1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "compiler/compileLog.hpp" 27 #include "interpreter/linkResolver.hpp" 28 #include "memory/resourceArea.hpp" 29 #include "oops/method.hpp" 30 #include "opto/addnode.hpp" 31 #include "opto/c2compiler.hpp" 32 #include "opto/castnode.hpp" 33 #include "opto/idealGraphPrinter.hpp" 34 #include "opto/locknode.hpp" 35 #include "opto/memnode.hpp" 36 #include "opto/opaquenode.hpp" 37 #include "opto/parse.hpp" 38 #include "opto/rootnode.hpp" 39 #include "opto/runtime.hpp" 40 #include "opto/type.hpp" 41 #include "runtime/handles.inline.hpp" 42 #include "runtime/safepointMechanism.hpp" 43 #include "runtime/sharedRuntime.hpp" 44 #include "utilities/bitMap.inline.hpp" 45 #include "utilities/copy.hpp" 46 47 // Static array so we can figure out which bytecodes stop us from compiling 48 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp 49 // and eventually should be encapsulated in a proper class (gri 8/18/98). 50 51 #ifndef PRODUCT 52 int nodes_created = 0; 53 int methods_parsed = 0; 54 int methods_seen = 0; 55 int blocks_parsed = 0; 56 int blocks_seen = 0; 57 58 int explicit_null_checks_inserted = 0; 59 int explicit_null_checks_elided = 0; 60 int all_null_checks_found = 0; 61 int implicit_null_checks = 0; 62 63 bool Parse::BytecodeParseHistogram::_initialized = false; 64 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes]; 65 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes]; 66 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes]; 67 uint Parse::BytecodeParseHistogram::_new_values [Bytecodes::number_of_codes]; 68 69 //------------------------------print_statistics------------------------------- 70 void Parse::print_statistics() { 71 tty->print_cr("--- Compiler Statistics ---"); 72 tty->print("Methods seen: %d Methods parsed: %d", methods_seen, methods_parsed); 73 tty->print(" Nodes created: %d", nodes_created); 74 tty->cr(); 75 if (methods_seen != methods_parsed) { 76 tty->print_cr("Reasons for parse failures (NOT cumulative):"); 77 } 78 tty->print_cr("Blocks parsed: %d Blocks seen: %d", blocks_parsed, blocks_seen); 79 80 if (explicit_null_checks_inserted) { 81 tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", 82 explicit_null_checks_inserted, explicit_null_checks_elided, 83 (100*explicit_null_checks_elided)/explicit_null_checks_inserted, 84 all_null_checks_found); 85 } 86 if (all_null_checks_found) { 87 tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks, 88 (100*implicit_null_checks)/all_null_checks_found); 89 } 90 if (SharedRuntime::_implicit_null_throws) { 91 tty->print_cr("%d implicit null exceptions at runtime", 92 SharedRuntime::_implicit_null_throws); 93 } 94 95 if (PrintParseStatistics && BytecodeParseHistogram::initialized()) { 96 BytecodeParseHistogram::print(); 97 } 98 } 99 #endif 100 101 //------------------------------ON STACK REPLACEMENT--------------------------- 102 103 // Construct a node which can be used to get incoming state for 104 // on stack replacement. 105 Node *Parse::fetch_interpreter_state(int index, 106 BasicType bt, 107 Node *local_addrs, 108 Node *local_addrs_base) { 109 Node *mem = memory(Compile::AliasIdxRaw); 110 Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize ); 111 Node *ctl = control(); 112 113 // Very similar to LoadNode::make, except we handle un-aligned longs and 114 // doubles on Sparc. Intel can handle them just fine directly. 115 Node *l = NULL; 116 switch (bt) { // Signature is flattened 117 case T_INT: l = new LoadINode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInt::INT, MemNode::unordered); break; 118 case T_FLOAT: l = new LoadFNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::FLOAT, MemNode::unordered); break; 119 case T_ADDRESS: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered); break; 120 case T_OBJECT: l = new LoadPNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM, MemNode::unordered); break; 121 case T_LONG: 122 case T_DOUBLE: { 123 // Since arguments are in reverse order, the argument address 'adr' 124 // refers to the back half of the long/double. Recompute adr. 125 adr = basic_plus_adr(local_addrs_base, local_addrs, -(index+1)*wordSize); 126 if (Matcher::misaligned_doubles_ok) { 127 l = (bt == T_DOUBLE) 128 ? (Node*)new LoadDNode(ctl, mem, adr, TypeRawPtr::BOTTOM, Type::DOUBLE, MemNode::unordered) 129 : (Node*)new LoadLNode(ctl, mem, adr, TypeRawPtr::BOTTOM, TypeLong::LONG, MemNode::unordered); 130 } else { 131 l = (bt == T_DOUBLE) 132 ? (Node*)new LoadD_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered) 133 : (Node*)new LoadL_unalignedNode(ctl, mem, adr, TypeRawPtr::BOTTOM, MemNode::unordered); 134 } 135 break; 136 } 137 default: ShouldNotReachHere(); 138 } 139 return _gvn.transform(l); 140 } 141 142 // Helper routine to prevent the interpreter from handing 143 // unexpected typestate to an OSR method. 144 // The Node l is a value newly dug out of the interpreter frame. 145 // The type is the type predicted by ciTypeFlow. Note that it is 146 // not a general type, but can only come from Type::get_typeflow_type. 147 // The safepoint is a map which will feed an uncommon trap. 148 Node* Parse::check_interpreter_type(Node* l, const Type* type, 149 SafePointNode* &bad_type_exit) { 150 151 const TypeOopPtr* tp = type->isa_oopptr(); 152 153 // TypeFlow may assert null-ness if a type appears unloaded. 154 if (type == TypePtr::NULL_PTR || 155 (tp != NULL && !tp->is_loaded())) { 156 // Value must be null, not a real oop. 157 Node* chk = _gvn.transform( new CmpPNode(l, null()) ); 158 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 159 IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN); 160 set_control(_gvn.transform( new IfTrueNode(iff) )); 161 Node* bad_type = _gvn.transform( new IfFalseNode(iff) ); 162 bad_type_exit->control()->add_req(bad_type); 163 l = null(); 164 } 165 166 // Typeflow can also cut off paths from the CFG, based on 167 // types which appear unloaded, or call sites which appear unlinked. 168 // When paths are cut off, values at later merge points can rise 169 // toward more specific classes. Make sure these specific classes 170 // are still in effect. 171 if (tp != NULL && !tp->is_same_java_type_as(TypeInstPtr::BOTTOM)) { 172 // TypeFlow asserted a specific object type. Value must have that type. 173 Node* bad_type_ctrl = NULL; 174 l = gen_checkcast(l, makecon(tp->as_klass_type()->cast_to_exactness(true)), &bad_type_ctrl); 175 bad_type_exit->control()->add_req(bad_type_ctrl); 176 } 177 178 assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate"); 179 return l; 180 } 181 182 // Helper routine which sets up elements of the initial parser map when 183 // performing a parse for on stack replacement. Add values into map. 184 // The only parameter contains the address of a interpreter arguments. 185 void Parse::load_interpreter_state(Node* osr_buf) { 186 int index; 187 int max_locals = jvms()->loc_size(); 188 int max_stack = jvms()->stk_size(); 189 190 191 // Mismatch between method and jvms can occur since map briefly held 192 // an OSR entry state (which takes up one RawPtr word). 193 assert(max_locals == method()->max_locals(), "sanity"); 194 assert(max_stack >= method()->max_stack(), "sanity"); 195 assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity"); 196 assert((int)jvms()->endoff() == (int)map()->req(), "sanity"); 197 198 // Find the start block. 199 Block* osr_block = start_block(); 200 assert(osr_block->start() == osr_bci(), "sanity"); 201 202 // Set initial BCI. 203 set_parse_bci(osr_block->start()); 204 205 // Set initial stack depth. 206 set_sp(osr_block->start_sp()); 207 208 // Check bailouts. We currently do not perform on stack replacement 209 // of loops in catch blocks or loops which branch with a non-empty stack. 210 if (sp() != 0) { 211 C->record_method_not_compilable("OSR starts with non-empty stack"); 212 return; 213 } 214 // Do not OSR inside finally clauses: 215 if (osr_block->has_trap_at(osr_block->start())) { 216 C->record_method_not_compilable("OSR starts with an immediate trap"); 217 return; 218 } 219 220 // Commute monitors from interpreter frame to compiler frame. 221 assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr"); 222 int mcnt = osr_block->flow()->monitor_count(); 223 Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize); 224 for (index = 0; index < mcnt; index++) { 225 // Make a BoxLockNode for the monitor. 226 Node *box = _gvn.transform(new BoxLockNode(next_monitor())); 227 228 229 // Displaced headers and locked objects are interleaved in the 230 // temp OSR buffer. We only copy the locked objects out here. 231 // Fetch the locked object from the OSR temp buffer and copy to our fastlock node. 232 Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf); 233 // Try and copy the displaced header to the BoxNode 234 Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf); 235 236 237 store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 238 239 // Build a bogus FastLockNode (no code will be generated) and push the 240 // monitor into our debug info. 241 const FastLockNode *flock = _gvn.transform(new FastLockNode( 0, lock_object, box ))->as_FastLock(); 242 map()->push_monitor(flock); 243 244 // If the lock is our method synchronization lock, tuck it away in 245 // _sync_lock for return and rethrow exit paths. 246 if (index == 0 && method()->is_synchronized()) { 247 _synch_lock = flock; 248 } 249 } 250 251 // Use the raw liveness computation to make sure that unexpected 252 // values don't propagate into the OSR frame. 253 MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci()); 254 if (!live_locals.is_valid()) { 255 // Degenerate or breakpointed method. 256 C->record_method_not_compilable("OSR in empty or breakpointed method"); 257 return; 258 } 259 260 // Extract the needed locals from the interpreter frame. 261 Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize); 262 263 // find all the locals that the interpreter thinks contain live oops 264 const ResourceBitMap live_oops = method()->live_local_oops_at_bci(osr_bci()); 265 for (index = 0; index < max_locals; index++) { 266 267 if (!live_locals.at(index)) { 268 continue; 269 } 270 271 const Type *type = osr_block->local_type_at(index); 272 273 if (type->isa_oopptr() != NULL) { 274 275 // 6403625: Verify that the interpreter oopMap thinks that the oop is live 276 // else we might load a stale oop if the MethodLiveness disagrees with the 277 // result of the interpreter. If the interpreter says it is dead we agree 278 // by making the value go to top. 279 // 280 281 if (!live_oops.at(index)) { 282 if (C->log() != NULL) { 283 C->log()->elem("OSR_mismatch local_index='%d'",index); 284 } 285 set_local(index, null()); 286 // and ignore it for the loads 287 continue; 288 } 289 } 290 291 // Filter out TOP, HALF, and BOTTOM. (Cf. ensure_phi.) 292 if (type == Type::TOP || type == Type::HALF) { 293 continue; 294 } 295 // If the type falls to bottom, then this must be a local that 296 // is mixing ints and oops or some such. Forcing it to top 297 // makes it go dead. 298 if (type == Type::BOTTOM) { 299 continue; 300 } 301 // Construct code to access the appropriate local. 