1 /*
2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "ci/ciMethodData.hpp"
26 #include "ci/ciTypeFlow.hpp"
27 #include "classfile/javaClasses.hpp"
28 #include "classfile/symbolTable.hpp"
29 #include "classfile/vmSymbols.hpp"
30 #include "compiler/compileLog.hpp"
31 #include "libadt/dict.hpp"
32 #include "memory/oopFactory.hpp"
33 #include "memory/resourceArea.hpp"
34 #include "oops/instanceKlass.hpp"
35 #include "oops/instanceMirrorKlass.hpp"
36 #include "oops/objArrayKlass.hpp"
37 #include "oops/typeArrayKlass.hpp"
38 #include "opto/arraycopynode.hpp"
39 #include "opto/callnode.hpp"
40 #include "opto/matcher.hpp"
41 #include "opto/node.hpp"
42 #include "opto/opcodes.hpp"
43 #include "opto/rangeinference.hpp"
44 #include "opto/runtime.hpp"
45 #include "opto/type.hpp"
46 #include "runtime/stubRoutines.hpp"
47 #include "utilities/checkedCast.hpp"
48 #include "utilities/debug.hpp"
49 #include "utilities/ostream.hpp"
50 #include "utilities/powerOfTwo.hpp"
51 #include "utilities/stringUtils.hpp"
52
53 // Portions of code courtesy of Clifford Click
54
55 // Optimization - Graph Style
56
57 // Dictionary of types shared among compilations.
58 Dict* Type::_shared_type_dict = nullptr;
59
60 // Array which maps compiler types to Basic Types
61 const Type::TypeInfo Type::_type_info[Type::lastype] = {
62 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
63 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
64 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
65 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
66 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
67 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
68 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
69 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
70 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
71 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
72 { Bad, T_ARRAY, "interfaces:", false, Node::NotAMachineReg, relocInfo::none }, // Interfaces
73
74 #if defined(PPC64)
75 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask.
76 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA.
77 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
78 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
79 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
80 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
81 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ
82 #elif defined(S390)
83 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask.
84 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA.
85 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
86 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
87 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
88 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
89 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ
90 #else // all other
91 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask.
92 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA.
93 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
94 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
95 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
96 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
97 { Bad, T_ILLEGAL, "vectorz:", false, Op_VecZ, relocInfo::none }, // VectorZ
98 #endif
99 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
100 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
101 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
102 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
103 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
104 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
105 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
106 { Bad, T_METADATA, "instklass:", false, Op_RegP, relocInfo::metadata_type }, // InstKlassPtr
107 { Bad, T_METADATA, "aryklass:", false, Op_RegP, relocInfo::metadata_type }, // AryKlassPtr
108 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
109 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
110 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
111 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
112 { HalfFloatBot, T_SHORT, "halffloat_top", false, Op_RegF, relocInfo::none }, // HalfFloatTop
113 { HalfFloatCon, T_SHORT, "hfcon:", false, Op_RegF, relocInfo::none }, // HalfFloatCon
114 { HalfFloatTop, T_SHORT, "short", false, Op_RegF, relocInfo::none }, // HalfFloatBot
115 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
116 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
117 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
118 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
119 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
120 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
121 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
122 };
123
124 // Map ideal registers (machine types) to ideal types
125 const Type *Type::mreg2type[_last_machine_leaf];
126
127 // Map basic types to canonical Type* pointers.
128 const Type* Type:: _const_basic_type[T_CONFLICT+1];
129
130 // Map basic types to constant-zero Types.
131 const Type* Type:: _zero_type[T_CONFLICT+1];
132
133 // Map basic types to array-body alias types.
134 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
135 const TypeInterfaces* TypeAryPtr::_array_interfaces = nullptr;
136 const TypeInterfaces* TypeAryKlassPtr::_array_interfaces = nullptr;
137
138 //=============================================================================
139 // Convenience common pre-built types.
140 const Type *Type::ABIO; // State-of-machine only
141 const Type *Type::BOTTOM; // All values
142 const Type *Type::CONTROL; // Control only
143 const Type *Type::DOUBLE; // All doubles
144 const Type *Type::HALF_FLOAT; // All half floats
145 const Type *Type::FLOAT; // All floats
146 const Type *Type::HALF; // Placeholder half of doublewide type
147 const Type *Type::MEMORY; // Abstract store only
148 const Type *Type::RETURN_ADDRESS;
149 const Type *Type::TOP; // No values in set
150
151 //------------------------------get_const_type---------------------------
152 const Type* Type::get_const_type(ciType* type, InterfaceHandling interface_handling) {
153 if (type == nullptr) {
154 return nullptr;
155 } else if (type->is_primitive_type()) {
156 return get_const_basic_type(type->basic_type());
157 } else {
158 return TypeOopPtr::make_from_klass(type->as_klass(), interface_handling);
159 }
160 }
161
162 //---------------------------array_element_basic_type---------------------------------
163 // Mapping to the array element's basic type.
164 BasicType Type::array_element_basic_type() const {
165 BasicType bt = basic_type();
166 if (bt == T_INT) {
167 if (this == TypeInt::INT) return T_INT;
168 if (this == TypeInt::CHAR) return T_CHAR;
169 if (this == TypeInt::BYTE) return T_BYTE;
170 if (this == TypeInt::BOOL) return T_BOOLEAN;
171 if (this == TypeInt::SHORT) return T_SHORT;
172 return T_VOID;
173 }
174 return bt;
175 }
176
177 // For two instance arrays of same dimension, return the base element types.
178 // Otherwise or if the arrays have different dimensions, return null.
179 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
180 const TypeInstPtr **e1, const TypeInstPtr **e2) {
181
182 if (e1) *e1 = nullptr;
183 if (e2) *e2 = nullptr;
184 const TypeAryPtr* a1tap = (a1 == nullptr) ? nullptr : a1->isa_aryptr();
185 const TypeAryPtr* a2tap = (a2 == nullptr) ? nullptr : a2->isa_aryptr();
186
187 if (a1tap != nullptr && a2tap != nullptr) {
188 // Handle multidimensional arrays
189 const TypePtr* a1tp = a1tap->elem()->make_ptr();
190 const TypePtr* a2tp = a2tap->elem()->make_ptr();
191 while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
192 a1tap = a1tp->is_aryptr();
193 a2tap = a2tp->is_aryptr();
194 a1tp = a1tap->elem()->make_ptr();
195 a2tp = a2tap->elem()->make_ptr();
196 }
197 if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
198 if (e1) *e1 = a1tp->is_instptr();
199 if (e2) *e2 = a2tp->is_instptr();
200 }
201 }
202 }
203
204 //---------------------------get_typeflow_type---------------------------------
205 // Import a type produced by ciTypeFlow.
206 const Type* Type::get_typeflow_type(ciType* type) {
207 switch (type->basic_type()) {
208
209 case ciTypeFlow::StateVector::T_BOTTOM:
210 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
211 return Type::BOTTOM;
212
213 case ciTypeFlow::StateVector::T_TOP:
214 assert(type == ciTypeFlow::StateVector::top_type(), "");
215 return Type::TOP;
216
217 case ciTypeFlow::StateVector::T_NULL:
218 assert(type == ciTypeFlow::StateVector::null_type(), "");
219 return TypePtr::NULL_PTR;
220
221 case ciTypeFlow::StateVector::T_LONG2:
222 // The ciTypeFlow pass pushes a long, then the half.
223 // We do the same.
224 assert(type == ciTypeFlow::StateVector::long2_type(), "");
225 return TypeInt::TOP;
226
227 case ciTypeFlow::StateVector::T_DOUBLE2:
228 // The ciTypeFlow pass pushes double, then the half.
229 // Our convention is the same.
230 assert(type == ciTypeFlow::StateVector::double2_type(), "");
231 return Type::TOP;
232
233 case T_ADDRESS:
234 assert(type->is_return_address(), "");
235 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
236
237 default:
238 // make sure we did not mix up the cases:
239 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
240 assert(type != ciTypeFlow::StateVector::top_type(), "");
241 assert(type != ciTypeFlow::StateVector::null_type(), "");
242 assert(type != ciTypeFlow::StateVector::long2_type(), "");
243 assert(type != ciTypeFlow::StateVector::double2_type(), "");
244 assert(!type->is_return_address(), "");
245
246 return Type::get_const_type(type);
247 }
248 }
249
250
251 //-----------------------make_from_constant------------------------------------
252 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
253 int stable_dimension, bool is_narrow_oop,
254 bool is_autobox_cache) {
255 switch (constant.basic_type()) {
256 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
257 case T_CHAR: return TypeInt::make(constant.as_char());
258 case T_BYTE: return TypeInt::make(constant.as_byte());
259 case T_SHORT: return TypeInt::make(constant.as_short());
260 case T_INT: return TypeInt::make(constant.as_int());
261 case T_LONG: return TypeLong::make(constant.as_long());
262 case T_FLOAT: return TypeF::make(constant.as_float());
263 case T_DOUBLE: return TypeD::make(constant.as_double());
264 case T_ARRAY:
265 case T_OBJECT: {
266 const Type* con_type = nullptr;
267 ciObject* oop_constant = constant.as_object();
268 if (oop_constant->is_null_object()) {
269 con_type = Type::get_zero_type(T_OBJECT);
270 } else {
271 guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
272 con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
273 if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
274 con_type = con_type->is_aryptr()->cast_to_autobox_cache();
275 }
276 if (stable_dimension > 0) {
277 assert(FoldStableValues, "sanity");
278 assert(!con_type->is_zero_type(), "default value for stable field");
279 con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
280 }
281 }
282 if (is_narrow_oop) {
283 con_type = con_type->make_narrowoop();
284 }
285 return con_type;
286 }
287 case T_ILLEGAL:
288 // Invalid ciConstant returned due to OutOfMemoryError in the CI
289 assert(Compile::current()->env()->failing(), "otherwise should not see this");
290 return nullptr;
291 default:
292 // Fall through to failure
293 return nullptr;
294 }
295 }
296
297 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
298 BasicType conbt = con.basic_type();
299 switch (conbt) {
300 case T_BOOLEAN: conbt = T_BYTE; break;
301 case T_ARRAY: conbt = T_OBJECT; break;
302 default: break;
303 }
304 switch (loadbt) {
305 case T_BOOLEAN: loadbt = T_BYTE; break;
306 case T_NARROWOOP: loadbt = T_OBJECT; break;
307 case T_ARRAY: loadbt = T_OBJECT; break;
308 case T_ADDRESS: loadbt = T_OBJECT; break;
309 default: break;
310 }
311 if (conbt == loadbt) {
312 if (is_unsigned && conbt == T_BYTE) {
313 // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
314 return ciConstant(T_INT, con.as_int() & 0xFF);
315 } else {
316 return con;
317 }
318 }
319 if (conbt == T_SHORT && loadbt == T_CHAR) {
320 // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
321 return ciConstant(T_INT, con.as_int() & 0xFFFF);
322 }
323 return ciConstant(); // T_ILLEGAL
324 }
325
326 // Try to constant-fold a stable array element.
327 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
328 BasicType loadbt, bool is_unsigned_load) {
329 // Decode the results of GraphKit::array_element_address.
330 ciConstant element_value = array->element_value_by_offset(off);
331 if (element_value.basic_type() == T_ILLEGAL) {
332 return nullptr; // wrong offset
333 }
334 ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
335
336 assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
337 type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
338
339 if (con.is_valid() && // not a mismatched access
340 !con.is_null_or_zero()) { // not a default value
341 bool is_narrow_oop = (loadbt == T_NARROWOOP);
342 return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
343 }
344 return nullptr;
345 }
346
347 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
348 ciField* field;
349 ciType* type = holder->java_mirror_type();
350 if (type != nullptr && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
351 // Static field
352 field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
353 } else {
354 // Instance field
355 field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
356 }
357 if (field == nullptr) {
358 return nullptr; // Wrong offset
359 }
360 return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
361 }
362
363 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
364 BasicType loadbt, bool is_unsigned_load) {
365 if (!field->is_constant()) {
366 return nullptr; // Non-constant field
367 }
368 ciConstant field_value;
369 if (field->is_static()) {
370 // final static field
371 field_value = field->constant_value();
372 } else if (holder != nullptr) {
373 // final or stable non-static field
374 // Treat final non-static fields of trusted classes (classes in
375 // java.lang.invoke and sun.invoke packages and subpackages) as
376 // compile time constants.
377 field_value = field->constant_value_of(holder);
378 }
379 if (!field_value.is_valid()) {
380 return nullptr; // Not a constant
381 }
382
383 ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
384
385 assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
386 type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
387
388 bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
389 int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
390 bool is_narrow_oop = (loadbt == T_NARROWOOP);
391
392 const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
393 stable_dimension, is_narrow_oop,
394 field->is_autobox_cache());
395 if (con_type != nullptr && field->is_call_site_target()) {
396 ciCallSite* call_site = holder->as_call_site();
397 if (!call_site->is_fully_initialized_constant_call_site()) {
398 ciMethodHandle* target = con.as_object()->as_method_handle();
399 Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
400 }
401 }
402 return con_type;
403 }
404
405 //------------------------------make-------------------------------------------
406 // Create a simple Type, with default empty symbol sets. Then hashcons it
407 // and look for an existing copy in the type dictionary.
408 const Type *Type::make( enum TYPES t ) {
409 return (new Type(t))->hashcons();
410 }
411
412 //------------------------------cmp--------------------------------------------
413 bool Type::equals(const Type* t1, const Type* t2) {
414 if (t1->_base != t2->_base) {
415 return false; // Missed badly
416 }
417
418 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
419 return t1->eq(t2);
420 }
421
422 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
423 if (!include_speculative) {
424 return remove_speculative();
425 }
426 return this;
427 }
428
429 //------------------------------hash-------------------------------------------
430 int Type::uhash( const Type *const t ) {
431 return (int)t->hash();
432 }
433
434 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite
435 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite
436
437 //--------------------------Initialize_shared----------------------------------
438 void Type::Initialize_shared(Compile* current) {
439 // This method does not need to be locked because the first system
440 // compilations (stub compilations) occur serially. If they are
441 // changed to proceed in parallel, then this section will need
442 // locking.
443
444 Arena* save = current->type_arena();
445 Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler, Arena::Tag::tag_type);
446
447 current->set_type_arena(shared_type_arena);
448
449 // Map the boolean result of Type::equals into a comparator result that CmpKey expects.
450 CmpKey type_cmp = [](const void* t1, const void* t2) -> int32_t {
451 return Type::equals((Type*) t1, (Type*) t2) ? 0 : 1;
452 };
453
454 _shared_type_dict = new (shared_type_arena) Dict(type_cmp, (Hash) Type::uhash, shared_type_arena, 128);
455 current->set_type_dict(_shared_type_dict);
456
457 // Make shared pre-built types.
458 CONTROL = make(Control); // Control only
459 TOP = make(Top); // No values in set
460 MEMORY = make(Memory); // Abstract store only
461 ABIO = make(Abio); // State-of-machine only
462 RETURN_ADDRESS=make(Return_Address);
463 FLOAT = make(FloatBot); // All floats
464 HALF_FLOAT = make(HalfFloatBot); // All half floats
465 DOUBLE = make(DoubleBot); // All doubles
466 BOTTOM = make(Bottom); // Everything
467 HALF = make(Half); // Placeholder half of doublewide type
468
469 TypeF::MAX = TypeF::make(max_jfloat); // Float MAX
470 TypeF::MIN = TypeF::make(min_jfloat); // Float MIN
471 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
472 TypeF::ONE = TypeF::make(1.0); // Float 1
473 TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F));
474 TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F));
475
476 TypeH::MAX = TypeH::make(max_jfloat16); // HalfFloat MAX
477 TypeH::MIN = TypeH::make(min_jfloat16); // HalfFloat MIN
478 TypeH::ZERO = TypeH::make((jshort)0); // HalfFloat 0 (positive zero)
479 TypeH::ONE = TypeH::make(one_jfloat16); // HalfFloat 1
480 TypeH::POS_INF = TypeH::make(pos_inf_jfloat16);
481 TypeH::NEG_INF = TypeH::make(neg_inf_jfloat16);
482
483 TypeD::MAX = TypeD::make(max_jdouble); // Double MAX
484 TypeD::MIN = TypeD::make(min_jdouble); // Double MIN
485 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
486 TypeD::ONE = TypeD::make(1.0); // Double 1
487 TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D));
488 TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D));
489
490 TypeInt::MAX = TypeInt::make(max_jint); // Int MAX
491 TypeInt::MIN = TypeInt::make(min_jint); // Int MIN
492 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
493 TypeInt::ZERO = TypeInt::make( 0); // 0
494 TypeInt::ONE = TypeInt::make( 1); // 1
495 TypeInt::BOOL = TypeInt::make( 0, 1, WidenMin); // 0 or 1, FALSE or TRUE.
496 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
497 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
498 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
499 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
500 TypeInt::CC_NE = TypeInt::make_or_top(TypeIntPrototype<jint, juint>{{-1, 1}, {1, max_juint}, {0, 1}}, WidenMin)->is_int();
501 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
502 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
503 TypeInt::BYTE = TypeInt::make(-128, 127, WidenMin); // Bytes
504 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
505 TypeInt::CHAR = TypeInt::make(0, 65535, WidenMin); // Java chars
506 TypeInt::SHORT = TypeInt::make(-32768, 32767, WidenMin); // Java shorts
507 TypeInt::NON_ZERO = TypeInt::make_or_top(TypeIntPrototype<jint, juint>{{min_jint, max_jint}, {1, max_juint}, {0, 0}}, WidenMin)->is_int();
508 TypeInt::POS = TypeInt::make(0, max_jint, WidenMin); // Non-neg values
509 TypeInt::POS1 = TypeInt::make(1, max_jint, WidenMin); // Positive values
510 TypeInt::INT = TypeInt::make(min_jint, max_jint, WidenMax); // 32-bit integers
511 TypeInt::SYMINT = TypeInt::make(-max_jint, max_jint, WidenMin); // symmetric range
512 TypeInt::TYPE_DOMAIN = TypeInt::INT;
513 // CmpL is overloaded both as the bytecode computation returning
514 // a trinary (-1, 0, +1) integer result AND as an efficient long
515 // compare returning optimizer ideal-type flags.
516 assert(TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
517 assert(TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
518 assert(TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
519 assert(TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
520
521 TypeLong::MAX = TypeLong::make(max_jlong); // Long MAX
522 TypeLong::MIN = TypeLong::make(min_jlong); // Long MIN
523 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
524 TypeLong::ZERO = TypeLong::make( 0); // 0
525 TypeLong::ONE = TypeLong::make( 1); // 1
526 TypeLong::NON_ZERO = TypeLong::make_or_top(TypeIntPrototype<jlong, julong>{{min_jlong, max_jlong}, {1, max_julong}, {0, 0}}, WidenMin)->is_long();
527 TypeLong::POS = TypeLong::make(0, max_jlong, WidenMin); // Non-neg values
528 TypeLong::NEG = TypeLong::make(min_jlong, -1, WidenMin);
529 TypeLong::LONG = TypeLong::make(min_jlong, max_jlong, WidenMax); // 64-bit integers
530 TypeLong::INT = TypeLong::make((jlong)min_jint, (jlong)max_jint,WidenMin);
531 TypeLong::UINT = TypeLong::make(0, (jlong)max_juint, WidenMin);
532 TypeLong::TYPE_DOMAIN = TypeLong::LONG;
533
534 const Type **fboth =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
535 fboth[0] = Type::CONTROL;
536 fboth[1] = Type::CONTROL;
537 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
538
539 const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
540 ffalse[0] = Type::CONTROL;
541 ffalse[1] = Type::TOP;
542 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
543
544 const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
545 fneither[0] = Type::TOP;
546 fneither[1] = Type::TOP;
547 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
548
549 const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
550 ftrue[0] = Type::TOP;
551 ftrue[1] = Type::CONTROL;
552 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
553
554 const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
555 floop[0] = Type::CONTROL;
556 floop[1] = TypeInt::INT;
557 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
558
559 TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
560 TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
561 TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
562
563 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
564 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
565
566 const Type **fmembar = TypeTuple::fields(0);
567 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
568
569 const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
570 fsc[0] = TypeInt::CC;
571 fsc[1] = Type::MEMORY;
572 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
573
574 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
575 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
576 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
577 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
578 false, nullptr, oopDesc::mark_offset_in_bytes());
579 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
580 false, nullptr, oopDesc::klass_offset_in_bytes());
581 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
582
583 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, nullptr, OffsetBot);
584
585 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
586 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
587
588 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
589
590 mreg2type[Op_Node] = Type::BOTTOM;
591 mreg2type[Op_Set ] = nullptr;
592 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
593 mreg2type[Op_RegI] = TypeInt::INT;
594 mreg2type[Op_RegP] = TypePtr::BOTTOM;
595 mreg2type[Op_RegF] = Type::FLOAT;
596 mreg2type[Op_RegD] = Type::DOUBLE;
597 mreg2type[Op_RegL] = TypeLong::LONG;
598 mreg2type[Op_RegFlags] = TypeInt::CC;
599
600 GrowableArray<ciInstanceKlass*> array_interfaces;
601 array_interfaces.push(current->env()->Cloneable_klass());
602 array_interfaces.push(current->env()->Serializable_klass());
603 TypeAryPtr::_array_interfaces = TypeInterfaces::make(&array_interfaces);
604 TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
605
606 TypeAryPtr::BOTTOM = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM, TypeInt::POS), nullptr, false, Type::OffsetBot);
607 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), nullptr /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
608
609 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
610
611 #ifdef _LP64
612 if (UseCompressedOops) {
613 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
614 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
615 } else
616 #endif
617 {
618 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
619 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), nullptr /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
620 }
621 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
622 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
623 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
624 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
625 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
626 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
627 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
628
629 // Nobody should ask _array_body_type[T_NARROWOOP]. Use null as assert.
630 TypeAryPtr::_array_body_type[T_NARROWOOP] = nullptr;
631 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
632 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
633 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
634 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
635 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
636 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
637 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
638 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
639 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
640 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
641
642 TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0);
643 TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0);
644
645 const Type **fi2c = TypeTuple::fields(2);
646 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
647 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
648 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
649
650 const Type **intpair = TypeTuple::fields(2);
651 intpair[0] = TypeInt::INT;
652 intpair[1] = TypeInt::INT;
653 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
654
655 const Type **longpair = TypeTuple::fields(2);
656 longpair[0] = TypeLong::LONG;
657 longpair[1] = TypeLong::LONG;
658 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
659
660 const Type **intccpair = TypeTuple::fields(2);
661 intccpair[0] = TypeInt::INT;
662 intccpair[1] = TypeInt::CC;
663 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
664
665 const Type **longccpair = TypeTuple::fields(2);
666 longccpair[0] = TypeLong::LONG;
667 longccpair[1] = TypeInt::CC;
668 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
669
670 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
671 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
672 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
673 _const_basic_type[T_CHAR] = TypeInt::CHAR;
674 _const_basic_type[T_BYTE] = TypeInt::BYTE;
675 _const_basic_type[T_SHORT] = TypeInt::SHORT;
676 _const_basic_type[T_INT] = TypeInt::INT;
677 _const_basic_type[T_LONG] = TypeLong::LONG;
678 _const_basic_type[T_FLOAT] = Type::FLOAT;
679 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
680 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
681 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
682 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
683 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
684 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
685
686 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
687 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
688 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
689 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
690 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
691 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
692 _zero_type[T_INT] = TypeInt::ZERO;
693 _zero_type[T_LONG] = TypeLong::ZERO;
694 _zero_type[T_FLOAT] = TypeF::ZERO;
695 _zero_type[T_DOUBLE] = TypeD::ZERO;
696 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
697 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
698 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
699 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
700
701 // get_zero_type() should not happen for T_CONFLICT
702 _zero_type[T_CONFLICT]= nullptr;
703
704 TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(T_BOOLEAN, MaxVectorSize))->hashcons();
705 mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
706
707 if (Matcher::supports_scalable_vector()) {
708 TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
709 }
710
711 // Vector predefined types, it needs initialized _const_basic_type[].
712 if (Matcher::vector_size_supported(T_BYTE, 4)) {
713 TypeVect::VECTS = TypeVect::make(T_BYTE, 4);
714 }
715 if (Matcher::vector_size_supported(T_FLOAT, 2)) {
716 TypeVect::VECTD = TypeVect::make(T_FLOAT, 2);
717 }
718 if (Matcher::vector_size_supported(T_FLOAT, 4)) {
719 TypeVect::VECTX = TypeVect::make(T_FLOAT, 4);
720 }
721 if (Matcher::vector_size_supported(T_FLOAT, 8)) {
722 TypeVect::VECTY = TypeVect::make(T_FLOAT, 8);
723 }
724 if (Matcher::vector_size_supported(T_FLOAT, 16)) {
725 TypeVect::VECTZ = TypeVect::make(T_FLOAT, 16);
726 }
727
728 mreg2type[Op_VecA] = TypeVect::VECTA;
729 mreg2type[Op_VecS] = TypeVect::VECTS;
730 mreg2type[Op_VecD] = TypeVect::VECTD;
731 mreg2type[Op_VecX] = TypeVect::VECTX;
732 mreg2type[Op_VecY] = TypeVect::VECTY;
733 mreg2type[Op_VecZ] = TypeVect::VECTZ;
734
735 LockNode::initialize_lock_Type();
736 ArrayCopyNode::initialize_arraycopy_Type();
737 OptoRuntime::initialize_types();
738
739 // Restore working type arena.
740 current->set_type_arena(save);
741 current->set_type_dict(nullptr);
742 }
743
744 //------------------------------Initialize-------------------------------------
745 void Type::Initialize(Compile* current) {
746 assert(current->type_arena() != nullptr, "must have created type arena");
747
748 if (_shared_type_dict == nullptr) {
749 Initialize_shared(current);
750 }
751
752 Arena* type_arena = current->type_arena();
753
754 // Create the hash-cons'ing dictionary with top-level storage allocation
755 Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena);
756 current->set_type_dict(tdic);
757 }
758
759 //------------------------------hashcons---------------------------------------
760 // Do the hash-cons trick. If the Type already exists in the type table,
761 // delete the current Type and return the existing Type. Otherwise stick the
762 // current Type in the Type table.
763 const Type *Type::hashcons(void) {
764 DEBUG_ONLY(base()); // Check the assertion in Type::base().
765 // Look up the Type in the Type dictionary
766 Dict *tdic = type_dict();
767 Type* old = (Type*)(tdic->Insert(this, this, false));
768 if( old ) { // Pre-existing Type?
769 if( old != this ) // Yes, this guy is not the pre-existing?
770 delete this; // Yes, Nuke this guy
771 assert( old->_dual, "" );
772 return old; // Return pre-existing
773 }
774
775 // Every type has a dual (to make my lattice symmetric).
776 // Since we just discovered a new Type, compute its dual right now.
777 assert( !_dual, "" ); // No dual yet
778 _dual = xdual(); // Compute the dual
779 if (equals(this, _dual)) { // Handle self-symmetric
780 if (_dual != this) {
781 delete _dual;
782 _dual = this;
783 }
784 return this;
785 }
786 assert( !_dual->_dual, "" ); // No reverse dual yet
787 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
788 // New Type, insert into Type table
789 tdic->Insert((void*)_dual,(void*)_dual);
790 ((Type*)_dual)->_dual = this; // Finish up being symmetric
791 #ifdef ASSERT
792 Type *dual_dual = (Type*)_dual->xdual();
793 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
794 delete dual_dual;
795 #endif
796 return this; // Return new Type
797 }
798
799 //------------------------------eq---------------------------------------------
800 // Structural equality check for Type representations
801 bool Type::eq( const Type * ) const {
802 return true; // Nothing else can go wrong
803 }
804
805 //------------------------------hash-------------------------------------------
806 // Type-specific hashing function.
