1 /* 2 * Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmClasses.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "code/codeCache.hpp" 29 #include "code/compiledMethod.inline.hpp" 30 #include "code/compiledIC.hpp" 31 #include "code/icBuffer.hpp" 32 #include "code/nmethod.hpp" 33 #include "code/pcDesc.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "code/vtableStubs.hpp" 36 #include "compiler/compileBroker.hpp" 37 #include "compiler/oopMap.hpp" 38 #include "gc/g1/heapRegion.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/collectedHeap.hpp" 41 #include "gc/shared/gcLocker.hpp" 42 #include "interpreter/bytecode.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/linkResolver.hpp" 45 #include "logging/log.hpp" 46 #include "logging/logStream.hpp" 47 #include "memory/oopFactory.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "oops/objArrayKlass.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "oops/oop.inline.hpp" 52 #include "oops/typeArrayOop.inline.hpp" 53 #include "opto/ad.hpp" 54 #include "opto/addnode.hpp" 55 #include "opto/callnode.hpp" 56 #include "opto/cfgnode.hpp" 57 #include "opto/graphKit.hpp" 58 #include "opto/machnode.hpp" 59 #include "opto/matcher.hpp" 60 #include "opto/memnode.hpp" 61 #include "opto/mulnode.hpp" 62 #include "opto/output.hpp" 63 #include "opto/runtime.hpp" 64 #include "opto/subnode.hpp" 65 #include "prims/jvmtiExport.hpp" 66 #include "runtime/atomic.hpp" 67 #include "runtime/frame.inline.hpp" 68 #include "runtime/handles.inline.hpp" 69 #include "runtime/interfaceSupport.inline.hpp" 70 #include "runtime/javaCalls.hpp" 71 #include "runtime/sharedRuntime.hpp" 72 #include "runtime/signature.hpp" 73 #include "runtime/stackWatermarkSet.hpp" 74 #include "runtime/synchronizer.hpp" 75 #include "runtime/threadCritical.hpp" 76 #include "runtime/threadWXSetters.inline.hpp" 77 #include "runtime/vframe.hpp" 78 #include "runtime/vframeArray.hpp" 79 #include "runtime/vframe_hp.hpp" 80 #include "utilities/copy.hpp" 81 #include "utilities/preserveException.hpp" 82 83 84 // For debugging purposes: 85 // To force FullGCALot inside a runtime function, add the following two lines 86 // 87 // Universe::release_fullgc_alot_dummy(); 88 // MarkSweep::invoke(0, "Debugging"); 89 // 90 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 91 92 93 94 95 // Compiled code entry points 96 address OptoRuntime::_new_instance_Java = NULL; 97 address OptoRuntime::_new_array_Java = NULL; 98 address OptoRuntime::_new_array_nozero_Java = NULL; 99 address OptoRuntime::_multianewarray2_Java = NULL; 100 address OptoRuntime::_multianewarray3_Java = NULL; 101 address OptoRuntime::_multianewarray4_Java = NULL; 102 address OptoRuntime::_multianewarray5_Java = NULL; 103 address OptoRuntime::_multianewarrayN_Java = NULL; 104 address OptoRuntime::_vtable_must_compile_Java = NULL; 105 address OptoRuntime::_complete_monitor_locking_Java = NULL; 106 address OptoRuntime::_monitor_notify_Java = NULL; 107 address OptoRuntime::_monitor_notifyAll_Java = NULL; 108 address OptoRuntime::_rethrow_Java = NULL; 109 110 address OptoRuntime::_slow_arraycopy_Java = NULL; 111 address OptoRuntime::_register_finalizer_Java = NULL; 112 113 ExceptionBlob* OptoRuntime::_exception_blob; 114 115 // This should be called in an assertion at the start of OptoRuntime routines 116 // which are entered from compiled code (all of them) 117 #ifdef ASSERT 118 static bool check_compiled_frame(JavaThread* thread) { 119 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 120 RegisterMap map(thread, 121 RegisterMap::UpdateMap::skip, 122 RegisterMap::ProcessFrames::include, 123 RegisterMap::WalkContinuation::skip); 124 frame caller = thread->last_frame().sender(&map); 125 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 126 return true; 127 } 128 #endif // ASSERT 129 130 131 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \ 132 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \ 133 if (var == NULL) { return false; } 134 135 bool OptoRuntime::generate(ciEnv* env) { 136 137 generate_exception_blob(); 138 139 // Note: tls: Means fetching the return oop out of the thread-local storage 140 // 141 // variable/name type-function-gen , runtime method ,fncy_jp, tls,retpc 142 // ------------------------------------------------------------------------------------------------------------------------------- 143 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true, false); 144 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true, false); 145 gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true, false); 146 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true, false); 147 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true, false); 148 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true, false); 149 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true, false); 150 gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true, false); 151 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false); 152 gen(env, _monitor_notify_Java , monitor_notify_Type , monitor_notify_C , 0 , false, false); 153 gen(env, _monitor_notifyAll_Java , monitor_notify_Type , monitor_notifyAll_C , 0 , false, false); 154 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , true ); 155 156 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false); 157 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false); 158 159 return true; 160 } 161 162 #undef gen 163 164 165 // Helper method to do generation of RunTimeStub's 166 address OptoRuntime::generate_stub(ciEnv* env, 167 TypeFunc_generator gen, address C_function, 168 const char *name, int is_fancy_jump, 169 bool pass_tls, 170 bool return_pc) { 171 172 // Matching the default directive, we currently have no method to match. 173 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization)); 174 ResourceMark rm; 175 Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive); 176 DirectivesStack::release(directive); 177 return C.stub_entry_point(); 178 } 179 180 const char* OptoRuntime::stub_name(address entry) { 181 #ifndef PRODUCT 182 CodeBlob* cb = CodeCache::find_blob(entry); 183 RuntimeStub* rs =(RuntimeStub *)cb; 184 assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub"); 185 return rs->name(); 186 #else 187 // Fast implementation for product mode (maybe it should be inlined too) 188 return "runtime stub"; 189 #endif 190 } 191 192 193 //============================================================================= 194 // Opto compiler runtime routines 195 //============================================================================= 196 197 198 //=============================allocation====================================== 199 // We failed the fast-path allocation. Now we need to do a scavenge or GC 200 // and try allocation again. 201 202 // object allocation 203 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current)) 204 JRT_BLOCK; 205 #ifndef PRODUCT 206 SharedRuntime::_new_instance_ctr++; // new instance requires GC 207 #endif 208 assert(check_compiled_frame(current), "incorrect caller"); 209 210 // These checks are cheap to make and support reflective allocation. 211 int lh = klass->layout_helper(); 212 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) { 213 Handle holder(current, klass->klass_holder()); // keep the klass alive 214 klass->check_valid_for_instantiation(false, THREAD); 215 if (!HAS_PENDING_EXCEPTION) { 216 InstanceKlass::cast(klass)->initialize(THREAD); 217 } 218 } 219 220 if (!HAS_PENDING_EXCEPTION) { 221 // Scavenge and allocate an instance. 222 Handle holder(current, klass->klass_holder()); // keep the klass alive 223 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 224 current->set_vm_result(result); 225 226 // Pass oops back through thread local storage. Our apparent type to Java 227 // is that we return an oop, but we can block on exit from this routine and 228 // a GC can trash the oop in C's return register. The generated stub will 229 // fetch the oop from TLS after any possible GC. 230 } 231 232 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 233 JRT_BLOCK_END; 234 235 // inform GC that we won't do card marks for initializing writes. 