302 BasicType bt = type->basic_type(); 303 if (type == TypePtr::NULL_PTR) { 304 // Ptr types are mixed together with T_ADDRESS but NULL is 305 // really for T_OBJECT types so correct it. 306 bt = T_OBJECT; 307 } 308 Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf); 309 set_local(index, value); 310 } 311 312 // Extract the needed stack entries from the interpreter frame. 313 for (index = 0; index < sp(); index++) { 314 const Type *type = osr_block->stack_type_at(index); 315 if (type != Type::TOP) { 316 // Currently the compiler bails out when attempting to on stack replace 317 // at a bci with a non-empty stack. We should not reach here. 318 ShouldNotReachHere(); 319 } 320 } 321 322 // End the OSR migration 323 make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(), 324 CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end), 325 "OSR_migration_end", TypeRawPtr::BOTTOM, 326 osr_buf); 327 328 // Now that the interpreter state is loaded, make sure it will match 329 // at execution time what the compiler is expecting now: 330 SafePointNode* bad_type_exit = clone_map(); 331 bad_type_exit->set_control(new RegionNode(1)); 332 333 assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point"); 334 for (index = 0; index < max_locals; index++) { 335 if (stopped()) break; 336 Node* l = local(index); 337 if (l->is_top()) continue; // nothing here 338 const Type *type = osr_block->local_type_at(index); 339 if (type->isa_oopptr() != NULL) { 340 if (!live_oops.at(index)) { 341 // skip type check for dead oops 342 continue; 343 } 344 } 345 if (osr_block->flow()->local_type_at(index)->is_return_address()) { 346 // In our current system it's illegal for jsr addresses to be 347 // live into an OSR entry point because the compiler performs 348 // inlining of jsrs. ciTypeFlow has a bailout that detect this 349 // case and aborts the compile if addresses are live into an OSR 350 // entry point. Because of that we can assume that any address 351 // locals at the OSR entry point are dead. Method liveness 352 // isn't precise enough to figure out that they are dead in all 353 // cases so simply skip checking address locals all 354 // together. Any type check is guaranteed to fail since the 355 // interpreter type is the result of a load which might have any 356 // value and the expected type is a constant. 357 continue; 358 } 359 set_local(index, check_interpreter_type(l, type, bad_type_exit)); 360 } 361 362 for (index = 0; index < sp(); index++) { 363 if (stopped()) break; 364 Node* l = stack(index); 365 if (l->is_top()) continue; // nothing here 366 const Type *type = osr_block->stack_type_at(index); 367 set_stack(index, check_interpreter_type(l, type, bad_type_exit)); 368 } 369 370 if (bad_type_exit->control()->req() > 1) { 371 // Build an uncommon trap here, if any inputs can be unexpected. 372 bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() )); 373 record_for_igvn(bad_type_exit->control()); 374 SafePointNode* types_are_good = map(); 375 set_map(bad_type_exit); 376 // The unexpected type happens because a new edge is active 377 // in the CFG, which typeflow had previously ignored. 378 // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123). 379 // This x will be typed as Integer if notReached is not yet linked. 380 // It could also happen due to a problem in ciTypeFlow analysis. 381 uncommon_trap(Deoptimization::Reason_constraint, 382 Deoptimization::Action_reinterpret); 383 set_map(types_are_good); 384 } 385 } 386 387 //------------------------------Parse------------------------------------------ 388 // Main parser constructor. 389 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses) 390 : _exits(caller) 391 { 392 // Init some variables 393 _caller = caller; 394 _method = parse_method; 395 _expected_uses = expected_uses; 396 _depth = 1 + (caller->has_method() ? caller->depth() : 0); 397 _wrote_final = false; 398 _wrote_volatile = false; 399 _wrote_stable = false; 400 _wrote_fields = false; 401 _alloc_with_final = NULL; 402 _entry_bci = InvocationEntryBci; 403 _tf = NULL; 404 _block = NULL; 405 _first_return = true; 406 _replaced_nodes_for_exceptions = false; 407 _new_idx = C->unique(); 408 debug_only(_block_count = -1); 409 debug_only(_blocks = (Block*)-1); 410 #ifndef PRODUCT 411 if (PrintCompilation || PrintOpto) { 412 // Make sure I have an inline tree, so I can print messages about it. 413 JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller; 414 InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method); 415 } 416 _max_switch_depth = 0; 417 _est_switch_depth = 0; 418 #endif 419 420 if (parse_method->has_reserved_stack_access()) { 421 C->set_has_reserved_stack_access(true); 422 } 423 424 if (parse_method->is_synchronized()) { 425 C->set_has_monitors(true); 426 C->push_monitor(); 427 } 428 429 _tf = TypeFunc::make(method()); 430 _iter.reset_to_method(method()); 431 _flow = method()->get_flow_analysis(); 432 if (_flow->failing()) { 433 C->record_method_not_compilable(_flow->failure_reason()); 434 } 435 436 #ifndef PRODUCT 437 if (_flow->has_irreducible_entry()) { 438 C->set_parsed_irreducible_loop(true); 439 } 440 #endif 441 C->set_has_loops(C->has_loops() || method()->has_loops()); 442 443 if (_expected_uses <= 0) { 444 _prof_factor = 1; 445 } else { 446 float prof_total = parse_method->interpreter_invocation_count(); 447 if (prof_total <= _expected_uses) { 448 _prof_factor = 1; 449 } else { 450 _prof_factor = _expected_uses / prof_total; 451 } 452 } 453 454 CompileLog* log = C->log(); 455 if (log != NULL) { 456 log->begin_head("parse method='%d' uses='%f'", 457 log->identify(parse_method), expected_uses); 458 if (depth() == 1 && C->is_osr_compilation()) { 459 log->print(" osr_bci='%d'", C->entry_bci()); 460 } 461 log->stamp(); 462 log->end_head(); 463 } 464 465 // Accumulate deoptimization counts. 466 // (The range_check and store_check counts are checked elsewhere.) 467 ciMethodData* md = method()->method_data(); 468 for (uint reason = 0; reason < md->trap_reason_limit(); reason++) { 469 uint md_count = md->trap_count(reason); 470 if (md_count != 0) { 471 if (md_count >= md->trap_count_limit()) { 472 md_count = md->trap_count_limit() + md->overflow_trap_count(); 473 } 474 uint total_count = C->trap_count(reason); 475 uint old_count = total_count; 476 total_count += md_count; 477 // Saturate the add if it overflows. 478 if (total_count < old_count || total_count < md_count) 479 total_count = (uint)-1; 480 C->set_trap_count(reason, total_count); 481 if (log != NULL) 482 log->elem("observe trap='%s' count='%d' total='%d'", 483 Deoptimization::trap_reason_name(reason), 484 md_count, total_count); 485 } 486 } 487 // Accumulate total sum of decompilations, also. 488 C->set_decompile_count(C->decompile_count() + md->decompile_count()); 489 490 if (log != NULL && method()->has_exception_handlers()) { 491 log->elem("observe that='has_exception_handlers'"); 492 } 493 494 assert(InlineTree::check_can_parse(method()) == NULL, "Can not parse this method, cutout earlier"); 495 assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier"); 496 497 // Always register dependence if JVMTI is enabled, because 498 // either breakpoint setting or hotswapping of methods may 499 // cause deoptimization. 500 if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) { 501 C->dependencies()->assert_evol_method(method()); 502 } 503 504 NOT_PRODUCT(methods_seen++); 505 506 // Do some special top-level things. 507 if (depth() == 1 && C->is_osr_compilation()) { 508 _entry_bci = C->entry_bci(); 509 _flow = method()->get_osr_flow_analysis(osr_bci()); 510 if (_flow->failing()) { 511 C->record_method_not_compilable(_flow->failure_reason()); 512 #ifndef PRODUCT 513 if (PrintOpto && (Verbose || WizardMode)) { 514 tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason()); 515 if (Verbose) { 516 method()->print(); 517 method()->print_codes(); 518 _flow->print(); 519 } 520 } 521 #endif 522 } 523 _tf = C->tf(); // the OSR entry type is different 524 } 525 526 #ifdef ASSERT 527 if (depth() == 1) { 528 assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync"); 529 } else { 530 assert(!this->is_osr_parse(), "no recursive OSR"); 531 } 532 #endif 533 534 #ifndef PRODUCT 535 methods_parsed++; 536 // add method size here to guarantee that inlined methods are added too 537 if (CITime) 538 _total_bytes_compiled += method()->code_size(); 539 540 show_parse_info(); 541 #endif 542 543 if (failing()) { 544 if (log) log->done("parse"); 545 return; 546 } 547 548 gvn().transform(top()); 549 550 // Import the results of the ciTypeFlow. 551 init_blocks(); 552 553 // Merge point for all normal exits 554 build_exits(); 555 556 // Setup the initial JVM state map. 557 SafePointNode* entry_map = create_entry_map(); 558 559 // Check for bailouts during map initialization 560 if (failing() || entry_map == NULL) { 561 if (log) log->done("parse"); 562 return; 563 } 564 565 Node_Notes* caller_nn = C->default_node_notes(); 566 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 567 if (DebugInlinedCalls || depth() == 1) { 568 C->set_default_node_notes(make_node_notes(caller_nn)); 569 } 570 571 if (is_osr_parse()) { 572 Node* osr_buf = entry_map->in(TypeFunc::Parms+0); 573 entry_map->set_req(TypeFunc::Parms+0, top()); 574 set_map(entry_map); 575 load_interpreter_state(osr_buf); 576 } else { 577 set_map(entry_map); 578 do_method_entry(); 579 } 580 581 if (depth() == 1 && !failing()) { 582 if (C->clinit_barrier_on_entry()) { 583 // Add check to deoptimize the nmethod once the holder class is fully initialized 584 clinit_deopt(); 585 } 586 587 // Add check to deoptimize the nmethod if RTM state was changed 588 rtm_deopt(); 589 } 590 591 // Check for bailouts during method entry or RTM state check setup. 592 if (failing()) { 593 if (log) log->done("parse"); 594 C->set_default_node_notes(caller_nn); 595 return; 596 } 597 598 entry_map = map(); // capture any changes performed by method setup code 599 assert(jvms()->endoff() == map()->req(), "map matches JVMS layout"); 600 601 // We begin parsing as if we have just encountered a jump to the 602 // method entry. 603 Block* entry_block = start_block(); 604 assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), ""); 605 set_map_clone(entry_map); 606 merge_common(entry_block, entry_block->next_path_num()); 607 608 #ifndef PRODUCT 609 BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C); 610 set_parse_histogram( parse_histogram_obj ); 611 #endif 612 613 // Parse all the basic blocks. 614 do_all_blocks(); 615 616 C->set_default_node_notes(caller_nn); 617 618 // Check for bailouts during conversion to graph 619 if (failing()) { 620 if (log) log->done("parse"); 621 return; 622 } 623 624 // Fix up all exiting control flow. 625 set_map(entry_map); 626 do_exits(); 627 628 if (log) log->done("parse nodes='%d' live='%d' memory='" SIZE_FORMAT "'", 629 C->unique(), C->live_nodes(), C->node_arena()->used()); 630 } 631 632 //---------------------------do_all_blocks------------------------------------- 633 void Parse::do_all_blocks() { 634 bool has_irreducible = flow()->has_irreducible_entry(); 635 636 // Walk over all blocks in Reverse Post-Order. 