1 /* 2 * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciMethodData.hpp" 27 #include "ci/ciTypeFlow.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "classfile/symbolTable.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "libadt/dict.hpp" 32 #include "memory/oopFactory.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/instanceKlass.hpp" 35 #include "oops/instanceMirrorKlass.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "oops/typeArrayKlass.hpp" 38 #include "opto/matcher.hpp" 39 #include "opto/node.hpp" 40 #include "opto/opcodes.hpp" 41 #include "opto/type.hpp" 42 #include "utilities/powerOfTwo.hpp" 43 #include "utilities/stringUtils.hpp" 44 45 // Portions of code courtesy of Clifford Click 46 47 // Optimization - Graph Style 48 49 // Dictionary of types shared among compilations. 50 Dict* Type::_shared_type_dict = NULL; 51 52 // Array which maps compiler types to Basic Types 53 const Type::TypeInfo Type::_type_info[Type::lastype] = { 54 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad 55 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control 56 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top 57 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int 58 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long 59 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half 60 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop 61 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass 62 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple 63 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array 64 65 #if defined(PPC64) 66 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 67 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 68 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS 69 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD 70 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX 71 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY 72 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ 73 #elif defined(S390) 74 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 75 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 76 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS 77 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD 78 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX 79 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY 80 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ 81 #else // all other 82 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 83 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 84 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS 85 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD 86 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX 87 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY 88 { Bad, T_ILLEGAL, "vectorz:", false, Op_VecZ, relocInfo::none }, // VectorZ 89 #endif 90 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr 91 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr 92 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr 93 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr 94 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr 95 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr 96 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr 97 { Bad, T_METADATA, "instklass:", false, Op_RegP, relocInfo::metadata_type }, // InstKlassPtr 98 { Bad, T_METADATA, "aryklass:", false, Op_RegP, relocInfo::metadata_type }, // AryKlassPtr 99 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function 100 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio 101 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address 102 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory 103 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop 104 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon 105 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot 106 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop 107 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon 108 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot 109 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom 110 }; 111 112 // Map ideal registers (machine types) to ideal types 113 const Type *Type::mreg2type[_last_machine_leaf]; 114 115 // Map basic types to canonical Type* pointers. 116 const Type* Type:: _const_basic_type[T_CONFLICT+1]; 117 118 // Map basic types to constant-zero Types. 119 const Type* Type:: _zero_type[T_CONFLICT+1]; 120 121 // Map basic types to array-body alias types. 122 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1]; 123 124 //============================================================================= 125 // Convenience common pre-built types. 126 const Type *Type::ABIO; // State-of-machine only 127 const Type *Type::BOTTOM; // All values 128 const Type *Type::CONTROL; // Control only 129 const Type *Type::DOUBLE; // All doubles 130 const Type *Type::FLOAT; // All floats 131 const Type *Type::HALF; // Placeholder half of doublewide type 132 const Type *Type::MEMORY; // Abstract store only 133 const Type *Type::RETURN_ADDRESS; 134 const Type *Type::TOP; // No values in set 135 136 //------------------------------get_const_type--------------------------- 137 const Type* Type::get_const_type(ciType* type) { 138 if (type == NULL) { 139 return NULL; 140 } else if (type->is_primitive_type()) { 141 return get_const_basic_type(type->basic_type()); 142 } else { 143 return TypeOopPtr::make_from_klass(type->as_klass()); 144 } 145 } 146 147 //---------------------------array_element_basic_type--------------------------------- 148 // Mapping to the array element's basic type. 149 BasicType Type::array_element_basic_type() const { 150 BasicType bt = basic_type(); 151 if (bt == T_INT) { 152 if (this == TypeInt::INT) return T_INT; 153 if (this == TypeInt::CHAR) return T_CHAR; 154 if (this == TypeInt::BYTE) return T_BYTE; 155 if (this == TypeInt::BOOL) return T_BOOLEAN; 156 if (this == TypeInt::SHORT) return T_SHORT; 157 return T_VOID; 158 } 159 return bt; 160 } 161 162 // For two instance arrays of same dimension, return the base element types. 163 // Otherwise or if the arrays have different dimensions, return NULL. 164 void Type::get_arrays_base_elements(const Type *a1, const Type *a2, 165 const TypeInstPtr **e1, const TypeInstPtr **e2) { 166 167 if (e1) *e1 = NULL; 168 if (e2) *e2 = NULL; 169 const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr(); 170 const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr(); 171 172 if (a1tap != NULL && a2tap != NULL) { 173 // Handle multidimensional arrays 174 const TypePtr* a1tp = a1tap->elem()->make_ptr(); 175 const TypePtr* a2tp = a2tap->elem()->make_ptr(); 176 while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) { 177 a1tap = a1tp->is_aryptr(); 178 a2tap = a2tp->is_aryptr(); 179 a1tp = a1tap->elem()->make_ptr(); 180 a2tp = a2tap->elem()->make_ptr(); 181 } 182 if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) { 183 if (e1) *e1 = a1tp->is_instptr(); 184 if (e2) *e2 = a2tp->is_instptr(); 185 } 186 } 187 } 188 189 //---------------------------get_typeflow_type--------------------------------- 190 // Import a type produced by ciTypeFlow. 191 const Type* Type::get_typeflow_type(ciType* type) { 192 switch (type->basic_type()) { 193 194 case ciTypeFlow::StateVector::T_BOTTOM: 195 assert(type == ciTypeFlow::StateVector::bottom_type(), ""); 196 return Type::BOTTOM; 197 198 case ciTypeFlow::StateVector::T_TOP: 199 assert(type == ciTypeFlow::StateVector::top_type(), ""); 200 return Type::TOP; 201 202 case ciTypeFlow::StateVector::T_NULL: 203 assert(type == ciTypeFlow::StateVector::null_type(), ""); 204 return TypePtr::NULL_PTR; 205 206 case ciTypeFlow::StateVector::T_LONG2: 207 // The ciTypeFlow pass pushes a long, then the half. 208 // We do the same. 209 assert(type == ciTypeFlow::StateVector::long2_type(), ""); 210 return TypeInt::TOP; 211 212 case ciTypeFlow::StateVector::T_DOUBLE2: 213 // The ciTypeFlow pass pushes double, then the half. 214 // Our convention is the same. 215 assert(type == ciTypeFlow::StateVector::double2_type(), ""); 216 return Type::TOP; 217 218 case T_ADDRESS: 219 assert(type->is_return_address(), ""); 220 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci()); 221 222 default: 223 // make sure we did not mix up the cases: 224 assert(type != ciTypeFlow::StateVector::bottom_type(), ""); 225 assert(type != ciTypeFlow::StateVector::top_type(), ""); 226 assert(type != ciTypeFlow::StateVector::null_type(), ""); 227 assert(type != ciTypeFlow::StateVector::long2_type(), ""); 228 assert(type != ciTypeFlow::StateVector::double2_type(), ""); 229 assert(!type->is_return_address(), ""); 230 231 return Type::get_const_type(type); 232 } 233 } 234 235 236 //-----------------------make_from_constant------------------------------------ 237 const Type* Type::make_from_constant(ciConstant constant, bool require_constant, 238 int stable_dimension, bool is_narrow_oop, 239 bool is_autobox_cache) { 240 switch (constant.basic_type()) { 241 case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); 242 case T_CHAR: return TypeInt::make(constant.as_char()); 243 case T_BYTE: return TypeInt::make(constant.as_byte()); 244 case T_SHORT: return TypeInt::make(constant.as_short()); 245 case T_INT: return TypeInt::make(constant.as_int()); 246 case T_LONG: return TypeLong::make(constant.as_long()); 247 case T_FLOAT: return TypeF::make(constant.as_float()); 248 case T_DOUBLE: return TypeD::make(constant.as_double()); 249 case T_ARRAY: 250 case T_OBJECT: { 251 const Type* con_type = NULL; 252 ciObject* oop_constant = constant.as_object(); 253 if (oop_constant->is_null_object()) { 254 con_type = Type::get_zero_type(T_OBJECT); 255 } else { 256 guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed"); 257 con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant); 258 if (Compile::current()->eliminate_boxing() && is_autobox_cache) { 259 con_type = con_type->is_aryptr()->cast_to_autobox_cache(); 260 } 261 if (stable_dimension > 0) { 262 assert(FoldStableValues, "sanity"); 263 assert(!con_type->is_zero_type(), "default value for stable field"); 264 con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension); 265 } 266 } 267 if (is_narrow_oop) { 268 con_type = con_type->make_narrowoop(); 269 } 270 return con_type; 271 } 272 case T_ILLEGAL: 273 // Invalid ciConstant returned due to OutOfMemoryError in the CI 274 assert(Compile::current()->env()->failing(), "otherwise should not see this"); 275 return NULL; 276 default: 277 // Fall through to failure 278 return NULL; 279 } 280 } 281 282 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) { 283 BasicType conbt = con.basic_type(); 284 switch (conbt) { 285 case T_BOOLEAN: conbt = T_BYTE; break; 286 case T_ARRAY: conbt = T_OBJECT; break; 287 default: break; 288 } 289 switch (loadbt) { 290 case T_BOOLEAN: loadbt = T_BYTE; break; 291 case T_NARROWOOP: loadbt = T_OBJECT; break; 292 case T_ARRAY: loadbt = T_OBJECT; break; 293 case T_ADDRESS: loadbt = T_OBJECT; break; 294 default: break; 295 } 296 if (conbt == loadbt) { 297 if (is_unsigned && conbt == T_BYTE) { 298 // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE). 299 return ciConstant(T_INT, con.as_int() & 0xFF); 300 } else { 301 return con; 302 } 303 } 304 if (conbt == T_SHORT && loadbt == T_CHAR) { 305 // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR). 306 return ciConstant(T_INT, con.as_int() & 0xFFFF); 307 } 308 return ciConstant(); // T_ILLEGAL 309 } 310 311 // Try to constant-fold a stable array element. 312 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension, 313 BasicType loadbt, bool is_unsigned_load) { 314 // Decode the results of GraphKit::array_element_address. 315 ciConstant element_value = array->element_value_by_offset(off); 316 if (element_value.basic_type() == T_ILLEGAL) { 317 return NULL; // wrong offset 318 } 319 ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load); 320 321 assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d", 322 type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load); 323 324 if (con.is_valid() && // not a mismatched access 325 !con.is_null_or_zero()) { // not a default value 326 bool is_narrow_oop = (loadbt == T_NARROWOOP); 327 return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false); 328 } 329 return NULL; 330 } 331 332 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) { 333 ciField* field; 334 ciType* type = holder->java_mirror_type(); 335 if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) { 336 // Static field 337 field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true); 338 } else { 339 // Instance field 340 field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false); 341 } 342 if (field == NULL) { 343 return NULL; // Wrong offset 344 } 345 return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load); 346 } 347 348 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder, 349 BasicType loadbt, bool is_unsigned_load) { 350 if (!field->is_constant()) { 351 return NULL; // Non-constant field 352 } 353 ciConstant field_value; 354 if (field->is_static()) { 355 // final static field 356 field_value = field->constant_value(); 357 } else if (holder != NULL) { 358 // final or stable non-static field 359 // Treat final non-static fields of trusted classes (classes in 360 // java.lang.invoke and sun.invoke packages and subpackages) as 361 // compile time constants. 362 field_value = field->constant_value_of(holder); 363 } 364 if (!field_value.is_valid()) { 365 return NULL; // Not a constant 366 } 367 368 ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load); 369 370 assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d", 371 type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load); 372 373 bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass(); 374 int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0); 375 bool is_narrow_oop = (loadbt == T_NARROWOOP); 376 377 const Type* con_type = make_from_constant(con, /*require_constant=*/ true, 378 stable_dimension, is_narrow_oop, 379 field->is_autobox_cache()); 380 if (con_type != NULL && field->is_call_site_target()) { 381 ciCallSite* call_site = holder->as_call_site(); 382 if (!call_site->is_fully_initialized_constant_call_site()) { 383 ciMethodHandle* target = con.as_object()->as_method_handle(); 384 Compile::current()->dependencies()->assert_call_site_target_value(call_site, target); 385 } 386 } 387 return con_type; 388 } 389 390 //------------------------------make------------------------------------------- 391 // Create a simple Type, with default empty symbol sets. Then hashcons it 392 // and look for an existing copy in the type dictionary. 393 const Type *Type::make( enum TYPES t ) { 394 return (new Type(t))->hashcons(); 395 } 396 397 //------------------------------cmp-------------------------------------------- 398 int Type::cmp( const Type *const t1, const Type *const t2 ) { 399 if( t1->_base != t2->_base ) 400 return 1; // Missed badly 401 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive"); 402 return !t1->eq(t2); // Return ZERO if equal 403 } 404 405 const Type* Type::maybe_remove_speculative(bool include_speculative) const { 406 if (!include_speculative) { 407 return remove_speculative(); 408 } 409 return this; 410 } 411 412 //------------------------------hash------------------------------------------- 413 int Type::uhash( const Type *const t ) { 414 return t->hash(); 415 } 416 417 #define SMALLINT ((juint)3) // a value too insignificant to consider widening 418 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite 419 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite 420 421 //--------------------------Initialize_shared---------------------------------- 422 void Type::Initialize_shared(Compile* current) { 423 // This method does not need to be locked because the first system 424 // compilations (stub compilations) occur serially. If they are 425 // changed to proceed in parallel, then this section will need 426 // locking. 427 428 Arena* save = current->type_arena(); 429 Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler); 430 431 current->set_type_arena(shared_type_arena); 432 _shared_type_dict = 433 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash, 434 shared_type_arena, 128 ); 435 current->set_type_dict(_shared_type_dict); 436 437 // Make shared pre-built types. 438 CONTROL = make(Control); // Control only 439 TOP = make(Top); // No values in set 440 MEMORY = make(Memory); // Abstract store only 441 ABIO = make(Abio); // State-of-machine only 442 RETURN_ADDRESS=make(Return_Address); 443 FLOAT = make(FloatBot); // All floats 444 DOUBLE = make(DoubleBot); // All doubles 445 BOTTOM = make(Bottom); // Everything 446 HALF = make(Half); // Placeholder half of doublewide type 447 448 TypeF::MAX = TypeF::make(max_jfloat); // Float MAX 449 TypeF::MIN = TypeF::make(min_jfloat); // Float MIN 450 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero) 451 TypeF::ONE = TypeF::make(1.0); // Float 1 452 TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F)); 453 TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F)); 454 455 TypeD::MAX = TypeD::make(max_jdouble); // Double MAX 456 TypeD::MIN = TypeD::make(min_jdouble); // Double MIN 457 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero) 458 TypeD::ONE = TypeD::make(1.0); // Double 1 459 TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D)); 460 TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D)); 461 462 TypeInt::MAX = TypeInt::make(max_jint); // Int MAX 463 TypeInt::MIN = TypeInt::make(min_jint); // Int MIN 464 TypeInt::MINUS_1 = TypeInt::make(-1); // -1 465 TypeInt::ZERO = TypeInt::make( 0); // 0 466 TypeInt::ONE = TypeInt::make( 1); // 1 467 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE. 468 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes 469 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1 470 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE 471 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO 472 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin); 473 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL 474 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes 475 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes 476 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars 477 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts 478 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values 479 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values 480 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers 481 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range 482 TypeInt::TYPE_DOMAIN = TypeInt::INT; 483 // CmpL is overloaded both as the bytecode computation returning 484 // a trinary (-1,0,+1) integer result AND as an efficient long 485 // compare returning optimizer ideal-type flags. 486 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" ); 487 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" ); 488 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" ); 489 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" ); 490 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small"); 491 492 TypeLong::MAX = TypeLong::make(max_jlong); // Long MAX 493 TypeLong::MIN = TypeLong::make(min_jlong); // Long MIN 494 TypeLong::MINUS_1 = TypeLong::make(-1); // -1 495 TypeLong::ZERO = TypeLong::make( 0); // 0 496 TypeLong::ONE = TypeLong::make( 1); // 1 497 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values 498 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers 499 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin); 500 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin); 501 TypeLong::TYPE_DOMAIN = TypeLong::LONG; 502 503 const Type **fboth =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 504 fboth[0] = Type::CONTROL; 505 fboth[1] = Type::CONTROL; 506 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth ); 507 508 const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 509 ffalse[0] = Type::CONTROL; 510 ffalse[1] = Type::TOP; 511 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse ); 512 513 const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 514 fneither[0] = Type::TOP; 515 fneither[1] = Type::TOP; 516 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither ); 517 518 const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 519 ftrue[0] = Type::TOP; 520 ftrue[1] = Type::CONTROL; 521 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue ); 522 523 const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 524 floop[0] = Type::CONTROL; 525 floop[1] = TypeInt::INT; 526 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop ); 527 528 TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0); 529 TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot); 530 TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot); 531 532 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR ); 533 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull ); 534 535 const Type **fmembar = TypeTuple::fields(0); 536 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar); 537 538 const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 539 fsc[0] = TypeInt::CC; 540 fsc[1] = Type::MEMORY; 541 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc); 542 543 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass()); 544 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass()); 545 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass()); 546 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 547 false, 0, oopDesc::mark_offset_in_bytes()); 548 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 549 false, 0, oopDesc::klass_offset_in_bytes()); 550 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot); 551 552 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot); 553 554 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR ); 555 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM ); 556 557 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR ); 558 559 mreg2type[Op_Node] = Type::BOTTOM; 560 mreg2type[Op_Set ] = 0; 561 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM; 562 mreg2type[Op_RegI] = TypeInt::INT; 563 mreg2type[Op_RegP] = TypePtr::BOTTOM; 564 mreg2type[Op_RegF] = Type::FLOAT; 565 mreg2type[Op_RegD] = Type::DOUBLE; 566 mreg2type[Op_RegL] = TypeLong::LONG; 567 mreg2type[Op_RegFlags] = TypeInt::CC; 568 569 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes()); 570 571 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot); 572 573 #ifdef _LP64 574 if (UseCompressedOops) { 575 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop"); 576 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS; 577 } else 578 #endif 579 { 580 // There is no shared klass for Object[]. See note in TypeAryPtr::klass(). 581 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot); 582 } 583 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot); 584 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot); 585 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot); 586 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot); 587 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot); 588 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot); 589 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot); 590 591 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert. 592 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL; 593 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS; 594 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays 595 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES; 596 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array 597 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS; 598 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS; 599 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS; 600 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS; 601 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS; 602 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES; 603 604 TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0); 605 TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0); 606 607 const Type **fi2c = TypeTuple::fields(2); 608 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method* 609 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer 610 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c); 611 612 const Type **intpair = TypeTuple::fields(2); 613 intpair[0] = TypeInt::INT; 614 intpair[1] = TypeInt::INT; 615 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair); 616 617 const Type **longpair = TypeTuple::fields(2); 618 longpair[0] = TypeLong::LONG; 619 longpair[1] = TypeLong::LONG; 620 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair); 621 622 const Type **intccpair = TypeTuple::fields(2); 623 intccpair[0] = TypeInt::INT; 624 intccpair[1] = TypeInt::CC; 625 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair); 626 627 const Type **longccpair = TypeTuple::fields(2); 628 longccpair[0] = TypeLong::LONG; 629 longccpair[1] = TypeInt::CC; 630 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair); 631 632 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM; 633 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM; 634 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL; 635 _const_basic_type[T_CHAR] = TypeInt::CHAR; 636 _const_basic_type[T_BYTE] = TypeInt::BYTE; 637 _const_basic_type[T_SHORT] = TypeInt::SHORT; 638 _const_basic_type[T_INT] = TypeInt::INT; 639 _const_basic_type[T_LONG] = TypeLong::LONG; 640 _const_basic_type[T_FLOAT] = Type::FLOAT; 641 _const_basic_type[T_DOUBLE] = Type::DOUBLE; 642 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM; 643 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays 644 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way 645 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs 646 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not? 647 648 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR; 649 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR; 650 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0 651 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0 652 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0 653 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0 654 _zero_type[T_INT] = TypeInt::ZERO; 655 _zero_type[T_LONG] = TypeLong::ZERO; 656 _zero_type[T_FLOAT] = TypeF::ZERO; 657 _zero_type[T_DOUBLE] = TypeD::ZERO; 658 _zero_type[T_OBJECT] = TypePtr::NULL_PTR; 659 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop 660 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null 661 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all 662 663 // get_zero_type() should not happen for T_CONFLICT 664 _zero_type[T_CONFLICT]= NULL; 665 666 TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(TypeInt::BOOL, MaxVectorSize))->hashcons(); 667 mreg2type[Op_RegVectMask] = TypeVect::VECTMASK; 668 669 if (Matcher::supports_scalable_vector()) { 670 TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE)); 671 } 672 673 // Vector predefined types, it needs initialized _const_basic_type[]. 