236 SharedRuntime::on_slowpath_allocation_exit(current); 237 JRT_END 238 239 240 // array allocation 241 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current)) 242 JRT_BLOCK; 243 #ifndef PRODUCT 244 SharedRuntime::_new_array_ctr++; // new array requires GC 245 #endif 246 assert(check_compiled_frame(current), "incorrect caller"); 247 248 // Scavenge and allocate an instance. 249 oop result; 250 251 if (array_type->is_typeArray_klass()) { 252 // The oopFactory likes to work with the element type. 253 // (We could bypass the oopFactory, since it doesn't add much value.) 254 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 255 result = oopFactory::new_typeArray(elem_type, len, THREAD); 256 } else { 257 // Although the oopFactory likes to work with the elem_type, 258 // the compiler prefers the array_type, since it must already have 259 // that latter value in hand for the fast path. 260 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 261 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass(); 262 result = oopFactory::new_objArray(elem_type, len, THREAD); 263 } 264 265 // Pass oops back through thread local storage. Our apparent type to Java 266 // is that we return an oop, but we can block on exit from this routine and 267 // a GC can trash the oop in C's return register. The generated stub will 268 // fetch the oop from TLS after any possible GC. 269 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 270 current->set_vm_result(result); 271 JRT_BLOCK_END; 272 273 // inform GC that we won't do card marks for initializing writes. 274 SharedRuntime::on_slowpath_allocation_exit(current); 275 JRT_END 276 277 // array allocation without zeroing 278 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current)) 279 JRT_BLOCK; 280 #ifndef PRODUCT 281 SharedRuntime::_new_array_ctr++; // new array requires GC 282 #endif 283 assert(check_compiled_frame(current), "incorrect caller"); 284 285 // Scavenge and allocate an instance. 286 oop result; 287 288 assert(array_type->is_typeArray_klass(), "should be called only for type array"); 289 // The oopFactory likes to work with the element type. 290 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 291 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 292 293 // Pass oops back through thread local storage. Our apparent type to Java 294 // is that we return an oop, but we can block on exit from this routine and 295 // a GC can trash the oop in C's return register. The generated stub will 296 // fetch the oop from TLS after any possible GC. 297 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 298 current->set_vm_result(result); 299 JRT_BLOCK_END; 300 301 302 // inform GC that we won't do card marks for initializing writes. 303 SharedRuntime::on_slowpath_allocation_exit(current); 304 305 oop result = current->vm_result(); 306 if ((len > 0) && (result != NULL) && 307 is_deoptimized_caller_frame(current)) { 308 // Zero array here if the caller is deoptimized. 309 const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result); 310 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 311 const size_t hs = arrayOopDesc::header_size(elem_type); 312 // Align to next 8 bytes to avoid trashing arrays's length. 313 const size_t aligned_hs = align_object_offset(hs); 314 HeapWord* obj = cast_from_oop<HeapWord*>(result); 315 if (aligned_hs > hs) { 316 Copy::zero_to_words(obj+hs, aligned_hs-hs); 317 } 318 // Optimized zeroing. 319 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 320 } 321 322 JRT_END 323 324 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 325 326 // multianewarray for 2 dimensions 327 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current)) 328 #ifndef PRODUCT 329 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 330 #endif 331 assert(check_compiled_frame(current), "incorrect caller"); 332 assert(elem_type->is_klass(), "not a class"); 333 jint dims[2]; 334 dims[0] = len1; 335 dims[1] = len2; 336 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 337 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 338 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 339 current->set_vm_result(obj); 340 JRT_END 341 342 // multianewarray for 3 dimensions 343 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current)) 344 #ifndef PRODUCT 345 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 346 #endif 347 assert(check_compiled_frame(current), "incorrect caller"); 348 assert(elem_type->is_klass(), "not a class"); 349 jint dims[3]; 350 dims[0] = len1; 351 dims[1] = len2; 352 dims[2] = len3; 353 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 354 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 355 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 356 current->set_vm_result(obj); 357 JRT_END 358 359 // multianewarray for 4 dimensions 360 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current)) 361 #ifndef PRODUCT 362 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 363 #endif 364 assert(check_compiled_frame(current), "incorrect caller"); 365 assert(elem_type->is_klass(), "not a class"); 366 jint dims[4]; 367 dims[0] = len1; 368 dims[1] = len2; 369 dims[2] = len3; 370 dims[3] = len4; 371 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 372 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 373 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 374 current->set_vm_result(obj); 375 JRT_END 376 377 // multianewarray for 5 dimensions 378 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current)) 379 #ifndef PRODUCT 380 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 381 #endif 382 assert(check_compiled_frame(current), "incorrect caller"); 383 assert(elem_type->is_klass(), "not a class"); 384 jint dims[5]; 385 dims[0] = len1; 386 dims[1] = len2; 387 dims[2] = len3; 388 dims[3] = len4; 389 dims[4] = len5; 390 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 391 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 392 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 393 current->set_vm_result(obj); 394 JRT_END 395 396 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current)) 397 assert(check_compiled_frame(current), "incorrect caller"); 398 assert(elem_type->is_klass(), "not a class"); 399 assert(oop(dims)->is_typeArray(), "not an array"); 400 401 ResourceMark rm; 402 jint len = dims->length(); 403 assert(len > 0, "Dimensions array should contain data"); 404 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 405 ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0), 406 c_dims, len); 407 408 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 409 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 410 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 411 current->set_vm_result(obj); 412 JRT_END 413 414 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current)) 415 416 // Very few notify/notifyAll operations find any threads on the waitset, so 417 // the dominant fast-path is to simply return. 418 // Relatedly, it's critical that notify/notifyAll be fast in order to 419 // reduce lock hold times. 420 if (!SafepointSynchronize::is_synchronizing()) { 421 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 422 return; 423 } 424 } 425 426 // This is the case the fast-path above isn't provisioned to handle. 427 // The fast-path is designed to handle frequently arising cases in an efficient manner. 428 // (The fast-path is just a degenerate variant of the slow-path). 429 // Perform the dreaded state transition and pass control into the slow-path. 430 JRT_BLOCK; 431 Handle h_obj(current, obj); 432 ObjectSynchronizer::notify(h_obj, CHECK); 433 JRT_BLOCK_END; 434 JRT_END 435 436 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current)) 437 438 if (!SafepointSynchronize::is_synchronizing() ) { 439 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 440 return; 441 } 442 } 443 444 // This is the case the fast-path above isn't provisioned to handle. 445 // The fast-path is designed to handle frequently arising cases in an efficient manner. 446 // (The fast-path is just a degenerate variant of the slow-path). 