1 /*
   2  * Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmClasses.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledMethod.inline.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc/g1/heapRegion.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gcLocker.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/linkResolver.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/klass.inline.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/typeArrayOop.inline.hpp"
  53 #include "opto/ad.hpp"
  54 #include "opto/addnode.hpp"
  55 #include "opto/callnode.hpp"
  56 #include "opto/cfgnode.hpp"
  57 #include "opto/graphKit.hpp"
  58 #include "opto/machnode.hpp"
  59 #include "opto/matcher.hpp"
  60 #include "opto/memnode.hpp"
  61 #include "opto/mulnode.hpp"
  62 #include "opto/output.hpp"
  63 #include "opto/runtime.hpp"
  64 #include "opto/subnode.hpp"
  65 #include "prims/jvmtiExport.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/frame.inline.hpp"
  68 #include "runtime/handles.inline.hpp"
  69 #include "runtime/interfaceSupport.inline.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/signature.hpp"
  73 #include "runtime/stackWatermarkSet.hpp"
  74 #include "runtime/threadCritical.hpp"
  75 #include "runtime/threadWXSetters.inline.hpp"
  76 #include "runtime/vframe.hpp"
  77 #include "runtime/vframeArray.hpp"
  78 #include "runtime/vframe_hp.hpp"
  79 #include "utilities/copy.hpp"
  80 #include "utilities/preserveException.hpp"
  81 
  82 
  83 // For debugging purposes:
  84 //  To force FullGCALot inside a runtime function, add the following two lines
  85 //
  86 //  Universe::release_fullgc_alot_dummy();
  87 //  MarkSweep::invoke(0, "Debugging");
  88 //
  89 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  90 
  91 
  92 
  93 
  94 // Compiled code entry points
  95 address OptoRuntime::_new_instance_Java                           = NULL;
  96 address OptoRuntime::_new_array_Java                              = NULL;
  97 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  98 address OptoRuntime::_multianewarray2_Java                        = NULL;
  99 address OptoRuntime::_multianewarray3_Java                        = NULL;
 100 address OptoRuntime::_multianewarray4_Java                        = NULL;
 101 address OptoRuntime::_multianewarray5_Java                        = NULL;
 102 address OptoRuntime::_multianewarrayN_Java                        = NULL;
 103 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 104 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 105 address OptoRuntime::_monitor_notify_Java                         = NULL;
 106 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 107 address OptoRuntime::_rethrow_Java                                = NULL;
 108 
 109 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 110 address OptoRuntime::_register_finalizer_Java                     = NULL;
 111 
 112 ExceptionBlob* OptoRuntime::_exception_blob;
 113 
 114 // This should be called in an assertion at the start of OptoRuntime routines
 115 // which are entered from compiled code (all of them)
 116 #ifdef ASSERT
 117 static bool check_compiled_frame(JavaThread* thread) {
 118   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 119   RegisterMap map(thread, false);
 120   frame caller = thread->last_frame().sender(&map);
 121   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 122   return true;
 123 }
 124 #endif // ASSERT
 125 
 126 
 127 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 128   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 129   if (var == NULL) { return false; }
 130 
 131 bool OptoRuntime::generate(ciEnv* env) {
 132 
 133   generate_exception_blob();
 134 
 135   // Note: tls: Means fetching the return oop out of the thread-local storage
 136   //
 137   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,retpc
 138   // -------------------------------------------------------------------------------------------------------------------------------
 139   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true, false);
 140   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true, false);
 141   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true, false);
 142   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true, false);
 143   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true, false);
 144   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true, false);
 145   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true, false);
 146   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true, false);
 147   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false);
 148   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false);
 149   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false);
 150   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , true );
 151 
 152   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false);
 153   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false);
 154 
 155   return true;
 156 }
 157 
 158 #undef gen
 159 
 160 
 161 // Helper method to do generation of RunTimeStub's
 162 address OptoRuntime::generate_stub(ciEnv* env,
 163                                    TypeFunc_generator gen, address C_function,
 164                                    const char *name, int is_fancy_jump,
 165                                    bool pass_tls,
 166                                    bool return_pc) {
 167 
 168   // Matching the default directive, we currently have no method to match.
 169   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 170   ResourceMark rm;
 171   Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive);
 172   DirectivesStack::release(directive);
 173   return  C.stub_entry_point();
 174 }
 175 
 176 const char* OptoRuntime::stub_name(address entry) {
 177 #ifndef PRODUCT
 178   CodeBlob* cb = CodeCache::find_blob(entry);
 179   RuntimeStub* rs =(RuntimeStub *)cb;
 180   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 181   return rs->name();
 182 #else
 183   // Fast implementation for product mode (maybe it should be inlined too)
 184   return "runtime stub";
 185 #endif
 186 }
 187 
 188 
 189 //=============================================================================
 190 // Opto compiler runtime routines
 191 //=============================================================================
 192 
 193 
 194 //=============================allocation======================================
 195 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 196 // and try allocation again.
 197 
 198 // object allocation
 199 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
 200   JRT_BLOCK;
 201 #ifndef PRODUCT
 202   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 203 #endif
 204   assert(check_compiled_frame(current), "incorrect caller");
 205 
 206   // These checks are cheap to make and support reflective allocation.
 207   int lh = klass->layout_helper();
 208   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 209     Handle holder(current, klass->klass_holder()); // keep the klass alive
 210     klass->check_valid_for_instantiation(false, THREAD);
 211     if (!HAS_PENDING_EXCEPTION) {
 212       InstanceKlass::cast(klass)->initialize(THREAD);
 213     }
 214   }
 215 
 216   if (!HAS_PENDING_EXCEPTION) {
 217     // Scavenge and allocate an instance.
 218     Handle holder(current, klass->klass_holder()); // keep the klass alive
 219     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 220     current->set_vm_result(result);
 221 
 222     // Pass oops back through thread local storage.  Our apparent type to Java
 223     // is that we return an oop, but we can block on exit from this routine and
 224     // a GC can trash the oop in C's return register.  The generated stub will
 225     // fetch the oop from TLS after any possible GC.
 226   }
 227 
 228   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 229   JRT_BLOCK_END;
 230 
 231   // inform GC that we won't do card marks for initializing writes.
 232   SharedRuntime::on_slowpath_allocation_exit(current);
 233 JRT_END
 234 
 235 
 236 // array allocation
 237 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 238   JRT_BLOCK;
 239 #ifndef PRODUCT
 240   SharedRuntime::_new_array_ctr++;            // new array requires GC
 241 #endif
 242   assert(check_compiled_frame(current), "incorrect caller");
 243 
 244   // Scavenge and allocate an instance.
