1 /*
   2  * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/javaClasses.hpp"
  29 #include "classfile/symbolTable.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "opto/node.hpp"
  40 #include "opto/opcodes.hpp"
  41 #include "opto/type.hpp"
  42 #include "utilities/powerOfTwo.hpp"
  43 #include "utilities/stringUtils.hpp"
  44 
  45 // Portions of code courtesy of Clifford Click
  46 
  47 // Optimization - Graph Style
  48 
  49 // Dictionary of types shared among compilations.
  50 Dict* Type::_shared_type_dict = NULL;
  51 
  52 // Array which maps compiler types to Basic Types
  53 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  54   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  55   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  56   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  57   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  58   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  59   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  60   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  61   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  62   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  63   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  64 
  65 #if defined(PPC64)
  66   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  67   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  68   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  69   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  70   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  71   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  72   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  73 #elif defined(S390)
  74   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  75   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  76   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  77   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  78   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  79   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  80   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  81 #else // all other
  82   { Bad,             T_ILLEGAL,    "vectormask:",   false, Op_RegVectMask,       relocInfo::none          },  // VectorMask.
  83   { Bad,             T_ILLEGAL,    "vectora:",      false, Op_VecA,              relocInfo::none          },  // VectorA.
  84   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  85   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  86   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  87   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  88   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
  89 #endif
  90   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  91   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  92   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  93   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  94   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  95   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  96   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  97   { Bad,             T_METADATA,   "instklass:",    false, Op_RegP,              relocInfo::metadata_type },  // InstKlassPtr
  98   { Bad,             T_METADATA,   "aryklass:",     false, Op_RegP,              relocInfo::metadata_type },  // AryKlassPtr
  99   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 100   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 101   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 102   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 103   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 104   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 105   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 106   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 107   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 108   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 109   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 110 };
 111 
 112 // Map ideal registers (machine types) to ideal types
 113 const Type *Type::mreg2type[_last_machine_leaf];
 114 
 115 // Map basic types to canonical Type* pointers.
 116 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 117 
 118 // Map basic types to constant-zero Types.
 119 const Type* Type::            _zero_type[T_CONFLICT+1];
 120 
 121 // Map basic types to array-body alias types.
 122 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 123 
 124 //=============================================================================
 125 // Convenience common pre-built types.
 126 const Type *Type::ABIO;         // State-of-machine only
 127 const Type *Type::BOTTOM;       // All values
 128 const Type *Type::CONTROL;      // Control only
 129 const Type *Type::DOUBLE;       // All doubles
 130 const Type *Type::FLOAT;        // All floats
 131 const Type *Type::HALF;         // Placeholder half of doublewide type
 132 const Type *Type::MEMORY;       // Abstract store only
 133 const Type *Type::RETURN_ADDRESS;
 134 const Type *Type::TOP;          // No values in set
 135 
 136 //------------------------------get_const_type---------------------------
 137 const Type* Type::get_const_type(ciType* type) {
 138   if (type == NULL) {
 139     return NULL;
 140   } else if (type->is_primitive_type()) {
 141     return get_const_basic_type(type->basic_type());
 142   } else {
 143     return TypeOopPtr::make_from_klass(type->as_klass());
 144   }
 145 }
 146 
 147 //---------------------------array_element_basic_type---------------------------------
 148 // Mapping to the array element's basic type.
 149 BasicType Type::array_element_basic_type() const {
 150   BasicType bt = basic_type();
 151   if (bt == T_INT) {
 152     if (this == TypeInt::INT)   return T_INT;
 153     if (this == TypeInt::CHAR)  return T_CHAR;
 154     if (this == TypeInt::BYTE)  return T_BYTE;
 155     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 156     if (this == TypeInt::SHORT) return T_SHORT;
 157     return T_VOID;
 158   }
 159   return bt;
 160 }
 161 
 162 // For two instance arrays of same dimension, return the base element types.
 163 // Otherwise or if the arrays have different dimensions, return NULL.
 164 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 165                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 166 
 167   if (e1) *e1 = NULL;
 168   if (e2) *e2 = NULL;
 169   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 170   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 171 
 172   if (a1tap != NULL && a2tap != NULL) {
 173     // Handle multidimensional arrays
 174     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 175     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 176     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 177       a1tap = a1tp->is_aryptr();
 178       a2tap = a2tp->is_aryptr();
 179       a1tp = a1tap->elem()->make_ptr();
 180       a2tp = a2tap->elem()->make_ptr();
 181     }
 182     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 183       if (e1) *e1 = a1tp->is_instptr();
 184       if (e2) *e2 = a2tp->is_instptr();
 185     }
 186   }
 187 }
 188 
 189 //---------------------------get_typeflow_type---------------------------------
 190 // Import a type produced by ciTypeFlow.
 191 const Type* Type::get_typeflow_type(ciType* type) {
 192   switch (type->basic_type()) {
 193 
 194   case ciTypeFlow::StateVector::T_BOTTOM:
 195     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 196     return Type::BOTTOM;
 197 
 198   case ciTypeFlow::StateVector::T_TOP:
 199     assert(type == ciTypeFlow::StateVector::top_type(), "");
 200     return Type::TOP;
 201 
 202   case ciTypeFlow::StateVector::T_NULL:
 203     assert(type == ciTypeFlow::StateVector::null_type(), "");
 204     return TypePtr::NULL_PTR;
 205 
 206   case ciTypeFlow::StateVector::T_LONG2:
 207     // The ciTypeFlow pass pushes a long, then the half.
 208     // We do the same.
 209     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 210     return TypeInt::TOP;
 211 
 212   case ciTypeFlow::StateVector::T_DOUBLE2:
 213     // The ciTypeFlow pass pushes double, then the half.
 214     // Our convention is the same.
 215     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 216     return Type::TOP;
 217 
 218   case T_ADDRESS:
 219     assert(type->is_return_address(), "");
 220     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 221 
 222   default:
 223     // make sure we did not mix up the cases:
 224     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 225     assert(type != ciTypeFlow::StateVector::top_type(), "");
 226     assert(type != ciTypeFlow::StateVector::null_type(), "");
 227     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 228     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 229     assert(!type->is_return_address(), "");
 230 
 231     return Type::get_const_type(type);
 232   }
 233 }
 234 
 235 
 236 //-----------------------make_from_constant------------------------------------
 237 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 238                                      int stable_dimension, bool is_narrow_oop,
 239                                      bool is_autobox_cache) {
 240   switch (constant.basic_type()) {
 241     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 242     case T_CHAR:     return TypeInt::make(constant.as_char());
 243     case T_BYTE:     return TypeInt::make(constant.as_byte());
 244     case T_SHORT:    return TypeInt::make(constant.as_short());
 245     case T_INT:      return TypeInt::make(constant.as_int());
 246     case T_LONG:     return TypeLong::make(constant.as_long());
 247     case T_FLOAT:    return TypeF::make(constant.as_float());
 248     case T_DOUBLE:   return TypeD::make(constant.as_double());
 249     case T_ARRAY:
 250     case T_OBJECT: {
 251         const Type* con_type = NULL;
 252         ciObject* oop_constant = constant.as_object();
 253         if (oop_constant->is_null_object()) {
 254           con_type = Type::get_zero_type(T_OBJECT);
 255         } else {
 256           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 257           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 258           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 259             con_type = con_type->is_aryptr()->cast_to_autobox_cache();
 260           }
 261           if (stable_dimension > 0) {
 262             assert(FoldStableValues, "sanity");
 263             assert(!con_type->is_zero_type(), "default value for stable field");
 264             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 265           }
 266         }
 267         if (is_narrow_oop) {
 268           con_type = con_type->make_narrowoop();
 269         }
 270         return con_type;
 271       }
 272     case T_ILLEGAL:
 273       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 274       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 275       return NULL;
 276     default:
 277       // Fall through to failure
 278       return NULL;
 279   }
 280 }
 281 
 282 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 283   BasicType conbt = con.basic_type();
 284   switch (conbt) {
 285     case T_BOOLEAN: conbt = T_BYTE;   break;
 286     case T_ARRAY:   conbt = T_OBJECT; break;
 287     default:                          break;
 288   }
 289   switch (loadbt) {
 290     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 291     case T_NARROWOOP: loadbt = T_OBJECT; break;
 292     case T_ARRAY:     loadbt = T_OBJECT; break;
 293     case T_ADDRESS:   loadbt = T_OBJECT; break;
 294     default:                             break;
 295   }
 296   if (conbt == loadbt) {
 297     if (is_unsigned && conbt == T_BYTE) {
 298       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 299       return ciConstant(T_INT, con.as_int() & 0xFF);
 300     } else {
 301       return con;
 302     }
 303   }
 304   if (conbt == T_SHORT && loadbt == T_CHAR) {
 305     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 306     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 307   }
 308   return ciConstant(); // T_ILLEGAL
 309 }
 310 
 311 // Try to constant-fold a stable array element.
 312 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 313                                                    BasicType loadbt, bool is_unsigned_load) {
 314   // Decode the results of GraphKit::array_element_address.
 315   ciConstant element_value = array->element_value_by_offset(off);
 316   if (element_value.basic_type() == T_ILLEGAL) {
 317     return NULL; // wrong offset
 318   }
 319   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 320 
 321   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 322          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 323 
 324   if (con.is_valid() &&          // not a mismatched access
 325       !con.is_null_or_zero()) {  // not a default value
 326     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 327     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 328   }
 329   return NULL;
 330 }
 331 
 332 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 333   ciField* field;
 334   ciType* type = holder->java_mirror_type();
 335   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 336     // Static field
 337     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 338   } else {
 339     // Instance field
 340     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 341   }
 342   if (field == NULL) {
 343     return NULL; // Wrong offset
 344   }
 345   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 346 }
 347 
 348 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 349                                            BasicType loadbt, bool is_unsigned_load) {
 350   if (!field->is_constant()) {
 351     return NULL; // Non-constant field
 352   }
 353   ciConstant field_value;
 354   if (field->is_static()) {
 355     // final static field
 356     field_value = field->constant_value();
 357   } else if (holder != NULL) {
 358     // final or stable non-static field
 359     // Treat final non-static fields of trusted classes (classes in
 360     // java.lang.invoke and sun.invoke packages and subpackages) as
 361     // compile time constants.
 362     field_value = field->constant_value_of(holder);
 363   }
 364   if (!field_value.is_valid()) {
 365     return NULL; // Not a constant
 366   }
 367 
 368   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 369 
 370   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 371          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 372 
 373   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 374   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 375   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 376 
 377   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 378                                             stable_dimension, is_narrow_oop,
 379                                             field->is_autobox_cache());
 380   if (con_type != NULL && field->is_call_site_target()) {
 381     ciCallSite* call_site = holder->as_call_site();
 382     if (!call_site->is_fully_initialized_constant_call_site()) {
 383       ciMethodHandle* target = con.as_object()->as_method_handle();
 384       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 385     }
 386   }
 387   return con_type;
 388 }
 389 
 390 //------------------------------make-------------------------------------------
 391 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 392 // and look for an existing copy in the type dictionary.
 393 const Type *Type::make( enum TYPES t ) {
 394   return (new Type(t))->hashcons();
 395 }
 396 
 397 //------------------------------cmp--------------------------------------------
 398 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 399   if( t1->_base != t2->_base )
 400     return 1;                   // Missed badly
 401   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 402   return !t1->eq(t2);           // Return ZERO if equal
 403 }
 404 
 405 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 406   if (!include_speculative) {
 407     return remove_speculative();
 408   }
 409   return this;
 410 }
 411 
 412 //------------------------------hash-------------------------------------------
 413 int Type::uhash( const Type *const t ) {
 414   return t->hash();
 415 }
 416 
 417 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 418 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite
 419 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite
 420 
 421 //--------------------------Initialize_shared----------------------------------
 422 void Type::Initialize_shared(Compile* current) {
 423   // This method does not need to be locked because the first system
 424   // compilations (stub compilations) occur serially.  If they are
 425   // changed to proceed in parallel, then this section will need
 426   // locking.
 427 
 428   Arena* save = current->type_arena();
 429   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 430 
 431   current->set_type_arena(shared_type_arena);
 432   _shared_type_dict =
 433     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 434                                   shared_type_arena, 128 );
 435   current->set_type_dict(_shared_type_dict);
 436 
 437   // Make shared pre-built types.
 438   CONTROL = make(Control);      // Control only
 439   TOP     = make(Top);          // No values in set
 440   MEMORY  = make(Memory);       // Abstract store only
 441   ABIO    = make(Abio);         // State-of-machine only
 442   RETURN_ADDRESS=make(Return_Address);
 443   FLOAT   = make(FloatBot);     // All floats
 444   DOUBLE  = make(DoubleBot);    // All doubles
 445   BOTTOM  = make(Bottom);       // Everything
 446   HALF    = make(Half);         // Placeholder half of doublewide type
 447 
 448   TypeF::MAX = TypeF::make(max_jfloat); // Float MAX
 449   TypeF::MIN = TypeF::make(min_jfloat); // Float MIN
 450   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 451   TypeF::ONE  = TypeF::make(1.0); // Float 1
 452   TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F));
 453   TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F));
 454 
 455   TypeD::MAX = TypeD::make(max_jdouble); // Double MAX
 456   TypeD::MIN = TypeD::make(min_jdouble); // Double MIN
 457   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 458   TypeD::ONE  = TypeD::make(1.0); // Double 1
 459   TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D));
 460   TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D));
 461 
 462   TypeInt::MAX = TypeInt::make(max_jint); // Int MAX
 463   TypeInt::MIN = TypeInt::make(min_jint); // Int MIN
 464   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 465   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 466   TypeInt::ONE     = TypeInt::make( 1);  //  1
 467   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 468   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 469   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 470   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 471   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 472   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 473   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 474   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 475   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 476   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 477   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 478   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 479   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 480   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 481   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 482   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 483   // CmpL is overloaded both as the bytecode computation returning
 484   // a trinary (-1,0,+1) integer result AND as an efficient long
 485   // compare returning optimizer ideal-type flags.
 486   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 487   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 488   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 489   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 490   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 491 
 492   TypeLong::MAX = TypeLong::make(max_jlong);  // Long MAX
 493   TypeLong::MIN = TypeLong::make(min_jlong);  // Long MIN
 494   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 495   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 496   TypeLong::ONE     = TypeLong::make( 1);        //  1
 497   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 498   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 499   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 500   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 501   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 502 
 503   const Type **fboth =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 504   fboth[0] = Type::CONTROL;
 505   fboth[1] = Type::CONTROL;
 506   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 507 
 508   const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 509   ffalse[0] = Type::CONTROL;
 510   ffalse[1] = Type::TOP;
 511   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 512 
 513   const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 514   fneither[0] = Type::TOP;
 515   fneither[1] = Type::TOP;
 516   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 517 
 518   const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 519   ftrue[0] = Type::TOP;
 520   ftrue[1] = Type::CONTROL;
 521   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 522 
 523   const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 524   floop[0] = Type::CONTROL;
 525   floop[1] = TypeInt::INT;
 526   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 527 
 528   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 529   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 530   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 531 
 532   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 533   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 534 
 535   const Type **fmembar = TypeTuple::fields(0);
 536   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 537 
 538   const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
 539   fsc[0] = TypeInt::CC;
 540   fsc[1] = Type::MEMORY;
 541   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 542 
 543   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 544   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 545   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 546   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 547                                            false, 0, oopDesc::mark_offset_in_bytes());
 548   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 549                                            false, 0, oopDesc::klass_offset_in_bytes());
 550   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 551 
 552   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 553 
 554   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 555   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 556 
 557   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 558 
 559   mreg2type[Op_Node] = Type::BOTTOM;
 560   mreg2type[Op_Set ] = 0;
 561   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 562   mreg2type[Op_RegI] = TypeInt::INT;
 563   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 564   mreg2type[Op_RegF] = Type::FLOAT;
 565   mreg2type[Op_RegD] = Type::DOUBLE;
 566   mreg2type[Op_RegL] = TypeLong::LONG;
 567   mreg2type[Op_RegFlags] = TypeInt::CC;
 568 
 569   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 570 
 571   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 572 
 573 #ifdef _LP64
 574   if (UseCompressedOops) {
 575     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 576     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 577   } else
 578 #endif
 579   {
 580     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 581     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 582   }
 583   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 584   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 585   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 586   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 587   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 588   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 589   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 590 
 591   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 592   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 593   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 594   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 595   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 596   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 597   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 598   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 599   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 600   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 601   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 602   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 603 
 604   TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0);
 605   TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0);
 606 
 607   const Type **fi2c = TypeTuple::fields(2);
 608   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 609   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 610   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 611 
 612   const Type **intpair = TypeTuple::fields(2);
 613   intpair[0] = TypeInt::INT;
 614   intpair[1] = TypeInt::INT;
 615   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 616 
 617   const Type **longpair = TypeTuple::fields(2);
 618   longpair[0] = TypeLong::LONG;
 619   longpair[1] = TypeLong::LONG;
 620   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 621 
 622   const Type **intccpair = TypeTuple::fields(2);
 623   intccpair[0] = TypeInt::INT;
 624   intccpair[1] = TypeInt::CC;
 625   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 626 
 627   const Type **longccpair = TypeTuple::fields(2);
 628   longccpair[0] = TypeLong::LONG;
 629   longccpair[1] = TypeInt::CC;
 630   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 631 
 632   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 633   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 634   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 635   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 636   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 637   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 638   _const_basic_type[T_INT]         = TypeInt::INT;
 639   _const_basic_type[T_LONG]        = TypeLong::LONG;
 640   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 641   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 642   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 643   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 644   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 645   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 646   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 647 
 648   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 649   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 650   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 651   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 652   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 653   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 654   _zero_type[T_INT]         = TypeInt::ZERO;
 655   _zero_type[T_LONG]        = TypeLong::ZERO;
 656   _zero_type[T_FLOAT]       = TypeF::ZERO;
 657   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 658   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 659   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 660   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 661   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 662 
 663   // get_zero_type() should not happen for T_CONFLICT
 664   _zero_type[T_CONFLICT]= NULL;
 665 
 666   TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(TypeInt::BOOL, MaxVectorSize))->hashcons();
 667   mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
 668 
 669   if (Matcher::supports_scalable_vector()) {
 670     TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
 671   }
 672 
 673   // Vector predefined types, it needs initialized _const_basic_type[].
 674   if (Matcher::vector_size_supported(T_BYTE,4)) {
 675     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 676   }
 677   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 678     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 679   }
 680   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 681     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 682   }
 683   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 684     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 685   }
 686   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 687     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 688   }
 689 
 690   mreg2type[Op_VecA] = TypeVect::VECTA;
 691   mreg2type[Op_VecS] = TypeVect::VECTS;
 692   mreg2type[Op_VecD] = TypeVect::VECTD;
 693   mreg2type[Op_VecX] = TypeVect::VECTX;
 694   mreg2type[Op_VecY] = TypeVect::VECTY;
 695   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 696 
 697   // Restore working type arena.
 698   current->set_type_arena(save);
 699   current->set_type_dict(NULL);
 700 }
 701 
 702 //------------------------------Initialize-------------------------------------
 703 void Type::Initialize(Compile* current) {
 704   assert(current->type_arena() != NULL, "must have created type arena");
 705 
 706   if (_shared_type_dict == NULL) {
 707     Initialize_shared(current);
 708   }
 709 
 710   Arena* type_arena = current->type_arena();
 711 
 712   // Create the hash-cons'ing dictionary with top-level storage allocation
 713   Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena);
 714   current->set_type_dict(tdic);
 715 }
 716 
 717 //------------------------------hashcons---------------------------------------
 718 // Do the hash-cons trick.  If the Type already exists in the type table,
 719 // delete the current Type and return the existing Type.  Otherwise stick the
 720 // current Type in the Type table.
 721 const Type *Type::hashcons(void) {
 722   debug_only(base());           // Check the assertion in Type::base().
 723   // Look up the Type in the Type dictionary
 724   Dict *tdic = type_dict();
 725   Type* old = (Type*)(tdic->Insert(this, this, false));
 726   if( old ) {                   // Pre-existing Type?
 727     if( old != this )           // Yes, this guy is not the pre-existing?
 728       delete this;              // Yes, Nuke this guy
 729     assert( old->_dual, "" );
 730     return old;                 // Return pre-existing
 731   }
 732 
 733   // Every type has a dual (to make my lattice symmetric).
 734   // Since we just discovered a new Type, compute its dual right now.
 735   assert( !_dual, "" );         // No dual yet
 736   _dual = xdual();              // Compute the dual
 737   if (cmp(this, _dual) == 0) {  // Handle self-symmetric
 738     if (_dual != this) {
 739       delete _dual;
 740       _dual = this;
 741     }
 742     return this;
 743   }
 744   assert( !_dual->_dual, "" );  // No reverse dual yet
 745   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 746   // New Type, insert into Type table
 747   tdic->Insert((void*)_dual,(void*)_dual);
 748   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 749 #ifdef ASSERT
 750   Type *dual_dual = (Type*)_dual->xdual();
 751   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 752   delete dual_dual;
 753 #endif
 754   return this;                  // Return new Type
 755 }
 756 
 757 //------------------------------eq---------------------------------------------
 758 // Structural equality check for Type representations
 759 bool Type::eq( const Type * ) const {
 760   return true;                  // Nothing else can go wrong
 761 }
 762 
 763 //------------------------------hash-------------------------------------------
 764 // Type-specific hashing function.
 765 int Type::hash(void) const {
 766   return _base;
 767 }
 768 
 769 //------------------------------is_finite--------------------------------------
 770 // Has a finite value
 771 bool Type::is_finite() const {
 772   return false;
 773 }
 774 
 775 //------------------------------is_nan-----------------------------------------
 776 // Is not a number (NaN)
 777 bool Type::is_nan()    const {
 778   return false;
 779 }
 780 
 781 //----------------------interface_vs_oop---------------------------------------
 782 #ifdef ASSERT
 783 bool Type::interface_vs_oop_helper(const Type *t) const {
 784   bool result = false;
 785 
 786   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 787   const TypePtr*    t_ptr =    t->make_ptr();
 788   if( this_ptr == NULL || t_ptr == NULL )
 789     return result;
 790 
 791   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 792   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 793   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 794     bool this_interface = this_inst->klass()->is_interface();
 795     bool    t_interface =    t_inst->klass()->is_interface();
 796     result = this_interface ^ t_interface;
 797   }
 798 
 799   return result;
 800 }
 801 
 802 bool Type::interface_vs_oop(const Type *t) const {
 803   if (interface_vs_oop_helper(t)) {
 804     return true;
 805   }
 806   // Now check the speculative parts as well
 807   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 808   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 809   if (this_spec != NULL && t_spec != NULL) {
 810     if (this_spec->interface_vs_oop_helper(t_spec)) {
 811       return true;
 812     }
 813     return false;
 814   }
 815   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 816     return true;
 817   }
 818   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 819     return true;
 820   }
 821   return false;
 822 }
 823 
 824 #endif
 825 
 826 void Type::check_symmetrical(const Type* t, const Type* mt) const {
 827 #ifdef ASSERT
 828   const Type* mt2 = t->xmeet(this);
 829   if (mt != mt2) {
 830     tty->print_cr("=== Meet Not Commutative ===");
 831     tty->print("t           = ");   t->dump(); tty->cr();
 832     tty->print("this        = ");      dump(); tty->cr();
 833     tty->print("t meet this = "); mt2->dump(); tty->cr();
 834     tty->print("this meet t = ");  mt->dump(); tty->cr();
 835     fatal("meet not commutative");
 836   }
 837   const Type* dual_join = mt->_dual;
 838   const Type* t2t    = dual_join->xmeet(t->_dual);
 839   const Type* t2this = dual_join->xmeet(this->_dual);
 840 
 841   // Interface meet Oop is Not Symmetric:
 842   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 843   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 844 
 845   if (!interface_vs_oop(t) && (t2t != t->_dual || t2this != this->_dual)) {
 846     tty->print_cr("=== Meet Not Symmetric ===");
 847     tty->print("t   =                   ");              t->dump(); tty->cr();
 848     tty->print("this=                   ");                 dump(); tty->cr();
 849     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 850 
 851     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 852     tty->print("this_dual=              ");          _dual->dump(); tty->cr();
 853     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 854 
 855     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 856     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 857 
 858     fatal("meet not symmetric");
 859   }
 860 #endif
 861 }
 862 
 863 //------------------------------meet-------------------------------------------
 864 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 865 // commutative and the lattice is symmetric.
