1 /*
   2  * Copyright (c) 1998, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/vmClasses.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "code/vtableStubs.hpp"
  33 #include "compiler/compilationMemoryStatistic.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/g1/g1HeapRegion.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/collectedHeap.hpp"
  39 #include "gc/shared/gcLocker.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "logging/log.hpp"
  44 #include "logging/logStream.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/objArrayKlass.hpp"
  48 #include "oops/klass.inline.hpp"
  49 #include "oops/oop.inline.hpp"
  50 #include "oops/typeArrayOop.inline.hpp"
  51 #include "opto/ad.hpp"
  52 #include "opto/addnode.hpp"
  53 #include "opto/callnode.hpp"
  54 #include "opto/cfgnode.hpp"
  55 #include "opto/graphKit.hpp"
  56 #include "opto/machnode.hpp"
  57 #include "opto/matcher.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/output.hpp"
  61 #include "opto/runtime.hpp"
  62 #include "opto/subnode.hpp"
  63 #include "prims/jvmtiExport.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/interfaceSupport.inline.hpp"
  68 #include "runtime/javaCalls.hpp"
  69 #include "runtime/sharedRuntime.hpp"
  70 #include "runtime/signature.hpp"
  71 #include "runtime/stackWatermarkSet.hpp"
  72 #include "runtime/synchronizer.hpp"
  73 #include "runtime/threadCritical.hpp"
  74 #include "runtime/threadWXSetters.inline.hpp"
  75 #include "runtime/vframe.hpp"
  76 #include "runtime/vframeArray.hpp"
  77 #include "runtime/vframe_hp.hpp"
  78 #include "utilities/copy.hpp"
  79 #include "utilities/preserveException.hpp"
  80 
  81 
  82 // For debugging purposes:
  83 //  To force FullGCALot inside a runtime function, add the following two lines
  84 //
  85 //  Universe::release_fullgc_alot_dummy();
  86 //  Universe::heap()->collect();
  87 //
  88 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  89 
  90 
  91 #define C2_BLOB_FIELD_DEFINE(name, type) \
  92   type OptoRuntime:: BLOB_FIELD_NAME(name)  = nullptr;
  93 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
  94 #define C2_STUB_FIELD_DEFINE(name, f, t, r) \
  95   address OptoRuntime:: C2_STUB_FIELD_NAME(name) = nullptr;
  96 #define C2_JVMTI_STUB_FIELD_DEFINE(name) \
  97   address OptoRuntime:: STUB_FIELD_NAME(name) = nullptr;
  98 C2_STUBS_DO(C2_BLOB_FIELD_DEFINE, C2_STUB_FIELD_DEFINE, C2_JVMTI_STUB_FIELD_DEFINE)
  99 #undef C2_BLOB_FIELD_DEFINE
 100 #undef C2_STUB_FIELD_DEFINE
 101 #undef C2_JVMTI_STUB_FIELD_DEFINE
 102 
 103 #define C2_BLOB_NAME_DEFINE(name, type)  "C2 Runtime " # name "_blob",
 104 #define C2_STUB_NAME_DEFINE(name, f, t, r)  "C2 Runtime " # name,
 105 #define C2_JVMTI_STUB_NAME_DEFINE(name)  "C2 Runtime " # name,
 106 const char* OptoRuntime::_stub_names[] = {
 107   C2_STUBS_DO(C2_BLOB_NAME_DEFINE, C2_STUB_NAME_DEFINE, C2_JVMTI_STUB_NAME_DEFINE)
 108 };
 109 #undef C2_BLOB_NAME_DEFINE
 110 #undef C2_STUB_NAME_DEFINE
 111 #undef C2_JVMTI_STUB_NAME_DEFINE
 112 
 113 // This should be called in an assertion at the start of OptoRuntime routines
 114 // which are entered from compiled code (all of them)
 115 #ifdef ASSERT
 116 static bool check_compiled_frame(JavaThread* thread) {
 117   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 118   RegisterMap map(thread,
 119                   RegisterMap::UpdateMap::skip,
 120                   RegisterMap::ProcessFrames::include,
 121                   RegisterMap::WalkContinuation::skip);
 122   frame caller = thread->last_frame().sender(&map);
 123   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 124   return true;
 125 }
 126 #endif // ASSERT
 127 
 128 /*
 129 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, return_pc) \
 130   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, return_pc); \
 131   if (var == nullptr) { return false; }
 132 */
 133 
 134 #define GEN_C2_BLOB(name, type)                    \
 135   BLOB_FIELD_NAME(name) =                       \
 136     generate_ ## name ## _blob();                  \
 137   if (BLOB_FIELD_NAME(name) == nullptr) { return false; }
 138 
 139 // a few helper macros to conjure up generate_stub call arguments
 140 #define C2_STUB_FIELD_NAME(name) _ ## name ## _Java
 141 #define C2_STUB_TYPEFUNC(name) name ## _Type
 142 #define C2_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, name ## _C)
 143 #define C2_STUB_NAME(name) stub_name(OptoStubId::name ## _id)
 144 
 145 // Almost all the C functions targeted from the generated stubs are
 146 // implemented locally to OptoRuntime with names that can be generated
 147 // from the stub name by appending suffix '_C'. However, in two cases
 148 // a common target method also needs to be called from shared runtime
 149 // stubs. In these two cases the opto stubs rely on method
 150 // imlementations defined in class SharedRuntime. The following
 151 // defines temporarily rebind the generated names to reference the
 152 // relevant implementations.
 153 
 154 #define GEN_C2_STUB(name, fancy_jump, pass_tls, pass_retpc  )         \
 155   C2_STUB_FIELD_NAME(name) =                                          \
 156     generate_stub(env,                                                  \
 157                   C2_STUB_TYPEFUNC(name),                             \
 158                   C2_STUB_C_FUNC(name),                               \
 159                   C2_STUB_NAME(name),                                 \
 160                   fancy_jump,                                           \
 161                   pass_tls,                                             \
 162                   pass_retpc);                                          \
 163   if (C2_STUB_FIELD_NAME(name) == nullptr) { return false; }          \
 164 
 165 #define C2_JVMTI_STUB_C_FUNC(name) CAST_FROM_FN_PTR(address, SharedRuntime::name)
 166 
 167 #define GEN_C2_JVMTI_STUB(name)                                       \
 168   STUB_FIELD_NAME(name) =                                               \
 169     generate_stub(env,                                                  \
 170                   notify_jvmti_vthread_Type,                            \
 171                   C2_JVMTI_STUB_C_FUNC(name),                         \
 172                   C2_STUB_NAME(name),                                 \
 173                   0,                                                    \
 174                   true,                                                 \
 175                   false);                                               \
 176   if (STUB_FIELD_NAME(name) == nullptr) { return false; }               \
 177 
 178 bool OptoRuntime::generate(ciEnv* env) {
 179 
 180   C2_STUBS_DO(GEN_C2_BLOB, GEN_C2_STUB, GEN_C2_JVMTI_STUB)
 181 
 182   return true;
 183 }
 184 
 185 #undef GEN_C2_BLOB
 186 
 187 #undef C2_STUB_FIELD_NAME
 188 #undef C2_STUB_TYPEFUNC
 189 #undef C2_STUB_C_FUNC
 190 #undef C2_STUB_NAME
 191 #undef GEN_C2_STUB
 192 
 193 #undef C2_JVMTI_STUB_C_FUNC
 194 #undef GEN_C2_JVMTI_STUB
 195 // #undef gen
 196 
 197 const TypeFunc* OptoRuntime::_new_instance_Type                   = nullptr;
 198 const TypeFunc* OptoRuntime::_new_array_Type                      = nullptr;
 199 const TypeFunc* OptoRuntime::_multianewarray2_Type                = nullptr;
 200 const TypeFunc* OptoRuntime::_multianewarray3_Type                = nullptr;
 201 const TypeFunc* OptoRuntime::_multianewarray4_Type                = nullptr;
 202 const TypeFunc* OptoRuntime::_multianewarray5_Type                = nullptr;
 203 const TypeFunc* OptoRuntime::_multianewarrayN_Type                = nullptr;
 204 const TypeFunc* OptoRuntime::_complete_monitor_enter_Type         = nullptr;
 205 const TypeFunc* OptoRuntime::_complete_monitor_exit_Type          = nullptr;
 206 const TypeFunc* OptoRuntime::_monitor_notify_Type                 = nullptr;
 207 const TypeFunc* OptoRuntime::_uncommon_trap_Type                  = nullptr;
 208 const TypeFunc* OptoRuntime::_athrow_Type                         = nullptr;
 209 const TypeFunc* OptoRuntime::_rethrow_Type                        = nullptr;
 210 const TypeFunc* OptoRuntime::_Math_D_D_Type                       = nullptr;
 211 const TypeFunc* OptoRuntime::_Math_DD_D_Type                      = nullptr;
 212 const TypeFunc* OptoRuntime::_modf_Type                           = nullptr;
 213 const TypeFunc* OptoRuntime::_l2f_Type                            = nullptr;
 214 const TypeFunc* OptoRuntime::_void_long_Type                      = nullptr;
 215 const TypeFunc* OptoRuntime::_void_void_Type                      = nullptr;
 216 const TypeFunc* OptoRuntime::_jfr_write_checkpoint_Type           = nullptr;
 217 const TypeFunc* OptoRuntime::_flush_windows_Type                  = nullptr;
 218 const TypeFunc* OptoRuntime::_fast_arraycopy_Type                 = nullptr;
 219 const TypeFunc* OptoRuntime::_checkcast_arraycopy_Type            = nullptr;
 220 const TypeFunc* OptoRuntime::_generic_arraycopy_Type              = nullptr;
 221 const TypeFunc* OptoRuntime::_slow_arraycopy_Type                 = nullptr;
 222 const TypeFunc* OptoRuntime::_unsafe_setmemory_Type               = nullptr;
 223 const TypeFunc* OptoRuntime::_array_fill_Type                     = nullptr;
 224 const TypeFunc* OptoRuntime::_array_sort_Type                     = nullptr;
 225 const TypeFunc* OptoRuntime::_array_partition_Type                = nullptr;
 226 const TypeFunc* OptoRuntime::_aescrypt_block_Type                 = nullptr;
 227 const TypeFunc* OptoRuntime::_cipherBlockChaining_aescrypt_Type   = nullptr;
 228 const TypeFunc* OptoRuntime::_electronicCodeBook_aescrypt_Type    = nullptr;
 229 const TypeFunc* OptoRuntime::_counterMode_aescrypt_Type           = nullptr;
 230 const TypeFunc* OptoRuntime::_galoisCounterMode_aescrypt_Type     = nullptr;
 231 const TypeFunc* OptoRuntime::_digestBase_implCompress_with_sha3_Type      = nullptr;
 232 const TypeFunc* OptoRuntime::_digestBase_implCompress_without_sha3_Type   = nullptr;
 233 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_with_sha3_Type    = nullptr;
 234 const TypeFunc* OptoRuntime::_digestBase_implCompressMB_without_sha3_Type = nullptr;
 235 const TypeFunc* OptoRuntime::_double_keccak_Type                  = nullptr;
 236 const TypeFunc* OptoRuntime::_multiplyToLen_Type                  = nullptr;
 237 const TypeFunc* OptoRuntime::_montgomeryMultiply_Type             = nullptr;