674 if (Matcher::vector_size_supported(T_BYTE,4)) { 675 TypeVect::VECTS = TypeVect::make(T_BYTE,4); 676 } 677 if (Matcher::vector_size_supported(T_FLOAT,2)) { 678 TypeVect::VECTD = TypeVect::make(T_FLOAT,2); 679 } 680 if (Matcher::vector_size_supported(T_FLOAT,4)) { 681 TypeVect::VECTX = TypeVect::make(T_FLOAT,4); 682 } 683 if (Matcher::vector_size_supported(T_FLOAT,8)) { 684 TypeVect::VECTY = TypeVect::make(T_FLOAT,8); 685 } 686 if (Matcher::vector_size_supported(T_FLOAT,16)) { 687 TypeVect::VECTZ = TypeVect::make(T_FLOAT,16); 688 } 689 690 mreg2type[Op_VecA] = TypeVect::VECTA; 691 mreg2type[Op_VecS] = TypeVect::VECTS; 692 mreg2type[Op_VecD] = TypeVect::VECTD; 693 mreg2type[Op_VecX] = TypeVect::VECTX; 694 mreg2type[Op_VecY] = TypeVect::VECTY; 695 mreg2type[Op_VecZ] = TypeVect::VECTZ; 696 697 // Restore working type arena. 698 current->set_type_arena(save); 699 current->set_type_dict(NULL); 700 } 701 702 //------------------------------Initialize------------------------------------- 703 void Type::Initialize(Compile* current) { 704 assert(current->type_arena() != NULL, "must have created type arena"); 705 706 if (_shared_type_dict == NULL) { 707 Initialize_shared(current); 708 } 709 710 Arena* type_arena = current->type_arena(); 711 712 // Create the hash-cons'ing dictionary with top-level storage allocation 713 Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena); 714 current->set_type_dict(tdic); 715 } 716 717 //------------------------------hashcons--------------------------------------- 718 // Do the hash-cons trick. If the Type already exists in the type table, 719 // delete the current Type and return the existing Type. Otherwise stick the 720 // current Type in the Type table. 721 const Type *Type::hashcons(void) { 722 debug_only(base()); // Check the assertion in Type::base(). 723 // Look up the Type in the Type dictionary 724 Dict *tdic = type_dict(); 725 Type* old = (Type*)(tdic->Insert(this, this, false)); 726 if( old ) { // Pre-existing Type? 727 if( old != this ) // Yes, this guy is not the pre-existing? 728 delete this; // Yes, Nuke this guy 729 assert( old->_dual, "" ); 730 return old; // Return pre-existing 731 } 732 733 // Every type has a dual (to make my lattice symmetric). 734 // Since we just discovered a new Type, compute its dual right now. 735 assert( !_dual, "" ); // No dual yet 736 _dual = xdual(); // Compute the dual 737 if (cmp(this, _dual) == 0) { // Handle self-symmetric 738 if (_dual != this) { 739 delete _dual; 740 _dual = this; 741 } 742 return this; 743 } 744 assert( !_dual->_dual, "" ); // No reverse dual yet 745 assert( !(*tdic)[_dual], "" ); // Dual not in type system either 746 // New Type, insert into Type table 747 tdic->Insert((void*)_dual,(void*)_dual); 748 ((Type*)_dual)->_dual = this; // Finish up being symmetric 749 #ifdef ASSERT 750 Type *dual_dual = (Type*)_dual->xdual(); 751 assert( eq(dual_dual), "xdual(xdual()) should be identity" ); 752 delete dual_dual; 753 #endif 754 return this; // Return new Type 755 } 756 757 //------------------------------eq--------------------------------------------- 758 // Structural equality check for Type representations 759 bool Type::eq( const Type * ) const { 760 return true; // Nothing else can go wrong 761 } 762 763 //------------------------------hash------------------------------------------- 764 // Type-specific hashing function. 765 int Type::hash(void) const { 766 return _base; 767 } 768 769 //------------------------------is_finite-------------------------------------- 770 // Has a finite value 771 bool Type::is_finite() const { 772 return false; 773 } 774 775 //------------------------------is_nan----------------------------------------- 776 // Is not a number (NaN) 777 bool Type::is_nan() const { 778 return false; 779 } 780 781 //----------------------interface_vs_oop--------------------------------------- 782 #ifdef ASSERT 783 bool Type::interface_vs_oop_helper(const Type *t) const { 784 bool result = false; 785 786 const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop 787 const TypePtr* t_ptr = t->make_ptr(); 788 if( this_ptr == NULL || t_ptr == NULL ) 789 return result; 790 791 const TypeInstPtr* this_inst = this_ptr->isa_instptr(); 792 const TypeInstPtr* t_inst = t_ptr->isa_instptr(); 793 if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) { 794 bool this_interface = this_inst->klass()->is_interface(); 795 bool t_interface = t_inst->klass()->is_interface(); 796 result = this_interface ^ t_interface; 797 } 798 799 return result; 800 } 801 802 bool Type::interface_vs_oop(const Type *t) const { 803 if (interface_vs_oop_helper(t)) { 804 return true; 805 } 806 // Now check the speculative parts as well 807 const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL; 808 const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL; 809 if (this_spec != NULL && t_spec != NULL) { 810 if (this_spec->interface_vs_oop_helper(t_spec)) { 811 return true; 812 } 813 return false; 814 } 815 if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) { 816 return true; 817 } 818 if (t_spec != NULL && interface_vs_oop_helper(t_spec)) { 819 return true; 820 } 821 return false; 822 } 823 824 #endif 825 826 void Type::check_symmetrical(const Type* t, const Type* mt) const { 827 #ifdef ASSERT 828 const Type* mt2 = t->xmeet(this); 829 if (mt != mt2) { 830 tty->print_cr("=== Meet Not Commutative ==="); 831 tty->print("t = "); t->dump(); tty->cr(); 832 tty->print("this = "); dump(); tty->cr(); 833 tty->print("t meet this = "); mt2->dump(); tty->cr(); 834 tty->print("this meet t = "); mt->dump(); tty->cr(); 835 fatal("meet not commutative"); 836 } 837 const Type* dual_join = mt->_dual; 838 const Type* t2t = dual_join->xmeet(t->_dual); 839 const Type* t2this = dual_join->xmeet(this->_dual); 840 841 // Interface meet Oop is Not Symmetric: 842 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull 843 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull 844 845 if (!interface_vs_oop(t) && (t2t != t->_dual || t2this != this->_dual)) { 846 tty->print_cr("=== Meet Not Symmetric ==="); 847 tty->print("t = "); t->dump(); tty->cr(); 848 tty->print("this= "); dump(); tty->cr(); 849 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr(); 850 851 tty->print("t_dual= "); t->_dual->dump(); tty->cr(); 852 tty->print("this_dual= "); _dual->dump(); tty->cr(); 853 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr(); 854 855 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr(); 856 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr(); 857 858 fatal("meet not symmetric"); 859 } 860 #endif 861 } 862 863 //------------------------------meet------------------------------------------- 864 // Compute the MEET of two types. NOT virtual. It enforces that meet is 865 // commutative and the lattice is symmetric. 866 const Type *Type::meet_helper(const Type *t, bool include_speculative) const { 867 if (isa_narrowoop() && t->isa_narrowoop()) { 868 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); 869 return result->make_narrowoop(); 870 } 871 if (isa_narrowklass() && t->isa_narrowklass()) { 872 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); 873 return result->make_narrowklass(); 874 } 875 876 const Type *this_t = maybe_remove_speculative(include_speculative); 877 t = t->maybe_remove_speculative(include_speculative); 878 879 const Type *mt = this_t->xmeet(t); 880 #ifdef ASSERT 881 if (isa_narrowoop() || t->isa_narrowoop()) return mt; 882 if (isa_narrowklass() || t->isa_narrowklass()) return mt; 883 Compile* C = Compile::current(); 884 if (!C->_type_verify_symmetry) { 885 return mt; 886 } 887 this_t->check_symmetrical(t, mt); 888 // In the case of an array, computing the meet above, caused the 889 // computation of the meet of the elements which at verification 890 // time caused the computation of the meet of the dual of the 891 // elements. Computing the meet of the dual of the arrays here 892 // causes the meet of the dual of the elements to be computed which 893 // would cause the meet of the dual of the dual of the elements, 894 // that is the meet of the elements already computed above to be 895 // computed. Avoid redundant computations by requesting no 896 // verification. 897 C->_type_verify_symmetry = false; 898 const Type *mt_dual = this_t->_dual->xmeet(t->_dual); 899 this_t->_dual->check_symmetrical(t->_dual, mt_dual); 900 assert(!C->_type_verify_symmetry, "shouldn't have changed"); 901 C->_type_verify_symmetry = true; 902 #endif 903 return mt; 904 } 905 906 //------------------------------xmeet------------------------------------------ 907 // Compute the MEET of two types. It returns a new Type object. 908 const Type *Type::xmeet( const Type *t ) const { 909 // Perform a fast test for common case; meeting the same types together. 910 if( this == t ) return this; // Meeting same type-rep? 911 912 // Meeting TOP with anything? 913 if( _base == Top ) return t; 914 915 // Meeting BOTTOM with anything? 916 if( _base == Bottom ) return BOTTOM; 917 918 // Current "this->_base" is one of: Bad, Multi, Control, Top, 919 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype. 920 switch (t->base()) { // Switch on original type 921 922 // Cut in half the number of cases I must handle. Only need cases for when 923 // the given enum "t->type" is less than or equal to the local enum "type". 924 case FloatCon: 925 case DoubleCon: 926 case Int: 927 case Long: 928 return t->xmeet(this); 929 930 case OopPtr: 931 return t->xmeet(this); 932 933 case InstPtr: 934 return t->xmeet(this); 935 936 case MetadataPtr: 937 case KlassPtr: 938 case InstKlassPtr: 939 case AryKlassPtr: 940 return t->xmeet(this); 941 942 case AryPtr: 943 return t->xmeet(this); 944 945 case NarrowOop: 946 return t->xmeet(this); 947 948 case NarrowKlass: 949 return t->xmeet(this); 950 951 case Bad: // Type check 952 default: // Bogus type not in lattice 953 typerr(t); 954 return Type::BOTTOM; 955 956 case Bottom: // Ye Olde Default 957 return t; 958 959 case FloatTop: 960 if( _base == FloatTop ) return this; 961 case FloatBot: // Float 962 if( _base == FloatBot || _base == FloatTop ) return FLOAT; 963 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM; 964 typerr(t); 965 return Type::BOTTOM; 966 967 case DoubleTop: 968 if( _base == DoubleTop ) return this; 969 case DoubleBot: // Double 970 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE; 971 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM; 972 typerr(t); 973 return Type::BOTTOM; 974 975 // These next few cases must match exactly or it is a compile-time error. 976 case Control: // Control of code 977 case Abio: // State of world outside of program 978 case Memory: 979 if( _base == t->_base ) return this; 980 typerr(t); 981 return Type::BOTTOM; 982 983 case Top: // Top of the lattice 984 return this; 985 } 986 987 // The type is unchanged 988 return this; 989 } 990 991 //-----------------------------filter------------------------------------------ 992 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const { 993 const Type* ft = join_helper(kills, include_speculative); 994 if (ft->empty()) 995 return Type::TOP; // Canonical empty value 996 return ft; 997 } 998 999 //------------------------------xdual------------------------------------------ 1000 const Type *Type::xdual() const { 1001 // Note: the base() accessor asserts the sanity of _base. 1002 assert(_type_info[base()].dual_type != Bad, "implement with v-call"); 1003 return new Type(_type_info[_base].dual_type); 1004 } 1005 1006 //------------------------------has_memory------------------------------------- 1007 bool Type::has_memory() const { 1008 Type::TYPES tx = base(); 1009 if (tx == Memory) return true; 1010 if (tx == Tuple) { 1011 const TypeTuple *t = is_tuple(); 1012 for (uint i=0; i < t->cnt(); i++) { 1013 tx = t->field_at(i)->base(); 1014 if (tx == Memory) return true; 1015 } 1016 } 1017 return false; 1018 } 1019 1020 #ifndef PRODUCT 1021 //------------------------------dump2------------------------------------------ 1022 void Type::dump2( Dict &d, uint depth, outputStream *st ) const { 1023 st->print("%s", _type_info[_base].msg); 1024 } 1025 1026 //------------------------------dump------------------------------------------- 1027 void Type::dump_on(outputStream *st) const { 1028 ResourceMark rm; 1029 Dict d(cmpkey,hashkey); // Stop recursive type dumping 1030 dump2(d,1, st); 1031 if (is_ptr_to_narrowoop()) { 1032 st->print(" [narrow]"); 1033 } else if (is_ptr_to_narrowklass()) { 1034 st->print(" [narrowklass]"); 1035 } 1036 } 1037 1038 //----------------------------------------------------------------------------- 1039 const char* Type::str(const Type* t) { 1040 stringStream ss; 1041 t->dump_on(&ss); 1042 return ss.as_string(); 1043 } 1044 #endif 1045 1046 //------------------------------singleton-------------------------------------- 1047 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1048 // constants (Ldi nodes). Singletons are integer, float or double constants. 1049 bool Type::singleton(void) const { 1050 return _base == Top || _base == Half; 1051 } 1052 1053 //------------------------------empty------------------------------------------ 1054 // TRUE if Type is a type with no values, FALSE otherwise. 1055 bool Type::empty(void) const { 1056 switch (_base) { 1057 case DoubleTop: 1058 case FloatTop: 1059 case Top: 1060 return true; 1061 1062 case Half: 1063 case Abio: 1064 case Return_Address: 1065 case Memory: 1066 case Bottom: 1067 case FloatBot: 1068 case DoubleBot: 1069 return false; // never a singleton, therefore never empty 1070 1071 default: 1072 ShouldNotReachHere(); 1073 return false; 1074 } 1075 } 1076 1077 //------------------------------dump_stats------------------------------------- 1078 // Dump collected statistics to stderr 1079 #ifndef PRODUCT 1080 void Type::dump_stats() { 1081 tty->print("Types made: %d\n", type_dict()->Size()); 1082 } 1083 #endif 1084 1085 //------------------------------category--------------------------------------- 1086 #ifndef PRODUCT 1087 Type::Category Type::category() const { 1088 const TypeTuple* tuple; 1089 switch (base()) { 1090 case Type::Int: 1091 case Type::Long: 1092 case Type::Half: 1093 case Type::NarrowOop: 1094 case Type::NarrowKlass: 1095 case Type::Array: 1096 case Type::VectorA: 1097 case Type::VectorS: 1098 case Type::VectorD: 1099 case Type::VectorX: 1100 case Type::VectorY: 1101 case Type::VectorZ: 1102 case Type::VectorMask: 1103 case Type::AnyPtr: 1104 case Type::RawPtr: 1105 case Type::OopPtr: 1106 case Type::InstPtr: 1107 case Type::AryPtr: 1108 case Type::MetadataPtr: 1109 case Type::KlassPtr: 1110 case Type::InstKlassPtr: 1111 case Type::AryKlassPtr: 1112 case Type::Function: 1113 case Type::Return_Address: 1114 case Type::FloatTop: 1115 case Type::FloatCon: 1116 case Type::FloatBot: 1117 case Type::DoubleTop: 1118 case Type::DoubleCon: 1119 case Type::DoubleBot: 1120 return Category::Data; 1121 case Type::Memory: 1122 return Category::Memory; 1123 case Type::Control: 1124 return Category::Control; 1125 case Type::Top: 1126 case Type::Abio: 1127 case Type::Bottom: 1128 return Category::Other; 1129 case Type::Bad: 1130 case Type::lastype: 1131 return Category::Undef; 1132 case Type::Tuple: 1133 // Recursive case. Return CatMixed if the tuple contains types of 1134 // different categories (e.g. CallStaticJavaNode's type), or the specific 1135 // category if all types are of the same category (e.g. IfNode's type). 1136 tuple = is_tuple(); 1137 if (tuple->cnt() == 0) { 1138 return Category::Undef; 1139 } else { 1140 Category first = tuple->field_at(0)->category(); 1141 for (uint i = 1; i < tuple->cnt(); i++) { 1142 if (tuple->field_at(i)->category() != first) { 1143 return Category::Mixed; 1144 } 1145 } 1146 return first; 1147 } 1148 default: 1149 assert(false, "unmatched base type: all base types must be categorized"); 1150 } 1151 return Category::Undef; 1152 } 1153 #endif 1154 1155 //------------------------------typerr----------------------------------------- 1156 void Type::typerr( const Type *t ) const { 1157 #ifndef PRODUCT 1158 tty->print("\nError mixing types: "); 1159 dump(); 1160 tty->print(" and "); 1161 t->dump(); 1162 tty->print("\n"); 1163 #endif 1164 ShouldNotReachHere(); 1165 } 1166 1167 1168 //============================================================================= 1169 // Convenience common pre-built types. 1170 const TypeF *TypeF::MAX; // Floating point max 1171 const TypeF *TypeF::MIN; // Floating point min 1172 const TypeF *TypeF::ZERO; // Floating point zero 1173 const TypeF *TypeF::ONE; // Floating point one 1174 const TypeF *TypeF::POS_INF; // Floating point positive infinity 1175 const TypeF *TypeF::NEG_INF; // Floating point negative infinity 1176 1177 //------------------------------make------------------------------------------- 1178 // Create a float constant 1179 const TypeF *TypeF::make(float f) { 1180 return (TypeF*)(new TypeF(f))->hashcons(); 1181 } 1182 1183 //------------------------------meet------------------------------------------- 1184 // Compute the MEET of two types. It returns a new Type object. 1185 const Type *TypeF::xmeet( const Type *t ) const { 1186 // Perform a fast test for common case; meeting the same types together. 1187 if( this == t ) return this; // Meeting same type-rep? 1188 1189 // Current "this->_base" is FloatCon 1190 switch (t->base()) { // Switch on original type 1191 case AnyPtr: // Mixing with oops happens when javac 1192 case RawPtr: // reuses local variables 1193 case OopPtr: 1194 case InstPtr: 1195 case AryPtr: 1196 case MetadataPtr: 1197 case KlassPtr: 1198 case InstKlassPtr: 1199 case AryKlassPtr: 1200 case NarrowOop: 1201 case NarrowKlass: 1202 case Int: 1203 case Long: 1204 case DoubleTop: 1205 case DoubleCon: 1206 case DoubleBot: 1207 case Bottom: // Ye Olde Default 1208 return Type::BOTTOM; 1209 1210 case FloatBot: 1211 return t; 1212 1213 default: // All else is a mistake 1214 typerr(t); 1215 1216 case FloatCon: // Float-constant vs Float-constant? 1217 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants? 1218 // must compare bitwise as positive zero, negative zero and NaN have 1219 // all the same representation in C++ 1220 return FLOAT; // Return generic float 1221 // Equal constants 1222 case Top: 1223 case FloatTop: 1224 break; // Return the float constant 1225 } 1226 return this; // Return the float constant 1227 } 1228 1229 //------------------------------xdual------------------------------------------ 1230 // Dual: symmetric 1231 const Type *TypeF::xdual() const { 1232 return this; 1233 } 1234 1235 //------------------------------eq--------------------------------------------- 1236 // Structural equality check for Type representations 1237 bool TypeF::eq(const Type *t) const { 1238 // Bitwise comparison to distinguish between +/-0. These values must be treated 1239 // as different to be consistent with C1 and the interpreter. 1240 return (jint_cast(_f) == jint_cast(t->getf())); 1241 } 1242 1243 //------------------------------hash------------------------------------------- 1244 // Type-specific hashing function. 1245 int TypeF::hash(void) const { 1246 return *(int*)(&_f); 1247 } 1248 1249 //------------------------------is_finite-------------------------------------- 1250 // Has a finite value 1251 bool TypeF::is_finite() const { 1252 return g_isfinite(getf()) != 0; 1253 } 1254 1255 //------------------------------is_nan----------------------------------------- 1256 // Is not a number (NaN) 1257 bool TypeF::is_nan() const { 1258 return g_isnan(getf()) != 0; 1259 } 1260 1261 //------------------------------dump2------------------------------------------ 1262 // Dump float constant Type 1263 #ifndef PRODUCT 1264 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const { 1265 Type::dump2(d,depth, st); 1266 st->print("%f", _f); 1267 } 1268 #endif 1269 1270 //------------------------------singleton-------------------------------------- 1271 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1272 // constants (Ldi nodes). Singletons are integer, float or double constants 1273 // or a single symbol. 1274 bool TypeF::singleton(void) const { 1275 return true; // Always a singleton 1276 } 1277 1278 bool TypeF::empty(void) const { 1279 return false; // always exactly a singleton 1280 } 1281 1282 //============================================================================= 1283 // Convenience common pre-built types. 1284 const TypeD *TypeD::MAX; // Floating point max 1285 const TypeD *TypeD::MIN; // Floating point min 1286 const TypeD *TypeD::ZERO; // Floating point zero 1287 const TypeD *TypeD::ONE; // Floating point one 1288 const TypeD *TypeD::POS_INF; // Floating point positive infinity 1289 const TypeD *TypeD::NEG_INF; // Floating point negative infinity 1290 1291 //------------------------------make------------------------------------------- 1292 const TypeD *TypeD::make(double d) { 1293 return (TypeD*)(new TypeD(d))->hashcons(); 1294 } 1295 1296 //------------------------------meet------------------------------------------- 1297 // Compute the MEET of two types. It returns a new Type object. 1298 const Type *TypeD::xmeet( const Type *t ) const { 1299 // Perform a fast test for common case; meeting the same types together. 1300 if( this == t ) return this; // Meeting same type-rep? 1301 1302 // Current "this->_base" is DoubleCon 1303 switch (t->base()) { // Switch on original type 1304 case AnyPtr: // Mixing with oops happens when javac 1305 case RawPtr: // reuses local variables 1306 case OopPtr: 1307 case InstPtr: 1308 case AryPtr: 1309 case MetadataPtr: 1310 case KlassPtr: 1311 case InstKlassPtr: 1312 case AryKlassPtr: 1313 case NarrowOop: 1314 case NarrowKlass: 1315 case Int: 1316 case Long: 1317 case FloatTop: 1318 case FloatCon: 1319 case FloatBot: 1320 case Bottom: // Ye Olde Default 1321 return Type::BOTTOM; 1322 1323 case DoubleBot: 1324 return t; 1325 1326 default: // All else is a mistake 1327 typerr(t); 1328 1329 case DoubleCon: // Double-constant vs Double-constant? 1330 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet) 1331 return DOUBLE; // Return generic double 1332 case Top: 1333 case DoubleTop: 1334 break; 1335 } 1336 return this; // Return the double constant 1337 } 1338 1339 //------------------------------xdual------------------------------------------ 1340 // Dual: symmetric 1341 const Type *TypeD::xdual() const { 1342 return this; 1343 } 1344 1345 //------------------------------eq--------------------------------------------- 1346 // Structural equality check for Type representations 1347 bool TypeD::eq(const Type *t) const { 1348 // Bitwise comparison to distinguish between +/-0. These values must be treated 1349 // as different to be consistent with C1 and the interpreter. 1350 return (jlong_cast(_d) == jlong_cast(t->getd())); 1351 } 1352 1353 //------------------------------hash------------------------------------------- 1354 // Type-specific hashing function. 1355 int TypeD::hash(void) const { 1356 return *(int*)(&_d); 1357 } 1358 1359 //------------------------------is_finite-------------------------------------- 1360 // Has a finite value 1361 bool TypeD::is_finite() const { 1362 return g_isfinite(getd()) != 0; 1363 } 1364 1365 //------------------------------is_nan----------------------------------------- 1366 // Is not a number (NaN) 1367 bool TypeD::is_nan() const { 1368 return g_isnan(getd()) != 0; 1369 } 1370 1371 //------------------------------dump2------------------------------------------ 1372 // Dump double constant Type 1373 #ifndef PRODUCT 1374 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const { 1375 Type::dump2(d,depth,st); 1376 st->print("%f", _d); 1377 } 1378 #endif 1379 1380 //------------------------------singleton-------------------------------------- 1381 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1382 // constants (Ldi nodes). Singletons are integer, float or double constants 1383 // or a single symbol. 1384 bool TypeD::singleton(void) const { 1385 return true; // Always a singleton 1386 } 1387 1388 bool TypeD::empty(void) const { 1389 return false; // always exactly a singleton 1390 } 1391 1392 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) { 1393 if (bt == T_INT) { 1394 return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w); 1395 } 1396 assert(bt == T_LONG, "basic type not an int or long"); 1397 return TypeLong::make(lo, hi, w); 1398 } 1399 1400 jlong TypeInteger::get_con_as_long(BasicType bt) const { 1401 if (bt == T_INT) { 1402 return is_int()->get_con(); 1403 } 1404 assert(bt == T_LONG, "basic type not an int or long"); 1405 return is_long()->get_con(); 1406 } 1407 1408 const TypeInteger* TypeInteger::bottom(BasicType bt) { 1409 if (bt == T_INT) { 1410 return TypeInt::INT; 1411 } 1412 assert(bt == T_LONG, "basic type not an int or long"); 1413 return TypeLong::LONG; 1414 } 1415 1416 const TypeInteger* TypeInteger::zero(BasicType bt) { 1417 if (bt == T_INT) { 1418 return TypeInt::ZERO; 1419 } 1420 assert(bt == T_LONG, "basic type not an int or long"); 1421 return TypeLong::ZERO; 1422 } 1423 1424 const TypeInteger* TypeInteger::one(BasicType bt) { 1425 if (bt == T_INT) { 1426 return TypeInt::ONE; 1427 } 1428 assert(bt == T_LONG, "basic type not an int or long"); 1429 return TypeLong::ONE; 1430 } 1431 1432 const TypeInteger* TypeInteger::minus_1(BasicType bt) { 1433 if (bt == T_INT) { 1434 return TypeInt::MINUS_1; 1435 } 1436 assert(bt == T_LONG, "basic type not an int or long"); 1437 return TypeLong::MINUS_1; 1438 } 1439 1440 //============================================================================= 1441 // Convenience common pre-built types. 1442 const TypeInt *TypeInt::MAX; // INT_MAX 1443 const TypeInt *TypeInt::MIN; // INT_MIN 1444 const TypeInt *TypeInt::MINUS_1;// -1 1445 const TypeInt *TypeInt::ZERO; // 0 1446 const TypeInt *TypeInt::ONE; // 1 1447 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE. 1448 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes 1449 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1 1450 const TypeInt *TypeInt::CC_GT; // [1] == ONE 1451 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO 1452 const TypeInt *TypeInt::CC_LE; // [-1,0] 1453 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!) 