1 /*
2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "ci/ciMethodData.hpp"
27 #include "ci/ciTypeFlow.hpp"
28 #include "classfile/javaClasses.hpp"
29 #include "classfile/symbolTable.hpp"
30 #include "compiler/compileLog.hpp"
31 #include "libadt/dict.hpp"
32 #include "memory/oopFactory.hpp"
33 #include "memory/resourceArea.hpp"
34 #include "oops/instanceKlass.hpp"
35 #include "oops/instanceMirrorKlass.hpp"
36 #include "oops/objArrayKlass.hpp"
37 #include "oops/typeArrayKlass.hpp"
38 #include "opto/matcher.hpp"
39 #include "opto/node.hpp"
40 #include "opto/opcodes.hpp"
41 #include "opto/type.hpp"
42 #include "utilities/powerOfTwo.hpp"
43 #include "utilities/stringUtils.hpp"
44
45 // Portions of code courtesy of Clifford Click
46
47 // Optimization - Graph Style
48
49 // Dictionary of types shared among compilations.
50 Dict* Type::_shared_type_dict = NULL;
51
52 // Array which maps compiler types to Basic Types
53 const Type::TypeInfo Type::_type_info[Type::lastype] = {
54 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad
55 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control
56 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top
57 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int
58 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long
59 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half
60 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop
61 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass
62 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple
63 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array
64
65 #if defined(PPC64)
66 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask.
67 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA.
68 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
69 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
70 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
71 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
72 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ
73 #elif defined(S390)
74 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask.
75 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA.
76 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS
77 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD
78 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX
79 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY
80 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ
81 #else // all other
82 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask.
83 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA.
84 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS
85 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD
86 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX
87 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY
88 { Bad, T_ILLEGAL, "vectorz:", false, Op_VecZ, relocInfo::none }, // VectorZ
89 #endif
90 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr
91 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr
92 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr
93 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr
94 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr
95 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr
96 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr
97 { Bad, T_METADATA, "instklass:", false, Op_RegP, relocInfo::metadata_type }, // InstKlassPtr
98 { Bad, T_METADATA, "aryklass:", false, Op_RegP, relocInfo::metadata_type }, // AryKlassPtr
99 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function
100 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio
101 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address
102 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory
103 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop
104 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon
105 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot
106 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop
107 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon
108 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot
109 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom
110 };
111
112 // Map ideal registers (machine types) to ideal types
113 const Type *Type::mreg2type[_last_machine_leaf];
114
115 // Map basic types to canonical Type* pointers.
116 const Type* Type:: _const_basic_type[T_CONFLICT+1];
117
118 // Map basic types to constant-zero Types.
119 const Type* Type:: _zero_type[T_CONFLICT+1];
120
121 // Map basic types to array-body alias types.
122 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
123 const TypePtr::InterfaceSet* TypeAryPtr::_array_interfaces = NULL;
124 const TypePtr::InterfaceSet* TypeAryKlassPtr::_array_interfaces = NULL;
125
126 //=============================================================================
127 // Convenience common pre-built types.
128 const Type *Type::ABIO; // State-of-machine only
129 const Type *Type::BOTTOM; // All values
130 const Type *Type::CONTROL; // Control only
131 const Type *Type::DOUBLE; // All doubles
132 const Type *Type::FLOAT; // All floats
133 const Type *Type::HALF; // Placeholder half of doublewide type
134 const Type *Type::MEMORY; // Abstract store only
135 const Type *Type::RETURN_ADDRESS;
136 const Type *Type::TOP; // No values in set
137
138 //------------------------------get_const_type---------------------------
139 const Type* Type::get_const_type(ciType* type, InterfaceHandling interface_handling) {
140 if (type == NULL) {
141 return NULL;
142 } else if (type->is_primitive_type()) {
143 return get_const_basic_type(type->basic_type());
144 } else {
145 return TypeOopPtr::make_from_klass(type->as_klass(), interface_handling);
146 }
147 }
148
149 //---------------------------array_element_basic_type---------------------------------
150 // Mapping to the array element's basic type.
151 BasicType Type::array_element_basic_type() const {
152 BasicType bt = basic_type();
153 if (bt == T_INT) {
154 if (this == TypeInt::INT) return T_INT;
155 if (this == TypeInt::CHAR) return T_CHAR;
156 if (this == TypeInt::BYTE) return T_BYTE;
157 if (this == TypeInt::BOOL) return T_BOOLEAN;
158 if (this == TypeInt::SHORT) return T_SHORT;
159 return T_VOID;
160 }
161 return bt;
162 }
163
164 // For two instance arrays of same dimension, return the base element types.
165 // Otherwise or if the arrays have different dimensions, return NULL.
166 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
167 const TypeInstPtr **e1, const TypeInstPtr **e2) {
168
169 if (e1) *e1 = NULL;
170 if (e2) *e2 = NULL;
171 const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
172 const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
173
174 if (a1tap != NULL && a2tap != NULL) {
175 // Handle multidimensional arrays
176 const TypePtr* a1tp = a1tap->elem()->make_ptr();
177 const TypePtr* a2tp = a2tap->elem()->make_ptr();
178 while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
179 a1tap = a1tp->is_aryptr();
180 a2tap = a2tp->is_aryptr();
181 a1tp = a1tap->elem()->make_ptr();
182 a2tp = a2tap->elem()->make_ptr();
183 }
184 if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
185 if (e1) *e1 = a1tp->is_instptr();
186 if (e2) *e2 = a2tp->is_instptr();
187 }
188 }
189 }
190
191 //---------------------------get_typeflow_type---------------------------------
192 // Import a type produced by ciTypeFlow.
193 const Type* Type::get_typeflow_type(ciType* type) {
194 switch (type->basic_type()) {
195
196 case ciTypeFlow::StateVector::T_BOTTOM:
197 assert(type == ciTypeFlow::StateVector::bottom_type(), "");
198 return Type::BOTTOM;
199
200 case ciTypeFlow::StateVector::T_TOP:
201 assert(type == ciTypeFlow::StateVector::top_type(), "");
202 return Type::TOP;
203
204 case ciTypeFlow::StateVector::T_NULL:
205 assert(type == ciTypeFlow::StateVector::null_type(), "");
206 return TypePtr::NULL_PTR;
207
208 case ciTypeFlow::StateVector::T_LONG2:
209 // The ciTypeFlow pass pushes a long, then the half.
210 // We do the same.
211 assert(type == ciTypeFlow::StateVector::long2_type(), "");
212 return TypeInt::TOP;
213
214 case ciTypeFlow::StateVector::T_DOUBLE2:
215 // The ciTypeFlow pass pushes double, then the half.
216 // Our convention is the same.
217 assert(type == ciTypeFlow::StateVector::double2_type(), "");
218 return Type::TOP;
219
220 case T_ADDRESS:
221 assert(type->is_return_address(), "");
222 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
223
224 default:
225 // make sure we did not mix up the cases:
226 assert(type != ciTypeFlow::StateVector::bottom_type(), "");
227 assert(type != ciTypeFlow::StateVector::top_type(), "");
228 assert(type != ciTypeFlow::StateVector::null_type(), "");
229 assert(type != ciTypeFlow::StateVector::long2_type(), "");
230 assert(type != ciTypeFlow::StateVector::double2_type(), "");
231 assert(!type->is_return_address(), "");
232
233 return Type::get_const_type(type);
234 }
235 }
236
237
238 //-----------------------make_from_constant------------------------------------
239 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
240 int stable_dimension, bool is_narrow_oop,
241 bool is_autobox_cache) {
242 switch (constant.basic_type()) {
243 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
244 case T_CHAR: return TypeInt::make(constant.as_char());
245 case T_BYTE: return TypeInt::make(constant.as_byte());
246 case T_SHORT: return TypeInt::make(constant.as_short());
247 case T_INT: return TypeInt::make(constant.as_int());
248 case T_LONG: return TypeLong::make(constant.as_long());
249 case T_FLOAT: return TypeF::make(constant.as_float());
250 case T_DOUBLE: return TypeD::make(constant.as_double());
251 case T_ARRAY:
252 case T_OBJECT: {
253 const Type* con_type = NULL;
254 ciObject* oop_constant = constant.as_object();
255 if (oop_constant->is_null_object()) {
256 con_type = Type::get_zero_type(T_OBJECT);
257 } else {
258 guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
259 con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
260 if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
261 con_type = con_type->is_aryptr()->cast_to_autobox_cache();
262 }
263 if (stable_dimension > 0) {
264 assert(FoldStableValues, "sanity");
265 assert(!con_type->is_zero_type(), "default value for stable field");
266 con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
267 }
268 }
269 if (is_narrow_oop) {
270 con_type = con_type->make_narrowoop();
271 }
272 return con_type;
273 }
274 case T_ILLEGAL:
275 // Invalid ciConstant returned due to OutOfMemoryError in the CI
276 assert(Compile::current()->env()->failing(), "otherwise should not see this");
277 return NULL;
278 default:
279 // Fall through to failure
280 return NULL;
281 }
282 }
283
284 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
285 BasicType conbt = con.basic_type();
286 switch (conbt) {
287 case T_BOOLEAN: conbt = T_BYTE; break;
288 case T_ARRAY: conbt = T_OBJECT; break;
289 default: break;
290 }
291 switch (loadbt) {
292 case T_BOOLEAN: loadbt = T_BYTE; break;
293 case T_NARROWOOP: loadbt = T_OBJECT; break;
294 case T_ARRAY: loadbt = T_OBJECT; break;
295 case T_ADDRESS: loadbt = T_OBJECT; break;
296 default: break;
297 }
298 if (conbt == loadbt) {
299 if (is_unsigned && conbt == T_BYTE) {
300 // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
301 return ciConstant(T_INT, con.as_int() & 0xFF);
302 } else {
303 return con;
304 }
305 }
306 if (conbt == T_SHORT && loadbt == T_CHAR) {
307 // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
308 return ciConstant(T_INT, con.as_int() & 0xFFFF);
309 }
310 return ciConstant(); // T_ILLEGAL
311 }
312
313 // Try to constant-fold a stable array element.
314 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
315 BasicType loadbt, bool is_unsigned_load) {
316 // Decode the results of GraphKit::array_element_address.
317 ciConstant element_value = array->element_value_by_offset(off);
318 if (element_value.basic_type() == T_ILLEGAL) {
319 return NULL; // wrong offset
320 }
321 ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
322
323 assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
324 type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
325
326 if (con.is_valid() && // not a mismatched access
327 !con.is_null_or_zero()) { // not a default value
328 bool is_narrow_oop = (loadbt == T_NARROWOOP);
329 return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
330 }
331 return NULL;
332 }
333
334 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
335 ciField* field;
336 ciType* type = holder->java_mirror_type();
337 if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
338 // Static field
339 field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
340 } else {
341 // Instance field
342 field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
343 }
344 if (field == NULL) {
345 return NULL; // Wrong offset
346 }
347 return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
348 }
349
350 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
351 BasicType loadbt, bool is_unsigned_load) {
352 if (!field->is_constant()) {
353 return NULL; // Non-constant field
354 }
355 ciConstant field_value;
356 if (field->is_static()) {
357 // final static field
358 field_value = field->constant_value();
359 } else if (holder != NULL) {
360 // final or stable non-static field
361 // Treat final non-static fields of trusted classes (classes in
362 // java.lang.invoke and sun.invoke packages and subpackages) as
363 // compile time constants.
364 field_value = field->constant_value_of(holder);
365 }
366 if (!field_value.is_valid()) {
367 return NULL; // Not a constant
368 }
369
370 ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
371
372 assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
373 type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
374
375 bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
376 int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
377 bool is_narrow_oop = (loadbt == T_NARROWOOP);
378
379 const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
380 stable_dimension, is_narrow_oop,
381 field->is_autobox_cache());
382 if (con_type != NULL && field->is_call_site_target()) {
383 ciCallSite* call_site = holder->as_call_site();
384 if (!call_site->is_fully_initialized_constant_call_site()) {
385 ciMethodHandle* target = con.as_object()->as_method_handle();
386 Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
387 }
388 }
389 return con_type;
390 }
391
392 //------------------------------make-------------------------------------------
393 // Create a simple Type, with default empty symbol sets. Then hashcons it
394 // and look for an existing copy in the type dictionary.
395 const Type *Type::make( enum TYPES t ) {
396 return (new Type(t))->hashcons();
397 }
398
399 //------------------------------cmp--------------------------------------------
400 int Type::cmp( const Type *const t1, const Type *const t2 ) {
401 if( t1->_base != t2->_base )
402 return 1; // Missed badly
403 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
404 return !t1->eq(t2); // Return ZERO if equal
405 }
406
407 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
408 if (!include_speculative) {
409 return remove_speculative();
410 }
411 return this;
412 }
413
414 //------------------------------hash-------------------------------------------
415 int Type::uhash( const Type *const t ) {
416 return t->hash();
417 }
418
419 #define SMALLINT ((juint)3) // a value too insignificant to consider widening
420 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite
421 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite
422
423 //--------------------------Initialize_shared----------------------------------
424 void Type::Initialize_shared(Compile* current) {
425 // This method does not need to be locked because the first system
426 // compilations (stub compilations) occur serially. If they are
427 // changed to proceed in parallel, then this section will need
428 // locking.
429
430 Arena* save = current->type_arena();
431 Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
432
433 current->set_type_arena(shared_type_arena);
434 _shared_type_dict =
435 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
436 shared_type_arena, 128 );
437 current->set_type_dict(_shared_type_dict);
438
439 // Make shared pre-built types.
440 CONTROL = make(Control); // Control only
441 TOP = make(Top); // No values in set
442 MEMORY = make(Memory); // Abstract store only
443 ABIO = make(Abio); // State-of-machine only
444 RETURN_ADDRESS=make(Return_Address);
445 FLOAT = make(FloatBot); // All floats
446 DOUBLE = make(DoubleBot); // All doubles
447 BOTTOM = make(Bottom); // Everything
448 HALF = make(Half); // Placeholder half of doublewide type
449
450 TypeF::MAX = TypeF::make(max_jfloat); // Float MAX
451 TypeF::MIN = TypeF::make(min_jfloat); // Float MIN
452 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
453 TypeF::ONE = TypeF::make(1.0); // Float 1
454 TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F));
455 TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F));
456
457 TypeD::MAX = TypeD::make(max_jdouble); // Double MAX
458 TypeD::MIN = TypeD::make(min_jdouble); // Double MIN
459 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
460 TypeD::ONE = TypeD::make(1.0); // Double 1
461 TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D));
462 TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D));
463
464 TypeInt::MAX = TypeInt::make(max_jint); // Int MAX
465 TypeInt::MIN = TypeInt::make(min_jint); // Int MIN
466 TypeInt::MINUS_1 = TypeInt::make(-1); // -1
467 TypeInt::ZERO = TypeInt::make( 0); // 0
468 TypeInt::ONE = TypeInt::make( 1); // 1
469 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE.
470 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes
471 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1
472 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE
473 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO
474 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin);
475 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL
476 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes
477 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes
478 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars
479 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts
480 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values
481 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values
482 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
483 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
484 TypeInt::TYPE_DOMAIN = TypeInt::INT;
485 // CmpL is overloaded both as the bytecode computation returning
486 // a trinary (-1,0,+1) integer result AND as an efficient long
487 // compare returning optimizer ideal-type flags.
488 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
489 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" );
490 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" );
491 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" );
492 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
493
494 TypeLong::MAX = TypeLong::make(max_jlong); // Long MAX
495 TypeLong::MIN = TypeLong::make(min_jlong); // Long MIN
496 TypeLong::MINUS_1 = TypeLong::make(-1); // -1
497 TypeLong::ZERO = TypeLong::make( 0); // 0
498 TypeLong::ONE = TypeLong::make( 1); // 1
499 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
500 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
501 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
502 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin);
503 TypeLong::TYPE_DOMAIN = TypeLong::LONG;
504
505 const Type **fboth =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
506 fboth[0] = Type::CONTROL;
507 fboth[1] = Type::CONTROL;
508 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
509
510 const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
511 ffalse[0] = Type::CONTROL;
512 ffalse[1] = Type::TOP;
513 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
514
515 const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
516 fneither[0] = Type::TOP;
517 fneither[1] = Type::TOP;
518 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
519
520 const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
521 ftrue[0] = Type::TOP;
522 ftrue[1] = Type::CONTROL;
523 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
524
525 const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
526 floop[0] = Type::CONTROL;
527 floop[1] = TypeInt::INT;
528 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
529
530 TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
531 TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
532 TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
533
534 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
535 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
536
537 const Type **fmembar = TypeTuple::fields(0);
538 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
539
540 const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*));
541 fsc[0] = TypeInt::CC;
542 fsc[1] = Type::MEMORY;
543 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
544
545 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
546 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass());
547 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
548 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
549 false, 0, oopDesc::mark_offset_in_bytes());
550 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(),
551 false, 0, oopDesc::klass_offset_in_bytes());
552 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
553
554 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
555
556 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
557 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
558
559 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
560
561 mreg2type[Op_Node] = Type::BOTTOM;
562 mreg2type[Op_Set ] = 0;
563 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
564 mreg2type[Op_RegI] = TypeInt::INT;
565 mreg2type[Op_RegP] = TypePtr::BOTTOM;
566 mreg2type[Op_RegF] = Type::FLOAT;
567 mreg2type[Op_RegD] = Type::DOUBLE;
568 mreg2type[Op_RegL] = TypeLong::LONG;
569 mreg2type[Op_RegFlags] = TypeInt::CC;
570
571 GrowableArray<ciInstanceKlass*> array_interfaces;
572 array_interfaces.push(current->env()->Cloneable_klass());
573 array_interfaces.push(current->env()->Serializable_klass());
574 TypeAryPtr::_array_interfaces = new TypePtr::InterfaceSet(&array_interfaces);
575 TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces;
576
577 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
578
579 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
580
581 #ifdef _LP64
582 if (UseCompressedOops) {
583 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
584 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS;
585 } else
586 #endif
587 {
588 // There is no shared klass for Object[]. See note in TypeAryPtr::klass().
589 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot);
590 }
591 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot);
592 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot);
593 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot);
594 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot);
595 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot);
596 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot);
597 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot);
598
599 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
600 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
601 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS;
602 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays
603 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES;
604 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array
605 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS;
606 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS;
607 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS;
608 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS;
609 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS;
610 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES;
611
612 TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0);
613 TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0);
614
615 const Type **fi2c = TypeTuple::fields(2);
616 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
617 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
618 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
619
620 const Type **intpair = TypeTuple::fields(2);
621 intpair[0] = TypeInt::INT;
622 intpair[1] = TypeInt::INT;
623 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
624
625 const Type **longpair = TypeTuple::fields(2);
626 longpair[0] = TypeLong::LONG;
627 longpair[1] = TypeLong::LONG;
628 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
629
630 const Type **intccpair = TypeTuple::fields(2);
631 intccpair[0] = TypeInt::INT;
632 intccpair[1] = TypeInt::CC;
633 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
634
635 const Type **longccpair = TypeTuple::fields(2);
636 longccpair[0] = TypeLong::LONG;
637 longccpair[1] = TypeInt::CC;
638 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
639
640 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM;
641 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
642 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL;
643 _const_basic_type[T_CHAR] = TypeInt::CHAR;
644 _const_basic_type[T_BYTE] = TypeInt::BYTE;
645 _const_basic_type[T_SHORT] = TypeInt::SHORT;
646 _const_basic_type[T_INT] = TypeInt::INT;
647 _const_basic_type[T_LONG] = TypeLong::LONG;
648 _const_basic_type[T_FLOAT] = Type::FLOAT;
649 _const_basic_type[T_DOUBLE] = Type::DOUBLE;
650 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM;
651 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
652 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way
653 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs
654 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not?
655
656 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR;
657 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
658 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0
659 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0
660 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0
661 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0
662 _zero_type[T_INT] = TypeInt::ZERO;
663 _zero_type[T_LONG] = TypeLong::ZERO;
664 _zero_type[T_FLOAT] = TypeF::ZERO;
665 _zero_type[T_DOUBLE] = TypeD::ZERO;
666 _zero_type[T_OBJECT] = TypePtr::NULL_PTR;
667 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop
668 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null
669 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all
670
671 // get_zero_type() should not happen for T_CONFLICT
672 _zero_type[T_CONFLICT]= NULL;
673
674 TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(TypeInt::BOOL, MaxVectorSize))->hashcons();
675 mreg2type[Op_RegVectMask] = TypeVect::VECTMASK;
676
677 if (Matcher::supports_scalable_vector()) {
678 TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE));
679 }
680
681 // Vector predefined types, it needs initialized _const_basic_type[].
682 if (Matcher::vector_size_supported(T_BYTE,4)) {
683 TypeVect::VECTS = TypeVect::make(T_BYTE,4);
684 }
685 if (Matcher::vector_size_supported(T_FLOAT,2)) {
686 TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
687 }
688 if (Matcher::vector_size_supported(T_FLOAT,4)) {
689 TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
690 }
691 if (Matcher::vector_size_supported(T_FLOAT,8)) {
692 TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
693 }
694 if (Matcher::vector_size_supported(T_FLOAT,16)) {
695 TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
696 }
697
698 mreg2type[Op_VecA] = TypeVect::VECTA;
699 mreg2type[Op_VecS] = TypeVect::VECTS;
700 mreg2type[Op_VecD] = TypeVect::VECTD;
701 mreg2type[Op_VecX] = TypeVect::VECTX;
702 mreg2type[Op_VecY] = TypeVect::VECTY;
703 mreg2type[Op_VecZ] = TypeVect::VECTZ;
704
705 // Restore working type arena.
706 current->set_type_arena(save);
707 current->set_type_dict(NULL);
708 }
709
710 //------------------------------Initialize-------------------------------------
711 void Type::Initialize(Compile* current) {
712 assert(current->type_arena() != NULL, "must have created type arena");
713
714 if (_shared_type_dict == NULL) {
715 Initialize_shared(current);
716 }
717
718 Arena* type_arena = current->type_arena();
719
720 // Create the hash-cons'ing dictionary with top-level storage allocation
721 Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena);
722 current->set_type_dict(tdic);
723 }
724
725 //------------------------------hashcons---------------------------------------
726 // Do the hash-cons trick. If the Type already exists in the type table,
727 // delete the current Type and return the existing Type. Otherwise stick the
728 // current Type in the Type table.
