1 /* 2 * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "classfile/vmClasses.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "code/codeCache.hpp" 28 #include "code/compiledIC.hpp" 29 #include "code/nmethod.hpp" 30 #include "code/pcDesc.hpp" 31 #include "code/scopeDesc.hpp" 32 #include "code/vtableStubs.hpp" 33 #include "compiler/compilationMemoryStatistic.hpp" 34 #include "compiler/compileBroker.hpp" 35 #include "compiler/oopMap.hpp" 36 #include "gc/g1/g1HeapRegion.hpp" 37 #include "gc/shared/barrierSet.hpp" 38 #include "gc/shared/collectedHeap.hpp" 39 #include "gc/shared/gcLocker.hpp" 40 #include "interpreter/bytecode.hpp" 41 #include "interpreter/interpreter.hpp" 42 #include "interpreter/linkResolver.hpp" 43 #include "logging/log.hpp" 44 #include "logging/logStream.hpp" 45 #include "memory/oopFactory.hpp" 46 #include "memory/resourceArea.hpp" 47 #include "oops/klass.inline.hpp" 48 #include "oops/objArrayKlass.hpp" 49 #include "oops/oop.inline.hpp" 50 #include "oops/typeArrayOop.inline.hpp" 51 #include "opto/ad.hpp" 52 #include "opto/addnode.hpp" 53 #include "opto/callnode.hpp" 54 #include "opto/cfgnode.hpp" 55 #include "opto/graphKit.hpp" 56 #include "opto/machnode.hpp" 57 #include "opto/matcher.hpp" 58 #include "opto/memnode.hpp" 59 #include "opto/mulnode.hpp" 60 #include "opto/output.hpp" 61 #include "opto/runtime.hpp" 62 #include "opto/subnode.hpp" 63 #include "prims/jvmtiExport.hpp" 64 #include "runtime/atomic.hpp" 65 #include "runtime/frame.inline.hpp" 66 #include "runtime/handles.inline.hpp" 67 #include "runtime/interfaceSupport.inline.hpp" 68 #include "runtime/javaCalls.hpp" 69 #include "runtime/sharedRuntime.hpp" 70 #include "runtime/signature.hpp" 71 #include "runtime/stackWatermarkSet.hpp" 72 #include "runtime/synchronizer.hpp" 73 #include "runtime/threadWXSetters.inline.hpp" 74 #include "runtime/vframe.hpp" 75 #include "runtime/vframe_hp.hpp" 76 #include "runtime/vframeArray.hpp" 77 #include "utilities/copy.hpp" 78 #include "utilities/preserveException.hpp" 79 80 81 // For debugging purposes: 82 // To force FullGCALot inside a runtime function, add the following two lines 83 // 84 // Universe::release_fullgc_alot_dummy(); 85 // Universe::heap()->collect(); 86 // 87 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 88 89 90 #define C2_BLOB_FIELD_DEFINE(name, type) \ 91 type* OptoRuntime:: BLOB_FIELD_NAME(name) = nullptr; 92 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 93 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \ 94 address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr; 95 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \ 96 address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr; 97 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE) 98 #undef C2_BLOB_FIELD_DEFINE 99 #undef C2_STUB_FIELD_DEFINE 100 #undef C2_JVMTI_STUB_FIELD_DEFINE 101 102 // This should be called in an assertion at the start of OptoRuntime routines 103 // which are entered from compiled code (all of them) 104 #ifdef ASSERT 105 static bool check_compiled_frame(JavaThread* thread) { 106 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 107 RegisterMap map(thread, 108 RegisterMap::UpdateMap::skip, 109 RegisterMap::ProcessFrames::include, 110 RegisterMap::WalkContinuation::skip); 111 frame caller = thread->last_frame().sender(&map); 112 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 113 return true; 114 } 115 #endif // ASSERT 116 117 /* 118 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \ 119 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \ 120 if (var == nullptr) { return false; } 121 */ 122 123 #define GEN_C2_BLOB(name, type) \ 124 BLOB_FIELD_NAME(name) = \ 125 generate_ ## name ## _blob(); \ 126 if (BLOB_FIELD_NAME(name) == nullptr) { return false; } 127 128 // a few helper macros to conjure up generate_stub call arguments 129 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java 130 #define C2_STUB_TYPEFUNC(name) name ## _Type 131 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C) 132 #define C2_STUB_ID(name) StubId:: JOIN3(c2, name, id) 133 #define C2_STUB_NAME(name) stub_name(C2_STUB_ID(name)) 134 135 // Almost all the C functions targeted from the generated stubs are 136 // implemented locally to OptoRuntime with names that can be generated 137 // from the stub name by appending suffix '_C'. However, in two cases 138 // a common target method also needs to be called from shared runtime 139 // stubs. In these two cases the opto stubs rely on method 140 // imlementations defined in class SharedRuntime. The following 141 // defines temporarily rebind the generated names to reference the 142 // relevant implementations. 143 144 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc ) \ 145 C2_STUB_FIELD_NAME(name) = \ 146 generate_stub(env, \ 147 C2_STUB_TYPEFUNC(name), \ 148 C2_STUB_C_FUNC(name), \ 149 C2_STUB_NAME(name), \ 150 C2_STUB_ID(name), \ 151 fancy_jump, \ 152 pass_tls, \ 153 pass_retpc); \ 154 if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; } \ 155 156 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name) 157 158 #define GEN_C2_JVMTI_STUB(name) \ 159 STUB_FIELD_NAME(name) = \ 160 generate_stub(env, \ 161 notify_jvmti_vthread_Type, \ 162 C2_JVMTI_STUB_C_FUNC(name), \ 163 C2_STUB_NAME(name), \ 164 C2_STUB_ID(name), \ 165 0, \ 166 true, \ 167 false); \ 168 if (STUB_FIELD_NAME(name) == nullptr) { return false; } \ 169 170 bool OptoRuntime::generate(ciEnv* env) { 171 172 C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB) 173 174 return true; 175 } 176 177 #undef GEN_C2_BLOB 178 179 #undef C2_STUB_FIELD_NAME 180 #undef C2_STUB_TYPEFUNC 181 #undef C2_STUB_C_FUNC 182 #undef C2_STUB_NAME 183 #undef GEN_C2_STUB 184 185 #undef C2_JVMTI_STUB_C_FUNC 186 #undef GEN_C2_JVMTI_STUB 187 // #undef gen 188 189 const TypeFunc* OptoRuntime::_new_instance_Type = nullptr; 190 const TypeFunc* OptoRuntime::_new_array_Type = nullptr; 191 const TypeFunc* OptoRuntime::_multianewarray2_Type = nullptr; 192 const TypeFunc* OptoRuntime::_multianewarray3_Type = nullptr; 193 const TypeFunc* OptoRuntime::_multianewarray4_Type = nullptr; 194 const TypeFunc* OptoRuntime::_multianewarray5_Type = nullptr; 195 const TypeFunc* OptoRuntime::_multianewarrayN_Type = nullptr; 196 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type = nullptr; 197 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type = nullptr; 198 const TypeFunc* OptoRuntime::_monitor_notify_Type = nullptr; 199 const TypeFunc* OptoRuntime::_uncommon_trap_Type = nullptr; 200 const TypeFunc* OptoRuntime::_athrow_Type = nullptr; 201 const TypeFunc* OptoRuntime::_rethrow_Type = nullptr; 202 const TypeFunc* OptoRuntime::_Math_D_D_Type = nullptr; 203 const TypeFunc* OptoRuntime::_Math_DD_D_Type = nullptr; 204 const TypeFunc* OptoRuntime::_modf_Type = nullptr; 205 const TypeFunc* OptoRuntime::_l2f_Type = nullptr; 206 const TypeFunc* OptoRuntime::_void_long_Type = nullptr; 207 const TypeFunc* OptoRuntime::_void_void_Type = nullptr; 208 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type = nullptr; 209 const TypeFunc* OptoRuntime::_flush_windows_Type = nullptr; 210 const TypeFunc* OptoRuntime::_fast_arraycopy_Type = nullptr; 211 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type = nullptr; 212 const TypeFunc* OptoRuntime::_generic_arraycopy_Type = nullptr; 213 const TypeFunc* OptoRuntime::_slow_arraycopy_Type = nullptr; 214 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type = nullptr; 215 const TypeFunc* OptoRuntime::_array_fill_Type = nullptr; 216 const TypeFunc* OptoRuntime::_array_sort_Type = nullptr; 217 const TypeFunc* OptoRuntime::_array_partition_Type = nullptr; 218 const TypeFunc* OptoRuntime::_aescrypt_block_Type = nullptr; 219 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type = nullptr; 220 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type = nullptr; 221 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type = nullptr; 222 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type = nullptr; 223 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type = nullptr; 224 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type = nullptr; 225 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type = nullptr; 226 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr; 227 const TypeFunc* OptoRuntime::_double_keccak_Type = nullptr; 228 const TypeFunc* OptoRuntime::_multiplyToLen_Type = nullptr; 229 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type = nullptr; 230 const TypeFunc* OptoRuntime::_montgomerySquare_Type = nullptr; 231 const TypeFunc* OptoRuntime::_squareToLen_Type = nullptr; 232 const TypeFunc* OptoRuntime::_mulAdd_Type = nullptr; 233 const TypeFunc* OptoRuntime::_bigIntegerShift_Type = nullptr; 234 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type = nullptr; 235 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type = nullptr; 236 const TypeFunc* OptoRuntime::_chacha20Block_Type = nullptr; 237 const TypeFunc* OptoRuntime::_kyberNtt_Type = nullptr; 238 const TypeFunc* OptoRuntime::_kyberInverseNtt_Type = nullptr; 239 const TypeFunc* OptoRuntime::_kyberNttMult_Type = nullptr; 240 const TypeFunc* OptoRuntime::_kyberAddPoly_2_Type = nullptr; 241 const TypeFunc* OptoRuntime::_kyberAddPoly_3_Type = nullptr; 242 const TypeFunc* OptoRuntime::_kyber12To16_Type = nullptr; 243 const TypeFunc* OptoRuntime::_kyberBarrettReduce_Type = nullptr; 244 const TypeFunc* OptoRuntime::_dilithiumAlmostNtt_Type = nullptr; 245 const TypeFunc* OptoRuntime::_dilithiumAlmostInverseNtt_Type = nullptr; 246 const TypeFunc* OptoRuntime::_dilithiumNttMult_Type = nullptr; 247 const TypeFunc* OptoRuntime::_dilithiumMontMulByConstant_Type = nullptr; 248 const TypeFunc* OptoRuntime::_dilithiumDecomposePoly_Type = nullptr; 249 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type = nullptr; 250 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type = nullptr; 251 const TypeFunc* OptoRuntime::_string_IndexOf_Type = nullptr; 252 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type = nullptr; 253 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type = nullptr; 254 const TypeFunc* OptoRuntime::_intpoly_assign_Type = nullptr; 255 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type = nullptr; 256 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type = nullptr; 257 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type = nullptr; 258 const TypeFunc* OptoRuntime::_osr_end_Type = nullptr; 259 const TypeFunc* OptoRuntime::_register_finalizer_Type = nullptr; 260 #if INCLUDE_JFR 261 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type = nullptr; 262 #endif // INCLUDE_JFR 263 #if INCLUDE_JVMTI 264 const TypeFunc* OptoRuntime::_notify_jvmti_vthread_Type = nullptr; 265 #endif // INCLUDE_JVMTI 266 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type = nullptr; 267 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type = nullptr; 268 269 // Helper method to do generation of RunTimeStub's 270 address OptoRuntime::generate_stub(ciEnv* env, 271 TypeFunc_generator gen, address C_function, 272 const char *name, StubId stub_id, 273 int is_fancy_jump, bool pass_tls, 274 bool return_pc) { 275 276 // Matching the default directive, we currently have no method to match. 