1454 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127 1455 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255 1456 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535 1457 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767 1458 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero 1459 const TypeInt *TypeInt::POS1; // Positive 32-bit integers 1460 const TypeInt *TypeInt::INT; // 32-bit integers 1461 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint] 1462 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT 1463 1464 //------------------------------TypeInt---------------------------------------- 1465 TypeInt::TypeInt( jint lo, jint hi, int w ) : TypeInteger(Int), _lo(lo), _hi(hi), _widen(w) { 1466 } 1467 1468 //------------------------------make------------------------------------------- 1469 const TypeInt *TypeInt::make( jint lo ) { 1470 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons(); 1471 } 1472 1473 static int normalize_int_widen( jint lo, jint hi, int w ) { 1474 // Certain normalizations keep us sane when comparing types. 1475 // The 'SMALLINT' covers constants and also CC and its relatives. 1476 if (lo <= hi) { 1477 if (((juint)hi - lo) <= SMALLINT) w = Type::WidenMin; 1478 if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT 1479 } else { 1480 if (((juint)lo - hi) <= SMALLINT) w = Type::WidenMin; 1481 if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT 1482 } 1483 return w; 1484 } 1485 1486 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) { 1487 w = normalize_int_widen(lo, hi, w); 1488 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons(); 1489 } 1490 1491 //------------------------------meet------------------------------------------- 1492 // Compute the MEET of two types. It returns a new Type representation object 1493 // with reference count equal to the number of Types pointing at it. 1494 // Caller should wrap a Types around it. 1495 const Type *TypeInt::xmeet( const Type *t ) const { 1496 // Perform a fast test for common case; meeting the same types together. 1497 if( this == t ) return this; // Meeting same type? 1498 1499 // Currently "this->_base" is a TypeInt 1500 switch (t->base()) { // Switch on original type 1501 case AnyPtr: // Mixing with oops happens when javac 1502 case RawPtr: // reuses local variables 1503 case OopPtr: 1504 case InstPtr: 1505 case AryPtr: 1506 case MetadataPtr: 1507 case KlassPtr: 1508 case InstKlassPtr: 1509 case AryKlassPtr: 1510 case NarrowOop: 1511 case NarrowKlass: 1512 case Long: 1513 case FloatTop: 1514 case FloatCon: 1515 case FloatBot: 1516 case DoubleTop: 1517 case DoubleCon: 1518 case DoubleBot: 1519 case Bottom: // Ye Olde Default 1520 return Type::BOTTOM; 1521 default: // All else is a mistake 1522 typerr(t); 1523 case Top: // No change 1524 return this; 1525 case Int: // Int vs Int? 1526 break; 1527 } 1528 1529 // Expand covered set 1530 const TypeInt *r = t->is_int(); 1531 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); 1532 } 1533 1534 //------------------------------xdual------------------------------------------ 1535 // Dual: reverse hi & lo; flip widen 1536 const Type *TypeInt::xdual() const { 1537 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen); 1538 return new TypeInt(_hi,_lo,w); 1539 } 1540 1541 //------------------------------widen------------------------------------------ 1542 // Only happens for optimistic top-down optimizations. 1543 const Type *TypeInt::widen( const Type *old, const Type* limit ) const { 1544 // Coming from TOP or such; no widening 1545 if( old->base() != Int ) return this; 1546 const TypeInt *ot = old->is_int(); 1547 1548 // If new guy is equal to old guy, no widening 1549 if( _lo == ot->_lo && _hi == ot->_hi ) 1550 return old; 1551 1552 // If new guy contains old, then we widened 1553 if( _lo <= ot->_lo && _hi >= ot->_hi ) { 1554 // New contains old 1555 // If new guy is already wider than old, no widening 1556 if( _widen > ot->_widen ) return this; 1557 // If old guy was a constant, do not bother 1558 if (ot->_lo == ot->_hi) return this; 1559 // Now widen new guy. 1560 // Check for widening too far 1561 if (_widen == WidenMax) { 1562 int max = max_jint; 1563 int min = min_jint; 1564 if (limit->isa_int()) { 1565 max = limit->is_int()->_hi; 1566 min = limit->is_int()->_lo; 1567 } 1568 if (min < _lo && _hi < max) { 1569 // If neither endpoint is extremal yet, push out the endpoint 1570 // which is closer to its respective limit. 1571 if (_lo >= 0 || // easy common case 1572 (juint)(_lo - min) >= (juint)(max - _hi)) { 1573 // Try to widen to an unsigned range type of 31 bits: 1574 return make(_lo, max, WidenMax); 1575 } else { 1576 return make(min, _hi, WidenMax); 1577 } 1578 } 1579 return TypeInt::INT; 1580 } 1581 // Returned widened new guy 1582 return make(_lo,_hi,_widen+1); 1583 } 1584 1585 // If old guy contains new, then we probably widened too far & dropped to 1586 // bottom. Return the wider fellow. 1587 if ( ot->_lo <= _lo && ot->_hi >= _hi ) 1588 return old; 1589 1590 //fatal("Integer value range is not subset"); 1591 //return this; 1592 return TypeInt::INT; 1593 } 1594 1595 //------------------------------narrow--------------------------------------- 1596 // Only happens for pessimistic optimizations. 1597 const Type *TypeInt::narrow( const Type *old ) const { 1598 if (_lo >= _hi) return this; // already narrow enough 1599 if (old == NULL) return this; 1600 const TypeInt* ot = old->isa_int(); 1601 if (ot == NULL) return this; 1602 jint olo = ot->_lo; 1603 jint ohi = ot->_hi; 1604 1605 // If new guy is equal to old guy, no narrowing 1606 if (_lo == olo && _hi == ohi) return old; 1607 1608 // If old guy was maximum range, allow the narrowing 1609 if (olo == min_jint && ohi == max_jint) return this; 1610 1611 if (_lo < olo || _hi > ohi) 1612 return this; // doesn't narrow; pretty weird 1613 1614 // The new type narrows the old type, so look for a "death march". 1615 // See comments on PhaseTransform::saturate. 1616 juint nrange = (juint)_hi - _lo; 1617 juint orange = (juint)ohi - olo; 1618 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) { 1619 // Use the new type only if the range shrinks a lot. 1620 // We do not want the optimizer computing 2^31 point by point. 1621 return old; 1622 } 1623 1624 return this; 1625 } 1626 1627 //-----------------------------filter------------------------------------------ 1628 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const { 1629 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int(); 1630 if (ft == NULL || ft->empty()) 1631 return Type::TOP; // Canonical empty value 1632 if (ft->_widen < this->_widen) { 1633 // Do not allow the value of kill->_widen to affect the outcome. 1634 // The widen bits must be allowed to run freely through the graph. 1635 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen); 1636 } 1637 return ft; 1638 } 1639 1640 //------------------------------eq--------------------------------------------- 1641 // Structural equality check for Type representations 1642 bool TypeInt::eq( const Type *t ) const { 1643 const TypeInt *r = t->is_int(); // Handy access 1644 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; 1645 } 1646 1647 //------------------------------hash------------------------------------------- 1648 // Type-specific hashing function. 1649 int TypeInt::hash(void) const { 1650 return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int)); 1651 } 1652 1653 //------------------------------is_finite-------------------------------------- 1654 // Has a finite value 1655 bool TypeInt::is_finite() const { 1656 return true; 1657 } 1658 1659 //------------------------------dump2------------------------------------------ 1660 // Dump TypeInt 1661 #ifndef PRODUCT 1662 static const char* intname(char* buf, jint n) { 1663 if (n == min_jint) 1664 return "min"; 1665 else if (n < min_jint + 10000) 1666 sprintf(buf, "min+" INT32_FORMAT, n - min_jint); 1667 else if (n == max_jint) 1668 return "max"; 1669 else if (n > max_jint - 10000) 1670 sprintf(buf, "max-" INT32_FORMAT, max_jint - n); 1671 else 1672 sprintf(buf, INT32_FORMAT, n); 1673 return buf; 1674 } 1675 1676 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const { 1677 char buf[40], buf2[40]; 1678 if (_lo == min_jint && _hi == max_jint) 1679 st->print("int"); 1680 else if (is_con()) 1681 st->print("int:%s", intname(buf, get_con())); 1682 else if (_lo == BOOL->_lo && _hi == BOOL->_hi) 1683 st->print("bool"); 1684 else if (_lo == BYTE->_lo && _hi == BYTE->_hi) 1685 st->print("byte"); 1686 else if (_lo == CHAR->_lo && _hi == CHAR->_hi) 1687 st->print("char"); 1688 else if (_lo == SHORT->_lo && _hi == SHORT->_hi) 1689 st->print("short"); 1690 else if (_hi == max_jint) 1691 st->print("int:>=%s", intname(buf, _lo)); 1692 else if (_lo == min_jint) 1693 st->print("int:<=%s", intname(buf, _hi)); 1694 else 1695 st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi)); 1696 1697 if (_widen != 0 && this != TypeInt::INT) 1698 st->print(":%.*s", _widen, "wwww"); 1699 } 1700 #endif 1701 1702 //------------------------------singleton-------------------------------------- 1703 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1704 // constants. 1705 bool TypeInt::singleton(void) const { 1706 return _lo >= _hi; 1707 } 1708 1709 bool TypeInt::empty(void) const { 1710 return _lo > _hi; 1711 } 1712 1713 //============================================================================= 1714 // Convenience common pre-built types. 1715 const TypeLong *TypeLong::MAX; 1716 const TypeLong *TypeLong::MIN; 1717 const TypeLong *TypeLong::MINUS_1;// -1 1718 const TypeLong *TypeLong::ZERO; // 0 1719 const TypeLong *TypeLong::ONE; // 1 1720 const TypeLong *TypeLong::POS; // >=0 1721 const TypeLong *TypeLong::LONG; // 64-bit integers 1722 const TypeLong *TypeLong::INT; // 32-bit subrange 1723 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange 1724 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG 1725 1726 //------------------------------TypeLong--------------------------------------- 1727 TypeLong::TypeLong(jlong lo, jlong hi, int w) : TypeInteger(Long), _lo(lo), _hi(hi), _widen(w) { 1728 } 1729 1730 //------------------------------make------------------------------------------- 1731 const TypeLong *TypeLong::make( jlong lo ) { 1732 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons(); 1733 } 1734 1735 static int normalize_long_widen( jlong lo, jlong hi, int w ) { 1736 // Certain normalizations keep us sane when comparing types. 1737 // The 'SMALLINT' covers constants. 1738 if (lo <= hi) { 1739 if (((julong)hi - lo) <= SMALLINT) w = Type::WidenMin; 1740 if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG 1741 } else { 1742 if (((julong)lo - hi) <= SMALLINT) w = Type::WidenMin; 1743 if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG 1744 } 1745 return w; 1746 } 1747 1748 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) { 1749 w = normalize_long_widen(lo, hi, w); 1750 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons(); 1751 } 1752 1753 1754 //------------------------------meet------------------------------------------- 1755 // Compute the MEET of two types. It returns a new Type representation object 1756 // with reference count equal to the number of Types pointing at it. 1757 // Caller should wrap a Types around it. 1758 const Type *TypeLong::xmeet( const Type *t ) const { 1759 // Perform a fast test for common case; meeting the same types together. 1760 if( this == t ) return this; // Meeting same type? 1761 1762 // Currently "this->_base" is a TypeLong 1763 switch (t->base()) { // Switch on original type 1764 case AnyPtr: // Mixing with oops happens when javac 1765 case RawPtr: // reuses local variables 1766 case OopPtr: 1767 case InstPtr: 1768 case AryPtr: 1769 case MetadataPtr: 1770 case KlassPtr: 1771 case InstKlassPtr: 1772 case AryKlassPtr: 1773 case NarrowOop: 1774 case NarrowKlass: 1775 case Int: 1776 case FloatTop: 1777 case FloatCon: 1778 case FloatBot: 1779 case DoubleTop: 1780 case DoubleCon: 1781 case DoubleBot: 1782 case Bottom: // Ye Olde Default 1783 return Type::BOTTOM; 1784 default: // All else is a mistake 1785 typerr(t); 1786 case Top: // No change 1787 return this; 1788 case Long: // Long vs Long? 1789 break; 1790 } 1791 1792 // Expand covered set 1793 const TypeLong *r = t->is_long(); // Turn into a TypeLong 1794 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); 1795 } 1796 1797 //------------------------------xdual------------------------------------------ 1798 // Dual: reverse hi & lo; flip widen 1799 const Type *TypeLong::xdual() const { 1800 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen); 1801 return new TypeLong(_hi,_lo,w); 1802 } 1803 1804 //------------------------------widen------------------------------------------ 1805 // Only happens for optimistic top-down optimizations. 1806 const Type *TypeLong::widen( const Type *old, const Type* limit ) const { 1807 // Coming from TOP or such; no widening 1808 if( old->base() != Long ) return this; 1809 const TypeLong *ot = old->is_long(); 1810 1811 // If new guy is equal to old guy, no widening 1812 if( _lo == ot->_lo && _hi == ot->_hi ) 1813 return old; 1814 1815 // If new guy contains old, then we widened 1816 if( _lo <= ot->_lo && _hi >= ot->_hi ) { 1817 // New contains old 1818 // If new guy is already wider than old, no widening 1819 if( _widen > ot->_widen ) return this; 1820 // If old guy was a constant, do not bother 1821 if (ot->_lo == ot->_hi) return this; 1822 // Now widen new guy. 1823 // Check for widening too far 1824 if (_widen == WidenMax) { 1825 jlong max = max_jlong; 1826 jlong min = min_jlong; 1827 if (limit->isa_long()) { 1828 max = limit->is_long()->_hi; 1829 min = limit->is_long()->_lo; 1830 } 1831 if (min < _lo && _hi < max) { 1832 // If neither endpoint is extremal yet, push out the endpoint 1833 // which is closer to its respective limit. 1834 if (_lo >= 0 || // easy common case 1835 ((julong)_lo - min) >= ((julong)max - _hi)) { 1836 // Try to widen to an unsigned range type of 32/63 bits: 1837 if (max >= max_juint && _hi < max_juint) 1838 return make(_lo, max_juint, WidenMax); 1839 else 1840 return make(_lo, max, WidenMax); 1841 } else { 1842 return make(min, _hi, WidenMax); 1843 } 1844 } 1845 return TypeLong::LONG; 1846 } 1847 // Returned widened new guy 1848 return make(_lo,_hi,_widen+1); 1849 } 1850 1851 // If old guy contains new, then we probably widened too far & dropped to 1852 // bottom. Return the wider fellow. 1853 if ( ot->_lo <= _lo && ot->_hi >= _hi ) 1854 return old; 1855 1856 // fatal("Long value range is not subset"); 1857 // return this; 1858 return TypeLong::LONG; 1859 } 1860 1861 //------------------------------narrow---------------------------------------- 1862 // Only happens for pessimistic optimizations. 1863 const Type *TypeLong::narrow( const Type *old ) const { 1864 if (_lo >= _hi) return this; // already narrow enough 1865 if (old == NULL) return this; 1866 const TypeLong* ot = old->isa_long(); 1867 if (ot == NULL) return this; 1868 jlong olo = ot->_lo; 1869 jlong ohi = ot->_hi; 1870 1871 // If new guy is equal to old guy, no narrowing 1872 if (_lo == olo && _hi == ohi) return old; 1873 1874 // If old guy was maximum range, allow the narrowing 1875 if (olo == min_jlong && ohi == max_jlong) return this; 1876 1877 if (_lo < olo || _hi > ohi) 1878 return this; // doesn't narrow; pretty weird 1879 1880 // The new type narrows the old type, so look for a "death march". 1881 // See comments on PhaseTransform::saturate. 1882 julong nrange = _hi - _lo; 1883 julong orange = ohi - olo; 1884 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) { 1885 // Use the new type only if the range shrinks a lot. 1886 // We do not want the optimizer computing 2^31 point by point. 1887 return old; 1888 } 1889 1890 return this; 1891 } 1892 1893 //-----------------------------filter------------------------------------------ 1894 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const { 1895 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long(); 1896 if (ft == NULL || ft->empty()) 1897 return Type::TOP; // Canonical empty value 1898 if (ft->_widen < this->_widen) { 1899 // Do not allow the value of kill->_widen to affect the outcome. 1900 // The widen bits must be allowed to run freely through the graph. 1901 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen); 1902 } 1903 return ft; 1904 } 1905 1906 //------------------------------eq--------------------------------------------- 1907 // Structural equality check for Type representations 1908 bool TypeLong::eq( const Type *t ) const { 1909 const TypeLong *r = t->is_long(); // Handy access 1910 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; 1911 } 1912 1913 //------------------------------hash------------------------------------------- 1914 // Type-specific hashing function. 1915 int TypeLong::hash(void) const { 1916 return (int)(_lo+_hi+_widen+(int)Type::Long); 1917 } 1918 1919 //------------------------------is_finite-------------------------------------- 1920 // Has a finite value 1921 bool TypeLong::is_finite() const { 1922 return true; 1923 } 1924 1925 //------------------------------dump2------------------------------------------ 1926 // Dump TypeLong 1927 #ifndef PRODUCT 1928 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) { 1929 if (n > x) { 1930 if (n >= x + 10000) return NULL; 1931 sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x); 1932 } else if (n < x) { 1933 if (n <= x - 10000) return NULL; 1934 sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n); 1935 } else { 1936 return xname; 1937 } 1938 return buf; 1939 } 1940 1941 static const char* longname(char* buf, jlong n) { 1942 const char* str; 1943 if (n == min_jlong) 1944 return "min"; 1945 else if (n < min_jlong + 10000) 1946 sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong); 1947 else if (n == max_jlong) 1948 return "max"; 1949 else if (n > max_jlong - 10000) 1950 sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n); 1951 else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL) 1952 return str; 1953 else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL) 1954 return str; 1955 else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL) 1956 return str; 1957 else 1958 sprintf(buf, JLONG_FORMAT, n); 1959 return buf; 1960 } 1961 1962 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const { 1963 char buf[80], buf2[80]; 1964 if (_lo == min_jlong && _hi == max_jlong) 1965 st->print("long"); 1966 else if (is_con()) 1967 st->print("long:%s", longname(buf, get_con())); 1968 else if (_hi == max_jlong) 1969 st->print("long:>=%s", longname(buf, _lo)); 1970 else if (_lo == min_jlong) 1971 st->print("long:<=%s", longname(buf, _hi)); 1972 else 1973 st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi)); 1974 1975 if (_widen != 0 && this != TypeLong::LONG) 1976 st->print(":%.*s", _widen, "wwww"); 1977 } 1978 #endif 1979 1980 //------------------------------singleton-------------------------------------- 1981 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1982 // constants 1983 bool TypeLong::singleton(void) const { 1984 return _lo >= _hi; 1985 } 1986 1987 bool TypeLong::empty(void) const { 1988 return _lo > _hi; 1989 } 1990 1991 //============================================================================= 1992 // Convenience common pre-built types. 1993 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable 1994 const TypeTuple *TypeTuple::IFFALSE; 1995 const TypeTuple *TypeTuple::IFTRUE; 1996 const TypeTuple *TypeTuple::IFNEITHER; 1997 const TypeTuple *TypeTuple::LOOPBODY; 1998 const TypeTuple *TypeTuple::MEMBAR; 1999 const TypeTuple *TypeTuple::STORECONDITIONAL; 2000 const TypeTuple *TypeTuple::START_I2C; 2001 const TypeTuple *TypeTuple::INT_PAIR; 2002 const TypeTuple *TypeTuple::LONG_PAIR; 2003 const TypeTuple *TypeTuple::INT_CC_PAIR; 2004 const TypeTuple *TypeTuple::LONG_CC_PAIR; 2005 2006 //------------------------------make------------------------------------------- 2007 // Make a TypeTuple from the range of a method signature 2008 const TypeTuple *TypeTuple::make_range(ciSignature* sig) { 2009 ciType* return_type = sig->return_type(); 2010 uint arg_cnt = return_type->size(); 2011 const Type **field_array = fields(arg_cnt); 2012 switch (return_type->basic_type()) { 2013 case T_LONG: 2014 field_array[TypeFunc::Parms] = TypeLong::LONG; 2015 field_array[TypeFunc::Parms+1] = Type::HALF; 2016 break; 2017 case T_DOUBLE: 2018 field_array[TypeFunc::Parms] = Type::DOUBLE; 2019 field_array[TypeFunc::Parms+1] = Type::HALF; 2020 break; 2021 case T_OBJECT: 2022 case T_ARRAY: 2023 case T_BOOLEAN: 2024 case T_CHAR: 2025 case T_FLOAT: 2026 case T_BYTE: 2027 case T_SHORT: 2028 case T_INT: 2029 field_array[TypeFunc::Parms] = get_const_type(return_type); 2030 break; 2031 case T_VOID: 2032 break; 2033 default: 2034 ShouldNotReachHere(); 2035 } 2036 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); 2037 } 2038 2039 // Make a TypeTuple from the domain of a method signature 2040 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) { 2041 uint arg_cnt = sig->size(); 2042 2043 uint pos = TypeFunc::Parms; 2044 const Type **field_array; 2045 if (recv != NULL) { 2046 arg_cnt++; 2047 field_array = fields(arg_cnt); 2048 // Use get_const_type here because it respects UseUniqueSubclasses: 2049 field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL); 2050 } else { 2051 field_array = fields(arg_cnt); 2052 } 2053 2054 int i = 0; 2055 while (pos < TypeFunc::Parms + arg_cnt) { 2056 ciType* type = sig->type_at(i); 2057 2058 switch (type->basic_type()) { 2059 case T_LONG: 2060 field_array[pos++] = TypeLong::LONG; 2061 field_array[pos++] = Type::HALF; 2062 break; 2063 case T_DOUBLE: 2064 field_array[pos++] = Type::DOUBLE; 2065 field_array[pos++] = Type::HALF; 2066 break; 2067 case T_OBJECT: 2068 case T_ARRAY: 2069 case T_FLOAT: 2070 case T_INT: 2071 field_array[pos++] = get_const_type(type); 2072 break; 2073 case T_BOOLEAN: 2074 case T_CHAR: 2075 case T_BYTE: 2076 case T_SHORT: 2077 field_array[pos++] = TypeInt::INT; 2078 break; 2079 default: 2080 ShouldNotReachHere(); 2081 } 2082 i++; 2083 } 2084 2085 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); 2086 } 2087 2088 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) { 2089 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons(); 2090 } 2091 2092 //------------------------------fields----------------------------------------- 2093 // Subroutine call type with space allocated for argument types 2094 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly 2095 const Type **TypeTuple::fields( uint arg_cnt ) { 2096 const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) )); 2097 flds[TypeFunc::Control ] = Type::CONTROL; 2098 flds[TypeFunc::I_O ] = Type::ABIO; 2099 flds[TypeFunc::Memory ] = Type::MEMORY; 2100 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM; 2101 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS; 2102 2103 return flds; 2104 } 2105 2106 //------------------------------meet------------------------------------------- 2107 // Compute the MEET of two types. It returns a new Type object. 2108 const Type *TypeTuple::xmeet( const Type *t ) const { 2109 // Perform a fast test for common case; meeting the same types together. 2110 if( this == t ) return this; // Meeting same type-rep? 2111 2112 // Current "this->_base" is Tuple 2113 switch (t->base()) { // switch on original type 2114 2115 case Bottom: // Ye Olde Default 2116 return t; 2117 2118 default: // All else is a mistake 2119 typerr(t); 2120 2121 case Tuple: { // Meeting 2 signatures? 2122 const TypeTuple *x = t->is_tuple(); 2123 assert( _cnt == x->_cnt, "" ); 2124 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) )); 2125 for( uint i=0; i<_cnt; i++ ) 2126 fields[i] = field_at(i)->xmeet( x->field_at(i) ); 2127 return TypeTuple::make(_cnt,fields); 2128 } 2129 case Top: 2130 break; 2131 } 2132 return this; // Return the double constant 2133 } 2134 2135 //------------------------------xdual------------------------------------------ 2136 // Dual: compute field-by-field dual 2137 const Type *TypeTuple::xdual() const { 2138 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) )); 2139 for( uint i=0; i<_cnt; i++ ) 2140 fields[i] = _fields[i]->dual(); 2141 return new TypeTuple(_cnt,fields); 2142 } 2143 2144 //------------------------------eq--------------------------------------------- 2145 // Structural equality check for Type representations 2146 bool TypeTuple::eq( const Type *t ) const { 2147 const TypeTuple *s = (const TypeTuple *)t; 2148 if (_cnt != s->_cnt) return false; // Unequal field counts 2149 for (uint i = 0; i < _cnt; i++) 2150 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION! 2151 return false; // Missed 2152 return true; 2153 } 2154 2155 //------------------------------hash------------------------------------------- 2156 // Type-specific hashing function. 2157 int TypeTuple::hash(void) const { 2158 intptr_t sum = _cnt; 2159 for( uint i=0; i<_cnt; i++ ) 2160 sum += (intptr_t)_fields[i]; // Hash on pointers directly 2161 return sum; 2162 } 2163 2164 //------------------------------dump2------------------------------------------ 2165 // Dump signature Type 2166 #ifndef PRODUCT 2167 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const { 2168 st->print("{"); 2169 if( !depth || d[this] ) { // Check for recursive print 2170 st->print("...}"); 2171 return; 2172 } 2173 d.Insert((void*)this, (void*)this); // Stop recursion 2174 if( _cnt ) { 2175 uint i; 2176 for( i=0; i<_cnt-1; i++ ) { 2177 st->print("%d:", i); 2178 _fields[i]->dump2(d, depth-1, st); 2179 st->print(", "); 2180 } 2181 st->print("%d:", i); 2182 _fields[i]->dump2(d, depth-1, st); 2183 } 2184 st->print("}"); 2185 } 2186 #endif 2187 2188 //------------------------------singleton-------------------------------------- 2189 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2190 // constants (Ldi nodes). Singletons are integer, float or double constants 2191 // or a single symbol. 2192 bool TypeTuple::singleton(void) const { 2193 return false; // Never a singleton 2194 } 2195 2196 bool TypeTuple::empty(void) const { 2197 for( uint i=0; i<_cnt; i++ ) { 2198 if (_fields[i]->empty()) return true; 2199 } 2200 return false; 2201 } 2202 2203 //============================================================================= 2204 // Convenience common pre-built types. 2205 2206 inline const TypeInt* normalize_array_size(const TypeInt* size) { 2207 // Certain normalizations keep us sane when comparing types. 2208 // We do not want arrayOop variables to differ only by the wideness 2209 // of their index types. Pick minimum wideness, since that is the 2210 // forced wideness of small ranges anyway. 