1 /*
   2  * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmClasses.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledMethod.inline.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc/g1/heapRegion.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gcLocker.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/linkResolver.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/klass.inline.hpp"
  51 #include "oops/oop.inline.hpp"
  52 #include "oops/typeArrayOop.inline.hpp"
  53 #include "opto/ad.hpp"
  54 #include "opto/addnode.hpp"
  55 #include "opto/callnode.hpp"
  56 #include "opto/cfgnode.hpp"
  57 #include "opto/graphKit.hpp"
  58 #include "opto/machnode.hpp"
  59 #include "opto/matcher.hpp"
  60 #include "opto/memnode.hpp"
  61 #include "opto/mulnode.hpp"
  62 #include "opto/output.hpp"
  63 #include "opto/runtime.hpp"
  64 #include "opto/subnode.hpp"
  65 #include "prims/jvmtiExport.hpp"
  66 #include "runtime/atomic.hpp"
  67 #include "runtime/frame.inline.hpp"
  68 #include "runtime/handles.inline.hpp"
  69 #include "runtime/interfaceSupport.inline.hpp"
  70 #include "runtime/javaCalls.hpp"
  71 #include "runtime/sharedRuntime.hpp"
  72 #include "runtime/signature.hpp"
  73 #include "runtime/stackWatermarkSet.hpp"
  74 #include "runtime/synchronizer.hpp"
  75 #include "runtime/threadCritical.hpp"
  76 #include "runtime/threadWXSetters.inline.hpp"
  77 #include "runtime/vframe.hpp"
  78 #include "runtime/vframeArray.hpp"
  79 #include "runtime/vframe_hp.hpp"
  80 #include "utilities/copy.hpp"
  81 #include "utilities/preserveException.hpp"
  82 
  83 
  84 // For debugging purposes:
  85 //  To force FullGCALot inside a runtime function, add the following two lines
  86 //
  87 //  Universe::release_fullgc_alot_dummy();
  88 //  MarkSweep::invoke(0, "Debugging");
  89 //
  90 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  91 
  92 
  93 
  94 
  95 // Compiled code entry points
  96 address OptoRuntime::_new_instance_Java                           = nullptr;
  97 address OptoRuntime::_new_array_Java                              = nullptr;
  98 address OptoRuntime::_new_array_nozero_Java                       = nullptr;
  99 address OptoRuntime::_multianewarray2_Java                        = nullptr;
 100 address OptoRuntime::_multianewarray3_Java                        = nullptr;
 101 address OptoRuntime::_multianewarray4_Java                        = nullptr;
 102 address OptoRuntime::_multianewarray5_Java                        = nullptr;
 103 address OptoRuntime::_multianewarrayN_Java                        = nullptr;
 104 address OptoRuntime::_vtable_must_compile_Java                    = nullptr;
 105 address OptoRuntime::_complete_monitor_locking_Java               = nullptr;
 106 address OptoRuntime::_monitor_notify_Java                         = nullptr;
 107 address OptoRuntime::_monitor_notifyAll_Java                      = nullptr;
 108 address OptoRuntime::_rethrow_Java                                = nullptr;
 109 
 110 address OptoRuntime::_slow_arraycopy_Java                         = nullptr;
 111 address OptoRuntime::_register_finalizer_Java                     = nullptr;
 112 #if INCLUDE_JVMTI
 113 address OptoRuntime::_notify_jvmti_vthread_start                  = nullptr;
 114 address OptoRuntime::_notify_jvmti_vthread_end                    = nullptr;
 115 address OptoRuntime::_notify_jvmti_vthread_mount                  = nullptr;
 116 address OptoRuntime::_notify_jvmti_vthread_unmount                = nullptr;
 117 #endif
 118 
 119 ExceptionBlob* OptoRuntime::_exception_blob;
 120 
 121 // This should be called in an assertion at the start of OptoRuntime routines
 122 // which are entered from compiled code (all of them)
 123 #ifdef ASSERT
 124 static bool check_compiled_frame(JavaThread* thread) {
 125   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 126   RegisterMap map(thread,
 127                   RegisterMap::UpdateMap::skip,
 128                   RegisterMap::ProcessFrames::include,
 129                   RegisterMap::WalkContinuation::skip);
 130   frame caller = thread->last_frame().sender(&map);
 131   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 132   return true;
 133 }
 134 #endif // ASSERT
 135 
 136 
 137 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 138   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 139   if (var == nullptr) { return false; }
 140 
 141 bool OptoRuntime::generate(ciEnv* env) {
 142 
 143   generate_exception_blob();
 144 
 145   // Note: tls: Means fetching the return oop out of the thread-local storage
 146   //
 147   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,retpc
 148   // -------------------------------------------------------------------------------------------------------------------------------
 149   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true, false);
 150   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true, false);
 151   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true, false);
 152   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true, false);
 153   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true, false);
 154   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true, false);
 155   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true, false);
 156   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true, false);
 157 #if INCLUDE_JVMTI
 158   gen(env, _notify_jvmti_vthread_start     , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_start, 0, true, false);
 159   gen(env, _notify_jvmti_vthread_end       , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_end,   0, true, false);
 160   gen(env, _notify_jvmti_vthread_mount     , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_mount, 0, true, false);
 161   gen(env, _notify_jvmti_vthread_unmount   , notify_jvmti_vthread_Type    , SharedRuntime::notify_jvmti_vthread_unmount, 0, true, false);
 162 #endif
 163   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false);
 164   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false);
 165   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false);
 166   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , true );
 167 
 168   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false);
 169   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false);
 170 
 171   return true;
 172 }
 173 
 174 #undef gen
 175 
 176 
 177 // Helper method to do generation of RunTimeStub's
 178 address OptoRuntime::generate_stub(ciEnv* env,
 179                                    TypeFunc_generator gen, address C_function,
 180                                    const char *name, int is_fancy_jump,
 181                                    bool pass_tls,
 182                                    bool return_pc) {
 183 
 184   // Matching the default directive, we currently have no method to match.
 185   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 186   ResourceMark rm;
 187   Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive);
 188   DirectivesStack::release(directive);
 189   return  C.stub_entry_point();
 190 }
 191 
 192 const char* OptoRuntime::stub_name(address entry) {
 193 #ifndef PRODUCT
 194   CodeBlob* cb = CodeCache::find_blob(entry);
 195   RuntimeStub* rs =(RuntimeStub *)cb;
 196   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 197   return rs->name();
 198 #else
 199   // Fast implementation for product mode (maybe it should be inlined too)
 200   return "runtime stub";
 201 #endif
 202 }
 203 
 204 
 205 //=============================================================================
 206 // Opto compiler runtime routines
 207 //=============================================================================
 208 
 209 
 210 //=============================allocation======================================
 211 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 212 // and try allocation again.
 213 
 214 // object allocation
 215 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
 216   JRT_BLOCK;
 217 #ifndef PRODUCT
 218   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 219 #endif
 220   assert(check_compiled_frame(current), "incorrect caller");
 221 
 222   // These checks are cheap to make and support reflective allocation.
 223   int lh = klass->layout_helper();
 224   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 225     Handle holder(current, klass->klass_holder()); // keep the klass alive
 226     klass->check_valid_for_instantiation(false, THREAD);
 227     if (!HAS_PENDING_EXCEPTION) {
 228       InstanceKlass::cast(klass)->initialize(THREAD);
 229     }
 230   }
 231 
 232   if (!HAS_PENDING_EXCEPTION) {
 233     // Scavenge and allocate an instance.
