1 /* 2 * Copyright (c) 1998, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmClasses.hpp" 27 #include "classfile/vmSymbols.hpp" 28 #include "code/codeCache.hpp" 29 #include "code/compiledMethod.inline.hpp" 30 #include "code/compiledIC.hpp" 31 #include "code/icBuffer.hpp" 32 #include "code/nmethod.hpp" 33 #include "code/pcDesc.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "code/vtableStubs.hpp" 36 #include "compiler/compileBroker.hpp" 37 #include "compiler/oopMap.hpp" 38 #include "gc/g1/heapRegion.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/collectedHeap.hpp" 41 #include "gc/shared/gcLocker.hpp" 42 #include "interpreter/bytecode.hpp" 43 #include "interpreter/interpreter.hpp" 44 #include "interpreter/linkResolver.hpp" 45 #include "logging/log.hpp" 46 #include "logging/logStream.hpp" 47 #include "memory/oopFactory.hpp" 48 #include "memory/resourceArea.hpp" 49 #include "oops/objArrayKlass.hpp" 50 #include "oops/klass.inline.hpp" 51 #include "oops/oop.inline.hpp" 52 #include "oops/typeArrayOop.inline.hpp" 53 #include "opto/ad.hpp" 54 #include "opto/addnode.hpp" 55 #include "opto/callnode.hpp" 56 #include "opto/cfgnode.hpp" 57 #include "opto/graphKit.hpp" 58 #include "opto/machnode.hpp" 59 #include "opto/matcher.hpp" 60 #include "opto/memnode.hpp" 61 #include "opto/mulnode.hpp" 62 #include "opto/output.hpp" 63 #include "opto/runtime.hpp" 64 #include "opto/subnode.hpp" 65 #include "prims/jvmtiExport.hpp" 66 #include "runtime/atomic.hpp" 67 #include "runtime/frame.inline.hpp" 68 #include "runtime/handles.inline.hpp" 69 #include "runtime/interfaceSupport.inline.hpp" 70 #include "runtime/javaCalls.hpp" 71 #include "runtime/sharedRuntime.hpp" 72 #include "runtime/signature.hpp" 73 #include "runtime/stackWatermarkSet.hpp" 74 #include "runtime/synchronizer.hpp" 75 #include "runtime/threadCritical.hpp" 76 #include "runtime/threadWXSetters.inline.hpp" 77 #include "runtime/vframe.hpp" 78 #include "runtime/vframeArray.hpp" 79 #include "runtime/vframe_hp.hpp" 80 #include "utilities/copy.hpp" 81 #include "utilities/preserveException.hpp" 82 83 84 // For debugging purposes: 85 // To force FullGCALot inside a runtime function, add the following two lines 86 // 87 // Universe::release_fullgc_alot_dummy(); 88 // MarkSweep::invoke(0, "Debugging"); 89 // 90 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000 91 92 93 94 95 // Compiled code entry points 96 address OptoRuntime::_new_instance_Java = NULL; 97 address OptoRuntime::_new_array_Java = NULL; 98 address OptoRuntime::_new_array_nozero_Java = NULL; 99 address OptoRuntime::_multianewarray2_Java = NULL; 100 address OptoRuntime::_multianewarray3_Java = NULL; 101 address OptoRuntime::_multianewarray4_Java = NULL; 102 address OptoRuntime::_multianewarray5_Java = NULL; 103 address OptoRuntime::_multianewarrayN_Java = NULL; 104 address OptoRuntime::_vtable_must_compile_Java = NULL; 105 address OptoRuntime::_complete_monitor_locking_Java = NULL; 106 address OptoRuntime::_monitor_notify_Java = NULL; 107 address OptoRuntime::_monitor_notifyAll_Java = NULL; 108 address OptoRuntime::_rethrow_Java = NULL; 109 110 address OptoRuntime::_slow_arraycopy_Java = NULL; 111 address OptoRuntime::_register_finalizer_Java = NULL; 112 113 ExceptionBlob* OptoRuntime::_exception_blob; 114 115 // This should be called in an assertion at the start of OptoRuntime routines 116 // which are entered from compiled code (all of them) 117 #ifdef ASSERT 118 static bool check_compiled_frame(JavaThread* thread) { 119 assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code"); 120 RegisterMap map(thread, 121 RegisterMap::UpdateMap::skip, 122 RegisterMap::ProcessFrames::include, 123 RegisterMap::WalkContinuation::skip); 124 frame caller = thread->last_frame().sender(&map); 125 assert(caller.is_compiled_frame(), "not being called from compiled like code"); 126 return true; 127 } 128 #endif // ASSERT 129 130 131 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \ 132 var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \ 133 if (var == NULL) { return false; } 134 135 bool OptoRuntime::generate(ciEnv* env) { 136 137 generate_exception_blob(); 138 139 // Note: tls: Means fetching the return oop out of the thread-local storage 140 // 141 // variable/name type-function-gen , runtime method ,fncy_jp, tls,retpc 142 // ------------------------------------------------------------------------------------------------------------------------------- 143 gen(env, _new_instance_Java , new_instance_Type , new_instance_C , 0 , true, false); 144 gen(env, _new_array_Java , new_array_Type , new_array_C , 0 , true, false); 145 gen(env, _new_array_nozero_Java , new_array_Type , new_array_nozero_C , 0 , true, false); 146 gen(env, _multianewarray2_Java , multianewarray2_Type , multianewarray2_C , 0 , true, false); 147 gen(env, _multianewarray3_Java , multianewarray3_Type , multianewarray3_C , 0 , true, false); 148 gen(env, _multianewarray4_Java , multianewarray4_Type , multianewarray4_C , 0 , true, false); 149 gen(env, _multianewarray5_Java , multianewarray5_Type , multianewarray5_C , 0 , true, false); 150 gen(env, _multianewarrayN_Java , multianewarrayN_Type , multianewarrayN_C , 0 , true, false); 151 gen(env, _complete_monitor_locking_Java , complete_monitor_enter_Type , SharedRuntime::complete_monitor_locking_C, 0, false, false); 152 gen(env, _monitor_notify_Java , monitor_notify_Type , monitor_notify_C , 0 , false, false); 153 gen(env, _monitor_notifyAll_Java , monitor_notify_Type , monitor_notifyAll_C , 0 , false, false); 154 gen(env, _rethrow_Java , rethrow_Type , rethrow_C , 2 , true , true ); 155 156 gen(env, _slow_arraycopy_Java , slow_arraycopy_Type , SharedRuntime::slow_arraycopy_C , 0 , false, false); 157 gen(env, _register_finalizer_Java , register_finalizer_Type , register_finalizer , 0 , false, false); 158 159 return true; 160 } 161 162 #undef gen 163 164 165 // Helper method to do generation of RunTimeStub's 166 address OptoRuntime::generate_stub(ciEnv* env, 167 TypeFunc_generator gen, address C_function, 168 const char *name, int is_fancy_jump, 169 bool pass_tls, 170 bool return_pc) { 171 172 // Matching the default directive, we currently have no method to match. 173 DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization)); 174 ResourceMark rm; 175 Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive); 176 DirectivesStack::release(directive); 177 return C.stub_entry_point(); 178 } 179 180 const char* OptoRuntime::stub_name(address entry) { 181 #ifndef PRODUCT 182 CodeBlob* cb = CodeCache::find_blob(entry); 183 RuntimeStub* rs =(RuntimeStub *)cb; 184 assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub"); 185 return rs->name(); 186 #else 187 // Fast implementation for product mode (maybe it should be inlined too) 188 return "runtime stub"; 189 #endif 190 } 191 192 193 //============================================================================= 194 // Opto compiler runtime routines 195 //============================================================================= 196 197 198 //=============================allocation====================================== 199 // We failed the fast-path allocation. Now we need to do a scavenge or GC 200 // and try allocation again. 201 202 // object allocation 203 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current)) 204 JRT_BLOCK; 205 #ifndef PRODUCT 206 SharedRuntime::_new_instance_ctr++; // new instance requires GC 207 #endif 208 assert(check_compiled_frame(current), "incorrect caller"); 209 210 // These checks are cheap to make and support reflective allocation. 211 int lh = klass->layout_helper(); 212 if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) { 213 Handle holder(current, klass->klass_holder()); // keep the klass alive 214 klass->check_valid_for_instantiation(false, THREAD); 215 if (!HAS_PENDING_EXCEPTION) { 216 InstanceKlass::cast(klass)->initialize(THREAD); 217 } 218 } 219 220 if (!HAS_PENDING_EXCEPTION) { 221 // Scavenge and allocate an instance. 222 Handle holder(current, klass->klass_holder()); // keep the klass alive 223 oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD); 224 current->set_vm_result(result); 225 226 // Pass oops back through thread local storage. Our apparent type to Java 227 // is that we return an oop, but we can block on exit from this routine and 228 // a GC can trash the oop in C's return register. The generated stub will 229 // fetch the oop from TLS after any possible GC. 230 } 231 232 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 233 JRT_BLOCK_END; 234 235 // inform GC that we won't do card marks for initializing writes. 