277 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization)); 278 CompilationMemoryStatisticMark cmsm(directive); 279 ResourceMark rm; 280 Compile C(env, gen, C_function, name, stub_id, is_fancy_jump, pass_tls, return_pc, directive); 281 DirectivesStack::release(directive); 282 return C.stub_entry_point(); 283 } 284 285 const char* OptoRuntime::stub_name(address entry) { 286 #ifndef PRODUCT 287 CodeBlob* cb = CodeCache::find_blob(entry); 288 RuntimeStub* rs =(RuntimeStub *)cb; 289 assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub"); 290 return rs->name(); 291 #else 292 // Fast implementation for product mode (maybe it should be inlined too) 293 return "runtime stub"; 294 #endif 295 } 296 297 // local methods passed as arguments to stub generator that forward 298 // control to corresponding JRT methods of SharedRuntime 299 300 void OptoRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 301 oopDesc* dest, jint dest_pos, 302 jint length, JavaThread* thread) { 303 SharedRuntime::slow_arraycopy_C(src, src_pos, dest, dest_pos, length, thread); 304 } 305 306 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) { 307 SharedRuntime::complete_monitor_locking_C(obj, lock, current); 308 } 309 310 311 //============================================================================= 312 // Opto compiler runtime routines 313 //============================================================================= 314 315 316 //=============================allocation====================================== 317 // We failed the fast-path allocation. Now we need to do a scavenge or GC 318 // and try allocation again. 319 320 // object allocation 321 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current)) 322 JRT_BLOCK; 323 #ifndef PRODUCT 324 SharedRuntime::_new_instance_ctr++; // new instance requires GC 325 #endif 326 assert(check_compiled_frame(current), "incorrect caller"); 327 328 // These checks are cheap to make and support reflective allocation. 329 int lh = klass->layout_helper(); 330 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) { 331 Handle holder(current, klass->klass_holder()); // keep the klass alive 332 klass->check_valid_for_instantiation(false, THREAD); 333 if (!HAS_PENDING_EXCEPTION) { 334 InstanceKlass::cast(klass)->initialize(THREAD); 335 } 336 } 337 338 if (!HAS_PENDING_EXCEPTION) { 339 // Scavenge and allocate an instance. 340 Handle holder(current, klass->klass_holder()); // keep the klass alive 341 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 342 current->set_vm_result_oop(result); 343 344 // Pass oops back through thread local storage. Our apparent type to Java 345 // is that we return an oop, but we can block on exit from this routine and 346 // a GC can trash the oop in C's return register. The generated stub will 347 // fetch the oop from TLS after any possible GC. 348 } 349 350 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 351 JRT_BLOCK_END; 352 353 // inform GC that we won't do card marks for initializing writes. 354 SharedRuntime::on_slowpath_allocation_exit(current); 355 JRT_END 356 357 358 // array allocation 359 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current)) 360 JRT_BLOCK; 361 #ifndef PRODUCT 362 SharedRuntime::_new_array_ctr++; // new array requires GC 363 #endif 364 assert(check_compiled_frame(current), "incorrect caller"); 365 366 // Scavenge and allocate an instance. 367 oop result; 368 369 if (array_type->is_typeArray_klass()) { 370 // The oopFactory likes to work with the element type. 371 // (We could bypass the oopFactory, since it doesn't add much value.) 372 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 373 result = oopFactory::new_typeArray(elem_type, len, THREAD); 374 } else { 375 // Although the oopFactory likes to work with the elem_type, 376 // the compiler prefers the array_type, since it must already have 377 // that latter value in hand for the fast path. 378 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 379 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass(); 380 result = oopFactory::new_objArray(elem_type, len, THREAD); 381 } 382 383 // Pass oops back through thread local storage. Our apparent type to Java 384 // is that we return an oop, but we can block on exit from this routine and 385 // a GC can trash the oop in C's return register. The generated stub will 386 // fetch the oop from TLS after any possible GC. 387 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 388 current->set_vm_result_oop(result); 389 JRT_BLOCK_END; 390 391 // inform GC that we won't do card marks for initializing writes. 392 SharedRuntime::on_slowpath_allocation_exit(current); 393 JRT_END 394 395 // array allocation without zeroing 396 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current)) 397 JRT_BLOCK; 398 #ifndef PRODUCT 399 SharedRuntime::_new_array_ctr++; // new array requires GC 400 #endif 401 assert(check_compiled_frame(current), "incorrect caller"); 402 403 // Scavenge and allocate an instance. 404 oop result; 405 406 assert(array_type->is_typeArray_klass(), "should be called only for type array"); 407 // The oopFactory likes to work with the element type. 408 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 409 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 410 411 // Pass oops back through thread local storage. Our apparent type to Java 412 // is that we return an oop, but we can block on exit from this routine and 413 // a GC can trash the oop in C's return register. The generated stub will 414 // fetch the oop from TLS after any possible GC. 415 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 416 current->set_vm_result_oop(result); 417 JRT_BLOCK_END; 418 419 420 // inform GC that we won't do card marks for initializing writes. 421 SharedRuntime::on_slowpath_allocation_exit(current); 422 423 oop result = current->vm_result_oop(); 424 if ((len > 0) && (result != nullptr) && 425 is_deoptimized_caller_frame(current)) { 426 // Zero array here if the caller is deoptimized. 427 const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result, result->mark()); 428 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 429 size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type); 430 assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned"); 431 HeapWord* obj = cast_from_oop<HeapWord*>(result); 432 if (!is_aligned(hs_bytes, BytesPerLong)) { 433 *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0; 434 hs_bytes += BytesPerInt; 435 } 436 437 // Optimized zeroing. 438 assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned"); 439 const size_t aligned_hs = hs_bytes / BytesPerLong; 440 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 441 } 442 443 JRT_END 444 445 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 446 447 // multianewarray for 2 dimensions 448 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current)) 449 #ifndef PRODUCT 450 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 451 #endif 452 assert(check_compiled_frame(current), "incorrect caller"); 453 assert(elem_type->is_klass(), "not a class"); 454 jint dims[2]; 455 dims[0] = len1; 456 dims[1] = len2; 457 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 458 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 459 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 460 current->set_vm_result_oop(obj); 461 JRT_END 462 463 // multianewarray for 3 dimensions 464 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current)) 465 #ifndef PRODUCT 466 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 467 #endif 468 assert(check_compiled_frame(current), "incorrect caller"); 469 assert(elem_type->is_klass(), "not a class"); 470 jint dims[3]; 471 dims[0] = len1; 472 dims[1] = len2; 473 dims[2] = len3; 474 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 475 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 476 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 477 current->set_vm_result_oop(obj); 478 JRT_END 479 480 // multianewarray for 4 dimensions 481 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current)) 482 #ifndef PRODUCT 483 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 484 #endif 485 assert(check_compiled_frame(current), "incorrect caller"); 486 assert(elem_type->is_klass(), "not a class"); 487 jint dims[4]; 488 dims[0] = len1; 489 dims[1] = len2; 490 dims[2] = len3; 491 dims[3] = len4; 492 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 493 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 494 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 495 current->set_vm_result_oop(obj); 496 JRT_END 497 498 // multianewarray for 5 dimensions 499 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current)) 500 #ifndef PRODUCT 501 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 502 #endif 503 assert(check_compiled_frame(current), "incorrect caller"); 504 assert(elem_type->is_klass(), "not a class"); 505 jint dims[5]; 506 dims[0] = len1; 507 dims[1] = len2; 508 dims[2] = len3; 509 dims[3] = len4; 510 dims[4] = len5; 511 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 512 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 513 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 514 current->set_vm_result_oop(obj); 515 JRT_END 516 517 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current)) 518 assert(check_compiled_frame(current), "incorrect caller"); 519 assert(elem_type->is_klass(), "not a class"); 520 assert(oop(dims)->is_typeArray(), "not an array"); 521 522 ResourceMark rm; 523 jint len = dims->length(); 524 assert(len > 0, "Dimensions array should contain data"); 525 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 526 ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0), 527 c_dims, len); 528 529 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 530 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 531 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 532 current->set_vm_result_oop(obj); 533 JRT_END 534 535 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current)) 536 537 // Very few notify/notifyAll operations find any threads on the waitset, so 538 // the dominant fast-path is to simply return. 539 // Relatedly, it's critical that notify/notifyAll be fast in order to 540 // reduce lock hold times. 541 if (!SafepointSynchronize::is_synchronizing()) { 542 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 543 return; 544 } 545 } 546 547 // This is the case the fast-path above isn't provisioned to handle. 548 // The fast-path is designed to handle frequently arising cases in an efficient manner. 549 // (The fast-path is just a degenerate variant of the slow-path). 550 // Perform the dreaded state transition and pass control into the slow-path. 551 JRT_BLOCK; 552 Handle h_obj(current, obj); 553 ObjectSynchronizer::notify(h_obj, CHECK); 554 JRT_BLOCK_END; 555 JRT_END 556 557 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current)) 558 559 if (!SafepointSynchronize::is_synchronizing() ) { 560 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 561 return; 562 } 563 } 564 565 // This is the case the fast-path above isn't provisioned to handle. 