 245   oop result;
 246 
 247   if (array_type->is_typeArray_klass()) {
 248     // The oopFactory likes to work with the element type.
 249     // (We could bypass the oopFactory, since it doesn't add much value.)
 250     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 251     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 252   } else {
 253     // Although the oopFactory likes to work with the elem_type,
 254     // the compiler prefers the array_type, since it must already have
 255     // that latter value in hand for the fast path.
 256     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 257     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 258     result = oopFactory::new_objArray(elem_type, len, THREAD);
 259   }
 260 
 261   // Pass oops back through thread local storage.  Our apparent type to Java
 262   // is that we return an oop, but we can block on exit from this routine and
 263   // a GC can trash the oop in C's return register.  The generated stub will
 264   // fetch the oop from TLS after any possible GC.
 265   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 266   current->set_vm_result(result);
 267   JRT_BLOCK_END;
 268 
 269   // inform GC that we won't do card marks for initializing writes.
 270   SharedRuntime::on_slowpath_allocation_exit(current);
 271 JRT_END
 272 
 273 // array allocation without zeroing
 274 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 275   JRT_BLOCK;
 276 #ifndef PRODUCT
 277   SharedRuntime::_new_array_ctr++;            // new array requires GC
 278 #endif
 279   assert(check_compiled_frame(current), "incorrect caller");
 280 
 281   // Scavenge and allocate an instance.
 282   oop result;
 283 
 284   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 285   // The oopFactory likes to work with the element type.
 286   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 287   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 288 
 289   // Pass oops back through thread local storage.  Our apparent type to Java
 290   // is that we return an oop, but we can block on exit from this routine and
 291   // a GC can trash the oop in C's return register.  The generated stub will
 292   // fetch the oop from TLS after any possible GC.
 293   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 294   current->set_vm_result(result);
 295   JRT_BLOCK_END;
 296 
 297 
 298   // inform GC that we won't do card marks for initializing writes.
 299   SharedRuntime::on_slowpath_allocation_exit(current);
 300 
 301   oop result = current->vm_result();
 302   if ((len > 0) && (result != NULL) &&
 303       is_deoptimized_caller_frame(current)) {
 304     // Zero array here if the caller is deoptimized.
 305     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result);
 306     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 307     const size_t hs = arrayOopDesc::header_size(elem_type);
 308     // Align to next 8 bytes to avoid trashing arrays's length.
 309     const size_t aligned_hs = align_object_offset(hs);
 310     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 311     if (aligned_hs > hs) {
 312       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 313     }
 314     // Optimized zeroing.
 315     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 316   }
 317 
 318 JRT_END
 319 
 320 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 321 
 322 // multianewarray for 2 dimensions
 323 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 324 #ifndef PRODUCT
 325   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 326 #endif
 327   assert(check_compiled_frame(current), "incorrect caller");
 328   assert(elem_type->is_klass(), "not a class");
 329   jint dims[2];
 330   dims[0] = len1;
 331   dims[1] = len2;
 332   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 333   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 334   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 335   current->set_vm_result(obj);
 336 JRT_END
 337 
 338 // multianewarray for 3 dimensions
 339 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 340 #ifndef PRODUCT
 341   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 342 #endif
 343   assert(check_compiled_frame(current), "incorrect caller");
 344   assert(elem_type->is_klass(), "not a class");
 345   jint dims[3];
 346   dims[0] = len1;
 347   dims[1] = len2;
 348   dims[2] = len3;
 349   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 350   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 351   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 352   current->set_vm_result(obj);
 353 JRT_END
 354 
 355 // multianewarray for 4 dimensions
 356 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 357 #ifndef PRODUCT
 358   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 359 #endif
 360   assert(check_compiled_frame(current), "incorrect caller");
 361   assert(elem_type->is_klass(), "not a class");
 362   jint dims[4];
 363   dims[0] = len1;
 364   dims[1] = len2;
 365   dims[2] = len3;
 366   dims[3] = len4;
 367   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 368   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 369   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 370   current->set_vm_result(obj);
 371 JRT_END
 372 
 373 // multianewarray for 5 dimensions
 374 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 375 #ifndef PRODUCT
 376   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 377 #endif
 378   assert(check_compiled_frame(current), "incorrect caller");
 379   assert(elem_type->is_klass(), "not a class");
 380   jint dims[5];
 381   dims[0] = len1;
 382   dims[1] = len2;
 383   dims[2] = len3;
 384   dims[3] = len4;
 385   dims[4] = len5;
 386   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 387   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 388   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 389   current->set_vm_result(obj);
 390 JRT_END
 391 
 392 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 393   assert(check_compiled_frame(current), "incorrect caller");
 394   assert(elem_type->is_klass(), "not a class");
 395   assert(oop(dims)->is_typeArray(), "not an array");
 396 
 397   ResourceMark rm;
 398   jint len = dims->length();
 399   assert(len > 0, "Dimensions array should contain data");
 400   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 401   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 402                                        c_dims, len);
 403 
 404   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 405   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 406   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 407   current->set_vm_result(obj);
 408 JRT_END
 409 
 410 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 411 
 412   // Very few notify/notifyAll operations find any threads on the waitset, so
 413   // the dominant fast-path is to simply return.
 414   // Relatedly, it's critical that notify/notifyAll be fast in order to
 415   // reduce lock hold times.
 416   if (!SafepointSynchronize::is_synchronizing()) {
 417     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 418       return;
 419     }
 420   }
 421 
 422   // This is the case the fast-path above isn't provisioned to handle.
 423   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 424   // (The fast-path is just a degenerate variant of the slow-path).
 425   // Perform the dreaded state transition and pass control into the slow-path.
 426   JRT_BLOCK;
 427   Handle h_obj(current, obj);
 428   ObjectSynchronizer::notify(h_obj, CHECK);
 429   JRT_BLOCK_END;
 430 JRT_END
 431 
 432 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 433 
 434   if (!SafepointSynchronize::is_synchronizing() ) {
 435     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 436       return;
 437     }
 438   }
 439 
 440   // This is the case the fast-path above isn't provisioned to handle.
 441   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 442   // (The fast-path is just a degenerate variant of the slow-path).
 443   // Perform the dreaded state transition and pass control into the slow-path.
