1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "compiler/compileLog.hpp"
  26 #include "gc/shared/barrierSet.hpp"
  27 #include "gc/shared/c2/barrierSetC2.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/loopnode.hpp"
  33 #include "opto/matcher.hpp"
  34 #include "opto/movenode.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/opaquenode.hpp"
  37 #include "opto/opcodes.hpp"
  38 #include "opto/phaseX.hpp"
  39 #include "opto/subnode.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "utilities/reverse_bits.hpp"
  42 
  43 // Portions of code courtesy of Clifford Click
  44 
  45 // Optimization - Graph Style
  46 
  47 #include "math.h"
  48 
  49 //=============================================================================
  50 //------------------------------Identity---------------------------------------
  51 // If right input is a constant 0, return the left input.
  52 Node* SubNode::Identity(PhaseGVN* phase) {
  53   assert(in(1) != this, "Must already have called Value");
  54   assert(in(2) != this, "Must already have called Value");
  55 
  56   // Remove double negation
  57   const Type *zero = add_id();
  58   if( phase->type( in(1) )->higher_equal( zero ) &&
  59       in(2)->Opcode() == Opcode() &&
  60       phase->type( in(2)->in(1) )->higher_equal( zero ) ) {
  61     return in(2)->in(2);
  62   }
  63 
  64   // Convert "(X+Y) - Y" into X and "(X+Y) - X" into Y
  65   if (in(1)->Opcode() == Op_AddI || in(1)->Opcode() == Op_AddL) {
  66     if (in(1)->in(2) == in(2)) {
  67       return in(1)->in(1);
  68     }
  69     if (in(1)->in(1) == in(2)) {
  70       return in(1)->in(2);
  71     }
  72   }
  73 
  74   return ( phase->type( in(2) )->higher_equal( zero ) ) ? in(1) : this;
  75 }
  76 
  77 //------------------------------Value------------------------------------------
  78 // A subtract node differences it's two inputs.
  79 const Type* SubNode::Value_common(PhaseValues* phase) const {
  80   const Node* in1 = in(1);
  81   const Node* in2 = in(2);
  82   // Either input is TOP ==> the result is TOP
  83   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
  84   if( t1 == Type::TOP ) return Type::TOP;
  85   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
  86   if( t2 == Type::TOP ) return Type::TOP;
  87 
  88   // Not correct for SubFnode and AddFNode (must check for infinity)
  89   // Equal?  Subtract is zero
  90   if (in1->eqv_uncast(in2))  return add_id();
  91 
  92   // Either input is BOTTOM ==> the result is the local BOTTOM
  93   if( t1 == Type::BOTTOM || t2 == Type::BOTTOM )
  94     return bottom_type();
  95 
  96   return nullptr;
  97 }
  98 
  99 const Type* SubNode::Value(PhaseGVN* phase) const {
 100   const Type* t = Value_common(phase);
 101   if (t != nullptr) {
 102     return t;
 103   }
 104   const Type* t1 = phase->type(in(1));
 105   const Type* t2 = phase->type(in(2));
 106   return sub(t1,t2);            // Local flavor of type subtraction
 107 
 108 }
 109 
 110 SubNode* SubNode::make(Node* in1, Node* in2, BasicType bt) {
 111   switch (bt) {
 112     case T_INT:
 113       return new SubINode(in1, in2);
 114     case T_LONG:
 115       return new SubLNode(in1, in2);
 116     default:
 117       fatal("Not implemented for %s", type2name(bt));
 118   }
 119   return nullptr;
 120 }
 121 
 122 //=============================================================================
 123 //------------------------------Helper function--------------------------------
 124 
 125 static bool is_cloop_increment(Node* inc) {
 126   precond(inc->Opcode() == Op_AddI || inc->Opcode() == Op_AddL);
 127 
 128   if (!inc->in(1)->is_Phi()) {
 129     return false;
 130   }
 131   const PhiNode* phi = inc->in(1)->as_Phi();
 132 
 133   if (!phi->region()->is_CountedLoop()) {
 134     return false;
 135   }
 136 
 137   return inc == phi->region()->as_CountedLoop()->incr();
 138 }
 139 
 140 // Given the expression '(x + C) - v', or
 141 //                      'v - (x + C)', we examine nodes '+' and 'v':
 142 //
 143 //  1. Do not convert if '+' is a counted-loop increment, because the '-' is
 144 //     loop invariant and converting extends the live-range of 'x' to overlap
 145 //     with the '+', forcing another register to be used in the loop.
 146 //
 147 //  2. Do not convert if 'v' is a counted-loop induction variable, because
 148 //     'x' might be invariant.
 149 //
 150 static bool ok_to_convert(Node* inc, Node* var) {
 151   return !(is_cloop_increment(inc) || var->is_cloop_ind_var());
 152 }
 153 
 154 static bool is_cloop_condition(BoolNode* bol) {
 155   for (DUIterator_Fast imax, i = bol->fast_outs(imax); i < imax; i++) {
 156     Node* out = bol->fast_out(i);
 157     if (out->is_BaseCountedLoopEnd()) {
 158       return true;
 159     }
 160   }
 161   return false;
 162 }
 163 
 164 //------------------------------Ideal------------------------------------------
 165 Node *SubINode::Ideal(PhaseGVN *phase, bool can_reshape){
 166   Node *in1 = in(1);
 167   Node *in2 = in(2);
 168   uint op1 = in1->Opcode();
 169   uint op2 = in2->Opcode();
 170 
 171 #ifdef ASSERT
 172   // Check for dead loop
 173   if ((in1 == this) || (in2 == this) ||
 174       ((op1 == Op_AddI || op1 == Op_SubI) &&
 175        ((in1->in(1) == this) || (in1->in(2) == this) ||
 176         (in1->in(1) == in1)  || (in1->in(2) == in1)))) {
 177     assert(false, "dead loop in SubINode::Ideal");
 178   }
 179 #endif
 180 
 181   const Type *t2 = phase->type( in2 );
 182   if( t2 == Type::TOP ) return nullptr;
 183   // Convert "x-c0" into "x+ -c0".
 184   if( t2->base() == Type::Int ){        // Might be bottom or top...
 185     const TypeInt *i = t2->is_int();
 186     if( i->is_con() )
 187       return new AddINode(in1, phase->intcon(java_negate(i->get_con())));
 188   }
 189 
 190   // Convert "(x+c0) - y" into (x-y) + c0"
 191   // Do not collapse (x+c0)-y if "+" is a loop increment or
 192   // if "y" is a loop induction variable.
 193   if( op1 == Op_AddI && ok_to_convert(in1, in2) ) {
 194     const Type *tadd = phase->type( in1->in(2) );
 195     if( tadd->singleton() && tadd != Type::TOP ) {
 196       Node *sub2 = phase->transform( new SubINode( in1->in(1), in2 ));
 197       return new AddINode( sub2, in1->in(2) );
 198     }
 199   }
 200 
 201   // Convert "x - (y+c0)" into "(x-y) - c0" AND
 202   // Convert "c1 - (y+c0)" into "(c1-c0) - y"
 203   // Need the same check as in above optimization but reversed.
 204   if (op2 == Op_AddI
 205       && ok_to_convert(in2, in1)
 206       && in2->in(2)->Opcode() == Op_ConI) {
 207     jint c0 = phase->type(in2->in(2))->isa_int()->get_con();
 208     Node* in21 = in2->in(1);
 209     if (in1->Opcode() == Op_ConI) {
 210       // Match c1
 211       jint c1 = phase->type(in1)->isa_int()->get_con();
 212       Node* sub2 = phase->intcon(java_subtract(c1, c0));
 213       return new SubINode(sub2, in21);
 214     } else {
 215       // Match x
 216       Node* sub2 = phase->transform(new SubINode(in1, in21));
 217       Node* neg_c0 = phase->intcon(java_negate(c0));
 218       return new AddINode(sub2, neg_c0);
 219     }
 220   }
 221 
 222   const Type *t1 = phase->type( in1 );
 223   if( t1 == Type::TOP ) return nullptr;
 224 
 225 #ifdef ASSERT
 226   // Check for dead loop
 227   if ((op2 == Op_AddI || op2 == Op_SubI) &&
 228       ((in2->in(1) == this) || (in2->in(2) == this) ||
 229        (in2->in(1) == in2)  || (in2->in(2) == in2))) {
 230     assert(false, "dead loop in SubINode::Ideal");
 231   }
 232 #endif
 233 
 234   // Convert "x - (x+y)" into "-y"
 235   if (op2 == Op_AddI && in1 == in2->in(1)) {
 236     return new SubINode(phase->intcon(0), in2->in(2));
 237   }
 238   // Convert "(x-y) - x" into "-y"
 239   if (op1 == Op_SubI && in1->in(1) == in2) {
 240     return new SubINode(phase->intcon(0), in1->in(2));
 241   }
 242   // Convert "x - (y+x)" into "-y"
 243   if (op2 == Op_AddI && in1 == in2->in(2)) {
 244     return new SubINode(phase->intcon(0), in2->in(1));
 245   }
 246 
 247   // Convert "0 - (x-y)" into "y-x", leave the double negation "-(-y)" to SubNode::Identity().
 248   if (t1 == TypeInt::ZERO && op2 == Op_SubI && phase->type(in2->in(1)) != TypeInt::ZERO) {
 249     return new SubINode(in2->in(2), in2->in(1));
 250   }
 251 
 252   // Convert "0 - (x+con)" into "-con-x"
 253   jint con;
 254   if( t1 == TypeInt::ZERO && op2 == Op_AddI &&
 255       (con = in2->in(2)->find_int_con(0)) != 0 )
 256     return new SubINode( phase->intcon(-con), in2->in(1) );
 257 
 258   // Convert "(X+A) - (X+B)" into "A - B"
 259   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(1) )
 260     return new SubINode( in1->in(2), in2->in(2) );
 261 
 262   // Convert "(A+X) - (B+X)" into "A - B"
 263   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(2) )
 264     return new SubINode( in1->in(1), in2->in(1) );
 265 
 266   // Convert "(A+X) - (X+B)" into "A - B"
 267   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(2) == in2->in(1) )
 268     return new SubINode( in1->in(1), in2->in(2) );
 269 
 270   // Convert "(X+A) - (B+X)" into "A - B"
 271   if( op1 == Op_AddI && op2 == Op_AddI && in1->in(1) == in2->in(2) )
 272     return new SubINode( in1->in(2), in2->in(1) );
 273 
 274   // Convert "A-(B-C)" into (A+C)-B", since add is commutative and generally
 275   // nicer to optimize than subtract.
 276   if( op2 == Op_SubI && in2->outcnt() == 1) {
 277     Node *add1 = phase->transform( new AddINode( in1, in2->in(2) ) );
 278     return new SubINode( add1, in2->in(1) );
 279   }
 280 
 281   // Associative
 282   if (op1 == Op_MulI && op2 == Op_MulI) {
 283     Node* sub_in1 = nullptr;
 284     Node* sub_in2 = nullptr;
 285     Node* mul_in = nullptr;
 286 
 287     if (in1->in(1) == in2->in(1)) {
 288       // Convert "a*b-a*c into a*(b-c)
 289       sub_in1 = in1->in(2);
 290       sub_in2 = in2->in(2);
 291       mul_in = in1->in(1);
 292     } else if (in1->in(2) == in2->in(1)) {
 293       // Convert a*b-b*c into b*(a-c)
 294       sub_in1 = in1->in(1);
 295       sub_in2 = in2->in(2);
 296       mul_in = in1->in(2);
 297     } else if (in1->in(2) == in2->in(2)) {
 298       // Convert a*c-b*c into (a-b)*c
 299       sub_in1 = in1->in(1);
 300       sub_in2 = in2->in(1);
 301       mul_in = in1->in(2);
 302     } else if (in1->in(1) == in2->in(2)) {
 303       // Convert a*b-c*a into a*(b-c)
 304       sub_in1 = in1->in(2);
 305       sub_in2 = in2->in(1);
 306       mul_in = in1->in(1);
 307     }
 308 
 309     if (mul_in != nullptr) {
 310       Node* sub = phase->transform(new SubINode(sub_in1, sub_in2));
 311       return new MulINode(mul_in, sub);
 312     }
 313   }
 314 
 315   // Convert "0-(A>>31)" into "(A>>>31)"
 316   if ( op2 == Op_RShiftI ) {
 317     Node *in21 = in2->in(1);
 318     Node *in22 = in2->in(2);
 319     const TypeInt *zero = phase->type(in1)->isa_int();
 320     const TypeInt *t21 = phase->type(in21)->isa_int();
 321     const TypeInt *t22 = phase->type(in22)->isa_int();
 322     if ( t21 && t22 && zero == TypeInt::ZERO && t22->is_con(31) ) {
 323       return new URShiftINode(in21, in22);
 324     }
 325   }
 326 
 327   return nullptr;
 328 }
 329 
 330 //------------------------------sub--------------------------------------------
 331 // A subtract node differences it's two inputs.
