // Note: coalesce_subword_stores may have already done this, 5088 // if it was prompted by constant non-zero subword initializers. 5089 // But this case can still arise with non-constant stores. 5090 5091 intptr_t next_full_store = find_next_fullword_store(i, phase); 5092 5093 // In the examples above: 5094 // in(i) p q r s x y z 5095 // st_off 12 13 14 15 12 13 14 5096 // st_size 1 1 1 1 1 1 1 5097 // next_full_s. 12 16 16 16 16 16 16 5098 // z's_done 12 16 16 16 12 16 12 5099 // z's_needed 12 16 16 16 16 16 16 5100 // zsize 0 0 0 0 4 0 4 5101 if (next_full_store < 0) { 5102 // Conservative tack: Zero to end of current word. 5103 zeroes_needed = align_up(zeroes_needed, BytesPerInt); 5104 } else { 5105 // Zero to beginning of next fully initialized word. 5106 // Or, don't zero at all, if we are already in that word. 5107 assert(next_full_store >= zeroes_needed, "must go forward"); 5108 assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary"); 5109 zeroes_needed = next_full_store; 5110 } 5111 } 5112 5113 if (zeroes_needed > zeroes_done) { 5114 intptr_t zsize = zeroes_needed - zeroes_done; 5115 // Do some incremental zeroing on rawmem, in parallel with inits. 5116 zeroes_done = align_down(zeroes_done, BytesPerInt); 5117 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, 5118 zeroes_done, zeroes_needed, 5119 phase); 5120 zeroes_done = zeroes_needed; 5121 if (zsize > InitArrayShortSize && ++big_init_gaps > 2) 5122 do_zeroing = false; // leave the hole, next time 5123 } 5124 } 5125 5126 // Collect the store and move on: 5127 phase->replace_input_of(st, MemNode::Memory, inits); 5128 inits = st; // put it on the linearized chain 5129 set_req(i, zmem); // unhook from previous position 5130 5131 if (zeroes_done == st_off) 5132 zeroes_done = next_init_off; 5133 5134 assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any"); 5135 5136 #ifdef ASSERT 5137 // Various order invariants. Weaker than stores_are_sane because 5138 // a large constant tile can be filled in by smaller non-constant stores. 5139 assert(st_off >= last_init_off, "inits do not reverse"); 5140 last_init_off = st_off; 5141 const Type* val = nullptr; 5142 if (st_size >= BytesPerInt && 5143 (val = phase->type(st->in(MemNode::ValueIn)))->singleton() && 5144 (int)val->basic_type() < (int)T_OBJECT) { 5145 assert(st_off >= last_tile_end, "tiles do not overlap"); 5146 assert(st_off >= last_init_end, "tiles do not overwrite inits"); 5147 last_tile_end = MAX2(last_tile_end, next_init_off); 5148 } else { 5149 intptr_t st_tile_end = align_up(next_init_off, BytesPerLong); 5150 assert(st_tile_end >= last_tile_end, "inits stay with tiles"); 5151 assert(st_off >= last_init_end, "inits do not overlap"); 5152 last_init_end = next_init_off; // it's a non-tile 5153 } 5154 #endif //ASSERT 5155 } 5156 5157 remove_extra_zeroes(); // clear out all the zmems left over 5158 add_req(inits); 5159 5160 if (!(UseTLAB && ZeroTLAB)) { 5161 // If anything remains to be zeroed, zero it all now. 5162 zeroes_done = align_down(zeroes_done, BytesPerInt); 5163 // if it is the last unused 4 bytes of an instance, forget about it 5164 intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint); 5165 if (zeroes_done + BytesPerLong >= size_limit) { 5166 AllocateNode* alloc = allocation(); 5167 assert(alloc != nullptr, "must be present"); 5168 if (alloc != nullptr && alloc->Opcode() == Op_Allocate) { 5169 Node* klass_node = alloc->in(AllocateNode::KlassNode); 5170 ciKlass* k = phase->type(klass_node)->is_instklassptr()->instance_klass(); 5171 if (zeroes_done == k->layout_helper()) 5172 zeroes_done = size_limit; 5173 } 5174 } 5175 if (zeroes_done < size_limit) { 5176 rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr, 5177 zeroes_done, size_in_bytes, phase); 5178 } 5179 } 5180 5181 set_complete(phase); 5182 return rawmem; 5183 } 5184 5185 5186 #ifdef ASSERT 5187 bool InitializeNode::stores_are_sane(PhaseValues* phase) { 5188 if (is_complete()) 5189 return true; // stores could be anything at this point 5190 assert(allocation() != nullptr, "must be present"); 5191 intptr_t last_off = allocation()->minimum_header_size(); 5192 for (uint i = InitializeNode::RawStores; i < req(); i++) { 5193 Node* st = in(i); 5194 