236 SharedRuntime::on_slowpath_allocation_exit(current); 237 JRT_END 238 239 240 // array allocation 241 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current)) 242 JRT_BLOCK; 243 #ifndef PRODUCT 244 SharedRuntime::_new_array_ctr++; // new array requires GC 245 #endif 246 assert(check_compiled_frame(current), "incorrect caller"); 247 248 // Scavenge and allocate an instance. 249 oop result; 250 251 if (array_type->is_typeArray_klass()) { 252 // The oopFactory likes to work with the element type. 253 // (We could bypass the oopFactory, since it doesn't add much value.) 254 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 255 result = oopFactory::new_typeArray(elem_type, len, THREAD); 256 } else { 257 // Although the oopFactory likes to work with the elem_type, 258 // the compiler prefers the array_type, since it must already have 259 // that latter value in hand for the fast path. 260 Handle holder(current, array_type->klass_holder()); // keep the array klass alive 261 Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass(); 262 result = oopFactory::new_objArray(elem_type, len, THREAD); 263 } 264 265 // Pass oops back through thread local storage. Our apparent type to Java 266 // is that we return an oop, but we can block on exit from this routine and 267 // a GC can trash the oop in C's return register. The generated stub will 268 // fetch the oop from TLS after any possible GC. 269 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 270 current->set_vm_result(result); 271 JRT_BLOCK_END; 272 273 // inform GC that we won't do card marks for initializing writes. 274 SharedRuntime::on_slowpath_allocation_exit(current); 275 JRT_END 276 277 // array allocation without zeroing 278 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current)) 279 JRT_BLOCK; 280 #ifndef PRODUCT 281 SharedRuntime::_new_array_ctr++; // new array requires GC 282 #endif 283 assert(check_compiled_frame(current), "incorrect caller"); 284 285 // Scavenge and allocate an instance. 286 oop result; 287 288 assert(array_type->is_typeArray_klass(), "should be called only for type array"); 289 // The oopFactory likes to work with the element type. 290 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 291 result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD); 292 293 // Pass oops back through thread local storage. Our apparent type to Java 294 // is that we return an oop, but we can block on exit from this routine and 295 // a GC can trash the oop in C's return register. The generated stub will 296 // fetch the oop from TLS after any possible GC. 297 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 298 current->set_vm_result(result); 299 JRT_BLOCK_END; 300 301 302 // inform GC that we won't do card marks for initializing writes. 303 SharedRuntime::on_slowpath_allocation_exit(current); 304 305 oop result = current->vm_result(); 306 if ((len > 0) && (result != NULL) && 307 is_deoptimized_caller_frame(current)) { 308 // Zero array here if the caller is deoptimized. 309 const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result); 310 BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type(); 311 const size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type); 312 // Align to next 8 bytes to avoid trashing arrays's length. 313 const size_t aligned_hs_bytes = align_up(hs_bytes, BytesPerLong); 314 HeapWord* obj = cast_from_oop<HeapWord*>(result); 315 if (aligned_hs_bytes > hs_bytes) { 316 Copy::zero_to_bytes(obj + hs_bytes, aligned_hs_bytes - hs_bytes); 317 } 318 // Optimized zeroing. 319 const size_t aligned_hs = aligned_hs_bytes / HeapWordSize; 320 Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs); 321 } 322 323 JRT_END 324 325 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array. 326 327 // multianewarray for 2 dimensions 328 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current)) 329 #ifndef PRODUCT 330 SharedRuntime::_multi2_ctr++; // multianewarray for 1 dimension 331 #endif 332 assert(check_compiled_frame(current), "incorrect caller"); 333 assert(elem_type->is_klass(), "not a class"); 334 jint dims[2]; 335 dims[0] = len1; 336 dims[1] = len2; 337 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 338 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD); 339 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 340 current->set_vm_result(obj); 341 JRT_END 342 343 // multianewarray for 3 dimensions 344 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current)) 345 #ifndef PRODUCT 346 SharedRuntime::_multi3_ctr++; // multianewarray for 1 dimension 347 #endif 348 assert(check_compiled_frame(current), "incorrect caller"); 349 assert(elem_type->is_klass(), "not a class"); 350 jint dims[3]; 351 dims[0] = len1; 352 dims[1] = len2; 353 dims[2] = len3; 354 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 355 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD); 356 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 357 current->set_vm_result(obj); 358 JRT_END 359 360 // multianewarray for 4 dimensions 361 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current)) 362 #ifndef PRODUCT 363 SharedRuntime::_multi4_ctr++; // multianewarray for 1 dimension 364 #endif 365 assert(check_compiled_frame(current), "incorrect caller"); 366 assert(elem_type->is_klass(), "not a class"); 367 jint dims[4]; 368 dims[0] = len1; 369 dims[1] = len2; 370 dims[2] = len3; 371 dims[3] = len4; 372 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 373 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD); 374 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 375 current->set_vm_result(obj); 376 JRT_END 377 378 // multianewarray for 5 dimensions 379 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current)) 380 #ifndef PRODUCT 381 SharedRuntime::_multi5_ctr++; // multianewarray for 1 dimension 382 #endif 383 assert(check_compiled_frame(current), "incorrect caller"); 384 assert(elem_type->is_klass(), "not a class"); 385 jint dims[5]; 386 dims[0] = len1; 387 dims[1] = len2; 388 dims[2] = len3; 389 dims[3] = len4; 390 dims[4] = len5; 391 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 392 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD); 393 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 394 current->set_vm_result(obj); 395 JRT_END 396 397 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current)) 398 assert(check_compiled_frame(current), "incorrect caller"); 399 assert(elem_type->is_klass(), "not a class"); 400 assert(oop(dims)->is_typeArray(), "not an array"); 401 402 ResourceMark rm; 403 jint len = dims->length(); 404 assert(len > 0, "Dimensions array should contain data"); 405 jint *c_dims = NEW_RESOURCE_ARRAY(jint, len); 406 ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0), 407 c_dims, len); 408 409 Handle holder(current, elem_type->klass_holder()); // keep the klass alive 410 oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD); 411 deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION); 412 current->set_vm_result(obj); 413 JRT_END 414 415 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current)) 416 417 // Very few notify/notifyAll operations find any threads on the waitset, so 418 // the dominant fast-path is to simply return. 419 // Relatedly, it's critical that notify/notifyAll be fast in order to 420 // reduce lock hold times. 421 if (!SafepointSynchronize::is_synchronizing()) { 422 if (ObjectSynchronizer::quick_notify(obj, current, false)) { 423 return; 424 } 425 } 426 427 // This is the case the fast-path above isn't provisioned to handle. 428 // The fast-path is designed to handle frequently arising cases in an efficient manner. 429 // (The fast-path is just a degenerate variant of the slow-path). 430 // Perform the dreaded state transition and pass control into the slow-path. 431 JRT_BLOCK; 432 Handle h_obj(current, obj); 433 ObjectSynchronizer::notify(h_obj, CHECK); 434 JRT_BLOCK_END; 435 JRT_END 436 437 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current)) 438 439 if (!SafepointSynchronize::is_synchronizing() ) { 440 if (ObjectSynchronizer::quick_notify(obj, current, true)) { 441 return; 442 } 443 } 444 445 // This is the case the fast-path above isn't provisioned to handle. 446 // The fast-path is designed to handle frequently arising cases in an efficient manner. 