637 while (true) { 638 bool progress = false; 639 for (int rpo = 0; rpo < block_count(); rpo++) { 640 Block* block = rpo_at(rpo); 641 642 if (block->is_parsed()) continue; 643 644 if (!block->is_merged()) { 645 // Dead block, no state reaches this block 646 continue; 647 } 648 649 // Prepare to parse this block. 650 load_state_from(block); 651 652 if (stopped()) { 653 // Block is dead. 654 continue; 655 } 656 657 NOT_PRODUCT(blocks_parsed++); 658 659 progress = true; 660 if (block->is_loop_head() || block->is_handler() || (has_irreducible && !block->is_ready())) { 661 // Not all preds have been parsed. We must build phis everywhere. 662 // (Note that dead locals do not get phis built, ever.) 663 ensure_phis_everywhere(); 664 665 if (block->is_SEL_head()) { 666 // Add predicate to single entry (not irreducible) loop head. 667 assert(!block->has_merged_backedge(), "only entry paths should be merged for now"); 668 // Predicates may have been added after a dominating if 669 if (!block->has_predicates()) { 670 // Need correct bci for predicate. 671 // It is fine to set it here since do_one_block() will set it anyway. 672 set_parse_bci(block->start()); 673 add_empty_predicates(); 674 } 675 // Add new region for back branches. 676 int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region 677 RegionNode *r = new RegionNode(edges+1); 678 _gvn.set_type(r, Type::CONTROL); 679 record_for_igvn(r); 680 r->init_req(edges, control()); 681 set_control(r); 682 block->copy_irreducible_status_to(r, jvms()); 683 // Add new phis. 684 ensure_phis_everywhere(); 685 } 686 687 // Leave behind an undisturbed copy of the map, for future merges. 688 set_map(clone_map()); 689 } 690 691 if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) { 692 // In the absence of irreducible loops, the Region and Phis 693 // associated with a merge that doesn't involve a backedge can 694 // be simplified now since the RPO parsing order guarantees 695 // that any path which was supposed to reach here has already 696 // been parsed or must be dead. 697 Node* c = control(); 698 Node* result = _gvn.transform_no_reclaim(control()); 699 if (c != result && TraceOptoParse) { 700 tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx); 701 } 702 if (result != top()) { 703 record_for_igvn(result); 704 } 705 } 706 707 // Parse the block. 708 do_one_block(); 709 710 // Check for bailouts. 711 if (failing()) return; 712 } 713 714 // with irreducible loops multiple passes might be necessary to parse everything 715 if (!has_irreducible || !progress) { 716 break; 717 } 718 } 719 720 #ifndef PRODUCT 721 blocks_seen += block_count(); 722 723 // Make sure there are no half-processed blocks remaining. 724 // Every remaining unprocessed block is dead and may be ignored now. 725 for (int rpo = 0; rpo < block_count(); rpo++) { 726 Block* block = rpo_at(rpo); 727 if (!block->is_parsed()) { 728 if (TraceOptoParse) { 729 tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start()); 730 } 731 assert(!block->is_merged(), "no half-processed blocks"); 732 } 733 } 734 #endif 735 } 736 737 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) { 738 switch (bt) { 739 case T_BYTE: 740 v = gvn->transform(new LShiftINode(v, gvn->intcon(24))); 741 v = gvn->transform(new RShiftINode(v, gvn->intcon(24))); 742 break; 743 case T_SHORT: 744 v = gvn->transform(new LShiftINode(v, gvn->intcon(16))); 745 v = gvn->transform(new RShiftINode(v, gvn->intcon(16))); 746 break; 747 case T_CHAR: 748 v = gvn->transform(new AndINode(v, gvn->intcon(0xFFFF))); 749 break; 750 case T_BOOLEAN: 751 v = gvn->transform(new AndINode(v, gvn->intcon(0x1))); 752 break; 753 default: 754 break; 755 } 756 return v; 757 } 758 759 //-------------------------------build_exits---------------------------------- 760 // Build normal and exceptional exit merge points. 761 void Parse::build_exits() { 762 // make a clone of caller to prevent sharing of side-effects 763 _exits.set_map(_exits.clone_map()); 764 _exits.clean_stack(_exits.sp()); 765 _exits.sync_jvms(); 766 767 RegionNode* region = new RegionNode(1); 768 record_for_igvn(region); 769 gvn().set_type_bottom(region); 770 _exits.set_control(region); 771 772 // Note: iophi and memphi are not transformed until do_exits. 773 Node* iophi = new PhiNode(region, Type::ABIO); 774 Node* memphi = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM); 775 gvn().set_type_bottom(iophi); 776 gvn().set_type_bottom(memphi); 777 _exits.set_i_o(iophi); 778 _exits.set_all_memory(memphi); 779 780 // Add a return value to the exit state. (Do not push it yet.) 781 if (tf()->range()->cnt() > TypeFunc::Parms) { 782 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 783 if (ret_type->isa_int()) { 784 BasicType ret_bt = method()->return_type()->basic_type(); 785 if (ret_bt == T_BOOLEAN || 786 ret_bt == T_CHAR || 787 ret_bt == T_BYTE || 788 ret_bt == T_SHORT) { 789 ret_type = TypeInt::INT; 790 } 791 } 792 793 // Don't "bind" an unloaded return klass to the ret_phi. If the klass 794 // becomes loaded during the subsequent parsing, the loaded and unloaded 795 // types will not join when we transform and push in do_exits(). 796 const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr(); 797 if (ret_oop_type && !ret_oop_type->is_loaded()) { 798 ret_type = TypeOopPtr::BOTTOM; 799 } 800 int ret_size = type2size[ret_type->basic_type()]; 801 Node* ret_phi = new PhiNode(region, ret_type); 802 gvn().set_type_bottom(ret_phi); 803 _exits.ensure_stack(ret_size); 804 assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range"); 805 assert(method()->return_type()->size() == ret_size, "tf agrees w/ method"); 806 _exits.set_argument(0, ret_phi); // here is where the parser finds it 807 // Note: ret_phi is not yet pushed, until do_exits. 808 } 809 } 810 811 812 //----------------------------build_start_state------------------------------- 813 // Construct a state which contains only the incoming arguments from an 814 // unknown caller. The method & bci will be NULL & InvocationEntryBci. 815 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) { 816 int arg_size = tf->domain()->cnt(); 817 int max_size = MAX2(arg_size, (int)tf->range()->cnt()); 818 JVMState* jvms = new (this) JVMState(max_size - TypeFunc::Parms); 819 SafePointNode* map = new SafePointNode(max_size, jvms); 820 record_for_igvn(map); 821 assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size"); 822 Node_Notes* old_nn = default_node_notes(); 823 if (old_nn != NULL && has_method()) { 824 Node_Notes* entry_nn = old_nn->clone(this); 825 JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms()); 826 entry_jvms->set_offsets(0); 827 entry_jvms->set_bci(entry_bci()); 828 entry_nn->set_jvms(entry_jvms); 829 set_default_node_notes(entry_nn); 830 } 831 uint i; 832 for (i = 0; i < (uint)arg_size; i++) { 833 Node* parm = initial_gvn()->transform(new ParmNode(start, i)); 834 map->init_req(i, parm); 835 // Record all these guys for later GVN. 836 record_for_igvn(parm); 837 } 838 for (; i < map->req(); i++) { 839 map->init_req(i, top()); 840 } 841 assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here"); 842 set_default_node_notes(old_nn); 843 jvms->set_map(map); 844 return jvms; 845 } 846 847 //-----------------------------make_node_notes--------------------------------- 848 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) { 849 if (caller_nn == NULL) return NULL; 850 Node_Notes* nn = caller_nn->clone(C); 851 JVMState* caller_jvms = nn->jvms(); 852 JVMState* jvms = new (C) JVMState(method(), caller_jvms); 853 jvms->set_offsets(0); 854 jvms->set_bci(_entry_bci); 855 nn->set_jvms(jvms); 856 return nn; 857 } 858 859 860 //--------------------------return_values-------------------------------------- 861 void Compile::return_values(JVMState* jvms) { 862 GraphKit kit(jvms); 863 Node* ret = new ReturnNode(TypeFunc::Parms, 864 kit.control(), 865 kit.i_o(), 866 kit.reset_memory(), 867 kit.frameptr(), 868 kit.returnadr()); 869 // Add zero or 1 return values 870 int ret_size = tf()->range()->cnt() - TypeFunc::Parms; 871 if (ret_size > 0) { 872 kit.inc_sp(-ret_size); // pop the return value(s) 873 kit.sync_jvms(); 874 ret->add_req(kit.argument(0)); 875 // Note: The second dummy edge is not needed by a ReturnNode. 876 } 877 // bind it to root 878 root()->add_req(ret); 879 record_for_igvn(ret); 880 initial_gvn()->transform_no_reclaim(ret); 881 } 882 883 //------------------------rethrow_exceptions----------------------------------- 884 // Bind all exception states in the list into a single RethrowNode. 885 void Compile::rethrow_exceptions(JVMState* jvms) { 886 GraphKit kit(jvms); 887 if (!kit.has_exceptions()) return; // nothing to generate 888 // Load my combined exception state into the kit, with all phis transformed: 889 SafePointNode* ex_map = kit.combine_and_pop_all_exception_states(); 890 Node* ex_oop = kit.use_exception_state(ex_map); 891 RethrowNode* exit = new RethrowNode(kit.control(), 892 kit.i_o(), kit.reset_memory(), 893 kit.frameptr(), kit.returnadr(), 894 // like a return but with exception input 895 ex_oop); 896 // bind to root 897 root()->add_req(exit); 898 record_for_igvn(exit); 899 initial_gvn()->transform_no_reclaim(exit); 900 } 901 902 //---------------------------do_exceptions------------------------------------- 903 // Process exceptions arising from the current bytecode. 904 // Send caught exceptions to the proper handler within this method. 905 // Unhandled exceptions feed into _exit. 906 void Parse::do_exceptions() { 907 if (!has_exceptions()) return; 908 909 if (failing()) { 910 // Pop them all off and throw them away. 911 while (pop_exception_state() != NULL) ; 912 return; 913 } 914 915 PreserveJVMState pjvms(this, false); 916 917 SafePointNode* ex_map; 918 while ((ex_map = pop_exception_state()) != NULL) { 919 if (!method()->has_exception_handlers()) { 920 // Common case: Transfer control outward. 921 // Doing it this early allows the exceptions to common up 922 // even between adjacent method calls. 923 throw_to_exit(ex_map); 924 } else { 925 // Have to look at the exception first. 926 assert(stopped(), "catch_inline_exceptions trashes the map"); 927 catch_inline_exceptions(ex_map); 928 stop_and_kill_map(); // we used up this exception state; kill it 929 } 930 } 931 932 // We now return to our regularly scheduled program: 933 } 934 935 //---------------------------throw_to_exit------------------------------------- 936 // Merge the given map into an exception exit from this method. 937 // The exception exit will handle any unlocking of receiver. 938 // The ex_oop must be saved within the ex_map, unlike merge_exception. 939 void Parse::throw_to_exit(SafePointNode* ex_map) { 940 // Pop the JVMS to (a copy of) the caller. 