729 const Type *Type::hashcons(void) {
730 debug_only(base()); // Check the assertion in Type::base().
731 // Look up the Type in the Type dictionary
732 Dict *tdic = type_dict();
733 Type* old = (Type*)(tdic->Insert(this, this, false));
734 if( old ) { // Pre-existing Type?
735 if( old != this ) // Yes, this guy is not the pre-existing?
736 delete this; // Yes, Nuke this guy
737 assert( old->_dual, "" );
738 return old; // Return pre-existing
739 }
740
741 // Every type has a dual (to make my lattice symmetric).
742 // Since we just discovered a new Type, compute its dual right now.
743 assert( !_dual, "" ); // No dual yet
744 _dual = xdual(); // Compute the dual
745 if (cmp(this, _dual) == 0) { // Handle self-symmetric
746 if (_dual != this) {
747 delete _dual;
748 _dual = this;
749 }
750 return this;
751 }
752 assert( !_dual->_dual, "" ); // No reverse dual yet
753 assert( !(*tdic)[_dual], "" ); // Dual not in type system either
754 // New Type, insert into Type table
755 tdic->Insert((void*)_dual,(void*)_dual);
756 ((Type*)_dual)->_dual = this; // Finish up being symmetric
757 #ifdef ASSERT
758 Type *dual_dual = (Type*)_dual->xdual();
759 assert( eq(dual_dual), "xdual(xdual()) should be identity" );
760 delete dual_dual;
761 #endif
762 return this; // Return new Type
763 }
764
765 //------------------------------eq---------------------------------------------
766 // Structural equality check for Type representations
767 bool Type::eq( const Type * ) const {
768 return true; // Nothing else can go wrong
769 }
770
771 //------------------------------hash-------------------------------------------
772 // Type-specific hashing function.
773 int Type::hash(void) const {
774 return _base;
775 }
776
777 //------------------------------is_finite--------------------------------------
778 // Has a finite value
779 bool Type::is_finite() const {
780 return false;
781 }
782
783 //------------------------------is_nan-----------------------------------------
784 // Is not a number (NaN)
785 bool Type::is_nan() const {
786 return false;
787 }
788
789 void Type::check_symmetrical(const Type* t, const Type* mt) const {
790 #ifdef ASSERT
791 const Type* mt2 = t->xmeet(this);
792 if (mt != mt2) {
793 tty->print_cr("=== Meet Not Commutative ===");
794 tty->print("t = "); t->dump(); tty->cr();
795 tty->print("this = "); dump(); tty->cr();
796 tty->print("t meet this = "); mt2->dump(); tty->cr();
797 tty->print("this meet t = "); mt->dump(); tty->cr();
798 fatal("meet not commutative");
799 }
800 const Type* dual_join = mt->_dual;
801 const Type* t2t = dual_join->xmeet(t->_dual);
802 const Type* t2this = dual_join->xmeet(this->_dual);
803
804 // Interface meet Oop is Not Symmetric:
805 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
806 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
807
808 if (t2t != t->_dual || t2this != this->_dual) {
809 tty->print_cr("=== Meet Not Symmetric ===");
810 tty->print("t = "); t->dump(); tty->cr();
811 tty->print("this= "); dump(); tty->cr();
812 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr();
813
814 tty->print("t_dual= "); t->_dual->dump(); tty->cr();
815 tty->print("this_dual= "); _dual->dump(); tty->cr();
816 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr();
817
818 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr();
819 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr();
820
821 fatal("meet not symmetric");
822 }
823 #endif
824 }
825
826 //------------------------------meet-------------------------------------------
827 // Compute the MEET of two types. NOT virtual. It enforces that meet is
828 // commutative and the lattice is symmetric.
829 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
830 if (isa_narrowoop() && t->isa_narrowoop()) {
831 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
832 return result->make_narrowoop();
833 }
834 if (isa_narrowklass() && t->isa_narrowklass()) {
835 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
836 return result->make_narrowklass();
837 }
838
839 const Type *this_t = maybe_remove_speculative(include_speculative);
840 t = t->maybe_remove_speculative(include_speculative);
841
842 const Type *mt = this_t->xmeet(t);
843 #ifdef ASSERT
844 if (isa_narrowoop() || t->isa_narrowoop()) return mt;
845 if (isa_narrowklass() || t->isa_narrowklass()) return mt;
846 Compile* C = Compile::current();
847 if (!C->_type_verify_symmetry) {
848 return mt;
849 }
850 this_t->check_symmetrical(t, mt);
851 // In the case of an array, computing the meet above, caused the
852 // computation of the meet of the elements which at verification
853 // time caused the computation of the meet of the dual of the
854 // elements. Computing the meet of the dual of the arrays here
855 // causes the meet of the dual of the elements to be computed which
856 // would cause the meet of the dual of the dual of the elements,
857 // that is the meet of the elements already computed above to be
858 // computed. Avoid redundant computations by requesting no
859 // verification.
860 C->_type_verify_symmetry = false;
861 const Type *mt_dual = this_t->_dual->xmeet(t->_dual);
862 this_t->_dual->check_symmetrical(t->_dual, mt_dual);
863 assert(!C->_type_verify_symmetry, "shouldn't have changed");
864 C->_type_verify_symmetry = true;
865 #endif
866 return mt;
867 }
868
869 //------------------------------xmeet------------------------------------------
870 // Compute the MEET of two types. It returns a new Type object.
871 const Type *Type::xmeet( const Type *t ) const {
872 // Perform a fast test for common case; meeting the same types together.
873 if( this == t ) return this; // Meeting same type-rep?
874
875 // Meeting TOP with anything?
876 if( _base == Top ) return t;
877
878 // Meeting BOTTOM with anything?
879 if( _base == Bottom ) return BOTTOM;
880
881 // Current "this->_base" is one of: Bad, Multi, Control, Top,
882 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
883 switch (t->base()) { // Switch on original type
884
885 // Cut in half the number of cases I must handle. Only need cases for when
886 // the given enum "t->type" is less than or equal to the local enum "type".
887 case FloatCon:
888 case DoubleCon:
889 case Int:
890 case Long:
891 return t->xmeet(this);
892
893 case OopPtr:
894 return t->xmeet(this);
895
896 case InstPtr:
897 return t->xmeet(this);
898
899 case MetadataPtr:
900 case KlassPtr:
901 case InstKlassPtr:
902 case AryKlassPtr:
903 return t->xmeet(this);
904
905 case AryPtr:
906 return t->xmeet(this);
907
908 case NarrowOop:
909 return t->xmeet(this);
910
911 case NarrowKlass:
912 return t->xmeet(this);
913
914 case Bad: // Type check
915 default: // Bogus type not in lattice
916 typerr(t);
917 return Type::BOTTOM;
918
919 case Bottom: // Ye Olde Default
920 return t;
921
922 case FloatTop:
923 if( _base == FloatTop ) return this;
924 case FloatBot: // Float
925 if( _base == FloatBot || _base == FloatTop ) return FLOAT;
926 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
927 typerr(t);
928 return Type::BOTTOM;
929
930 case DoubleTop:
931 if( _base == DoubleTop ) return this;
932 case DoubleBot: // Double
933 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
934 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
935 typerr(t);
936 return Type::BOTTOM;
937
938 // These next few cases must match exactly or it is a compile-time error.
939 case Control: // Control of code
940 case Abio: // State of world outside of program
941 case Memory:
942 if( _base == t->_base ) return this;
943 typerr(t);
944 return Type::BOTTOM;
945
946 case Top: // Top of the lattice
947 return this;
948 }
949
950 // The type is unchanged
951 return this;
952 }
953
954 //-----------------------------filter------------------------------------------
955 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
956 const Type* ft = join_helper(kills, include_speculative);
957 if (ft->empty())
958 return Type::TOP; // Canonical empty value
959 return ft;
960 }
961
962 //------------------------------xdual------------------------------------------
963 const Type *Type::xdual() const {
964 // Note: the base() accessor asserts the sanity of _base.
965 assert(_type_info[base()].dual_type != Bad, "implement with v-call");
966 return new Type(_type_info[_base].dual_type);
967 }
968
969 //------------------------------has_memory-------------------------------------
970 bool Type::has_memory() const {
971 Type::TYPES tx = base();
972 if (tx == Memory) return true;
973 if (tx == Tuple) {
974 const TypeTuple *t = is_tuple();
975 for (uint i=0; i < t->cnt(); i++) {
976 tx = t->field_at(i)->base();
977 if (tx == Memory) return true;
978 }
979 }
980 return false;
981 }
982
983 #ifndef PRODUCT
984 //------------------------------dump2------------------------------------------
985 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
986 st->print("%s", _type_info[_base].msg);
987 }
988
989 //------------------------------dump-------------------------------------------
990 void Type::dump_on(outputStream *st) const {
991 ResourceMark rm;
992 Dict d(cmpkey,hashkey); // Stop recursive type dumping
993 dump2(d,1, st);
994 if (is_ptr_to_narrowoop()) {
995 st->print(" [narrow]");
996 } else if (is_ptr_to_narrowklass()) {
997 st->print(" [narrowklass]");
998 }
999 }
1000
1001 //-----------------------------------------------------------------------------
1002 const char* Type::str(const Type* t) {
1003 stringStream ss;
1004 t->dump_on(&ss);
1005 return ss.as_string();
1006 }
1007 #endif
1008
1009 //------------------------------singleton--------------------------------------
1010 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1011 // constants (Ldi nodes). Singletons are integer, float or double constants.
1012 bool Type::singleton(void) const {
1013 return _base == Top || _base == Half;
1014 }
1015
1016 //------------------------------empty------------------------------------------
1017 // TRUE if Type is a type with no values, FALSE otherwise.
1018 bool Type::empty(void) const {
1019 switch (_base) {
1020 case DoubleTop:
1021 case FloatTop:
1022 case Top:
1023 return true;
1024
1025 case Half:
1026 case Abio:
1027 case Return_Address:
1028 case Memory:
1029 case Bottom:
1030 case FloatBot:
1031 case DoubleBot:
1032 return false; // never a singleton, therefore never empty
1033
1034 default:
1035 ShouldNotReachHere();
1036 return false;
1037 }
1038 }
1039
1040 //------------------------------dump_stats-------------------------------------
1041 // Dump collected statistics to stderr
1042 #ifndef PRODUCT
1043 void Type::dump_stats() {
1044 tty->print("Types made: %d\n", type_dict()->Size());
1045 }
1046 #endif
1047
1048 //------------------------------category---------------------------------------
1049 #ifndef PRODUCT
1050 Type::Category Type::category() const {
1051 const TypeTuple* tuple;
1052 switch (base()) {
1053 case Type::Int:
1054 case Type::Long:
1055 case Type::Half:
1056 case Type::NarrowOop:
1057 case Type::NarrowKlass:
1058 case Type::Array:
1059 case Type::VectorA:
1060 case Type::VectorS:
1061 case Type::VectorD:
1062 case Type::VectorX:
1063 case Type::VectorY:
1064 case Type::VectorZ:
1065 case Type::VectorMask:
1066 case Type::AnyPtr:
1067 case Type::RawPtr:
1068 case Type::OopPtr:
1069 case Type::InstPtr:
1070 case Type::AryPtr:
1071 case Type::MetadataPtr:
1072 case Type::KlassPtr:
1073 case Type::InstKlassPtr:
1074 case Type::AryKlassPtr:
1075 case Type::Function:
1076 case Type::Return_Address:
1077 case Type::FloatTop:
1078 case Type::FloatCon:
1079 case Type::FloatBot:
1080 case Type::DoubleTop:
1081 case Type::DoubleCon:
1082 case Type::DoubleBot:
1083 return Category::Data;
1084 case Type::Memory:
1085 return Category::Memory;
1086 case Type::Control:
1087 return Category::Control;
1088 case Type::Top:
1089 case Type::Abio:
1090 case Type::Bottom:
1091 return Category::Other;
1092 case Type::Bad:
1093 case Type::lastype:
1094 return Category::Undef;
1095 case Type::Tuple:
1096 // Recursive case. Return CatMixed if the tuple contains types of
1097 // different categories (e.g. CallStaticJavaNode's type), or the specific
1098 // category if all types are of the same category (e.g. IfNode's type).
1099 tuple = is_tuple();
1100 if (tuple->cnt() == 0) {
1101 return Category::Undef;
1102 } else {
1103 Category first = tuple->field_at(0)->category();
1104 for (uint i = 1; i < tuple->cnt(); i++) {
1105 if (tuple->field_at(i)->category() != first) {
1106 return Category::Mixed;
1107 }
1108 }
1109 return first;
1110 }
1111 default:
1112 assert(false, "unmatched base type: all base types must be categorized");
1113 }
1114 return Category::Undef;
1115 }
1116
1117 bool Type::has_category(Type::Category cat) const {
1118 if (category() == cat) {
1119 return true;
1120 }
1121 if (category() == Category::Mixed) {
1122 const TypeTuple* tuple = is_tuple();
1123 for (uint i = 0; i < tuple->cnt(); i++) {
1124 if (tuple->field_at(i)->has_category(cat)) {
1125 return true;
1126 }
1127 }
1128 }
1129 return false;
1130 }
1131 #endif
1132
1133 //------------------------------typerr-----------------------------------------
1134 void Type::typerr( const Type *t ) const {
1135 #ifndef PRODUCT
1136 tty->print("\nError mixing types: ");
1137 dump();
1138 tty->print(" and ");
1139 t->dump();
1140 tty->print("\n");
1141 #endif
1142 ShouldNotReachHere();
1143 }
1144
1145
1146 //=============================================================================
1147 // Convenience common pre-built types.
1148 const TypeF *TypeF::MAX; // Floating point max
1149 const TypeF *TypeF::MIN; // Floating point min
1150 const TypeF *TypeF::ZERO; // Floating point zero
1151 const TypeF *TypeF::ONE; // Floating point one
1152 const TypeF *TypeF::POS_INF; // Floating point positive infinity
1153 const TypeF *TypeF::NEG_INF; // Floating point negative infinity
1154
1155 //------------------------------make-------------------------------------------
1156 // Create a float constant
1157 const TypeF *TypeF::make(float f) {
1158 return (TypeF*)(new TypeF(f))->hashcons();
1159 }
1160
1161 //------------------------------meet-------------------------------------------
1162 // Compute the MEET of two types. It returns a new Type object.
1163 const Type *TypeF::xmeet( const Type *t ) const {
1164 // Perform a fast test for common case; meeting the same types together.
1165 if( this == t ) return this; // Meeting same type-rep?
1166
1167 // Current "this->_base" is FloatCon
1168 switch (t->base()) { // Switch on original type
1169 case AnyPtr: // Mixing with oops happens when javac
1170 case RawPtr: // reuses local variables
1171 case OopPtr:
1172 case InstPtr:
1173 case AryPtr:
1174 case MetadataPtr:
1175 case KlassPtr:
1176 case InstKlassPtr:
1177 case AryKlassPtr:
1178 case NarrowOop:
1179 case NarrowKlass:
1180 case Int:
1181 case Long:
1182 case DoubleTop:
1183 case DoubleCon:
1184 case DoubleBot:
1185 case Bottom: // Ye Olde Default
1186 return Type::BOTTOM;
1187
1188 case FloatBot:
1189 return t;
1190
1191 default: // All else is a mistake
1192 typerr(t);
1193
1194 case FloatCon: // Float-constant vs Float-constant?
1195 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants?
1196 // must compare bitwise as positive zero, negative zero and NaN have
1197 // all the same representation in C++
1198 return FLOAT; // Return generic float
1199 // Equal constants
1200 case Top:
1201 case FloatTop:
1202 break; // Return the float constant
1203 }
1204 return this; // Return the float constant
1205 }
1206
1207 //------------------------------xdual------------------------------------------
1208 // Dual: symmetric
1209 const Type *TypeF::xdual() const {
1210 return this;
1211 }
1212
1213 //------------------------------eq---------------------------------------------
1214 // Structural equality check for Type representations
1215 bool TypeF::eq(const Type *t) const {
1216 // Bitwise comparison to distinguish between +/-0. These values must be treated
1217 // as different to be consistent with C1 and the interpreter.
1218 return (jint_cast(_f) == jint_cast(t->getf()));
1219 }
1220
1221 //------------------------------hash-------------------------------------------
1222 // Type-specific hashing function.
1223 int TypeF::hash(void) const {
1224 return *(int*)(&_f);
1225 }
1226
1227 //------------------------------is_finite--------------------------------------
1228 // Has a finite value
1229 bool TypeF::is_finite() const {
1230 return g_isfinite(getf()) != 0;
1231 }
1232
1233 //------------------------------is_nan-----------------------------------------
1234 // Is not a number (NaN)
1235 bool TypeF::is_nan() const {
1236 return g_isnan(getf()) != 0;
1237 }
1238
1239 //------------------------------dump2------------------------------------------
1240 // Dump float constant Type
1241 #ifndef PRODUCT
1242 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1243 Type::dump2(d,depth, st);
1244 st->print("%f", _f);
1245 }
1246 #endif
1247
1248 //------------------------------singleton--------------------------------------
1249 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1250 // constants (Ldi nodes). Singletons are integer, float or double constants
1251 // or a single symbol.
1252 bool TypeF::singleton(void) const {
1253 return true; // Always a singleton
1254 }
1255
1256 bool TypeF::empty(void) const {
1257 return false; // always exactly a singleton
1258 }
1259
1260 //=============================================================================
1261 // Convenience common pre-built types.
1262 const TypeD *TypeD::MAX; // Floating point max
1263 const TypeD *TypeD::MIN; // Floating point min
1264 const TypeD *TypeD::ZERO; // Floating point zero
1265 const TypeD *TypeD::ONE; // Floating point one
1266 const TypeD *TypeD::POS_INF; // Floating point positive infinity
1267 const TypeD *TypeD::NEG_INF; // Floating point negative infinity
1268
1269 //------------------------------make-------------------------------------------
1270 const TypeD *TypeD::make(double d) {
1271 return (TypeD*)(new TypeD(d))->hashcons();
1272 }
1273
1274 //------------------------------meet-------------------------------------------
1275 // Compute the MEET of two types. It returns a new Type object.
1276 const Type *TypeD::xmeet( const Type *t ) const {
1277 // Perform a fast test for common case; meeting the same types together.
1278 if( this == t ) return this; // Meeting same type-rep?
1279
1280 // Current "this->_base" is DoubleCon
1281 switch (t->base()) { // Switch on original type
1282 case AnyPtr: // Mixing with oops happens when javac
1283 case RawPtr: // reuses local variables
1284 case OopPtr:
1285 case InstPtr:
1286 case AryPtr:
1287 case MetadataPtr:
1288 case KlassPtr:
1289 case InstKlassPtr:
1290 case AryKlassPtr:
1291 case NarrowOop:
1292 case NarrowKlass:
1293 case Int:
1294 case Long:
1295 case FloatTop:
1296 case FloatCon:
1297 case FloatBot:
1298 case Bottom: // Ye Olde Default
1299 return Type::BOTTOM;
1300
1301 case DoubleBot:
1302 return t;
1303
1304 default: // All else is a mistake
1305 typerr(t);
1306
1307 case DoubleCon: // Double-constant vs Double-constant?
1308 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet)
1309 return DOUBLE; // Return generic double
1310 case Top:
1311 case DoubleTop:
1312 break;
1313 }
1314 return this; // Return the double constant
1315 }
1316
1317 //------------------------------xdual------------------------------------------
1318 // Dual: symmetric
1319 const Type *TypeD::xdual() const {
1320 return this;
1321 }
1322
1323 //------------------------------eq---------------------------------------------
1324 // Structural equality check for Type representations
1325 bool TypeD::eq(const Type *t) const {
1326 // Bitwise comparison to distinguish between +/-0. These values must be treated
1327 // as different to be consistent with C1 and the interpreter.
1328 return (jlong_cast(_d) == jlong_cast(t->getd()));
1329 }
1330
1331 //------------------------------hash-------------------------------------------
1332 // Type-specific hashing function.
1333 int TypeD::hash(void) const {
1334 return *(int*)(&_d);
1335 }
1336
1337 //------------------------------is_finite--------------------------------------
1338 // Has a finite value
1339 bool TypeD::is_finite() const {
1340 return g_isfinite(getd()) != 0;
1341 }
1342
1343 //------------------------------is_nan-----------------------------------------
1344 // Is not a number (NaN)
1345 bool TypeD::is_nan() const {
1346 return g_isnan(getd()) != 0;
1347 }
1348
1349 //------------------------------dump2------------------------------------------
1350 // Dump double constant Type
1351 #ifndef PRODUCT
1352 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1353 Type::dump2(d,depth,st);
1354 st->print("%f", _d);
1355 }
1356 #endif
1357
1358 //------------------------------singleton--------------------------------------
1359 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1360 // constants (Ldi nodes). Singletons are integer, float or double constants
1361 // or a single symbol.
1362 bool TypeD::singleton(void) const {
1363 return true; // Always a singleton
1364 }
1365
1366 bool TypeD::empty(void) const {
1367 return false; // always exactly a singleton
1368 }
1369
1370 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) {
1371 if (bt == T_INT) {
1372 return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w);
1373 }
1374 assert(bt == T_LONG, "basic type not an int or long");
1375 return TypeLong::make(lo, hi, w);
1376 }
1377
1378 jlong TypeInteger::get_con_as_long(BasicType bt) const {
1379 if (bt == T_INT) {
1380 return is_int()->get_con();
1381 }
1382 assert(bt == T_LONG, "basic type not an int or long");
1383 return is_long()->get_con();
1384 }
1385
1386 const TypeInteger* TypeInteger::bottom(BasicType bt) {
1387 if (bt == T_INT) {
1388 return TypeInt::INT;
1389 }
1390 assert(bt == T_LONG, "basic type not an int or long");
1391 return TypeLong::LONG;
1392 }
1393
1394 const TypeInteger* TypeInteger::zero(BasicType bt) {
1395 if (bt == T_INT) {
1396 return TypeInt::ZERO;
1397 }
1398 assert(bt == T_LONG, "basic type not an int or long");
1399 return TypeLong::ZERO;
1400 }
1401
1402 const TypeInteger* TypeInteger::one(BasicType bt) {
1403 if (bt == T_INT) {
1404 return TypeInt::ONE;
1405 }
1406 assert(bt == T_LONG, "basic type not an int or long");
1407 return TypeLong::ONE;
1408 }
1409
1410 const TypeInteger* TypeInteger::minus_1(BasicType bt) {
1411 if (bt == T_INT) {
1412 return TypeInt::MINUS_1;
1413 }
1414 assert(bt == T_LONG, "basic type not an int or long");
1415 return TypeLong::MINUS_1;
1416 }
1417
1418 //=============================================================================
1419 // Convenience common pre-built types.