 234     Handle holder(current, klass->klass_holder()); // keep the klass alive
 235     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 236     current->set_vm_result(result);
 237 
 238     // Pass oops back through thread local storage.  Our apparent type to Java
 239     // is that we return an oop, but we can block on exit from this routine and
 240     // a GC can trash the oop in C's return register.  The generated stub will
 241     // fetch the oop from TLS after any possible GC.
 242   }
 243 
 244   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 245   JRT_BLOCK_END;
 246 
 247   // inform GC that we won't do card marks for initializing writes.
 248   SharedRuntime::on_slowpath_allocation_exit(current);
 249 JRT_END
 250 
 251 
 252 // array allocation
 253 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 254   JRT_BLOCK;
 255 #ifndef PRODUCT
 256   SharedRuntime::_new_array_ctr++;            // new array requires GC
 257 #endif
 258   assert(check_compiled_frame(current), "incorrect caller");
 259 
 260   // Scavenge and allocate an instance.
 261   oop result;
 262 
 263   if (array_type->is_typeArray_klass()) {
 264     // The oopFactory likes to work with the element type.
 265     // (We could bypass the oopFactory, since it doesn't add much value.)
 266     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 267     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 268   } else {
 269     // Although the oopFactory likes to work with the elem_type,
 270     // the compiler prefers the array_type, since it must already have
 271     // that latter value in hand for the fast path.
 272     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 273     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 274     result = oopFactory::new_objArray(elem_type, len, THREAD);
 275   }
 276 
 277   // Pass oops back through thread local storage.  Our apparent type to Java
 278   // is that we return an oop, but we can block on exit from this routine and
 279   // a GC can trash the oop in C's return register.  The generated stub will
 280   // fetch the oop from TLS after any possible GC.
 281   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 282   current->set_vm_result(result);
 283   JRT_BLOCK_END;
 284 
 285   // inform GC that we won't do card marks for initializing writes.
 286   SharedRuntime::on_slowpath_allocation_exit(current);
 287 JRT_END
 288 
 289 // array allocation without zeroing
 290 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 291   JRT_BLOCK;
 292 #ifndef PRODUCT
 293   SharedRuntime::_new_array_ctr++;            // new array requires GC
 294 #endif
 295   assert(check_compiled_frame(current), "incorrect caller");
 296 
 297   // Scavenge and allocate an instance.
 298   oop result;
 299 
 300   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 301   // The oopFactory likes to work with the element type.
 302   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 303   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 304 
 305   // Pass oops back through thread local storage.  Our apparent type to Java
 306   // is that we return an oop, but we can block on exit from this routine and
 307   // a GC can trash the oop in C's return register.  The generated stub will
 308   // fetch the oop from TLS after any possible GC.
 309   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 310   current->set_vm_result(result);
 311   JRT_BLOCK_END;
 312 
 313 
 314   // inform GC that we won't do card marks for initializing writes.
 315   SharedRuntime::on_slowpath_allocation_exit(current);
 316 
 317   oop result = current->vm_result();
 318   if ((len > 0) && (result != nullptr) &&
 319       is_deoptimized_caller_frame(current)) {
 320     // Zero array here if the caller is deoptimized.
 321     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result);
 322     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 323     const size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 324     // Align to next 8 bytes to avoid trashing arrays's length.
 325     const size_t aligned_hs_bytes = align_up(hs_bytes, BytesPerLong);
 326     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 327     if (aligned_hs_bytes > hs_bytes) {
 328       Copy::zero_to_bytes(obj + hs_bytes, aligned_hs_bytes - hs_bytes);
 329     }
 330     // Optimized zeroing.
 331     const size_t aligned_hs = aligned_hs_bytes / HeapWordSize;
 332     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 333   }
 334 
 335 JRT_END
 336 
 337 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 338 
 339 // multianewarray for 2 dimensions
 340 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 341 #ifndef PRODUCT
 342   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 343 #endif
 344   assert(check_compiled_frame(current), "incorrect caller");
 345   assert(elem_type->is_klass(), "not a class");
 346   jint dims[2];
 347   dims[0] = len1;
 348   dims[1] = len2;
 349   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 350   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 351   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 352   current->set_vm_result(obj);
 353 JRT_END
 354 
 355 // multianewarray for 3 dimensions
 356 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 357 #ifndef PRODUCT
 358   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 359 #endif
 360   assert(check_compiled_frame(current), "incorrect caller");
 361   assert(elem_type->is_klass(), "not a class");
 362   jint dims[3];
 363   dims[0] = len1;
 364   dims[1] = len2;
 365   dims[2] = len3;
 366   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 367   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 368   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 369   current->set_vm_result(obj);
 370 JRT_END
 371 
 372 // multianewarray for 4 dimensions
 373 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 374 #ifndef PRODUCT
 375   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 376 #endif
 377   assert(check_compiled_frame(current), "incorrect caller");
 378   assert(elem_type->is_klass(), "not a class");
 379   jint dims[4];
 380   dims[0] = len1;
 381   dims[1] = len2;
 382   dims[2] = len3;
 383   dims[3] = len4;
 384   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 385   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 386   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 387   current->set_vm_result(obj);
 388 JRT_END
 389 
 390 // multianewarray for 5 dimensions
 391 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 392 #ifndef PRODUCT
 393   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 394 #endif
 395   assert(check_compiled_frame(current), "incorrect caller");
 396   assert(elem_type->is_klass(), "not a class");
 397   jint dims[5];
 398   dims[0] = len1;
 399   dims[1] = len2;
 400   dims[2] = len3;
 401   dims[3] = len4;
 402   dims[4] = len5;
 403   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 404   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 405   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 406   current->set_vm_result(obj);
 407 JRT_END
 408 
 409 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 410   assert(check_compiled_frame(current), "incorrect caller");
 411   assert(elem_type->is_klass(), "not a class");
 412   assert(oop(dims)->is_typeArray(), "not an array");
 413 
 414   ResourceMark rm;
 415   jint len = dims->length();
 416   assert(len > 0, "Dimensions array should contain data");
 417   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 418   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 419                                        c_dims, len);
 420 
 421   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 422   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 423   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 424   current->set_vm_result(obj);
 425 JRT_END
 426 
 427 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 428 
 429   // Very few notify/notifyAll operations find any threads on the waitset, so
 430   // the dominant fast-path is to simply return.
 431   // Relatedly, it's critical that notify/notifyAll be fast in order to
 432   // reduce lock hold times.
 433   if (!SafepointSynchronize::is_synchronizing()) {
 434     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 435       return;
 436     }
 437   }
 438 
 439   // This is the case the fast-path above isn't provisioned to handle.
 440   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 441   // (The fast-path is just a degenerate variant of the slow-path).
 442   // Perform the dreaded state transition and pass control into the slow-path.
 443   JRT_BLOCK;
 444   Handle h_obj(current, obj);
 445   ObjectSynchronizer::notify(h_obj, CHECK);
 446   JRT_BLOCK_END;
 447 JRT_END
 448 
 449 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 450 
 451   if (!SafepointSynchronize::is_synchronizing() ) {
 452     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 453       return;
 454     }
 455   }
 456 
 457   // This is the case the fast-path above isn't provisioned to handle.