 332 const Type *SubINode::sub( const Type *t1, const Type *t2 ) const {
 333   const TypeInt *r0 = t1->is_int(); // Handy access
 334   const TypeInt *r1 = t2->is_int();
 335   int32_t lo = java_subtract(r0->_lo, r1->_hi);
 336   int32_t hi = java_subtract(r0->_hi, r1->_lo);
 337 
 338   // We next check for 32-bit overflow.
 339   // If that happens, we just assume all integers are possible.
 340   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
 341        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
 342       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
 343        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
 344     return TypeInt::make(lo,hi,MAX2(r0->_widen,r1->_widen));
 345   else                          // Overflow; assume all integers
 346     return TypeInt::INT;
 347 }
 348 
 349 //=============================================================================
 350 //------------------------------Ideal------------------------------------------
 351 Node *SubLNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 352   Node *in1 = in(1);
 353   Node *in2 = in(2);
 354   uint op1 = in1->Opcode();
 355   uint op2 = in2->Opcode();
 356 
 357 #ifdef ASSERT
 358   // Check for dead loop
 359   if ((in1 == this) || (in2 == this) ||
 360       ((op1 == Op_AddL || op1 == Op_SubL) &&
 361        ((in1->in(1) == this) || (in1->in(2) == this) ||
 362         (in1->in(1) == in1)  || (in1->in(2) == in1)))) {
 363     assert(false, "dead loop in SubLNode::Ideal");
 364   }
 365 #endif
 366 
 367   if( phase->type( in2 ) == Type::TOP ) return nullptr;
 368   const TypeLong *i = phase->type( in2 )->isa_long();
 369   // Convert "x-c0" into "x+ -c0".
 370   if( i &&                      // Might be bottom or top...
 371       i->is_con() )
 372     return new AddLNode(in1, phase->longcon(java_negate(i->get_con())));
 373 
 374   // Convert "(x+c0) - y" into (x-y) + c0"
 375   // Do not collapse (x+c0)-y if "+" is a loop increment or
 376   // if "y" is a loop induction variable.
 377   if( op1 == Op_AddL && ok_to_convert(in1, in2) ) {
 378     Node *in11 = in1->in(1);
 379     const Type *tadd = phase->type( in1->in(2) );
 380     if( tadd->singleton() && tadd != Type::TOP ) {
 381       Node *sub2 = phase->transform( new SubLNode( in11, in2 ));
 382       return new AddLNode( sub2, in1->in(2) );
 383     }
 384   }
 385 
 386   // Convert "x - (y+c0)" into "(x-y) - c0" AND
 387   // Convert "c1 - (y+c0)" into "(c1-c0) - y"
 388   // Need the same check as in above optimization but reversed.
 389   if (op2 == Op_AddL
 390       && ok_to_convert(in2, in1)
 391       && in2->in(2)->Opcode() == Op_ConL) {
 392     jlong c0 = phase->type(in2->in(2))->isa_long()->get_con();
 393     Node* in21 = in2->in(1);
 394     if (in1->Opcode() == Op_ConL) {
 395       // Match c1
 396       jlong c1 = phase->type(in1)->isa_long()->get_con();
 397       Node* sub2 = phase->longcon(java_subtract(c1, c0));
 398       return new SubLNode(sub2, in21);
 399     } else {
 400       Node* sub2 = phase->transform(new SubLNode(in1, in21));
 401       Node* neg_c0 = phase->longcon(-c0);
 402       return new AddLNode(sub2, neg_c0);
 403     }
 404   }
 405 
 406   const Type *t1 = phase->type( in1 );
 407   if( t1 == Type::TOP ) return nullptr;
 408 
 409 #ifdef ASSERT
 410   // Check for dead loop
 411   if ((op2 == Op_AddL || op2 == Op_SubL) &&
 412       ((in2->in(1) == this) || (in2->in(2) == this) ||
 413        (in2->in(1) == in2)  || (in2->in(2) == in2))) {
 414     assert(false, "dead loop in SubLNode::Ideal");
 415   }
 416 #endif
 417 
 418   // Convert "x - (x+y)" into "-y"
 419   if (op2 == Op_AddL && in1 == in2->in(1)) {
 420     return new SubLNode(phase->makecon(TypeLong::ZERO), in2->in(2));
 421   }
 422   // Convert "(x-y) - x" into "-y"
 423   if (op1 == Op_SubL && in1->in(1) == in2) {
 424     return new SubLNode(phase->makecon(TypeLong::ZERO), in1->in(2));
 425   }
 426   // Convert "x - (y+x)" into "-y"
 427   if (op2 == Op_AddL && in1 == in2->in(2)) {
 428     return new SubLNode(phase->makecon(TypeLong::ZERO), in2->in(1));
 429   }
 430 
 431   // Convert "0 - (x-y)" into "y-x", leave the double negation "-(-y)" to SubNode::Identity.
 432   if (t1 == TypeLong::ZERO && op2 == Op_SubL && phase->type(in2->in(1)) != TypeLong::ZERO) {
 433     return new SubLNode(in2->in(2), in2->in(1));
 434   }
 435 
 436   // Convert "(X+A) - (X+B)" into "A - B"
 437   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(1) )
 438     return new SubLNode( in1->in(2), in2->in(2) );
 439 
 440   // Convert "(A+X) - (B+X)" into "A - B"
 441   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(2) )
 442     return new SubLNode( in1->in(1), in2->in(1) );
 443 
 444   // Convert "(A+X) - (X+B)" into "A - B"
 445   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(2) == in2->in(1) )
 446     return new SubLNode( in1->in(1), in2->in(2) );
 447 
 448   // Convert "(X+A) - (B+X)" into "A - B"
 449   if( op1 == Op_AddL && op2 == Op_AddL && in1->in(1) == in2->in(2) )
 450     return new SubLNode( in1->in(2), in2->in(1) );
 451 
 452   // Convert "A-(B-C)" into (A+C)-B"
 453   if( op2 == Op_SubL && in2->outcnt() == 1) {
 454     Node *add1 = phase->transform( new AddLNode( in1, in2->in(2) ) );
 455     return new SubLNode( add1, in2->in(1) );
 456   }
 457 
 458   // Associative
 459   if (op1 == Op_MulL && op2 == Op_MulL) {
 460     Node* sub_in1 = nullptr;
 461     Node* sub_in2 = nullptr;
 462     Node* mul_in = nullptr;
 463 
 464     if (in1->in(1) == in2->in(1)) {
 465       // Convert "a*b-a*c into a*(b+c)
 466       sub_in1 = in1->in(2);
 467       sub_in2 = in2->in(2);
 468       mul_in = in1->in(1);
 469     } else if (in1->in(2) == in2->in(1)) {
 470       // Convert a*b-b*c into b*(a-c)
 471       sub_in1 = in1->in(1);
 472       sub_in2 = in2->in(2);
 473       mul_in = in1->in(2);
 474     } else if (in1->in(2) == in2->in(2)) {
 475       // Convert a*c-b*c into (a-b)*c
 476       sub_in1 = in1->in(1);
 477       sub_in2 = in2->in(1);
 478       mul_in = in1->in(2);
 479     } else if (in1->in(1) == in2->in(2)) {
 480       // Convert a*b-c*a into a*(b-c)
 481       sub_in1 = in1->in(2);
 482       sub_in2 = in2->in(1);
 483       mul_in = in1->in(1);
 484     }
 485 
 486     if (mul_in != nullptr) {
 487       Node* sub = phase->transform(new SubLNode(sub_in1, sub_in2));
 488       return new MulLNode(mul_in, sub);
 489     }
 490   }
 491 
 492   // Convert "0L-(A>>63)" into "(A>>>63)"
 493   if ( op2 == Op_RShiftL ) {
 494     Node *in21 = in2->in(1);
 495     Node *in22 = in2->in(2);
 496     const TypeLong *zero = phase->type(in1)->isa_long();
 497     const TypeLong *t21 = phase->type(in21)->isa_long();
 498     const TypeInt *t22 = phase->type(in22)->isa_int();
 499     if ( t21 && t22 && zero == TypeLong::ZERO && t22->is_con(63) ) {
 500       return new URShiftLNode(in21, in22);
 501     }
 502   }
 503 
 504   return nullptr;
 505 }
 506 
 507 //------------------------------sub--------------------------------------------
 508 // A subtract node differences it's two inputs.
 509 const Type *SubLNode::sub( const Type *t1, const Type *t2 ) const {
 510   const TypeLong *r0 = t1->is_long(); // Handy access
 511   const TypeLong *r1 = t2->is_long();
 512   jlong lo = java_subtract(r0->_lo, r1->_hi);
 513   jlong hi = java_subtract(r0->_hi, r1->_lo);
 514 
 515   // We next check for 32-bit overflow.
 516   // If that happens, we just assume all integers are possible.
 517   if( (((r0->_lo ^ r1->_hi) >= 0) ||    // lo ends have same signs OR
 518        ((r0->_lo ^      lo) >= 0)) &&   // lo results have same signs AND
 519       (((r0->_hi ^ r1->_lo) >= 0) ||    // hi ends have same signs OR
 520        ((r0->_hi ^      hi) >= 0)) )    // hi results have same signs
 521     return TypeLong::make(lo,hi,MAX2(r0->_widen,r1->_widen));
 522   else                          // Overflow; assume all integers
 523     return TypeLong::LONG;
 524 }
 525 
 526 //=============================================================================
 527 //------------------------------Value------------------------------------------
 528 // A subtract node differences its two inputs.
 529 const Type* SubFPNode::Value(PhaseGVN* phase) const {
 530   const Node* in1 = in(1);
 531   const Node* in2 = in(2);
 532   // Either input is TOP ==> the result is TOP
 533   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
 534   if( t1 == Type::TOP ) return Type::TOP;
 535   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
 536   if( t2 == Type::TOP ) return Type::TOP;
 537 
 538   // if both operands are infinity of same sign, the result is NaN; do
 539   // not replace with zero
 540   if (t1->is_finite() && t2->is_finite() && in1 == in2) {
 541     return add_id();
 542   }
 543 
 544   // Either input is BOTTOM ==> the result is the local BOTTOM
 545   const Type *bot = bottom_type();
 546   if( (t1 == bot) || (t2 == bot) ||
 547       (t1 == Type::BOTTOM) || (t2 == Type::BOTTOM) )
 548     return bot;
 549 
 550   return sub(t1,t2);            // Local flavor of type subtraction
 551 }
 552 
 553 
 554 //=============================================================================
 555 //------------------------------Ideal------------------------------------------
 556 Node *SubFNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 557   const Type *t2 = phase->type( in(2) );
 558   // Convert "x-c0" into "x+ -c0".
 559   if( t2->base() == Type::FloatCon ) {  // Might be bottom or top...
 560     // return new (phase->C, 3) AddFNode(in(1), phase->makecon( TypeF::make(-t2->getf()) ) );
 561   }
 562 
 563   // Cannot replace 0.0-X with -X because a 'fsub' bytecode computes
 564   // 0.0-0.0 as +0.0, while a 'fneg' bytecode computes -0.0.
 565   //if( phase->type(in(1)) == TypeF::ZERO )
 566   //return new (phase->C, 2) NegFNode(in(2));
 567 
 568   return nullptr;
 569 }
 570 
 571 //------------------------------sub--------------------------------------------
 572 // A subtract node differences its two inputs.