 444   JRT_BLOCK;
 445   Handle h_obj(current, obj);
 446   ObjectSynchronizer::notifyall(h_obj, CHECK);
 447   JRT_BLOCK_END;
 448 JRT_END
 449 
 450 const TypeFunc *OptoRuntime::new_instance_Type() {
 451   // create input type (domain)
 452   const Type **fields = TypeTuple::fields(1);
 453   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 454   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 455 
 456   // create result type (range)
 457   fields = TypeTuple::fields(1);
 458   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 459 
 460   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 461 
 462   return TypeFunc::make(domain, range);
 463 }
 464 
 465 
 466 const TypeFunc *OptoRuntime::athrow_Type() {
 467   // create input type (domain)
 468   const Type **fields = TypeTuple::fields(1);
 469   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 470   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 471 
 472   // create result type (range)
 473   fields = TypeTuple::fields(0);
 474 
 475   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 476 
 477   return TypeFunc::make(domain, range);
 478 }
 479 
 480 
 481 const TypeFunc *OptoRuntime::new_array_Type() {
 482   // create input type (domain)
 483   const Type **fields = TypeTuple::fields(2);
 484   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 485   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 486   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 487 
 488   // create result type (range)
 489   fields = TypeTuple::fields(1);
 490   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 491 
 492   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 493 
 494   return TypeFunc::make(domain, range);
 495 }
 496 
 497 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 498   // create input type (domain)
 499   const int nargs = ndim + 1;
 500   const Type **fields = TypeTuple::fields(nargs);
 501   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 502   for( int i = 1; i < nargs; i++ )
 503     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 504   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 505 
 506   // create result type (range)
 507   fields = TypeTuple::fields(1);
 508   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 509   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 510 
 511   return TypeFunc::make(domain, range);
 512 }
 513 
 514 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 515   return multianewarray_Type(2);
 516 }
 517 
 518 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 519   return multianewarray_Type(3);
 520 }
 521 
 522 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 523   return multianewarray_Type(4);
 524 }
 525 
 526 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 527   return multianewarray_Type(5);
 528 }
 529 
 530 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 531   // create input type (domain)
 532   const Type **fields = TypeTuple::fields(2);
 533   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 534   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 535   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 536 
 537   // create result type (range)
 538   fields = TypeTuple::fields(1);
 539   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 540   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 541 
 542   return TypeFunc::make(domain, range);
 543 }
 544 
 545 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 546   // create input type (domain)
 547   const Type **fields = TypeTuple::fields(1);
 548   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 549   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 550 
 551   // create result type (range)
 552   fields = TypeTuple::fields(0);
 553   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 554 
 555   return TypeFunc::make(domain, range);
 556 }
 557 
 558 //-----------------------------------------------------------------------------
 559 // Monitor Handling
 560 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 561   // create input type (domain)
 562   const Type **fields = TypeTuple::fields(2);
 563   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 564   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 565   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 566 
 567   // create result type (range)
 568   fields = TypeTuple::fields(0);
 569 
 570   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 571 
 572   return TypeFunc::make(domain,range);
 573 }
 574 
 575 
 576 //-----------------------------------------------------------------------------
 577 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 578   // create input type (domain)
 579   const Type **fields = TypeTuple::fields(3);
 580   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 581   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 582   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 583   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 584 
 585   // create result type (range)
 586   fields = TypeTuple::fields(0);
 587 
 588   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 589 
 590   return TypeFunc::make(domain, range);
 591 }
 592 
 593 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 594   // create input type (domain)
 595   const Type **fields = TypeTuple::fields(1);
 596   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 597   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 598 
 599   // create result type (range)
 600   fields = TypeTuple::fields(0);
 601   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 602   return TypeFunc::make(domain, range);
 603 }
 604 
 605 const TypeFunc* OptoRuntime::flush_windows_Type() {
 606   // create input type (domain)
 607   const Type** fields = TypeTuple::fields(1);
 608   fields[TypeFunc::Parms+0] = NULL; // void
 609   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 610 
 611   // create result type
 612   fields = TypeTuple::fields(1);
 613   fields[TypeFunc::Parms+0] = NULL; // void
 614   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 615 
 616   return TypeFunc::make(domain, range);
 617 }
 618 
 619 const TypeFunc* OptoRuntime::l2f_Type() {
 620   // create input type (domain)
 621   const Type **fields = TypeTuple::fields(2);
 622   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 623   fields[TypeFunc::Parms+1] = Type::HALF;
 624   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 625 
 626   // create result type (range)
 627   fields = TypeTuple::fields(1);
 628   fields[TypeFunc::Parms+0] = Type::FLOAT;
 629   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 630 
 631   return TypeFunc::make(domain, range);
 632 }
 633 
 634 const TypeFunc* OptoRuntime::modf_Type() {
 635   const Type **fields = TypeTuple::fields(2);
 636   fields[TypeFunc::Parms+0] = Type::FLOAT;
 637   fields[TypeFunc::Parms+1] = Type::FLOAT;
 638   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 639 
 640   // create result type (range)
 641   fields = TypeTuple::fields(1);
 642   fields[TypeFunc::Parms+0] = Type::FLOAT;
 643 
 644   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 645 
 646   return TypeFunc::make(domain, range);
 647 }
 648 
 649 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 650   // create input type (domain)
 651   const Type **fields = TypeTuple::fields(2);
 652   // Symbol* name of class to be loaded
 653   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 654   fields[TypeFunc::Parms+1] = Type::HALF;
 655   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 656 
 657   // create result type (range)
 658   fields = TypeTuple::fields(2);
 659   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 660   fields[TypeFunc::Parms+1] = Type::HALF;
 661   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 662 
 663   return TypeFunc::make(domain, range);
 664 }
 665 
 666 const TypeFunc *OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 667   // create input type (domain)
 668   const Type **fields = TypeTuple::fields(num_arg);
 669   // Symbol* name of class to be loaded
 670   assert(num_arg > 0, "must have at least 1 input");
 671   for (uint i = 0; i < num_arg; i++) {
 672     fields[TypeFunc::Parms+i] = in_type;
 673   }
 674   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 675 
 676   // create result type (range)
 677   const uint num_ret = 1;
 678   fields = TypeTuple::fields(num_ret);
 679   fields[TypeFunc::Parms+0] = out_type;
 680   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 681 
 682   return TypeFunc::make(domain, range);
 683 }
 684 
 685 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 686   const Type **fields = TypeTuple::fields(4);
 687   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 688   fields[TypeFunc::Parms+1] = Type::HALF;
 689   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 690   fields[TypeFunc::Parms+3] = Type::HALF;
 691   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 692 
 693   // create result type (range)
 694   fields = TypeTuple::fields(2);
 695   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 696   fields[TypeFunc::Parms+1] = Type::HALF;
 697   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 698 
 699   return TypeFunc::make(domain, range);
 700 }
 701 
 702 //-------------- currentTimeMillis, currentTimeNanos, etc
 703 
 704 const TypeFunc* OptoRuntime::void_long_Type() {
 705   // create input type (domain)
 706   const Type **fields = TypeTuple::fields(0);
 707   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 708 
 709   // create result type (range)
 710   fields = TypeTuple::fields(2);
 711   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 712   fields[TypeFunc::Parms+1] = Type::HALF;
 713   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 714 
 715   return TypeFunc::make(domain, range);
 716 }
 717 
 718 // arraycopy stub variations:
 719 enum ArrayCopyType {
 720   ac_fast,                      // void(ptr, ptr, size_t)
 721   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 722   ac_slow,                      // void(ptr, int, ptr, int, int)
 723   ac_generic                    //  int(ptr, int, ptr, int, int)
 724 };
 725 
 726 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 727   // create input type (domain)
 728   int num_args      = (act == ac_fast ? 3 : 5);
 729   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 730   int argcnt = num_args;
 731   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 732   const Type** fields = TypeTuple::fields(argcnt);
 733   int argp = TypeFunc::Parms;
 734   fields[argp++] = TypePtr::NOTNULL;    // src
 735   if (num_size_args == 0) {
 736     fields[argp++] = TypeInt::INT;      // src_pos
 737   }
 738   fields[argp++] = TypePtr::NOTNULL;    // dest
 739   if (num_size_args == 0) {
 740     fields[argp++] = TypeInt::INT;      // dest_pos
 741     fields[argp++] = TypeInt::INT;      // length
 742   }
 743   while (num_size_args-- > 0) {
 744     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 745     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 746   }
 747   if (act == ac_checkcast) {
 748     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 749   }
 750   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 751   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 752 
 753   // create result type if needed
 754   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 755   fields = TypeTuple::fields(1);
 756   if (retcnt == 0)
 757     fields[TypeFunc::Parms+0] = NULL; // void
 758   else
 759     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 760   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 761   return TypeFunc::make(domain, range);
 762 }
 763 
 764 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 765   // This signature is simple:  Two base pointers and a size_t.