566 // The fast-path is designed to handle frequently arising cases in an efficient manner. 567 // (The fast-path is just a degenerate variant of the slow-path). 568 // Perform the dreaded state transition and pass control into the slow-path. 569 JRT_BLOCK; 570 Handle h_obj(current, obj); 571 ObjectSynchronizer::notifyall(h_obj, CHECK); 572 JRT_BLOCK_END; 573 JRT_END 574 575 static const TypeFunc* make_new_instance_Type() { 576 // create input type (domain) 577 const Type **fields = TypeTuple::fields(1); 578 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 579 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 580 581 // create result type (range) 582 fields = TypeTuple::fields(1); 583 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 584 585 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 586 587 return TypeFunc::make(domain, range); 588 } 589 590 #if INCLUDE_JVMTI 591 static const TypeFunc* make_notify_jvmti_vthread_Type() { 592 // create input type (domain) 593 const Type **fields = TypeTuple::fields(2); 594 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop 595 fields[TypeFunc::Parms+1] = TypeInt::BOOL; // jboolean 596 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 597 598 // no result type needed 599 fields = TypeTuple::fields(1); 600 fields[TypeFunc::Parms+0] = nullptr; // void 601 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 602 603 return TypeFunc::make(domain,range); 604 } 605 #endif 606 607 static const TypeFunc* make_athrow_Type() { 608 // create input type (domain) 609 const Type **fields = TypeTuple::fields(1); 610 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 611 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 612 613 // create result type (range) 614 fields = TypeTuple::fields(0); 615 616 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 617 618 return TypeFunc::make(domain, range); 619 } 620 621 static const TypeFunc* make_new_array_Type() { 622 // create input type (domain) 623 const Type **fields = TypeTuple::fields(2); 624 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 625 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 626 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 627 628 // create result type (range) 629 fields = TypeTuple::fields(1); 630 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 631 632 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 633 634 return TypeFunc::make(domain, range); 635 } 636 637 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) { 638 // create input type (domain) 639 const int nargs = ndim + 1; 640 const Type **fields = TypeTuple::fields(nargs); 641 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 642 for( int i = 1; i < nargs; i++ ) 643 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 644 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 645 646 // create result type (range) 647 fields = TypeTuple::fields(1); 648 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 649 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 650 651 return TypeFunc::make(domain, range); 652 } 653 654 static const TypeFunc* make_multianewarrayN_Type() { 655 // create input type (domain) 656 const Type **fields = TypeTuple::fields(2); 657 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 658 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 659 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 660 661 // create result type (range) 662 fields = TypeTuple::fields(1); 663 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 664 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 665 666 return TypeFunc::make(domain, range); 667 } 668 669 static const TypeFunc* make_uncommon_trap_Type() { 670 // create input type (domain) 671 const Type **fields = TypeTuple::fields(1); 672 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action) 673 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 674 675 // create result type (range) 676 fields = TypeTuple::fields(0); 677 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 678 679 return TypeFunc::make(domain, range); 680 } 681 682 //----------------------------------------------------------------------------- 683 // Monitor Handling 684 685 static const TypeFunc* make_complete_monitor_enter_Type() { 686 // create input type (domain) 687 const Type **fields = TypeTuple::fields(2); 688 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 689 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 690 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 691 692 // create result type (range) 693 fields = TypeTuple::fields(0); 694 695 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 696 697 return TypeFunc::make(domain,range); 698 } 699 700 //----------------------------------------------------------------------------- 701 702 static const TypeFunc* make_complete_monitor_exit_Type() { 703 // create input type (domain) 704 const Type **fields = TypeTuple::fields(3); 705 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 706 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock 707 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self) 708 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 709 710 // create result type (range) 711 fields = TypeTuple::fields(0); 712 713 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 714 715 return TypeFunc::make(domain, range); 716 } 717 718 static const TypeFunc* make_monitor_notify_Type() { 719 // create input type (domain) 720 const Type **fields = TypeTuple::fields(1); 721 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 722 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 723 724 // create result type (range) 725 fields = TypeTuple::fields(0); 726 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 727 return TypeFunc::make(domain, range); 728 } 729 730 static const TypeFunc* make_flush_windows_Type() { 731 // create input type (domain) 732 const Type** fields = TypeTuple::fields(1); 733 fields[TypeFunc::Parms+0] = nullptr; // void 734 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 735 736 // create result type 737 fields = TypeTuple::fields(1); 738 fields[TypeFunc::Parms+0] = nullptr; // void 739 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 740 741 return TypeFunc::make(domain, range); 742 } 743 744 static const TypeFunc* make_l2f_Type() { 745 // create input type (domain) 746 const Type **fields = TypeTuple::fields(2); 747 fields[TypeFunc::Parms+0] = TypeLong::LONG; 748 fields[TypeFunc::Parms+1] = Type::HALF; 749 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 750 751 // create result type (range) 752 fields = TypeTuple::fields(1); 753 fields[TypeFunc::Parms+0] = Type::FLOAT; 754 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 755 756 return TypeFunc::make(domain, range); 757 } 758 759 static const TypeFunc* make_modf_Type() { 760 const Type **fields = TypeTuple::fields(2); 761 fields[TypeFunc::Parms+0] = Type::FLOAT; 762 fields[TypeFunc::Parms+1] = Type::FLOAT; 763 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 764 765 // create result type (range) 766 fields = TypeTuple::fields(1); 767 fields[TypeFunc::Parms+0] = Type::FLOAT; 768 769 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 770 771 return TypeFunc::make(domain, range); 772 } 773 774 static const TypeFunc* make_Math_D_D_Type() { 775 // create input type (domain) 776 const Type **fields = TypeTuple::fields(2); 777 // Symbol* name of class to be loaded 778 fields[TypeFunc::Parms+0] = Type::DOUBLE; 779 fields[TypeFunc::Parms+1] = Type::HALF; 780 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 781 782 // create result type (range) 783 fields = TypeTuple::fields(2); 784 fields[TypeFunc::Parms+0] = Type::DOUBLE; 785 fields[TypeFunc::Parms+1] = Type::HALF; 786 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 787 788 return TypeFunc::make(domain, range); 789 } 790 791 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) { 792 // create input type (domain) 793 const Type **fields = TypeTuple::fields(num_arg); 794 // Symbol* name of class to be loaded 795 assert(num_arg > 0, "must have at least 1 input"); 796 for (uint i = 0; i < num_arg; i++) { 797 fields[TypeFunc::Parms+i] = in_type; 798 } 799 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields); 800 801 // create result type (range) 802 const uint num_ret = 1; 803 fields = TypeTuple::fields(num_ret); 804 fields[TypeFunc::Parms+0] = out_type; 805 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields); 806 807 return TypeFunc::make(domain, range); 808 } 809 810 static const TypeFunc* make_Math_DD_D_Type() { 811 const Type **fields = TypeTuple::fields(4); 812 fields[TypeFunc::Parms+0] = Type::DOUBLE; 813 fields[TypeFunc::Parms+1] = Type::HALF; 814 fields[TypeFunc::Parms+2] = Type::DOUBLE; 815 fields[TypeFunc::Parms+3] = Type::HALF; 816 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 817 818 // create result type (range) 819 fields = TypeTuple::fields(2); 820 fields[TypeFunc::Parms+0] = Type::DOUBLE; 821 fields[TypeFunc::Parms+1] = Type::HALF; 822 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 823 824 return TypeFunc::make(domain, range); 825 } 826 827 //-------------- currentTimeMillis, currentTimeNanos, etc 828 829 static const TypeFunc* make_void_long_Type() { 830 // create input type (domain) 831 const Type **fields = TypeTuple::fields(0); 832 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 833 834 // create result type (range) 835 fields = TypeTuple::fields(2); 836 fields[TypeFunc::Parms+0] = TypeLong::LONG; 837 fields[TypeFunc::Parms+1] = Type::HALF; 838 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 839 840 return TypeFunc::make(domain, range); 841 } 842 843 static const TypeFunc* make_void_void_Type() { 844 // create input type (domain) 845 const Type **fields = TypeTuple::fields(0); 846 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 847 848 // create result type (range) 849 fields = TypeTuple::fields(0); 850 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 851 return TypeFunc::make(domain, range); 852 } 853 854 static const TypeFunc* make_jfr_write_checkpoint_Type() { 855 // create input type (domain) 856 const Type **fields = TypeTuple::fields(0); 857 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 858 859 // create result type (range) 860 fields = TypeTuple::fields(0); 861 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 862 return TypeFunc::make(domain, range); 863 } 864 865 866 // Takes as parameters: 867 // void *dest 868 // long size 869 // uchar byte 870 871 static const TypeFunc* make_setmemory_Type() { 872 // create input type (domain) 873 int argcnt = NOT_LP64(3) LP64_ONLY(4); 874 const Type** fields = TypeTuple::fields(argcnt); 875 int argp = TypeFunc::Parms; 876 fields[argp++] = TypePtr::NOTNULL; // dest 877 fields[argp++] = TypeX_X; // size 878 LP64_ONLY(fields[argp++] = Type::HALF); // size 879 fields[argp++] = TypeInt::UBYTE; // bytevalue 880 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 881 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 882 883 // no result type needed 884 fields = TypeTuple::fields(1); 885 fields[TypeFunc::Parms+0] = nullptr; // void 886 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 887 return TypeFunc::make(domain, range); 888 } 889 890 // arraycopy stub variations: 891 enum ArrayCopyType { 892 ac_fast, // void(ptr, ptr, size_t) 893 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 894 ac_slow, // void(ptr, int, ptr, int, int) 895 ac_generic // int(ptr, int, ptr, int, int) 896 }; 897 898 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 899 // create input type (domain) 900 int num_args = (act == ac_fast ? 