 573 const Type *SubFNode::sub( const Type *t1, const Type *t2 ) const {
 574   // no folding if one of operands is infinity or NaN, do not do constant folding
 575   if( g_isfinite(t1->getf()) && g_isfinite(t2->getf()) ) {
 576     return TypeF::make( t1->getf() - t2->getf() );
 577   }
 578   else if( g_isnan(t1->getf()) ) {
 579     return t1;
 580   }
 581   else if( g_isnan(t2->getf()) ) {
 582     return t2;
 583   }
 584   else {
 585     return Type::FLOAT;
 586   }
 587 }
 588 
 589 //=============================================================================
 590 //------------------------------Ideal------------------------------------------
 591 Node *SubDNode::Ideal(PhaseGVN *phase, bool can_reshape){
 592   const Type *t2 = phase->type( in(2) );
 593   // Convert "x-c0" into "x+ -c0".
 594   if( t2->base() == Type::DoubleCon ) { // Might be bottom or top...
 595     // return new (phase->C, 3) AddDNode(in(1), phase->makecon( TypeD::make(-t2->getd()) ) );
 596   }
 597 
 598   // Cannot replace 0.0-X with -X because a 'dsub' bytecode computes
 599   // 0.0-0.0 as +0.0, while a 'dneg' bytecode computes -0.0.
 600   //if( phase->type(in(1)) == TypeD::ZERO )
 601   //return new (phase->C, 2) NegDNode(in(2));
 602 
 603   return nullptr;
 604 }
 605 
 606 //------------------------------sub--------------------------------------------
 607 // A subtract node differences its two inputs.
 608 const Type *SubDNode::sub( const Type *t1, const Type *t2 ) const {
 609   // no folding if one of operands is infinity or NaN, do not do constant folding
 610   if( g_isfinite(t1->getd()) && g_isfinite(t2->getd()) ) {
 611     return TypeD::make( t1->getd() - t2->getd() );
 612   }
 613   else if( g_isnan(t1->getd()) ) {
 614     return t1;
 615   }
 616   else if( g_isnan(t2->getd()) ) {
 617     return t2;
 618   }
 619   else {
 620     return Type::DOUBLE;
 621   }
 622 }
 623 
 624 //=============================================================================
 625 //------------------------------Idealize---------------------------------------
 626 // Unlike SubNodes, compare must still flatten return value to the
 627 // range -1, 0, 1.
 628 // And optimizations like those for (X + Y) - X fail if overflow happens.
 629 Node* CmpNode::Identity(PhaseGVN* phase) {
 630   return this;
 631 }
 632 
 633 CmpNode *CmpNode::make(Node *in1, Node *in2, BasicType bt, bool unsigned_comp) {
 634   switch (bt) {
 635     case T_INT:
 636       if (unsigned_comp) {
 637         return new CmpUNode(in1, in2);
 638       }
 639       return new CmpINode(in1, in2);
 640     case T_LONG:
 641       if (unsigned_comp) {
 642         return new CmpULNode(in1, in2);
 643       }
 644       return new CmpLNode(in1, in2);
 645     case T_OBJECT:
 646     case T_ARRAY:
 647     case T_ADDRESS:
 648     case T_METADATA:
 649       return new CmpPNode(in1, in2);
 650     case T_NARROWOOP:
 651     case T_NARROWKLASS:
 652       return new CmpNNode(in1, in2);
 653     default:
 654       fatal("Not implemented for %s", type2name(bt));
 655   }
 656   return nullptr;
 657 }
 658 
 659 //=============================================================================
 660 //------------------------------cmp--------------------------------------------
 661 // Simplify a CmpI (compare 2 integers) node, based on local information.
 662 // If both inputs are constants, compare them.
 663 const Type *CmpINode::sub( const Type *t1, const Type *t2 ) const {
 664   const TypeInt *r0 = t1->is_int(); // Handy access
 665   const TypeInt *r1 = t2->is_int();
 666 
 667   if( r0->_hi < r1->_lo )       // Range is always low?
 668     return TypeInt::CC_LT;
 669   else if( r0->_lo > r1->_hi )  // Range is always high?
 670     return TypeInt::CC_GT;
 671 
 672   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
 673     assert(r0->get_con() == r1->get_con(), "must be equal");
 674     return TypeInt::CC_EQ;      // Equal results.
 675   } else if( r0->_hi == r1->_lo ) // Range is never high?
 676     return TypeInt::CC_LE;
 677   else if( r0->_lo == r1->_hi ) // Range is never low?
 678     return TypeInt::CC_GE;
 679   return TypeInt::CC;           // else use worst case results
 680 }
 681 
 682 const Type* CmpINode::Value(PhaseGVN* phase) const {
 683   Node* in1 = in(1);
 684   Node* in2 = in(2);
 685   // If this test is the zero trip guard for a main or post loop, check whether, with the opaque node removed, the test
 686   // would constant fold so the loop is never entered. If so return the type of the test without the opaque node removed:
 687   // make the loop unreachable.
 688   // The reason for this is that the iv phi captures the bounds of the loop and if the loop becomes unreachable, it can
 689   // become top. In that case, the loop must be removed.
 690   // This is safe because:
 691   // - as optimizations proceed, the range of iterations executed by the main loop narrows. If no iterations remain, then
 692   // we're done with optimizations for that loop.
 693   // - the post loop is initially not reachable but as long as there's a main loop, the zero trip guard for the post
 694   // loop takes a phi that merges the pre and main loop's iv and can't constant fold the zero trip guard. Once, the main
 695   // loop is removed, there's no need to preserve the zero trip guard for the post loop anymore.
 696   if (in1 != nullptr && in2 != nullptr) {
 697     uint input = 0;
 698     Node* cmp = nullptr;
 699     BoolTest::mask test;
 700     if (in1->Opcode() == Op_OpaqueZeroTripGuard && phase->type(in1) != Type::TOP) {
 701       cmp = new CmpINode(in1->in(1), in2);
 702       test = ((OpaqueZeroTripGuardNode*)in1)->_loop_entered_mask;
 703     }
 704     if (in2->Opcode() == Op_OpaqueZeroTripGuard && phase->type(in2) != Type::TOP) {
 705       assert(cmp == nullptr, "A cmp with 2 OpaqueZeroTripGuard inputs");
 706       cmp = new CmpINode(in1, in2->in(1));
 707       test = ((OpaqueZeroTripGuardNode*)in2)->_loop_entered_mask;
 708     }
 709     if (cmp != nullptr) {
 710       const Type* cmp_t = cmp->Value(phase);
 711       const Type* t = BoolTest(test).cc2logical(cmp_t);
 712       cmp->destruct(phase);
 713       if (t == TypeInt::ZERO) {
 714         return cmp_t;
 715       }
 716     }
 717   }
 718 
 719   return SubNode::Value(phase);
 720 }
 721 
 722 
 723 // Simplify a CmpU (compare 2 integers) node, based on local information.
 724 // If both inputs are constants, compare them.
 725 const Type *CmpUNode::sub( const Type *t1, const Type *t2 ) const {
 726   assert(!t1->isa_ptr(), "obsolete usage of CmpU");
 727 
 728   // comparing two unsigned ints
 729   const TypeInt *r0 = t1->is_int();   // Handy access
 730   const TypeInt *r1 = t2->is_int();
 731 
 732   // Current installed version
 733   // Compare ranges for non-overlap
 734   juint lo0 = r0->_lo;
 735   juint hi0 = r0->_hi;
 736   juint lo1 = r1->_lo;
 737   juint hi1 = r1->_hi;
 738 
 739   // If either one has both negative and positive values,
 740   // it therefore contains both 0 and -1, and since [0..-1] is the
 741   // full unsigned range, the type must act as an unsigned bottom.
 742   bool bot0 = ((jint)(lo0 ^ hi0) < 0);
 743   bool bot1 = ((jint)(lo1 ^ hi1) < 0);
 744 
 745   if (bot0 || bot1) {
 746     // All unsigned values are LE -1 and GE 0.
 747     if (lo0 == 0 && hi0 == 0) {
 748       return TypeInt::CC_LE;            //   0 <= bot
 749     } else if ((jint)lo0 == -1 && (jint)hi0 == -1) {
 750       return TypeInt::CC_GE;            // -1 >= bot
 751     } else if (lo1 == 0 && hi1 == 0) {
 752       return TypeInt::CC_GE;            // bot >= 0
 753     } else if ((jint)lo1 == -1 && (jint)hi1 == -1) {
 754       return TypeInt::CC_LE;            // bot <= -1
 755     }
 756   } else {
 757     // We can use ranges of the form [lo..hi] if signs are the same.
 758     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
 759     // results are reversed, '-' > '+' for unsigned compare
 760     if (hi0 < lo1) {
 761       return TypeInt::CC_LT;            // smaller
 762     } else if (lo0 > hi1) {
 763       return TypeInt::CC_GT;            // greater
 764     } else if (hi0 == lo1 && lo0 == hi1) {
 765       return TypeInt::CC_EQ;            // Equal results
 766     } else if (lo0 >= hi1) {
 767       return TypeInt::CC_GE;
 768     } else if (hi0 <= lo1) {
 769       // Check for special case in Hashtable::get.  (See below.)
 770       if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
 771         return TypeInt::CC_LT;
 772       return TypeInt::CC_LE;
 773     }
 774   }
 775   // Check for special case in Hashtable::get - the hash index is
 776   // mod'ed to the table size so the following range check is useless.
 777   // Check for: (X Mod Y) CmpU Y, where the mod result and Y both have
 778   // to be positive.
 779   // (This is a gross hack, since the sub method never
 780   // looks at the structure of the node in any other case.)
 781   if ((jint)lo0 >= 0 && (jint)lo1 >= 0 && is_index_range_check())
 782     return TypeInt::CC_LT;
 783   return TypeInt::CC;                   // else use worst case results
 784 }
 785 
 786 const Type* CmpUNode::Value(PhaseGVN* phase) const {
 787   const Type* t = SubNode::Value_common(phase);
 788   if (t != nullptr) {
 789     return t;
 790   }
 791   const Node* in1 = in(1);
 792   const Node* in2 = in(2);
 793   const Type* t1 = phase->type(in1);
 794   const Type* t2 = phase->type(in2);
 795   assert(t1->isa_int(), "CmpU has only Int type inputs");
 796   if (t2 == TypeInt::INT) { // Compare to bottom?
 797     return bottom_type();
 798   }
 799 
 800   const Type* t_sub = sub(t1, t2); // compare based on immediate inputs
 801 
 802   uint in1_op = in1->Opcode();
 803   if (in1_op == Op_AddI || in1_op == Op_SubI) {
 804     // The problem rise when result of AddI(SubI) may overflow
 805     // signed integer value. Let say the input type is
 806     // [256, maxint] then +128 will create 2 ranges due to
 807     // overflow: [minint, minint+127] and [384, maxint].
 808     // But C2 type system keep only 1 type range and as result
 809     // it use general [minint, maxint] for this case which we
 810     // can't optimize.
 811     //
 812     // Make 2 separate type ranges based on types of AddI(SubI) inputs
 813     // and compare results of their compare. If results are the same
 814     // CmpU node can be optimized.
 815     const Node* in11 = in1->in(1);
 816     const Node* in12 = in1->in(2);
 817     const Type* t11 = (in11 == in1) ? Type::TOP : phase->type(in11);
 818     const Type* t12 = (in12 == in1) ? Type::TOP : phase->type(in12);
 819     // Skip cases when input types are top or bottom.
 820     if ((t11 != Type::TOP) && (t11 != TypeInt::INT) &&
 821         (t12 != Type::TOP) && (t12 != TypeInt::INT)) {
 822       const TypeInt *r0 = t11->is_int();
 823       const TypeInt *r1 = t12->is_int();
 824       jlong lo_r0 = r0->_lo;
 825       jlong hi_r0 = r0->_hi;
 826       jlong lo_r1 = r1->_lo;
 827       jlong hi_r1 = r1->_hi;
 828       if (in1_op == Op_SubI) {
 829         jlong tmp = hi_r1;
 830         hi_r1 = -lo_r1;
 831         lo_r1 = -tmp;
 832         // Note, for substructing [minint,x] type range
 833         // long arithmetic provides correct overflow answer.
 834         // The confusion come from the fact that in 32-bit
 835         // -minint == minint but in 64-bit -minint == maxint+1.