1420 const TypeInt *TypeInt::MAX; // INT_MAX
1421 const TypeInt *TypeInt::MIN; // INT_MIN
1422 const TypeInt *TypeInt::MINUS_1;// -1
1423 const TypeInt *TypeInt::ZERO; // 0
1424 const TypeInt *TypeInt::ONE; // 1
1425 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE.
1426 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes
1427 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1
1428 const TypeInt *TypeInt::CC_GT; // [1] == ONE
1429 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO
1430 const TypeInt *TypeInt::CC_LE; // [-1,0]
1431 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!)
1432 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127
1433 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255
1434 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535
1435 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767
1436 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero
1437 const TypeInt *TypeInt::POS1; // Positive 32-bit integers
1438 const TypeInt *TypeInt::INT; // 32-bit integers
1439 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1440 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1441
1442 //------------------------------TypeInt----------------------------------------
1443 TypeInt::TypeInt( jint lo, jint hi, int w ) : TypeInteger(Int, w), _lo(lo), _hi(hi) {
1444 }
1445
1446 //------------------------------make-------------------------------------------
1447 const TypeInt *TypeInt::make( jint lo ) {
1448 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1449 }
1450
1451 static int normalize_int_widen( jint lo, jint hi, int w ) {
1452 // Certain normalizations keep us sane when comparing types.
1453 // The 'SMALLINT' covers constants and also CC and its relatives.
1454 if (lo <= hi) {
1455 if (((juint)hi - lo) <= SMALLINT) w = Type::WidenMin;
1456 if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1457 } else {
1458 if (((juint)lo - hi) <= SMALLINT) w = Type::WidenMin;
1459 if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1460 }
1461 return w;
1462 }
1463
1464 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1465 w = normalize_int_widen(lo, hi, w);
1466 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1467 }
1468
1469 //------------------------------meet-------------------------------------------
1470 // Compute the MEET of two types. It returns a new Type representation object
1471 // with reference count equal to the number of Types pointing at it.
1472 // Caller should wrap a Types around it.
1473 const Type *TypeInt::xmeet( const Type *t ) const {
1474 // Perform a fast test for common case; meeting the same types together.
1475 if( this == t ) return this; // Meeting same type?
1476
1477 // Currently "this->_base" is a TypeInt
1478 switch (t->base()) { // Switch on original type
1479 case AnyPtr: // Mixing with oops happens when javac
1480 case RawPtr: // reuses local variables
1481 case OopPtr:
1482 case InstPtr:
1483 case AryPtr:
1484 case MetadataPtr:
1485 case KlassPtr:
1486 case InstKlassPtr:
1487 case AryKlassPtr:
1488 case NarrowOop:
1489 case NarrowKlass:
1490 case Long:
1491 case FloatTop:
1492 case FloatCon:
1493 case FloatBot:
1494 case DoubleTop:
1495 case DoubleCon:
1496 case DoubleBot:
1497 case Bottom: // Ye Olde Default
1498 return Type::BOTTOM;
1499 default: // All else is a mistake
1500 typerr(t);
1501 case Top: // No change
1502 return this;
1503 case Int: // Int vs Int?
1504 break;
1505 }
1506
1507 // Expand covered set
1508 const TypeInt *r = t->is_int();
1509 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1510 }
1511
1512 //------------------------------xdual------------------------------------------
1513 // Dual: reverse hi & lo; flip widen
1514 const Type *TypeInt::xdual() const {
1515 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1516 return new TypeInt(_hi,_lo,w);
1517 }
1518
1519 //------------------------------widen------------------------------------------
1520 // Only happens for optimistic top-down optimizations.
1521 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1522 // Coming from TOP or such; no widening
1523 if( old->base() != Int ) return this;
1524 const TypeInt *ot = old->is_int();
1525
1526 // If new guy is equal to old guy, no widening
1527 if( _lo == ot->_lo && _hi == ot->_hi )
1528 return old;
1529
1530 // If new guy contains old, then we widened
1531 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1532 // New contains old
1533 // If new guy is already wider than old, no widening
1534 if( _widen > ot->_widen ) return this;
1535 // If old guy was a constant, do not bother
1536 if (ot->_lo == ot->_hi) return this;
1537 // Now widen new guy.
1538 // Check for widening too far
1539 if (_widen == WidenMax) {
1540 int max = max_jint;
1541 int min = min_jint;
1542 if (limit->isa_int()) {
1543 max = limit->is_int()->_hi;
1544 min = limit->is_int()->_lo;
1545 }
1546 if (min < _lo && _hi < max) {
1547 // If neither endpoint is extremal yet, push out the endpoint
1548 // which is closer to its respective limit.
1549 if (_lo >= 0 || // easy common case
1550 (juint)(_lo - min) >= (juint)(max - _hi)) {
1551 // Try to widen to an unsigned range type of 31 bits:
1552 return make(_lo, max, WidenMax);
1553 } else {
1554 return make(min, _hi, WidenMax);
1555 }
1556 }
1557 return TypeInt::INT;
1558 }
1559 // Returned widened new guy
1560 return make(_lo,_hi,_widen+1);
1561 }
1562
1563 // If old guy contains new, then we probably widened too far & dropped to
1564 // bottom. Return the wider fellow.
1565 if ( ot->_lo <= _lo && ot->_hi >= _hi )
1566 return old;
1567
1568 //fatal("Integer value range is not subset");
1569 //return this;
1570 return TypeInt::INT;
1571 }
1572
1573 //------------------------------narrow---------------------------------------
1574 // Only happens for pessimistic optimizations.
1575 const Type *TypeInt::narrow( const Type *old ) const {
1576 if (_lo >= _hi) return this; // already narrow enough
1577 if (old == NULL) return this;
1578 const TypeInt* ot = old->isa_int();
1579 if (ot == NULL) return this;
1580 jint olo = ot->_lo;
1581 jint ohi = ot->_hi;
1582
1583 // If new guy is equal to old guy, no narrowing
1584 if (_lo == olo && _hi == ohi) return old;
1585
1586 // If old guy was maximum range, allow the narrowing
1587 if (olo == min_jint && ohi == max_jint) return this;
1588
1589 if (_lo < olo || _hi > ohi)
1590 return this; // doesn't narrow; pretty weird
1591
1592 // The new type narrows the old type, so look for a "death march".
1593 // See comments on PhaseTransform::saturate.
1594 juint nrange = (juint)_hi - _lo;
1595 juint orange = (juint)ohi - olo;
1596 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1597 // Use the new type only if the range shrinks a lot.
1598 // We do not want the optimizer computing 2^31 point by point.
1599 return old;
1600 }
1601
1602 return this;
1603 }
1604
1605 //-----------------------------filter------------------------------------------
1606 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1607 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1608 if (ft == NULL || ft->empty())
1609 return Type::TOP; // Canonical empty value
1610 if (ft->_widen < this->_widen) {
1611 // Do not allow the value of kill->_widen to affect the outcome.
1612 // The widen bits must be allowed to run freely through the graph.
1613 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1614 }
1615 return ft;
1616 }
1617
1618 //------------------------------eq---------------------------------------------
1619 // Structural equality check for Type representations
1620 bool TypeInt::eq( const Type *t ) const {
1621 const TypeInt *r = t->is_int(); // Handy access
1622 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1623 }
1624
1625 //------------------------------hash-------------------------------------------
1626 // Type-specific hashing function.
1627 int TypeInt::hash(void) const {
1628 return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1629 }
1630
1631 //------------------------------is_finite--------------------------------------
1632 // Has a finite value
1633 bool TypeInt::is_finite() const {
1634 return true;
1635 }
1636
1637 //------------------------------dump2------------------------------------------
1638 // Dump TypeInt
1639 #ifndef PRODUCT
1640 static const char* intname(char* buf, size_t buf_size, jint n) {
1641 if (n == min_jint)
1642 return "min";
1643 else if (n < min_jint + 10000)
1644 os::snprintf_checked(buf, buf_size, "min+" INT32_FORMAT, n - min_jint);
1645 else if (n == max_jint)
1646 return "max";
1647 else if (n > max_jint - 10000)
1648 os::snprintf_checked(buf, buf_size, "max-" INT32_FORMAT, max_jint - n);
1649 else
1650 os::snprintf_checked(buf, buf_size, INT32_FORMAT, n);
1651 return buf;
1652 }
1653
1654 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1655 char buf[40], buf2[40];
1656 if (_lo == min_jint && _hi == max_jint)
1657 st->print("int");
1658 else if (is_con())
1659 st->print("int:%s", intname(buf, sizeof(buf), get_con()));
1660 else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1661 st->print("bool");
1662 else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1663 st->print("byte");
1664 else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1665 st->print("char");
1666 else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1667 st->print("short");
1668 else if (_hi == max_jint)
1669 st->print("int:>=%s", intname(buf, sizeof(buf), _lo));
1670 else if (_lo == min_jint)
1671 st->print("int:<=%s", intname(buf, sizeof(buf), _hi));
1672 else
1673 st->print("int:%s..%s", intname(buf, sizeof(buf), _lo), intname(buf2, sizeof(buf2), _hi));
1674
1675 if (_widen != 0 && this != TypeInt::INT)
1676 st->print(":%.*s", _widen, "wwww");
1677 }
1678 #endif
1679
1680 //------------------------------singleton--------------------------------------
1681 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1682 // constants.
1683 bool TypeInt::singleton(void) const {
1684 return _lo >= _hi;
1685 }
1686
1687 bool TypeInt::empty(void) const {
1688 return _lo > _hi;
1689 }
1690
1691 //=============================================================================
1692 // Convenience common pre-built types.
1693 const TypeLong *TypeLong::MAX;
1694 const TypeLong *TypeLong::MIN;
1695 const TypeLong *TypeLong::MINUS_1;// -1
1696 const TypeLong *TypeLong::ZERO; // 0
1697 const TypeLong *TypeLong::ONE; // 1
1698 const TypeLong *TypeLong::POS; // >=0
1699 const TypeLong *TypeLong::LONG; // 64-bit integers
1700 const TypeLong *TypeLong::INT; // 32-bit subrange
1701 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1702 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1703
1704 //------------------------------TypeLong---------------------------------------
1705 TypeLong::TypeLong(jlong lo, jlong hi, int w) : TypeInteger(Long, w), _lo(lo), _hi(hi) {
1706 }
1707
1708 //------------------------------make-------------------------------------------
1709 const TypeLong *TypeLong::make( jlong lo ) {
1710 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1711 }
1712
1713 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1714 // Certain normalizations keep us sane when comparing types.
1715 // The 'SMALLINT' covers constants.
1716 if (lo <= hi) {
1717 if (((julong)hi - lo) <= SMALLINT) w = Type::WidenMin;
1718 if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1719 } else {
1720 if (((julong)lo - hi) <= SMALLINT) w = Type::WidenMin;
1721 if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1722 }
1723 return w;
1724 }
1725
1726 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1727 w = normalize_long_widen(lo, hi, w);
1728 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1729 }
1730
1731
1732 //------------------------------meet-------------------------------------------
1733 // Compute the MEET of two types. It returns a new Type representation object
1734 // with reference count equal to the number of Types pointing at it.
1735 // Caller should wrap a Types around it.
1736 const Type *TypeLong::xmeet( const Type *t ) const {
1737 // Perform a fast test for common case; meeting the same types together.
1738 if( this == t ) return this; // Meeting same type?
1739
1740 // Currently "this->_base" is a TypeLong
1741 switch (t->base()) { // Switch on original type
1742 case AnyPtr: // Mixing with oops happens when javac
1743 case RawPtr: // reuses local variables
1744 case OopPtr:
1745 case InstPtr:
1746 case AryPtr:
1747 case MetadataPtr:
1748 case KlassPtr:
1749 case InstKlassPtr:
1750 case AryKlassPtr:
1751 case NarrowOop:
1752 case NarrowKlass:
1753 case Int:
1754 case FloatTop:
1755 case FloatCon:
1756 case FloatBot:
1757 case DoubleTop:
1758 case DoubleCon:
1759 case DoubleBot:
1760 case Bottom: // Ye Olde Default
1761 return Type::BOTTOM;
1762 default: // All else is a mistake
1763 typerr(t);
1764 case Top: // No change
1765 return this;
1766 case Long: // Long vs Long?
1767 break;
1768 }
1769
1770 // Expand covered set
1771 const TypeLong *r = t->is_long(); // Turn into a TypeLong
1772 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1773 }
1774
1775 //------------------------------xdual------------------------------------------
1776 // Dual: reverse hi & lo; flip widen
1777 const Type *TypeLong::xdual() const {
1778 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1779 return new TypeLong(_hi,_lo,w);
1780 }
1781
1782 //------------------------------widen------------------------------------------
1783 // Only happens for optimistic top-down optimizations.
1784 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1785 // Coming from TOP or such; no widening
1786 if( old->base() != Long ) return this;
1787 const TypeLong *ot = old->is_long();
1788
1789 // If new guy is equal to old guy, no widening
1790 if( _lo == ot->_lo && _hi == ot->_hi )
1791 return old;
1792
1793 // If new guy contains old, then we widened
1794 if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1795 // New contains old
1796 // If new guy is already wider than old, no widening
1797 if( _widen > ot->_widen ) return this;
1798 // If old guy was a constant, do not bother
1799 if (ot->_lo == ot->_hi) return this;
1800 // Now widen new guy.
1801 // Check for widening too far
1802 if (_widen == WidenMax) {
1803 jlong max = max_jlong;
1804 jlong min = min_jlong;
1805 if (limit->isa_long()) {
1806 max = limit->is_long()->_hi;
1807 min = limit->is_long()->_lo;
1808 }
1809 if (min < _lo && _hi < max) {
1810 // If neither endpoint is extremal yet, push out the endpoint
1811 // which is closer to its respective limit.
1812 if (_lo >= 0 || // easy common case
1813 ((julong)_lo - min) >= ((julong)max - _hi)) {
1814 // Try to widen to an unsigned range type of 32/63 bits:
1815 if (max >= max_juint && _hi < max_juint)
1816 return make(_lo, max_juint, WidenMax);
1817 else
1818 return make(_lo, max, WidenMax);
1819 } else {
1820 return make(min, _hi, WidenMax);
1821 }
1822 }
1823 return TypeLong::LONG;
1824 }
1825 // Returned widened new guy
1826 return make(_lo,_hi,_widen+1);
1827 }
1828
1829 // If old guy contains new, then we probably widened too far & dropped to
1830 // bottom. Return the wider fellow.
1831 if ( ot->_lo <= _lo && ot->_hi >= _hi )
1832 return old;
1833
1834 // fatal("Long value range is not subset");
1835 // return this;
1836 return TypeLong::LONG;
1837 }
1838
1839 //------------------------------narrow----------------------------------------
1840 // Only happens for pessimistic optimizations.
1841 const Type *TypeLong::narrow( const Type *old ) const {
1842 if (_lo >= _hi) return this; // already narrow enough
1843 if (old == NULL) return this;
1844 const TypeLong* ot = old->isa_long();
1845 if (ot == NULL) return this;
1846 jlong olo = ot->_lo;
1847 jlong ohi = ot->_hi;
1848
1849 // If new guy is equal to old guy, no narrowing
1850 if (_lo == olo && _hi == ohi) return old;
1851
1852 // If old guy was maximum range, allow the narrowing
1853 if (olo == min_jlong && ohi == max_jlong) return this;
1854
1855 if (_lo < olo || _hi > ohi)
1856 return this; // doesn't narrow; pretty weird
1857
1858 // The new type narrows the old type, so look for a "death march".
1859 // See comments on PhaseTransform::saturate.
1860 julong nrange = _hi - _lo;
1861 julong orange = ohi - olo;
1862 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1863 // Use the new type only if the range shrinks a lot.
1864 // We do not want the optimizer computing 2^31 point by point.
1865 return old;
1866 }
1867
1868 return this;
1869 }
1870
1871 //-----------------------------filter------------------------------------------
1872 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1873 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1874 if (ft == NULL || ft->empty())
1875 return Type::TOP; // Canonical empty value
1876 if (ft->_widen < this->_widen) {
1877 // Do not allow the value of kill->_widen to affect the outcome.
1878 // The widen bits must be allowed to run freely through the graph.
1879 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1880 }
1881 return ft;
1882 }
1883
1884 //------------------------------eq---------------------------------------------
1885 // Structural equality check for Type representations
1886 bool TypeLong::eq( const Type *t ) const {
1887 const TypeLong *r = t->is_long(); // Handy access
1888 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1889 }
1890
1891 //------------------------------hash-------------------------------------------
1892 // Type-specific hashing function.
1893 int TypeLong::hash(void) const {
1894 return (int)(_lo+_hi+_widen+(int)Type::Long);
1895 }
1896
1897 //------------------------------is_finite--------------------------------------
1898 // Has a finite value
1899 bool TypeLong::is_finite() const {
1900 return true;
1901 }
1902
1903 //------------------------------dump2------------------------------------------
1904 // Dump TypeLong
1905 #ifndef PRODUCT
1906 static const char* longnamenear(jlong x, const char* xname, char* buf, size_t buf_size, jlong n) {
1907 if (n > x) {
1908 if (n >= x + 10000) return NULL;
1909 os::snprintf_checked(buf, buf_size, "%s+" JLONG_FORMAT, xname, n - x);
1910 } else if (n < x) {
1911 if (n <= x - 10000) return NULL;
1912 os::snprintf_checked(buf, buf_size, "%s-" JLONG_FORMAT, xname, x - n);
1913 } else {
1914 return xname;
1915 }
1916 return buf;
1917 }
1918
1919 static const char* longname(char* buf, size_t buf_size, jlong n) {
1920 const char* str;
1921 if (n == min_jlong)
1922 return "min";
1923 else if (n < min_jlong + 10000)
1924 os::snprintf_checked(buf, buf_size, "min+" JLONG_FORMAT, n - min_jlong);
1925 else if (n == max_jlong)
1926 return "max";
1927 else if (n > max_jlong - 10000)
1928 os::snprintf_checked(buf, buf_size, "max-" JLONG_FORMAT, max_jlong - n);
1929 else if ((str = longnamenear(max_juint, "maxuint", buf, buf_size, n)) != NULL)
1930 return str;
1931 else if ((str = longnamenear(max_jint, "maxint", buf, buf_size, n)) != NULL)
1932 return str;
1933 else if ((str = longnamenear(min_jint, "minint", buf, buf_size, n)) != NULL)
1934 return str;
1935 else
1936 os::snprintf_checked(buf, buf_size, JLONG_FORMAT, n);
1937 return buf;
1938 }
1939
1940 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1941 char buf[80], buf2[80];
1942 if (_lo == min_jlong && _hi == max_jlong)
1943 st->print("long");
1944 else if (is_con())
1945 st->print("long:%s", longname(buf, sizeof(buf), get_con()));
1946 else if (_hi == max_jlong)
1947 st->print("long:>=%s", longname(buf, sizeof(buf), _lo));
1948 else if (_lo == min_jlong)
1949 st->print("long:<=%s", longname(buf, sizeof(buf), _hi));
1950 else
1951 st->print("long:%s..%s", longname(buf, sizeof(buf), _lo), longname(buf2,sizeof(buf2), _hi));
1952
1953 if (_widen != 0 && this != TypeLong::LONG)
1954 st->print(":%.*s", _widen, "wwww");
1955 }
1956 #endif
1957
1958 //------------------------------singleton--------------------------------------
1959 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
1960 // constants
1961 bool TypeLong::singleton(void) const {
1962 return _lo >= _hi;
1963 }
1964
1965 bool TypeLong::empty(void) const {
1966 return _lo > _hi;
1967 }
1968
1969 //=============================================================================
1970 // Convenience common pre-built types.