intptr_t st_off = get_store_offset(st, phase); 5195 if (st_off < 0) continue; // ignore dead garbage 5196 if (last_off > st_off) { 5197 tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off); 5198 this->dump(2); 5199 assert(false, "ascending store offsets"); 5200 return false; 5201 } 5202 last_off = st_off + st->as_Store()->memory_size(); 5203 } 5204 return true; 5205 } 5206 #endif //ASSERT 5207 5208 5209 5210 5211 //============================MergeMemNode===================================== 5212 // 5213 // SEMANTICS OF MEMORY MERGES: A MergeMem is a memory state assembled from several 5214 // contributing store or call operations. Each contributor provides the memory 5215 // state for a particular "alias type" (see Compile::alias_type). For example, 5216 // if a MergeMem has an input X for alias category #6, then any memory reference 5217 // to alias category #6 may use X as its memory state input, as an exact equivalent 5218 // to using the MergeMem as a whole. 5219 // Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p) 5220 // 5221 // (Here, the <N> notation gives the index of the relevant adr_type.) 5222 // 5223 // In one special case (and more cases in the future), alias categories overlap. 5224 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory 5225 // states. Therefore, if a MergeMem has only one contributing input W for Bot, 5226 // it is exactly equivalent to that state W: 5227 // MergeMem(<Bot>: W) <==> W 5228 // 5229 // Usually, the merge has more than one input. In that case, where inputs 5230 // overlap (i.e., one is Bot), the narrower alias type determines the memory 5231 // state for that type, and the wider alias type (Bot) fills in everywhere else: 5232 // Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p) 5233 // Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p) 5234 // 5235 // A merge can take a "wide" memory state as one of its narrow inputs. 5236 // This simply means that the merge observes out only the relevant parts of 5237 // the wide input. That is, wide memory states arriving at narrow merge inputs 5238 // are implicitly "filtered" or "sliced" as necessary. (This is rare.) 5239 // 5240 // These rules imply that MergeMem nodes may cascade (via their <Bot> links), 5241 // and that memory slices "leak through": 5242 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y) 5243 // 5244 // But, in such a cascade, repeated memory slices can "block the leak": 5245 // MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y') 5246 // 5247 // In the last example, Y is not part of the combined memory state of the 5248 // outermost MergeMem. The system must, of course, prevent unschedulable 5249 // memory states from arising, so you can be sure that the state Y is somehow 5250 // a precursor to state Y'. 5251 // 5252 // 5253 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array 5254 // of each MergeMemNode array are exactly the numerical alias indexes, including 5255 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw. The functions 5256 // Compile::alias_type (and kin) produce and manage these indexes. 5257 // 5258 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node. 5259 // (Note that this provides quick access to the top node inside MergeMem methods, 5260 // without the need to reach out via TLS to Compile::current.) 5261 // 5262 // As a consequence of what was just described, a MergeMem that represents a full 5263 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state, 5264 // containing all alias categories. 5265 // 5266 // MergeMem nodes never (?) have control inputs, so in(0) is null. 5267 // 5268 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either 5269 // a memory state for the alias type <N>, or else the top node, meaning that 5270 // there is no particular input for that alias type. Note that the length of 5271 // a MergeMem is variable, and may be extended at any time to accommodate new 5272 // memory states at larger alias indexes. When merges grow, they are of course 5273 // filled with "top" in the unused in() positions. 