807 uint Type::hash(void) const {
808 return _base;
809 }
810
811 //------------------------------is_finite--------------------------------------
812 // Has a finite value
813 bool Type::is_finite() const {
814 return false;
815 }
816
817 //------------------------------is_nan-----------------------------------------
818 // Is not a number (NaN)
819 bool Type::is_nan() const {
820 return false;
821 }
822
823 #ifdef ASSERT
824 class VerifyMeet;
825 class VerifyMeetResult : public ArenaObj {
826 friend class VerifyMeet;
827 friend class Type;
828 private:
829 class VerifyMeetResultEntry {
830 private:
831 const Type* _in1;
832 const Type* _in2;
833 const Type* _res;
834 public:
835 VerifyMeetResultEntry(const Type* in1, const Type* in2, const Type* res):
836 _in1(in1), _in2(in2), _res(res) {
837 }
838 VerifyMeetResultEntry():
839 _in1(nullptr), _in2(nullptr), _res(nullptr) {
840 }
841
842 bool operator==(const VerifyMeetResultEntry& rhs) const {
843 return _in1 == rhs._in1 &&
844 _in2 == rhs._in2 &&
845 _res == rhs._res;
846 }
847
848 bool operator!=(const VerifyMeetResultEntry& rhs) const {
849 return !(rhs == *this);
850 }
851
852 static int compare(const VerifyMeetResultEntry& v1, const VerifyMeetResultEntry& v2) {
853 if ((intptr_t) v1._in1 < (intptr_t) v2._in1) {
854 return -1;
855 } else if (v1._in1 == v2._in1) {
856 if ((intptr_t) v1._in2 < (intptr_t) v2._in2) {
857 return -1;
858 } else if (v1._in2 == v2._in2) {
859 assert(v1._res == v2._res || v1._res == nullptr || v2._res == nullptr, "same inputs should lead to same result");
860 return 0;
861 }
862 return 1;
863 }
864 return 1;
865 }
866 const Type* res() const { return _res; }
867 };
868 uint _depth;
869 GrowableArray<VerifyMeetResultEntry> _cache;
870
871 // With verification code, the meet of A and B causes the computation of:
872 // 1- meet(A, B)
873 // 2- meet(B, A)
874 // 3- meet(dual(meet(A, B)), dual(A))
875 // 4- meet(dual(meet(A, B)), dual(B))
876 // 5- meet(dual(A), dual(B))
877 // 6- meet(dual(B), dual(A))
878 // 7- meet(dual(meet(dual(A), dual(B))), A)
879 // 8- meet(dual(meet(dual(A), dual(B))), B)
880 //
881 // In addition the meet of A[] and B[] requires the computation of the meet of A and B.
882 //
883 // The meet of A[] and B[] triggers the computation of:
884 // 1- meet(A[], B[][)
885 // 1.1- meet(A, B)
886 // 1.2- meet(B, A)
887 // 1.3- meet(dual(meet(A, B)), dual(A))
888 // 1.4- meet(dual(meet(A, B)), dual(B))
889 // 1.5- meet(dual(A), dual(B))
890 // 1.6- meet(dual(B), dual(A))
891 // 1.7- meet(dual(meet(dual(A), dual(B))), A)
892 // 1.8- meet(dual(meet(dual(A), dual(B))), B)
893 // 2- meet(B[], A[])
894 // 2.1- meet(B, A) = 1.2
895 // 2.2- meet(A, B) = 1.1
896 // 2.3- meet(dual(meet(B, A)), dual(B)) = 1.4
897 // 2.4- meet(dual(meet(B, A)), dual(A)) = 1.3
898 // 2.5- meet(dual(B), dual(A)) = 1.6
899 // 2.6- meet(dual(A), dual(B)) = 1.5
900 // 2.7- meet(dual(meet(dual(B), dual(A))), B) = 1.8
901 // 2.8- meet(dual(meet(dual(B), dual(A))), B) = 1.7
902 // etc.
903 // The number of meet operations performed grows exponentially with the number of dimensions of the arrays but the number
904 // of different meet operations is linear in the number of dimensions. The function below caches meet results for the
905 // duration of the meet at the root of the recursive calls.
906 //
907 const Type* meet(const Type* t1, const Type* t2) {
908 bool found = false;
909 const VerifyMeetResultEntry meet(t1, t2, nullptr);
910 int pos = _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found);
911 const Type* res = nullptr;
912 if (found) {
913 res = _cache.at(pos).res();
914 } else {
915 res = t1->xmeet(t2);
916 _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res));
917 found = false;
918 _cache.find_sorted<VerifyMeetResultEntry, VerifyMeetResultEntry::compare>(meet, found);
919 assert(found, "should be in table after it's added");
920 }
921 return res;
922 }
923
924 void add(const Type* t1, const Type* t2, const Type* res) {
925 _cache.insert_sorted<VerifyMeetResultEntry::compare>(VerifyMeetResultEntry(t1, t2, res));
926 }
927
928 bool empty_cache() const {
929 return _cache.length() == 0;
930 }
931 public:
932 VerifyMeetResult(Compile* C) :
933 _depth(0), _cache(C->comp_arena(), 2, 0, VerifyMeetResultEntry()) {
934 }
935 };
936
937 void Type::assert_type_verify_empty() const {
938 assert(Compile::current()->_type_verify == nullptr || Compile::current()->_type_verify->empty_cache(), "cache should have been discarded");
939 }
940
941 class VerifyMeet {
942 private:
943 Compile* _C;
944 public:
945 VerifyMeet(Compile* C) : _C(C) {
946 if (C->_type_verify == nullptr) {
947 C->_type_verify = new (C->comp_arena())VerifyMeetResult(C);
948 }
949 _C->_type_verify->_depth++;
950 }
951
952 ~VerifyMeet() {
953 assert(_C->_type_verify->_depth != 0, "");
954 _C->_type_verify->_depth--;
955 if (_C->_type_verify->_depth == 0) {
956 _C->_type_verify->_cache.trunc_to(0);
957 }
958 }
959
960 const Type* meet(const Type* t1, const Type* t2) const {
961 return _C->_type_verify->meet(t1, t2);
962 }
963
964 void add(const Type* t1, const Type* t2, const Type* res) const {
965 _C->_type_verify->add(t1, t2, res);
966 }
967 };
968
969 void Type::check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const {
970 Compile* C = Compile::current();
971 const Type* mt2 = verify.meet(t, this);
972 if (mt != mt2) {
973 tty->print_cr("=== Meet Not Commutative ===");
974 tty->print("t = "); t->dump(); tty->cr();
975 tty->print("this = "); dump(); tty->cr();
976 tty->print("t meet this = "); mt2->dump(); tty->cr();
977 tty->print("this meet t = "); mt->dump(); tty->cr();
978 fatal("meet not commutative");
979 }
980 const Type* dual_join = mt->_dual;
981 const Type* t2t = verify.meet(dual_join,t->_dual);
982 const Type* t2this = verify.meet(dual_join,this->_dual);
983
984 // Interface meet Oop is Not Symmetric:
985 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
986 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
987
988 if (t2t != t->_dual || t2this != this->_dual) {
989 tty->print_cr("=== Meet Not Symmetric ===");
990 tty->print("t = "); t->dump(); tty->cr();
991 tty->print("this= "); dump(); tty->cr();
992 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
993
994 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
995 tty->print("this_dual= "); _dual->dump(); tty->cr();
996 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
997
998 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
999 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
1000
1001 fatal("meet not symmetric");
1002 }
1003 }
1004 #endif
1005
1006 //------------------------------meet-------------------------------------------
1007 // Compute the MEET of two types. NOT virtual. It enforces that meet is
1008 // commutative and the lattice is symmetric.
1009 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
1010 if (isa_narrowoop() && t->isa_narrowoop()) {
1011 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1012 return result->make_narrowoop();
1013 }
1014 if (isa_narrowklass() && t->isa_narrowklass()) {
1015 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
1016 return result->make_narrowklass();
1017 }
1018
1019 #ifdef ASSERT
1020 Compile* C = Compile::current();
1021 VerifyMeet verify(C);
1022 #endif
1023
1024 const Type *this_t = maybe_remove_speculative(include_speculative);
1025 t = t->maybe_remove_speculative(include_speculative);
1026
1027 const Type *mt = this_t->xmeet(t);
1028 #ifdef ASSERT
1029 verify.add(this_t, t, mt);
1030 if (isa_narrowoop() || t->isa_narrowoop()) {
1031 return mt;
1032 }
1033 if (isa_narrowklass() || t->isa_narrowklass()) {
1034 return mt;
1035 }
1036 this_t->check_symmetrical(t, mt, verify);
1037 const Type *mt_dual = verify.meet(this_t->_dual, t->_dual);
1038 this_t->_dual->check_symmetrical(t->_dual, mt_dual, verify);
1039 #endif
1040 return mt;
1041 }
1042
1043 //------------------------------xmeet------------------------------------------
1044 // Compute the MEET of two types. It returns a new Type object.
1045 const Type *Type::xmeet( const Type *t ) const {
1046 // Perform a fast test for common case; meeting the same types together.
1047 if( this == t ) return this; // Meeting same type-rep?
1048
1049 // Meeting TOP with anything?
1050 if( _base == Top ) return t;
1051
1052 // Meeting BOTTOM with anything?
1053 if( _base == Bottom ) return BOTTOM;
1054
1055 // Current "this->_base" is one of: Bad, Multi, Control, Top,
1056 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
1057 switch (t->base()) { // Switch on original type
1058
1059 // Cut in half the number of cases I must handle. Only need cases for when
1060 // the given enum "t->type" is less than or equal to the local enum "type".
1061 case HalfFloatCon:
1062 case FloatCon:
1063 case DoubleCon:
1064 case Int:
1065 case Long:
1066 return t->xmeet(this);
1067
1068 case OopPtr:
1069 return t->xmeet(this);
1070
1071 case InstPtr:
1072 return t->xmeet(this);
1073
1074 case MetadataPtr:
1075 case KlassPtr:
1076 case InstKlassPtr:
1077 case AryKlassPtr:
1078 return t->xmeet(this);
1079
1080 case AryPtr:
1081 return t->xmeet(this);
1082
1083 case NarrowOop:
1084 return t->xmeet(this);
1085
1086 case NarrowKlass:
1087 return t->xmeet(this);
1088
1089 case Bad: // Type check
1090 default: // Bogus type not in lattice
1091 typerr(t);
1092 return Type::BOTTOM;
1093
1094 case Bottom: // Ye Olde Default
1095 return t;
1096
1097 case HalfFloatTop:
1098 if (_base == HalfFloatTop) { return this; }
1099 case HalfFloatBot: // Half Float
1100 if (_base == HalfFloatBot || _base == HalfFloatTop) { return HALF_FLOAT; }
1101 if (_base == FloatBot || _base == FloatTop) { return Type::BOTTOM; }
1102 if (_base == DoubleTop || _base == DoubleBot) { return Type::BOTTOM; }
1103 typerr(t);
1104 return Type::BOTTOM;
1105
1106 case FloatTop:
1107 if (_base == FloatTop ) { return this; }
1108 case FloatBot: // Float
1109 if (_base == FloatBot || _base == FloatTop) { return FLOAT; }
1110 if (_base == HalfFloatTop || _base == HalfFloatBot) { return Type::BOTTOM; }
1111 if (_base == DoubleTop || _base == DoubleBot) { return Type::BOTTOM; }
1112 typerr(t);
1113 return Type::BOTTOM;
1114
1115 case DoubleTop:
1116 if (_base == DoubleTop) { return this; }
1117 case DoubleBot: // Double
1118 if (_base == DoubleBot || _base == DoubleTop) { return DOUBLE; }
1119 if (_base == HalfFloatTop || _base == HalfFloatBot) { return Type::BOTTOM; }
1120 if (_base == FloatTop || _base == FloatBot) { return Type::BOTTOM; }
1121 typerr(t);
1122 return Type::BOTTOM;
1123
1124 // These next few cases must match exactly or it is a compile-time error.
1125 case Control: // Control of code
1126 case Abio: // State of world outside of program
1127 case Memory:
1128 if (_base == t->_base) { return this; }
1129 typerr(t);
1130 return Type::BOTTOM;
1131
1132 case Top: // Top of the lattice
1133 return this;
1134 }
1135
1136 // The type is unchanged
1137 return this;
1138 }
1139
1140 //-----------------------------filter------------------------------------------
1141 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1142 const Type* ft = join_helper(kills, include_speculative);
1143 if (ft->empty())
1144 return Type::TOP; // Canonical empty value
1145 return ft;
1146 }
1147
1148 //------------------------------xdual------------------------------------------
1149 const Type *Type::xdual() const {
1150 // Note: the base() accessor asserts the sanity of _base.
1151 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1152 return new Type(_type_info[_base].dual_type);
1153 }
1154
1155 //------------------------------has_memory-------------------------------------
1156 bool Type::has_memory() const {
1157 Type::TYPES tx = base();
1158 if (tx == Memory) return true;
1159 if (tx == Tuple) {
1160 const TypeTuple *t = is_tuple();
1161 for (uint i=0; i < t->cnt(); i++) {
1162 tx = t->field_at(i)->base();
1163 if (tx == Memory) return true;
1164 }
1165 }
1166 return false;
1167 }
1168
1169 #ifndef PRODUCT
1170 //------------------------------dump2------------------------------------------
1171 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1172 st->print("%s", _type_info[_base].msg);
1173 }
1174
1175 //------------------------------dump-------------------------------------------
1176 void Type::dump_on(outputStream *st) const {
1177 ResourceMark rm;
1178 Dict d(cmpkey,hashkey); // Stop recursive type dumping
1179 dump2(d,1, st);
1180 if (is_ptr_to_narrowoop()) {
1181 st->print(" [narrow]");
1182 } else if (is_ptr_to_narrowklass()) {
1183 st->print(" [narrowklass]");
1184 }
1185 }
1186
1187 //-----------------------------------------------------------------------------
1188 const char* Type::str(const Type* t) {
1189 stringStream ss;
1190 t->dump_on(&ss);
1191 return ss.as_string();
1192 }
1193 #endif
1194
1195 //------------------------------singleton--------------------------------------
1196 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1197 // constants (Ldi nodes). Singletons are integer, float or double constants.
1198 bool Type::singleton(void) const {
1199 return _base == Top || _base == Half;
1200 }
1201
1202 //------------------------------empty------------------------------------------
1203 // TRUE if Type is a type with no values, FALSE otherwise.
1204 bool Type::empty(void) const {
1205 switch (_base) {
1206 case DoubleTop:
1207 case FloatTop:
1208 case HalfFloatTop:
1209 case Top:
1210 return true;
1211
1212 case Half:
1213 case Abio:
1214 case Return_Address:
1215 case Memory:
1216 case Bottom:
1217 case HalfFloatBot:
1218 case FloatBot:
1219 case DoubleBot:
1220 return false; // never a singleton, therefore never empty
1221
1222 default:
1223 ShouldNotReachHere();
1224 return false;
1225 }
1226 }
1227
1228 //------------------------------dump_stats-------------------------------------
1229 // Dump collected statistics to stderr
1230 #ifndef PRODUCT
1231 void Type::dump_stats() {
1232 tty->print("Types made: %d\n", type_dict()->Size());
1233 }
1234 #endif
1235
1236 //------------------------------category---------------------------------------
1237 #ifndef PRODUCT
1238 Type::Category Type::category() const {
1239 const TypeTuple* tuple;
1240 switch (base()) {
1241 case Type::Int:
1242 case Type::Long:
1243 case Type::Half:
1244 case Type::NarrowOop:
1245 case Type::NarrowKlass:
1246 case Type::Array:
1247 case Type::VectorA:
1248 case Type::VectorS:
1249 case Type::VectorD:
1250 case Type::VectorX:
1251 case Type::VectorY:
1252 case Type::VectorZ:
1253 case Type::VectorMask:
1254 case Type::AnyPtr:
1255 case Type::RawPtr:
1256 case Type::OopPtr:
1257 case Type::InstPtr:
1258 case Type::AryPtr:
1259 case Type::MetadataPtr:
1260 case Type::KlassPtr:
1261 case Type::InstKlassPtr:
1262 case Type::AryKlassPtr:
1263 case Type::Function:
1264 case Type::Return_Address:
1265 case Type::HalfFloatTop:
1266 case Type::HalfFloatCon:
1267 case Type::HalfFloatBot:
1268 case Type::FloatTop:
1269 case Type::FloatCon:
1270 case Type::FloatBot:
1271 case Type::DoubleTop:
1272 case Type::DoubleCon:
1273 case Type::DoubleBot:
1274 return Category::Data;
1275 case Type::Memory:
1276 return Category::Memory;
1277 case Type::Control:
1278 return Category::Control;
1279 case Type::Top:
1280 case Type::Abio:
1281 case Type::Bottom:
1282 return Category::Other;
1283 case Type::Bad:
1284 case Type::lastype:
1285 return Category::Undef;
1286 case Type::Tuple:
1287 // Recursive case. Return CatMixed if the tuple contains types of
1288 // different categories (e.g. CallStaticJavaNode's type), or the specific
1289 // category if all types are of the same category (e.g. IfNode's type).
1290 tuple = is_tuple();
1291 if (tuple->cnt() == 0) {
1292 return Category::Undef;
1293 } else {
1294 Category first = tuple->field_at(0)->category();
1295 for (uint i = 1; i < tuple->cnt(); i++) {
1296 if (tuple->field_at(i)->category() != first) {
1297 return Category::Mixed;
1298 }
1299 }
1300 return first;
1301 }
1302 default:
1303 assert(false, "unmatched base type: all base types must be categorized");
1304 }
1305 return Category::Undef;
1306 }
1307
1308 bool Type::has_category(Type::Category cat) const {
1309 if (category() == cat) {
1310 return true;
1311 }
1312 if (category() == Category::Mixed) {
1313 const TypeTuple* tuple = is_tuple();
1314 for (uint i = 0; i < tuple->cnt(); i++) {
1315 if (tuple->field_at(i)->has_category(cat)) {
1316 return true;
1317 }
1318 }
1319 }
1320 return false;
1321 }
1322 #endif
1323
1324 //------------------------------typerr-----------------------------------------
1325 void Type::typerr( const Type *t ) const {
1326 #ifndef PRODUCT
1327 tty->print("\nError mixing types: ");
1328 dump();
1329 tty->print(" and ");
1330 t->dump();
1331 tty->print("\n");
1332 #endif
1333 ShouldNotReachHere();
1334 }
1335
1336
1337 //=============================================================================
1338 // Convenience common pre-built types.
1339 const TypeF *TypeF::MAX; // Floating point max
1340 const TypeF *TypeF::MIN; // Floating point min
1341 const TypeF *TypeF::ZERO; // Floating point zero
1342 const TypeF *TypeF::ONE; // Floating point one
1343 const TypeF *TypeF::POS_INF; // Floating point positive infinity
1344 const TypeF *TypeF::NEG_INF; // Floating point negative infinity
1345
1346 //------------------------------make-------------------------------------------
1347 // Create a float constant
1348 const TypeF *TypeF::make(float f) {
1349 return (TypeF*)(new TypeF(f))->hashcons();
1350 }
1351
1352 //------------------------------meet-------------------------------------------
1353 // Compute the MEET of two types. It returns a new Type object.
1354 const Type *TypeF::xmeet( const Type *t ) const {
1355 // Perform a fast test for common case; meeting the same types together.
1356 if( this == t ) return this; // Meeting same type-rep?
1357
1358 // Current "this->_base" is FloatCon
1359 switch (t->base()) { // Switch on original type
1360 case AnyPtr: // Mixing with oops happens when javac
1361 case RawPtr: // reuses local variables
1362 case OopPtr:
1363 case InstPtr:
1364 case AryPtr:
1365 case MetadataPtr:
1366 case KlassPtr:
1367 case InstKlassPtr:
1368 case AryKlassPtr:
1369 case NarrowOop:
1370 case NarrowKlass:
1371 case Int:
1372 case Long:
1373 case HalfFloatTop:
1374 case HalfFloatCon:
1375 case HalfFloatBot:
1376 case DoubleTop:
1377 case DoubleCon:
1378 case DoubleBot:
1379 case Bottom: // Ye Olde Default
1380 return Type::BOTTOM;
1381
1382 case FloatBot:
1383 return t;
1384
1385 default: // All else is a mistake
1386 typerr(t);
1387
1388 case FloatCon: // Float-constant vs Float-constant?
1389 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
1390 // must compare bitwise as positive zero, negative zero and NaN have
1391 // all the same representation in C++
1392 return FLOAT; // Return generic float
1393 // Equal constants
1394 case Top:
1395 case FloatTop:
1396 break; // Return the float constant
1397 }
1398 return this; // Return the float constant
1399 }
1400
1401 //------------------------------xdual------------------------------------------
1402 // Dual: symmetric
1403 const Type *TypeF::xdual() const {
1404 return this;
1405 }
1406
1407 //------------------------------eq---------------------------------------------
1408 // Structural equality check for Type representations
1409 bool TypeF::eq(const Type *t) const {
1410 // Bitwise comparison to distinguish between +/-0. These values must be treated
1411 // as different to be consistent with C1 and the interpreter.
1412 return (jint_cast(_f) == jint_cast(t->getf()));
1413 }
1414
1415 //------------------------------hash-------------------------------------------
1416 // Type-specific hashing function.
1417 uint TypeF::hash(void) const {
1418 return *(uint*)(&_f);
1419 }
1420
1421 //------------------------------is_finite--------------------------------------
1422 // Has a finite value
1423 bool TypeF::is_finite() const {
1424 return g_isfinite(getf()) != 0;
1425 }
1426
1427 //------------------------------is_nan-----------------------------------------
1428 // Is not a number (NaN)
1429 bool TypeF::is_nan() const {
1430 return g_isnan(getf()) != 0;
1431 }
1432
1433 //------------------------------dump2------------------------------------------
1434 // Dump float constant Type
1435 #ifndef PRODUCT
1436 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1437 Type::dump2(d,depth, st);
1438 st->print("%f", _f);
1439 }
1440 #endif
1441
1442 //------------------------------singleton--------------------------------------
1443 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1444 // constants (Ldi nodes). Singletons are integer, float or double constants
1445 // or a single symbol.
1446 bool TypeF::singleton(void) const {
1447 return true; // Always a singleton
1448 }
1449
1450 bool TypeF::empty(void) const {
1451 return false; // always exactly a singleton
1452 }
1453
1454 //=============================================================================
1455 // Convenience common pre-built types.
1456 const TypeH* TypeH::MAX; // Half float max
1457 const TypeH* TypeH::MIN; // Half float min
1458 const TypeH* TypeH::ZERO; // Half float zero
1459 const TypeH* TypeH::ONE; // Half float one
1460 const TypeH* TypeH::POS_INF; // Half float positive infinity
1461 const TypeH* TypeH::NEG_INF; // Half float negative infinity
1462
1463 //------------------------------make-------------------------------------------
1464 // Create a halffloat constant
1465 const TypeH* TypeH::make(short f) {
1466 return (TypeH*)(new TypeH(f))->hashcons();
1467 }
1468
1469 const TypeH* TypeH::make(float f) {
1470 assert(StubRoutines::f2hf_adr() != nullptr, "");
1471 short hf = StubRoutines::f2hf(f);
1472 return (TypeH*)(new TypeH(hf))->hashcons();
1473 }
1474
1475 //------------------------------xmeet-------------------------------------------
1476 // Compute the MEET of two types. It returns a new Type object.
1477 const Type* TypeH::xmeet(const Type* t) const {
1478 // Perform a fast test for common case; meeting the same types together.
1479 if (this == t) return this; // Meeting same type-rep?
1480
1481 // Current "this->_base" is FloatCon
1482 switch (t->base()) { // Switch on original type
1483 case AnyPtr: // Mixing with oops happens when javac
1484 case RawPtr: // reuses local variables
1485 case OopPtr:
1486 case InstPtr:
1487 case AryPtr:
1488 case MetadataPtr:
1489 case KlassPtr:
1490 case InstKlassPtr:
1491 case AryKlassPtr:
1492 case NarrowOop:
1493 case NarrowKlass:
1494 case Int:
1495 case Long:
1496 case FloatTop:
1497 case FloatCon:
1498 case FloatBot:
1499 case DoubleTop:
1500 case DoubleCon:
1501 case DoubleBot:
1502 case Bottom: // Ye Olde Default
1503 return Type::BOTTOM;
1504
1505 case HalfFloatBot:
1506 return t;
1507
1508 default: // All else is a mistake
1509 typerr(t);
1510
1511 case HalfFloatCon: // Half float-constant vs Half float-constant?
1512 if (_f != t->geth()) { // unequal constants?
1513 // must compare bitwise as positive zero, negative zero and NaN have
1514 // all the same representation in C++
1515 return HALF_FLOAT; // Return generic float
1516 } // Equal constants
1517 case Top:
1518 case HalfFloatTop:
1519 break; // Return the Half float constant
1520 }
1521 return this; // Return the Half float constant
1522 }
1523
1524 //------------------------------xdual------------------------------------------
1525 // Dual: symmetric
1526 const Type* TypeH::xdual() const {
1527 return this;
1528 }
1529
1530 //------------------------------eq---------------------------------------------
1531 // Structural equality check for Type representations
1532 bool TypeH::eq(const Type* t) const {
1533 // Bitwise comparison to distinguish between +/-0. These values must be treated
1534 // as different to be consistent with C1 and the interpreter.
1535 return (_f == t->geth());
1536 }
1537
1538 //------------------------------hash-------------------------------------------
1539 // Type-specific hashing function.
1540 uint TypeH::hash(void) const {
1541 return *(jshort*)(&_f);
1542 }
1543
1544 //------------------------------is_finite--------------------------------------
1545 // Has a finite value
1546 bool TypeH::is_finite() const {
1547 assert(StubRoutines::hf2f_adr() != nullptr, "");
1548 float f = StubRoutines::hf2f(geth());
1549 return g_isfinite(f) != 0;
1550 }
1551
1552 float TypeH::getf() const {
1553 assert(StubRoutines::hf2f_adr() != nullptr, "");
1554 return StubRoutines::hf2f(geth());
1555 }
1556
1557 //------------------------------is_nan-----------------------------------------
1558 // Is not a number (NaN)
1559 bool TypeH::is_nan() const {
1560 assert(StubRoutines::hf2f_adr() != nullptr, "");
1561 float f = StubRoutines::hf2f(geth());
1562 return g_isnan(f) != 0;
1563 }
1564
1565 //------------------------------dump2------------------------------------------
1566 // Dump float constant Type
1567 #ifndef PRODUCT
1568 void TypeH::dump2(Dict &d, uint depth, outputStream* st) const {
1569 Type::dump2(d,depth, st);
1570 st->print("%f", getf());
1571 }
1572 #endif
1573
1574 //------------------------------singleton--------------------------------------
1575 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1576 // constants (Ldi nodes). Singletons are integer, half float, float or double constants
1577 // or a single symbol.
1578 bool TypeH::singleton(void) const {
1579 return true; // Always a singleton
1580 }
1581
1582 bool TypeH::empty(void) const {
1583 return false; // always exactly a singleton
1584 }
1585
1586 //=============================================================================
1587 // Convenience common pre-built types.
1588 const TypeD *TypeD::MAX; // Floating point max
1589 const TypeD *TypeD::MIN; // Floating point min
1590 const TypeD *TypeD::ZERO; // Floating point zero
1591 const TypeD *TypeD::ONE; // Floating point one
1592 const TypeD *TypeD::POS_INF; // Floating point positive infinity
1593 const TypeD *TypeD::NEG_INF; // Floating point negative infinity
1594
1595 //------------------------------make-------------------------------------------
1596 const TypeD *TypeD::make(double d) {
1597 return (TypeD*)(new TypeD(d))->hashcons();
1598 }
1599
1600 //------------------------------meet-------------------------------------------
1601 // Compute the MEET of two types. It returns a new Type object.
1602 const Type *TypeD::xmeet( const Type *t ) const {
1603 // Perform a fast test for common case; meeting the same types together.
1604 if( this == t ) return this; // Meeting same type-rep?
1605
1606 // Current "this->_base" is DoubleCon
1607 switch (t->base()) { // Switch on original type
1608 case AnyPtr: // Mixing with oops happens when javac
1609 case RawPtr: // reuses local variables
1610 case OopPtr:
1611 case InstPtr:
1612 case AryPtr:
1613 case MetadataPtr:
1614 case KlassPtr:
1615 case InstKlassPtr:
1616 case AryKlassPtr:
1617 case NarrowOop:
1618 case NarrowKlass:
1619 case Int:
1620 case Long:
1621 case HalfFloatTop:
1622 case HalfFloatCon:
1623 case HalfFloatBot:
1624 case FloatTop:
1625 case FloatCon:
1626 case FloatBot:
1627 case Bottom: // Ye Olde Default
1628 return Type::BOTTOM;
1629
1630 case DoubleBot:
1631 return t;
1632
1633 default: // All else is a mistake
1634 typerr(t);
1635
1636 case DoubleCon: // Double-constant vs Double-constant?