941 GraphKit caller; 942 caller.set_map_clone(_caller->map()); 943 caller.set_bci(_caller->bci()); 944 caller.set_sp(_caller->sp()); 945 // Copy out the standard machine state: 946 for (uint i = 0; i < TypeFunc::Parms; i++) { 947 caller.map()->set_req(i, ex_map->in(i)); 948 } 949 if (ex_map->has_replaced_nodes()) { 950 _replaced_nodes_for_exceptions = true; 951 } 952 caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx); 953 // ...and the exception: 954 Node* ex_oop = saved_ex_oop(ex_map); 955 SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop); 956 // Finally, collect the new exception state in my exits: 957 _exits.add_exception_state(caller_ex_map); 958 } 959 960 //------------------------------do_exits--------------------------------------- 961 void Parse::do_exits() { 962 set_parse_bci(InvocationEntryBci); 963 964 // Now peephole on the return bits 965 Node* region = _exits.control(); 966 _exits.set_control(gvn().transform(region)); 967 968 Node* iophi = _exits.i_o(); 969 _exits.set_i_o(gvn().transform(iophi)); 970 971 // Figure out if we need to emit the trailing barrier. The barrier is only 972 // needed in the constructors, and only in three cases: 973 // 974 // 1. The constructor wrote a final. The effects of all initializations 975 // must be committed to memory before any code after the constructor 976 // publishes the reference to the newly constructed object. Rather 977 // than wait for the publication, we simply block the writes here. 978 // Rather than put a barrier on only those writes which are required 979 // to complete, we force all writes to complete. 980 // 981 // 2. Experimental VM option is used to force the barrier if any field 982 // was written out in the constructor. 983 // 984 // 3. On processors which are not CPU_MULTI_COPY_ATOMIC (e.g. PPC64), 985 // support_IRIW_for_not_multiple_copy_atomic_cpu selects that 986 // MemBarVolatile is used before volatile load instead of after volatile 987 // store, so there's no barrier after the store. 988 // We want to guarantee the same behavior as on platforms with total store 989 // order, although this is not required by the Java memory model. 990 // In this case, we want to enforce visibility of volatile field 991 // initializations which are performed in constructors. 992 // So as with finals, we add a barrier here. 993 // 994 // "All bets are off" unless the first publication occurs after a 995 // normal return from the constructor. We do not attempt to detect 996 // such unusual early publications. But no barrier is needed on 997 // exceptional returns, since they cannot publish normally. 998 // 999 if (method()->is_initializer() && 1000 (wrote_final() || 1001 (AlwaysSafeConstructors && wrote_fields()) || 1002 (support_IRIW_for_not_multiple_copy_atomic_cpu && wrote_volatile()))) { 1003 _exits.insert_mem_bar(Op_MemBarRelease, alloc_with_final()); 1004 1005 // If Memory barrier is created for final fields write 1006 // and allocation node does not escape the initialize method, 1007 // then barrier introduced by allocation node can be removed. 1008 if (DoEscapeAnalysis && alloc_with_final()) { 1009 AllocateNode *alloc = AllocateNode::Ideal_allocation(alloc_with_final(), &_gvn); 1010 alloc->compute_MemBar_redundancy(method()); 1011 } 1012 if (PrintOpto && (Verbose || WizardMode)) { 1013 method()->print_name(); 1014 tty->print_cr(" writes finals and needs a memory barrier"); 1015 } 1016 } 1017 1018 // Any method can write a @Stable field; insert memory barriers 1019 // after those also. Can't bind predecessor allocation node (if any) 1020 // with barrier because allocation doesn't always dominate 1021 // MemBarRelease. 1022 if (wrote_stable()) { 1023 _exits.insert_mem_bar(Op_MemBarRelease); 1024 if (PrintOpto && (Verbose || WizardMode)) { 1025 method()->print_name(); 1026 tty->print_cr(" writes @Stable and needs a memory barrier"); 1027 } 1028 } 1029 1030 for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) { 1031 // transform each slice of the original memphi: 1032 mms.set_memory(_gvn.transform(mms.memory())); 1033 } 1034 // Clean up input MergeMems created by transforming the slices 1035 _gvn.transform(_exits.merged_memory()); 1036 1037 if (tf()->range()->cnt() > TypeFunc::Parms) { 1038 const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms); 1039 Node* ret_phi = _gvn.transform( _exits.argument(0) ); 1040 if (!_exits.control()->is_top() && _gvn.type(ret_phi)->empty()) { 1041 // If the type we set for the ret_phi in build_exits() is too optimistic and 1042 // the ret_phi is top now, there's an extremely small chance that it may be due to class 1043 // loading. It could also be due to an error, so mark this method as not compilable because 1044 // otherwise this could lead to an infinite compile loop. 1045 // In any case, this code path is rarely (and never in my testing) reached. 1046 C->record_method_not_compilable("Can't determine return type."); 1047 return; 1048 } 1049 if (ret_type->isa_int()) { 1050 BasicType ret_bt = method()->return_type()->basic_type(); 1051 ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn); 1052 } 1053 _exits.push_node(ret_type->basic_type(), ret_phi); 1054 } 1055 1056 // Note: Logic for creating and optimizing the ReturnNode is in Compile. 1057 1058 // Unlock along the exceptional paths. 1059 // This is done late so that we can common up equivalent exceptions 1060 // (e.g., null checks) arising from multiple points within this method. 1061 // See GraphKit::add_exception_state, which performs the commoning. 1062 bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode; 1063 1064 // record exit from a method if compiled while Dtrace is turned on. 1065 if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) { 1066 // First move the exception list out of _exits: 1067 GraphKit kit(_exits.transfer_exceptions_into_jvms()); 1068 SafePointNode* normal_map = kit.map(); // keep this guy safe 1069 // Now re-collect the exceptions into _exits: 1070 SafePointNode* ex_map; 1071 while ((ex_map = kit.pop_exception_state()) != NULL) { 1072 Node* ex_oop = kit.use_exception_state(ex_map); 1073 // Force the exiting JVM state to have this method at InvocationEntryBci. 1074 // The exiting JVM state is otherwise a copy of the calling JVMS. 1075 JVMState* caller = kit.jvms(); 1076 JVMState* ex_jvms = caller->clone_shallow(C); 1077 ex_jvms->bind_map(kit.clone_map()); 1078 ex_jvms->set_bci( InvocationEntryBci); 1079 kit.set_jvms(ex_jvms); 1080 if (do_synch) { 1081 // Add on the synchronized-method box/object combo 1082 kit.map()->push_monitor(_synch_lock); 1083 // Unlock! 1084 kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 1085 } 1086 if (C->env()->dtrace_method_probes()) { 1087 kit.make_dtrace_method_exit(method()); 1088 } 1089 if (_replaced_nodes_for_exceptions) { 1090 kit.map()->apply_replaced_nodes(_new_idx); 1091 } 1092 // Done with exception-path processing. 1093 ex_map = kit.make_exception_state(ex_oop); 1094 assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity"); 1095 // Pop the last vestige of this method: 1096 caller->clone_shallow(C)->bind_map(ex_map); 1097 _exits.push_exception_state(ex_map); 1098 } 1099 assert(_exits.map() == normal_map, "keep the same return state"); 1100 } 1101 1102 { 1103 // Capture very early exceptions (receiver null checks) from caller JVMS 1104 GraphKit caller(_caller); 1105 SafePointNode* ex_map; 1106 while ((ex_map = caller.pop_exception_state()) != NULL) { 1107 _exits.add_exception_state(ex_map); 1108 } 1109 } 1110 _exits.map()->apply_replaced_nodes(_new_idx); 1111 } 1112 1113 //-----------------------------create_entry_map------------------------------- 1114 // Initialize our parser map to contain the types at method entry. 1115 // For OSR, the map contains a single RawPtr parameter. 1116 // Initial monitor locking for sync. methods is performed by do_method_entry. 1117 SafePointNode* Parse::create_entry_map() { 1118 // Check for really stupid bail-out cases. 1119 uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack(); 1120 if (len >= 32760) { 1121 C->record_method_not_compilable("too many local variables"); 1122 return NULL; 1123 } 1124 1125 // clear current replaced nodes that are of no use from here on (map was cloned in build_exits). 1126 _caller->map()->delete_replaced_nodes(); 1127 1128 // If this is an inlined method, we may have to do a receiver null check. 1129 if (_caller->has_method() && is_normal_parse() && !method()->is_static()) { 1130 GraphKit kit(_caller); 1131 kit.null_check_receiver_before_call(method()); 1132 _caller = kit.transfer_exceptions_into_jvms(); 1133 if (kit.stopped()) { 1134 _exits.add_exception_states_from(_caller); 1135 _exits.set_jvms(_caller); 1136 return NULL; 1137 } 1138 } 1139 1140 assert(method() != NULL, "parser must have a method"); 1141 1142 // Create an initial safepoint to hold JVM state during parsing 1143 JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL); 1144 set_map(new SafePointNode(len, jvms)); 1145 jvms->set_map(map()); 1146 record_for_igvn(map()); 1147 assert(jvms->endoff() == len, "correct jvms sizing"); 1148 1149 SafePointNode* inmap = _caller->map(); 1150 assert(inmap != NULL, "must have inmap"); 1151 // In case of null check on receiver above 1152 map()->transfer_replaced_nodes_from(inmap, _new_idx); 1153 1154 uint i; 1155 1156 // Pass thru the predefined input parameters. 1157 for (i = 0; i < TypeFunc::Parms; i++) { 1158 map()->init_req(i, inmap->in(i)); 1159 } 1160 1161 if (depth() == 1) { 1162 assert(map()->memory()->Opcode() == Op_Parm, ""); 1163 // Insert the memory aliasing node 1164 set_all_memory(reset_memory()); 1165 } 1166 assert(merged_memory(), ""); 1167 1168 // Now add the locals which are initially bound to arguments: 1169 uint arg_size = tf()->domain()->cnt(); 1170 ensure_stack(arg_size - TypeFunc::Parms); // OSR methods have funny args 1171 for (i = TypeFunc::Parms; i < arg_size; i++) { 1172 map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms)); 1173 } 1174 1175 // Clear out the rest of the map (locals and stack) 1176 for (i = arg_size; i < len; i++) { 1177 map()->init_req(i, top()); 1178 } 1179 1180 SafePointNode* entry_map = stop(); 1181 return entry_map; 1182 } 1183 1184 //-----------------------------do_method_entry-------------------------------- 1185 // Emit any code needed in the pseudo-block before BCI zero. 1186 // The main thing to do is lock the receiver of a synchronized method. 1187 void Parse::do_method_entry() { 1188 set_parse_bci(InvocationEntryBci); // Pseudo-BCP 1189 set_sp(0); // Java Stack Pointer 1190 1191 NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); ) 1192 1193 if (C->env()->dtrace_method_probes()) { 1194 make_dtrace_method_entry(method()); 1195 } 1196 1197 #ifdef ASSERT 1198 // Narrow receiver type when it is too broad for the method being parsed. 1199 if (!method()->is_static()) { 1200 ciInstanceKlass* callee_holder = method()->holder(); 1201 const Type* holder_type = TypeInstPtr::make(TypePtr::BotPTR, callee_holder, Type::trust_interfaces); 1202 1203 Node* receiver_obj = local(0); 1204 const TypeInstPtr* receiver_type = _gvn.type(receiver_obj)->isa_instptr(); 1205 1206 if (receiver_type != NULL && !receiver_type->higher_equal(holder_type)) { 1207 // Receiver should always be a subtype of callee holder. 1208 // But, since C2 type system doesn't properly track interfaces, 1209 // the invariant can't be expressed in the type system for default methods. 1210 // Example: for unrelated C <: I and D <: I, (C `meet` D) = Object </: I. 1211 assert(callee_holder->is_interface(), "missing subtype check"); 1212 1213 // Perform dynamic receiver subtype check against callee holder class w/ a halt on failure. 