 866 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 867   if (isa_narrowoop() && t->isa_narrowoop()) {
 868     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 869     return result->make_narrowoop();
 870   }
 871   if (isa_narrowklass() && t->isa_narrowklass()) {
 872     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 873     return result->make_narrowklass();
 874   }
 875 
 876   const Type *this_t = maybe_remove_speculative(include_speculative);
 877   t = t->maybe_remove_speculative(include_speculative);
 878 
 879   const Type *mt = this_t->xmeet(t);
 880 #ifdef ASSERT
 881   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 882   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 883   Compile* C = Compile::current();
 884   if (!C->_type_verify_symmetry) {
 885     return mt;
 886   }
 887   this_t->check_symmetrical(t, mt);
 888   // In the case of an array, computing the meet above, caused the
 889   // computation of the meet of the elements which at verification
 890   // time caused the computation of the meet of the dual of the
 891   // elements. Computing the meet of the dual of the arrays here
 892   // causes the meet of the dual of the elements to be computed which
 893   // would cause the meet of the dual of the dual of the elements,
 894   // that is the meet of the elements already computed above to be
 895   // computed. Avoid redundant computations by requesting no
 896   // verification.
 897   C->_type_verify_symmetry = false;
 898   const Type *mt_dual = this_t->_dual->xmeet(t->_dual);
 899   this_t->_dual->check_symmetrical(t->_dual, mt_dual);
 900   assert(!C->_type_verify_symmetry, "shouldn't have changed");
 901   C->_type_verify_symmetry = true;
 902 #endif
 903   return mt;
 904 }
 905 
 906 //------------------------------xmeet------------------------------------------
 907 // Compute the MEET of two types.  It returns a new Type object.
 908 const Type *Type::xmeet( const Type *t ) const {
 909   // Perform a fast test for common case; meeting the same types together.
 910   if( this == t ) return this;  // Meeting same type-rep?
 911 
 912   // Meeting TOP with anything?
 913   if( _base == Top ) return t;
 914 
 915   // Meeting BOTTOM with anything?
 916   if( _base == Bottom ) return BOTTOM;
 917 
 918   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 919   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 920   switch (t->base()) {  // Switch on original type
 921 
 922   // Cut in half the number of cases I must handle.  Only need cases for when
 923   // the given enum "t->type" is less than or equal to the local enum "type".
 924   case FloatCon:
 925   case DoubleCon:
 926   case Int:
 927   case Long:
 928     return t->xmeet(this);
 929 
 930   case OopPtr:
 931     return t->xmeet(this);
 932 
 933   case InstPtr:
 934     return t->xmeet(this);
 935 
 936   case MetadataPtr:
 937   case KlassPtr:
 938   case InstKlassPtr:
 939   case AryKlassPtr:
 940     return t->xmeet(this);
 941 
 942   case AryPtr:
 943     return t->xmeet(this);
 944 
 945   case NarrowOop:
 946     return t->xmeet(this);
 947 
 948   case NarrowKlass:
 949     return t->xmeet(this);
 950 
 951   case Bad:                     // Type check
 952   default:                      // Bogus type not in lattice
 953     typerr(t);
 954     return Type::BOTTOM;
 955 
 956   case Bottom:                  // Ye Olde Default
 957     return t;
 958 
 959   case FloatTop:
 960     if( _base == FloatTop ) return this;
 961   case FloatBot:                // Float
 962     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 963     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 964     typerr(t);
 965     return Type::BOTTOM;
 966 
 967   case DoubleTop:
 968     if( _base == DoubleTop ) return this;
 969   case DoubleBot:               // Double
 970     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 971     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 972     typerr(t);
 973     return Type::BOTTOM;
 974 
 975   // These next few cases must match exactly or it is a compile-time error.
 976   case Control:                 // Control of code
 977   case Abio:                    // State of world outside of program
 978   case Memory:
 979     if( _base == t->_base )  return this;
 980     typerr(t);
 981     return Type::BOTTOM;
 982 
 983   case Top:                     // Top of the lattice
 984     return this;
 985   }
 986 
 987   // The type is unchanged
 988   return this;
 989 }
 990 
 991 //-----------------------------filter------------------------------------------
 992 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 993   const Type* ft = join_helper(kills, include_speculative);
 994   if (ft->empty())
 995     return Type::TOP;           // Canonical empty value
 996   return ft;
 997 }
 998 
 999 //------------------------------xdual------------------------------------------
1000 const Type *Type::xdual() const {
1001   // Note: the base() accessor asserts the sanity of _base.
1002   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1003   return new Type(_type_info[_base].dual_type);
1004 }
1005 
1006 //------------------------------has_memory-------------------------------------
1007 bool Type::has_memory() const {
1008   Type::TYPES tx = base();
1009   if (tx == Memory) return true;
1010   if (tx == Tuple) {
1011     const TypeTuple *t = is_tuple();
1012     for (uint i=0; i < t->cnt(); i++) {
1013       tx = t->field_at(i)->base();
1014       if (tx == Memory)  return true;
1015     }
1016   }
1017   return false;
1018 }
1019 
1020 #ifndef PRODUCT
1021 //------------------------------dump2------------------------------------------
1022 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1023   st->print("%s", _type_info[_base].msg);
1024 }
1025 
1026 //------------------------------dump-------------------------------------------
1027 void Type::dump_on(outputStream *st) const {
1028   ResourceMark rm;
1029   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1030   dump2(d,1, st);
1031   if (is_ptr_to_narrowoop()) {
1032     st->print(" [narrow]");
1033   } else if (is_ptr_to_narrowklass()) {
1034     st->print(" [narrowklass]");
1035   }
1036 }
1037 
1038 //-----------------------------------------------------------------------------
1039 const char* Type::str(const Type* t) {
1040   stringStream ss;
1041   t->dump_on(&ss);
1042   return ss.as_string();
1043 }
1044 #endif
1045 
1046 //------------------------------singleton--------------------------------------
1047 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1048 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1049 bool Type::singleton(void) const {
1050   return _base == Top || _base == Half;
1051 }
1052 
1053 //------------------------------empty------------------------------------------
1054 // TRUE if Type is a type with no values, FALSE otherwise.
1055 bool Type::empty(void) const {
1056   switch (_base) {
1057   case DoubleTop:
1058   case FloatTop:
1059   case Top:
1060     return true;
1061 
1062   case Half:
1063   case Abio:
1064   case Return_Address:
1065   case Memory:
1066   case Bottom:
1067   case FloatBot:
1068   case DoubleBot:
1069     return false;  // never a singleton, therefore never empty
1070 
1071   default:
1072     ShouldNotReachHere();
1073     return false;
1074   }
1075 }
1076 
1077 //------------------------------dump_stats-------------------------------------
1078 // Dump collected statistics to stderr
1079 #ifndef PRODUCT
1080 void Type::dump_stats() {
1081   tty->print("Types made: %d\n", type_dict()->Size());
1082 }
1083 #endif
1084 
1085 //------------------------------category---------------------------------------
1086 #ifndef PRODUCT
1087 Type::Category Type::category() const {
1088   const TypeTuple* tuple;
1089   switch (base()) {
1090     case Type::Int:
1091     case Type::Long:
1092     case Type::Half:
1093     case Type::NarrowOop:
1094     case Type::NarrowKlass:
1095     case Type::Array:
1096     case Type::VectorA:
1097     case Type::VectorS:
1098     case Type::VectorD:
1099     case Type::VectorX:
1100     case Type::VectorY:
1101     case Type::VectorZ:
1102     case Type::VectorMask:
1103     case Type::AnyPtr:
1104     case Type::RawPtr:
1105     case Type::OopPtr:
1106     case Type::InstPtr:
1107     case Type::AryPtr:
1108     case Type::MetadataPtr:
1109     case Type::KlassPtr:
1110     case Type::InstKlassPtr:
1111     case Type::AryKlassPtr:
1112     case Type::Function:
1113     case Type::Return_Address:
1114     case Type::FloatTop:
1115     case Type::FloatCon:
1116     case Type::FloatBot:
1117     case Type::DoubleTop:
1118     case Type::DoubleCon:
1119     case Type::DoubleBot:
1120       return Category::Data;
1121     case Type::Memory:
1122       return Category::Memory;
1123     case Type::Control:
1124       return Category::Control;
1125     case Type::Top:
1126     case Type::Abio:
1127     case Type::Bottom:
1128       return Category::Other;
1129     case Type::Bad:
1130     case Type::lastype:
1131       return Category::Undef;
1132     case Type::Tuple:
1133       // Recursive case. Return CatMixed if the tuple contains types of
1134       // different categories (e.g. CallStaticJavaNode's type), or the specific
1135       // category if all types are of the same category (e.g. IfNode's type).
1136       tuple = is_tuple();
1137       if (tuple->cnt() == 0) {
1138         return Category::Undef;
1139       } else {
1140         Category first = tuple->field_at(0)->category();
1141         for (uint i = 1; i < tuple->cnt(); i++) {
1142           if (tuple->field_at(i)->category() != first) {
1143             return Category::Mixed;
1144           }
1145         }
1146         return first;
1147       }
1148     default:
1149       assert(false, "unmatched base type: all base types must be categorized");
1150   }
1151   return Category::Undef;
1152 }
1153 #endif
1154 
1155 //------------------------------typerr-----------------------------------------
1156 void Type::typerr( const Type *t ) const {
1157 #ifndef PRODUCT
1158   tty->print("\nError mixing types: ");
1159   dump();
1160   tty->print(" and ");
1161   t->dump();
1162   tty->print("\n");
1163 #endif
1164   ShouldNotReachHere();
1165 }
1166 
1167 
1168 //=============================================================================
1169 // Convenience common pre-built types.
1170 const TypeF *TypeF::MAX;        // Floating point max
1171 const TypeF *TypeF::MIN;        // Floating point min
1172 const TypeF *TypeF::ZERO;       // Floating point zero
1173 const TypeF *TypeF::ONE;        // Floating point one
1174 const TypeF *TypeF::POS_INF;    // Floating point positive infinity
1175 const TypeF *TypeF::NEG_INF;    // Floating point negative infinity
1176 
1177 //------------------------------make-------------------------------------------
1178 // Create a float constant
1179 const TypeF *TypeF::make(float f) {
1180   return (TypeF*)(new TypeF(f))->hashcons();
1181 }
1182 
1183 //------------------------------meet-------------------------------------------
1184 // Compute the MEET of two types.  It returns a new Type object.
1185 const Type *TypeF::xmeet( const Type *t ) const {
1186   // Perform a fast test for common case; meeting the same types together.
1187   if( this == t ) return this;  // Meeting same type-rep?
1188 
1189   // Current "this->_base" is FloatCon
1190   switch (t->base()) {          // Switch on original type
1191   case AnyPtr:                  // Mixing with oops happens when javac
1192   case RawPtr:                  // reuses local variables
1193   case OopPtr:
1194   case InstPtr:
1195   case AryPtr:
1196   case MetadataPtr:
1197   case KlassPtr:
1198   case InstKlassPtr:
1199   case AryKlassPtr:
1200   case NarrowOop:
1201   case NarrowKlass:
1202   case Int:
1203   case Long:
1204   case DoubleTop:
1205   case DoubleCon:
1206   case DoubleBot:
1207   case Bottom:                  // Ye Olde Default
1208     return Type::BOTTOM;
1209 
1210   case FloatBot:
1211     return t;
1212 
1213   default:                      // All else is a mistake
1214     typerr(t);
1215 
1216   case FloatCon:                // Float-constant vs Float-constant?
1217     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1218                                 // must compare bitwise as positive zero, negative zero and NaN have
1219                                 // all the same representation in C++
1220       return FLOAT;             // Return generic float
1221                                 // Equal constants
1222   case Top:
1223   case FloatTop:
1224     break;                      // Return the float constant
1225   }
1226   return this;                  // Return the float constant
1227 }
1228 
1229 //------------------------------xdual------------------------------------------
1230 // Dual: symmetric
1231 const Type *TypeF::xdual() const {
1232   return this;
1233 }
1234 
1235 //------------------------------eq---------------------------------------------
1236 // Structural equality check for Type representations
1237 bool TypeF::eq(const Type *t) const {
1238   // Bitwise comparison to distinguish between +/-0. These values must be treated
1239   // as different to be consistent with C1 and the interpreter.
1240   return (jint_cast(_f) == jint_cast(t->getf()));
1241 }
1242 
1243 //------------------------------hash-------------------------------------------
1244 // Type-specific hashing function.
1245 int TypeF::hash(void) const {
1246   return *(int*)(&_f);
1247 }
1248 
1249 //------------------------------is_finite--------------------------------------
1250 // Has a finite value
1251 bool TypeF::is_finite() const {
1252   return g_isfinite(getf()) != 0;
1253 }
1254 
1255 //------------------------------is_nan-----------------------------------------
1256 // Is not a number (NaN)
1257 bool TypeF::is_nan()    const {
1258   return g_isnan(getf()) != 0;
1259 }
1260 
1261 //------------------------------dump2------------------------------------------
1262 // Dump float constant Type
1263 #ifndef PRODUCT
1264 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1265   Type::dump2(d,depth, st);
1266   st->print("%f", _f);
1267 }
1268 #endif
1269 
1270 //------------------------------singleton--------------------------------------
1271 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1272 // constants (Ldi nodes).  Singletons are integer, float or double constants
1273 // or a single symbol.
1274 bool TypeF::singleton(void) const {
1275   return true;                  // Always a singleton
1276 }
1277 
1278 bool TypeF::empty(void) const {
1279   return false;                 // always exactly a singleton
1280 }
1281 
1282 //=============================================================================
1283 // Convenience common pre-built types.
1284 const TypeD *TypeD::MAX;        // Floating point max
1285 const TypeD *TypeD::MIN;        // Floating point min
1286 const TypeD *TypeD::ZERO;       // Floating point zero
1287 const TypeD *TypeD::ONE;        // Floating point one
1288 const TypeD *TypeD::POS_INF;    // Floating point positive infinity
1289 const TypeD *TypeD::NEG_INF;    // Floating point negative infinity
1290 
1291 //------------------------------make-------------------------------------------
1292 const TypeD *TypeD::make(double d) {
1293   return (TypeD*)(new TypeD(d))->hashcons();
1294 }
1295 
1296 //------------------------------meet-------------------------------------------
1297 // Compute the MEET of two types.  It returns a new Type object.
1298 const Type *TypeD::xmeet( const Type *t ) const {
1299   // Perform a fast test for common case; meeting the same types together.
1300   if( this == t ) return this;  // Meeting same type-rep?
1301 
1302   // Current "this->_base" is DoubleCon
1303   switch (t->base()) {          // Switch on original type
1304   case AnyPtr:                  // Mixing with oops happens when javac
1305   case RawPtr:                  // reuses local variables
1306   case OopPtr:
1307   case InstPtr:
1308   case AryPtr:
1309   case MetadataPtr:
1310   case KlassPtr:
1311   case InstKlassPtr:
1312   case AryKlassPtr:
1313   case NarrowOop:
1314   case NarrowKlass:
1315   case Int:
1316   case Long:
1317   case FloatTop:
1318   case FloatCon:
1319   case FloatBot:
1320   case Bottom:                  // Ye Olde Default
1321     return Type::BOTTOM;
1322 
1323   case DoubleBot:
1324     return t;
1325 
1326   default:                      // All else is a mistake
1327     typerr(t);
1328 
1329   case DoubleCon:               // Double-constant vs Double-constant?
1330     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1331       return DOUBLE;            // Return generic double
1332   case Top:
1333   case DoubleTop:
1334     break;
1335   }
1336   return this;                  // Return the double constant
1337 }
1338 
1339 //------------------------------xdual------------------------------------------
1340 // Dual: symmetric
1341 const Type *TypeD::xdual() const {
1342   return this;
1343 }
1344 
1345 //------------------------------eq---------------------------------------------
1346 // Structural equality check for Type representations
1347 bool TypeD::eq(const Type *t) const {
1348   // Bitwise comparison to distinguish between +/-0. These values must be treated
1349   // as different to be consistent with C1 and the interpreter.
1350   return (jlong_cast(_d) == jlong_cast(t->getd()));
1351 }
1352 
1353 //------------------------------hash-------------------------------------------
1354 // Type-specific hashing function.
1355 int TypeD::hash(void) const {
1356   return *(int*)(&_d);
1357 }
1358 
1359 //------------------------------is_finite--------------------------------------
1360 // Has a finite value
1361 bool TypeD::is_finite() const {
1362   return g_isfinite(getd()) != 0;
1363 }
1364 
1365 //------------------------------is_nan-----------------------------------------
1366 // Is not a number (NaN)
1367 bool TypeD::is_nan()    const {
1368   return g_isnan(getd()) != 0;
1369 }
1370 
1371 //------------------------------dump2------------------------------------------
1372 // Dump double constant Type
1373 #ifndef PRODUCT
1374 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1375   Type::dump2(d,depth,st);
1376   st->print("%f", _d);
1377 }
1378 #endif
1379 
1380 //------------------------------singleton--------------------------------------
1381 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1382 // constants (Ldi nodes).  Singletons are integer, float or double constants
1383 // or a single symbol.
1384 bool TypeD::singleton(void) const {
1385   return true;                  // Always a singleton
1386 }
1387 
1388 bool TypeD::empty(void) const {
1389   return false;                 // always exactly a singleton
1390 }
1391 
1392 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) {
1393   if (bt == T_INT) {
1394     return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w);
1395   }
1396   assert(bt == T_LONG, "basic type not an int or long");
1397   return TypeLong::make(lo, hi, w);
1398 }
1399 
1400 jlong TypeInteger::get_con_as_long(BasicType bt) const {
1401   if (bt == T_INT) {
1402     return is_int()->get_con();
1403   }
1404   assert(bt == T_LONG, "basic type not an int or long");
1405   return is_long()->get_con();
1406 }
1407 
1408 const TypeInteger* TypeInteger::bottom(BasicType bt) {
1409   if (bt == T_INT) {
1410     return TypeInt::INT;
1411   }
1412   assert(bt == T_LONG, "basic type not an int or long");
1413   return TypeLong::LONG;
1414 }
1415 
1416 const TypeInteger* TypeInteger::zero(BasicType bt) {
1417   if (bt == T_INT) {
1418     return TypeInt::ZERO;
1419   }
1420   assert(bt == T_LONG, "basic type not an int or long");
1421   return TypeLong::ZERO;
1422 }
1423 
1424 const TypeInteger* TypeInteger::one(BasicType bt) {
1425   if (bt == T_INT) {
1426     return TypeInt::ONE;
1427   }
1428   assert(bt == T_LONG, "basic type not an int or long");
1429   return TypeLong::ONE;
1430 }
1431 
1432 const TypeInteger* TypeInteger::minus_1(BasicType bt) {
1433   if (bt == T_INT) {
1434     return TypeInt::MINUS_1;
1435   }
1436   assert(bt == T_LONG, "basic type not an int or long");
1437   return TypeLong::MINUS_1;
1438 }
1439 
1440 //=============================================================================
1441 // Convenience common pre-built types.
1442 const TypeInt *TypeInt::MAX;    // INT_MAX
1443 const TypeInt *TypeInt::MIN;    // INT_MIN
1444 const TypeInt *TypeInt::MINUS_1;// -1
1445 const TypeInt *TypeInt::ZERO;   // 0
1446 const TypeInt *TypeInt::ONE;    // 1
1447 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1448 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1449 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1450 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1451 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1452 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1453 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1454 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1455 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1456 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1457 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1458 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1459 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1460 const TypeInt *TypeInt::INT;    // 32-bit integers
1461 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1462 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1463 
1464 //------------------------------TypeInt----------------------------------------
1465 TypeInt::TypeInt( jint lo, jint hi, int w ) : TypeInteger(Int), _lo(lo), _hi(hi), _widen(w) {
1466 }
1467 
1468 //------------------------------make-------------------------------------------
1469 const TypeInt *TypeInt::make( jint lo ) {
1470   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1471 }
1472 
1473 static int normalize_int_widen( jint lo, jint hi, int w ) {
1474   // Certain normalizations keep us sane when comparing types.
1475   // The 'SMALLINT' covers constants and also CC and its relatives.
1476   if (lo <= hi) {
1477     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1478     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1479   } else {
1480     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1481     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1482   }
1483   return w;
1484 }
1485 
1486 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1487   w = normalize_int_widen(lo, hi, w);
1488   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1489 }
1490 
1491 //------------------------------meet-------------------------------------------
1492 // Compute the MEET of two types.  It returns a new Type representation object
1493 // with reference count equal to the number of Types pointing at it.
1494 // Caller should wrap a Types around it.
1495 const Type *TypeInt::xmeet( const Type *t ) const {
1496   // Perform a fast test for common case; meeting the same types together.
1497   if( this == t ) return this;  // Meeting same type?
1498 
1499   // Currently "this->_base" is a TypeInt
1500   switch (t->base()) {          // Switch on original type
1501   case AnyPtr:                  // Mixing with oops happens when javac
1502   case RawPtr:                  // reuses local variables
1503   case OopPtr:
1504   case InstPtr:
1505   case AryPtr:
1506   case MetadataPtr:
1507   case KlassPtr:
1508   case InstKlassPtr:
1509   case AryKlassPtr:
1510   case NarrowOop:
1511   case NarrowKlass:
1512   case Long:
1513   case FloatTop:
1514   case FloatCon:
1515   case FloatBot:
1516   case DoubleTop:
1517   case DoubleCon:
1518   case DoubleBot:
1519   case Bottom:                  // Ye Olde Default
1520     return Type::BOTTOM;
1521   default:                      // All else is a mistake
1522     typerr(t);
1523   case Top:                     // No change
1524     return this;
1525   case Int:                     // Int vs Int?
1526     break;
1527   }
1528 
1529   // Expand covered set
1530   const TypeInt *r = t->is_int();
1531   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1532 }
1533 
1534 //------------------------------xdual------------------------------------------
1535 // Dual: reverse hi & lo; flip widen
1536 const Type *TypeInt::xdual() const {
1537   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1538   return new TypeInt(_hi,_lo,w);
1539 }
1540 
1541 //------------------------------widen------------------------------------------
1542 // Only happens for optimistic top-down optimizations.
1543 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1544   // Coming from TOP or such; no widening
1545   if( old->base() != Int ) return this;
1546   const TypeInt *ot = old->is_int();
1547 
1548   // If new guy is equal to old guy, no widening
1549   if( _lo == ot->_lo && _hi == ot->_hi )
1550     return old;
1551 
1552   // If new guy contains old, then we widened
1553   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1554     // New contains old
1555     // If new guy is already wider than old, no widening
1556     if( _widen > ot->_widen ) return this;
1557     // If old guy was a constant, do not bother
1558     if (ot->_lo == ot->_hi)  return this;
1559     // Now widen new guy.
1560     // Check for widening too far
1561     if (_widen == WidenMax) {
1562       int max = max_jint;
1563       int min = min_jint;
1564       if (limit->isa_int()) {
1565         max = limit->is_int()->_hi;
1566         min = limit->is_int()->_lo;
1567       }
1568       if (min < _lo && _hi < max) {
1569         // If neither endpoint is extremal yet, push out the endpoint
1570         // which is closer to its respective limit.
1571         if (_lo >= 0 ||                 // easy common case
1572             (juint)(_lo - min) >= (juint)(max - _hi)) {
1573           // Try to widen to an unsigned range type of 31 bits:
1574           return make(_lo, max, WidenMax);
1575         } else {
1576           return make(min, _hi, WidenMax);
1577         }
1578       }
1579       return TypeInt::INT;
1580     }
1581     // Returned widened new guy
1582     return make(_lo,_hi,_widen+1);
1583   }
1584 
1585   // If old guy contains new, then we probably widened too far & dropped to
1586   // bottom.  Return the wider fellow.
1587   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1588     return old;
1589 
1590   //fatal("Integer value range is not subset");
1591   //return this;
1592   return TypeInt::INT;
1593 }
1594 
1595 //------------------------------narrow---------------------------------------
1596 // Only happens for pessimistic optimizations.