1637 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
1638 return DOUBLE; // Return generic double
1639 case Top:
1640 case DoubleTop:
1641 break;
1642 }
1643 return this; // Return the double constant
1644 }
1645
1646 //------------------------------xdual------------------------------------------
1647 // Dual: symmetric
1648 const Type *TypeD::xdual() const {
1649 return this;
1650 }
1651
1652 //------------------------------eq---------------------------------------------
1653 // Structural equality check for Type representations
1654 bool TypeD::eq(const Type *t) const {
1655 // Bitwise comparison to distinguish between +/-0. These values must be treated
1656 // as different to be consistent with C1 and the interpreter.
1657 return (jlong_cast(_d) == jlong_cast(t->getd()));
1658 }
1659
1660 //------------------------------hash-------------------------------------------
1661 // Type-specific hashing function.
1662 uint TypeD::hash(void) const {
1663 return *(uint*)(&_d);
1664 }
1665
1666 //------------------------------is_finite--------------------------------------
1667 // Has a finite value
1668 bool TypeD::is_finite() const {
1669 return g_isfinite(getd()) != 0;
1670 }
1671
1672 //------------------------------is_nan-----------------------------------------
1673 // Is not a number (NaN)
1674 bool TypeD::is_nan() const {
1675 return g_isnan(getd()) != 0;
1676 }
1677
1678 //------------------------------dump2------------------------------------------
1679 // Dump double constant Type
1680 #ifndef PRODUCT
1681 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1682 Type::dump2(d,depth,st);
1683 st->print("%f", _d);
1684 }
1685 #endif
1686
1687 //------------------------------singleton--------------------------------------
1688 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1689 // constants (Ldi nodes). Singletons are integer, float or double constants
1690 // or a single symbol.
1691 bool TypeD::singleton(void) const {
1692 return true; // Always a singleton
1693 }
1694
1695 bool TypeD::empty(void) const {
1696 return false; // always exactly a singleton
1697 }
1698
1699 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) {
1700 if (bt == T_INT) {
1701 return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w);
1702 }
1703 assert(bt == T_LONG, "basic type not an int or long");
1704 return TypeLong::make(lo, hi, w);
1705 }
1706
1707 const TypeInteger* TypeInteger::make(jlong con, BasicType bt) {
1708 return make(con, con, WidenMin, bt);
1709 }
1710
1711 jlong TypeInteger::get_con_as_long(BasicType bt) const {
1712 if (bt == T_INT) {
1713 return is_int()->get_con();
1714 }
1715 assert(bt == T_LONG, "basic type not an int or long");
1716 return is_long()->get_con();
1717 }
1718
1719 const TypeInteger* TypeInteger::bottom(BasicType bt) {
1720 if (bt == T_INT) {
1721 return TypeInt::INT;
1722 }
1723 assert(bt == T_LONG, "basic type not an int or long");
1724 return TypeLong::LONG;
1725 }
1726
1727 const TypeInteger* TypeInteger::zero(BasicType bt) {
1728 if (bt == T_INT) {
1729 return TypeInt::ZERO;
1730 }
1731 assert(bt == T_LONG, "basic type not an int or long");
1732 return TypeLong::ZERO;
1733 }
1734
1735 const TypeInteger* TypeInteger::one(BasicType bt) {
1736 if (bt == T_INT) {
1737 return TypeInt::ONE;
1738 }
1739 assert(bt == T_LONG, "basic type not an int or long");
1740 return TypeLong::ONE;
1741 }
1742
1743 const TypeInteger* TypeInteger::minus_1(BasicType bt) {
1744 if (bt == T_INT) {
1745 return TypeInt::MINUS_1;
1746 }
1747 assert(bt == T_LONG, "basic type not an int or long");
1748 return TypeLong::MINUS_1;
1749 }
1750
1751 //=============================================================================
1752 // Convenience common pre-built types.
1753 const TypeInt* TypeInt::MAX; // INT_MAX
1754 const TypeInt* TypeInt::MIN; // INT_MIN
1755 const TypeInt* TypeInt::MINUS_1;// -1
1756 const TypeInt* TypeInt::ZERO; // 0
1757 const TypeInt* TypeInt::ONE; // 1
1758 const TypeInt* TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
1759 const TypeInt* TypeInt::CC; // -1,0 or 1, condition codes
1760 const TypeInt* TypeInt::CC_LT; // [-1] == MINUS_1
1761 const TypeInt* TypeInt::CC_GT; // [1] == ONE
1762 const TypeInt* TypeInt::CC_EQ; // [0] == ZERO
1763 const TypeInt* TypeInt::CC_NE;
1764 const TypeInt* TypeInt::CC_LE; // [-1,0]
1765 const TypeInt* TypeInt::CC_GE; // [0,1] == BOOL (!)
1766 const TypeInt* TypeInt::BYTE; // Bytes, -128 to 127
1767 const TypeInt* TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
1768 const TypeInt* TypeInt::CHAR; // Java chars, 0-65535
1769 const TypeInt* TypeInt::SHORT; // Java shorts, -32768-32767
1770 const TypeInt* TypeInt::NON_ZERO;
1771 const TypeInt* TypeInt::POS; // Positive 32-bit integers or zero
1772 const TypeInt* TypeInt::POS1; // Positive 32-bit integers
1773 const TypeInt* TypeInt::INT; // 32-bit integers
1774 const TypeInt* TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1775 const TypeInt* TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1776
1777 TypeInt::TypeInt(const TypeIntPrototype<jint, juint>& t, int widen, bool dual)
1778 : TypeInteger(Int, t.normalize_widen(widen), dual), _lo(t._srange._lo), _hi(t._srange._hi),
1779 _ulo(t._urange._lo), _uhi(t._urange._hi), _bits(t._bits) {
1780 DEBUG_ONLY(t.verify_constraints());
1781 }
1782
1783 const Type* TypeInt::make_or_top(const TypeIntPrototype<jint, juint>& t, int widen, bool dual) {
1784 auto canonicalized_t = t.canonicalize_constraints();
1785 if (canonicalized_t.empty()) {
1786 return dual ? Type::BOTTOM : Type::TOP;
1787 }
1788 return (new TypeInt(canonicalized_t._data, widen, dual))->hashcons()->is_int();
1789 }
1790
1791 const TypeInt* TypeInt::make(jint con) {
1792 juint ucon = con;
1793 return (new TypeInt(TypeIntPrototype<jint, juint>{{con, con}, {ucon, ucon}, {~ucon, ucon}},
1794 WidenMin, false))->hashcons()->is_int();
1795 }
1796
1797 const TypeInt* TypeInt::make(jint lo, jint hi, int widen) {
1798 assert(lo <= hi, "must be legal bounds");
1799 return make_or_top(TypeIntPrototype<jint, juint>{{lo, hi}, {0, max_juint}, {0, 0}}, widen)->is_int();
1800 }
1801
1802 const Type* TypeInt::make_or_top(const TypeIntPrototype<jint, juint>& t, int widen) {
1803 return make_or_top(t, widen, false);
1804 }
1805
1806 bool TypeInt::contains(jint i) const {
1807 assert(!_is_dual, "dual types should only be used for join calculation");
1808 juint u = i;
1809 return i >= _lo && i <= _hi &&
1810 u >= _ulo && u <= _uhi &&
1811 _bits.is_satisfied_by(u);
1812 }
1813
1814 bool TypeInt::contains(const TypeInt* t) const {
1815 assert(!_is_dual && !t->_is_dual, "dual types should only be used for join calculation");
1816 return TypeIntHelper::int_type_is_subset(this, t);
1817 }
1818
1819 const Type* TypeInt::xmeet(const Type* t) const {
1820 return TypeIntHelper::int_type_xmeet(this, t);
1821 }
1822
1823 const Type* TypeInt::xdual() const {
1824 return new TypeInt(TypeIntPrototype<jint, juint>{{_lo, _hi}, {_ulo, _uhi}, _bits},
1825 _widen, !_is_dual);
1826 }
1827
1828 const Type* TypeInt::widen(const Type* old, const Type* limit) const {
1829 assert(!_is_dual, "dual types should only be used for join calculation");
1830 return TypeIntHelper::int_type_widen(this, old->isa_int(), limit->isa_int());
1831 }
1832
1833 const Type* TypeInt::narrow(const Type* old) const {
1834 assert(!_is_dual, "dual types should only be used for join calculation");
1835 if (old == nullptr) {
1836 return this;
1837 }
1838
1839 return TypeIntHelper::int_type_narrow(this, old->isa_int());
1840 }
1841
1842 //-----------------------------filter------------------------------------------
1843 const Type* TypeInt::filter_helper(const Type* kills, bool include_speculative) const {
1844 assert(!_is_dual, "dual types should only be used for join calculation");
1845 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1846 if (ft == nullptr) {
1847 return Type::TOP; // Canonical empty value
1848 }
1849 assert(!ft->_is_dual, "dual types should only be used for join calculation");
1850 if (ft->_widen < this->_widen) {
1851 // Do not allow the value of kill->_widen to affect the outcome.
1852 // The widen bits must be allowed to run freely through the graph.
1853 return (new TypeInt(TypeIntPrototype<jint, juint>{{ft->_lo, ft->_hi}, {ft->_ulo, ft->_uhi}, ft->_bits},
1854 this->_widen, false))->hashcons();
1855 }
1856 return ft;
1857 }
1858
1859 //------------------------------eq---------------------------------------------
1860 // Structural equality check for Type representations
1861 bool TypeInt::eq(const Type* t) const {
1862 const TypeInt* r = t->is_int();
1863 return TypeIntHelper::int_type_is_equal(this, r) && _widen == r->_widen && _is_dual == r->_is_dual;
1864 }
1865
1866 //------------------------------hash-------------------------------------------
1867 // Type-specific hashing function.
1868 uint TypeInt::hash(void) const {
1869 return (uint)_lo + (uint)_hi + (uint)_ulo + (uint)_uhi +
1870 (uint)_bits._zeros + (uint)_bits._ones + (uint)_widen + (uint)_is_dual + (uint)Type::Int;
1871 }
1872
1873 //------------------------------is_finite--------------------------------------
1874 // Has a finite value
1875 bool TypeInt::is_finite() const {
1876 return true;
1877 }
1878
1879 //------------------------------singleton--------------------------------------
1880 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1881 // constants.
1882 bool TypeInt::singleton(void) const {
1883 return _lo == _hi;
1884 }
1885
1886 bool TypeInt::empty(void) const {
1887 return false;
1888 }
1889
1890 //=============================================================================
1891 // Convenience common pre-built types.
1892 const TypeLong* TypeLong::MAX;
1893 const TypeLong* TypeLong::MIN;
1894 const TypeLong* TypeLong::MINUS_1;// -1
1895 const TypeLong* TypeLong::ZERO; // 0
1896 const TypeLong* TypeLong::ONE; // 1
1897 const TypeLong* TypeLong::NON_ZERO;
1898 const TypeLong* TypeLong::POS; // >=0
1899 const TypeLong* TypeLong::NEG;
1900 const TypeLong* TypeLong::LONG; // 64-bit integers
1901 const TypeLong* TypeLong::INT; // 32-bit subrange
1902 const TypeLong* TypeLong::UINT; // 32-bit unsigned subrange
1903 const TypeLong* TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1904
1905 TypeLong::TypeLong(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual)
1906 : TypeInteger(Long, t.normalize_widen(widen), dual), _lo(t._srange._lo), _hi(t._srange._hi),
1907 _ulo(t._urange._lo), _uhi(t._urange._hi), _bits(t._bits) {
1908 DEBUG_ONLY(t.verify_constraints());
1909 }
1910
1911 const Type* TypeLong::make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual) {
1912 auto canonicalized_t = t.canonicalize_constraints();
1913 if (canonicalized_t.empty()) {
1914 return dual ? Type::BOTTOM : Type::TOP;
1915 }
1916 return (new TypeLong(canonicalized_t._data, widen, dual))->hashcons()->is_long();
1917 }
1918
1919 const TypeLong* TypeLong::make(jlong con) {
1920 julong ucon = con;
1921 return (new TypeLong(TypeIntPrototype<jlong, julong>{{con, con}, {ucon, ucon}, {~ucon, ucon}},
1922 WidenMin, false))->hashcons()->is_long();
1923 }
1924
1925 const TypeLong* TypeLong::make(jlong lo, jlong hi, int widen) {
1926 assert(lo <= hi, "must be legal bounds");
1927 return make_or_top(TypeIntPrototype<jlong, julong>{{lo, hi}, {0, max_julong}, {0, 0}}, widen)->is_long();
1928 }
1929
1930 const Type* TypeLong::make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen) {
1931 return make_or_top(t, widen, false);
1932 }
1933
1934 bool TypeLong::contains(jlong i) const {
1935 assert(!_is_dual, "dual types should only be used for join calculation");
1936 julong u = i;
1937 return i >= _lo && i <= _hi &&
1938 u >= _ulo && u <= _uhi &&
1939 _bits.is_satisfied_by(u);
1940 }
1941
1942 bool TypeLong::contains(const TypeLong* t) const {
1943 assert(!_is_dual && !t->_is_dual, "dual types should only be used for join calculation");
1944 return TypeIntHelper::int_type_is_subset(this, t);
1945 }
1946
1947 const Type* TypeLong::xmeet(const Type* t) const {
1948 return TypeIntHelper::int_type_xmeet(this, t);
1949 }
1950
1951 const Type* TypeLong::xdual() const {
1952 return new TypeLong(TypeIntPrototype<jlong, julong>{{_lo, _hi}, {_ulo, _uhi}, _bits},
1953 _widen, !_is_dual);
1954 }
1955
1956 const Type* TypeLong::widen(const Type* old, const Type* limit) const {
1957 assert(!_is_dual, "dual types should only be used for join calculation");
1958 return TypeIntHelper::int_type_widen(this, old->isa_long(), limit->isa_long());
1959 }
1960
1961 const Type* TypeLong::narrow(const Type* old) const {
1962 assert(!_is_dual, "dual types should only be used for join calculation");
1963 if (old == nullptr) {
1964 return this;
1965 }
1966
1967 return TypeIntHelper::int_type_narrow(this, old->isa_long());
1968 }
1969
1970 //-----------------------------filter------------------------------------------
1971 const Type* TypeLong::filter_helper(const Type* kills, bool include_speculative) const {
1972 assert(!_is_dual, "dual types should only be used for join calculation");
1973 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1974 if (ft == nullptr) {
1975 return Type::TOP; // Canonical empty value
1976 }
1977 assert(!ft->_is_dual, "dual types should only be used for join calculation");
1978 if (ft->_widen < this->_widen) {
1979 // Do not allow the value of kill->_widen to affect the outcome.
1980 // The widen bits must be allowed to run freely through the graph.
1981 return (new TypeLong(TypeIntPrototype<jlong, julong>{{ft->_lo, ft->_hi}, {ft->_ulo, ft->_uhi}, ft->_bits},
1982 this->_widen, false))->hashcons();
1983 }
1984 return ft;
1985 }
1986
1987 //------------------------------eq---------------------------------------------
1988 // Structural equality check for Type representations
1989 bool TypeLong::eq(const Type* t) const {
1990 const TypeLong* r = t->is_long();
1991 return TypeIntHelper::int_type_is_equal(this, r) && _widen == r->_widen && _is_dual == r->_is_dual;
1992 }
1993
1994 //------------------------------hash-------------------------------------------
1995 // Type-specific hashing function.
1996 uint TypeLong::hash(void) const {
1997 return (uint)_lo + (uint)_hi + (uint)_ulo + (uint)_uhi +
1998 (uint)_bits._zeros + (uint)_bits._ones + (uint)_widen + (uint)_is_dual + (uint)Type::Long;
1999 }
2000
2001 //------------------------------is_finite--------------------------------------
2002 // Has a finite value
2003 bool TypeLong::is_finite() const {
2004 return true;
2005 }
2006
2007 //------------------------------singleton--------------------------------------
2008 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2009 // constants
2010 bool TypeLong::singleton(void) const {
2011 return _lo == _hi;
2012 }
2013
2014 bool TypeLong::empty(void) const {
2015 return false;
2016 }
2017
2018 //------------------------------dump2------------------------------------------
2019 #ifndef PRODUCT
2020 void TypeInt::dump2(Dict& d, uint depth, outputStream* st) const {
2021 TypeIntHelper::int_type_dump(this, st, false);
2022 }
2023
2024 void TypeInt::dump_verbose() const {
2025 TypeIntHelper::int_type_dump(this, tty, true);
2026 }
2027
2028 void TypeLong::dump2(Dict& d, uint depth, outputStream* st) const {
2029 TypeIntHelper::int_type_dump(this, st, false);
2030 }
2031
2032 void TypeLong::dump_verbose() const {
2033 TypeIntHelper::int_type_dump(this, tty, true);
2034 }
2035 #endif
2036
2037 //=============================================================================
2038 // Convenience common pre-built types.
2039 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
2040 const TypeTuple *TypeTuple::IFFALSE;
2041 const TypeTuple *TypeTuple::IFTRUE;
2042 const TypeTuple *TypeTuple::IFNEITHER;
2043 const TypeTuple *TypeTuple::LOOPBODY;
2044 const TypeTuple *TypeTuple::MEMBAR;
2045 const TypeTuple *TypeTuple::STORECONDITIONAL;
2046 const TypeTuple *TypeTuple::START_I2C;
2047 const TypeTuple *TypeTuple::INT_PAIR;
2048 const TypeTuple *TypeTuple::LONG_PAIR;
2049 const TypeTuple *TypeTuple::INT_CC_PAIR;
2050 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2051
2052 //------------------------------make-------------------------------------------
2053 // Make a TypeTuple from the range of a method signature
2054 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) {
2055 ciType* return_type = sig->return_type();
2056 uint arg_cnt = return_type->size();
2057 const Type **field_array = fields(arg_cnt);
2058 switch (return_type->basic_type()) {
2059 case T_LONG:
2060 field_array[TypeFunc::Parms] = TypeLong::LONG;
2061 field_array[TypeFunc::Parms+1] = Type::HALF;
2062 break;
2063 case T_DOUBLE:
2064 field_array[TypeFunc::Parms] = Type::DOUBLE;
2065 field_array[TypeFunc::Parms+1] = Type::HALF;
2066 break;
2067 case T_OBJECT:
2068 case T_ARRAY:
2069 case T_BOOLEAN:
2070 case T_CHAR:
2071 case T_FLOAT:
2072 case T_BYTE:
2073 case T_SHORT:
2074 case T_INT:
2075 field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2076 break;
2077 case T_VOID:
2078 break;
2079 default:
2080 ShouldNotReachHere();
2081 }
2082 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2083 }
2084
2085 // Make a TypeTuple from the domain of a method signature
2086 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) {
2087 uint arg_cnt = sig->size();
2088
2089 uint pos = TypeFunc::Parms;
2090 const Type **field_array;
2091 if (recv != nullptr) {
2092 arg_cnt++;
2093 field_array = fields(arg_cnt);
2094 // Use get_const_type here because it respects UseUniqueSubclasses:
2095 field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2096 } else {
2097 field_array = fields(arg_cnt);
2098 }
2099
2100 int i = 0;
2101 while (pos < TypeFunc::Parms + arg_cnt) {
2102 ciType* type = sig->type_at(i);
2103
2104 switch (type->basic_type()) {
2105 case T_LONG:
2106 field_array[pos++] = TypeLong::LONG;
2107 field_array[pos++] = Type::HALF;
2108 break;
2109 case T_DOUBLE:
2110 field_array[pos++] = Type::DOUBLE;
2111 field_array[pos++] = Type::HALF;
2112 break;
2113 case T_OBJECT:
2114 case T_ARRAY:
2115 case T_FLOAT:
2116 case T_INT:
2117 field_array[pos++] = get_const_type(type, interface_handling);
2118 break;
2119 case T_BOOLEAN:
2120 case T_CHAR:
2121 case T_BYTE:
2122 case T_SHORT:
2123 field_array[pos++] = TypeInt::INT;
2124 break;
2125 default:
2126 ShouldNotReachHere();
2127 }
2128 i++;
2129 }
2130
2131 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2132 }
2133
2134 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2135 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2136 }
2137
2138 //------------------------------fields-----------------------------------------
2139 // Subroutine call type with space allocated for argument types
2140 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2141 const Type **TypeTuple::fields( uint arg_cnt ) {
2142 const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2143 flds[TypeFunc::Control ] = Type::CONTROL;
2144 flds[TypeFunc::I_O ] = Type::ABIO;
2145 flds[TypeFunc::Memory ] = Type::MEMORY;
2146 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2147 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2148
2149 return flds;
2150 }
2151
2152 //------------------------------meet-------------------------------------------
2153 // Compute the MEET of two types. It returns a new Type object.
2154 const Type *TypeTuple::xmeet( const Type *t ) const {
2155 // Perform a fast test for common case; meeting the same types together.
2156 if( this == t ) return this; // Meeting same type-rep?
2157
2158 // Current "this->_base" is Tuple
2159 switch (t->base()) { // switch on original type
2160
2161 case Bottom: // Ye Olde Default
2162 return t;
2163
2164 default: // All else is a mistake
2165 typerr(t);
2166
2167 case Tuple: { // Meeting 2 signatures?
2168 const TypeTuple *x = t->is_tuple();
2169 assert( _cnt == x->_cnt, "" );
2170 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2171 for( uint i=0; i<_cnt; i++ )
2172 fields[i] = field_at(i)->xmeet( x->field_at(i) );
2173 return TypeTuple::make(_cnt,fields);
2174 }
2175 case Top:
2176 break;
2177 }
2178 return this; // Return the double constant
2179 }
2180
2181 //------------------------------xdual------------------------------------------
2182 // Dual: compute field-by-field dual
2183 const Type *TypeTuple::xdual() const {
2184 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2185 for( uint i=0; i<_cnt; i++ )
2186 fields[i] = _fields[i]->dual();
2187 return new TypeTuple(_cnt,fields);
2188 }
2189
2190 //------------------------------eq---------------------------------------------
2191 // Structural equality check for Type representations
2192 bool TypeTuple::eq( const Type *t ) const {
2193 const TypeTuple *s = (const TypeTuple *)t;
2194 if (_cnt != s->_cnt) return false; // Unequal field counts
2195 for (uint i = 0; i < _cnt; i++)
2196 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
2197 return false; // Missed
2198 return true;
2199 }
2200
2201 //------------------------------hash-------------------------------------------
2202 // Type-specific hashing function.
2203 uint TypeTuple::hash(void) const {
2204 uintptr_t sum = _cnt;
2205 for( uint i=0; i<_cnt; i++ )
2206 sum += (uintptr_t)_fields[i]; // Hash on pointers directly
2207 return (uint)sum;
2208 }
2209
2210 //------------------------------dump2------------------------------------------
2211 // Dump signature Type
2212 #ifndef PRODUCT
2213 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2214 st->print("{");
2215 if( !depth || d[this] ) { // Check for recursive print
2216 st->print("...}");
2217 return;
2218 }
2219 d.Insert((void*)this, (void*)this); // Stop recursion
2220 if( _cnt ) {
2221 uint i;
2222 for( i=0; i<_cnt-1; i++ ) {
2223 st->print("%d:", i);
2224 _fields[i]->dump2(d, depth-1, st);
2225 st->print(", ");
2226 }
2227 st->print("%d:", i);
2228 _fields[i]->dump2(d, depth-1, st);
2229 }
2230 st->print("}");
2231 }
2232 #endif
2233
2234 //------------------------------singleton--------------------------------------
2235 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2236 // constants (Ldi nodes). Singletons are integer, float or double constants
2237 // or a single symbol.
2238 bool TypeTuple::singleton(void) const {
2239 return false; // Never a singleton
2240 }
2241
2242 bool TypeTuple::empty(void) const {
2243 for( uint i=0; i<_cnt; i++ ) {
2244 if (_fields[i]->empty()) return true;
2245 }
2246 return false;
2247 }
2248
2249 //=============================================================================
2250 // Convenience common pre-built types.
2251
2252 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2253 // Certain normalizations keep us sane when comparing types.
2254 // We do not want arrayOop variables to differ only by the wideness
2255 // of their index types. Pick minimum wideness, since that is the
2256 // forced wideness of small ranges anyway.
2257 if (size->_widen != Type::WidenMin)
2258 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2259 else
2260 return size;
2261 }
2262
2263 //------------------------------make-------------------------------------------
2264 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2265 if (UseCompressedOops && elem->isa_oopptr()) {
2266 elem = elem->make_narrowoop();
2267 }
2268 size = normalize_array_size(size);
2269 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2270 }
2271
2272 //------------------------------meet-------------------------------------------
2273 // Compute the MEET of two types. It returns a new Type object.
2274 const Type *TypeAry::xmeet( const Type *t ) const {
2275 // Perform a fast test for common case; meeting the same types together.
2276 if( this == t ) return this; // Meeting same type-rep?
2277
2278 // Current "this->_base" is Ary
2279 switch (t->base()) { // switch on original type
2280
2281 case Bottom: // Ye Olde Default
2282 return t;
2283
2284 default: // All else is a mistake
2285 typerr(t);
2286
2287 case Array: { // Meeting 2 arrays?
2288 const TypeAry* a = t->is_ary();
2289 const Type* size = _size->xmeet(a->_size);
2290 const TypeInt* isize = size->isa_int();
2291 if (isize == nullptr) {
2292 assert(size == Type::TOP || size == Type::BOTTOM, "");
2293 return size;
2294 }
2295 return TypeAry::make(_elem->meet_speculative(a->_elem),
2296 isize, _stable && a->_stable);
2297 }
2298 case Top:
2299 break;
2300 }
2301 return this; // Return the double constant
2302 }
2303
2304 //------------------------------xdual------------------------------------------
2305 // Dual: compute field-by-field dual
2306 const Type *TypeAry::xdual() const {
2307 const TypeInt* size_dual = _size->dual()->is_int();
2308 size_dual = normalize_array_size(size_dual);
2309 return new TypeAry(_elem->dual(), size_dual, !_stable);
2310 }
2311
2312 //------------------------------eq---------------------------------------------
2313 // Structural equality check for Type representations
2314 bool TypeAry::eq( const Type *t ) const {
2315 const TypeAry *a = (const TypeAry*)t;
2316 return _elem == a->_elem &&
2317 _stable == a->_stable &&
2318 _size == a->_size;
2319 }
2320
2321 //------------------------------hash-------------------------------------------
2322 // Type-specific hashing function.
2323 uint TypeAry::hash(void) const {
2324 return (uint)(uintptr_t)_elem + (uint)(uintptr_t)_size + (uint)(_stable ? 43 : 0);
2325 }
2326
2327 /**
2328 * Return same type without a speculative part in the element
2329 */
2330 const TypeAry* TypeAry::remove_speculative() const {
2331 return make(_elem->remove_speculative(), _size, _stable);
2332 }
2333
2334 /**
2335 * Return same type with cleaned up speculative part of element
2336 */
2337 const Type* TypeAry::cleanup_speculative() const {
2338 return make(_elem->cleanup_speculative(), _size, _stable);
2339 }
2340
2341 /**
2342 * Return same type but with a different inline depth (used for speculation)
2343 *
2344 * @param depth depth to meet with
2345 */
2346 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2347 if (!UseInlineDepthForSpeculativeTypes) {
2348 return this;
2349 }
2350 return make(AnyPtr, _ptr, _offset, _speculative, depth);
2351 }
2352
2353 //------------------------------dump2------------------------------------------
2354 #ifndef PRODUCT
2355 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2356 if (_stable) st->print("stable:");
2357 _elem->dump2(d, depth, st);
2358 st->print("[");
2359 _size->dump2(d, depth, st);
2360 st->print("]");
2361 }
2362 #endif
2363
2364 //------------------------------singleton--------------------------------------
2365 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2366 // constants (Ldi nodes). Singletons are integer, float or double constants
2367 // or a single symbol.
2368 bool TypeAry::singleton(void) const {
2369 return false; // Never a singleton
2370 }
2371
2372 bool TypeAry::empty(void) const {
2373 return _elem->empty() || _size->empty();
2374 }
2375
2376 //--------------------------ary_must_be_exact----------------------------------
2377 bool TypeAry::ary_must_be_exact() const {
2378 // This logic looks at the element type of an array, and returns true
2379 // if the element type is either a primitive or a final instance class.
2380 // In such cases, an array built on this ary must have no subclasses.