1971 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable
1972 const TypeTuple *TypeTuple::IFFALSE;
1973 const TypeTuple *TypeTuple::IFTRUE;
1974 const TypeTuple *TypeTuple::IFNEITHER;
1975 const TypeTuple *TypeTuple::LOOPBODY;
1976 const TypeTuple *TypeTuple::MEMBAR;
1977 const TypeTuple *TypeTuple::STORECONDITIONAL;
1978 const TypeTuple *TypeTuple::START_I2C;
1979 const TypeTuple *TypeTuple::INT_PAIR;
1980 const TypeTuple *TypeTuple::LONG_PAIR;
1981 const TypeTuple *TypeTuple::INT_CC_PAIR;
1982 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1983
1984 //------------------------------make-------------------------------------------
1985 // Make a TypeTuple from the range of a method signature
1986 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) {
1987 ciType* return_type = sig->return_type();
1988 uint arg_cnt = return_type->size();
1989 const Type **field_array = fields(arg_cnt);
1990 switch (return_type->basic_type()) {
1991 case T_LONG:
1992 field_array[TypeFunc::Parms] = TypeLong::LONG;
1993 field_array[TypeFunc::Parms+1] = Type::HALF;
1994 break;
1995 case T_DOUBLE:
1996 field_array[TypeFunc::Parms] = Type::DOUBLE;
1997 field_array[TypeFunc::Parms+1] = Type::HALF;
1998 break;
1999 case T_OBJECT:
2000 case T_ARRAY:
2001 case T_BOOLEAN:
2002 case T_CHAR:
2003 case T_FLOAT:
2004 case T_BYTE:
2005 case T_SHORT:
2006 case T_INT:
2007 field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling);
2008 break;
2009 case T_VOID:
2010 break;
2011 default:
2012 ShouldNotReachHere();
2013 }
2014 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2015 }
2016
2017 // Make a TypeTuple from the domain of a method signature
2018 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) {
2019 uint arg_cnt = sig->size();
2020
2021 uint pos = TypeFunc::Parms;
2022 const Type **field_array;
2023 if (recv != NULL) {
2024 arg_cnt++;
2025 field_array = fields(arg_cnt);
2026 // Use get_const_type here because it respects UseUniqueSubclasses:
2027 field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL);
2028 } else {
2029 field_array = fields(arg_cnt);
2030 }
2031
2032 int i = 0;
2033 while (pos < TypeFunc::Parms + arg_cnt) {
2034 ciType* type = sig->type_at(i);
2035
2036 switch (type->basic_type()) {
2037 case T_LONG:
2038 field_array[pos++] = TypeLong::LONG;
2039 field_array[pos++] = Type::HALF;
2040 break;
2041 case T_DOUBLE:
2042 field_array[pos++] = Type::DOUBLE;
2043 field_array[pos++] = Type::HALF;
2044 break;
2045 case T_OBJECT:
2046 case T_ARRAY:
2047 case T_FLOAT:
2048 case T_INT:
2049 field_array[pos++] = get_const_type(type, interface_handling);
2050 break;
2051 case T_BOOLEAN:
2052 case T_CHAR:
2053 case T_BYTE:
2054 case T_SHORT:
2055 field_array[pos++] = TypeInt::INT;
2056 break;
2057 default:
2058 ShouldNotReachHere();
2059 }
2060 i++;
2061 }
2062
2063 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2064 }
2065
2066 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2067 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2068 }
2069
2070 //------------------------------fields-----------------------------------------
2071 // Subroutine call type with space allocated for argument types
2072 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2073 const Type **TypeTuple::fields( uint arg_cnt ) {
2074 const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2075 flds[TypeFunc::Control ] = Type::CONTROL;
2076 flds[TypeFunc::I_O ] = Type::ABIO;
2077 flds[TypeFunc::Memory ] = Type::MEMORY;
2078 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2079 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2080
2081 return flds;
2082 }
2083
2084 //------------------------------meet-------------------------------------------
2085 // Compute the MEET of two types. It returns a new Type object.
2086 const Type *TypeTuple::xmeet( const Type *t ) const {
2087 // Perform a fast test for common case; meeting the same types together.
2088 if( this == t ) return this; // Meeting same type-rep?
2089
2090 // Current "this->_base" is Tuple
2091 switch (t->base()) { // switch on original type
2092
2093 case Bottom: // Ye Olde Default
2094 return t;
2095
2096 default: // All else is a mistake
2097 typerr(t);
2098
2099 case Tuple: { // Meeting 2 signatures?
2100 const TypeTuple *x = t->is_tuple();
2101 assert( _cnt == x->_cnt, "" );
2102 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2103 for( uint i=0; i<_cnt; i++ )
2104 fields[i] = field_at(i)->xmeet( x->field_at(i) );
2105 return TypeTuple::make(_cnt,fields);
2106 }
2107 case Top:
2108 break;
2109 }
2110 return this; // Return the double constant
2111 }
2112
2113 //------------------------------xdual------------------------------------------
2114 // Dual: compute field-by-field dual
2115 const Type *TypeTuple::xdual() const {
2116 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) ));
2117 for( uint i=0; i<_cnt; i++ )
2118 fields[i] = _fields[i]->dual();
2119 return new TypeTuple(_cnt,fields);
2120 }
2121
2122 //------------------------------eq---------------------------------------------
2123 // Structural equality check for Type representations
2124 bool TypeTuple::eq( const Type *t ) const {
2125 const TypeTuple *s = (const TypeTuple *)t;
2126 if (_cnt != s->_cnt) return false; // Unequal field counts
2127 for (uint i = 0; i < _cnt; i++)
2128 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION!
2129 return false; // Missed
2130 return true;
2131 }
2132
2133 //------------------------------hash-------------------------------------------
2134 // Type-specific hashing function.
2135 int TypeTuple::hash(void) const {
2136 intptr_t sum = _cnt;
2137 for( uint i=0; i<_cnt; i++ )
2138 sum += (intptr_t)_fields[i]; // Hash on pointers directly
2139 return sum;
2140 }
2141
2142 //------------------------------dump2------------------------------------------
2143 // Dump signature Type
2144 #ifndef PRODUCT
2145 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2146 st->print("{");
2147 if( !depth || d[this] ) { // Check for recursive print
2148 st->print("...}");
2149 return;
2150 }
2151 d.Insert((void*)this, (void*)this); // Stop recursion
2152 if( _cnt ) {
2153 uint i;
2154 for( i=0; i<_cnt-1; i++ ) {
2155 st->print("%d:", i);
2156 _fields[i]->dump2(d, depth-1, st);
2157 st->print(", ");
2158 }
2159 st->print("%d:", i);
2160 _fields[i]->dump2(d, depth-1, st);
2161 }
2162 st->print("}");
2163 }
2164 #endif
2165
2166 //------------------------------singleton--------------------------------------
2167 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2168 // constants (Ldi nodes). Singletons are integer, float or double constants
2169 // or a single symbol.
2170 bool TypeTuple::singleton(void) const {
2171 return false; // Never a singleton
2172 }
2173
2174 bool TypeTuple::empty(void) const {
2175 for( uint i=0; i<_cnt; i++ ) {
2176 if (_fields[i]->empty()) return true;
2177 }
2178 return false;
2179 }
2180
2181 //=============================================================================
2182 // Convenience common pre-built types.
2183
2184 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2185 // Certain normalizations keep us sane when comparing types.
2186 // We do not want arrayOop variables to differ only by the wideness
2187 // of their index types. Pick minimum wideness, since that is the
2188 // forced wideness of small ranges anyway.
2189 if (size->_widen != Type::WidenMin)
2190 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2191 else
2192 return size;
2193 }
2194
2195 //------------------------------make-------------------------------------------
2196 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2197 if (UseCompressedOops && elem->isa_oopptr()) {
2198 elem = elem->make_narrowoop();
2199 }
2200 size = normalize_array_size(size);
2201 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2202 }
2203
2204 //------------------------------meet-------------------------------------------
2205 // Compute the MEET of two types. It returns a new Type object.
2206 const Type *TypeAry::xmeet( const Type *t ) const {
2207 // Perform a fast test for common case; meeting the same types together.
2208 if( this == t ) return this; // Meeting same type-rep?
2209
2210 // Current "this->_base" is Ary
2211 switch (t->base()) { // switch on original type
2212
2213 case Bottom: // Ye Olde Default
2214 return t;
2215
2216 default: // All else is a mistake
2217 typerr(t);
2218
2219 case Array: { // Meeting 2 arrays?
2220 const TypeAry *a = t->is_ary();
2221 return TypeAry::make(_elem->meet_speculative(a->_elem),
2222 _size->xmeet(a->_size)->is_int(),
2223 _stable && a->_stable);
2224 }
2225 case Top:
2226 break;
2227 }
2228 return this; // Return the double constant
2229 }
2230
2231 //------------------------------xdual------------------------------------------
2232 // Dual: compute field-by-field dual
2233 const Type *TypeAry::xdual() const {
2234 const TypeInt* size_dual = _size->dual()->is_int();
2235 size_dual = normalize_array_size(size_dual);
2236 return new TypeAry(_elem->dual(), size_dual, !_stable);
2237 }
2238
2239 //------------------------------eq---------------------------------------------
2240 // Structural equality check for Type representations
2241 bool TypeAry::eq( const Type *t ) const {
2242 const TypeAry *a = (const TypeAry*)t;
2243 return _elem == a->_elem &&
2244 _stable == a->_stable &&
2245 _size == a->_size;
2246 }
2247
2248 //------------------------------hash-------------------------------------------
2249 // Type-specific hashing function.
2250 int TypeAry::hash(void) const {
2251 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2252 }
2253
2254 /**
2255 * Return same type without a speculative part in the element
2256 */
2257 const TypeAry* TypeAry::remove_speculative() const {
2258 return make(_elem->remove_speculative(), _size, _stable);
2259 }
2260
2261 /**
2262 * Return same type with cleaned up speculative part of element
2263 */
2264 const Type* TypeAry::cleanup_speculative() const {
2265 return make(_elem->cleanup_speculative(), _size, _stable);
2266 }
2267
2268 /**
2269 * Return same type but with a different inline depth (used for speculation)
2270 *
2271 * @param depth depth to meet with
2272 */
2273 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2274 if (!UseInlineDepthForSpeculativeTypes) {
2275 return this;
2276 }
2277 return make(AnyPtr, _ptr, _offset, _speculative, depth);
2278 }
2279
2280 //------------------------------dump2------------------------------------------
2281 #ifndef PRODUCT
2282 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2283 if (_stable) st->print("stable:");
2284 _elem->dump2(d, depth, st);
2285 st->print("[");
2286 _size->dump2(d, depth, st);
2287 st->print("]");
2288 }
2289 #endif
2290
2291 //------------------------------singleton--------------------------------------
2292 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2293 // constants (Ldi nodes). Singletons are integer, float or double constants
2294 // or a single symbol.
2295 bool TypeAry::singleton(void) const {
2296 return false; // Never a singleton
2297 }
2298
2299 bool TypeAry::empty(void) const {
2300 return _elem->empty() || _size->empty();
2301 }
2302
2303 //--------------------------ary_must_be_exact----------------------------------
2304 bool TypeAry::ary_must_be_exact() const {
2305 // This logic looks at the element type of an array, and returns true
2306 // if the element type is either a primitive or a final instance class.
2307 // In such cases, an array built on this ary must have no subclasses.
2308 if (_elem == BOTTOM) return false; // general array not exact
2309 if (_elem == TOP ) return false; // inverted general array not exact
2310 const TypeOopPtr* toop = NULL;
2311 if (UseCompressedOops && _elem->isa_narrowoop()) {
2312 toop = _elem->make_ptr()->isa_oopptr();
2313 } else {
2314 toop = _elem->isa_oopptr();
2315 }
2316 if (!toop) return true; // a primitive type, like int
2317 if (!toop->is_loaded()) return false; // unloaded class
2318 const TypeInstPtr* tinst;
2319 if (_elem->isa_narrowoop())
2320 tinst = _elem->make_ptr()->isa_instptr();
2321 else
2322 tinst = _elem->isa_instptr();
2323 if (tinst)
2324 return tinst->instance_klass()->is_final();
2325 const TypeAryPtr* tap;
2326 if (_elem->isa_narrowoop())
2327 tap = _elem->make_ptr()->isa_aryptr();
2328 else
2329 tap = _elem->isa_aryptr();
2330 if (tap)
2331 return tap->ary()->ary_must_be_exact();
2332 return false;
2333 }
2334
2335 //==============================TypeVect=======================================
2336 // Convenience common pre-built types.
2337 const TypeVect *TypeVect::VECTA = NULL; // vector length agnostic
2338 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors
2339 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors
2340 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2341 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2342 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2343 const TypeVect *TypeVect::VECTMASK = NULL; // predicate/mask vector
2344
2345 //------------------------------make-------------------------------------------
2346 const TypeVect* TypeVect::make(const Type *elem, uint length, bool is_mask) {
2347 if (is_mask) {
2348 return makemask(elem, length);
2349 }
2350 BasicType elem_bt = elem->array_element_basic_type();
2351 assert(is_java_primitive(elem_bt), "only primitive types in vector");
2352 assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2353 int size = length * type2aelembytes(elem_bt);
2354 switch (Matcher::vector_ideal_reg(size)) {
2355 case Op_VecA:
2356 return (TypeVect*)(new TypeVectA(elem, length))->hashcons();
2357 case Op_VecS:
2358 return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2359 case Op_RegL:
2360 case Op_VecD:
2361 case Op_RegD:
2362 return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2363 case Op_VecX:
2364 return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2365 case Op_VecY:
2366 return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2367 case Op_VecZ:
2368 return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2369 }
2370 ShouldNotReachHere();
2371 return NULL;
2372 }
2373
2374 const TypeVect *TypeVect::makemask(const Type* elem, uint length) {
2375 BasicType elem_bt = elem->array_element_basic_type();
2376 if (Matcher::has_predicated_vectors() &&
2377 Matcher::match_rule_supported_vector_masked(Op_VectorLoadMask, length, elem_bt)) {
2378 return TypeVectMask::make(elem, length);
2379 } else {
2380 return make(elem, length);
2381 }
2382 }
2383
2384 //------------------------------meet-------------------------------------------
2385 // Compute the MEET of two types. It returns a new Type object.
2386 const Type *TypeVect::xmeet( const Type *t ) const {
2387 // Perform a fast test for common case; meeting the same types together.
2388 if( this == t ) return this; // Meeting same type-rep?
2389
2390 // Current "this->_base" is Vector
2391 switch (t->base()) { // switch on original type
2392
2393 case Bottom: // Ye Olde Default
2394 return t;
2395
2396 default: // All else is a mistake
2397 typerr(t);
2398 case VectorMask: {
2399 const TypeVectMask* v = t->is_vectmask();
2400 assert( base() == v->base(), "");
2401 assert(length() == v->length(), "");
2402 assert(element_basic_type() == v->element_basic_type(), "");
2403 return TypeVect::makemask(_elem->xmeet(v->_elem), _length);
2404 }
2405 case VectorA:
2406 case VectorS:
2407 case VectorD:
2408 case VectorX:
2409 case VectorY:
2410 case VectorZ: { // Meeting 2 vectors?
2411 const TypeVect* v = t->is_vect();
2412 assert( base() == v->base(), "");
2413 assert(length() == v->length(), "");
2414 assert(element_basic_type() == v->element_basic_type(), "");
2415 return TypeVect::make(_elem->xmeet(v->_elem), _length);
2416 }
2417 case Top:
2418 break;
2419 }
2420 return this;
2421 }
2422
2423 //------------------------------xdual------------------------------------------
2424 // Dual: compute field-by-field dual
2425 const Type *TypeVect::xdual() const {
2426 return new TypeVect(base(), _elem->dual(), _length);
2427 }
2428
2429 //------------------------------eq---------------------------------------------
2430 // Structural equality check for Type representations
2431 bool TypeVect::eq(const Type *t) const {
2432 const TypeVect *v = t->is_vect();
2433 return (_elem == v->_elem) && (_length == v->_length);
2434 }
2435
2436 //------------------------------hash-------------------------------------------
2437 // Type-specific hashing function.
2438 int TypeVect::hash(void) const {
2439 return (intptr_t)_elem + (intptr_t)_length;
2440 }
2441
2442 //------------------------------singleton--------------------------------------
2443 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2444 // constants (Ldi nodes). Vector is singleton if all elements are the same
2445 // constant value (when vector is created with Replicate code).
2446 bool TypeVect::singleton(void) const {
2447 // There is no Con node for vectors yet.
2448 // return _elem->singleton();
2449 return false;
2450 }
2451
2452 bool TypeVect::empty(void) const {
2453 return _elem->empty();
2454 }
2455
2456 //------------------------------dump2------------------------------------------
2457 #ifndef PRODUCT
2458 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2459 switch (base()) {
2460 case VectorA:
2461 st->print("vectora["); break;
2462 case VectorS:
2463 st->print("vectors["); break;
2464 case VectorD:
2465 st->print("vectord["); break;
2466 case VectorX:
2467 st->print("vectorx["); break;
2468 case VectorY:
2469 st->print("vectory["); break;
2470 case VectorZ:
2471 st->print("vectorz["); break;
2472 case VectorMask:
2473 st->print("vectormask["); break;
2474 default:
2475 ShouldNotReachHere();
2476 }
2477 st->print("%d]:{", _length);
2478 _elem->dump2(d, depth, st);
2479 st->print("}");
2480 }
2481 #endif
2482
2483 bool TypeVectMask::eq(const Type *t) const {
2484 const TypeVectMask *v = t->is_vectmask();
2485 return (element_type() == v->element_type()) && (length() == v->length());
2486 }
2487
2488 const Type *TypeVectMask::xdual() const {
2489 return new TypeVectMask(element_type()->dual(), length());
2490 }
2491
2492 const TypeVectMask *TypeVectMask::make(const BasicType elem_bt, uint length) {
2493 return make(get_const_basic_type(elem_bt), length);
2494 }
2495
2496 const TypeVectMask *TypeVectMask::make(const Type* elem, uint length) {
2497 const TypeVectMask* mtype = Matcher::predicate_reg_type(elem, length);
2498 return (TypeVectMask*) const_cast<TypeVectMask*>(mtype)->hashcons();
2499 }
2500
2501 //=============================================================================
2502 // Convenience common pre-built types.
2503 const TypePtr *TypePtr::NULL_PTR;
2504 const TypePtr *TypePtr::NOTNULL;
2505 const TypePtr *TypePtr::BOTTOM;
2506
2507 //------------------------------meet-------------------------------------------
2508 // Meet over the PTR enum
2509 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2510 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,
2511 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,},
2512 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,},
2513 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,},
2514 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,},
2515 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,},
2516 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,}
2517 };
2518
2519 //------------------------------make-------------------------------------------
2520 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2521 return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2522 }
2523
2524 //------------------------------cast_to_ptr_type-------------------------------
2525 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const {
2526 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2527 if( ptr == _ptr ) return this;
2528 return make(_base, ptr, _offset, _speculative, _inline_depth);
2529 }
2530
2531 //------------------------------get_con----------------------------------------
2532 intptr_t TypePtr::get_con() const {
2533 assert( _ptr == Null, "" );
2534 return _offset;
2535 }
2536
2537 //------------------------------meet-------------------------------------------
2538 // Compute the MEET of two types. It returns a new Type object.
2539 const Type *TypePtr::xmeet(const Type *t) const {
2540 const Type* res = xmeet_helper(t);
2541 if (res->isa_ptr() == NULL) {
2542 return res;
2543 }
2544
2545 const TypePtr* res_ptr = res->is_ptr();
2546 if (res_ptr->speculative() != NULL) {
2547 // type->speculative() == NULL means that speculation is no better
2548 // than type, i.e. type->speculative() == type. So there are 2
2549 // ways to represent the fact that we have no useful speculative
2550 // data and we should use a single one to be able to test for
2551 // equality between types. Check whether type->speculative() ==
2552 // type and set speculative to NULL if it is the case.
2553 if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2554 return res_ptr->remove_speculative();
2555 }
2556 }
2557
2558 return res;
2559 }
2560
2561 const Type *TypePtr::xmeet_helper(const Type *t) const {
2562 // Perform a fast test for common case; meeting the same types together.
2563 if( this == t ) return this; // Meeting same type-rep?
2564
2565 // Current "this->_base" is AnyPtr
2566 switch (t->base()) { // switch on original type
2567 case Int: // Mixing ints & oops happens when javac
2568 case Long: // reuses local variables
2569 case FloatTop:
2570 case FloatCon:
2571 case FloatBot:
2572 case DoubleTop:
2573 case DoubleCon:
2574 case DoubleBot:
2575 case NarrowOop:
2576 case NarrowKlass:
2577 case Bottom: // Ye Olde Default
2578 return Type::BOTTOM;
2579 case Top:
2580 return this;
2581
2582 case AnyPtr: { // Meeting to AnyPtrs
2583 const TypePtr *tp = t->is_ptr();
2584 const TypePtr* speculative = xmeet_speculative(tp);
2585 int depth = meet_inline_depth(tp->inline_depth());
2586 return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2587 }
2588 case RawPtr: // For these, flip the call around to cut down
2589 case OopPtr:
2590 case InstPtr: // on the cases I have to handle.
2591 case AryPtr:
2592 case MetadataPtr:
2593 case KlassPtr:
2594 case InstKlassPtr:
2595 case AryKlassPtr:
2596 return t->xmeet(this); // Call in reverse direction
2597 default: // All else is a mistake
2598 typerr(t);
2599
2600 }
2601 return this;
2602 }
2603
2604 //------------------------------meet_offset------------------------------------
2605 int TypePtr::meet_offset( int offset ) const {
2606 // Either is 'TOP' offset? Return the other offset!
2607 if( _offset == OffsetTop ) return offset;
2608 if( offset == OffsetTop ) return _offset;
2609 // If either is different, return 'BOTTOM' offset
2610 if( _offset != offset ) return OffsetBot;
2611 return _offset;
2612 }
2613
2614 //------------------------------dual_offset------------------------------------
2615 int TypePtr::dual_offset( ) const {
2616 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2617 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2618 return _offset; // Map everything else into self
2619 }
2620
2621 //------------------------------xdual------------------------------------------
2622 // Dual: compute field-by-field dual
2623 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2624 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2625 };
2626 const Type *TypePtr::xdual() const {
2627 return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2628 }
2629
2630 //------------------------------xadd_offset------------------------------------
2631 int TypePtr::xadd_offset( intptr_t offset ) const {
2632 // Adding to 'TOP' offset? Return 'TOP'!
2633 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2634 // Adding to 'BOTTOM' offset? Return 'BOTTOM'!
2635 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2636 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2637 offset += (intptr_t)_offset;
2638 if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2639
2640 // assert( _offset >= 0 && _offset+offset >= 0, "" );
2641 // It is possible to construct a negative offset during PhaseCCP
2642
2643 return (int)offset; // Sum valid offsets
2644 }
2645
2646 //------------------------------add_offset-------------------------------------
2647 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2648 return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2649 }
2650
2651 const TypePtr *TypePtr::with_offset(intptr_t offset) const {
2652 return make(AnyPtr, _ptr, offset, _speculative, _inline_depth);
2653 }
2654
2655 //------------------------------eq---------------------------------------------
2656 // Structural equality check for Type representations
2657 bool TypePtr::eq( const Type *t ) const {
2658 const TypePtr *a = (const TypePtr*)t;
2659 return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2660 }
2661
2662 //------------------------------hash-------------------------------------------
2663 // Type-specific hashing function.