5274 // 5275 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable. 5276 // (Top was chosen because it works smoothly with passes like GCM.) 5277 // 5278 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM. (It is 5279 // the type of random VM bits like TLS references.) Since it is always the 5280 // first non-Bot memory slice, some low-level loops use it to initialize an 5281 // index variable: for (i = AliasIdxRaw; i < req(); i++). 5282 // 5283 // 5284 // ACCESSORS: There is a special accessor MergeMemNode::base_memory which returns 5285 // the distinguished "wide" state. The accessor MergeMemNode::memory_at(N) returns 5286 // the memory state for alias type <N>, or (if there is no particular slice at <N>, 5287 // it returns the base memory. To prevent bugs, memory_at does not accept <Top> 5288 // or <Bot> indexes. The iterator MergeMemStream provides robust iteration over 5289 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited. 5290 // 5291 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't 5292 // really that different from the other memory inputs. An abbreviation called 5293 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy. 5294 // 5295 // 5296 // PARTIAL MEMORY STATES: During optimization, MergeMem nodes may arise that represent 5297 // partial memory states. When a Phi splits through a MergeMem, the copy of the Phi 5298 // that "emerges though" the base memory will be marked as excluding the alias types 5299 // of the other (narrow-memory) copies which "emerged through" the narrow edges: 5300 // 5301 // Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y)) 5302 // ==Ideal=> MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y)) 5303 // 5304 // This strange "subtraction" effect is necessary to ensure IGVN convergence. 5305 // (It is currently unimplemented.) As you can see, the resulting merge is 5306 // actually a disjoint union of memory states, rather than an overlay. 5307 // 5308 5309 //------------------------------MergeMemNode----------------------------------- 5310 Node* MergeMemNode::make_empty_memory() { 5311 Node* empty_memory = (Node*) Compile::current()->top(); 5312 assert(empty_memory->is_top(), "correct sentinel identity"); 5313 return empty_memory; 5314 } 5315 5316 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) { 5317 init_class_id(Class_MergeMem); 5318 // all inputs are nullified in Node::Node(int) 5319 // set_input(0, nullptr); // no control input 5320 5321 // Initialize the edges uniformly to top, for starters. 5322 Node* empty_mem = make_empty_memory(); 5323 for (uint i = Compile::AliasIdxTop; i < req(); i++) { 5324 init_req(i,empty_mem); 5325 } 5326 assert(empty_memory() == empty_mem, ""); 5327 5328 if( new_base != nullptr && new_base->is_MergeMem() ) { 5329 MergeMemNode* mdef = new_base->as_MergeMem(); 5330 assert(mdef->empty_memory() == empty_mem, "consistent sentinels"); 5331 for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) { 5332 mms.set_memory(mms.memory2()); 5333 } 5334 assert(base_memory() == mdef->base_memory(), ""); 5335 } else { 5336 set_base_memory(new_base); 5337 } 5338 } 5339 5340 // Make a new, untransformed MergeMem with the same base as 'mem'. 5341 // If mem is itself a MergeMem, populate the result with the same edges. 5342 MergeMemNode* MergeMemNode::make(Node* mem) { 5343 return new MergeMemNode(mem); 5344 } 5345 5346 //------------------------------cmp-------------------------------------------- 5347 uint MergeMemNode::hash() const { return NO_HASH; } 5348 bool MergeMemNode::cmp( const Node &n ) const { 5349 return (&n == this); // Always fail except on self 5350 } 5351 5352 //------------------------------Identity--------------------------------------- 5353 Node* MergeMemNode::Identity(PhaseGVN* phase) { 5354 // Identity if this merge point does not record any interesting memory 5355 // disambiguations. 5356 Node* base_mem = base_memory(); 5357 Node* empty_mem = empty_memory(); 5358 if (base_mem != empty_mem) { // Memory path is not dead? 5359 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5360 Node* mem = in(i); 5361 if (mem != empty_mem && mem != base_mem) { 5362 return this; // Many memory splits; no change 5363 } 5364 } 5365 } 5366 return base_mem; // No memory splits; ID on the one true input 5367 } 5368 5369 //------------------------------Ideal------------------------------------------ 5370 // This method is invoked recursively on chains of MergeMem nodes 5371 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) { 5372 // Remove chain'd MergeMems 5373 // 5374 // This is delicate, because the each "in(i)" (i >= Raw) is interpreted 5375 // relative to the "in(Bot)". Since we are patching both at the same time, 5376 // we have to be careful to read each "in(i)" relative to the old "in(Bot)", 5377 // but rewrite each "in(i)" relative to the new "in(Bot)". 