 238 const TypeFunc* OptoRuntime::_montgomerySquare_Type               = nullptr;
 239 const TypeFunc* OptoRuntime::_squareToLen_Type                    = nullptr;
 240 const TypeFunc* OptoRuntime::_mulAdd_Type                         = nullptr;
 241 const TypeFunc* OptoRuntime::_bigIntegerShift_Type                = nullptr;
 242 const TypeFunc* OptoRuntime::_vectorizedMismatch_Type             = nullptr;
 243 const TypeFunc* OptoRuntime::_ghash_processBlocks_Type            = nullptr;
 244 const TypeFunc* OptoRuntime::_chacha20Block_Type                  = nullptr;
 245 const TypeFunc* OptoRuntime::_kyberNtt_Type                       = nullptr;
 246 const TypeFunc* OptoRuntime::_kyberInverseNtt_Type                = nullptr;
 247 const TypeFunc* OptoRuntime::_kyberNttMult_Type                   = nullptr;
 248 const TypeFunc* OptoRuntime::_kyberAddPoly_2_Type                 = nullptr;
 249 const TypeFunc* OptoRuntime::_kyberAddPoly_3_Type                 = nullptr;
 250 const TypeFunc* OptoRuntime::_kyber12To16_Type                    = nullptr;
 251 const TypeFunc* OptoRuntime::_kyberBarrettReduce_Type             = nullptr;
 252 const TypeFunc* OptoRuntime::_dilithiumAlmostNtt_Type             = nullptr;
 253 const TypeFunc* OptoRuntime::_dilithiumAlmostInverseNtt_Type      = nullptr;
 254 const TypeFunc* OptoRuntime::_dilithiumNttMult_Type               = nullptr;
 255 const TypeFunc* OptoRuntime::_dilithiumMontMulByConstant_Type     = nullptr;
 256 const TypeFunc* OptoRuntime::_dilithiumDecomposePoly_Type         = nullptr;
 257 const TypeFunc* OptoRuntime::_base64_encodeBlock_Type             = nullptr;
 258 const TypeFunc* OptoRuntime::_base64_decodeBlock_Type             = nullptr;
 259 const TypeFunc* OptoRuntime::_string_IndexOf_Type                 = nullptr;
 260 const TypeFunc* OptoRuntime::_poly1305_processBlocks_Type         = nullptr;
 261 const TypeFunc* OptoRuntime::_intpoly_montgomeryMult_P256_Type    = nullptr;
 262 const TypeFunc* OptoRuntime::_intpoly_assign_Type                 = nullptr;
 263 const TypeFunc* OptoRuntime::_updateBytesCRC32_Type               = nullptr;
 264 const TypeFunc* OptoRuntime::_updateBytesCRC32C_Type              = nullptr;
 265 const TypeFunc* OptoRuntime::_updateBytesAdler32_Type             = nullptr;
 266 const TypeFunc* OptoRuntime::_osr_end_Type                        = nullptr;
 267 const TypeFunc* OptoRuntime::_register_finalizer_Type             = nullptr;
 268 #if INCLUDE_JFR
 269 const TypeFunc* OptoRuntime::_class_id_load_barrier_Type          = nullptr;
 270 #endif // INCLUDE_JFR
 271 #if INCLUDE_JVMTI
 272 const TypeFunc* OptoRuntime::_notify_jvmti_vthread_Type           = nullptr;
 273 #endif // INCLUDE_JVMTI
 274 const TypeFunc* OptoRuntime::_dtrace_method_entry_exit_Type       = nullptr;
 275 const TypeFunc* OptoRuntime::_dtrace_object_alloc_Type            = nullptr;
 276 
 277 // Helper method to do generation of RunTimeStub's
 278 address OptoRuntime::generate_stub(ciEnv* env,
 279                                    TypeFunc_generator gen, address C_function,
 280                                    const char *name, int is_fancy_jump,
 281                                    bool pass_tls,
 282                                    bool return_pc) {
 283 
 284   // Matching the default directive, we currently have no method to match.
 285   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 286   CompilationMemoryStatisticMark cmsm(directive);
 287   ResourceMark rm;
 288   Compile C(env, gen, C_function, name, is_fancy_jump, pass_tls, return_pc, directive);
 289   DirectivesStack::release(directive);
 290   return  C.stub_entry_point();
 291 }
 292 
 293 const char* OptoRuntime::stub_name(address entry) {
 294 #ifndef PRODUCT
 295   CodeBlob* cb = CodeCache::find_blob(entry);
 296   RuntimeStub* rs =(RuntimeStub *)cb;
 297   assert(rs != nullptr && rs->is_runtime_stub(), "not a runtime stub");
 298   return rs->name();
 299 #else
 300   // Fast implementation for product mode (maybe it should be inlined too)
 301   return "runtime stub";
 302 #endif
 303 }
 304 
 305 // local methods passed as arguments to stub generator that forward
 306 // control to corresponding JRT methods of SharedRuntime
 307 
 308 void OptoRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
 309                                    oopDesc* dest, jint dest_pos,
 310                                    jint length, JavaThread* thread) {
 311   SharedRuntime::slow_arraycopy_C(src,  src_pos, dest, dest_pos, length, thread);
 312 }
 313 
 314 void OptoRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current) {
 315   SharedRuntime::complete_monitor_locking_C(obj, lock, current);
 316 }
 317 
 318 
 319 //=============================================================================
 320 // Opto compiler runtime routines
 321 //=============================================================================
 322 
 323 
 324 //=============================allocation======================================
 325 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 326 // and try allocation again.
 327 
 328 // object allocation
 329 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* current))
 330   JRT_BLOCK;
 331 #ifndef PRODUCT
 332   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 333 #endif
 334   assert(check_compiled_frame(current), "incorrect caller");
 335 
 336   // These checks are cheap to make and support reflective allocation.
 337   int lh = klass->layout_helper();
 338   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 339     Handle holder(current, klass->klass_holder()); // keep the klass alive
 340     klass->check_valid_for_instantiation(false, THREAD);
 341     if (!HAS_PENDING_EXCEPTION) {
 342       InstanceKlass::cast(klass)->initialize(THREAD);
 343     }
 344   }
 345 
 346   if (!HAS_PENDING_EXCEPTION) {
 347     // Scavenge and allocate an instance.
 348     Handle holder(current, klass->klass_holder()); // keep the klass alive
 349     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 350     current->set_vm_result_oop(result);
 351 
 352     // Pass oops back through thread local storage.  Our apparent type to Java
 353     // is that we return an oop, but we can block on exit from this routine and
 354     // a GC can trash the oop in C's return register.  The generated stub will
 355     // fetch the oop from TLS after any possible GC.
 356   }
 357 
 358   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 359   JRT_BLOCK_END;
 360 
 361   // inform GC that we won't do card marks for initializing writes.
 362   SharedRuntime::on_slowpath_allocation_exit(current);
 363 JRT_END
 364 
 365 
 366 // array allocation
 367 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread* current))
 368   JRT_BLOCK;
 369 #ifndef PRODUCT
 370   SharedRuntime::_new_array_ctr++;            // new array requires GC
 371 #endif
 372   assert(check_compiled_frame(current), "incorrect caller");
 373 
 374   // Scavenge and allocate an instance.
 375   oop result;
 376 
 377   if (array_type->is_typeArray_klass()) {
 378     // The oopFactory likes to work with the element type.
 379     // (We could bypass the oopFactory, since it doesn't add much value.)
 380     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 381     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 382   } else {
 383     // Although the oopFactory likes to work with the elem_type,
 384     // the compiler prefers the array_type, since it must already have
 385     // that latter value in hand for the fast path.
 386     Handle holder(current, array_type->klass_holder()); // keep the array klass alive
 387     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 388     result = oopFactory::new_objArray(elem_type, len, THREAD);
 389   }
 390 
 391   // Pass oops back through thread local storage.  Our apparent type to Java
 392   // is that we return an oop, but we can block on exit from this routine and
 393   // a GC can trash the oop in C's return register.  The generated stub will
 394   // fetch the oop from TLS after any possible GC.
 395   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 396   current->set_vm_result_oop(result);
 397   JRT_BLOCK_END;
 398 
 399   // inform GC that we won't do card marks for initializing writes.
 400   SharedRuntime::on_slowpath_allocation_exit(current);
 401 JRT_END
 402 
 403 // array allocation without zeroing
 404 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread* current))
 405   JRT_BLOCK;
 406 #ifndef PRODUCT
 407   SharedRuntime::_new_array_ctr++;            // new array requires GC
 408 #endif
 409   assert(check_compiled_frame(current), "incorrect caller");
 410 
 411   // Scavenge and allocate an instance.
 412   oop result;
 413 
 414   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 415   // The oopFactory likes to work with the element type.
 416   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 417   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 418 
 419   // Pass oops back through thread local storage.  Our apparent type to Java
 420   // is that we return an oop, but we can block on exit from this routine and
 421   // a GC can trash the oop in C's return register.  The generated stub will
 422   // fetch the oop from TLS after any possible GC.
 423   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 424   current->set_vm_result_oop(result);
 425   JRT_BLOCK_END;
 426 
 427 
 428   // inform GC that we won't do card marks for initializing writes.
 429   SharedRuntime::on_slowpath_allocation_exit(current);
 430 
 431   oop result = current->vm_result_oop();
 432   if ((len > 0) && (result != nullptr) &&
 433       is_deoptimized_caller_frame(current)) {
 434     // Zero array here if the caller is deoptimized.
 435     const size_t size = TypeArrayKlass::cast(array_type)->oop_size(result, result->mark());
 436     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 437     size_t hs_bytes = arrayOopDesc::base_offset_in_bytes(elem_type);
 438     assert(is_aligned(hs_bytes, BytesPerInt), "must be 4 byte aligned");
 439     HeapWord* obj = cast_from_oop<HeapWord*>(result);
 440     if (!is_aligned(hs_bytes, BytesPerLong)) {
 441       *reinterpret_cast<jint*>(reinterpret_cast<char*>(obj) + hs_bytes) = 0;
 442       hs_bytes += BytesPerInt;
 443     }
 444 
 445     // Optimized zeroing.