 836       }
 837       jlong lo_long = lo_r0 + lo_r1;
 838       jlong hi_long = hi_r0 + hi_r1;
 839       int lo_tr1 = min_jint;
 840       int hi_tr1 = (int)hi_long;
 841       int lo_tr2 = (int)lo_long;
 842       int hi_tr2 = max_jint;
 843       bool underflow = lo_long != (jlong)lo_tr2;
 844       bool overflow  = hi_long != (jlong)hi_tr1;
 845       // Use sub(t1, t2) when there is no overflow (one type range)
 846       // or when both overflow and underflow (too complex).
 847       if ((underflow != overflow) && (hi_tr1 < lo_tr2)) {
 848         // Overflow only on one boundary, compare 2 separate type ranges.
 849         int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
 850         const TypeInt* tr1 = TypeInt::make(lo_tr1, hi_tr1, w);
 851         const TypeInt* tr2 = TypeInt::make(lo_tr2, hi_tr2, w);
 852         const TypeInt* cmp1 = sub(tr1, t2)->is_int();
 853         const TypeInt* cmp2 = sub(tr2, t2)->is_int();
 854         // Compute union, so that cmp handles all possible results from the two cases
 855         const Type* t_cmp = cmp1->meet(cmp2);
 856         // Pick narrowest type, based on overflow computation and on immediate inputs
 857         return t_sub->filter(t_cmp);
 858       }
 859     }
 860   }
 861 
 862   return t_sub;
 863 }
 864 
 865 bool CmpUNode::is_index_range_check() const {
 866   // Check for the "(X ModI Y) CmpU Y" shape
 867   return (in(1)->Opcode() == Op_ModI &&
 868           in(1)->in(2)->eqv_uncast(in(2)));
 869 }
 870 
 871 //------------------------------Idealize---------------------------------------
 872 Node *CmpINode::Ideal( PhaseGVN *phase, bool can_reshape ) {
 873   if (phase->type(in(2))->higher_equal(TypeInt::ZERO)) {
 874     switch (in(1)->Opcode()) {
 875     case Op_CmpU3:              // Collapse a CmpU3/CmpI into a CmpU
 876       return new CmpUNode(in(1)->in(1),in(1)->in(2));
 877     case Op_CmpL3:              // Collapse a CmpL3/CmpI into a CmpL
 878       return new CmpLNode(in(1)->in(1),in(1)->in(2));
 879     case Op_CmpUL3:             // Collapse a CmpUL3/CmpI into a CmpUL
 880       return new CmpULNode(in(1)->in(1),in(1)->in(2));
 881     case Op_CmpF3:              // Collapse a CmpF3/CmpI into a CmpF
 882       return new CmpFNode(in(1)->in(1),in(1)->in(2));
 883     case Op_CmpD3:              // Collapse a CmpD3/CmpI into a CmpD
 884       return new CmpDNode(in(1)->in(1),in(1)->in(2));
 885     //case Op_SubI:
 886       // If (x - y) cannot overflow, then ((x - y) <?> 0)
 887       // can be turned into (x <?> y).
 888       // This is handled (with more general cases) by Ideal_sub_algebra.
 889     }
 890   }
 891   return nullptr;                  // No change
 892 }
 893 
 894 Node *CmpLNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
 895   const TypeLong *t2 = phase->type(in(2))->isa_long();
 896   if (Opcode() == Op_CmpL && in(1)->Opcode() == Op_ConvI2L && t2 && t2->is_con()) {
 897     const jlong con = t2->get_con();
 898     if (con >= min_jint && con <= max_jint) {
 899       return new CmpINode(in(1)->in(1), phase->intcon((jint)con));
 900     }
 901   }
 902   return nullptr;
 903 }
 904 
 905 //=============================================================================
 906 // Simplify a CmpL (compare 2 longs ) node, based on local information.
 907 // If both inputs are constants, compare them.
 908 const Type *CmpLNode::sub( const Type *t1, const Type *t2 ) const {
 909   const TypeLong *r0 = t1->is_long(); // Handy access
 910   const TypeLong *r1 = t2->is_long();
 911 
 912   if( r0->_hi < r1->_lo )       // Range is always low?
 913     return TypeInt::CC_LT;
 914   else if( r0->_lo > r1->_hi )  // Range is always high?
 915     return TypeInt::CC_GT;
 916 
 917   else if( r0->is_con() && r1->is_con() ) { // comparing constants?
 918     assert(r0->get_con() == r1->get_con(), "must be equal");
 919     return TypeInt::CC_EQ;      // Equal results.
 920   } else if( r0->_hi == r1->_lo ) // Range is never high?
 921     return TypeInt::CC_LE;
 922   else if( r0->_lo == r1->_hi ) // Range is never low?
 923     return TypeInt::CC_GE;
 924   return TypeInt::CC;           // else use worst case results
 925 }
 926 
 927 
 928 // Simplify a CmpUL (compare 2 unsigned longs) node, based on local information.
 929 // If both inputs are constants, compare them.
 930 const Type* CmpULNode::sub(const Type* t1, const Type* t2) const {
 931   assert(!t1->isa_ptr(), "obsolete usage of CmpUL");
 932 
 933   // comparing two unsigned longs
 934   const TypeLong* r0 = t1->is_long();   // Handy access
 935   const TypeLong* r1 = t2->is_long();
 936 
 937   // Current installed version
 938   // Compare ranges for non-overlap
 939   julong lo0 = r0->_lo;
 940   julong hi0 = r0->_hi;
 941   julong lo1 = r1->_lo;
 942   julong hi1 = r1->_hi;
 943 
 944   // If either one has both negative and positive values,
 945   // it therefore contains both 0 and -1, and since [0..-1] is the
 946   // full unsigned range, the type must act as an unsigned bottom.
 947   bool bot0 = ((jlong)(lo0 ^ hi0) < 0);
 948   bool bot1 = ((jlong)(lo1 ^ hi1) < 0);
 949 
 950   if (bot0 || bot1) {
 951     // All unsigned values are LE -1 and GE 0.
 952     if (lo0 == 0 && hi0 == 0) {
 953       return TypeInt::CC_LE;            //   0 <= bot
 954     } else if ((jlong)lo0 == -1 && (jlong)hi0 == -1) {
 955       return TypeInt::CC_GE;            // -1 >= bot
 956     } else if (lo1 == 0 && hi1 == 0) {
 957       return TypeInt::CC_GE;            // bot >= 0
 958     } else if ((jlong)lo1 == -1 && (jlong)hi1 == -1) {
 959       return TypeInt::CC_LE;            // bot <= -1
 960     }
 961   } else {
 962     // We can use ranges of the form [lo..hi] if signs are the same.
 963     assert(lo0 <= hi0 && lo1 <= hi1, "unsigned ranges are valid");
 964     // results are reversed, '-' > '+' for unsigned compare
 965     if (hi0 < lo1) {
 966       return TypeInt::CC_LT;            // smaller
 967     } else if (lo0 > hi1) {
 968       return TypeInt::CC_GT;            // greater
 969     } else if (hi0 == lo1 && lo0 == hi1) {
 970       return TypeInt::CC_EQ;            // Equal results
 971     } else if (lo0 >= hi1) {
 972       return TypeInt::CC_GE;
 973     } else if (hi0 <= lo1) {
 974       return TypeInt::CC_LE;
 975     }
 976   }
 977 
 978   return TypeInt::CC;                   // else use worst case results
 979 }
 980 
 981 //=============================================================================
 982 //------------------------------sub--------------------------------------------
 983 // Simplify an CmpP (compare 2 pointers) node, based on local information.
 984 // If both inputs are constants, compare them.
 985 const Type *CmpPNode::sub( const Type *t1, const Type *t2 ) const {
 986   const TypePtr *r0 = t1->is_ptr(); // Handy access
 987   const TypePtr *r1 = t2->is_ptr();
 988 
 989   // Undefined inputs makes for an undefined result
 990   if( TypePtr::above_centerline(r0->_ptr) ||
 991       TypePtr::above_centerline(r1->_ptr) )
 992     return Type::TOP;
 993 
 994   if (r0 == r1 && r0->singleton()) {
 995     // Equal pointer constants (klasses, nulls, etc.)
 996     return TypeInt::CC_EQ;
 997   }
 998 
 999   // See if it is 2 unrelated classes.
1000   const TypeOopPtr* p0 = r0->isa_oopptr();
1001   const TypeOopPtr* p1 = r1->isa_oopptr();
1002   const TypeKlassPtr* k0 = r0->isa_klassptr();
1003   const TypeKlassPtr* k1 = r1->isa_klassptr();
1004   if ((p0 && p1) || (k0 && k1)) {
1005     if (p0 && p1) {
1006       Node* in1 = in(1)->uncast();
1007       Node* in2 = in(2)->uncast();
1008       AllocateNode* alloc1 = AllocateNode::Ideal_allocation(in1);
1009       AllocateNode* alloc2 = AllocateNode::Ideal_allocation(in2);
1010       if (MemNode::detect_ptr_independence(in1, alloc1, in2, alloc2, nullptr)) {
1011         return TypeInt::CC_GT;  // different pointers
1012       }
1013     }
1014     bool    xklass0 = p0 ? p0->klass_is_exact() : k0->klass_is_exact();
1015     bool    xklass1 = p1 ? p1->klass_is_exact() : k1->klass_is_exact();
1016     bool unrelated_classes = false;
1017 
1018     if ((p0 && p0->is_same_java_type_as(p1)) ||
1019         (k0 && k0->is_same_java_type_as(k1))) {
1020     } else if ((p0 && !p1->maybe_java_subtype_of(p0) && !p0->maybe_java_subtype_of(p1)) ||
1021                (k0 && !k1->maybe_java_subtype_of(k0) && !k0->maybe_java_subtype_of(k1))) {
1022       unrelated_classes = true;
1023     } else if ((p0 && !p1->maybe_java_subtype_of(p0)) ||
1024                (k0 && !k1->maybe_java_subtype_of(k0))) {
1025       unrelated_classes = xklass1;
1026     } else if ((p0 && !p0->maybe_java_subtype_of(p1)) ||
1027                (k0 && !k0->maybe_java_subtype_of(k1))) {
1028       unrelated_classes = xklass0;
1029     }
1030 
1031     if (unrelated_classes) {
1032       // The oops classes are known to be unrelated. If the joined PTRs of
1033       // two oops is not Null and not Bottom, then we are sure that one
1034       // of the two oops is non-null, and the comparison will always fail.
1035       TypePtr::PTR jp = r0->join_ptr(r1->_ptr);
1036       if (jp != TypePtr::Null && jp != TypePtr::BotPTR) {
1037         return TypeInt::CC_GT;
1038       }
1039     }
1040   }
1041 
1042   // Known constants can be compared exactly
1043   // Null can be distinguished from any NotNull pointers
1044   // Unknown inputs makes an unknown result
1045   if( r0->singleton() ) {
1046     intptr_t bits0 = r0->get_con();
1047     if( r1->singleton() )
1048       return bits0 == r1->get_con() ? TypeInt::CC_EQ : TypeInt::CC_GT;
1049     return ( r1->_ptr == TypePtr::NotNull && bits0==0 ) ? TypeInt::CC_GT : TypeInt::CC;
1050   } else if( r1->singleton() ) {
1051     intptr_t bits1 = r1->get_con();
1052     return ( r0->_ptr == TypePtr::NotNull && bits1==0 ) ? TypeInt::CC_GT : TypeInt::CC;
1053   } else
1054     return TypeInt::CC;
1055 }
1056 
1057 static inline Node* isa_java_mirror_load(PhaseGVN* phase, Node* n) {
1058   // Return the klass node for (indirect load from OopHandle)
1059   //   LoadBarrier?(LoadP(LoadP(AddP(foo:Klass, #java_mirror))))
1060   //   or null if not matching.
1061   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1062     n = bs->step_over_gc_barrier(n);
1063 
1064   if (n->Opcode() != Op_LoadP) return nullptr;
1065 
1066   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
1067   if (!tp || tp->instance_klass() != phase->C->env()->Class_klass()) return nullptr;
1068 
1069   Node* adr = n->in(MemNode::Address);
1070   // First load from OopHandle: ((OopHandle)mirror)->resolve(); may need barrier.