5378 Node *progress = nullptr; 5379 5380 5381 Node* old_base = base_memory(); 5382 Node* empty_mem = empty_memory(); 5383 if (old_base == empty_mem) 5384 return nullptr; // Dead memory path. 5385 5386 MergeMemNode* old_mbase; 5387 if (old_base != nullptr && old_base->is_MergeMem()) 5388 old_mbase = old_base->as_MergeMem(); 5389 else 5390 old_mbase = nullptr; 5391 Node* new_base = old_base; 5392 5393 // simplify stacked MergeMems in base memory 5394 if (old_mbase) new_base = old_mbase->base_memory(); 5395 5396 // the base memory might contribute new slices beyond my req() 5397 if (old_mbase) grow_to_match(old_mbase); 5398 5399 // Note: We do not call verify_sparse on entry, because inputs 5400 // can normalize to the base_memory via subsume_node or similar 5401 // mechanisms. This method repairs that damage. 5402 5403 assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels"); 5404 5405 // Look at each slice. 5406 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5407 Node* old_in = in(i); 5408 // calculate the old memory value 5409 Node* old_mem = old_in; 5410 if (old_mem == empty_mem) old_mem = old_base; 5411 assert(old_mem == memory_at(i), ""); 5412 5413 // maybe update (reslice) the old memory value 5414 5415 // simplify stacked MergeMems 5416 Node* new_mem = old_mem; 5417 MergeMemNode* old_mmem; 5418 if (old_mem != nullptr && old_mem->is_MergeMem()) 5419 old_mmem = old_mem->as_MergeMem(); 5420 else 5421 old_mmem = nullptr; 5422 if (old_mmem == this) { 5423 // This can happen if loops break up and safepoints disappear. 5424 // A merge of BotPtr (default) with a RawPtr memory derived from a 5425 // safepoint can be rewritten to a merge of the same BotPtr with 5426 // the BotPtr phi coming into the loop. If that phi disappears 5427 // also, we can end up with a self-loop of the mergemem. 5428 // In general, if loops degenerate and memory effects disappear, 5429 // a mergemem can be left looking at itself. This simply means 5430 // that the mergemem's default should be used, since there is 5431 // no longer any apparent effect on this slice. 5432 // Note: If a memory slice is a MergeMem cycle, it is unreachable 5433 // from start. Update the input to TOP. 5434 new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base; 5435 } 5436 else if (old_mmem != nullptr) { 5437 new_mem = old_mmem->memory_at(i); 5438 } 5439 // else preceding memory was not a MergeMem 5440 5441 // maybe store down a new value 5442 Node* new_in = new_mem; 5443 if (new_in == new_base) new_in = empty_mem; 5444 5445 if (new_in != old_in) { 5446 // Warning: Do not combine this "if" with the previous "if" 5447 // A memory slice might have be be rewritten even if it is semantically 5448 // unchanged, if the base_memory value has changed. 5449 set_req_X(i, new_in, phase); 5450 progress = this; // Report progress 5451 } 5452 } 5453 5454 if (new_base != old_base) { 5455 set_req_X(Compile::AliasIdxBot, new_base, phase); 5456 // Don't use set_base_memory(new_base), because we need to update du. 5457 assert(base_memory() == new_base, ""); 5458 progress = this; 5459 } 5460 5461 if( base_memory() == this ) { 5462 // a self cycle indicates this memory path is dead 5463 set_req(Compile::AliasIdxBot, empty_mem); 5464 } 5465 5466 // Resolve external cycles by calling Ideal on a MergeMem base_memory 5467 // Recursion must occur after the self cycle check above 5468 if( base_memory()->is_MergeMem() ) { 5469 MergeMemNode *new_mbase = base_memory()->as_MergeMem(); 5470 Node *m = phase->transform(new_mbase); // Rollup any cycles 5471 if( m != nullptr && 5472 (m->is_top() || 5473 (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) { 5474 // propagate rollup of dead cycle to self 5475 set_req(Compile::AliasIdxBot, empty_mem); 5476 } 5477 } 5478 5479 if( base_memory() == empty_mem ) { 5480 progress = this; 5481 // Cut inputs during Parse phase only. 5482 // During Optimize phase a dead MergeMem node will be subsumed by Top. 5483 if( !can_reshape ) { 5484 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5485 if( in(i) != empty_mem ) { set_req(i, empty_mem); } 5486 } 5487 } 5488 } 5489 5490 if( !progress && base_memory()->is_Phi() && can_reshape ) { 5491 // Check if PhiNode::Ideal's "Split phis through memory merges" 5492 // transform should be attempted. Look for this->phi->this cycle. 