 446     assert(is_aligned(hs_bytes, BytesPerLong), "must be 8-byte aligned");
 447     const size_t aligned_hs = hs_bytes / BytesPerLong;
 448     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 449   }
 450 
 451 JRT_END
 452 
 453 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 454 
 455 // multianewarray for 2 dimensions
 456 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread* current))
 457 #ifndef PRODUCT
 458   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 459 #endif
 460   assert(check_compiled_frame(current), "incorrect caller");
 461   assert(elem_type->is_klass(), "not a class");
 462   jint dims[2];
 463   dims[0] = len1;
 464   dims[1] = len2;
 465   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 466   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 467   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 468   current->set_vm_result_oop(obj);
 469 JRT_END
 470 
 471 // multianewarray for 3 dimensions
 472 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread* current))
 473 #ifndef PRODUCT
 474   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 475 #endif
 476   assert(check_compiled_frame(current), "incorrect caller");
 477   assert(elem_type->is_klass(), "not a class");
 478   jint dims[3];
 479   dims[0] = len1;
 480   dims[1] = len2;
 481   dims[2] = len3;
 482   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 483   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 484   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 485   current->set_vm_result_oop(obj);
 486 JRT_END
 487 
 488 // multianewarray for 4 dimensions
 489 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread* current))
 490 #ifndef PRODUCT
 491   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 492 #endif
 493   assert(check_compiled_frame(current), "incorrect caller");
 494   assert(elem_type->is_klass(), "not a class");
 495   jint dims[4];
 496   dims[0] = len1;
 497   dims[1] = len2;
 498   dims[2] = len3;
 499   dims[3] = len4;
 500   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 501   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 502   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 503   current->set_vm_result_oop(obj);
 504 JRT_END
 505 
 506 // multianewarray for 5 dimensions
 507 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread* current))
 508 #ifndef PRODUCT
 509   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 510 #endif
 511   assert(check_compiled_frame(current), "incorrect caller");
 512   assert(elem_type->is_klass(), "not a class");
 513   jint dims[5];
 514   dims[0] = len1;
 515   dims[1] = len2;
 516   dims[2] = len3;
 517   dims[3] = len4;
 518   dims[4] = len5;
 519   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 520   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 521   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 522   current->set_vm_result_oop(obj);
 523 JRT_END
 524 
 525 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread* current))
 526   assert(check_compiled_frame(current), "incorrect caller");
 527   assert(elem_type->is_klass(), "not a class");
 528   assert(oop(dims)->is_typeArray(), "not an array");
 529 
 530   ResourceMark rm;
 531   jint len = dims->length();
 532   assert(len > 0, "Dimensions array should contain data");
 533   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 534   ArrayAccess<>::arraycopy_to_native<>(dims, typeArrayOopDesc::element_offset<jint>(0),
 535                                        c_dims, len);
 536 
 537   Handle holder(current, elem_type->klass_holder()); // keep the klass alive
 538   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 539   deoptimize_caller_frame(current, HAS_PENDING_EXCEPTION);
 540   current->set_vm_result_oop(obj);
 541 JRT_END
 542 
 543 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread* current))
 544 
 545   // Very few notify/notifyAll operations find any threads on the waitset, so
 546   // the dominant fast-path is to simply return.
 547   // Relatedly, it's critical that notify/notifyAll be fast in order to
 548   // reduce lock hold times.
 549   if (!SafepointSynchronize::is_synchronizing()) {
 550     if (ObjectSynchronizer::quick_notify(obj, current, false)) {
 551       return;
 552     }
 553   }
 554 
 555   // This is the case the fast-path above isn't provisioned to handle.
 556   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 557   // (The fast-path is just a degenerate variant of the slow-path).
 558   // Perform the dreaded state transition and pass control into the slow-path.
 559   JRT_BLOCK;
 560   Handle h_obj(current, obj);
 561   ObjectSynchronizer::notify(h_obj, CHECK);
 562   JRT_BLOCK_END;
 563 JRT_END
 564 
 565 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread* current))
 566 
 567   if (!SafepointSynchronize::is_synchronizing() ) {
 568     if (ObjectSynchronizer::quick_notify(obj, current, true)) {
 569       return;
 570     }
 571   }
 572 
 573   // This is the case the fast-path above isn't provisioned to handle.
 574   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 575   // (The fast-path is just a degenerate variant of the slow-path).
 576   // Perform the dreaded state transition and pass control into the slow-path.
 577   JRT_BLOCK;
 578   Handle h_obj(current, obj);
 579   ObjectSynchronizer::notifyall(h_obj, CHECK);
 580   JRT_BLOCK_END;
 581 JRT_END
 582 
 583 static const TypeFunc* make_new_instance_Type() {
 584   // create input type (domain)
 585   const Type **fields = TypeTuple::fields(1);
 586   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 587   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 588 
 589   // create result type (range)
 590   fields = TypeTuple::fields(1);
 591   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 592 
 593   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 594 
 595   return TypeFunc::make(domain, range);
 596 }
 597 
 598 #if INCLUDE_JVMTI
 599 static const TypeFunc* make_notify_jvmti_vthread_Type() {
 600   // create input type (domain)
 601   const Type **fields = TypeTuple::fields(2);
 602   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // VirtualThread oop
 603   fields[TypeFunc::Parms+1] = TypeInt::BOOL;        // jboolean
 604   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 605 
 606   // no result type needed
 607   fields = TypeTuple::fields(1);
 608   fields[TypeFunc::Parms+0] = nullptr; // void
 609   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 610 
 611   return TypeFunc::make(domain,range);
 612 }
 613 #endif
 614 
 615 static const TypeFunc* make_athrow_Type() {
 616   // create input type (domain)
 617   const Type **fields = TypeTuple::fields(1);
 618   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 619   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 620 
 621   // create result type (range)
 622   fields = TypeTuple::fields(0);
 623 
 624   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 625 
 626   return TypeFunc::make(domain, range);
 627 }
 628 
 629 static const TypeFunc* make_new_array_Type() {
 630   // create input type (domain)
 631   const Type **fields = TypeTuple::fields(2);
 632   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 633   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 634   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 635 
 636   // create result type (range)
 637   fields = TypeTuple::fields(1);
 638   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 639 
 640   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 641 
 642   return TypeFunc::make(domain, range);
 643 }
 644 
 645 const TypeFunc* OptoRuntime::multianewarray_Type(int ndim) {
 646   // create input type (domain)
 647   const int nargs = ndim + 1;
 648   const Type **fields = TypeTuple::fields(nargs);
 649   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 650   for( int i = 1; i < nargs; i++ )
 651     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 652   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 653 
 654   // create result type (range)
 655   fields = TypeTuple::fields(1);
 656   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 657   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 658 
 659   return TypeFunc::make(domain, range);
 660 }
 661 
 662 static const TypeFunc* make_multianewarrayN_Type() {
 663   // create input type (domain)
 664   const Type **fields = TypeTuple::fields(2);
 665   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 666   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 667   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 668 
 669   // create result type (range)
 670   fields = TypeTuple::fields(1);
 671   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 672   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 673 
 674   return TypeFunc::make(domain, range);
 675 }
 676 
 677 static const TypeFunc* make_uncommon_trap_Type() {
 678   // create input type (domain)
 679   const Type **fields = TypeTuple::fields(1);
 680   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 681   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 682 
 683   // create result type (range)
 684   fields = TypeTuple::fields(0);
 685   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 686 
 687   return TypeFunc::make(domain, range);
 688 }
 689 
 690 //-----------------------------------------------------------------------------
 691 // Monitor Handling
 692 
 693 static const TypeFunc* make_complete_monitor_enter_Type() {
 694   // create input type (domain)
 695   const Type **fields = TypeTuple::fields(2);
 696   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 697   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 698   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 699 
 700   // create result type (range)
 701   fields = TypeTuple::fields(0);
 702 
 703   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 704 
 705   return TypeFunc::make(domain,range);
 706 }
 707 
 708 //-----------------------------------------------------------------------------
 709 
 710 static const TypeFunc* make_complete_monitor_exit_Type() {
 711   // create input type (domain)
 712   const Type **fields = TypeTuple::fields(3);
 713   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 714   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 715   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 716   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 717 
 718   // create result type (range)
 719   fields = TypeTuple::fields(0);
 720 
 721   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 722 
 723   return TypeFunc::make(domain, range);
 724 }
 725 
 726 static const TypeFunc* make_monitor_notify_Type() {
 727   // create input type (domain)
 728   const Type **fields = TypeTuple::fields(1);
 729   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 730   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 731 
 732   // create result type (range)
 733   fields = TypeTuple::fields(0);
 734   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 735   return TypeFunc::make(domain, range);
 736 }
 737 
 738 static const TypeFunc* make_flush_windows_Type() {
 739   // create input type (domain)
 740   const Type** fields = TypeTuple::fields(1);
 741   fields[TypeFunc::Parms+0] = nullptr; // void
 742   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 743 
 744   // create result type
 745   fields = TypeTuple::fields(1);
 746   fields[TypeFunc::Parms+0] = nullptr; // void
 747   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 748 
 749   return TypeFunc::make(domain, range);
 750 }
 751 
 752 static const TypeFunc* make_l2f_Type() {
 753   // create input type (domain)
 754   const Type **fields = TypeTuple::fields(2);
 755   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 756   fields[TypeFunc::Parms+1] = Type::HALF;
 757   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 758 
 759   // create result type (range)
 760   fields = TypeTuple::fields(1);
 761   fields[TypeFunc::Parms+0] = Type::FLOAT;
 762   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 763 
 764   return TypeFunc::make(domain, range);
 765 }
 766 
 767 static const TypeFunc* make_modf_Type() {
 768   const Type **fields = TypeTuple::fields(2);
 769   fields[TypeFunc::Parms+0] = Type::FLOAT;
 770   fields[TypeFunc::Parms+1] = Type::FLOAT;
 771   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 772 
 773   // create result type (range)
 774   fields = TypeTuple::fields(1);
 775   fields[TypeFunc::Parms+0] = Type::FLOAT;
 776 
 777   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 778 
 779   return TypeFunc::make(domain, range);
 780 }
 781 
 782 static const TypeFunc* make_Math_D_D_Type() {
 783   // create input type (domain)
 784   const Type **fields = TypeTuple::fields(2);
 785   // Symbol* name of class to be loaded
 786   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 787   fields[TypeFunc::Parms+1] = Type::HALF;
 788   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 789 
 790   // create result type (range)
 791   fields = TypeTuple::fields(2);
 792   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 793   fields[TypeFunc::Parms+1] = Type::HALF;
 794   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 795 
 796   return TypeFunc::make(domain, range);
 797 }
 798 
 799 const TypeFunc* OptoRuntime::Math_Vector_Vector_Type(uint num_arg, const TypeVect* in_type, const TypeVect* out_type) {
 800   // create input type (domain)
 801   const Type **fields = TypeTuple::fields(num_arg);
 802   // Symbol* name of class to be loaded