2381 if (_elem == BOTTOM) return false; // general array not exact
2382 if (_elem == TOP ) return false; // inverted general array not exact
2383 const TypeOopPtr* toop = nullptr;
2384 if (UseCompressedOops && _elem->isa_narrowoop()) {
2385 toop = _elem->make_ptr()->isa_oopptr();
2386 } else {
2387 toop = _elem->isa_oopptr();
2388 }
2389 if (!toop) return true; // a primitive type, like int
2390 if (!toop->is_loaded()) return false; // unloaded class
2391 const TypeInstPtr* tinst;
2392 if (_elem->isa_narrowoop())
2393 tinst = _elem->make_ptr()->isa_instptr();
2394 else
2395 tinst = _elem->isa_instptr();
2396 if (tinst)
2397 return tinst->instance_klass()->is_final();
2398 const TypeAryPtr* tap;
2399 if (_elem->isa_narrowoop())
2400 tap = _elem->make_ptr()->isa_aryptr();
2401 else
2402 tap = _elem->isa_aryptr();
2403 if (tap)
2404 return tap->ary()->ary_must_be_exact();
2405 return false;
2406 }
2407
2408 //==============================TypeVect=======================================
2409 // Convenience common pre-built types.
2410 const TypeVect* TypeVect::VECTA = nullptr; // vector length agnostic
2411 const TypeVect* TypeVect::VECTS = nullptr; // 32-bit vectors
2412 const TypeVect* TypeVect::VECTD = nullptr; // 64-bit vectors
2413 const TypeVect* TypeVect::VECTX = nullptr; // 128-bit vectors
2414 const TypeVect* TypeVect::VECTY = nullptr; // 256-bit vectors
2415 const TypeVect* TypeVect::VECTZ = nullptr; // 512-bit vectors
2416 const TypeVect* TypeVect::VECTMASK = nullptr; // predicate/mask vector
2417
2418 //------------------------------make-------------------------------------------
2419 const TypeVect* TypeVect::make(BasicType elem_bt, uint length, bool is_mask) {
2420 if (is_mask) {
2421 return makemask(elem_bt, length);
2422 }
2423 assert(is_java_primitive(elem_bt), "only primitive types in vector");
2424 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2425 int size = length * type2aelembytes(elem_bt);
2426 switch (Matcher::vector_ideal_reg(size)) {
2427 case Op_VecA:
2428 return (TypeVect*)(new TypeVectA(elem_bt, length))->hashcons();
2429 case Op_VecS:
2430 return (TypeVect*)(new TypeVectS(elem_bt, length))->hashcons();
2431 case Op_RegL:
2432 case Op_VecD:
2433 case Op_RegD:
2434 return (TypeVect*)(new TypeVectD(elem_bt, length))->hashcons();
2435 case Op_VecX:
2436 return (TypeVect*)(new TypeVectX(elem_bt, length))->hashcons();
2437 case Op_VecY:
2438 return (TypeVect*)(new TypeVectY(elem_bt, length))->hashcons();
2439 case Op_VecZ:
2440 return (TypeVect*)(new TypeVectZ(elem_bt, length))->hashcons();
2441 }
2442 ShouldNotReachHere();
2443 return nullptr;
2444 }
2445
2446 const TypeVect* TypeVect::makemask(BasicType elem_bt, uint length) {
2447 if (Matcher::has_predicated_vectors() &&
2448 Matcher::match_rule_supported_vector_masked(Op_VectorLoadMask, length, elem_bt)) {
2449 return TypeVectMask::make(elem_bt, length);
2450 } else {
2451 return make(elem_bt, length);
2452 }
2453 }
2454
2455 //------------------------------meet-------------------------------------------
2456 // Compute the MEET of two types. Since each TypeVect is the only instance of
2457 // its species, meeting often returns itself
2458 const Type* TypeVect::xmeet(const Type* t) const {
2459 // Perform a fast test for common case; meeting the same types together.
2460 if (this == t) {
2461 return this;
2462 }
2463
2464 // Current "this->_base" is Vector
2465 switch (t->base()) { // switch on original type
2466
2467 case Bottom: // Ye Olde Default
2468 return t;
2469
2470 default: // All else is a mistake
2471 typerr(t);
2472 case VectorMask:
2473 case VectorA:
2474 case VectorS:
2475 case VectorD:
2476 case VectorX:
2477 case VectorY:
2478 case VectorZ: { // Meeting 2 vectors?
2479 const TypeVect* v = t->is_vect();
2480 assert(base() == v->base(), "");
2481 assert(length() == v->length(), "");
2482 assert(element_basic_type() == v->element_basic_type(), "");
2483 return this;
2484 }
2485 case Top:
2486 break;
2487 }
2488 return this;
2489 }
2490
2491 //------------------------------xdual------------------------------------------
2492 // Since each TypeVect is the only instance of its species, it is self-dual
2493 const Type* TypeVect::xdual() const {
2494 return this;
2495 }
2496
2497 //------------------------------eq---------------------------------------------
2498 // Structural equality check for Type representations
2499 bool TypeVect::eq(const Type* t) const {
2500 const TypeVect* v = t->is_vect();
2501 return (element_basic_type() == v->element_basic_type()) && (length() == v->length());
2502 }
2503
2504 //------------------------------hash-------------------------------------------
2505 // Type-specific hashing function.
2506 uint TypeVect::hash(void) const {
2507 return (uint)base() + (uint)(uintptr_t)_elem_bt + (uint)(uintptr_t)_length;
2508 }
2509
2510 //------------------------------singleton--------------------------------------
2511 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2512 // constants (Ldi nodes). Vector is singleton if all elements are the same
2513 // constant value (when vector is created with Replicate code).
2514 bool TypeVect::singleton(void) const {
2515 // There is no Con node for vectors yet.
2516 // return _elem->singleton();
2517 return false;
2518 }
2519
2520 bool TypeVect::empty(void) const {
2521 return false;
2522 }
2523
2524 //------------------------------dump2------------------------------------------
2525 #ifndef PRODUCT
2526 void TypeVect::dump2(Dict& d, uint depth, outputStream* st) const {
2527 switch (base()) {
2528 case VectorA:
2529 st->print("vectora"); break;
2530 case VectorS:
2531 st->print("vectors"); break;
2532 case VectorD:
2533 st->print("vectord"); break;
2534 case VectorX:
2535 st->print("vectorx"); break;
2536 case VectorY:
2537 st->print("vectory"); break;
2538 case VectorZ:
2539 st->print("vectorz"); break;
2540 case VectorMask:
2541 st->print("vectormask"); break;
2542 default:
2543 ShouldNotReachHere();
2544 }
2545 st->print("<%c,%u>", type2char(element_basic_type()), length());
2546 }
2547 #endif
2548
2549 const TypeVectMask* TypeVectMask::make(const BasicType elem_bt, uint length) {
2550 return (TypeVectMask*) (new TypeVectMask(elem_bt, length))->hashcons();
2551 }
2552
2553 //=============================================================================
2554 // Convenience common pre-built types.
2555 const TypePtr *TypePtr::NULL_PTR;
2556 const TypePtr *TypePtr::NOTNULL;
2557 const TypePtr *TypePtr::BOTTOM;
2558
2559 //------------------------------meet-------------------------------------------
2560 // Meet over the PTR enum
2561 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2562 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
2563 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
2564 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
2565 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
2566 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
2567 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
2568 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
2569 };
2570
2571 //------------------------------make-------------------------------------------
2572 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2573 return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2574 }
2575
2576 //------------------------------cast_to_ptr_type-------------------------------
2577 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2578 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2579 if( ptr == _ptr ) return this;
2580 return make(_base, ptr, _offset, _speculative, _inline_depth);
2581 }
2582
2583 //------------------------------get_con----------------------------------------
2584 intptr_t TypePtr::get_con() const {
2585 assert( _ptr == Null, "" );
2586 return _offset;
2587 }
2588
2589 //------------------------------meet-------------------------------------------
2590 // Compute the MEET of two types. It returns a new Type object.
2591 const Type *TypePtr::xmeet(const Type *t) const {
2592 const Type* res = xmeet_helper(t);
2593 if (res->isa_ptr() == nullptr) {
2594 return res;
2595 }
2596
2597 const TypePtr* res_ptr = res->is_ptr();
2598 if (res_ptr->speculative() != nullptr) {
2599 // type->speculative() is null means that speculation is no better
2600 // than type, i.e. type->speculative() == type. So there are 2
2601 // ways to represent the fact that we have no useful speculative
2602 // data and we should use a single one to be able to test for
2603 // equality between types. Check whether type->speculative() ==
2604 // type and set speculative to null if it is the case.
2605 if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2606 return res_ptr->remove_speculative();
2607 }
2608 }
2609
2610 return res;
2611 }
2612
2613 const Type *TypePtr::xmeet_helper(const Type *t) const {
2614 // Perform a fast test for common case; meeting the same types together.
2615 if( this == t ) return this; // Meeting same type-rep?
2616
2617 // Current "this->_base" is AnyPtr
2618 switch (t->base()) { // switch on original type
2619 case Int: // Mixing ints & oops happens when javac
2620 case Long: // reuses local variables
2621 case HalfFloatTop:
2622 case HalfFloatCon:
2623 case HalfFloatBot:
2624 case FloatTop:
2625 case FloatCon:
2626 case FloatBot:
2627 case DoubleTop:
2628 case DoubleCon:
2629 case DoubleBot:
2630 case NarrowOop:
2631 case NarrowKlass:
2632 case Bottom: // Ye Olde Default
2633 return Type::BOTTOM;
2634 case Top:
2635 return this;
2636
2637 case AnyPtr: { // Meeting to AnyPtrs
2638 const TypePtr *tp = t->is_ptr();
2639 const TypePtr* speculative = xmeet_speculative(tp);
2640 int depth = meet_inline_depth(tp->inline_depth());
2641 return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2642 }
2643 case RawPtr: // For these, flip the call around to cut down
2644 case OopPtr:
2645 case InstPtr: // on the cases I have to handle.
2646 case AryPtr:
2647 case MetadataPtr:
2648 case KlassPtr:
2649 case InstKlassPtr:
2650 case AryKlassPtr:
2651 return t->xmeet(this); // Call in reverse direction
2652 default: // All else is a mistake
2653 typerr(t);
2654
2655 }
2656 return this;
2657 }
2658
2659 //------------------------------meet_offset------------------------------------
2660 int TypePtr::meet_offset( int offset ) const {
2661 // Either is 'TOP' offset? Return the other offset!
2662 if( _offset == OffsetTop ) return offset;
2663 if( offset == OffsetTop ) return _offset;
2664 // If either is different, return 'BOTTOM' offset
2665 if( _offset != offset ) return OffsetBot;
2666 return _offset;
2667 }
2668
2669 //------------------------------dual_offset------------------------------------
2670 int TypePtr::dual_offset( ) const {
2671 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2672 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2673 return _offset; // Map everything else into self
2674 }
2675
2676 //------------------------------xdual------------------------------------------
2677 // Dual: compute field-by-field dual
2678 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2679 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2680 };
2681 const Type *TypePtr::xdual() const {
2682 return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2683 }
2684
2685 //------------------------------xadd_offset------------------------------------
2686 int TypePtr::xadd_offset( intptr_t offset ) const {
2687 // Adding to 'TOP' offset? Return 'TOP'!
2688 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2689 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
2690 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2691 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2692 offset += (intptr_t)_offset;
2693 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2694
2695 // assert( _offset >= 0 && _offset+offset >= 0, "" );
2696 // It is possible to construct a negative offset during PhaseCCP
2697
2698 return (int)offset; // Sum valid offsets
2699 }
2700
2701 //------------------------------add_offset-------------------------------------
2702 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2703 return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2704 }
2705
2706 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2707 return make(AnyPtr, _ptr, offset, _speculative, _inline_depth);
2708 }
2709
2710 //------------------------------eq---------------------------------------------
2711 // Structural equality check for Type representations
2712 bool TypePtr::eq( const Type *t ) const {
2713 const TypePtr *a = (const TypePtr*)t;
2714 return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2715 }
2716
2717 //------------------------------hash-------------------------------------------
2718 // Type-specific hashing function.
2719 uint TypePtr::hash(void) const {
2720 return (uint)_ptr + (uint)_offset + (uint)hash_speculative() + (uint)_inline_depth;
2721 }
2722
2723 /**
2724 * Return same type without a speculative part
2725 */
2726 const TypePtr* TypePtr::remove_speculative() const {
2727 if (_speculative == nullptr) {
2728 return this;
2729 }
2730 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2731 return make(AnyPtr, _ptr, _offset, nullptr, _inline_depth);
2732 }
2733
2734 /**
2735 * Return same type but drop speculative part if we know we won't use
2736 * it
2737 */
2738 const Type* TypePtr::cleanup_speculative() const {
2739 if (speculative() == nullptr) {
2740 return this;
2741 }
2742 const Type* no_spec = remove_speculative();
2743 // If this is NULL_PTR then we don't need the speculative type
2744 // (with_inline_depth in case the current type inline depth is
2745 // InlineDepthTop)
2746 if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2747 return no_spec;
2748 }
2749 if (above_centerline(speculative()->ptr())) {
2750 return no_spec;
2751 }
2752 const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2753 // If the speculative may be null and is an inexact klass then it
2754 // doesn't help
2755 if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2756 (spec_oopptr == nullptr || !spec_oopptr->klass_is_exact())) {
2757 return no_spec;
2758 }
2759 return this;
2760 }
2761
2762 /**
2763 * dual of the speculative part of the type
2764 */
2765 const TypePtr* TypePtr::dual_speculative() const {
2766 if (_speculative == nullptr) {
2767 return nullptr;
2768 }
2769 return _speculative->dual()->is_ptr();
2770 }
2771
2772 /**
2773 * meet of the speculative parts of 2 types
2774 *
2775 * @param other type to meet with
2776 */
2777 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2778 bool this_has_spec = (_speculative != nullptr);
2779 bool other_has_spec = (other->speculative() != nullptr);
2780
2781 if (!this_has_spec && !other_has_spec) {
2782 return nullptr;
2783 }
2784
2785 // If we are at a point where control flow meets and one branch has
2786 // a speculative type and the other has not, we meet the speculative
2787 // type of one branch with the actual type of the other. If the
2788 // actual type is exact and the speculative is as well, then the
2789 // result is a speculative type which is exact and we can continue
2790 // speculation further.
2791 const TypePtr* this_spec = _speculative;
2792 const TypePtr* other_spec = other->speculative();
2793
2794 if (!this_has_spec) {
2795 this_spec = this;
2796 }
2797
2798 if (!other_has_spec) {
2799 other_spec = other;
2800 }
2801
2802 return this_spec->meet(other_spec)->is_ptr();
2803 }
2804
2805 /**
2806 * dual of the inline depth for this type (used for speculation)
2807 */
2808 int TypePtr::dual_inline_depth() const {
2809 return -inline_depth();
2810 }
2811
2812 /**
2813 * meet of 2 inline depths (used for speculation)
2814 *
2815 * @param depth depth to meet with
2816 */
2817 int TypePtr::meet_inline_depth(int depth) const {
2818 return MAX2(inline_depth(), depth);
2819 }
2820
2821 /**
2822 * Are the speculative parts of 2 types equal?
2823 *
2824 * @param other type to compare this one to
2825 */
2826 bool TypePtr::eq_speculative(const TypePtr* other) const {
2827 if (_speculative == nullptr || other->speculative() == nullptr) {
2828 return _speculative == other->speculative();
2829 }
2830
2831 if (_speculative->base() != other->speculative()->base()) {
2832 return false;
2833 }
2834
2835 return _speculative->eq(other->speculative());
2836 }
2837
2838 /**
2839 * Hash of the speculative part of the type
2840 */
2841 int TypePtr::hash_speculative() const {
2842 if (_speculative == nullptr) {
2843 return 0;
2844 }
2845
2846 return _speculative->hash();
2847 }
2848
2849 /**
2850 * add offset to the speculative part of the type
2851 *
2852 * @param offset offset to add
2853 */
2854 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2855 if (_speculative == nullptr) {
2856 return nullptr;
2857 }
2858 return _speculative->add_offset(offset)->is_ptr();
2859 }
2860
2861 const TypePtr* TypePtr::with_offset_speculative(intptr_t offset) const {
2862 if (_speculative == nullptr) {
2863 return nullptr;
2864 }
2865 return _speculative->with_offset(offset)->is_ptr();
2866 }
2867
2868 /**
2869 * return exact klass from the speculative type if there's one
2870 */
2871 ciKlass* TypePtr::speculative_type() const {
2872 if (_speculative != nullptr && _speculative->isa_oopptr()) {
2873 const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2874 if (speculative->klass_is_exact()) {
2875 return speculative->exact_klass();
2876 }
2877 }
2878 return nullptr;
2879 }
2880
2881 /**
2882 * return true if speculative type may be null
2883 */
2884 bool TypePtr::speculative_maybe_null() const {
2885 if (_speculative != nullptr) {
2886 const TypePtr* speculative = _speculative->join(this)->is_ptr();
2887 return speculative->maybe_null();
2888 }
2889 return true;
2890 }
2891
2892 bool TypePtr::speculative_always_null() const {
2893 if (_speculative != nullptr) {
2894 const TypePtr* speculative = _speculative->join(this)->is_ptr();
2895 return speculative == TypePtr::NULL_PTR;
2896 }
2897 return false;
2898 }
2899
2900 /**
2901 * Same as TypePtr::speculative_type() but return the klass only if
2902 * the speculative tells us is not null
2903 */
2904 ciKlass* TypePtr::speculative_type_not_null() const {
2905 if (speculative_maybe_null()) {
2906 return nullptr;
2907 }
2908 return speculative_type();
2909 }
2910
2911 /**
2912 * Check whether new profiling would improve speculative type
2913 *
2914 * @param exact_kls class from profiling
2915 * @param inline_depth inlining depth of profile point
2916 *
2917 * @return true if type profile is valuable
2918 */
2919 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2920 // no profiling?
2921 if (exact_kls == nullptr) {
2922 return false;
2923 }
2924 if (speculative() == TypePtr::NULL_PTR) {
2925 return false;
2926 }
2927 // no speculative type or non exact speculative type?
2928 if (speculative_type() == nullptr) {
2929 return true;
2930 }
2931 // If the node already has an exact speculative type keep it,
2932 // unless it was provided by profiling that is at a deeper
2933 // inlining level. Profiling at a higher inlining depth is
2934 // expected to be less accurate.
2935 if (_speculative->inline_depth() == InlineDepthBottom) {
2936 return false;
2937 }
2938 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2939 return inline_depth < _speculative->inline_depth();
2940 }
2941
2942 /**
2943 * Check whether new profiling would improve ptr (= tells us it is non
2944 * null)
2945 *
2946 * @param ptr_kind always null or not null?
2947 *
2948 * @return true if ptr profile is valuable
2949 */
2950 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2951 // profiling doesn't tell us anything useful
2952 if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2953 return false;
2954 }
2955 // We already know this is not null
2956 if (!this->maybe_null()) {
2957 return false;
2958 }
2959 // We already know the speculative type cannot be null
2960 if (!speculative_maybe_null()) {
2961 return false;
2962 }
2963 // We already know this is always null
2964 if (this == TypePtr::NULL_PTR) {
2965 return false;
2966 }
2967 // We already know the speculative type is always null
2968 if (speculative_always_null()) {
2969 return false;
2970 }
2971 if (ptr_kind == ProfileAlwaysNull && speculative() != nullptr && speculative()->isa_oopptr()) {
2972 return false;
2973 }
2974 return true;
2975 }
2976
2977 //------------------------------dump2------------------------------------------
2978 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2979 "TopPTR","AnyNull","Constant","null","NotNull","BotPTR"
2980 };
2981
2982 #ifndef PRODUCT
2983 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2984 st->print("ptr:%s", ptr_msg[_ptr]);
2985 dump_offset(st);
2986 dump_inline_depth(st);
2987 dump_speculative(st);
2988 }
2989
2990 void TypePtr::dump_offset(outputStream* st) const {
2991 if (_offset == OffsetBot) {
2992 st->print("+bot");
2993 } else if (_offset == OffsetTop) {
2994 st->print("+top");
2995 } else {
2996 st->print("+%d", _offset);
2997 }
2998 }
2999
3000 /**
3001 *dump the speculative part of the type
3002 */
3003 void TypePtr::dump_speculative(outputStream *st) const {
3004 if (_speculative != nullptr) {
3005 st->print(" (speculative=");
3006 _speculative->dump_on(st);
3007 st->print(")");
3008 }
3009 }
3010
3011 /**
3012 *dump the inline depth of the type
3013 */
3014 void TypePtr::dump_inline_depth(outputStream *st) const {
3015 if (_inline_depth != InlineDepthBottom) {
3016 if (_inline_depth == InlineDepthTop) {
3017 st->print(" (inline_depth=InlineDepthTop)");
3018 } else {
3019 st->print(" (inline_depth=%d)", _inline_depth);
3020 }
3021 }
3022 }
3023 #endif
3024
3025 //------------------------------singleton--------------------------------------
3026 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
3027 // constants
3028 bool TypePtr::singleton(void) const {
3029 // TopPTR, Null, AnyNull, Constant are all singletons
3030 return (_offset != OffsetBot) && !below_centerline(_ptr);
3031 }
3032
3033 bool TypePtr::empty(void) const {
3034 return (_offset == OffsetTop) || above_centerline(_ptr);
3035 }
3036
3037 //=============================================================================
3038 // Convenience common pre-built types.
3039 const TypeRawPtr *TypeRawPtr::BOTTOM;
3040 const TypeRawPtr *TypeRawPtr::NOTNULL;
3041
3042 //------------------------------make-------------------------------------------
3043 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3044 assert( ptr != Constant, "what is the constant?" );
3045 assert( ptr != Null, "Use TypePtr for null" );
3046 return (TypeRawPtr*)(new TypeRawPtr(ptr,nullptr))->hashcons();
3047 }
3048
3049 const TypeRawPtr *TypeRawPtr::make(address bits) {
3050 assert(bits != nullptr, "Use TypePtr for null");
3051 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3052 }
3053
3054 //------------------------------cast_to_ptr_type-------------------------------
3055 const TypeRawPtr* TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3056 assert( ptr != Constant, "what is the constant?" );
3057 assert( ptr != Null, "Use TypePtr for null" );
3058 assert( _bits == nullptr, "Why cast a constant address?");
3059 if( ptr == _ptr ) return this;
3060 return make(ptr);
3061 }
3062
3063 //------------------------------get_con----------------------------------------
3064 intptr_t TypeRawPtr::get_con() const {
3065 assert( _ptr == Null || _ptr == Constant, "" );
3066 return (intptr_t)_bits;
3067 }
3068
3069 //------------------------------meet-------------------------------------------
3070 // Compute the MEET of two types. It returns a new Type object.
3071 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3072 // Perform a fast test for common case; meeting the same types together.
3073 if( this == t ) return this; // Meeting same type-rep?
3074
3075 // Current "this->_base" is RawPtr
3076 switch( t->base() ) { // switch on original type
3077 case Bottom: // Ye Olde Default
3078 return t;
3079 case Top:
3080 return this;
3081 case AnyPtr: // Meeting to AnyPtrs
3082 break;
3083 case RawPtr: { // might be top, bot, any/not or constant
3084 enum PTR tptr = t->is_ptr()->ptr();
3085 enum PTR ptr = meet_ptr( tptr );
3086 if( ptr == Constant ) { // Cannot be equal constants, so...
3087 if( tptr == Constant && _ptr != Constant) return t;
3088 if( _ptr == Constant && tptr != Constant) return this;
3089 ptr = NotNull; // Fall down in lattice
3090 }
3091 return make( ptr );
3092 }
3093
3094 case OopPtr:
3095 case InstPtr:
3096 case AryPtr:
3097 case MetadataPtr:
3098 case KlassPtr:
3099 case InstKlassPtr:
3100 case AryKlassPtr:
3101 return TypePtr::BOTTOM; // Oop meet raw is not well defined
3102 default: // All else is a mistake
3103 typerr(t);
3104 }
3105
3106 // Found an AnyPtr type vs self-RawPtr type
3107 const TypePtr *tp = t->is_ptr();
3108 switch (tp->ptr()) {
3109 case TypePtr::TopPTR: return this;
3110 case TypePtr::BotPTR: return t;
3111 case TypePtr::Null:
3112 if( _ptr == TypePtr::TopPTR ) return t;
3113 return TypeRawPtr::BOTTOM;
3114 case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3115 case TypePtr::AnyNull:
3116 if( _ptr == TypePtr::Constant) return this;
3117 return make( meet_ptr(TypePtr::AnyNull) );
3118 default: ShouldNotReachHere();
3119 }
3120 return this;
3121 }
3122
3123 //------------------------------xdual------------------------------------------
3124 // Dual: compute field-by-field dual
3125 const Type *TypeRawPtr::xdual() const {
3126 return new TypeRawPtr( dual_ptr(), _bits );
3127 }
3128
3129 //------------------------------add_offset-------------------------------------
3130 const TypePtr* TypeRawPtr::add_offset(intptr_t offset) const {
3131 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3132 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3133 if( offset == 0 ) return this; // No change
3134 switch (_ptr) {
3135 case TypePtr::TopPTR:
3136 case TypePtr::BotPTR:
3137 case TypePtr::NotNull:
3138 return this;
3139 case TypePtr::Constant: {
3140 uintptr_t bits = (uintptr_t)_bits;
3141 uintptr_t sum = bits + offset;
3142 if (( offset < 0 )
3143 ? ( sum > bits ) // Underflow?
3144 : ( sum < bits )) { // Overflow?
3145 return BOTTOM;
3146 } else if ( sum == 0 ) {
3147 return TypePtr::NULL_PTR;
3148 } else {
3149 return make( (address)sum );
3150 }
3151 }
3152 default: ShouldNotReachHere();
3153 }
3154 }
3155
3156 //------------------------------eq---------------------------------------------
3157 // Structural equality check for Type representations
3158 bool TypeRawPtr::eq( const Type *t ) const {
3159 const TypeRawPtr *a = (const TypeRawPtr*)t;
3160 return _bits == a->_bits && TypePtr::eq(t);
3161 }
3162
3163 //------------------------------hash-------------------------------------------
3164 // Type-specific hashing function.
3165 uint TypeRawPtr::hash(void) const {
3166 return (uint)(uintptr_t)_bits + (uint)TypePtr::hash();
3167 }
3168
3169 //------------------------------dump2------------------------------------------
3170 #ifndef PRODUCT
3171 void TypeRawPtr::dump2(Dict& d, uint depth, outputStream* st) const {
3172 if (_ptr == Constant) {
3173 st->print("rawptr:Constant:" INTPTR_FORMAT, p2i(_bits));
3174 } else {
3175 st->print("rawptr:%s", ptr_msg[_ptr]);
3176 }
3177 }
3178 #endif
3179
3180 //=============================================================================
3181 // Convenience common pre-built type.
3182 const TypeOopPtr *TypeOopPtr::BOTTOM;
3183
3184 TypeInterfaces::TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces)
3185 : Type(Interfaces), _interfaces(interfaces_base, nb_interfaces),
3186 _hash(0), _exact_klass(nullptr) {
3187 _interfaces.sort(compare);
3188 initialize();
3189 }
3190
3191 const TypeInterfaces* TypeInterfaces::make(GrowableArray<ciInstanceKlass*>* interfaces) {
3192 // hashcons() can only delete the last thing that was allocated: to
3193 // make sure all memory for the newly created TypeInterfaces can be
3194 // freed if an identical one exists, allocate space for the array of
3195 // interfaces right after the TypeInterfaces object so that they
3196 // form a contiguous piece of memory.