2664 int TypePtr::hash(void) const {
2665 return java_add(java_add((jint)_ptr, (jint)_offset), java_add((jint)hash_speculative(), (jint)_inline_depth));
2666 ;
2667 }
2668
2669 /**
2670 * Return same type without a speculative part
2671 */
2672 const TypePtr* TypePtr::remove_speculative() const {
2673 if (_speculative == NULL) {
2674 return this;
2675 }
2676 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2677 return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2678 }
2679
2680 /**
2681 * Return same type but drop speculative part if we know we won't use
2682 * it
2683 */
2684 const Type* TypePtr::cleanup_speculative() const {
2685 if (speculative() == NULL) {
2686 return this;
2687 }
2688 const Type* no_spec = remove_speculative();
2689 // If this is NULL_PTR then we don't need the speculative type
2690 // (with_inline_depth in case the current type inline depth is
2691 // InlineDepthTop)
2692 if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2693 return no_spec;
2694 }
2695 if (above_centerline(speculative()->ptr())) {
2696 return no_spec;
2697 }
2698 const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2699 // If the speculative may be null and is an inexact klass then it
2700 // doesn't help
2701 if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2702 (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2703 return no_spec;
2704 }
2705 return this;
2706 }
2707
2708 /**
2709 * dual of the speculative part of the type
2710 */
2711 const TypePtr* TypePtr::dual_speculative() const {
2712 if (_speculative == NULL) {
2713 return NULL;
2714 }
2715 return _speculative->dual()->is_ptr();
2716 }
2717
2718 /**
2719 * meet of the speculative parts of 2 types
2720 *
2721 * @param other type to meet with
2722 */
2723 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2724 bool this_has_spec = (_speculative != NULL);
2725 bool other_has_spec = (other->speculative() != NULL);
2726
2727 if (!this_has_spec && !other_has_spec) {
2728 return NULL;
2729 }
2730
2731 // If we are at a point where control flow meets and one branch has
2732 // a speculative type and the other has not, we meet the speculative
2733 // type of one branch with the actual type of the other. If the
2734 // actual type is exact and the speculative is as well, then the
2735 // result is a speculative type which is exact and we can continue
2736 // speculation further.
2737 const TypePtr* this_spec = _speculative;
2738 const TypePtr* other_spec = other->speculative();
2739
2740 if (!this_has_spec) {
2741 this_spec = this;
2742 }
2743
2744 if (!other_has_spec) {
2745 other_spec = other;
2746 }
2747
2748 return this_spec->meet(other_spec)->is_ptr();
2749 }
2750
2751 /**
2752 * dual of the inline depth for this type (used for speculation)
2753 */
2754 int TypePtr::dual_inline_depth() const {
2755 return -inline_depth();
2756 }
2757
2758 /**
2759 * meet of 2 inline depths (used for speculation)
2760 *
2761 * @param depth depth to meet with
2762 */
2763 int TypePtr::meet_inline_depth(int depth) const {
2764 return MAX2(inline_depth(), depth);
2765 }
2766
2767 /**
2768 * Are the speculative parts of 2 types equal?
2769 *
2770 * @param other type to compare this one to
2771 */
2772 bool TypePtr::eq_speculative(const TypePtr* other) const {
2773 if (_speculative == NULL || other->speculative() == NULL) {
2774 return _speculative == other->speculative();
2775 }
2776
2777 if (_speculative->base() != other->speculative()->base()) {
2778 return false;
2779 }
2780
2781 return _speculative->eq(other->speculative());
2782 }
2783
2784 /**
2785 * Hash of the speculative part of the type
2786 */
2787 int TypePtr::hash_speculative() const {
2788 if (_speculative == NULL) {
2789 return 0;
2790 }
2791
2792 return _speculative->hash();
2793 }
2794
2795 /**
2796 * add offset to the speculative part of the type
2797 *
2798 * @param offset offset to add
2799 */
2800 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2801 if (_speculative == NULL) {
2802 return NULL;
2803 }
2804 return _speculative->add_offset(offset)->is_ptr();
2805 }
2806
2807 const TypePtr* TypePtr::with_offset_speculative(intptr_t offset) const {
2808 if (_speculative == NULL) {
2809 return NULL;
2810 }
2811 return _speculative->with_offset(offset)->is_ptr();
2812 }
2813
2814 /**
2815 * return exact klass from the speculative type if there's one
2816 */
2817 ciKlass* TypePtr::speculative_type() const {
2818 if (_speculative != NULL && _speculative->isa_oopptr()) {
2819 const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2820 if (speculative->klass_is_exact()) {
2821 return speculative->klass();
2822 }
2823 }
2824 return NULL;
2825 }
2826
2827 /**
2828 * return true if speculative type may be null
2829 */
2830 bool TypePtr::speculative_maybe_null() const {
2831 if (_speculative != NULL) {
2832 const TypePtr* speculative = _speculative->join(this)->is_ptr();
2833 return speculative->maybe_null();
2834 }
2835 return true;
2836 }
2837
2838 bool TypePtr::speculative_always_null() const {
2839 if (_speculative != NULL) {
2840 const TypePtr* speculative = _speculative->join(this)->is_ptr();
2841 return speculative == TypePtr::NULL_PTR;
2842 }
2843 return false;
2844 }
2845
2846 /**
2847 * Same as TypePtr::speculative_type() but return the klass only if
2848 * the speculative tells us is not null
2849 */
2850 ciKlass* TypePtr::speculative_type_not_null() const {
2851 if (speculative_maybe_null()) {
2852 return NULL;
2853 }
2854 return speculative_type();
2855 }
2856
2857 /**
2858 * Check whether new profiling would improve speculative type
2859 *
2860 * @param exact_kls class from profiling
2861 * @param inline_depth inlining depth of profile point
2862 *
2863 * @return true if type profile is valuable
2864 */
2865 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2866 // no profiling?
2867 if (exact_kls == NULL) {
2868 return false;
2869 }
2870 if (speculative() == TypePtr::NULL_PTR) {
2871 return false;
2872 }
2873 // no speculative type or non exact speculative type?
2874 if (speculative_type() == NULL) {
2875 return true;
2876 }
2877 // If the node already has an exact speculative type keep it,
2878 // unless it was provided by profiling that is at a deeper
2879 // inlining level. Profiling at a higher inlining depth is
2880 // expected to be less accurate.
2881 if (_speculative->inline_depth() == InlineDepthBottom) {
2882 return false;
2883 }
2884 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2885 return inline_depth < _speculative->inline_depth();
2886 }
2887
2888 /**
2889 * Check whether new profiling would improve ptr (= tells us it is non
2890 * null)
2891 *
2892 * @param ptr_kind always null or not null?
2893 *
2894 * @return true if ptr profile is valuable
2895 */
2896 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2897 // profiling doesn't tell us anything useful
2898 if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2899 return false;
2900 }
2901 // We already know this is not null
2902 if (!this->maybe_null()) {
2903 return false;
2904 }
2905 // We already know the speculative type cannot be null
2906 if (!speculative_maybe_null()) {
2907 return false;
2908 }
2909 // We already know this is always null
2910 if (this == TypePtr::NULL_PTR) {
2911 return false;
2912 }
2913 // We already know the speculative type is always null
2914 if (speculative_always_null()) {
2915 return false;
2916 }
2917 if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
2918 return false;
2919 }
2920 return true;
2921 }
2922
2923 //------------------------------dump2------------------------------------------
2924 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2925 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2926 };
2927
2928 #ifndef PRODUCT
2929 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2930 if( _ptr == Null ) st->print("NULL");
2931 else st->print("%s *", ptr_msg[_ptr]);
2932 if( _offset == OffsetTop ) st->print("+top");
2933 else if( _offset == OffsetBot ) st->print("+bot");
2934 else if( _offset ) st->print("+%d", _offset);
2935 dump_inline_depth(st);
2936 dump_speculative(st);
2937 }
2938
2939 /**
2940 *dump the speculative part of the type
2941 */
2942 void TypePtr::dump_speculative(outputStream *st) const {
2943 if (_speculative != NULL) {
2944 st->print(" (speculative=");
2945 _speculative->dump_on(st);
2946 st->print(")");
2947 }
2948 }
2949
2950 /**
2951 *dump the inline depth of the type
2952 */
2953 void TypePtr::dump_inline_depth(outputStream *st) const {
2954 if (_inline_depth != InlineDepthBottom) {
2955 if (_inline_depth == InlineDepthTop) {
2956 st->print(" (inline_depth=InlineDepthTop)");
2957 } else {
2958 st->print(" (inline_depth=%d)", _inline_depth);
2959 }
2960 }
2961 }
2962 #endif
2963
2964 //------------------------------singleton--------------------------------------
2965 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
2966 // constants
2967 bool TypePtr::singleton(void) const {
2968 // TopPTR, Null, AnyNull, Constant are all singletons
2969 return (_offset != OffsetBot) && !below_centerline(_ptr);
2970 }
2971
2972 bool TypePtr::empty(void) const {
2973 return (_offset == OffsetTop) || above_centerline(_ptr);
2974 }
2975
2976 //=============================================================================
2977 // Convenience common pre-built types.
2978 const TypeRawPtr *TypeRawPtr::BOTTOM;
2979 const TypeRawPtr *TypeRawPtr::NOTNULL;
2980
2981 //------------------------------make-------------------------------------------
2982 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2983 assert( ptr != Constant, "what is the constant?" );
2984 assert( ptr != Null, "Use TypePtr for NULL" );
2985 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2986 }
2987
2988 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2989 assert( bits, "Use TypePtr for NULL" );
2990 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2991 }
2992
2993 //------------------------------cast_to_ptr_type-------------------------------
2994 const TypeRawPtr* TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2995 assert( ptr != Constant, "what is the constant?" );
2996 assert( ptr != Null, "Use TypePtr for NULL" );
2997 assert( _bits==0, "Why cast a constant address?");
2998 if( ptr == _ptr ) return this;
2999 return make(ptr);
3000 }
3001
3002 //------------------------------get_con----------------------------------------
3003 intptr_t TypeRawPtr::get_con() const {
3004 assert( _ptr == Null || _ptr == Constant, "" );
3005 return (intptr_t)_bits;
3006 }
3007
3008 //------------------------------meet-------------------------------------------
3009 // Compute the MEET of two types. It returns a new Type object.
3010 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3011 // Perform a fast test for common case; meeting the same types together.
3012 if( this == t ) return this; // Meeting same type-rep?
3013
3014 // Current "this->_base" is RawPtr
3015 switch( t->base() ) { // switch on original type
3016 case Bottom: // Ye Olde Default
3017 return t;
3018 case Top:
3019 return this;
3020 case AnyPtr: // Meeting to AnyPtrs
3021 break;
3022 case RawPtr: { // might be top, bot, any/not or constant
3023 enum PTR tptr = t->is_ptr()->ptr();
3024 enum PTR ptr = meet_ptr( tptr );
3025 if( ptr == Constant ) { // Cannot be equal constants, so...
3026 if( tptr == Constant && _ptr != Constant) return t;
3027 if( _ptr == Constant && tptr != Constant) return this;
3028 ptr = NotNull; // Fall down in lattice
3029 }
3030 return make( ptr );
3031 }
3032
3033 case OopPtr:
3034 case InstPtr:
3035 case AryPtr:
3036 case MetadataPtr:
3037 case KlassPtr:
3038 case InstKlassPtr:
3039 case AryKlassPtr:
3040 return TypePtr::BOTTOM; // Oop meet raw is not well defined
3041 default: // All else is a mistake
3042 typerr(t);
3043 }
3044
3045 // Found an AnyPtr type vs self-RawPtr type
3046 const TypePtr *tp = t->is_ptr();
3047 switch (tp->ptr()) {
3048 case TypePtr::TopPTR: return this;
3049 case TypePtr::BotPTR: return t;
3050 case TypePtr::Null:
3051 if( _ptr == TypePtr::TopPTR ) return t;
3052 return TypeRawPtr::BOTTOM;
3053 case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3054 case TypePtr::AnyNull:
3055 if( _ptr == TypePtr::Constant) return this;
3056 return make( meet_ptr(TypePtr::AnyNull) );
3057 default: ShouldNotReachHere();
3058 }
3059 return this;
3060 }
3061
3062 //------------------------------xdual------------------------------------------
3063 // Dual: compute field-by-field dual
3064 const Type *TypeRawPtr::xdual() const {
3065 return new TypeRawPtr( dual_ptr(), _bits );
3066 }
3067
3068 //------------------------------add_offset-------------------------------------
3069 const TypePtr* TypeRawPtr::add_offset(intptr_t offset) const {
3070 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3071 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3072 if( offset == 0 ) return this; // No change
3073 switch (_ptr) {
3074 case TypePtr::TopPTR:
3075 case TypePtr::BotPTR:
3076 case TypePtr::NotNull:
3077 return this;
3078 case TypePtr::Null:
3079 case TypePtr::Constant: {
3080 address bits = _bits+offset;
3081 if ( bits == 0 ) return TypePtr::NULL_PTR;
3082 return make( bits );
3083 }
3084 default: ShouldNotReachHere();
3085 }
3086 return NULL; // Lint noise
3087 }
3088
3089 //------------------------------eq---------------------------------------------
3090 // Structural equality check for Type representations
3091 bool TypeRawPtr::eq( const Type *t ) const {
3092 const TypeRawPtr *a = (const TypeRawPtr*)t;
3093 return _bits == a->_bits && TypePtr::eq(t);
3094 }
3095
3096 //------------------------------hash-------------------------------------------
3097 // Type-specific hashing function.
3098 int TypeRawPtr::hash(void) const {
3099 return (intptr_t)_bits + TypePtr::hash();
3100 }
3101
3102 //------------------------------dump2------------------------------------------
3103 #ifndef PRODUCT
3104 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3105 if( _ptr == Constant )
3106 st->print(INTPTR_FORMAT, p2i(_bits));
3107 else
3108 st->print("rawptr:%s", ptr_msg[_ptr]);
3109 }
3110 #endif
3111
3112 //=============================================================================
3113 // Convenience common pre-built type.
3114 const TypeOopPtr *TypeOopPtr::BOTTOM;
3115
3116 TypePtr::InterfaceSet::InterfaceSet()
3117 : _list(Compile::current()->type_arena(), 0, 0, NULL),
3118 _hash_computed(0), _exact_klass_computed(0), _is_loaded_computed(0) {
3119 }
3120
3121 TypePtr::InterfaceSet::InterfaceSet(GrowableArray<ciInstanceKlass*>* interfaces)
3122 : _list(Compile::current()->type_arena(), interfaces->length(), 0, NULL),
3123 _hash_computed(0), _exact_klass_computed(0), _is_loaded_computed(0) {
3124 for (int i = 0; i < interfaces->length(); i++) {
3125 add(interfaces->at(i));
3126 }
3127 }
3128
3129
3130 int TypePtr::InterfaceSet::compare(ciKlass* const& k1, ciKlass* const& k2) {
3131 if ((intptr_t)k1 < (intptr_t)k2) {
3132 return -1;
3133 } else if ((intptr_t)k1 > (intptr_t)k2) {
3134 return 1;
3135 }
3136 return 0;
3137 }
3138
3139 void TypePtr::InterfaceSet::add(ciKlass* interface) {
3140 assert(interface->is_interface(), "for interfaces only");
3141 _list.insert_sorted<compare>(interface);
3142 verify();
3143 }
3144
3145 void TypePtr::InterfaceSet::raw_add(ciKlass* interface) {
3146 assert(interface->is_interface(), "for interfaces only");
3147 _list.push(interface);
3148 }
3149
3150 bool TypePtr::InterfaceSet::eq(const InterfaceSet& other) const {
3151 if (_list.length() != other._list.length()) {
3152 return false;
3153 }
3154 for (int i = 0; i < _list.length(); i++) {
3155 ciKlass* k1 = _list.at(i);
3156 ciKlass* k2 = other._list.at(i);
3157 if (!k1->equals(k2)) {
3158 return false;
3159 }
3160 }
3161 return true;
3162 }
3163
3164 int TypePtr::InterfaceSet::hash() const {
3165 if (_hash_computed) {
3166 return _hash;
3167 }
3168 const_cast<InterfaceSet*>(this)->compute_hash();
3169 assert(_hash_computed, "should be computed now");
3170 return _hash;
3171 }
3172
3173 void TypePtr::InterfaceSet::compute_hash() {
3174 int hash = 0;
3175 for (int i = 0; i < _list.length(); i++) {
3176 ciKlass* k = _list.at(i);
3177 hash += (jint)k->hash();
3178 }
3179 _hash_computed = 1;
3180 _hash = hash;
3181 }
3182
3183 static int compare_interfaces(ciKlass** k1, ciKlass** k2) {
3184 return (int)((*k1)->ident() - (*k2)->ident());
3185 }
3186
3187 void TypePtr::InterfaceSet::dump(outputStream *st) const {
3188 if (_list.length() == 0) {
3189 return;
3190 }
3191 ResourceMark rm;
3192 st->print(" (");
3193 GrowableArray<ciKlass*> interfaces;
3194 interfaces.appendAll(&_list);
3195 // Sort the interfaces so they are listed in the same order from one run to the other of the same compilation
3196 interfaces.sort(compare_interfaces);
3197 for (int i = 0; i < interfaces.length(); i++) {
3198 if (i > 0) {
3199 st->print(",");
3200 }
3201 ciKlass* k = interfaces.at(i);
3202 k->print_name_on(st);
3203 }
3204 st->print(")");
3205 }
3206
3207 void TypePtr::InterfaceSet::verify() const {
3208 #ifdef DEBUG
3209 for (int i = 1; i < _list.length(); i++) {
3210 ciKlass* k1 = _list.at(i-1);
3211 ciKlass* k2 = _list.at(i);
3212 assert(compare(k2, k1) > 0, "should be ordered");
3213 assert(k1 != k2, "no duplicate");
3214 }
3215 #endif
3216 }
3217
3218 TypePtr::InterfaceSet TypeOopPtr::InterfaceSet::union_with(const InterfaceSet& other) const {
3219 InterfaceSet result;
3220 int i = 0;
3221 int j = 0;
3222 while (i < _list.length() || j < other._list.length()) {
3223 while (i < _list.length() &&
3224 (j >= other._list.length() ||
3225 compare(_list.at(i), other._list.at(j)) < 0)) {
3226 result.raw_add(_list.at(i));
3227 i++;
3228 }
3229 while (j < other._list.length() &&
3230 (i >= _list.length() ||
3231 compare(other._list.at(j), _list.at(i)) < 0)) {
3232 result.raw_add(other._list.at(j));
3233 j++;
3234 }
3235 if (i < _list.length() &&
3236 j < other._list.length() &&
3237 _list.at(i) == other._list.at(j)) {
3238 result.raw_add(_list.at(i));
3239 i++;
3240 j++;
3241 }
3242 }
3243 result.verify();
3244 #ifdef DEBUG
3245 for (int i = 0; i < _list.length(); i++) {
3246 assert(result.contains(_list.at(i)), "missing");
3247 }
3248 for (int i = 0; i < other._list.length(); i++) {
3249 assert(result.contains(other._list.at(i)), "missing");
3250 }
3251 for (int i = 0; i < result._list.length(); i++) {
3252 assert(_list.contains(result._list.at(i)) || other._list.contains(result._list.at(i)), "missing");
3253 }
3254 #endif
3255 return result;
3256 }
3257
3258 TypePtr::InterfaceSet TypeOopPtr::InterfaceSet::intersection_with(const InterfaceSet& other) const {
3259 InterfaceSet result;
3260 int i = 0;
3261 int j = 0;
3262 while (i < _list.length() || j < other._list.length()) {
3263 while (i < _list.length() &&
3264 (j >= other._list.length() ||
3265 compare(_list.at(i), other._list.at(j)) < 0)) {
3266 i++;
3267 }
3268 while (j < other._list.length() &&
3269 (i >= _list.length() ||
3270 compare(other._list.at(j), _list.at(i)) < 0)) {
3271 j++;
3272 }
3273 if (i < _list.length() &&
3274 j < other._list.length() &&
3275 _list.at(i) == other._list.at(j)) {
3276 result.raw_add(_list.at(i));
3277 i++;
3278 j++;
3279 }
3280 }
3281 result.verify();
3282 #ifdef DEBUG
3283 for (int i = 0; i < _list.length(); i++) {
3284 assert(!other._list.contains(_list.at(i)) || result.contains(_list.at(i)), "missing");
3285 }
3286 for (int i = 0; i < other._list.length(); i++) {
3287 assert(!_list.contains(other._list.at(i)) || result.contains(other._list.at(i)), "missing");
3288 }
3289 for (int i = 0; i < result._list.length(); i++) {
3290 assert(_list.contains(result._list.at(i)) && other._list.contains(result._list.at(i)), "missing");
3291 }
3292 #endif
3293 return result;
3294 }
3295
3296 // Is there a single ciKlass* that can represent the interface set?