 803   assert(num_arg > 0, "must have at least 1 input");
 804   for (uint i = 0; i < num_arg; i++) {
 805     fields[TypeFunc::Parms+i] = in_type;
 806   }
 807   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+num_arg, fields);
 808 
 809   // create result type (range)
 810   const uint num_ret = 1;
 811   fields = TypeTuple::fields(num_ret);
 812   fields[TypeFunc::Parms+0] = out_type;
 813   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+num_ret, fields);
 814 
 815   return TypeFunc::make(domain, range);
 816 }
 817 
 818 static const TypeFunc* make_Math_DD_D_Type() {
 819   const Type **fields = TypeTuple::fields(4);
 820   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 821   fields[TypeFunc::Parms+1] = Type::HALF;
 822   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 823   fields[TypeFunc::Parms+3] = Type::HALF;
 824   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 825 
 826   // create result type (range)
 827   fields = TypeTuple::fields(2);
 828   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 829   fields[TypeFunc::Parms+1] = Type::HALF;
 830   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 831 
 832   return TypeFunc::make(domain, range);
 833 }
 834 
 835 //-------------- currentTimeMillis, currentTimeNanos, etc
 836 
 837 static const TypeFunc* make_void_long_Type() {
 838   // create input type (domain)
 839   const Type **fields = TypeTuple::fields(0);
 840   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 841 
 842   // create result type (range)
 843   fields = TypeTuple::fields(2);
 844   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 845   fields[TypeFunc::Parms+1] = Type::HALF;
 846   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 847 
 848   return TypeFunc::make(domain, range);
 849 }
 850 
 851 static const TypeFunc* make_void_void_Type() {
 852   // create input type (domain)
 853   const Type **fields = TypeTuple::fields(0);
 854   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 855 
 856   // create result type (range)
 857   fields = TypeTuple::fields(0);
 858   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 859   return TypeFunc::make(domain, range);
 860 }
 861 
 862 static const TypeFunc* make_jfr_write_checkpoint_Type() {
 863   // create input type (domain)
 864   const Type **fields = TypeTuple::fields(0);
 865   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 866 
 867   // create result type (range)
 868   fields = TypeTuple::fields(0);
 869   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 870   return TypeFunc::make(domain, range);
 871 }
 872 
 873 
 874 // Takes as parameters:
 875 // void *dest
 876 // long size
 877 // uchar byte
 878 
 879 static const TypeFunc* make_setmemory_Type() {
 880   // create input type (domain)
 881   int argcnt = NOT_LP64(3) LP64_ONLY(4);
 882   const Type** fields = TypeTuple::fields(argcnt);
 883   int argp = TypeFunc::Parms;
 884   fields[argp++] = TypePtr::NOTNULL;        // dest
 885   fields[argp++] = TypeX_X;                 // size
 886   LP64_ONLY(fields[argp++] = Type::HALF);   // size
 887   fields[argp++] = TypeInt::UBYTE;          // bytevalue
 888   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 889   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 890 
 891   // no result type needed
 892   fields = TypeTuple::fields(1);
 893   fields[TypeFunc::Parms+0] = nullptr; // void
 894   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 895   return TypeFunc::make(domain, range);
 896 }
 897 
 898 // arraycopy stub variations:
 899 enum ArrayCopyType {
 900   ac_fast,                      // void(ptr, ptr, size_t)
 901   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 902   ac_slow,                      // void(ptr, int, ptr, int, int)
 903   ac_generic                    //  int(ptr, int, ptr, int, int)
 904 };
 905 
 906 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 907   // create input type (domain)
 908   int num_args      = (act == ac_fast ? 3 : 5);
 909   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 910   int argcnt = num_args;
 911   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 912   const Type** fields = TypeTuple::fields(argcnt);
 913   int argp = TypeFunc::Parms;
 914   fields[argp++] = TypePtr::NOTNULL;    // src
 915   if (num_size_args == 0) {
 916     fields[argp++] = TypeInt::INT;      // src_pos
 917   }
 918   fields[argp++] = TypePtr::NOTNULL;    // dest
 919   if (num_size_args == 0) {
 920     fields[argp++] = TypeInt::INT;      // dest_pos
 921     fields[argp++] = TypeInt::INT;      // length
 922   }
 923   while (num_size_args-- > 0) {
 924     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 925     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 926   }
 927   if (act == ac_checkcast) {
 928     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 929   }
 930   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 931   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 932 
 933   // create result type if needed
 934   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 935   fields = TypeTuple::fields(1);
 936   if (retcnt == 0)
 937     fields[TypeFunc::Parms+0] = nullptr; // void
 938   else
 939     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 940   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 941   return TypeFunc::make(domain, range);
 942 }
 943 
 944 static const TypeFunc* make_array_fill_Type() {
 945   const Type** fields;
 946   int argp = TypeFunc::Parms;
 947   // create input type (domain): pointer, int, size_t
 948   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 949   fields[argp++] = TypePtr::NOTNULL;
 950   fields[argp++] = TypeInt::INT;
 951   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 952   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 953   const TypeTuple *domain = TypeTuple::make(argp, fields);
 954 
 955   // create result type
 956   fields = TypeTuple::fields(1);
 957   fields[TypeFunc::Parms+0] = nullptr; // void
 958   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 959 
 960   return TypeFunc::make(domain, range);
 961 }
 962 
 963 static const TypeFunc* make_array_partition_Type() {
 964   // create input type (domain)
 965   int num_args = 7;
 966   int argcnt = num_args;
 967   const Type** fields = TypeTuple::fields(argcnt);
 968   int argp = TypeFunc::Parms;
 969   fields[argp++] = TypePtr::NOTNULL;  // array
 970   fields[argp++] = TypeInt::INT;      // element type
 971   fields[argp++] = TypeInt::INT;      // low
 972   fields[argp++] = TypeInt::INT;      // end
 973   fields[argp++] = TypePtr::NOTNULL;  // pivot_indices (int array)
 974   fields[argp++] = TypeInt::INT;      // indexPivot1
 975   fields[argp++] = TypeInt::INT;      // indexPivot2
 976   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 977   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 978 
 979   // no result type needed
 980   fields = TypeTuple::fields(1);
 981   fields[TypeFunc::Parms+0] = nullptr; // void
 982   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 983   return TypeFunc::make(domain, range);
 984 }
 985 
 986 static const TypeFunc* make_array_sort_Type() {
 987   // create input type (domain)
 988   int num_args      = 4;
 989   int argcnt = num_args;
 990   const Type** fields = TypeTuple::fields(argcnt);
 991   int argp = TypeFunc::Parms;
 992   fields[argp++] = TypePtr::NOTNULL;    // array
 993   fields[argp++] = TypeInt::INT;    // element type
 994   fields[argp++] = TypeInt::INT;    // fromIndex
 995   fields[argp++] = TypeInt::INT;    // toIndex
 996   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 997   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 998 
 999   // no result type needed
1000   fields = TypeTuple::fields(1);
1001   fields[TypeFunc::Parms+0] = nullptr; // void
1002   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1003   return TypeFunc::make(domain, range);
1004 }
1005 
1006 static const TypeFunc* make_aescrypt_block_Type() {
1007   // create input type (domain)
1008   int num_args      = 3;
1009   int argcnt = num_args;
1010   const Type** fields = TypeTuple::fields(argcnt);
1011   int argp = TypeFunc::Parms;
1012   fields[argp++] = TypePtr::NOTNULL;    // src
1013   fields[argp++] = TypePtr::NOTNULL;    // dest
1014   fields[argp++] = TypePtr::NOTNULL;    // k array
1015   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1016   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1017 
1018   // no result type needed
1019   fields = TypeTuple::fields(1);
1020   fields[TypeFunc::Parms+0] = nullptr; // void
1021   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1022   return TypeFunc::make(domain, range);
1023 }
1024 
1025 static const TypeFunc* make_updateBytesCRC32_Type() {
1026   // create input type (domain)
1027   int num_args      = 3;
1028   int argcnt = num_args;
1029   const Type** fields = TypeTuple::fields(argcnt);
1030   int argp = TypeFunc::Parms;
1031   fields[argp++] = TypeInt::INT;        // crc
1032   fields[argp++] = TypePtr::NOTNULL;    // src
1033   fields[argp++] = TypeInt::INT;        // len
1034   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1035   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1036 
1037   // result type needed
1038   fields = TypeTuple::fields(1);
1039   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1040   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1041   return TypeFunc::make(domain, range);
1042 }
1043 
1044 static const TypeFunc* make_updateBytesCRC32C_Type() {
1045   // create input type (domain)
1046   int num_args      = 4;
1047   int argcnt = num_args;
1048   const Type** fields = TypeTuple::fields(argcnt);
1049   int argp = TypeFunc::Parms;
1050   fields[argp++] = TypeInt::INT;        // crc
1051   fields[argp++] = TypePtr::NOTNULL;    // buf
1052   fields[argp++] = TypeInt::INT;        // len
1053   fields[argp++] = TypePtr::NOTNULL;    // table
1054   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1055   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1056 
1057   // result type needed
1058   fields = TypeTuple::fields(1);
1059   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1060   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1061   return TypeFunc::make(domain, range);
1062 }
1063 
1064 static const TypeFunc* make_updateBytesAdler32_Type() {
1065   // create input type (domain)
1066   int num_args      = 3;
1067   int argcnt = num_args;
1068   const Type** fields = TypeTuple::fields(argcnt);
1069   int argp = TypeFunc::Parms;
1070   fields[argp++] = TypeInt::INT;        // crc
1071   fields[argp++] = TypePtr::NOTNULL;    // src + offset
1072   fields[argp++] = TypeInt::INT;        // len
1073   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1074   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1075 
1076   // result type needed
1077   fields = TypeTuple::fields(1);
1078   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
1079   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1080   return TypeFunc::make(domain, range);
1081 }
1082 
1083 static const TypeFunc* make_cipherBlockChaining_aescrypt_Type() {
1084   // create input type (domain)
1085   int num_args      = 5;
1086   int argcnt = num_args;
1087   const Type** fields = TypeTuple::fields(argcnt);
1088   int argp = TypeFunc::Parms;
1089   fields[argp++] = TypePtr::NOTNULL;    // src
1090   fields[argp++] = TypePtr::NOTNULL;    // dest
1091   fields[argp++] = TypePtr::NOTNULL;    // k array
1092   fields[argp++] = TypePtr::NOTNULL;    // r array
1093   fields[argp++] = TypeInt::INT;        // src len
1094   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1095   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1096 
1097   // returning cipher len (int)
1098   fields = TypeTuple::fields(1);
1099   fields[TypeFunc::Parms+0] = TypeInt::INT;
1100   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1101   return TypeFunc::make(domain, range);
1102 }
1103 
1104 static const TypeFunc* make_electronicCodeBook_aescrypt_Type() {
1105   // create input type (domain)
1106   int num_args = 4;
1107   int argcnt = num_args;
1108   const Type** fields = TypeTuple::fields(argcnt);
1109   int argp = TypeFunc::Parms;
1110   fields[argp++] = TypePtr::NOTNULL;    // src
1111   fields[argp++] = TypePtr::NOTNULL;    // dest
1112   fields[argp++] = TypePtr::NOTNULL;    // k array
1113   fields[argp++] = TypeInt::INT;        // src len
1114   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1115   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1116 
1117   // returning cipher len (int)
1118   fields = TypeTuple::fields(1);
1119   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1120   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1121   return TypeFunc::make(domain, range);
1122 }
1123 
1124 static const TypeFunc* make_counterMode_aescrypt_Type() {
1125   // create input type (domain)
1126   int num_args = 7;
1127   int argcnt = num_args;
1128   const Type** fields = TypeTuple::fields(argcnt);
1129   int argp = TypeFunc::Parms;
1130   fields[argp++] = TypePtr::NOTNULL; // src
1131   fields[argp++] = TypePtr::NOTNULL; // dest
1132   fields[argp++] = TypePtr::NOTNULL; // k array
1133   fields[argp++] = TypePtr::NOTNULL; // counter array
1134   fields[argp++] = TypeInt::INT; // src len
1135   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
1136   fields[argp++] = TypePtr::NOTNULL; // saved used addr
1137   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1138   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1139   // returning cipher len (int)
1140   fields = TypeTuple::fields(1);