3197 int nb_interfaces = interfaces == nullptr ? 0 : interfaces->length();
3198 size_t total_size = sizeof(TypeInterfaces) + nb_interfaces * sizeof(ciInstanceKlass*);
3199
3200 void* allocated_mem = operator new(total_size);
3201 ciInstanceKlass** interfaces_base = (ciInstanceKlass**)((char*)allocated_mem + sizeof(TypeInterfaces));
3202 for (int i = 0; i < nb_interfaces; ++i) {
3203 interfaces_base[i] = interfaces->at(i);
3204 }
3205 TypeInterfaces* result = ::new (allocated_mem) TypeInterfaces(interfaces_base, nb_interfaces);
3206 return (const TypeInterfaces*)result->hashcons();
3207 }
3208
3209 void TypeInterfaces::initialize() {
3210 compute_hash();
3211 compute_exact_klass();
3212 DEBUG_ONLY(_initialized = true;)
3213 }
3214
3215 int TypeInterfaces::compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2) {
3216 if ((intptr_t)k1 < (intptr_t)k2) {
3217 return -1;
3218 } else if ((intptr_t)k1 > (intptr_t)k2) {
3219 return 1;
3220 }
3221 return 0;
3222 }
3223
3224 int TypeInterfaces::compare(ciInstanceKlass** k1, ciInstanceKlass** k2) {
3225 return compare(*k1, *k2);
3226 }
3227
3228 bool TypeInterfaces::eq(const Type* t) const {
3229 const TypeInterfaces* other = (const TypeInterfaces*)t;
3230 if (_interfaces.length() != other->_interfaces.length()) {
3231 return false;
3232 }
3233 for (int i = 0; i < _interfaces.length(); i++) {
3234 ciKlass* k1 = _interfaces.at(i);
3235 ciKlass* k2 = other->_interfaces.at(i);
3236 if (!k1->equals(k2)) {
3237 return false;
3238 }
3239 }
3240 return true;
3241 }
3242
3243 bool TypeInterfaces::eq(ciInstanceKlass* k) const {
3244 assert(k->is_loaded(), "should be loaded");
3245 GrowableArray<ciInstanceKlass *>* interfaces = k->transitive_interfaces();
3246 if (_interfaces.length() != interfaces->length()) {
3247 return false;
3248 }
3249 for (int i = 0; i < interfaces->length(); i++) {
3250 bool found = false;
3251 _interfaces.find_sorted<ciInstanceKlass*, compare>(interfaces->at(i), found);
3252 if (!found) {
3253 return false;
3254 }
3255 }
3256 return true;
3257 }
3258
3259
3260 uint TypeInterfaces::hash() const {
3261 assert(_initialized, "must be");
3262 return _hash;
3263 }
3264
3265 const Type* TypeInterfaces::xdual() const {
3266 return this;
3267 }
3268
3269 void TypeInterfaces::compute_hash() {
3270 uint hash = 0;
3271 for (int i = 0; i < _interfaces.length(); i++) {
3272 ciKlass* k = _interfaces.at(i);
3273 hash += k->hash();
3274 }
3275 _hash = hash;
3276 }
3277
3278 static int compare_interfaces(ciInstanceKlass** k1, ciInstanceKlass** k2) {
3279 return (int)((*k1)->ident() - (*k2)->ident());
3280 }
3281
3282 void TypeInterfaces::dump(outputStream* st) const {
3283 if (_interfaces.length() == 0) {
3284 return;
3285 }
3286 ResourceMark rm;
3287 st->print(" (");
3288 GrowableArray<ciInstanceKlass*> interfaces;
3289 interfaces.appendAll(&_interfaces);
3290 // Sort the interfaces so they are listed in the same order from one run to the other of the same compilation
3291 interfaces.sort(compare_interfaces);
3292 for (int i = 0; i < interfaces.length(); i++) {
3293 if (i > 0) {
3294 st->print(",");
3295 }
3296 ciKlass* k = interfaces.at(i);
3297 k->print_name_on(st);
3298 }
3299 st->print(")");
3300 }
3301
3302 #ifdef ASSERT
3303 void TypeInterfaces::verify() const {
3304 for (int i = 1; i < _interfaces.length(); i++) {
3305 ciInstanceKlass* k1 = _interfaces.at(i-1);
3306 ciInstanceKlass* k2 = _interfaces.at(i);
3307 assert(compare(k2, k1) > 0, "should be ordered");
3308 assert(k1 != k2, "no duplicate");
3309 }
3310 }
3311 #endif
3312
3313 const TypeInterfaces* TypeInterfaces::union_with(const TypeInterfaces* other) const {
3314 GrowableArray<ciInstanceKlass*> result_list;
3315 int i = 0;
3316 int j = 0;
3317 while (i < _interfaces.length() || j < other->_interfaces.length()) {
3318 while (i < _interfaces.length() &&
3319 (j >= other->_interfaces.length() ||
3320 compare(_interfaces.at(i), other->_interfaces.at(j)) < 0)) {
3321 result_list.push(_interfaces.at(i));
3322 i++;
3323 }
3324 while (j < other->_interfaces.length() &&
3325 (i >= _interfaces.length() ||
3326 compare(other->_interfaces.at(j), _interfaces.at(i)) < 0)) {
3327 result_list.push(other->_interfaces.at(j));
3328 j++;
3329 }
3330 if (i < _interfaces.length() &&
3331 j < other->_interfaces.length() &&
3332 _interfaces.at(i) == other->_interfaces.at(j)) {
3333 result_list.push(_interfaces.at(i));
3334 i++;
3335 j++;
3336 }
3337 }
3338 const TypeInterfaces* result = TypeInterfaces::make(&result_list);
3339 #ifdef ASSERT
3340 result->verify();
3341 for (int i = 0; i < _interfaces.length(); i++) {
3342 assert(result->_interfaces.contains(_interfaces.at(i)), "missing");
3343 }
3344 for (int i = 0; i < other->_interfaces.length(); i++) {
3345 assert(result->_interfaces.contains(other->_interfaces.at(i)), "missing");
3346 }
3347 for (int i = 0; i < result->_interfaces.length(); i++) {
3348 assert(_interfaces.contains(result->_interfaces.at(i)) || other->_interfaces.contains(result->_interfaces.at(i)), "missing");
3349 }
3350 #endif
3351 return result;
3352 }
3353
3354 const TypeInterfaces* TypeInterfaces::intersection_with(const TypeInterfaces* other) const {
3355 GrowableArray<ciInstanceKlass*> result_list;
3356 int i = 0;
3357 int j = 0;
3358 while (i < _interfaces.length() || j < other->_interfaces.length()) {
3359 while (i < _interfaces.length() &&
3360 (j >= other->_interfaces.length() ||
3361 compare(_interfaces.at(i), other->_interfaces.at(j)) < 0)) {
3362 i++;
3363 }
3364 while (j < other->_interfaces.length() &&
3365 (i >= _interfaces.length() ||
3366 compare(other->_interfaces.at(j), _interfaces.at(i)) < 0)) {
3367 j++;
3368 }
3369 if (i < _interfaces.length() &&
3370 j < other->_interfaces.length() &&
3371 _interfaces.at(i) == other->_interfaces.at(j)) {
3372 result_list.push(_interfaces.at(i));
3373 i++;
3374 j++;
3375 }
3376 }
3377 const TypeInterfaces* result = TypeInterfaces::make(&result_list);
3378 #ifdef ASSERT
3379 result->verify();
3380 for (int i = 0; i < _interfaces.length(); i++) {
3381 assert(!other->_interfaces.contains(_interfaces.at(i)) || result->_interfaces.contains(_interfaces.at(i)), "missing");
3382 }
3383 for (int i = 0; i < other->_interfaces.length(); i++) {
3384 assert(!_interfaces.contains(other->_interfaces.at(i)) || result->_interfaces.contains(other->_interfaces.at(i)), "missing");
3385 }
3386 for (int i = 0; i < result->_interfaces.length(); i++) {
3387 assert(_interfaces.contains(result->_interfaces.at(i)) && other->_interfaces.contains(result->_interfaces.at(i)), "missing");
3388 }
3389 #endif
3390 return result;
3391 }
3392
3393 // Is there a single ciKlass* that can represent the interface set?
3394 ciInstanceKlass* TypeInterfaces::exact_klass() const {
3395 assert(_initialized, "must be");
3396 return _exact_klass;
3397 }
3398
3399 void TypeInterfaces::compute_exact_klass() {
3400 if (_interfaces.length() == 0) {
3401 _exact_klass = nullptr;
3402 return;
3403 }
3404 ciInstanceKlass* res = nullptr;
3405 for (int i = 0; i < _interfaces.length(); i++) {
3406 ciInstanceKlass* interface = _interfaces.at(i);
3407 if (eq(interface)) {
3408 assert(res == nullptr, "");
3409 res = interface;
3410 }
3411 }
3412 _exact_klass = res;
3413 }
3414
3415 #ifdef ASSERT
3416 void TypeInterfaces::verify_is_loaded() const {
3417 for (int i = 0; i < _interfaces.length(); i++) {
3418 ciKlass* interface = _interfaces.at(i);
3419 assert(interface->is_loaded(), "Interface not loaded");
3420 }
3421 }
3422 #endif
3423
3424 // Can't be implemented because there's no way to know if the type is above or below the center line.
3425 const Type* TypeInterfaces::xmeet(const Type* t) const {
3426 ShouldNotReachHere();
3427 return Type::xmeet(t);
3428 }
3429
3430 bool TypeInterfaces::singleton(void) const {
3431 ShouldNotReachHere();
3432 return Type::singleton();
3433 }
3434
3435 bool TypeInterfaces::has_non_array_interface() const {
3436 assert(TypeAryPtr::_array_interfaces != nullptr, "How come Type::Initialize_shared wasn't called yet?");
3437
3438 return !TypeAryPtr::_array_interfaces->contains(this);
3439 }
3440
3441 //------------------------------TypeOopPtr-------------------------------------
3442 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
3443 int instance_id, const TypePtr* speculative, int inline_depth)
3444 : TypePtr(t, ptr, offset, speculative, inline_depth),
3445 _const_oop(o), _klass(k),
3446 _interfaces(interfaces),
3447 _klass_is_exact(xk),
3448 _is_ptr_to_narrowoop(false),
3449 _is_ptr_to_narrowklass(false),
3450 _is_ptr_to_boxed_value(false),
3451 _instance_id(instance_id) {
3452 #ifdef ASSERT
3453 if (klass() != nullptr && klass()->is_loaded()) {
3454 interfaces->verify_is_loaded();
3455 }
3456 #endif
3457 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3458 (offset > 0) && xk && (k != nullptr) && k->is_instance_klass()) {
3459 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
3460 }
3461 #ifdef _LP64
3462 if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3463 if (_offset == oopDesc::klass_offset_in_bytes()) {
3464 _is_ptr_to_narrowklass = UseCompressedClassPointers;
3465 } else if (klass() == nullptr) {
3466 // Array with unknown body type
3467 assert(this->isa_aryptr(), "only arrays without klass");
3468 _is_ptr_to_narrowoop = UseCompressedOops;
3469 } else if (this->isa_aryptr()) {
3470 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3471 _offset != arrayOopDesc::length_offset_in_bytes());
3472 } else if (klass()->is_instance_klass()) {
3473 ciInstanceKlass* ik = klass()->as_instance_klass();
3474 if (this->isa_klassptr()) {
3475 // Perm objects don't use compressed references
3476 } else if (_offset == OffsetBot || _offset == OffsetTop) {
3477 // unsafe access
3478 _is_ptr_to_narrowoop = UseCompressedOops;
3479 } else {
3480 assert(this->isa_instptr(), "must be an instance ptr.");
3481
3482 if (klass() == ciEnv::current()->Class_klass() &&
3483 (_offset == java_lang_Class::klass_offset() ||
3484 _offset == java_lang_Class::array_klass_offset())) {
3485 // Special hidden fields from the Class.
3486 assert(this->isa_instptr(), "must be an instance ptr.");
3487 _is_ptr_to_narrowoop = false;
3488 } else if (klass() == ciEnv::current()->Class_klass() &&
3489 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3490 // Static fields
3491 BasicType basic_elem_type = T_ILLEGAL;
3492 if (const_oop() != nullptr) {
3493 ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3494 basic_elem_type = k->get_field_type_by_offset(_offset, true);
3495 }
3496 if (basic_elem_type != T_ILLEGAL) {
3497 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3498 } else {
3499 // unsafe access
3500 _is_ptr_to_narrowoop = UseCompressedOops;
3501 }
3502 } else {
3503 // Instance fields which contains a compressed oop references.
3504 BasicType basic_elem_type = ik->get_field_type_by_offset(_offset, false);
3505 if (basic_elem_type != T_ILLEGAL) {
3506 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3507 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3508 // Compile::find_alias_type() cast exactness on all types to verify
3509 // that it does not affect alias type.
3510 _is_ptr_to_narrowoop = UseCompressedOops;
3511 } else {
3512 // Type for the copy start in LibraryCallKit::inline_native_clone().
3513 _is_ptr_to_narrowoop = UseCompressedOops;
3514 }
3515 }
3516 }
3517 }
3518 }
3519 #endif
3520 }
3521
3522 //------------------------------make-------------------------------------------
3523 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3524 const TypePtr* speculative, int inline_depth) {
3525 assert(ptr != Constant, "no constant generic pointers");
3526 ciKlass* k = Compile::current()->env()->Object_klass();
3527 bool xk = false;
3528 ciObject* o = nullptr;
3529 const TypeInterfaces* interfaces = TypeInterfaces::make();
3530 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, interfaces, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3531 }
3532
3533
3534 //------------------------------cast_to_ptr_type-------------------------------
3535 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3536 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3537 if( ptr == _ptr ) return this;
3538 return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3539 }
3540
3541 //-----------------------------cast_to_instance_id----------------------------
3542 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3543 // There are no instances of a general oop.
3544 // Return self unchanged.
3545 return this;
3546 }
3547
3548 //-----------------------------cast_to_exactness-------------------------------
3549 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3550 // There is no such thing as an exact general oop.
3551 // Return self unchanged.
3552 return this;
3553 }
3554
3555
3556 //------------------------------as_klass_type----------------------------------
3557 // Return the klass type corresponding to this instance or array type.
3558 // It is the type that is loaded from an object of this type.
3559 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3560 ShouldNotReachHere();
3561 return nullptr;
3562 }
3563
3564 //------------------------------meet-------------------------------------------
3565 // Compute the MEET of two types. It returns a new Type object.
3566 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3567 // Perform a fast test for common case; meeting the same types together.
3568 if( this == t ) return this; // Meeting same type-rep?
3569
3570 // Current "this->_base" is OopPtr
3571 switch (t->base()) { // switch on original type
3572
3573 case Int: // Mixing ints & oops happens when javac
3574 case Long: // reuses local variables
3575 case HalfFloatTop:
3576 case HalfFloatCon:
3577 case HalfFloatBot:
3578 case FloatTop:
3579 case FloatCon:
3580 case FloatBot:
3581 case DoubleTop:
3582 case DoubleCon:
3583 case DoubleBot:
3584 case NarrowOop:
3585 case NarrowKlass:
3586 case Bottom: // Ye Olde Default
3587 return Type::BOTTOM;
3588 case Top:
3589 return this;
3590
3591 default: // All else is a mistake
3592 typerr(t);
3593
3594 case RawPtr:
3595 case MetadataPtr:
3596 case KlassPtr:
3597 case InstKlassPtr:
3598 case AryKlassPtr:
3599 return TypePtr::BOTTOM; // Oop meet raw is not well defined
3600
3601 case AnyPtr: {
3602 // Found an AnyPtr type vs self-OopPtr type
3603 const TypePtr *tp = t->is_ptr();
3604 int offset = meet_offset(tp->offset());
3605 PTR ptr = meet_ptr(tp->ptr());
3606 const TypePtr* speculative = xmeet_speculative(tp);
3607 int depth = meet_inline_depth(tp->inline_depth());
3608 switch (tp->ptr()) {
3609 case Null:
3610 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3611 // else fall through:
3612 case TopPTR:
3613 case AnyNull: {
3614 int instance_id = meet_instance_id(InstanceTop);
3615 return make(ptr, offset, instance_id, speculative, depth);
3616 }
3617 case BotPTR:
3618 case NotNull:
3619 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3620 default: typerr(t);
3621 }
3622 }
3623
3624 case OopPtr: { // Meeting to other OopPtrs
3625 const TypeOopPtr *tp = t->is_oopptr();
3626 int instance_id = meet_instance_id(tp->instance_id());
3627 const TypePtr* speculative = xmeet_speculative(tp);
3628 int depth = meet_inline_depth(tp->inline_depth());
3629 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3630 }
3631
3632 case InstPtr: // For these, flip the call around to cut down
3633 case AryPtr:
3634 return t->xmeet(this); // Call in reverse direction
3635
3636 } // End of switch
3637 return this; // Return the double constant
3638 }
3639
3640
3641 //------------------------------xdual------------------------------------------
3642 // Dual of a pure heap pointer. No relevant klass or oop information.
3643 const Type *TypeOopPtr::xdual() const {
3644 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3645 assert(const_oop() == nullptr, "no constants here");
3646 return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3647 }
3648
3649 //--------------------------make_from_klass_common-----------------------------
3650 // Computes the element-type given a klass.
3651 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3652 if (klass->is_instance_klass()) {
3653 Compile* C = Compile::current();
3654 Dependencies* deps = C->dependencies();
3655 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
3656 // Element is an instance
3657 bool klass_is_exact = false;
3658 if (klass->is_loaded()) {
3659 // Try to set klass_is_exact.
3660 ciInstanceKlass* ik = klass->as_instance_klass();
3661 klass_is_exact = ik->is_final();
3662 if (!klass_is_exact && klass_change
3663 && deps != nullptr && UseUniqueSubclasses) {
3664 ciInstanceKlass* sub = ik->unique_concrete_subklass();
3665 if (sub != nullptr) {
3666 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3667 klass = ik = sub;
3668 klass_is_exact = sub->is_final();
3669 }
3670 }
3671 if (!klass_is_exact && try_for_exact && deps != nullptr &&
3672 !ik->is_interface() && !ik->has_subklass()) {
3673 // Add a dependence; if concrete subclass added we need to recompile
3674 deps->assert_leaf_type(ik);
3675 klass_is_exact = true;
3676 }
3677 }
3678 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3679 return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, nullptr, 0);
3680 } else if (klass->is_obj_array_klass()) {
3681 // Element is an object array. Recursively call ourself.
3682 ciKlass* eklass = klass->as_obj_array_klass()->element_klass();
3683 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling);
3684 bool xk = etype->klass_is_exact();
3685 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3686 // We used to pass NotNull in here, asserting that the sub-arrays
3687 // are all not-null. This is not true in generally, as code can
3688 // slam nulls down in the subarrays.
3689 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, nullptr, xk, 0);
3690 return arr;
3691 } else if (klass->is_type_array_klass()) {
3692 // Element is an typeArray
3693 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3694 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3695 // We used to pass NotNull in here, asserting that the array pointer
3696 // is not-null. That was not true in general.
3697 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3698 return arr;
3699 } else {
3700 ShouldNotReachHere();
3701 return nullptr;
3702 }
3703 }
3704
3705 //------------------------------make_from_constant-----------------------------
3706 // Make a java pointer from an oop constant
3707 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3708 assert(!o->is_null_object(), "null object not yet handled here.");
3709
3710 const bool make_constant = require_constant || o->should_be_constant();
3711
3712 ciKlass* klass = o->klass();
3713 if (klass->is_instance_klass()) {
3714 // Element is an instance
3715 if (make_constant) {
3716 return TypeInstPtr::make(o);
3717 } else {
3718 return TypeInstPtr::make(TypePtr::NotNull, klass, true, nullptr, 0);
3719 }
3720 } else if (klass->is_obj_array_klass()) {
3721 // Element is an object array. Recursively call ourself.
3722 const TypeOopPtr *etype =
3723 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces);
3724 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3725 // We used to pass NotNull in here, asserting that the sub-arrays
3726 // are all not-null. This is not true in generally, as code can
3727 // slam nulls down in the subarrays.
3728 if (make_constant) {
3729 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3730 } else {
3731 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3732 }
3733 } else if (klass->is_type_array_klass()) {
3734 // Element is an typeArray
3735 const Type* etype =
3736 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3737 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3738 // We used to pass NotNull in here, asserting that the array pointer
3739 // is not-null. That was not true in general.
3740 if (make_constant) {
3741 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3742 } else {
3743 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3744 }
3745 }
3746
3747 fatal("unhandled object type");
3748 return nullptr;
3749 }
3750
3751 //------------------------------get_con----------------------------------------
3752 intptr_t TypeOopPtr::get_con() const {
3753 assert( _ptr == Null || _ptr == Constant, "" );
3754 assert( _offset >= 0, "" );
3755
3756 if (_offset != 0) {
3757 // After being ported to the compiler interface, the compiler no longer
3758 // directly manipulates the addresses of oops. Rather, it only has a pointer
3759 // to a handle at compile time. This handle is embedded in the generated
3760 // code and dereferenced at the time the nmethod is made. Until that time,
3761 // it is not reasonable to do arithmetic with the addresses of oops (we don't
3762 // have access to the addresses!). This does not seem to currently happen,
3763 // but this assertion here is to help prevent its occurrence.
3764 tty->print_cr("Found oop constant with non-zero offset");
3765 ShouldNotReachHere();
3766 }
3767
3768 return (intptr_t)const_oop()->constant_encoding();
3769 }
3770
3771
3772 //-----------------------------filter------------------------------------------
3773 // Do not allow interface-vs.-noninterface joins to collapse to top.
3774 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3775
3776 const Type* ft = join_helper(kills, include_speculative);
3777
3778 if (ft->empty()) {
3779 return Type::TOP; // Canonical empty value
3780 }
3781
3782 return ft;
3783 }
3784
3785 //------------------------------eq---------------------------------------------
3786 // Structural equality check for Type representations
3787 bool TypeOopPtr::eq( const Type *t ) const {
3788 const TypeOopPtr *a = (const TypeOopPtr*)t;
3789 if (_klass_is_exact != a->_klass_is_exact ||
3790 _instance_id != a->_instance_id) return false;
3791 ciObject* one = const_oop();
3792 ciObject* two = a->const_oop();
3793 if (one == nullptr || two == nullptr) {
3794 return (one == two) && TypePtr::eq(t);
3795 } else {
3796 return one->equals(two) && TypePtr::eq(t);
3797 }
3798 }
3799
3800 //------------------------------hash-------------------------------------------
3801 // Type-specific hashing function.
3802 uint TypeOopPtr::hash(void) const {
3803 return
3804 (uint)(const_oop() ? const_oop()->hash() : 0) +
3805 (uint)_klass_is_exact +
3806 (uint)_instance_id + TypePtr::hash();
3807 }
3808
3809 //------------------------------dump2------------------------------------------
3810 #ifndef PRODUCT
3811 void TypeOopPtr::dump2(Dict& d, uint depth, outputStream* st) const {
3812 st->print("oopptr:%s", ptr_msg[_ptr]);
3813 if (_klass_is_exact) {
3814 st->print(":exact");
3815 }
3816 if (const_oop() != nullptr) {
3817 st->print(":" INTPTR_FORMAT, p2i(const_oop()));
3818 }
3819 dump_offset(st);
3820 dump_instance_id(st);
3821 dump_inline_depth(st);
3822 dump_speculative(st);
3823 }
3824
3825 void TypeOopPtr::dump_instance_id(outputStream* st) const {
3826 if (_instance_id == InstanceTop) {
3827 st->print(",iid=top");
3828 } else if (_instance_id == InstanceBot) {
3829 st->print(",iid=bot");
3830 } else {
3831 st->print(",iid=%d", _instance_id);
3832 }
3833 }
3834 #endif
3835
3836 //------------------------------singleton--------------------------------------
3837 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
3838 // constants
3839 bool TypeOopPtr::singleton(void) const {
3840 // detune optimizer to not generate constant oop + constant offset as a constant!
3841 // TopPTR, Null, AnyNull, Constant are all singletons
3842 return (_offset == 0) && !below_centerline(_ptr);
3843 }
3844
3845 //------------------------------add_offset-------------------------------------
3846 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
3847 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3848 }
3849
3850 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
3851 return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
3852 }
3853
3854 /**
3855 * Return same type without a speculative part
3856 */
3857 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
3858 if (_speculative == nullptr) {
3859 return this;
3860 }
3861 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3862 return make(_ptr, _offset, _instance_id, nullptr, _inline_depth);
3863 }
3864
3865 /**
3866 * Return same type but drop speculative part if we know we won't use
3867 * it
3868 */
3869 const Type* TypeOopPtr::cleanup_speculative() const {
3870 // If the klass is exact and the ptr is not null then there's
3871 // nothing that the speculative type can help us with
3872 if (klass_is_exact() && !maybe_null()) {
3873 return remove_speculative();
3874 }
3875 return TypePtr::cleanup_speculative();
3876 }
3877
3878 /**
3879 * Return same type but with a different inline depth (used for speculation)
3880 *
3881 * @param depth depth to meet with
3882 */
3883 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3884 if (!UseInlineDepthForSpeculativeTypes) {
3885 return this;
3886 }
3887 return make(_ptr, _offset, _instance_id, _speculative, depth);
3888 }
3889
3890 //------------------------------with_instance_id--------------------------------
3891 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
3892 assert(_instance_id != -1, "should be known");
3893 return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
3894 }
3895
3896 //------------------------------meet_instance_id--------------------------------
3897 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3898 // Either is 'TOP' instance? Return the other instance!
3899 if( _instance_id == InstanceTop ) return instance_id;
3900 if( instance_id == InstanceTop ) return _instance_id;
3901 // If either is different, return 'BOTTOM' instance
3902 if( _instance_id != instance_id ) return InstanceBot;
3903 return _instance_id;
3904 }
3905
3906 //------------------------------dual_instance_id--------------------------------
3907 int TypeOopPtr::dual_instance_id( ) const {
3908 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3909 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3910 return _instance_id; // Map everything else into self
3911 }
3912
3913
3914 const TypeInterfaces* TypeOopPtr::meet_interfaces(const TypeOopPtr* other) const {
3915 if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
3916 return _interfaces->union_with(other->_interfaces);
3917 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
3918 return other->_interfaces;
3919 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
3920 return _interfaces;
3921 }
3922 return _interfaces->intersection_with(other->_interfaces);
3923 }
3924
3925 /**
3926 * Check whether new profiling would improve speculative type
3927 *
3928 * @param exact_kls class from profiling
3929 * @param inline_depth inlining depth of profile point
3930 *
3931 * @return true if type profile is valuable
3932 */
3933 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3934 // no way to improve an already exact type
3935 if (klass_is_exact()) {
3936 return false;
3937 }
3938 return TypePtr::would_improve_type(exact_kls, inline_depth);
3939 }
3940
3941 //=============================================================================
3942 // Convenience common pre-built types.
3943 const TypeInstPtr *TypeInstPtr::NOTNULL;
3944 const TypeInstPtr *TypeInstPtr::BOTTOM;
3945 const TypeInstPtr *TypeInstPtr::MIRROR;
3946 const TypeInstPtr *TypeInstPtr::MARK;
3947 const TypeInstPtr *TypeInstPtr::KLASS;
3948
3949 // Is there a single ciKlass* that can represent that type?
3950 ciKlass* TypeInstPtr::exact_klass_helper() const {
3951 if (_interfaces->empty()) {
3952 return _klass;
3953 }
3954 if (_klass != ciEnv::current()->Object_klass()) {
3955 if (_interfaces->eq(_klass->as_instance_klass())) {
3956 return _klass;
3957 }
3958 return nullptr;
3959 }
3960 return _interfaces->exact_klass();
3961 }
3962
3963 //------------------------------TypeInstPtr-------------------------------------
3964 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off,
3965 int instance_id, const TypePtr* speculative, int inline_depth)
3966 : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) {
3967 assert(k == nullptr || !k->is_loaded() || !k->is_interface(), "no interface here");
3968 assert(k != nullptr &&
3969 (k->is_loaded() || o == nullptr),
3970 "cannot have constants with non-loaded klass");
3971 };
3972
3973 //------------------------------make-------------------------------------------
3974 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3975 ciKlass* k,
3976 const TypeInterfaces* interfaces,
3977 bool xk,
3978 ciObject* o,
3979 int offset,
3980 int instance_id,
3981 const TypePtr* speculative,
3982 int inline_depth) {
3983 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3984 // Either const_oop() is null or else ptr is Constant
3985 assert( (!o && ptr != Constant) || (o && ptr == Constant),
3986 "constant pointers must have a value supplied" );
3987 // Ptr is never Null
3988 assert( ptr != Null, "null pointers are not typed" );
3989
3990 assert(instance_id <= 0 || xk, "instances are always exactly typed");
3991 if (ptr == Constant) {
3992 // Note: This case includes meta-object constants, such as methods.