3297 ciKlass* TypePtr::InterfaceSet::exact_klass() const {
3298 if (_exact_klass_computed) {
3299 return _exact_klass;
3300 }
3301 const_cast<InterfaceSet*>(this)->compute_exact_klass();
3302 assert(_exact_klass_computed, "should be computed now");
3303 return _exact_klass;
3304 }
3305
3306 void TypePtr::InterfaceSet::compute_exact_klass() {
3307 if (_list.length() == 0) {
3308 _exact_klass_computed = 1;
3309 _exact_klass = NULL;
3310 return;
3311 }
3312 ciKlass* res = NULL;
3313 for (int i = 0; i < _list.length(); i++) {
3314 ciKlass* interface = _list.at(i);
3315 if (eq(interfaces(interface, false, true, false, trust_interfaces))) {
3316 assert(res == NULL, "");
3317 res = _list.at(i);
3318 }
3319 }
3320 _exact_klass_computed = 1;
3321 _exact_klass = res;
3322 }
3323
3324 bool TypePtr::InterfaceSet::is_loaded() const {
3325 if (_is_loaded_computed) {
3326 return _is_loaded;
3327 }
3328 const_cast<InterfaceSet*>(this)->compute_is_loaded();
3329 assert(_is_loaded_computed, "should be computed now");
3330 return _is_loaded;
3331 }
3332
3333 void TypePtr::InterfaceSet::compute_is_loaded() {
3334 _is_loaded_computed = 1;
3335 for (int i = 0; i < _list.length(); i++) {
3336 ciKlass* interface = _list.at(i);
3337 if (!interface->is_loaded()) {
3338 _is_loaded = false;
3339 return;
3340 }
3341 }
3342 _is_loaded = true;
3343 }
3344
3345 //------------------------------TypeOopPtr-------------------------------------
3346 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const InterfaceSet& interfaces, bool xk, ciObject* o, int offset,
3347 int instance_id, const TypePtr* speculative, int inline_depth)
3348 : TypePtr(t, ptr, offset, speculative, inline_depth),
3349 _const_oop(o), _klass(k),
3350 _interfaces(interfaces),
3351 _klass_is_exact(xk),
3352 _is_ptr_to_narrowoop(false),
3353 _is_ptr_to_narrowklass(false),
3354 _is_ptr_to_boxed_value(false),
3355 _instance_id(instance_id) {
3356 if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3357 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
3358 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
3359 }
3360 #ifdef _LP64
3361 if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
3362 if (_offset == oopDesc::klass_offset_in_bytes()) {
3363 _is_ptr_to_narrowklass = UseCompressedClassPointers;
3364 } else if (klass() == NULL) {
3365 // Array with unknown body type
3366 assert(this->isa_aryptr(), "only arrays without klass");
3367 _is_ptr_to_narrowoop = UseCompressedOops;
3368 } else if (this->isa_aryptr()) {
3369 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3370 _offset != arrayOopDesc::length_offset_in_bytes());
3371 } else if (klass()->is_instance_klass()) {
3372 ciInstanceKlass* ik = klass()->as_instance_klass();
3373 if (this->isa_klassptr()) {
3374 // Perm objects don't use compressed references
3375 } else if (_offset == OffsetBot || _offset == OffsetTop) {
3376 // unsafe access
3377 _is_ptr_to_narrowoop = UseCompressedOops;
3378 } else {
3379 assert(this->isa_instptr(), "must be an instance ptr.");
3380
3381 if (klass() == ciEnv::current()->Class_klass() &&
3382 (_offset == java_lang_Class::klass_offset() ||
3383 _offset == java_lang_Class::array_klass_offset())) {
3384 // Special hidden fields from the Class.
3385 assert(this->isa_instptr(), "must be an instance ptr.");
3386 _is_ptr_to_narrowoop = false;
3387 } else if (klass() == ciEnv::current()->Class_klass() &&
3388 _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3389 // Static fields
3390 ciField* field = NULL;
3391 if (const_oop() != NULL) {
3392 ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
3393 field = k->get_field_by_offset(_offset, true);
3394 }
3395 if (field != NULL) {
3396 BasicType basic_elem_type = field->layout_type();
3397 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3398 } else {
3399 // unsafe access
3400 _is_ptr_to_narrowoop = UseCompressedOops;
3401 }
3402 } else {
3403 // Instance fields which contains a compressed oop references.
3404 ciField* field = ik->get_field_by_offset(_offset, false);
3405 if (field != NULL) {
3406 BasicType basic_elem_type = field->layout_type();
3407 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type);
3408 } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3409 // Compile::find_alias_type() cast exactness on all types to verify
3410 // that it does not affect alias type.
3411 _is_ptr_to_narrowoop = UseCompressedOops;
3412 } else {
3413 // Type for the copy start in LibraryCallKit::inline_native_clone().
3414 _is_ptr_to_narrowoop = UseCompressedOops;
3415 }
3416 }
3417 }
3418 }
3419 }
3420 #endif
3421 }
3422
3423 //------------------------------make-------------------------------------------
3424 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3425 const TypePtr* speculative, int inline_depth) {
3426 assert(ptr != Constant, "no constant generic pointers");
3427 ciKlass* k = Compile::current()->env()->Object_klass();
3428 bool xk = false;
3429 ciObject* o = NULL;
3430 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, InterfaceSet(), xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3431 }
3432
3433
3434 //------------------------------cast_to_ptr_type-------------------------------
3435 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3436 assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3437 if( ptr == _ptr ) return this;
3438 return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3439 }
3440
3441 //-----------------------------cast_to_instance_id----------------------------
3442 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3443 // There are no instances of a general oop.
3444 // Return self unchanged.
3445 return this;
3446 }
3447
3448 //-----------------------------cast_to_exactness-------------------------------
3449 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3450 // There is no such thing as an exact general oop.
3451 // Return self unchanged.
3452 return this;
3453 }
3454
3455
3456 //------------------------------as_klass_type----------------------------------
3457 // Return the klass type corresponding to this instance or array type.
3458 // It is the type that is loaded from an object of this type.
3459 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const {
3460 ShouldNotReachHere();
3461 return NULL;
3462 }
3463
3464 //------------------------------meet-------------------------------------------
3465 // Compute the MEET of two types. It returns a new Type object.
3466 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3467 // Perform a fast test for common case; meeting the same types together.
3468 if( this == t ) return this; // Meeting same type-rep?
3469
3470 // Current "this->_base" is OopPtr
3471 switch (t->base()) { // switch on original type
3472
3473 case Int: // Mixing ints & oops happens when javac
3474 case Long: // reuses local variables
3475 case FloatTop:
3476 case FloatCon:
3477 case FloatBot:
3478 case DoubleTop:
3479 case DoubleCon:
3480 case DoubleBot:
3481 case NarrowOop:
3482 case NarrowKlass:
3483 case Bottom: // Ye Olde Default
3484 return Type::BOTTOM;
3485 case Top:
3486 return this;
3487
3488 default: // All else is a mistake
3489 typerr(t);
3490
3491 case RawPtr:
3492 case MetadataPtr:
3493 case KlassPtr:
3494 case InstKlassPtr:
3495 case AryKlassPtr:
3496 return TypePtr::BOTTOM; // Oop meet raw is not well defined
3497
3498 case AnyPtr: {
3499 // Found an AnyPtr type vs self-OopPtr type
3500 const TypePtr *tp = t->is_ptr();
3501 int offset = meet_offset(tp->offset());
3502 PTR ptr = meet_ptr(tp->ptr());
3503 const TypePtr* speculative = xmeet_speculative(tp);
3504 int depth = meet_inline_depth(tp->inline_depth());
3505 switch (tp->ptr()) {
3506 case Null:
3507 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3508 // else fall through:
3509 case TopPTR:
3510 case AnyNull: {
3511 int instance_id = meet_instance_id(InstanceTop);
3512 return make(ptr, offset, instance_id, speculative, depth);
3513 }
3514 case BotPTR:
3515 case NotNull:
3516 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3517 default: typerr(t);
3518 }
3519 }
3520
3521 case OopPtr: { // Meeting to other OopPtrs
3522 const TypeOopPtr *tp = t->is_oopptr();
3523 int instance_id = meet_instance_id(tp->instance_id());
3524 const TypePtr* speculative = xmeet_speculative(tp);
3525 int depth = meet_inline_depth(tp->inline_depth());
3526 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3527 }
3528
3529 case InstPtr: // For these, flip the call around to cut down
3530 case AryPtr:
3531 return t->xmeet(this); // Call in reverse direction
3532
3533 } // End of switch
3534 return this; // Return the double constant
3535 }
3536
3537
3538 //------------------------------xdual------------------------------------------
3539 // Dual of a pure heap pointer. No relevant klass or oop information.
3540 const Type *TypeOopPtr::xdual() const {
3541 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3542 assert(const_oop() == NULL, "no constants here");
3543 return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3544 }
3545
3546 //--------------------------make_from_klass_common-----------------------------
3547 // Computes the element-type given a klass.
3548 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) {
3549 if (klass->is_instance_klass()) {
3550 Compile* C = Compile::current();
3551 Dependencies* deps = C->dependencies();
3552 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3553 // Element is an instance
3554 bool klass_is_exact = false;
3555 if (klass->is_loaded()) {
3556 // Try to set klass_is_exact.
3557 ciInstanceKlass* ik = klass->as_instance_klass();
3558 klass_is_exact = ik->is_final();
3559 if (!klass_is_exact && klass_change
3560 && deps != NULL && UseUniqueSubclasses) {
3561 ciInstanceKlass* sub = ik->unique_concrete_subklass();
3562 if (sub != NULL) {
3563 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3564 klass = ik = sub;
3565 klass_is_exact = sub->is_final();
3566 }
3567 }
3568 if (!klass_is_exact && try_for_exact && deps != NULL &&
3569 !ik->is_interface() && !ik->has_subklass()) {
3570 // Add a dependence; if concrete subclass added we need to recompile
3571 deps->assert_leaf_type(ik);
3572 klass_is_exact = true;
3573 }
3574 }
3575 const TypePtr::InterfaceSet interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
3576 return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, NULL, 0);
3577 } else if (klass->is_obj_array_klass()) {
3578 // Element is an object array. Recursively call ourself.
3579 ciKlass* eklass = klass->as_obj_array_klass()->element_klass();
3580 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling);
3581 bool xk = etype->klass_is_exact();
3582 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3583 // We used to pass NotNull in here, asserting that the sub-arrays
3584 // are all not-null. This is not true in generally, as code can
3585 // slam NULLs down in the subarrays.
3586 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, NULL, xk, 0);
3587 return arr;
3588 } else if (klass->is_type_array_klass()) {
3589 // Element is an typeArray
3590 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3591 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3592 // We used to pass NotNull in here, asserting that the array pointer
3593 // is not-null. That was not true in general.
3594 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3595 return arr;
3596 } else {
3597 ShouldNotReachHere();
3598 return NULL;
3599 }
3600 }
3601
3602 //------------------------------make_from_constant-----------------------------
3603 // Make a java pointer from an oop constant
3604 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3605 assert(!o->is_null_object(), "null object not yet handled here.");
3606
3607 const bool make_constant = require_constant || o->should_be_constant();
3608
3609 ciKlass* klass = o->klass();
3610 if (klass->is_instance_klass()) {
3611 // Element is an instance
3612 if (make_constant) {
3613 return TypeInstPtr::make(o);
3614 } else {
3615 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3616 }
3617 } else if (klass->is_obj_array_klass()) {
3618 // Element is an object array. Recursively call ourself.
3619 const TypeOopPtr *etype =
3620 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces);
3621 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3622 // We used to pass NotNull in here, asserting that the sub-arrays
3623 // are all not-null. This is not true in generally, as code can
3624 // slam NULLs down in the subarrays.
3625 if (make_constant) {
3626 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3627 } else {
3628 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3629 }
3630 } else if (klass->is_type_array_klass()) {
3631 // Element is an typeArray
3632 const Type* etype =
3633 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3634 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3635 // We used to pass NotNull in here, asserting that the array pointer
3636 // is not-null. That was not true in general.
3637 if (make_constant) {
3638 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3639 } else {
3640 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3641 }
3642 }
3643
3644 fatal("unhandled object type");
3645 return NULL;
3646 }
3647
3648 //------------------------------get_con----------------------------------------
3649 intptr_t TypeOopPtr::get_con() const {
3650 assert( _ptr == Null || _ptr == Constant, "" );
3651 assert( _offset >= 0, "" );
3652
3653 if (_offset != 0) {
3654 // After being ported to the compiler interface, the compiler no longer
3655 // directly manipulates the addresses of oops. Rather, it only has a pointer
3656 // to a handle at compile time. This handle is embedded in the generated
3657 // code and dereferenced at the time the nmethod is made. Until that time,
3658 // it is not reasonable to do arithmetic with the addresses of oops (we don't
3659 // have access to the addresses!). This does not seem to currently happen,
3660 // but this assertion here is to help prevent its occurrence.
3661 tty->print_cr("Found oop constant with non-zero offset");
3662 ShouldNotReachHere();
3663 }
3664
3665 return (intptr_t)const_oop()->constant_encoding();
3666 }
3667
3668
3669 //-----------------------------filter------------------------------------------
3670 // Do not allow interface-vs.-noninterface joins to collapse to top.
3671 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3672
3673 const Type* ft = join_helper(kills, include_speculative);
3674 const TypeInstPtr* ftip = ft->isa_instptr();
3675 const TypeInstPtr* ktip = kills->isa_instptr();
3676
3677 if (ft->empty()) {
3678 return Type::TOP; // Canonical empty value
3679 }
3680
3681 return ft;
3682 }
3683
3684 //------------------------------eq---------------------------------------------
3685 // Structural equality check for Type representations
3686 bool TypeOopPtr::eq( const Type *t ) const {
3687 const TypeOopPtr *a = (const TypeOopPtr*)t;
3688 if (_klass_is_exact != a->_klass_is_exact ||
3689 _instance_id != a->_instance_id) return false;
3690 ciObject* one = const_oop();
3691 ciObject* two = a->const_oop();
3692 if (one == NULL || two == NULL) {
3693 return (one == two) && TypePtr::eq(t);
3694 } else {
3695 return one->equals(two) && TypePtr::eq(t);
3696 }
3697 }
3698
3699 //------------------------------hash-------------------------------------------
3700 // Type-specific hashing function.
3701 int TypeOopPtr::hash(void) const {
3702 return
3703 java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3704 java_add((jint)_instance_id, (jint)TypePtr::hash()));
3705 }
3706
3707 //------------------------------dump2------------------------------------------
3708 #ifndef PRODUCT
3709 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3710 st->print("oopptr:%s", ptr_msg[_ptr]);
3711 if( _klass_is_exact ) st->print(":exact");
3712 if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3713 switch( _offset ) {
3714 case OffsetTop: st->print("+top"); break;
3715 case OffsetBot: st->print("+any"); break;
3716 case 0: break;
3717 default: st->print("+%d",_offset); break;
3718 }
3719 if (_instance_id == InstanceTop)
3720 st->print(",iid=top");
3721 else if (_instance_id != InstanceBot)
3722 st->print(",iid=%d",_instance_id);
3723
3724 dump_inline_depth(st);
3725 dump_speculative(st);
3726 }
3727 #endif
3728
3729 //------------------------------singleton--------------------------------------
3730 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
3731 // constants
3732 bool TypeOopPtr::singleton(void) const {
3733 // detune optimizer to not generate constant oop + constant offset as a constant!
3734 // TopPTR, Null, AnyNull, Constant are all singletons
3735 return (_offset == 0) && !below_centerline(_ptr);
3736 }
3737
3738 //------------------------------add_offset-------------------------------------
3739 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const {
3740 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3741 }
3742
3743 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const {
3744 return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
3745 }
3746
3747 /**
3748 * Return same type without a speculative part
3749 */
3750 const TypeOopPtr* TypeOopPtr::remove_speculative() const {
3751 if (_speculative == NULL) {
3752 return this;
3753 }
3754 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3755 return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3756 }
3757
3758 /**
3759 * Return same type but drop speculative part if we know we won't use
3760 * it
3761 */
3762 const Type* TypeOopPtr::cleanup_speculative() const {
3763 // If the klass is exact and the ptr is not null then there's
3764 // nothing that the speculative type can help us with
3765 if (klass_is_exact() && !maybe_null()) {
3766 return remove_speculative();
3767 }
3768 return TypePtr::cleanup_speculative();
3769 }
3770
3771 /**
3772 * Return same type but with a different inline depth (used for speculation)
3773 *
3774 * @param depth depth to meet with
3775 */
3776 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3777 if (!UseInlineDepthForSpeculativeTypes) {
3778 return this;
3779 }
3780 return make(_ptr, _offset, _instance_id, _speculative, depth);
3781 }
3782
3783 //------------------------------with_instance_id--------------------------------
3784 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const {
3785 assert(_instance_id != -1, "should be known");
3786 return make(_ptr, _offset, instance_id, _speculative, _inline_depth);
3787 }
3788
3789 //------------------------------meet_instance_id--------------------------------
3790 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3791 // Either is 'TOP' instance? Return the other instance!
3792 if( _instance_id == InstanceTop ) return instance_id;
3793 if( instance_id == InstanceTop ) return _instance_id;
3794 // If either is different, return 'BOTTOM' instance
3795 if( _instance_id != instance_id ) return InstanceBot;
3796 return _instance_id;
3797 }
3798
3799 //------------------------------dual_instance_id--------------------------------
3800 int TypeOopPtr::dual_instance_id( ) const {
3801 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3802 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3803 return _instance_id; // Map everything else into self
3804 }
3805
3806
3807 TypePtr::InterfaceSet TypeOopPtr::meet_interfaces(const TypeOopPtr* other) const {
3808 if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
3809 return _interfaces.union_with(other->_interfaces);
3810 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
3811 return other->_interfaces;
3812 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
3813 return _interfaces;
3814 }
3815 return _interfaces.intersection_with(other->_interfaces);
3816 }
3817
3818 /**
3819 * Check whether new profiling would improve speculative type
3820 *
3821 * @param exact_kls class from profiling
3822 * @param inline_depth inlining depth of profile point
3823 *
3824 * @return true if type profile is valuable
3825 */
3826 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3827 // no way to improve an already exact type
3828 if (klass_is_exact()) {
3829 return false;
3830 }
3831 return TypePtr::would_improve_type(exact_kls, inline_depth);
3832 }
3833
3834 //=============================================================================
3835 // Convenience common pre-built types.
3836 const TypeInstPtr *TypeInstPtr::NOTNULL;
3837 const TypeInstPtr *TypeInstPtr::BOTTOM;
3838 const TypeInstPtr *TypeInstPtr::MIRROR;
3839 const TypeInstPtr *TypeInstPtr::MARK;
3840 const TypeInstPtr *TypeInstPtr::KLASS;
3841
3842 // Is there a single ciKlass* that can represent that type?
3843 ciKlass* TypeInstPtr::exact_klass_helper() const {
3844 if (_interfaces.empty()) {
3845 return _klass;
3846 }
3847 if (_klass != ciEnv::current()->Object_klass()) {
3848 ciKlass* k = _klass;
3849 const TypePtr::InterfaceSet interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
3850 if (_interfaces.eq(interfaces)) {
3851 return _klass;
3852 }
3853 return NULL;
3854 }
3855 return _interfaces.exact_klass();
3856 }
3857
3858 //------------------------------TypeInstPtr-------------------------------------
3859 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const InterfaceSet& interfaces, bool xk, ciObject* o, int off,
3860 int instance_id, const TypePtr* speculative, int inline_depth)
3861 : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) {
3862 assert(k == NULL || !k->is_loaded() || !k->is_interface(), "no interface here");
3863 assert(k != NULL &&
3864 (k->is_loaded() || o == NULL),
3865 "cannot have constants with non-loaded klass");
3866 };
3867
3868 //------------------------------make-------------------------------------------
3869 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3870 ciKlass* k,
3871 const InterfaceSet& interfaces,
3872 bool xk,
3873 ciObject* o,
3874 int offset,
3875 int instance_id,
3876 const TypePtr* speculative,
3877 int inline_depth) {
3878 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3879 // Either const_oop() is NULL or else ptr is Constant
3880 assert( (!o && ptr != Constant) || (o && ptr == Constant),
3881 "constant pointers must have a value supplied" );
3882 // Ptr is never Null
3883 assert( ptr != Null, "NULL pointers are not typed" );
3884
3885 assert(instance_id <= 0 || xk, "instances are always exactly typed");
3886 if (ptr == Constant) {
3887 // Note: This case includes meta-object constants, such as methods.
3888 xk = true;
3889 } else if (k->is_loaded()) {
3890 ciInstanceKlass* ik = k->as_instance_klass();
3891 if (!xk && ik->is_final()) xk = true; // no inexact final klass
3892 assert(!ik->is_interface(), "no interface here");
3893 if (xk && ik->is_interface()) xk = false; // no exact interface
3894 }
3895
3896 // Now hash this baby
3897 TypeInstPtr *result =
3898 (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3899
3900 return result;
3901 }
3902
3903 TypePtr::InterfaceSet TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) {
3904 if (k->is_instance_klass()) {
3905 if (k->is_loaded()) {
3906 if (k->is_interface() && interface_handling == ignore_interfaces) {
3907 assert(interface, "no interface expected");
3908 k = ciEnv::current()->Object_klass();
3909 InterfaceSet interfaces;
3910 return interfaces;
3911 }
3912 GrowableArray<ciInstanceKlass *> *k_interfaces = k->as_instance_klass()->transitive_interfaces();
3913 InterfaceSet interfaces(k_interfaces);
3914 if (k->is_interface()) {
3915 assert(interface, "no interface expected");
3916 k = ciEnv::current()->Object_klass();
3917 } else {
3918 assert(klass, "no instance klass expected");
3919 }
3920 return interfaces;
3921 }
3922 InterfaceSet interfaces;
3923 return interfaces;
3924 }
3925 assert(array, "no array expected");
3926 assert(k->is_array_klass(), "Not an array?");
3927 ciType* e = k->as_array_klass()->base_element_type();
3928 if (e->is_loaded() && e->is_instance_klass() && e->as_instance_klass()->is_interface()) {
3929 if (interface_handling == ignore_interfaces) {
3930 k = ciObjArrayKlass::make(ciEnv::current()->Object_klass(), k->as_array_klass()->dimension());
3931 }
3932 }
3933 return *TypeAryPtr::_array_interfaces;
3934 }
3935
3936 /**
3937 * Create constant type for a constant boxed value
3938 */
3939 const Type* TypeInstPtr::get_const_boxed_value() const {
3940 assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3941 assert((const_oop() != NULL), "should be called only for constant object");
3942 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3943 BasicType bt = constant.basic_type();
3944 switch (bt) {
3945 case T_BOOLEAN: return TypeInt::make(constant.as_boolean());
3946 case T_INT: return TypeInt::make(constant.as_int());
3947 case T_CHAR: return TypeInt::make(constant.as_char());
3948 case T_BYTE: return TypeInt::make(constant.as_byte());
3949 case T_SHORT: return TypeInt::make(constant.as_short());
3950 case T_FLOAT: return TypeF::make(constant.as_float());
3951 case T_DOUBLE: return TypeD::make(constant.as_double());
3952 case T_LONG: return TypeLong::make(constant.as_long());
3953 default: break;
3954 }
3955 fatal("Invalid boxed value type '%s'", type2name(bt));
3956 return NULL;
3957 }
3958
3959 //------------------------------cast_to_ptr_type-------------------------------
3960 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3961 if( ptr == _ptr ) return this;
3962 // Reconstruct _sig info here since not a problem with later lazy
3963 // construction, _sig will show up on demand.