3 : 5); 901 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 902 int argcnt = num_args; 903 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 904 const Type** fields = TypeTuple::fields(argcnt); 905 int argp = TypeFunc::Parms; 906 fields[argp++] = TypePtr::NOTNULL; // src 907 if (num_size_args == 0) { 908 fields[argp++] = TypeInt::INT; // src_pos 909 } 910 fields[argp++] = TypePtr::NOTNULL; // dest 911 if (num_size_args == 0) { 912 fields[argp++] = TypeInt::INT; // dest_pos 913 fields[argp++] = TypeInt::INT; // length 914 } 915 while (num_size_args-- > 0) { 916 fields[argp++] = TypeX_X; // size in whatevers (size_t) 917 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 918 } 919 if (act == ac_checkcast) { 920 fields[argp++] = TypePtr::NOTNULL; // super_klass 921 } 922 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 923 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 924 925 // create result type if needed 926 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 927 fields = TypeTuple::fields(1); 928 if (retcnt == 0) 929 fields[TypeFunc::Parms+0] = nullptr; // void 930 else 931 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 932 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 933 return TypeFunc::make(domain, range); 934 } 935 936 static const TypeFunc* make_array_fill_Type() { 937 const Type** fields; 938 int argp = TypeFunc::Parms; 939 // create input type (domain): pointer, int, size_t 940 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 941 fields[argp++] = TypePtr::NOTNULL; 942 fields[argp++] = TypeInt::INT; 943 fields[argp++] = TypeX_X; // size in whatevers (size_t) 944 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 945 const TypeTuple *domain = TypeTuple::make(argp, fields); 946 947 // create result type 948 fields = TypeTuple::fields(1); 949 fields[TypeFunc::Parms+0] = nullptr; // void 950 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 951 952 return TypeFunc::make(domain, range); 953 } 954 955 static const TypeFunc* make_array_partition_Type() { 956 // create input type (domain) 957 int num_args = 7; 958 int argcnt = num_args; 959 const Type** fields = TypeTuple::fields(argcnt); 960 int argp = TypeFunc::Parms; 961 fields[argp++] = TypePtr::NOTNULL; // array 962 fields[argp++] = TypeInt::INT; // element type 963 fields[argp++] = TypeInt::INT; // low 964 fields[argp++] = TypeInt::INT; // end 965 fields[argp++] = TypePtr::NOTNULL; // pivot_indices (int array) 966 fields[argp++] = TypeInt::INT; // indexPivot1 967 fields[argp++] = TypeInt::INT; // indexPivot2 968 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 969 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 970 971 // no result type needed 972 fields = TypeTuple::fields(1); 973 fields[TypeFunc::Parms+0] = nullptr; // void 974 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 975 return TypeFunc::make(domain, range); 976 } 977 978 static const TypeFunc* make_array_sort_Type() { 979 // create input type (domain) 980 int num_args = 4; 981 int argcnt = num_args; 982 const Type** fields = TypeTuple::fields(argcnt); 983 int argp = TypeFunc::Parms; 984 fields[argp++] = TypePtr::NOTNULL; // array 985 fields[argp++] = TypeInt::INT; // element type 986 fields[argp++] = TypeInt::INT; // fromIndex 987 fields[argp++] = TypeInt::INT; // toIndex 988 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 989 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 990 991 // no result type needed 992 fields = TypeTuple::fields(1); 993 fields[TypeFunc::Parms+0] = nullptr; // void 994 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 995 return TypeFunc::make(domain, range); 996 } 997 998 static const TypeFunc* make_aescrypt_block_Type() { 999 // create input type (domain) 1000 int num_args = 3; 1001 int argcnt = num_args; 1002 const Type** fields = TypeTuple::fields(argcnt); 1003 int argp = TypeFunc::Parms; 1004 fields[argp++] = TypePtr::NOTNULL; // src 1005 fields[argp++] = TypePtr::NOTNULL; // dest 1006 fields[argp++] = TypePtr::NOTNULL; // k array 1007 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1008 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1009 1010 // no result type needed 1011 fields = TypeTuple::fields(1); 1012 fields[TypeFunc::Parms+0] = nullptr; // void 1013 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1014 return TypeFunc::make(domain, range); 1015 } 1016 1017 static const TypeFunc* make_updateBytesCRC32_Type() { 1018 // create input type (domain) 1019 int num_args = 3; 1020 int argcnt = num_args; 1021 const Type** fields = TypeTuple::fields(argcnt); 1022 int argp = TypeFunc::Parms; 1023 fields[argp++] = TypeInt::INT; // crc 1024 fields[argp++] = TypePtr::NOTNULL; // src 1025 fields[argp++] = TypeInt::INT; // len 1026 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1027 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1028 1029 // result type needed 1030 fields = TypeTuple::fields(1); 1031 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1032 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1033 return TypeFunc::make(domain, range); 1034 } 1035 1036 static const TypeFunc* make_updateBytesCRC32C_Type() { 1037 // create input type (domain) 1038 int num_args = 4; 1039 int argcnt = num_args; 1040 const Type** fields = TypeTuple::fields(argcnt); 1041 int argp = TypeFunc::Parms; 1042 fields[argp++] = TypeInt::INT; // crc 1043 fields[argp++] = TypePtr::NOTNULL; // buf 1044 fields[argp++] = TypeInt::INT; // len 1045 fields[argp++] = TypePtr::NOTNULL; // table 1046 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1047 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1048 1049 // result type needed 1050 fields = TypeTuple::fields(1); 1051 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1052 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1053 return TypeFunc::make(domain, range); 1054 } 1055 1056 static const TypeFunc* make_updateBytesAdler32_Type() { 1057 // create input type (domain) 1058 int num_args = 3; 1059 int argcnt = num_args; 1060 const Type** fields = TypeTuple::fields(argcnt); 1061 int argp = TypeFunc::Parms; 1062 fields[argp++] = TypeInt::INT; // crc 1063 fields[argp++] = TypePtr::NOTNULL; // src + offset 1064 fields[argp++] = TypeInt::INT; // len 1065 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1066 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1067 1068 // result type needed 1069 fields = TypeTuple::fields(1); 1070 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 1071 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1072 return TypeFunc::make(domain, range); 1073 } 1074 1075 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() { 1076 // create input type (domain) 1077 int num_args = 5; 1078 int argcnt = num_args; 1079 const Type** fields = TypeTuple::fields(argcnt); 1080 int argp = TypeFunc::Parms; 1081 fields[argp++] = TypePtr::NOTNULL; // src 1082 fields[argp++] = TypePtr::NOTNULL; // dest 1083 fields[argp++] = TypePtr::NOTNULL; // k array 1084 fields[argp++] = TypePtr::NOTNULL; // r array 1085 fields[argp++] = TypeInt::INT; // src len 1086 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1087 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1088 1089 // returning cipher len (int) 1090 fields = TypeTuple::fields(1); 1091 fields[TypeFunc::Parms+0] = TypeInt::INT; 1092 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1093 return TypeFunc::make(domain, range); 1094 } 1095 1096 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() { 1097 // create input type (domain) 1098 int num_args = 4; 1099 int argcnt = num_args; 1100 const Type** fields = TypeTuple::fields(argcnt); 1101 int argp = TypeFunc::Parms; 1102 fields[argp++] = TypePtr::NOTNULL; // src 1103 fields[argp++] = TypePtr::NOTNULL; // dest 1104 fields[argp++] = TypePtr::NOTNULL; // k array 1105 fields[argp++] = TypeInt::INT; // src len 1106 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1107 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1108 1109 // returning cipher len (int) 1110 fields = TypeTuple::fields(1); 1111 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1112 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1113 return TypeFunc::make(domain, range); 1114 } 1115 1116 static const TypeFunc* make_counterMode_aescrypt_Type() { 1117 // create input type (domain) 1118 int num_args = 7; 1119 int argcnt = num_args; 1120 const Type** fields = TypeTuple::fields(argcnt); 1121 int argp = TypeFunc::Parms; 1122 fields[argp++] = TypePtr::NOTNULL; // src 1123 fields[argp++] = TypePtr::NOTNULL; // dest 1124 fields[argp++] = TypePtr::NOTNULL; // k array 1125 fields[argp++] = TypePtr::NOTNULL; // counter array 1126 fields[argp++] = TypeInt::INT; // src len 1127 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter 1128 fields[argp++] = TypePtr::NOTNULL; // saved used addr 1129 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1130 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1131 // returning cipher len (int) 1132 fields = TypeTuple::fields(1); 1133 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1134 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1135 return TypeFunc::make(domain, range); 1136 } 1137 1138 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() { 1139 // create input type (domain) 1140 int num_args = 8; 1141 int argcnt = num_args; 1142 const Type** fields = TypeTuple::fields(argcnt); 1143 int argp = TypeFunc::Parms; 1144 fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs 1145 fields[argp++] = TypeInt::INT; // int len 1146 fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs 1147 fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs 1148 fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj 1149 fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj 1150 fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj 1151 fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj 1152 1153 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1154 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1155 // returning cipher len (int) 1156 fields = TypeTuple::fields(1); 1157 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1158 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1159 return TypeFunc::make(domain, range); 1160 } 1161 1162 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) { 1163 // create input type (domain) 1164 int num_args = is_sha3 ? 