447 // (The fast-path is just a degenerate variant of the slow-path). 448 // Perform the dreaded state transition and pass control into the slow-path. 449 JRT_BLOCK; 450 Handle h_obj(current, obj); 451 ObjectSynchronizer::notifyall(h_obj, CHECK); 452 JRT_BLOCK_END; 453 JRT_END 454 455 const TypeFunc *OptoRuntime::new_instance_Type() { 456 // create input type (domain) 457 const Type **fields = TypeTuple::fields(1); 458 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 459 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 460 461 // create result type (range) 462 fields = TypeTuple::fields(1); 463 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 464 465 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 466 467 return TypeFunc::make(domain, range); 468 } 469 470 471 const TypeFunc *OptoRuntime::athrow_Type() { 472 // create input type (domain) 473 const Type **fields = TypeTuple::fields(1); 474 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated 475 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 476 477 // create result type (range) 478 fields = TypeTuple::fields(0); 479 480 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 481 482 return TypeFunc::make(domain, range); 483 } 484 485 486 const TypeFunc *OptoRuntime::new_array_Type() { 487 // create input type (domain) 488 const Type **fields = TypeTuple::fields(2); 489 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 490 fields[TypeFunc::Parms+1] = TypeInt::INT; // array size 491 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 492 493 // create result type (range) 494 fields = TypeTuple::fields(1); 495 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 496 497 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 498 499 return TypeFunc::make(domain, range); 500 } 501 502 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) { 503 // create input type (domain) 504 const int nargs = ndim + 1; 505 const Type **fields = TypeTuple::fields(nargs); 506 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 507 for( int i = 1; i < nargs; i++ ) 508 fields[TypeFunc::Parms + i] = TypeInt::INT; // array size 509 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields); 510 511 // create result type (range) 512 fields = TypeTuple::fields(1); 513 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 514 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 515 516 return TypeFunc::make(domain, range); 517 } 518 519 const TypeFunc *OptoRuntime::multianewarray2_Type() { 520 return multianewarray_Type(2); 521 } 522 523 const TypeFunc *OptoRuntime::multianewarray3_Type() { 524 return multianewarray_Type(3); 525 } 526 527 const TypeFunc *OptoRuntime::multianewarray4_Type() { 528 return multianewarray_Type(4); 529 } 530 531 const TypeFunc *OptoRuntime::multianewarray5_Type() { 532 return multianewarray_Type(5); 533 } 534 535 const TypeFunc *OptoRuntime::multianewarrayN_Type() { 536 // create input type (domain) 537 const Type **fields = TypeTuple::fields(2); 538 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // element klass 539 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // array of dim sizes 540 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 541 542 // create result type (range) 543 fields = TypeTuple::fields(1); 544 fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop 545 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 546 547 return TypeFunc::make(domain, range); 548 } 549 550 const TypeFunc *OptoRuntime::uncommon_trap_Type() { 551 // create input type (domain) 552 const Type **fields = TypeTuple::fields(1); 553 fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action) 554 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 555 556 // create result type (range) 557 fields = TypeTuple::fields(0); 558 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 559 560 return TypeFunc::make(domain, range); 561 } 562 563 //----------------------------------------------------------------------------- 564 // Monitor Handling 565 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() { 566 // create input type (domain) 567 const Type **fields = TypeTuple::fields(2); 568 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 569 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock 570 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 571 572 // create result type (range) 573 fields = TypeTuple::fields(0); 574 575 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 576 577 return TypeFunc::make(domain,range); 578 } 579 580 581 //----------------------------------------------------------------------------- 582 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() { 583 // create input type (domain) 584 const Type **fields = TypeTuple::fields(3); 585 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 586 fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // Address of stack location for lock - BasicLock 587 fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM; // Thread pointer (Self) 588 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields); 589 590 // create result type (range) 591 fields = TypeTuple::fields(0); 592 593 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 594 595 return TypeFunc::make(domain, range); 596 } 597 598 const TypeFunc *OptoRuntime::monitor_notify_Type() { 599 // create input type (domain) 600 const Type **fields = TypeTuple::fields(1); 601 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Object to be Locked 602 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 603 604 // create result type (range) 605 fields = TypeTuple::fields(0); 606 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 607 return TypeFunc::make(domain, range); 608 } 609 610 const TypeFunc* OptoRuntime::flush_windows_Type() { 611 // create input type (domain) 612 const Type** fields = TypeTuple::fields(1); 613 fields[TypeFunc::Parms+0] = NULL; // void 614 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 615 616 // create result type 617 fields = TypeTuple::fields(1); 618 fields[TypeFunc::Parms+0] = NULL; // void 619 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 620 621 return TypeFunc::make(domain, range); 622 } 623 624 const TypeFunc* OptoRuntime::l2f_Type() { 625 // create input type (domain) 626 const Type **fields = TypeTuple::fields(2); 627 fields[TypeFunc::Parms+0] = TypeLong::LONG; 628 fields[TypeFunc::Parms+1] = Type::HALF; 629 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 630 631 // create result type (range) 632 fields = TypeTuple::fields(1); 633 fields[TypeFunc::Parms+0] = Type::FLOAT; 634 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 635 636 return TypeFunc::make(domain, range); 637 } 638 639 const TypeFunc* OptoRuntime::modf_Type() { 640 const Type **fields = TypeTuple::fields(2); 641 fields[TypeFunc::Parms+0] = Type::FLOAT; 642 fields[TypeFunc::Parms+1] = Type::FLOAT; 643 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 644 645 // create result type (range) 646 fields = TypeTuple::fields(1); 647 fields[TypeFunc::Parms+0] = Type::FLOAT; 648 649 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 650 651 return TypeFunc::make(domain, range); 652 } 653 654 const TypeFunc *OptoRuntime::Math_D_D_Type() { 655 // create input type (domain) 656 const Type **fields = TypeTuple::fields(2); 657 // Symbol* name of class to be loaded 658 fields[TypeFunc::Parms+0] = Type::DOUBLE; 659 fields[TypeFunc::Parms+1] = Type::HALF; 660 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields); 661 662 // create result type (range) 663 fields = TypeTuple::fields(2); 664 fields[TypeFunc::Parms+0] = Type::DOUBLE; 665 fields[TypeFunc::Parms+1] = Type::HALF; 666 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 667 668 return TypeFunc::make(domain, range); 669 } 670 671 const TypeFunc *OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) { 672 // create input type (domain) 673 const Type **fields = TypeTuple::fields(num_arg); 674 // Symbol* name of class to be loaded 675 assert(num_arg > 0, "must have at least 1 input"); 676 for (uint i = 0; i < num_arg; i++) { 677 fields[TypeFunc::Parms+i] = in_type; 678 } 679 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields); 680 681 // create result type (range) 682 const uint num_ret = 1; 683 fields = TypeTuple::fields(num_ret); 684 fields[TypeFunc::Parms+0] = out_type; 685 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields); 686 687 return TypeFunc::make(domain, range); 688 } 