3964 return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : NULL, _offset, _instance_id, _speculative, _inline_depth);
3965 }
3966
3967
3968 //-----------------------------cast_to_exactness-------------------------------
3969 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3970 if( klass_is_exact == _klass_is_exact ) return this;
3971 if (!_klass->is_loaded()) return this;
3972 ciInstanceKlass* ik = _klass->as_instance_klass();
3973 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk
3974 assert(!ik->is_interface(), "no interface here");
3975 return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3976 }
3977
3978 //-----------------------------cast_to_instance_id----------------------------
3979 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const {
3980 if( instance_id == _instance_id ) return this;
3981 return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3982 }
3983
3984 //------------------------------xmeet_unloaded---------------------------------
3985 // Compute the MEET of two InstPtrs when at least one is unloaded.
3986 // Assume classes are different since called after check for same name/class-loader
3987 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const InterfaceSet& interfaces) const {
3988 int off = meet_offset(tinst->offset());
3989 PTR ptr = meet_ptr(tinst->ptr());
3990 int instance_id = meet_instance_id(tinst->instance_id());
3991 const TypePtr* speculative = xmeet_speculative(tinst);
3992 int depth = meet_inline_depth(tinst->inline_depth());
3993
3994 const TypeInstPtr *loaded = is_loaded() ? this : tinst;
3995 const TypeInstPtr *unloaded = is_loaded() ? tinst : this;
3996 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3997 //
3998 // Meet unloaded class with java/lang/Object
3999 //
4000 // Meet
4001 // | Unloaded Class
4002 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM |
4003 // ===================================================================
4004 // TOP | ..........................Unloaded......................|
4005 // AnyNull | U-AN |................Unloaded......................|
4006 // Constant | ... O-NN .................................. | O-BOT |
4007 // NotNull | ... O-NN .................................. | O-BOT |
4008 // BOTTOM | ........................Object-BOTTOM ..................|
4009 //
4010 assert(loaded->ptr() != TypePtr::Null, "insanity check");
4011 //
4012 if (loaded->ptr() == TypePtr::TopPTR) { return unloaded; }
4013 else if (loaded->ptr() == TypePtr::AnyNull) { return make(ptr, unloaded->klass(), interfaces, false, NULL, off, instance_id, speculative, depth); }
4014 else if (loaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM; }
4015 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
4016 if (unloaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM; }
4017 else { return TypeInstPtr::NOTNULL; }
4018 }
4019 else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded; }
4020
4021 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
4022 }
4023
4024 // Both are unloaded, not the same class, not Object
4025 // Or meet unloaded with a different loaded class, not java/lang/Object
4026 if (ptr != TypePtr::BotPTR) {
4027 return TypeInstPtr::NOTNULL;
4028 }
4029 return TypeInstPtr::BOTTOM;
4030 }
4031
4032
4033 //------------------------------meet-------------------------------------------
4034 // Compute the MEET of two types. It returns a new Type object.
4035 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
4036 // Perform a fast test for common case; meeting the same types together.
4037 if( this == t ) return this; // Meeting same type-rep?
4038
4039 // Current "this->_base" is Pointer
4040 switch (t->base()) { // switch on original type
4041
4042 case Int: // Mixing ints & oops happens when javac
4043 case Long: // reuses local variables
4044 case FloatTop:
4045 case FloatCon:
4046 case FloatBot:
4047 case DoubleTop:
4048 case DoubleCon:
4049 case DoubleBot:
4050 case NarrowOop:
4051 case NarrowKlass:
4052 case Bottom: // Ye Olde Default
4053 return Type::BOTTOM;
4054 case Top:
4055 return this;
4056
4057 default: // All else is a mistake
4058 typerr(t);
4059
4060 case MetadataPtr:
4061 case KlassPtr:
4062 case InstKlassPtr:
4063 case AryKlassPtr:
4064 case RawPtr: return TypePtr::BOTTOM;
4065
4066 case AryPtr: { // All arrays inherit from Object class
4067 // Call in reverse direction to avoid duplication
4068 return t->is_aryptr()->xmeet_helper(this);
4069 }
4070
4071 case OopPtr: { // Meeting to OopPtrs
4072 // Found a OopPtr type vs self-InstPtr type
4073 const TypeOopPtr *tp = t->is_oopptr();
4074 int offset = meet_offset(tp->offset());
4075 PTR ptr = meet_ptr(tp->ptr());
4076 switch (tp->ptr()) {
4077 case TopPTR:
4078 case AnyNull: {
4079 int instance_id = meet_instance_id(InstanceTop);
4080 const TypePtr* speculative = xmeet_speculative(tp);
4081 int depth = meet_inline_depth(tp->inline_depth());
4082 return make(ptr, klass(), _interfaces, klass_is_exact(),
4083 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
4084 }
4085 case NotNull:
4086 case BotPTR: {
4087 int instance_id = meet_instance_id(tp->instance_id());
4088 const TypePtr* speculative = xmeet_speculative(tp);
4089 int depth = meet_inline_depth(tp->inline_depth());
4090 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4091 }
4092 default: typerr(t);
4093 }
4094 }
4095
4096 case AnyPtr: { // Meeting to AnyPtrs
4097 // Found an AnyPtr type vs self-InstPtr type
4098 const TypePtr *tp = t->is_ptr();
4099 int offset = meet_offset(tp->offset());
4100 PTR ptr = meet_ptr(tp->ptr());
4101 int instance_id = meet_instance_id(InstanceTop);
4102 const TypePtr* speculative = xmeet_speculative(tp);
4103 int depth = meet_inline_depth(tp->inline_depth());
4104 switch (tp->ptr()) {
4105 case Null:
4106 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4107 // else fall through to AnyNull
4108 case TopPTR:
4109 case AnyNull: {
4110 return make(ptr, klass(), _interfaces, klass_is_exact(),
4111 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
4112 }
4113 case NotNull:
4114 case BotPTR:
4115 return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4116 default: typerr(t);
4117 }
4118 }
4119
4120 /*
4121 A-top }
4122 / | \ } Tops
4123 B-top A-any C-top }
4124 | / | \ | } Any-nulls
4125 B-any | C-any }
4126 | | |
4127 B-con A-con C-con } constants; not comparable across classes
4128 | | |
4129 B-not | C-not }
4130 | \ | / | } not-nulls
4131 B-bot A-not C-bot }
4132 \ | / } Bottoms
4133 A-bot }
4134 */
4135
4136 case InstPtr: { // Meeting 2 Oops?
4137 // Found an InstPtr sub-type vs self-InstPtr type
4138 const TypeInstPtr *tinst = t->is_instptr();
4139 int off = meet_offset(tinst->offset());
4140 PTR ptr = meet_ptr(tinst->ptr());
4141 int instance_id = meet_instance_id(tinst->instance_id());
4142 const TypePtr* speculative = xmeet_speculative(tinst);
4143 int depth = meet_inline_depth(tinst->inline_depth());
4144 InterfaceSet interfaces = meet_interfaces(tinst);
4145
4146 ciKlass* tinst_klass = tinst->klass();
4147 ciKlass* this_klass = klass();
4148
4149 ciKlass* res_klass = NULL;
4150 bool res_xk = false;
4151 const Type* res;
4152 MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk);
4153
4154 if (kind == UNLOADED) {
4155 // One of these classes has not been loaded
4156 const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces);
4157 #ifndef PRODUCT
4158 if (PrintOpto && Verbose) {
4159 tty->print("meet of unloaded classes resulted in: ");
4160 unloaded_meet->dump();
4161 tty->cr();
4162 tty->print(" this == ");
4163 dump();
4164 tty->cr();
4165 tty->print(" tinst == ");
4166 tinst->dump();
4167 tty->cr();
4168 }
4169 #endif
4170 res = unloaded_meet;
4171 } else {
4172 if (kind == NOT_SUBTYPE && instance_id > 0) {
4173 instance_id = InstanceBot;
4174 } else if (kind == LCA) {
4175 instance_id = InstanceBot;
4176 }
4177 ciObject* o = NULL; // Assume not constant when done
4178 ciObject* this_oop = const_oop();
4179 ciObject* tinst_oop = tinst->const_oop();
4180 if (ptr == Constant) {
4181 if (this_oop != NULL && tinst_oop != NULL &&
4182 this_oop->equals(tinst_oop))
4183 o = this_oop;
4184 else if (above_centerline(_ptr)) {
4185 assert(!tinst_klass->is_interface(), "");
4186 o = tinst_oop;
4187 } else if (above_centerline(tinst->_ptr)) {
4188 assert(!this_klass->is_interface(), "");
4189 o = this_oop;
4190 } else
4191 ptr = NotNull;
4192 }
4193 res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth);
4194 }
4195
4196 return res;
4197
4198 } // End of case InstPtr
4199
4200 } // End of switch
4201 return this; // Return the double constant
4202 }
4203
4204 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, InterfaceSet& interfaces, const T* this_type, const T* other_type,
4205 ciKlass*& res_klass, bool& res_xk) {
4206 ciKlass* this_klass = this_type->klass();
4207 ciKlass* other_klass = other_type->klass();
4208 bool this_xk = this_type->klass_is_exact();
4209 bool other_xk = other_type->klass_is_exact();
4210 PTR this_ptr = this_type->ptr();
4211 PTR other_ptr = other_type->ptr();
4212 InterfaceSet this_interfaces = this_type->interfaces();
4213 InterfaceSet other_interfaces = other_type->interfaces();
4214 // Check for easy case; klasses are equal (and perhaps not loaded!)
4215 // If we have constants, then we created oops so classes are loaded
4216 // and we can handle the constants further down. This case handles
4217 // both-not-loaded or both-loaded classes
4218 if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) {
4219 res_klass = this_klass;
4220 res_xk = this_xk;
4221 return QUICK;
4222 }
4223
4224 // Classes require inspection in the Java klass hierarchy. Must be loaded.
4225 if (!other_klass->is_loaded() || !this_klass->is_loaded()) {
4226 return UNLOADED;
4227 }
4228
4229 // !!! Here's how the symmetry requirement breaks down into invariants:
4230 // If we split one up & one down AND they subtype, take the down man.
4231 // If we split one up & one down AND they do NOT subtype, "fall hard".
4232 // If both are up and they subtype, take the subtype class.
4233 // If both are up and they do NOT subtype, "fall hard".
4234 // If both are down and they subtype, take the supertype class.
4235 // If both are down and they do NOT subtype, "fall hard".
4236 // Constants treated as down.
4237
4238 // Now, reorder the above list; observe that both-down+subtype is also
4239 // "fall hard"; "fall hard" becomes the default case:
4240 // If we split one up & one down AND they subtype, take the down man.
4241 // If both are up and they subtype, take the subtype class.
4242
4243 // If both are down and they subtype, "fall hard".
4244 // If both are down and they do NOT subtype, "fall hard".
4245 // If both are up and they do NOT subtype, "fall hard".
4246 // If we split one up & one down AND they do NOT subtype, "fall hard".
4247
4248 // If a proper subtype is exact, and we return it, we return it exactly.
4249 // If a proper supertype is exact, there can be no subtyping relationship!
4250 // If both types are equal to the subtype, exactness is and-ed below the
4251 // centerline and or-ed above it. (N.B. Constants are always exact.)
4252
4253 // Check for subtyping:
4254 const T* subtype = NULL;
4255 bool subtype_exact = false;
4256 InterfaceSet subtype_interfaces;
4257
4258 if (this_type->is_same_java_type_as(other_type)) {
4259 subtype = this_type;
4260 subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk);
4261 } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) {
4262 subtype = this_type; // Pick subtyping class
4263 subtype_exact = this_xk;
4264 } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) {
4265 subtype = other_type; // Pick subtyping class
4266 subtype_exact = other_xk;
4267 }
4268
4269 if (subtype) {
4270 if (above_centerline(ptr)) { // both are up?
4271 this_type = other_type = subtype;
4272 this_xk = other_xk = subtype_exact;
4273 } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) {
4274 this_type = other_type; // tinst is down; keep down man
4275 this_xk = other_xk;
4276 } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) {
4277 other_type = this_type; // this is down; keep down man
4278 other_xk = this_xk;
4279 } else {
4280 this_xk = subtype_exact; // either they are equal, or we'll do an LCA
4281 }
4282 }
4283
4284 // Check for classes now being equal
4285 if (this_type->is_same_java_type_as(other_type)) {
4286 // If the klasses are equal, the constants may still differ. Fall to
4287 // NotNull if they do (neither constant is NULL; that is a special case
4288 // handled elsewhere).
4289 res_klass = this_type->klass();
4290 res_xk = this_xk;
4291 return SUBTYPE;
4292 } // Else classes are not equal
4293
4294 // Since klasses are different, we require a LCA in the Java
4295 // class hierarchy - which means we have to fall to at least NotNull.
4296 if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) {
4297 ptr = NotNull;
4298 }
4299
4300 interfaces = this_interfaces.intersection_with(other_interfaces);
4301
4302 // Now we find the LCA of Java classes
4303 ciKlass* k = this_klass->least_common_ancestor(other_klass);
4304
4305 res_klass = k;
4306 res_xk = false;
4307
4308 return LCA;
4309 }
4310
4311 //------------------------java_mirror_type--------------------------------------
4312 ciType* TypeInstPtr::java_mirror_type() const {
4313 // must be a singleton type
4314 if( const_oop() == NULL ) return NULL;
4315
4316 // must be of type java.lang.Class
4317 if( klass() != ciEnv::current()->Class_klass() ) return NULL;
4318
4319 return const_oop()->as_instance()->java_mirror_type();
4320 }
4321
4322
4323 //------------------------------xdual------------------------------------------
4324 // Dual: do NOT dual on klasses. This means I do NOT understand the Java
4325 // inheritance mechanism.
4326 const Type *TypeInstPtr::xdual() const {
4327 return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4328 }
4329
4330 //------------------------------eq---------------------------------------------
4331 // Structural equality check for Type representations
4332 bool TypeInstPtr::eq( const Type *t ) const {
4333 const TypeInstPtr *p = t->is_instptr();
4334 return
4335 klass()->equals(p->klass()) &&
4336 _interfaces.eq(p->_interfaces) &&
4337 TypeOopPtr::eq(p); // Check sub-type stuff
4338 }
4339
4340 //------------------------------hash-------------------------------------------
4341 // Type-specific hashing function.
4342 int TypeInstPtr::hash(void) const {
4343 int hash = java_add(java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash()), _interfaces.hash());
4344 return hash;
4345 }
4346
4347 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4348 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4349 }
4350
4351
4352 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4353 return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
4354 }
4355
4356 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4357 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
4358 }
4359
4360
4361 //------------------------------dump2------------------------------------------
4362 // Dump oop Type
4363 #ifndef PRODUCT
4364 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const {
4365 // Print the name of the klass.
4366 klass()->print_name_on(st);
4367 _interfaces.dump(st);
4368
4369 switch( _ptr ) {
4370 case Constant:
4371 if (WizardMode || Verbose) {
4372 ResourceMark rm;
4373 stringStream ss;
4374
4375 st->print(" ");
4376 const_oop()->print_oop(&ss);
4377 // 'const_oop->print_oop()' may emit newlines('\n') into ss.
4378 // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node.
4379 char* buf = ss.as_string(/* c_heap= */false);
4380 StringUtils::replace_no_expand(buf, "\n", "");
4381 st->print_raw(buf);
4382 }
4383 case BotPTR:
4384 if (!WizardMode && !Verbose) {
4385 if( _klass_is_exact ) st->print(":exact");
4386 break;
4387 }
4388 case TopPTR:
4389 case AnyNull:
4390 case NotNull:
4391 st->print(":%s", ptr_msg[_ptr]);
4392 if( _klass_is_exact ) st->print(":exact");
4393 break;
4394 default:
4395 break;
4396 }
4397
4398 if( _offset ) { // Dump offset, if any
4399 if( _offset == OffsetBot ) st->print("+any");
4400 else if( _offset == OffsetTop ) st->print("+unknown");
4401 else st->print("+%d", _offset);
4402 }
4403
4404 st->print(" *");
4405 if (_instance_id == InstanceTop)
4406 st->print(",iid=top");
4407 else if (_instance_id != InstanceBot)
4408 st->print(",iid=%d",_instance_id);
4409
4410 dump_inline_depth(st);
4411 dump_speculative(st);
4412 }
4413 #endif
4414
4415 //------------------------------add_offset-------------------------------------
4416 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const {
4417 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset),
4418 _instance_id, add_offset_speculative(offset), _inline_depth);
4419 }
4420
4421 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const {
4422 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset,
4423 _instance_id, with_offset_speculative(offset), _inline_depth);
4424 }
4425
4426 const TypeInstPtr* TypeInstPtr::remove_speculative() const {
4427 if (_speculative == NULL) {
4428 return this;
4429 }
4430 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4431 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset,
4432 _instance_id, NULL, _inline_depth);
4433 }
4434
4435 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const {
4436 if (!UseInlineDepthForSpeculativeTypes) {
4437 return this;
4438 }
4439 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4440 }
4441
4442 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const {
4443 assert(is_known_instance(), "should be known");
4444 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth);
4445 }
4446
4447 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const {
4448 bool xk = klass_is_exact();
4449 ciInstanceKlass* ik = klass()->as_instance_klass();
4450 if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) {
4451 ciKlass* k = ik;
4452 TypePtr::InterfaceSet interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
4453 assert(k == ik, "");
4454 if (interfaces.eq(_interfaces)) {
4455 Compile *C = Compile::current();
4456 Dependencies* deps = C->dependencies();
4457 deps->assert_leaf_type(ik);
4458 xk = true;
4459 }
4460 }
4461 return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0);
4462 }
4463
4464 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4465 static_assert(std::is_base_of<T2, T1>::value, "");
4466
4467 if (!this_one->is_instance_type(other)) {
4468 return false;
4469 }
4470
4471 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces.empty()) {
4472 return true;
4473 }
4474
4475 return this_one->klass()->is_subtype_of(other->klass()) &&
4476 (!this_xk || this_one->_interfaces.contains(other->_interfaces));
4477 }
4478
4479
4480 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4481 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4482 }
4483
4484 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk) {
4485 static_assert(std::is_base_of<T2, T1>::value, "");
4486 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces.empty()) {
4487 return true;
4488 }
4489
4490 if (this_one->is_instance_type(other)) {
4491 return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces.contains(other->_interfaces);
4492 }
4493
4494 int dummy;
4495 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
4496 if (this_top_or_bottom) {
4497 return false;
4498 }
4499
4500 const T1* other_ary = this_one->is_array_type(other);
4501 const TypePtr* other_elem = other_ary->elem()->make_ptr();
4502 const TypePtr* this_elem = this_one->elem()->make_ptr();
4503 if (other_elem != NULL && this_elem != NULL) {
4504 return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk);
4505 }
4506
4507 if (other_elem == NULL && this_elem == NULL) {
4508 return this_one->_klass->is_subtype_of(other->_klass);
4509 }
4510
4511 return false;
4512 }
4513
4514 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const {
4515 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4516 }
4517
4518 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4519 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk);
4520 }
4521
4522 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const {
4523 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk);
4524 }
4525
4526 //=============================================================================
4527 // Convenience common pre-built types.
4528 const TypeAryPtr *TypeAryPtr::RANGE;
4529 const TypeAryPtr *TypeAryPtr::OOPS;
4530 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4531 const TypeAryPtr *TypeAryPtr::BYTES;
4532 const TypeAryPtr *TypeAryPtr::SHORTS;
4533 const TypeAryPtr *TypeAryPtr::CHARS;
4534 const TypeAryPtr *TypeAryPtr::INTS;
4535 const TypeAryPtr *TypeAryPtr::LONGS;
4536 const TypeAryPtr *TypeAryPtr::FLOATS;
4537 const TypeAryPtr *TypeAryPtr::DOUBLES;
4538
4539 //------------------------------make-------------------------------------------
4540 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4541 int instance_id, const TypePtr* speculative, int inline_depth) {
4542 assert(!(k == NULL && ary->_elem->isa_int()),
4543 "integral arrays must be pre-equipped with a class");
4544 if (!xk) xk = ary->ary_must_be_exact();
4545 assert(instance_id <= 0 || xk, "instances are always exactly typed");
4546 if (k != NULL && k->is_loaded() && k->is_obj_array_klass() &&
4547 k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4548 k = NULL;
4549 }
4550 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4551 }
4552
4553 //------------------------------make-------------------------------------------
4554 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4555 int instance_id, const TypePtr* speculative, int inline_depth,
4556 bool is_autobox_cache) {
4557 assert(!(k == NULL && ary->_elem->isa_int()),
4558 "integral arrays must be pre-equipped with a class");
4559 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4560 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact();
4561 assert(instance_id <= 0 || xk, "instances are always exactly typed");
4562 if (k != NULL && k->is_loaded() && k->is_obj_array_klass() &&
4563 k->as_obj_array_klass()->base_element_klass()->is_interface()) {
4564 k = NULL;
4565 }
4566 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4567 }
4568
4569 //------------------------------cast_to_ptr_type-------------------------------
4570 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4571 if( ptr == _ptr ) return this;
4572 return make(ptr, ptr == Constant ? const_oop() : NULL, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4573 }
4574
4575
4576 //-----------------------------cast_to_exactness-------------------------------
4577 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4578 if( klass_is_exact == _klass_is_exact ) return this;
4579 if (_ary->ary_must_be_exact()) return this; // cannot clear xk
4580 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4581 }
4582
4583 //-----------------------------cast_to_instance_id----------------------------
4584 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const {
4585 if( instance_id == _instance_id ) return this;
4586 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4587 }
4588
4589
4590 //-----------------------------max_array_length-------------------------------
4591 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization.