3 : 2; 1165 int argcnt = num_args; 1166 const Type** fields = TypeTuple::fields(argcnt); 1167 int argp = TypeFunc::Parms; 1168 fields[argp++] = TypePtr::NOTNULL; // buf 1169 fields[argp++] = TypePtr::NOTNULL; // state 1170 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1171 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1172 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1173 1174 // no result type needed 1175 fields = TypeTuple::fields(1); 1176 fields[TypeFunc::Parms+0] = nullptr; // void 1177 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1178 return TypeFunc::make(domain, range); 1179 } 1180 1181 /* 1182 * int implCompressMultiBlock(byte[] b, int ofs, int limit) 1183 */ 1184 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) { 1185 // create input type (domain) 1186 int num_args = is_sha3 ? 5 : 4; 1187 int argcnt = num_args; 1188 const Type** fields = TypeTuple::fields(argcnt); 1189 int argp = TypeFunc::Parms; 1190 fields[argp++] = TypePtr::NOTNULL; // buf 1191 fields[argp++] = TypePtr::NOTNULL; // state 1192 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1193 fields[argp++] = TypeInt::INT; // ofs 1194 fields[argp++] = TypeInt::INT; // limit 1195 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1196 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1197 1198 // returning ofs (int) 1199 fields = TypeTuple::fields(1); 1200 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs 1201 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1202 return TypeFunc::make(domain, range); 1203 } 1204 1205 // SHAKE128Parallel doubleKeccak function 1206 static const TypeFunc* make_double_keccak_Type() { 1207 int argcnt = 2; 1208 1209 const Type** fields = TypeTuple::fields(argcnt); 1210 int argp = TypeFunc::Parms; 1211 fields[argp++] = TypePtr::NOTNULL; // status0 1212 fields[argp++] = TypePtr::NOTNULL; // status1 1213 1214 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1215 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1216 1217 // result type needed 1218 fields = TypeTuple::fields(1); 1219 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1220 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1221 return TypeFunc::make(domain, range); 1222 } 1223 1224 static const TypeFunc* make_multiplyToLen_Type() { 1225 // create input type (domain) 1226 int num_args = 5; 1227 int argcnt = num_args; 1228 const Type** fields = TypeTuple::fields(argcnt); 1229 int argp = TypeFunc::Parms; 1230 fields[argp++] = TypePtr::NOTNULL; // x 1231 fields[argp++] = TypeInt::INT; // xlen 1232 fields[argp++] = TypePtr::NOTNULL; // y 1233 fields[argp++] = TypeInt::INT; // ylen 1234 fields[argp++] = TypePtr::NOTNULL; // z 1235 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1236 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1237 1238 // no result type needed 1239 fields = TypeTuple::fields(1); 1240 fields[TypeFunc::Parms+0] = nullptr; 1241 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1242 return TypeFunc::make(domain, range); 1243 } 1244 1245 static const TypeFunc* make_squareToLen_Type() { 1246 // create input type (domain) 1247 int num_args = 4; 1248 int argcnt = num_args; 1249 const Type** fields = TypeTuple::fields(argcnt); 1250 int argp = TypeFunc::Parms; 1251 fields[argp++] = TypePtr::NOTNULL; // x 1252 fields[argp++] = TypeInt::INT; // len 1253 fields[argp++] = TypePtr::NOTNULL; // z 1254 fields[argp++] = TypeInt::INT; // zlen 1255 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1256 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1257 1258 // no result type needed 1259 fields = TypeTuple::fields(1); 1260 fields[TypeFunc::Parms+0] = nullptr; 1261 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1262 return TypeFunc::make(domain, range); 1263 } 1264 1265 static const TypeFunc* make_mulAdd_Type() { 1266 // create input type (domain) 1267 int num_args = 5; 1268 int argcnt = num_args; 1269 const Type** fields = TypeTuple::fields(argcnt); 1270 int argp = TypeFunc::Parms; 1271 fields[argp++] = TypePtr::NOTNULL; // out 1272 fields[argp++] = TypePtr::NOTNULL; // in 1273 fields[argp++] = TypeInt::INT; // offset 1274 fields[argp++] = TypeInt::INT; // len 1275 fields[argp++] = TypeInt::INT; // k 1276 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1277 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1278 1279 // returning carry (int) 1280 fields = TypeTuple::fields(1); 1281 fields[TypeFunc::Parms+0] = TypeInt::INT; 1282 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1283 return TypeFunc::make(domain, range); 1284 } 1285 1286 static const TypeFunc* make_montgomeryMultiply_Type() { 1287 // create input type (domain) 1288 int num_args = 7; 1289 int argcnt = num_args; 1290 const Type** fields = TypeTuple::fields(argcnt); 1291 int argp = TypeFunc::Parms; 1292 fields[argp++] = TypePtr::NOTNULL; // a 1293 fields[argp++] = TypePtr::NOTNULL; // b 1294 fields[argp++] = TypePtr::NOTNULL; // n 1295 fields[argp++] = TypeInt::INT; // len 1296 fields[argp++] = TypeLong::LONG; // inv 1297 fields[argp++] = Type::HALF; 1298 fields[argp++] = TypePtr::NOTNULL; // result 1299 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1300 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1301 1302 // result type needed 1303 fields = TypeTuple::fields(1); 1304 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1305 1306 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1307 return TypeFunc::make(domain, range); 1308 } 1309 1310 static const TypeFunc* make_montgomerySquare_Type() { 1311 // create input type (domain) 1312 int num_args = 6; 1313 int argcnt = num_args; 1314 const Type** fields = TypeTuple::fields(argcnt); 1315 int argp = TypeFunc::Parms; 1316 fields[argp++] = TypePtr::NOTNULL; // a 1317 fields[argp++] = TypePtr::NOTNULL; // n 1318 fields[argp++] = TypeInt::INT; // len 1319 fields[argp++] = TypeLong::LONG; // inv 1320 fields[argp++] = Type::HALF; 1321 fields[argp++] = TypePtr::NOTNULL; // result 1322 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1323 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1324 1325 // result type needed 1326 fields = TypeTuple::fields(1); 1327 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1328 1329 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1330 return TypeFunc::make(domain, range); 1331 } 1332 1333 static const TypeFunc* make_bigIntegerShift_Type() { 1334 int argcnt = 5; 1335 const Type** fields = TypeTuple::fields(argcnt); 1336 int argp = TypeFunc::Parms; 1337 fields[argp++] = TypePtr::NOTNULL; // newArr 1338 fields[argp++] = TypePtr::NOTNULL; // oldArr 1339 fields[argp++] = TypeInt::INT; // newIdx 1340 fields[argp++] = TypeInt::INT; // shiftCount 1341 fields[argp++] = TypeInt::INT; // numIter 1342 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1343 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1344 1345 // no result type needed 1346 fields = TypeTuple::fields(1); 1347 fields[TypeFunc::Parms + 0] = nullptr; 1348 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1349 return TypeFunc::make(domain, range); 1350 } 1351 1352 static const TypeFunc* make_vectorizedMismatch_Type() { 1353 // create input type (domain) 1354 int num_args = 4; 1355 int argcnt = num_args; 1356 const Type** fields = TypeTuple::fields(argcnt); 1357 int argp = TypeFunc::Parms; 1358 fields[argp++] = TypePtr::NOTNULL; // obja 1359 fields[argp++] = TypePtr::NOTNULL; // objb 1360 fields[argp++] = TypeInt::INT; // length, number of elements 1361 fields[argp++] = TypeInt::INT; // log2scale, element size 1362 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1363 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1364 1365 //return mismatch index (int) 1366 fields = TypeTuple::fields(1); 1367 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1368 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1369 return TypeFunc::make(domain, range); 1370 } 1371 1372 static const TypeFunc* make_ghash_processBlocks_Type() { 1373 int argcnt = 4; 1374 1375 const Type** fields = TypeTuple::fields(argcnt); 1376 int argp = TypeFunc::Parms; 1377 fields[argp++] = TypePtr::NOTNULL; // state 1378 fields[argp++] = TypePtr::NOTNULL; // subkeyH 1379 fields[argp++] = TypePtr::NOTNULL; // data 1380 fields[argp++] = TypeInt::INT; // blocks 1381 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1382 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1383 1384 // result type needed 1385 fields = TypeTuple::fields(1); 1386 fields[TypeFunc::Parms+0] = nullptr; // void 1387 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1388 return TypeFunc::make(domain, range); 1389 } 1390 1391 static const TypeFunc* make_chacha20Block_Type() { 1392 int argcnt = 2; 1393 1394 const Type** fields = TypeTuple::fields(argcnt); 1395 int argp = TypeFunc::Parms; 1396 fields[argp++] = TypePtr::NOTNULL; // state 1397 fields[argp++] = TypePtr::NOTNULL; // result 1398 1399 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1400 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1401 1402 // result type needed 1403 fields = TypeTuple::fields(1); 1404 fields[TypeFunc::Parms + 0] = TypeInt::INT; // key stream outlen as int 1405 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1406 return TypeFunc::make(domain, range); 1407 } 1408 1409 // Kyber NTT function 1410 static const TypeFunc* make_kyberNtt_Type() { 1411 int argcnt = 2; 1412 1413 const Type** fields = TypeTuple::fields(argcnt); 1414 int argp = TypeFunc::Parms; 1415 fields[argp++] = TypePtr::NOTNULL; // coeffs 1416 fields[argp++] = TypePtr::NOTNULL; // NTT zetas 1417 1418 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1419 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1420 1421 // result type needed 1422 fields = TypeTuple::fields(1); 1423 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1424 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1425 return TypeFunc::make(domain, range); 1426 } 1427 1428 // Kyber inverse NTT function 1429 static const TypeFunc* make_kyberInverseNtt_Type() { 1430 int argcnt = 2; 1431 1432 const Type** fields = TypeTuple::fields(argcnt); 1433 int argp = TypeFunc::Parms; 1434 fields[argp++] = TypePtr::NOTNULL; // coeffs 1435 fields[argp++] = TypePtr::NOTNULL; // inverse NTT zetas 1436 1437 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1438 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1439 1440 // result type needed 1441 fields = TypeTuple::fields(1); 1442 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1443 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1444 return TypeFunc::make(domain, range); 1445 } 1446 1447 // Kyber NTT multiply function 1448 static const TypeFunc* make_kyberNttMult_Type() { 1449 int argcnt = 4; 1450 1451 const Type** fields = TypeTuple::fields(argcnt); 1452 int argp = TypeFunc::Parms; 1453 fields[argp++] = TypePtr::NOTNULL; // result 1454 fields[argp++] = TypePtr::NOTNULL; // ntta 1455 fields[argp++] = TypePtr::NOTNULL; // nttb 1456 fields[argp++] = TypePtr::NOTNULL; // NTT multiply zetas 1457 1458 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1459 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1460 1461 // result type needed 