 458   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 459   // (The fast-path is just a degenerate variant of the slow-path).
 460   // Perform the dreaded state transition and pass control into the slow-path.
 461   JRT_BLOCK;
 462   Handle h_obj(current, obj);
 463   ObjectSynchronizer::notifyall(h_obj, CHECK);
 464   JRT_BLOCK_END;
 465 JRT_END
 466 
 467 const TypeFunc *OptoRuntime::new_instance_Type() {
 468   // create input type (domain)
 469   const Type **fields = TypeTuple::fields(1);
 470   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 471   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 472 
 473   // create result type (range)
 474   fields = TypeTuple::fields(1);
 475   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 476 
 477   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 478 
 479   return TypeFunc::make(domain, range);
 480 }
 481 
 482 #if INCLUDE_JVMTI
 483 const TypeFunc *OptoRuntime::notify_jvmti_vthread_Type() {
 484   // create input type (domain)
 485   const Type **fields = TypeTuple::fields(2);
 486   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
 487   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // jboolean
 488   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 489 
 490   // no result type needed
 491   fields = TypeTuple::fields(1);
 492   fields[TypeFunc::Parms+0] = nullptr; // void
 493   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 494 
 495   return TypeFunc::make(domain,range);
 496 }
 497 #endif
 498 
 499 const TypeFunc *OptoRuntime::athrow_Type() {
 500   // create input type (domain)
 501   const Type **fields = TypeTuple::fields(1);
 502   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 503   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 504 
 505   // create result type (range)
 506   fields = TypeTuple::fields(0);
 507 
 508   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 509 
 510   return TypeFunc::make(domain, range);
 511 }
 512 
 513 
 514 const TypeFunc *OptoRuntime::new_array_Type() {
 515   // create input type (domain)
 516   const Type **fields = TypeTuple::fields(2);
 517   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 518   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 519   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 520 
 521   // create result type (range)
 522   fields = TypeTuple::fields(1);
 523   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 524 
 525   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 526 
 527   return TypeFunc::make(domain, range);
 528 }
 529 
 530 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 531   // create input type (domain)
 532   const int nargs = ndim + 1;
 533   const Type **fields = TypeTuple::fields(nargs);
 534   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 535   for( int i = 1; i < nargs; i++ )
 536     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 537   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 538 
 539   // create result type (range)
 540   fields = TypeTuple::fields(1);
 541   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 542   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 543 
 544   return TypeFunc::make(domain, range);
 545 }
 546 
 547 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 548   return multianewarray_Type(2);
 549 }
 550 
 551 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 552   return multianewarray_Type(3);
 553 }
 554 
 555 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 556   return multianewarray_Type(4);
 557 }
 558 
 559 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 560   return multianewarray_Type(5);
 561 }
 562 
 563 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 564   // create input type (domain)
 565   const Type **fields = TypeTuple::fields(2);
 566   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 567   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 568   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 569 
 570   // create result type (range)
 571   fields = TypeTuple::fields(1);
 572   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 573   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 574 
 575   return TypeFunc::make(domain, range);
 576 }
 577 
 578 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 579   // create input type (domain)
 580   const Type **fields = TypeTuple::fields(1);
 581   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 582   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 583 
 584   // create result type (range)
 585   fields = TypeTuple::fields(0);
 586   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 587 
 588   return TypeFunc::make(domain, range);
 589 }
 590 
 591 //-----------------------------------------------------------------------------
 592 // Monitor Handling
 593 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 594   // create input type (domain)
 595   const Type **fields = TypeTuple::fields(2);
 596   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 597   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 598   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 599 
 600   // create result type (range)
 601   fields = TypeTuple::fields(0);
 602 
 603   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 604 
 605   return TypeFunc::make(domain,range);
 606 }
 607 
 608 
 609 //-----------------------------------------------------------------------------
 610 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 611   // create input type (domain)
 612   const Type **fields = TypeTuple::fields(3);
 613   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 614   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 615   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 616   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 617 
 618   // create result type (range)
 619   fields = TypeTuple::fields(0);
 620 
 621   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 622 
 623   return TypeFunc::make(domain, range);
 624 }
 625 
 626 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 627   // create input type (domain)
 628   const Type **fields = TypeTuple::fields(1);
 629   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 630   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 631 
 632   // create result type (range)
 633   fields = TypeTuple::fields(0);
 634   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 635   return TypeFunc::make(domain, range);
 636 }
 637 
 638 const TypeFunc* OptoRuntime::flush_windows_Type() {
 639   // create input type (domain)
 640   const Type** fields = TypeTuple::fields(1);
 641   fields[TypeFunc::Parms+0] = nullptr; // void
 642   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 643 
 644   // create result type
 645   fields = TypeTuple::fields(1);
 646   fields[TypeFunc::Parms+0] = nullptr; // void
 647   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 648 
 649   return TypeFunc::make(domain, range);
 650 }
 651 
 652 const TypeFunc* OptoRuntime::l2f_Type() {
 653   // create input type (domain)
 654   const Type **fields = TypeTuple::fields(2);
 655   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 656   fields[TypeFunc::Parms+1] = Type::HALF;
 657   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 658 
 659   // create result type (range)
 660   fields = TypeTuple::fields(1);
 661   fields[TypeFunc::Parms+0] = Type::FLOAT;
 662   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 663 
 664   return TypeFunc::make(domain, range);
 665 }
 666 
 667 const TypeFunc* OptoRuntime::modf_Type() {
 668   const Type **fields = TypeTuple::fields(2);
 669   fields[TypeFunc::Parms+0] = Type::FLOAT;
 670   fields[TypeFunc::Parms+1] = Type::FLOAT;
 671   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 672 
 673   // create result type (range)
 674   fields = TypeTuple::fields(1);
 675   fields[TypeFunc::Parms+0] = Type::FLOAT;
 676 
 677   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 678 
 679   return TypeFunc::make(domain, range);
 680 }
 681 
 682 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 683   // create input type (domain)
 684   const Type **fields = TypeTuple::fields(2);
 685   // Symbol* name of class to be loaded
 686   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 687   fields[TypeFunc::Parms+1] = Type::HALF;
 688   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 689 
 690   // create result type (range)
 691   fields = TypeTuple::fields(2);
 692   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 693   fields[TypeFunc::Parms+1] = Type::HALF;
 694   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 695 
 696   return TypeFunc::make(domain, range);
 697 }
 698 
 699 const TypeFunc *OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 700   // create input type (domain)
 701   const Type **fields = TypeTuple::fields(num_arg);
 702   // Symbol* name of class to be loaded
 703   assert(num_arg > 0, "must have at least 1 input");
 704   for (uint i = 0; i < num_arg; i++) {