2211 if (size->_widen != Type::WidenMin) 2212 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin); 2213 else 2214 return size; 2215 } 2216 2217 //------------------------------make------------------------------------------- 2218 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) { 2219 if (UseCompressedOops && elem->isa_oopptr()) { 2220 elem = elem->make_narrowoop(); 2221 } 2222 size = normalize_array_size(size); 2223 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons(); 2224 } 2225 2226 //------------------------------meet------------------------------------------- 2227 // Compute the MEET of two types. It returns a new Type object. 2228 const Type *TypeAry::xmeet( const Type *t ) const { 2229 // Perform a fast test for common case; meeting the same types together. 2230 if( this == t ) return this; // Meeting same type-rep? 2231 2232 // Current "this->_base" is Ary 2233 switch (t->base()) { // switch on original type 2234 2235 case Bottom: // Ye Olde Default 2236 return t; 2237 2238 default: // All else is a mistake 2239 typerr(t); 2240 2241 case Array: { // Meeting 2 arrays? 2242 const TypeAry *a = t->is_ary(); 2243 return TypeAry::make(_elem->meet_speculative(a->_elem), 2244 _size->xmeet(a->_size)->is_int(), 2245 _stable && a->_stable); 2246 } 2247 case Top: 2248 break; 2249 } 2250 return this; // Return the double constant 2251 } 2252 2253 //------------------------------xdual------------------------------------------ 2254 // Dual: compute field-by-field dual 2255 const Type *TypeAry::xdual() const { 2256 const TypeInt* size_dual = _size->dual()->is_int(); 2257 size_dual = normalize_array_size(size_dual); 2258 return new TypeAry(_elem->dual(), size_dual, !_stable); 2259 } 2260 2261 //------------------------------eq--------------------------------------------- 2262 // Structural equality check for Type representations 2263 bool TypeAry::eq( const Type *t ) const { 2264 const TypeAry *a = (const TypeAry*)t; 2265 return _elem == a->_elem && 2266 _stable == a->_stable && 2267 _size == a->_size; 2268 } 2269 2270 //------------------------------hash------------------------------------------- 2271 // Type-specific hashing function. 2272 int TypeAry::hash(void) const { 2273 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0); 2274 } 2275 2276 /** 2277 * Return same type without a speculative part in the element 2278 */ 2279 const Type* TypeAry::remove_speculative() const { 2280 return make(_elem->remove_speculative(), _size, _stable); 2281 } 2282 2283 /** 2284 * Return same type with cleaned up speculative part of element 2285 */ 2286 const Type* TypeAry::cleanup_speculative() const { 2287 return make(_elem->cleanup_speculative(), _size, _stable); 2288 } 2289 2290 /** 2291 * Return same type but with a different inline depth (used for speculation) 2292 * 2293 * @param depth depth to meet with 2294 */ 2295 const TypePtr* TypePtr::with_inline_depth(int depth) const { 2296 if (!UseInlineDepthForSpeculativeTypes) { 2297 return this; 2298 } 2299 return make(AnyPtr, _ptr, _offset, _speculative, depth); 2300 } 2301 2302 //----------------------interface_vs_oop--------------------------------------- 2303 #ifdef ASSERT 2304 bool TypeAry::interface_vs_oop(const Type *t) const { 2305 const TypeAry* t_ary = t->is_ary(); 2306 if (t_ary) { 2307 const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops 2308 const TypePtr* t_ptr = t_ary->_elem->make_ptr(); 2309 if(this_ptr != NULL && t_ptr != NULL) { 2310 return this_ptr->interface_vs_oop(t_ptr); 2311 } 2312 } 2313 return false; 2314 } 2315 #endif 2316 2317 //------------------------------dump2------------------------------------------ 2318 #ifndef PRODUCT 2319 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const { 2320 if (_stable) st->print("stable:"); 2321 _elem->dump2(d, depth, st); 2322 st->print("["); 2323 _size->dump2(d, depth, st); 2324 st->print("]"); 2325 } 2326 #endif 2327 2328 //------------------------------singleton-------------------------------------- 2329 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2330 // constants (Ldi nodes). Singletons are integer, float or double constants 2331 // or a single symbol. 2332 bool TypeAry::singleton(void) const { 2333 return false; // Never a singleton 2334 } 2335 2336 bool TypeAry::empty(void) const { 2337 return _elem->empty() || _size->empty(); 2338 } 2339 2340 //--------------------------ary_must_be_exact---------------------------------- 2341 bool TypeAry::ary_must_be_exact() const { 2342 // This logic looks at the element type of an array, and returns true 2343 // if the element type is either a primitive or a final instance class. 2344 // In such cases, an array built on this ary must have no subclasses. 2345 if (_elem == BOTTOM) return false; // general array not exact 2346 if (_elem == TOP ) return false; // inverted general array not exact 2347 const TypeOopPtr* toop = NULL; 2348 if (UseCompressedOops && _elem->isa_narrowoop()) { 2349 toop = _elem->make_ptr()->isa_oopptr(); 2350 } else { 2351 toop = _elem->isa_oopptr(); 2352 } 2353 if (!toop) return true; // a primitive type, like int 2354 ciKlass* tklass = toop->klass(); 2355 if (tklass == NULL) return false; // unloaded class 2356 if (!tklass->is_loaded()) return false; // unloaded class 2357 const TypeInstPtr* tinst; 2358 if (_elem->isa_narrowoop()) 2359 tinst = _elem->make_ptr()->isa_instptr(); 2360 else 2361 tinst = _elem->isa_instptr(); 2362 if (tinst) 2363 return tklass->as_instance_klass()->is_final(); 2364 const TypeAryPtr* tap; 2365 if (_elem->isa_narrowoop()) 2366 tap = _elem->make_ptr()->isa_aryptr(); 2367 else 2368 tap = _elem->isa_aryptr(); 2369 if (tap) 2370 return tap->ary()->ary_must_be_exact(); 2371 return false; 2372 } 2373 2374 //==============================TypeVect======================================= 2375 // Convenience common pre-built types. 2376 const TypeVect *TypeVect::VECTA = NULL; // vector length agnostic 2377 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors 2378 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors 2379 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors 2380 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors 2381 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors 2382 const TypeVect *TypeVect::VECTMASK = NULL; // predicate/mask vector 2383 2384 //------------------------------make------------------------------------------- 2385 const TypeVect* TypeVect::make(const Type *elem, uint length, bool is_mask) { 2386 if (is_mask) { 2387 return makemask(elem, length); 2388 } 2389 BasicType elem_bt = elem->array_element_basic_type(); 2390 assert(is_java_primitive(elem_bt), "only primitive types in vector"); 2391 assert(Matcher::vector_size_supported(elem_bt, length), "length in range"); 2392 int size = length * type2aelembytes(elem_bt); 2393 switch (Matcher::vector_ideal_reg(size)) { 2394 case Op_VecA: 2395 return (TypeVect*)(new TypeVectA(elem, length))->hashcons(); 2396 case Op_VecS: 2397 return (TypeVect*)(new TypeVectS(elem, length))->hashcons(); 2398 case Op_RegL: 2399 case Op_VecD: 2400 case Op_RegD: 2401 return (TypeVect*)(new TypeVectD(elem, length))->hashcons(); 2402 case Op_VecX: 2403 return (TypeVect*)(new TypeVectX(elem, length))->hashcons(); 2404 case Op_VecY: 2405 return (TypeVect*)(new TypeVectY(elem, length))->hashcons(); 2406 case Op_VecZ: 2407 return (TypeVect*)(new TypeVectZ(elem, length))->hashcons(); 2408 } 2409 ShouldNotReachHere(); 2410 return NULL; 2411 } 2412 2413 const TypeVect *TypeVect::makemask(const Type* elem, uint length) { 2414 BasicType elem_bt = elem->array_element_basic_type(); 2415 if (Matcher::has_predicated_vectors() && 2416 Matcher::match_rule_supported_vector_masked(Op_VectorLoadMask, length, elem_bt)) { 2417 return TypeVectMask::make(elem, length); 2418 } else { 2419 return make(elem, length); 2420 } 2421 } 2422 2423 //------------------------------meet------------------------------------------- 2424 // Compute the MEET of two types. It returns a new Type object. 2425 const Type *TypeVect::xmeet( const Type *t ) const { 2426 // Perform a fast test for common case; meeting the same types together. 2427 if( this == t ) return this; // Meeting same type-rep? 2428 2429 // Current "this->_base" is Vector 2430 switch (t->base()) { // switch on original type 2431 2432 case Bottom: // Ye Olde Default 2433 return t; 2434 2435 default: // All else is a mistake 2436 typerr(t); 2437 case VectorMask: { 2438 const TypeVectMask* v = t->is_vectmask(); 2439 assert( base() == v->base(), ""); 2440 assert(length() == v->length(), ""); 2441 assert(element_basic_type() == v->element_basic_type(), ""); 2442 return TypeVect::makemask(_elem->xmeet(v->_elem), _length); 2443 } 2444 case VectorA: 2445 case VectorS: 2446 case VectorD: 2447 case VectorX: 2448 case VectorY: 2449 case VectorZ: { // Meeting 2 vectors? 2450 const TypeVect* v = t->is_vect(); 2451 assert( base() == v->base(), ""); 2452 assert(length() == v->length(), ""); 2453 assert(element_basic_type() == v->element_basic_type(), ""); 2454 return TypeVect::make(_elem->xmeet(v->_elem), _length); 2455 } 2456 case Top: 2457 break; 2458 } 2459 return this; 2460 } 2461 2462 //------------------------------xdual------------------------------------------ 2463 // Dual: compute field-by-field dual 2464 const Type *TypeVect::xdual() const { 2465 return new TypeVect(base(), _elem->dual(), _length); 2466 } 2467 2468 //------------------------------eq--------------------------------------------- 2469 // Structural equality check for Type representations 2470 bool TypeVect::eq(const Type *t) const { 2471 const TypeVect *v = t->is_vect(); 2472 return (_elem == v->_elem) && (_length == v->_length); 2473 } 2474 2475 //------------------------------hash------------------------------------------- 2476 // Type-specific hashing function. 2477 int TypeVect::hash(void) const { 2478 return (intptr_t)_elem + (intptr_t)_length; 2479 } 2480 2481 //------------------------------singleton-------------------------------------- 2482 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2483 // constants (Ldi nodes). Vector is singleton if all elements are the same 2484 // constant value (when vector is created with Replicate code). 2485 bool TypeVect::singleton(void) const { 2486 // There is no Con node for vectors yet. 2487 // return _elem->singleton(); 2488 return false; 2489 } 2490 2491 bool TypeVect::empty(void) const { 2492 return _elem->empty(); 2493 } 2494 2495 //------------------------------dump2------------------------------------------ 2496 #ifndef PRODUCT 2497 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const { 2498 switch (base()) { 2499 case VectorA: 2500 st->print("vectora["); break; 2501 case VectorS: 2502 st->print("vectors["); break; 2503 case VectorD: 2504 st->print("vectord["); break; 2505 case VectorX: 2506 st->print("vectorx["); break; 2507 case VectorY: 2508 st->print("vectory["); break; 2509 case VectorZ: 2510 st->print("vectorz["); break; 2511 case VectorMask: 2512 st->print("vectormask["); break; 2513 default: 2514 ShouldNotReachHere(); 2515 } 2516 st->print("%d]:{", _length); 2517 _elem->dump2(d, depth, st); 2518 st->print("}"); 2519 } 2520 #endif 2521 2522 bool TypeVectMask::eq(const Type *t) const { 2523 const TypeVectMask *v = t->is_vectmask(); 2524 return (element_type() == v->element_type()) && (length() == v->length()); 2525 } 2526 2527 const Type *TypeVectMask::xdual() const { 2528 return new TypeVectMask(element_type()->dual(), length()); 2529 } 2530 2531 const TypeVectMask *TypeVectMask::make(const BasicType elem_bt, uint length) { 2532 return make(get_const_basic_type(elem_bt), length); 2533 } 2534 2535 const TypeVectMask *TypeVectMask::make(const Type* elem, uint length) { 2536 const TypeVectMask* mtype = Matcher::predicate_reg_type(elem, length); 2537 return (TypeVectMask*) const_cast<TypeVectMask*>(mtype)->hashcons(); 2538 } 2539 2540 //============================================================================= 2541 // Convenience common pre-built types. 2542 const TypePtr *TypePtr::NULL_PTR; 2543 const TypePtr *TypePtr::NOTNULL; 2544 const TypePtr *TypePtr::BOTTOM; 2545 2546 //------------------------------meet------------------------------------------- 2547 // Meet over the PTR enum 2548 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = { 2549 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, 2550 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,}, 2551 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,}, 2552 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,}, 2553 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,}, 2554 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,}, 2555 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,} 2556 }; 2557 2558 //------------------------------make------------------------------------------- 2559 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) { 2560 return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons(); 2561 } 2562 2563 //------------------------------cast_to_ptr_type------------------------------- 2564 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const { 2565 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type"); 2566 if( ptr == _ptr ) return this; 2567 return make(_base, ptr, _offset, _speculative, _inline_depth); 2568 } 2569 2570 //------------------------------get_con---------------------------------------- 2571 intptr_t TypePtr::get_con() const { 2572 assert( _ptr == Null, "" ); 2573 return _offset; 2574 } 2575 2576 //------------------------------meet------------------------------------------- 2577 // Compute the MEET of two types. It returns a new Type object. 2578 const Type *TypePtr::xmeet(const Type *t) const { 2579 const Type* res = xmeet_helper(t); 2580 if (res->isa_ptr() == NULL) { 2581 return res; 2582 } 2583 2584 const TypePtr* res_ptr = res->is_ptr(); 2585 if (res_ptr->speculative() != NULL) { 2586 // type->speculative() == NULL means that speculation is no better 2587 // than type, i.e. type->speculative() == type. So there are 2 2588 // ways to represent the fact that we have no useful speculative 2589 // data and we should use a single one to be able to test for 2590 // equality between types. Check whether type->speculative() == 2591 // type and set speculative to NULL if it is the case. 2592 if (res_ptr->remove_speculative() == res_ptr->speculative()) { 2593 return res_ptr->remove_speculative(); 2594 } 2595 } 2596 2597 return res; 2598 } 2599 2600 const Type *TypePtr::xmeet_helper(const Type *t) const { 2601 // Perform a fast test for common case; meeting the same types together. 2602 if( this == t ) return this; // Meeting same type-rep? 2603 2604 // Current "this->_base" is AnyPtr 2605 switch (t->base()) { // switch on original type 2606 case Int: // Mixing ints & oops happens when javac 2607 case Long: // reuses local variables 2608 case FloatTop: 2609 case FloatCon: 2610 case FloatBot: 2611 case DoubleTop: 2612 case DoubleCon: 2613 case DoubleBot: 2614 case NarrowOop: 2615 case NarrowKlass: 2616 case Bottom: // Ye Olde Default 2617 return Type::BOTTOM; 2618 case Top: 2619 return this; 2620 2621 case AnyPtr: { // Meeting to AnyPtrs 2622 const TypePtr *tp = t->is_ptr(); 2623 const TypePtr* speculative = xmeet_speculative(tp); 2624 int depth = meet_inline_depth(tp->inline_depth()); 2625 return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth); 2626 } 2627 case RawPtr: // For these, flip the call around to cut down 2628 case OopPtr: 2629 case InstPtr: // on the cases I have to handle. 2630 case AryPtr: 2631 case MetadataPtr: 2632 case KlassPtr: 2633 case InstKlassPtr: 2634 case AryKlassPtr: 2635 return t->xmeet(this); // Call in reverse direction 2636 default: // All else is a mistake 2637 typerr(t); 2638 2639 } 2640 return this; 2641 } 2642 2643 //------------------------------meet_offset------------------------------------ 2644 int TypePtr::meet_offset( int offset ) const { 2645 // Either is 'TOP' offset? Return the other offset! 2646 if( _offset == OffsetTop ) return offset; 2647 if( offset == OffsetTop ) return _offset; 2648 // If either is different, return 'BOTTOM' offset 2649 if( _offset != offset ) return OffsetBot; 2650 return _offset; 2651 } 2652 2653 //------------------------------dual_offset------------------------------------ 2654 int TypePtr::dual_offset( ) const { 2655 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM' 2656 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP' 2657 return _offset; // Map everything else into self 2658 } 2659 2660 //------------------------------xdual------------------------------------------ 2661 // Dual: compute field-by-field dual 2662 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = { 2663 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR 2664 }; 2665 const Type *TypePtr::xdual() const { 2666 return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth()); 2667 } 2668 2669 //------------------------------xadd_offset------------------------------------ 2670 int TypePtr::xadd_offset( intptr_t offset ) const { 2671 // Adding to 'TOP' offset? Return 'TOP'! 2672 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop; 2673 // Adding to 'BOTTOM' offset? Return 'BOTTOM'! 2674 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot; 2675 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'! 2676 offset += (intptr_t)_offset; 2677 if (offset != (int)offset || offset == OffsetTop) return OffsetBot; 2678 2679 // assert( _offset >= 0 && _offset+offset >= 0, "" ); 2680 // It is possible to construct a negative offset during PhaseCCP 2681 2682 return (int)offset; // Sum valid offsets 2683 } 2684 2685 //------------------------------add_offset------------------------------------- 2686 const TypePtr *TypePtr::add_offset( intptr_t offset ) const { 2687 return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth); 2688 } 2689 2690 //------------------------------eq--------------------------------------------- 2691 // Structural equality check for Type representations 2692 bool TypePtr::eq( const Type *t ) const { 2693 const TypePtr *a = (const TypePtr*)t; 2694 return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth; 2695 } 2696 2697 //------------------------------hash------------------------------------------- 2698 // Type-specific hashing function. 2699 int TypePtr::hash(void) const { 2700 return java_add(java_add((jint)_ptr, (jint)_offset), java_add((jint)hash_speculative(), (jint)_inline_depth)); 2701 ; 2702 } 2703 2704 /** 2705 * Return same type without a speculative part 2706 */ 2707 const Type* TypePtr::remove_speculative() const { 2708 if (_speculative == NULL) { 2709 return this; 2710 } 2711 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 2712 return make(AnyPtr, _ptr, _offset, NULL, _inline_depth); 2713 } 2714 2715 /** 2716 * Return same type but drop speculative part if we know we won't use 2717 * it 2718 */ 2719 const Type* TypePtr::cleanup_speculative() const { 2720 if (speculative() == NULL) { 2721 return this; 2722 } 2723 const Type* no_spec = remove_speculative(); 2724 // If this is NULL_PTR then we don't need the speculative type 2725 // (with_inline_depth in case the current type inline depth is 2726 // InlineDepthTop) 2727 if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) { 2728 return no_spec; 2729 } 2730 if (above_centerline(speculative()->ptr())) { 2731 return no_spec; 2732 } 2733 const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr(); 2734 // If the speculative may be null and is an inexact klass then it 2735 // doesn't help 2736 if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() && 2737 (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) { 2738 return no_spec; 2739 } 2740 return this; 2741 } 2742 2743 /** 2744 * dual of the speculative part of the type 2745 */ 2746 const TypePtr* TypePtr::dual_speculative() const { 2747 if (_speculative == NULL) { 2748 return NULL; 2749 } 2750 return _speculative->dual()->is_ptr(); 2751 } 2752 2753 /** 2754 * meet of the speculative parts of 2 types 2755 * 2756 * @param other type to meet with 2757 */ 2758 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const { 2759 bool this_has_spec = (_speculative != NULL); 2760 bool other_has_spec = (other->speculative() != NULL); 2761 2762 if (!this_has_spec && !other_has_spec) { 2763 return NULL; 2764 } 2765 2766 // If we are at a point where control flow meets and one branch has 2767 // a speculative type and the other has not, we meet the speculative 2768 // type of one branch with the actual type of the other. If the 2769 // actual type is exact and the speculative is as well, then the 2770 // result is a speculative type which is exact and we can continue 2771 // speculation further. 2772 const TypePtr* this_spec = _speculative; 2773 const TypePtr* other_spec = other->speculative(); 2774 2775 if (!this_has_spec) { 2776 this_spec = this; 2777 } 2778 2779 if (!other_has_spec) { 2780 other_spec = other; 2781 } 2782 2783 return this_spec->meet(other_spec)->is_ptr(); 2784 } 2785 2786 /** 2787 * dual of the inline depth for this type (used for speculation) 2788 */ 2789 int TypePtr::dual_inline_depth() const { 2790 return -inline_depth(); 2791 } 2792 2793 /** 2794 * meet of 2 inline depths (used for speculation) 2795 * 2796 * @param depth depth to meet with 2797 */ 2798 int TypePtr::meet_inline_depth(int depth) const { 2799 return MAX2(inline_depth(), depth); 2800 } 2801 2802 /** 2803 * Are the speculative parts of 2 types equal? 2804 * 2805 * @param other type to compare this one to 2806 */ 2807 bool TypePtr::eq_speculative(const TypePtr* other) const { 2808 if (_speculative == NULL || other->speculative() == NULL) { 2809 return _speculative == other->speculative(); 2810 } 2811 2812 if (_speculative->base() != other->speculative()->base()) { 2813 return false; 2814 } 2815 2816 return _speculative->eq(other->speculative()); 2817 } 2818 2819 /** 2820 * Hash of the speculative part of the type 2821 */ 2822 int TypePtr::hash_speculative() const { 2823 if (_speculative == NULL) { 2824 return 0; 2825 } 2826 2827 return _speculative->hash(); 2828 } 2829 2830 /** 2831 * add offset to the speculative part of the type 2832 * 2833 * @param offset offset to add 2834 */ 2835 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const { 2836 if (_speculative == NULL) { 2837 return NULL; 2838 } 2839 return _speculative->add_offset(offset)->is_ptr(); 2840 } 2841 2842 /** 2843 * return exact klass from the speculative type if there's one 2844 */ 2845 ciKlass* TypePtr::speculative_type() const { 2846 if (_speculative != NULL && _speculative->isa_oopptr()) { 2847 const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr(); 2848 if (speculative->klass_is_exact()) { 2849 return speculative->klass(); 2850 } 2851 } 2852 return NULL; 2853 } 2854 2855 /** 2856 * return true if speculative type may be null 2857 */ 2858 bool TypePtr::speculative_maybe_null() const { 2859 if (_speculative != NULL) { 2860 const TypePtr* speculative = _speculative->join(this)->is_ptr(); 2861 return speculative->maybe_null(); 2862 } 2863 return true; 2864 } 2865 2866 bool TypePtr::speculative_always_null() const { 2867 if (_speculative != NULL) { 2868 const TypePtr* speculative = _speculative->join(this)->is_ptr(); 2869 return speculative == TypePtr::NULL_PTR; 2870 } 2871 return false; 2872 } 2873 2874 /** 2875 * Same as TypePtr::speculative_type() but return the klass only if 2876 * the speculative tells us is not null 2877 */ 2878 ciKlass* TypePtr::speculative_type_not_null() const { 2879 if (speculative_maybe_null()) { 2880 return NULL; 2881 } 2882 return speculative_type(); 2883 } 2884 2885 /** 2886 * Check whether new profiling would improve speculative type 2887 * 2888 * @param exact_kls class from profiling 2889 * @param inline_depth inlining depth of profile point 2890 * 2891 * @return true if type profile is valuable 2892 */ 2893 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { 2894 // no profiling? 2895 if (exact_kls == NULL) { 2896 return false; 2897 } 2898 if (speculative() == TypePtr::NULL_PTR) { 2899 return false; 2900 } 2901 // no speculative type or non exact speculative type? 2902 if (speculative_type() == NULL) { 2903 return true; 2904 } 2905 // If the node already has an exact speculative type keep it, 2906 // unless it was provided by profiling that is at a deeper 2907 // inlining level. Profiling at a higher inlining depth is 2908 // expected to be less accurate. 2909 if (_speculative->inline_depth() == InlineDepthBottom) { 2910 return false; 2911 } 2912 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison"); 2913 return inline_depth < _speculative->inline_depth(); 2914 } 2915 2916 /** 2917 * Check whether new profiling would improve ptr (= tells us it is non 2918 * null) 2919 * 2920 * @param ptr_kind always null or not null? 2921 * 2922 * @return true if ptr profile is valuable 2923 */ 2924 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const { 2925 // profiling doesn't tell us anything useful 2926 if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) { 2927 return false; 2928 } 2929 // We already know this is not null 2930 if (!this->maybe_null()) { 2931 return false; 2932 } 2933 // We already know the speculative type cannot be null 2934 if (!speculative_maybe_null()) { 2935 return false; 2936 } 2937 // We already know this is always null 2938 if (this == TypePtr::NULL_PTR) { 2939 return false; 2940 } 2941 // We already know the speculative type is always null 2942 if (speculative_always_null()) { 2943 return false; 2944 } 2945 if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) { 2946 return false; 2947 } 2948 return true; 2949 } 2950 2951 //------------------------------dump2------------------------------------------ 2952 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = { 2953 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR" 2954 }; 2955 2956 #ifndef PRODUCT 2957 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const { 2958 if( _ptr == Null ) st->print("NULL"); 2959 else st->print("%s *", ptr_msg[_ptr]); 2960 if( _offset == OffsetTop ) st->print("+top"); 2961 else if( _offset == OffsetBot ) st->print("+bot"); 2962 else if( _offset ) st->print("+%d", _offset); 2963 dump_inline_depth(st); 2964 dump_speculative(st); 2965 } 2966 2967 /** 2968 *dump the speculative part of the type 2969 */ 2970 void TypePtr::dump_speculative(outputStream *st) const { 2971 if (_speculative != NULL) { 2972 st->print(" (speculative="); 2973 _speculative->dump_on(st); 2974 st->print(")"); 2975 } 2976 } 2977 2978 /** 2979 *dump the inline depth of the type 2980 */ 2981 void TypePtr::dump_inline_depth(outputStream *st) const { 2982 if (_inline_depth != InlineDepthBottom) { 2983 if (_inline_depth == InlineDepthTop) { 2984 st->print(" (inline_depth=InlineDepthTop)"); 2985 } else { 2986 st->print(" (inline_depth=%d)", _inline_depth); 2987 } 2988 } 2989 } 2990 #endif 2991 2992 //------------------------------singleton-------------------------------------- 2993 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2994 // constants 2995 bool TypePtr::singleton(void) const { 2996 // TopPTR, Null, AnyNull, Constant are all singletons 2997 return (_offset != OffsetBot) && !below_centerline(_ptr); 2998 } 2999 3000 bool TypePtr::empty(void) const { 3001 return (_offset == OffsetTop) || above_centerline(_ptr); 3002 } 3003 3004 //============================================================================= 3005 // Convenience common pre-built types. 