 766   return make_arraycopy_Type(ac_fast);
 767 }
 768 
 769 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 770   // An extension of fast_arraycopy_Type which adds type checking.
 771   return make_arraycopy_Type(ac_checkcast);
 772 }
 773 
 774 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 775   // This signature is exactly the same as System.arraycopy.
 776   // There are no intptr_t (int/long) arguments.
 777   return make_arraycopy_Type(ac_slow);
 778 }
 779 
 780 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 781   // This signature is like System.arraycopy, except that it returns status.
 782   return make_arraycopy_Type(ac_generic);
 783 }
 784 
 785 
 786 const TypeFunc* OptoRuntime::array_fill_Type() {
 787   const Type** fields;
 788   int argp = TypeFunc::Parms;
 789   // create input type (domain): pointer, int, size_t
 790   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 791   fields[argp++] = TypePtr::NOTNULL;
 792   fields[argp++] = TypeInt::INT;
 793   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 794   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 795   const TypeTuple *domain = TypeTuple::make(argp, fields);
 796 
 797   // create result type
 798   fields = TypeTuple::fields(1);
 799   fields[TypeFunc::Parms+0] = NULL; // void
 800   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 801 
 802   return TypeFunc::make(domain, range);
 803 }
 804 
 805 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 806 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 807   // create input type (domain)
 808   int num_args      = 3;
 809   int argcnt = num_args;
 810   const Type** fields = TypeTuple::fields(argcnt);
 811   int argp = TypeFunc::Parms;
 812   fields[argp++] = TypePtr::NOTNULL;    // src
 813   fields[argp++] = TypePtr::NOTNULL;    // dest
 814   fields[argp++] = TypePtr::NOTNULL;    // k array
 815   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 816   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 817 
 818   // no result type needed
 819   fields = TypeTuple::fields(1);
 820   fields[TypeFunc::Parms+0] = NULL; // void
 821   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 822   return TypeFunc::make(domain, range);
 823 }
 824 
 825 /**
 826  * int updateBytesCRC32(int crc, byte* b, int len)
 827  */
 828 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 829   // create input type (domain)
 830   int num_args      = 3;
 831   int argcnt = num_args;
 832   const Type** fields = TypeTuple::fields(argcnt);
 833   int argp = TypeFunc::Parms;
 834   fields[argp++] = TypeInt::INT;        // crc
 835   fields[argp++] = TypePtr::NOTNULL;    // src
 836   fields[argp++] = TypeInt::INT;        // len
 837   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 838   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 839 
 840   // result type needed
 841   fields = TypeTuple::fields(1);
 842   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 843   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 844   return TypeFunc::make(domain, range);
 845 }
 846 
 847 /**
 848  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 849  */
 850 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 851   // create input type (domain)
 852   int num_args      = 4;
 853   int argcnt = num_args;
 854   const Type** fields = TypeTuple::fields(argcnt);
 855   int argp = TypeFunc::Parms;
 856   fields[argp++] = TypeInt::INT;        // crc
 857   fields[argp++] = TypePtr::NOTNULL;    // buf
 858   fields[argp++] = TypeInt::INT;        // len
 859   fields[argp++] = TypePtr::NOTNULL;    // table
 860   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 861   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 862 
 863   // result type needed
 864   fields = TypeTuple::fields(1);
 865   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 866   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 867   return TypeFunc::make(domain, range);
 868 }
 869 
 870 /**
 871 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 872 */
 873 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 874   // create input type (domain)
 875   int num_args      = 3;
 876   int argcnt = num_args;
 877   const Type** fields = TypeTuple::fields(argcnt);
 878   int argp = TypeFunc::Parms;
 879   fields[argp++] = TypeInt::INT;        // crc
 880   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 881   fields[argp++] = TypeInt::INT;        // len
 882   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 883   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 884 
 885   // result type needed
 886   fields = TypeTuple::fields(1);
 887   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 888   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 889   return TypeFunc::make(domain, range);
 890 }
 891 
 892 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 893 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 894   // create input type (domain)
 895   int num_args      = 5;
 896   int argcnt = num_args;
 897   const Type** fields = TypeTuple::fields(argcnt);
 898   int argp = TypeFunc::Parms;
 899   fields[argp++] = TypePtr::NOTNULL;    // src
 900   fields[argp++] = TypePtr::NOTNULL;    // dest
 901   fields[argp++] = TypePtr::NOTNULL;    // k array
 902   fields[argp++] = TypePtr::NOTNULL;    // r array
 903   fields[argp++] = TypeInt::INT;        // src len
 904   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 905   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 906 
 907   // returning cipher len (int)
 908   fields = TypeTuple::fields(1);
 909   fields[TypeFunc::Parms+0] = TypeInt::INT;
 910   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 911   return TypeFunc::make(domain, range);
 912 }
 913 
 914 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int
 915 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() {
 916   // create input type (domain)
 917   int num_args = 4;
 918   int argcnt = num_args;
 919   const Type** fields = TypeTuple::fields(argcnt);
 920   int argp = TypeFunc::Parms;
 921   fields[argp++] = TypePtr::NOTNULL;    // src
 922   fields[argp++] = TypePtr::NOTNULL;    // dest
 923   fields[argp++] = TypePtr::NOTNULL;    // k array
 924   fields[argp++] = TypeInt::INT;        // src len
 925   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 926   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 927 
 928   // returning cipher len (int)
 929   fields = TypeTuple::fields(1);
 930   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 931   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 932   return TypeFunc::make(domain, range);
 933 }
 934 
 935 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 936 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
 937   // create input type (domain)
 938   int num_args = 7;
 939   int argcnt = num_args;
 940   const Type** fields = TypeTuple::fields(argcnt);
 941   int argp = TypeFunc::Parms;
 942   fields[argp++] = TypePtr::NOTNULL; // src
 943   fields[argp++] = TypePtr::NOTNULL; // dest
 944   fields[argp++] = TypePtr::NOTNULL; // k array