1071   if (adr->Opcode() != Op_LoadP || !phase->type(adr)->isa_rawptr()) return nullptr;
1072   adr = adr->in(MemNode::Address);
1073 
1074   intptr_t off = 0;
1075   Node* k = AddPNode::Ideal_base_and_offset(adr, phase, off);
1076   if (k == nullptr)  return nullptr;
1077   const TypeKlassPtr* tkp = phase->type(k)->isa_klassptr();
1078   if (!tkp || off != in_bytes(Klass::java_mirror_offset())) return nullptr;
1079 
1080   // We've found the klass node of a Java mirror load.
1081   return k;
1082 }
1083 
1084 static inline Node* isa_const_java_mirror(PhaseGVN* phase, Node* n) {
1085   // for ConP(Foo.class) return ConP(Foo.klass)
1086   // otherwise return null
1087   if (!n->is_Con()) return nullptr;
1088 
1089   const TypeInstPtr* tp = phase->type(n)->isa_instptr();
1090   if (!tp) return nullptr;
1091 
1092   ciType* mirror_type = tp->java_mirror_type();
1093   // TypeInstPtr::java_mirror_type() returns non-null for compile-
1094   // time Class constants only.
1095   if (!mirror_type) return nullptr;
1096 
1097   // x.getClass() == int.class can never be true (for all primitive types)
1098   // Return a ConP(null) node for this case.
1099   if (mirror_type->is_classless()) {
1100     return phase->makecon(TypePtr::NULL_PTR);
1101   }
1102 
1103   // return the ConP(Foo.klass)
1104   assert(mirror_type->is_klass(), "mirror_type should represent a Klass*");
1105   return phase->makecon(TypeKlassPtr::make(mirror_type->as_klass(), Type::trust_interfaces));
1106 }
1107 
1108 //------------------------------Ideal------------------------------------------
1109 // Normalize comparisons between Java mirror loads to compare the klass instead.
1110 //
1111 // Also check for the case of comparing an unknown klass loaded from the primary
1112 // super-type array vs a known klass with no subtypes.  This amounts to
1113 // checking to see an unknown klass subtypes a known klass with no subtypes;
1114 // this only happens on an exact match.  We can shorten this test by 1 load.
1115 Node *CmpPNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
1116   // Normalize comparisons between Java mirrors into comparisons of the low-
1117   // level klass, where a dependent load could be shortened.
1118   //
1119   // The new pattern has a nice effect of matching the same pattern used in the
1120   // fast path of instanceof/checkcast/Class.isInstance(), which allows
1121   // redundant exact type check be optimized away by GVN.
1122   // For example, in
1123   //   if (x.getClass() == Foo.class) {
1124   //     Foo foo = (Foo) x;
1125   //     // ... use a ...
1126   //   }
1127   // a CmpPNode could be shared between if_acmpne and checkcast
1128   {
1129     Node* k1 = isa_java_mirror_load(phase, in(1));
1130     Node* k2 = isa_java_mirror_load(phase, in(2));
1131     Node* conk2 = isa_const_java_mirror(phase, in(2));
1132 
1133     if (k1 && (k2 || conk2)) {
1134       Node* lhs = k1;
1135       Node* rhs = (k2 != nullptr) ? k2 : conk2;
1136       set_req_X(1, lhs, phase);
1137       set_req_X(2, rhs, phase);
1138       return this;
1139     }
1140   }
1141 
1142   // Constant pointer on right?
1143   const TypeKlassPtr* t2 = phase->type(in(2))->isa_klassptr();
1144   if (t2 == nullptr || !t2->klass_is_exact())
1145     return nullptr;
1146   // Get the constant klass we are comparing to.
1147   ciKlass* superklass = t2->exact_klass();
1148 
1149   // Now check for LoadKlass on left.
1150   Node* ldk1 = in(1);
1151   if (ldk1->is_DecodeNKlass()) {
1152     ldk1 = ldk1->in(1);
1153     if (ldk1->Opcode() != Op_LoadNKlass )
1154       return nullptr;
1155   } else if (ldk1->Opcode() != Op_LoadKlass )
1156     return nullptr;
1157   // Take apart the address of the LoadKlass:
1158   Node* adr1 = ldk1->in(MemNode::Address);
1159   intptr_t con2 = 0;
1160   Node* ldk2 = AddPNode::Ideal_base_and_offset(adr1, phase, con2);
1161   if (ldk2 == nullptr)
1162     return nullptr;
1163   if (con2 == Type::klass_offset()) {
1164     // We are inspecting an object's concrete class.
1165     // Short-circuit the check if the query is abstract.
1166     if (superklass->is_interface() ||
1167         superklass->is_abstract()) {
1168       // Make it come out always false:
1169       this->set_req(2, phase->makecon(TypePtr::NULL_PTR));
1170       return this;
1171     }
1172   }
1173 
1174   // Check for a LoadKlass from primary supertype array.
1175   // Any nested loadklass from loadklass+con must be from the p.s. array.
1176   if (ldk2->is_DecodeNKlass()) {
1177     // Keep ldk2 as DecodeN since it could be used in CmpP below.
1178     if (ldk2->in(1)->Opcode() != Op_LoadNKlass )
1179       return nullptr;
1180   } else if (ldk2->Opcode() != Op_LoadKlass)
1181     return nullptr;
1182 
1183   // Verify that we understand the situation
1184   if (con2 != (intptr_t) superklass->super_check_offset())
1185     return nullptr;                // Might be element-klass loading from array klass
1186 
1187   // If 'superklass' has no subklasses and is not an interface, then we are
1188   // assured that the only input which will pass the type check is
1189   // 'superklass' itself.
1190   //
1191   // We could be more liberal here, and allow the optimization on interfaces
1192   // which have a single implementor.  This would require us to increase the
1193   // expressiveness of the add_dependency() mechanism.
1194   // %%% Do this after we fix TypeOopPtr:  Deps are expressive enough now.
1195 
1196   // Object arrays must have their base element have no subtypes
1197   while (superklass->is_obj_array_klass()) {
1198     ciType* elem = superklass->as_obj_array_klass()->element_type();
1199     superklass = elem->as_klass();
1200   }
1201   if (superklass->is_instance_klass()) {
1202     ciInstanceKlass* ik = superklass->as_instance_klass();
1203     if (ik->has_subklass() || ik->is_interface())  return nullptr;
1204     // Add a dependency if there is a chance that a subclass will be added later.
1205     if (!ik->is_final()) {
1206       phase->C->dependencies()->assert_leaf_type(ik);
1207     }
1208   }
1209 
1210   // Bypass the dependent load, and compare directly
1211   this->set_req_X(1, ldk2, phase);
1212 
1213   return this;
1214 }
1215 
1216 //=============================================================================
1217 //------------------------------sub--------------------------------------------
1218 // Simplify an CmpN (compare 2 pointers) node, based on local information.
1219 // If both inputs are constants, compare them.
1220 const Type *CmpNNode::sub( const Type *t1, const Type *t2 ) const {
1221   ShouldNotReachHere();
1222   return bottom_type();
1223 }
1224 
1225 //------------------------------Ideal------------------------------------------
1226 Node *CmpNNode::Ideal( PhaseGVN *phase, bool can_reshape ) {
1227   return nullptr;
1228 }
1229 
1230 //=============================================================================
1231 //------------------------------Value------------------------------------------
1232 // Simplify an CmpF (compare 2 floats ) node, based on local information.
1233 // If both inputs are constants, compare them.
1234 const Type* CmpFNode::Value(PhaseGVN* phase) const {
1235   const Node* in1 = in(1);
1236   const Node* in2 = in(2);
1237   // Either input is TOP ==> the result is TOP
1238   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
1239   if( t1 == Type::TOP ) return Type::TOP;
1240   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
1241   if( t2 == Type::TOP ) return Type::TOP;
1242 
1243   // Not constants?  Don't know squat - even if they are the same
1244   // value!  If they are NaN's they compare to LT instead of EQ.
1245   const TypeF *tf1 = t1->isa_float_constant();
1246   const TypeF *tf2 = t2->isa_float_constant();
1247   if( !tf1 || !tf2 ) return TypeInt::CC;
1248 
1249   // This implements the Java bytecode fcmpl, so unordered returns -1.
1250   if( tf1->is_nan() || tf2->is_nan() )
1251     return TypeInt::CC_LT;
1252 
1253   if( tf1->_f < tf2->_f ) return TypeInt::CC_LT;
1254   if( tf1->_f > tf2->_f ) return TypeInt::CC_GT;
1255   assert( tf1->_f == tf2->_f, "do not understand FP behavior" );
1256   return TypeInt::CC_EQ;
1257 }
1258 
1259 
1260 //=============================================================================
1261 //------------------------------Value------------------------------------------
1262 // Simplify an CmpD (compare 2 doubles ) node, based on local information.
1263 // If both inputs are constants, compare them.
1264 const Type* CmpDNode::Value(PhaseGVN* phase) const {
1265   const Node* in1 = in(1);
1266   const Node* in2 = in(2);
1267   // Either input is TOP ==> the result is TOP
1268   const Type* t1 = (in1 == this) ? Type::TOP : phase->type(in1);
1269   if( t1 == Type::TOP ) return Type::TOP;
1270   const Type* t2 = (in2 == this) ? Type::TOP : phase->type(in2);
1271   if( t2 == Type::TOP ) return Type::TOP;
1272 
1273   // Not constants?  Don't know squat - even if they are the same
1274   // value!  If they are NaN's they compare to LT instead of EQ.
1275   const TypeD *td1 = t1->isa_double_constant();
1276   const TypeD *td2 = t2->isa_double_constant();
1277   if( !td1 || !td2 ) return TypeInt::CC;
1278 
1279   // This implements the Java bytecode dcmpl, so unordered returns -1.
1280   if( td1->is_nan() || td2->is_nan() )
1281     return TypeInt::CC_LT;
1282 
1283   if( td1->_d < td2->_d ) return TypeInt::CC_LT;
1284   if( td1->_d > td2->_d ) return TypeInt::CC_GT;
1285   assert( td1->_d == td2->_d, "do not understand FP behavior" );
1286   return TypeInt::CC_EQ;
1287 }
1288 
1289 //------------------------------Ideal------------------------------------------
1290 Node *CmpDNode::Ideal(PhaseGVN *phase, bool can_reshape){
1291   // Check if we can change this to a CmpF and remove a ConvD2F operation.
1292   // Change  (CMPD (F2D (float)) (ConD value))
1293   // To      (CMPF      (float)  (ConF value))
1294   // Valid when 'value' does not lose precision as a float.
1295   // Benefits: eliminates conversion, does not require 24-bit mode
1296 
1297   // NaNs prevent commuting operands.  This transform works regardless of the
1298   // order of ConD and ConvF2D inputs by preserving the original order.
1299   int idx_f2d = 1;              // ConvF2D on left side?
1300   if( in(idx_f2d)->Opcode() != Op_ConvF2D )
1301     idx_f2d = 2;                // No, swap to check for reversed args
1302   int idx_con = 3-idx_f2d;      // Check for the constant on other input
1303 
1304   if( ConvertCmpD2CmpF &&
1305       in(idx_f2d)->Opcode() == Op_ConvF2D &&
1306       in(idx_con)->Opcode() == Op_ConD ) {
1307     const TypeD *t2 = in(idx_con)->bottom_type()->is_double_constant();
1308     double t2_value_as_double = t2->_d;
1309     float  t2_value_as_float  = (float)t2_value_as_double;
1310     if( t2_value_as_double == (double)t2_value_as_float ) {
1311       // Test value can be represented as a float
1312       // Eliminate the conversion to double and create new comparison
1313       Node *new_in1 = in(idx_f2d)->in(1);
1314       Node *new_in2 = phase->makecon( TypeF::make(t2_value_as_float) );
1315       if( idx_f2d != 1 ) {      // Must flip args to match original order
1316         Node *tmp = new_in1;
1317         new_in1 = new_in2;
1318         new_in2 = tmp;
1319       }
1320       CmpFNode *new_cmp = (Opcode() == Op_CmpD3)
1321         ? new CmpF3Node( new_in1, new_in2 )
1322         : new CmpFNode ( new_in1, new_in2 ) ;
1323       return new_cmp;           // Changed to CmpFNode
1324     }
1325     // Testing value required the precision of a double
1326   }
1327   return nullptr;                  // No change
1328 }
1329 
1330 
1331 //=============================================================================
1332 //------------------------------cc2logical-------------------------------------
1333 // Convert a condition code type to a logical type
1334 const Type *BoolTest::cc2logical( const Type *CC ) const {
1335   if( CC == Type::TOP ) return Type::TOP;
1336   if( CC->base() != Type::Int ) return TypeInt::BOOL; // Bottom or worse
1337   const TypeInt *ti = CC->is_int();
1338   if( ti->is_con() ) {          // Only 1 kind of condition codes set?