1214 Node* holder_klass = _gvn.makecon(TypeKlassPtr::make(callee_holder, Type::trust_interfaces)); 1215 Node* not_subtype_ctrl = gen_subtype_check(receiver_obj, holder_klass); 1216 assert(!stopped(), "not a subtype"); 1217 1218 Node* halt = _gvn.transform(new HaltNode(not_subtype_ctrl, frameptr(), "failed receiver subtype check")); 1219 C->root()->add_req(halt); 1220 } 1221 } 1222 #endif // ASSERT 1223 1224 // If the method is synchronized, we need to construct a lock node, attach 1225 // it to the Start node, and pin it there. 1226 if (method()->is_synchronized()) { 1227 // Insert a FastLockNode right after the Start which takes as arguments 1228 // the current thread pointer, the "this" pointer & the address of the 1229 // stack slot pair used for the lock. The "this" pointer is a projection 1230 // off the start node, but the locking spot has to be constructed by 1231 // creating a ConLNode of 0, and boxing it with a BoxLockNode. The BoxLockNode 1232 // becomes the second argument to the FastLockNode call. The 1233 // FastLockNode becomes the new control parent to pin it to the start. 1234 1235 // Setup Object Pointer 1236 Node *lock_obj = NULL; 1237 if (method()->is_static()) { 1238 ciInstance* mirror = _method->holder()->java_mirror(); 1239 const TypeInstPtr *t_lock = TypeInstPtr::make(mirror); 1240 lock_obj = makecon(t_lock); 1241 } else { // Else pass the "this" pointer, 1242 lock_obj = local(0); // which is Parm0 from StartNode 1243 } 1244 // Clear out dead values from the debug info. 1245 kill_dead_locals(); 1246 // Build the FastLockNode 1247 _synch_lock = shared_lock(lock_obj); 1248 } 1249 1250 // Feed profiling data for parameters to the type system so it can 1251 // propagate it as speculative types 1252 record_profiled_parameters_for_speculation(); 1253 } 1254 1255 //------------------------------init_blocks------------------------------------ 1256 // Initialize our parser map to contain the types/monitors at method entry. 1257 void Parse::init_blocks() { 1258 // Create the blocks. 1259 _block_count = flow()->block_count(); 1260 _blocks = NEW_RESOURCE_ARRAY(Block, _block_count); 1261 1262 // Initialize the structs. 1263 for (int rpo = 0; rpo < block_count(); rpo++) { 1264 Block* block = rpo_at(rpo); 1265 new(block) Block(this, rpo); 1266 } 1267 1268 // Collect predecessor and successor information. 1269 for (int rpo = 0; rpo < block_count(); rpo++) { 1270 Block* block = rpo_at(rpo); 1271 block->init_graph(this); 1272 } 1273 } 1274 1275 //-------------------------------init_node------------------------------------- 1276 Parse::Block::Block(Parse* outer, int rpo) : _live_locals() { 1277 _flow = outer->flow()->rpo_at(rpo); 1278 _pred_count = 0; 1279 _preds_parsed = 0; 1280 _count = 0; 1281 _is_parsed = false; 1282 _is_handler = false; 1283 _has_merged_backedge = false; 1284 _start_map = NULL; 1285 _has_predicates = false; 1286 _num_successors = 0; 1287 _all_successors = 0; 1288 _successors = NULL; 1289 assert(pred_count() == 0 && preds_parsed() == 0, "sanity"); 1290 assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity"); 1291 assert(_live_locals.size() == 0, "sanity"); 1292 1293 // entry point has additional predecessor 1294 if (flow()->is_start()) _pred_count++; 1295 assert(flow()->is_start() == (this == outer->start_block()), ""); 1296 } 1297 1298 //-------------------------------init_graph------------------------------------ 1299 void Parse::Block::init_graph(Parse* outer) { 1300 // Create the successor list for this parser block. 1301 GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors(); 1302 GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions(); 1303 int ns = tfs->length(); 1304 int ne = tfe->length(); 1305 _num_successors = ns; 1306 _all_successors = ns+ne; 1307 _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne); 1308 int p = 0; 1309 for (int i = 0; i < ns+ne; i++) { 1310 ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns); 1311 Block* block2 = outer->rpo_at(tf2->rpo()); 1312 _successors[i] = block2; 1313 1314 // Accumulate pred info for the other block, too. 1315 // Note: We also need to set _pred_count for exception blocks since they could 1316 // also have normal predecessors (reached without athrow by an explicit jump). 1317 // This also means that next_path_num can be called along exception paths. 1318 block2->_pred_count++; 1319 if (i >= ns) { 1320 block2->_is_handler = true; 1321 } 1322 1323 #ifdef ASSERT 1324 // A block's successors must be distinguishable by BCI. 1325 // That is, no bytecode is allowed to branch to two different 1326 // clones of the same code location. 1327 for (int j = 0; j < i; j++) { 1328 Block* block1 = _successors[j]; 1329 if (block1 == block2) continue; // duplicates are OK 1330 assert(block1->start() != block2->start(), "successors have unique bcis"); 1331 } 1332 #endif 1333 } 1334 } 1335 1336 //---------------------------successor_for_bci--------------------------------- 1337 Parse::Block* Parse::Block::successor_for_bci(int bci) { 1338 for (int i = 0; i < all_successors(); i++) { 1339 Block* block2 = successor_at(i); 1340 if (block2->start() == bci) return block2; 1341 } 1342 // We can actually reach here if ciTypeFlow traps out a block 1343 // due to an unloaded class, and concurrently with compilation the 1344 // class is then loaded, so that a later phase of the parser is 1345 // able to see more of the bytecode CFG. Or, the flow pass and 1346 // the parser can have a minor difference of opinion about executability 1347 // of bytecodes. For example, "obj.field = null" is executable even 1348 // if the field's type is an unloaded class; the flow pass used to 1349 // make a trap for such code. 1350 return NULL; 1351 } 1352 1353 1354 //-----------------------------stack_type_at----------------------------------- 1355 const Type* Parse::Block::stack_type_at(int i) const { 1356 return get_type(flow()->stack_type_at(i)); 1357 } 1358 1359 1360 //-----------------------------local_type_at----------------------------------- 1361 const Type* Parse::Block::local_type_at(int i) const { 1362 // Make dead locals fall to bottom. 1363 if (_live_locals.size() == 0) { 1364 MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start()); 1365 // This bitmap can be zero length if we saw a breakpoint. 1366 // In such cases, pretend they are all live. 1367 ((Block*)this)->_live_locals = live_locals; 1368 } 1369 if (_live_locals.size() > 0 && !_live_locals.at(i)) 1370 return Type::BOTTOM; 1371 1372 return get_type(flow()->local_type_at(i)); 1373 } 1374 1375 1376 #ifndef PRODUCT 1377 1378 //----------------------------name_for_bc-------------------------------------- 1379 // helper method for BytecodeParseHistogram 1380 static const char* name_for_bc(int i) { 1381 return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx"; 1382 } 1383 1384 //----------------------------BytecodeParseHistogram------------------------------------ 1385 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) { 1386 _parser = p; 1387 _compiler = c; 1388 if( ! _initialized ) { _initialized = true; reset(); } 1389 } 1390 1391 //----------------------------current_count------------------------------------ 1392 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) { 1393 switch( bph_type ) { 1394 case BPH_transforms: { return _parser->gvn().made_progress(); } 1395 case BPH_values: { return _parser->gvn().made_new_values(); } 1396 default: { ShouldNotReachHere(); return 0; } 1397 } 1398 } 1399 1400 //----------------------------initialized-------------------------------------- 1401 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; } 1402 1403 //----------------------------reset-------------------------------------------- 1404 void Parse::BytecodeParseHistogram::reset() { 1405 int i = Bytecodes::number_of_codes; 1406 while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; } 1407 } 1408 1409 //----------------------------set_initial_state-------------------------------- 1410 // Record info when starting to parse one bytecode 1411 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) { 1412 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1413 _initial_bytecode = bc; 1414 _initial_node_count = _compiler->unique(); 1415 _initial_transforms = current_count(BPH_transforms); 1416 _initial_values = current_count(BPH_values); 1417 } 1418 } 1419 1420 //----------------------------record_change-------------------------------- 1421 // Record results of parsing one bytecode 1422 void Parse::BytecodeParseHistogram::record_change() { 1423 if( PrintParseStatistics && !_parser->is_osr_parse() ) { 1424 ++_bytecodes_parsed[_initial_bytecode]; 1425 _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count); 1426 _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms); 1427 _new_values [_initial_bytecode] += (current_count(BPH_values) - _initial_values); 1428 } 1429 } 1430 1431 1432 //----------------------------print-------------------------------------------- 1433 void Parse::BytecodeParseHistogram::print(float cutoff) { 1434 ResourceMark rm; 1435 // print profile 1436 int total = 0; 1437 int i = 0; 1438 for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; } 1439 int abs_sum = 0; 1440 tty->cr(); //0123456789012345678901234567890123456789012345678901234567890123456789 1441 tty->print_cr("Histogram of %d parsed bytecodes:", total); 1442 if( total == 0 ) { return; } 1443 tty->cr(); 1444 tty->print_cr("absolute: count of compiled bytecodes of this type"); 1445 tty->print_cr("relative: percentage contribution to compiled nodes"); 1446 tty->print_cr("nodes : Average number of nodes constructed per bytecode"); 1447 tty->print_cr("rnodes : Significance towards total nodes constructed, (nodes*relative)"); 1448 tty->print_cr("transforms: Average amount of transform progress per bytecode compiled"); 1449 tty->print_cr("values : Average number of node values improved per bytecode"); 1450 tty->print_cr("name : Bytecode name"); 1451 tty->cr(); 1452 tty->print_cr(" absolute relative nodes rnodes transforms values name"); 1453 tty->print_cr("----------------------------------------------------------------------"); 1454 while (--i > 0) { 1455 int abs = _bytecodes_parsed[i]; 1456 float rel = abs * 100.0F / total; 1457 float nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i]; 1458 float rnodes = _bytecodes_parsed[i] == 0 ? 0 : rel * nodes; 1459 float xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i]; 1460 float values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values [i])/_bytecodes_parsed[i]; 1461 if (cutoff <= rel) { 1462 tty->print_cr("%10d %7.2f%% %6.1f %6.2f %6.1f %6.1f %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i)); 1463 abs_sum += abs; 1464 } 1465 } 1466 tty->print_cr("----------------------------------------------------------------------"); 1467 float rel_sum = abs_sum * 100.0F / total; 1468 tty->print_cr("%10d %7.2f%% (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff); 1469 tty->print_cr("----------------------------------------------------------------------"); 1470 tty->cr(); 1471 } 1472 #endif 1473 1474 //----------------------------load_state_from---------------------------------- 1475 // Load block/map/sp. But not do not touch iter/bci. 1476 void Parse::load_state_from(Block* block) { 1477 set_block(block); 1478 // load the block's JVM state: 1479 set_map(block->start_map()); 1480 set_sp( block->start_sp()); 1481 } 1482 1483 1484 //-----------------------------record_state------------------------------------ 1485 void Parse::Block::record_state(Parse* p) { 1486 assert(!is_merged(), "can only record state once, on 1st inflow"); 1487 assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow"); 1488 set_start_map(p->stop()); 1489 } 1490 1491 1492 //------------------------------do_one_block----------------------------------- 1493 void Parse::do_one_block() { 1494 if (TraceOptoParse) { 1495 Block *b = block(); 1496 int ns = b->num_successors(); 1497 int nt = b->all_successors(); 1498 1499 tty->print("Parsing block #%d at bci [%d,%d), successors: ", 1500 block()->rpo(), block()->start(), block()->limit()); 1501 for (int i = 0; i < nt; i++) { 1502 tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo()); 1503 } 1504 if (b->is_loop_head()) { 1505 tty->print(" lphd"); 1506 } 1507 if (b->is_irreducible_loop_entry()) { 1508 tty->print(" irreducible"); 1509 } 1510 tty->cr(); 1511 } 1512 1513 assert(block()->is_merged(), "must be merged before being parsed"); 1514 block()->mark_parsed(); 1515 1516 // Set iterator to start of block. 