689 690 const TypeFunc* OptoRuntime::Math_DD_D_Type() { 691 const Type **fields = TypeTuple::fields(4); 692 fields[TypeFunc::Parms+0] = Type::DOUBLE; 693 fields[TypeFunc::Parms+1] = Type::HALF; 694 fields[TypeFunc::Parms+2] = Type::DOUBLE; 695 fields[TypeFunc::Parms+3] = Type::HALF; 696 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields); 697 698 // create result type (range) 699 fields = TypeTuple::fields(2); 700 fields[TypeFunc::Parms+0] = Type::DOUBLE; 701 fields[TypeFunc::Parms+1] = Type::HALF; 702 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 703 704 return TypeFunc::make(domain, range); 705 } 706 707 //-------------- currentTimeMillis, currentTimeNanos, etc 708 709 const TypeFunc* OptoRuntime::void_long_Type() { 710 // create input type (domain) 711 const Type **fields = TypeTuple::fields(0); 712 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 713 714 // create result type (range) 715 fields = TypeTuple::fields(2); 716 fields[TypeFunc::Parms+0] = TypeLong::LONG; 717 fields[TypeFunc::Parms+1] = Type::HALF; 718 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields); 719 720 return TypeFunc::make(domain, range); 721 } 722 723 const TypeFunc* OptoRuntime::void_void_Type() { 724 // create input type (domain) 725 const Type **fields = TypeTuple::fields(0); 726 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields); 727 728 // create result type (range) 729 fields = TypeTuple::fields(0); 730 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields); 731 return TypeFunc::make(domain, range); 732 } 733 734 const TypeFunc* OptoRuntime::jfr_write_checkpoint_Type() { 735 // create input type (domain) 736 const Type **fields = TypeTuple::fields(0); 737 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields); 738 739 // create result type (range) 740 fields = TypeTuple::fields(0); 741 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 742 return TypeFunc::make(domain, range); 743 } 744 745 746 // arraycopy stub variations: 747 enum ArrayCopyType { 748 ac_fast, // void(ptr, ptr, size_t) 749 ac_checkcast, // int(ptr, ptr, size_t, size_t, ptr) 750 ac_slow, // void(ptr, int, ptr, int, int) 751 ac_generic // int(ptr, int, ptr, int, int) 752 }; 753 754 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) { 755 // create input type (domain) 756 int num_args = (act == ac_fast ? 3 : 5); 757 int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0); 758 int argcnt = num_args; 759 LP64_ONLY(argcnt += num_size_args); // halfwords for lengths 760 const Type** fields = TypeTuple::fields(argcnt); 761 int argp = TypeFunc::Parms; 762 fields[argp++] = TypePtr::NOTNULL; // src 763 if (num_size_args == 0) { 764 fields[argp++] = TypeInt::INT; // src_pos 765 } 766 fields[argp++] = TypePtr::NOTNULL; // dest 767 if (num_size_args == 0) { 768 fields[argp++] = TypeInt::INT; // dest_pos 769 fields[argp++] = TypeInt::INT; // length 770 } 771 while (num_size_args-- > 0) { 772 fields[argp++] = TypeX_X; // size in whatevers (size_t) 773 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 774 } 775 if (act == ac_checkcast) { 776 fields[argp++] = TypePtr::NOTNULL; // super_klass 777 } 778 assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act"); 779 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 780 781 // create result type if needed 782 int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0); 783 fields = TypeTuple::fields(1); 784 if (retcnt == 0) 785 fields[TypeFunc::Parms+0] = NULL; // void 786 else 787 fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed 788 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields); 789 return TypeFunc::make(domain, range); 790 } 791 792 const TypeFunc* OptoRuntime::fast_arraycopy_Type() { 793 // This signature is simple: Two base pointers and a size_t. 794 return make_arraycopy_Type(ac_fast); 795 } 796 797 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() { 798 // An extension of fast_arraycopy_Type which adds type checking. 799 return make_arraycopy_Type(ac_checkcast); 800 } 801 802 const TypeFunc* OptoRuntime::slow_arraycopy_Type() { 803 // This signature is exactly the same as System.arraycopy. 804 // There are no intptr_t (int/long) arguments. 805 return make_arraycopy_Type(ac_slow); 806 } 807 808 const TypeFunc* OptoRuntime::generic_arraycopy_Type() { 809 // This signature is like System.arraycopy, except that it returns status. 810 return make_arraycopy_Type(ac_generic); 811 } 812 813 814 const TypeFunc* OptoRuntime::array_fill_Type() { 815 const Type** fields; 816 int argp = TypeFunc::Parms; 817 // create input type (domain): pointer, int, size_t 818 fields = TypeTuple::fields(3 LP64_ONLY( + 1)); 819 fields[argp++] = TypePtr::NOTNULL; 820 fields[argp++] = TypeInt::INT; 821 fields[argp++] = TypeX_X; // size in whatevers (size_t) 822 LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length 823 const TypeTuple *domain = TypeTuple::make(argp, fields); 824 825 // create result type 826 fields = TypeTuple::fields(1); 827 fields[TypeFunc::Parms+0] = NULL; // void 828 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 829 830 return TypeFunc::make(domain, range); 831 } 832 833 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant) 834 const TypeFunc* OptoRuntime::aescrypt_block_Type() { 835 // create input type (domain) 836 int num_args = 3; 837 int argcnt = num_args; 838 const Type** fields = TypeTuple::fields(argcnt); 839 int argp = TypeFunc::Parms; 840 fields[argp++] = TypePtr::NOTNULL; // src 841 fields[argp++] = TypePtr::NOTNULL; // dest 842 fields[argp++] = TypePtr::NOTNULL; // k array 843 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 844 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 845 846 // no result type needed 847 fields = TypeTuple::fields(1); 848 fields[TypeFunc::Parms+0] = NULL; // void 849 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 850 return TypeFunc::make(domain, range); 851 } 852 853 /** 854 * int updateBytesCRC32(int crc, byte* b, int len) 855 */ 856 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() { 857 // create input type (domain) 858 int num_args = 3; 859 int argcnt = num_args; 860 const Type** fields = TypeTuple::fields(argcnt); 861 int argp = TypeFunc::Parms; 862 fields[argp++] = TypeInt::INT; // crc 863 fields[argp++] = TypePtr::NOTNULL; // src 864 fields[argp++] = TypeInt::INT; // len 865 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 866 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 867 868 // result type needed 869 fields = TypeTuple::fields(1); 870 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 871 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 872 return TypeFunc::make(domain, range); 873 } 874 875 /** 876 * int updateBytesCRC32C(int crc, byte* buf, int len, int* table) 877 */ 878 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() { 879 // create input type (domain) 880 int num_args = 4; 881 int argcnt = num_args; 882 const Type** fields = TypeTuple::fields(argcnt); 883 int argp = TypeFunc::Parms; 884 fields[argp++] = TypeInt::INT; // crc 885 fields[argp++] = TypePtr::NOTNULL; // buf 886 fields[argp++] = TypeInt::INT; // len 887 fields[argp++] = TypePtr::NOTNULL; // table 888 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 889 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 890 891 // result type needed 892 fields = TypeTuple::fields(1); 893 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 894 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 895 return TypeFunc::make(domain, range); 896 } 897 898 /** 899 * int updateBytesAdler32(int adler, bytes* b, int off, int len) 900 */ 901 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() { 902 // create input type (domain) 903 int num_args = 3; 904 int argcnt = num_args; 905 const Type** fields = TypeTuple::fields(argcnt); 906 int argp = TypeFunc::Parms; 907 fields[argp++] = TypeInt::INT; // crc 908 fields[argp++] = TypePtr::NOTNULL; // src + offset 909 fields[argp++] = TypeInt::INT; // len 910 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 911 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 912 913 // result type needed 914 fields = TypeTuple::fields(1); 915 fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result 916 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 917 return TypeFunc::make(domain, range); 918 } 919 920 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 921 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() { 922 // create input type (domain) 923 int num_args = 5; 924 int argcnt = num_args; 925 const Type** fields = TypeTuple::fields(argcnt); 926 int argp = TypeFunc::Parms; 927 fields[argp++] = TypePtr::NOTNULL; // src 928 fields[argp++] = TypePtr::NOTNULL; // dest 929 fields[argp++] = TypePtr::NOTNULL; // k array 930 fields[argp++] = TypePtr::NOTNULL; // r array 931 fields[argp++] = TypeInt::INT; // src len 932 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 933 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 934 935 // returning cipher len (int) 936 fields = TypeTuple::fields(1); 937 fields[TypeFunc::Parms+0] = TypeInt::INT; 938 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 939 return TypeFunc::make(domain, range); 940 } 941 942 // for electronicCodeBook calls of aescrypt encrypt/decrypt, three pointers and a length, returning int 943 const TypeFunc* OptoRuntime::electronicCodeBook_aescrypt_Type() { 944 // create input type (domain) 945 int num_args = 4; 946 int argcnt = num_args; 947 const Type** fields = TypeTuple::fields(argcnt); 948 int argp = TypeFunc::Parms; 949 fields[argp++] = TypePtr::NOTNULL; // src 950 fields[argp++] = TypePtr::NOTNULL; // dest 951 fields[argp++] = TypePtr::NOTNULL; // k array 952 fields[argp++] = TypeInt::INT; // src len 953 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 954 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 955 956 // returning cipher len (int) 957 fields = TypeTuple::fields(1); 958 fields[TypeFunc::Parms + 0] = TypeInt::INT; 959 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 960 return TypeFunc::make(domain, range); 961 } 962 963 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 964 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() { 965 // create input type (domain) 966 int num_args = 7; 967 int argcnt = num_args; 968 const Type** fields = TypeTuple::fields(argcnt); 969 int argp = TypeFunc::Parms; 970 fields[argp++] = TypePtr::NOTNULL; // src 971 fields[argp++] = TypePtr::NOTNULL; // dest 972 fields[argp++] = TypePtr::NOTNULL; // k array 973 fields[argp++] = TypePtr::NOTNULL; // counter array 974 fields[argp++] = TypeInt::INT; // src len 975 fields[argp++] = TypePtr::NOTNULL; // saved_encCounter 976 fields[argp++] = TypePtr::NOTNULL; // saved used addr 977 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 978 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 979 // returning cipher len (int) 980 fields = TypeTuple::fields(1); 981 fields[TypeFunc::Parms + 0] = TypeInt::INT; 982 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 983 return TypeFunc::make(domain, range); 984 } 985 986 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int 987 const TypeFunc* OptoRuntime::galoisCounterMode_aescrypt_Type() { 988 // create input type (domain) 989 int num_args = 8; 990 int argcnt = num_args; 991 const Type** fields = TypeTuple::fields(argcnt); 992 int argp = TypeFunc::Parms; 993 fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs 994 fields[argp++] = TypeInt::INT; // int len 995 fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs 996 fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs 997 fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj 998 fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj 999 fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj 1000 fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj 1001 1002 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1003 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1004 // returning cipher len (int) 1005 fields = TypeTuple::fields(1); 1006 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1007 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1008 return TypeFunc::make(domain, range); 1009 } 1010 1011 /* 1012 * void implCompress(byte[] buf, int ofs) 1013 */ 1014 const TypeFunc* OptoRuntime::digestBase_implCompress_Type(bool is_sha3) { 1015 // create input type (domain) 1016 int num_args = is_sha3 ? 3 : 2; 1017 int argcnt = num_args; 1018 const Type** fields = TypeTuple::fields(argcnt); 1019 int argp = TypeFunc::Parms; 1020 fields[argp++] = TypePtr::NOTNULL; // buf 1021 fields[argp++] = TypePtr::NOTNULL; // state 1022 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1023 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1024 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1025 1026 // no result type needed 1027 fields = TypeTuple::fields(1); 1028 fields[TypeFunc::Parms+0] = NULL; // void 1029 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1030 return TypeFunc::make(domain, range); 1031 } 1032 1033 /* 1034 * int implCompressMultiBlock(byte[] b, int ofs, int limit) 1035 */ 1036 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type(bool is_sha3) { 1037 // create input type (domain) 1038 int num_args = is_sha3 ? 5 : 4; 1039 int argcnt = num_args; 1040 const Type** fields = TypeTuple::fields(argcnt); 1041 int argp = TypeFunc::Parms; 1042 fields[argp++] = TypePtr::NOTNULL; // buf 1043 fields[argp++] = TypePtr::NOTNULL; // state 1044 if (is_sha3) fields[argp++] = TypeInt::INT; // block_size 1045 fields[argp++] = TypeInt::INT; // ofs 1046 fields[argp++] = TypeInt::INT; // limit 1047 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1048 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1049 1050 // returning ofs (int) 1051 fields = TypeTuple::fields(1); 1052 fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs 1053 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1054 return TypeFunc::make(domain, range); 1055 } 1056 1057 const TypeFunc* OptoRuntime::multiplyToLen_Type() { 1058 // create input type (domain) 1059 int num_args = 6; 1060 int argcnt = num_args; 1061 const Type** fields = TypeTuple::fields(argcnt); 1062 int argp = TypeFunc::Parms; 1063 fields[argp++] = TypePtr::NOTNULL; // x 1064 fields[argp++] = TypeInt::INT; // xlen 1065 fields[argp++] = TypePtr::NOTNULL; // y 1066 fields[argp++] = TypeInt::INT; // ylen 1067 fields[argp++] = TypePtr::NOTNULL; // z 1068 fields[argp++] = TypeInt::INT; // zlen 1069 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1070 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1071 1072 // no result type needed 1073 fields = TypeTuple::fields(1); 1074 fields[TypeFunc::Parms+0] = NULL; 1075 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1076 return TypeFunc::make(domain, range); 1077 } 1078 1079 const TypeFunc* OptoRuntime::squareToLen_Type() { 1080 // create input type (domain) 1081 int num_args = 4; 1082 int argcnt = num_args; 1083 const Type** fields = TypeTuple::fields(argcnt); 1084 int argp = TypeFunc::Parms; 1085 fields[argp++] = TypePtr::NOTNULL; // x 1086 fields[argp++] = TypeInt::INT; // len 1087 fields[argp++] = TypePtr::NOTNULL; // z 1088 fields[argp++] = TypeInt::INT; // zlen 1089 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1090 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1091 1092 // no result type needed 1093 fields = TypeTuple::fields(1); 1094 fields[TypeFunc::Parms+0] = NULL; 1095 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1096 return TypeFunc::make(domain, range); 1097 } 1098 1099 // for mulAdd calls, 2 pointers and 3 ints, returning int 1100 const TypeFunc* OptoRuntime::mulAdd_Type() { 1101 // create input type (domain) 1102 int num_args = 5; 1103 int argcnt = num_args; 1104 const Type** fields = TypeTuple::fields(argcnt); 1105 int argp = TypeFunc::Parms; 1106 fields[argp++] = TypePtr::NOTNULL; // out 1107 fields[argp++] = TypePtr::NOTNULL; // in 1108 fields[argp++] = TypeInt::INT; // offset 1109 fields[argp++] = TypeInt::INT; // len 1110 fields[argp++] = TypeInt::INT; // k 1111 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1112 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1113 1114 // returning carry (int) 1115 fields = TypeTuple::fields(1); 1116 fields[TypeFunc::Parms+0] = TypeInt::INT; 1117 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields); 1118 return TypeFunc::make(domain, range); 1119 } 1120 1121 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() { 1122 // create input type (domain) 1123 int num_args = 7; 1124 int argcnt = num_args; 1125 const Type** fields = TypeTuple::fields(argcnt); 1126 int argp = TypeFunc::Parms; 1127 fields[argp++] = TypePtr::NOTNULL; // a 1128 fields[argp++] = TypePtr::NOTNULL; // b 1129 fields[argp++] = TypePtr::NOTNULL; // n 1130 fields[argp++] = TypeInt::INT; // len 1131 fields[argp++] = TypeLong::LONG; // inv 1132 fields[argp++] = Type::HALF; 