1462 fields = TypeTuple::fields(1); 1463 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1464 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1465 return TypeFunc::make(domain, range); 1466 } 1467 1468 // Kyber add 2 polynomials function 1469 static const TypeFunc* make_kyberAddPoly_2_Type() { 1470 int argcnt = 3; 1471 1472 const Type** fields = TypeTuple::fields(argcnt); 1473 int argp = TypeFunc::Parms; 1474 fields[argp++] = TypePtr::NOTNULL; // result 1475 fields[argp++] = TypePtr::NOTNULL; // a 1476 fields[argp++] = TypePtr::NOTNULL; // b 1477 1478 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1479 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1480 1481 // result type needed 1482 fields = TypeTuple::fields(1); 1483 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1484 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1485 return TypeFunc::make(domain, range); 1486 } 1487 1488 1489 // Kyber add 3 polynomials function 1490 static const TypeFunc* make_kyberAddPoly_3_Type() { 1491 int argcnt = 4; 1492 1493 const Type** fields = TypeTuple::fields(argcnt); 1494 int argp = TypeFunc::Parms; 1495 fields[argp++] = TypePtr::NOTNULL; // result 1496 fields[argp++] = TypePtr::NOTNULL; // a 1497 fields[argp++] = TypePtr::NOTNULL; // b 1498 fields[argp++] = TypePtr::NOTNULL; // c 1499 1500 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1501 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1502 1503 // result type needed 1504 fields = TypeTuple::fields(1); 1505 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1506 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1507 return TypeFunc::make(domain, range); 1508 } 1509 1510 1511 // Kyber XOF output parsing into polynomial coefficients candidates 1512 // or decompress(12,...) function 1513 static const TypeFunc* make_kyber12To16_Type() { 1514 int argcnt = 4; 1515 1516 const Type** fields = TypeTuple::fields(argcnt); 1517 int argp = TypeFunc::Parms; 1518 fields[argp++] = TypePtr::NOTNULL; // condensed 1519 fields[argp++] = TypeInt::INT; // condensedOffs 1520 fields[argp++] = TypePtr::NOTNULL; // parsed 1521 fields[argp++] = TypeInt::INT; // parsedLength 1522 1523 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1524 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1525 1526 // result type needed 1527 fields = TypeTuple::fields(1); 1528 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1529 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1530 return TypeFunc::make(domain, range); 1531 } 1532 1533 // Kyber Barrett reduce function 1534 static const TypeFunc* make_kyberBarrettReduce_Type() { 1535 int argcnt = 1; 1536 1537 const Type** fields = TypeTuple::fields(argcnt); 1538 int argp = TypeFunc::Parms; 1539 fields[argp++] = TypePtr::NOTNULL; // coeffs 1540 1541 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1542 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1543 1544 // result type needed 1545 fields = TypeTuple::fields(1); 1546 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1547 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1548 return TypeFunc::make(domain, range); 1549 } 1550 1551 // Dilithium NTT function except for the final "normalization" to |coeff| < Q 1552 static const TypeFunc* make_dilithiumAlmostNtt_Type() { 1553 int argcnt = 2; 1554 1555 const Type** fields = TypeTuple::fields(argcnt); 1556 int argp = TypeFunc::Parms; 1557 fields[argp++] = TypePtr::NOTNULL; // coeffs 1558 fields[argp++] = TypePtr::NOTNULL; // NTT zetas 1559 1560 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1561 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1562 1563 // result type needed 1564 fields = TypeTuple::fields(1); 1565 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1566 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1567 return TypeFunc::make(domain, range); 1568 } 1569 1570 // Dilithium inverse NTT function except the final mod Q division by 2^256 1571 static const TypeFunc* make_dilithiumAlmostInverseNtt_Type() { 1572 int argcnt = 2; 1573 1574 const Type** fields = TypeTuple::fields(argcnt); 1575 int argp = TypeFunc::Parms; 1576 fields[argp++] = TypePtr::NOTNULL; // coeffs 1577 fields[argp++] = TypePtr::NOTNULL; // inverse NTT zetas 1578 1579 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1580 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1581 1582 // result type needed 1583 fields = TypeTuple::fields(1); 1584 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1585 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1586 return TypeFunc::make(domain, range); 1587 } 1588 1589 // Dilithium NTT multiply function 1590 static const TypeFunc* make_dilithiumNttMult_Type() { 1591 int argcnt = 3; 1592 1593 const Type** fields = TypeTuple::fields(argcnt); 1594 int argp = TypeFunc::Parms; 1595 fields[argp++] = TypePtr::NOTNULL; // result 1596 fields[argp++] = TypePtr::NOTNULL; // ntta 1597 fields[argp++] = TypePtr::NOTNULL; // nttb 1598 1599 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1600 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1601 1602 // result type needed 1603 fields = TypeTuple::fields(1); 1604 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1605 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1606 return TypeFunc::make(domain, range); 1607 } 1608 1609 // Dilithium Montgomery multiply a polynome coefficient array by a constant 1610 static const TypeFunc* make_dilithiumMontMulByConstant_Type() { 1611 int argcnt = 2; 1612 1613 const Type** fields = TypeTuple::fields(argcnt); 1614 int argp = TypeFunc::Parms; 1615 fields[argp++] = TypePtr::NOTNULL; // coeffs 1616 fields[argp++] = TypeInt::INT; // constant multiplier 1617 1618 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1619 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1620 1621 // result type needed 1622 fields = TypeTuple::fields(1); 1623 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1624 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1625 return TypeFunc::make(domain, range); 1626 } 1627 1628 // Dilithium decompose polynomial 1629 static const TypeFunc* make_dilithiumDecomposePoly_Type() { 1630 int argcnt = 5; 1631 1632 const Type** fields = TypeTuple::fields(argcnt); 1633 int argp = TypeFunc::Parms; 1634 fields[argp++] = TypePtr::NOTNULL; // input 1635 fields[argp++] = TypePtr::NOTNULL; // lowPart 1636 fields[argp++] = TypePtr::NOTNULL; // highPart 1637 fields[argp++] = TypeInt::INT; // 2 * gamma2 1638 fields[argp++] = TypeInt::INT; // multiplier 1639 1640 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1641 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1642 1643 // result type needed 1644 fields = TypeTuple::fields(1); 1645 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1646 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1647 return TypeFunc::make(domain, range); 1648 } 1649 1650 static const TypeFunc* make_base64_encodeBlock_Type() { 1651 int argcnt = 6; 1652 1653 const Type** fields = TypeTuple::fields(argcnt); 1654 int argp = TypeFunc::Parms; 1655 fields[argp++] = TypePtr::NOTNULL; // src array 1656 fields[argp++] = TypeInt::INT; // offset 1657 fields[argp++] = TypeInt::INT; // length 1658 fields[argp++] = TypePtr::NOTNULL; // dest array 1659 fields[argp++] = TypeInt::INT; // dp 1660 fields[argp++] = TypeInt::BOOL; // isURL 1661 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1662 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1663 1664 // result type needed 1665 fields = TypeTuple::fields(1); 1666 fields[TypeFunc::Parms + 0] = nullptr; // void 1667 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1668 return TypeFunc::make(domain, range); 1669 } 1670 1671 static const TypeFunc* make_string_IndexOf_Type() { 1672 int argcnt = 4; 1673 1674 const Type** fields = TypeTuple::fields(argcnt); 1675 int argp = TypeFunc::Parms; 1676 fields[argp++] = TypePtr::NOTNULL; // haystack array 1677 fields[argp++] = TypeInt::INT; // haystack length 1678 fields[argp++] = TypePtr::NOTNULL; // needle array 1679 fields[argp++] = TypeInt::INT; // needle length 1680 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1681 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1682 1683 // result type needed 1684 fields = TypeTuple::fields(1); 1685 fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack 1686 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1687 return TypeFunc::make(domain, range); 1688 } 1689 1690 static const TypeFunc* make_base64_decodeBlock_Type() { 1691 int argcnt = 7; 1692 1693 const Type** fields = TypeTuple::fields(argcnt); 1694 int argp = TypeFunc::Parms; 1695 fields[argp++] = TypePtr::NOTNULL; // src array 1696 fields[argp++] = TypeInt::INT; // src offset 1697 fields[argp++] = TypeInt::INT; // src length 1698 fields[argp++] = TypePtr::NOTNULL; // dest array 1699 fields[argp++] = TypeInt::INT; // dest offset 1700 fields[argp++] = TypeInt::BOOL; // isURL 1701 fields[argp++] = TypeInt::BOOL; // isMIME 1702 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1703 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1704 1705 // result type needed 1706 fields = TypeTuple::fields(1); 1707 fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst 1708 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1709 return TypeFunc::make(domain, range); 1710 } 1711 1712 static const TypeFunc* make_poly1305_processBlocks_Type() { 1713 int argcnt = 4; 1714 1715 const Type** fields = TypeTuple::fields(argcnt); 1716 int argp = TypeFunc::Parms; 1717 fields[argp++] = TypePtr::NOTNULL; // input array 1718 fields[argp++] = TypeInt::INT; // input length 1719 fields[argp++] = TypePtr::NOTNULL; // accumulator array 1720 fields[argp++] = TypePtr::NOTNULL; // r array 1721 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1722 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1723 1724 // result type needed 1725 fields = TypeTuple::fields(1); 1726 fields[TypeFunc::Parms + 0] = nullptr; // void 1727 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1728 return TypeFunc::make(domain, range); 1729 } 1730 1731 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() { 1732 int argcnt = 3; 1733 1734 const Type** fields = TypeTuple::fields(argcnt); 1735 int argp = TypeFunc::Parms; 1736 fields[argp++] = TypePtr::NOTNULL; // a array 1737 fields[argp++] = TypePtr::NOTNULL; // b array 1738 fields[argp++] = TypePtr::NOTNULL; // r(esult) array 1739 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1740 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1741 1742 // result type needed 1743 fields = TypeTuple::fields(1); 1744 fields[TypeFunc::Parms + 0] = nullptr; // void 1745 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1746 return TypeFunc::make(domain, range); 1747 } 1748 1749 static const TypeFunc* make_intpoly_assign_Type() { 1750 int argcnt = 4; 1751 1752 const Type** fields = TypeTuple::fields(argcnt); 1753 int argp = TypeFunc::Parms; 1754 fields[argp++] = TypeInt::INT; // set flag 1755 fields[argp++] = TypePtr::NOTNULL; // a array (result) 1756 fields[argp++] = TypePtr::NOTNULL; // b array (if set is set) 1757 