1597 const Type *TypeInt::narrow( const Type *old ) const {
1598   if (_lo >= _hi)  return this;   // already narrow enough
1599   if (old == NULL)  return this;
1600   const TypeInt* ot = old->isa_int();
1601   if (ot == NULL)  return this;
1602   jint olo = ot->_lo;
1603   jint ohi = ot->_hi;
1604 
1605   // If new guy is equal to old guy, no narrowing
1606   if (_lo == olo && _hi == ohi)  return old;
1607 
1608   // If old guy was maximum range, allow the narrowing
1609   if (olo == min_jint && ohi == max_jint)  return this;
1610 
1611   if (_lo < olo || _hi > ohi)
1612     return this;                // doesn't narrow; pretty weird
1613 
1614   // The new type narrows the old type, so look for a "death march".
1615   // See comments on PhaseTransform::saturate.
1616   juint nrange = (juint)_hi - _lo;
1617   juint orange = (juint)ohi - olo;
1618   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1619     // Use the new type only if the range shrinks a lot.
1620     // We do not want the optimizer computing 2^31 point by point.
1621     return old;
1622   }
1623 
1624   return this;
1625 }
1626 
1627 //-----------------------------filter------------------------------------------
1628 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1629   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1630   if (ft == NULL || ft->empty())
1631     return Type::TOP;           // Canonical empty value
1632   if (ft->_widen < this->_widen) {
1633     // Do not allow the value of kill->_widen to affect the outcome.
1634     // The widen bits must be allowed to run freely through the graph.
1635     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1636   }
1637   return ft;
1638 }
1639 
1640 //------------------------------eq---------------------------------------------
1641 // Structural equality check for Type representations
1642 bool TypeInt::eq( const Type *t ) const {
1643   const TypeInt *r = t->is_int(); // Handy access
1644   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1645 }
1646 
1647 //------------------------------hash-------------------------------------------
1648 // Type-specific hashing function.
1649 int TypeInt::hash(void) const {
1650   return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1651 }
1652 
1653 //------------------------------is_finite--------------------------------------
1654 // Has a finite value
1655 bool TypeInt::is_finite() const {
1656   return true;
1657 }
1658 
1659 //------------------------------dump2------------------------------------------
1660 // Dump TypeInt
1661 #ifndef PRODUCT
1662 static const char* intname(char* buf, jint n) {
1663   if (n == min_jint)
1664     return "min";
1665   else if (n < min_jint + 10000)
1666     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1667   else if (n == max_jint)
1668     return "max";
1669   else if (n > max_jint - 10000)
1670     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1671   else
1672     sprintf(buf, INT32_FORMAT, n);
1673   return buf;
1674 }
1675 
1676 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1677   char buf[40], buf2[40];
1678   if (_lo == min_jint && _hi == max_jint)
1679     st->print("int");
1680   else if (is_con())
1681     st->print("int:%s", intname(buf, get_con()));
1682   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1683     st->print("bool");
1684   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1685     st->print("byte");
1686   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1687     st->print("char");
1688   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1689     st->print("short");
1690   else if (_hi == max_jint)
1691     st->print("int:>=%s", intname(buf, _lo));
1692   else if (_lo == min_jint)
1693     st->print("int:<=%s", intname(buf, _hi));
1694   else
1695     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1696 
1697   if (_widen != 0 && this != TypeInt::INT)
1698     st->print(":%.*s", _widen, "wwww");
1699 }
1700 #endif
1701 
1702 //------------------------------singleton--------------------------------------
1703 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1704 // constants.
1705 bool TypeInt::singleton(void) const {
1706   return _lo >= _hi;
1707 }
1708 
1709 bool TypeInt::empty(void) const {
1710   return _lo > _hi;
1711 }
1712 
1713 //=============================================================================
1714 // Convenience common pre-built types.
1715 const TypeLong *TypeLong::MAX;
1716 const TypeLong *TypeLong::MIN;
1717 const TypeLong *TypeLong::MINUS_1;// -1
1718 const TypeLong *TypeLong::ZERO; // 0
1719 const TypeLong *TypeLong::ONE;  // 1
1720 const TypeLong *TypeLong::POS;  // >=0
1721 const TypeLong *TypeLong::LONG; // 64-bit integers
1722 const TypeLong *TypeLong::INT;  // 32-bit subrange
1723 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1724 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1725 
1726 //------------------------------TypeLong---------------------------------------
1727 TypeLong::TypeLong(jlong lo, jlong hi, int w) : TypeInteger(Long), _lo(lo), _hi(hi), _widen(w) {
1728 }
1729 
1730 //------------------------------make-------------------------------------------
1731 const TypeLong *TypeLong::make( jlong lo ) {
1732   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1733 }
1734 
1735 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1736   // Certain normalizations keep us sane when comparing types.
1737   // The 'SMALLINT' covers constants.
1738   if (lo <= hi) {
1739     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1740     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1741   } else {
1742     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1743     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1744   }
1745   return w;
1746 }
1747 
1748 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1749   w = normalize_long_widen(lo, hi, w);
1750   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1751 }
1752 
1753 
1754 //------------------------------meet-------------------------------------------
1755 // Compute the MEET of two types.  It returns a new Type representation object
1756 // with reference count equal to the number of Types pointing at it.
1757 // Caller should wrap a Types around it.
1758 const Type *TypeLong::xmeet( const Type *t ) const {
1759   // Perform a fast test for common case; meeting the same types together.
1760   if( this == t ) return this;  // Meeting same type?
1761 
1762   // Currently "this->_base" is a TypeLong
1763   switch (t->base()) {          // Switch on original type
1764   case AnyPtr:                  // Mixing with oops happens when javac
1765   case RawPtr:                  // reuses local variables
1766   case OopPtr:
1767   case InstPtr:
1768   case AryPtr:
1769   case MetadataPtr:
1770   case KlassPtr:
1771   case InstKlassPtr:
1772   case AryKlassPtr:
1773   case NarrowOop:
1774   case NarrowKlass:
1775   case Int:
1776   case FloatTop:
1777   case FloatCon:
1778   case FloatBot:
1779   case DoubleTop:
1780   case DoubleCon:
1781   case DoubleBot:
1782   case Bottom:                  // Ye Olde Default
1783     return Type::BOTTOM;
1784   default:                      // All else is a mistake
1785     typerr(t);
1786   case Top:                     // No change
1787     return this;
1788   case Long:                    // Long vs Long?
1789     break;
1790   }
1791 
1792   // Expand covered set
1793   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1794   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1795 }
1796 
1797 //------------------------------xdual------------------------------------------
1798 // Dual: reverse hi & lo; flip widen
1799 const Type *TypeLong::xdual() const {
1800   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1801   return new TypeLong(_hi,_lo,w);
1802 }
1803 
1804 //------------------------------widen------------------------------------------
1805 // Only happens for optimistic top-down optimizations.
1806 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1807   // Coming from TOP or such; no widening
1808   if( old->base() != Long ) return this;
1809   const TypeLong *ot = old->is_long();
1810 
1811   // If new guy is equal to old guy, no widening
1812   if( _lo == ot->_lo && _hi == ot->_hi )
1813     return old;
1814 
1815   // If new guy contains old, then we widened
1816   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1817     // New contains old
1818     // If new guy is already wider than old, no widening
1819     if( _widen > ot->_widen ) return this;
1820     // If old guy was a constant, do not bother
1821     if (ot->_lo == ot->_hi)  return this;
1822     // Now widen new guy.
1823     // Check for widening too far
1824     if (_widen == WidenMax) {
1825       jlong max = max_jlong;
1826       jlong min = min_jlong;
1827       if (limit->isa_long()) {
1828         max = limit->is_long()->_hi;
1829         min = limit->is_long()->_lo;
1830       }
1831       if (min < _lo && _hi < max) {
1832         // If neither endpoint is extremal yet, push out the endpoint
1833         // which is closer to its respective limit.
1834         if (_lo >= 0 ||                 // easy common case
1835             ((julong)_lo - min) >= ((julong)max - _hi)) {
1836           // Try to widen to an unsigned range type of 32/63 bits:
1837           if (max >= max_juint && _hi < max_juint)
1838             return make(_lo, max_juint, WidenMax);
1839           else
1840             return make(_lo, max, WidenMax);
1841         } else {
1842           return make(min, _hi, WidenMax);
1843         }
1844       }
1845       return TypeLong::LONG;
1846     }
1847     // Returned widened new guy
1848     return make(_lo,_hi,_widen+1);
1849   }
1850 
1851   // If old guy contains new, then we probably widened too far & dropped to
1852   // bottom.  Return the wider fellow.
1853   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1854     return old;
1855 
1856   //  fatal("Long value range is not subset");
1857   // return this;
1858   return TypeLong::LONG;
1859 }
1860 
1861 //------------------------------narrow----------------------------------------
1862 // Only happens for pessimistic optimizations.
1863 const Type *TypeLong::narrow( const Type *old ) const {
1864   if (_lo >= _hi)  return this;   // already narrow enough
1865   if (old == NULL)  return this;
1866   const TypeLong* ot = old->isa_long();
1867   if (ot == NULL)  return this;
1868   jlong olo = ot->_lo;
1869   jlong ohi = ot->_hi;
1870 
1871   // If new guy is equal to old guy, no narrowing
1872   if (_lo == olo && _hi == ohi)  return old;
1873 
1874   // If old guy was maximum range, allow the narrowing
1875   if (olo == min_jlong && ohi == max_jlong)  return this;
1876 
1877   if (_lo < olo || _hi > ohi)
1878     return this;                // doesn't narrow; pretty weird
1879 
1880   // The new type narrows the old type, so look for a "death march".
1881   // See comments on PhaseTransform::saturate.
1882   julong nrange = _hi - _lo;
1883   julong orange = ohi - olo;
1884   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1885     // Use the new type only if the range shrinks a lot.
1886     // We do not want the optimizer computing 2^31 point by point.
1887     return old;
1888   }
1889 
1890   return this;
1891 }
1892 
1893 //-----------------------------filter------------------------------------------
1894 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1895   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1896   if (ft == NULL || ft->empty())
1897     return Type::TOP;           // Canonical empty value
1898   if (ft->_widen < this->_widen) {
1899     // Do not allow the value of kill->_widen to affect the outcome.
1900     // The widen bits must be allowed to run freely through the graph.
1901     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1902   }
1903   return ft;
1904 }
1905 
1906 //------------------------------eq---------------------------------------------
1907 // Structural equality check for Type representations
1908 bool TypeLong::eq( const Type *t ) const {
1909   const TypeLong *r = t->is_long(); // Handy access
1910   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1911 }
1912 
1913 //------------------------------hash-------------------------------------------
1914 // Type-specific hashing function.
1915 int TypeLong::hash(void) const {
1916   return (int)(_lo+_hi+_widen+(int)Type::Long);
1917 }
1918 
1919 //------------------------------is_finite--------------------------------------
1920 // Has a finite value
1921 bool TypeLong::is_finite() const {
1922   return true;
1923 }
1924 
1925 //------------------------------dump2------------------------------------------
1926 // Dump TypeLong
1927 #ifndef PRODUCT
1928 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1929   if (n > x) {
1930     if (n >= x + 10000)  return NULL;
1931     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1932   } else if (n < x) {
1933     if (n <= x - 10000)  return NULL;
1934     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1935   } else {
1936     return xname;
1937   }
1938   return buf;
1939 }
1940 
1941 static const char* longname(char* buf, jlong n) {
1942   const char* str;
1943   if (n == min_jlong)
1944     return "min";
1945   else if (n < min_jlong + 10000)
1946     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1947   else if (n == max_jlong)
1948     return "max";
1949   else if (n > max_jlong - 10000)
1950     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1951   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1952     return str;
1953   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1954     return str;
1955   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1956     return str;
1957   else
1958     sprintf(buf, JLONG_FORMAT, n);
1959   return buf;
1960 }
1961 
1962 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1963   char buf[80], buf2[80];
1964   if (_lo == min_jlong && _hi == max_jlong)
1965     st->print("long");
1966   else if (is_con())
1967     st->print("long:%s", longname(buf, get_con()));
1968   else if (_hi == max_jlong)
1969     st->print("long:>=%s", longname(buf, _lo));
1970   else if (_lo == min_jlong)
1971     st->print("long:<=%s", longname(buf, _hi));
1972   else
1973     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1974 
1975   if (_widen != 0 && this != TypeLong::LONG)
1976     st->print(":%.*s", _widen, "wwww");
1977 }
1978 #endif
1979 
1980 //------------------------------singleton--------------------------------------
1981 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1982 // constants
1983 bool TypeLong::singleton(void) const {
1984   return _lo >= _hi;
1985 }
1986 
1987 bool TypeLong::empty(void) const {
1988   return _lo > _hi;
1989 }
1990 
1991 //=============================================================================
1992 // Convenience common pre-built types.
1993 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1994 const TypeTuple *TypeTuple::IFFALSE;
1995 const TypeTuple *TypeTuple::IFTRUE;
1996 const TypeTuple *TypeTuple::IFNEITHER;
1997 const TypeTuple *TypeTuple::LOOPBODY;
1998 const TypeTuple *TypeTuple::MEMBAR;
1999 const TypeTuple *TypeTuple::STORECONDITIONAL;
2000 const TypeTuple *TypeTuple::START_I2C;
2001 const TypeTuple *TypeTuple::INT_PAIR;
2002 const TypeTuple *TypeTuple::LONG_PAIR;
2003 const TypeTuple *TypeTuple::INT_CC_PAIR;
2004 const TypeTuple *TypeTuple::LONG_CC_PAIR;
2005 
2006 //------------------------------make-------------------------------------------
2007 // Make a TypeTuple from the range of a method signature
2008 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
2009   ciType* return_type = sig->return_type();
2010   uint arg_cnt = return_type->size();
2011   const Type **field_array = fields(arg_cnt);
2012   switch (return_type->basic_type()) {
2013   case T_LONG:
2014     field_array[TypeFunc::Parms]   = TypeLong::LONG;
2015     field_array[TypeFunc::Parms+1] = Type::HALF;
2016     break;
2017   case T_DOUBLE:
2018     field_array[TypeFunc::Parms]   = Type::DOUBLE;
2019     field_array[TypeFunc::Parms+1] = Type::HALF;
2020     break;
2021   case T_OBJECT:
2022   case T_ARRAY:
2023   case T_BOOLEAN:
2024   case T_CHAR:
2025   case T_FLOAT:
2026   case T_BYTE:
2027   case T_SHORT:
2028   case T_INT:
2029     field_array[TypeFunc::Parms] = get_const_type(return_type);
2030     break;
2031   case T_VOID:
2032     break;
2033   default:
2034     ShouldNotReachHere();
2035   }
2036   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2037 }
2038 
2039 // Make a TypeTuple from the domain of a method signature
2040 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
2041   uint arg_cnt = sig->size();
2042 
2043   uint pos = TypeFunc::Parms;
2044   const Type **field_array;
2045   if (recv != NULL) {
2046     arg_cnt++;
2047     field_array = fields(arg_cnt);
2048     // Use get_const_type here because it respects UseUniqueSubclasses:
2049     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
2050   } else {
2051     field_array = fields(arg_cnt);
2052   }
2053 
2054   int i = 0;
2055   while (pos < TypeFunc::Parms + arg_cnt) {
2056     ciType* type = sig->type_at(i);
2057 
2058     switch (type->basic_type()) {
2059     case T_LONG:
2060       field_array[pos++] = TypeLong::LONG;
2061       field_array[pos++] = Type::HALF;
2062       break;
2063     case T_DOUBLE:
2064       field_array[pos++] = Type::DOUBLE;
2065       field_array[pos++] = Type::HALF;
2066       break;
2067     case T_OBJECT:
2068     case T_ARRAY:
2069     case T_FLOAT:
2070     case T_INT:
2071       field_array[pos++] = get_const_type(type);
2072       break;
2073     case T_BOOLEAN:
2074     case T_CHAR:
2075     case T_BYTE:
2076     case T_SHORT:
2077       field_array[pos++] = TypeInt::INT;
2078       break;
2079     default:
2080       ShouldNotReachHere();
2081     }
2082     i++;
2083   }
2084 
2085   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2086 }
2087 
2088 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2089   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2090 }
2091 
2092 //------------------------------fields-----------------------------------------
2093 // Subroutine call type with space allocated for argument types
2094 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2095 const Type **TypeTuple::fields( uint arg_cnt ) {
2096   const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2097   flds[TypeFunc::Control  ] = Type::CONTROL;
2098   flds[TypeFunc::I_O      ] = Type::ABIO;
2099   flds[TypeFunc::Memory   ] = Type::MEMORY;
2100   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2101   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2102 
2103   return flds;
2104 }
2105 
2106 //------------------------------meet-------------------------------------------
2107 // Compute the MEET of two types.  It returns a new Type object.
2108 const Type *TypeTuple::xmeet( const Type *t ) const {
2109   // Perform a fast test for common case; meeting the same types together.
2110   if( this == t ) return this;  // Meeting same type-rep?
2111 
2112   // Current "this->_base" is Tuple
2113   switch (t->base()) {          // switch on original type
2114 
2115   case Bottom:                  // Ye Olde Default
2116     return t;
2117 
2118   default:                      // All else is a mistake
2119     typerr(t);
2120 
2121   case Tuple: {                 // Meeting 2 signatures?
2122     const TypeTuple *x = t->is_tuple();
2123     assert( _cnt == x->_cnt, "" );
2124     const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2125     for( uint i=0; i<_cnt; i++ )
2126       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2127     return TypeTuple::make(_cnt,fields);
2128   }
2129   case Top:
2130     break;
2131   }
2132   return this;                  // Return the double constant
2133 }
2134 
2135 //------------------------------xdual------------------------------------------
2136 // Dual: compute field-by-field dual
2137 const Type *TypeTuple::xdual() const {
2138   const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2139   for( uint i=0; i<_cnt; i++ )
2140     fields[i] = _fields[i]->dual();
2141   return new TypeTuple(_cnt,fields);
2142 }
2143 
2144 //------------------------------eq---------------------------------------------
2145 // Structural equality check for Type representations
2146 bool TypeTuple::eq( const Type *t ) const {
2147   const TypeTuple *s = (const TypeTuple *)t;
2148   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2149   for (uint i = 0; i < _cnt; i++)
2150     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2151       return false;             // Missed
2152   return true;
2153 }
2154 
2155 //------------------------------hash-------------------------------------------
2156 // Type-specific hashing function.
2157 int TypeTuple::hash(void) const {
2158   intptr_t sum = _cnt;
2159   for( uint i=0; i<_cnt; i++ )
2160     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2161   return sum;
2162 }
2163 
2164 //------------------------------dump2------------------------------------------
2165 // Dump signature Type
2166 #ifndef PRODUCT
2167 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2168   st->print("{");
2169   if( !depth || d[this] ) {     // Check for recursive print
2170     st->print("...}");
2171     return;
2172   }
2173   d.Insert((void*)this, (void*)this);   // Stop recursion
2174   if( _cnt ) {
2175     uint i;
2176     for( i=0; i<_cnt-1; i++ ) {
2177       st->print("%d:", i);
2178       _fields[i]->dump2(d, depth-1, st);
2179       st->print(", ");
2180     }
2181     st->print("%d:", i);
2182     _fields[i]->dump2(d, depth-1, st);
2183   }
2184   st->print("}");
2185 }
2186 #endif
2187 
2188 //------------------------------singleton--------------------------------------
2189 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2190 // constants (Ldi nodes).  Singletons are integer, float or double constants
2191 // or a single symbol.
2192 bool TypeTuple::singleton(void) const {
2193   return false;                 // Never a singleton
2194 }
2195 
2196 bool TypeTuple::empty(void) const {
2197   for( uint i=0; i<_cnt; i++ ) {
2198     if (_fields[i]->empty())  return true;
2199   }
2200   return false;
2201 }
2202 
2203 //=============================================================================
2204 // Convenience common pre-built types.
2205 
2206 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2207   // Certain normalizations keep us sane when comparing types.
2208   // We do not want arrayOop variables to differ only by the wideness
2209   // of their index types.  Pick minimum wideness, since that is the
2210   // forced wideness of small ranges anyway.
2211   if (size->_widen != Type::WidenMin)
2212     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2213   else
2214     return size;
2215 }
2216 
2217 //------------------------------make-------------------------------------------
2218 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2219   if (UseCompressedOops && elem->isa_oopptr()) {
2220     elem = elem->make_narrowoop();
2221   }
2222   size = normalize_array_size(size);
2223   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2224 }
2225 
2226 //------------------------------meet-------------------------------------------
2227 // Compute the MEET of two types.  It returns a new Type object.
2228 const Type *TypeAry::xmeet( const Type *t ) const {
2229   // Perform a fast test for common case; meeting the same types together.
2230   if( this == t ) return this;  // Meeting same type-rep?
2231 
2232   // Current "this->_base" is Ary
2233   switch (t->base()) {          // switch on original type
2234 
2235   case Bottom:                  // Ye Olde Default
2236     return t;
2237 
2238   default:                      // All else is a mistake
2239     typerr(t);
2240 
2241   case Array: {                 // Meeting 2 arrays?
2242     const TypeAry *a = t->is_ary();
2243     return TypeAry::make(_elem->meet_speculative(a->_elem),
2244                          _size->xmeet(a->_size)->is_int(),
2245                          _stable && a->_stable);
2246   }
2247   case Top:
2248     break;
2249   }
2250   return this;                  // Return the double constant
2251 }
2252 
2253 //------------------------------xdual------------------------------------------
2254 // Dual: compute field-by-field dual
2255 const Type *TypeAry::xdual() const {
2256   const TypeInt* size_dual = _size->dual()->is_int();
2257   size_dual = normalize_array_size(size_dual);
2258   return new TypeAry(_elem->dual(), size_dual, !_stable);
2259 }
2260 
2261 //------------------------------eq---------------------------------------------
2262 // Structural equality check for Type representations
2263 bool TypeAry::eq( const Type *t ) const {
2264   const TypeAry *a = (const TypeAry*)t;
2265   return _elem == a->_elem &&
2266     _stable == a->_stable &&
2267     _size == a->_size;
2268 }
2269 
2270 //------------------------------hash-------------------------------------------
2271 // Type-specific hashing function.
2272 int TypeAry::hash(void) const {
2273   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2274 }
2275 
2276 /**
2277  * Return same type without a speculative part in the element
2278  */
2279 const Type* TypeAry::remove_speculative() const {
2280   return make(_elem->remove_speculative(), _size, _stable);
2281 }
2282 
2283 /**
2284  * Return same type with cleaned up speculative part of element
2285  */
2286 const Type* TypeAry::cleanup_speculative() const {
2287   return make(_elem->cleanup_speculative(), _size, _stable);
2288 }
2289 
2290 /**
2291  * Return same type but with a different inline depth (used for speculation)
2292  *
2293  * @param depth  depth to meet with
2294  */
2295 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2296   if (!UseInlineDepthForSpeculativeTypes) {
2297     return this;
2298   }
2299   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2300 }
2301 
2302 //----------------------interface_vs_oop---------------------------------------
2303 #ifdef ASSERT
2304 bool TypeAry::interface_vs_oop(const Type *t) const {
2305   const TypeAry* t_ary = t->is_ary();
2306   if (t_ary) {
2307     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2308     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2309     if(this_ptr != NULL && t_ptr != NULL) {
2310       return this_ptr->interface_vs_oop(t_ptr);
2311     }
2312   }
2313   return false;
2314 }
2315 #endif
2316 
2317 //------------------------------dump2------------------------------------------
2318 #ifndef PRODUCT
2319 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2320   if (_stable)  st->print("stable:");
2321   _elem->dump2(d, depth, st);
2322   st->print("[");
2323   _size->dump2(d, depth, st);
2324   st->print("]");
2325 }
2326 #endif
2327 
2328 //------------------------------singleton--------------------------------------
2329 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2330 // constants (Ldi nodes).  Singletons are integer, float or double constants
2331 // or a single symbol.
2332 bool TypeAry::singleton(void) const {
2333   return false;                 // Never a singleton
2334 }
2335 
2336 bool TypeAry::empty(void) const {
2337   return _elem->empty() || _size->empty();
2338 }
2339 
2340 //--------------------------ary_must_be_exact----------------------------------
2341 bool TypeAry::ary_must_be_exact() const {
2342   // This logic looks at the element type of an array, and returns true
2343   // if the element type is either a primitive or a final instance class.
2344   // In such cases, an array built on this ary must have no subclasses.