3993 xk = true;
3994 } else if (k->is_loaded()) {
3995 ciInstanceKlass* ik = k->as_instance_klass();
3996 if (!xk && ik->is_final()) xk = true; // no inexact final klass
3997 assert(!ik->is_interface(), "no interface here");
3998 if (xk && ik->is_interface()) xk = false; // no exact interface
3999 }
4000
4001 // Now hash this baby
4002 TypeInstPtr *result =
4003 (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
4004
4005 return result;
4006 }
4007
4008 const TypeInterfaces* TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
4009 if (k->is_instance_klass()) {
4010 if (k->is_loaded()) {
4011 if (k->is_interface() && interface_handling == ignore_interfaces) {
4012 assert(interface, "no interface expected");
4013 k = ciEnv::current()->Object_klass();
4014 const TypeInterfaces* interfaces = TypeInterfaces::make();
4015 return interfaces;
4016 }
4017 GrowableArray<ciInstanceKlass *>* k_interfaces = k->as_instance_klass()->transitive_interfaces();
4018 const TypeInterfaces* interfaces = TypeInterfaces::make(k_interfaces);
4019 if (k->is_interface()) {
4020 assert(interface, "no interface expected");
4021 k = ciEnv::current()->Object_klass();
4022 } else {
4023 assert(klass, "no instance klass expected");
4024 }
4025 return interfaces;
4026 }
4027 const TypeInterfaces* interfaces = TypeInterfaces::make();
4028 return interfaces;
4029 }
4030 assert(array, "no array expected");
4031 assert(k->is_array_klass(), "Not an array?");
4032 ciType* e = k->as_array_klass()->base_element_type();
4033 if (e->is_loaded() && e->is_instance_klass() && e->as_instance_klass()->is_interface()) {
4034 if (interface_handling == ignore_interfaces) {
4035 k = ciObjArrayKlass::make(ciEnv::current()->Object_klass(), k->as_array_klass()->dimension());
4036 }
4037 }
4038 return TypeAryPtr::_array_interfaces;
4039 }
4040
4041 /**
4042 * Create constant type for a constant boxed value
4043 */
4044 const Type* TypeInstPtr::get_const_boxed_value() const {
4045 assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
4046 assert((const_oop() != nullptr), "should be called only for constant object");
4047 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
4048 BasicType bt = constant.basic_type();
4049 switch (bt) {
4050 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
4051 case T_INT: return TypeInt::make(constant.as_int());
4052 case T_CHAR: return TypeInt::make(constant.as_char());
4053 case T_BYTE: return TypeInt::make(constant.as_byte());
4054 case T_SHORT: return TypeInt::make(constant.as_short());
4055 case T_FLOAT: return TypeF::make(constant.as_float());
4056 case T_DOUBLE: return TypeD::make(constant.as_double());
4057 case T_LONG: return TypeLong::make(constant.as_long());
4058 default: break;
4059 }
4060 fatal("Invalid boxed value type '%s'", type2name(bt));
4061 return nullptr;
4062 }
4063
4064 //------------------------------cast_to_ptr_type-------------------------------
4065 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
4066 if( ptr == _ptr ) return this;
4067 // Reconstruct _sig info here since not a problem with later lazy
4068 // construction, _sig will show up on demand.
4069 return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : nullptr, _offset, _instance_id, _speculative, _inline_depth);
4070 }
4071
4072
4073 //-----------------------------cast_to_exactness-------------------------------
4074 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
4075 if( klass_is_exact == _klass_is_exact ) return this;
4076 if (!_klass->is_loaded()) return this;
4077 ciInstanceKlass* ik = _klass->as_instance_klass();
4078 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
4079 assert(!ik->is_interface(), "no interface here");
4080 return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
4081 }
4082
4083 //-----------------------------cast_to_instance_id----------------------------
4084 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
4085 if( instance_id == _instance_id ) return this;
4086 return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
4087 }
4088
4089 //------------------------------xmeet_unloaded---------------------------------
4090 // Compute the MEET of two InstPtrs when at least one is unloaded.
4091 // Assume classes are different since called after check for same name/class-loader
4092 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const {
4093 int off = meet_offset(tinst->offset());
4094 PTR ptr = meet_ptr(tinst->ptr());
4095 int instance_id = meet_instance_id(tinst->instance_id());
4096 const TypePtr* speculative = xmeet_speculative(tinst);
4097 int depth = meet_inline_depth(tinst->inline_depth());
4098
4099 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
4100 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
4101 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
4102 //
4103 // Meet unloaded class with java/lang/Object
4104 //
4105 // Meet
4106 // | Unloaded Class
4107 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
4108 // ===================================================================
4109 // TOP | ..........................Unloaded......................|
4110 // AnyNull | U-AN |................Unloaded......................|
4111 // Constant | ... O-NN .................................. | O-BOT |
4112 // NotNull | ... O-NN .................................. | O-BOT |
4113 // BOTTOM | ........................Object-BOTTOM ..................|
4114 //
4115 assert(loaded->ptr() != TypePtr::Null, "insanity check");
4116 //
4117 if (loaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4118 else if (loaded->ptr() == TypePtr::AnyNull) { return make(ptr, unloaded->klass(), interfaces, false, nullptr, off, instance_id, speculative, depth); }
4119 else if (loaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4120 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4121 if (unloaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM->with_speculative(speculative); }
4122 else { return TypeInstPtr::NOTNULL->with_speculative(speculative); }
4123 }
4124 else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded->with_speculative(speculative); }
4125
4126 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr()->with_speculative(speculative);
4127 }
4128
4129 // Both are unloaded, not the same class, not Object
4130 // Or meet unloaded with a different loaded class, not java/lang/Object
4131 if (ptr != TypePtr::BotPTR) {
4132 return TypeInstPtr::NOTNULL->with_speculative(speculative);
4133 }
4134 return TypeInstPtr::BOTTOM->with_speculative(speculative);
4135 }
4136
4137
4138 //------------------------------meet-------------------------------------------
4139 // Compute the MEET of two types. It returns a new Type object.
4140 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
4141 // Perform a fast test for common case; meeting the same types together.
4142 if( this == t ) return this; // Meeting same type-rep?
4143
4144 // Current "this->_base" is Pointer
4145 switch (t->base()) { // switch on original type
4146
4147 case Int: // Mixing ints & oops happens when javac
4148 case Long: // reuses local variables
4149 case HalfFloatTop:
4150 case HalfFloatCon:
4151 case HalfFloatBot:
4152 case FloatTop:
4153 case FloatCon:
4154 case FloatBot:
4155 case DoubleTop:
4156 case DoubleCon:
4157 case DoubleBot:
4158 case NarrowOop:
4159 case NarrowKlass:
4160 case Bottom: // Ye Olde Default
4161 return Type::BOTTOM;
4162 case Top:
4163 return this;
4164
4165 default: // All else is a mistake
4166 typerr(t);
4167
4168 case MetadataPtr:
4169 case KlassPtr:
4170 case InstKlassPtr:
4171 case AryKlassPtr:
4172 case RawPtr: return TypePtr::BOTTOM;
4173
4174 case AryPtr: { // All arrays inherit from Object class
4175 // Call in reverse direction to avoid duplication
4176 return t->is_aryptr()->xmeet_helper(this);
4177 }
4178
4179 case OopPtr: { // Meeting to OopPtrs
4180 // Found a OopPtr type vs self-InstPtr type
4181 const TypeOopPtr *tp = t->is_oopptr();
4182 int offset = meet_offset(tp->offset());
4183 PTR ptr = meet_ptr(tp->ptr());
4184 switch (tp->ptr()) {
4185 case TopPTR:
4186 case AnyNull: {
4187 int instance_id = meet_instance_id(InstanceTop);
4188 const TypePtr* speculative = xmeet_speculative(tp);
4189 int depth = meet_inline_depth(tp->inline_depth());
4190 return make(ptr, klass(), _interfaces, klass_is_exact(),
4191 (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4192 }
4193 case NotNull:
4194 case BotPTR: {
4195 int instance_id = meet_instance_id(tp->instance_id());
4196 const TypePtr* speculative = xmeet_speculative(tp);
4197 int depth = meet_inline_depth(tp->inline_depth());
4198 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4199 }
4200 default: typerr(t);
4201 }
4202 }
4203
4204 case AnyPtr: { // Meeting to AnyPtrs
4205 // Found an AnyPtr type vs self-InstPtr type
4206 const TypePtr *tp = t->is_ptr();
4207 int offset = meet_offset(tp->offset());
4208 PTR ptr = meet_ptr(tp->ptr());
4209 int instance_id = meet_instance_id(InstanceTop);
4210 const TypePtr* speculative = xmeet_speculative(tp);
4211 int depth = meet_inline_depth(tp->inline_depth());
4212 switch (tp->ptr()) {
4213 case Null:
4214 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4215 // else fall through to AnyNull
4216 case TopPTR:
4217 case AnyNull: {
4218 return make(ptr, klass(), _interfaces, klass_is_exact(),
4219 (ptr == Constant ? const_oop() : nullptr), offset, instance_id, speculative, depth);
4220 }
4221 case NotNull:
4222 case BotPTR:
4223 return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4224 default: typerr(t);
4225 }
4226 }
4227
4228 /*
4229 A-top }
4230 / | \ } Tops
4231 B-top A-any C-top }
4232 | / | \ | } Any-nulls
4233 B-any | C-any }
4234 | | |
4235 B-con A-con C-con } constants; not comparable across classes
4236 | | |
4237 B-not | C-not }
4238 | \ | / | } not-nulls
4239 B-bot A-not C-bot }
4240 \ | / } Bottoms
4241 A-bot }
4242 */
4243
4244 case InstPtr: { // Meeting 2 Oops?
4245 // Found an InstPtr sub-type vs self-InstPtr type
4246 const TypeInstPtr *tinst = t->is_instptr();
4247 int off = meet_offset(tinst->offset());
4248 PTR ptr = meet_ptr(tinst->ptr());
4249 int instance_id = meet_instance_id(tinst->instance_id());
4250 const TypePtr* speculative = xmeet_speculative(tinst);
4251 int depth = meet_inline_depth(tinst->inline_depth());
4252 const TypeInterfaces* interfaces = meet_interfaces(tinst);
4253
4254 ciKlass* tinst_klass = tinst->klass();
4255 ciKlass* this_klass = klass();
4256
4257 ciKlass* res_klass = nullptr;
4258 bool res_xk = false;
4259 const Type* res;
4260 MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4261
4262 if (kind == UNLOADED) {
4263 // One of these classes has not been loaded
4264 const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4265 #ifndef PRODUCT
4266 if (PrintOpto && Verbose) {
4267 tty->print("meet of unloaded classes resulted in: ");
4268 unloaded_meet->dump();
4269 tty->cr();
4270 tty->print(" this == ");
4271 dump();
4272 tty->cr();
4273 tty->print(" tinst == ");
4274 tinst->dump();
4275 tty->cr();
4276 }
4277 #endif
4278 res = unloaded_meet;
4279 } else {
4280 if (kind == NOT_SUBTYPE && instance_id > 0) {
4281 instance_id = InstanceBot;
4282 } else if (kind == LCA) {
4283 instance_id = InstanceBot;
4284 }
4285 ciObject* o = nullptr; // Assume not constant when done
4286 ciObject* this_oop = const_oop();
4287 ciObject* tinst_oop = tinst->const_oop();
4288 if (ptr == Constant) {
4289 if (this_oop != nullptr && tinst_oop != nullptr &&
4290 this_oop->equals(tinst_oop))
4291 o = this_oop;
4292 else if (above_centerline(_ptr)) {
4293 assert(!tinst_klass->is_interface(), "");
4294 o = tinst_oop;
4295 } else if (above_centerline(tinst->_ptr)) {
4296 assert(!this_klass->is_interface(), "");
4297 o = this_oop;
4298 } else
4299 ptr = NotNull;
4300 }
4301 res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth);
4302 }
4303
4304 return res;
4305
4306 } // End of case InstPtr
4307
4308 } // End of switch
4309 return this; // Return the double constant
4310 }
4311
4312 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, const T* other_type,
4313 ciKlass*& res_klass, bool& res_xk) {
4314 ciKlass* this_klass = this_type->klass();
4315 ciKlass* other_klass = other_type->klass();
4316 bool this_xk = this_type->klass_is_exact();
4317 bool other_xk = other_type->klass_is_exact();
4318 PTR this_ptr = this_type->ptr();
4319 PTR other_ptr = other_type->ptr();
4320 const TypeInterfaces* this_interfaces = this_type->interfaces();
4321 const TypeInterfaces* other_interfaces = other_type->interfaces();
4322 // Check for easy case; klasses are equal (and perhaps not loaded!)
4323 // If we have constants, then we created oops so classes are loaded
4324 // and we can handle the constants further down. This case handles
4325 // both-not-loaded or both-loaded classes
4326 if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4327 res_klass = this_klass;
4328 res_xk = this_xk;
4329 return QUICK;
4330 }
4331
4332 // Classes require inspection in the Java klass hierarchy. Must be loaded.
4333 if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4334 return UNLOADED;
4335 }
4336
4337 // !!! Here's how the symmetry requirement breaks down into invariants:
4338 // If we split one up & one down AND they subtype, take the down man.
4339 // If we split one up & one down AND they do NOT subtype, "fall hard".
4340 // If both are up and they subtype, take the subtype class.
4341 // If both are up and they do NOT subtype, "fall hard".
4342 // If both are down and they subtype, take the supertype class.
4343 // If both are down and they do NOT subtype, "fall hard".
4344 // Constants treated as down.
4345
4346 // Now, reorder the above list; observe that both-down+subtype is also
4347 // "fall hard"; "fall hard" becomes the default case:
4348 // If we split one up & one down AND they subtype, take the down man.
4349 // If both are up and they subtype, take the subtype class.
4350
4351 // If both are down and they subtype, "fall hard".
4352 // If both are down and they do NOT subtype, "fall hard".
4353 // If both are up and they do NOT subtype, "fall hard".
4354 // If we split one up & one down AND they do NOT subtype, "fall hard".
4355
4356 // If a proper subtype is exact, and we return it, we return it exactly.
4357 // If a proper supertype is exact, there can be no subtyping relationship!
4358 // If both types are equal to the subtype, exactness is and-ed below the
4359 // centerline and or-ed above it. (N.B. Constants are always exact.)
4360
4361 // Check for subtyping:
4362 const T* subtype = nullptr;
4363 bool subtype_exact = false;
4364 if (this_type->is_same_java_type_as(other_type)) {
4365 subtype = this_type;
4366 subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4367 } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {
4368 subtype = this_type; // Pick subtyping class
4369 subtype_exact = this_xk;
4370 } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) {
4371 subtype = other_type; // Pick subtyping class
4372 subtype_exact = other_xk;
4373 }
4374
4375 if (subtype) {
4376 if (above_centerline(ptr)) { // both are up?
4377 this_type = other_type = subtype;
4378 this_xk = other_xk = subtype_exact;
4379 } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4380 this_type = other_type; // tinst is down; keep down man
4381 this_xk = other_xk;
4382 } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4383 other_type = this_type; // this is down; keep down man
4384 other_xk = this_xk;
4385 } else {
4386 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
4387 }
4388 }
4389
4390 // Check for classes now being equal
4391 if (this_type->is_same_java_type_as(other_type)) {
4392 // If the klasses are equal, the constants may still differ. Fall to
4393 // NotNull if they do (neither constant is null; that is a special case
4394 // handled elsewhere).
4395 res_klass = this_type->klass();
4396 res_xk = this_xk;
4397 return SUBTYPE;
4398 } // Else classes are not equal
4399
4400 // Since klasses are different, we require a LCA in the Java
4401 // class hierarchy - which means we have to fall to at least NotNull.
4402 if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4403 ptr = NotNull;
4404 }
4405
4406 interfaces = this_interfaces->intersection_with(other_interfaces);
4407
4408 // Now we find the LCA of Java classes
4409 ciKlass* k = this_klass->least_common_ancestor(other_klass);
4410
4411 res_klass = k;
4412 res_xk = false;
4413
4414 return LCA;
4415 }
4416
4417 //------------------------java_mirror_type--------------------------------------
4418 ciType* TypeInstPtr::java_mirror_type() const {
4419 // must be a singleton type
4420 if( const_oop() == nullptr ) return nullptr;
4421
4422 // must be of type java.lang.Class
4423 if( klass() != ciEnv::current()->Class_klass() ) return nullptr;
4424
4425 return const_oop()->as_instance()->java_mirror_type();
4426 }
4427
4428
4429 //------------------------------xdual------------------------------------------
4430 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
4431 // inheritance mechanism.
4432 const Type *TypeInstPtr::xdual() const {
4433 return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4434 }
4435
4436 //------------------------------eq---------------------------------------------
4437 // Structural equality check for Type representations
4438 bool TypeInstPtr::eq( const Type *t ) const {
4439 const TypeInstPtr *p = t->is_instptr();
4440 return
4441 klass()->equals(p->klass()) &&
4442 _interfaces->eq(p->_interfaces) &&
4443 TypeOopPtr::eq(p); // Check sub-type stuff
4444 }
4445
4446 //------------------------------hash-------------------------------------------
4447 // Type-specific hashing function.
4448 uint TypeInstPtr::hash(void) const {
4449 return klass()->hash() + TypeOopPtr::hash() + _interfaces->hash();
4450 }
4451
4452 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4453 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4454 }
4455
4456
4457 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4458 return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4459 }
4460
4461 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4462 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4463 }
4464
4465
4466 //------------------------------dump2------------------------------------------
4467 // Dump oop Type
4468 #ifndef PRODUCT
4469 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {
4470 // Print the name of the klass.
4471 st->print("instptr:");
4472 klass()->print_name_on(st);
4473 _interfaces->dump(st);
4474
4475 if (_ptr == Constant && (WizardMode || Verbose)) {
4476 ResourceMark rm;
4477 stringStream ss;
4478
4479 st->print(" ");
4480 const_oop()->print_oop(&ss);
4481 // 'const_oop->print_oop()' may emit newlines('\n') into ss.
4482 // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4483 char* buf = ss.as_string(/* c_heap= */false);
4484 StringUtils::replace_no_expand(buf, "\n", "");
4485 st->print_raw(buf);
4486 }
4487
4488 st->print(":%s", ptr_msg[_ptr]);
4489 if (_klass_is_exact) {
4490 st->print(":exact");
4491 }
4492
4493 dump_offset(st);
4494 dump_instance_id(st);
4495 dump_inline_depth(st);
4496 dump_speculative(st);
4497 }
4498 #endif
4499
4500 //------------------------------add_offset-------------------------------------
4501 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4502 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset),
4503 _instance_id, add_offset_speculative(offset), _inline_depth);
4504 }
4505
4506 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4507 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset,
4508 _instance_id, with_offset_speculative(offset), _inline_depth);
4509 }
4510
4511 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4512 if (_speculative == nullptr) {
4513 return this;
4514 }
4515 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4516 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset,
4517 _instance_id, nullptr, _inline_depth);
4518 }
4519
4520 const TypeInstPtr* TypeInstPtr::with_speculative(const TypePtr* speculative) const {
4521 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, speculative, _inline_depth);
4522 }
4523
4524 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4525 if (!UseInlineDepthForSpeculativeTypes) {
4526 return this;
4527 }
4528 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4529 }
4530
4531 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4532 assert(is_known_instance(), "should be known");
4533 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);
4534 }
4535
4536 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4537 bool xk = klass_is_exact();
4538 ciInstanceKlass* ik = klass()->as_instance_klass();
4539 if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4540 if (_interfaces->eq(ik)) {
4541 Compile* C = Compile::current();
4542 Dependencies* deps = C->dependencies();
4543 deps->assert_leaf_type(ik);
4544 xk = true;
4545 }
4546 }
4547 return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0);
4548 }
4549
4550 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4551 static_assert(std::is_base_of<T2, T1>::value, "");
4552
4553 if (!this_one->is_instance_type(other)) {
4554 return false;
4555 }
4556
4557 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4558 return true;
4559 }
4560
4561 return this_one->klass()->is_subtype_of(other->klass()) &&
4562 (!this_xk || this_one->_interfaces->contains(other->_interfaces));
4563 }
4564
4565
4566 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4567 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4568 }
4569
4570 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4571 static_assert(std::is_base_of<T2, T1>::value, "");
4572 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty()) {
4573 return true;
4574 }
4575
4576 if (this_one->is_instance_type(other)) {
4577 return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces);
4578 }
4579
4580 int dummy;
4581 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4582 if (this_top_or_bottom) {
4583 return false;
4584 }
4585
4586 const T1* other_ary = this_one->is_array_type(other);
4587 const TypePtr* other_elem = other_ary->elem()->make_ptr();
4588 const TypePtr* this_elem = this_one->elem()->make_ptr();
4589 if (other_elem != nullptr && this_elem != nullptr) {
4590 return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4591 }
4592
4593 if (other_elem == nullptr && this_elem == nullptr) {
4594 return this_one->klass()->is_subtype_of(other->klass());
4595 }
4596
4597 return false;
4598 }
4599
4600 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4601 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4602 }
4603
4604 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4605 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4606 }
4607
4608 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4609 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4610 }
4611
4612 //=============================================================================
4613 // Convenience common pre-built types.
4614 const TypeAryPtr* TypeAryPtr::BOTTOM;
4615 const TypeAryPtr* TypeAryPtr::RANGE;
4616 const TypeAryPtr* TypeAryPtr::OOPS;
4617 const TypeAryPtr* TypeAryPtr::NARROWOOPS;
4618 const TypeAryPtr* TypeAryPtr::BYTES;
4619 const TypeAryPtr* TypeAryPtr::SHORTS;
4620 const TypeAryPtr* TypeAryPtr::CHARS;
4621 const TypeAryPtr* TypeAryPtr::INTS;
4622 const TypeAryPtr* TypeAryPtr::LONGS;
4623 const TypeAryPtr* TypeAryPtr::FLOATS;
4624 const TypeAryPtr* TypeAryPtr::DOUBLES;
4625
4626 //------------------------------make-------------------------------------------
4627 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4628 int instance_id, const TypePtr* speculative, int inline_depth) {
4629 assert(!(k == nullptr && ary->_elem->isa_int()),
4630 "integral arrays must be pre-equipped with a class");
4631 if (!xk) xk = ary->ary_must_be_exact();
4632 assert(instance_id <= 0 || xk, "instances are always exactly typed");
4633 if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4634 k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4635 k = nullptr;
4636 }
4637 return (TypeAryPtr*)(new TypeAryPtr(ptr, nullptr, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4638 }
4639
4640 //------------------------------make-------------------------------------------
4641 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4642 int instance_id, const TypePtr* speculative, int inline_depth,
4643 bool is_autobox_cache) {
4644 assert(!(k == nullptr && ary->_elem->isa_int()),
4645 "integral arrays must be pre-equipped with a class");
4646 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4647 if (!xk) xk = (o != nullptr) || ary->ary_must_be_exact();
4648 assert(instance_id <= 0 || xk, "instances are always exactly typed");
4649 if (k != nullptr && k->is_loaded() && k->is_obj_array_klass() &&
4650 k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4651 k = nullptr;
4652 }
4653 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4654 }
4655
4656 //------------------------------cast_to_ptr_type-------------------------------
4657 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4658 if( ptr == _ptr ) return this;
4659 return make(ptr, ptr == Constant ? const_oop() : nullptr, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4660 }
4661
4662
4663 //-----------------------------cast_to_exactness-------------------------------
4664 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4665 if( klass_is_exact == _klass_is_exact ) return this;
4666 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
4667 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4668 }
4669
4670 //-----------------------------cast_to_instance_id----------------------------
4671 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4672 if( instance_id == _instance_id ) return this;
4673 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4674 }
4675
4676
4677 //-----------------------------max_array_length-------------------------------
4678 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4679 jint TypeAryPtr::max_array_length(BasicType etype) {
4680 if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4681 if (etype == T_NARROWOOP) {
4682 etype = T_OBJECT;
4683 } else if (etype == T_ILLEGAL) { // bottom[]
4684 etype = T_BYTE; // will produce conservatively high value
4685 } else {
4686 fatal("not an element type: %s", type2name(etype));
4687 }
4688 }
4689 return arrayOopDesc::max_array_length(etype);
4690 }
4691
4692 //-----------------------------narrow_size_type-------------------------------
4693 // Narrow the given size type to the index range for the given array base type.
4694 // Return null if the resulting int type becomes empty.
4695 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4696 jint hi = size->_hi;
4697 jint lo = size->_lo;
4698 jint min_lo = 0;
4699 jint max_hi = max_array_length(elem()->array_element_basic_type());
4700 //if (index_not_size) --max_hi; // type of a valid array index, FTR
4701 bool chg = false;
4702 if (lo < min_lo) {
4703 lo = min_lo;
4704 if (size->is_con()) {
4705 hi = lo;
4706 }
4707 chg = true;
4708 }
4709 if (hi > max_hi) {
4710 hi = max_hi;
4711 if (size->is_con()) {
4712 lo = hi;
4713 }
4714 chg = true;
4715 }
4716 // Negative length arrays will produce weird intermediate dead fast-path code
4717 if (lo > hi) {
4718 return TypeInt::ZERO;
4719 }
4720 if (!chg) {
4721 return size;
4722 }
4723 return TypeInt::make(lo, hi, Type::WidenMin);
4724 }
4725
4726 //-------------------------------cast_to_size----------------------------------
4727 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4728 assert(new_size != nullptr, "");
4729 new_size = narrow_size_type(new_size);
4730 if (new_size == size()) return this;
4731 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4732 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4733 }
4734
4735 //------------------------------cast_to_stable---------------------------------
4736 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4737 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4738 return this;
4739
4740 const Type* elem = this->elem();
4741 const TypePtr* elem_ptr = elem->make_ptr();
4742
4743 if (stable_dimension > 1 && elem_ptr != nullptr && elem_ptr->isa_aryptr()) {
4744 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4745 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4746 }
4747
4748 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4749
4750 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4751 }
4752
4753 //-----------------------------stable_dimension--------------------------------
4754 int TypeAryPtr::stable_dimension() const {
4755 if (!is_stable()) return 0;
4756 int dim = 1;
4757 const TypePtr* elem_ptr = elem()->make_ptr();
4758 if (elem_ptr != nullptr && elem_ptr->isa_aryptr())
4759 dim += elem_ptr->is_aryptr()->stable_dimension();
4760 return dim;
4761 }
4762
4763 //----------------------cast_to_autobox_cache-----------------------------------
4764 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
4765 if (is_autobox_cache()) return this;
4766 const TypeOopPtr* etype = elem()->make_oopptr();
4767 if (etype == nullptr) return this;
4768 // The pointers in the autobox arrays are always non-null.
4769 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4770 const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4771 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
4772 }
4773
4774 //------------------------------eq---------------------------------------------
4775 // Structural equality check for Type representations
4776 bool TypeAryPtr::eq( const Type *t ) const {
4777 const TypeAryPtr *p = t->is_aryptr();
4778 return
4779 _ary == p->_ary && // Check array
4780 TypeOopPtr::eq(p); // Check sub-parts
4781 }
4782
4783 //------------------------------hash-------------------------------------------
4784 // Type-specific hashing function.
4785 uint TypeAryPtr::hash(void) const {
4786 return (uint)(uintptr_t)_ary + TypeOopPtr::hash();
4787 }
4788
4789 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4790 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4791 }
4792
4793 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4794 return TypePtr::is_same_java_type_as_helper_for_array(this, other);
4795 }
4796
4797 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4798 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4799 }
4800 //------------------------------meet-------------------------------------------
4801 // Compute the MEET of two types. It returns a new Type object.
4802 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4803 // Perform a fast test for common case; meeting the same types together.
4804 if( this == t ) return this; // Meeting same type-rep?
4805 // Current "this->_base" is Pointer
4806 switch (t->base()) { // switch on original type
4807
4808 // Mixing ints & oops happens when javac reuses local variables
4809 case Int:
4810 case Long:
4811 case HalfFloatTop:
4812 case HalfFloatCon:
4813 case HalfFloatBot:
4814 case FloatTop:
4815 case FloatCon:
4816 case FloatBot:
4817 case DoubleTop:
4818 case DoubleCon:
4819 case DoubleBot:
4820 case NarrowOop:
4821 case NarrowKlass:
4822 case Bottom: // Ye Olde Default
4823 return Type::BOTTOM;
4824 case Top:
4825 return this;
4826
4827 default: // All else is a mistake
4828 typerr(t);
4829
4830 case OopPtr: { // Meeting to OopPtrs
4831 // Found a OopPtr type vs self-AryPtr type
4832 const TypeOopPtr *tp = t->is_oopptr();
4833 int offset = meet_offset(tp->offset());
4834 PTR ptr = meet_ptr(tp->ptr());
4835 int depth = meet_inline_depth(tp->inline_depth());
4836 const TypePtr* speculative = xmeet_speculative(tp);
4837 switch (tp->ptr()) {
4838 case TopPTR:
4839 case AnyNull: {
4840 int instance_id = meet_instance_id(InstanceTop);
4841 return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4842 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4843 }
4844 case BotPTR:
4845 case NotNull: {
4846 int instance_id = meet_instance_id(tp->instance_id());
4847 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4848 }
4849 default: ShouldNotReachHere();
4850 }
4851 }
4852
4853 case AnyPtr: { // Meeting two AnyPtrs
4854 // Found an AnyPtr type vs self-AryPtr type
4855 const TypePtr *tp = t->is_ptr();
4856 int offset = meet_offset(tp->offset());
4857 PTR ptr = meet_ptr(tp->ptr());
4858 const TypePtr* speculative = xmeet_speculative(tp);
4859 int depth = meet_inline_depth(tp->inline_depth());
4860 switch (tp->ptr()) {
4861 case TopPTR:
4862 return this;
4863 case BotPTR:
4864 case NotNull:
4865 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4866 case Null:
4867 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4868 // else fall through to AnyNull
4869 case AnyNull: {
4870 int instance_id = meet_instance_id(InstanceTop);
4871 return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4872 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4873 }
4874 default: ShouldNotReachHere();
4875 }
4876 }
4877
4878 case MetadataPtr:
4879 case KlassPtr:
4880 case InstKlassPtr:
4881 case AryKlassPtr:
4882 case RawPtr: return TypePtr::BOTTOM;
4883
4884 case AryPtr: { // Meeting 2 references?