5493 uint merge_width = req(); 5494 if (merge_width > Compile::AliasIdxRaw) { 5495 PhiNode* phi = base_memory()->as_Phi(); 5496 for( uint i = 1; i < phi->req(); ++i ) {// For all paths in 5497 if (phi->in(i) == this) { 5498 phase->is_IterGVN()->_worklist.push(phi); 5499 break; 5500 } 5501 } 5502 } 5503 } 5504 5505 assert(progress || verify_sparse(), "please, no dups of base"); 5506 return progress; 5507 } 5508 5509 //-------------------------set_base_memory------------------------------------- 5510 void MergeMemNode::set_base_memory(Node *new_base) { 5511 Node* empty_mem = empty_memory(); 5512 set_req(Compile::AliasIdxBot, new_base); 5513 assert(memory_at(req()) == new_base, "must set default memory"); 5514 // Clear out other occurrences of new_base: 5515 if (new_base != empty_mem) { 5516 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5517 if (in(i) == new_base) set_req(i, empty_mem); 5518 } 5519 } 5520 } 5521 5522 //------------------------------out_RegMask------------------------------------ 5523 const RegMask &MergeMemNode::out_RegMask() const { 5524 return RegMask::Empty; 5525 } 5526 5527 //------------------------------dump_spec-------------------------------------- 5528 #ifndef PRODUCT 5529 void MergeMemNode::dump_spec(outputStream *st) const { 5530 st->print(" {"); 5531 Node* base_mem = base_memory(); 5532 for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) { 5533 Node* mem = (in(i) != nullptr) ? memory_at(i) : base_mem; 5534 if (mem == base_mem) { st->print(" -"); continue; } 5535 st->print( " N%d:", mem->_idx ); 5536 Compile::current()->get_adr_type(i)->dump_on(st); 5537 } 5538 st->print(" }"); 5539 } 5540 #endif // !PRODUCT 5541 5542 5543 #ifdef ASSERT 5544 static bool might_be_same(Node* a, Node* b) { 5545 if (a == b) return true; 5546 if (!(a->is_Phi() || b->is_Phi())) return false; 5547 // phis shift around during optimization 5548 return true; // pretty stupid... 5549 } 5550 5551 // verify a narrow slice (either incoming or outgoing) 5552 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) { 5553 if (!VerifyAliases) return; // don't bother to verify unless requested 5554 if (VMError::is_error_reported()) return; // muzzle asserts when debugging an error 5555 if (Node::in_dump()) return; // muzzle asserts when printing 5556 assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel"); 5557 assert(n != nullptr, ""); 5558 // Elide intervening MergeMem's 5559 while (n->is_MergeMem()) { 5560 n = n->as_MergeMem()->memory_at(alias_idx); 5561 } 5562 Compile* C = Compile::current(); 5563 const TypePtr* n_adr_type = n->adr_type(); 5564 if (n == m->empty_memory()) { 5565 // Implicit copy of base_memory() 5566 } else if (n_adr_type != TypePtr::BOTTOM) { 5567 assert(n_adr_type != nullptr, "new memory must have a well-defined adr_type"); 5568 assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice"); 5569 } else { 5570 // A few places like make_runtime_call "know" that VM calls are narrow, 5571 // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM. 5572 bool expected_wide_mem = false; 5573 if (n == m->base_memory()) { 5574 expected_wide_mem = true; 5575 } else if (alias_idx == Compile::AliasIdxRaw || 5576 n == m->memory_at(Compile::AliasIdxRaw)) { 5577 expected_wide_mem = true; 5578 } else if (!C->alias_type(alias_idx)->is_rewritable()) { 5579 // memory can "leak through" calls on channels that 5580 // are write-once. Allow this also. 5581 expected_wide_mem = true; 5582 } 5583 assert(expected_wide_mem, "expected narrow slice replacement"); 5584 } 5585 } 5586 #else // !ASSERT 5587 #define verify_memory_slice(m,i,n) (void)(0) // PRODUCT version is no-op 5588 #endif 5589 5590 5591 //-----------------------------memory_at--------------------------------------- 5592 Node* MergeMemNode::memory_at(uint alias_idx) const { 5593 assert(alias_idx >= Compile::AliasIdxRaw || 5594 (alias_idx == Compile::AliasIdxBot && !Compile::current()->do_aliasing()), 5595 "must avoid base_memory and AliasIdxTop"); 5596 5597 // Otherwise, it is a narrow slice. 