1141   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1142   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1143   return TypeFunc::make(domain, range);
1144 }
1145 
1146 static const TypeFunc* make_galoisCounterMode_aescrypt_Type() {
1147   // create input type (domain)
1148   int num_args = 8;
1149   int argcnt = num_args;
1150   const Type** fields = TypeTuple::fields(argcnt);
1151   int argp = TypeFunc::Parms;
1152   fields[argp++] = TypePtr::NOTNULL; // byte[] in + inOfs
1153   fields[argp++] = TypeInt::INT;     // int len
1154   fields[argp++] = TypePtr::NOTNULL; // byte[] ct + ctOfs
1155   fields[argp++] = TypePtr::NOTNULL; // byte[] out + outOfs
1156   fields[argp++] = TypePtr::NOTNULL; // byte[] key from AESCrypt obj
1157   fields[argp++] = TypePtr::NOTNULL; // long[] state from GHASH obj
1158   fields[argp++] = TypePtr::NOTNULL; // long[] subkeyHtbl from GHASH obj
1159   fields[argp++] = TypePtr::NOTNULL; // byte[] counter from GCTR obj
1160 
1161   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1162   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1163   // returning cipher len (int)
1164   fields = TypeTuple::fields(1);
1165   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1166   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1167   return TypeFunc::make(domain, range);
1168 }
1169 
1170 static const TypeFunc* make_digestBase_implCompress_Type(bool is_sha3) {
1171   // create input type (domain)
1172   int num_args = is_sha3 ? 3 : 2;
1173   int argcnt = num_args;
1174   const Type** fields = TypeTuple::fields(argcnt);
1175   int argp = TypeFunc::Parms;
1176   fields[argp++] = TypePtr::NOTNULL; // buf
1177   fields[argp++] = TypePtr::NOTNULL; // state
1178   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1179   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1180   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1181 
1182   // no result type needed
1183   fields = TypeTuple::fields(1);
1184   fields[TypeFunc::Parms+0] = nullptr; // void
1185   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1186   return TypeFunc::make(domain, range);
1187 }
1188 
1189 /*
1190  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1191  */
1192 static const TypeFunc* make_digestBase_implCompressMB_Type(bool is_sha3) {
1193   // create input type (domain)
1194   int num_args = is_sha3 ? 5 : 4;
1195   int argcnt = num_args;
1196   const Type** fields = TypeTuple::fields(argcnt);
1197   int argp = TypeFunc::Parms;
1198   fields[argp++] = TypePtr::NOTNULL; // buf
1199   fields[argp++] = TypePtr::NOTNULL; // state
1200   if (is_sha3) fields[argp++] = TypeInt::INT; // block_size
1201   fields[argp++] = TypeInt::INT;     // ofs
1202   fields[argp++] = TypeInt::INT;     // limit
1203   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1204   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1205 
1206   // returning ofs (int)
1207   fields = TypeTuple::fields(1);
1208   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1209   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1210   return TypeFunc::make(domain, range);
1211 }
1212 
1213 // SHAKE128Parallel doubleKeccak function
1214 static const TypeFunc* make_double_keccak_Type() {
1215     int argcnt = 2;
1216 
1217     const Type** fields = TypeTuple::fields(argcnt);
1218     int argp = TypeFunc::Parms;
1219     fields[argp++] = TypePtr::NOTNULL;      // status0
1220     fields[argp++] = TypePtr::NOTNULL;      // status1
1221 
1222     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1223     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1224 
1225     // result type needed
1226     fields = TypeTuple::fields(1);
1227     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1228     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1229     return TypeFunc::make(domain, range);
1230 }
1231 
1232 static const TypeFunc* make_multiplyToLen_Type() {
1233   // create input type (domain)
1234   int num_args      = 5;
1235   int argcnt = num_args;
1236   const Type** fields = TypeTuple::fields(argcnt);
1237   int argp = TypeFunc::Parms;
1238   fields[argp++] = TypePtr::NOTNULL;    // x
1239   fields[argp++] = TypeInt::INT;        // xlen
1240   fields[argp++] = TypePtr::NOTNULL;    // y
1241   fields[argp++] = TypeInt::INT;        // ylen
1242   fields[argp++] = TypePtr::NOTNULL;    // z
1243   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1244   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1245 
1246   // no result type needed
1247   fields = TypeTuple::fields(1);
1248   fields[TypeFunc::Parms+0] = nullptr;
1249   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1250   return TypeFunc::make(domain, range);
1251 }
1252 
1253 static const TypeFunc* make_squareToLen_Type() {
1254   // create input type (domain)
1255   int num_args      = 4;
1256   int argcnt = num_args;
1257   const Type** fields = TypeTuple::fields(argcnt);
1258   int argp = TypeFunc::Parms;
1259   fields[argp++] = TypePtr::NOTNULL;    // x
1260   fields[argp++] = TypeInt::INT;        // len
1261   fields[argp++] = TypePtr::NOTNULL;    // z
1262   fields[argp++] = TypeInt::INT;        // zlen
1263   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1264   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1265 
1266   // no result type needed
1267   fields = TypeTuple::fields(1);
1268   fields[TypeFunc::Parms+0] = nullptr;
1269   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1270   return TypeFunc::make(domain, range);
1271 }
1272 
1273 static const TypeFunc* make_mulAdd_Type() {
1274   // create input type (domain)
1275   int num_args      = 5;
1276   int argcnt = num_args;
1277   const Type** fields = TypeTuple::fields(argcnt);
1278   int argp = TypeFunc::Parms;
1279   fields[argp++] = TypePtr::NOTNULL;    // out
1280   fields[argp++] = TypePtr::NOTNULL;    // in
1281   fields[argp++] = TypeInt::INT;        // offset
1282   fields[argp++] = TypeInt::INT;        // len
1283   fields[argp++] = TypeInt::INT;        // k
1284   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1285   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1286 
1287   // returning carry (int)
1288   fields = TypeTuple::fields(1);
1289   fields[TypeFunc::Parms+0] = TypeInt::INT;
1290   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1291   return TypeFunc::make(domain, range);
1292 }
1293 
1294 static const TypeFunc* make_montgomeryMultiply_Type() {
1295   // create input type (domain)
1296   int num_args      = 7;
1297   int argcnt = num_args;
1298   const Type** fields = TypeTuple::fields(argcnt);
1299   int argp = TypeFunc::Parms;
1300   fields[argp++] = TypePtr::NOTNULL;    // a
1301   fields[argp++] = TypePtr::NOTNULL;    // b
1302   fields[argp++] = TypePtr::NOTNULL;    // n
1303   fields[argp++] = TypeInt::INT;        // len
1304   fields[argp++] = TypeLong::LONG;      // inv
1305   fields[argp++] = Type::HALF;
1306   fields[argp++] = TypePtr::NOTNULL;    // result
1307   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1308   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1309 
1310   // result type needed
1311   fields = TypeTuple::fields(1);
1312   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1313 
1314   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1315   return TypeFunc::make(domain, range);
1316 }
1317 
1318 static const TypeFunc* make_montgomerySquare_Type() {
1319   // create input type (domain)
1320   int num_args      = 6;
1321   int argcnt = num_args;
1322   const Type** fields = TypeTuple::fields(argcnt);
1323   int argp = TypeFunc::Parms;
1324   fields[argp++] = TypePtr::NOTNULL;    // a
1325   fields[argp++] = TypePtr::NOTNULL;    // n
1326   fields[argp++] = TypeInt::INT;        // len
1327   fields[argp++] = TypeLong::LONG;      // inv
1328   fields[argp++] = Type::HALF;
1329   fields[argp++] = TypePtr::NOTNULL;    // result
1330   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1331   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1332 
1333   // result type needed
1334   fields = TypeTuple::fields(1);
1335   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1336 
1337   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1338   return TypeFunc::make(domain, range);
1339 }
1340 
1341 static const TypeFunc* make_bigIntegerShift_Type() {
1342   int argcnt = 5;
1343   const Type** fields = TypeTuple::fields(argcnt);
1344   int argp = TypeFunc::Parms;
1345   fields[argp++] = TypePtr::NOTNULL;    // newArr
1346   fields[argp++] = TypePtr::NOTNULL;    // oldArr
1347   fields[argp++] = TypeInt::INT;        // newIdx
1348   fields[argp++] = TypeInt::INT;        // shiftCount
1349   fields[argp++] = TypeInt::INT;        // numIter
1350   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1351   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1352 
1353   // no result type needed
1354   fields = TypeTuple::fields(1);
1355   fields[TypeFunc::Parms + 0] = nullptr;
1356   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1357   return TypeFunc::make(domain, range);
1358 }
1359 
1360 static const TypeFunc* make_vectorizedMismatch_Type() {
1361   // create input type (domain)
1362   int num_args = 4;
1363   int argcnt = num_args;
1364   const Type** fields = TypeTuple::fields(argcnt);
1365   int argp = TypeFunc::Parms;
1366   fields[argp++] = TypePtr::NOTNULL;    // obja
1367   fields[argp++] = TypePtr::NOTNULL;    // objb
1368   fields[argp++] = TypeInt::INT;        // length, number of elements
1369   fields[argp++] = TypeInt::INT;        // log2scale, element size
1370   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1371   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1372 
1373   //return mismatch index (int)
1374   fields = TypeTuple::fields(1);
1375   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1376   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1377   return TypeFunc::make(domain, range);
1378 }
1379 
1380 static const TypeFunc* make_ghash_processBlocks_Type() {
1381   int argcnt = 4;
1382 
1383   const Type** fields = TypeTuple::fields(argcnt);
1384   int argp = TypeFunc::Parms;
1385   fields[argp++] = TypePtr::NOTNULL;    // state
1386   fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1387   fields[argp++] = TypePtr::NOTNULL;    // data
1388   fields[argp++] = TypeInt::INT;        // blocks
1389   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1390   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1391 
1392   // result type needed
1393   fields = TypeTuple::fields(1);
1394   fields[TypeFunc::Parms+0] = nullptr; // void
1395   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1396   return TypeFunc::make(domain, range);
1397 }
1398 
1399 static const TypeFunc* make_chacha20Block_Type() {
1400   int argcnt = 2;
1401 
1402   const Type** fields = TypeTuple::fields(argcnt);
1403   int argp = TypeFunc::Parms;
1404   fields[argp++] = TypePtr::NOTNULL;      // state
1405   fields[argp++] = TypePtr::NOTNULL;      // result
1406 
1407   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1408   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1409 
1410   // result type needed
1411   fields = TypeTuple::fields(1);
1412   fields[TypeFunc::Parms + 0] = TypeInt::INT;     // key stream outlen as int
1413   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1414   return TypeFunc::make(domain, range);
1415 }
1416 
1417 // Kyber NTT function
1418 static const TypeFunc* make_kyberNtt_Type() {
1419     int argcnt = 2;
1420 
1421     const Type** fields = TypeTuple::fields(argcnt);
1422     int argp = TypeFunc::Parms;
1423     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1424     fields[argp++] = TypePtr::NOTNULL;      // NTT zetas
1425 
1426     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1427     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1428 
1429     // result type needed
1430     fields = TypeTuple::fields(1);
1431     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1432     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1433     return TypeFunc::make(domain, range);
1434 }
1435 
1436 // Kyber inverse NTT function
1437 static const TypeFunc* make_kyberInverseNtt_Type() {
1438     int argcnt = 2;
1439 
1440     const Type** fields = TypeTuple::fields(argcnt);
1441     int argp = TypeFunc::Parms;
1442     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1443     fields[argp++] = TypePtr::NOTNULL;      // inverse NTT zetas
1444 
1445     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1446     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1447 
1448     // result type needed
1449     fields = TypeTuple::fields(1);
1450     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1451     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1452     return TypeFunc::make(domain, range);
1453 }
1454 
1455 // Kyber NTT multiply function
1456 static const TypeFunc* make_kyberNttMult_Type() {
1457     int argcnt = 4;
1458 
1459     const Type** fields = TypeTuple::fields(argcnt);
1460     int argp = TypeFunc::Parms;
1461     fields[argp++] = TypePtr::NOTNULL;      // result
1462     fields[argp++] = TypePtr::NOTNULL;      // ntta
1463     fields[argp++] = TypePtr::NOTNULL;      // nttb
1464     fields[argp++] = TypePtr::NOTNULL;      // NTT multiply zetas
1465 
1466     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1467     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1468 
1469     // result type needed
1470     fields = TypeTuple::fields(1);
1471     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1472     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1473     return TypeFunc::make(domain, range);
1474 }
1475 // Kyber add 2 polynomials function