 945   fields[argp++] = TypePtr::NOTNULL; // counter array
 946   fields[argp++] = TypeInt::INT; // src len
 947   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
 948   fields[argp++] = TypePtr::NOTNULL; // saved used addr
 949   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 950   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 951   // returning cipher len (int)
 952   fields = TypeTuple::fields(1);
 953   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 954   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 955   return TypeFunc::make(domain, range);
 956 }
 957 
 958 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 959 const TypeFunc* OptoRuntime::galoisCounterMode_aescrypt_Type() {
 960   // create input type (domain)
 961   int num_args = 8;
 962   int argcnt = num_args;
 963   const Type** fields = TypeTuple::fields(argcnt);
 964   int argp = TypeFunc::Parms;
 965   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
 966   fields[argp++] = TypeInt::INT;     // int len
 967   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
 968   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
 969   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
 970   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
 971   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
 972   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
 973 
 974   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 975   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 976   // returning cipher len (int)
 977   fields = TypeTuple::fields(1);
 978   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 979   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 980   return TypeFunc::make(domain, range);
 981 }
 982 
 983 /*
 984  * void implCompress(byte[] buf, int ofs)
 985  */
 986 const TypeFunc* OptoRuntime::digestBase_implCompress_Type(bool is_sha3) {
 987   // create input type (domain)
 988   int num_args = is_sha3 ? 3 : 2;
 989   int argcnt = num_args;
 990   const Type** fields = TypeTuple::fields(argcnt);
 991   int argp = TypeFunc::Parms;
 992   fields[argp++] = TypePtr::NOTNULL; // buf
 993   fields[argp++] = TypePtr::NOTNULL; // state
 994   if (is_sha3) fields[argp++] = TypeInt::INT; // digest_length
 995   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 996   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 997 
 998   // no result type needed
 999   fields = TypeTuple::fields(1);
1000   fields[TypeFunc::Parms+0] = NULL; // void
1001   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1002   return TypeFunc::make(domain, range);
1003 }
1004 
1005 /*
1006  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1007  */
1008 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type(bool is_sha3) {
1009   // create input type (domain)
1010   int num_args = is_sha3 ? 5 : 4;
1011   int argcnt = num_args;
1012   const Type** fields = TypeTuple::fields(argcnt);
1013   int argp = TypeFunc::Parms;
1014   fields[argp++] = TypePtr::NOTNULL; // buf
1015   fields[argp++] = TypePtr::NOTNULL; // state
1016   if (is_sha3) fields[argp++] = TypeInt::INT; // digest_length
1017   fields[argp++] = TypeInt::INT;     // ofs
1018   fields[argp++] = TypeInt::INT;     // limit
1019   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1020   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1021 
1022   // returning ofs (int)
1023   fields = TypeTuple::fields(1);
1024   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1025   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1026   return TypeFunc::make(domain, range);
1027 }
1028 
1029 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1030   // create input type (domain)
1031   int num_args      = 6;
1032   int argcnt = num_args;
1033   const Type** fields = TypeTuple::fields(argcnt);
1034   int argp = TypeFunc::Parms;
1035   fields[argp++] = TypePtr::NOTNULL;    // x
1036   fields[argp++] = TypeInt::INT;        // xlen
1037   fields[argp++] = TypePtr::NOTNULL;    // y
1038   fields[argp++] = TypeInt::INT;        // ylen
1039   fields[argp++] = TypePtr::NOTNULL;    // z
1040   fields[argp++] = TypeInt::INT;        // zlen
1041   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1042   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1043 
1044   // no result type needed
1045   fields = TypeTuple::fields(1);
1046   fields[TypeFunc::Parms+0] = NULL;
1047   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1048   return TypeFunc::make(domain, range);
1049 }
1050 
1051 const TypeFunc* OptoRuntime::squareToLen_Type() {
1052   // create input type (domain)
1053   int num_args      = 4;
1054   int argcnt = num_args;
1055   const Type** fields = TypeTuple::fields(argcnt);
1056   int argp = TypeFunc::Parms;
1057   fields[argp++] = TypePtr::NOTNULL;    // x
1058   fields[argp++] = TypeInt::INT;        // len
1059   fields[argp++] = TypePtr::NOTNULL;    // z
1060   fields[argp++] = TypeInt::INT;        // zlen
1061   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1062   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1063 
1064   // no result type needed
1065   fields = TypeTuple::fields(1);
1066   fields[TypeFunc::Parms+0] = NULL;
1067   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1068   return TypeFunc::make(domain, range);
1069 }
1070 
1071 // for mulAdd calls, 2 pointers and 3 ints, returning int
1072 const TypeFunc* OptoRuntime::mulAdd_Type() {
1073   // create input type (domain)
1074   int num_args      = 5;
1075   int argcnt = num_args;
1076   const Type** fields = TypeTuple::fields(argcnt);
1077   int argp = TypeFunc::Parms;
1078   fields[argp++] = TypePtr::NOTNULL;    // out
1079   fields[argp++] = TypePtr::NOTNULL;    // in
1080   fields[argp++] = TypeInt::INT;        // offset
1081   fields[argp++] = TypeInt::INT;        // len
1082   fields[argp++] = TypeInt::INT;        // k
1083   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1084   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1085 
1086   // returning carry (int)
1087   fields = TypeTuple::fields(1);
1088   fields[TypeFunc::Parms+0] = TypeInt::INT;
1089   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1090   return TypeFunc::make(domain, range);
1091 }
1092 
1093 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1094   // create input type (domain)
1095   int num_args      = 7;
1096   int argcnt = num_args;
1097   const Type** fields = TypeTuple::fields(argcnt);
1098   int argp = TypeFunc::Parms;
1099   fields[argp++] = TypePtr::NOTNULL;    // a
1100   fields[argp++] = TypePtr::NOTNULL;    // b
1101   fields[argp++] = TypePtr::NOTNULL;    // n
1102   fields[argp++] = TypeInt::INT;        // len
1103   fields[argp++] = TypeLong::LONG;      // inv
1104   fields[argp++] = Type::HALF;
1105   fields[argp++] = TypePtr::NOTNULL;    // result
1106   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1107   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1108 
1109   // result type needed
1110   fields = TypeTuple::fields(1);
1111   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1112 
1113   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1114   return TypeFunc::make(domain, range);