5598 Node* n = alias_idx < req() ? in(alias_idx) : empty_memory(); 5599 if (is_empty_memory(n)) { 5600 // the array is sparse; empty slots are the "top" node 5601 n = base_memory(); 5602 assert(Node::in_dump() 5603 || n == nullptr || n->bottom_type() == Type::TOP 5604 || n->adr_type() == nullptr // address is TOP 5605 || n->adr_type() == TypePtr::BOTTOM 5606 || n->adr_type() == TypeRawPtr::BOTTOM 5607 || !Compile::current()->do_aliasing(), 5608 "must be a wide memory"); 5609 // do_aliasing == false if we are organizing the memory states manually. 5610 // See verify_memory_slice for comments on TypeRawPtr::BOTTOM. 5611 } else { 5612 // make sure the stored slice is sane 5613 #ifdef ASSERT 5614 if (VMError::is_error_reported() || Node::in_dump()) { 5615 } else if (might_be_same(n, base_memory())) { 5616 // Give it a pass: It is a mostly harmless repetition of the base. 5617 // This can arise normally from node subsumption during optimization. 5618 } else { 5619 verify_memory_slice(this, alias_idx, n); 5620 } 5621 #endif 5622 } 5623 return n; 5624 } 5625 5626 //---------------------------set_memory_at------------------------------------- 5627 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) { 5628 verify_memory_slice(this, alias_idx, n); 5629 Node* empty_mem = empty_memory(); 5630 if (n == base_memory()) n = empty_mem; // collapse default 5631 uint need_req = alias_idx+1; 5632 if (req() < need_req) { 5633 if (n == empty_mem) return; // already the default, so do not grow me 5634 // grow the sparse array 5635 do { 5636 add_req(empty_mem); 5637 } while (req() < need_req); 5638 } 5639 set_req( alias_idx, n ); 5640 } 5641 5642 5643 5644 //--------------------------iteration_setup------------------------------------ 5645 void MergeMemNode::iteration_setup(const MergeMemNode* other) { 5646 if (other != nullptr) { 5647 grow_to_match(other); 5648 // invariant: the finite support of mm2 is within mm->req() 5649 #ifdef ASSERT 5650 for (uint i = req(); i < other->req(); i++) { 5651 assert(other->is_empty_memory(other->in(i)), "slice left uncovered"); 5652 } 5653 #endif 5654 } 5655 // Replace spurious copies of base_memory by top. 5656 Node* base_mem = base_memory(); 5657 if (base_mem != nullptr && !base_mem->is_top()) { 5658 for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) { 5659 if (in(i) == base_mem) 5660 set_req(i, empty_memory()); 5661 } 5662 } 5663 } 5664 5665 //---------------------------grow_to_match------------------------------------- 5666 void MergeMemNode::grow_to_match(const MergeMemNode* other) { 5667 Node* empty_mem = empty_memory(); 5668 assert(other->is_empty_memory(empty_mem), "consistent sentinels"); 5669 // look for the finite support of the other memory 5670 for (uint i = other->req(); --i >= req(); ) { 5671 if (other->in(i) != empty_mem) { 5672 uint new_len = i+1; 5673 while (req() < new_len) add_req(empty_mem); 5674 break; 5675 } 5676 } 5677 } 5678 5679 //---------------------------verify_sparse------------------------------------- 5680 #ifndef PRODUCT 5681 bool MergeMemNode::verify_sparse() const { 5682 assert(is_empty_memory(make_empty_memory()), "sane sentinel"); 5683 Node* base_mem = base_memory(); 5684 // The following can happen in degenerate cases, since empty==top. 5685 if (is_empty_memory(base_mem)) return true; 5686 for (uint i = Compile::AliasIdxRaw; i < req(); i++) { 5687 assert(in(i) != nullptr, "sane slice"); 5688 if (in(i) == base_mem) return false; // should have been the sentinel value! 5689 } 5690 return true; 5691 } 5692 5693 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) { 5694 Node* n; 5695 n = mm->in(idx); 5696 if (mem == n) return true; // might be empty_memory() 5697 n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx); 5698 if (mem == n) return true; 5699 return false; 5700 } 5701 #endif // !PRODUCT