447 // Perform the dreaded state transition and pass control into the slow-path. 448 JRT_BLOCK; 449 Handle h_obj(current, obj); 450 ObjectSynchronizer::notifyall(h_obj, CHECK); 451 JRT_BLOCK_END; 452 JRT_END 453 454 const TypeFunc *OptoRuntime::new_instance_Type() { 455 // create input type (domain) 456 const Type **fields = TypeTuple::fields(1); 457 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 458 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 459 460 // create result type (range) 461 fields = TypeTuple::fields(1); 462 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 463 464 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 465 466 return TypeFunc::make(domain, range); 467 } 468 469 470 const TypeFunc *OptoRuntime::athrow_Type() { 471 // create input type (domain) 472 const Type **fields = TypeTuple::fields(1); 473 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 474 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 475 476 // create result type (range) 477 fields = TypeTuple::fields(0); 478 479 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 480 481 return TypeFunc::make(domain, range); 482 } 483 484 485 const TypeFunc *OptoRuntime::new_array_Type() { 486 // create input type (domain) 487 const Type **fields = TypeTuple::fields(2); 488 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 489 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 490 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 491 492 // create result type (range) 493 fields = TypeTuple::fields(1); 494 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 495 496 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 497 498 return TypeFunc::make(domain, range); 499 } 500 501 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) { 502 // create input type (domain) 503 const int nargs = ndim + 1; 504 const Type **fields = TypeTuple::fields(nargs); 505 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 506 for( int i = 1; i < nargs; i++ ) 507 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 508 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 509 510 // create result type (range) 511 fields = TypeTuple::fields(1); 512 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 513 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 514 515 return TypeFunc::make(domain, range); 516 } 517 518 const TypeFunc *OptoRuntime::multianewarray2_Type() { 519 return multianewarray_Type(2); 520 } 521 522 const TypeFunc *OptoRuntime::multianewarray3_Type() { 523 return multianewarray_Type(3); 524 } 525 526 const TypeFunc *OptoRuntime::multianewarray4_Type() { 527 return multianewarray_Type(4); 528 } 529 530 const TypeFunc *OptoRuntime::multianewarray5_Type() { 531 return multianewarray_Type(5); 532 } 533 534 const TypeFunc *OptoRuntime::multianewarrayN_Type() { 535 // create input type (domain) 536 const Type **fields = TypeTuple::fields(2); 537 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 538 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 539 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 540 541 // create result type (range) 542 fields = TypeTuple::fields(1); 543 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 544 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 545 546 return TypeFunc::make(domain, range); 547 } 548 549 const TypeFunc *OptoRuntime::uncommon_trap_Type() { 550 // create input type (domain) 551 const Type **fields = TypeTuple::fields(1); 552 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action) 553 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 554 555 // create result type (range) 556 fields = TypeTuple::fields(0); 557 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 558 559 return TypeFunc::make(domain, range); 560 } 561 562 //----------------------------------------------------------------------------- 563 // Monitor Handling 564 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() { 565 // create input type (domain) 566 const Type **fields = TypeTuple::fields(2); 567 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 568 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 569 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 570 571 // create result type (range) 572 fields = TypeTuple::fields(0); 573 574 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 575 576 return TypeFunc::make(domain,range); 577 } 578 579 580 //----------------------------------------------------------------------------- 581 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() { 582 // create input type (domain) 583 const Type **fields = TypeTuple::fields(3); 584 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 585 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock 586 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self) 587 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 588 589 // create result type (range) 590 fields = TypeTuple::fields(0); 591 592 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 593 594 return TypeFunc::make(domain, range); 595 } 596 597 const TypeFunc *OptoRuntime::monitor_notify_Type() { 598 // create input type (domain) 599 const Type **fields = TypeTuple::fields(1); 600 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 601 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 602 603 // create result type (range) 604 fields = TypeTuple::fields(0); 605 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 606 return TypeFunc::make(domain, range); 607 } 608 609 const TypeFunc* OptoRuntime::flush_windows_Type() { 610 // create input type (domain) 611 const Type** fields = TypeTuple::fields(1); 612 fields[TypeFunc::Parms+0] = NULL; // void 613 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 614 615 // create result type 616 fields = TypeTuple::fields(1); 617 fields[TypeFunc::Parms+0] = NULL; // void 618 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 619 620 return TypeFunc::make(domain, range); 621 } 622 623 const TypeFunc* OptoRuntime::l2f_Type() { 624 // create input type (domain) 625 const Type **fields = TypeTuple::fields(2); 626 fields[TypeFunc::Parms+0] = TypeLong::LONG; 627 fields[TypeFunc::Parms+1] = Type::HALF; 628 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 629 630 // create result type (range) 631 fields = TypeTuple::fields(1); 632 fields[TypeFunc::Parms+0] = Type::FLOAT; 633 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 634 635 return TypeFunc::make(domain, range); 636 } 637 638 const TypeFunc* OptoRuntime::modf_Type() { 639 const Type **fields = TypeTuple::fields(2); 640 fields[TypeFunc::Parms+0] = Type::FLOAT; 641 fields[TypeFunc::Parms+1] = Type::FLOAT; 642 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 643 644 // create result type (range) 645 fields = TypeTuple::fields(1); 646 fields[TypeFunc::Parms+0] = Type::FLOAT; 647 648 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 649 650 return TypeFunc::make(domain, range); 651 } 652 653 const TypeFunc *OptoRuntime::Math_D_D_Type() { 654 // create input type (domain) 655 const Type **fields = TypeTuple::fields(2); 656 // Symbol* name of class to be loaded 657 fields[TypeFunc::Parms+0] = Type::DOUBLE; 658 fields[TypeFunc::Parms+1] = Type::HALF; 659 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 660 661 // create result type (range) 662 fields = TypeTuple::fields(2); 663 fields[TypeFunc::Parms+0] = Type::DOUBLE; 664 fields[TypeFunc::Parms+1] = Type::HALF; 665 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 666 667 return TypeFunc::make(domain, range); 668 } 669 670 const TypeFunc *OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) { 671 // create input type (domain) 672 const Type **fields = TypeTuple::fields(num_arg); 673 // Symbol* name of class to be loaded 674 assert(num_arg > 0, "must have at least 1 input"); 675 for (uint i = 0; i < num_arg; i++) { 676 fields[TypeFunc::Parms+i] = in_type; 677 } 678 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields); 679 680 // create result type (range) 681 const uint num_ret = 1; 682 fields = TypeTuple::fields(num_ret); 683 fields[TypeFunc::Parms+0] = out_type; 684 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields); 685 686 return TypeFunc::make(domain, range); 687 } 688 689 const TypeFunc* OptoRuntime::Math_DD_D_Type() { 690 const Type **fields = TypeTuple::fields(4); 691 fields[TypeFunc::Parms+0] = Type::DOUBLE; 692 fields[TypeFunc::Parms+1] = Type::HALF; 693 fields[TypeFunc::Parms+2] = Type::DOUBLE; 694 fields[TypeFunc::Parms+3] = Type::HALF; 695 