1517 iter().reset_to_bci(block()->start()); 1518 1519 CompileLog* log = C->log(); 1520 1521 // Parse bytecodes 1522 while (!stopped() && !failing()) { 1523 iter().next(); 1524 1525 // Learn the current bci from the iterator: 1526 set_parse_bci(iter().cur_bci()); 1527 1528 if (bci() == block()->limit()) { 1529 // Do not walk into the next block until directed by do_all_blocks. 1530 merge(bci()); 1531 break; 1532 } 1533 assert(bci() < block()->limit(), "bci still in block"); 1534 1535 if (log != NULL) { 1536 // Output an optional context marker, to help place actions 1537 // that occur during parsing of this BC. If there is no log 1538 // output until the next context string, this context string 1539 // will be silently ignored. 1540 log->set_context("bc code='%d' bci='%d'", (int)bc(), bci()); 1541 } 1542 1543 if (block()->has_trap_at(bci())) { 1544 // We must respect the flow pass's traps, because it will refuse 1545 // to produce successors for trapping blocks. 1546 int trap_index = block()->flow()->trap_index(); 1547 assert(trap_index != 0, "trap index must be valid"); 1548 uncommon_trap(trap_index); 1549 break; 1550 } 1551 1552 NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); ); 1553 1554 #ifdef ASSERT 1555 int pre_bc_sp = sp(); 1556 int inputs, depth; 1557 bool have_se = !stopped() && compute_stack_effects(inputs, depth); 1558 assert(!have_se || pre_bc_sp >= inputs, "have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs); 1559 #endif //ASSERT 1560 1561 do_one_bytecode(); 1562 1563 assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth, 1564 "incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth); 1565 1566 do_exceptions(); 1567 1568 NOT_PRODUCT( parse_histogram()->record_change(); ); 1569 1570 if (log != NULL) 1571 log->clear_context(); // skip marker if nothing was printed 1572 1573 // Fall into next bytecode. Each bytecode normally has 1 sequential 1574 // successor which is typically made ready by visiting this bytecode. 1575 // If the successor has several predecessors, then it is a merge 1576 // point, starts a new basic block, and is handled like other basic blocks. 1577 } 1578 } 1579 1580 1581 //------------------------------merge------------------------------------------ 1582 void Parse::set_parse_bci(int bci) { 1583 set_bci(bci); 1584 Node_Notes* nn = C->default_node_notes(); 1585 if (nn == NULL) return; 1586 1587 // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls. 1588 if (!DebugInlinedCalls && depth() > 1) { 1589 return; 1590 } 1591 1592 // Update the JVMS annotation, if present. 1593 JVMState* jvms = nn->jvms(); 1594 if (jvms != NULL && jvms->bci() != bci) { 1595 // Update the JVMS. 1596 jvms = jvms->clone_shallow(C); 1597 jvms->set_bci(bci); 1598 nn->set_jvms(jvms); 1599 } 1600 } 1601 1602 //------------------------------merge------------------------------------------ 1603 // Merge the current mapping into the basic block starting at bci 1604 void Parse::merge(int target_bci) { 1605 Block* target = successor_for_bci(target_bci); 1606 if (target == NULL) { handle_missing_successor(target_bci); return; } 1607 assert(!target->is_ready(), "our arrival must be expected"); 1608 int pnum = target->next_path_num(); 1609 merge_common(target, pnum); 1610 } 1611 1612 //-------------------------merge_new_path-------------------------------------- 1613 // Merge the current mapping into the basic block, using a new path 1614 void Parse::merge_new_path(int target_bci) { 1615 Block* target = successor_for_bci(target_bci); 1616 if (target == NULL) { handle_missing_successor(target_bci); return; } 1617 assert(!target->is_ready(), "new path into frozen graph"); 1618 int pnum = target->add_new_path(); 1619 merge_common(target, pnum); 1620 } 1621 1622 //-------------------------merge_exception------------------------------------- 1623 // Merge the current mapping into the basic block starting at bci 1624 // The ex_oop must be pushed on the stack, unlike throw_to_exit. 1625 void Parse::merge_exception(int target_bci) { 1626 #ifdef ASSERT 1627 if (target_bci < bci()) { 1628 C->set_exception_backedge(); 1629 } 1630 #endif 1631 assert(sp() == 1, "must have only the throw exception on the stack"); 1632 Block* target = successor_for_bci(target_bci); 1633 if (target == NULL) { handle_missing_successor(target_bci); return; } 1634 assert(target->is_handler(), "exceptions are handled by special blocks"); 1635 int pnum = target->add_new_path(); 1636 merge_common(target, pnum); 1637 } 1638 1639 //--------------------handle_missing_successor--------------------------------- 1640 void Parse::handle_missing_successor(int target_bci) { 1641 #ifndef PRODUCT 1642 Block* b = block(); 1643 int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1; 1644 tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci); 1645 #endif 1646 ShouldNotReachHere(); 1647 } 1648 1649 //--------------------------merge_common--------------------------------------- 1650 void Parse::merge_common(Parse::Block* target, int pnum) { 1651 if (TraceOptoParse) { 1652 tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start()); 1653 } 1654 1655 // Zap extra stack slots to top 1656 assert(sp() == target->start_sp(), ""); 1657 clean_stack(sp()); 1658 1659 if (!target->is_merged()) { // No prior mapping at this bci 1660 if (TraceOptoParse) { tty->print(" with empty state"); } 1661 1662 // If this path is dead, do not bother capturing it as a merge. 1663 // It is "as if" we had 1 fewer predecessors from the beginning. 1664 if (stopped()) { 1665 if (TraceOptoParse) tty->print_cr(", but path is dead and doesn't count"); 1666 return; 1667 } 1668 1669 // Make a region if we know there are multiple or unpredictable inputs. 1670 // (Also, if this is a plain fall-through, we might see another region, 1671 // which must not be allowed into this block's map.) 1672 if (pnum > PhiNode::Input // Known multiple inputs. 1673 || target->is_handler() // These have unpredictable inputs. 1674 || target->is_loop_head() // Known multiple inputs 1675 || control()->is_Region()) { // We must hide this guy. 1676 1677 int current_bci = bci(); 1678 set_parse_bci(target->start()); // Set target bci 1679 if (target->is_SEL_head()) { 1680 DEBUG_ONLY( target->mark_merged_backedge(block()); ) 1681 if (target->start() == 0) { 1682 // Add loop predicate for the special case when 1683 // there are backbranches to the method entry. 1684 add_empty_predicates(); 1685 } 1686 } 1687 // Add a Region to start the new basic block. Phis will be added 1688 // later lazily. 1689 int edges = target->pred_count(); 1690 if (edges < pnum) edges = pnum; // might be a new path! 1691 RegionNode *r = new RegionNode(edges+1); 1692 gvn().set_type(r, Type::CONTROL); 1693 record_for_igvn(r); 1694 // zap all inputs to NULL for debugging (done in Node(uint) constructor) 1695 // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); } 1696 r->init_req(pnum, control()); 1697 set_control(r); 1698 target->copy_irreducible_status_to(r, jvms()); 1699 set_parse_bci(current_bci); // Restore bci 1700 } 1701 1702 // Convert the existing Parser mapping into a mapping at this bci. 1703 store_state_to(target); 1704 assert(target->is_merged(), "do not come here twice"); 1705 1706 } else { // Prior mapping at this bci 1707 if (TraceOptoParse) { tty->print(" with previous state"); } 1708 #ifdef ASSERT 1709 if (target->is_SEL_head()) { 1710 target->mark_merged_backedge(block()); 1711 } 1712 #endif 1713 // We must not manufacture more phis if the target is already parsed. 1714 bool nophi = target->is_parsed(); 1715 1716 SafePointNode* newin = map();// Hang on to incoming mapping 1717 Block* save_block = block(); // Hang on to incoming block; 1718 load_state_from(target); // Get prior mapping 1719 1720 assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree"); 1721 assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree"); 1722 assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree"); 1723 assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree"); 1724 1725 // Iterate over my current mapping and the old mapping. 1726 // Where different, insert Phi functions. 1727 // Use any existing Phi functions. 1728 assert(control()->is_Region(), "must be merging to a region"); 1729 RegionNode* r = control()->as_Region(); 1730 1731 // Compute where to merge into 1732 // Merge incoming control path 1733 r->init_req(pnum, newin->control()); 1734 1735 if (pnum == 1) { // Last merge for this Region? 1736 if (!block()->flow()->is_irreducible_loop_secondary_entry()) { 1737 Node* result = _gvn.transform_no_reclaim(r); 1738 if (r != result && TraceOptoParse) { 1739 tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx); 1740 } 1741 } 1742 record_for_igvn(r); 1743 } 1744 1745 // Update all the non-control inputs to map: 1746 assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms"); 1747 bool check_elide_phi = target->is_SEL_backedge(save_block); 1748 for (uint j = 1; j < newin->req(); j++) { 1749 Node* m = map()->in(j); // Current state of target. 1750 Node* n = newin->in(j); // Incoming change to target state. 1751 PhiNode* phi; 1752 if (m->is_Phi() && m->as_Phi()->region() == r) 1753 phi = m->as_Phi(); 1754 else 1755 phi = NULL; 1756 if (m != n) { // Different; must merge 1757 switch (j) { 1758 // Frame pointer and Return Address never changes 1759 case TypeFunc::FramePtr:// Drop m, use the original value 1760 case TypeFunc::ReturnAdr: 1761 break; 1762 case TypeFunc::Memory: // Merge inputs to the MergeMem node 1763 assert(phi == NULL, "the merge contains phis, not vice versa"); 1764 merge_memory_edges(n->as_MergeMem(), pnum, nophi); 1765 continue; 1766 default: // All normal stuff 1767 if (phi == NULL) { 1768 const JVMState* jvms = map()->jvms(); 1769 if (EliminateNestedLocks && 1770 jvms->is_mon(j) && jvms->is_monitor_box(j)) { 1771 // BoxLock nodes are not commoning. 1772 // Use old BoxLock node as merged box. 1773 assert(newin->jvms()->is_monitor_box(j), "sanity"); 1774 // This assert also tests that nodes are BoxLock. 