2345   if (_elem == BOTTOM)      return false;  // general array not exact
2346   if (_elem == TOP   )      return false;  // inverted general array not exact
2347   const TypeOopPtr*  toop = NULL;
2348   if (UseCompressedOops && _elem->isa_narrowoop()) {
2349     toop = _elem->make_ptr()->isa_oopptr();
2350   } else {
2351     toop = _elem->isa_oopptr();
2352   }
2353   if (!toop)                return true;   // a primitive type, like int
2354   ciKlass* tklass = toop->klass();
2355   if (tklass == NULL)       return false;  // unloaded class
2356   if (!tklass->is_loaded()) return false;  // unloaded class
2357   const TypeInstPtr* tinst;
2358   if (_elem->isa_narrowoop())
2359     tinst = _elem->make_ptr()->isa_instptr();
2360   else
2361     tinst = _elem->isa_instptr();
2362   if (tinst)
2363     return tklass->as_instance_klass()->is_final();
2364   const TypeAryPtr*  tap;
2365   if (_elem->isa_narrowoop())
2366     tap = _elem->make_ptr()->isa_aryptr();
2367   else
2368     tap = _elem->isa_aryptr();
2369   if (tap)
2370     return tap->ary()->ary_must_be_exact();
2371   return false;
2372 }
2373 
2374 //==============================TypeVect=======================================
2375 // Convenience common pre-built types.
2376 const TypeVect *TypeVect::VECTA = NULL; // vector length agnostic
2377 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2378 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2379 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2380 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2381 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2382 const TypeVect *TypeVect::VECTMASK = NULL; // predicate/mask vector
2383 
2384 //------------------------------make-------------------------------------------
2385 const TypeVect* TypeVect::make(const Type *elem, uint length, bool is_mask) {
2386   if (is_mask) {
2387     return makemask(elem, length);
2388   }
2389   BasicType elem_bt = elem->array_element_basic_type();
2390   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2391   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2392   int size = length * type2aelembytes(elem_bt);
2393   switch (Matcher::vector_ideal_reg(size)) {
2394   case Op_VecA:
2395     return (TypeVect*)(new TypeVectA(elem, length))->hashcons();
2396   case Op_VecS:
2397     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2398   case Op_RegL:
2399   case Op_VecD:
2400   case Op_RegD:
2401     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2402   case Op_VecX:
2403     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2404   case Op_VecY:
2405     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2406   case Op_VecZ:
2407     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2408   }
2409  ShouldNotReachHere();
2410   return NULL;
2411 }
2412 
2413 const TypeVect *TypeVect::makemask(const Type* elem, uint length) {
2414   BasicType elem_bt = elem->array_element_basic_type();
2415   if (Matcher::has_predicated_vectors() &&
2416       Matcher::match_rule_supported_vector_masked(Op_VectorLoadMask, length, elem_bt)) {
2417     return TypeVectMask::make(elem, length);
2418   } else {
2419     return make(elem, length);
2420   }
2421 }
2422 
2423 //------------------------------meet-------------------------------------------
2424 // Compute the MEET of two types.  It returns a new Type object.
2425 const Type *TypeVect::xmeet( const Type *t ) const {
2426   // Perform a fast test for common case; meeting the same types together.
2427   if( this == t ) return this;  // Meeting same type-rep?
2428 
2429   // Current "this->_base" is Vector
2430   switch (t->base()) {          // switch on original type
2431 
2432   case Bottom:                  // Ye Olde Default
2433     return t;
2434 
2435   default:                      // All else is a mistake
2436     typerr(t);
2437   case VectorMask: {
2438     const TypeVectMask* v = t->is_vectmask();
2439     assert(  base() == v->base(), "");
2440     assert(length() == v->length(), "");
2441     assert(element_basic_type() == v->element_basic_type(), "");
2442     return TypeVect::makemask(_elem->xmeet(v->_elem), _length);
2443   }
2444   case VectorA:
2445   case VectorS:
2446   case VectorD:
2447   case VectorX:
2448   case VectorY:
2449   case VectorZ: {                // Meeting 2 vectors?
2450     const TypeVect* v = t->is_vect();
2451     assert(  base() == v->base(), "");
2452     assert(length() == v->length(), "");
2453     assert(element_basic_type() == v->element_basic_type(), "");
2454     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2455   }
2456   case Top:
2457     break;
2458   }
2459   return this;
2460 }
2461 
2462 //------------------------------xdual------------------------------------------
2463 // Dual: compute field-by-field dual
2464 const Type *TypeVect::xdual() const {
2465   return new TypeVect(base(), _elem->dual(), _length);
2466 }
2467 
2468 //------------------------------eq---------------------------------------------
2469 // Structural equality check for Type representations
2470 bool TypeVect::eq(const Type *t) const {
2471   const TypeVect *v = t->is_vect();
2472   return (_elem == v->_elem) && (_length == v->_length);
2473 }
2474 
2475 //------------------------------hash-------------------------------------------
2476 // Type-specific hashing function.
2477 int TypeVect::hash(void) const {
2478   return (intptr_t)_elem + (intptr_t)_length;
2479 }
2480 
2481 //------------------------------singleton--------------------------------------
2482 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2483 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2484 // constant value (when vector is created with Replicate code).
2485 bool TypeVect::singleton(void) const {
2486 // There is no Con node for vectors yet.
2487 //  return _elem->singleton();
2488   return false;
2489 }
2490 
2491 bool TypeVect::empty(void) const {
2492   return _elem->empty();
2493 }
2494 
2495 //------------------------------dump2------------------------------------------
2496 #ifndef PRODUCT
2497 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2498   switch (base()) {
2499   case VectorA:
2500     st->print("vectora["); break;
2501   case VectorS:
2502     st->print("vectors["); break;
2503   case VectorD:
2504     st->print("vectord["); break;
2505   case VectorX:
2506     st->print("vectorx["); break;
2507   case VectorY:
2508     st->print("vectory["); break;
2509   case VectorZ:
2510     st->print("vectorz["); break;
2511   case VectorMask:
2512     st->print("vectormask["); break;
2513   default:
2514     ShouldNotReachHere();
2515   }
2516   st->print("%d]:{", _length);
2517   _elem->dump2(d, depth, st);
2518   st->print("}");
2519 }
2520 #endif
2521 
2522 bool TypeVectMask::eq(const Type *t) const {
2523   const TypeVectMask *v = t->is_vectmask();
2524   return (element_type() == v->element_type()) && (length() == v->length());
2525 }
2526 
2527 const Type *TypeVectMask::xdual() const {
2528   return new TypeVectMask(element_type()->dual(), length());
2529 }
2530 
2531 const TypeVectMask *TypeVectMask::make(const BasicType elem_bt, uint length) {
2532   return make(get_const_basic_type(elem_bt), length);
2533 }
2534 
2535 const TypeVectMask *TypeVectMask::make(const Type* elem, uint length) {
2536   const TypeVectMask* mtype = Matcher::predicate_reg_type(elem, length);
2537   return (TypeVectMask*) const_cast<TypeVectMask*>(mtype)->hashcons();
2538 }
2539 
2540 //=============================================================================
2541 // Convenience common pre-built types.
2542 const TypePtr *TypePtr::NULL_PTR;
2543 const TypePtr *TypePtr::NOTNULL;
2544 const TypePtr *TypePtr::BOTTOM;
2545 
2546 //------------------------------meet-------------------------------------------
2547 // Meet over the PTR enum
2548 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2549   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2550   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2551   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2552   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2553   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2554   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2555   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2556 };
2557 
2558 //------------------------------make-------------------------------------------
2559 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2560   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2561 }
2562 
2563 //------------------------------cast_to_ptr_type-------------------------------
2564 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2565   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2566   if( ptr == _ptr ) return this;
2567   return make(_base, ptr, _offset, _speculative, _inline_depth);
2568 }
2569 
2570 //------------------------------get_con----------------------------------------
2571 intptr_t TypePtr::get_con() const {
2572   assert( _ptr == Null, "" );
2573   return _offset;
2574 }
2575 
2576 //------------------------------meet-------------------------------------------
2577 // Compute the MEET of two types.  It returns a new Type object.
2578 const Type *TypePtr::xmeet(const Type *t) const {
2579   const Type* res = xmeet_helper(t);
2580   if (res->isa_ptr() == NULL) {
2581     return res;
2582   }
2583 
2584   const TypePtr* res_ptr = res->is_ptr();
2585   if (res_ptr->speculative() != NULL) {
2586     // type->speculative() == NULL means that speculation is no better
2587     // than type, i.e. type->speculative() == type. So there are 2
2588     // ways to represent the fact that we have no useful speculative
2589     // data and we should use a single one to be able to test for
2590     // equality between types. Check whether type->speculative() ==
2591     // type and set speculative to NULL if it is the case.
2592     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2593       return res_ptr->remove_speculative();
2594     }
2595   }
2596 
2597   return res;
2598 }
2599 
2600 const Type *TypePtr::xmeet_helper(const Type *t) const {
2601   // Perform a fast test for common case; meeting the same types together.
2602   if( this == t ) return this;  // Meeting same type-rep?
2603 
2604   // Current "this->_base" is AnyPtr
2605   switch (t->base()) {          // switch on original type
2606   case Int:                     // Mixing ints & oops happens when javac
2607   case Long:                    // reuses local variables
2608   case FloatTop:
2609   case FloatCon:
2610   case FloatBot:
2611   case DoubleTop:
2612   case DoubleCon:
2613   case DoubleBot:
2614   case NarrowOop:
2615   case NarrowKlass:
2616   case Bottom:                  // Ye Olde Default
2617     return Type::BOTTOM;
2618   case Top:
2619     return this;
2620 
2621   case AnyPtr: {                // Meeting to AnyPtrs
2622     const TypePtr *tp = t->is_ptr();
2623     const TypePtr* speculative = xmeet_speculative(tp);
2624     int depth = meet_inline_depth(tp->inline_depth());
2625     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2626   }
2627   case RawPtr:                  // For these, flip the call around to cut down
2628   case OopPtr:
2629   case InstPtr:                 // on the cases I have to handle.
2630   case AryPtr:
2631   case MetadataPtr:
2632   case KlassPtr:
2633   case InstKlassPtr:
2634   case AryKlassPtr:
2635     return t->xmeet(this);      // Call in reverse direction
2636   default:                      // All else is a mistake
2637     typerr(t);
2638 
2639   }
2640   return this;
2641 }
2642 
2643 //------------------------------meet_offset------------------------------------
2644 int TypePtr::meet_offset( int offset ) const {
2645   // Either is 'TOP' offset?  Return the other offset!
2646   if( _offset == OffsetTop ) return offset;
2647   if( offset == OffsetTop ) return _offset;
2648   // If either is different, return 'BOTTOM' offset
2649   if( _offset != offset ) return OffsetBot;
2650   return _offset;
2651 }
2652 
2653 //------------------------------dual_offset------------------------------------
2654 int TypePtr::dual_offset( ) const {
2655   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2656   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2657   return _offset;               // Map everything else into self
2658 }
2659 
2660 //------------------------------xdual------------------------------------------
2661 // Dual: compute field-by-field dual
2662 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2663   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2664 };
2665 const Type *TypePtr::xdual() const {
2666   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2667 }
2668 
2669 //------------------------------xadd_offset------------------------------------
2670 int TypePtr::xadd_offset( intptr_t offset ) const {
2671   // Adding to 'TOP' offset?  Return 'TOP'!
2672   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2673   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2674   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2675   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2676   offset += (intptr_t)_offset;
2677   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2678 
2679   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2680   // It is possible to construct a negative offset during PhaseCCP
2681 
2682   return (int)offset;        // Sum valid offsets
2683 }
2684 
2685 //------------------------------add_offset-------------------------------------
2686 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2687   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2688 }
2689 
2690 //------------------------------eq---------------------------------------------
2691 // Structural equality check for Type representations
2692 bool TypePtr::eq( const Type *t ) const {
2693   const TypePtr *a = (const TypePtr*)t;
2694   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2695 }
2696 
2697 //------------------------------hash-------------------------------------------
2698 // Type-specific hashing function.
2699 int TypePtr::hash(void) const {
2700   return java_add(java_add((jint)_ptr, (jint)_offset), java_add((jint)hash_speculative(), (jint)_inline_depth));
2701 ;
2702 }
2703 
2704 /**
2705  * Return same type without a speculative part
2706  */
2707 const Type* TypePtr::remove_speculative() const {
2708   if (_speculative == NULL) {
2709     return this;
2710   }
2711   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2712   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2713 }
2714 
2715 /**
2716  * Return same type but drop speculative part if we know we won't use
2717  * it
2718  */
2719 const Type* TypePtr::cleanup_speculative() const {
2720   if (speculative() == NULL) {
2721     return this;
2722   }
2723   const Type* no_spec = remove_speculative();
2724   // If this is NULL_PTR then we don't need the speculative type
2725   // (with_inline_depth in case the current type inline depth is
2726   // InlineDepthTop)
2727   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2728     return no_spec;
2729   }
2730   if (above_centerline(speculative()->ptr())) {
2731     return no_spec;
2732   }
2733   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2734   // If the speculative may be null and is an inexact klass then it
2735   // doesn't help
2736   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2737       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2738     return no_spec;
2739   }
2740   return this;
2741 }
2742 
2743 /**
2744  * dual of the speculative part of the type
2745  */
2746 const TypePtr* TypePtr::dual_speculative() const {
2747   if (_speculative == NULL) {
2748     return NULL;
2749   }
2750   return _speculative->dual()->is_ptr();
2751 }
2752 
2753 /**
2754  * meet of the speculative parts of 2 types
2755  *
2756  * @param other  type to meet with
2757  */
2758 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2759   bool this_has_spec = (_speculative != NULL);
2760   bool other_has_spec = (other->speculative() != NULL);
2761 
2762   if (!this_has_spec && !other_has_spec) {
2763     return NULL;
2764   }
2765 
2766   // If we are at a point where control flow meets and one branch has
2767   // a speculative type and the other has not, we meet the speculative
2768   // type of one branch with the actual type of the other. If the
2769   // actual type is exact and the speculative is as well, then the
2770   // result is a speculative type which is exact and we can continue
2771   // speculation further.
2772   const TypePtr* this_spec = _speculative;
2773   const TypePtr* other_spec = other->speculative();
2774 
2775   if (!this_has_spec) {
2776     this_spec = this;
2777   }
2778 
2779   if (!other_has_spec) {
2780     other_spec = other;
2781   }
2782 
2783   return this_spec->meet(other_spec)->is_ptr();
2784 }
2785 
2786 /**
2787  * dual of the inline depth for this type (used for speculation)
2788  */
2789 int TypePtr::dual_inline_depth() const {
2790   return -inline_depth();
2791 }
2792 
2793 /**
2794  * meet of 2 inline depths (used for speculation)
2795  *
2796  * @param depth  depth to meet with
2797  */
2798 int TypePtr::meet_inline_depth(int depth) const {
2799   return MAX2(inline_depth(), depth);
2800 }
2801 
2802 /**
2803  * Are the speculative parts of 2 types equal?
2804  *
2805  * @param other  type to compare this one to
2806  */
2807 bool TypePtr::eq_speculative(const TypePtr* other) const {
2808   if (_speculative == NULL || other->speculative() == NULL) {
2809     return _speculative == other->speculative();
2810   }
2811 
2812   if (_speculative->base() != other->speculative()->base()) {
2813     return false;
2814   }
2815 
2816   return _speculative->eq(other->speculative());
2817 }
2818 
2819 /**
2820  * Hash of the speculative part of the type
2821  */
2822 int TypePtr::hash_speculative() const {
2823   if (_speculative == NULL) {
2824     return 0;
2825   }
2826 
2827   return _speculative->hash();
2828 }
2829 
2830 /**
2831  * add offset to the speculative part of the type
2832  *
2833  * @param offset  offset to add
2834  */
2835 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2836   if (_speculative == NULL) {
2837     return NULL;
2838   }
2839   return _speculative->add_offset(offset)->is_ptr();
2840 }
2841 
2842 /**
2843  * return exact klass from the speculative type if there's one
2844  */
2845 ciKlass* TypePtr::speculative_type() const {
2846   if (_speculative != NULL && _speculative->isa_oopptr()) {
2847     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2848     if (speculative->klass_is_exact()) {
2849       return speculative->klass();
2850     }
2851   }
2852   return NULL;
2853 }
2854 
2855 /**
2856  * return true if speculative type may be null
2857  */
2858 bool TypePtr::speculative_maybe_null() const {
2859   if (_speculative != NULL) {
2860     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2861     return speculative->maybe_null();
2862   }
2863   return true;
2864 }
2865 
2866 bool TypePtr::speculative_always_null() const {
2867   if (_speculative != NULL) {
2868     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2869     return speculative == TypePtr::NULL_PTR;
2870   }
2871   return false;
2872 }
2873 
2874 /**
2875  * Same as TypePtr::speculative_type() but return the klass only if
2876  * the speculative tells us is not null
2877  */
2878 ciKlass* TypePtr::speculative_type_not_null() const {
2879   if (speculative_maybe_null()) {
2880     return NULL;
2881   }
2882   return speculative_type();
2883 }
2884 
2885 /**
2886  * Check whether new profiling would improve speculative type
2887  *
2888  * @param   exact_kls    class from profiling
2889  * @param   inline_depth inlining depth of profile point
2890  *
2891  * @return  true if type profile is valuable
2892  */
2893 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2894   // no profiling?
2895   if (exact_kls == NULL) {
2896     return false;
2897   }
2898   if (speculative() == TypePtr::NULL_PTR) {
2899     return false;
2900   }
2901   // no speculative type or non exact speculative type?
2902   if (speculative_type() == NULL) {
2903     return true;
2904   }
2905   // If the node already has an exact speculative type keep it,
2906   // unless it was provided by profiling that is at a deeper
2907   // inlining level. Profiling at a higher inlining depth is
2908   // expected to be less accurate.
2909   if (_speculative->inline_depth() == InlineDepthBottom) {
2910     return false;
2911   }
2912   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2913   return inline_depth < _speculative->inline_depth();
2914 }
2915 
2916 /**
2917  * Check whether new profiling would improve ptr (= tells us it is non
2918  * null)
2919  *
2920  * @param   ptr_kind always null or not null?
2921  *
2922  * @return  true if ptr profile is valuable
2923  */
2924 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2925   // profiling doesn't tell us anything useful
2926   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2927     return false;
2928   }
2929   // We already know this is not null
2930   if (!this->maybe_null()) {
2931     return false;
2932   }
2933   // We already know the speculative type cannot be null
2934   if (!speculative_maybe_null()) {
2935     return false;
2936   }
2937   // We already know this is always null
2938   if (this == TypePtr::NULL_PTR) {
2939     return false;
2940   }
2941   // We already know the speculative type is always null
2942   if (speculative_always_null()) {
2943     return false;
2944   }
2945   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
2946     return false;
2947   }
2948   return true;
2949 }
2950 
2951 //------------------------------dump2------------------------------------------
2952 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2953   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2954 };
2955 
2956 #ifndef PRODUCT
2957 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2958   if( _ptr == Null ) st->print("NULL");
2959   else st->print("%s *", ptr_msg[_ptr]);
2960   if( _offset == OffsetTop ) st->print("+top");
2961   else if( _offset == OffsetBot ) st->print("+bot");
2962   else if( _offset ) st->print("+%d", _offset);
2963   dump_inline_depth(st);
2964   dump_speculative(st);
2965 }
2966 
2967 /**
2968  *dump the speculative part of the type
2969  */
2970 void TypePtr::dump_speculative(outputStream *st) const {
2971   if (_speculative != NULL) {
2972     st->print(" (speculative=");
2973     _speculative->dump_on(st);
2974     st->print(")");
2975   }
2976 }
2977 
2978 /**
2979  *dump the inline depth of the type
2980  */
2981 void TypePtr::dump_inline_depth(outputStream *st) const {
2982   if (_inline_depth != InlineDepthBottom) {
2983     if (_inline_depth == InlineDepthTop) {
2984       st->print(" (inline_depth=InlineDepthTop)");
2985     } else {
2986       st->print(" (inline_depth=%d)", _inline_depth);
2987     }
2988   }
2989 }
2990 #endif
2991 
2992 //------------------------------singleton--------------------------------------
2993 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2994 // constants
2995 bool TypePtr::singleton(void) const {
2996   // TopPTR, Null, AnyNull, Constant are all singletons
2997   return (_offset != OffsetBot) && !below_centerline(_ptr);
2998 }
2999 
3000 bool TypePtr::empty(void) const {
3001   return (_offset == OffsetTop) || above_centerline(_ptr);
3002 }
3003 
3004 //=============================================================================
3005 // Convenience common pre-built types.
3006 const TypeRawPtr *TypeRawPtr::BOTTOM;
3007 const TypeRawPtr *TypeRawPtr::NOTNULL;
3008 
3009 //------------------------------make-------------------------------------------
3010 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3011   assert( ptr != Constant, "what is the constant?" );
3012   assert( ptr != Null, "Use TypePtr for NULL" );
3013   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3014 }
3015 
3016 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3017   assert( bits, "Use TypePtr for NULL" );
3018   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3019 }
3020 
3021 //------------------------------cast_to_ptr_type-------------------------------
3022 const TypeRawPtr* TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3023   assert( ptr != Constant, "what is the constant?" );
3024   assert( ptr != Null, "Use TypePtr for NULL" );
3025   assert( _bits==0, "Why cast a constant address?");
3026   if( ptr == _ptr ) return this;
3027   return make(ptr);
3028 }
3029 
3030 //------------------------------get_con----------------------------------------
3031 intptr_t TypeRawPtr::get_con() const {
3032   assert( _ptr == Null || _ptr == Constant, "" );
3033   return (intptr_t)_bits;
3034 }
3035 
3036 //------------------------------meet-------------------------------------------
3037 // Compute the MEET of two types.  It returns a new Type object.
3038 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3039   // Perform a fast test for common case; meeting the same types together.
3040   if( this == t ) return this;  // Meeting same type-rep?
3041 
3042   // Current "this->_base" is RawPtr
3043   switch( t->base() ) {         // switch on original type
3044   case Bottom:                  // Ye Olde Default
3045     return t;
3046   case Top:
3047     return this;
3048   case AnyPtr:                  // Meeting to AnyPtrs
3049     break;
3050   case RawPtr: {                // might be top, bot, any/not or constant
3051     enum PTR tptr = t->is_ptr()->ptr();
3052     enum PTR ptr = meet_ptr( tptr );
3053     if( ptr == Constant ) {     // Cannot be equal constants, so...
3054       if( tptr == Constant && _ptr != Constant)  return t;
3055       if( _ptr == Constant && tptr != Constant)  return this;
3056       ptr = NotNull;            // Fall down in lattice
3057     }
3058     return make( ptr );
3059   }
3060 
3061   case OopPtr:
3062   case InstPtr:
3063   case AryPtr:
3064   case MetadataPtr:
3065   case KlassPtr:
3066   case InstKlassPtr:
3067   case AryKlassPtr:
3068     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3069   default:                      // All else is a mistake
3070     typerr(t);
3071   }
3072 
3073   // Found an AnyPtr type vs self-RawPtr type
3074   const TypePtr *tp = t->is_ptr();
3075   switch (tp->ptr()) {
3076   case TypePtr::TopPTR:  return this;
3077   case TypePtr::BotPTR:  return t;
3078   case TypePtr::Null:
3079     if( _ptr == TypePtr::TopPTR ) return t;
3080     return TypeRawPtr::BOTTOM;
3081   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3082   case TypePtr::AnyNull:
3083     if( _ptr == TypePtr::Constant) return this;
3084     return make( meet_ptr(TypePtr::AnyNull) );
3085   default: ShouldNotReachHere();
3086   }
3087   return this;
3088 }
3089 
3090 //------------------------------xdual------------------------------------------
3091 // Dual: compute field-by-field dual
3092 const Type *TypeRawPtr::xdual() const {
3093   return new TypeRawPtr( dual_ptr(), _bits );
3094 }
3095 
3096 //------------------------------add_offset-------------------------------------
3097 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
3098   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3099   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3100   if( offset == 0 ) return this; // No change
3101   switch (_ptr) {
3102   case TypePtr::TopPTR:
3103   case TypePtr::BotPTR:
3104   case TypePtr::NotNull:
3105     return this;
3106   case TypePtr::Null:
3107   case TypePtr::Constant: {
3108     address bits = _bits+offset;
3109     if ( bits == 0 ) return TypePtr::NULL_PTR;
3110     return make( bits );
3111   }
3112   default:  ShouldNotReachHere();
3113   }
3114   return NULL;                  // Lint noise
3115 }
3116 
3117 //------------------------------eq---------------------------------------------
3118 // Structural equality check for Type representations
3119 bool TypeRawPtr::eq( const Type *t ) const {
3120   const TypeRawPtr *a = (const TypeRawPtr*)t;
3121   return _bits == a->_bits && TypePtr::eq(t);
3122 }
3123 
3124 //------------------------------hash-------------------------------------------
3125 // Type-specific hashing function.