1339     // Match low order 2 bits
1340     int tmp = ((ti->get_con()&3) == (_test&3)) ? 1 : 0;
1341     if( _test & 4 ) tmp = 1-tmp;     // Optionally complement result
1342     return TypeInt::make(tmp);       // Boolean result
1343   }
1344 
1345   if( CC == TypeInt::CC_GE ) {
1346     if( _test == ge ) return TypeInt::ONE;
1347     if( _test == lt ) return TypeInt::ZERO;
1348   }
1349   if( CC == TypeInt::CC_LE ) {
1350     if( _test == le ) return TypeInt::ONE;
1351     if( _test == gt ) return TypeInt::ZERO;
1352   }
1353 
1354   return TypeInt::BOOL;
1355 }
1356 
1357 //------------------------------dump_spec-------------------------------------
1358 // Print special per-node info
1359 void BoolTest::dump_on(outputStream *st) const {
1360   const char *msg[] = {"eq","gt","of","lt","ne","le","nof","ge"};
1361   st->print("%s", msg[_test]);
1362 }
1363 
1364 // Returns the logical AND of two tests (or 'never' if both tests can never be true).
1365 // For example, a test for 'le' followed by a test for 'lt' is equivalent with 'lt'.
1366 BoolTest::mask BoolTest::merge(BoolTest other) const {
1367   const mask res[illegal+1][illegal+1] = {
1368     // eq,      gt,      of,      lt,      ne,      le,      nof,     ge,      never,   illegal
1369       {eq,      never,   illegal, never,   never,   eq,      illegal, eq,      never,   illegal},  // eq
1370       {never,   gt,      illegal, never,   gt,      never,   illegal, gt,      never,   illegal},  // gt
1371       {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never,   illegal},  // of
1372       {never,   never,   illegal, lt,      lt,      lt,      illegal, never,   never,   illegal},  // lt
1373       {never,   gt,      illegal, lt,      ne,      lt,      illegal, gt,      never,   illegal},  // ne
1374       {eq,      never,   illegal, lt,      lt,      le,      illegal, eq,      never,   illegal},  // le
1375       {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, never,   illegal},  // nof
1376       {eq,      gt,      illegal, never,   gt,      eq,      illegal, ge,      never,   illegal},  // ge
1377       {never,   never,   never,   never,   never,   never,   never,   never,   never,   illegal},  // never
1378       {illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal, illegal}}; // illegal
1379   return res[_test][other._test];
1380 }
1381 
1382 //=============================================================================
1383 uint BoolNode::hash() const { return (Node::hash() << 3)|(_test._test+1); }
1384 uint BoolNode::size_of() const { return sizeof(BoolNode); }
1385 
1386 //------------------------------operator==-------------------------------------
1387 bool BoolNode::cmp( const Node &n ) const {
1388   const BoolNode *b = (const BoolNode *)&n; // Cast up
1389   return (_test._test == b->_test._test);
1390 }
1391 
1392 //-------------------------------make_predicate--------------------------------
1393 Node* BoolNode::make_predicate(Node* test_value, PhaseGVN* phase) {
1394   if (test_value->is_Con())   return test_value;
1395   if (test_value->is_Bool())  return test_value;
1396   if (test_value->is_CMove() &&
1397       test_value->in(CMoveNode::Condition)->is_Bool()) {
1398     BoolNode*   bol   = test_value->in(CMoveNode::Condition)->as_Bool();
1399     const Type* ftype = phase->type(test_value->in(CMoveNode::IfFalse));
1400     const Type* ttype = phase->type(test_value->in(CMoveNode::IfTrue));
1401     if (ftype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ttype)) {
1402       return bol;
1403     } else if (ttype == TypeInt::ZERO && !TypeInt::ZERO->higher_equal(ftype)) {
1404       return phase->transform( bol->negate(phase) );
1405     }
1406     // Else fall through.  The CMove gets in the way of the test.
1407     // It should be the case that make_predicate(bol->as_int_value()) == bol.
1408   }
1409   Node* cmp = new CmpINode(test_value, phase->intcon(0));
1410   cmp = phase->transform(cmp);
1411   Node* bol = new BoolNode(cmp, BoolTest::ne);
1412   return phase->transform(bol);
1413 }
1414 
1415 //--------------------------------as_int_value---------------------------------
1416 Node* BoolNode::as_int_value(PhaseGVN* phase) {
1417   // Inverse to make_predicate.  The CMove probably boils down to a Conv2B.
1418   Node* cmov = CMoveNode::make(this, phase->intcon(0), phase->intcon(1), TypeInt::BOOL);
1419   return phase->transform(cmov);
1420 }
1421 
1422 //----------------------------------negate-------------------------------------
1423 BoolNode* BoolNode::negate(PhaseGVN* phase) {
1424   return new BoolNode(in(1), _test.negate());
1425 }
1426 
1427 // Change "bool eq/ne (cmp (add/sub A B) C)" into false/true if add/sub
1428 // overflows and we can prove that C is not in the two resulting ranges.
1429 // This optimization is similar to the one performed by CmpUNode::Value().
1430 Node* BoolNode::fold_cmpI(PhaseGVN* phase, SubNode* cmp, Node* cmp1, int cmp_op,
1431                           int cmp1_op, const TypeInt* cmp2_type) {
1432   // Only optimize eq/ne integer comparison of add/sub
1433   if((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1434      (cmp_op == Op_CmpI) && (cmp1_op == Op_AddI || cmp1_op == Op_SubI)) {
1435     // Skip cases were inputs of add/sub are not integers or of bottom type
1436     const TypeInt* r0 = phase->type(cmp1->in(1))->isa_int();
1437     const TypeInt* r1 = phase->type(cmp1->in(2))->isa_int();
1438     if ((r0 != nullptr) && (r0 != TypeInt::INT) &&
1439         (r1 != nullptr) && (r1 != TypeInt::INT) &&
1440         (cmp2_type != TypeInt::INT)) {
1441       // Compute exact (long) type range of add/sub result
1442       jlong lo_long = r0->_lo;
1443       jlong hi_long = r0->_hi;
1444       if (cmp1_op == Op_AddI) {
1445         lo_long += r1->_lo;
1446         hi_long += r1->_hi;
1447       } else {
1448         lo_long -= r1->_hi;
1449         hi_long -= r1->_lo;
1450       }
1451       // Check for over-/underflow by casting to integer
1452       int lo_int = (int)lo_long;
1453       int hi_int = (int)hi_long;
1454       bool underflow = lo_long != (jlong)lo_int;
1455       bool overflow  = hi_long != (jlong)hi_int;
1456       if ((underflow != overflow) && (hi_int < lo_int)) {
1457         // Overflow on one boundary, compute resulting type ranges:
1458         // tr1 [MIN_INT, hi_int] and tr2 [lo_int, MAX_INT]
1459         int w = MAX2(r0->_widen, r1->_widen); // _widen does not matter here
1460         const TypeInt* tr1 = TypeInt::make(min_jint, hi_int, w);
1461         const TypeInt* tr2 = TypeInt::make(lo_int, max_jint, w);
1462         // Compare second input of cmp to both type ranges
1463         const Type* sub_tr1 = cmp->sub(tr1, cmp2_type);
1464         const Type* sub_tr2 = cmp->sub(tr2, cmp2_type);
1465         if (sub_tr1 == TypeInt::CC_LT && sub_tr2 == TypeInt::CC_GT) {
1466           // The result of the add/sub will never equal cmp2. Replace BoolNode
1467           // by false (0) if it tests for equality and by true (1) otherwise.
1468           return ConINode::make((_test._test == BoolTest::eq) ? 0 : 1);
1469         }
1470       }
1471     }
1472   }
1473   return nullptr;
1474 }
1475 
1476 static bool is_counted_loop_cmp(Node *cmp) {
1477   Node *n = cmp->in(1)->in(1);
1478   return n != nullptr &&
1479          n->is_Phi() &&
1480          n->in(0) != nullptr &&
1481          n->in(0)->is_CountedLoop() &&
1482          n->in(0)->as_CountedLoop()->phi() == n;
1483 }
1484 
1485 //------------------------------Ideal------------------------------------------
1486 Node *BoolNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1487   // Change "bool tst (cmp con x)" into "bool ~tst (cmp x con)".
1488   // This moves the constant to the right.  Helps value-numbering.
1489   Node *cmp = in(1);
1490   if( !cmp->is_Sub() ) return nullptr;
1491   int cop = cmp->Opcode();
1492   if( cop == Op_FastLock || cop == Op_FastUnlock ||
1493       cmp->is_SubTypeCheck() || cop == Op_VectorTest ) {
1494     return nullptr;
1495   }
1496   Node *cmp1 = cmp->in(1);
1497   Node *cmp2 = cmp->in(2);
1498   if( !cmp1 ) return nullptr;
1499 
1500   if (_test._test == BoolTest::overflow || _test._test == BoolTest::no_overflow) {
1501     return nullptr;
1502   }
1503 
1504   const int cmp1_op = cmp1->Opcode();
1505   const int cmp2_op = cmp2->Opcode();
1506 
1507   // Constant on left?
1508   Node *con = cmp1;
1509   // Move constants to the right of compare's to canonicalize.
1510   // Do not muck with Opaque1 nodes, as this indicates a loop
1511   // guard that cannot change shape.
1512   if (con->is_Con() && !cmp2->is_Con() && cmp2_op != Op_OpaqueZeroTripGuard &&
1513       // Because of NaN's, CmpD and CmpF are not commutative
1514       cop != Op_CmpD && cop != Op_CmpF &&
1515       // Protect against swapping inputs to a compare when it is used by a
1516       // counted loop exit, which requires maintaining the loop-limit as in(2)
1517       !is_counted_loop_exit_test() ) {
1518     // Ok, commute the constant to the right of the cmp node.
1519     // Clone the Node, getting a new Node of the same class
1520     cmp = cmp->clone();
1521     // Swap inputs to the clone
1522     cmp->swap_edges(1, 2);
1523     cmp = phase->transform( cmp );
1524     return new BoolNode( cmp, _test.commute() );
1525   }
1526 
1527   // Change "bool eq/ne (cmp (cmove (bool tst (cmp2)) 1 0) 0)" into "bool tst/~tst (cmp2)"
1528   if (cop == Op_CmpI &&
1529       (_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1530       cmp1_op == Op_CMoveI && cmp2->find_int_con(1) == 0) {
1531     // 0 should be on the true branch
1532     if (cmp1->in(CMoveNode::Condition)->is_Bool() &&
1533         cmp1->in(CMoveNode::IfTrue)->find_int_con(1) == 0 &&
1534         cmp1->in(CMoveNode::IfFalse)->find_int_con(0) != 0) {
1535       BoolNode* target = cmp1->in(CMoveNode::Condition)->as_Bool();
1536       return new BoolNode(target->in(1),
1537                           (_test._test == BoolTest::eq) ? target->_test._test :
1538                                                           target->_test.negate());
1539     }
1540   }
1541 
1542   // Change "bool eq/ne (cmp (and X 16) 16)" into "bool ne/eq (cmp (and X 16) 0)".