1133 fields[argp++] = TypePtr::NOTNULL; // result 1134 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1135 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1136 1137 // result type needed 1138 fields = TypeTuple::fields(1); 1139 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1140 1141 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1142 return TypeFunc::make(domain, range); 1143 } 1144 1145 const TypeFunc* OptoRuntime::montgomerySquare_Type() { 1146 // create input type (domain) 1147 int num_args = 6; 1148 int argcnt = num_args; 1149 const Type** fields = TypeTuple::fields(argcnt); 1150 int argp = TypeFunc::Parms; 1151 fields[argp++] = TypePtr::NOTNULL; // a 1152 fields[argp++] = TypePtr::NOTNULL; // n 1153 fields[argp++] = TypeInt::INT; // len 1154 fields[argp++] = TypeLong::LONG; // inv 1155 fields[argp++] = Type::HALF; 1156 fields[argp++] = TypePtr::NOTNULL; // result 1157 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1158 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1159 1160 // result type needed 1161 fields = TypeTuple::fields(1); 1162 fields[TypeFunc::Parms+0] = TypePtr::NOTNULL; 1163 1164 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1165 return TypeFunc::make(domain, range); 1166 } 1167 1168 const TypeFunc * OptoRuntime::bigIntegerShift_Type() { 1169 int argcnt = 5; 1170 const Type** fields = TypeTuple::fields(argcnt); 1171 int argp = TypeFunc::Parms; 1172 fields[argp++] = TypePtr::NOTNULL; // newArr 1173 fields[argp++] = TypePtr::NOTNULL; // oldArr 1174 fields[argp++] = TypeInt::INT; // newIdx 1175 fields[argp++] = TypeInt::INT; // shiftCount 1176 fields[argp++] = TypeInt::INT; // numIter 1177 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1178 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1179 1180 // no result type needed 1181 fields = TypeTuple::fields(1); 1182 fields[TypeFunc::Parms + 0] = NULL; 1183 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1184 return TypeFunc::make(domain, range); 1185 } 1186 1187 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() { 1188 // create input type (domain) 1189 int num_args = 4; 1190 int argcnt = num_args; 1191 const Type** fields = TypeTuple::fields(argcnt); 1192 int argp = TypeFunc::Parms; 1193 fields[argp++] = TypePtr::NOTNULL; // obja 1194 fields[argp++] = TypePtr::NOTNULL; // objb 1195 fields[argp++] = TypeInt::INT; // length, number of elements 1196 fields[argp++] = TypeInt::INT; // log2scale, element size 1197 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1198 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1199 1200 //return mismatch index (int) 1201 fields = TypeTuple::fields(1); 1202 fields[TypeFunc::Parms + 0] = TypeInt::INT; 1203 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1204 return TypeFunc::make(domain, range); 1205 } 1206 1207 // GHASH block processing 1208 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() { 1209 int argcnt = 4; 1210 1211 const Type** fields = TypeTuple::fields(argcnt); 1212 int argp = TypeFunc::Parms; 1213 fields[argp++] = TypePtr::NOTNULL; // state 1214 fields[argp++] = TypePtr::NOTNULL; // subkeyH 1215 fields[argp++] = TypePtr::NOTNULL; // data 1216 fields[argp++] = TypeInt::INT; // blocks 1217 assert(argp == TypeFunc::Parms+argcnt, "correct decoding"); 1218 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1219 1220 // result type needed 1221 fields = TypeTuple::fields(1); 1222 fields[TypeFunc::Parms+0] = NULL; // void 1223 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1224 return TypeFunc::make(domain, range); 1225 } 1226 1227 // ChaCha20 Block function 1228 const TypeFunc* OptoRuntime::chacha20Block_Type() { 1229 int argcnt = 2; 1230 1231 const Type** fields = TypeTuple::fields(argcnt); 1232 int argp = TypeFunc::Parms; 1233 fields[argp++] = TypePtr::NOTNULL; // state 1234 fields[argp++] = TypePtr::NOTNULL; // result 1235 1236 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1237 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields); 1238 1239 // result type needed 1240 fields = TypeTuple::fields(1); 1241 fields[TypeFunc::Parms + 0] = TypeInt::INT; // key stream outlen as int 1242 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1243 return TypeFunc::make(domain, range); 1244 } 1245 1246 // Base64 encode function 1247 const TypeFunc* OptoRuntime::base64_encodeBlock_Type() { 1248 int argcnt = 6; 1249 1250 const Type** fields = TypeTuple::fields(argcnt); 1251 int argp = TypeFunc::Parms; 1252 fields[argp++] = TypePtr::NOTNULL; // src array 1253 fields[argp++] = TypeInt::INT; // offset 1254 fields[argp++] = TypeInt::INT; // length 1255 fields[argp++] = TypePtr::NOTNULL; // dest array 1256 fields[argp++] = TypeInt::INT; // dp 1257 fields[argp++] = TypeInt::BOOL; // isURL 1258 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1259 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1260 1261 // result type needed 1262 fields = TypeTuple::fields(1); 1263 fields[TypeFunc::Parms + 0] = NULL; // void 1264 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1265 return TypeFunc::make(domain, range); 1266 } 1267 // Base64 decode function 1268 const TypeFunc* OptoRuntime::base64_decodeBlock_Type() { 1269 int argcnt = 7; 1270 1271 const Type** fields = TypeTuple::fields(argcnt); 1272 int argp = TypeFunc::Parms; 1273 fields[argp++] = TypePtr::NOTNULL; // src array 1274 fields[argp++] = TypeInt::INT; // src offset 1275 fields[argp++] = TypeInt::INT; // src length 1276 fields[argp++] = TypePtr::NOTNULL; // dest array 1277 fields[argp++] = TypeInt::INT; // dest offset 1278 fields[argp++] = TypeInt::BOOL; // isURL 1279 fields[argp++] = TypeInt::BOOL; // isMIME 1280 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1281 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1282 1283 // result type needed 1284 fields = TypeTuple::fields(1); 1285 fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst 1286 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields); 1287 return TypeFunc::make(domain, range); 1288 } 1289 1290 // Poly1305 processMultipleBlocks function 1291 const TypeFunc* OptoRuntime::poly1305_processBlocks_Type() { 1292 int argcnt = 4; 1293 1294 const Type** fields = TypeTuple::fields(argcnt); 1295 int argp = TypeFunc::Parms; 1296 fields[argp++] = TypePtr::NOTNULL; // input array 1297 fields[argp++] = TypeInt::INT; // input length 1298 fields[argp++] = TypePtr::NOTNULL; // accumulator array 1299 fields[argp++] = TypePtr::NOTNULL; // r array 1300 assert(argp == TypeFunc::Parms + argcnt, "correct decoding"); 1301 const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields); 1302 1303 // result type needed 1304 fields = TypeTuple::fields(1); 1305 fields[TypeFunc::Parms + 0] = NULL; // void 1306 const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields); 1307 return TypeFunc::make(domain, range); 1308 } 1309 1310 //------------- Interpreter state access for on stack replacement 1311 const TypeFunc* OptoRuntime::osr_end_Type() { 1312 // create input type (domain) 1313 const Type **fields = TypeTuple::fields(1); 1314 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf 1315 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields); 1316 1317 // create result type 1318 fields = TypeTuple::fields(1); 1319 // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop 1320 fields[TypeFunc::Parms+0] = NULL; // void 1321 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields); 1322 return TypeFunc::make(domain, range); 1323 } 1324 1325 //------------------------------------------------------------------------------------- 1326 // register policy 1327 1328 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) { 1329 assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register"); 1330 switch (register_save_policy[reg]) { 1331 case 'C': return false; //SOC 1332 case 'E': return true ; //SOE 1333 case 'N': return false; //NS 1334 case 'A': return false; //AS 1335 } 1336 ShouldNotReachHere(); 1337 return false; 1338 } 1339 1340 //----------------------------------------------------------------------- 1341 // Exceptions 1342 // 1343 1344 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg); 1345 1346 // The method is an entry that is always called by a C++ method not 1347 // directly from compiled code. Compiled code will call the C++ method following. 1348 // We can't allow async exception to be installed during exception processing. 