 705     fields[TypeFunc::Parms+i] = in_type;
 706   }
 707   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 708 
 709   // create result type (range)
 710   const uint num_ret = 1;
 711   fields = TypeTuple::fields(num_ret);
 712   fields[TypeFunc::Parms+0] = out_type;
 713   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 714 
 715   return TypeFunc::make(domain, range);
 716 }
 717 
 718 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 719   const Type **fields = TypeTuple::fields(4);
 720   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 721   fields[TypeFunc::Parms+1] = Type::HALF;
 722   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 723   fields[TypeFunc::Parms+3] = Type::HALF;
 724   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 725 
 726   // create result type (range)
 727   fields = TypeTuple::fields(2);
 728   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 729   fields[TypeFunc::Parms+1] = Type::HALF;
 730   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 731 
 732   return TypeFunc::make(domain, range);
 733 }
 734 
 735 //-------------- currentTimeMillis, currentTimeNanos, etc
 736 
 737 const TypeFunc* OptoRuntime::void_long_Type() {
 738   // create input type (domain)
 739   const Type **fields = TypeTuple::fields(0);
 740   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 741 
 742   // create result type (range)
 743   fields = TypeTuple::fields(2);
 744   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 745   fields[TypeFunc::Parms+1] = Type::HALF;
 746   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 747 
 748   return TypeFunc::make(domain, range);
 749 }
 750 
 751 const TypeFunc* OptoRuntime::void_void_Type() {
 752    // create input type (domain)
 753    const Type **fields = TypeTuple::fields(0);
 754    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 755 
 756    // create result type (range)
 757    fields = TypeTuple::fields(0);
 758    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 759    return TypeFunc::make(domain, range);
 760  }
 761 
 762  const TypeFunc* OptoRuntime::jfr_write_checkpoint_Type() {
 763    // create input type (domain)
 764    const Type **fields = TypeTuple::fields(0);
 765    const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 766 
 767    // create result type (range)
 768    fields = TypeTuple::fields(0);
 769    const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 770    return TypeFunc::make(domain, range);
 771  }
 772 
 773 
 774 // arraycopy stub variations:
 775 enum ArrayCopyType {
 776   ac_fast,                      // void(ptr, ptr, size_t)
 777   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 778   ac_slow,                      // void(ptr, int, ptr, int, int)
 779   ac_generic                    //  int(ptr, int, ptr, int, int)
 780 };
 781 
 782 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 783   // create input type (domain)
 784   int num_args      = (act == ac_fast ? 3 : 5);
 785   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 786   int argcnt = num_args;
 787   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 788   const Type** fields = TypeTuple::fields(argcnt);
 789   int argp = TypeFunc::Parms;
 790   fields[argp++] = TypePtr::NOTNULL;    // src
 791   if (num_size_args == 0) {
 792     fields[argp++] = TypeInt::INT;      // src_pos
 793   }
 794   fields[argp++] = TypePtr::NOTNULL;    // dest
 795   if (num_size_args == 0) {
 796     fields[argp++] = TypeInt::INT;      // dest_pos
 797     fields[argp++] = TypeInt::INT;      // length
 798   }
 799   while (num_size_args-- > 0) {
 800     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 801     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 802   }
 803   if (act == ac_checkcast) {
 804     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 805   }
 806   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 807   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 808 
 809   // create result type if needed
 810   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 811   fields = TypeTuple::fields(1);
 812   if (retcnt == 0)
 813     fields[TypeFunc::Parms+0] = nullptr; // void
 814   else
 815     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 816   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 817   return TypeFunc::make(domain, range);
 818 }
 819 
 820 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 821   // This signature is simple:  Two base pointers and a size_t.
 822   return make_arraycopy_Type(ac_fast);
 823 }
 824 
 825 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 826   // An extension of fast_arraycopy_Type which adds type checking.
 827   return make_arraycopy_Type(ac_checkcast);
 828 }
 829 
 830 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 831   // This signature is exactly the same as System.arraycopy.
 832   // There are no intptr_t (int/long) arguments.
 833   return make_arraycopy_Type(ac_slow);
 834 }
 835 
 836 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 837   // This signature is like System.arraycopy, except that it returns status.
 838   return make_arraycopy_Type(ac_generic);
 839 }
 840 
 841 
 842 const TypeFunc* OptoRuntime::array_fill_Type() {
 843   const Type** fields;
 844   int argp = TypeFunc::Parms;
 845   // create input type (domain): pointer, int, size_t
 846   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 847   fields[argp++] = TypePtr::NOTNULL;
 848   fields[argp++] = TypeInt::INT;
 849   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 850   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 851   const TypeTuple *domain = TypeTuple::make(argp, fields);
 852 
 853   // create result type
 854   fields = TypeTuple::fields(1);
 855   fields[TypeFunc::Parms+0] = nullptr; // void
 856   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 857 
 858   return TypeFunc::make(domain, range);
 859 }
 860 
 861 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 862 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 863   // create input type (domain)
 864   int num_args      = 3;
 865   int argcnt = num_args;
 866   const Type** fields = TypeTuple::fields(argcnt);
 867   int argp = TypeFunc::Parms;
 868   fields[argp++] = TypePtr::NOTNULL;    // src
 869   fields[argp++] = TypePtr::NOTNULL;    // dest
 870   fields[argp++] = TypePtr::NOTNULL;    // k array
 871   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 872   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 873 
 874   // no result type needed
 875   fields = TypeTuple::fields(1);
 876   fields[TypeFunc::Parms+0] = nullptr; // void
 877   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 878   return TypeFunc::make(domain, range);
 879 }
 880 
 881 /**
 882  * int updateBytesCRC32(int crc, byte* b, int len)
 883  */
 884 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 885   // create input type (domain)
 886   int num_args      = 3;
 887   int argcnt = num_args;
 888   const Type** fields = TypeTuple::fields(argcnt);
 889   int argp = TypeFunc::Parms;
 890   fields[argp++] = TypeInt::INT;        // crc
 891   fields[argp++] = TypePtr::NOTNULL;    // src
 892   fields[argp++] = TypeInt::INT;        // len
 893   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 894   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 895 
 896   // result type needed
 897   fields = TypeTuple::fields(1);
 898   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 899   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 900   return TypeFunc::make(domain, range);
 901 }
 902 
 903 /**
 904  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 905  */
 906 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 907   // create input type (domain)
 908   int num_args      = 4;
 909   int argcnt = num_args;
 910   const Type** fields = TypeTuple::fields(argcnt);
 911   int argp = TypeFunc::Parms;
 912   fields[argp++] = TypeInt::INT;        // crc
 913   fields[argp++] = TypePtr::NOTNULL;    // buf
 914   fields[argp++] = TypeInt::INT;        // len
 915   fields[argp++] = TypePtr::NOTNULL;    // table
 916   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 917   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 918 
 919   // result type needed
 920   fields = TypeTuple::fields(1);
 921   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 922   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 923   return TypeFunc::make(domain, range);
 924 }
 925 
 926 /**
 927 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 928 */
 929 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 930   // create input type (domain)
 931   int num_args      = 3;
 932   int argcnt = num_args;
 933   const Type** fields = TypeTuple::fields(argcnt);
 934   int argp = TypeFunc::Parms;
 935   fields[argp++] = TypeInt::INT;        // crc
 936   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 937   fields[argp++] = TypeInt::INT;        // len