1543   if (cop == Op_CmpI &&
1544       (_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1545       cmp1_op == Op_AndI && cmp2_op == Op_ConI &&
1546       cmp1->in(2)->Opcode() == Op_ConI) {
1547     const TypeInt *t12 = phase->type(cmp2)->isa_int();
1548     const TypeInt *t112 = phase->type(cmp1->in(2))->isa_int();
1549     if (t12 && t12->is_con() && t112 && t112->is_con() &&
1550         t12->get_con() == t112->get_con() && is_power_of_2(t12->get_con())) {
1551       Node *ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0)));
1552       return new BoolNode(ncmp, _test.negate());
1553     }
1554   }
1555 
1556   // Same for long type: change "bool eq/ne (cmp (and X 16) 16)" into "bool ne/eq (cmp (and X 16) 0)".
1557   if (cop == Op_CmpL &&
1558       (_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1559       cmp1_op == Op_AndL && cmp2_op == Op_ConL &&
1560       cmp1->in(2)->Opcode() == Op_ConL) {
1561     const TypeLong *t12 = phase->type(cmp2)->isa_long();
1562     const TypeLong *t112 = phase->type(cmp1->in(2))->isa_long();
1563     if (t12 && t12->is_con() && t112 && t112->is_con() &&
1564         t12->get_con() == t112->get_con() && is_power_of_2(t12->get_con())) {
1565       Node *ncmp = phase->transform(new CmpLNode(cmp1, phase->longcon(0)));
1566       return new BoolNode(ncmp, _test.negate());
1567     }
1568   }
1569 
1570   // Change "cmp (add X min_jint) (add Y min_jint)" into "cmpu X Y"
1571   // and    "cmp (add X min_jint) c" into "cmpu X (c + min_jint)"
1572   if (cop == Op_CmpI &&
1573       cmp1_op == Op_AddI &&
1574       phase->type(cmp1->in(2)) == TypeInt::MIN &&
1575       !is_cloop_condition(this)) {
1576     if (cmp2_op == Op_ConI) {
1577       Node* ncmp2 = phase->intcon(java_add(cmp2->get_int(), min_jint));
1578       Node* ncmp = phase->transform(new CmpUNode(cmp1->in(1), ncmp2));
1579       return new BoolNode(ncmp, _test._test);
1580     } else if (cmp2_op == Op_AddI &&
1581                phase->type(cmp2->in(2)) == TypeInt::MIN &&
1582                !is_cloop_condition(this)) {
1583       Node* ncmp = phase->transform(new CmpUNode(cmp1->in(1), cmp2->in(1)));
1584       return new BoolNode(ncmp, _test._test);
1585     }
1586   }
1587 
1588   // Change "cmp (add X min_jlong) (add Y min_jlong)" into "cmpu X Y"
1589   // and    "cmp (add X min_jlong) c" into "cmpu X (c + min_jlong)"
1590   if (cop == Op_CmpL &&
1591       cmp1_op == Op_AddL &&
1592       phase->type(cmp1->in(2)) == TypeLong::MIN &&
1593       !is_cloop_condition(this)) {
1594     if (cmp2_op == Op_ConL) {
1595       Node* ncmp2 = phase->longcon(java_add(cmp2->get_long(), min_jlong));
1596       Node* ncmp = phase->transform(new CmpULNode(cmp1->in(1), ncmp2));
1597       return new BoolNode(ncmp, _test._test);
1598     } else if (cmp2_op == Op_AddL &&
1599                phase->type(cmp2->in(2)) == TypeLong::MIN &&
1600                !is_cloop_condition(this)) {
1601       Node* ncmp = phase->transform(new CmpULNode(cmp1->in(1), cmp2->in(1)));
1602       return new BoolNode(ncmp, _test._test);
1603     }
1604   }
1605 
1606   // Change "bool eq/ne (cmp (xor X 1) 0)" into "bool ne/eq (cmp X 0)".
1607   // The XOR-1 is an idiom used to flip the sense of a bool.  We flip the
1608   // test instead.
1609   const TypeInt* cmp2_type = phase->type(cmp2)->isa_int();
1610   if (cmp2_type == nullptr)  return nullptr;
1611   Node* j_xor = cmp1;
1612   if( cmp2_type == TypeInt::ZERO &&
1613       cmp1_op == Op_XorI &&
1614       j_xor->in(1) != j_xor &&          // An xor of itself is dead
1615       phase->type( j_xor->in(1) ) == TypeInt::BOOL &&
1616       phase->type( j_xor->in(2) ) == TypeInt::ONE &&
1617       (_test._test == BoolTest::eq ||
1618        _test._test == BoolTest::ne) ) {
1619     Node *ncmp = phase->transform(new CmpINode(j_xor->in(1),cmp2));
1620     return new BoolNode( ncmp, _test.negate() );
1621   }
1622 
1623   // Transform: "((x & (m - 1)) <u m)" or "(((m - 1) & x) <u m)" into "(m >u 0)"
1624   // This is case [CMPU_MASK] which is further described at the method comment of BoolNode::Value_cmpu_and_mask().
1625   if (cop == Op_CmpU && _test._test == BoolTest::lt && cmp1_op == Op_AndI) {
1626     Node* m = cmp2; // RHS: m
1627     for (int add_idx = 1; add_idx <= 2; add_idx++) { // LHS: "(m + (-1)) & x" or "x & (m + (-1))"?
1628       Node* maybe_m_minus_1 = cmp1->in(add_idx);
1629       if (maybe_m_minus_1->Opcode() == Op_AddI &&
1630           maybe_m_minus_1->in(2)->find_int_con(0) == -1 &&
1631           maybe_m_minus_1->in(1) == m) {
1632         Node* m_cmpu_0 = phase->transform(new CmpUNode(m, phase->intcon(0)));
1633         return new BoolNode(m_cmpu_0, BoolTest::gt);
1634       }
1635     }
1636   }
1637 
1638   // Change x u< 1 or x u<= 0 to x == 0
1639   // and    x u> 0 or u>= 1   to x != 0
1640   if (cop == Op_CmpU &&
1641       cmp1_op != Op_LoadRange &&
1642       (((_test._test == BoolTest::lt || _test._test == BoolTest::ge) &&
1643         cmp2->find_int_con(-1) == 1) ||
1644        ((_test._test == BoolTest::le || _test._test == BoolTest::gt) &&
1645         cmp2->find_int_con(-1) == 0))) {
1646     Node* ncmp = phase->transform(new CmpINode(cmp1, phase->intcon(0)));
1647     return new BoolNode(ncmp, _test.is_less() ? BoolTest::eq : BoolTest::ne);
1648   }
1649 
1650   // Change (arraylength <= 0) or (arraylength == 0)
1651   //   into (arraylength u<= 0)
1652   // Also change (arraylength != 0) into (arraylength u> 0)
1653   // The latter version matches the code pattern generated for
1654   // array range checks, which will more likely be optimized later.
1655   if (cop == Op_CmpI &&
1656       cmp1_op == Op_LoadRange &&
1657       cmp2->find_int_con(-1) == 0) {
1658     if (_test._test == BoolTest::le || _test._test == BoolTest::eq) {
1659       Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2));
1660       return new BoolNode(ncmp, BoolTest::le);
1661     } else if (_test._test == BoolTest::ne) {
1662       Node* ncmp = phase->transform(new CmpUNode(cmp1, cmp2));
1663       return new BoolNode(ncmp, BoolTest::gt);
1664     }
1665   }
1666 
1667   // Change "bool eq/ne (cmp (Conv2B X) 0)" into "bool eq/ne (cmp X 0)".
1668   // This is a standard idiom for branching on a boolean value.
1669   Node *c2b = cmp1;
1670   if( cmp2_type == TypeInt::ZERO &&
1671       cmp1_op == Op_Conv2B &&
1672       (_test._test == BoolTest::eq ||
1673        _test._test == BoolTest::ne) ) {
1674     Node *ncmp = phase->transform(phase->type(c2b->in(1))->isa_int()
1675        ? (Node*)new CmpINode(c2b->in(1),cmp2)
1676        : (Node*)new CmpPNode(c2b->in(1),phase->makecon(TypePtr::NULL_PTR))
1677     );
1678     return new BoolNode( ncmp, _test._test );
1679   }
1680 
1681   // Comparing a SubI against a zero is equal to comparing the SubI
1682   // arguments directly.  This only works for eq and ne comparisons
1683   // due to possible integer overflow.
1684   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1685         (cop == Op_CmpI) &&
1686         (cmp1_op == Op_SubI) &&
1687         ( cmp2_type == TypeInt::ZERO ) ) {
1688     Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),cmp1->in(2)));
1689     return new BoolNode( ncmp, _test._test );
1690   }
1691 
1692   // Same as above but with and AddI of a constant
1693   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1694       cop == Op_CmpI &&
1695       cmp1_op == Op_AddI &&
1696       cmp1->in(2) != nullptr &&
1697       phase->type(cmp1->in(2))->isa_int() &&
1698       phase->type(cmp1->in(2))->is_int()->is_con() &&
1699       cmp2_type == TypeInt::ZERO &&
1700       !is_counted_loop_cmp(cmp) // modifying the exit test of a counted loop messes the counted loop shape
1701       ) {
1702     const TypeInt* cmp1_in2 = phase->type(cmp1->in(2))->is_int();
1703     Node *ncmp = phase->transform( new CmpINode(cmp1->in(1),phase->intcon(-cmp1_in2->_hi)));
1704     return new BoolNode( ncmp, _test._test );
1705   }
1706 
1707   // Change "bool eq/ne (cmp (phi (X -X) 0))" into "bool eq/ne (cmp X 0)"
1708   // since zero check of conditional negation of an integer is equal to
1709   // zero check of the integer directly.
1710   if ((_test._test == BoolTest::eq || _test._test == BoolTest::ne) &&
1711       (cop == Op_CmpI) &&
1712       (cmp2_type == TypeInt::ZERO) &&
1713       (cmp1_op == Op_Phi)) {
1714     // There should be a diamond phi with true path at index 1 or 2
1715     PhiNode *phi = cmp1->as_Phi();
1716     int idx_true = phi->is_diamond_phi();
1717     if (idx_true != 0) {
1718       // True input is in(idx_true) while false input is in(3 - idx_true)
1719       Node *tin = phi->in(idx_true);
1720       Node *fin = phi->in(3 - idx_true);
1721       if ((tin->Opcode() == Op_SubI) &&
1722           (phase->type(tin->in(1)) == TypeInt::ZERO) &&
1723           (tin->in(2) == fin)) {
1724         // Found conditional negation at true path, create a new CmpINode without that
1725         Node *ncmp = phase->transform(new CmpINode(fin, cmp2));
1726         return new BoolNode(ncmp, _test._test);
1727       }
1728       if ((fin->Opcode() == Op_SubI) &&
1729           (phase->type(fin->in(1)) == TypeInt::ZERO) &&
1730           (fin->in(2) == tin)) {
1731         // Found conditional negation at false path, create a new CmpINode without that
1732         Node *ncmp = phase->transform(new CmpINode(tin, cmp2));
1733         return new BoolNode(ncmp, _test._test);
1734       }
1735     }
1736   }
1737 
1738   // Change (-A vs 0) into (A vs 0) by commuting the test.  Disallow in the
1739   // most general case because negating 0x80000000 does nothing.  Needed for
1740   // the CmpF3/SubI/CmpI idiom.
1741   if( cop == Op_CmpI &&
1742       cmp1_op == Op_SubI &&
1743       cmp2_type == TypeInt::ZERO &&
1744       phase->type( cmp1->in(1) ) == TypeInt::ZERO &&
1745       phase->type( cmp1->in(2) )->higher_equal(TypeInt::SYMINT) ) {
1746     Node *ncmp = phase->transform( new CmpINode(cmp1->in(2),cmp2));
1747     return new BoolNode( ncmp, _test.commute() );
1748   }
1749 
1750   // Try to optimize signed integer comparison
1751   return fold_cmpI(phase, cmp->as_Sub(), cmp1, cop, cmp1_op, cmp2_type);
1752 
1753   //  The transformation below is not valid for either signed or unsigned
1754   //  comparisons due to wraparound concerns at MAX_VALUE and MIN_VALUE.
1755   //  This transformation can be resurrected when we are able to
1756   //  make inferences about the range of values being subtracted from
1757   //  (or added to) relative to the wraparound point.
1758   //
1759   //    // Remove +/-1's if possible.