1349 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm)) 1350 // The frame we rethrow the exception to might not have been processed by the GC yet. 1351 // The stack watermark barrier takes care of detecting that and ensuring the frame 1352 // has updated oops. 1353 StackWatermarkSet::after_unwind(current); 1354 1355 // Do not confuse exception_oop with pending_exception. The exception_oop 1356 // is only used to pass arguments into the method. Not for general 1357 // exception handling. DO NOT CHANGE IT to use pending_exception, since 1358 // the runtime stubs checks this on exit. 1359 assert(current->exception_oop() != NULL, "exception oop is found"); 1360 address handler_address = NULL; 1361 1362 Handle exception(current, current->exception_oop()); 1363 address pc = current->exception_pc(); 1364 1365 // Clear out the exception oop and pc since looking up an 1366 // exception handler can cause class loading, which might throw an 1367 // exception and those fields are expected to be clear during 1368 // normal bytecode execution. 1369 current->clear_exception_oop_and_pc(); 1370 1371 LogTarget(Info, exceptions) lt; 1372 if (lt.is_enabled()) { 1373 ResourceMark rm; 1374 LogStream ls(lt); 1375 trace_exception(&ls, exception(), pc, ""); 1376 } 1377 1378 // for AbortVMOnException flag 1379 Exceptions::debug_check_abort(exception); 1380 1381 #ifdef ASSERT 1382 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1383 // should throw an exception here 1384 ShouldNotReachHere(); 1385 } 1386 #endif 1387 1388 // new exception handling: this method is entered only from adapters 1389 // exceptions from compiled java methods are handled in compiled code 1390 // using rethrow node 1391 1392 nm = CodeCache::find_nmethod(pc); 1393 assert(nm != NULL, "No NMethod found"); 1394 if (nm->is_native_method()) { 1395 fatal("Native method should not have path to exception handling"); 1396 } else { 1397 // we are switching to old paradigm: search for exception handler in caller_frame 1398 // instead in exception handler of caller_frame.sender() 1399 1400 if (JvmtiExport::can_post_on_exceptions()) { 1401 // "Full-speed catching" is not necessary here, 1402 // since we're notifying the VM on every catch. 1403 // Force deoptimization and the rest of the lookup 1404 // will be fine. 1405 deoptimize_caller_frame(current); 1406 } 1407 1408 // Check the stack guard pages. If enabled, look for handler in this frame; 1409 // otherwise, forcibly unwind the frame. 1410 // 1411 // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate. 1412 bool force_unwind = !current->stack_overflow_state()->reguard_stack(); 1413 bool deopting = false; 1414 if (nm->is_deopt_pc(pc)) { 1415 deopting = true; 1416 RegisterMap map(current, 1417 RegisterMap::UpdateMap::skip, 1418 RegisterMap::ProcessFrames::include, 1419 RegisterMap::WalkContinuation::skip); 1420 frame deoptee = current->last_frame().sender(&map); 1421 assert(deoptee.is_deoptimized_frame(), "must be deopted"); 1422 // Adjust the pc back to the original throwing pc 1423 pc = deoptee.pc(); 1424 } 1425 1426 // If we are forcing an unwind because of stack overflow then deopt is 1427 // irrelevant since we are throwing the frame away anyway. 1428 1429 if (deopting && !force_unwind) { 1430 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1431 } else { 1432 1433 handler_address = 1434 force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc); 1435 1436 if (handler_address == NULL) { 1437 bool recursive_exception = false; 1438 handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1439 assert (handler_address != NULL, "must have compiled handler"); 1440 // Update the exception cache only when the unwind was not forced 1441 // and there didn't happen another exception during the computation of the 1442 // compiled exception handler. Checking for exception oop equality is not 1443 // sufficient because some exceptions are pre-allocated and reused. 1444 if (!force_unwind && !recursive_exception) { 1445 nm->add_handler_for_exception_and_pc(exception,pc,handler_address); 1446 } 1447 } else { 1448 #ifdef ASSERT 1449 bool recursive_exception = false; 1450 address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception); 1451 vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT, 1452 p2i(handler_address), p2i(computed_address)); 1453 #endif 1454 } 1455 } 1456 1457 current->set_exception_pc(pc); 1458 current->set_exception_handler_pc(handler_address); 1459 1460 // Check if the exception PC is a MethodHandle call site. 1461 current->set_is_method_handle_return(nm->is_method_handle_return(pc)); 1462 } 1463 1464 // Restore correct return pc. Was saved above. 1465 current->set_exception_oop(exception()); 1466 return handler_address; 1467 1468 JRT_END 1469 1470 // We are entering here from exception_blob 1471 // If there is a compiled exception handler in this method, we will continue there; 1472 // otherwise we will unwind the stack and continue at the caller of top frame method 1473 // Note we enter without the usual JRT wrapper. We will call a helper routine that 1474 // will do the normal VM entry. We do it this way so that we can see if the nmethod 1475 // we looked up the handler for has been deoptimized in the meantime. If it has been 1476 // we must not use the handler and instead return the deopt blob. 1477 address OptoRuntime::handle_exception_C(JavaThread* current) { 1478 // 1479 // We are in Java not VM and in debug mode we have a NoHandleMark 1480 // 1481 #ifndef PRODUCT 1482 SharedRuntime::_find_handler_ctr++; // find exception handler 1483 #endif 1484 debug_only(NoHandleMark __hm;) 1485 nmethod* nm = NULL; 1486 address handler_address = NULL; 1487 { 1488 // Enter the VM 1489 1490 ResetNoHandleMark rnhm; 1491 handler_address = handle_exception_C_helper(current, nm); 1492 } 1493 1494 // Back in java: Use no oops, DON'T safepoint 1495 1496 // Now check to see if the handler we are returning is in a now 1497 // deoptimized frame 1498 1499 if (nm != NULL) { 1500 RegisterMap map(current, 1501 RegisterMap::UpdateMap::skip, 1502 RegisterMap::ProcessFrames::skip, 1503 RegisterMap::WalkContinuation::skip); 1504 frame caller = current->last_frame().sender(&map); 1505 #ifdef ASSERT 1506 assert(caller.is_compiled_frame(), "must be"); 1507 #endif // ASSERT 1508 if (caller.is_deoptimized_frame()) { 1509 handler_address = SharedRuntime::deopt_blob()->unpack_with_exception(); 1510 } 1511 } 1512 return handler_address; 1513 } 1514 1515 //------------------------------rethrow---------------------------------------- 1516 // We get here after compiled code has executed a 'RethrowNode'. The callee 1517 // is either throwing or rethrowing an exception. The callee-save registers 1518 // have been restored, synchronized objects have been unlocked and the callee 1519 // stack frame has been removed. The return address was passed in. 1520 // Exception oop is passed as the 1st argument. This routine is then called 1521 // from the stub. On exit, we know where to jump in the caller's code. 1522 // After this C code exits, the stub will pop his frame and end in a jump 1523 // (instead of a return). We enter the caller's default handler. 1524 // 1525 // This must be JRT_LEAF: 1526 // - caller will not change its state as we cannot block on exit, 1527 // therefore raw_exception_handler_for_return_address is all it takes 1528 // to handle deoptimized blobs 1529 // 1530 // However, there needs to be a safepoint check in the middle! So compiled 1531 // safepoints are completely watertight. 1532 // 1533 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier. 1534 // 1535 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE* 1536 // 1537 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) { 1538 1539 // Enable WXWrite: the function called directly by compiled code. 1540 MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, thread)); 1541 1542 // ret_pc will have been loaded from the stack, so for AArch64 will be signed. 1543 // This needs authenticating, but to do that here requires the fp of the previous frame. 1544 // A better way of doing it would be authenticate in the caller by adding a 1545 // AuthPAuthNode and using it in GraphKit::gen_stub. For now, just strip it. 1546 AARCH64_PORT_ONLY(ret_pc = pauth_strip_pointer(ret_pc)); 1547 1548 #ifndef PRODUCT 1549 SharedRuntime::_rethrow_ctr++; // count rethrows 1550 #endif 1551 assert (exception != NULL, "should have thrown a NULLPointerException"); 1552 #ifdef ASSERT 1553 if (!