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 696 697 // create result type (range) 698 fields = TypeTuple::fields(2); 699 fields[TypeFunc::Parms+0] = Type::DOUBLE; 700 fields[TypeFunc::Parms+1] = Type::HALF; 701 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 702 703 return TypeFunc::make(domain, range); 704 } 705 706 //-------------- currentTimeMillis, currentTimeNanos, etc 707 708 const TypeFunc* OptoRuntime::void_long_Type() { 709 // create input type (domain) 710 const Type **fields = TypeTuple::fields(0); 711 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 712 713 // create result type (range) 714 fields = TypeTuple::fields(2); 715 fields[TypeFunc::Parms+0] = TypeLong::LONG; 716 fields[TypeFunc::Parms+1] = Type::HALF; 717 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 718 719 return TypeFunc::make(domain, range); 720 } 721 722 const TypeFunc* OptoRuntime::void_void_Type() { 723 // create input type (domain) 724 const Type **fields = TypeTuple::fields(0); 725 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 726 727 // create result type (range) 728 fields = TypeTuple::fields(0); 729 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 730 return TypeFunc::make(domain, range); 731 } 732 733 const TypeFunc* OptoRuntime::jfr_write_checkpoint_Type() { 734 // create input type (domain) 735 const Type **fields = TypeTuple::fields(0); 736 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 737 738 // create result type (range) 739 fields = TypeTuple::fields(0); 740 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 741 return TypeFunc::make(domain, range); 742 } 743 744 745 // arraycopy stub variations: 746 enum ArrayCopyType { 747 ac_fast, // void(ptr, ptr, size_t) 748 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 749 ac_slow, // void(ptr, int, ptr, int, int) 750 ac_generic // int(ptr, int, ptr, int, int) 751 }; 752 753 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 754 // create input type (domain) 755 int num_args = (act == ac_fast ? 3 : 5); 756 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 757 int argcnt = num_args; 758 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 759 const Type** fields = TypeTuple::fields(argcnt); 760 int argp = TypeFunc::Parms; 761 fields[argp++] = TypePtr::NOTNULL; // src 762 if (num_size_args == 0) { 763 fields[argp++] = TypeInt::INT; // src_pos 764 } 765 fields[argp++] = TypePtr::NOTNULL; // dest 766 if (num_size_args == 0) { 767 fields[argp++] = TypeInt::INT; // dest_pos 768 fields[argp++] = TypeInt::INT; // length 769 } 770 while (num_size_args-- > 0) { 771 fields[argp++] = TypeX_X; // size in whatevers (size_t) 772 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 773 } 774 if (act == ac_checkcast) { 775 fields[argp++] = TypePtr::NOTNULL; // super_klass 776 } 777 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 778 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 779 780 // create result type if needed 781 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 782 fields = TypeTuple::fields(1); 783 if (retcnt == 0) 784 fields[TypeFunc::Parms+0] = NULL; // void 785 else 786 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 787 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 788 return TypeFunc::make(domain, range); 789 } 790 791 const TypeFunc* OptoRuntime::fast_arraycopy_Type() { 792 // This signature is simple: Two base pointers and a size_t. 793 return make_arraycopy_Type(ac_fast); 794 } 795 796 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() { 797 // An extension of fast_arraycopy_Type which adds type checking. 798 return make_arraycopy_Type(ac_checkcast); 799 } 800 801 const TypeFunc* OptoRuntime::slow_arraycopy_Type() { 802 // This signature is exactly the same as System.arraycopy. 803 // There are no intptr_t (int/long) arguments. 804 return make_arraycopy_Type(ac_slow); 805 } 806 807 const TypeFunc* OptoRuntime::generic_arraycopy_Type() { 808 // This signature is like System.arraycopy, except that it returns status. 809 return make_arraycopy_Type(ac_generic); 810 } 811 812 813 const TypeFunc* OptoRuntime::array_fill_Type() { 814 const Type** fields; 815 int argp = TypeFunc::Parms; 816 // create input type (domain): pointer, int, size_t 817 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 818 fields[argp++] = TypePtr::NOTNULL; 819 fields[argp++] = TypeInt::INT; 820 fields[argp++] = TypeX_X; // size in whatevers (size_t) 821 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 822 const TypeTuple *domain = TypeTuple::make(argp, fields); 823 824 // create result type 825 fields = TypeTuple::fields(1); 826 fields[TypeFunc::Parms+0] = NULL; // void 827 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 828 829 return TypeFunc::make(domain, range); 830 } 831 832 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant) 833 const TypeFunc* OptoRuntime::aescrypt_block_Type() { 834 // create input type (domain) 835 int num_args = 3; 836 int argcnt = num_args; 837 const Type** fields = TypeTuple::fields(argcnt); 838 int argp = TypeFunc::Parms; 839 fields[argp++] = TypePtr::NOTNULL; // src 840 fields[argp++] = TypePtr::NOTNULL; // dest 841 fields[argp++] = TypePtr::NOTNULL; // k array 842 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 843 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 844 845 // no result type needed 846 fields = TypeTuple::fields(1); 847 fields[TypeFunc::Parms+0] = NULL; // void 848 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 849 return TypeFunc::make(domain, range); 850 } 851 852 /** 853 * int updateBytesCRC32(int crc, byte* b, int len) 854 */ 855 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() { 856 // create input type (domain) 857 int num_args = 3; 858 int argcnt = num_args; 859 const Type** fields = TypeTuple::fields(argcnt); 860 int argp = TypeFunc::Parms; 861 fields[argp++] = TypeInt::INT; // crc 862 fields[argp++] = TypePtr::NOTNULL; // src 863 fields[argp++] = TypeInt::INT; // len 864 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 865 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 866 867 // result type needed 868 fields = TypeTuple::fields(1); 869 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 870 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 871 return TypeFunc::make(domain, range); 872 } 873 874 /** 875 * int updateBytesCRC32C(int crc, byte* buf, int len, int* table) 876 */ 877 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() { 878 // create input type (domain) 879 int num_args = 4; 880 int argcnt = num_args; 881 const Type** fields = TypeTuple::fields(argcnt); 882 int argp = TypeFunc::Parms; 883 fields[argp++] = TypeInt::INT; // crc 884 fields[argp++] = TypePtr::NOTNULL; // buf 885 fields[argp++] = TypeInt::INT; // len 886 fields[argp++] = TypePtr::NOTNULL; // table 887 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 888 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 889 890 // result type needed 891 fields = TypeTuple::fields(1); 892 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 893 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 894 return TypeFunc::make(domain, range); 895 } 896 897 /** 898 * int updateBytesAdler32(int adler, bytes* b, int off, int len) 899 */ 900 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() { 901 // create input type (domain) 902 int num_args = 3; 903 int argcnt = num_args; 904 const Type** fields = TypeTuple::fields(argcnt); 905 int argp = TypeFunc::Parms; 906 fields[argp++] = TypeInt::INT; // crc 907 fields[argp++] = TypePtr::NOTNULL; // src + offset 908 fields[argp++] = TypeInt::INT; // len 909 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 910 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 911 912 // result type needed 913 fields = TypeTuple::fields(1); 914 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 915 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 916 return TypeFunc::make(domain, range); 917 } 918 919 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 920 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() { 921 // create input type (domain) 922 int num_args = 5; 923 int argcnt = num_args; 924 const Type** fields = TypeTuple::fields(argcnt); 925 int argp = TypeFunc::Parms; 926 fields[argp++] = TypePtr::NOTNULL; // src 