 938   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 939   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 940 
 941   // result type needed
 942   fields = TypeTuple::fields(1);
 943   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 944   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 945   return TypeFunc::make(domain, range);
 946 }
 947 
 948 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 949 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 950   // create input type (domain)
 951   int num_args      = 5;
 952   int argcnt = num_args;
 953   const Type** fields = TypeTuple::fields(argcnt);
 954   int argp = TypeFunc::Parms;
 955   fields[argp++] = TypePtr::NOTNULL;    // src
 956   fields[argp++] = TypePtr::NOTNULL;    // dest
 957   fields[argp++] = TypePtr::NOTNULL;    // k array
 958   fields[argp++] = TypePtr::NOTNULL;    // r array
 959   fields[argp++] = TypeInt::INT;        // src len
 960   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 961   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 962 
 963   // returning cipher len (int)
 964   fields = TypeTuple::fields(1);
 965   fields[TypeFunc::Parms+0] = TypeInt::INT;
 966   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 967   return TypeFunc::make(domain, range);
 968 }
 969 
 970 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int
 971 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() {
 972   // create input type (domain)
 973   int num_args = 4;
 974   int argcnt = num_args;
 975   const Type** fields = TypeTuple::fields(argcnt);
 976   int argp = TypeFunc::Parms;
 977   fields[argp++] = TypePtr::NOTNULL;    // src
 978   fields[argp++] = TypePtr::NOTNULL;    // dest
 979   fields[argp++] = TypePtr::NOTNULL;    // k array
 980   fields[argp++] = TypeInt::INT;        // src len
 981   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 982   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 983 
 984   // returning cipher len (int)
 985   fields = TypeTuple::fields(1);
 986   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 987   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 988   return TypeFunc::make(domain, range);
 989 }
 990 
 991 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 992 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
 993   // create input type (domain)
 994   int num_args = 7;
 995   int argcnt = num_args;
 996   const Type** fields = TypeTuple::fields(argcnt);
 997   int argp = TypeFunc::Parms;
 998   fields[argp++] = TypePtr::NOTNULL; // src
 999   fields[argp++] = TypePtr::NOTNULL; // dest
1000   fields[argp++] = TypePtr::NOTNULL; // k array
1001   fields[argp++] = TypePtr::NOTNULL; // counter array
1002   fields[argp++] = TypeInt::INT; // src len
1003   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
1004   fields[argp++] = TypePtr::NOTNULL; // saved used addr
1005   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1006   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1007   // returning cipher len (int)
1008   fields = TypeTuple::fields(1);
1009   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1010   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1011   return TypeFunc::make(domain, range);
1012 }
1013 
1014 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
1015 const TypeFunc* OptoRuntime::galoisCounterMode_aescrypt_Type() {
1016   // create input type (domain)
1017   int num_args = 8;
1018   int argcnt = num_args;
1019   const Type** fields = TypeTuple::fields(argcnt);
1020   int argp = TypeFunc::Parms;
1021   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
1022   fields[argp++] = TypeInt::INT;     // int len
1023   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
1024   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
1025   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
1026   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
1027   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
1028   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
1029 
1030   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1031   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1032   // returning cipher len (int)
1033   fields = TypeTuple::fields(1);
1034   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1035   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1036   return TypeFunc::make(domain, range);
1037 }
1038 
1039 /*
1040  * void implCompress(byte[] buf, int ofs)
1041  */
1042 const TypeFunc* OptoRuntime::digestBase_implCompress_Type(bool is_sha3) {
1043   // create input type (domain)
1044   int num_args = is_sha3 ? 3 : 2;
1045   int argcnt = num_args;
1046   const Type** fields = TypeTuple::fields(argcnt);
1047   int argp = TypeFunc::Parms;
1048   fields[argp++] = TypePtr::NOTNULL; // buf
1049   fields[argp++] = TypePtr::NOTNULL; // state
1050   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1051   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1052   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1053 
1054   // no result type needed
1055   fields = TypeTuple::fields(1);
1056   fields[TypeFunc::Parms+0] = nullptr; // void
1057   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1058   return TypeFunc::make(domain, range);
1059 }
1060 
1061 /*
1062  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1063  */
1064 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type(bool is_sha3) {
1065   // create input type (domain)
1066   int num_args = is_sha3 ? 5 : 4;
1067   int argcnt = num_args;
1068   const Type** fields = TypeTuple::fields(argcnt);
1069   int argp = TypeFunc::Parms;
1070   fields[argp++] = TypePtr::NOTNULL; // buf
1071   fields[argp++] = TypePtr::NOTNULL; // state
1072   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1073   fields[argp++] = TypeInt::INT;     // ofs
1074   fields[argp++] = TypeInt::INT;     // limit
1075   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1076   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1077 
1078   // returning ofs (int)
1079   fields = TypeTuple::fields(1);
1080   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1081   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1082   return TypeFunc::make(domain, range);
1083 }
1084 
1085 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1086   // create input type (domain)
1087   int num_args      = 6;
1088   int argcnt = num_args;
1089   const Type** fields = TypeTuple::fields(argcnt);
1090   int argp = TypeFunc::Parms;
1091   fields[argp++] = TypePtr::NOTNULL;    // x
1092   fields[argp++] = TypeInt::INT;        // xlen
1093   fields[argp++] = TypePtr::NOTNULL;    // y
1094   fields[argp++] = TypeInt::INT;        // ylen
1095   fields[argp++] = TypePtr::NOTNULL;    // z
1096   fields[argp++] = TypeInt::INT;        // zlen
1097   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1098   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1099 
1100   // no result type needed
1101   fields = TypeTuple::fields(1);
1102   fields[TypeFunc::Parms+0] = nullptr;
1103   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1104   return TypeFunc::make(domain, range);
1105 }
1106 
1107 const TypeFunc* OptoRuntime::squareToLen_Type() {
1108   // create input type (domain)
1109   int num_args      = 4;
1110   int argcnt = num_args;
1111   const Type** fields = TypeTuple::fields(argcnt);
1112   int argp = TypeFunc::Parms;
1113   fields[argp++] = TypePtr::NOTNULL;    // x
1114   fields[argp++] = TypeInt::INT;        // len
1115   fields[argp++] = TypePtr::NOTNULL;    // z
1116   fields[argp++] = TypeInt::INT;        // zlen
1117   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1118   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1119 
1120   // no result type needed
1121   fields = TypeTuple::fields(1);
1122   fields[TypeFunc::Parms+0] = nullptr;
1123   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1124   return TypeFunc::make(domain, range);
1125 }
1126 
1127 // for mulAdd calls, 2 pointers and 3 ints, returning int
1128 const TypeFunc* OptoRuntime::mulAdd_Type() {
1129   // create input type (domain)
1130   int num_args      = 5;
1131   int argcnt = num_args;
1132   const Type** fields = TypeTuple::fields(argcnt);
1133   int argp = TypeFunc::Parms;
1134   fields[argp++] = TypePtr::NOTNULL;    // out
1135   fields[argp++] = TypePtr::NOTNULL;    // in
1136   fields[argp++] = TypeInt::INT;        // offset
1137   fields[argp++] = TypeInt::INT;        // len
1138   fields[argp++] = TypeInt::INT;        // k
1139   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1140   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1141 
1142   // returning carry (int)
1143   fields = TypeTuple::fields(1);
1144   fields[TypeFunc::Parms+0] = TypeInt::INT;
1145   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1146   return TypeFunc::make(domain, range);
1147 }
1148 
1149 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1150   // create input type (domain)
1151   int num_args      = 7;
1152   int argcnt = num_args;
1153   const Type** fields = TypeTuple::fields(argcnt);
1154   int argp = TypeFunc::Parms;