3006 const TypeRawPtr *TypeRawPtr::BOTTOM; 3007 const TypeRawPtr *TypeRawPtr::NOTNULL; 3008 3009 //------------------------------make------------------------------------------- 3010 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) { 3011 assert( ptr != Constant, "what is the constant?" ); 3012 assert( ptr != Null, "Use TypePtr for NULL" ); 3013 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons(); 3014 } 3015 3016 const TypeRawPtr *TypeRawPtr::make( address bits ) { 3017 assert( bits, "Use TypePtr for NULL" ); 3018 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons(); 3019 } 3020 3021 //------------------------------cast_to_ptr_type------------------------------- 3022 const TypeRawPtr* TypeRawPtr::cast_to_ptr_type(PTR ptr) const { 3023 assert( ptr != Constant, "what is the constant?" ); 3024 assert( ptr != Null, "Use TypePtr for NULL" ); 3025 assert( _bits==0, "Why cast a constant address?"); 3026 if( ptr == _ptr ) return this; 3027 return make(ptr); 3028 } 3029 3030 //------------------------------get_con---------------------------------------- 3031 intptr_t TypeRawPtr::get_con() const { 3032 assert( _ptr == Null || _ptr == Constant, "" ); 3033 return (intptr_t)_bits; 3034 } 3035 3036 //------------------------------meet------------------------------------------- 3037 // Compute the MEET of two types. It returns a new Type object. 3038 const Type *TypeRawPtr::xmeet( const Type *t ) const { 3039 // Perform a fast test for common case; meeting the same types together. 3040 if( this == t ) return this; // Meeting same type-rep? 3041 3042 // Current "this->_base" is RawPtr 3043 switch( t->base() ) { // switch on original type 3044 case Bottom: // Ye Olde Default 3045 return t; 3046 case Top: 3047 return this; 3048 case AnyPtr: // Meeting to AnyPtrs 3049 break; 3050 case RawPtr: { // might be top, bot, any/not or constant 3051 enum PTR tptr = t->is_ptr()->ptr(); 3052 enum PTR ptr = meet_ptr( tptr ); 3053 if( ptr == Constant ) { // Cannot be equal constants, so... 3054 if( tptr == Constant && _ptr != Constant) return t; 3055 if( _ptr == Constant && tptr != Constant) return this; 3056 ptr = NotNull; // Fall down in lattice 3057 } 3058 return make( ptr ); 3059 } 3060 3061 case OopPtr: 3062 case InstPtr: 3063 case AryPtr: 3064 case MetadataPtr: 3065 case KlassPtr: 3066 case InstKlassPtr: 3067 case AryKlassPtr: 3068 return TypePtr::BOTTOM; // Oop meet raw is not well defined 3069 default: // All else is a mistake 3070 typerr(t); 3071 } 3072 3073 // Found an AnyPtr type vs self-RawPtr type 3074 const TypePtr *tp = t->is_ptr(); 3075 switch (tp->ptr()) { 3076 case TypePtr::TopPTR: return this; 3077 case TypePtr::BotPTR: return t; 3078 case TypePtr::Null: 3079 if( _ptr == TypePtr::TopPTR ) return t; 3080 return TypeRawPtr::BOTTOM; 3081 case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth()); 3082 case TypePtr::AnyNull: 3083 if( _ptr == TypePtr::Constant) return this; 3084 return make( meet_ptr(TypePtr::AnyNull) ); 3085 default: ShouldNotReachHere(); 3086 } 3087 return this; 3088 } 3089 3090 //------------------------------xdual------------------------------------------ 3091 // Dual: compute field-by-field dual 3092 const Type *TypeRawPtr::xdual() const { 3093 return new TypeRawPtr( dual_ptr(), _bits ); 3094 } 3095 3096 //------------------------------add_offset------------------------------------- 3097 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const { 3098 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer 3099 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer 3100 if( offset == 0 ) return this; // No change 3101 switch (_ptr) { 3102 case TypePtr::TopPTR: 3103 case TypePtr::BotPTR: 3104 case TypePtr::NotNull: 3105 return this; 3106 case TypePtr::Null: 3107 case TypePtr::Constant: { 3108 address bits = _bits+offset; 3109 if ( bits == 0 ) return TypePtr::NULL_PTR; 3110 return make( bits ); 3111 } 3112 default: ShouldNotReachHere(); 3113 } 3114 return NULL; // Lint noise 3115 } 3116 3117 //------------------------------eq--------------------------------------------- 3118 // Structural equality check for Type representations 3119 bool TypeRawPtr::eq( const Type *t ) const { 3120 const TypeRawPtr *a = (const TypeRawPtr*)t; 3121 return _bits == a->_bits && TypePtr::eq(t); 3122 } 3123 3124 //------------------------------hash------------------------------------------- 3125 // Type-specific hashing function. 3126 int TypeRawPtr::hash(void) const { 3127 return (intptr_t)_bits + TypePtr::hash(); 3128 } 3129 3130 //------------------------------dump2------------------------------------------ 3131 #ifndef PRODUCT 3132 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 3133 if( _ptr == Constant ) 3134 st->print(INTPTR_FORMAT, p2i(_bits)); 3135 else 3136 st->print("rawptr:%s", ptr_msg[_ptr]); 3137 } 3138 #endif 3139 3140 //============================================================================= 3141 // Convenience common pre-built type. 3142 const TypeOopPtr *TypeOopPtr::BOTTOM; 3143 3144 //------------------------------TypeOopPtr------------------------------------- 3145 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, 3146 int instance_id, const TypePtr* speculative, int inline_depth) 3147 : TypePtr(t, ptr, offset, speculative, inline_depth), 3148 _const_oop(o), _klass(k), 3149 _klass_is_exact(xk), 3150 _is_ptr_to_narrowoop(false), 3151 _is_ptr_to_narrowklass(false), 3152 _is_ptr_to_boxed_value(false), 3153 _instance_id(instance_id) { 3154 if (Compile::current()->eliminate_boxing() && (t == InstPtr) && 3155 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) { 3156 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset); 3157 } 3158 #ifdef _LP64 3159 if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) { 3160 if (_offset == oopDesc::klass_offset_in_bytes()) { 3161 _is_ptr_to_narrowklass = UseCompressedClassPointers; 3162 } else if (klass() == NULL) { 3163 // Array with unknown body type 3164 assert(this->isa_aryptr(), "only arrays without klass"); 3165 _is_ptr_to_narrowoop = UseCompressedOops; 3166 } else if (this->isa_aryptr()) { 3167 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() && 3168 _offset != arrayOopDesc::length_offset_in_bytes()); 3169 } else if (klass()->is_instance_klass()) { 3170 ciInstanceKlass* ik = klass()->as_instance_klass(); 3171 ciField* field = NULL; 3172 if (this->isa_klassptr()) { 3173 // Perm objects don't use compressed references 3174 } else if (_offset == OffsetBot || _offset == OffsetTop) { 3175 // unsafe access 3176 _is_ptr_to_narrowoop = UseCompressedOops; 3177 } else { 3178 assert(this->isa_instptr(), "must be an instance ptr."); 3179 3180 if (klass() == ciEnv::current()->Class_klass() && 3181 (_offset == java_lang_Class::klass_offset() || 3182 _offset == java_lang_Class::array_klass_offset())) { 3183 // Special hidden fields from the Class. 3184 assert(this->isa_instptr(), "must be an instance ptr."); 3185 _is_ptr_to_narrowoop = false; 3186 } else if (klass() == ciEnv::current()->Class_klass() && 3187 _offset >= InstanceMirrorKlass::offset_of_static_fields()) { 3188 // Static fields 3189 ciField* field = NULL; 3190 if (const_oop() != NULL) { 3191 ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 3192 field = k->get_field_by_offset(_offset, true); 3193 } 3194 if (field != NULL) { 3195 BasicType basic_elem_type = field->layout_type(); 3196 _is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type); 3197 } else { 3198 // unsafe access 3199 _is_ptr_to_narrowoop = UseCompressedOops; 3200 } 3201 } else { 3202 // Instance fields which contains a compressed oop references. 3203 field = ik->get_field_by_offset(_offset, false); 3204 if (field != NULL) { 3205 BasicType basic_elem_type = field->layout_type(); 3206 _is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type); 3207 } else if (klass()->equals(ciEnv::current()->Object_klass())) { 3208 // Compile::find_alias_type() cast exactness on all types to verify 3209 // that it does not affect alias type. 3210 _is_ptr_to_narrowoop = UseCompressedOops; 3211 } else { 3212 // Type for the copy start in LibraryCallKit::inline_native_clone(). 3213 _is_ptr_to_narrowoop = UseCompressedOops; 3214 } 3215 } 3216 } 3217 } 3218 } 3219 #endif 3220 } 3221 3222 //------------------------------make------------------------------------------- 3223 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id, 3224 const TypePtr* speculative, int inline_depth) { 3225 assert(ptr != Constant, "no constant generic pointers"); 3226 ciKlass* k = Compile::current()->env()->Object_klass(); 3227 bool xk = false; 3228 ciObject* o = NULL; 3229 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons(); 3230 } 3231 3232 3233 //------------------------------cast_to_ptr_type------------------------------- 3234 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const { 3235 assert(_base == OopPtr, "subclass must override cast_to_ptr_type"); 3236 if( ptr == _ptr ) return this; 3237 return make(ptr, _offset, _instance_id, _speculative, _inline_depth); 3238 } 3239 3240 //-----------------------------cast_to_instance_id---------------------------- 3241 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const { 3242 // There are no instances of a general oop. 3243 // Return self unchanged. 3244 return this; 3245 } 3246 3247 //-----------------------------cast_to_exactness------------------------------- 3248 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const { 3249 // There is no such thing as an exact general oop. 3250 // Return self unchanged. 3251 return this; 3252 } 3253 3254 3255 //------------------------------as_klass_type---------------------------------- 3256 // Return the klass type corresponding to this instance or array type. 3257 // It is the type that is loaded from an object of this type. 3258 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const { 3259 ShouldNotReachHere(); 3260 return NULL; 3261 } 3262 3263 //------------------------------meet------------------------------------------- 3264 // Compute the MEET of two types. It returns a new Type object. 3265 const Type *TypeOopPtr::xmeet_helper(const Type *t) const { 3266 // Perform a fast test for common case; meeting the same types together. 3267 if( this == t ) return this; // Meeting same type-rep? 3268 3269 // Current "this->_base" is OopPtr 3270 switch (t->base()) { // switch on original type 3271 3272 case Int: // Mixing ints & oops happens when javac 3273 case Long: // reuses local variables 3274 case FloatTop: 3275 case FloatCon: 3276 case FloatBot: 3277 case DoubleTop: 3278 case DoubleCon: 3279 case DoubleBot: 3280 case NarrowOop: 3281 case NarrowKlass: 3282 case Bottom: // Ye Olde Default 3283 return Type::BOTTOM; 3284 case Top: 3285 return this; 3286 3287 default: // All else is a mistake 3288 typerr(t); 3289 3290 case RawPtr: 3291 case MetadataPtr: 3292 case KlassPtr: 3293 case InstKlassPtr: 3294 case AryKlassPtr: 3295 return TypePtr::BOTTOM; // Oop meet raw is not well defined 3296 3297 case AnyPtr: { 3298 // Found an AnyPtr type vs self-OopPtr type 3299 const TypePtr *tp = t->is_ptr(); 3300 int offset = meet_offset(tp->offset()); 3301 PTR ptr = meet_ptr(tp->ptr()); 3302 const TypePtr* speculative = xmeet_speculative(tp); 3303 int depth = meet_inline_depth(tp->inline_depth()); 3304 switch (tp->ptr()) { 3305 case Null: 3306 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 3307 // else fall through: 3308 case TopPTR: 3309 case AnyNull: { 3310 int instance_id = meet_instance_id(InstanceTop); 3311 return make(ptr, offset, instance_id, speculative, depth); 3312 } 3313 case BotPTR: 3314 case NotNull: 3315 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 3316 default: typerr(t); 3317 } 3318 } 3319 3320 case OopPtr: { // Meeting to other OopPtrs 3321 const TypeOopPtr *tp = t->is_oopptr(); 3322 int instance_id = meet_instance_id(tp->instance_id()); 3323 const TypePtr* speculative = xmeet_speculative(tp); 3324 int depth = meet_inline_depth(tp->inline_depth()); 3325 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth); 3326 } 3327 3328 case InstPtr: // For these, flip the call around to cut down 3329 case AryPtr: 3330 return t->xmeet(this); // Call in reverse direction 3331 3332 } // End of switch 3333 return this; // Return the double constant 3334 } 3335 3336 3337 //------------------------------xdual------------------------------------------ 3338 // Dual of a pure heap pointer. No relevant klass or oop information. 3339 const Type *TypeOopPtr::xdual() const { 3340 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here"); 3341 assert(const_oop() == NULL, "no constants here"); 3342 return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); 3343 } 3344 3345 //--------------------------make_from_klass_common----------------------------- 3346 // Computes the element-type given a klass. 3347 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) { 3348 if (klass->is_instance_klass()) { 3349 Compile* C = Compile::current(); 3350 Dependencies* deps = C->dependencies(); 3351 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity"); 3352 // Element is an instance 3353 bool klass_is_exact = false; 3354 if (klass->is_loaded()) { 3355 // Try to set klass_is_exact. 3356 ciInstanceKlass* ik = klass->as_instance_klass(); 3357 klass_is_exact = ik->is_final(); 3358 if (!klass_is_exact && klass_change 3359 && deps != NULL && UseUniqueSubclasses) { 3360 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 3361 if (sub != NULL) { 3362 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 3363 klass = ik = sub; 3364 klass_is_exact = sub->is_final(); 3365 } 3366 } 3367 if (!klass_is_exact && try_for_exact && deps != NULL && 3368 !ik->is_interface() && !ik->has_subklass()) { 3369 // Add a dependence; if concrete subclass added we need to recompile 3370 deps->assert_leaf_type(ik); 3371 klass_is_exact = true; 3372 } 3373 } 3374 return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0); 3375 } else if (klass->is_obj_array_klass()) { 3376 // Element is an object array. Recursively call ourself. 3377 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact); 3378 bool xk = etype->klass_is_exact(); 3379 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3380 // We used to pass NotNull in here, asserting that the sub-arrays 3381 // are all not-null. This is not true in generally, as code can 3382 // slam NULLs down in the subarrays. 3383 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0); 3384 return arr; 3385 } else if (klass->is_type_array_klass()) { 3386 // Element is an typeArray 3387 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type()); 3388 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3389 // We used to pass NotNull in here, asserting that the array pointer 3390 // is not-null. That was not true in general. 3391 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0); 3392 return arr; 3393 } else { 3394 ShouldNotReachHere(); 3395 return NULL; 3396 } 3397 } 3398 3399 //------------------------------make_from_constant----------------------------- 3400 // Make a java pointer from an oop constant 3401 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) { 3402 assert(!o->is_null_object(), "null object not yet handled here."); 3403 3404 const bool make_constant = require_constant || o->should_be_constant(); 3405 3406 ciKlass* klass = o->klass(); 3407 if (klass->is_instance_klass()) { 3408 // Element is an instance 3409 if (make_constant) { 3410 return TypeInstPtr::make(o); 3411 } else { 3412 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0); 3413 } 3414 } else if (klass->is_obj_array_klass()) { 3415 // Element is an object array. Recursively call ourself. 3416 const TypeOopPtr *etype = 3417 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass()); 3418 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); 3419 // We used to pass NotNull in here, asserting that the sub-arrays 3420 // are all not-null. This is not true in generally, as code can 3421 // slam NULLs down in the subarrays. 3422 if (make_constant) { 3423 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); 3424 } else { 3425 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); 3426 } 3427 } else if (klass->is_type_array_klass()) { 3428 // Element is an typeArray 3429 const Type* etype = 3430 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type()); 3431 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); 3432 // We used to pass NotNull in here, asserting that the array pointer 3433 // is not-null. That was not true in general. 3434 if (make_constant) { 3435 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); 3436 } else { 3437 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); 3438 } 3439 } 3440 3441 fatal("unhandled object type"); 3442 return NULL; 3443 } 3444 3445 //------------------------------get_con---------------------------------------- 3446 intptr_t TypeOopPtr::get_con() const { 3447 assert( _ptr == Null || _ptr == Constant, "" ); 3448 assert( _offset >= 0, "" ); 3449 3450 if (_offset != 0) { 3451 // After being ported to the compiler interface, the compiler no longer 3452 // directly manipulates the addresses of oops. Rather, it only has a pointer 3453 // to a handle at compile time. This handle is embedded in the generated 3454 // code and dereferenced at the time the nmethod is made. Until that time, 3455 // it is not reasonable to do arithmetic with the addresses of oops (we don't 3456 // have access to the addresses!). This does not seem to currently happen, 3457 // but this assertion here is to help prevent its occurrence. 3458 tty->print_cr("Found oop constant with non-zero offset"); 3459 ShouldNotReachHere(); 3460 } 3461 3462 return (intptr_t)const_oop()->constant_encoding(); 3463 } 3464 3465 3466 //-----------------------------filter------------------------------------------ 3467 // Do not allow interface-vs.-noninterface joins to collapse to top. 3468 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const { 3469 3470 const Type* ft = join_helper(kills, include_speculative); 3471 const TypeInstPtr* ftip = ft->isa_instptr(); 3472 const TypeInstPtr* ktip = kills->isa_instptr(); 3473 3474 if (ft->empty()) { 3475 // Check for evil case of 'this' being a class and 'kills' expecting an 3476 // interface. This can happen because the bytecodes do not contain 3477 // enough type info to distinguish a Java-level interface variable 3478 // from a Java-level object variable. If we meet 2 classes which 3479 // both implement interface I, but their meet is at 'j/l/O' which 3480 // doesn't implement I, we have no way to tell if the result should 3481 // be 'I' or 'j/l/O'. Thus we'll pick 'j/l/O'. If this then flows 3482 // into a Phi which "knows" it's an Interface type we'll have to 3483 // uplift the type. 3484 if (!empty()) { 3485 if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) { 3486 return kills; // Uplift to interface 3487 } 3488 // Also check for evil cases of 'this' being a class array 3489 // and 'kills' expecting an array of interfaces. 3490 Type::get_arrays_base_elements(ft, kills, NULL, &ktip); 3491 if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) { 3492 return kills; // Uplift to array of interface 3493 } 3494 } 3495 3496 return Type::TOP; // Canonical empty value 3497 } 3498 3499 // If we have an interface-typed Phi or cast and we narrow to a class type, 3500 // the join should report back the class. However, if we have a J/L/Object 3501 // class-typed Phi and an interface flows in, it's possible that the meet & 3502 // join report an interface back out. This isn't possible but happens 3503 // because the type system doesn't interact well with interfaces. 3504 if (ftip != NULL && ktip != NULL && 3505 ftip->is_loaded() && ftip->klass()->is_interface() && 3506 ktip->is_loaded() && !ktip->klass()->is_interface()) { 3507 assert(!ftip->klass_is_exact(), "interface could not be exact"); 3508 return ktip->cast_to_ptr_type(ftip->ptr()); 3509 } 3510 3511 return ft; 3512 } 3513 3514 //------------------------------eq--------------------------------------------- 3515 // Structural equality check for Type representations 3516 bool TypeOopPtr::eq( const Type *t ) const { 3517 const TypeOopPtr *a = (const TypeOopPtr*)t; 3518 if (_klass_is_exact != a->_klass_is_exact || 3519 _instance_id != a->_instance_id) return false; 3520 ciObject* one = const_oop(); 3521 ciObject* two = a->const_oop(); 3522 if (one == NULL || two == NULL) { 3523 return (one == two) && TypePtr::eq(t); 3524 } else { 3525 return one->equals(two) && TypePtr::eq(t); 3526 } 3527 } 3528 3529 //------------------------------hash------------------------------------------- 3530 // Type-specific hashing function. 3531 int TypeOopPtr::hash(void) const { 3532 return 3533 java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact), 3534 java_add((jint)_instance_id, (jint)TypePtr::hash())); 3535 } 3536 3537 //------------------------------dump2------------------------------------------ 3538 #ifndef PRODUCT 3539 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 3540 st->print("oopptr:%s", ptr_msg[_ptr]); 3541 if( _klass_is_exact ) st->print(":exact"); 3542 if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop())); 3543 switch( _offset ) { 3544 case OffsetTop: st->print("+top"); break; 3545 case OffsetBot: st->print("+any"); break; 3546 case 0: break; 3547 default: st->print("+%d",_offset); break; 3548 } 3549 if (_instance_id == InstanceTop) 3550 st->print(",iid=top"); 3551 else if (_instance_id != InstanceBot) 3552 st->print(",iid=%d",_instance_id); 3553 3554 dump_inline_depth(st); 3555 dump_speculative(st); 3556 } 3557 #endif 3558 3559 //------------------------------singleton-------------------------------------- 3560 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 3561 // constants 3562 bool TypeOopPtr::singleton(void) const { 3563 // detune optimizer to not generate constant oop + constant offset as a constant! 3564 // TopPTR, Null, AnyNull, Constant are all singletons 3565 return (_offset == 0) && !below_centerline(_ptr); 3566 } 3567 3568 //------------------------------add_offset------------------------------------- 3569 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const { 3570 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); 3571 } 3572 3573 /** 3574 * Return same type without a speculative part 3575 */ 3576 const Type* TypeOopPtr::remove_speculative() const { 3577 if (_speculative == NULL) { 3578 return this; 3579 } 3580 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 3581 return make(_ptr, _offset, _instance_id, NULL, _inline_depth); 3582 } 3583 3584 /** 3585 * Return same type but drop speculative part if we know we won't use 3586 * it 3587 */ 3588 const Type* TypeOopPtr::cleanup_speculative() const { 3589 // If the klass is exact and the ptr is not null then there's 3590 // nothing that the speculative type can help us with 3591 if (klass_is_exact() && !maybe_null()) { 3592 return remove_speculative(); 3593 } 3594 return TypePtr::cleanup_speculative(); 3595 } 3596 3597 /** 3598 * Return same type but with a different inline depth (used for speculation) 3599 * 3600 * @param depth depth to meet with 3601 */ 3602 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const { 3603 if (!UseInlineDepthForSpeculativeTypes) { 3604 return this; 3605 } 3606 return make(_ptr, _offset, _instance_id, _speculative, depth); 3607 } 3608 3609 //------------------------------with_instance_id-------------------------------- 3610 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const { 3611 assert(_instance_id != -1, "should be known"); 3612 return make(_ptr, _offset, instance_id, _speculative, _inline_depth); 3613 } 3614 3615 //------------------------------meet_instance_id-------------------------------- 3616 int TypeOopPtr::meet_instance_id( int instance_id ) const { 3617 // Either is 'TOP' instance? Return the other instance! 3618 if( _instance_id == InstanceTop ) return instance_id; 3619 if( instance_id == InstanceTop ) return _instance_id; 3620 // If either is different, return 'BOTTOM' instance 3621 if( _instance_id != instance_id ) return InstanceBot; 3622 return _instance_id; 3623 } 3624 3625 //------------------------------dual_instance_id-------------------------------- 3626 int TypeOopPtr::dual_instance_id( ) const { 3627 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM 3628 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP 3629 return _instance_id; // Map everything else into self 3630 } 3631 3632 /** 3633 * Check whether new profiling would improve speculative type 3634 * 3635 * @param exact_kls class from profiling 3636 * @param inline_depth inlining depth of profile point 3637 * 3638 * @return true if type profile is valuable 3639 */ 3640 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { 3641 // no way to improve an already exact type 3642 if (klass_is_exact()) { 3643 return false; 3644 } 3645 return TypePtr::would_improve_type(exact_kls, inline_depth); 3646 } 3647 3648 //============================================================================= 3649 // Convenience common pre-built types. 3650 const TypeInstPtr *TypeInstPtr::NOTNULL; 3651 const TypeInstPtr *TypeInstPtr::BOTTOM; 3652 const TypeInstPtr *TypeInstPtr::MIRROR; 3653 const TypeInstPtr *TypeInstPtr::MARK; 3654 const TypeInstPtr *TypeInstPtr::KLASS; 3655 3656 //------------------------------TypeInstPtr------------------------------------- 3657 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off, 3658 int instance_id, const TypePtr* speculative, int inline_depth) 3659 : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth), 3660 _name(k->name()) { 3661 assert(k != NULL && 3662 (k->is_loaded() || o == NULL), 3663 "cannot have constants with non-loaded klass"); 3664 }; 3665 3666 //------------------------------make------------------------------------------- 3667 const TypeInstPtr *TypeInstPtr::make(PTR ptr, 3668 ciKlass* k, 3669 bool xk, 3670 ciObject* o, 3671 int offset, 3672 int instance_id, 3673 const TypePtr* speculative, 3674 int inline_depth) { 3675 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance"); 3676 // Either const_oop() is NULL or else ptr is Constant 3677 assert( (!o && ptr != Constant) || (o && ptr == Constant), 3678 "constant pointers must have a value supplied" ); 3679 // Ptr is never Null 3680 assert( ptr != Null, "NULL pointers are not typed" ); 3681 3682 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 3683 if (ptr == Constant) { 3684 // Note: This case includes meta-object constants, such as methods. 