1115 }
1116 
1117 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1118   // create input type (domain)
1119   int num_args      = 6;
1120   int argcnt = num_args;
1121   const Type** fields = TypeTuple::fields(argcnt);
1122   int argp = TypeFunc::Parms;
1123   fields[argp++] = TypePtr::NOTNULL;    // a
1124   fields[argp++] = TypePtr::NOTNULL;    // n
1125   fields[argp++] = TypeInt::INT;        // len
1126   fields[argp++] = TypeLong::LONG;      // inv
1127   fields[argp++] = Type::HALF;
1128   fields[argp++] = TypePtr::NOTNULL;    // result
1129   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1130   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1131 
1132   // result type needed
1133   fields = TypeTuple::fields(1);
1134   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1135 
1136   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1137   return TypeFunc::make(domain, range);
1138 }
1139 
1140 const TypeFunc * OptoRuntime::bigIntegerShift_Type() {
1141   int argcnt = 5;
1142   const Type** fields = TypeTuple::fields(argcnt);
1143   int argp = TypeFunc::Parms;
1144   fields[argp++] = TypePtr::NOTNULL;    // newArr
1145   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1146   fields[argp++] = TypeInt::INT;        // newIdx
1147   fields[argp++] = TypeInt::INT;        // shiftCount
1148   fields[argp++] = TypeInt::INT;        // numIter
1149   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1150   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1151 
1152   // no result type needed
1153   fields = TypeTuple::fields(1);
1154   fields[TypeFunc::Parms + 0] = NULL;
1155   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1156   return TypeFunc::make(domain, range);
1157 }
1158 
1159 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1160   // create input type (domain)
1161   int num_args = 4;
1162   int argcnt = num_args;
1163   const Type** fields = TypeTuple::fields(argcnt);
1164   int argp = TypeFunc::Parms;
1165   fields[argp++] = TypePtr::NOTNULL;    // obja
1166   fields[argp++] = TypePtr::NOTNULL;    // objb
1167   fields[argp++] = TypeInt::INT;        // length, number of elements
1168   fields[argp++] = TypeInt::INT;        // log2scale, element size
1169   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1170   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1171 
1172   //return mismatch index (int)
1173   fields = TypeTuple::fields(1);
1174   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1175   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1176   return TypeFunc::make(domain, range);
1177 }
1178 
1179 // GHASH block processing
1180 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1181     int argcnt = 4;
1182 
1183     const Type** fields = TypeTuple::fields(argcnt);
1184     int argp = TypeFunc::Parms;
1185     fields[argp++] = TypePtr::NOTNULL;    // state
1186     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1187     fields[argp++] = TypePtr::NOTNULL;    // data
1188     fields[argp++] = TypeInt::INT;        // blocks
1189     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1190     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1191 
1192     // result type needed
1193     fields = TypeTuple::fields(1);
1194     fields[TypeFunc::Parms+0] = NULL; // void
1195     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1196     return TypeFunc::make(domain, range);
1197 }
1198 // Base64 encode function
1199 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() {
1200   int argcnt = 6;
1201 
1202   const Type** fields = TypeTuple::fields(argcnt);
1203   int argp = TypeFunc::Parms;
1204   fields[argp++] = TypePtr::NOTNULL;    // src array
1205   fields[argp++] = TypeInt::INT;        // offset
1206   fields[argp++] = TypeInt::INT;        // length
1207   fields[argp++] = TypePtr::NOTNULL;    // dest array
1208   fields[argp++] = TypeInt::INT;       // dp
1209   fields[argp++] = TypeInt::BOOL;       // isURL
1210   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1211   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1212 
1213   // result type needed
1214   fields = TypeTuple::fields(1);
1215   fields[TypeFunc::Parms + 0] = NULL; // void
1216   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1217   return TypeFunc::make(domain, range);
1218 }
1219 // Base64 decode function
1220 const TypeFunc* OptoRuntime::base64_decodeBlock_Type() {
1221   int argcnt = 7;
1222 
1223   const Type** fields = TypeTuple::fields(argcnt);
1224   int argp = TypeFunc::Parms;
1225   fields[argp++] = TypePtr::NOTNULL;    // src array
1226   fields[argp++] = TypeInt::INT;        // src offset
1227   fields[argp++] = TypeInt::INT;        // src length
1228   fields[argp++] = TypePtr::NOTNULL;    // dest array
1229   fields[argp++] = TypeInt::INT;        // dest offset
1230   fields[argp++] = TypeInt::BOOL;       // isURL
1231   fields[argp++] = TypeInt::BOOL;       // isMIME
1232   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1233   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1234 
1235   // result type needed
1236   fields = TypeTuple::fields(1);
1237   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1238   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1239   return TypeFunc::make(domain, range);
1240 }
1241 
1242 //------------- Interpreter state access for on stack replacement
1243 const TypeFunc* OptoRuntime::osr_end_Type() {
1244   // create input type (domain)
1245   const Type **fields = TypeTuple::fields(1);
1246   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1247   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1248 
1249   // create result type
1250   fields = TypeTuple::fields(1);
1251   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1252   fields[TypeFunc::Parms+0] = NULL; // void
1253   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1254   return TypeFunc::make(domain, range);
1255 }
1256 
1257 //-------------------------------------------------------------------------------------
1258 // register policy
1259 
1260 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1261   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1262   switch (register_save_policy[reg]) {
1263     case 'C': return false; //SOC
1264     case 'E': return true ; //SOE
1265     case 'N': return false; //NS
1266     case 'A': return false; //AS
1267   }
1268   ShouldNotReachHere();
1269   return false;
1270 }
1271 
1272 //-----------------------------------------------------------------------
1273 // Exceptions
1274 //
1275 
1276 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1277 
1278 // The method is an entry that is always called by a C++ method not
1279 // directly from compiled code. Compiled code will call the C++ method following.
1280 // We can't allow async exception to be installed during  exception processing.
1281 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1282   // The frame we rethrow the exception to might not have been processed by the GC yet.
1283   // The stack watermark barrier takes care of detecting that and ensuring the frame
1284   // has updated oops.