1155   fields[argp++] = TypePtr::NOTNULL;    // a
1156   fields[argp++] = TypePtr::NOTNULL;    // b
1157   fields[argp++] = TypePtr::NOTNULL;    // n
1158   fields[argp++] = TypeInt::INT;        // len
1159   fields[argp++] = TypeLong::LONG;      // inv
1160   fields[argp++] = Type::HALF;
1161   fields[argp++] = TypePtr::NOTNULL;    // result
1162   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1163   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1164 
1165   // result type needed
1166   fields = TypeTuple::fields(1);
1167   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1168 
1169   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1170   return TypeFunc::make(domain, range);
1171 }
1172 
1173 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1174   // create input type (domain)
1175   int num_args      = 6;
1176   int argcnt = num_args;
1177   const Type** fields = TypeTuple::fields(argcnt);
1178   int argp = TypeFunc::Parms;
1179   fields[argp++] = TypePtr::NOTNULL;    // a
1180   fields[argp++] = TypePtr::NOTNULL;    // n
1181   fields[argp++] = TypeInt::INT;        // len
1182   fields[argp++] = TypeLong::LONG;      // inv
1183   fields[argp++] = Type::HALF;
1184   fields[argp++] = TypePtr::NOTNULL;    // result
1185   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1186   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1187 
1188   // result type needed
1189   fields = TypeTuple::fields(1);
1190   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1191 
1192   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1193   return TypeFunc::make(domain, range);
1194 }
1195 
1196 const TypeFunc * OptoRuntime::bigIntegerShift_Type() {
1197   int argcnt = 5;
1198   const Type** fields = TypeTuple::fields(argcnt);
1199   int argp = TypeFunc::Parms;
1200   fields[argp++] = TypePtr::NOTNULL;    // newArr
1201   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1202   fields[argp++] = TypeInt::INT;        // newIdx
1203   fields[argp++] = TypeInt::INT;        // shiftCount
1204   fields[argp++] = TypeInt::INT;        // numIter
1205   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1206   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1207 
1208   // no result type needed
1209   fields = TypeTuple::fields(1);
1210   fields[TypeFunc::Parms + 0] = nullptr;
1211   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1212   return TypeFunc::make(domain, range);
1213 }
1214 
1215 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1216   // create input type (domain)
1217   int num_args = 4;
1218   int argcnt = num_args;
1219   const Type** fields = TypeTuple::fields(argcnt);
1220   int argp = TypeFunc::Parms;
1221   fields[argp++] = TypePtr::NOTNULL;    // obja
1222   fields[argp++] = TypePtr::NOTNULL;    // objb
1223   fields[argp++] = TypeInt::INT;        // length, number of elements
1224   fields[argp++] = TypeInt::INT;        // log2scale, element size
1225   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1226   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1227 
1228   //return mismatch index (int)
1229   fields = TypeTuple::fields(1);
1230   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1231   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1232   return TypeFunc::make(domain, range);
1233 }
1234 
1235 // GHASH block processing
1236 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1237     int argcnt = 4;
1238 
1239     const Type** fields = TypeTuple::fields(argcnt);
1240     int argp = TypeFunc::Parms;
1241     fields[argp++] = TypePtr::NOTNULL;    // state
1242     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1243     fields[argp++] = TypePtr::NOTNULL;    // data
1244     fields[argp++] = TypeInt::INT;        // blocks
1245     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1246     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1247 
1248     // result type needed
1249     fields = TypeTuple::fields(1);
1250     fields[TypeFunc::Parms+0] = nullptr; // void
1251     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1252     return TypeFunc::make(domain, range);
1253 }
1254 
1255 // ChaCha20 Block function
1256 const TypeFunc* OptoRuntime::chacha20Block_Type() {
1257     int argcnt = 2;
1258 
1259     const Type** fields = TypeTuple::fields(argcnt);
1260     int argp = TypeFunc::Parms;
1261     fields[argp++] = TypePtr::NOTNULL;      // state
1262     fields[argp++] = TypePtr::NOTNULL;      // result
1263 
1264     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1265     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1266 
1267     // result type needed
1268     fields = TypeTuple::fields(1);
1269     fields[TypeFunc::Parms + 0] = TypeInt::INT;     // key stream outlen as int
1270     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1271     return TypeFunc::make(domain, range);
1272 }
1273 
1274 // Base64 encode function
1275 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() {
1276   int argcnt = 6;
1277 
1278   const Type** fields = TypeTuple::fields(argcnt);
1279   int argp = TypeFunc::Parms;
1280   fields[argp++] = TypePtr::NOTNULL;    // src array
1281   fields[argp++] = TypeInt::INT;        // offset
1282   fields[argp++] = TypeInt::INT;        // length
1283   fields[argp++] = TypePtr::NOTNULL;    // dest array
1284   fields[argp++] = TypeInt::INT;       // dp
1285   fields[argp++] = TypeInt::BOOL;       // isURL
1286   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1287   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1288 
1289   // result type needed
1290   fields = TypeTuple::fields(1);
1291   fields[TypeFunc::Parms + 0] = nullptr; // void
1292   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1293   return TypeFunc::make(domain, range);
1294 }
1295 // Base64 decode function
1296 const TypeFunc* OptoRuntime::base64_decodeBlock_Type() {
1297   int argcnt = 7;
1298 
1299   const Type** fields = TypeTuple::fields(argcnt);
1300   int argp = TypeFunc::Parms;
1301   fields[argp++] = TypePtr::NOTNULL;    // src array
1302   fields[argp++] = TypeInt::INT;        // src offset
1303   fields[argp++] = TypeInt::INT;        // src length
1304   fields[argp++] = TypePtr::NOTNULL;    // dest array
1305   fields[argp++] = TypeInt::INT;        // dest offset
1306   fields[argp++] = TypeInt::BOOL;       // isURL
1307   fields[argp++] = TypeInt::BOOL;       // isMIME
1308   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1309   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1310 
1311   // result type needed
1312   fields = TypeTuple::fields(1);
1313   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1314   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1315   return TypeFunc::make(domain, range);
1316 }
1317 
1318 // Poly1305 processMultipleBlocks function
1319 const TypeFunc* OptoRuntime::poly1305_processBlocks_Type() {
1320   int argcnt = 4;
1321 
1322   const Type** fields = TypeTuple::fields(argcnt);
1323   int argp = TypeFunc::Parms;
1324   fields[argp++] = TypePtr::NOTNULL;    // input array
1325   fields[argp++] = TypeInt::INT;        // input length
1326   fields[argp++] = TypePtr::NOTNULL;    // accumulator array
1327   fields[argp++] = TypePtr::NOTNULL;    // r array
1328   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1329   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1330 
1331   // result type needed
1332   fields = TypeTuple::fields(1);
1333   fields[TypeFunc::Parms + 0] = nullptr; // void
1334   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1335   return TypeFunc::make(domain, range);
1336 }
1337 
1338 //------------- Interpreter state access for on stack replacement
1339 const TypeFunc* OptoRuntime::osr_end_Type() {
1340   // create input type (domain)
1341   const Type **fields = TypeTuple::fields(1);
1342   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1343   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1344 
1345   // create result type
1346   fields = TypeTuple::fields(1);
1347   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1348   fields[TypeFunc::Parms+0] = nullptr; // void
1349   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1350   return TypeFunc::make(domain, range);
1351 }
1352 
1353 //-------------------------------------------------------------------------------------
1354 // register policy
1355 
1356 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1357   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1358   switch (register_save_policy[reg]) {
1359     case 'C': return false; //SOC
1360     case 'E': return true ; //SOE
1361     case 'N': return false; //NS
1362     case 'A': return false; //AS
1363   }
1364   ShouldNotReachHere();
1365   return false;
1366 }
1367 
1368 //-----------------------------------------------------------------------
1369 // Exceptions
1370 //
1371 
1372 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1373 
1374 // The method is an entry that is always called by a C++ method not
1375 // directly from compiled code. Compiled code will call the C++ method following.