3685 xk = true; 3686 } else if (k->is_loaded()) { 3687 ciInstanceKlass* ik = k->as_instance_klass(); 3688 if (!xk && ik->is_final()) xk = true; // no inexact final klass 3689 if (xk && ik->is_interface()) xk = false; // no exact interface 3690 } 3691 3692 // Now hash this baby 3693 TypeInstPtr *result = 3694 (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons(); 3695 3696 return result; 3697 } 3698 3699 /** 3700 * Create constant type for a constant boxed value 3701 */ 3702 const Type* TypeInstPtr::get_const_boxed_value() const { 3703 assert(is_ptr_to_boxed_value(), "should be called only for boxed value"); 3704 assert((const_oop() != NULL), "should be called only for constant object"); 3705 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset()); 3706 BasicType bt = constant.basic_type(); 3707 switch (bt) { 3708 case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); 3709 case T_INT: return TypeInt::make(constant.as_int()); 3710 case T_CHAR: return TypeInt::make(constant.as_char()); 3711 case T_BYTE: return TypeInt::make(constant.as_byte()); 3712 case T_SHORT: return TypeInt::make(constant.as_short()); 3713 case T_FLOAT: return TypeF::make(constant.as_float()); 3714 case T_DOUBLE: return TypeD::make(constant.as_double()); 3715 case T_LONG: return TypeLong::make(constant.as_long()); 3716 default: break; 3717 } 3718 fatal("Invalid boxed value type '%s'", type2name(bt)); 3719 return NULL; 3720 } 3721 3722 //------------------------------cast_to_ptr_type------------------------------- 3723 const TypeInstPtr *TypeInstPtr::cast_to_ptr_type(PTR ptr) const { 3724 if( ptr == _ptr ) return this; 3725 // Reconstruct _sig info here since not a problem with later lazy 3726 // construction, _sig will show up on demand. 3727 return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth); 3728 } 3729 3730 3731 //-----------------------------cast_to_exactness------------------------------- 3732 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const { 3733 if( klass_is_exact == _klass_is_exact ) return this; 3734 if (!_klass->is_loaded()) return this; 3735 ciInstanceKlass* ik = _klass->as_instance_klass(); 3736 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk 3737 if( ik->is_interface() ) return this; // cannot set xk 3738 return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth); 3739 } 3740 3741 //-----------------------------cast_to_instance_id---------------------------- 3742 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const { 3743 if( instance_id == _instance_id ) return this; 3744 return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth); 3745 } 3746 3747 //------------------------------xmeet_unloaded--------------------------------- 3748 // Compute the MEET of two InstPtrs when at least one is unloaded. 3749 // Assume classes are different since called after check for same name/class-loader 3750 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const { 3751 int off = meet_offset(tinst->offset()); 3752 PTR ptr = meet_ptr(tinst->ptr()); 3753 int instance_id = meet_instance_id(tinst->instance_id()); 3754 const TypePtr* speculative = xmeet_speculative(tinst); 3755 int depth = meet_inline_depth(tinst->inline_depth()); 3756 3757 const TypeInstPtr *loaded = is_loaded() ? this : tinst; 3758 const TypeInstPtr *unloaded = is_loaded() ? tinst : this; 3759 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) { 3760 // 3761 // Meet unloaded class with java/lang/Object 3762 // 3763 // Meet 3764 // | Unloaded Class 3765 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM | 3766 // =================================================================== 3767 // TOP | ..........................Unloaded......................| 3768 // AnyNull | U-AN |................Unloaded......................| 3769 // Constant | ... O-NN .................................. | O-BOT | 3770 // NotNull | ... O-NN .................................. | O-BOT | 3771 // BOTTOM | ........................Object-BOTTOM ..................| 3772 // 3773 assert(loaded->ptr() != TypePtr::Null, "insanity check"); 3774 // 3775 if( loaded->ptr() == TypePtr::TopPTR ) { return unloaded; } 3776 else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); } 3777 else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; } 3778 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) { 3779 if (unloaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; } 3780 else { return TypeInstPtr::NOTNULL; } 3781 } 3782 else if( unloaded->ptr() == TypePtr::TopPTR ) { return unloaded; } 3783 3784 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr(); 3785 } 3786 3787 // Both are unloaded, not the same class, not Object 3788 // Or meet unloaded with a different loaded class, not java/lang/Object 3789 if( ptr != TypePtr::BotPTR ) { 3790 return TypeInstPtr::NOTNULL; 3791 } 3792 return TypeInstPtr::BOTTOM; 3793 } 3794 3795 3796 //------------------------------meet------------------------------------------- 3797 // Compute the MEET of two types. It returns a new Type object. 3798 const Type *TypeInstPtr::xmeet_helper(const Type *t) const { 3799 // Perform a fast test for common case; meeting the same types together. 3800 if( this == t ) return this; // Meeting same type-rep? 3801 3802 // Current "this->_base" is Pointer 3803 switch (t->base()) { // switch on original type 3804 3805 case Int: // Mixing ints & oops happens when javac 3806 case Long: // reuses local variables 3807 case FloatTop: 3808 case FloatCon: 3809 case FloatBot: 3810 case DoubleTop: 3811 case DoubleCon: 3812 case DoubleBot: 3813 case NarrowOop: 3814 case NarrowKlass: 3815 case Bottom: // Ye Olde Default 3816 return Type::BOTTOM; 3817 case Top: 3818 return this; 3819 3820 default: // All else is a mistake 3821 typerr(t); 3822 3823 case MetadataPtr: 3824 case KlassPtr: 3825 case InstKlassPtr: 3826 case AryKlassPtr: 3827 case RawPtr: return TypePtr::BOTTOM; 3828 3829 case AryPtr: { // All arrays inherit from Object class 3830 // Call in reverse direction to avoid duplication 3831 return t->is_aryptr()->xmeet_helper(this); 3832 } 3833 3834 case OopPtr: { // Meeting to OopPtrs 3835 // Found a OopPtr type vs self-InstPtr type 3836 const TypeOopPtr *tp = t->is_oopptr(); 3837 int offset = meet_offset(tp->offset()); 3838 PTR ptr = meet_ptr(tp->ptr()); 3839 switch (tp->ptr()) { 3840 case TopPTR: 3841 case AnyNull: { 3842 int instance_id = meet_instance_id(InstanceTop); 3843 const TypePtr* speculative = xmeet_speculative(tp); 3844 int depth = meet_inline_depth(tp->inline_depth()); 3845 return make(ptr, klass(), klass_is_exact(), 3846 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth); 3847 } 3848 case NotNull: 3849 case BotPTR: { 3850 int instance_id = meet_instance_id(tp->instance_id()); 3851 const TypePtr* speculative = xmeet_speculative(tp); 3852 int depth = meet_inline_depth(tp->inline_depth()); 3853 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); 3854 } 3855 default: typerr(t); 3856 } 3857 } 3858 3859 case AnyPtr: { // Meeting to AnyPtrs 3860 // Found an AnyPtr type vs self-InstPtr type 3861 const TypePtr *tp = t->is_ptr(); 3862 int offset = meet_offset(tp->offset()); 3863 PTR ptr = meet_ptr(tp->ptr()); 3864 int instance_id = meet_instance_id(InstanceTop); 3865 const TypePtr* speculative = xmeet_speculative(tp); 3866 int depth = meet_inline_depth(tp->inline_depth()); 3867 switch (tp->ptr()) { 3868 case Null: 3869 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 3870 // else fall through to AnyNull 3871 case TopPTR: 3872 case AnyNull: { 3873 return make(ptr, klass(), klass_is_exact(), 3874 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth); 3875 } 3876 case NotNull: 3877 case BotPTR: 3878 return TypePtr::make(AnyPtr, ptr, offset, speculative,depth); 3879 default: typerr(t); 3880 } 3881 } 3882 3883 /* 3884 A-top } 3885 / | \ } Tops 3886 B-top A-any C-top } 3887 | / | \ | } Any-nulls 3888 B-any | C-any } 3889 | | | 3890 B-con A-con C-con } constants; not comparable across classes 3891 | | | 3892 B-not | C-not } 3893 | \ | / | } not-nulls 3894 B-bot A-not C-bot } 3895 \ | / } Bottoms 3896 A-bot } 3897 */ 3898 3899 case InstPtr: { // Meeting 2 Oops? 3900 // Found an InstPtr sub-type vs self-InstPtr type 3901 const TypeInstPtr *tinst = t->is_instptr(); 3902 int off = meet_offset(tinst->offset()); 3903 PTR ptr = meet_ptr(tinst->ptr()); 3904 int instance_id = meet_instance_id(tinst->instance_id()); 3905 const TypePtr* speculative = xmeet_speculative(tinst); 3906 int depth = meet_inline_depth(tinst->inline_depth()); 3907 ciKlass* tinst_klass = tinst->klass(); 3908 ciKlass* this_klass = klass(); 3909 bool tinst_xk = tinst->klass_is_exact(); 3910 bool this_xk = klass_is_exact(); 3911 3912 ciKlass* res_klass = NULL; 3913 bool res_xk = false; 3914 const Type* res; 3915 MeetResult kind = meet_instptr(ptr, this_klass, tinst_klass, this_xk, tinst_xk, this->_ptr, tinst->_ptr, res_klass, res_xk); 3916 if (kind == UNLOADED) { 3917 // One of these classes has not been loaded 3918 const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst); 3919 #ifndef PRODUCT 3920 if (PrintOpto && Verbose) { 3921 tty->print("meet of unloaded classes resulted in: "); 3922 unloaded_meet->dump(); 3923 tty->cr(); 3924 tty->print(" this == "); 3925 dump(); 3926 tty->cr(); 3927 tty->print(" tinst == "); 3928 tinst->dump(); 3929 tty->cr(); 3930 } 3931 #endif 3932 res = unloaded_meet; 3933 } else { 3934 if (kind == NOT_SUBTYPE && instance_id > 0) { 3935 instance_id = InstanceBot; 3936 } else if (kind == LCA) { 3937 instance_id = InstanceBot; 3938 } 3939 ciObject* o = NULL; // Assume not constant when done 3940 ciObject* this_oop = const_oop(); 3941 ciObject* tinst_oop = tinst->const_oop(); 3942 if (ptr == Constant) { 3943 if (this_oop != NULL && tinst_oop != NULL && 3944 this_oop->equals(tinst_oop)) 3945 o = this_oop; 3946 else if (above_centerline(_ptr)) { 3947 assert(!tinst_klass->is_interface(), ""); 3948 o = tinst_oop; 3949 } else if (above_centerline(tinst->_ptr)) { 3950 assert(!this_klass->is_interface(), ""); 3951 o = this_oop; 3952 } else 3953 ptr = NotNull; 3954 } 3955 res = make(ptr, res_klass, res_xk, o, off, instance_id, speculative, depth); 3956 } 3957 3958 return res; 3959 3960 } // End of case InstPtr 3961 3962 } // End of switch 3963 return this; // Return the double constant 3964 } 3965 3966 TypePtr::MeetResult TypePtr::meet_instptr(PTR &ptr, ciKlass* this_klass, ciKlass* tinst_klass, bool this_xk, bool tinst_xk, 3967 PTR this_ptr, 3968 PTR tinst_ptr, ciKlass*&res_klass, bool &res_xk) { 3969 3970 // Check for easy case; klasses are equal (and perhaps not loaded!) 3971 // If we have constants, then we created oops so classes are loaded 3972 // and we can handle the constants further down. This case handles 3973 // both-not-loaded or both-loaded classes 3974 if (ptr != Constant && this_klass->equals(tinst_klass) && this_xk == tinst_xk) { 3975 res_klass = this_klass; 3976 res_xk = this_xk; 3977 return QUICK; 3978 } 3979 3980 // Classes require inspection in the Java klass hierarchy. Must be loaded. 3981 if (!tinst_klass->is_loaded() || !this_klass->is_loaded()) { 3982 return UNLOADED; 3983 } 3984 3985 // Handle mixing oops and interfaces first. 3986 if (this_klass->is_interface() && !(tinst_klass->is_interface() || 3987 tinst_klass == ciEnv::current()->Object_klass())) { 3988 ciKlass *tmp = tinst_klass; // Swap interface around 3989 tinst_klass = this_klass; 3990 this_klass = tmp; 3991 bool tmp2 = tinst_xk; 3992 tinst_xk = this_xk; 3993 this_xk = tmp2; 3994 } 3995 if (tinst_klass->is_interface() && 3996 !(this_klass->is_interface() || 3997 // Treat java/lang/Object as an honorary interface, 3998 // because we need a bottom for the interface hierarchy. 3999 this_klass == ciEnv::current()->Object_klass())) { 4000 // Oop meets interface! 4001 4002 // See if the oop subtypes (implements) interface. 4003 if (this_klass->is_subtype_of(tinst_klass)) { 4004 // Oop indeed subtypes. Now keep oop or interface depending 4005 // on whether we are both above the centerline or either is 4006 // below the centerline. If we are on the centerline 4007 // (e.g., Constant vs. AnyNull interface), use the constant. 4008 res_klass = below_centerline(ptr) ? tinst_klass : this_klass; 4009 // If we are keeping this_klass, keep its exactness too. 4010 res_xk = below_centerline(ptr) ? tinst_xk : this_xk; 4011 return SUBTYPE; 4012 } else { // Does not implement, fall to Object 4013 // Oop does not implement interface, so mixing falls to Object 4014 // just like the verifier does (if both are above the 4015 // centerline fall to interface) 4016 res_klass = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass(); 4017 res_xk = above_centerline(ptr) ? tinst_xk : false; 4018 // Watch out for Constant vs. AnyNull interface. 4019 if (ptr == Constant) ptr = NotNull; // forget it was a constant 4020 return NOT_SUBTYPE; 4021 } 4022 } 4023 4024 // Either oop vs oop or interface vs interface or interface vs Object 4025 4026 // !!! Here's how the symmetry requirement breaks down into invariants: 4027 // If we split one up & one down AND they subtype, take the down man. 4028 // If we split one up & one down AND they do NOT subtype, "fall hard". 4029 // If both are up and they subtype, take the subtype class. 4030 // If both are up and they do NOT subtype, "fall hard". 4031 // If both are down and they subtype, take the supertype class. 4032 // If both are down and they do NOT subtype, "fall hard". 4033 // Constants treated as down. 4034 4035 // Now, reorder the above list; observe that both-down+subtype is also 4036 // "fall hard"; "fall hard" becomes the default case: 4037 // If we split one up & one down AND they subtype, take the down man. 4038 // If both are up and they subtype, take the subtype class. 4039 4040 // If both are down and they subtype, "fall hard". 4041 // If both are down and they do NOT subtype, "fall hard". 4042 // If both are up and they do NOT subtype, "fall hard". 4043 // If we split one up & one down AND they do NOT subtype, "fall hard". 4044 4045 // If a proper subtype is exact, and we return it, we return it exactly. 4046 // If a proper supertype is exact, there can be no subtyping relationship! 4047 // If both types are equal to the subtype, exactness is and-ed below the 4048 // centerline and or-ed above it. (N.B. Constants are always exact.) 4049 4050 // Check for subtyping: 4051 ciKlass *subtype = NULL; 4052 bool subtype_exact = false; 4053 if (tinst_klass->equals(this_klass)) { 4054 subtype = this_klass; 4055 subtype_exact = below_centerline(ptr) ? (this_xk && tinst_xk) : (this_xk || tinst_xk); 4056 } else if (!tinst_xk && this_klass->is_subtype_of(tinst_klass)) { 4057 subtype = this_klass; // Pick subtyping class 4058 subtype_exact = this_xk; 4059 } else if (!this_xk && tinst_klass->is_subtype_of(this_klass)) { 4060 subtype = tinst_klass; // Pick subtyping class 4061 subtype_exact = tinst_xk; 4062 } 4063 4064 if (subtype) { 4065 if (above_centerline(ptr)) { // both are up? 4066 this_klass = tinst_klass = subtype; 4067 this_xk = tinst_xk = subtype_exact; 4068 } else if (above_centerline(this_ptr) && !above_centerline(tinst_ptr)) { 4069 this_klass = tinst_klass; // tinst is down; keep down man 4070 this_xk = tinst_xk; 4071 } else if (above_centerline(tinst_ptr) && !above_centerline(this_ptr)) { 4072 tinst_klass = this_klass; // this is down; keep down man 4073 tinst_xk = this_xk; 4074 } else { 4075 this_xk = subtype_exact; // either they are equal, or we'll do an LCA 4076 } 4077 } 4078 4079 // Check for classes now being equal 4080 if (tinst_klass->equals(this_klass)) { 4081 // If the klasses are equal, the constants may still differ. Fall to 4082 // NotNull if they do (neither constant is NULL; that is a special case 4083 // handled elsewhere). 4084 res_klass = this_klass; 4085 res_xk = this_xk; 4086 return SUBTYPE; 4087 } // Else classes are not equal 4088 4089 // Since klasses are different, we require a LCA in the Java 4090 // class hierarchy - which means we have to fall to at least NotNull. 4091 if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) { 4092 ptr = NotNull; 4093 } 4094 4095 // Now we find the LCA of Java classes 4096 ciKlass* k = this_klass->least_common_ancestor(tinst_klass); 4097 4098 res_klass = k; 4099 res_xk = false; 4100 4101 return LCA; 4102 } 4103 4104 4105 //------------------------java_mirror_type-------------------------------------- 4106 ciType* TypeInstPtr::java_mirror_type() const { 4107 // must be a singleton type 4108 if( const_oop() == NULL ) return NULL; 4109 4110 // must be of type java.lang.Class 4111 if( klass() != ciEnv::current()->Class_klass() ) return NULL; 4112 4113 return const_oop()->as_instance()->java_mirror_type(); 4114 } 4115 4116 4117 //------------------------------xdual------------------------------------------ 4118 // Dual: do NOT dual on klasses. This means I do NOT understand the Java 4119 // inheritance mechanism. 4120 const Type *TypeInstPtr::xdual() const { 4121 return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); 4122 } 4123 4124 //------------------------------eq--------------------------------------------- 4125 // Structural equality check for Type representations 4126 bool TypeInstPtr::eq( const Type *t ) const { 4127 const TypeInstPtr *p = t->is_instptr(); 4128 return 4129 klass()->equals(p->klass()) && 4130 TypeOopPtr::eq(p); // Check sub-type stuff 4131 } 4132 4133 //------------------------------hash------------------------------------------- 4134 // Type-specific hashing function. 4135 int TypeInstPtr::hash(void) const { 4136 int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash()); 4137 return hash; 4138 } 4139 4140 //------------------------------dump2------------------------------------------ 4141 // Dump oop Type 4142 #ifndef PRODUCT 4143 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const { 4144 // Print the name of the klass. 4145 klass()->print_name_on(st); 4146 4147 switch( _ptr ) { 4148 case Constant: 4149 if (WizardMode || Verbose) { 4150 ResourceMark rm; 4151 stringStream ss; 4152 4153 st->print(" "); 4154 const_oop()->print_oop(&ss); 4155 // 'const_oop->print_oop()' may emit newlines('\n') into ss. 4156 // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node. 4157 char* buf = ss.as_string(/* c_heap= */false); 4158 StringUtils::replace_no_expand(buf, "\n", ""); 4159 st->print_raw(buf); 4160 } 4161 case BotPTR: 4162 if (!WizardMode && !Verbose) { 4163 if( _klass_is_exact ) st->print(":exact"); 4164 break; 4165 } 4166 case TopPTR: 4167 case AnyNull: 4168 case NotNull: 4169 st->print(":%s", ptr_msg[_ptr]); 4170 if( _klass_is_exact ) st->print(":exact"); 4171 break; 4172 default: 4173 break; 4174 } 4175 4176 if( _offset ) { // Dump offset, if any 4177 if( _offset == OffsetBot ) st->print("+any"); 4178 else if( _offset == OffsetTop ) st->print("+unknown"); 4179 else st->print("+%d", _offset); 4180 } 4181 4182 st->print(" *"); 4183 if (_instance_id == InstanceTop) 4184 st->print(",iid=top"); 4185 else if (_instance_id != InstanceBot) 4186 st->print(",iid=%d",_instance_id); 4187 4188 dump_inline_depth(st); 4189 dump_speculative(st); 4190 } 4191 #endif 4192 4193 //------------------------------add_offset------------------------------------- 4194 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const { 4195 return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset), 4196 _instance_id, add_offset_speculative(offset), _inline_depth); 4197 } 4198 4199 const Type *TypeInstPtr::remove_speculative() const { 4200 if (_speculative == NULL) { 4201 return this; 4202 } 4203 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 4204 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, 4205 _instance_id, NULL, _inline_depth); 4206 } 4207 4208 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const { 4209 if (!UseInlineDepthForSpeculativeTypes) { 4210 return this; 4211 } 4212 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth); 4213 } 4214 4215 const TypePtr *TypeInstPtr::with_instance_id(int instance_id) const { 4216 assert(is_known_instance(), "should be known"); 4217 return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth); 4218 } 4219 4220 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const { 4221 bool xk = klass_is_exact(); 4222 ciInstanceKlass* ik = klass()->as_instance_klass(); 4223 if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final() && !ik->is_interface()) { 4224 Compile* C = Compile::current(); 4225 Dependencies* deps = C->dependencies(); 4226 deps->assert_leaf_type(ik); 4227 xk = true; 4228 } 4229 return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), 0); 4230 } 4231 4232 //============================================================================= 4233 // Convenience common pre-built types. 4234 const TypeAryPtr *TypeAryPtr::RANGE; 4235 const TypeAryPtr *TypeAryPtr::OOPS; 4236 const TypeAryPtr *TypeAryPtr::NARROWOOPS; 4237 const TypeAryPtr *TypeAryPtr::BYTES; 4238 const TypeAryPtr *TypeAryPtr::SHORTS; 4239 const TypeAryPtr *TypeAryPtr::CHARS; 4240 const TypeAryPtr *TypeAryPtr::INTS; 4241 const TypeAryPtr *TypeAryPtr::LONGS; 4242 const TypeAryPtr *TypeAryPtr::FLOATS; 4243 const TypeAryPtr *TypeAryPtr::DOUBLES; 4244 4245 //------------------------------make------------------------------------------- 4246 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, 4247 int instance_id, const TypePtr* speculative, int inline_depth) { 4248 assert(!(k == NULL && ary->_elem->isa_int()), 4249 "integral arrays must be pre-equipped with a class"); 4250 if (!xk) xk = ary->ary_must_be_exact(); 4251 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4252 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons(); 4253 } 4254 4255 //------------------------------make------------------------------------------- 4256 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, 4257 int instance_id, const TypePtr* speculative, int inline_depth, 4258 bool is_autobox_cache) { 4259 assert(!(k == NULL && ary->_elem->isa_int()), 4260 "integral arrays must be pre-equipped with a class"); 4261 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" ); 4262 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact(); 4263 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4264 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons(); 4265 } 4266 4267 //------------------------------cast_to_ptr_type------------------------------- 4268 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const { 4269 if( ptr == _ptr ) return this; 4270 return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); 4271 } 4272 4273 4274 //-----------------------------cast_to_exactness------------------------------- 4275 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const { 4276 if( klass_is_exact == _klass_is_exact ) return this; 4277 if (_ary->ary_must_be_exact()) return this; // cannot clear xk 4278 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth); 4279 } 4280 4281 //-----------------------------cast_to_instance_id---------------------------- 4282 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const { 4283 if( instance_id == _instance_id ) return this; 4284 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth); 4285 } 4286 4287 4288 //-----------------------------max_array_length------------------------------- 4289 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization. 4290 jint TypeAryPtr::max_array_length(BasicType etype) { 4291 if (!is_java_primitive(etype) && !is_reference_type(etype)) { 4292 if (etype == T_NARROWOOP) { 4293 etype = T_OBJECT; 4294 } else if (etype == T_ILLEGAL) { // bottom[] 4295 etype = T_BYTE; // will produce conservatively high value 4296 } else { 4297 fatal("not an element type: %s", type2name(etype)); 4298 } 4299 } 4300 return arrayOopDesc::max_array_length(etype); 4301 } 4302 4303 //-----------------------------narrow_size_type------------------------------- 4304 // Narrow the given size type to the index range for the given array base type. 4305 // Return NULL if the resulting int type becomes empty. 4306 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const { 4307 jint hi = size->_hi; 4308 jint lo = size->_lo; 4309 jint min_lo = 0; 4310 jint max_hi = max_array_length(elem()->basic_type()); 4311 //if (index_not_size) --max_hi; // type of a valid array index, FTR 4312 bool chg = false; 4313 if (lo < min_lo) { 4314 lo = min_lo; 4315 if (size->is_con()) { 4316 hi = lo; 4317 } 4318 chg = true; 4319 } 4320 if (hi > max_hi) { 4321 hi = max_hi; 4322 if (size->is_con()) { 4323 lo = hi; 4324 } 4325 chg = true; 4326 } 4327 // Negative length arrays will produce weird intermediate dead fast-path code 4328 if (lo > hi) 4329 return TypeInt::ZERO; 4330 if (!chg) 4331 return size; 4332 return TypeInt::make(lo, hi, Type::WidenMin); 4333 } 4334 4335 //-------------------------------cast_to_size---------------------------------- 4336 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const { 4337 assert(new_size != NULL, ""); 4338 new_size = narrow_size_type(new_size); 4339 if (new_size == size()) return this; 4340 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable()); 4341 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); 4342 } 4343 4344 //------------------------------cast_to_stable--------------------------------- 4345 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const { 4346 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable())) 4347 return this; 4348 4349 const Type* elem = this->elem(); 4350 const TypePtr* elem_ptr = elem->make_ptr(); 4351 4352 if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) { 4353 // If this is widened from a narrow oop, TypeAry::make will re-narrow it. 4354 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1); 4355 } 4356 4357 const TypeAry* new_ary = TypeAry::make(elem, size(), stable); 4358 4359 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); 4360 } 4361 4362 //-----------------------------stable_dimension-------------------------------- 4363 int TypeAryPtr::stable_dimension() const { 4364 if (!is_stable()) return 0; 4365 int dim = 1; 4366 const TypePtr* elem_ptr = elem()->make_ptr(); 4367 if (elem_ptr != NULL && elem_ptr->isa_aryptr()) 4368 dim += elem_ptr->is_aryptr()->stable_dimension(); 4369 return dim; 4370 } 4371 4372 //----------------------cast_to_autobox_cache----------------------------------- 4373 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const { 4374 if (is_autobox_cache()) return this; 4375 const TypeOopPtr* etype = elem()->make_oopptr(); 4376 if (etype == NULL) return this; 4377 // The pointers in the autobox arrays are always non-null. 4378 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr(); 4379 const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable()); 4380 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true); 4381 } 4382 4383 //------------------------------eq--------------------------------------------- 4384 // Structural equality check for Type representations 4385 bool TypeAryPtr::eq( const Type *t ) const { 4386 const TypeAryPtr *p = t->is_aryptr(); 4387 return 4388 _ary == p->_ary && // Check array 4389 TypeOopPtr::eq(p); // Check sub-parts 4390 } 4391 4392 //------------------------------hash------------------------------------------- 4393 // Type-specific hashing function. 