927 fields[argp++] = TypePtr::NOTNULL; // dest 928 fields[argp++] = TypePtr::NOTNULL; // k array 929 fields[argp++] = TypePtr::NOTNULL; // r array 930 fields[argp++] = TypeInt::INT; // src len 931 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 932 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 933 934 // returning cipher len (int) 935 fields = TypeTuple::fields(1); 936 fields[TypeFunc::Parms+0] = TypeInt::INT; 937 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 938 return TypeFunc::make(domain, range); 939 } 940 941 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int 942 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() { 943 // create input type (domain) 944 int num_args = 4; 945 int argcnt = num_args; 946 const Type** fields = TypeTuple::fields(argcnt); 947 int argp = TypeFunc::Parms; 948 fields[argp++] = TypePtr::NOTNULL; // src 949 fields[argp++] = TypePtr::NOTNULL; // dest 950 fields[argp++] = TypePtr::NOTNULL; // k array 951 fields[argp++] = TypeInt::INT; // src len 952 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 953 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 954 955 // returning cipher len (int) 956 fields = TypeTuple::fields(1); 957 fields[TypeFunc::Parms + 0] = TypeInt::INT; 958 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 959 return TypeFunc::make(domain, range); 960 } 961 962 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 963 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() { 964 // create input type (domain) 965 int num_args = 7; 966 int argcnt = num_args; 967 const Type** fields = TypeTuple::fields(argcnt); 968 int argp = TypeFunc::Parms; 969 fields[argp++] = TypePtr::NOTNULL; // src 970 fields[argp++] = TypePtr::NOTNULL; // dest 971 fields[argp++] = TypePtr::NOTNULL; // k array 972 fields[argp++] = TypePtr::NOTNULL; // counter array 973 fields[argp++] = TypeInt::INT; // src len 974 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter 975 fields[argp++] = TypePtr::NOTNULL; // saved used addr 976 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 977 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 978 // returning cipher len (int) 979 fields = TypeTuple::fields(1); 980 fields[TypeFunc::Parms + 0] = TypeInt::INT; 981 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 982 return TypeFunc::make(domain, range); 983 } 984 985 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 986 const TypeFunc* OptoRuntime::galoisCounterMode_aescrypt_Type() { 987 // create input type (domain) 988 int num_args = 8; 989 int argcnt = num_args; 990 const Type** fields = TypeTuple::fields(argcnt); 991 int argp = TypeFunc::Parms; 992 fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs 993 fields[argp++] = TypeInt::INT; // int len 994 fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs 995 fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs 996 fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj 997 fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj 998 fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj 999 fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj 1000 1001 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1002 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1003 // returning cipher len (int) 1004 fields = TypeTuple::fields(1); 1005 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1006 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1007 return TypeFunc::make(domain, range); 1008 } 1009 1010 /* 1011 * void implCompress(byte[] buf, int ofs) 1012 */ 1013 const TypeFunc* OptoRuntime::digestBase_implCompress_Type(bool is_sha3) { 1014 // create input type (domain) 1015 int num_args = is_sha3 ? 3 : 2; 1016 int argcnt = num_args; 1017 const Type** fields = TypeTuple::fields(argcnt); 1018 int argp = TypeFunc::Parms; 1019 fields[argp++] = TypePtr::NOTNULL; // buf 1020 fields[argp++] = TypePtr::NOTNULL; // state 1021 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1022 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1023 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1024 1025 // no result type needed 1026 fields = TypeTuple::fields(1); 1027 fields[TypeFunc::Parms+0] = NULL; // void 1028 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1029 return TypeFunc::make(domain, range); 1030 } 1031 1032 /* 1033 * int implCompressMultiBlock(byte[] b, int ofs, int limit) 1034 */ 1035 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type(bool is_sha3) { 1036 // create input type (domain) 1037 int num_args = is_sha3 ? 5 : 4; 1038 int argcnt = num_args; 1039 const Type** fields = TypeTuple::fields(argcnt); 1040 int argp = TypeFunc::Parms; 1041 fields[argp++] = TypePtr::NOTNULL; // buf 1042 fields[argp++] = TypePtr::NOTNULL; // state 1043 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1044 fields[argp++] = TypeInt::INT; // ofs 1045 fields[argp++] = TypeInt::INT; // limit 1046 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1047 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1048 1049 // returning ofs (int) 1050 fields = TypeTuple::fields(1); 1051 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs 1052 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1053 return TypeFunc::make(domain, range); 1054 } 1055 1056 const TypeFunc* OptoRuntime::multiplyToLen_Type() { 1057 // create input type (domain) 1058 int num_args = 6; 1059 int argcnt = num_args; 1060 const Type** fields = TypeTuple::fields(argcnt); 1061 int argp = TypeFunc::Parms; 1062 fields[argp++] = TypePtr::NOTNULL; // x 1063 fields[argp++] = TypeInt::INT; // xlen 1064 fields[argp++] = TypePtr::NOTNULL; // y 1065 fields[argp++] = TypeInt::INT; // ylen 1066 fields[argp++] = TypePtr::NOTNULL; // z 1067 fields[argp++] = TypeInt::INT; // zlen 1068 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1069 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1070 1071 // no result type needed 1072 fields = TypeTuple::fields(1); 1073 fields[TypeFunc::Parms+0] = NULL; 1074 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1075 return TypeFunc::make(domain, range); 1076 } 1077 1078 const TypeFunc* OptoRuntime::squareToLen_Type() { 1079 // create input type (domain) 1080 int num_args = 4; 1081 int argcnt = num_args; 1082 const Type** fields = TypeTuple::fields(argcnt); 1083 int argp = TypeFunc::Parms; 1084 fields[argp++] = TypePtr::NOTNULL; // x 1085 fields[argp++] = TypeInt::INT; // len 1086 fields[argp++] = TypePtr::NOTNULL; // z 1087 fields[argp++] = TypeInt::INT; // zlen 1088 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1089 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1090 1091 // no result type needed 1092 fields = TypeTuple::fields(1); 1093 fields[TypeFunc::Parms+0] = NULL; 1094 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1095 return TypeFunc::make(domain, range); 1096 } 1097 1098 // for mulAdd calls, 2 pointers and 3 ints, returning int 1099 const TypeFunc* OptoRuntime::mulAdd_Type() { 1100 // create input type (domain) 1101 int num_args = 5; 1102 int argcnt = num_args; 1103 const Type** fields = TypeTuple::fields(argcnt); 1104 int argp = TypeFunc::Parms; 1105 fields[argp++] = TypePtr::NOTNULL; // out 1106 fields[argp++] = TypePtr::NOTNULL; // in 1107 fields[argp++] = TypeInt::INT; // offset 1108 fields[argp++] = TypeInt::INT; // len 1109 fields[argp++] = TypeInt::INT; // k 1110 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1111 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1112 1113 // returning carry (int) 1114 fields = TypeTuple::fields(1); 1115 fields[TypeFunc::Parms+0] = TypeInt::INT; 1116 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1117 return TypeFunc::make(domain, range); 1118 } 1119 1120 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() { 1121 // create input type (domain) 1122 int num_args = 7; 1123 int argcnt = num_args; 1124 const Type** fields = TypeTuple::fields(argcnt); 1125 int argp = TypeFunc::Parms; 1126 fields[argp++] = TypePtr::NOTNULL; // a 1127 fields[argp++] = TypePtr::NOTNULL; // b 1128 fields[argp++] = TypePtr::NOTNULL; // n 1129 fields[argp++] = TypeInt::INT; // len 1130 fields[argp++] = TypeLong::LONG; // inv 1131 fields[argp++] = Type::HALF; 1132 fields[argp++] = TypePtr::NOTNULL; // result 1133 