fields[argp++] = TypeInt::INT; // array length 1758 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1759 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1760 1761 // result type needed 1762 fields = TypeTuple::fields(1); 1763 fields[TypeFunc::Parms + 0] = nullptr; // void 1764 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1765 return TypeFunc::make(domain, range); 1766 } 1767 1768 //------------- Interpreter state for on stack replacement 1769 static const TypeFunc* make_osr_end_Type() { 1770 // create input type (domain) 1771 const Type **fields = TypeTuple::fields(1); 1772 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 1773 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1774 1775 // create result type 1776 fields = TypeTuple::fields(1); 1777 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 1778 fields[TypeFunc::Parms+0] = nullptr; // void 1779 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1780 return TypeFunc::make(domain, range); 1781 } 1782 1783 //------------------------------------------------------------------------------------- 1784 // register policy 1785 1786 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 1787 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 1788 switch (register_save_policy[reg]) { 1789 case 'C': return false; //SOC 1790 case 'E': return true ; //SOE 1791 case 'N': return false; //NS 1792 case 'A': return false; //AS 1793 } 1794 ShouldNotReachHere(); 1795 return false; 1796 } 1797 1798 //----------------------------------------------------------------------- 1799 // Exceptions 1800 // 1801 1802 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg); 1803 1804 // The method is an entry that is always called by a C++ method not 1805 // directly from compiled code. Compiled code will call the C++ method following. 1806 // We can't allow async exception to be installed during exception processing. 1807 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm)) 1808 // The frame we rethrow the exception to might not have been processed by the GC yet. 1809 // The stack watermark barrier takes care of detecting that and ensuring the frame 1810 // has updated oops. 1811 StackWatermarkSet::after_unwind(current); 1812 1813 // Do not confuse exception_oop with pending_exception. The exception_oop 1814 // is only used to pass arguments into the method. Not for general 1815 // exception handling. DO NOT CHANGE IT to use pending_exception, since 1816 // the runtime stubs checks this on exit. 1817 assert(current->exception_oop() != nullptr, "exception oop is found"); 1818 address handler_address = nullptr; 1819 1820 Handle exception(current, current->exception_oop()); 1821 address pc = current->exception_pc(); 1822 1823 // Clear out the exception oop and pc since looking up an 1824 // exception handler can cause class loading, which might throw an 1825 // exception and those fields are expected to be clear during 1826 // normal bytecode execution. 1827 current->clear_exception_oop_and_pc(); 1828 1829 LogTarget(Info, exceptions) lt; 1830 if (lt.is_enabled()) { 1831 LogStream ls(lt); 1832 trace_exception(&ls, exception(), pc, ""); 1833 } 1834 1835 // for AbortVMOnException flag 1836 Exceptions::debug_check_abort(exception); 1837 1838 #ifdef ASSERT 1839 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1840 // should throw an exception here 1841 ShouldNotReachHere(); 1842 } 1843 #endif 1844 1845 // new exception handling: this method is entered only from adapters 1846 // exceptions from compiled java methods are handled in compiled code 1847 // using rethrow node 1848 1849 nm = CodeCache::find_nmethod(pc); 1850 assert(nm != nullptr, "No NMethod found"); 1851 if (nm->is_native_method()) { 1852 fatal("Native method should not have path to exception handling"); 1853 } else { 1854 // we are switching to old paradigm: search for exception handler in caller_frame 1855 // instead in exception handler of caller_frame.sender() 1856 1857 if (JvmtiExport::can_post_on_exceptions()) { 1858 // "Full-speed catching" is not necessary here, 1859 // since we're notifying the VM on every catch. 1860 // Force deoptimization and the rest of the lookup 1861 // will be fine. 1862 deoptimize_caller_frame(current); 1863 } 1864 1865 // Check the stack guard pages. If enabled, look for handler in this frame; 1866 // otherwise, forcibly unwind the frame. 1867 // 1868 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1869 bool force_unwind = !current->stack_overflow_state()->reguard_stack(); 1870 bool deopting = false; 1871 if (nm->is_deopt_pc(pc)) { 1872 deopting = true; 1873 RegisterMap map(current, 1874 RegisterMap::UpdateMap::skip, 1875 RegisterMap::ProcessFrames::include, 1876 RegisterMap::WalkContinuation::skip); 1877 frame deoptee = current->last_frame().sender(&map); 1878 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1879 // Adjust the pc back to the original throwing pc 1880 pc = deoptee.pc(); 1881 } 1882 1883 // If we are forcing an unwind because of stack overflow then deopt is 1884 // irrelevant since we are throwing the frame away anyway. 1885 1886 if (deopting && !force_unwind) { 1887 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1888 } else { 1889 1890 handler_address = 1891 force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc); 1892 1893 if (handler_address == nullptr) { 1894 bool recursive_exception = false; 1895 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1896 assert (handler_address != nullptr, "must have compiled handler"); 1897 // Update the exception cache only when the unwind was not forced 1898 // and there didn't happen another exception during the computation of the 1899 // compiled exception handler. Checking for exception oop equality is not 1900 // sufficient because some exceptions are pre-allocated and reused. 1901 if (!force_unwind && !recursive_exception) { 1902 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1903 } 1904 } else { 1905 #ifdef ASSERT 1906 bool recursive_exception = false; 1907 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1908 vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT, 1909 p2i(handler_address), p2i(computed_address)); 1910 #endif 1911 } 1912 } 1913 1914 current->set_exception_pc(pc); 1915 current->set_exception_handler_pc(handler_address); 1916 1917 // Check if the exception PC is a MethodHandle call site. 1918 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1919 } 1920 1921 // Restore correct return pc. Was saved above. 1922 current->set_exception_oop(exception()); 1923 return handler_address; 1924 1925 JRT_END 1926 1927 // We are entering here from exception_blob 1928 // If there is a compiled exception handler in this method, we will continue there; 1929 // otherwise we will unwind the stack and continue at the caller of top frame method 1930 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1931 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1932 // we looked up the handler for has been deoptimized in the meantime. If it has been 1933 // we must not use the handler and instead return the deopt blob. 1934 address OptoRuntime::handle_exception_C(JavaThread* current) { 1935 // 1936 // We are in Java not VM and in debug mode we have a NoHandleMark 1937 // 1938 #ifndef PRODUCT 1939 SharedRuntime::_find_handler_ctr++; // find exception handler 1940 #endif 1941 DEBUG_ONLY(NoHandleMark __hm;) 1942 nmethod* nm = nullptr; 1943 address handler_address = nullptr; 1944 { 1945 // Enter the VM 1946 1947 ResetNoHandleMark rnhm; 1948 handler_address = handle_exception_C_helper(current, nm); 1949 } 1950 1951 // Back in java: Use no oops, DON'T safepoint 1952 1953 // Now check to see if the handler we are returning is in a now 1954 // deoptimized frame 1955 1956 if (nm != nullptr) { 1957 RegisterMap map(current, 1958 RegisterMap::UpdateMap::skip, 1959 RegisterMap::ProcessFrames::skip, 1960 RegisterMap::WalkContinuation::skip); 1961 frame caller = current->last_frame().sender(&map); 1962 #ifdef ASSERT 1963 assert(caller.is_compiled_frame(), "must be"); 1964 #endif // ASSERT 1965 if (caller.is_deoptimized_frame()) { 1966 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1967 } 1968 } 1969 return handler_address; 1970 } 1971 1972 //------------------------------rethrow---------------------------------------- 1973 // We get here after compiled code has executed a 'RethrowNode'. The callee 1974 // is either throwing or rethrowing an exception. The callee-save registers 1975 // have been restored, synchronized objects have been unlocked and the callee 1976 // stack frame has been removed. The return address was passed in. 1977 // Exception oop is passed as the 1st argument. This routine is then called 1978 // from the stub. On exit, we know where to jump in the caller's code. 1979 // After this C code exits, the stub will pop his frame and end in a jump 1980 // (instead of a return). We enter the caller's default handler. 1981 // 1982 // This must be JRT_LEAF: 1983 // - caller will not change its state as we cannot block on exit, 1984 // therefore raw_exception_handler_for_return_address is all it takes 1985 // to handle deoptimized blobs 1986 // 1987 // However, there needs to be a safepoint check in the middle! So compiled 1988 // safepoints are completely watertight. 1989 // 1990 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier. 1991 // 1992 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 1993 // 1994 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 1995 // ret_pc will have been loaded from the stack, so for AArch64 will be signed. 1996 AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc)); 1997 1998 #ifndef PRODUCT 1999 SharedRuntime::_rethrow_ctr++; // count rethrows 2000 #endif 2001 assert (exception != nullptr, "should have thrown a NullPointerException"); 2002 #ifdef ASSERT 2003 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 2004 // should throw an exception here 2005 ShouldNotReachHere(); 2006 } 2007 #endif 2008 2009 thread->set_vm_result_oop(exception); 2010 // Frame not compiled (handles deoptimization blob) 2011 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 2012 } 2013 2014 static const TypeFunc* make_rethrow_Type() { 2015 // create input type (domain) 2016 const Type **fields = TypeTuple::fields(1); 2017 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 2018 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 2019 2020 // create result type (range) 2021 fields = TypeTuple::fields(1); 2022 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 2023 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 2024 2025 return TypeFunc::make(domain, range); 2026 } 2027 2028 2029 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 2030 // Deoptimize the caller before continuing, as the compiled 2031 // exception handler table may not be valid. 2032 if (DeoptimizeOnAllocationException && doit) { 2033 deoptimize_caller_frame(thread); 2034 } 2035 } 2036 2037 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 2038 // Called from within the owner thread, so no need for safepoint 2039 RegisterMap reg_map(thread, 2040 RegisterMap::UpdateMap::include, 2041 RegisterMap::ProcessFrames::include, 2042 RegisterMap::WalkContinuation::skip); 2043 frame stub_frame = thread->last_frame(); 2044 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 2045 frame caller_frame = stub_frame.sender(®_map); 2046 2047 // Deoptimize the caller frame. 