1376 // We can't allow async exception to be installed during  exception processing.
1377 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1378   // The frame we rethrow the exception to might not have been processed by the GC yet.
1379   // The stack watermark barrier takes care of detecting that and ensuring the frame
1380   // has updated oops.
1381   StackWatermarkSet::after_unwind(current);
1382 
1383   // Do not confuse exception_oop with pending_exception. The exception_oop
1384   // is only used to pass arguments into the method. Not for general
1385   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1386   // the runtime stubs checks this on exit.
1387   assert(current->exception_oop() != nullptr, "exception oop is found");
1388   address handler_address = nullptr;
1389 
1390   Handle exception(current, current->exception_oop());
1391   address pc = current->exception_pc();
1392 
1393   // Clear out the exception oop and pc since looking up an
1394   // exception handler can cause class loading, which might throw an
1395   // exception and those fields are expected to be clear during
1396   // normal bytecode execution.
1397   current->clear_exception_oop_and_pc();
1398 
1399   LogTarget(Info, exceptions) lt;
1400   if (lt.is_enabled()) {
1401     ResourceMark rm;
1402     LogStream ls(lt);
1403     trace_exception(&ls, exception(), pc, "");
1404   }
1405 
1406   // for AbortVMOnException flag
1407   Exceptions::debug_check_abort(exception);
1408 
1409 #ifdef ASSERT
1410   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1411     // should throw an exception here
1412     ShouldNotReachHere();
1413   }
1414 #endif
1415 
1416   // new exception handling: this method is entered only from adapters
1417   // exceptions from compiled java methods are handled in compiled code
1418   // using rethrow node
1419 
1420   nm = CodeCache::find_nmethod(pc);
1421   assert(nm != nullptr, "No NMethod found");
1422   if (nm->is_native_method()) {
1423     fatal("Native method should not have path to exception handling");
1424   } else {
1425     // we are switching to old paradigm: search for exception handler in caller_frame
1426     // instead in exception handler of caller_frame.sender()
1427 
1428     if (JvmtiExport::can_post_on_exceptions()) {
1429       // "Full-speed catching" is not necessary here,
1430       // since we're notifying the VM on every catch.
1431       // Force deoptimization and the rest of the lookup
1432       // will be fine.
1433       deoptimize_caller_frame(current);
1434     }
1435 
1436     // Check the stack guard pages.  If enabled, look for handler in this frame;
1437     // otherwise, forcibly unwind the frame.
1438     //
1439     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1440     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1441     bool deopting = false;
1442     if (nm->is_deopt_pc(pc)) {
1443       deopting = true;
1444       RegisterMap map(current,
1445                       RegisterMap::UpdateMap::skip,
1446                       RegisterMap::ProcessFrames::include,
1447                       RegisterMap::WalkContinuation::skip);
1448       frame deoptee = current->last_frame().sender(&map);
1449       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1450       // Adjust the pc back to the original throwing pc
1451       pc = deoptee.pc();
1452     }
1453 
1454     // If we are forcing an unwind because of stack overflow then deopt is
1455     // irrelevant since we are throwing the frame away anyway.
1456 
1457     if (deopting && !force_unwind) {
1458       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1459     } else {
1460 
1461       handler_address =
1462         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1463 
1464       if (handler_address == nullptr) {
1465         bool recursive_exception = false;
1466         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1467         assert (handler_address != nullptr, "must have compiled handler");
1468         // Update the exception cache only when the unwind was not forced
1469         // and there didn't happen another exception during the computation of the
1470         // compiled exception handler. Checking for exception oop equality is not
1471         // sufficient because some exceptions are pre-allocated and reused.
1472         if (!force_unwind && !recursive_exception) {
1473           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1474         }
1475       } else {
1476 #ifdef ASSERT
1477         bool recursive_exception = false;
1478         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1479         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1480                  p2i(handler_address), p2i(computed_address));
1481 #endif
1482       }
1483     }
1484 
1485     current->set_exception_pc(pc);
1486     current->set_exception_handler_pc(handler_address);
1487 
1488     // Check if the exception PC is a MethodHandle call site.
1489     current->set_is_method_handle_return(nm->is_method_handle_return(pc));
1490   }
1491 
1492   // Restore correct return pc.  Was saved above.
1493   current->set_exception_oop(exception());
1494   return handler_address;
1495 
1496 JRT_END
1497 
1498 // We are entering here from exception_blob
1499 // If there is a compiled exception handler in this method, we will continue there;
1500 // otherwise we will unwind the stack and continue at the caller of top frame method
1501 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1502 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1503 // we looked up the handler for has been deoptimized in the meantime. If it has been
1504 // we must not use the handler and instead return the deopt blob.
1505 address OptoRuntime::handle_exception_C(JavaThread* current) {
1506 //
1507 // We are in Java not VM and in debug mode we have a NoHandleMark
1508 //
1509 #ifndef PRODUCT
1510   SharedRuntime::_find_handler_ctr++;          // find exception handler
1511 #endif
1512   debug_only(NoHandleMark __hm;)
1513   nmethod* nm = nullptr;
1514   address handler_address = nullptr;
1515   {
1516     // Enter the VM
1517 
1518     ResetNoHandleMark rnhm;
1519     handler_address = handle_exception_C_helper(current, nm);
1520   }
1521 
1522   // Back in java: Use no oops, DON'T safepoint
1523 
1524   // Now check to see if the handler we are returning is in a now
1525   // deoptimized frame
1526 
1527   if (nm != nullptr) {
1528     RegisterMap map(current,
1529                     RegisterMap::UpdateMap::skip,
1530                     RegisterMap::ProcessFrames::skip,
1531                     RegisterMap::WalkContinuation::skip);
1532     frame caller = current->last_frame().sender(&map);
1533 #ifdef ASSERT
1534     assert(caller.is_compiled_frame(), "must be");
1535 #endif // ASSERT
1536     if (caller.is_deoptimized_frame()) {
1537       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1538     }
1539   }
1540   return handler_address;
1541 }
1542 
1543 //------------------------------rethrow----------------------------------------
1544 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1545 // is either throwing or rethrowing an exception.  The callee-save registers
1546 // have been restored, synchronized objects have been unlocked and the callee
1547 // stack frame has been removed.  The return address was passed in.
1548 // Exception oop is passed as the 1st argument.  This routine is then called
1549 // from the stub.  On exit, we know where to jump in the caller's code.
1550 // After this C code exits, the stub will pop his frame and end in a jump
1551 // (instead of a return).  We enter the caller's default handler.
1552 //
1553 // This must be JRT_LEAF:
1554 //     - caller will not change its state as we cannot block on exit,
1555 //       therefore raw_exception_handler_for_return_address is all it takes
1556 //       to handle deoptimized blobs
1557 //
1558 // However, there needs to be a safepoint check in the middle!  So compiled
1559 // safepoints are completely watertight.