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1134 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1135 1136 // result type needed 1137 fields = TypeTuple::fields(1); 1138 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1139 1140 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1141 return TypeFunc::make(domain, range); 1142 } 1143 1144 const TypeFunc* OptoRuntime::montgomerySquare_Type() { 1145 // create input type (domain) 1146 int num_args = 6; 1147 int argcnt = num_args; 1148 const Type** fields = TypeTuple::fields(argcnt); 1149 int argp = TypeFunc::Parms; 1150 fields[argp++] = TypePtr::NOTNULL; // a 1151 fields[argp++] = TypePtr::NOTNULL; // n 1152 fields[argp++] = TypeInt::INT; // len 1153 fields[argp++] = TypeLong::LONG; // inv 1154 fields[argp++] = Type::HALF; 1155 fields[argp++] = TypePtr::NOTNULL; // result 1156 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1157 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1158 1159 // result type needed 1160 fields = TypeTuple::fields(1); 1161 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1162 1163 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1164 return TypeFunc::make(domain, range); 1165 } 1166 1167 const TypeFunc * OptoRuntime::bigIntegerShift_Type() { 1168 int argcnt = 5; 1169 const Type** fields = TypeTuple::fields(argcnt); 1170 int argp = TypeFunc::Parms; 1171 fields[argp++] = TypePtr::NOTNULL; // newArr 1172 fields[argp++] = TypePtr::NOTNULL; // oldArr 1173 fields[argp++] = TypeInt::INT; // newIdx 1174 fields[argp++] = TypeInt::INT; // shiftCount 1175 fields[argp++] = TypeInt::INT; // numIter 1176 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1177 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1178 1179 // no result type needed 1180 fields = TypeTuple::fields(1); 1181 fields[TypeFunc::Parms + 0] = NULL; 1182 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1183 return TypeFunc::make(domain, range); 1184 } 1185 1186 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() { 1187 // create input type (domain) 1188 int num_args = 4; 1189 int argcnt = num_args; 1190 const Type** fields = TypeTuple::fields(argcnt); 1191 int argp = TypeFunc::Parms; 1192 fields[argp++] = TypePtr::NOTNULL; // obja 1193 fields[argp++] = TypePtr::NOTNULL; // objb 1194 fields[argp++] = TypeInt::INT; // length, number of elements 1195 fields[argp++] = TypeInt::INT; // log2scale, element size 1196 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1197 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1198 1199 //return mismatch index (int) 1200 fields = TypeTuple::fields(1); 1201 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1202 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1203 return TypeFunc::make(domain, range); 1204 } 1205 1206 // GHASH block processing 1207 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() { 1208 int argcnt = 4; 1209 1210 const Type** fields = TypeTuple::fields(argcnt); 1211 int argp = TypeFunc::Parms; 1212 fields[argp++] = TypePtr::NOTNULL; // state 1213 fields[argp++] = TypePtr::NOTNULL; // subkeyH 1214 fields[argp++] = TypePtr::NOTNULL; // data 1215 fields[argp++] = TypeInt::INT; // blocks 1216 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1217 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1218 1219 // result type needed 1220 fields = TypeTuple::fields(1); 1221 fields[TypeFunc::Parms+0] = NULL; // void 1222 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1223 return TypeFunc::make(domain, range); 1224 } 1225 1226 // ChaCha20 Block function 1227 const TypeFunc* OptoRuntime::chacha20Block_Type() { 1228 int argcnt = 2; 1229 1230 const Type** fields = TypeTuple::fields(argcnt); 1231 int argp = TypeFunc::Parms; 1232 fields[argp++] = TypePtr::NOTNULL; // state 1233 fields[argp++] = TypePtr::NOTNULL; // result 1234 1235 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1236 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1237 1238 // result type needed 1239 fields = TypeTuple::fields(1); 1240 fields[TypeFunc::Parms + 0] = TypeInt::INT; // key stream outlen as int 1241 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1242 return TypeFunc::make(domain, range); 1243 } 1244 1245 // Base64 encode function 1246 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() { 1247 int argcnt = 6; 1248 1249 const Type** fields = TypeTuple::fields(argcnt); 1250 int argp = TypeFunc::Parms; 1251 fields[argp++] = TypePtr::NOTNULL; // src array 1252 fields[argp++] = TypeInt::INT; // offset 1253 fields[argp++] = TypeInt::INT; // length 1254 fields[argp++] = TypePtr::NOTNULL; // dest array 1255 fields[argp++] = TypeInt::INT; // dp 1256 fields[argp++] = TypeInt::BOOL; // isURL 1257 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1258 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1259 1260 // result type needed 1261 fields = TypeTuple::fields(1); 1262 fields[TypeFunc::Parms + 0] = NULL; // void 1263 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1264 return TypeFunc::make(domain, range); 1265 } 1266 // Base64 decode function 1267 const TypeFunc* OptoRuntime::base64_decodeBlock_Type() { 1268 int argcnt = 7; 1269 1270 const Type** fields = TypeTuple::fields(argcnt); 1271 int argp = TypeFunc::Parms; 1272 fields[argp++] = TypePtr::NOTNULL; // src array 1273 fields[argp++] = TypeInt::INT; // src offset 1274 fields[argp++] = TypeInt::INT; // src length 1275 fields[argp++] = TypePtr::NOTNULL; // dest array 1276 fields[argp++] = TypeInt::INT; // dest offset 1277 fields[argp++] = TypeInt::BOOL; // isURL 1278 fields[argp++] = TypeInt::BOOL; // isMIME 1279 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1280 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1281 1282 // result type needed 1283 fields = TypeTuple::fields(1); 1284 fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst 1285 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1286 return TypeFunc::make(domain, range); 1287 } 1288 1289 // Poly1305 processMultipleBlocks function 1290 const TypeFunc* OptoRuntime::poly1305_processBlocks_Type() { 1291 int argcnt = 4; 1292 1293 const Type** fields = TypeTuple::fields(argcnt); 1294 int argp = TypeFunc::Parms; 1295 fields[argp++] = TypePtr::NOTNULL; // input array 1296 fields[argp++] = TypeInt::INT; // input length 1297 fields[argp++] = TypePtr::NOTNULL; // accumulator array 1298 fields[argp++] = TypePtr::NOTNULL; // r array 1299 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1300 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1301 1302 // result type needed 1303 fields = TypeTuple::fields(1); 1304 fields[TypeFunc::Parms + 0] = NULL; // void 1305 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1306 return TypeFunc::make(domain, range); 1307 } 1308 1309 //------------- Interpreter state access for on stack replacement 1310 const TypeFunc* OptoRuntime::osr_end_Type() { 1311 // create input type (domain) 1312 const Type **fields = TypeTuple::fields(1); 1313 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 1314 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1315 1316 // create result type 1317 fields = TypeTuple::fields(1); 1318 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 1319 fields[TypeFunc::Parms+0] = NULL; // void 1320 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1321 return TypeFunc::make(domain, range); 1322 } 1323 1324 //------------------------------------------------------------------------------------- 1325 // register policy 1326 1327 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 1328 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 1329 switch (register_save_policy[reg]) { 1330 case 'C': return false; //SOC 1331 case 'E': return true ; //SOE 1332 case 'N': return false; //NS 1333 case 'A': return false; //AS 1334 } 1335 ShouldNotReachHere(); 1336 return false; 1337 } 1338 1339 //----------------------------------------------------------------------- 1340 // Exceptions 1341 // 1342 1343 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg); 1344 1345 // The method is an entry that is always called by a C++ method not 1346 // directly from compiled code. Compiled code will call the C++ method following. 1347 // We can't allow async exception to be installed during exception processing. 