3126 int TypeRawPtr::hash(void) const {
3127   return (intptr_t)_bits + TypePtr::hash();
3128 }
3129 
3130 //------------------------------dump2------------------------------------------
3131 #ifndef PRODUCT
3132 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3133   if( _ptr == Constant )
3134     st->print(INTPTR_FORMAT, p2i(_bits));
3135   else
3136     st->print("rawptr:%s", ptr_msg[_ptr]);
3137 }
3138 #endif
3139 
3140 //=============================================================================
3141 // Convenience common pre-built type.
3142 const TypeOopPtr *TypeOopPtr::BOTTOM;
3143 
3144 //------------------------------TypeOopPtr-------------------------------------
3145 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
3146                        int instance_id, const TypePtr* speculative, int inline_depth)
3147   : TypePtr(t, ptr, offset, speculative, inline_depth),
3148     _const_oop(o), _klass(k),
3149     _klass_is_exact(xk),
3150     _is_ptr_to_narrowoop(false),
3151     _is_ptr_to_narrowklass(false),
3152     _is_ptr_to_boxed_value(false),
3153     _instance_id(instance_id) {
3154   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3155       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
3156     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
3157   }
3158 #ifdef _LP64
3159   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3160     if (_offset == oopDesc::klass_offset_in_bytes()) {
3161       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3162     } else if (klass() == NULL) {
3163       // Array with unknown body type
3164       assert(this->isa_aryptr(), "only arrays without klass");
3165       _is_ptr_to_narrowoop = UseCompressedOops;
3166     } else if (this->isa_aryptr()) {
3167       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3168                              _offset != arrayOopDesc::length_offset_in_bytes());
3169     } else if (klass()->is_instance_klass()) {
3170       ciInstanceKlass* ik = klass()->as_instance_klass();
3171       ciField* field = NULL;
3172       if (this->isa_klassptr()) {
3173         // Perm objects don't use compressed references
3174       } else if (_offset == OffsetBot || _offset == OffsetTop) {
3175         // unsafe access
3176         _is_ptr_to_narrowoop = UseCompressedOops;
3177       } else {
3178         assert(this->isa_instptr(), "must be an instance ptr.");
3179 
3180         if (klass() == ciEnv::current()->Class_klass() &&
3181             (_offset == java_lang_Class::klass_offset() ||
3182              _offset == java_lang_Class::array_klass_offset())) {
3183           // Special hidden fields from the Class.
3184           assert(this->isa_instptr(), "must be an instance ptr.");
3185           _is_ptr_to_narrowoop = false;
3186         } else if (klass() == ciEnv::current()->Class_klass() &&
3187                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3188           // Static fields
3189           ciField* field = NULL;
3190           if (const_oop() != NULL) {
3191             ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3192             field = k->get_field_by_offset(_offset, true);
3193           }
3194           if (field != NULL) {
3195             BasicType basic_elem_type = field->layout_type();
3196             _is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type);
3197           } else {
3198             // unsafe access
3199             _is_ptr_to_narrowoop = UseCompressedOops;
3200           }
3201         } else {
3202           // Instance fields which contains a compressed oop references.
3203           field = ik->get_field_by_offset(_offset, false);
3204           if (field != NULL) {
3205             BasicType basic_elem_type = field->layout_type();
3206             _is_ptr_to_narrowoop = UseCompressedOops && is_reference_type(basic_elem_type);
3207           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3208             // Compile::find_alias_type() cast exactness on all types to verify
3209             // that it does not affect alias type.
3210             _is_ptr_to_narrowoop = UseCompressedOops;
3211           } else {
3212             // Type for the copy start in LibraryCallKit::inline_native_clone().
3213             _is_ptr_to_narrowoop = UseCompressedOops;
3214           }
3215         }
3216       }
3217     }
3218   }
3219 #endif
3220 }
3221 
3222 //------------------------------make-------------------------------------------
3223 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3224                                      const TypePtr* speculative, int inline_depth) {
3225   assert(ptr != Constant, "no constant generic pointers");
3226   ciKlass*  k = Compile::current()->env()->Object_klass();
3227   bool      xk = false;
3228   ciObject* o = NULL;
3229   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3230 }
3231 
3232 
3233 //------------------------------cast_to_ptr_type-------------------------------
3234 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3235   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3236   if( ptr == _ptr ) return this;
3237   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3238 }
3239 
3240 //-----------------------------cast_to_instance_id----------------------------
3241 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3242   // There are no instances of a general oop.
3243   // Return self unchanged.
3244   return this;
3245 }
3246 
3247 //-----------------------------cast_to_exactness-------------------------------
3248 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3249   // There is no such thing as an exact general oop.
3250   // Return self unchanged.
3251   return this;
3252 }
3253 
3254 
3255 //------------------------------as_klass_type----------------------------------
3256 // Return the klass type corresponding to this instance or array type.
3257 // It is the type that is loaded from an object of this type.
3258 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3259   ShouldNotReachHere();
3260   return NULL;
3261 }
3262 
3263 //------------------------------meet-------------------------------------------
3264 // Compute the MEET of two types.  It returns a new Type object.
3265 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3266   // Perform a fast test for common case; meeting the same types together.
3267   if( this == t ) return this;  // Meeting same type-rep?
3268 
3269   // Current "this->_base" is OopPtr
3270   switch (t->base()) {          // switch on original type
3271 
3272   case Int:                     // Mixing ints & oops happens when javac
3273   case Long:                    // reuses local variables
3274   case FloatTop:
3275   case FloatCon:
3276   case FloatBot:
3277   case DoubleTop:
3278   case DoubleCon:
3279   case DoubleBot:
3280   case NarrowOop:
3281   case NarrowKlass:
3282   case Bottom:                  // Ye Olde Default
3283     return Type::BOTTOM;
3284   case Top:
3285     return this;
3286 
3287   default:                      // All else is a mistake
3288     typerr(t);
3289 
3290   case RawPtr:
3291   case MetadataPtr:
3292   case KlassPtr:
3293   case InstKlassPtr:
3294   case AryKlassPtr:
3295     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3296 
3297   case AnyPtr: {
3298     // Found an AnyPtr type vs self-OopPtr type
3299     const TypePtr *tp = t->is_ptr();
3300     int offset = meet_offset(tp->offset());
3301     PTR ptr = meet_ptr(tp->ptr());
3302     const TypePtr* speculative = xmeet_speculative(tp);
3303     int depth = meet_inline_depth(tp->inline_depth());
3304     switch (tp->ptr()) {
3305     case Null:
3306       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3307       // else fall through:
3308     case TopPTR:
3309     case AnyNull: {
3310       int instance_id = meet_instance_id(InstanceTop);
3311       return make(ptr, offset, instance_id, speculative, depth);
3312     }
3313     case BotPTR:
3314     case NotNull:
3315       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3316     default: typerr(t);
3317     }
3318   }
3319 
3320   case OopPtr: {                 // Meeting to other OopPtrs
3321     const TypeOopPtr *tp = t->is_oopptr();
3322     int instance_id = meet_instance_id(tp->instance_id());
3323     const TypePtr* speculative = xmeet_speculative(tp);
3324     int depth = meet_inline_depth(tp->inline_depth());
3325     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3326   }
3327 
3328   case InstPtr:                  // For these, flip the call around to cut down
3329   case AryPtr:
3330     return t->xmeet(this);      // Call in reverse direction
3331 
3332   } // End of switch
3333   return this;                  // Return the double constant
3334 }
3335 
3336 
3337 //------------------------------xdual------------------------------------------
3338 // Dual of a pure heap pointer.  No relevant klass or oop information.
3339 const Type *TypeOopPtr::xdual() const {
3340   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3341   assert(const_oop() == NULL,             "no constants here");
3342   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3343 }
3344 
3345 //--------------------------make_from_klass_common-----------------------------
3346 // Computes the element-type given a klass.
3347 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3348   if (klass->is_instance_klass()) {
3349     Compile* C = Compile::current();
3350     Dependencies* deps = C->dependencies();
3351     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3352     // Element is an instance
3353     bool klass_is_exact = false;
3354     if (klass->is_loaded()) {
3355       // Try to set klass_is_exact.
3356       ciInstanceKlass* ik = klass->as_instance_klass();
3357       klass_is_exact = ik->is_final();
3358       if (!klass_is_exact && klass_change
3359           && deps != NULL && UseUniqueSubclasses) {
3360         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3361         if (sub != NULL) {
3362           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3363           klass = ik = sub;
3364           klass_is_exact = sub->is_final();
3365         }
3366       }
3367       if (!klass_is_exact && try_for_exact && deps != NULL &&
3368           !ik->is_interface() && !ik->has_subklass()) {
3369         // Add a dependence; if concrete subclass added we need to recompile
3370         deps->assert_leaf_type(ik);
3371         klass_is_exact = true;
3372       }
3373     }
3374     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
3375   } else if (klass->is_obj_array_klass()) {
3376     // Element is an object array. Recursively call ourself.
3377     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3378     bool xk = etype->klass_is_exact();
3379     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3380     // We used to pass NotNull in here, asserting that the sub-arrays
3381     // are all not-null.  This is not true in generally, as code can
3382     // slam NULLs down in the subarrays.
3383     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3384     return arr;
3385   } else if (klass->is_type_array_klass()) {
3386     // Element is an typeArray
3387     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3388     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3389     // We used to pass NotNull in here, asserting that the array pointer
3390     // is not-null. That was not true in general.
3391     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3392     return arr;
3393   } else {
3394     ShouldNotReachHere();
3395     return NULL;
3396   }
3397 }
3398 
3399 //------------------------------make_from_constant-----------------------------
3400 // Make a java pointer from an oop constant
3401 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3402   assert(!o->is_null_object(), "null object not yet handled here.");
3403 
3404   const bool make_constant = require_constant || o->should_be_constant();
3405 
3406   ciKlass* klass = o->klass();
3407   if (klass->is_instance_klass()) {
3408     // Element is an instance
3409     if (make_constant) {
3410       return TypeInstPtr::make(o);
3411     } else {
3412       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3413     }
3414   } else if (klass->is_obj_array_klass()) {
3415     // Element is an object array. Recursively call ourself.
3416     const TypeOopPtr *etype =
3417       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3418     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3419     // We used to pass NotNull in here, asserting that the sub-arrays
3420     // are all not-null.  This is not true in generally, as code can
3421     // slam NULLs down in the subarrays.
3422     if (make_constant) {
3423       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3424     } else {
3425       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3426     }
3427   } else if (klass->is_type_array_klass()) {
3428     // Element is an typeArray
3429     const Type* etype =
3430       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3431     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3432     // We used to pass NotNull in here, asserting that the array pointer
3433     // is not-null. That was not true in general.
3434     if (make_constant) {
3435       return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3436     } else {
3437       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3438     }
3439   }
3440 
3441   fatal("unhandled object type");
3442   return NULL;
3443 }
3444 
3445 //------------------------------get_con----------------------------------------
3446 intptr_t TypeOopPtr::get_con() const {
3447   assert( _ptr == Null || _ptr == Constant, "" );
3448   assert( _offset >= 0, "" );
3449 
3450   if (_offset != 0) {
3451     // After being ported to the compiler interface, the compiler no longer
3452     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3453     // to a handle at compile time.  This handle is embedded in the generated
3454     // code and dereferenced at the time the nmethod is made.  Until that time,
3455     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3456     // have access to the addresses!).  This does not seem to currently happen,
3457     // but this assertion here is to help prevent its occurrence.
3458     tty->print_cr("Found oop constant with non-zero offset");
3459     ShouldNotReachHere();
3460   }
3461 
3462   return (intptr_t)const_oop()->constant_encoding();
3463 }
3464 
3465 
3466 //-----------------------------filter------------------------------------------
3467 // Do not allow interface-vs.-noninterface joins to collapse to top.
3468 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3469 
3470   const Type* ft = join_helper(kills, include_speculative);
3471   const TypeInstPtr* ftip = ft->isa_instptr();
3472   const TypeInstPtr* ktip = kills->isa_instptr();
3473 
3474   if (ft->empty()) {
3475     // Check for evil case of 'this' being a class and 'kills' expecting an
3476     // interface.  This can happen because the bytecodes do not contain
3477     // enough type info to distinguish a Java-level interface variable
3478     // from a Java-level object variable.  If we meet 2 classes which
3479     // both implement interface I, but their meet is at 'j/l/O' which
3480     // doesn't implement I, we have no way to tell if the result should
3481     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3482     // into a Phi which "knows" it's an Interface type we'll have to
3483     // uplift the type.
3484     if (!empty()) {
3485       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3486         return kills;           // Uplift to interface
3487       }
3488       // Also check for evil cases of 'this' being a class array
3489       // and 'kills' expecting an array of interfaces.
3490       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3491       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3492         return kills;           // Uplift to array of interface
3493       }
3494     }
3495 
3496     return Type::TOP;           // Canonical empty value
3497   }
3498 
3499   // If we have an interface-typed Phi or cast and we narrow to a class type,
3500   // the join should report back the class.  However, if we have a J/L/Object
3501   // class-typed Phi and an interface flows in, it's possible that the meet &
3502   // join report an interface back out.  This isn't possible but happens
3503   // because the type system doesn't interact well with interfaces.
3504   if (ftip != NULL && ktip != NULL &&
3505       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3506       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3507     assert(!ftip->klass_is_exact(), "interface could not be exact");
3508     return ktip->cast_to_ptr_type(ftip->ptr());
3509   }
3510 
3511   return ft;
3512 }
3513 
3514 //------------------------------eq---------------------------------------------
3515 // Structural equality check for Type representations
3516 bool TypeOopPtr::eq( const Type *t ) const {
3517   const TypeOopPtr *a = (const TypeOopPtr*)t;
3518   if (_klass_is_exact != a->_klass_is_exact ||
3519       _instance_id != a->_instance_id)  return false;
3520   ciObject* one = const_oop();
3521   ciObject* two = a->const_oop();
3522   if (one == NULL || two == NULL) {
3523     return (one == two) && TypePtr::eq(t);
3524   } else {
3525     return one->equals(two) && TypePtr::eq(t);
3526   }
3527 }
3528 
3529 //------------------------------hash-------------------------------------------
3530 // Type-specific hashing function.
3531 int TypeOopPtr::hash(void) const {
3532   return
3533     java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3534              java_add((jint)_instance_id, (jint)TypePtr::hash()));
3535 }
3536 
3537 //------------------------------dump2------------------------------------------
3538 #ifndef PRODUCT
3539 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3540   st->print("oopptr:%s", ptr_msg[_ptr]);
3541   if( _klass_is_exact ) st->print(":exact");
3542   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3543   switch( _offset ) {
3544   case OffsetTop: st->print("+top"); break;
3545   case OffsetBot: st->print("+any"); break;
3546   case         0: break;
3547   default:        st->print("+%d",_offset); break;
3548   }
3549   if (_instance_id == InstanceTop)
3550     st->print(",iid=top");
3551   else if (_instance_id != InstanceBot)
3552     st->print(",iid=%d",_instance_id);
3553 
3554   dump_inline_depth(st);
3555   dump_speculative(st);
3556 }
3557 #endif
3558 
3559 //------------------------------singleton--------------------------------------
3560 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3561 // constants
3562 bool TypeOopPtr::singleton(void) const {
3563   // detune optimizer to not generate constant oop + constant offset as a constant!
3564   // TopPTR, Null, AnyNull, Constant are all singletons
3565   return (_offset == 0) && !below_centerline(_ptr);
3566 }
3567 
3568 //------------------------------add_offset-------------------------------------
3569 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3570   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3571 }
3572 
3573 /**
3574  * Return same type without a speculative part
3575  */
3576 const Type* TypeOopPtr::remove_speculative() const {
3577   if (_speculative == NULL) {
3578     return this;
3579   }
3580   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3581   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3582 }
3583 
3584 /**
3585  * Return same type but drop speculative part if we know we won't use
3586  * it
3587  */
3588 const Type* TypeOopPtr::cleanup_speculative() const {
3589   // If the klass is exact and the ptr is not null then there's
3590   // nothing that the speculative type can help us with
3591   if (klass_is_exact() && !maybe_null()) {
3592     return remove_speculative();
3593   }
3594   return TypePtr::cleanup_speculative();
3595 }
3596 
3597 /**
3598  * Return same type but with a different inline depth (used for speculation)
3599  *
3600  * @param depth  depth to meet with
3601  */
3602 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3603   if (!UseInlineDepthForSpeculativeTypes) {
3604     return this;
3605   }
3606   return make(_ptr, _offset, _instance_id, _speculative, depth);
3607 }
3608 
3609 //------------------------------with_instance_id--------------------------------
3610 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
3611   assert(_instance_id != -1, "should be known");
3612   return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
3613 }
3614 
3615 //------------------------------meet_instance_id--------------------------------
3616 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3617   // Either is 'TOP' instance?  Return the other instance!
3618   if( _instance_id == InstanceTop ) return  instance_id;
3619   if(  instance_id == InstanceTop ) return _instance_id;
3620   // If either is different, return 'BOTTOM' instance
3621   if( _instance_id != instance_id ) return InstanceBot;
3622   return _instance_id;
3623 }
3624 
3625 //------------------------------dual_instance_id--------------------------------
3626 int TypeOopPtr::dual_instance_id( ) const {
3627   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3628   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3629   return _instance_id;              // Map everything else into self
3630 }
3631 
3632 /**
3633  * Check whether new profiling would improve speculative type
3634  *
3635  * @param   exact_kls    class from profiling
3636  * @param   inline_depth inlining depth of profile point
3637  *
3638  * @return  true if type profile is valuable
3639  */
3640 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3641   // no way to improve an already exact type
3642   if (klass_is_exact()) {
3643     return false;
3644   }
3645   return TypePtr::would_improve_type(exact_kls, inline_depth);
3646 }
3647 
3648 //=============================================================================
3649 // Convenience common pre-built types.
3650 const TypeInstPtr *TypeInstPtr::NOTNULL;
3651 const TypeInstPtr *TypeInstPtr::BOTTOM;
3652 const TypeInstPtr *TypeInstPtr::MIRROR;
3653 const TypeInstPtr *TypeInstPtr::MARK;
3654 const TypeInstPtr *TypeInstPtr::KLASS;
3655 
3656 //------------------------------TypeInstPtr-------------------------------------
3657 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3658                          int instance_id, const TypePtr* speculative, int inline_depth)
3659   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3660     _name(k->name()) {
3661    assert(k != NULL &&
3662           (k->is_loaded() || o == NULL),
3663           "cannot have constants with non-loaded klass");
3664 };
3665 
3666 //------------------------------make-------------------------------------------
3667 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3668                                      ciKlass* k,
3669                                      bool xk,
3670                                      ciObject* o,
3671                                      int offset,
3672                                      int instance_id,
3673                                      const TypePtr* speculative,
3674                                      int inline_depth) {
3675   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3676   // Either const_oop() is NULL or else ptr is Constant
3677   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3678           "constant pointers must have a value supplied" );
3679   // Ptr is never Null
3680   assert( ptr != Null, "NULL pointers are not typed" );
3681 
3682   assert(instance_id <= 0 || xk, "instances are always exactly typed");
3683   if (ptr == Constant) {
3684     // Note:  This case includes meta-object constants, such as methods.
3685     xk = true;
3686   } else if (k->is_loaded()) {
3687     ciInstanceKlass* ik = k->as_instance_klass();
3688     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3689     if (xk && ik->is_interface())  xk = false;  // no exact interface
3690   }
3691 
3692   // Now hash this baby
3693   TypeInstPtr *result =
3694     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3695 
3696   return result;
3697 }
3698 
3699 /**
3700  *  Create constant type for a constant boxed value
3701  */
3702 const Type* TypeInstPtr::get_const_boxed_value() const {
3703   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3704   assert((const_oop() != NULL), "should be called only for constant object");
3705   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3706   BasicType bt = constant.basic_type();
3707   switch (bt) {
3708     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3709     case T_INT:      return TypeInt::make(constant.as_int());
3710     case T_CHAR:     return TypeInt::make(constant.as_char());
3711     case T_BYTE:     return TypeInt::make(constant.as_byte());
3712     case T_SHORT:    return TypeInt::make(constant.as_short());
3713     case T_FLOAT:    return TypeF::make(constant.as_float());
3714     case T_DOUBLE:   return TypeD::make(constant.as_double());
3715     case T_LONG:     return TypeLong::make(constant.as_long());
3716     default:         break;
3717   }
3718   fatal("Invalid boxed value type '%s'", type2name(bt));
3719   return NULL;
3720 }
3721 
3722 //------------------------------cast_to_ptr_type-------------------------------
3723 const TypeInstPtr *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3724   if( ptr == _ptr ) return this;
3725   // Reconstruct _sig info here since not a problem with later lazy
3726   // construction, _sig will show up on demand.
3727   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3728 }
3729 
3730 
3731 //-----------------------------cast_to_exactness-------------------------------
3732 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3733   if( klass_is_exact == _klass_is_exact ) return this;
3734   if (!_klass->is_loaded())  return this;
3735   ciInstanceKlass* ik = _klass->as_instance_klass();
3736   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3737   if( ik->is_interface() )              return this;  // cannot set xk
3738   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3739 }
3740 
3741 //-----------------------------cast_to_instance_id----------------------------
3742 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3743   if( instance_id == _instance_id ) return this;
3744   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3745 }
3746 
3747 //------------------------------xmeet_unloaded---------------------------------
3748 // Compute the MEET of two InstPtrs when at least one is unloaded.
3749 // Assume classes are different since called after check for same name/class-loader
3750 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3751     int off = meet_offset(tinst->offset());
3752     PTR ptr = meet_ptr(tinst->ptr());
3753     int instance_id = meet_instance_id(tinst->instance_id());
3754     const TypePtr* speculative = xmeet_speculative(tinst);
3755     int depth = meet_inline_depth(tinst->inline_depth());
3756 
3757     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3758     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3759     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3760       //
3761       // Meet unloaded class with java/lang/Object
3762       //
3763       // Meet
3764       //          |                     Unloaded Class
3765       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3766       //  ===================================================================
3767       //   TOP    | ..........................Unloaded......................|
3768       //  AnyNull |  U-AN    |................Unloaded......................|
3769       // Constant | ... O-NN .................................. |   O-BOT   |
3770       //  NotNull | ... O-NN .................................. |   O-BOT   |
3771       //  BOTTOM  | ........................Object-BOTTOM ..................|
3772       //
3773       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3774       //
3775       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3776       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3777       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3778       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3779         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3780         else                                      { return TypeInstPtr::NOTNULL; }
3781       }
3782       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3783 
3784       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3785     }
3786 
3787     // Both are unloaded, not the same class, not Object
3788     // Or meet unloaded with a different loaded class, not java/lang/Object
3789     if( ptr != TypePtr::BotPTR ) {
3790       return TypeInstPtr::NOTNULL;
3791     }
3792     return TypeInstPtr::BOTTOM;
3793 }
3794 
3795 
3796 //------------------------------meet-------------------------------------------
3797 // Compute the MEET of two types.  It returns a new Type object.
3798 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3799   // Perform a fast test for common case; meeting the same types together.
3800   if( this == t ) return this;  // Meeting same type-rep?