(exception->is_a(vmClasses::Throwable_klass()))) { 1554 // should throw an exception here 1555 ShouldNotReachHere(); 1556 } 1557 #endif 1558 1559 thread->set_vm_result(exception); 1560 // Frame not compiled (handles deoptimization blob) 1561 return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc); 1562 } 1563 1564 1565 const TypeFunc *OptoRuntime::rethrow_Type() { 1566 // create input type (domain) 1567 const Type **fields = TypeTuple::fields(1); 1568 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1569 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1570 1571 // create result type (range) 1572 fields = TypeTuple::fields(1); 1573 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop 1574 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields); 1575 1576 return TypeFunc::make(domain, range); 1577 } 1578 1579 1580 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) { 1581 // Deoptimize the caller before continuing, as the compiled 1582 // exception handler table may not be valid. 1583 if (!StressCompiledExceptionHandlers && doit) { 1584 deoptimize_caller_frame(thread); 1585 } 1586 } 1587 1588 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) { 1589 // Called from within the owner thread, so no need for safepoint 1590 RegisterMap reg_map(thread, 1591 RegisterMap::UpdateMap::include, 1592 RegisterMap::ProcessFrames::include, 1593 RegisterMap::WalkContinuation::skip); 1594 frame stub_frame = thread->last_frame(); 1595 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1596 frame caller_frame = stub_frame.sender(®_map); 1597 1598 // Deoptimize the caller frame. 1599 Deoptimization::deoptimize_frame(thread, caller_frame.id()); 1600 } 1601 1602 1603 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) { 1604 // Called from within the owner thread, so no need for safepoint 1605 RegisterMap reg_map(thread, 1606 RegisterMap::UpdateMap::include, 1607 RegisterMap::ProcessFrames::include, 1608 RegisterMap::WalkContinuation::skip); 1609 frame stub_frame = thread->last_frame(); 1610 assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check"); 1611 frame caller_frame = stub_frame.sender(®_map); 1612 return caller_frame.is_deoptimized_frame(); 1613 } 1614 1615 1616 const TypeFunc *OptoRuntime::register_finalizer_Type() { 1617 // create input type (domain) 1618 const Type **fields = TypeTuple::fields(1); 1619 fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // oop; Receiver 1620 // // The JavaThread* is passed to each routine as the last argument 1621 // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // JavaThread *; Executing thread 1622 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields); 1623 1624 // create result type (range) 1625 fields = TypeTuple::fields(0); 1626 1627 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1628 1629 return TypeFunc::make(domain,range); 1630 } 1631 1632 #if INCLUDE_JFR 1633 const TypeFunc *OptoRuntime::class_id_load_barrier_Type() { 1634 // create input type (domain) 1635 const Type **fields = TypeTuple::fields(1); 1636 fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS; 1637 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields); 1638 1639 // create result type (range) 1640 fields = TypeTuple::fields(0); 1641 1642 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields); 1643 1644 return TypeFunc::make(domain,range); 1645 } 1646 #endif 1647 1648 //----------------------------------------------------------------------------- 1649 // Dtrace support. entry and exit probes have the same signature 1650 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() { 1651 // create input type (domain) 1652 const Type **fields = TypeTuple::fields(2); 1653 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1654 fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM; // Method*; Method we are entering 1655 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1656 1657 // create result type (range) 1658 fields = TypeTuple::fields(0); 1659 1660 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1661 1662 return TypeFunc::make(domain,range); 1663 } 1664 1665 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() { 1666 // create input type (domain) 1667 const Type **fields = TypeTuple::fields(2); 1668 fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage 1669 fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL; // oop; newly allocated object 1670 1671 const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields); 1672 1673 // create result type (range) 1674 fields = TypeTuple::fields(0); 1675 1676 const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields); 1677 1678 return TypeFunc::make(domain,range); 1679 } 1680 1681 1682 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* current)) 1683 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1684 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1685 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1686 JRT_END 1687 1688 //----------------------------------------------------------------------------- 1689 1690 NamedCounter * volatile OptoRuntime::_named_counters = NULL; 1691 1692 // 1693 // dump the collected NamedCounters. 1694 // 1695 void OptoRuntime::print_named_counters() { 1696 int total_lock_count = 0; 1697 int eliminated_lock_count = 0; 1698 1699 NamedCounter* c = _named_counters; 1700 while (c) { 1701 if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) { 1702 int count = c->count(); 1703 if (count > 0) { 1704 bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter; 1705 if (Verbose) { 1706 tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : ""); 1707 } 1708 total_lock_count += count; 1709 if (eliminated) { 1710 eliminated_lock_count += count; 1711 } 1712 } 1713 #if INCLUDE_RTM_OPT 1714 } else if (c->tag() == NamedCounter::RTMLockingCounter) { 1715 RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters(); 1716 if (rlc->nonzero()) { 1717 tty->print_cr("%s", c->name()); 1718 rlc->print_on(tty); 1719 } 1720 #endif 1721 } 1722 c = c->next(); 1723 } 1724 if (total_lock_count > 0) { 1725 tty->print_cr("dynamic locks: %d", total_lock_count); 1726 if (eliminated_lock_count) { 1727 tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count, 1728 (int)(eliminated_lock_count * 100.0 / total_lock_count)); 1729 } 1730 } 1731 } 1732 1733 // 1734 // Allocate a new NamedCounter. The JVMState is used to generate the 1735 // name which consists of method@line for the inlining tree. 1736 // 1737 1738 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) { 1739 int max_depth = youngest_jvms->depth(); 1740 1741 // Visit scopes from youngest to oldest. 1742 bool first = true; 1743 stringStream st; 1744 for (int depth = max_depth; depth >= 1; depth--) { 1745 JVMState* jvms = youngest_jvms->of_depth(depth); 1746 ciMethod* m = jvms->has_method() ? jvms->method() : NULL; 1747 if (!first) { 1748 st.print(" "); 1749 } else { 1750 first = false; 1751 } 1752 int bci = jvms->bci(); 1753 if (bci < 0) bci = 0; 1754 if (m != NULL) { 1755 st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8()); 1756 } else { 1757 st.print("no method"); 1758 } 1759 st.print("@%d", bci); 1760 // To print linenumbers instead of bci use: m->line_number_from_bci(bci) 1761 } 1762 NamedCounter* c; 1763 if (tag == NamedCounter::RTMLockingCounter) { 1764 c = new RTMLockingNamedCounter(st.freeze()); 1765 } else { 1766 c = new NamedCounter(st.freeze(), tag); 1767 } 1768 1769 // atomically add the new counter to the head of the list. We only 1770 // add counters so this is safe. 1771 NamedCounter* head; 1772 do { 1773 c->set_next(NULL); 1774 head = _named_counters; 1775 c->set_next(head); 1776 } while (Atomic::cmpxchg(&_named_counters, head, c) != head); 1777 return c; 1778 } 1779 1780 int trace_exception_counter = 0; 1781 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) { 1782 trace_exception_counter++; 1783 stringStream tempst; 1784 1785 tempst.print("%d [Exception (%s): ", trace_exception_counter, msg); 1786 exception_oop->print_value_on(&tempst); 1787 tempst.print(" in "); 1788 CodeBlob* blob = CodeCache::find_blob(exception_pc); 1789 if (blob->is_compiled()) { 1790 CompiledMethod* cm = blob->as_compiled_method_or_null(); 1791 cm->method()->print_value_on(&tempst); 1792 } else if (blob->is_runtime_stub()) { 1793 tempst.print("<runtime-stub>"); 1794 } else { 1795 tempst.print("<unknown>"); 1796 } 1797 tempst.print(" at " INTPTR_FORMAT, p2i(exception_pc)); 1798 tempst.print("]"); 1799 1800 st->print_raw_cr(tempst.freeze()); 1801 }