1285   StackWatermarkSet::after_unwind(current);
1286 
1287   // Do not confuse exception_oop with pending_exception. The exception_oop
1288   // is only used to pass arguments into the method. Not for general
1289   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1290   // the runtime stubs checks this on exit.
1291   assert(current->exception_oop() != NULL, "exception oop is found");
1292   address handler_address = NULL;
1293 
1294   Handle exception(current, current->exception_oop());
1295   address pc = current->exception_pc();
1296 
1297   // Clear out the exception oop and pc since looking up an
1298   // exception handler can cause class loading, which might throw an
1299   // exception and those fields are expected to be clear during
1300   // normal bytecode execution.
1301   current->clear_exception_oop_and_pc();
1302 
1303   LogTarget(Info, exceptions) lt;
1304   if (lt.is_enabled()) {
1305     ResourceMark rm;
1306     LogStream ls(lt);
1307     trace_exception(&ls, exception(), pc, "");
1308   }
1309 
1310   // for AbortVMOnException flag
1311   Exceptions::debug_check_abort(exception);
1312 
1313 #ifdef ASSERT
1314   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1315     // should throw an exception here
1316     ShouldNotReachHere();
1317   }
1318 #endif
1319 
1320   // new exception handling: this method is entered only from adapters
1321   // exceptions from compiled java methods are handled in compiled code
1322   // using rethrow node
1323 
1324   nm = CodeCache::find_nmethod(pc);
1325   assert(nm != NULL, "No NMethod found");
1326   if (nm->is_native_method()) {
1327     fatal("Native method should not have path to exception handling");
1328   } else {
1329     // we are switching to old paradigm: search for exception handler in caller_frame
1330     // instead in exception handler of caller_frame.sender()
1331 
1332     if (JvmtiExport::can_post_on_exceptions()) {
1333       // "Full-speed catching" is not necessary here,
1334       // since we're notifying the VM on every catch.
1335       // Force deoptimization and the rest of the lookup
1336       // will be fine.
1337       deoptimize_caller_frame(current);
1338     }
1339 
1340     // Check the stack guard pages.  If enabled, look for handler in this frame;
1341     // otherwise, forcibly unwind the frame.
1342     //
1343     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1344     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1345     bool deopting = false;
1346     if (nm->is_deopt_pc(pc)) {
1347       deopting = true;
1348       RegisterMap map(current, false);
1349       frame deoptee = current->last_frame().sender(&map);
1350       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1351       // Adjust the pc back to the original throwing pc
1352       pc = deoptee.pc();
1353     }
1354 
1355     // If we are forcing an unwind because of stack overflow then deopt is
1356     // irrelevant since we are throwing the frame away anyway.
1357 
1358     if (deopting && !force_unwind) {
1359       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1360     } else {
1361 
1362       handler_address =
1363         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1364 
1365       if (handler_address == NULL) {
1366         bool recursive_exception = false;
1367         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1368         assert (handler_address != NULL, "must have compiled handler");
1369         // Update the exception cache only when the unwind was not forced
1370         // and there didn't happen another exception during the computation of the
1371         // compiled exception handler. Checking for exception oop equality is not
1372         // sufficient because some exceptions are pre-allocated and reused.
1373         if (!force_unwind && !recursive_exception) {
1374           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1375         }
1376       } else {
1377 #ifdef ASSERT
1378         bool recursive_exception = false;
1379         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1380         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1381                  p2i(handler_address), p2i(computed_address));
1382 #endif
1383       }
1384     }
1385 
1386     current->set_exception_pc(pc);
1387     current->set_exception_handler_pc(handler_address);
1388 
1389     // Check if the exception PC is a MethodHandle call site.
1390     current->set_is_method_handle_return(nm->is_method_handle_return(pc));
1391   }
1392 
1393   // Restore correct return pc.  Was saved above.
1394   current->set_exception_oop(exception());
1395   return handler_address;
1396 
1397 JRT_END
1398 
1399 // We are entering here from exception_blob
1400 // If there is a compiled exception handler in this method, we will continue there;
1401 // otherwise we will unwind the stack and continue at the caller of top frame method
1402 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1403 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1404 // we looked up the handler for has been deoptimized in the meantime. If it has been
1405 // we must not use the handler and instead return the deopt blob.
1406 address OptoRuntime::handle_exception_C(JavaThread* current) {
1407 //
1408 // We are in Java not VM and in debug mode we have a NoHandleMark
1409 //
1410 #ifndef PRODUCT
1411   SharedRuntime::_find_handler_ctr++;          // find exception handler
1412 #endif
1413   debug_only(NoHandleMark __hm;)
1414   nmethod* nm = NULL;
1415   address handler_address = NULL;
1416   {
1417     // Enter the VM
1418 
1419     ResetNoHandleMark rnhm;
1420     handler_address = handle_exception_C_helper(current, nm);
1421   }
1422 
1423   // Back in java: Use no oops, DON'T safepoint
1424 
1425   // Now check to see if the handler we are returning is in a now
1426   // deoptimized frame
1427 
1428   if (nm != NULL) {
1429     RegisterMap map(current, false /* update_map */, false /* process_frames */);
1430     frame caller = current->last_frame().sender(&map);
1431 #ifdef ASSERT
1432     assert(caller.is_compiled_frame(), "must be");
1433 #endif // ASSERT
1434     if (caller.is_deoptimized_frame()) {
1435       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1436     }
1437   }
1438   return handler_address;
1439 }
1440 
1441 //------------------------------rethrow----------------------------------------
1442 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1443 // is either throwing or rethrowing an exception.  The callee-save registers
1444 // have been restored, synchronized objects have been unlocked and the callee
1445 // stack frame has been removed.  The return address was passed in.
1446 // Exception oop is passed as the 1st argument.  This routine is then called
1447 // from the stub.  On exit, we know where to jump in the caller's code.
1448 // After this C code exits, the stub will pop his frame and end in a jump
1449 // (instead of a return).  We enter the caller's default handler.
1450 //
1451 // This must be JRT_LEAF:
1452 //     - caller will not change its state as we cannot block on exit,
1453 //       therefore raw_exception_handler_for_return_address is all it takes
1454 //       to handle deoptimized blobs
1455 //
1456 // However, there needs to be a safepoint check in the middle!  So compiled
1457 // safepoints are completely watertight.
1458 //
1459 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
1460 //
1461 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1462 //
1463 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1464 
1465   // Enable WXWrite: the function called directly by compiled code.
1466   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, thread));
1467 
1468   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
1469   // This needs authenticating, but to do that here requires the fp of the previous frame.
1470   // A better way of doing it would be authenticate in the caller by adding a
1471   // AuthPAuthNode and using it in GraphKit::gen_stub. For now, just strip it.