3801 
3802   // Current "this->_base" is Pointer
3803   switch (t->base()) {          // switch on original type
3804 
3805   case Int:                     // Mixing ints & oops happens when javac
3806   case Long:                    // reuses local variables
3807   case FloatTop:
3808   case FloatCon:
3809   case FloatBot:
3810   case DoubleTop:
3811   case DoubleCon:
3812   case DoubleBot:
3813   case NarrowOop:
3814   case NarrowKlass:
3815   case Bottom:                  // Ye Olde Default
3816     return Type::BOTTOM;
3817   case Top:
3818     return this;
3819 
3820   default:                      // All else is a mistake
3821     typerr(t);
3822 
3823   case MetadataPtr:
3824   case KlassPtr:
3825   case InstKlassPtr:
3826   case AryKlassPtr:
3827   case RawPtr: return TypePtr::BOTTOM;
3828 
3829   case AryPtr: {                // All arrays inherit from Object class
3830     // Call in reverse direction to avoid duplication
3831     return t->is_aryptr()->xmeet_helper(this);
3832   }
3833 
3834   case OopPtr: {                // Meeting to OopPtrs
3835     // Found a OopPtr type vs self-InstPtr type
3836     const TypeOopPtr *tp = t->is_oopptr();
3837     int offset = meet_offset(tp->offset());
3838     PTR ptr = meet_ptr(tp->ptr());
3839     switch (tp->ptr()) {
3840     case TopPTR:
3841     case AnyNull: {
3842       int instance_id = meet_instance_id(InstanceTop);
3843       const TypePtr* speculative = xmeet_speculative(tp);
3844       int depth = meet_inline_depth(tp->inline_depth());
3845       return make(ptr, klass(), klass_is_exact(),
3846                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3847     }
3848     case NotNull:
3849     case BotPTR: {
3850       int instance_id = meet_instance_id(tp->instance_id());
3851       const TypePtr* speculative = xmeet_speculative(tp);
3852       int depth = meet_inline_depth(tp->inline_depth());
3853       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3854     }
3855     default: typerr(t);
3856     }
3857   }
3858 
3859   case AnyPtr: {                // Meeting to AnyPtrs
3860     // Found an AnyPtr type vs self-InstPtr type
3861     const TypePtr *tp = t->is_ptr();
3862     int offset = meet_offset(tp->offset());
3863     PTR ptr = meet_ptr(tp->ptr());
3864     int instance_id = meet_instance_id(InstanceTop);
3865     const TypePtr* speculative = xmeet_speculative(tp);
3866     int depth = meet_inline_depth(tp->inline_depth());
3867     switch (tp->ptr()) {
3868     case Null:
3869       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3870       // else fall through to AnyNull
3871     case TopPTR:
3872     case AnyNull: {
3873       return make(ptr, klass(), klass_is_exact(),
3874                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3875     }
3876     case NotNull:
3877     case BotPTR:
3878       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3879     default: typerr(t);
3880     }
3881   }
3882 
3883   /*
3884                  A-top         }
3885                /   |   \       }  Tops
3886            B-top A-any C-top   }
3887               | /  |  \ |      }  Any-nulls
3888            B-any   |   C-any   }
3889               |    |    |
3890            B-con A-con C-con   } constants; not comparable across classes
3891               |    |    |
3892            B-not   |   C-not   }
3893               | \  |  / |      }  not-nulls
3894            B-bot A-not C-bot   }
3895                \   |   /       }  Bottoms
3896                  A-bot         }
3897   */
3898 
3899   case InstPtr: {                // Meeting 2 Oops?
3900     // Found an InstPtr sub-type vs self-InstPtr type
3901     const TypeInstPtr *tinst = t->is_instptr();
3902     int off = meet_offset(tinst->offset());
3903     PTR ptr = meet_ptr(tinst->ptr());
3904     int instance_id = meet_instance_id(tinst->instance_id());
3905     const TypePtr* speculative = xmeet_speculative(tinst);
3906     int depth = meet_inline_depth(tinst->inline_depth());
3907     ciKlass* tinst_klass = tinst->klass();
3908     ciKlass* this_klass  = klass();
3909     bool tinst_xk = tinst->klass_is_exact();
3910     bool this_xk  = klass_is_exact();
3911 
3912     ciKlass* res_klass = NULL;
3913     bool res_xk = false;
3914     const Type* res;
3915     MeetResult kind = meet_instptr(ptr, this_klass, tinst_klass, this_xk, tinst_xk, this->_ptr, tinst->_ptr, res_klass, res_xk);
3916     if (kind == UNLOADED) {
3917       // One of these classes has not been loaded
3918       const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst);
3919 #ifndef PRODUCT
3920       if (PrintOpto && Verbose) {
3921         tty->print("meet of unloaded classes resulted in: ");
3922         unloaded_meet->dump();
3923         tty->cr();
3924         tty->print("  this == ");
3925         dump();
3926         tty->cr();
3927         tty->print(" tinst == ");
3928         tinst->dump();
3929         tty->cr();
3930       }
3931 #endif
3932       res = unloaded_meet;
3933     } else {
3934       if (kind == NOT_SUBTYPE && instance_id > 0) {
3935         instance_id = InstanceBot;
3936       } else if (kind == LCA) {
3937         instance_id = InstanceBot;
3938       }
3939       ciObject* o = NULL;             // Assume not constant when done
3940       ciObject* this_oop = const_oop();
3941       ciObject* tinst_oop = tinst->const_oop();
3942       if (ptr == Constant) {
3943         if (this_oop != NULL && tinst_oop != NULL &&
3944             this_oop->equals(tinst_oop))
3945           o = this_oop;
3946         else if (above_centerline(_ptr)) {
3947           assert(!tinst_klass->is_interface(), "");
3948           o = tinst_oop;
3949         } else if (above_centerline(tinst->_ptr)) {
3950           assert(!this_klass->is_interface(), "");
3951           o = this_oop;
3952         } else
3953           ptr = NotNull;
3954       }
3955       res = make(ptr, res_klass, res_xk, o, off, instance_id, speculative, depth);
3956     }
3957 
3958     return res;
3959 
3960   } // End of case InstPtr
3961 
3962   } // End of switch
3963   return this;                  // Return the double constant
3964 }
3965 
3966 TypePtr::MeetResult TypePtr::meet_instptr(PTR &ptr, ciKlass* this_klass, ciKlass* tinst_klass, bool this_xk, bool tinst_xk,
3967                                           PTR this_ptr,
3968                                           PTR tinst_ptr, ciKlass*&res_klass, bool &res_xk) {
3969 
3970   // Check for easy case; klasses are equal (and perhaps not loaded!)
3971   // If we have constants, then we created oops so classes are loaded
3972   // and we can handle the constants further down.  This case handles
3973   // both-not-loaded or both-loaded classes
3974   if (ptr != Constant && this_klass->equals(tinst_klass) && this_xk == tinst_xk) {
3975     res_klass = this_klass;
3976     res_xk = this_xk;
3977     return QUICK;
3978   }
3979 
3980   // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3981   if (!tinst_klass->is_loaded() || !this_klass->is_loaded()) {
3982     return UNLOADED;
3983   }
3984 
3985   // Handle mixing oops and interfaces first.
3986   if (this_klass->is_interface() && !(tinst_klass->is_interface() ||
3987                                       tinst_klass == ciEnv::current()->Object_klass())) {
3988     ciKlass *tmp = tinst_klass; // Swap interface around
3989     tinst_klass = this_klass;
3990     this_klass = tmp;
3991     bool tmp2 = tinst_xk;
3992     tinst_xk = this_xk;
3993     this_xk = tmp2;
3994   }
3995   if (tinst_klass->is_interface() &&
3996       !(this_klass->is_interface() ||
3997         // Treat java/lang/Object as an honorary interface,
3998         // because we need a bottom for the interface hierarchy.
3999         this_klass == ciEnv::current()->Object_klass())) {
4000     // Oop meets interface!
4001 
4002     // See if the oop subtypes (implements) interface.
4003     if (this_klass->is_subtype_of(tinst_klass)) {
4004       // Oop indeed subtypes.  Now keep oop or interface depending
4005       // on whether we are both above the centerline or either is
4006       // below the centerline.  If we are on the centerline
4007       // (e.g., Constant vs. AnyNull interface), use the constant.
4008       res_klass  = below_centerline(ptr) ? tinst_klass : this_klass;
4009       // If we are keeping this_klass, keep its exactness too.
4010       res_xk = below_centerline(ptr) ? tinst_xk    : this_xk;
4011       return SUBTYPE;
4012     } else {                  // Does not implement, fall to Object
4013       // Oop does not implement interface, so mixing falls to Object
4014       // just like the verifier does (if both are above the
4015       // centerline fall to interface)
4016       res_klass = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
4017       res_xk = above_centerline(ptr) ? tinst_xk : false;
4018       // Watch out for Constant vs. AnyNull interface.
4019       if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
4020       return NOT_SUBTYPE;
4021     }
4022   }
4023 
4024   // Either oop vs oop or interface vs interface or interface vs Object
4025 
4026   // !!! Here's how the symmetry requirement breaks down into invariants:
4027   // If we split one up & one down AND they subtype, take the down man.
4028   // If we split one up & one down AND they do NOT subtype, "fall hard".
4029   // If both are up and they subtype, take the subtype class.
4030   // If both are up and they do NOT subtype, "fall hard".
4031   // If both are down and they subtype, take the supertype class.
4032   // If both are down and they do NOT subtype, "fall hard".
4033   // Constants treated as down.
4034 
4035   // Now, reorder the above list; observe that both-down+subtype is also
4036   // "fall hard"; "fall hard" becomes the default case:
4037   // If we split one up & one down AND they subtype, take the down man.
4038   // If both are up and they subtype, take the subtype class.
4039 
4040   // If both are down and they subtype, "fall hard".
4041   // If both are down and they do NOT subtype, "fall hard".
4042   // If both are up and they do NOT subtype, "fall hard".
4043   // If we split one up & one down AND they do NOT subtype, "fall hard".
4044 
4045   // If a proper subtype is exact, and we return it, we return it exactly.
4046   // If a proper supertype is exact, there can be no subtyping relationship!
4047   // If both types are equal to the subtype, exactness is and-ed below the
4048   // centerline and or-ed above it.  (N.B. Constants are always exact.)
4049 
4050   // Check for subtyping:
4051   ciKlass *subtype = NULL;
4052   bool subtype_exact = false;
4053   if (tinst_klass->equals(this_klass)) {
4054     subtype = this_klass;
4055     subtype_exact = below_centerline(ptr) ? (this_xk && tinst_xk) : (this_xk || tinst_xk);
4056   } else if (!tinst_xk && this_klass->is_subtype_of(tinst_klass)) {
4057     subtype = this_klass;     // Pick subtyping class
4058     subtype_exact = this_xk;
4059   } else if (!this_xk && tinst_klass->is_subtype_of(this_klass)) {
4060     subtype = tinst_klass;    // Pick subtyping class
4061     subtype_exact = tinst_xk;
4062   }
4063 
4064   if (subtype) {
4065     if (above_centerline(ptr)) { // both are up?
4066       this_klass = tinst_klass = subtype;
4067       this_xk = tinst_xk = subtype_exact;
4068     } else if (above_centerline(this_ptr) && !above_centerline(tinst_ptr)) {
4069       this_klass = tinst_klass; // tinst is down; keep down man
4070       this_xk = tinst_xk;
4071     } else if (above_centerline(tinst_ptr) && !above_centerline(this_ptr)) {
4072       tinst_klass = this_klass; // this is down; keep down man
4073       tinst_xk = this_xk;
4074     } else {
4075       this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4076     }
4077   }
4078 
4079   // Check for classes now being equal
4080   if (tinst_klass->equals(this_klass)) {
4081     // If the klasses are equal, the constants may still differ.  Fall to
4082     // NotNull if they do (neither constant is NULL; that is a special case
4083     // handled elsewhere).
4084     res_klass = this_klass;
4085     res_xk = this_xk;
4086     return SUBTYPE;
4087   } // Else classes are not equal
4088 
4089   // Since klasses are different, we require a LCA in the Java
4090   // class hierarchy - which means we have to fall to at least NotNull.
4091   if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4092     ptr = NotNull;
4093   }
4094 
4095   // Now we find the LCA of Java classes
4096   ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
4097 
4098   res_klass = k;
4099   res_xk = false;
4100 
4101   return LCA;
4102 }
4103 
4104 
4105 //------------------------java_mirror_type--------------------------------------
4106 ciType* TypeInstPtr::java_mirror_type() const {
4107   // must be a singleton type
4108   if( const_oop() == NULL )  return NULL;
4109 
4110   // must be of type java.lang.Class
4111   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
4112 
4113   return const_oop()->as_instance()->java_mirror_type();
4114 }
4115 
4116 
4117 //------------------------------xdual------------------------------------------
4118 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4119 // inheritance mechanism.
4120 const Type *TypeInstPtr::xdual() const {
4121   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4122 }
4123 
4124 //------------------------------eq---------------------------------------------
4125 // Structural equality check for Type representations
4126 bool TypeInstPtr::eq( const Type *t ) const {
4127   const TypeInstPtr *p = t->is_instptr();
4128   return
4129     klass()->equals(p->klass()) &&
4130     TypeOopPtr::eq(p);          // Check sub-type stuff
4131 }
4132 
4133 //------------------------------hash-------------------------------------------
4134 // Type-specific hashing function.
4135 int TypeInstPtr::hash(void) const {
4136   int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
4137   return hash;
4138 }
4139 
4140 //------------------------------dump2------------------------------------------
4141 // Dump oop Type
4142 #ifndef PRODUCT
4143 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {
4144   // Print the name of the klass.
4145   klass()->print_name_on(st);
4146 
4147   switch( _ptr ) {
4148   case Constant:
4149     if (WizardMode || Verbose) {
4150       ResourceMark rm;
4151       stringStream ss;
4152 
4153       st->print(" ");
4154       const_oop()->print_oop(&ss);
4155       // 'const_oop->print_oop()' may emit newlines('\n') into ss.
4156       // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4157       char* buf = ss.as_string(/* c_heap= */false);
4158       StringUtils::replace_no_expand(buf, "\n", "");
4159       st->print_raw(buf);
4160     }
4161   case BotPTR:
4162     if (!WizardMode && !Verbose) {
4163       if( _klass_is_exact ) st->print(":exact");
4164       break;
4165     }
4166   case TopPTR:
4167   case AnyNull:
4168   case NotNull:
4169     st->print(":%s", ptr_msg[_ptr]);
4170     if( _klass_is_exact ) st->print(":exact");
4171     break;
4172   default:
4173     break;
4174   }
4175 
4176   if( _offset ) {               // Dump offset, if any
4177     if( _offset == OffsetBot )      st->print("+any");
4178     else if( _offset == OffsetTop ) st->print("+unknown");
4179     else st->print("+%d", _offset);
4180   }
4181 
4182   st->print(" *");
4183   if (_instance_id == InstanceTop)
4184     st->print(",iid=top");
4185   else if (_instance_id != InstanceBot)
4186     st->print(",iid=%d",_instance_id);
4187 
4188   dump_inline_depth(st);
4189   dump_speculative(st);
4190 }
4191 #endif
4192 
4193 //------------------------------add_offset-------------------------------------
4194 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4195   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4196               _instance_id, add_offset_speculative(offset), _inline_depth);
4197 }
4198 
4199 const Type *TypeInstPtr::remove_speculative() const {
4200   if (_speculative == NULL) {
4201     return this;
4202   }
4203   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4204   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4205               _instance_id, NULL, _inline_depth);
4206 }
4207 
4208 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4209   if (!UseInlineDepthForSpeculativeTypes) {
4210     return this;
4211   }
4212   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4213 }
4214 
4215 const TypePtr *TypeInstPtr::with_instance_id(int instance_id) const {
4216   assert(is_known_instance(), "should be known");
4217   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);
4218 }
4219 
4220 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4221   bool xk = klass_is_exact();
4222   ciInstanceKlass* ik = klass()->as_instance_klass();
4223   if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final() && !ik->is_interface()) {
4224     Compile* C = Compile::current();
4225     Dependencies* deps = C->dependencies();
4226     deps->assert_leaf_type(ik);
4227     xk = true;
4228   }
4229   return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), 0);
4230 }
4231 
4232 //=============================================================================
4233 // Convenience common pre-built types.
4234 const TypeAryPtr *TypeAryPtr::RANGE;
4235 const TypeAryPtr *TypeAryPtr::OOPS;
4236 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4237 const TypeAryPtr *TypeAryPtr::BYTES;
4238 const TypeAryPtr *TypeAryPtr::SHORTS;
4239 const TypeAryPtr *TypeAryPtr::CHARS;
4240 const TypeAryPtr *TypeAryPtr::INTS;
4241 const TypeAryPtr *TypeAryPtr::LONGS;
4242 const TypeAryPtr *TypeAryPtr::FLOATS;
4243 const TypeAryPtr *TypeAryPtr::DOUBLES;
4244 
4245 //------------------------------make-------------------------------------------
4246 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4247                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4248   assert(!(k == NULL && ary->_elem->isa_int()),
4249          "integral arrays must be pre-equipped with a class");
4250   if (!xk)  xk = ary->ary_must_be_exact();
4251   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4252   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4253 }
4254 
4255 //------------------------------make-------------------------------------------
4256 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4257                                    int instance_id, const TypePtr* speculative, int inline_depth,
4258                                    bool is_autobox_cache) {
4259   assert(!(k == NULL && ary->_elem->isa_int()),
4260          "integral arrays must be pre-equipped with a class");
4261   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4262   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4263   assert(instance_id <= 0 || xk, "instances are always exactly typed");
4264   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4265 }
4266 
4267 //------------------------------cast_to_ptr_type-------------------------------
4268 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4269   if( ptr == _ptr ) return this;
4270   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4271 }
4272 
4273 
4274 //-----------------------------cast_to_exactness-------------------------------
4275 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4276   if( klass_is_exact == _klass_is_exact ) return this;
4277   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4278   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4279 }
4280 
4281 //-----------------------------cast_to_instance_id----------------------------
4282 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4283   if( instance_id == _instance_id ) return this;
4284   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4285 }
4286 
4287 
4288 //-----------------------------max_array_length-------------------------------
4289 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4290 jint TypeAryPtr::max_array_length(BasicType etype) {
4291   if (!is_java_primitive(etype) && !is_reference_type(etype)) {
4292     if (etype == T_NARROWOOP) {
4293       etype = T_OBJECT;
4294     } else if (etype == T_ILLEGAL) { // bottom[]
4295       etype = T_BYTE; // will produce conservatively high value
4296     } else {
4297       fatal("not an element type: %s", type2name(etype));
4298     }
4299   }
4300   return arrayOopDesc::max_array_length(etype);
4301 }
4302 
4303 //-----------------------------narrow_size_type-------------------------------
4304 // Narrow the given size type to the index range for the given array base type.
4305 // Return NULL if the resulting int type becomes empty.
4306 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4307   jint hi = size->_hi;
4308   jint lo = size->_lo;
4309   jint min_lo = 0;
4310   jint max_hi = max_array_length(elem()->basic_type());
4311   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4312   bool chg = false;
4313   if (lo < min_lo) {
4314     lo = min_lo;
4315     if (size->is_con()) {
4316       hi = lo;
4317     }
4318     chg = true;
4319   }
4320   if (hi > max_hi) {
4321     hi = max_hi;
4322     if (size->is_con()) {
4323       lo = hi;
4324     }
4325     chg = true;
4326   }
4327   // Negative length arrays will produce weird intermediate dead fast-path code
4328   if (lo > hi)
4329     return TypeInt::ZERO;
4330   if (!chg)
4331     return size;
4332   return TypeInt::make(lo, hi, Type::WidenMin);
4333 }
4334 
4335 //-------------------------------cast_to_size----------------------------------
4336 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4337   assert(new_size != NULL, "");
4338   new_size = narrow_size_type(new_size);
4339   if (new_size == size())  return this;
4340   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4341   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4342 }
4343 
4344 //------------------------------cast_to_stable---------------------------------
4345 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4346   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4347     return this;
4348 
4349   const Type* elem = this->elem();
4350   const TypePtr* elem_ptr = elem->make_ptr();
4351 
4352   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4353     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4354     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4355   }
4356 
4357   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4358 
4359   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4360 }
4361 
4362 //-----------------------------stable_dimension--------------------------------
4363 int TypeAryPtr::stable_dimension() const {
4364   if (!is_stable())  return 0;
4365   int dim = 1;
4366   const TypePtr* elem_ptr = elem()->make_ptr();
4367   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4368     dim += elem_ptr->is_aryptr()->stable_dimension();
4369   return dim;
4370 }
4371 
4372 //----------------------cast_to_autobox_cache-----------------------------------
4373 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
4374   if (is_autobox_cache())  return this;
4375   const TypeOopPtr* etype = elem()->make_oopptr();
4376   if (etype == NULL)  return this;
4377   // The pointers in the autobox arrays are always non-null.
4378   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4379   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4380   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
4381 }
4382 
4383 //------------------------------eq---------------------------------------------
4384 // Structural equality check for Type representations
4385 bool TypeAryPtr::eq( const Type *t ) const {
4386   const TypeAryPtr *p = t->is_aryptr();
4387   return
4388     _ary == p->_ary &&  // Check array
4389     TypeOopPtr::eq(p);  // Check sub-parts
4390 }
4391 
4392 //------------------------------hash-------------------------------------------
4393 // Type-specific hashing function.
4394 int TypeAryPtr::hash(void) const {
4395   return (intptr_t)_ary + TypeOopPtr::hash();
4396 }
4397 
4398 //------------------------------meet-------------------------------------------
4399 // Compute the MEET of two types.  It returns a new Type object.
4400 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4401   // Perform a fast test for common case; meeting the same types together.
4402   if( this == t ) return this;  // Meeting same type-rep?
4403   // Current "this->_base" is Pointer
4404   switch (t->base()) {          // switch on original type
4405 
4406   // Mixing ints & oops happens when javac reuses local variables
4407   case Int:
4408   case Long:
4409   case FloatTop:
4410   case FloatCon:
4411   case FloatBot:
4412   case DoubleTop:
4413   case DoubleCon:
4414   case DoubleBot:
4415   case NarrowOop:
4416   case NarrowKlass:
4417   case Bottom:                  // Ye Olde Default
4418     return Type::BOTTOM;
4419   case Top:
4420     return this;
4421 
4422   default:                      // All else is a mistake
4423     typerr(t);
4424 
4425   case OopPtr: {                // Meeting to OopPtrs
4426     // Found a OopPtr type vs self-AryPtr type
4427     const TypeOopPtr *tp = t->is_oopptr();
4428     int offset = meet_offset(tp->offset());
4429     PTR ptr = meet_ptr(tp->ptr());
4430     int depth = meet_inline_depth(tp->inline_depth());
4431     const TypePtr* speculative = xmeet_speculative(tp);
4432     switch (tp->ptr()) {
4433     case TopPTR:
4434     case AnyNull: {
4435       int instance_id = meet_instance_id(InstanceTop);
4436       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4437                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4438     }
4439     case BotPTR:
4440     case NotNull: {
4441       int instance_id = meet_instance_id(tp->instance_id());
4442       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4443     }
4444     default: ShouldNotReachHere();
4445     }
4446   }
4447 
4448   case AnyPtr: {                // Meeting two AnyPtrs
4449     // Found an AnyPtr type vs self-AryPtr type
4450     const TypePtr *tp = t->is_ptr();
4451     int offset = meet_offset(tp->offset());
4452     PTR ptr = meet_ptr(tp->ptr());
4453     const TypePtr* speculative = xmeet_speculative(tp);
4454     int depth = meet_inline_depth(tp->inline_depth());
4455     switch (tp->ptr()) {
4456     case TopPTR:
4457       return this;
4458     case BotPTR:
4459     case NotNull:
4460       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4461     case Null:
4462       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4463       // else fall through to AnyNull
4464     case AnyNull: {
4465       int instance_id = meet_instance_id(InstanceTop);
4466       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4467                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4468     }
4469     default: ShouldNotReachHere();
4470     }
4471   }
4472 
4473   case MetadataPtr:
4474   case KlassPtr:
4475   case InstKlassPtr:
4476   case AryKlassPtr:
4477   case RawPtr: return TypePtr::BOTTOM;
4478 
4479   case AryPtr: {                // Meeting 2 references?