1775 assert(BoxLockNode::same_slot(n, m), "sanity"); 1776 C->gvn_replace_by(n, m); 1777 } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) { 1778 phi = ensure_phi(j, nophi); 1779 } 1780 } 1781 break; 1782 } 1783 } 1784 // At this point, n might be top if: 1785 // - there is no phi (because TypeFlow detected a conflict), or 1786 // - the corresponding control edges is top (a dead incoming path) 1787 // It is a bug if we create a phi which sees a garbage value on a live path. 1788 1789 if (phi != NULL) { 1790 assert(n != top() || r->in(pnum) == top(), "live value must not be garbage"); 1791 assert(phi->region() == r, ""); 1792 phi->set_req(pnum, n); // Then add 'n' to the merge 1793 if (pnum == PhiNode::Input) { 1794 // Last merge for this Phi. 1795 // So far, Phis have had a reasonable type from ciTypeFlow. 1796 // Now _gvn will join that with the meet of current inputs. 1797 // BOTTOM is never permissible here, 'cause pessimistically 1798 // Phis of pointers cannot lose the basic pointer type. 1799 debug_only(const Type* bt1 = phi->bottom_type()); 1800 assert(bt1 != Type::BOTTOM, "should not be building conflict phis"); 1801 map()->set_req(j, _gvn.transform_no_reclaim(phi)); 1802 debug_only(const Type* bt2 = phi->bottom_type()); 1803 assert(bt2->higher_equal_speculative(bt1), "must be consistent with type-flow"); 1804 record_for_igvn(phi); 1805 } 1806 } 1807 } // End of for all values to be merged 1808 1809 if (pnum == PhiNode::Input && 1810 !r->in(0)) { // The occasional useless Region 1811 assert(control() == r, ""); 1812 set_control(r->nonnull_req()); 1813 } 1814 1815 map()->merge_replaced_nodes_with(newin); 1816 1817 // newin has been subsumed into the lazy merge, and is now dead. 1818 set_block(save_block); 1819 1820 stop(); // done with this guy, for now 1821 } 1822 1823 if (TraceOptoParse) { 1824 tty->print_cr(" on path %d", pnum); 1825 } 1826 1827 // Done with this parser state. 1828 assert(stopped(), ""); 1829 } 1830 1831 1832 //--------------------------merge_memory_edges--------------------------------- 1833 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) { 1834 // (nophi means we must not create phis, because we already parsed here) 1835 assert(n != NULL, ""); 1836 // Merge the inputs to the MergeMems 1837 MergeMemNode* m = merged_memory(); 1838 1839 assert(control()->is_Region(), "must be merging to a region"); 1840 RegionNode* r = control()->as_Region(); 1841 1842 PhiNode* base = NULL; 1843 MergeMemNode* remerge = NULL; 1844 for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) { 1845 Node *p = mms.force_memory(); 1846 Node *q = mms.memory2(); 1847 if (mms.is_empty() && nophi) { 1848 // Trouble: No new splits allowed after a loop body is parsed. 1849 // Instead, wire the new split into a MergeMem on the backedge. 1850 // The optimizer will sort it out, slicing the phi. 1851 if (remerge == NULL) { 1852 guarantee(base != NULL, ""); 1853 assert(base->in(0) != NULL, "should not be xformed away"); 1854 remerge = MergeMemNode::make(base->in(pnum)); 1855 gvn().set_type(remerge, Type::MEMORY); 1856 base->set_req(pnum, remerge); 1857 } 1858 remerge->set_memory_at(mms.alias_idx(), q); 1859 continue; 1860 } 1861 assert(!q->is_MergeMem(), ""); 1862 PhiNode* phi; 1863 if (p != q) { 1864 phi = ensure_memory_phi(mms.alias_idx(), nophi); 1865 } else { 1866 if (p->is_Phi() && p->as_Phi()->region() == r) 1867 phi = p->as_Phi(); 1868 else 1869 phi = NULL; 1870 } 1871 // Insert q into local phi 1872 if (phi != NULL) { 1873 assert(phi->region() == r, ""); 1874 p = phi; 1875 phi->set_req(pnum, q); 1876 if (mms.at_base_memory()) { 1877 base = phi; // delay transforming it 1878 } else if (pnum == 1) { 1879 record_for_igvn(phi); 1880 p = _gvn.transform_no_reclaim(phi); 1881 } 1882 mms.set_memory(p);// store back through the iterator 1883 } 1884 } 1885 // Transform base last, in case we must fiddle with remerging. 1886 if (base != NULL && pnum == 1) { 1887 record_for_igvn(base); 1888 m->set_base_memory( _gvn.transform_no_reclaim(base) ); 1889 } 1890 } 1891 1892 1893 //------------------------ensure_phis_everywhere------------------------------- 1894 void Parse::ensure_phis_everywhere() { 1895 ensure_phi(TypeFunc::I_O); 1896 1897 // Ensure a phi on all currently known memories. 1898 for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) { 1899 ensure_memory_phi(mms.alias_idx()); 1900 debug_only(mms.set_memory()); // keep the iterator happy 1901 } 1902 1903 // Note: This is our only chance to create phis for memory slices. 1904 // If we miss a slice that crops up later, it will have to be 1905 // merged into the base-memory phi that we are building here. 1906 // Later, the optimizer will comb out the knot, and build separate 1907 // phi-loops for each memory slice that matters. 1908 1909 // Monitors must nest nicely and not get confused amongst themselves. 1910 // Phi-ify everything up to the monitors, though. 1911 uint monoff = map()->jvms()->monoff(); 1912 uint nof_monitors = map()->jvms()->nof_monitors(); 1913 1914 assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms"); 1915 bool check_elide_phi = block()->is_SEL_head(); 1916 for (uint i = TypeFunc::Parms; i < monoff; i++) { 1917 if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) { 1918 ensure_phi(i); 1919 } 1920 } 1921 1922 // Even monitors need Phis, though they are well-structured. 1923 // This is true for OSR methods, and also for the rare cases where 1924 // a monitor object is the subject of a replace_in_map operation. 1925 // See bugs 4426707 and 5043395. 1926 for (uint m = 0; m < nof_monitors; m++) { 1927 ensure_phi(map()->jvms()->monitor_obj_offset(m)); 1928 } 1929 } 1930 1931 1932 //-----------------------------add_new_path------------------------------------ 1933 // Add a previously unaccounted predecessor to this block. 1934 int Parse::Block::add_new_path() { 1935 // If there is no map, return the lowest unused path number. 1936 if (!is_merged()) return pred_count()+1; // there will be a map shortly 1937 1938 SafePointNode* map = start_map(); 1939 if (!map->control()->is_Region()) 1940 return pred_count()+1; // there may be a region some day 1941 RegionNode* r = map->control()->as_Region(); 1942 1943 // Add new path to the region. 1944 uint pnum = r->req(); 1945 r->add_req(NULL); 1946 1947 for (uint i = 1; i < map->req(); i++) { 1948 Node* n = map->in(i); 1949 if (i == TypeFunc::Memory) { 1950 // Ensure a phi on all currently known memories. 1951 for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) { 1952 Node* phi = mms.memory(); 1953 if (phi->is_Phi() && phi->as_Phi()->region() == r) { 1954 assert(phi->req() == pnum, "must be same size as region"); 1955 phi->add_req(NULL); 1956 } 1957 } 1958 } else { 1959 if (n->is_Phi() && n->as_Phi()->region() == r) { 1960 assert(n->req() == pnum, "must be same size as region"); 1961 n->add_req(NULL); 1962 } 1963 } 1964 } 1965 1966 return pnum; 1967 } 1968 1969 //------------------------------ensure_phi------------------------------------- 1970 // Turn the idx'th entry of the current map into a Phi 1971 PhiNode *Parse::ensure_phi(int idx, bool nocreate) { 1972 SafePointNode* map = this->map(); 1973 Node* region = map->control(); 1974 assert(region->is_Region(), ""); 1975 1976 Node* o = map->in(idx); 1977 assert(o != NULL, ""); 1978 1979 if (o == top()) return NULL; // TOP always merges into TOP 1980 1981 if (o->is_Phi() && o->as_Phi()->region() == region) { 1982 return o->as_Phi(); 1983 } 1984 1985 // Now use a Phi here for merging 1986 assert(!nocreate, "Cannot build a phi for a block already parsed."); 1987 const JVMState* jvms = map->jvms(); 1988 const Type* t = NULL; 1989 if (jvms->is_loc(idx)) { 1990 t = block()->local_type_at(idx - jvms->locoff()); 1991 } else if (jvms->is_stk(idx)) { 1992 t = block()->stack_type_at(idx - jvms->stkoff()); 1993 } else if (jvms->is_mon(idx)) { 1994 assert(!jvms->is_monitor_box(idx), "no phis for boxes"); 1995 t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object 1996 } else if ((uint)idx < TypeFunc::Parms) { 1997 t = o->bottom_type(); // Type::RETURN_ADDRESS or such-like. 1998 } else { 1999 assert(false, "no type information for this phi"); 2000 } 2001 2002 // If the type falls to bottom, then this must be a local that 2003 // is mixing ints and oops or some such. Forcing it to top 2004 // makes it go dead. 2005 if (t == Type::BOTTOM) { 2006 map->set_req(idx, top()); 2007 return NULL; 2008 } 2009 2010 // Do not create phis for top either. 2011 // A top on a non-null control flow must be an unused even after the.phi. 2012 if (t == Type::TOP || t == Type::HALF) { 2013 map->set_req(idx, top()); 2014 return NULL; 2015 } 2016 2017 PhiNode* phi = PhiNode::make(region, o, t); 2018 gvn().set_type(phi, t); 2019 if (C->do_escape_analysis()) record_for_igvn(phi); 2020 map->set_req(idx, phi); 2021 return phi; 2022 } 2023 2024 //--------------------------ensure_memory_phi---------------------------------- 2025 // Turn the idx'th slice of the current memory into a Phi 2026 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) { 2027 MergeMemNode* mem = merged_memory(); 2028 Node* region = control(); 2029 assert(region->is_Region(), ""); 2030 2031 Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx); 2032 assert(o != NULL && o != top(), ""); 2033 2034 PhiNode* phi; 2035 if (o->is_Phi() && o->as_Phi()->region() == region) { 2036 phi = o->as_Phi(); 2037 if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) { 2038 // clone the shared base memory phi to make a new memory split 2039 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2040 const Type* t = phi->bottom_type(); 2041 const TypePtr* adr_type = C->get_adr_type(idx); 2042 phi = phi->slice_memory(adr_type); 2043 gvn().set_type(phi, t); 2044 } 2045 return phi; 2046 } 2047 2048 // Now use a Phi here for merging 2049 assert(!nocreate, "Cannot build a phi for a block already parsed."); 2050 const Type* t = o->bottom_type(); 2051 const TypePtr* adr_type = C->get_adr_type(idx); 2052 phi = PhiNode::make(region, o, t, adr_type); 2053 gvn().set_type(phi, t); 2054 if (idx == Compile::AliasIdxBot) 2055 mem->set_base_memory(phi); 2056 else 2057 mem->set_memory_at(idx, phi); 2058 return phi; 2059 } 2060 2061 //------------------------------call_register_finalizer----------------------- 2062 // Check the klass of the receiver and call register_finalizer if the 2063 // class need finalization. 2064 void Parse::call_register_finalizer() { 2065 Node* receiver = local(0); 2066 assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL, 2067 "must have non-null instance type"); 2068 2069 const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr(); 2070 if (tinst != NULL && tinst->is_loaded() && !tinst->klass_is_exact()) { 2071 // The type isn't known exactly so see if CHA tells us anything. 2072 ciInstanceKlass* ik = tinst->instance_klass(); 2073 if (!Dependencies::has_finalizable_subclass(ik)) { 2074 // No finalizable subclasses so skip the dynamic check. 2075 C->dependencies()->assert_has_no_finalizable_subclasses(ik); 2076 return; 2077 } 2078 } 2079 2080 // Insert a dynamic test for whether the instance needs 2081 // finalization. In general this will fold up since the concrete 2082 // class is often visible so the access flags are constant. 