1476 static const TypeFunc* make_kyberAddPoly_2_Type() {
1477     int argcnt = 3;
1478 
1479     const Type** fields = TypeTuple::fields(argcnt);
1480     int argp = TypeFunc::Parms;
1481     fields[argp++] = TypePtr::NOTNULL;      // result
1482     fields[argp++] = TypePtr::NOTNULL;      // a
1483     fields[argp++] = TypePtr::NOTNULL;      // b
1484 
1485     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1486     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1487 
1488     // result type needed
1489     fields = TypeTuple::fields(1);
1490     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1491     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1492     return TypeFunc::make(domain, range);
1493 }
1494 
1495 
1496 // Kyber add 3 polynomials function
1497 static const TypeFunc* make_kyberAddPoly_3_Type() {
1498     int argcnt = 4;
1499 
1500     const Type** fields = TypeTuple::fields(argcnt);
1501     int argp = TypeFunc::Parms;
1502     fields[argp++] = TypePtr::NOTNULL;      // result
1503     fields[argp++] = TypePtr::NOTNULL;      // a
1504     fields[argp++] = TypePtr::NOTNULL;      // b
1505     fields[argp++] = TypePtr::NOTNULL;      // c
1506 
1507     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1508     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1509 
1510     // result type needed
1511     fields = TypeTuple::fields(1);
1512     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1513     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1514     return TypeFunc::make(domain, range);
1515 }
1516 
1517 
1518 // Kyber XOF output parsing into polynomial coefficients candidates
1519 // or decompress(12,...) function
1520 static const TypeFunc* make_kyber12To16_Type() {
1521     int argcnt = 4;
1522 
1523     const Type** fields = TypeTuple::fields(argcnt);
1524     int argp = TypeFunc::Parms;
1525     fields[argp++] = TypePtr::NOTNULL;      // condensed
1526     fields[argp++] = TypeInt::INT;          // condensedOffs
1527     fields[argp++] = TypePtr::NOTNULL;      // parsed
1528     fields[argp++] = TypeInt::INT;          // parsedLength
1529 
1530     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1531     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1532 
1533     // result type needed
1534     fields = TypeTuple::fields(1);
1535     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1536     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1537     return TypeFunc::make(domain, range);
1538 }
1539 
1540 // Kyber Barrett reduce function
1541 static const TypeFunc* make_kyberBarrettReduce_Type() {
1542     int argcnt = 1;
1543 
1544     const Type** fields = TypeTuple::fields(argcnt);
1545     int argp = TypeFunc::Parms;
1546     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1547     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1548     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1549 
1550     // result type needed
1551     fields = TypeTuple::fields(1);
1552     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1553     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1554     return TypeFunc::make(domain, range);
1555 }
1556 
1557 // Dilithium NTT function except for the final "normalization" to |coeff| < Q
1558 static const TypeFunc* make_dilithiumAlmostNtt_Type() {
1559     int argcnt = 2;
1560 
1561     const Type** fields = TypeTuple::fields(argcnt);
1562     int argp = TypeFunc::Parms;
1563     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1564     fields[argp++] = TypePtr::NOTNULL;      // NTT zetas
1565 
1566     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1567     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1568 
1569     // result type needed
1570     fields = TypeTuple::fields(1);
1571     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1572     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1573     return TypeFunc::make(domain, range);
1574 }
1575 
1576 // Dilithium inverse NTT function except the final mod Q division by 2^256
1577 static const TypeFunc* make_dilithiumAlmostInverseNtt_Type() {
1578     int argcnt = 2;
1579 
1580     const Type** fields = TypeTuple::fields(argcnt);
1581     int argp = TypeFunc::Parms;
1582     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1583     fields[argp++] = TypePtr::NOTNULL;      // inverse NTT zetas
1584 
1585     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1586     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1587 
1588     // result type needed
1589     fields = TypeTuple::fields(1);
1590     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1591     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1592     return TypeFunc::make(domain, range);
1593 }
1594 
1595 // Dilithium NTT multiply function
1596 static const TypeFunc* make_dilithiumNttMult_Type() {
1597     int argcnt = 3;
1598 
1599     const Type** fields = TypeTuple::fields(argcnt);
1600     int argp = TypeFunc::Parms;
1601     fields[argp++] = TypePtr::NOTNULL;      // result
1602     fields[argp++] = TypePtr::NOTNULL;      // ntta
1603     fields[argp++] = TypePtr::NOTNULL;      // nttb
1604 
1605     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1606     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1607 
1608     // result type needed
1609     fields = TypeTuple::fields(1);
1610     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1611     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1612     return TypeFunc::make(domain, range);
1613 }
1614 
1615 // Dilithium Montgomery multiply a polynome coefficient array by a constant
1616 static const TypeFunc* make_dilithiumMontMulByConstant_Type() {
1617     int argcnt = 2;
1618 
1619     const Type** fields = TypeTuple::fields(argcnt);
1620     int argp = TypeFunc::Parms;
1621     fields[argp++] = TypePtr::NOTNULL;      // coeffs
1622     fields[argp++] = TypeInt::INT;          // constant multiplier
1623 
1624     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1625     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1626 
1627     // result type needed
1628     fields = TypeTuple::fields(1);
1629     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1630     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1631     return TypeFunc::make(domain, range);
1632 }
1633 
1634 // Dilithium decompose polynomial
1635 static const TypeFunc* make_dilithiumDecomposePoly_Type() {
1636     int argcnt = 5;
1637 
1638     const Type** fields = TypeTuple::fields(argcnt);
1639     int argp = TypeFunc::Parms;
1640     fields[argp++] = TypePtr::NOTNULL;      // input
1641     fields[argp++] = TypePtr::NOTNULL;      // lowPart
1642     fields[argp++] = TypePtr::NOTNULL;      // highPart
1643     fields[argp++] = TypeInt::INT;          // 2 * gamma2
1644     fields[argp++] = TypeInt::INT;          // multiplier
1645 
1646     assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1647     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1648 
1649     // result type needed
1650     fields = TypeTuple::fields(1);
1651     fields[TypeFunc::Parms + 0] = TypeInt::INT;
1652     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1653     return TypeFunc::make(domain, range);
1654 }
1655 
1656 static const TypeFunc* make_base64_encodeBlock_Type() {
1657   int argcnt = 6;
1658 
1659   const Type** fields = TypeTuple::fields(argcnt);
1660   int argp = TypeFunc::Parms;
1661   fields[argp++] = TypePtr::NOTNULL;    // src array
1662   fields[argp++] = TypeInt::INT;        // offset
1663   fields[argp++] = TypeInt::INT;        // length
1664   fields[argp++] = TypePtr::NOTNULL;    // dest array
1665   fields[argp++] = TypeInt::INT;       // dp
1666   fields[argp++] = TypeInt::BOOL;       // isURL
1667   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1668   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1669 
1670   // result type needed
1671   fields = TypeTuple::fields(1);
1672   fields[TypeFunc::Parms + 0] = nullptr; // void
1673   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1674   return TypeFunc::make(domain, range);
1675 }
1676 
1677 static const TypeFunc* make_string_IndexOf_Type() {
1678   int argcnt = 4;
1679 
1680   const Type** fields = TypeTuple::fields(argcnt);
1681   int argp = TypeFunc::Parms;
1682   fields[argp++] = TypePtr::NOTNULL;    // haystack array
1683   fields[argp++] = TypeInt::INT;        // haystack length
1684   fields[argp++] = TypePtr::NOTNULL;    // needle array
1685   fields[argp++] = TypeInt::INT;        // needle length
1686   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1687   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1688 
1689   // result type needed
1690   fields = TypeTuple::fields(1);
1691   fields[TypeFunc::Parms + 0] = TypeInt::INT; // Index of needle in haystack
1692   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1693   return TypeFunc::make(domain, range);
1694 }
1695 
1696 static const TypeFunc* make_base64_decodeBlock_Type() {
1697   int argcnt = 7;
1698 
1699   const Type** fields = TypeTuple::fields(argcnt);
1700   int argp = TypeFunc::Parms;
1701   fields[argp++] = TypePtr::NOTNULL;    // src array
1702   fields[argp++] = TypeInt::INT;        // src offset
1703   fields[argp++] = TypeInt::INT;        // src length
1704   fields[argp++] = TypePtr::NOTNULL;    // dest array
1705   fields[argp++] = TypeInt::INT;        // dest offset
1706   fields[argp++] = TypeInt::BOOL;       // isURL
1707   fields[argp++] = TypeInt::BOOL;       // isMIME
1708   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1709   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1710 
1711   // result type needed
1712   fields = TypeTuple::fields(1);
1713   fields[TypeFunc::Parms + 0] = TypeInt::INT; // count of bytes written to dst
1714   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1715   return TypeFunc::make(domain, range);
1716 }
1717 
1718 static const TypeFunc* make_poly1305_processBlocks_Type() {
1719   int argcnt = 4;
1720 
1721   const Type** fields = TypeTuple::fields(argcnt);
1722   int argp = TypeFunc::Parms;
1723   fields[argp++] = TypePtr::NOTNULL;    // input array
1724   fields[argp++] = TypeInt::INT;        // input length
1725   fields[argp++] = TypePtr::NOTNULL;    // accumulator array
1726   fields[argp++] = TypePtr::NOTNULL;    // r array
1727   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1728   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1729 
1730   // result type needed
1731   fields = TypeTuple::fields(1);
1732   fields[TypeFunc::Parms + 0] = nullptr; // void
1733   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1734   return TypeFunc::make(domain, range);
1735 }
1736 
1737 static const TypeFunc* make_intpoly_montgomeryMult_P256_Type() {
1738   int argcnt = 3;
1739 
1740   const Type** fields = TypeTuple::fields(argcnt);
1741   int argp = TypeFunc::Parms;
1742   fields[argp++] = TypePtr::NOTNULL;    // a array
1743   fields[argp++] = TypePtr::NOTNULL;    // b array
1744   fields[argp++] = TypePtr::NOTNULL;    // r(esult) array
1745   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1746   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1747 
1748   // result type needed
1749   fields = TypeTuple::fields(1);
1750   fields[TypeFunc::Parms + 0] = nullptr; // void
1751   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1752   return TypeFunc::make(domain, range);
1753 }
1754 
1755 static const TypeFunc* make_intpoly_assign_Type() {
1756   int argcnt = 4;
1757 
1758   const Type** fields = TypeTuple::fields(argcnt);
1759   int argp = TypeFunc::Parms;
1760   fields[argp++] = TypeInt::INT;        // set flag
1761   fields[argp++] = TypePtr::NOTNULL;    // a array (result)
1762   fields[argp++] = TypePtr::NOTNULL;    // b array (if set is set)
1763   fields[argp++] = TypeInt::INT;        // array length
1764   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1765   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1766 
1767   // result type needed
1768   fields = TypeTuple::fields(1);
1769   fields[TypeFunc::Parms + 0] = nullptr; // void
1770   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1771   return TypeFunc::make(domain, range);
1772 }
1773 
1774 //------------- Interpreter state for on stack replacement
1775 static const TypeFunc* make_osr_end_Type() {
1776   // create input type (domain)
1777   const Type **fields = TypeTuple::fields(1);
1778   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1779   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1780 
1781   // create result type
1782   fields = TypeTuple::fields(1);
1783   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1784   fields[TypeFunc::Parms+0] = nullptr; // void
1785   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1786   return TypeFunc::make(domain, range);
1787 }
1788 
1789 //-------------------------------------------------------------------------------------
1790 // register policy
1791 
1792 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1793   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1794   switch (register_save_policy[reg]) {
1795     case 'C': return false; //SOC
1796     case 'E': return true ; //SOE
1797     case 'N': return false; //NS
1798     case 'A': return false; //AS
1799   }
1800   ShouldNotReachHere();
1801   return false;
1802 }
1803 
1804 //-----------------------------------------------------------------------
1805 // Exceptions
1806 //
1807 
1808 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1809 
1810 // The method is an entry that is always called by a C++ method not
1811 // directly from compiled code. Compiled code will call the C++ method following.