1348 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm)) 1349 // The frame we rethrow the exception to might not have been processed by the GC yet. 1350 // The stack watermark barrier takes care of detecting that and ensuring the frame 1351 // has updated oops. 1352 StackWatermarkSet::after_unwind(current); 1353 1354 // Do not confuse exception_oop with pending_exception. The exception_oop 1355 // is only used to pass arguments into the method. Not for general 1356 // exception handling. DO NOT CHANGE IT to use pending_exception, since 1357 // the runtime stubs checks this on exit. 1358 assert(current->exception_oop() != NULL, "exception oop is found"); 1359 address handler_address = NULL; 1360 1361 Handle exception(current, current->exception_oop()); 1362 address pc = current->exception_pc(); 1363 1364 // Clear out the exception oop and pc since looking up an 1365 // exception handler can cause class loading, which might throw an 1366 // exception and those fields are expected to be clear during 1367 // normal bytecode execution. 1368 current->clear_exception_oop_and_pc(); 1369 1370 LogTarget(Info, exceptions) lt; 1371 if (lt.is_enabled()) { 1372 ResourceMark rm; 1373 LogStream ls(lt); 1374 trace_exception(&ls, exception(), pc, ""); 1375 } 1376 1377 // for AbortVMOnException flag 1378 Exceptions::debug_check_abort(exception); 1379 1380 #ifdef ASSERT 1381 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1382 // should throw an exception here 1383 ShouldNotReachHere(); 1384 } 1385 #endif 1386 1387 // new exception handling: this method is entered only from adapters 1388 // exceptions from compiled java methods are handled in compiled code 1389 // using rethrow node 1390 1391 nm = CodeCache::find_nmethod(pc); 1392 assert(nm != NULL, "No NMethod found"); 1393 if (nm->is_native_method()) { 1394 fatal("Native method should not have path to exception handling"); 1395 } else { 1396 // we are switching to old paradigm: search for exception handler in caller_frame 1397 // instead in exception handler of caller_frame.sender() 1398 1399 if (JvmtiExport::can_post_on_exceptions()) { 1400 // "Full-speed catching" is not necessary here, 1401 // since we're notifying the VM on every catch. 1402 // Force deoptimization and the rest of the lookup 1403 // will be fine. 1404 deoptimize_caller_frame(current); 1405 } 1406 1407 // Check the stack guard pages. If enabled, look for handler in this frame; 1408 // otherwise, forcibly unwind the frame. 1409 // 1410 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1411 bool force_unwind = !current->stack_overflow_state()->reguard_stack(); 1412 bool deopting = false; 1413 if (nm->is_deopt_pc(pc)) { 1414 deopting = true; 1415 RegisterMap map(current, 1416 RegisterMap::UpdateMap::skip, 1417 RegisterMap::ProcessFrames::include, 1418 RegisterMap::WalkContinuation::skip); 1419 frame deoptee = current->last_frame().sender(&map); 1420 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1421 // Adjust the pc back to the original throwing pc 1422 pc = deoptee.pc(); 1423 } 1424 1425 // If we are forcing an unwind because of stack overflow then deopt is 1426 // irrelevant since we are throwing the frame away anyway. 1427 1428 if (deopting && !force_unwind) { 1429 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1430 } else { 1431 1432 handler_address = 1433 force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc); 1434 1435 if (handler_address == NULL) { 1436 bool recursive_exception = false; 1437 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1438 assert (handler_address != NULL, "must have compiled handler"); 1439 // Update the exception cache only when the unwind was not forced 1440 // and there didn't happen another exception during the computation of the 1441 // compiled exception handler. Checking for exception oop equality is not 1442 // sufficient because some exceptions are pre-allocated and reused. 1443 if (!force_unwind && !recursive_exception) { 1444 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1445 } 1446 } else { 1447 #ifdef ASSERT 1448 bool recursive_exception = false; 1449 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1450 vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT, 1451 p2i(handler_address), p2i(computed_address)); 1452 #endif 1453 } 1454 } 1455 1456 current->set_exception_pc(pc); 1457 current->set_exception_handler_pc(handler_address); 1458 1459 // Check if the exception PC is a MethodHandle call site. 1460 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1461 } 1462 1463 // Restore correct return pc. Was saved above. 1464 current->set_exception_oop(exception()); 1465 return handler_address; 1466 1467 JRT_END 1468 1469 // We are entering here from exception_blob 1470 // If there is a compiled exception handler in this method, we will continue there; 1471 // otherwise we will unwind the stack and continue at the caller of top frame method 1472 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1473 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1474 // we looked up the handler for has been deoptimized in the meantime. If it has been 1475 // we must not use the handler and instead return the deopt blob. 1476 address OptoRuntime::handle_exception_C(JavaThread* current) { 1477 // 1478 // We are in Java not VM and in debug mode we have a NoHandleMark 1479 // 1480 #ifndef PRODUCT 1481 SharedRuntime::_find_handler_ctr++; // find exception handler 1482 #endif 1483 debug_only(NoHandleMark __hm;) 1484 nmethod* nm = NULL; 1485 address handler_address = NULL; 1486 { 1487 // Enter the VM 1488 1489 ResetNoHandleMark rnhm; 1490 handler_address = handle_exception_C_helper(current, nm); 1491 } 1492 1493 // Back in java: Use no oops, DON'T safepoint 1494 1495 // Now check to see if the handler we are returning is in a now 1496 // deoptimized frame 1497 1498 if (nm != NULL) { 1499 RegisterMap map(current, 1500 RegisterMap::UpdateMap::skip, 1501 RegisterMap::ProcessFrames::skip, 1502 RegisterMap::WalkContinuation::skip); 1503 frame caller = current->last_frame().sender(&map); 1504 #ifdef ASSERT 1505 assert(caller.is_compiled_frame(), "must be"); 1506 #endif // ASSERT 1507 if (caller.is_deoptimized_frame()) { 1508 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1509 } 1510 } 1511 return handler_address; 1512 } 1513 1514 //------------------------------rethrow---------------------------------------- 1515 // We get here after compiled code has executed a 'RethrowNode'. The callee 1516 // is either throwing or rethrowing an exception. The callee-save registers 1517 // have been restored, synchronized objects have been unlocked and the callee 1518 // stack frame has been removed. The return address was passed in. 1519 // Exception oop is passed as the 1st argument. This routine is then called 1520 // from the stub. On exit, we know where to jump in the caller's code. 1521 // After this C code exits, the stub will pop his frame and end in a jump 1522 // (instead of a return). We enter the caller's default handler. 1523 // 1524 // This must be JRT_LEAF: 1525 // - caller will not change its state as we cannot block on exit, 1526 // therefore raw_exception_handler_for_return_address is all it takes 1527 // to handle deoptimized blobs 1528 // 1529 // However, there needs to be a safepoint check in the middle! So compiled 1530 // safepoints are completely watertight. 1531 // 1532 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier. 1533 // 1534 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 1535 // 1536 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 1537 1538 // Enable WXWrite: the function called directly by compiled code. 1539 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, thread)); 1540 1541 // ret_pc will have been loaded from the stack, so for AArch64 will be signed. 1542 // This needs authenticating, but to do that here requires the fp of the previous frame. 