4885 const TypeAryPtr *tap = t->is_aryptr();
4886 int off = meet_offset(tap->offset());
4887 const Type* tm = _ary->meet_speculative(tap->_ary);
4888 const TypeAry* tary = tm->isa_ary();
4889 if (tary == nullptr) {
4890 assert(tm == Type::TOP || tm == Type::BOTTOM, "");
4891 return tm;
4892 }
4893 PTR ptr = meet_ptr(tap->ptr());
4894 int instance_id = meet_instance_id(tap->instance_id());
4895 const TypePtr* speculative = xmeet_speculative(tap);
4896 int depth = meet_inline_depth(tap->inline_depth());
4897
4898 ciKlass* res_klass = nullptr;
4899 bool res_xk = false;
4900 const Type* elem = tary->_elem;
4901 if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) {
4902 instance_id = InstanceBot;
4903 }
4904
4905 ciObject* o = nullptr; // Assume not constant when done
4906 ciObject* this_oop = const_oop();
4907 ciObject* tap_oop = tap->const_oop();
4908 if (ptr == Constant) {
4909 if (this_oop != nullptr && tap_oop != nullptr &&
4910 this_oop->equals(tap_oop)) {
4911 o = tap_oop;
4912 } else if (above_centerline(_ptr)) {
4913 o = tap_oop;
4914 } else if (above_centerline(tap->_ptr)) {
4915 o = this_oop;
4916 } else {
4917 ptr = NotNull;
4918 }
4919 }
4920 return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth);
4921 }
4922
4923 // All arrays inherit from Object class
4924 case InstPtr: {
4925 const TypeInstPtr *tp = t->is_instptr();
4926 int offset = meet_offset(tp->offset());
4927 PTR ptr = meet_ptr(tp->ptr());
4928 int instance_id = meet_instance_id(tp->instance_id());
4929 const TypePtr* speculative = xmeet_speculative(tp);
4930 int depth = meet_inline_depth(tp->inline_depth());
4931 const TypeInterfaces* interfaces = meet_interfaces(tp);
4932 const TypeInterfaces* tp_interfaces = tp->_interfaces;
4933 const TypeInterfaces* this_interfaces = _interfaces;
4934
4935 switch (ptr) {
4936 case TopPTR:
4937 case AnyNull: // Fall 'down' to dual of object klass
4938 // For instances when a subclass meets a superclass we fall
4939 // below the centerline when the superclass is exact. We need to
4940 // do the same here.
4941 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
4942 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4943 } else {
4944 // cannot subclass, so the meet has to fall badly below the centerline
4945 ptr = NotNull;
4946 instance_id = InstanceBot;
4947 interfaces = this_interfaces->intersection_with(tp_interfaces);
4948 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr,offset, instance_id, speculative, depth);
4949 }
4950 case Constant:
4951 case NotNull:
4952 case BotPTR: // Fall down to object klass
4953 // LCA is object_klass, but if we subclass from the top we can do better
4954 if (above_centerline(tp->ptr())) {
4955 // If 'tp' is above the centerline and it is Object class
4956 // then we can subclass in the Java class hierarchy.
4957 // For instances when a subclass meets a superclass we fall
4958 // below the centerline when the superclass is exact. We need
4959 // to do the same here.
4960 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) && !tp->klass_is_exact()) {
4961 // that is, my array type is a subtype of 'tp' klass
4962 return make(ptr, (ptr == Constant ? const_oop() : nullptr),
4963 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4964 }
4965 }
4966 // The other case cannot happen, since t cannot be a subtype of an array.
4967 // The meet falls down to Object class below centerline.
4968 if (ptr == Constant) {
4969 ptr = NotNull;
4970 }
4971 if (instance_id > 0) {
4972 instance_id = InstanceBot;
4973 }
4974 interfaces = this_interfaces->intersection_with(tp_interfaces);
4975 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, nullptr, offset, instance_id, speculative, depth);
4976 default: typerr(t);
4977 }
4978 }
4979 }
4980 return this; // Lint noise
4981 }
4982
4983
4984 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary,
4985 const T* other_ary, ciKlass*& res_klass, bool& res_xk) {
4986 int dummy;
4987 bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
4988 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
4989 ciKlass* this_klass = this_ary->klass();
4990 ciKlass* other_klass = other_ary->klass();
4991 bool this_xk = this_ary->klass_is_exact();
4992 bool other_xk = other_ary->klass_is_exact();
4993 PTR this_ptr = this_ary->ptr();
4994 PTR other_ptr = other_ary->ptr();
4995 res_klass = nullptr;
4996 MeetResult result = SUBTYPE;
4997 if (elem->isa_int()) {
4998 // Integral array element types have irrelevant lattice relations.
4999 // It is the klass that determines array layout, not the element type.
5000 if (this_top_or_bottom)
5001 res_klass = other_klass;
5002 else if (other_top_or_bottom || other_klass == this_klass) {
5003 res_klass = this_klass;
5004 } else {
5005 // Something like byte[int+] meets char[int+].
5006 // This must fall to bottom, not (int[-128..65535])[int+].
5007 // instance_id = InstanceBot;
5008 elem = Type::BOTTOM;
5009 result = NOT_SUBTYPE;
5010 if (above_centerline(ptr) || ptr == Constant) {
5011 ptr = NotNull;
5012 res_xk = false;
5013 return NOT_SUBTYPE;
5014 }
5015 }
5016 } else {// Non integral arrays.
5017 // Must fall to bottom if exact klasses in upper lattice
5018 // are not equal or super klass is exact.
5019 if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
5020 // meet with top[] and bottom[] are processed further down:
5021 !this_top_or_bottom && !other_top_or_bottom &&
5022 // both are exact and not equal:
5023 ((other_xk && this_xk) ||
5024 // 'tap' is exact and super or unrelated:
5025 (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
5026 // 'this' is exact and super or unrelated:
5027 (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
5028 if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
5029 elem = Type::BOTTOM;
5030 }
5031 ptr = NotNull;
5032 res_xk = false;
5033 return NOT_SUBTYPE;
5034 }
5035 }
5036
5037 res_xk = false;
5038 switch (other_ptr) {
5039 case AnyNull:
5040 case TopPTR:
5041 // Compute new klass on demand, do not use tap->_klass
5042 if (below_centerline(this_ptr)) {
5043 res_xk = this_xk;
5044 } else {
5045 res_xk = (other_xk || this_xk);
5046 }
5047 return result;
5048 case Constant: {
5049 if (this_ptr == Constant) {
5050 res_xk = true;
5051 } else if(above_centerline(this_ptr)) {
5052 res_xk = true;
5053 } else {
5054 // Only precise for identical arrays
5055 res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
5056 }
5057 return result;
5058 }
5059 case NotNull:
5060 case BotPTR:
5061 // Compute new klass on demand, do not use tap->_klass
5062 if (above_centerline(this_ptr)) {
5063 res_xk = other_xk;
5064 } else {
5065 res_xk = (other_xk && this_xk) &&
5066 (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
5067 }
5068 return result;
5069 default: {
5070 ShouldNotReachHere();
5071 return result;
5072 }
5073 }
5074 return result;
5075 }
5076
5077
5078 //------------------------------xdual------------------------------------------
5079 // Dual: compute field-by-field dual
5080 const Type *TypeAryPtr::xdual() const {
5081 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
5082 }
5083
5084 //------------------------------dump2------------------------------------------
5085 #ifndef PRODUCT
5086 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5087 st->print("aryptr:");
5088 _ary->dump2(d, depth, st);
5089 _interfaces->dump(st);
5090
5091 if (_ptr == Constant) {
5092 const_oop()->print(st);
5093 }
5094
5095 st->print(":%s", ptr_msg[_ptr]);
5096 if (_klass_is_exact) {
5097 st->print(":exact");
5098 }
5099
5100 if( _offset != 0 ) {
5101 BasicType basic_elem_type = elem()->basic_type();
5102 int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5103 if( _offset == OffsetTop ) st->print("+undefined");
5104 else if( _offset == OffsetBot ) st->print("+any");
5105 else if( _offset < header_size ) st->print("+%d", _offset);
5106 else {
5107 if (basic_elem_type == T_ILLEGAL) {
5108 st->print("+any");
5109 } else {
5110 int elem_size = type2aelembytes(basic_elem_type);
5111 st->print("[%d]", (_offset - header_size)/elem_size);
5112 }
5113 }
5114 }
5115
5116 dump_instance_id(st);
5117 dump_inline_depth(st);
5118 dump_speculative(st);
5119 }
5120 #endif
5121
5122 bool TypeAryPtr::empty(void) const {
5123 if (_ary->empty()) return true;
5124 return TypeOopPtr::empty();
5125 }
5126
5127 //------------------------------add_offset-------------------------------------
5128 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5129 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
5130 }
5131
5132 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5133 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
5134 }
5135
5136 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5137 return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
5138 }
5139
5140 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5141 if (_speculative == nullptr) {
5142 return this;
5143 }
5144 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5145 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, nullptr, _inline_depth);
5146 }
5147
5148 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5149 if (!UseInlineDepthForSpeculativeTypes) {
5150 return this;
5151 }
5152 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
5153 }
5154
5155 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5156 assert(is_known_instance(), "should be known");
5157 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
5158 }
5159
5160 //=============================================================================
5161
5162 //------------------------------hash-------------------------------------------
5163 // Type-specific hashing function.
5164 uint TypeNarrowPtr::hash(void) const {
5165 return _ptrtype->hash() + 7;
5166 }
5167
5168 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
5169 return _ptrtype->singleton();
5170 }
5171
5172 bool TypeNarrowPtr::empty(void) const {
5173 return _ptrtype->empty();
5174 }
5175
5176 intptr_t TypeNarrowPtr::get_con() const {
5177 return _ptrtype->get_con();
5178 }
5179
5180 bool TypeNarrowPtr::eq( const Type *t ) const {
5181 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
5182 if (tc != nullptr) {
5183 if (_ptrtype->base() != tc->_ptrtype->base()) {
5184 return false;
5185 }
5186 return tc->_ptrtype->eq(_ptrtype);
5187 }
5188 return false;
5189 }
5190
5191 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
5192 const TypePtr* odual = _ptrtype->dual()->is_ptr();
5193 return make_same_narrowptr(odual);
5194 }
5195
5196
5197 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
5198 if (isa_same_narrowptr(kills)) {
5199 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
5200 if (ft->empty())
5201 return Type::TOP; // Canonical empty value
5202 if (ft->isa_ptr()) {
5203 return make_hash_same_narrowptr(ft->isa_ptr());
5204 }
5205 return ft;
5206 } else if (kills->isa_ptr()) {
5207 const Type* ft = _ptrtype->join_helper(kills, include_speculative);
5208 if (ft->empty())
5209 return Type::TOP; // Canonical empty value
5210 return ft;
5211 } else {
5212 return Type::TOP;
5213 }
5214 }
5215
5216 //------------------------------xmeet------------------------------------------
5217 // Compute the MEET of two types. It returns a new Type object.
5218 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
5219 // Perform a fast test for common case; meeting the same types together.
5220 if( this == t ) return this; // Meeting same type-rep?
5221
5222 if (t->base() == base()) {
5223 const Type* result = _ptrtype->xmeet(t->make_ptr());
5224 if (result->isa_ptr()) {
5225 return make_hash_same_narrowptr(result->is_ptr());
5226 }
5227 return result;
5228 }
5229
5230 // Current "this->_base" is NarrowKlass or NarrowOop
5231 switch (t->base()) { // switch on original type
5232
5233 case Int: // Mixing ints & oops happens when javac
5234 case Long: // reuses local variables
5235 case HalfFloatTop:
5236 case HalfFloatCon:
5237 case HalfFloatBot:
5238 case FloatTop:
5239 case FloatCon:
5240 case FloatBot:
5241 case DoubleTop:
5242 case DoubleCon:
5243 case DoubleBot:
5244 case AnyPtr:
5245 case RawPtr:
5246 case OopPtr:
5247 case InstPtr:
5248 case AryPtr:
5249 case MetadataPtr:
5250 case KlassPtr:
5251 case InstKlassPtr:
5252 case AryKlassPtr:
5253 case NarrowOop:
5254 case NarrowKlass:
5255
5256 case Bottom: // Ye Olde Default
5257 return Type::BOTTOM;
5258 case Top:
5259 return this;
5260
5261 default: // All else is a mistake
5262 typerr(t);
5263
5264 } // End of switch
5265
5266 return this;
5267 }
5268
5269 #ifndef PRODUCT
5270 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5271 _ptrtype->dump2(d, depth, st);
5272 }
5273 #endif
5274
5275 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5276 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5277
5278
5279 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5280 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5281 }
5282
5283 const TypeNarrowOop* TypeNarrowOop::remove_speculative() const {
5284 return make(_ptrtype->remove_speculative()->is_ptr());
5285 }
5286
5287 const Type* TypeNarrowOop::cleanup_speculative() const {
5288 return make(_ptrtype->cleanup_speculative()->is_ptr());
5289 }
5290
5291 #ifndef PRODUCT
5292 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5293 st->print("narrowoop: ");
5294 TypeNarrowPtr::dump2(d, depth, st);
5295 }
5296 #endif
5297
5298 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5299
5300 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5301 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5302 }
5303
5304 #ifndef PRODUCT
5305 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5306 st->print("narrowklass: ");
5307 TypeNarrowPtr::dump2(d, depth, st);
5308 }
5309 #endif
5310
5311
5312 //------------------------------eq---------------------------------------------
5313 // Structural equality check for Type representations
5314 bool TypeMetadataPtr::eq( const Type *t ) const {
5315 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5316 ciMetadata* one = metadata();
5317 ciMetadata* two = a->metadata();
5318 if (one == nullptr || two == nullptr) {
5319 return (one == two) && TypePtr::eq(t);
5320 } else {
5321 return one->equals(two) && TypePtr::eq(t);
5322 }
5323 }
5324
5325 //------------------------------hash-------------------------------------------
5326 // Type-specific hashing function.
5327 uint TypeMetadataPtr::hash(void) const {
5328 return
5329 (metadata() ? metadata()->hash() : 0) +
5330 TypePtr::hash();
5331 }
5332
5333 //------------------------------singleton--------------------------------------
5334 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
5335 // constants
5336 bool TypeMetadataPtr::singleton(void) const {
5337 // detune optimizer to not generate constant metadata + constant offset as a constant!
5338 // TopPTR, Null, AnyNull, Constant are all singletons
5339 return (_offset == 0) && !below_centerline(_ptr);
5340 }
5341
5342 //------------------------------add_offset-------------------------------------
5343 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5344 return make( _ptr, _metadata, xadd_offset(offset));
5345 }
5346
5347 //-----------------------------filter------------------------------------------
5348 // Do not allow interface-vs.-noninterface joins to collapse to top.
5349 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5350 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5351 if (ft == nullptr || ft->empty())
5352 return Type::TOP; // Canonical empty value
5353 return ft;
5354 }
5355
5356 //------------------------------get_con----------------------------------------
5357 intptr_t TypeMetadataPtr::get_con() const {
5358 assert( _ptr == Null || _ptr == Constant, "" );
5359 assert( _offset >= 0, "" );
5360
5361 if (_offset != 0) {
5362 // After being ported to the compiler interface, the compiler no longer
5363 // directly manipulates the addresses of oops. Rather, it only has a pointer
5364 // to a handle at compile time. This handle is embedded in the generated
5365 // code and dereferenced at the time the nmethod is made. Until that time,
5366 // it is not reasonable to do arithmetic with the addresses of oops (we don't
5367 // have access to the addresses!). This does not seem to currently happen,
5368 // but this assertion here is to help prevent its occurrence.
5369 tty->print_cr("Found oop constant with non-zero offset");
5370 ShouldNotReachHere();
5371 }
5372
5373 return (intptr_t)metadata()->constant_encoding();
5374 }
5375
5376 //------------------------------cast_to_ptr_type-------------------------------
5377 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5378 if( ptr == _ptr ) return this;
5379 return make(ptr, metadata(), _offset);
5380 }
5381
5382 //------------------------------meet-------------------------------------------
5383 // Compute the MEET of two types. It returns a new Type object.
5384 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5385 // Perform a fast test for common case; meeting the same types together.
5386 if( this == t ) return this; // Meeting same type-rep?
5387
5388 // Current "this->_base" is OopPtr
5389 switch (t->base()) { // switch on original type
5390
5391 case Int: // Mixing ints & oops happens when javac
5392 case Long: // reuses local variables
5393 case HalfFloatTop:
5394 case HalfFloatCon:
5395 case HalfFloatBot:
5396 case FloatTop:
5397 case FloatCon:
5398 case FloatBot:
5399 case DoubleTop:
5400 case DoubleCon:
5401 case DoubleBot:
5402 case NarrowOop:
5403 case NarrowKlass:
5404 case Bottom: // Ye Olde Default
5405 return Type::BOTTOM;
5406 case Top:
5407 return this;
5408
5409 default: // All else is a mistake
5410 typerr(t);
5411
5412 case AnyPtr: {
5413 // Found an AnyPtr type vs self-OopPtr type
5414 const TypePtr *tp = t->is_ptr();
5415 int offset = meet_offset(tp->offset());
5416 PTR ptr = meet_ptr(tp->ptr());
5417 switch (tp->ptr()) {
5418 case Null:
5419 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5420 // else fall through:
5421 case TopPTR:
5422 case AnyNull: {
5423 return make(ptr, _metadata, offset);
5424 }
5425 case BotPTR:
5426 case NotNull:
5427 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5428 default: typerr(t);
5429 }
5430 }
5431
5432 case RawPtr:
5433 case KlassPtr:
5434 case InstKlassPtr:
5435 case AryKlassPtr:
5436 case OopPtr:
5437 case InstPtr:
5438 case AryPtr:
5439 return TypePtr::BOTTOM; // Oop meet raw is not well defined
5440
5441 case MetadataPtr: {
5442 const TypeMetadataPtr *tp = t->is_metadataptr();
5443 int offset = meet_offset(tp->offset());
5444 PTR tptr = tp->ptr();
5445 PTR ptr = meet_ptr(tptr);
5446 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5447 if (tptr == TopPTR || _ptr == TopPTR ||
5448 metadata()->equals(tp->metadata())) {
5449 return make(ptr, md, offset);
5450 }
5451 // metadata is different
5452 if( ptr == Constant ) { // Cannot be equal constants, so...
5453 if( tptr == Constant && _ptr != Constant) return t;
5454 if( _ptr == Constant && tptr != Constant) return this;
5455 ptr = NotNull; // Fall down in lattice
5456 }
5457 return make(ptr, nullptr, offset);
5458 break;
5459 }
5460 } // End of switch
5461 return this; // Return the double constant
5462 }
5463
5464
5465 //------------------------------xdual------------------------------------------
5466 // Dual of a pure metadata pointer.
5467 const Type *TypeMetadataPtr::xdual() const {
5468 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5469 }
5470
5471 //------------------------------dump2------------------------------------------
5472 #ifndef PRODUCT
5473 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5474 st->print("metadataptr:%s", ptr_msg[_ptr]);
5475 if (metadata() != nullptr) {
5476 st->print(":" INTPTR_FORMAT, p2i(metadata()));
5477 }
5478 dump_offset(st);
5479 }
5480 #endif
5481
5482
5483 //=============================================================================
5484 // Convenience common pre-built type.
5485 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5486
5487 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
5488 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5489 }
5490
5491 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5492 return make(Constant, m, 0);
5493 }
5494 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5495 return make(Constant, m, 0);
5496 }
5497
5498 //------------------------------make-------------------------------------------
5499 // Create a meta data constant
5500 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
5501 assert(m == nullptr || !m->is_klass(), "wrong type");
5502 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5503 }
5504
5505
5506 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5507 const Type* elem = _ary->_elem;
5508 bool xk = klass_is_exact();
5509 if (elem->make_oopptr() != nullptr) {
5510 elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5511 if (elem->is_klassptr()->klass_is_exact()) {
5512 xk = true;
5513 }
5514 }
5515 return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0);
5516 }
5517
5518 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) {
5519 if (klass->is_instance_klass()) {
5520 return TypeInstKlassPtr::make(klass, interface_handling);
5521 }
5522 return TypeAryKlassPtr::make(klass, interface_handling);
5523 }
5524
5525 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) {
5526 if (klass->is_instance_klass()) {
5527 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5528 return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5529 }
5530 return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5531 }
5532
5533
5534 //------------------------------TypeKlassPtr-----------------------------------
5535 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
5536 : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
5537 assert(klass == nullptr || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
5538 klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
5539 }
5540
5541 // Is there a single ciKlass* that can represent that type?
5542 ciKlass* TypeKlassPtr::exact_klass_helper() const {
5543 assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
5544 if (_interfaces->empty()) {
5545 return _klass;
5546 }
5547 if (_klass != ciEnv::current()->Object_klass()) {
5548 if (_interfaces->eq(_klass->as_instance_klass())) {
5549 return _klass;
5550 }
5551 return nullptr;
5552 }
5553 return _interfaces->exact_klass();
5554 }
5555
5556 //------------------------------eq---------------------------------------------
5557 // Structural equality check for Type representations
5558 bool TypeKlassPtr::eq(const Type *t) const {
5559 const TypeKlassPtr *p = t->is_klassptr();
5560 return
5561 _interfaces->eq(p->_interfaces) &&
5562 TypePtr::eq(p);
5563 }
5564
5565 //------------------------------hash-------------------------------------------
5566 // Type-specific hashing function.
5567 uint TypeKlassPtr::hash(void) const {
5568 return TypePtr::hash() + _interfaces->hash();
5569 }
5570
5571 //------------------------------singleton--------------------------------------
5572 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
5573 // constants
5574 bool TypeKlassPtr::singleton(void) const {
5575 // detune optimizer to not generate constant klass + constant offset as a constant!
5576 // TopPTR, Null, AnyNull, Constant are all singletons
5577 return (_offset == 0) && !below_centerline(_ptr);
5578 }
5579
5580 // Do not allow interface-vs.-noninterface joins to collapse to top.
5581 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5582 // logic here mirrors the one from TypeOopPtr::filter. See comments
5583 // there.
5584 const Type* ft = join_helper(kills, include_speculative);
5585
5586 if (ft->empty()) {
5587 return Type::TOP; // Canonical empty value
5588 }
5589
5590 return ft;
5591 }
5592
5593 const TypeInterfaces* TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
5594 if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
5595 return _interfaces->union_with(other->_interfaces);
5596 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
5597 return other->_interfaces;
5598 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
5599 return _interfaces;
5600 }
5601 return _interfaces->intersection_with(other->_interfaces);
5602 }
5603
5604 //------------------------------get_con----------------------------------------
5605 intptr_t TypeKlassPtr::get_con() const {
5606 assert( _ptr == Null || _ptr == Constant, "" );
5607 assert( _offset >= 0, "" );
5608
5609 if (_offset != 0) {
5610 // After being ported to the compiler interface, the compiler no longer
5611 // directly manipulates the addresses of oops. Rather, it only has a pointer
5612 // to a handle at compile time. This handle is embedded in the generated
5613 // code and dereferenced at the time the nmethod is made. Until that time,
5614 // it is not reasonable to do arithmetic with the addresses of oops (we don't
5615 // have access to the addresses!). This does not seem to currently happen,
5616 // but this assertion here is to help prevent its occurrence.
5617 tty->print_cr("Found oop constant with non-zero offset");
5618 ShouldNotReachHere();
5619 }
5620
5621 ciKlass* k = exact_klass();
5622
5623 return (intptr_t)k->constant_encoding();
5624 }
5625
5626 //=============================================================================
5627 // Convenience common pre-built types.
5628
5629 // Not-null object klass or below
5630 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
5631 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
5632
5633 bool TypeInstKlassPtr::eq(const Type *t) const {
5634 const TypeKlassPtr *p = t->is_klassptr();
5635 return
5636 klass()->equals(p->klass()) &&
5637 TypeKlassPtr::eq(p);
5638 }
5639
5640 uint TypeInstKlassPtr::hash(void) const {
5641 return klass()->hash() + TypeKlassPtr::hash();
5642 }
5643
5644 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset) {
5645 TypeInstKlassPtr *r =
5646 (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons();
5647
5648 return r;
5649 }
5650
5651 //------------------------------add_offset-------------------------------------
5652 // Access internals of klass object
5653 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const {
5654 return make( _ptr, klass(), _interfaces, xadd_offset(offset) );
5655 }
5656
5657 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
5658 return make(_ptr, klass(), _interfaces, offset);
5659 }
5660
5661 //------------------------------cast_to_ptr_type-------------------------------
5662 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
5663 assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
5664 if( ptr == _ptr ) return this;
5665 return make(ptr, _klass, _interfaces, _offset);
5666 }
5667
5668
5669 bool TypeInstKlassPtr::must_be_exact() const {
5670 if (!_klass->is_loaded()) return false;
5671 ciInstanceKlass* ik = _klass->as_instance_klass();
5672 if (ik->is_final()) return true; // cannot clear xk
5673 return false;
5674 }
5675
5676 //-----------------------------cast_to_exactness-------------------------------
5677 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5678 if (klass_is_exact == (_ptr == Constant)) return this;
5679 if (must_be_exact()) return this;
5680 ciKlass* k = klass();
5681 return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset);
5682 }
5683
5684
5685 //-----------------------------as_instance_type--------------------------------
5686 // Corresponding type for an instance of the given class.
5687 // It will be NotNull, and exact if and only if the klass type is exact.
5688 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
5689 ciKlass* k = klass();
5690 bool xk = klass_is_exact();
5691 Compile* C = Compile::current();
5692 Dependencies* deps = C->dependencies();
5693 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
5694 // Element is an instance
5695 bool klass_is_exact = false;
5696 const TypeInterfaces* interfaces = _interfaces;
5697 if (k->is_loaded()) {
5698 // Try to set klass_is_exact.
5699 ciInstanceKlass* ik = k->as_instance_klass();
5700 klass_is_exact = ik->is_final();
5701 if (!klass_is_exact && klass_change
5702 && deps != nullptr && UseUniqueSubclasses) {
5703 ciInstanceKlass* sub = ik->unique_concrete_subklass();
5704 if (sub != nullptr) {
5705 if (_interfaces->eq(sub)) {
5706 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5707 k = ik = sub;
5708 xk = sub->is_final();
5709 }
5710 }
5711 }
5712 }
5713 return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, nullptr, 0);
5714 }
5715
5716 //------------------------------xmeet------------------------------------------
5717 // Compute the MEET of two types, return a new Type object.
5718 const Type *TypeInstKlassPtr::xmeet( const Type *t ) const {
5719 // Perform a fast test for common case; meeting the same types together.
5720 if( this == t ) return this; // Meeting same type-rep?