2083 Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() ); 2084 Node* klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), klass_addr, TypeInstPtr::KLASS)); 2085 2086 Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset())); 2087 Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT, MemNode::unordered); 2088 2089 Node* mask = _gvn.transform(new AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER))); 2090 Node* check = _gvn.transform(new CmpINode(mask, intcon(0))); 2091 Node* test = _gvn.transform(new BoolNode(check, BoolTest::ne)); 2092 2093 IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN); 2094 2095 RegionNode* result_rgn = new RegionNode(3); 2096 record_for_igvn(result_rgn); 2097 2098 Node *skip_register = _gvn.transform(new IfFalseNode(iff)); 2099 result_rgn->init_req(1, skip_register); 2100 2101 Node *needs_register = _gvn.transform(new IfTrueNode(iff)); 2102 set_control(needs_register); 2103 if (stopped()) { 2104 // There is no slow path. 2105 result_rgn->init_req(2, top()); 2106 } else { 2107 Node *call = make_runtime_call(RC_NO_LEAF, 2108 OptoRuntime::register_finalizer_Type(), 2109 OptoRuntime::register_finalizer_Java(), 2110 NULL, TypePtr::BOTTOM, 2111 receiver); 2112 make_slow_call_ex(call, env()->Throwable_klass(), true); 2113 2114 Node* fast_io = call->in(TypeFunc::I_O); 2115 Node* fast_mem = call->in(TypeFunc::Memory); 2116 // These two phis are pre-filled with copies of of the fast IO and Memory 2117 Node* io_phi = PhiNode::make(result_rgn, fast_io, Type::ABIO); 2118 Node* mem_phi = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM); 2119 2120 result_rgn->init_req(2, control()); 2121 io_phi ->init_req(2, i_o()); 2122 mem_phi ->init_req(2, reset_memory()); 2123 2124 set_all_memory( _gvn.transform(mem_phi) ); 2125 set_i_o( _gvn.transform(io_phi) ); 2126 } 2127 2128 set_control( _gvn.transform(result_rgn) ); 2129 } 2130 2131 // Add check to deoptimize once holder klass is fully initialized. 2132 void Parse::clinit_deopt() { 2133 assert(C->has_method(), "only for normal compilations"); 2134 assert(depth() == 1, "only for main compiled method"); 2135 assert(is_normal_parse(), "no barrier needed on osr entry"); 2136 assert(!method()->holder()->is_not_initialized(), "initialization should have been started"); 2137 2138 set_parse_bci(0); 2139 2140 Node* holder = makecon(TypeKlassPtr::make(method()->holder(), Type::trust_interfaces)); 2141 guard_klass_being_initialized(holder); 2142 } 2143 2144 // Add check to deoptimize if RTM state is not ProfileRTM 2145 void Parse::rtm_deopt() { 2146 #if INCLUDE_RTM_OPT 2147 if (C->profile_rtm()) { 2148 assert(C->has_method(), "only for normal compilations"); 2149 assert(!C->method()->method_data()->is_empty(), "MDO is needed to record RTM state"); 2150 assert(depth() == 1, "generate check only for main compiled method"); 2151 2152 // Set starting bci for uncommon trap. 2153 set_parse_bci(is_osr_parse() ? osr_bci() : 0); 2154 2155 // Load the rtm_state from the MethodData. 2156 const TypePtr* adr_type = TypeMetadataPtr::make(C->method()->method_data()); 2157 Node* mdo = makecon(adr_type); 2158 int offset = MethodData::rtm_state_offset_in_bytes(); 2159 Node* adr_node = basic_plus_adr(mdo, mdo, offset); 2160 Node* rtm_state = make_load(control(), adr_node, TypeInt::INT, T_INT, adr_type, MemNode::unordered); 2161 2162 // Separate Load from Cmp by Opaque. 2163 // In expand_macro_nodes() it will be replaced either 2164 // with this load when there are locks in the code 2165 // or with ProfileRTM (cmp->in(2)) otherwise so that 2166 // the check will fold. 2167 Node* profile_state = makecon(TypeInt::make(ProfileRTM)); 2168 Node* opq = _gvn.transform( new Opaque3Node(C, rtm_state, Opaque3Node::RTM_OPT) ); 2169 Node* chk = _gvn.transform( new CmpINode(opq, profile_state) ); 2170 Node* tst = _gvn.transform( new BoolNode(chk, BoolTest::eq) ); 2171 // Branch to failure if state was changed 2172 { BuildCutout unless(this, tst, PROB_ALWAYS); 2173 uncommon_trap(Deoptimization::Reason_rtm_state_change, 2174 Deoptimization::Action_make_not_entrant); 2175 } 2176 } 2177 #endif 2178 } 2179 2180 //------------------------------return_current--------------------------------- 2181 // Append current _map to _exit_return 2182 void Parse::return_current(Node* value) { 2183 if (RegisterFinalizersAtInit && 2184 method()->intrinsic_id() == vmIntrinsics::_Object_init) { 2185 call_register_finalizer(); 2186 } 2187 2188 // Do not set_parse_bci, so that return goo is credited to the return insn. 2189 set_bci(InvocationEntryBci); 2190 if (method()->is_synchronized() && GenerateSynchronizationCode) { 2191 shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node()); 2192 } 2193 if (C->env()->dtrace_method_probes()) { 2194 make_dtrace_method_exit(method()); 2195 } 2196 SafePointNode* exit_return = _exits.map(); 2197 exit_return->in( TypeFunc::Control )->add_req( control() ); 2198 exit_return->in( TypeFunc::I_O )->add_req( i_o () ); 2199 Node *mem = exit_return->in( TypeFunc::Memory ); 2200 for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) { 2201 if (mms.is_empty()) { 2202 // get a copy of the base memory, and patch just this one input 2203 const TypePtr* adr_type = mms.adr_type(C); 2204 Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type); 2205 assert(phi->as_Phi()->region() == mms.base_memory()->in(0), ""); 2206 gvn().set_type_bottom(phi); 2207 phi->del_req(phi->req()-1); // prepare to re-patch 2208 mms.set_memory(phi); 2209 } 2210 mms.memory()->add_req(mms.memory2()); 2211 } 2212 2213 // frame pointer is always same, already captured 2214 if (value != NULL) { 2215 // If returning oops to an interface-return, there is a silent free 2216 // cast from oop to interface allowed by the Verifier. Make it explicit 2217 // here. 2218 Node* phi = _exits.argument(0); 2219 phi->add_req(value); 2220 } 2221 2222 if (_first_return) { 2223 _exits.map()->transfer_replaced_nodes_from(map(), _new_idx); 2224 _first_return = false; 2225 } else { 2226 _exits.map()->merge_replaced_nodes_with(map()); 2227 } 2228 2229 stop_and_kill_map(); // This CFG path dies here 2230 } 2231 2232 2233 //------------------------------add_safepoint---------------------------------- 2234 void Parse::add_safepoint() { 2235 uint parms = TypeFunc::Parms+1; 2236 2237 // Clear out dead values from the debug info. 2238 kill_dead_locals(); 2239 2240 // Clone the JVM State 2241 SafePointNode *sfpnt = new SafePointNode(parms, NULL); 2242 2243 // Capture memory state BEFORE a SafePoint. Since we can block at a 2244 // SafePoint we need our GC state to be safe; i.e. we need all our current 2245 // write barriers (card marks) to not float down after the SafePoint so we 2246 // must read raw memory. Likewise we need all oop stores to match the card 2247 // marks. If deopt can happen, we need ALL stores (we need the correct JVM 2248 // state on a deopt). 2249 2250 // We do not need to WRITE the memory state after a SafePoint. The control 2251 // edge will keep card-marks and oop-stores from floating up from below a 2252 // SafePoint and our true dependency added here will keep them from floating 2253 // down below a SafePoint. 2254 2255 // Clone the current memory state 2256 Node* mem = MergeMemNode::make(map()->memory()); 2257 2258 mem = _gvn.transform(mem); 2259 2260 // Pass control through the safepoint 2261 sfpnt->init_req(TypeFunc::Control , control()); 2262 // Fix edges normally used by a call 2263 sfpnt->init_req(TypeFunc::I_O , top() ); 2264 sfpnt->init_req(TypeFunc::Memory , mem ); 2265 sfpnt->init_req(TypeFunc::ReturnAdr, top() ); 2266 sfpnt->init_req(TypeFunc::FramePtr , top() ); 2267 2268 // Create a node for the polling address 2269 Node *polladr; 2270 Node *thread = _gvn.transform(new ThreadLocalNode()); 2271 Node *polling_page_load_addr = _gvn.transform(basic_plus_adr(top(), thread, in_bytes(JavaThread::polling_page_offset()))); 2272 polladr = make_load(control(), polling_page_load_addr, TypeRawPtr::BOTTOM, T_ADDRESS, Compile::AliasIdxRaw, MemNode::unordered); 2273 sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr)); 2274 2275 // Fix up the JVM State edges 2276 add_safepoint_edges(sfpnt); 2277 Node *transformed_sfpnt = _gvn.transform(sfpnt); 2278 set_control(transformed_sfpnt); 2279 2280 // Provide an edge from root to safepoint. This makes the safepoint 2281 // appear useful until the parse has completed. 2282 if (transformed_sfpnt->is_SafePoint()) { 2283 assert(C->root() != NULL, "Expect parse is still valid"); 2284 C->root()->add_prec(transformed_sfpnt); 2285 } 2286 } 2287 2288 #ifndef PRODUCT 2289 //------------------------show_parse_info-------------------------------------- 2290 void Parse::show_parse_info() { 2291 InlineTree* ilt = NULL; 2292 if (C->ilt() != NULL) { 2293 JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller(); 2294 ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method()); 2295 } 2296 if (PrintCompilation && Verbose) { 2297 if (depth() == 1) { 2298 if( ilt->count_inlines() ) { 2299 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2300 ilt->count_inline_bcs()); 2301 tty->cr(); 2302 } 2303 } else { 2304 if (method()->is_synchronized()) tty->print("s"); 2305 if (method()->has_exception_handlers()) tty->print("!"); 2306 // Check this is not the final compiled version 2307 if (C->trap_can_recompile()) { 2308 tty->print("-"); 2309 } else { 2310 tty->print(" "); 2311 } 2312 method()->print_short_name(); 2313 if (is_osr_parse()) { 2314 tty->print(" @ %d", osr_bci()); 2315 } 2316 tty->print(" (%d bytes)",method()->code_size()); 2317 if (ilt->count_inlines()) { 2318 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2319 ilt->count_inline_bcs()); 2320 } 2321 tty->cr(); 2322 } 2323 } 2324 if (PrintOpto && (depth() == 1 || PrintOptoInlining)) { 2325 // Print that we succeeded; suppress this message on the first osr parse. 2326 2327 if (method()->is_synchronized()) tty->print("s"); 2328 if (method()->has_exception_handlers()) tty->print("!"); 2329 // Check this is not the final compiled version 2330 if (C->trap_can_recompile() && depth() == 1) { 2331 tty->print("-"); 2332 } else { 2333 tty->print(" "); 2334 } 2335 if( depth() != 1 ) { tty->print(" "); } // missing compile count 2336 for (int i = 1; i < depth(); ++i) { tty->print(" "); } 2337 method()->print_short_name(); 2338 if (is_osr_parse()) { 2339 tty->print(" @ %d", osr_bci()); 2340 } 2341 if (ilt->caller_bci() != -1) { 2342 tty->print(" @ %d", ilt->caller_bci()); 2343 } 2344 tty->print(" (%d bytes)",method()->code_size()); 2345 if (ilt->count_inlines()) { 2346 tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(), 2347 ilt->count_inline_bcs()); 2348 } 2349 tty->cr(); 2350 } 2351 } 2352 2353 2354 //------------------------------dump------------------------------------------- 2355 // Dump information associated with the bytecodes of current _method 2356 void Parse::dump() { 2357 if( method() != NULL ) { 2358 // Iterate over bytecodes 2359 ciBytecodeStream iter(method()); 2360 for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) { 2361 dump_bci( iter.cur_bci() ); 2362 tty->cr(); 2363 } 2364 } 2365 } 2366 2367 // Dump information associated with a byte code index, 'bci' 2368 void Parse::dump_bci(int bci) { 2369 // Output info on merge-points, cloning, and within _jsr..._ret 2370 // NYI 2371 tty->print(" bci:%d", bci); 2372 } 2373 2374 #endif