4394 int TypeAryPtr::hash(void) const { 4395 return (intptr_t)_ary + TypeOopPtr::hash(); 4396 } 4397 4398 //------------------------------meet------------------------------------------- 4399 // Compute the MEET of two types. It returns a new Type object. 4400 const Type *TypeAryPtr::xmeet_helper(const Type *t) const { 4401 // Perform a fast test for common case; meeting the same types together. 4402 if( this == t ) return this; // Meeting same type-rep? 4403 // Current "this->_base" is Pointer 4404 switch (t->base()) { // switch on original type 4405 4406 // Mixing ints & oops happens when javac reuses local variables 4407 case Int: 4408 case Long: 4409 case FloatTop: 4410 case FloatCon: 4411 case FloatBot: 4412 case DoubleTop: 4413 case DoubleCon: 4414 case DoubleBot: 4415 case NarrowOop: 4416 case NarrowKlass: 4417 case Bottom: // Ye Olde Default 4418 return Type::BOTTOM; 4419 case Top: 4420 return this; 4421 4422 default: // All else is a mistake 4423 typerr(t); 4424 4425 case OopPtr: { // Meeting to OopPtrs 4426 // Found a OopPtr type vs self-AryPtr type 4427 const TypeOopPtr *tp = t->is_oopptr(); 4428 int offset = meet_offset(tp->offset()); 4429 PTR ptr = meet_ptr(tp->ptr()); 4430 int depth = meet_inline_depth(tp->inline_depth()); 4431 const TypePtr* speculative = xmeet_speculative(tp); 4432 switch (tp->ptr()) { 4433 case TopPTR: 4434 case AnyNull: { 4435 int instance_id = meet_instance_id(InstanceTop); 4436 return make(ptr, (ptr == Constant ? const_oop() : NULL), 4437 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 4438 } 4439 case BotPTR: 4440 case NotNull: { 4441 int instance_id = meet_instance_id(tp->instance_id()); 4442 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); 4443 } 4444 default: ShouldNotReachHere(); 4445 } 4446 } 4447 4448 case AnyPtr: { // Meeting two AnyPtrs 4449 // Found an AnyPtr type vs self-AryPtr type 4450 const TypePtr *tp = t->is_ptr(); 4451 int offset = meet_offset(tp->offset()); 4452 PTR ptr = meet_ptr(tp->ptr()); 4453 const TypePtr* speculative = xmeet_speculative(tp); 4454 int depth = meet_inline_depth(tp->inline_depth()); 4455 switch (tp->ptr()) { 4456 case TopPTR: 4457 return this; 4458 case BotPTR: 4459 case NotNull: 4460 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4461 case Null: 4462 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4463 // else fall through to AnyNull 4464 case AnyNull: { 4465 int instance_id = meet_instance_id(InstanceTop); 4466 return make(ptr, (ptr == Constant ? const_oop() : NULL), 4467 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 4468 } 4469 default: ShouldNotReachHere(); 4470 } 4471 } 4472 4473 case MetadataPtr: 4474 case KlassPtr: 4475 case InstKlassPtr: 4476 case AryKlassPtr: 4477 case RawPtr: return TypePtr::BOTTOM; 4478 4479 case AryPtr: { // Meeting 2 references? 4480 const TypeAryPtr *tap = t->is_aryptr(); 4481 int off = meet_offset(tap->offset()); 4482 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary(); 4483 PTR ptr = meet_ptr(tap->ptr()); 4484 int instance_id = meet_instance_id(tap->instance_id()); 4485 const TypePtr* speculative = xmeet_speculative(tap); 4486 int depth = meet_inline_depth(tap->inline_depth()); 4487 4488 ciKlass* res_klass = NULL; 4489 bool res_xk = false; 4490 const Type* elem = tary->_elem; 4491 if (meet_aryptr(ptr, elem, this->klass(), tap->klass(), this->klass_is_exact(), tap->klass_is_exact(), this->ptr(), tap->ptr(), res_klass, res_xk) == NOT_SUBTYPE) { 4492 instance_id = InstanceBot; 4493 } 4494 4495 ciObject* o = NULL; // Assume not constant when done 4496 ciObject* this_oop = const_oop(); 4497 ciObject* tap_oop = tap->const_oop(); 4498 if (ptr == Constant) { 4499 if (this_oop != NULL && tap_oop != NULL && 4500 this_oop->equals(tap_oop)) { 4501 o = tap_oop; 4502 } else if (above_centerline(_ptr)) { 4503 o = tap_oop; 4504 } else if (above_centerline(tap->_ptr)) { 4505 o = this_oop; 4506 } else { 4507 ptr = NotNull; 4508 } 4509 } 4510 return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth); 4511 } 4512 4513 // All arrays inherit from Object class 4514 case InstPtr: { 4515 const TypeInstPtr *tp = t->is_instptr(); 4516 int offset = meet_offset(tp->offset()); 4517 PTR ptr = meet_ptr(tp->ptr()); 4518 int instance_id = meet_instance_id(tp->instance_id()); 4519 const TypePtr* speculative = xmeet_speculative(tp); 4520 int depth = meet_inline_depth(tp->inline_depth()); 4521 switch (ptr) { 4522 case TopPTR: 4523 case AnyNull: // Fall 'down' to dual of object klass 4524 // For instances when a subclass meets a superclass we fall 4525 // below the centerline when the superclass is exact. We need to 4526 // do the same here. 4527 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) { 4528 return make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 4529 } else { 4530 // cannot subclass, so the meet has to fall badly below the centerline 4531 ptr = NotNull; 4532 instance_id = InstanceBot; 4533 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth); 4534 } 4535 case Constant: 4536 case NotNull: 4537 case BotPTR: // Fall down to object klass 4538 // LCA is object_klass, but if we subclass from the top we can do better 4539 if (above_centerline(tp->ptr())) { 4540 // If 'tp' is above the centerline and it is Object class 4541 // then we can subclass in the Java class hierarchy. 4542 // For instances when a subclass meets a superclass we fall 4543 // below the centerline when the superclass is exact. We need 4544 // to do the same here. 4545 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) { 4546 // that is, my array type is a subtype of 'tp' klass 4547 return make(ptr, (ptr == Constant ? const_oop() : NULL), 4548 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 4549 } 4550 } 4551 // The other case cannot happen, since t cannot be a subtype of an array. 4552 // The meet falls down to Object class below centerline. 4553 if (ptr == Constant) { 4554 ptr = NotNull; 4555 } 4556 if (instance_id > 0) { 4557 instance_id = InstanceBot; 4558 } 4559 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth); 4560 default: typerr(t); 4561 } 4562 } 4563 } 4564 return this; // Lint noise 4565 } 4566 4567 4568 TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, ciKlass* this_klass, ciKlass* tap_klass, bool this_xk, bool tap_xk, PTR this_ptr, PTR tap_ptr, ciKlass*& res_klass, bool& res_xk) { 4569 res_klass = NULL; 4570 MeetResult result = SUBTYPE; 4571 if (elem->isa_int()) { 4572 // Integral array element types have irrelevant lattice relations. 4573 // It is the klass that determines array layout, not the element type. 4574 if (this_klass == NULL) 4575 res_klass = tap_klass; 4576 else if (tap_klass == NULL || tap_klass == this_klass) { 4577 res_klass = this_klass; 4578 } else { 4579 // Something like byte[int+] meets char[int+]. 4580 // This must fall to bottom, not (int[-128..65535])[int+]. 4581 // instance_id = InstanceBot; 4582 elem = Type::BOTTOM; 4583 result = NOT_SUBTYPE; 4584 } 4585 } else // Non integral arrays. 4586 // Must fall to bottom if exact klasses in upper lattice 4587 // are not equal or super klass is exact. 4588 if ((above_centerline(ptr) || ptr == Constant) && this_klass != tap_klass && 4589 // meet with top[] and bottom[] are processed further down: 4590 tap_klass != NULL && this_klass != NULL && 4591 // both are exact and not equal: 4592 ((tap_xk && this_xk) || 4593 // 'tap' is exact and super or unrelated: 4594 (tap_xk && !tap_klass->is_subtype_of(this_klass)) || 4595 // 'this' is exact and super or unrelated: 4596 (this_xk && !this_klass->is_subtype_of(tap_klass)))) { 4597 if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) { 4598 elem = Type::BOTTOM; 4599 } 4600 ptr = NotNull; 4601 res_xk = false; 4602 return NOT_SUBTYPE; 4603 } 4604 4605 res_xk = false; 4606 switch (tap_ptr) { 4607 case AnyNull: 4608 case TopPTR: 4609 // Compute new klass on demand, do not use tap->_klass 4610 if (below_centerline(this_ptr)) { 4611 res_xk = this_xk; 4612 } else { 4613 res_xk = (tap_xk || this_xk); 4614 } 4615 return result; 4616 case Constant: { 4617 if (this_ptr == Constant) { 4618 res_xk = true; 4619 } else if(above_centerline(this_ptr)) { 4620 res_xk = true; 4621 } else { 4622 // Only precise for identical arrays 4623 res_xk = this_xk && (this_klass == tap_klass); 4624 } 4625 return result; 4626 } 4627 case NotNull: 4628 case BotPTR: 4629 // Compute new klass on demand, do not use tap->_klass 4630 if (above_centerline(this_ptr)) { 4631 res_xk = tap_xk; 4632 } else { 4633 res_xk = (tap_xk && this_xk) && 4634 (this_klass == tap_klass); // Only precise for identical arrays 4635 } 4636 return result; 4637 default: { 4638 ShouldNotReachHere(); 4639 return result; 4640 } 4641 } 4642 return result; 4643 } 4644 4645 4646 //------------------------------xdual------------------------------------------ 4647 // Dual: compute field-by-field dual 4648 const Type *TypeAryPtr::xdual() const { 4649 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth()); 4650 } 4651 4652 //----------------------interface_vs_oop--------------------------------------- 4653 #ifdef ASSERT 4654 bool TypeAryPtr::interface_vs_oop(const Type *t) const { 4655 const TypeAryPtr* t_aryptr = t->isa_aryptr(); 4656 if (t_aryptr) { 4657 return _ary->interface_vs_oop(t_aryptr->_ary); 4658 } 4659 return false; 4660 } 4661 #endif 4662 4663 //------------------------------dump2------------------------------------------ 4664 #ifndef PRODUCT 4665 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 4666 _ary->dump2(d,depth,st); 4667 switch( _ptr ) { 4668 case Constant: 4669 const_oop()->print(st); 4670 break; 4671 case BotPTR: 4672 if (!WizardMode && !Verbose) { 4673 if( _klass_is_exact ) st->print(":exact"); 4674 break; 4675 } 4676 case TopPTR: 4677 case AnyNull: 4678 case NotNull: 4679 st->print(":%s", ptr_msg[_ptr]); 4680 if( _klass_is_exact ) st->print(":exact"); 4681 break; 4682 default: 4683 break; 4684 } 4685 4686 if( _offset != 0 ) { 4687 BasicType basic_elem_type = elem()->basic_type(); 4688 int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 4689 if( _offset == OffsetTop ) st->print("+undefined"); 4690 else if( _offset == OffsetBot ) st->print("+any"); 4691 else if( _offset < header_size ) st->print("+%d", _offset); 4692 else { 4693 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 4694 int elem_size = type2aelembytes(basic_elem_type); 4695 st->print("[%d]", (_offset - array_base)/elem_size); 4696 } 4697 } 4698 st->print(" *"); 4699 if (_instance_id == InstanceTop) 4700 st->print(",iid=top"); 4701 else if (_instance_id != InstanceBot) 4702 st->print(",iid=%d",_instance_id); 4703 4704 dump_inline_depth(st); 4705 dump_speculative(st); 4706 } 4707 #endif 4708 4709 bool TypeAryPtr::empty(void) const { 4710 if (_ary->empty()) return true; 4711 return TypeOopPtr::empty(); 4712 } 4713 4714 //------------------------------add_offset------------------------------------- 4715 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const { 4716 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); 4717 } 4718 4719 const Type *TypeAryPtr::remove_speculative() const { 4720 if (_speculative == NULL) { 4721 return this; 4722 } 4723 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 4724 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth); 4725 } 4726 4727 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const { 4728 if (!UseInlineDepthForSpeculativeTypes) { 4729 return this; 4730 } 4731 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth); 4732 } 4733 4734 const TypePtr *TypeAryPtr::with_instance_id(int instance_id) const { 4735 assert(is_known_instance(), "should be known"); 4736 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth); 4737 } 4738 4739 //============================================================================= 4740 4741 //------------------------------hash------------------------------------------- 4742 // Type-specific hashing function. 4743 int TypeNarrowPtr::hash(void) const { 4744 return _ptrtype->hash() + 7; 4745 } 4746 4747 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton 4748 return _ptrtype->singleton(); 4749 } 4750 4751 bool TypeNarrowPtr::empty(void) const { 4752 return _ptrtype->empty(); 4753 } 4754 4755 intptr_t TypeNarrowPtr::get_con() const { 4756 return _ptrtype->get_con(); 4757 } 4758 4759 bool TypeNarrowPtr::eq( const Type *t ) const { 4760 const TypeNarrowPtr* tc = isa_same_narrowptr(t); 4761 if (tc != NULL) { 4762 if (_ptrtype->base() != tc->_ptrtype->base()) { 4763 return false; 4764 } 4765 return tc->_ptrtype->eq(_ptrtype); 4766 } 4767 return false; 4768 } 4769 4770 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now. 4771 const TypePtr* odual = _ptrtype->dual()->is_ptr(); 4772 return make_same_narrowptr(odual); 4773 } 4774 4775 4776 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const { 4777 if (isa_same_narrowptr(kills)) { 4778 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative); 4779 if (ft->empty()) 4780 return Type::TOP; // Canonical empty value 4781 if (ft->isa_ptr()) { 4782 return make_hash_same_narrowptr(ft->isa_ptr()); 4783 } 4784 return ft; 4785 } else if (kills->isa_ptr()) { 4786 const Type* ft = _ptrtype->join_helper(kills, include_speculative); 4787 if (ft->empty()) 4788 return Type::TOP; // Canonical empty value 4789 return ft; 4790 } else { 4791 return Type::TOP; 4792 } 4793 } 4794 4795 //------------------------------xmeet------------------------------------------ 4796 // Compute the MEET of two types. It returns a new Type object. 4797 const Type *TypeNarrowPtr::xmeet( const Type *t ) const { 4798 // Perform a fast test for common case; meeting the same types together. 4799 if( this == t ) return this; // Meeting same type-rep? 4800 4801 if (t->base() == base()) { 4802 const Type* result = _ptrtype->xmeet(t->make_ptr()); 4803 if (result->isa_ptr()) { 4804 return make_hash_same_narrowptr(result->is_ptr()); 4805 } 4806 return result; 4807 } 4808 4809 // Current "this->_base" is NarrowKlass or NarrowOop 4810 switch (t->base()) { // switch on original type 4811 4812 case Int: // Mixing ints & oops happens when javac 4813 case Long: // reuses local variables 4814 case FloatTop: 4815 case FloatCon: 4816 case FloatBot: 4817 case DoubleTop: 4818 case DoubleCon: 4819 case DoubleBot: 4820 case AnyPtr: 4821 case RawPtr: 4822 case OopPtr: 4823 case InstPtr: 4824 case AryPtr: 4825 case MetadataPtr: 4826 case KlassPtr: 4827 case InstKlassPtr: 4828 case AryKlassPtr: 4829 case NarrowOop: 4830 case NarrowKlass: 4831 4832 case Bottom: // Ye Olde Default 4833 return Type::BOTTOM; 4834 case Top: 4835 return this; 4836 4837 default: // All else is a mistake 4838 typerr(t); 4839 4840 } // End of switch 4841 4842 return this; 4843 } 4844 4845 #ifndef PRODUCT 4846 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const { 4847 _ptrtype->dump2(d, depth, st); 4848 } 4849 #endif 4850 4851 const TypeNarrowOop *TypeNarrowOop::BOTTOM; 4852 const TypeNarrowOop *TypeNarrowOop::NULL_PTR; 4853 4854 4855 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) { 4856 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons(); 4857 } 4858 4859 const Type* TypeNarrowOop::remove_speculative() const { 4860 return make(_ptrtype->remove_speculative()->is_ptr()); 4861 } 4862 4863 const Type* TypeNarrowOop::cleanup_speculative() const { 4864 return make(_ptrtype->cleanup_speculative()->is_ptr()); 4865 } 4866 4867 #ifndef PRODUCT 4868 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const { 4869 st->print("narrowoop: "); 4870 TypeNarrowPtr::dump2(d, depth, st); 4871 } 4872 #endif 4873 4874 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR; 4875 4876 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) { 4877 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons(); 4878 } 4879 4880 #ifndef PRODUCT 4881 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const { 4882 st->print("narrowklass: "); 4883 TypeNarrowPtr::dump2(d, depth, st); 4884 } 4885 #endif 4886 4887 4888 //------------------------------eq--------------------------------------------- 4889 // Structural equality check for Type representations 4890 bool TypeMetadataPtr::eq( const Type *t ) const { 4891 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t; 4892 ciMetadata* one = metadata(); 4893 ciMetadata* two = a->metadata(); 4894 if (one == NULL || two == NULL) { 4895 return (one == two) && TypePtr::eq(t); 4896 } else { 4897 return one->equals(two) && TypePtr::eq(t); 4898 } 4899 } 4900 4901 //------------------------------hash------------------------------------------- 4902 // Type-specific hashing function. 4903 int TypeMetadataPtr::hash(void) const { 4904 return 4905 (metadata() ? metadata()->hash() : 0) + 4906 TypePtr::hash(); 4907 } 4908 4909 //------------------------------singleton-------------------------------------- 4910 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 4911 // constants 4912 bool TypeMetadataPtr::singleton(void) const { 4913 // detune optimizer to not generate constant metadata + constant offset as a constant! 4914 // TopPTR, Null, AnyNull, Constant are all singletons 4915 return (_offset == 0) && !below_centerline(_ptr); 4916 } 4917 4918 //------------------------------add_offset------------------------------------- 4919 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const { 4920 return make( _ptr, _metadata, xadd_offset(offset)); 4921 } 4922 4923 //-----------------------------filter------------------------------------------ 4924 // Do not allow interface-vs.-noninterface joins to collapse to top. 4925 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const { 4926 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr(); 4927 if (ft == NULL || ft->empty()) 4928 return Type::TOP; // Canonical empty value 4929 return ft; 4930 } 4931 4932 //------------------------------get_con---------------------------------------- 4933 intptr_t TypeMetadataPtr::get_con() const { 4934 assert( _ptr == Null || _ptr == Constant, "" ); 4935 assert( _offset >= 0, "" ); 4936 4937 if (_offset != 0) { 4938 // After being ported to the compiler interface, the compiler no longer 4939 // directly manipulates the addresses of oops. Rather, it only has a pointer 4940 // to a handle at compile time. This handle is embedded in the generated 4941 // code and dereferenced at the time the nmethod is made. Until that time, 4942 // it is not reasonable to do arithmetic with the addresses of oops (we don't 4943 // have access to the addresses!). This does not seem to currently happen, 4944 // but this assertion here is to help prevent its occurrence. 4945 tty->print_cr("Found oop constant with non-zero offset"); 4946 ShouldNotReachHere(); 4947 } 4948 4949 return (intptr_t)metadata()->constant_encoding(); 4950 } 4951 4952 //------------------------------cast_to_ptr_type------------------------------- 4953 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const { 4954 if( ptr == _ptr ) return this; 4955 return make(ptr, metadata(), _offset); 4956 } 4957 4958 //------------------------------meet------------------------------------------- 4959 // Compute the MEET of two types. It returns a new Type object. 4960 const Type *TypeMetadataPtr::xmeet( const Type *t ) const { 4961 // Perform a fast test for common case; meeting the same types together. 4962 if( this == t ) return this; // Meeting same type-rep? 4963 4964 // Current "this->_base" is OopPtr 4965 switch (t->base()) { // switch on original type 4966 4967 case Int: // Mixing ints & oops happens when javac 4968 case Long: // reuses local variables 4969 case FloatTop: 4970 case FloatCon: 4971 case FloatBot: 4972 case DoubleTop: 4973 case DoubleCon: 4974 case DoubleBot: 4975 case NarrowOop: 4976 case NarrowKlass: 4977 case Bottom: // Ye Olde Default 4978 return Type::BOTTOM; 4979 case Top: 4980 return this; 4981 4982 default: // All else is a mistake 4983 typerr(t); 4984 4985 case AnyPtr: { 4986 // Found an AnyPtr type vs self-OopPtr type 4987 const TypePtr *tp = t->is_ptr(); 4988 int offset = meet_offset(tp->offset()); 4989 PTR ptr = meet_ptr(tp->ptr()); 4990 switch (tp->ptr()) { 4991 case Null: 4992 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 4993 // else fall through: 4994 case TopPTR: 4995 case AnyNull: { 4996 return make(ptr, _metadata, offset); 4997 } 4998 case BotPTR: 4999 case NotNull: 5000 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5001 default: typerr(t); 5002 } 5003 } 5004 5005 case RawPtr: 5006 case KlassPtr: 5007 case InstKlassPtr: 5008 case AryKlassPtr: 5009 case OopPtr: 5010 case InstPtr: 5011 case AryPtr: 5012 return TypePtr::BOTTOM; // Oop meet raw is not well defined 5013 5014 case MetadataPtr: { 5015 const TypeMetadataPtr *tp = t->is_metadataptr(); 5016 int offset = meet_offset(tp->offset()); 5017 PTR tptr = tp->ptr(); 5018 PTR ptr = meet_ptr(tptr); 5019 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata(); 5020 if (tptr == TopPTR || _ptr == TopPTR || 5021 metadata()->equals(tp->metadata())) { 5022 return make(ptr, md, offset); 5023 } 5024 // metadata is different 5025 if( ptr == Constant ) { // Cannot be equal constants, so... 5026 if( tptr == Constant && _ptr != Constant) return t; 5027 if( _ptr == Constant && tptr != Constant) return this; 5028 ptr = NotNull; // Fall down in lattice 5029 } 5030 return make(ptr, NULL, offset); 5031 break; 5032 } 5033 } // End of switch 5034 return this; // Return the double constant 5035 } 5036 5037 5038 //------------------------------xdual------------------------------------------ 5039 // Dual of a pure metadata pointer. 5040 const Type *TypeMetadataPtr::xdual() const { 5041 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset()); 5042 } 5043 5044 //------------------------------dump2------------------------------------------ 5045 #ifndef PRODUCT 5046 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 5047 st->print("metadataptr:%s", ptr_msg[_ptr]); 5048 if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata())); 5049 switch( _offset ) { 5050 case OffsetTop: st->print("+top"); break; 5051 case OffsetBot: st->print("+any"); break; 5052 case 0: break; 5053 default: st->print("+%d",_offset); break; 5054 } 5055 } 5056 #endif 5057 5058 5059 //============================================================================= 5060 // Convenience common pre-built type. 5061 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM; 5062 5063 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset): 5064 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) { 5065 } 5066 5067 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) { 5068 return make(Constant, m, 0); 5069 } 5070 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) { 5071 return make(Constant, m, 0); 5072 } 5073 5074 //------------------------------make------------------------------------------- 5075 // Create a meta data constant 5076 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) { 5077 assert(m == NULL || !m->is_klass(), "wrong type"); 5078 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons(); 5079 } 5080 5081 5082 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const { 5083 const Type* elem = _ary->_elem; 5084 bool xk = klass_is_exact(); 5085 if (elem->make_oopptr() != NULL) { 5086 elem = elem->make_oopptr()->as_klass_type(try_for_exact); 5087 if (elem->is_klassptr()->klass_is_exact()) { 5088 xk = true; 5089 } 5090 } 5091 return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0); 5092 } 5093 5094 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass) { 5095 if (klass->is_instance_klass()) { 5096 return TypeInstKlassPtr::make(klass); 5097 } 5098 return TypeAryKlassPtr::make(klass); 5099 } 5100 5101 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset) { 5102 if (klass->is_instance_klass()) { 5103 return TypeInstKlassPtr::make(ptr, klass, offset); 5104 } 5105 return TypeAryKlassPtr::make(ptr, klass, offset); 5106 } 5107 5108 5109 //------------------------------TypeKlassPtr----------------------------------- 5110 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, int offset) 5111 : TypePtr(t, ptr, offset), _klass(klass) { 5112 } 5113 5114 //------------------------------eq--------------------------------------------- 5115 // Structural equality check for Type representations 5116 bool TypeKlassPtr::eq(const Type *t) const { 5117 const TypeKlassPtr *p = t->is_klassptr(); 5118 return 5119 TypePtr::eq(p); 5120 } 5121 5122 //------------------------------hash------------------------------------------- 5123 // Type-specific hashing function. 5124 int TypeKlassPtr::hash(void) const { 5125 return TypePtr::hash(); 5126 } 5127 5128 //------------------------------singleton-------------------------------------- 5129 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 5130 // constants 5131 bool TypeKlassPtr::singleton(void) const { 5132 // detune optimizer to not generate constant klass + constant offset as a constant! 5133 // TopPTR, Null, AnyNull, Constant are all singletons 5134 return (_offset == 0) && !below_centerline(_ptr); 5135 } 5136 5137 // Do not allow interface-vs.-noninterface joins to collapse to top. 5138 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const { 5139 // logic here mirrors the one from TypeOopPtr::filter. See comments 5140 // there. 5141 const Type* ft = join_helper(kills, include_speculative); 5142 const TypeKlassPtr* ftkp = ft->isa_instklassptr(); 5143 const TypeKlassPtr* ktkp = kills->isa_instklassptr(); 5144 5145 if (ft->empty()) { 5146 if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface()) 5147 return kills; // Uplift to interface 5148 5149 return Type::TOP; // Canonical empty value 5150 } 5151 5152 // Interface klass type could be exact in opposite to interface type, 5153 // return it here instead of incorrect Constant ptr J/L/Object (6894807). 