4480     const TypeAryPtr *tap = t->is_aryptr();
4481     int off = meet_offset(tap->offset());
4482     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4483     PTR ptr = meet_ptr(tap->ptr());
4484     int instance_id = meet_instance_id(tap->instance_id());
4485     const TypePtr* speculative = xmeet_speculative(tap);
4486     int depth = meet_inline_depth(tap->inline_depth());
4487 
4488     ciKlass* res_klass = NULL;
4489     bool res_xk = false;
4490     const Type* elem = tary->_elem;
4491     if (meet_aryptr(ptr, elem, this->klass(), tap->klass(), this->klass_is_exact(), tap->klass_is_exact(), this->ptr(), tap->ptr(), res_klass, res_xk) == NOT_SUBTYPE) {
4492       instance_id = InstanceBot;
4493     }
4494 
4495     ciObject* o = NULL;             // Assume not constant when done
4496     ciObject* this_oop = const_oop();
4497     ciObject* tap_oop = tap->const_oop();
4498     if (ptr == Constant) {
4499       if (this_oop != NULL && tap_oop != NULL &&
4500           this_oop->equals(tap_oop)) {
4501         o = tap_oop;
4502       } else if (above_centerline(_ptr)) {
4503         o = tap_oop;
4504       } else if (above_centerline(tap->_ptr)) {
4505         o = this_oop;
4506       } else {
4507         ptr = NotNull;
4508       }
4509     }
4510     return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth);
4511   }
4512 
4513   // All arrays inherit from Object class
4514   case InstPtr: {
4515     const TypeInstPtr *tp = t->is_instptr();
4516     int offset = meet_offset(tp->offset());
4517     PTR ptr = meet_ptr(tp->ptr());
4518     int instance_id = meet_instance_id(tp->instance_id());
4519     const TypePtr* speculative = xmeet_speculative(tp);
4520     int depth = meet_inline_depth(tp->inline_depth());
4521     switch (ptr) {
4522     case TopPTR:
4523     case AnyNull:                // Fall 'down' to dual of object klass
4524       // For instances when a subclass meets a superclass we fall
4525       // below the centerline when the superclass is exact. We need to
4526       // do the same here.
4527       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4528         return make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4529       } else {
4530         // cannot subclass, so the meet has to fall badly below the centerline
4531         ptr = NotNull;
4532         instance_id = InstanceBot;
4533         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4534       }
4535     case Constant:
4536     case NotNull:
4537     case BotPTR:                // Fall down to object klass
4538       // LCA is object_klass, but if we subclass from the top we can do better
4539       if (above_centerline(tp->ptr())) {
4540         // If 'tp'  is above the centerline and it is Object class
4541         // then we can subclass in the Java class hierarchy.
4542         // For instances when a subclass meets a superclass we fall
4543         // below the centerline when the superclass is exact. We need
4544         // to do the same here.
4545         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4546           // that is, my array type is a subtype of 'tp' klass
4547           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4548                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4549         }
4550       }
4551       // The other case cannot happen, since t cannot be a subtype of an array.
4552       // The meet falls down to Object class below centerline.
4553       if (ptr == Constant) {
4554          ptr = NotNull;
4555       }
4556       if (instance_id > 0) {
4557         instance_id = InstanceBot;
4558       }
4559       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4560     default: typerr(t);
4561     }
4562   }
4563   }
4564   return this;                  // Lint noise
4565 }
4566 
4567 
4568 TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, ciKlass* this_klass, ciKlass* tap_klass, bool this_xk, bool tap_xk, PTR this_ptr, PTR tap_ptr, ciKlass*& res_klass, bool& res_xk) {
4569   res_klass = NULL;
4570   MeetResult result = SUBTYPE;
4571   if (elem->isa_int()) {
4572     // Integral array element types have irrelevant lattice relations.
4573     // It is the klass that determines array layout, not the element type.
4574     if (this_klass == NULL)
4575       res_klass = tap_klass;
4576     else if (tap_klass == NULL || tap_klass == this_klass) {
4577       res_klass = this_klass;
4578     } else {
4579       // Something like byte[int+] meets char[int+].
4580       // This must fall to bottom, not (int[-128..65535])[int+].
4581       // instance_id = InstanceBot;
4582       elem = Type::BOTTOM;
4583       result = NOT_SUBTYPE;
4584     }
4585   } else // Non integral arrays.
4586     // Must fall to bottom if exact klasses in upper lattice
4587     // are not equal or super klass is exact.
4588     if ((above_centerline(ptr) || ptr == Constant) && this_klass != tap_klass &&
4589         // meet with top[] and bottom[] are processed further down:
4590         tap_klass != NULL  && this_klass != NULL   &&
4591         // both are exact and not equal:
4592         ((tap_xk && this_xk) ||
4593          // 'tap'  is exact and super or unrelated:
4594          (tap_xk && !tap_klass->is_subtype_of(this_klass)) ||
4595          // 'this' is exact and super or unrelated:
4596          (this_xk && !this_klass->is_subtype_of(tap_klass)))) {
4597       if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
4598         elem = Type::BOTTOM;
4599       }
4600       ptr = NotNull;
4601       res_xk = false;
4602       return NOT_SUBTYPE;
4603     }
4604 
4605   res_xk = false;
4606   switch (tap_ptr) {
4607     case AnyNull:
4608     case TopPTR:
4609       // Compute new klass on demand, do not use tap->_klass
4610       if (below_centerline(this_ptr)) {
4611         res_xk = this_xk;
4612       } else {
4613         res_xk = (tap_xk || this_xk);
4614       }
4615       return result;
4616     case Constant: {
4617       if (this_ptr == Constant) {
4618           res_xk = true;
4619       } else if(above_centerline(this_ptr)) {
4620         res_xk = true;
4621       } else {
4622         // Only precise for identical arrays
4623         res_xk = this_xk && (this_klass == tap_klass);
4624       }
4625       return result;
4626     }
4627     case NotNull:
4628     case BotPTR:
4629       // Compute new klass on demand, do not use tap->_klass
4630       if (above_centerline(this_ptr)) {
4631         res_xk = tap_xk;
4632       } else {
4633         res_xk = (tap_xk && this_xk) &&
4634           (this_klass == tap_klass); // Only precise for identical arrays
4635       }
4636       return result;
4637     default:  {
4638       ShouldNotReachHere();
4639       return result;
4640     }
4641   }
4642   return result;
4643 }
4644 
4645 
4646 //------------------------------xdual------------------------------------------
4647 // Dual: compute field-by-field dual
4648 const Type *TypeAryPtr::xdual() const {
4649   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4650 }
4651 
4652 //----------------------interface_vs_oop---------------------------------------
4653 #ifdef ASSERT
4654 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4655   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4656   if (t_aryptr) {
4657     return _ary->interface_vs_oop(t_aryptr->_ary);
4658   }
4659   return false;
4660 }
4661 #endif
4662 
4663 //------------------------------dump2------------------------------------------
4664 #ifndef PRODUCT
4665 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4666   _ary->dump2(d,depth,st);
4667   switch( _ptr ) {
4668   case Constant:
4669     const_oop()->print(st);
4670     break;
4671   case BotPTR:
4672     if (!WizardMode && !Verbose) {
4673       if( _klass_is_exact ) st->print(":exact");
4674       break;
4675     }
4676   case TopPTR:
4677   case AnyNull:
4678   case NotNull:
4679     st->print(":%s", ptr_msg[_ptr]);
4680     if( _klass_is_exact ) st->print(":exact");
4681     break;
4682   default:
4683     break;
4684   }
4685 
4686   if( _offset != 0 ) {
4687     BasicType basic_elem_type = elem()->basic_type();
4688     int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4689     if( _offset == OffsetTop )       st->print("+undefined");
4690     else if( _offset == OffsetBot )  st->print("+any");
4691     else if( _offset < header_size ) st->print("+%d", _offset);
4692     else {
4693       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4694       int elem_size = type2aelembytes(basic_elem_type);
4695       st->print("[%d]", (_offset - array_base)/elem_size);
4696     }
4697   }
4698   st->print(" *");
4699   if (_instance_id == InstanceTop)
4700     st->print(",iid=top");
4701   else if (_instance_id != InstanceBot)
4702     st->print(",iid=%d",_instance_id);
4703 
4704   dump_inline_depth(st);
4705   dump_speculative(st);
4706 }
4707 #endif
4708 
4709 bool TypeAryPtr::empty(void) const {
4710   if (_ary->empty())       return true;
4711   return TypeOopPtr::empty();
4712 }
4713 
4714 //------------------------------add_offset-------------------------------------
4715 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4716   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4717 }
4718 
4719 const Type *TypeAryPtr::remove_speculative() const {
4720   if (_speculative == NULL) {
4721     return this;
4722   }
4723   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4724   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4725 }
4726 
4727 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4728   if (!UseInlineDepthForSpeculativeTypes) {
4729     return this;
4730   }
4731   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4732 }
4733 
4734 const TypePtr *TypeAryPtr::with_instance_id(int instance_id) const {
4735   assert(is_known_instance(), "should be known");
4736   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4737 }
4738 
4739 //=============================================================================
4740 
4741 //------------------------------hash-------------------------------------------
4742 // Type-specific hashing function.
4743 int TypeNarrowPtr::hash(void) const {
4744   return _ptrtype->hash() + 7;
4745 }
4746 
4747 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4748   return _ptrtype->singleton();
4749 }
4750 
4751 bool TypeNarrowPtr::empty(void) const {
4752   return _ptrtype->empty();
4753 }
4754 
4755 intptr_t TypeNarrowPtr::get_con() const {
4756   return _ptrtype->get_con();
4757 }
4758 
4759 bool TypeNarrowPtr::eq( const Type *t ) const {
4760   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4761   if (tc != NULL) {
4762     if (_ptrtype->base() != tc->_ptrtype->base()) {
4763       return false;
4764     }
4765     return tc->_ptrtype->eq(_ptrtype);
4766   }
4767   return false;
4768 }
4769 
4770 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4771   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4772   return make_same_narrowptr(odual);
4773 }
4774 
4775 
4776 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4777   if (isa_same_narrowptr(kills)) {
4778     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4779     if (ft->empty())
4780       return Type::TOP;           // Canonical empty value
4781     if (ft->isa_ptr()) {
4782       return make_hash_same_narrowptr(ft->isa_ptr());
4783     }
4784     return ft;
4785   } else if (kills->isa_ptr()) {
4786     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4787     if (ft->empty())
4788       return Type::TOP;           // Canonical empty value
4789     return ft;
4790   } else {
4791     return Type::TOP;
4792   }
4793 }
4794 
4795 //------------------------------xmeet------------------------------------------
4796 // Compute the MEET of two types.  It returns a new Type object.
4797 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4798   // Perform a fast test for common case; meeting the same types together.
4799   if( this == t ) return this;  // Meeting same type-rep?
4800 
4801   if (t->base() == base()) {
4802     const Type* result = _ptrtype->xmeet(t->make_ptr());
4803     if (result->isa_ptr()) {
4804       return make_hash_same_narrowptr(result->is_ptr());
4805     }
4806     return result;
4807   }
4808 
4809   // Current "this->_base" is NarrowKlass or NarrowOop
4810   switch (t->base()) {          // switch on original type
4811 
4812   case Int:                     // Mixing ints & oops happens when javac
4813   case Long:                    // reuses local variables
4814   case FloatTop:
4815   case FloatCon:
4816   case FloatBot:
4817   case DoubleTop:
4818   case DoubleCon:
4819   case DoubleBot:
4820   case AnyPtr:
4821   case RawPtr:
4822   case OopPtr:
4823   case InstPtr:
4824   case AryPtr:
4825   case MetadataPtr:
4826   case KlassPtr:
4827   case InstKlassPtr:
4828   case AryKlassPtr:
4829   case NarrowOop:
4830   case NarrowKlass:
4831 
4832   case Bottom:                  // Ye Olde Default
4833     return Type::BOTTOM;
4834   case Top:
4835     return this;
4836 
4837   default:                      // All else is a mistake
4838     typerr(t);
4839 
4840   } // End of switch
4841 
4842   return this;
4843 }
4844 
4845 #ifndef PRODUCT
4846 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4847   _ptrtype->dump2(d, depth, st);
4848 }
4849 #endif
4850 
4851 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4852 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4853 
4854 
4855 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4856   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4857 }
4858 
4859 const Type* TypeNarrowOop::remove_speculative() const {
4860   return make(_ptrtype->remove_speculative()->is_ptr());
4861 }
4862 
4863 const Type* TypeNarrowOop::cleanup_speculative() const {
4864   return make(_ptrtype->cleanup_speculative()->is_ptr());
4865 }
4866 
4867 #ifndef PRODUCT
4868 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4869   st->print("narrowoop: ");
4870   TypeNarrowPtr::dump2(d, depth, st);
4871 }
4872 #endif
4873 
4874 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4875 
4876 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4877   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4878 }
4879 
4880 #ifndef PRODUCT
4881 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4882   st->print("narrowklass: ");
4883   TypeNarrowPtr::dump2(d, depth, st);
4884 }
4885 #endif
4886 
4887 
4888 //------------------------------eq---------------------------------------------
4889 // Structural equality check for Type representations
4890 bool TypeMetadataPtr::eq( const Type *t ) const {
4891   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4892   ciMetadata* one = metadata();
4893   ciMetadata* two = a->metadata();
4894   if (one == NULL || two == NULL) {
4895     return (one == two) && TypePtr::eq(t);
4896   } else {
4897     return one->equals(two) && TypePtr::eq(t);
4898   }
4899 }
4900 
4901 //------------------------------hash-------------------------------------------
4902 // Type-specific hashing function.
4903 int TypeMetadataPtr::hash(void) const {
4904   return
4905     (metadata() ? metadata()->hash() : 0) +
4906     TypePtr::hash();
4907 }
4908 
4909 //------------------------------singleton--------------------------------------
4910 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4911 // constants
4912 bool TypeMetadataPtr::singleton(void) const {
4913   // detune optimizer to not generate constant metadata + constant offset as a constant!
4914   // TopPTR, Null, AnyNull, Constant are all singletons
4915   return (_offset == 0) && !below_centerline(_ptr);
4916 }
4917 
4918 //------------------------------add_offset-------------------------------------
4919 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4920   return make( _ptr, _metadata, xadd_offset(offset));
4921 }
4922 
4923 //-----------------------------filter------------------------------------------
4924 // Do not allow interface-vs.-noninterface joins to collapse to top.
4925 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4926   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4927   if (ft == NULL || ft->empty())
4928     return Type::TOP;           // Canonical empty value
4929   return ft;
4930 }
4931 
4932  //------------------------------get_con----------------------------------------
4933 intptr_t TypeMetadataPtr::get_con() const {
4934   assert( _ptr == Null || _ptr == Constant, "" );
4935   assert( _offset >= 0, "" );
4936 
4937   if (_offset != 0) {
4938     // After being ported to the compiler interface, the compiler no longer
4939     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4940     // to a handle at compile time.  This handle is embedded in the generated
4941     // code and dereferenced at the time the nmethod is made.  Until that time,
4942     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4943     // have access to the addresses!).  This does not seem to currently happen,
4944     // but this assertion here is to help prevent its occurrence.
4945     tty->print_cr("Found oop constant with non-zero offset");
4946     ShouldNotReachHere();
4947   }
4948 
4949   return (intptr_t)metadata()->constant_encoding();
4950 }
4951 
4952 //------------------------------cast_to_ptr_type-------------------------------
4953 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4954   if( ptr == _ptr ) return this;
4955   return make(ptr, metadata(), _offset);
4956 }
4957 
4958 //------------------------------meet-------------------------------------------
4959 // Compute the MEET of two types.  It returns a new Type object.
4960 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4961   // Perform a fast test for common case; meeting the same types together.
4962   if( this == t ) return this;  // Meeting same type-rep?
4963 
4964   // Current "this->_base" is OopPtr
4965   switch (t->base()) {          // switch on original type
4966 
4967   case Int:                     // Mixing ints & oops happens when javac
4968   case Long:                    // reuses local variables
4969   case FloatTop:
4970   case FloatCon:
4971   case FloatBot:
4972   case DoubleTop:
4973   case DoubleCon:
4974   case DoubleBot:
4975   case NarrowOop:
4976   case NarrowKlass:
4977   case Bottom:                  // Ye Olde Default
4978     return Type::BOTTOM;
4979   case Top:
4980     return this;
4981 
4982   default:                      // All else is a mistake
4983     typerr(t);
4984 
4985   case AnyPtr: {
4986     // Found an AnyPtr type vs self-OopPtr type
4987     const TypePtr *tp = t->is_ptr();
4988     int offset = meet_offset(tp->offset());
4989     PTR ptr = meet_ptr(tp->ptr());
4990     switch (tp->ptr()) {
4991     case Null:
4992       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4993       // else fall through:
4994     case TopPTR:
4995     case AnyNull: {
4996       return make(ptr, _metadata, offset);
4997     }
4998     case BotPTR:
4999     case NotNull:
5000       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5001     default: typerr(t);
5002     }
5003   }
5004 
5005   case RawPtr:
5006   case KlassPtr:
5007   case InstKlassPtr:
5008   case AryKlassPtr:
5009   case OopPtr:
5010   case InstPtr:
5011   case AryPtr:
5012     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5013 
5014   case MetadataPtr: {
5015     const TypeMetadataPtr *tp = t->is_metadataptr();
5016     int offset = meet_offset(tp->offset());
5017     PTR tptr = tp->ptr();
5018     PTR ptr = meet_ptr(tptr);
5019     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5020     if (tptr == TopPTR || _ptr == TopPTR ||
5021         metadata()->equals(tp->metadata())) {
5022       return make(ptr, md, offset);
5023     }
5024     // metadata is different
5025     if( ptr == Constant ) {  // Cannot be equal constants, so...
5026       if( tptr == Constant && _ptr != Constant)  return t;
5027       if( _ptr == Constant && tptr != Constant)  return this;
5028       ptr = NotNull;            // Fall down in lattice
5029     }
5030     return make(ptr, NULL, offset);
5031     break;
5032   }
5033   } // End of switch
5034   return this;                  // Return the double constant
5035 }
5036 
5037 
5038 //------------------------------xdual------------------------------------------
5039 // Dual of a pure metadata pointer.
5040 const Type *TypeMetadataPtr::xdual() const {
5041   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5042 }
5043 
5044 //------------------------------dump2------------------------------------------
5045 #ifndef PRODUCT
5046 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5047   st->print("metadataptr:%s", ptr_msg[_ptr]);
5048   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5049   switch( _offset ) {
5050   case OffsetTop: st->print("+top"); break;
5051   case OffsetBot: st->print("+any"); break;
5052   case         0: break;
5053   default:        st->print("+%d",_offset); break;
5054   }
5055 }
5056 #endif
5057 
5058 
5059 //=============================================================================
5060 // Convenience common pre-built type.
5061 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5062 
5063 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
5064   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5065 }
5066 
5067 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5068   return make(Constant, m, 0);
5069 }
5070 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5071   return make(Constant, m, 0);
5072 }
5073 
5074 //------------------------------make-------------------------------------------
5075 // Create a meta data constant
5076 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
5077   assert(m == NULL || !m->is_klass(), "wrong type");
5078   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5079 }
5080 
5081 
5082 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5083   const Type* elem = _ary->_elem;
5084   bool xk = klass_is_exact();
5085   if (elem->make_oopptr() != NULL) {
5086     elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5087     if (elem->is_klassptr()->klass_is_exact()) {
5088       xk = true;
5089     }
5090   }
5091   return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0);
5092 }
5093 
5094 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass) {
5095   if (klass->is_instance_klass()) {
5096     return TypeInstKlassPtr::make(klass);
5097   }
5098   return TypeAryKlassPtr::make(klass);
5099 }
5100 
5101 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset) {
5102   if (klass->is_instance_klass()) {
5103     return TypeInstKlassPtr::make(ptr, klass, offset);
5104   }
5105   return TypeAryKlassPtr::make(ptr, klass, offset);
5106 }
5107 
5108 
5109 //------------------------------TypeKlassPtr-----------------------------------
5110 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, int offset)
5111   : TypePtr(t, ptr, offset), _klass(klass) {
5112 }
5113 
5114 //------------------------------eq---------------------------------------------
5115 // Structural equality check for Type representations
5116 bool TypeKlassPtr::eq(const Type *t) const {
5117   const TypeKlassPtr *p = t->is_klassptr();
5118   return
5119     TypePtr::eq(p);
5120 }
5121 
5122 //------------------------------hash-------------------------------------------
5123 // Type-specific hashing function.
5124 int TypeKlassPtr::hash(void) const {
5125   return TypePtr::hash();
5126 }
5127 
5128 //------------------------------singleton--------------------------------------
5129 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5130 // constants
5131 bool TypeKlassPtr::singleton(void) const {
5132   // detune optimizer to not generate constant klass + constant offset as a constant!
5133   // TopPTR, Null, AnyNull, Constant are all singletons
5134   return (_offset == 0) && !below_centerline(_ptr);
5135 }
5136 
5137 // Do not allow interface-vs.-noninterface joins to collapse to top.
5138 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5139   // logic here mirrors the one from TypeOopPtr::filter. See comments
5140   // there.
5141   const Type* ft = join_helper(kills, include_speculative);
5142   const TypeKlassPtr* ftkp = ft->isa_instklassptr();
5143   const TypeKlassPtr* ktkp = kills->isa_instklassptr();
5144 
5145   if (ft->empty()) {
5146     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
5147       return kills;             // Uplift to interface
5148 
5149     return Type::TOP;           // Canonical empty value
5150   }
5151 
5152   // Interface klass type could be exact in opposite to interface type,
5153   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5154   if (ftkp != NULL && ktkp != NULL &&
5155       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5156       !ftkp->klass_is_exact() && // Keep exact interface klass
5157       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5158     return ktkp->cast_to_ptr_type(ftkp->ptr());
5159   }
5160 
5161   return ft;
5162 }
5163 
5164 //------------------------------get_con----------------------------------------
5165 intptr_t TypeKlassPtr::get_con() const {
5166   assert( _ptr == Null || _ptr == Constant, "" );
5167   assert( _offset >= 0, "" );
5168 
5169   if (_offset != 0) {
5170     // After being ported to the compiler interface, the compiler no longer
5171     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5172     // to a handle at compile time.  This handle is embedded in the generated
5173     // code and dereferenced at the time the nmethod is made.  Until that time,
5174     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5175     // have access to the addresses!).  This does not seem to currently happen,
5176     // but this assertion here is to help prevent its occurrence.
5177     tty->print_cr("Found oop constant with non-zero offset");
5178     ShouldNotReachHere();
5179   }
5180 
5181   return (intptr_t)klass()->constant_encoding();
5182 }
5183 
5184 //------------------------------dump2------------------------------------------
5185 // Dump Klass Type
5186 #ifndef PRODUCT
5187 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {
5188   switch(_ptr) {
5189   case Constant:
5190     st->print("precise ");
5191   case NotNull:
5192     {
5193       const char *name = klass()->name()->as_utf8();
5194       if (name) {
5195         st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
5196       } else {
5197         ShouldNotReachHere();
5198       }
5199     }
5200   case BotPTR:
5201     if (!WizardMode && !Verbose && _ptr != Constant) break;
5202   case TopPTR:
5203   case AnyNull:
5204     st->print(":%s", ptr_msg[_ptr]);
5205     if (_ptr == Constant) st->print(":exact");
5206     break;
5207   default:
5208     break;
5209   }
5210 
5211   if (_offset) {               // Dump offset, if any
5212     if (_offset == OffsetBot)      { st->print("+any"); }
5213     else if (_offset == OffsetTop) { st->print("+unknown"); }
5214     else                            { st->print("+%d", _offset); }
5215   }
5216 
5217   st->print(" *");
5218 }
5219 #endif
5220 
5221 //=============================================================================
5222 // Convenience common pre-built types.
5223 
5224 // Not-null object klass or below
5225 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
5226 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
5227 
5228 bool TypeInstKlassPtr::eq(const Type *t) const {
5229   const TypeKlassPtr *p = t->is_klassptr();
5230   return
5231     klass()->equals(p->klass()) &&
5232     TypeKlassPtr::eq(p);
5233 }
5234 
5235 int TypeInstKlassPtr::hash(void) const {
5236   return java_add((jint)klass()->hash(), TypeKlassPtr::hash());
5237 }
5238 
5239 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, int offset) {
5240   TypeInstKlassPtr *r =
5241     (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, offset))->hashcons();
5242 
5243   return r;
5244 }
5245 
5246 //------------------------------add_offset-------------------------------------
5247 // Access internals of klass object
5248 const TypePtr *TypeInstKlassPtr::add_offset( intptr_t offset ) const {
5249   return make( _ptr, klass(), xadd_offset(offset) );
5250 }
5251 
5252 const TypeKlassPtr *TypeInstKlassPtr::with_offset(intptr_t offset) const {
5253   return make(_ptr, klass(), offset);
5254 }
5255 
5256 //------------------------------cast_to_ptr_type-------------------------------
5257 const TypePtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
5258   assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
5259   if( ptr == _ptr ) return this;
5260   return make(ptr, _klass, _offset);
5261 }
5262 
5263 
5264 bool TypeInstKlassPtr::must_be_exact() const {
5265   if (!_klass->is_loaded())  return false;
5266   ciInstanceKlass* ik = _klass->as_instance_klass();
5267   if (ik->is_final())  return true;  // cannot clear xk
5268   return false;
5269 }
5270 
5271 //-----------------------------cast_to_exactness-------------------------------
5272 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5273   if (klass_is_exact == (_ptr == Constant)) return this;
5274   if (must_be_exact()) return this;
5275   ciKlass* k = klass();
5276   return make(klass_is_exact ? Constant : NotNull, k, _offset);
5277 }
5278 
5279 
5280 //-----------------------------as_instance_type--------------------------------
5281 // Corresponding type for an instance of the given class.