1543 // A better way of doing it would be authenticate in the caller by adding a 1544 // AuthPAuthNode and using it in GraphKit::gen_stub. For now, just strip it. 1545 AARCH64_PORT_ONLY(ret_pc = pauth_strip_pointer(ret_pc)); 1546 1547 #ifndef PRODUCT 1548 SharedRuntime::_rethrow_ctr++; // count rethrows 1549 #endif 1550 assert (exception != NULL, "should have thrown a NULLPointerException"); 1551 #ifdef ASSERT 1552 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1553 // should throw an exception here 1554 ShouldNotReachHere(); 1555 } 1556 #endif 1557 1558 thread->set_vm_result(exception); 1559 // Frame not compiled (handles deoptimization blob) 1560 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 1561 } 1562 1563 1564 const TypeFunc *OptoRuntime::rethrow_Type() { 1565 // create input type (domain) 1566 const Type **fields = TypeTuple::fields(1); 1567 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1568 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1569 1570 // create result type (range) 1571 fields = TypeTuple::fields(1); 1572 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1573 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 1574 1575 return TypeFunc::make(domain, range); 1576 } 1577 1578 1579 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 1580 // Deoptimize the caller before continuing, as the compiled 1581 // exception handler table may not be valid. 1582 if (!StressCompiledExceptionHandlers && doit) { 1583 deoptimize_caller_frame(thread); 1584 } 1585 } 1586 1587 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 1588 // Called from within the owner thread, so no need for safepoint 1589 RegisterMap reg_map(thread, 1590 RegisterMap::UpdateMap::include, 1591 RegisterMap::ProcessFrames::include, 1592 RegisterMap::WalkContinuation::skip); 1593 frame stub_frame = thread->last_frame(); 1594 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1595 frame caller_frame = stub_frame.sender(®_map); 1596 1597 // Deoptimize the caller frame. 1598 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 1599 } 1600 1601 1602 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 1603 // Called from within the owner thread, so no need for safepoint 1604 RegisterMap reg_map(thread, 1605 RegisterMap::UpdateMap::include, 1606 RegisterMap::ProcessFrames::include, 1607 RegisterMap::WalkContinuation::skip); 1608 frame stub_frame = thread->last_frame(); 1609 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1610 frame caller_frame = stub_frame.sender(®_map); 1611 return caller_frame.is_deoptimized_frame(); 1612 } 1613 1614 1615 const TypeFunc *OptoRuntime::register_finalizer_Type() { 1616 // create input type (domain) 1617 const Type **fields = TypeTuple::fields(1); 1618 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 1619 // // The JavaThread* is passed to each routine as the last argument 1620 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 1621 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1622 1623 // create result type (range) 1624 fields = TypeTuple::fields(0); 1625 1626 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1627 1628 return TypeFunc::make(domain,range); 1629 } 1630 1631 #if INCLUDE_JFR 1632 const TypeFunc *OptoRuntime::class_id_load_barrier_Type() { 1633 // create input type (domain) 1634 const Type **fields = TypeTuple::fields(1); 1635 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS; 1636 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields); 1637 1638 // create result type (range) 1639 fields = TypeTuple::fields(0); 1640 1641 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields); 1642 1643 return TypeFunc::make(domain,range); 1644 } 1645 #endif 1646 1647 //----------------------------------------------------------------------------- 1648 // Dtrace support. entry and exit probes have the same signature 1649 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() { 1650 // create input type (domain) 1651 const Type **fields = TypeTuple::fields(2); 1652 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1653 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 1654 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1655 1656 // create result type (range) 1657 fields = TypeTuple::fields(0); 1658 1659 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1660 1661 return TypeFunc::make(domain,range); 1662 } 1663 1664 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() { 1665 // create input type (domain) 1666 const Type **fields = TypeTuple::fields(2); 1667 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1668 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 1669 1670 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1671 1672 // create result type (range) 1673 fields = TypeTuple::fields(0); 1674 1675 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1676 1677 return TypeFunc::make(domain,range); 1678 } 1679 1680 1681 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* current)) 1682 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1683 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1684 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1685 JRT_END 1686 1687 //----------------------------------------------------------------------------- 1688 1689 NamedCounter * volatile OptoRuntime::_named_counters = NULL; 1690 1691 // 1692 // dump the collected NamedCounters. 1693 // 1694 void OptoRuntime::print_named_counters() { 1695 int total_lock_count = 0; 1696 int eliminated_lock_count = 0; 1697 1698 NamedCounter* c = _named_counters; 1699 while (c) { 1700 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 1701 int count = c->count(); 1702 if (count > 0) { 1703 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 1704 if (Verbose) { 1705 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 1706 } 1707 total_lock_count += count; 1708 if (eliminated) { 1709 eliminated_lock_count += count; 1710 } 1711 } 1712 #if INCLUDE_RTM_OPT 1713 } else if (c->tag() == NamedCounter::RTMLockingCounter) { 1714 RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters(); 1715 if (rlc->nonzero()) { 1716 tty->print_cr("%s", c->name()); 1717 rlc->print_on(tty); 1718 } 1719 #endif 1720 } 1721 c = c->next(); 1722 } 1723 if (total_lock_count > 0) { 1724 tty->print_cr("dynamic locks: %d", total_lock_count); 1725 if (eliminated_lock_count) { 1726 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 1727 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 1728 } 1729 } 1730 } 1731 1732 // 1733 // Allocate a new NamedCounter. The JVMState is used to generate the 1734 // name which consists of method@line for the inlining tree. 1735 // 1736 1737 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 1738 int max_depth = youngest_jvms->depth(); 1739 1740 // Visit scopes from youngest to oldest. 1741 bool first = true; 1742 stringStream st; 1743 for (int depth = max_depth; depth >= 1; depth--) { 1744 JVMState* jvms = youngest_jvms->of_depth(depth); 1745 ciMethod* m = jvms->has_method() ? jvms->method() : NULL; 1746 if (!first) { 1747 st.print(" "); 1748 } else { 1749 first = false; 1750 } 1751 int bci = jvms->bci(); 1752 if (bci < 0) bci = 0; 1753 if (m != NULL) { 1754 st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8()); 1755 } else { 1756 st.print("no method"); 1757 } 1758 st.print("@%d", bci); 1759 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 1760 } 1761 NamedCounter* c; 1762 if (tag == NamedCounter::RTMLockingCounter) { 1763 c = new RTMLockingNamedCounter(st.freeze()); 1764 } else { 1765 c = new NamedCounter(st.freeze(), tag); 1766 } 1767 1768 // atomically add the new counter to the head of the list. We only 1769 // add counters so this is safe. 1770 NamedCounter* head; 1771 do { 1772 c->set_next(NULL); 1773 head = _named_counters; 1774 c->set_next(head); 1775 } while (Atomic::cmpxchg(&_named_counters, head, c) != head); 1776 return c; 1777 } 1778 1779 int trace_exception_counter = 0; 1780 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) { 1781 trace_exception_counter++; 1782 stringStream tempst; 1783 1784 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg); 1785 exception_oop->print_value_on(&tempst); 1786 tempst.print(" in "); 1787 CodeBlob* blob = CodeCache::find_blob(exception_pc); 1788 if (blob->is_compiled()) { 1789 CompiledMethod* cm = blob->as_compiled_method_or_null(); 1790 cm->method()->print_value_on(&tempst); 1791 } else if (blob->is_runtime_stub()) { 1792 tempst.print("<runtime-stub>"); 1793 } else { 1794 tempst.print("<unknown>"); 1795 } 1796 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc)); 1797 tempst.print("]"); 1798 1799 st->print_raw_cr(tempst.freeze()); 1800 }