1560 //
1561 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
1562 //
1563 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1564 //
1565 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1566   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
1567   // This needs authenticating, but to do that here requires the fp of the previous frame.
1568   // A better way of doing it would be authenticate in the caller by adding a
1569   // AuthPAuthNode and using it in GraphKit::gen_stub. For now, just strip it.
1570   AARCH64_PORT_ONLY(ret_pc = pauth_strip_pointer(ret_pc));
1571 
1572 #ifndef PRODUCT
1573   SharedRuntime::_rethrow_ctr++;               // count rethrows
1574 #endif
1575   assert (exception != nullptr, "should have thrown a NullPointerException");
1576 #ifdef ASSERT
1577   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1578     // should throw an exception here
1579     ShouldNotReachHere();
1580   }
1581 #endif
1582 
1583   thread->set_vm_result(exception);
1584   // Frame not compiled (handles deoptimization blob)
1585   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1586 }
1587 
1588 
1589 const TypeFunc *OptoRuntime::rethrow_Type() {
1590   // create input type (domain)
1591   const Type **fields = TypeTuple::fields(1);
1592   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1593   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1594 
1595   // create result type (range)
1596   fields = TypeTuple::fields(1);
1597   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1598   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1599 
1600   return TypeFunc::make(domain, range);
1601 }
1602 
1603 
1604 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1605   // Deoptimize the caller before continuing, as the compiled
1606   // exception handler table may not be valid.
1607   if (!StressCompiledExceptionHandlers && doit) {
1608     deoptimize_caller_frame(thread);
1609   }
1610 }
1611 
1612 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1613   // Called from within the owner thread, so no need for safepoint
1614   RegisterMap reg_map(thread,
1615                       RegisterMap::UpdateMap::include,
1616                       RegisterMap::ProcessFrames::include,
1617                       RegisterMap::WalkContinuation::skip);
1618   frame stub_frame = thread->last_frame();
1619   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1620   frame caller_frame = stub_frame.sender(&reg_map);
1621 
1622   // Deoptimize the caller frame.
1623   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1624 }
1625 
1626 
1627 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1628   // Called from within the owner thread, so no need for safepoint
1629   RegisterMap reg_map(thread,
1630                       RegisterMap::UpdateMap::include,
1631                       RegisterMap::ProcessFrames::include,
1632                       RegisterMap::WalkContinuation::skip);
1633   frame stub_frame = thread->last_frame();
1634   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1635   frame caller_frame = stub_frame.sender(&reg_map);
1636   return caller_frame.is_deoptimized_frame();
1637 }
1638 
1639 
1640 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1641   // create input type (domain)
1642   const Type **fields = TypeTuple::fields(1);
1643   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1644   // // The JavaThread* is passed to each routine as the last argument
1645   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1646   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1647 
1648   // create result type (range)
1649   fields = TypeTuple::fields(0);
1650 
1651   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1652 
1653   return TypeFunc::make(domain,range);
1654 }
1655 
1656 #if INCLUDE_JFR
1657 const TypeFunc *OptoRuntime::class_id_load_barrier_Type() {
1658   // create input type (domain)
1659   const Type **fields = TypeTuple::fields(1);
1660   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
1661   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
1662 
1663   // create result type (range)
1664   fields = TypeTuple::fields(0);
1665 
1666   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
1667 
1668   return TypeFunc::make(domain,range);
1669 }
1670 #endif
1671 
1672 //-----------------------------------------------------------------------------
1673 // Dtrace support.  entry and exit probes have the same signature
1674 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1675   // create input type (domain)
1676   const Type **fields = TypeTuple::fields(2);
1677   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1678   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1679   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1680 
1681   // create result type (range)
1682   fields = TypeTuple::fields(0);
1683 
1684   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1685 
1686   return TypeFunc::make(domain,range);
1687 }
1688 
1689 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1690   // create input type (domain)
1691   const Type **fields = TypeTuple::fields(2);
1692   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1693   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1694 
1695   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1696 
1697   // create result type (range)
1698   fields = TypeTuple::fields(0);
1699 
1700   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1701 
1702   return TypeFunc::make(domain,range);
1703 }
1704 
1705 
1706 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* current))
1707   assert(oopDesc::is_oop(obj), "must be a valid oop");
1708   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1709   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1710 JRT_END
1711 
1712 //-----------------------------------------------------------------------------
1713 
1714 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
1715 
1716 //
1717 // dump the collected NamedCounters.
1718 //
1719 void OptoRuntime::print_named_counters() {
1720   int total_lock_count = 0;
1721   int eliminated_lock_count = 0;
1722 
1723   NamedCounter* c = _named_counters;
1724   while (c) {
1725     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1726       int count = c->count();
1727       if (count > 0) {
1728         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1729         if (Verbose) {
1730           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1731         }
1732         total_lock_count += count;
1733         if (eliminated) {
1734           eliminated_lock_count += count;
1735         }
1736       }
1737 #if INCLUDE_RTM_OPT
1738     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1739       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1740       if (rlc->nonzero()) {
1741         tty->print_cr("%s", c->name());
1742         rlc->print_on(tty);
1743       }
1744 #endif
1745     }
1746     c = c->next();
1747   }
1748   if (total_lock_count > 0) {
1749     tty->print_cr("dynamic locks: %d", total_lock_count);
1750     if (eliminated_lock_count) {
1751       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1752                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1753     }
1754   }
1755 }
1756 
1757 //
1758 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1759 //  name which consists of method@line for the inlining tree.
1760 //
1761 
1762 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1763   int max_depth = youngest_jvms->depth();
1764 
1765   // Visit scopes from youngest to oldest.
1766   bool first = true;
1767   stringStream st;
1768   for (int depth = max_depth; depth >= 1; depth--) {
1769     JVMState* jvms = youngest_jvms->of_depth(depth);
1770     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
1771     if (!first) {
1772       st.print(" ");
1773     } else {
1774       first = false;
1775     }
1776     int bci = jvms->bci();
1777     if (bci < 0) bci = 0;
1778     if (m != nullptr) {
1779       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
1780     } else {
1781       st.print("no method");
1782     }
1783     st.print("@%d", bci);
1784     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1785   }
1786   NamedCounter* c;
1787   if (tag == NamedCounter::RTMLockingCounter) {
1788     c = new RTMLockingNamedCounter(st.freeze());
1789   } else {
1790     c = new NamedCounter(st.freeze(), tag);
1791   }
1792 
1793   // atomically add the new counter to the head of the list.  We only
1794   // add counters so this is safe.
1795   NamedCounter* head;
1796   do {
1797     c->set_next(nullptr);
1798     head = _named_counters;
1799     c->set_next(head);
1800   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
1801   return c;
1802 }
1803 
1804 int trace_exception_counter = 0;
1805 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1806   trace_exception_counter++;
1807   stringStream tempst;
1808 
1809   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1810   exception_oop->print_value_on(&tempst);
1811   tempst.print(" in ");
1812   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1813   if (blob->is_compiled()) {
1814     CompiledMethod* cm = blob->as_compiled_method_or_null();
1815     cm->method()->print_value_on(&tempst);
1816   } else if (blob->is_runtime_stub()) {
1817     tempst.print("<runtime-stub>");
1818   } else {
1819     tempst.print("<unknown>");
1820   }
1821   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1822   tempst.print("]");
1823 
1824   st->print_raw_cr(tempst.freeze());
1825 }