2048 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 2049 } 2050 2051 2052 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 2053 // Called from within the owner thread, so no need for safepoint 2054 RegisterMap reg_map(thread, 2055 RegisterMap::UpdateMap::include, 2056 RegisterMap::ProcessFrames::include, 2057 RegisterMap::WalkContinuation::skip); 2058 frame stub_frame = thread->last_frame(); 2059 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 2060 frame caller_frame = stub_frame.sender(®_map); 2061 return caller_frame.is_deoptimized_frame(); 2062 } 2063 2064 static const TypeFunc* make_register_finalizer_Type() { 2065 // create input type (domain) 2066 const Type **fields = TypeTuple::fields(1); 2067 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 2068 // // The JavaThread* is passed to each routine as the last argument 2069 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 2070 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 2071 2072 // create result type (range) 2073 fields = TypeTuple::fields(0); 2074 2075 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2076 2077 return TypeFunc::make(domain,range); 2078 } 2079 2080 #if INCLUDE_JFR 2081 static const TypeFunc* make_class_id_load_barrier_Type() { 2082 // create input type (domain) 2083 const Type **fields = TypeTuple::fields(1); 2084 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS; 2085 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields); 2086 2087 // create result type (range) 2088 fields = TypeTuple::fields(0); 2089 2090 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields); 2091 2092 return TypeFunc::make(domain,range); 2093 } 2094 #endif // INCLUDE_JFR 2095 2096 //----------------------------------------------------------------------------- 2097 static const TypeFunc* make_dtrace_method_entry_exit_Type() { 2098 // create input type (domain) 2099 const Type **fields = TypeTuple::fields(2); 2100 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 2101 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 2102 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 2103 2104 // create result type (range) 2105 fields = TypeTuple::fields(0); 2106 2107 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2108 2109 return TypeFunc::make(domain,range); 2110 } 2111 2112 static const TypeFunc* make_dtrace_object_alloc_Type() { 2113 // create input type (domain) 2114 const Type **fields = TypeTuple::fields(2); 2115 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 2116 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 2117 2118 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 2119 2120 // create result type (range) 2121 fields = TypeTuple::fields(0); 2122 2123 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 2124 2125 return TypeFunc::make(domain,range); 2126 } 2127 2128 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current)) 2129 assert(oopDesc::is_oop(obj), "must be a valid oop"); 2130 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 2131 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 2132 JRT_END 2133 2134 //----------------------------------------------------------------------------- 2135 2136 NamedCounter * volatile OptoRuntime::_named_counters = nullptr; 2137 2138 // 2139 // dump the collected NamedCounters. 2140 // 2141 void OptoRuntime::print_named_counters() { 2142 int total_lock_count = 0; 2143 int eliminated_lock_count = 0; 2144 2145 NamedCounter* c = _named_counters; 2146 while (c) { 2147 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 2148 int count = c->count(); 2149 if (count > 0) { 2150 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 2151 if (Verbose) { 2152 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 2153 } 2154 total_lock_count += count; 2155 if (eliminated) { 2156 eliminated_lock_count += count; 2157 } 2158 } 2159 } 2160 c = c->next(); 2161 } 2162 if (total_lock_count > 0) { 2163 tty->print_cr("dynamic locks: %d", total_lock_count); 2164 if (eliminated_lock_count) { 2165 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 2166 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 2167 } 2168 } 2169 } 2170 2171 // 2172 // Allocate a new NamedCounter. The JVMState is used to generate the 2173 // name which consists of method@line for the inlining tree. 2174 // 2175 2176 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 2177 int max_depth = youngest_jvms->depth(); 2178 2179 // Visit scopes from youngest to oldest. 2180 bool first = true; 2181 stringStream st; 2182 for (int depth = max_depth; depth >= 1; depth--) { 2183 JVMState* jvms = youngest_jvms->of_depth(depth); 2184 ciMethod* m = jvms->has_method() ? jvms->method() : nullptr; 2185 if (!first) { 2186 st.print(" "); 2187 } else { 2188 first = false; 2189 } 2190 int bci = jvms->bci(); 2191 if (bci < 0) bci = 0; 2192 if (m != nullptr) { 2193 st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8()); 2194 } else { 2195 st.print("no method"); 2196 } 2197 st.print("@%d", bci); 2198 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 2199 } 2200 NamedCounter* c = new NamedCounter(st.freeze(), tag); 2201 2202 // atomically add the new counter to the head of the list. We only 2203 // add counters so this is safe. 2204 NamedCounter* head; 2205 do { 2206 c->set_next(nullptr); 2207 head = _named_counters; 2208 c->set_next(head); 2209 } while (Atomic::cmpxchg(&_named_counters, head, c) != head); 2210 return c; 2211 } 2212 2213 void OptoRuntime::initialize_types() { 2214 _new_instance_Type = make_new_instance_Type(); 2215 _new_array_Type = make_new_array_Type(); 2216 _multianewarray2_Type = multianewarray_Type(2); 2217 _multianewarray3_Type = multianewarray_Type(3); 2218 _multianewarray4_Type = multianewarray_Type(4); 2219 _multianewarray5_Type = multianewarray_Type(5); 2220 _multianewarrayN_Type = make_multianewarrayN_Type(); 2221 _complete_monitor_enter_Type = make_complete_monitor_enter_Type(); 2222 _complete_monitor_exit_Type = make_complete_monitor_exit_Type(); 2223 _monitor_notify_Type = make_monitor_notify_Type(); 2224 _uncommon_trap_Type = make_uncommon_trap_Type(); 2225 _athrow_Type = make_athrow_Type(); 2226 _rethrow_Type = make_rethrow_Type(); 2227 _Math_D_D_Type = make_Math_D_D_Type(); 2228 _Math_DD_D_Type = make_Math_DD_D_Type(); 2229 _modf_Type = make_modf_Type(); 2230 _l2f_Type = make_l2f_Type(); 2231 _void_long_Type = make_void_long_Type(); 2232 _void_void_Type = make_void_void_Type(); 2233 _jfr_write_checkpoint_Type = make_jfr_write_checkpoint_Type(); 2234 _flush_windows_Type = make_flush_windows_Type(); 2235 _fast_arraycopy_Type = make_arraycopy_Type(ac_fast); 2236 _checkcast_arraycopy_Type = make_arraycopy_Type(ac_checkcast); 2237 _generic_arraycopy_Type = make_arraycopy_Type(ac_generic); 2238 _slow_arraycopy_Type = make_arraycopy_Type(ac_slow); 2239 _unsafe_setmemory_Type = make_setmemory_Type(); 2240 _array_fill_Type = make_array_fill_Type(); 2241 _array_sort_Type = make_array_sort_Type(); 2242 _array_partition_Type = make_array_partition_Type(); 2243 _aescrypt_block_Type = make_aescrypt_block_Type(); 2244 _cipherBlockChaining_aescrypt_Type = make_cipherBlockChaining_aescrypt_Type(); 2245 _electronicCodeBook_aescrypt_Type = make_electronicCodeBook_aescrypt_Type(); 2246 _counterMode_aescrypt_Type = make_counterMode_aescrypt_Type(); 2247 _galoisCounterMode_aescrypt_Type = make_galoisCounterMode_aescrypt_Type(); 2248 _digestBase_implCompress_with_sha3_Type = make_digestBase_implCompress_Type( /* is_sha3= */ true); 2249 _digestBase_implCompress_without_sha3_Type = make_digestBase_implCompress_Type( /* is_sha3= */ false);; 2250 _digestBase_implCompressMB_with_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ true); 2251 _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false); 2252 _double_keccak_Type = make_double_keccak_Type(); 2253 _multiplyToLen_Type = make_multiplyToLen_Type(); 2254 _montgomeryMultiply_Type = make_montgomeryMultiply_Type(); 2255 _montgomerySquare_Type = make_montgomerySquare_Type(); 2256 _squareToLen_Type = make_squareToLen_Type(); 2257 _mulAdd_Type = make_mulAdd_Type(); 2258 _bigIntegerShift_Type = make_bigIntegerShift_Type(); 2259 _vectorizedMismatch_Type = make_vectorizedMismatch_Type(); 2260 _ghash_processBlocks_Type = make_ghash_processBlocks_Type(); 2261 _chacha20Block_Type = make_chacha20Block_Type(); 2262 _kyberNtt_Type = make_kyberNtt_Type(); 2263 _kyberInverseNtt_Type = make_kyberInverseNtt_Type(); 2264 _kyberNttMult_Type = make_kyberNttMult_Type(); 2265 _kyberAddPoly_2_Type = make_kyberAddPoly_2_Type(); 2266 _kyberAddPoly_3_Type = make_kyberAddPoly_3_Type(); 2267 _kyber12To16_Type = make_kyber12To16_Type(); 2268 _kyberBarrettReduce_Type = make_kyberBarrettReduce_Type(); 2269 _dilithiumAlmostNtt_Type = make_dilithiumAlmostNtt_Type(); 2270 _dilithiumAlmostInverseNtt_Type = make_dilithiumAlmostInverseNtt_Type(); 2271 _dilithiumNttMult_Type = make_dilithiumNttMult_Type(); 2272 _dilithiumMontMulByConstant_Type = make_dilithiumMontMulByConstant_Type(); 2273 _dilithiumDecomposePoly_Type = make_dilithiumDecomposePoly_Type(); 2274 _base64_encodeBlock_Type = make_base64_encodeBlock_Type(); 2275 _base64_decodeBlock_Type = make_base64_decodeBlock_Type(); 2276 _string_IndexOf_Type = make_string_IndexOf_Type(); 2277 _poly1305_processBlocks_Type = make_poly1305_processBlocks_Type(); 2278 _intpoly_montgomeryMult_P256_Type = make_intpoly_montgomeryMult_P256_Type(); 2279 _intpoly_assign_Type = make_intpoly_assign_Type(); 2280 _updateBytesCRC32_Type = make_updateBytesCRC32_Type(); 2281 _updateBytesCRC32C_Type = make_updateBytesCRC32C_Type(); 2282 _updateBytesAdler32_Type = make_updateBytesAdler32_Type(); 2283 _osr_end_Type = make_osr_end_Type(); 2284 _register_finalizer_Type = make_register_finalizer_Type(); 2285 JFR_ONLY( 2286 _class_id_load_barrier_Type = make_class_id_load_barrier_Type(); 2287 ) 2288 #if INCLUDE_JVMTI 2289 _notify_jvmti_vthread_Type = make_notify_jvmti_vthread_Type(); 2290 #endif // INCLUDE_JVMTI 2291 _dtrace_method_entry_exit_Type = make_dtrace_method_entry_exit_Type(); 2292 _dtrace_object_alloc_Type = make_dtrace_object_alloc_Type(); 2293 } 2294 2295 int trace_exception_counter = 0; 2296 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) { 2297 trace_exception_counter++; 2298 stringStream tempst; 2299 2300 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg); 2301 exception_oop->print_value_on(&tempst); 2302 tempst.print(" in "); 2303 CodeBlob* blob = CodeCache::find_blob(exception_pc); 2304 if (blob->is_nmethod()) { 2305 blob->as_nmethod()->method()->print_value_on(&tempst); 2306 } else if (blob->is_runtime_stub()) { 2307 tempst.print("<runtime-stub>"); 2308 } else { 2309 tempst.print("<unknown>"); 2310 } 2311 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc)); 2312 tempst.print("]"); 2313 2314 st->print_raw_cr(tempst.freeze()); 2315 }