1812 // We can't allow async exception to be installed during  exception processing.
1813 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* current, nmethod* &nm))
1814   // The frame we rethrow the exception to might not have been processed by the GC yet.
1815   // The stack watermark barrier takes care of detecting that and ensuring the frame
1816   // has updated oops.
1817   StackWatermarkSet::after_unwind(current);
1818 
1819   // Do not confuse exception_oop with pending_exception. The exception_oop
1820   // is only used to pass arguments into the method. Not for general
1821   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1822   // the runtime stubs checks this on exit.
1823   assert(current->exception_oop() != nullptr, "exception oop is found");
1824   address handler_address = nullptr;
1825 
1826   Handle exception(current, current->exception_oop());
1827   address pc = current->exception_pc();
1828 
1829   // Clear out the exception oop and pc since looking up an
1830   // exception handler can cause class loading, which might throw an
1831   // exception and those fields are expected to be clear during
1832   // normal bytecode execution.
1833   current->clear_exception_oop_and_pc();
1834 
1835   LogTarget(Info, exceptions) lt;
1836   if (lt.is_enabled()) {
1837     LogStream ls(lt);
1838     trace_exception(&ls, exception(), pc, "");
1839   }
1840 
1841   // for AbortVMOnException flag
1842   Exceptions::debug_check_abort(exception);
1843 
1844 #ifdef ASSERT
1845   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
1846     // should throw an exception here
1847     ShouldNotReachHere();
1848   }
1849 #endif
1850 
1851   // new exception handling: this method is entered only from adapters
1852   // exceptions from compiled java methods are handled in compiled code
1853   // using rethrow node
1854 
1855   nm = CodeCache::find_nmethod(pc);
1856   assert(nm != nullptr, "No NMethod found");
1857   if (nm->is_native_method()) {
1858     fatal("Native method should not have path to exception handling");
1859   } else {
1860     // we are switching to old paradigm: search for exception handler in caller_frame
1861     // instead in exception handler of caller_frame.sender()
1862 
1863     if (JvmtiExport::can_post_on_exceptions()) {
1864       // "Full-speed catching" is not necessary here,
1865       // since we're notifying the VM on every catch.
1866       // Force deoptimization and the rest of the lookup
1867       // will be fine.
1868       deoptimize_caller_frame(current);
1869     }
1870 
1871     // Check the stack guard pages.  If enabled, look for handler in this frame;
1872     // otherwise, forcibly unwind the frame.
1873     //
1874     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1875     bool force_unwind = !current->stack_overflow_state()->reguard_stack();
1876     bool deopting = false;
1877     if (nm->is_deopt_pc(pc)) {
1878       deopting = true;
1879       RegisterMap map(current,
1880                       RegisterMap::UpdateMap::skip,
1881                       RegisterMap::ProcessFrames::include,
1882                       RegisterMap::WalkContinuation::skip);
1883       frame deoptee = current->last_frame().sender(&map);
1884       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1885       // Adjust the pc back to the original throwing pc
1886       pc = deoptee.pc();
1887     }
1888 
1889     // If we are forcing an unwind because of stack overflow then deopt is
1890     // irrelevant since we are throwing the frame away anyway.
1891 
1892     if (deopting && !force_unwind) {
1893       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1894     } else {
1895 
1896       handler_address =
1897         force_unwind ? nullptr : nm->handler_for_exception_and_pc(exception, pc);
1898 
1899       if (handler_address == nullptr) {
1900         bool recursive_exception = false;
1901         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1902         assert (handler_address != nullptr, "must have compiled handler");
1903         // Update the exception cache only when the unwind was not forced
1904         // and there didn't happen another exception during the computation of the
1905         // compiled exception handler. Checking for exception oop equality is not
1906         // sufficient because some exceptions are pre-allocated and reused.
1907         if (!force_unwind && !recursive_exception) {
1908           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1909         }
1910       } else {
1911 #ifdef ASSERT
1912         bool recursive_exception = false;
1913         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1914         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1915                  p2i(handler_address), p2i(computed_address));
1916 #endif
1917       }
1918     }
1919 
1920     current->set_exception_pc(pc);
1921     current->set_exception_handler_pc(handler_address);
1922 
1923     // Check if the exception PC is a MethodHandle call site.
1924     current->set_is_method_handle_return(nm->is_method_handle_return(pc));
1925   }
1926 
1927   // Restore correct return pc.  Was saved above.
1928   current->set_exception_oop(exception());
1929   return handler_address;
1930 
1931 JRT_END
1932 
1933 // We are entering here from exception_blob
1934 // If there is a compiled exception handler in this method, we will continue there;
1935 // otherwise we will unwind the stack and continue at the caller of top frame method
1936 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1937 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1938 // we looked up the handler for has been deoptimized in the meantime. If it has been
1939 // we must not use the handler and instead return the deopt blob.
1940 address OptoRuntime::handle_exception_C(JavaThread* current) {
1941 //
1942 // We are in Java not VM and in debug mode we have a NoHandleMark
1943 //
1944 #ifndef PRODUCT
1945   SharedRuntime::_find_handler_ctr++;          // find exception handler
1946 #endif
1947   DEBUG_ONLY(NoHandleMark __hm;)
1948   nmethod* nm = nullptr;
1949   address handler_address = nullptr;
1950   {
1951     // Enter the VM
1952 
1953     ResetNoHandleMark rnhm;
1954     handler_address = handle_exception_C_helper(current, nm);
1955   }
1956 
1957   // Back in java: Use no oops, DON'T safepoint
1958 
1959   // Now check to see if the handler we are returning is in a now
1960   // deoptimized frame
1961 
1962   if (nm != nullptr) {
1963     RegisterMap map(current,
1964                     RegisterMap::UpdateMap::skip,
1965                     RegisterMap::ProcessFrames::skip,
1966                     RegisterMap::WalkContinuation::skip);
1967     frame caller = current->last_frame().sender(&map);
1968 #ifdef ASSERT
1969     assert(caller.is_compiled_frame(), "must be");
1970 #endif // ASSERT
1971     if (caller.is_deoptimized_frame()) {
1972       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1973     }
1974   }
1975   return handler_address;
1976 }
1977 
1978 //------------------------------rethrow----------------------------------------
1979 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1980 // is either throwing or rethrowing an exception.  The callee-save registers
1981 // have been restored, synchronized objects have been unlocked and the callee
1982 // stack frame has been removed.  The return address was passed in.
1983 // Exception oop is passed as the 1st argument.  This routine is then called
1984 // from the stub.  On exit, we know where to jump in the caller's code.
1985 // After this C code exits, the stub will pop his frame and end in a jump
1986 // (instead of a return).  We enter the caller's default handler.
1987 //
1988 // This must be JRT_LEAF:
1989 //     - caller will not change its state as we cannot block on exit,
1990 //       therefore raw_exception_handler_for_return_address is all it takes
1991 //       to handle deoptimized blobs
1992 //
1993 // However, there needs to be a safepoint check in the middle!  So compiled
1994 // safepoints are completely watertight.
1995 //
1996 // Thus, it cannot be a leaf since it contains the NoSafepointVerifier.
1997 //
1998 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1999 //
2000 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
2001   // ret_pc will have been loaded from the stack, so for AArch64 will be signed.
2002   AARCH64_PORT_ONLY(ret_pc = pauth_strip_verifiable(ret_pc));
2003 
2004 #ifndef PRODUCT
2005   SharedRuntime::_rethrow_ctr++;               // count rethrows
2006 #endif
2007   assert (exception != nullptr, "should have thrown a NullPointerException");
2008 #ifdef ASSERT
2009   if (!(exception->is_a(vmClasses::Throwable_klass()))) {
2010     // should throw an exception here
2011     ShouldNotReachHere();
2012   }
2013 #endif
2014 
2015   thread->set_vm_result_oop(exception);
2016   // Frame not compiled (handles deoptimization blob)
2017   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
2018 }
2019 
2020 static const TypeFunc* make_rethrow_Type() {
2021   // create input type (domain)
2022   const Type **fields = TypeTuple::fields(1);
2023   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
2024   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2025 
2026   // create result type (range)
2027   fields = TypeTuple::fields(1);
2028   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
2029   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
2030 
2031   return TypeFunc::make(domain, range);
2032 }
2033 
2034 
2035 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
2036   // Deoptimize the caller before continuing, as the compiled
2037   // exception handler table may not be valid.
2038   if (!StressCompiledExceptionHandlers && doit) {
2039     deoptimize_caller_frame(thread);
2040   }
2041 }
2042 
2043 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
2044   // Called from within the owner thread, so no need for safepoint
2045   RegisterMap reg_map(thread,
2046                       RegisterMap::UpdateMap::include,
2047                       RegisterMap::ProcessFrames::include,
2048                       RegisterMap::WalkContinuation::skip);
2049   frame stub_frame = thread->last_frame();
2050   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
2051   frame caller_frame = stub_frame.sender(&reg_map);
2052 
2053   // Deoptimize the caller frame.