1472   AARCH64_PORT_ONLY(ret_pc = pauth_strip_pointer(ret_pc));
1473 
1474 #ifndef PRODUCT
1475   SharedRuntime::_rethrow_ctr++;               // count rethrows
1476 #endif
1477   assert (exception != NULL, "should have thrown a NULLPointerException");
1478 #ifdef ASSERT
1479   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1480     // should throw an exception here
1481     ShouldNotReachHere();
1482   }
1483 #endif
1484 
1485   thread->set_vm_result(exception);
1486   // Frame not compiled (handles deoptimization blob)
1487   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1488 }
1489 
1490 
1491 const TypeFunc *OptoRuntime::rethrow_Type() {
1492   // create input type (domain)
1493   const Type **fields = TypeTuple::fields(1);
1494   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1495   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1496 
1497   // create result type (range)
1498   fields = TypeTuple::fields(1);
1499   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1500   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1501 
1502   return TypeFunc::make(domain, range);
1503 }
1504 
1505 
1506 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1507   // Deoptimize the caller before continuing, as the compiled
1508   // exception handler table may not be valid.
1509   if (!StressCompiledExceptionHandlers && doit) {
1510     deoptimize_caller_frame(thread);
1511   }
1512 }
1513 
1514 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1515   // Called from within the owner thread, so no need for safepoint
1516   RegisterMap reg_map(thread);
1517   frame stub_frame = thread->last_frame();
1518   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1519   frame caller_frame = stub_frame.sender(&reg_map);
1520 
1521   // Deoptimize the caller frame.
1522   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1523 }
1524 
1525 
1526 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1527   // Called from within the owner thread, so no need for safepoint
1528   RegisterMap reg_map(thread);
1529   frame stub_frame = thread->last_frame();
1530   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1531   frame caller_frame = stub_frame.sender(&reg_map);
1532   return caller_frame.is_deoptimized_frame();
1533 }
1534 
1535 
1536 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1537   // create input type (domain)
1538   const Type **fields = TypeTuple::fields(1);
1539   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1540   // // The JavaThread* is passed to each routine as the last argument
1541   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1542   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1543 
1544   // create result type (range)
1545   fields = TypeTuple::fields(0);
1546 
1547   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1548 
1549   return TypeFunc::make(domain,range);
1550 }
1551 
1552 #if INCLUDE_JFR
1553 const TypeFunc *OptoRuntime::get_class_id_intrinsic_Type() {
1554   // create input type (domain)
1555   const Type **fields = TypeTuple::fields(1);
1556   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
1557   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
1558 
1559   // create result type (range)
1560   fields = TypeTuple::fields(0);
1561 
1562   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
1563 
1564   return TypeFunc::make(domain,range);
1565 }
1566 #endif
1567 
1568 //-----------------------------------------------------------------------------
1569 // Dtrace support.  entry and exit probes have the same signature
1570 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1571   // create input type (domain)
1572   const Type **fields = TypeTuple::fields(2);
1573   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1574   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1575   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1576 
1577   // create result type (range)
1578   fields = TypeTuple::fields(0);
1579 
1580   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1581 
1582   return TypeFunc::make(domain,range);
1583 }
1584 
1585 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1586   // create input type (domain)
1587   const Type **fields = TypeTuple::fields(2);
1588   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1589   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1590 
1591   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1592 
1593   // create result type (range)
1594   fields = TypeTuple::fields(0);
1595 
1596   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1597 
1598   return TypeFunc::make(domain,range);
1599 }
1600 
1601 
1602 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* current))
1603   assert(oopDesc::is_oop(obj), "must be a valid oop");
1604   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1605   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1606 JRT_END
1607 
1608 //-----------------------------------------------------------------------------
1609 
1610 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1611 
1612 //
1613 // dump the collected NamedCounters.
1614 //
1615 void OptoRuntime::print_named_counters() {
1616   int total_lock_count = 0;
1617   int eliminated_lock_count = 0;
1618 
1619   NamedCounter* c = _named_counters;
1620   while (c) {
1621     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1622       int count = c->count();
1623       if (count > 0) {
1624         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1625         if (Verbose) {
1626           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1627         }
1628         total_lock_count += count;
1629         if (eliminated) {
1630           eliminated_lock_count += count;
1631         }
1632       }
1633 #if INCLUDE_RTM_OPT
1634     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1635       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1636       if (rlc->nonzero()) {
1637         tty->print_cr("%s", c->name());
1638         rlc->print_on(tty);
1639       }
1640 #endif
1641     }
1642     c = c->next();
1643   }
1644   if (total_lock_count > 0) {
1645     tty->print_cr("dynamic locks: %d", total_lock_count);
1646     if (eliminated_lock_count) {
1647       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1648                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1649     }
1650   }
1651 }
1652 
1653 //
1654 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1655 //  name which consists of method@line for the inlining tree.
1656 //
1657 
1658 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1659   int max_depth = youngest_jvms->depth();
1660 
1661   // Visit scopes from youngest to oldest.
1662   bool first = true;
1663   stringStream st;
1664   for (int depth = max_depth; depth >= 1; depth--) {
1665     JVMState* jvms = youngest_jvms->of_depth(depth);
1666     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1667     if (!first) {
1668       st.print(" ");
1669     } else {
1670       first = false;
1671     }
1672     int bci = jvms->bci();
1673     if (bci < 0) bci = 0;
1674     if (m != NULL) {
1675       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
1676     } else {
1677       st.print("no method");
1678     }
1679     st.print("@%d", bci);
1680     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1681   }
1682   NamedCounter* c;
1683   if (tag == NamedCounter::RTMLockingCounter) {
1684     c = new RTMLockingNamedCounter(st.as_string());
1685   } else {
1686     c = new NamedCounter(st.as_string(), tag);
1687   }
1688 
1689   // atomically add the new counter to the head of the list.  We only
1690   // add counters so this is safe.
1691   NamedCounter* head;
1692   do {
1693     c->set_next(NULL);
1694     head = _named_counters;
1695     c->set_next(head);
1696   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
1697   return c;
1698 }
1699 
1700 int trace_exception_counter = 0;
1701 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1702   trace_exception_counter++;
1703   stringStream tempst;
1704 
1705   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1706   exception_oop->print_value_on(&tempst);
1707   tempst.print(" in ");
1708   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1709   if (blob->is_compiled()) {
1710     CompiledMethod* cm = blob->as_compiled_method_or_null();
1711     cm->method()->print_value_on(&tempst);
1712   } else if (blob->is_runtime_stub()) {
1713     tempst.print("<runtime-stub>");
1714   } else {
1715     tempst.print("<unknown>");
1716   }
1717   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1718   tempst.print("]");
1719 
1720   st->print_raw_cr(tempst.as_string());
1721 }