1760   //    // "X <= Y-1" becomes "X <  Y"
1761   //    // "X+1 <= Y" becomes "X <  Y"
1762   //    // "X <  Y+1" becomes "X <= Y"
1763   //    // "X-1 <  Y" becomes "X <= Y"
1764   //    // Do not this to compares off of the counted-loop-end.  These guys are
1765   //    // checking the trip counter and they want to use the post-incremented
1766   //    // counter.  If they use the PRE-incremented counter, then the counter has
1767   //    // to be incremented in a private block on a loop backedge.
1768   //    if( du && du->cnt(this) && du->out(this)[0]->Opcode() == Op_CountedLoopEnd )
1769   //      return nullptr;
1770   //  #ifndef PRODUCT
1771   //    // Do not do this in a wash GVN pass during verification.
1772   //    // Gets triggered by too many simple optimizations to be bothered with
1773   //    // re-trying it again and again.
1774   //    if( !phase->allow_progress() ) return nullptr;
1775   //  #endif
1776   //    // Not valid for unsigned compare because of corner cases in involving zero.
1777   //    // For example, replacing "X-1 <u Y" with "X <=u Y" fails to throw an
1778   //    // exception in case X is 0 (because 0-1 turns into 4billion unsigned but
1779   //    // "0 <=u Y" is always true).
1780   //    if( cmp->Opcode() == Op_CmpU ) return nullptr;
1781   //    int cmp2_op = cmp2->Opcode();
1782   //    if( _test._test == BoolTest::le ) {
1783   //      if( cmp1_op == Op_AddI &&
1784   //          phase->type( cmp1->in(2) ) == TypeInt::ONE )
1785   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::lt );
1786   //      else if( cmp2_op == Op_AddI &&
1787   //         phase->type( cmp2->in(2) ) == TypeInt::MINUS_1 )
1788   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::lt );
1789   //    } else if( _test._test == BoolTest::lt ) {
1790   //      if( cmp1_op == Op_AddI &&
1791   //          phase->type( cmp1->in(2) ) == TypeInt::MINUS_1 )
1792   //        return clone_cmp( cmp, cmp1->in(1), cmp2, phase, BoolTest::le );
1793   //      else if( cmp2_op == Op_AddI &&
1794   //         phase->type( cmp2->in(2) ) == TypeInt::ONE )
1795   //        return clone_cmp( cmp, cmp1, cmp2->in(1), phase, BoolTest::le );
1796   //    }
1797 }
1798 
1799 // We use the following Lemmas/insights for the following two transformations (1) and (2):
1800 //   x & y <=u y, for any x and y           (Lemma 1, masking always results in a smaller unsigned number)
1801 //   y <u y + 1 is always true if y != -1   (Lemma 2, (uint)(-1 + 1) == (uint)(UINT_MAX + 1) which overflows)
1802 //   y <u 0 is always false for any y       (Lemma 3, 0 == UINT_MIN and nothing can be smaller than that)
1803 //
1804 // (1a) Always:     Change ((x & m) <=u m  ) or ((m & x) <=u m  ) to always true   (true by Lemma 1)
1805 // (1b) If m != -1: Change ((x & m) <u  m + 1) or ((m & x) <u  m + 1) to always true:
1806 //    x & m <=u m          is always true   // (Lemma 1)
1807 //    x & m <=u m <u m + 1 is always true   // (Lemma 2: m <u m + 1, if m != -1)
1808 //
1809 // A counter example for (1b), if we allowed m == -1:
1810 //     (x & m)  <u m + 1
1811 //     (x & -1) <u 0
1812 //      x       <u 0
1813 //   which is false for any x (Lemma 3)
1814 //
1815 // (2) Change ((x & (m - 1)) <u m) or (((m - 1) & x) <u m) to (m >u 0)
1816 // This is the off-by-one variant of the above.
1817 //
1818 // We now prove that this replacement is correct. This is the same as proving
1819 //   "m >u 0" if and only if "x & (m - 1) <u m", i.e. "m >u 0 <=> x & (m - 1) <u m"
1820 //
1821 // We use (Lemma 1) and (Lemma 3) from above.
1822 //
1823 // Case "x & (m - 1) <u m => m >u 0":
1824 //   We prove this by contradiction:
1825 //     Assume m <=u 0 which is equivalent to m == 0:
1826 //   and thus
1827 //     x & (m - 1) <u m = 0               // m == 0
1828 //     y           <u     0               // y = x & (m - 1)
1829 //   by Lemma 3, this is always false, i.e. a contradiction to our assumption.
1830 //
1831 // Case "m >u 0 => x & (m - 1) <u m":
1832 //   x & (m - 1) <=u (m - 1)              // (Lemma 1)
1833 //   x & (m - 1) <=u (m - 1) <u m         // Using assumption m >u 0, no underflow of "m - 1"
1834 //
1835 //
1836 // Note that the signed version of "m > 0":
1837 //   m > 0 <=> x & (m - 1) <u m
1838 // does not hold:
1839 //   Assume m == -1 and x == -1:
1840 //     x  & (m - 1) <u m
1841 //     -1 & -2      <u -1
1842 //     -2           <u -1
1843 //     UINT_MAX - 1 <u UINT_MAX           // Signed to unsigned numbers
1844 // which is true while
1845 //   m > 0
1846 // is false which is a contradiction.
1847 //
1848 // (1a) and (1b) is covered by this method since we can directly return a true value as type while (2) is covered
1849 // in BoolNode::Ideal since we create a new non-constant node (see [CMPU_MASK]).
1850 const Type* BoolNode::Value_cmpu_and_mask(PhaseValues* phase) const {
1851   Node* cmp = in(1);
1852   if (cmp != nullptr && cmp->Opcode() == Op_CmpU) {
1853     Node* cmp1 = cmp->in(1);
1854     Node* cmp2 = cmp->in(2);
1855 
1856     if (cmp1->Opcode() == Op_AndI) {
1857       Node* m = nullptr;
1858       if (_test._test == BoolTest::le) {
1859         // (1a) "((x & m) <=u m)", cmp2 = m
1860         m = cmp2;
1861       } else if (_test._test == BoolTest::lt && cmp2->Opcode() == Op_AddI && cmp2->in(2)->find_int_con(0) == 1) {
1862         // (1b) "(x & m) <u m + 1" and "(m & x) <u m + 1", cmp2 = m + 1
1863         Node* rhs_m = cmp2->in(1);
1864         const TypeInt* rhs_m_type = phase->type(rhs_m)->isa_int();
1865         if (rhs_m_type->_lo > -1 || rhs_m_type->_hi < -1) {
1866           // Exclude any case where m == -1 is possible.
1867           m = rhs_m;
1868         }
1869       }
1870 
1871       if (cmp1->in(2) == m || cmp1->in(1) == m) {
1872         return TypeInt::ONE;
1873       }
1874     }
1875   }
1876 
1877   return nullptr;
1878 }
1879 
1880 // Simplify a Bool (convert condition codes to boolean (1 or 0)) node,
1881 // based on local information.   If the input is constant, do it.
1882 const Type* BoolNode::Value(PhaseGVN* phase) const {
1883   const Type* t = Value_cmpu_and_mask(phase);
1884   if (t != nullptr) {
1885     return t;
1886   }
1887 
1888   return _test.cc2logical( phase->type( in(1) ) );
1889 }
1890 
1891 #ifndef PRODUCT
1892 //------------------------------dump_spec--------------------------------------
1893 // Dump special per-node info
1894 void BoolNode::dump_spec(outputStream *st) const {
1895   st->print("[");
1896   _test.dump_on(st);
1897   st->print("]");
1898 }
1899 #endif
1900 
1901 //----------------------is_counted_loop_exit_test------------------------------
1902 // Returns true if node is used by a counted loop node.
1903 bool BoolNode::is_counted_loop_exit_test() {
1904   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
1905     Node* use = fast_out(i);
1906     if (use->is_CountedLoopEnd()) {
1907       return true;
1908     }
1909   }
1910   return false;
1911 }
1912 
1913 //=============================================================================
1914 //------------------------------Value------------------------------------------
1915 const Type* AbsNode::Value(PhaseGVN* phase) const {
1916   const Type* t1 = phase->type(in(1));
1917   if (t1 == Type::TOP) return Type::TOP;
1918 
1919   switch (t1->base()) {
1920   case Type::Int: {
1921     const TypeInt* ti = t1->is_int();
1922     if (ti->is_con()) {
1923       return TypeInt::make(uabs(ti->get_con()));
1924     }
1925     break;
1926   }
1927   case Type::Long: {
1928     const TypeLong* tl = t1->is_long();
1929     if (tl->is_con()) {
1930       return TypeLong::make(uabs(tl->get_con()));
1931     }
1932     break;
1933   }
1934   case Type::FloatCon:
1935     return TypeF::make(abs(t1->getf()));
1936   case Type::DoubleCon:
1937     return TypeD::make(abs(t1->getd()));
1938   default:
1939     break;
1940   }
1941 
1942   return bottom_type();
1943 }
1944 
1945 //------------------------------Identity----------------------------------------
1946 Node* AbsNode::Identity(PhaseGVN* phase) {
1947   Node* in1 = in(1);
1948   // No need to do abs for non-negative values
1949   if (phase->type(in1)->higher_equal(TypeInt::POS) ||
1950       phase->type(in1)->higher_equal(TypeLong::POS)) {
1951     return in1;
1952   }
1953   // Convert "abs(abs(x))" into "abs(x)"
1954   if (in1->Opcode() == Opcode()) {
1955     return in1;
1956   }
1957   return this;
1958 }
1959 
1960 //------------------------------Ideal------------------------------------------
1961 Node* AbsNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1962   Node* in1 = in(1);
1963   // Convert "abs(0-x)" into "abs(x)"
1964   if (in1->is_Sub() && phase->type(in1->in(1))->is_zero_type()) {
1965     set_req_X(1, in1->in(2), phase);
1966     return this;
1967   }
1968   return nullptr;
1969 }
1970 
1971 //=============================================================================
1972 //------------------------------Value------------------------------------------
1973 // Compute sqrt
1974 const Type* SqrtDNode::Value(PhaseGVN* phase) const {
1975   const Type *t1 = phase->type( in(1) );
1976   if( t1 == Type::TOP ) return Type::TOP;
1977   if( t1->base() != Type::DoubleCon ) return Type::DOUBLE;
1978   double d = t1->getd();
1979   if( d < 0.0 ) return Type::DOUBLE;
1980   return TypeD::make( sqrt( d ) );
1981 }
1982 
1983 const Type* SqrtFNode::Value(PhaseGVN* phase) const {
1984   const Type *t1 = phase->type( in(1) );
1985   if( t1 == Type::TOP ) return Type::TOP;
1986   if( t1->base() != Type::FloatCon ) return Type::FLOAT;
1987   float f = t1->getf();
1988   if( f < 0.0f ) return Type::FLOAT;
1989   return TypeF::make( (float)sqrt( (double)f ) );
1990 }
1991 
1992 const Type* ReverseINode::Value(PhaseGVN* phase) const {
1993   const Type *t1 = phase->type( in(1) );
1994   if (t1 == Type::TOP) {
1995     return Type::TOP;
1996   }
1997   const TypeInt* t1int = t1->isa_int();
1998   if (t1int && t1int->is_con()) {
1999     jint res = reverse_bits(t1int->get_con());
2000     return TypeInt::make(res);
2001   }
2002   return bottom_type();
2003 }
2004 
2005 const Type* ReverseLNode::Value(PhaseGVN* phase) const {
2006   const Type *t1 = phase->type( in(1) );
2007   if (t1 == Type::TOP) {
2008     return Type::TOP;
2009   }
2010   const TypeLong* t1long = t1->isa_long();
2011   if (t1long && t1long->is_con()) {
2012     jlong res = reverse_bits(t1long->get_con());
2013     return TypeLong::make(res);
2014   }
2015   return bottom_type();
2016 }
2017 
2018 Node* ReverseINode::Identity(PhaseGVN* phase) {
2019   if (in(1)->Opcode() == Op_ReverseI) {
2020     return in(1)->in(1);
2021   }
2022   return this;
2023 }
2024 
2025 Node* ReverseLNode::Identity(PhaseGVN* phase) {
2026   if (in(1)->Opcode() == Op_ReverseL) {
2027     return in(1)->in(1);
2028   }
2029   return this;
2030 }