5154 if (ftkp != NULL && ktkp != NULL && 5155 ftkp->is_loaded() && ftkp->klass()->is_interface() && 5156 !ftkp->klass_is_exact() && // Keep exact interface klass 5157 ktkp->is_loaded() && !ktkp->klass()->is_interface()) { 5158 return ktkp->cast_to_ptr_type(ftkp->ptr()); 5159 } 5160 5161 return ft; 5162 } 5163 5164 //------------------------------get_con---------------------------------------- 5165 intptr_t TypeKlassPtr::get_con() const { 5166 assert( _ptr == Null || _ptr == Constant, "" ); 5167 assert( _offset >= 0, "" ); 5168 5169 if (_offset != 0) { 5170 // After being ported to the compiler interface, the compiler no longer 5171 // directly manipulates the addresses of oops. Rather, it only has a pointer 5172 // to a handle at compile time. This handle is embedded in the generated 5173 // code and dereferenced at the time the nmethod is made. Until that time, 5174 // it is not reasonable to do arithmetic with the addresses of oops (we don't 5175 // have access to the addresses!). This does not seem to currently happen, 5176 // but this assertion here is to help prevent its occurrence. 5177 tty->print_cr("Found oop constant with non-zero offset"); 5178 ShouldNotReachHere(); 5179 } 5180 5181 return (intptr_t)klass()->constant_encoding(); 5182 } 5183 5184 //------------------------------dump2------------------------------------------ 5185 // Dump Klass Type 5186 #ifndef PRODUCT 5187 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const { 5188 switch(_ptr) { 5189 case Constant: 5190 st->print("precise "); 5191 case NotNull: 5192 { 5193 const char *name = klass()->name()->as_utf8(); 5194 if (name) { 5195 st->print("%s: " INTPTR_FORMAT, name, p2i(klass())); 5196 } else { 5197 ShouldNotReachHere(); 5198 } 5199 } 5200 case BotPTR: 5201 if (!WizardMode && !Verbose && _ptr != Constant) break; 5202 case TopPTR: 5203 case AnyNull: 5204 st->print(":%s", ptr_msg[_ptr]); 5205 if (_ptr == Constant) st->print(":exact"); 5206 break; 5207 default: 5208 break; 5209 } 5210 5211 if (_offset) { // Dump offset, if any 5212 if (_offset == OffsetBot) { st->print("+any"); } 5213 else if (_offset == OffsetTop) { st->print("+unknown"); } 5214 else { st->print("+%d", _offset); } 5215 } 5216 5217 st->print(" *"); 5218 } 5219 #endif 5220 5221 //============================================================================= 5222 // Convenience common pre-built types. 5223 5224 // Not-null object klass or below 5225 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT; 5226 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL; 5227 5228 bool TypeInstKlassPtr::eq(const Type *t) const { 5229 const TypeKlassPtr *p = t->is_klassptr(); 5230 return 5231 klass()->equals(p->klass()) && 5232 TypeKlassPtr::eq(p); 5233 } 5234 5235 int TypeInstKlassPtr::hash(void) const { 5236 return java_add((jint)klass()->hash(), TypeKlassPtr::hash()); 5237 } 5238 5239 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, int offset) { 5240 TypeInstKlassPtr *r = 5241 (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, offset))->hashcons(); 5242 5243 return r; 5244 } 5245 5246 //------------------------------add_offset------------------------------------- 5247 // Access internals of klass object 5248 const TypePtr *TypeInstKlassPtr::add_offset( intptr_t offset ) const { 5249 return make( _ptr, klass(), xadd_offset(offset) ); 5250 } 5251 5252 const TypeKlassPtr *TypeInstKlassPtr::with_offset(intptr_t offset) const { 5253 return make(_ptr, klass(), offset); 5254 } 5255 5256 //------------------------------cast_to_ptr_type------------------------------- 5257 const TypePtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const { 5258 assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type"); 5259 if( ptr == _ptr ) return this; 5260 return make(ptr, _klass, _offset); 5261 } 5262 5263 5264 bool TypeInstKlassPtr::must_be_exact() const { 5265 if (!_klass->is_loaded()) return false; 5266 ciInstanceKlass* ik = _klass->as_instance_klass(); 5267 if (ik->is_final()) return true; // cannot clear xk 5268 return false; 5269 } 5270 5271 //-----------------------------cast_to_exactness------------------------------- 5272 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const { 5273 if (klass_is_exact == (_ptr == Constant)) return this; 5274 if (must_be_exact()) return this; 5275 ciKlass* k = klass(); 5276 return make(klass_is_exact ? Constant : NotNull, k, _offset); 5277 } 5278 5279 5280 //-----------------------------as_instance_type-------------------------------- 5281 // Corresponding type for an instance of the given class. 5282 // It will be NotNull, and exact if and only if the klass type is exact. 5283 const TypeOopPtr* TypeInstKlassPtr::as_instance_type() const { 5284 ciKlass* k = klass(); 5285 bool xk = klass_is_exact(); 5286 return TypeInstPtr::make(TypePtr::BotPTR, k, xk, NULL, 0); 5287 } 5288 5289 //------------------------------xmeet------------------------------------------ 5290 // Compute the MEET of two types, return a new Type object. 5291 const Type *TypeInstKlassPtr::xmeet( const Type *t ) const { 5292 // Perform a fast test for common case; meeting the same types together. 5293 if( this == t ) return this; // Meeting same type-rep? 5294 5295 // Current "this->_base" is Pointer 5296 switch (t->base()) { // switch on original type 5297 5298 case Int: // Mixing ints & oops happens when javac 5299 case Long: // reuses local variables 5300 case FloatTop: 5301 case FloatCon: 5302 case FloatBot: 5303 case DoubleTop: 5304 case DoubleCon: 5305 case DoubleBot: 5306 case NarrowOop: 5307 case NarrowKlass: 5308 case Bottom: // Ye Olde Default 5309 return Type::BOTTOM; 5310 case Top: 5311 return this; 5312 5313 default: // All else is a mistake 5314 typerr(t); 5315 5316 case AnyPtr: { // Meeting to AnyPtrs 5317 // Found an AnyPtr type vs self-KlassPtr type 5318 const TypePtr *tp = t->is_ptr(); 5319 int offset = meet_offset(tp->offset()); 5320 PTR ptr = meet_ptr(tp->ptr()); 5321 switch (tp->ptr()) { 5322 case TopPTR: 5323 return this; 5324 case Null: 5325 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5326 case AnyNull: 5327 return make( ptr, klass(), offset ); 5328 case BotPTR: 5329 case NotNull: 5330 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5331 default: typerr(t); 5332 } 5333 } 5334 5335 case RawPtr: 5336 case MetadataPtr: 5337 case OopPtr: 5338 case AryPtr: // Meet with AryPtr 5339 case InstPtr: // Meet with InstPtr 5340 return TypePtr::BOTTOM; 5341 5342 // 5343 // A-top } 5344 // / | \ } Tops 5345 // B-top A-any C-top } 5346 // | / | \ | } Any-nulls 5347 // B-any | C-any } 5348 // | | | 5349 // B-con A-con C-con } constants; not comparable across classes 5350 // | | | 5351 // B-not | C-not } 5352 // | \ | / | } not-nulls 5353 // B-bot A-not C-bot } 5354 // \ | / } Bottoms 5355 // A-bot } 5356 // 5357 5358 case InstKlassPtr: { // Meet two KlassPtr types 5359 const TypeInstKlassPtr *tkls = t->is_instklassptr(); 5360 int off = meet_offset(tkls->offset()); 5361 PTR ptr = meet_ptr(tkls->ptr()); 5362 ciKlass* tkls_klass = tkls->klass(); 5363 ciKlass* this_klass = klass(); 5364 bool tkls_xk = tkls->klass_is_exact(); 5365 bool this_xk = klass_is_exact(); 5366 5367 ciKlass* res_klass = NULL; 5368 bool res_xk = false; 5369 switch(meet_instptr(ptr, this_klass, tkls_klass, this_xk, tkls_xk, this->_ptr, tkls->_ptr, res_klass, res_xk)) { 5370 case UNLOADED: 5371 ShouldNotReachHere(); 5372 case SUBTYPE: 5373 case NOT_SUBTYPE: 5374 case LCA: 5375 case QUICK: { 5376 assert(res_xk == (ptr == Constant), ""); 5377 const Type* res1 = make(ptr, res_klass, off); 5378 return res1; 5379 } 5380 default: 5381 ShouldNotReachHere(); 5382 } 5383 } // End of case KlassPtr 5384 case AryKlassPtr: { // All arrays inherit from Object class 5385 const TypeAryKlassPtr *tp = t->is_aryklassptr(); 5386 int offset = meet_offset(tp->offset()); 5387 PTR ptr = meet_ptr(tp->ptr()); 5388 5389 switch (ptr) { 5390 case TopPTR: 5391 case AnyNull: // Fall 'down' to dual of object klass 5392 // For instances when a subclass meets a superclass we fall 5393 // below the centerline when the superclass is exact. We need to 5394 // do the same here. 5395 if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) { 5396 return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset); 5397 } else { 5398 // cannot subclass, so the meet has to fall badly below the centerline 5399 ptr = NotNull; 5400 return make(ptr, ciEnv::current()->Object_klass(), offset); 5401 } 5402 case Constant: 5403 case NotNull: 5404 case BotPTR: // Fall down to object klass 5405 // LCA is object_klass, but if we subclass from the top we can do better 5406 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull ) 5407 // If 'this' (InstPtr) is above the centerline and it is Object class 5408 // then we can subclass in the Java class hierarchy. 5409 // For instances when a subclass meets a superclass we fall 5410 // below the centerline when the superclass is exact. We need 5411 // to do the same here. 5412 if (klass()->equals(ciEnv::current()->Object_klass())) { 5413 // that is, tp's array type is a subtype of my klass 5414 return TypeAryKlassPtr::make(ptr, 5415 tp->elem(), tp->klass(), offset); 5416 } 5417 } 5418 // The other case cannot happen, since I cannot be a subtype of an array. 5419 // The meet falls down to Object class below centerline. 5420 if( ptr == Constant ) 5421 ptr = NotNull; 5422 return make(ptr, ciEnv::current()->Object_klass(), offset); 5423 default: typerr(t); 5424 } 5425 } 5426 5427 } // End of switch 5428 return this; // Return the double constant 5429 } 5430 5431 //------------------------------xdual------------------------------------------ 5432 // Dual: compute field-by-field dual 5433 const Type *TypeInstKlassPtr::xdual() const { 5434 return new TypeInstKlassPtr(dual_ptr(), klass(), dual_offset()); 5435 } 5436 5437 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) { 5438 return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons(); 5439 } 5440 5441 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* klass, int offset) { 5442 if (klass->is_obj_array_klass()) { 5443 // Element is an object array. Recursively call ourself. 5444 ciKlass* eklass = klass->as_obj_array_klass()->element_klass(); 5445 const TypeKlassPtr *etype = TypeKlassPtr::make(eklass)->cast_to_exactness(false); 5446 return TypeAryKlassPtr::make(ptr, etype, NULL, offset); 5447 } else if (klass->is_type_array_klass()) { 5448 // Element is an typeArray 5449 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type()); 5450 return TypeAryKlassPtr::make(ptr, etype, klass, offset); 5451 } else { 5452 ShouldNotReachHere(); 5453 return NULL; 5454 } 5455 } 5456 5457 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass) { 5458 return TypeAryKlassPtr::make(Constant, klass, 0); 5459 } 5460 5461 //------------------------------eq--------------------------------------------- 5462 // Structural equality check for Type representations 5463 bool TypeAryKlassPtr::eq(const Type *t) const { 5464 const TypeAryKlassPtr *p = t->is_aryklassptr(); 5465 return 5466 _elem == p->_elem && // Check array 5467 TypeKlassPtr::eq(p); // Check sub-parts 5468 } 5469 5470 //------------------------------hash------------------------------------------- 5471 // Type-specific hashing function. 5472 int TypeAryKlassPtr::hash(void) const { 5473 return (intptr_t)_elem + TypeKlassPtr::hash(); 5474 } 5475 5476 //----------------------compute_klass------------------------------------------ 5477 // Compute the defining klass for this class 5478 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const { 5479 // Compute _klass based on element type. 5480 ciKlass* k_ary = NULL; 5481 const TypeInstPtr *tinst; 5482 const TypeAryPtr *tary; 5483 const Type* el = elem(); 5484 if (el->isa_narrowoop()) { 5485 el = el->make_ptr(); 5486 } 5487 5488 // Get element klass 5489 if ((tinst = el->isa_instptr()) != NULL) { 5490 // Compute array klass from element klass 5491 k_ary = ciObjArrayKlass::make(tinst->klass()); 5492 } else if ((tary = el->isa_aryptr()) != NULL) { 5493 // Compute array klass from element klass 5494 ciKlass* k_elem = tary->klass(); 5495 // If element type is something like bottom[], k_elem will be null. 5496 if (k_elem != NULL) 5497 k_ary = ciObjArrayKlass::make(k_elem); 5498 } else if ((el->base() == Type::Top) || 5499 (el->base() == Type::Bottom)) { 5500 // element type of Bottom occurs from meet of basic type 5501 // and object; Top occurs when doing join on Bottom. 5502 // Leave k_ary at NULL. 5503 } else { 5504 // Cannot compute array klass directly from basic type, 5505 // since subtypes of TypeInt all have basic type T_INT. 5506 #ifdef ASSERT 5507 if (verify && el->isa_int()) { 5508 // Check simple cases when verifying klass. 5509 BasicType bt = T_ILLEGAL; 5510 if (el == TypeInt::BYTE) { 5511 bt = T_BYTE; 5512 } else if (el == TypeInt::SHORT) { 5513 bt = T_SHORT; 5514 } else if (el == TypeInt::CHAR) { 5515 bt = T_CHAR; 5516 } else if (el == TypeInt::INT) { 5517 bt = T_INT; 5518 } else { 5519 return _klass; // just return specified klass 5520 } 5521 return ciTypeArrayKlass::make(bt); 5522 } 5523 #endif 5524 assert(!el->isa_int(), 5525 "integral arrays must be pre-equipped with a class"); 5526 // Compute array klass directly from basic type 5527 k_ary = ciTypeArrayKlass::make(el->basic_type()); 5528 } 5529 return k_ary; 5530 } 5531 5532 //------------------------------klass------------------------------------------ 5533 // Return the defining klass for this class 5534 ciKlass* TypeAryPtr::klass() const { 5535 if( _klass ) return _klass; // Return cached value, if possible 5536 5537 // Oops, need to compute _klass and cache it 5538 ciKlass* k_ary = compute_klass(); 5539 5540 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) { 5541 // The _klass field acts as a cache of the underlying 5542 // ciKlass for this array type. In order to set the field, 5543 // we need to cast away const-ness. 5544 // 5545 // IMPORTANT NOTE: we *never* set the _klass field for the 5546 // type TypeAryPtr::OOPS. This Type is shared between all 5547 // active compilations. However, the ciKlass which represents 5548 // this Type is *not* shared between compilations, so caching 5549 // this value would result in fetching a dangling pointer. 5550 // 5551 // Recomputing the underlying ciKlass for each request is 5552 // a bit less efficient than caching, but calls to 5553 // TypeAryPtr::OOPS->klass() are not common enough to matter. 5554 ((TypeAryPtr*)this)->_klass = k_ary; 5555 if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() && 5556 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) { 5557 ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true; 5558 } 5559 } 5560 return k_ary; 5561 } 5562 5563 5564 //------------------------------add_offset------------------------------------- 5565 // Access internals of klass object 5566 const TypePtr *TypeAryKlassPtr::add_offset(intptr_t offset) const { 5567 return make(_ptr, elem(), klass(), xadd_offset(offset)); 5568 } 5569 5570 const TypeKlassPtr *TypeAryKlassPtr::with_offset(intptr_t offset) const { 5571 return make(_ptr, elem(), klass(), offset); 5572 } 5573 5574 //------------------------------cast_to_ptr_type------------------------------- 5575 const TypePtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const { 5576 assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type"); 5577 if (ptr == _ptr) return this; 5578 return make(ptr, elem(), _klass, _offset); 5579 } 5580 5581 bool TypeAryKlassPtr::must_be_exact() const { 5582 if (_elem == Type::BOTTOM) return false; 5583 if (_elem == Type::TOP ) return false; 5584 const TypeKlassPtr* tk = _elem->isa_klassptr(); 5585 if (!tk) return true; // a primitive type, like int 5586 return tk->must_be_exact(); 5587 } 5588 5589 5590 //-----------------------------cast_to_exactness------------------------------- 5591 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const { 5592 if (must_be_exact()) return this; // cannot clear xk 5593 ciKlass* k = _klass; 5594 const Type* elem = this->elem(); 5595 if (elem->isa_klassptr() && !klass_is_exact) { 5596 elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact); 5597 } 5598 return make(klass_is_exact ? Constant : NotNull, elem, k, _offset); 5599 } 5600 5601 5602 //-----------------------------as_instance_type-------------------------------- 5603 // Corresponding type for an instance of the given class. 5604 // It will be exact if and only if the klass type is exact. 5605 const TypeOopPtr* TypeAryKlassPtr::as_instance_type() const { 5606 ciKlass* k = klass(); 5607 bool xk = klass_is_exact(); 5608 const Type* el = elem()->isa_klassptr() ? elem()->is_klassptr()->as_instance_type()->is_oopptr()->cast_to_exactness(false) : elem(); 5609 return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0); 5610 } 5611 5612 5613 //------------------------------xmeet------------------------------------------ 5614 // Compute the MEET of two types, return a new Type object. 5615 const Type *TypeAryKlassPtr::xmeet( const Type *t ) const { 5616 // Perform a fast test for common case; meeting the same types together. 5617 if( this == t ) return this; // Meeting same type-rep? 5618 5619 // Current "this->_base" is Pointer 5620 switch (t->base()) { // switch on original type 5621 5622 case Int: // Mixing ints & oops happens when javac 5623 case Long: // reuses local variables 5624 case FloatTop: 5625 case FloatCon: 5626 case FloatBot: 5627 case DoubleTop: 5628 case DoubleCon: 5629 case DoubleBot: 5630 case NarrowOop: 5631 case NarrowKlass: 5632 case Bottom: // Ye Olde Default 5633 return Type::BOTTOM; 5634 case Top: 5635 return this; 5636 5637 default: // All else is a mistake 5638 typerr(t); 5639 5640 case AnyPtr: { // Meeting to AnyPtrs 5641 // Found an AnyPtr type vs self-KlassPtr type 5642 const TypePtr *tp = t->is_ptr(); 5643 int offset = meet_offset(tp->offset()); 5644 PTR ptr = meet_ptr(tp->ptr()); 5645 switch (tp->ptr()) { 5646 case TopPTR: 5647 return this; 5648 case Null: 5649 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5650 case AnyNull: 5651 return make( ptr, _elem, klass(), offset ); 5652 case BotPTR: 5653 case NotNull: 5654 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5655 default: typerr(t); 5656 } 5657 } 5658 5659 case RawPtr: 5660 case MetadataPtr: 5661 case OopPtr: 5662 case AryPtr: // Meet with AryPtr 5663 case InstPtr: // Meet with InstPtr 5664 return TypePtr::BOTTOM; 5665 5666 // 5667 // A-top } 5668 // / | \ } Tops 5669 // B-top A-any C-top } 5670 // | / | \ | } Any-nulls 5671 // B-any | C-any } 5672 // | | | 5673 // B-con A-con C-con } constants; not comparable across classes 5674 // | | | 5675 // B-not | C-not } 5676 // | \ | / | } not-nulls 5677 // B-bot A-not C-bot } 5678 // \ | / } Bottoms 5679 // A-bot } 5680 // 5681 5682 case AryKlassPtr: { // Meet two KlassPtr types 5683 const TypeAryKlassPtr *tap = t->is_aryklassptr(); 5684 int off = meet_offset(tap->offset()); 5685 const Type* elem = _elem->meet(tap->_elem); 5686 5687 PTR ptr = meet_ptr(tap->ptr()); 5688 ciKlass* res_klass = NULL; 5689 bool res_xk = false; 5690 meet_aryptr(ptr, elem, this->klass(), tap->klass(), this->klass_is_exact(), tap->klass_is_exact(), this->ptr(), tap->ptr(), res_klass, res_xk); 5691 assert(res_xk == (ptr == Constant), ""); 5692 return make(ptr, elem, res_klass, off); 5693 } // End of case KlassPtr 5694 case InstKlassPtr: { 5695 const TypeInstKlassPtr *tp = t->is_instklassptr(); 5696 int offset = meet_offset(tp->offset()); 5697 PTR ptr = meet_ptr(tp->ptr()); 5698 5699 switch (ptr) { 5700 case TopPTR: 5701 case AnyNull: // Fall 'down' to dual of object klass 5702 // For instances when a subclass meets a superclass we fall 5703 // below the centerline when the superclass is exact. We need to 5704 // do the same here. 5705 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) { 5706 return TypeAryKlassPtr::make(ptr, _elem, _klass, offset); 5707 } else { 5708 // cannot subclass, so the meet has to fall badly below the centerline 5709 ptr = NotNull; 5710 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), offset); 5711 } 5712 case Constant: 5713 case NotNull: 5714 case BotPTR: // Fall down to object klass 5715 // LCA is object_klass, but if we subclass from the top we can do better 5716 if (above_centerline(tp->ptr())) { 5717 // If 'tp' is above the centerline and it is Object class 5718 // then we can subclass in the Java class hierarchy. 5719 // For instances when a subclass meets a superclass we fall 5720 // below the centerline when the superclass is exact. We need 5721 // to do the same here. 5722 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) { 5723 // that is, my array type is a subtype of 'tp' klass 5724 return make(ptr, _elem, _klass, offset); 5725 } 5726 } 5727 // The other case cannot happen, since t cannot be a subtype of an array. 5728 // The meet falls down to Object class below centerline. 5729 if (ptr == Constant) 5730 ptr = NotNull; 5731 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), offset); 5732 default: typerr(t); 5733 } 5734 } 5735 5736 } // End of switch 5737 return this; // Return the double constant 5738 } 5739 5740 //------------------------------xdual------------------------------------------ 5741 // Dual: compute field-by-field dual 5742 const Type *TypeAryKlassPtr::xdual() const { 5743 return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset()); 5744 } 5745 5746 //------------------------------get_con---------------------------------------- 5747 ciKlass* TypeAryKlassPtr::klass() const { 5748 if (_klass != NULL) { 5749 return _klass; 5750 } 5751 ciKlass* k = NULL; 5752 if (elem()->isa_klassptr()) { 5753 k = elem()->is_klassptr()->klass(); 5754 if (k != NULL) { 5755 k = ciObjArrayKlass::make(k); 5756 ((TypeAryKlassPtr*)this)->_klass = k; 5757 } 5758 } else if ((elem()->base() == Type::Top) || 5759 (elem()->base() == Type::Bottom)) { 5760 } else { 5761 k = ciTypeArrayKlass::make(elem()->basic_type()); 5762 } 5763 return k; 5764 } 5765 5766 //------------------------------dump2------------------------------------------ 5767 // Dump Klass Type 5768 #ifndef PRODUCT 5769 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const { 5770 switch( _ptr ) { 5771 case Constant: 5772 st->print("precise "); 5773 case NotNull: 5774 { 5775 st->print("["); 5776 _elem->dump2(d, depth, st); 5777 st->print(": "); 5778 } 5779 case BotPTR: 5780 if( !WizardMode && !Verbose && _ptr != Constant ) break; 5781 case TopPTR: 5782 case AnyNull: 5783 st->print(":%s", ptr_msg[_ptr]); 5784 if( _ptr == Constant ) st->print(":exact"); 5785 break; 5786 default: 5787 break; 5788 } 5789 5790 if( _offset ) { // Dump offset, if any 5791 if( _offset == OffsetBot ) { st->print("+any"); } 5792 else if( _offset == OffsetTop ) { st->print("+unknown"); } 5793 else { st->print("+%d", _offset); } 5794 } 5795 5796 st->print(" *"); 5797 } 5798 #endif 5799 5800 const Type* TypeAryKlassPtr::base_element_type(int& dims) const { 5801 const Type* elem = this->elem(); 5802 dims = 1; 5803 while (elem->isa_aryklassptr()) { 5804 elem = elem->is_aryklassptr()->elem(); 5805 dims++; 5806 } 5807 return elem; 5808 } 5809 5810 //============================================================================= 5811 // Convenience common pre-built types. 5812 5813 //------------------------------make------------------------------------------- 5814 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) { 5815 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons(); 5816 } 5817 5818 //------------------------------make------------------------------------------- 5819 const TypeFunc *TypeFunc::make(ciMethod* method) { 5820 Compile* C = Compile::current(); 5821 const TypeFunc* tf = C->last_tf(method); // check cache 5822 if (tf != NULL) return tf; // The hit rate here is almost 50%. 5823 const TypeTuple *domain; 5824 if (method->is_static()) { 5825 domain = TypeTuple::make_domain(NULL, method->signature()); 5826 } else { 5827 domain = TypeTuple::make_domain(method->holder(), method->signature()); 5828 } 5829 const TypeTuple *range = TypeTuple::make_range(method->signature()); 5830 tf = TypeFunc::make(domain, range); 5831 C->set_last_tf(method, tf); // fill cache 5832 return tf; 5833 } 5834 5835 //------------------------------meet------------------------------------------- 5836 // Compute the MEET of two types. It returns a new Type object. 5837 const Type *TypeFunc::xmeet( const Type *t ) const { 5838 // Perform a fast test for common case; meeting the same types together. 5839 if( this == t ) return this; // Meeting same type-rep? 5840 5841 // Current "this->_base" is Func 5842 switch (t->base()) { // switch on original type 5843 5844 case Bottom: // Ye Olde Default 5845 return t; 5846 5847 default: // All else is a mistake 5848 typerr(t); 5849 5850 case Top: 5851 break; 5852 } 5853 return this; // Return the double constant 5854 } 5855 5856 //------------------------------xdual------------------------------------------ 5857 // Dual: compute field-by-field dual 5858 const Type *TypeFunc::xdual() const { 5859 return this; 5860 } 5861 5862 //------------------------------eq--------------------------------------------- 5863 // Structural equality check for Type representations 5864 bool TypeFunc::eq( const Type *t ) const { 5865 const TypeFunc *a = (const TypeFunc*)t; 5866 return _domain == a->_domain && 5867 _range == a->_range; 5868 } 5869 5870 //------------------------------hash------------------------------------------- 5871 // Type-specific hashing function. 5872 int TypeFunc::hash(void) const { 5873 return (intptr_t)_domain + (intptr_t)_range; 5874 } 5875 5876 //------------------------------dump2------------------------------------------ 5877 // Dump Function Type 5878 #ifndef PRODUCT 5879 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const { 5880 if( _range->cnt() <= Parms ) 5881 st->print("void"); 5882 else { 5883 uint i; 5884 for (i = Parms; i < _range->cnt()-1; i++) { 5885 _range->field_at(i)->dump2(d,depth,st); 5886 st->print("/"); 5887 } 5888 _range->field_at(i)->dump2(d,depth,st); 5889 } 5890 st->print(" "); 5891 st->print("( "); 5892 if( !depth || d[this] ) { // Check for recursive dump 5893 st->print("...)"); 5894 return; 5895 } 5896 d.Insert((void*)this,(void*)this); // Stop recursion 5897 if (Parms < _domain->cnt()) 5898 _domain->field_at(Parms)->dump2(d,depth-1,st); 5899 for (uint i = Parms+1; i < _domain->cnt(); i++) { 5900 st->print(", "); 5901 _domain->field_at(i)->dump2(d,depth-1,st); 5902 } 5903 st->print(" )"); 5904 } 5905 #endif 5906 5907 //------------------------------singleton-------------------------------------- 5908 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 5909 // constants (Ldi nodes). Singletons are integer, float or double constants 5910 // or a single symbol. 5911 bool TypeFunc::singleton(void) const { 5912 return false; // Never a singleton 5913 } 5914 5915 bool TypeFunc::empty(void) const { 5916 return false; // Never empty 5917 } 5918 5919 5920 BasicType TypeFunc::return_type() const{ 5921 if (range()->cnt() == TypeFunc::Parms) { 5922 return T_VOID; 5923 } 5924 return range()->field_at(TypeFunc::Parms)->basic_type(); 5925 }