5721
5722 // Current "this->_base" is Pointer
5723 switch (t->base()) { // switch on original type
5724
5725 case Int: // Mixing ints & oops happens when javac
5726 case Long: // reuses local variables
5727 case HalfFloatTop:
5728 case HalfFloatCon:
5729 case HalfFloatBot:
5730 case FloatTop:
5731 case FloatCon:
5732 case FloatBot:
5733 case DoubleTop:
5734 case DoubleCon:
5735 case DoubleBot:
5736 case NarrowOop:
5737 case NarrowKlass:
5738 case Bottom: // Ye Olde Default
5739 return Type::BOTTOM;
5740 case Top:
5741 return this;
5742
5743 default: // All else is a mistake
5744 typerr(t);
5745
5746 case AnyPtr: { // Meeting to AnyPtrs
5747 // Found an AnyPtr type vs self-KlassPtr type
5748 const TypePtr *tp = t->is_ptr();
5749 int offset = meet_offset(tp->offset());
5750 PTR ptr = meet_ptr(tp->ptr());
5751 switch (tp->ptr()) {
5752 case TopPTR:
5753 return this;
5754 case Null:
5755 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5756 case AnyNull:
5757 return make( ptr, klass(), _interfaces, offset );
5758 case BotPTR:
5759 case NotNull:
5760 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5761 default: typerr(t);
5762 }
5763 }
5764
5765 case RawPtr:
5766 case MetadataPtr:
5767 case OopPtr:
5768 case AryPtr: // Meet with AryPtr
5769 case InstPtr: // Meet with InstPtr
5770 return TypePtr::BOTTOM;
5771
5772 //
5773 // A-top }
5774 // / | \ } Tops
5775 // B-top A-any C-top }
5776 // | / | \ | } Any-nulls
5777 // B-any | C-any }
5778 // | | |
5779 // B-con A-con C-con } constants; not comparable across classes
5780 // | | |
5781 // B-not | C-not }
5782 // | \ | / | } not-nulls
5783 // B-bot A-not C-bot }
5784 // \ | / } Bottoms
5785 // A-bot }
5786 //
5787
5788 case InstKlassPtr: { // Meet two KlassPtr types
5789 const TypeInstKlassPtr *tkls = t->is_instklassptr();
5790 int off = meet_offset(tkls->offset());
5791 PTR ptr = meet_ptr(tkls->ptr());
5792 const TypeInterfaces* interfaces = meet_interfaces(tkls);
5793
5794 ciKlass* res_klass = nullptr;
5795 bool res_xk = false;
5796 switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {
5797 case UNLOADED:
5798 ShouldNotReachHere();
5799 case SUBTYPE:
5800 case NOT_SUBTYPE:
5801 case LCA:
5802 case QUICK: {
5803 assert(res_xk == (ptr == Constant), "");
5804 const Type* res = make(ptr, res_klass, interfaces, off);
5805 return res;
5806 }
5807 default:
5808 ShouldNotReachHere();
5809 }
5810 } // End of case KlassPtr
5811 case AryKlassPtr: { // All arrays inherit from Object class
5812 const TypeAryKlassPtr *tp = t->is_aryklassptr();
5813 int offset = meet_offset(tp->offset());
5814 PTR ptr = meet_ptr(tp->ptr());
5815 const TypeInterfaces* interfaces = meet_interfaces(tp);
5816 const TypeInterfaces* tp_interfaces = tp->_interfaces;
5817 const TypeInterfaces* this_interfaces = _interfaces;
5818
5819 switch (ptr) {
5820 case TopPTR:
5821 case AnyNull: // Fall 'down' to dual of object klass
5822 // For instances when a subclass meets a superclass we fall
5823 // below the centerline when the superclass is exact. We need to
5824 // do the same here.
5825 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5826 return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset);
5827 } else {
5828 // cannot subclass, so the meet has to fall badly below the centerline
5829 ptr = NotNull;
5830 interfaces = _interfaces->intersection_with(tp->_interfaces);
5831 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5832 }
5833 case Constant:
5834 case NotNull:
5835 case BotPTR: // Fall down to object klass
5836 // LCA is object_klass, but if we subclass from the top we can do better
5837 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
5838 // If 'this' (InstPtr) is above the centerline and it is Object class
5839 // then we can subclass in the Java class hierarchy.
5840 // For instances when a subclass meets a superclass we fall
5841 // below the centerline when the superclass is exact. We need
5842 // to do the same here.
5843 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces->contains(this_interfaces) && !klass_is_exact()) {
5844 // that is, tp's array type is a subtype of my klass
5845 return TypeAryKlassPtr::make(ptr,
5846 tp->elem(), tp->klass(), offset);
5847 }
5848 }
5849 // The other case cannot happen, since I cannot be a subtype of an array.
5850 // The meet falls down to Object class below centerline.
5851 if( ptr == Constant )
5852 ptr = NotNull;
5853 interfaces = this_interfaces->intersection_with(tp_interfaces);
5854 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5855 default: typerr(t);
5856 }
5857 }
5858
5859 } // End of switch
5860 return this; // Return the double constant
5861 }
5862
5863 //------------------------------xdual------------------------------------------
5864 // Dual: compute field-by-field dual
5865 const Type *TypeInstKlassPtr::xdual() const {
5866 return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset());
5867 }
5868
5869 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
5870 static_assert(std::is_base_of<T2, T1>::value, "");
5871 if (!this_one->is_loaded() || !other->is_loaded()) {
5872 return false;
5873 }
5874 if (!this_one->is_instance_type(other)) {
5875 return false;
5876 }
5877
5878 if (!other_exact) {
5879 return false;
5880 }
5881
5882 if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->empty()) {
5883 return true;
5884 }
5885
5886 return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
5887 }
5888
5889 bool TypeInstKlassPtr::might_be_an_array() const {
5890 if (!instance_klass()->is_java_lang_Object()) {
5891 // TypeInstKlassPtr can be an array only if it is java.lang.Object: the only supertype of array types.
5892 return false;
5893 }
5894 if (interfaces()->has_non_array_interface()) {
5895 // Arrays only implement Cloneable and Serializable. If we see any other interface, [this] cannot be an array.
5896 return false;
5897 }
5898 // Cannot prove it's not an array.
5899 return true;
5900 }
5901
5902 bool TypeInstKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
5903 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
5904 }
5905
5906 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other) {
5907 static_assert(std::is_base_of<T2, T1>::value, "");
5908 if (!this_one->is_loaded() || !other->is_loaded()) {
5909 return false;
5910 }
5911 if (!this_one->is_instance_type(other)) {
5912 return false;
5913 }
5914 return this_one->klass()->equals(other->klass()) && this_one->_interfaces->eq(other->_interfaces);
5915 }
5916
5917 bool TypeInstKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const {
5918 return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
5919 }
5920
5921 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
5922 static_assert(std::is_base_of<T2, T1>::value, "");
5923 if (!this_one->is_loaded() || !other->is_loaded()) {
5924 return true;
5925 }
5926
5927 if (this_one->is_array_type(other)) {
5928 return !this_exact && this_one->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces->contains(this_one->_interfaces);
5929 }
5930
5931 assert(this_one->is_instance_type(other), "unsupported");
5932
5933 if (this_exact && other_exact) {
5934 return this_one->is_java_subtype_of(other);
5935 }
5936
5937 if (!this_one->klass()->is_subtype_of(other->klass()) && !other->klass()->is_subtype_of(this_one->klass())) {
5938 return false;
5939 }
5940
5941 if (this_exact) {
5942 return this_one->klass()->is_subtype_of(other->klass()) && this_one->_interfaces->contains(other->_interfaces);
5943 }
5944
5945 return true;
5946 }
5947
5948 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
5949 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
5950 }
5951
5952 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const {
5953 if (!UseUniqueSubclasses) {
5954 return this;
5955 }
5956 ciKlass* k = klass();
5957 Compile* C = Compile::current();
5958 Dependencies* deps = C->dependencies();
5959 assert((deps != nullptr) == (C->method() != nullptr && C->method()->code_size() > 0), "sanity");
5960 const TypeInterfaces* interfaces = _interfaces;
5961 if (k->is_loaded()) {
5962 ciInstanceKlass* ik = k->as_instance_klass();
5963 bool klass_is_exact = ik->is_final();
5964 if (!klass_is_exact &&
5965 deps != nullptr) {
5966 ciInstanceKlass* sub = ik->unique_concrete_subklass();
5967 if (sub != nullptr) {
5968 if (_interfaces->eq(sub)) {
5969 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5970 k = ik = sub;
5971 klass_is_exact = sub->is_final();
5972 return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
5973 }
5974 }
5975 }
5976 }
5977 return this;
5978 }
5979
5980 #ifndef PRODUCT
5981 void TypeInstKlassPtr::dump2(Dict& d, uint depth, outputStream* st) const {
5982 st->print("instklassptr:");
5983 klass()->print_name_on(st);
5984 _interfaces->dump(st);
5985 st->print(":%s", ptr_msg[_ptr]);
5986 dump_offset(st);
5987 }
5988 #endif // PRODUCT
5989
5990 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) {
5991 return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons();
5992 }
5993
5994 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) {
5995 if (k->is_obj_array_klass()) {
5996 // Element is an object array. Recursively call ourself.
5997 ciKlass* eklass = k->as_obj_array_klass()->element_klass();
5998 const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
5999 return TypeAryKlassPtr::make(ptr, etype, nullptr, offset);
6000 } else if (k->is_type_array_klass()) {
6001 // Element is an typeArray
6002 const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
6003 return TypeAryKlassPtr::make(ptr, etype, k, offset);
6004 } else {
6005 ShouldNotReachHere();
6006 return nullptr;
6007 }
6008 }
6009
6010 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
6011 return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling);
6012 }
6013
6014 //------------------------------eq---------------------------------------------
6015 // Structural equality check for Type representations
6016 bool TypeAryKlassPtr::eq(const Type *t) const {
6017 const TypeAryKlassPtr *p = t->is_aryklassptr();
6018 return
6019 _elem == p->_elem && // Check array
6020 TypeKlassPtr::eq(p); // Check sub-parts
6021 }
6022
6023 //------------------------------hash-------------------------------------------
6024 // Type-specific hashing function.
6025 uint TypeAryKlassPtr::hash(void) const {
6026 return (uint)(uintptr_t)_elem + TypeKlassPtr::hash();
6027 }
6028
6029 //----------------------compute_klass------------------------------------------
6030 // Compute the defining klass for this class
6031 ciKlass* TypeAryPtr::compute_klass() const {
6032 // Compute _klass based on element type.
6033 ciKlass* k_ary = nullptr;
6034 const TypeInstPtr *tinst;
6035 const TypeAryPtr *tary;
6036 const Type* el = elem();
6037 if (el->isa_narrowoop()) {
6038 el = el->make_ptr();
6039 }
6040
6041 // Get element klass
6042 if ((tinst = el->isa_instptr()) != nullptr) {
6043 // Leave k_ary at null.
6044 } else if ((tary = el->isa_aryptr()) != nullptr) {
6045 // Leave k_ary at null.
6046 } else if ((el->base() == Type::Top) ||
6047 (el->base() == Type::Bottom)) {
6048 // element type of Bottom occurs from meet of basic type
6049 // and object; Top occurs when doing join on Bottom.
6050 // Leave k_ary at null.
6051 } else {
6052 assert(!el->isa_int(), "integral arrays must be pre-equipped with a class");
6053 // Compute array klass directly from basic type
6054 k_ary = ciTypeArrayKlass::make(el->basic_type());
6055 }
6056 return k_ary;
6057 }
6058
6059 //------------------------------klass------------------------------------------
6060 // Return the defining klass for this class
6061 ciKlass* TypeAryPtr::klass() const {
6062 if( _klass ) return _klass; // Return cached value, if possible
6063
6064 // Oops, need to compute _klass and cache it
6065 ciKlass* k_ary = compute_klass();
6066
6067 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
6068 // The _klass field acts as a cache of the underlying
6069 // ciKlass for this array type. In order to set the field,
6070 // we need to cast away const-ness.
6071 //
6072 // IMPORTANT NOTE: we *never* set the _klass field for the
6073 // type TypeAryPtr::OOPS. This Type is shared between all
6074 // active compilations. However, the ciKlass which represents
6075 // this Type is *not* shared between compilations, so caching
6076 // this value would result in fetching a dangling pointer.
6077 //
6078 // Recomputing the underlying ciKlass for each request is
6079 // a bit less efficient than caching, but calls to
6080 // TypeAryPtr::OOPS->klass() are not common enough to matter.
6081 ((TypeAryPtr*)this)->_klass = k_ary;
6082 }
6083 return k_ary;
6084 }
6085
6086 // Is there a single ciKlass* that can represent that type?
6087 ciKlass* TypeAryPtr::exact_klass_helper() const {
6088 if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6089 ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6090 if (k == nullptr) {
6091 return nullptr;
6092 }
6093 k = ciObjArrayKlass::make(k);
6094 return k;
6095 }
6096
6097 return klass();
6098 }
6099
6100 const Type* TypeAryPtr::base_element_type(int& dims) const {
6101 const Type* elem = this->elem();
6102 dims = 1;
6103 while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6104 elem = elem->make_ptr()->is_aryptr()->elem();
6105 dims++;
6106 }
6107 return elem;
6108 }
6109
6110 //------------------------------add_offset-------------------------------------
6111 // Access internals of klass object
6112 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6113 return make(_ptr, elem(), klass(), xadd_offset(offset));
6114 }
6115
6116 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6117 return make(_ptr, elem(), klass(), offset);
6118 }
6119
6120 //------------------------------cast_to_ptr_type-------------------------------
6121 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6122 assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6123 if (ptr == _ptr) return this;
6124 return make(ptr, elem(), _klass, _offset);
6125 }
6126
6127 bool TypeAryKlassPtr::must_be_exact() const {
6128 if (_elem == Type::BOTTOM) return false;
6129 if (_elem == Type::TOP ) return false;
6130 const TypeKlassPtr* tk = _elem->isa_klassptr();
6131 if (!tk) return true; // a primitive type, like int
6132 return tk->must_be_exact();
6133 }
6134
6135
6136 //-----------------------------cast_to_exactness-------------------------------
6137 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6138 if (must_be_exact()) return this; // cannot clear xk
6139 ciKlass* k = _klass;
6140 const Type* elem = this->elem();
6141 if (elem->isa_klassptr() && !klass_is_exact) {
6142 elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6143 }
6144 return make(klass_is_exact ? Constant : NotNull, elem, k, _offset);
6145 }
6146
6147
6148 //-----------------------------as_instance_type--------------------------------
6149 // Corresponding type for an instance of the given class.
6150 // It will be NotNull, and exact if and only if the klass type is exact.
6151 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6152 ciKlass* k = klass();
6153 bool xk = klass_is_exact();
6154 const Type* el = nullptr;
6155 if (elem()->isa_klassptr()) {
6156 el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6157 k = nullptr;
6158 } else {
6159 el = elem();
6160 }
6161 return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0);
6162 }
6163
6164
6165 //------------------------------xmeet------------------------------------------
6166 // Compute the MEET of two types, return a new Type object.
6167 const Type *TypeAryKlassPtr::xmeet( const Type *t ) const {
6168 // Perform a fast test for common case; meeting the same types together.
6169 if( this == t ) return this; // Meeting same type-rep?
6170
6171 // Current "this->_base" is Pointer
6172 switch (t->base()) { // switch on original type
6173
6174 case Int: // Mixing ints & oops happens when javac
6175 case Long: // reuses local variables
6176 case HalfFloatTop:
6177 case HalfFloatCon:
6178 case HalfFloatBot:
6179 case FloatTop:
6180 case FloatCon:
6181 case FloatBot:
6182 case DoubleTop:
6183 case DoubleCon:
6184 case DoubleBot:
6185 case NarrowOop:
6186 case NarrowKlass:
6187 case Bottom: // Ye Olde Default
6188 return Type::BOTTOM;
6189 case Top:
6190 return this;
6191
6192 default: // All else is a mistake
6193 typerr(t);
6194
6195 case AnyPtr: { // Meeting to AnyPtrs
6196 // Found an AnyPtr type vs self-KlassPtr type
6197 const TypePtr *tp = t->is_ptr();
6198 int offset = meet_offset(tp->offset());
6199 PTR ptr = meet_ptr(tp->ptr());
6200 switch (tp->ptr()) {
6201 case TopPTR:
6202 return this;
6203 case Null:
6204 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6205 case AnyNull:
6206 return make( ptr, _elem, klass(), offset );
6207 case BotPTR:
6208 case NotNull:
6209 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6210 default: typerr(t);
6211 }
6212 }
6213
6214 case RawPtr:
6215 case MetadataPtr:
6216 case OopPtr:
6217 case AryPtr: // Meet with AryPtr
6218 case InstPtr: // Meet with InstPtr
6219 return TypePtr::BOTTOM;
6220
6221 //
6222 // A-top }
6223 // / | \ } Tops
6224 // B-top A-any C-top }
6225 // | / | \ | } Any-nulls
6226 // B-any | C-any }
6227 // | | |
6228 // B-con A-con C-con } constants; not comparable across classes
6229 // | | |
6230 // B-not | C-not }
6231 // | \ | / | } not-nulls
6232 // B-bot A-not C-bot }
6233 // \ | / } Bottoms
6234 // A-bot }
6235 //
6236
6237 case AryKlassPtr: { // Meet two KlassPtr types
6238 const TypeAryKlassPtr *tap = t->is_aryklassptr();
6239 int off = meet_offset(tap->offset());
6240 const Type* elem = _elem->meet(tap->_elem);
6241
6242 PTR ptr = meet_ptr(tap->ptr());
6243 ciKlass* res_klass = nullptr;
6244 bool res_xk = false;
6245 meet_aryptr(ptr, elem, this, tap, res_klass, res_xk);
6246 assert(res_xk == (ptr == Constant), "");
6247 return make(ptr, elem, res_klass, off);
6248 } // End of case KlassPtr
6249 case InstKlassPtr: {
6250 const TypeInstKlassPtr *tp = t->is_instklassptr();
6251 int offset = meet_offset(tp->offset());
6252 PTR ptr = meet_ptr(tp->ptr());
6253 const TypeInterfaces* interfaces = meet_interfaces(tp);
6254 const TypeInterfaces* tp_interfaces = tp->_interfaces;
6255 const TypeInterfaces* this_interfaces = _interfaces;
6256
6257 switch (ptr) {
6258 case TopPTR:
6259 case AnyNull: // Fall 'down' to dual of object klass
6260 // For instances when a subclass meets a superclass we fall
6261 // below the centerline when the superclass is exact. We need to
6262 // do the same here.
6263 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6264 !tp->klass_is_exact()) {
6265 return TypeAryKlassPtr::make(ptr, _elem, _klass, offset);
6266 } else {
6267 // cannot subclass, so the meet has to fall badly below the centerline
6268 ptr = NotNull;
6269 interfaces = this_interfaces->intersection_with(tp->_interfaces);
6270 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6271 }
6272 case Constant:
6273 case NotNull:
6274 case BotPTR: // Fall down to object klass
6275 // LCA is object_klass, but if we subclass from the top we can do better
6276 if (above_centerline(tp->ptr())) {
6277 // If 'tp' is above the centerline and it is Object class
6278 // then we can subclass in the Java class hierarchy.
6279 // For instances when a subclass meets a superclass we fall
6280 // below the centerline when the superclass is exact. We need
6281 // to do the same here.
6282 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces->contains(tp_interfaces) &&
6283 !tp->klass_is_exact()) {
6284 // that is, my array type is a subtype of 'tp' klass
6285 return make(ptr, _elem, _klass, offset);
6286 }
6287 }
6288 // The other case cannot happen, since t cannot be a subtype of an array.
6289 // The meet falls down to Object class below centerline.
6290 if (ptr == Constant)
6291 ptr = NotNull;
6292 interfaces = this_interfaces->intersection_with(tp_interfaces);
6293 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6294 default: typerr(t);
6295 }
6296 }
6297
6298 } // End of switch
6299 return this; // Return the double constant
6300 }
6301
6302 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6303 static_assert(std::is_base_of<T2, T1>::value, "");
6304
6305 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6306 return true;
6307 }
6308
6309 int dummy;
6310 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6311
6312 if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6313 return false;
6314 }
6315
6316 if (this_one->is_instance_type(other)) {
6317 return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces->contains(other->_interfaces) &&
6318 other_exact;
6319 }
6320
6321 assert(this_one->is_array_type(other), "");
6322 const T1* other_ary = this_one->is_array_type(other);
6323 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6324 if (other_top_or_bottom) {
6325 return false;
6326 }
6327
6328 const TypePtr* other_elem = other_ary->elem()->make_ptr();
6329 const TypePtr* this_elem = this_one->elem()->make_ptr();
6330 if (this_elem != nullptr && other_elem != nullptr) {
6331 return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6332 }
6333 if (this_elem == nullptr && other_elem == nullptr) {
6334 return this_one->klass()->is_subtype_of(other->klass());
6335 }
6336 return false;
6337 }
6338
6339 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6340 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6341 }
6342
6343 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6344 static_assert(std::is_base_of<T2, T1>::value, "");
6345
6346 int dummy;
6347 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6348
6349 if (!this_one->is_array_type(other) ||
6350 !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6351 return false;
6352 }
6353 const T1* other_ary = this_one->is_array_type(other);
6354 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6355
6356 if (other_top_or_bottom) {
6357 return false;
6358 }
6359
6360 const TypePtr* other_elem = other_ary->elem()->make_ptr();
6361 const TypePtr* this_elem = this_one->elem()->make_ptr();
6362 if (other_elem != nullptr && this_elem != nullptr) {
6363 return this_one->is_reference_type(this_elem)->is_same_java_type_as(this_one->is_reference_type(other_elem));
6364 }
6365 if (other_elem == nullptr && this_elem == nullptr) {
6366 return this_one->klass()->equals(other->klass());
6367 }
6368 return false;
6369 }
6370
6371 bool TypeAryKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const {
6372 return TypePtr::is_same_java_type_as_helper_for_array(this, other);
6373 }
6374
6375 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6376 static_assert(std::is_base_of<T2, T1>::value, "");
6377 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces->empty() && other_exact) {
6378 return true;
6379 }
6380 if (!this_one->is_loaded() || !other->is_loaded()) {
6381 return true;
6382 }
6383 if (this_one->is_instance_type(other)) {
6384 return other->klass()->equals(ciEnv::current()->Object_klass()) &&
6385 this_one->_interfaces->contains(other->_interfaces);
6386 }
6387
6388 int dummy;
6389 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6390 if (this_top_or_bottom) {
6391 return true;
6392 }
6393
6394 assert(this_one->is_array_type(other), "");
6395
6396 const T1* other_ary = this_one->is_array_type(other);
6397 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6398 if (other_top_or_bottom) {
6399 return true;
6400 }
6401 if (this_exact && other_exact) {
6402 return this_one->is_java_subtype_of(other);
6403 }
6404
6405 const TypePtr* this_elem = this_one->elem()->make_ptr();
6406 const TypePtr* other_elem = other_ary->elem()->make_ptr();
6407 if (other_elem != nullptr && this_elem != nullptr) {
6408 return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6409 }
6410 if (other_elem == nullptr && this_elem == nullptr) {
6411 return this_one->klass()->is_subtype_of(other->klass());
6412 }
6413 return false;
6414 }
6415
6416 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6417 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6418 }
6419
6420 //------------------------------xdual------------------------------------------
6421 // Dual: compute field-by-field dual
6422 const Type *TypeAryKlassPtr::xdual() const {
6423 return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset());
6424 }
6425
6426 // Is there a single ciKlass* that can represent that type?
6427 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6428 if (elem()->isa_klassptr()) {
6429 ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6430 if (k == nullptr) {
6431 return nullptr;
6432 }
6433 k = ciObjArrayKlass::make(k);
6434 return k;
6435 }
6436
6437 return klass();
6438 }
6439
6440 ciKlass* TypeAryKlassPtr::klass() const {
6441 if (_klass != nullptr) {
6442 return _klass;
6443 }
6444 ciKlass* k = nullptr;
6445 if (elem()->isa_klassptr()) {
6446 // leave null
6447 } else if ((elem()->base() == Type::Top) ||
6448 (elem()->base() == Type::Bottom)) {
6449 } else {
6450 k = ciTypeArrayKlass::make(elem()->basic_type());
6451 ((TypeAryKlassPtr*)this)->_klass = k;
6452 }
6453 return k;
6454 }
6455
6456 //------------------------------dump2------------------------------------------
6457 // Dump Klass Type
6458 #ifndef PRODUCT
6459 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
6460 st->print("aryklassptr:[");
6461 _elem->dump2(d, depth, st);
6462 _interfaces->dump(st);
6463 st->print(":%s", ptr_msg[_ptr]);
6464 dump_offset(st);
6465 }
6466 #endif
6467
6468 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
6469 const Type* elem = this->elem();
6470 dims = 1;
6471 while (elem->isa_aryklassptr()) {
6472 elem = elem->is_aryklassptr()->elem();
6473 dims++;
6474 }
6475 return elem;
6476 }
6477
6478 //=============================================================================
6479 // Convenience common pre-built types.
6480
6481 //------------------------------make-------------------------------------------
6482 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
6483 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
6484 }
6485
6486 //------------------------------make-------------------------------------------
6487 const TypeFunc *TypeFunc::make(ciMethod* method) {
6488 Compile* C = Compile::current();
6489 const TypeFunc* tf = C->last_tf(method); // check cache
6490 if (tf != nullptr) return tf; // The hit rate here is almost 50%.
6491 const TypeTuple *domain;
6492 if (method->is_static()) {
6493 domain = TypeTuple::make_domain(nullptr, method->signature(), ignore_interfaces);
6494 } else {
6495 domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces);
6496 }
6497 const TypeTuple *range = TypeTuple::make_range(method->signature(), ignore_interfaces);
6498 tf = TypeFunc::make(domain, range);
6499 C->set_last_tf(method, tf); // fill cache
6500 return tf;
6501 }
6502
6503 //------------------------------meet-------------------------------------------
6504 // Compute the MEET of two types. It returns a new Type object.
6505 const Type *TypeFunc::xmeet( const Type *t ) const {
6506 // Perform a fast test for common case; meeting the same types together.
6507 if( this == t ) return this; // Meeting same type-rep?
6508
6509 // Current "this->_base" is Func
6510 switch (t->base()) { // switch on original type
6511
6512 case Bottom: // Ye Olde Default
6513 return t;
6514
6515 default: // All else is a mistake
6516 typerr(t);
6517
6518 case Top:
6519 break;
6520 }
6521 return this; // Return the double constant
6522 }
6523
6524 //------------------------------xdual------------------------------------------
6525 // Dual: compute field-by-field dual
6526 const Type *TypeFunc::xdual() const {
6527 return this;
6528 }
6529
6530 //------------------------------eq---------------------------------------------
6531 // Structural equality check for Type representations
6532 bool TypeFunc::eq( const Type *t ) const {
6533 const TypeFunc *a = (const TypeFunc*)t;
6534 return _domain == a->_domain &&
6535 _range == a->_range;
6536 }
6537
6538 //------------------------------hash-------------------------------------------
6539 // Type-specific hashing function.
6540 uint TypeFunc::hash(void) const {
6541 return (uint)(uintptr_t)_domain + (uint)(uintptr_t)_range;
6542 }
6543
6544 //------------------------------dump2------------------------------------------
6545 // Dump Function Type
6546 #ifndef PRODUCT
6547 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
6548 if( _range->cnt() <= Parms )
6549 st->print("void");
6550 else {
6551 uint i;
6552 for (i = Parms; i < _range->cnt()-1; i++) {
6553 _range->field_at(i)->dump2(d,depth,st);
6554 st->print("/");
6555 }
6556 _range->field_at(i)->dump2(d,depth,st);
6557 }
6558 st->print(" ");
6559 st->print("( ");
6560 if( !depth || d[this] ) { // Check for recursive dump
6561 st->print("...)");
6562 return;
6563 }
6564 d.Insert((void*)this,(void*)this); // Stop recursion
6565 if (Parms < _domain->cnt())
6566 _domain->field_at(Parms)->dump2(d,depth-1,st);
6567 for (uint i = Parms+1; i < _domain->cnt(); i++) {
6568 st->print(", ");
6569 _domain->field_at(i)->dump2(d,depth-1,st);
6570 }
6571 st->print(" )");
6572 }
6573 #endif
6574
6575 //------------------------------singleton--------------------------------------
6576 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
6577 // constants (Ldi nodes). Singletons are integer, float or double constants
6578 // or a single symbol.
6579 bool TypeFunc::singleton(void) const {
6580 return false; // Never a singleton
6581 }
6582
6583 bool TypeFunc::empty(void) const {
6584 return false; // Never empty
6585 }
6586
6587
6588 BasicType TypeFunc::return_type() const{
6589 if (range()->cnt() == TypeFunc::Parms) {
6590 return T_VOID;
6591 }
6592 return range()->field_at(TypeFunc::Parms)->basic_type();
6593 }