2054   Deoptimization::deoptimize_frame(thread, caller_frame.id());
2055 }
2056 
2057 
2058 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
2059   // Called from within the owner thread, so no need for safepoint
2060   RegisterMap reg_map(thread,
2061                       RegisterMap::UpdateMap::include,
2062                       RegisterMap::ProcessFrames::include,
2063                       RegisterMap::WalkContinuation::skip);
2064   frame stub_frame = thread->last_frame();
2065   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
2066   frame caller_frame = stub_frame.sender(&reg_map);
2067   return caller_frame.is_deoptimized_frame();
2068 }
2069 
2070 static const TypeFunc* make_register_finalizer_Type() {
2071   // create input type (domain)
2072   const Type **fields = TypeTuple::fields(1);
2073   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
2074   // // The JavaThread* is passed to each routine as the last argument
2075   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
2076   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
2077 
2078   // create result type (range)
2079   fields = TypeTuple::fields(0);
2080 
2081   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2082 
2083   return TypeFunc::make(domain,range);
2084 }
2085 
2086 #if INCLUDE_JFR
2087 static const TypeFunc* make_class_id_load_barrier_Type() {
2088   // create input type (domain)
2089   const Type **fields = TypeTuple::fields(1);
2090   fields[TypeFunc::Parms+0] = TypeInstPtr::KLASS;
2091   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms + 1, fields);
2092 
2093   // create result type (range)
2094   fields = TypeTuple::fields(0);
2095 
2096   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms + 0, fields);
2097 
2098   return TypeFunc::make(domain,range);
2099 }
2100 #endif // INCLUDE_JFR
2101 
2102 //-----------------------------------------------------------------------------
2103 static const TypeFunc* make_dtrace_method_entry_exit_Type() {
2104   // create input type (domain)
2105   const Type **fields = TypeTuple::fields(2);
2106   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2107   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
2108   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2109 
2110   // create result type (range)
2111   fields = TypeTuple::fields(0);
2112 
2113   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2114 
2115   return TypeFunc::make(domain,range);
2116 }
2117 
2118 static const TypeFunc* make_dtrace_object_alloc_Type() {
2119   // create input type (domain)
2120   const Type **fields = TypeTuple::fields(2);
2121   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
2122   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
2123 
2124   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
2125 
2126   // create result type (range)
2127   fields = TypeTuple::fields(0);
2128 
2129   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
2130 
2131   return TypeFunc::make(domain,range);
2132 }
2133 
2134 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer_C(oopDesc* obj, JavaThread* current))
2135   assert(oopDesc::is_oop(obj), "must be a valid oop");
2136   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
2137   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
2138 JRT_END
2139 
2140 //-----------------------------------------------------------------------------
2141 
2142 NamedCounter * volatile OptoRuntime::_named_counters = nullptr;
2143 
2144 //
2145 // dump the collected NamedCounters.
2146 //
2147 void OptoRuntime::print_named_counters() {
2148   int total_lock_count = 0;
2149   int eliminated_lock_count = 0;
2150 
2151   NamedCounter* c = _named_counters;
2152   while (c) {
2153     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
2154       int count = c->count();
2155       if (count > 0) {
2156         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
2157         if (Verbose) {
2158           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
2159         }
2160         total_lock_count += count;
2161         if (eliminated) {
2162           eliminated_lock_count += count;
2163         }
2164       }
2165     }
2166     c = c->next();
2167   }
2168   if (total_lock_count > 0) {
2169     tty->print_cr("dynamic locks: %d", total_lock_count);
2170     if (eliminated_lock_count) {
2171       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
2172                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
2173     }
2174   }
2175 }
2176 
2177 //
2178 //  Allocate a new NamedCounter.  The JVMState is used to generate the
2179 //  name which consists of method@line for the inlining tree.
2180 //
2181 
2182 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
2183   int max_depth = youngest_jvms->depth();
2184 
2185   // Visit scopes from youngest to oldest.
2186   bool first = true;
2187   stringStream st;
2188   for (int depth = max_depth; depth >= 1; depth--) {
2189     JVMState* jvms = youngest_jvms->of_depth(depth);
2190     ciMethod* m = jvms->has_method() ? jvms->method() : nullptr;
2191     if (!first) {
2192       st.print(" ");
2193     } else {
2194       first = false;
2195     }
2196     int bci = jvms->bci();
2197     if (bci < 0) bci = 0;
2198     if (m != nullptr) {
2199       st.print("%s.%s", m->holder()->name()->as_utf8(), m->name()->as_utf8());
2200     } else {
2201       st.print("no method");
2202     }
2203     st.print("@%d", bci);
2204     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
2205   }
2206   NamedCounter* c = new NamedCounter(st.freeze(), tag);
2207 
2208   // atomically add the new counter to the head of the list.  We only
2209   // add counters so this is safe.
2210   NamedCounter* head;
2211   do {
2212     c->set_next(nullptr);
2213     head = _named_counters;
2214     c->set_next(head);
2215   } while (Atomic::cmpxchg(&_named_counters, head, c) != head);
2216   return c;
2217 }
2218 
2219 void OptoRuntime::initialize_types() {
2220   _new_instance_Type                  = make_new_instance_Type();
2221   _new_array_Type                     = make_new_array_Type();
2222   _multianewarray2_Type               = multianewarray_Type(2);
2223   _multianewarray3_Type               = multianewarray_Type(3);
2224   _multianewarray4_Type               = multianewarray_Type(4);
2225   _multianewarray5_Type               = multianewarray_Type(5);
2226   _multianewarrayN_Type               = make_multianewarrayN_Type();
2227   _complete_monitor_enter_Type        = make_complete_monitor_enter_Type();
2228   _complete_monitor_exit_Type         = make_complete_monitor_exit_Type();
2229   _monitor_notify_Type                = make_monitor_notify_Type();
2230   _uncommon_trap_Type                 = make_uncommon_trap_Type();
2231   _athrow_Type                        = make_athrow_Type();
2232   _rethrow_Type                       = make_rethrow_Type();
2233   _Math_D_D_Type                      = make_Math_D_D_Type();
2234   _Math_DD_D_Type                     = make_Math_DD_D_Type();
2235   _modf_Type                          = make_modf_Type();
2236   _l2f_Type                           = make_l2f_Type();
2237   _void_long_Type                     = make_void_long_Type();
2238   _void_void_Type                     = make_void_void_Type();
2239   _jfr_write_checkpoint_Type          = make_jfr_write_checkpoint_Type();
2240   _flush_windows_Type                 = make_flush_windows_Type();
2241   _fast_arraycopy_Type                = make_arraycopy_Type(ac_fast);
2242   _checkcast_arraycopy_Type           = make_arraycopy_Type(ac_checkcast);
2243   _generic_arraycopy_Type             = make_arraycopy_Type(ac_generic);
2244   _slow_arraycopy_Type                = make_arraycopy_Type(ac_slow);
2245   _unsafe_setmemory_Type              = make_setmemory_Type();
2246   _array_fill_Type                    = make_array_fill_Type();
2247   _array_sort_Type                    = make_array_sort_Type();
2248   _array_partition_Type               = make_array_partition_Type();
2249   _aescrypt_block_Type                = make_aescrypt_block_Type();
2250   _cipherBlockChaining_aescrypt_Type  = make_cipherBlockChaining_aescrypt_Type();
2251   _electronicCodeBook_aescrypt_Type   = make_electronicCodeBook_aescrypt_Type();
2252   _counterMode_aescrypt_Type          = make_counterMode_aescrypt_Type();
2253   _galoisCounterMode_aescrypt_Type    = make_galoisCounterMode_aescrypt_Type();
2254   _digestBase_implCompress_with_sha3_Type      = make_digestBase_implCompress_Type(  /* is_sha3= */ true);
2255   _digestBase_implCompress_without_sha3_Type   = make_digestBase_implCompress_Type(  /* is_sha3= */ false);;
2256   _digestBase_implCompressMB_with_sha3_Type    = make_digestBase_implCompressMB_Type(/* is_sha3= */ true);
2257   _digestBase_implCompressMB_without_sha3_Type = make_digestBase_implCompressMB_Type(/* is_sha3= */ false);
2258   _double_keccak_Type                 = make_double_keccak_Type();
2259   _multiplyToLen_Type                 = make_multiplyToLen_Type();
2260   _montgomeryMultiply_Type            = make_montgomeryMultiply_Type();
2261   _montgomerySquare_Type              = make_montgomerySquare_Type();
2262   _squareToLen_Type                   = make_squareToLen_Type();
2263   _mulAdd_Type                        = make_mulAdd_Type();
2264   _bigIntegerShift_Type               = make_bigIntegerShift_Type();
2265   _vectorizedMismatch_Type            = make_vectorizedMismatch_Type();
2266   _ghash_processBlocks_Type           = make_ghash_processBlocks_Type();
2267   _chacha20Block_Type                 = make_chacha20Block_Type();
2268   _kyberNtt_Type                      = make_kyberNtt_Type();
2269   _kyberInverseNtt_Type               = make_kyberInverseNtt_Type();
2270   _kyberNttMult_Type                  = make_kyberNttMult_Type();
2271   _kyberAddPoly_2_Type                = make_kyberAddPoly_2_Type();
2272   _kyberAddPoly_3_Type                = make_kyberAddPoly_3_Type();
2273   _kyber12To16_Type                   = make_kyber12To16_Type();
2274   _kyberBarrettReduce_Type            = make_kyberBarrettReduce_Type();
2275   _dilithiumAlmostNtt_Type            = make_dilithiumAlmostNtt_Type();
2276   _dilithiumAlmostInverseNtt_Type     = make_dilithiumAlmostInverseNtt_Type();
2277   _dilithiumNttMult_Type              = make_dilithiumNttMult_Type();
2278   _dilithiumMontMulByConstant_Type    = make_dilithiumMontMulByConstant_Type();
2279   _dilithiumDecomposePoly_Type        = make_dilithiumDecomposePoly_Type();
2280   _base64_encodeBlock_Type            = make_base64_encodeBlock_Type();
2281   _base64_decodeBlock_Type            = make_base64_decodeBlock_Type();
2282   _string_IndexOf_Type                = make_string_IndexOf_Type();
2283   _poly1305_processBlocks_Type        = make_poly1305_processBlocks_Type();
2284   _intpoly_montgomeryMult_P256_Type   = make_intpoly_montgomeryMult_P256_Type();
2285   _intpoly_assign_Type                = make_intpoly_assign_Type();
2286   _updateBytesCRC32_Type              = make_updateBytesCRC32_Type();
2287   _updateBytesCRC32C_Type             = make_updateBytesCRC32C_Type();
2288   _updateBytesAdler32_Type            = make_updateBytesAdler32_Type();
2289   _osr_end_Type                       = make_osr_end_Type();
2290   _register_finalizer_Type            = make_register_finalizer_Type();
2291   JFR_ONLY(
2292     _class_id_load_barrier_Type       = make_class_id_load_barrier_Type();
2293   )
2294 #if INCLUDE_JVMTI
2295   _notify_jvmti_vthread_Type          = make_notify_jvmti_vthread_Type();
2296 #endif // INCLUDE_JVMTI
2297   _dtrace_method_entry_exit_Type      = make_dtrace_method_entry_exit_Type();
2298   _dtrace_object_alloc_Type           = make_dtrace_object_alloc_Type();
2299 }
2300 
2301 int trace_exception_counter = 0;
2302 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
2303   trace_exception_counter++;
2304   stringStream tempst;
2305 
2306   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
2307   exception_oop->print_value_on(&tempst);
2308   tempst.print(" in ");
2309   CodeBlob* blob = CodeCache::find_blob(exception_pc);
2310   if (blob->is_nmethod()) {
2311     blob->as_nmethod()->method()->print_value_on(&tempst);
2312   } else if (blob->is_runtime_stub()) {
2313     tempst.print("<runtime-stub>");
2314   } else {
2315     tempst.print("<unknown>");
2316   }
2317   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
2318   tempst.print("]");
2319 
2320   st->print_raw_cr(tempst.freeze());
2321 }