5282 // It will be NotNull, and exact if and only if the klass type is exact.
5283 const TypeOopPtr* TypeInstKlassPtr::as_instance_type() const {
5284   ciKlass* k = klass();
5285   bool    xk = klass_is_exact();
5286   return TypeInstPtr::make(TypePtr::BotPTR, k, xk, NULL, 0);
5287 }
5288 
5289 //------------------------------xmeet------------------------------------------
5290 // Compute the MEET of two types, return a new Type object.
5291 const Type    *TypeInstKlassPtr::xmeet( const Type *t ) const {
5292   // Perform a fast test for common case; meeting the same types together.
5293   if( this == t ) return this;  // Meeting same type-rep?
5294 
5295   // Current "this->_base" is Pointer
5296   switch (t->base()) {          // switch on original type
5297 
5298   case Int:                     // Mixing ints & oops happens when javac
5299   case Long:                    // reuses local variables
5300   case FloatTop:
5301   case FloatCon:
5302   case FloatBot:
5303   case DoubleTop:
5304   case DoubleCon:
5305   case DoubleBot:
5306   case NarrowOop:
5307   case NarrowKlass:
5308   case Bottom:                  // Ye Olde Default
5309     return Type::BOTTOM;
5310   case Top:
5311     return this;
5312 
5313   default:                      // All else is a mistake
5314     typerr(t);
5315 
5316   case AnyPtr: {                // Meeting to AnyPtrs
5317     // Found an AnyPtr type vs self-KlassPtr type
5318     const TypePtr *tp = t->is_ptr();
5319     int offset = meet_offset(tp->offset());
5320     PTR ptr = meet_ptr(tp->ptr());
5321     switch (tp->ptr()) {
5322     case TopPTR:
5323       return this;
5324     case Null:
5325       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5326     case AnyNull:
5327       return make( ptr, klass(), offset );
5328     case BotPTR:
5329     case NotNull:
5330       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5331     default: typerr(t);
5332     }
5333   }
5334 
5335   case RawPtr:
5336   case MetadataPtr:
5337   case OopPtr:
5338   case AryPtr:                  // Meet with AryPtr
5339   case InstPtr:                 // Meet with InstPtr
5340     return TypePtr::BOTTOM;
5341 
5342   //
5343   //             A-top         }
5344   //           /   |   \       }  Tops
5345   //       B-top A-any C-top   }
5346   //          | /  |  \ |      }  Any-nulls
5347   //       B-any   |   C-any   }
5348   //          |    |    |
5349   //       B-con A-con C-con   } constants; not comparable across classes
5350   //          |    |    |
5351   //       B-not   |   C-not   }
5352   //          | \  |  / |      }  not-nulls
5353   //       B-bot A-not C-bot   }
5354   //           \   |   /       }  Bottoms
5355   //             A-bot         }
5356   //
5357 
5358   case InstKlassPtr: {  // Meet two KlassPtr types
5359     const TypeInstKlassPtr *tkls = t->is_instklassptr();
5360     int  off     = meet_offset(tkls->offset());
5361     PTR  ptr     = meet_ptr(tkls->ptr());
5362     ciKlass* tkls_klass = tkls->klass();
5363     ciKlass* this_klass  = klass();
5364     bool tkls_xk = tkls->klass_is_exact();
5365     bool this_xk  = klass_is_exact();
5366 
5367     ciKlass* res_klass = NULL;
5368     bool res_xk = false;
5369     switch(meet_instptr(ptr, this_klass, tkls_klass, this_xk, tkls_xk, this->_ptr, tkls->_ptr, res_klass, res_xk)) {
5370       case UNLOADED:
5371         ShouldNotReachHere();
5372       case SUBTYPE:
5373       case NOT_SUBTYPE:
5374       case LCA:
5375       case QUICK: {
5376         assert(res_xk == (ptr == Constant), "");
5377         const Type* res1 = make(ptr, res_klass, off);
5378         return res1;
5379       }
5380       default:
5381         ShouldNotReachHere();
5382     }
5383   } // End of case KlassPtr
5384   case AryKlassPtr: {                // All arrays inherit from Object class
5385     const TypeAryKlassPtr *tp = t->is_aryklassptr();
5386     int offset = meet_offset(tp->offset());
5387     PTR ptr = meet_ptr(tp->ptr());
5388 
5389     switch (ptr) {
5390     case TopPTR:
5391     case AnyNull:                // Fall 'down' to dual of object klass
5392       // For instances when a subclass meets a superclass we fall
5393       // below the centerline when the superclass is exact. We need to
5394       // do the same here.
5395       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
5396         return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset);
5397       } else {
5398         // cannot subclass, so the meet has to fall badly below the centerline
5399         ptr = NotNull;
5400         return make(ptr, ciEnv::current()->Object_klass(), offset);
5401       }
5402     case Constant:
5403     case NotNull:
5404     case BotPTR:                // Fall down to object klass
5405       // LCA is object_klass, but if we subclass from the top we can do better
5406       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
5407         // If 'this' (InstPtr) is above the centerline and it is Object class
5408         // then we can subclass in the Java class hierarchy.
5409         // For instances when a subclass meets a superclass we fall
5410         // below the centerline when the superclass is exact. We need
5411         // to do the same here.
5412         if (klass()->equals(ciEnv::current()->Object_klass())) {
5413           // that is, tp's array type is a subtype of my klass
5414           return TypeAryKlassPtr::make(ptr,
5415                                        tp->elem(), tp->klass(), offset);
5416         }
5417       }
5418       // The other case cannot happen, since I cannot be a subtype of an array.
5419       // The meet falls down to Object class below centerline.
5420       if( ptr == Constant )
5421          ptr = NotNull;
5422       return make(ptr, ciEnv::current()->Object_klass(), offset);
5423     default: typerr(t);
5424     }
5425   }
5426 
5427   } // End of switch
5428   return this;                  // Return the double constant
5429 }
5430 
5431 //------------------------------xdual------------------------------------------
5432 // Dual: compute field-by-field dual
5433 const Type    *TypeInstKlassPtr::xdual() const {
5434   return new TypeInstKlassPtr(dual_ptr(), klass(), dual_offset());
5435 }
5436 
5437 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) {
5438   return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons();
5439 }
5440 
5441 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* klass, int offset) {
5442   if (klass->is_obj_array_klass()) {
5443     // Element is an object array. Recursively call ourself.
5444     ciKlass* eklass = klass->as_obj_array_klass()->element_klass();
5445     const TypeKlassPtr *etype = TypeKlassPtr::make(eklass)->cast_to_exactness(false);
5446     return TypeAryKlassPtr::make(ptr, etype, NULL, offset);
5447   } else if (klass->is_type_array_klass()) {
5448     // Element is an typeArray
5449     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
5450     return TypeAryKlassPtr::make(ptr, etype, klass, offset);
5451   } else {
5452     ShouldNotReachHere();
5453     return NULL;
5454   }
5455 }
5456 
5457 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass) {
5458   return TypeAryKlassPtr::make(Constant, klass, 0);
5459 }
5460 
5461 //------------------------------eq---------------------------------------------
5462 // Structural equality check for Type representations
5463 bool TypeAryKlassPtr::eq(const Type *t) const {
5464   const TypeAryKlassPtr *p = t->is_aryklassptr();
5465   return
5466     _elem == p->_elem &&  // Check array
5467     TypeKlassPtr::eq(p);  // Check sub-parts
5468 }
5469 
5470 //------------------------------hash-------------------------------------------
5471 // Type-specific hashing function.
5472 int TypeAryKlassPtr::hash(void) const {
5473   return (intptr_t)_elem + TypeKlassPtr::hash();
5474 }
5475 
5476 //----------------------compute_klass------------------------------------------
5477 // Compute the defining klass for this class
5478 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5479   // Compute _klass based on element type.
5480   ciKlass* k_ary = NULL;
5481   const TypeInstPtr *tinst;
5482   const TypeAryPtr *tary;
5483   const Type* el = elem();
5484   if (el->isa_narrowoop()) {
5485     el = el->make_ptr();
5486   }
5487 
5488   // Get element klass
5489   if ((tinst = el->isa_instptr()) != NULL) {
5490     // Compute array klass from element klass
5491     k_ary = ciObjArrayKlass::make(tinst->klass());
5492   } else if ((tary = el->isa_aryptr()) != NULL) {
5493     // Compute array klass from element klass
5494     ciKlass* k_elem = tary->klass();
5495     // If element type is something like bottom[], k_elem will be null.
5496     if (k_elem != NULL)
5497       k_ary = ciObjArrayKlass::make(k_elem);
5498   } else if ((el->base() == Type::Top) ||
5499              (el->base() == Type::Bottom)) {
5500     // element type of Bottom occurs from meet of basic type
5501     // and object; Top occurs when doing join on Bottom.
5502     // Leave k_ary at NULL.
5503   } else {
5504     // Cannot compute array klass directly from basic type,
5505     // since subtypes of TypeInt all have basic type T_INT.
5506 #ifdef ASSERT
5507     if (verify && el->isa_int()) {
5508       // Check simple cases when verifying klass.
5509       BasicType bt = T_ILLEGAL;
5510       if (el == TypeInt::BYTE) {
5511         bt = T_BYTE;
5512       } else if (el == TypeInt::SHORT) {
5513         bt = T_SHORT;
5514       } else if (el == TypeInt::CHAR) {
5515         bt = T_CHAR;
5516       } else if (el == TypeInt::INT) {
5517         bt = T_INT;
5518       } else {
5519         return _klass; // just return specified klass
5520       }
5521       return ciTypeArrayKlass::make(bt);
5522     }
5523 #endif
5524     assert(!el->isa_int(),
5525            "integral arrays must be pre-equipped with a class");
5526     // Compute array klass directly from basic type
5527     k_ary = ciTypeArrayKlass::make(el->basic_type());
5528   }
5529   return k_ary;
5530 }
5531 
5532 //------------------------------klass------------------------------------------
5533 // Return the defining klass for this class
5534 ciKlass* TypeAryPtr::klass() const {
5535   if( _klass ) return _klass;   // Return cached value, if possible
5536 
5537   // Oops, need to compute _klass and cache it
5538   ciKlass* k_ary = compute_klass();
5539 
5540   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5541     // The _klass field acts as a cache of the underlying
5542     // ciKlass for this array type.  In order to set the field,
5543     // we need to cast away const-ness.
5544     //
5545     // IMPORTANT NOTE: we *never* set the _klass field for the
5546     // type TypeAryPtr::OOPS.  This Type is shared between all
5547     // active compilations.  However, the ciKlass which represents
5548     // this Type is *not* shared between compilations, so caching
5549     // this value would result in fetching a dangling pointer.
5550     //
5551     // Recomputing the underlying ciKlass for each request is
5552     // a bit less efficient than caching, but calls to
5553     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5554     ((TypeAryPtr*)this)->_klass = k_ary;
5555     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5556         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
5557       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5558     }
5559   }
5560   return k_ary;
5561 }
5562 
5563 
5564 //------------------------------add_offset-------------------------------------
5565 // Access internals of klass object
5566 const TypePtr *TypeAryKlassPtr::add_offset(intptr_t offset) const {
5567   return make(_ptr, elem(), klass(), xadd_offset(offset));
5568 }
5569 
5570 const TypeKlassPtr *TypeAryKlassPtr::with_offset(intptr_t offset) const {
5571   return make(_ptr, elem(), klass(), offset);
5572 }
5573 
5574 //------------------------------cast_to_ptr_type-------------------------------
5575 const TypePtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
5576   assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
5577   if (ptr == _ptr) return this;
5578   return make(ptr, elem(), _klass, _offset);
5579 }
5580 
5581 bool TypeAryKlassPtr::must_be_exact() const {
5582   if (_elem == Type::BOTTOM) return false;
5583   if (_elem == Type::TOP   ) return false;
5584   const TypeKlassPtr*  tk = _elem->isa_klassptr();
5585   if (!tk)             return true;   // a primitive type, like int
5586   return tk->must_be_exact();
5587 }
5588 
5589 
5590 //-----------------------------cast_to_exactness-------------------------------
5591 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5592   if (must_be_exact()) return this;  // cannot clear xk
5593   ciKlass* k = _klass;
5594   const Type* elem = this->elem();
5595   if (elem->isa_klassptr() && !klass_is_exact) {
5596     elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
5597   }
5598   return make(klass_is_exact ? Constant : NotNull, elem, k, _offset);
5599 }
5600 
5601 
5602 //-----------------------------as_instance_type--------------------------------
5603 // Corresponding type for an instance of the given class.
5604 // It will be exact if and only if the klass type is exact.
5605 const TypeOopPtr* TypeAryKlassPtr::as_instance_type() const {
5606   ciKlass* k = klass();
5607   bool    xk = klass_is_exact();
5608   const Type* el = elem()->isa_klassptr() ? elem()->is_klassptr()->as_instance_type()->is_oopptr()->cast_to_exactness(false) : elem();
5609   return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0);
5610 }
5611 
5612 
5613 //------------------------------xmeet------------------------------------------
5614 // Compute the MEET of two types, return a new Type object.
5615 const Type    *TypeAryKlassPtr::xmeet( const Type *t ) const {
5616   // Perform a fast test for common case; meeting the same types together.
5617   if( this == t ) return this;  // Meeting same type-rep?
5618 
5619   // Current "this->_base" is Pointer
5620   switch (t->base()) {          // switch on original type
5621 
5622   case Int:                     // Mixing ints & oops happens when javac
5623   case Long:                    // reuses local variables
5624   case FloatTop:
5625   case FloatCon:
5626   case FloatBot:
5627   case DoubleTop:
5628   case DoubleCon:
5629   case DoubleBot:
5630   case NarrowOop:
5631   case NarrowKlass:
5632   case Bottom:                  // Ye Olde Default
5633     return Type::BOTTOM;
5634   case Top:
5635     return this;
5636 
5637   default:                      // All else is a mistake
5638     typerr(t);
5639 
5640   case AnyPtr: {                // Meeting to AnyPtrs
5641     // Found an AnyPtr type vs self-KlassPtr type
5642     const TypePtr *tp = t->is_ptr();
5643     int offset = meet_offset(tp->offset());
5644     PTR ptr = meet_ptr(tp->ptr());
5645     switch (tp->ptr()) {
5646     case TopPTR:
5647       return this;
5648     case Null:
5649       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5650     case AnyNull:
5651       return make( ptr, _elem, klass(), offset );
5652     case BotPTR:
5653     case NotNull:
5654       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5655     default: typerr(t);
5656     }
5657   }
5658 
5659   case RawPtr:
5660   case MetadataPtr:
5661   case OopPtr:
5662   case AryPtr:                  // Meet with AryPtr
5663   case InstPtr:                 // Meet with InstPtr
5664     return TypePtr::BOTTOM;
5665 
5666   //
5667   //             A-top         }
5668   //           /   |   \       }  Tops
5669   //       B-top A-any C-top   }
5670   //          | /  |  \ |      }  Any-nulls
5671   //       B-any   |   C-any   }
5672   //          |    |    |
5673   //       B-con A-con C-con   } constants; not comparable across classes
5674   //          |    |    |
5675   //       B-not   |   C-not   }
5676   //          | \  |  / |      }  not-nulls
5677   //       B-bot A-not C-bot   }
5678   //           \   |   /       }  Bottoms
5679   //             A-bot         }
5680   //
5681 
5682   case AryKlassPtr: {  // Meet two KlassPtr types
5683     const TypeAryKlassPtr *tap = t->is_aryklassptr();
5684     int off = meet_offset(tap->offset());
5685     const Type* elem = _elem->meet(tap->_elem);
5686 
5687     PTR ptr = meet_ptr(tap->ptr());
5688     ciKlass* res_klass = NULL;
5689     bool res_xk = false;
5690     meet_aryptr(ptr, elem, this->klass(), tap->klass(), this->klass_is_exact(), tap->klass_is_exact(), this->ptr(), tap->ptr(), res_klass, res_xk);
5691     assert(res_xk == (ptr == Constant), "");
5692     return make(ptr, elem, res_klass, off);
5693   } // End of case KlassPtr
5694   case InstKlassPtr: {
5695     const TypeInstKlassPtr *tp = t->is_instklassptr();
5696     int offset = meet_offset(tp->offset());
5697     PTR ptr = meet_ptr(tp->ptr());
5698 
5699     switch (ptr) {
5700     case TopPTR:
5701     case AnyNull:                // Fall 'down' to dual of object klass
5702       // For instances when a subclass meets a superclass we fall
5703       // below the centerline when the superclass is exact. We need to
5704       // do the same here.
5705       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
5706         return TypeAryKlassPtr::make(ptr, _elem, _klass, offset);
5707       } else {
5708         // cannot subclass, so the meet has to fall badly below the centerline
5709         ptr = NotNull;
5710         return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), offset);
5711       }
5712     case Constant:
5713     case NotNull:
5714     case BotPTR:                // Fall down to object klass
5715       // LCA is object_klass, but if we subclass from the top we can do better
5716       if (above_centerline(tp->ptr())) {
5717         // If 'tp'  is above the centerline and it is Object class
5718         // then we can subclass in the Java class hierarchy.
5719         // For instances when a subclass meets a superclass we fall
5720         // below the centerline when the superclass is exact. We need
5721         // to do the same here.
5722         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
5723           // that is, my array type is a subtype of 'tp' klass
5724           return make(ptr, _elem, _klass, offset);
5725         }
5726       }
5727       // The other case cannot happen, since t cannot be a subtype of an array.
5728       // The meet falls down to Object class below centerline.
5729       if (ptr == Constant)
5730          ptr = NotNull;
5731       return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), offset);
5732     default: typerr(t);
5733     }
5734   }
5735 
5736   } // End of switch
5737   return this;                  // Return the double constant
5738 }
5739 
5740 //------------------------------xdual------------------------------------------
5741 // Dual: compute field-by-field dual
5742 const Type    *TypeAryKlassPtr::xdual() const {
5743   return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset());
5744 }
5745 
5746 //------------------------------get_con----------------------------------------
5747 ciKlass* TypeAryKlassPtr::klass() const {
5748   if (_klass != NULL) {
5749     return _klass;
5750   }
5751   ciKlass* k = NULL;
5752   if (elem()->isa_klassptr()) {
5753     k = elem()->is_klassptr()->klass();
5754     if (k != NULL) {
5755       k = ciObjArrayKlass::make(k);
5756       ((TypeAryKlassPtr*)this)->_klass = k;
5757     }
5758   } else if ((elem()->base() == Type::Top) ||
5759              (elem()->base() == Type::Bottom)) {
5760   } else {
5761     k = ciTypeArrayKlass::make(elem()->basic_type());
5762   }
5763   return k;
5764 }
5765 
5766 //------------------------------dump2------------------------------------------
5767 // Dump Klass Type
5768 #ifndef PRODUCT
5769 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5770   switch( _ptr ) {
5771   case Constant:
5772     st->print("precise ");
5773   case NotNull:
5774     {
5775       st->print("[");
5776       _elem->dump2(d, depth, st);
5777       st->print(": ");
5778     }
5779   case BotPTR:
5780     if( !WizardMode && !Verbose && _ptr != Constant ) break;
5781   case TopPTR:
5782   case AnyNull:
5783     st->print(":%s", ptr_msg[_ptr]);
5784     if( _ptr == Constant ) st->print(":exact");
5785     break;
5786   default:
5787     break;
5788   }
5789 
5790   if( _offset ) {               // Dump offset, if any
5791     if( _offset == OffsetBot )      { st->print("+any"); }
5792     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5793     else                            { st->print("+%d", _offset); }
5794   }
5795 
5796   st->print(" *");
5797 }
5798 #endif
5799 
5800 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
5801   const Type* elem = this->elem();
5802   dims = 1;
5803   while (elem->isa_aryklassptr()) {
5804     elem = elem->is_aryklassptr()->elem();
5805     dims++;
5806   }
5807   return elem;
5808 }
5809 
5810 //=============================================================================
5811 // Convenience common pre-built types.
5812 
5813 //------------------------------make-------------------------------------------
5814 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5815   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5816 }
5817 
5818 //------------------------------make-------------------------------------------
5819 const TypeFunc *TypeFunc::make(ciMethod* method) {
5820   Compile* C = Compile::current();
5821   const TypeFunc* tf = C->last_tf(method); // check cache
5822   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5823   const TypeTuple *domain;
5824   if (method->is_static()) {
5825     domain = TypeTuple::make_domain(NULL, method->signature());
5826   } else {
5827     domain = TypeTuple::make_domain(method->holder(), method->signature());
5828   }
5829   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5830   tf = TypeFunc::make(domain, range);
5831   C->set_last_tf(method, tf);  // fill cache
5832   return tf;
5833 }
5834 
5835 //------------------------------meet-------------------------------------------
5836 // Compute the MEET of two types.  It returns a new Type object.
5837 const Type *TypeFunc::xmeet( const Type *t ) const {
5838   // Perform a fast test for common case; meeting the same types together.
5839   if( this == t ) return this;  // Meeting same type-rep?
5840 
5841   // Current "this->_base" is Func
5842   switch (t->base()) {          // switch on original type
5843 
5844   case Bottom:                  // Ye Olde Default
5845     return t;
5846 
5847   default:                      // All else is a mistake
5848     typerr(t);
5849 
5850   case Top:
5851     break;
5852   }
5853   return this;                  // Return the double constant
5854 }
5855 
5856 //------------------------------xdual------------------------------------------
5857 // Dual: compute field-by-field dual
5858 const Type *TypeFunc::xdual() const {
5859   return this;
5860 }
5861 
5862 //------------------------------eq---------------------------------------------
5863 // Structural equality check for Type representations
5864 bool TypeFunc::eq( const Type *t ) const {
5865   const TypeFunc *a = (const TypeFunc*)t;
5866   return _domain == a->_domain &&
5867     _range == a->_range;
5868 }
5869 
5870 //------------------------------hash-------------------------------------------
5871 // Type-specific hashing function.
5872 int TypeFunc::hash(void) const {
5873   return (intptr_t)_domain + (intptr_t)_range;
5874 }
5875 
5876 //------------------------------dump2------------------------------------------
5877 // Dump Function Type
5878 #ifndef PRODUCT
5879 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5880   if( _range->cnt() <= Parms )
5881     st->print("void");
5882   else {
5883     uint i;
5884     for (i = Parms; i < _range->cnt()-1; i++) {
5885       _range->field_at(i)->dump2(d,depth,st);
5886       st->print("/");
5887     }
5888     _range->field_at(i)->dump2(d,depth,st);
5889   }
5890   st->print(" ");
5891   st->print("( ");
5892   if( !depth || d[this] ) {     // Check for recursive dump
5893     st->print("...)");
5894     return;
5895   }
5896   d.Insert((void*)this,(void*)this);    // Stop recursion
5897   if (Parms < _domain->cnt())
5898     _domain->field_at(Parms)->dump2(d,depth-1,st);
5899   for (uint i = Parms+1; i < _domain->cnt(); i++) {
5900     st->print(", ");
5901     _domain->field_at(i)->dump2(d,depth-1,st);
5902   }
5903   st->print(" )");
5904 }
5905 #endif
5906 
5907 //------------------------------singleton--------------------------------------
5908 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5909 // constants (Ldi nodes).  Singletons are integer, float or double constants
5910 // or a single symbol.
5911 bool TypeFunc::singleton(void) const {
5912   return false;                 // Never a singleton
5913 }
5914 
5915 bool TypeFunc::empty(void) const {
5916   return false;                 // Never empty
5917 }
5918 
5919 
5920 BasicType TypeFunc::return_type() const{
5921   if (range()->cnt() == TypeFunc::Parms) {
5922     return T_VOID;
5923   }
5924   return range()->field_at(TypeFunc::Parms)->basic_type();
5925 }