4592 jint TypeAryPtr::max_array_length(BasicType etype) {
4593 if (!is_java_primitive(etype) && !::is_reference_type(etype)) {
4594 if (etype == T_NARROWOOP) {
4595 etype = T_OBJECT;
4596 } else if (etype == T_ILLEGAL) { // bottom[]
4597 etype = T_BYTE; // will produce conservatively high value
4598 } else {
4599 fatal("not an element type: %s", type2name(etype));
4600 }
4601 }
4602 return arrayOopDesc::max_array_length(etype);
4603 }
4604
4605 //-----------------------------narrow_size_type-------------------------------
4606 // Narrow the given size type to the index range for the given array base type.
4607 // Return NULL if the resulting int type becomes empty.
4608 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4609 jint hi = size->_hi;
4610 jint lo = size->_lo;
4611 jint min_lo = 0;
4612 jint max_hi = max_array_length(elem()->basic_type());
4613 //if (index_not_size) --max_hi; // type of a valid array index, FTR
4614 bool chg = false;
4615 if (lo < min_lo) {
4616 lo = min_lo;
4617 if (size->is_con()) {
4618 hi = lo;
4619 }
4620 chg = true;
4621 }
4622 if (hi > max_hi) {
4623 hi = max_hi;
4624 if (size->is_con()) {
4625 lo = hi;
4626 }
4627 chg = true;
4628 }
4629 // Negative length arrays will produce weird intermediate dead fast-path code
4630 if (lo > hi)
4631 return TypeInt::ZERO;
4632 if (!chg)
4633 return size;
4634 return TypeInt::make(lo, hi, Type::WidenMin);
4635 }
4636
4637 //-------------------------------cast_to_size----------------------------------
4638 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4639 assert(new_size != NULL, "");
4640 new_size = narrow_size_type(new_size);
4641 if (new_size == size()) return this;
4642 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4643 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4644 }
4645
4646 //------------------------------cast_to_stable---------------------------------
4647 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4648 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4649 return this;
4650
4651 const Type* elem = this->elem();
4652 const TypePtr* elem_ptr = elem->make_ptr();
4653
4654 if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4655 // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4656 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4657 }
4658
4659 const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4660
4661 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4662 }
4663
4664 //-----------------------------stable_dimension--------------------------------
4665 int TypeAryPtr::stable_dimension() const {
4666 if (!is_stable()) return 0;
4667 int dim = 1;
4668 const TypePtr* elem_ptr = elem()->make_ptr();
4669 if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4670 dim += elem_ptr->is_aryptr()->stable_dimension();
4671 return dim;
4672 }
4673
4674 //----------------------cast_to_autobox_cache-----------------------------------
4675 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const {
4676 if (is_autobox_cache()) return this;
4677 const TypeOopPtr* etype = elem()->make_oopptr();
4678 if (etype == NULL) return this;
4679 // The pointers in the autobox arrays are always non-null.
4680 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4681 const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4682 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true);
4683 }
4684
4685 //------------------------------eq---------------------------------------------
4686 // Structural equality check for Type representations
4687 bool TypeAryPtr::eq( const Type *t ) const {
4688 const TypeAryPtr *p = t->is_aryptr();
4689 return
4690 _ary == p->_ary && // Check array
4691 TypeOopPtr::eq(p); // Check sub-parts
4692 }
4693
4694 //------------------------------hash-------------------------------------------
4695 // Type-specific hashing function.
4696 int TypeAryPtr::hash(void) const {
4697 return (intptr_t)_ary + TypeOopPtr::hash();
4698 }
4699
4700 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4701 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4702 }
4703
4704 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const {
4705 return TypePtr::is_same_java_type_as_helper_for_array(this, other);
4706 }
4707
4708 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const {
4709 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
4710 }
4711 //------------------------------meet-------------------------------------------
4712 // Compute the MEET of two types. It returns a new Type object.
4713 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4714 // Perform a fast test for common case; meeting the same types together.
4715 if( this == t ) return this; // Meeting same type-rep?
4716 // Current "this->_base" is Pointer
4717 switch (t->base()) { // switch on original type
4718
4719 // Mixing ints & oops happens when javac reuses local variables
4720 case Int:
4721 case Long:
4722 case FloatTop:
4723 case FloatCon:
4724 case FloatBot:
4725 case DoubleTop:
4726 case DoubleCon:
4727 case DoubleBot:
4728 case NarrowOop:
4729 case NarrowKlass:
4730 case Bottom: // Ye Olde Default
4731 return Type::BOTTOM;
4732 case Top:
4733 return this;
4734
4735 default: // All else is a mistake
4736 typerr(t);
4737
4738 case OopPtr: { // Meeting to OopPtrs
4739 // Found a OopPtr type vs self-AryPtr type
4740 const TypeOopPtr *tp = t->is_oopptr();
4741 int offset = meet_offset(tp->offset());
4742 PTR ptr = meet_ptr(tp->ptr());
4743 int depth = meet_inline_depth(tp->inline_depth());
4744 const TypePtr* speculative = xmeet_speculative(tp);
4745 switch (tp->ptr()) {
4746 case TopPTR:
4747 case AnyNull: {
4748 int instance_id = meet_instance_id(InstanceTop);
4749 return make(ptr, (ptr == Constant ? const_oop() : NULL),
4750 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4751 }
4752 case BotPTR:
4753 case NotNull: {
4754 int instance_id = meet_instance_id(tp->instance_id());
4755 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4756 }
4757 default: ShouldNotReachHere();
4758 }
4759 }
4760
4761 case AnyPtr: { // Meeting two AnyPtrs
4762 // Found an AnyPtr type vs self-AryPtr type
4763 const TypePtr *tp = t->is_ptr();
4764 int offset = meet_offset(tp->offset());
4765 PTR ptr = meet_ptr(tp->ptr());
4766 const TypePtr* speculative = xmeet_speculative(tp);
4767 int depth = meet_inline_depth(tp->inline_depth());
4768 switch (tp->ptr()) {
4769 case TopPTR:
4770 return this;
4771 case BotPTR:
4772 case NotNull:
4773 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4774 case Null:
4775 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4776 // else fall through to AnyNull
4777 case AnyNull: {
4778 int instance_id = meet_instance_id(InstanceTop);
4779 return make(ptr, (ptr == Constant ? const_oop() : NULL),
4780 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4781 }
4782 default: ShouldNotReachHere();
4783 }
4784 }
4785
4786 case MetadataPtr:
4787 case KlassPtr:
4788 case InstKlassPtr:
4789 case AryKlassPtr:
4790 case RawPtr: return TypePtr::BOTTOM;
4791
4792 case AryPtr: { // Meeting 2 references?
4793 const TypeAryPtr *tap = t->is_aryptr();
4794 int off = meet_offset(tap->offset());
4795 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4796 PTR ptr = meet_ptr(tap->ptr());
4797 int instance_id = meet_instance_id(tap->instance_id());
4798 const TypePtr* speculative = xmeet_speculative(tap);
4799 int depth = meet_inline_depth(tap->inline_depth());
4800
4801 ciKlass* res_klass = NULL;
4802 bool res_xk = false;
4803 const Type* elem = tary->_elem;
4804 if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) {
4805 instance_id = InstanceBot;
4806 }
4807
4808 ciObject* o = NULL; // Assume not constant when done
4809 ciObject* this_oop = const_oop();
4810 ciObject* tap_oop = tap->const_oop();
4811 if (ptr == Constant) {
4812 if (this_oop != NULL && tap_oop != NULL &&
4813 this_oop->equals(tap_oop)) {
4814 o = tap_oop;
4815 } else if (above_centerline(_ptr)) {
4816 o = tap_oop;
4817 } else if (above_centerline(tap->_ptr)) {
4818 o = this_oop;
4819 } else {
4820 ptr = NotNull;
4821 }
4822 }
4823 return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth);
4824 }
4825
4826 // All arrays inherit from Object class
4827 case InstPtr: {
4828 const TypeInstPtr *tp = t->is_instptr();
4829 int offset = meet_offset(tp->offset());
4830 PTR ptr = meet_ptr(tp->ptr());
4831 int instance_id = meet_instance_id(tp->instance_id());
4832 const TypePtr* speculative = xmeet_speculative(tp);
4833 int depth = meet_inline_depth(tp->inline_depth());
4834 InterfaceSet interfaces = meet_interfaces(tp);
4835 InterfaceSet tp_interfaces = tp->_interfaces;
4836 InterfaceSet this_interfaces = _interfaces;
4837
4838 switch (ptr) {
4839 case TopPTR:
4840 case AnyNull: // Fall 'down' to dual of object klass
4841 // For instances when a subclass meets a superclass we fall
4842 // below the centerline when the superclass is exact. We need to
4843 // do the same here.
4844 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces.contains(tp_interfaces) && !tp->klass_is_exact()) {
4845 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4846 } else {
4847 // cannot subclass, so the meet has to fall badly below the centerline
4848 ptr = NotNull;
4849 instance_id = InstanceBot;
4850 interfaces = this_interfaces.intersection_with(tp_interfaces);
4851 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, NULL,offset, instance_id, speculative, depth);
4852 }
4853 case Constant:
4854 case NotNull:
4855 case BotPTR: // Fall down to object klass
4856 // LCA is object_klass, but if we subclass from the top we can do better
4857 if (above_centerline(tp->ptr())) {
4858 // If 'tp' is above the centerline and it is Object class
4859 // then we can subclass in the Java class hierarchy.
4860 // For instances when a subclass meets a superclass we fall
4861 // below the centerline when the superclass is exact. We need
4862 // to do the same here.
4863 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces.contains(tp_interfaces) && !tp->klass_is_exact()) {
4864 // that is, my array type is a subtype of 'tp' klass
4865 return make(ptr, (ptr == Constant ? const_oop() : NULL),
4866 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4867 }
4868 }
4869 // The other case cannot happen, since t cannot be a subtype of an array.
4870 // The meet falls down to Object class below centerline.
4871 if (ptr == Constant) {
4872 ptr = NotNull;
4873 }
4874 if (instance_id > 0) {
4875 instance_id = InstanceBot;
4876 }
4877 interfaces = this_interfaces.intersection_with(tp_interfaces);
4878 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, NULL, offset, instance_id, speculative, depth);
4879 default: typerr(t);
4880 }
4881 }
4882 }
4883 return this; // Lint noise
4884 }
4885
4886
4887 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary,
4888 const T* other_ary, ciKlass*& res_klass, bool& res_xk) {
4889 int dummy;
4890 bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM);
4891 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
4892 ciKlass* this_klass = this_ary->klass();
4893 ciKlass* other_klass = other_ary->klass();
4894 bool this_xk = this_ary->klass_is_exact();
4895 bool other_xk = other_ary->klass_is_exact();
4896 PTR this_ptr = this_ary->ptr();
4897 PTR other_ptr = other_ary->ptr();
4898 res_klass = NULL;
4899 MeetResult result = SUBTYPE;
4900 if (elem->isa_int()) {
4901 // Integral array element types have irrelevant lattice relations.
4902 // It is the klass that determines array layout, not the element type.
4903 if (this_top_or_bottom)
4904 res_klass = other_klass;
4905 else if (other_top_or_bottom || other_klass == this_klass) {
4906 res_klass = this_klass;
4907 } else {
4908 // Something like byte[int+] meets char[int+].
4909 // This must fall to bottom, not (int[-128..65535])[int+].
4910 // instance_id = InstanceBot;
4911 elem = Type::BOTTOM;
4912 result = NOT_SUBTYPE;
4913 }
4914 } else {// Non integral arrays.
4915 // Must fall to bottom if exact klasses in upper lattice
4916 // are not equal or super klass is exact.
4917 if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) &&
4918 // meet with top[] and bottom[] are processed further down:
4919 !this_top_or_bottom && !other_top_or_bottom &&
4920 // both are exact and not equal:
4921 ((other_xk && this_xk) ||
4922 // 'tap' is exact and super or unrelated:
4923 (other_xk && !other_ary->is_meet_subtype_of(this_ary)) ||
4924 // 'this' is exact and super or unrelated:
4925 (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) {
4926 if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) {
4927 elem = Type::BOTTOM;
4928 }
4929 ptr = NotNull;
4930 res_xk = false;
4931 return NOT_SUBTYPE;
4932 }
4933 }
4934
4935 res_xk = false;
4936 switch (other_ptr) {
4937 case AnyNull:
4938 case TopPTR:
4939 // Compute new klass on demand, do not use tap->_klass
4940 if (below_centerline(this_ptr)) {
4941 res_xk = this_xk;
4942 } else {
4943 res_xk = (other_xk || this_xk);
4944 }
4945 return result;
4946 case Constant: {
4947 if (this_ptr == Constant) {
4948 res_xk = true;
4949 } else if(above_centerline(this_ptr)) {
4950 res_xk = true;
4951 } else {
4952 // Only precise for identical arrays
4953 res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom));
4954 }
4955 return result;
4956 }
4957 case NotNull:
4958 case BotPTR:
4959 // Compute new klass on demand, do not use tap->_klass
4960 if (above_centerline(this_ptr)) {
4961 res_xk = other_xk;
4962 } else {
4963 res_xk = (other_xk && this_xk) &&
4964 (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays
4965 }
4966 return result;
4967 default: {
4968 ShouldNotReachHere();
4969 return result;
4970 }
4971 }
4972 return result;
4973 }
4974
4975
4976 //------------------------------xdual------------------------------------------
4977 // Dual: compute field-by-field dual
4978 const Type *TypeAryPtr::xdual() const {
4979 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4980 }
4981
4982 //------------------------------dump2------------------------------------------
4983 #ifndef PRODUCT
4984 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4985 _ary->dump2(d,depth,st);
4986 _interfaces.dump(st);
4987
4988 switch( _ptr ) {
4989 case Constant:
4990 const_oop()->print(st);
4991 break;
4992 case BotPTR:
4993 if (!WizardMode && !Verbose) {
4994 if( _klass_is_exact ) st->print(":exact");
4995 break;
4996 }
4997 case TopPTR:
4998 case AnyNull:
4999 case NotNull:
5000 st->print(":%s", ptr_msg[_ptr]);
5001 if( _klass_is_exact ) st->print(":exact");
5002 break;
5003 default:
5004 break;
5005 }
5006
5007 if( _offset != 0 ) {
5008 int header_size = objArrayOopDesc::header_size() * wordSize;
5009 if( _offset == OffsetTop ) st->print("+undefined");
5010 else if( _offset == OffsetBot ) st->print("+any");
5011 else if( _offset < header_size ) st->print("+%d", _offset);
5012 else {
5013 BasicType basic_elem_type = elem()->basic_type();
5014 if (basic_elem_type == T_ILLEGAL) {
5015 st->print("+any");
5016 } else {
5017 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5018 int elem_size = type2aelembytes(basic_elem_type);
5019 st->print("[%d]", (_offset - array_base)/elem_size);
5020 }
5021 }
5022 }
5023 st->print(" *");
5024 if (_instance_id == InstanceTop)
5025 st->print(",iid=top");
5026 else if (_instance_id != InstanceBot)
5027 st->print(",iid=%d",_instance_id);
5028
5029 dump_inline_depth(st);
5030 dump_speculative(st);
5031 }
5032 #endif
5033
5034 bool TypeAryPtr::empty(void) const {
5035 if (_ary->empty()) return true;
5036 return TypeOopPtr::empty();
5037 }
5038
5039 //------------------------------add_offset-------------------------------------
5040 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const {
5041 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
5042 }
5043
5044 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const {
5045 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth);
5046 }
5047
5048 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const {
5049 return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
5050 }
5051
5052 const TypeAryPtr* TypeAryPtr::remove_speculative() const {
5053 if (_speculative == NULL) {
5054 return this;
5055 }
5056 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
5057 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
5058 }
5059
5060 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const {
5061 if (!UseInlineDepthForSpeculativeTypes) {
5062 return this;
5063 }
5064 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
5065 }
5066
5067 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const {
5068 assert(is_known_instance(), "should be known");
5069 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
5070 }
5071
5072 //=============================================================================
5073
5074 //------------------------------hash-------------------------------------------
5075 // Type-specific hashing function.
5076 int TypeNarrowPtr::hash(void) const {
5077 return _ptrtype->hash() + 7;
5078 }
5079
5080 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton
5081 return _ptrtype->singleton();
5082 }
5083
5084 bool TypeNarrowPtr::empty(void) const {
5085 return _ptrtype->empty();
5086 }
5087
5088 intptr_t TypeNarrowPtr::get_con() const {
5089 return _ptrtype->get_con();
5090 }
5091
5092 bool TypeNarrowPtr::eq( const Type *t ) const {
5093 const TypeNarrowPtr* tc = isa_same_narrowptr(t);
5094 if (tc != NULL) {
5095 if (_ptrtype->base() != tc->_ptrtype->base()) {
5096 return false;
5097 }
5098 return tc->_ptrtype->eq(_ptrtype);
5099 }
5100 return false;
5101 }
5102
5103 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now.
5104 const TypePtr* odual = _ptrtype->dual()->is_ptr();
5105 return make_same_narrowptr(odual);
5106 }
5107
5108
5109 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
5110 if (isa_same_narrowptr(kills)) {
5111 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
5112 if (ft->empty())
5113 return Type::TOP; // Canonical empty value
5114 if (ft->isa_ptr()) {
5115 return make_hash_same_narrowptr(ft->isa_ptr());
5116 }
5117 return ft;
5118 } else if (kills->isa_ptr()) {
5119 const Type* ft = _ptrtype->join_helper(kills, include_speculative);
5120 if (ft->empty())
5121 return Type::TOP; // Canonical empty value
5122 return ft;
5123 } else {
5124 return Type::TOP;
5125 }
5126 }
5127
5128 //------------------------------xmeet------------------------------------------
5129 // Compute the MEET of two types. It returns a new Type object.
5130 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
5131 // Perform a fast test for common case; meeting the same types together.
5132 if( this == t ) return this; // Meeting same type-rep?
5133
5134 if (t->base() == base()) {
5135 const Type* result = _ptrtype->xmeet(t->make_ptr());
5136 if (result->isa_ptr()) {
5137 return make_hash_same_narrowptr(result->is_ptr());
5138 }
5139 return result;
5140 }
5141
5142 // Current "this->_base" is NarrowKlass or NarrowOop
5143 switch (t->base()) { // switch on original type
5144
5145 case Int: // Mixing ints & oops happens when javac
5146 case Long: // reuses local variables
5147 case FloatTop:
5148 case FloatCon:
5149 case FloatBot:
5150 case DoubleTop:
5151 case DoubleCon:
5152 case DoubleBot:
5153 case AnyPtr:
5154 case RawPtr:
5155 case OopPtr:
5156 case InstPtr:
5157 case AryPtr:
5158 case MetadataPtr:
5159 case KlassPtr:
5160 case InstKlassPtr:
5161 case AryKlassPtr:
5162 case NarrowOop:
5163 case NarrowKlass:
5164
5165 case Bottom: // Ye Olde Default
5166 return Type::BOTTOM;
5167 case Top:
5168 return this;
5169
5170 default: // All else is a mistake
5171 typerr(t);
5172
5173 } // End of switch
5174
5175 return this;
5176 }
5177
5178 #ifndef PRODUCT
5179 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5180 _ptrtype->dump2(d, depth, st);
5181 }
5182 #endif
5183
5184 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5185 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5186
5187
5188 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5189 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5190 }
5191
5192 const TypeNarrowOop* TypeNarrowOop::remove_speculative() const {
5193 return make(_ptrtype->remove_speculative()->is_ptr());
5194 }
5195
5196 const Type* TypeNarrowOop::cleanup_speculative() const {
5197 return make(_ptrtype->cleanup_speculative()->is_ptr());
5198 }
5199
5200 #ifndef PRODUCT
5201 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5202 st->print("narrowoop: ");
5203 TypeNarrowPtr::dump2(d, depth, st);
5204 }
5205 #endif
5206
5207 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5208
5209 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5210 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5211 }
5212
5213 #ifndef PRODUCT
5214 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5215 st->print("narrowklass: ");
5216 TypeNarrowPtr::dump2(d, depth, st);
5217 }
5218 #endif
5219
5220
5221 //------------------------------eq---------------------------------------------
5222 // Structural equality check for Type representations
5223 bool TypeMetadataPtr::eq( const Type *t ) const {
5224 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5225 ciMetadata* one = metadata();
5226 ciMetadata* two = a->metadata();
5227 if (one == NULL || two == NULL) {
5228 return (one == two) && TypePtr::eq(t);
5229 } else {
5230 return one->equals(two) && TypePtr::eq(t);
5231 }
5232 }
5233
5234 //------------------------------hash-------------------------------------------
5235 // Type-specific hashing function.
5236 int TypeMetadataPtr::hash(void) const {
5237 return
5238 (metadata() ? metadata()->hash() : 0) +
5239 TypePtr::hash();
5240 }
5241
5242 //------------------------------singleton--------------------------------------
5243 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
5244 // constants
5245 bool TypeMetadataPtr::singleton(void) const {
5246 // detune optimizer to not generate constant metadata + constant offset as a constant!
5247 // TopPTR, Null, AnyNull, Constant are all singletons
5248 return (_offset == 0) && !below_centerline(_ptr);
5249 }
5250
5251 //------------------------------add_offset-------------------------------------
5252 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const {
5253 return make( _ptr, _metadata, xadd_offset(offset));
5254 }
5255
5256 //-----------------------------filter------------------------------------------
5257 // Do not allow interface-vs.-noninterface joins to collapse to top.
5258 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5259 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5260 if (ft == NULL || ft->empty())
5261 return Type::TOP; // Canonical empty value
5262 return ft;
5263 }
5264
5265 //------------------------------get_con----------------------------------------
5266 intptr_t TypeMetadataPtr::get_con() const {
5267 assert( _ptr == Null || _ptr == Constant, "" );
5268 assert( _offset >= 0, "" );
5269
5270 if (_offset != 0) {
5271 // After being ported to the compiler interface, the compiler no longer
5272 // directly manipulates the addresses of oops. Rather, it only has a pointer
5273 // to a handle at compile time. This handle is embedded in the generated
5274 // code and dereferenced at the time the nmethod is made. Until that time,
5275 // it is not reasonable to do arithmetic with the addresses of oops (we don't
5276 // have access to the addresses!). This does not seem to currently happen,
5277 // but this assertion here is to help prevent its occurrence.
5278 tty->print_cr("Found oop constant with non-zero offset");
5279 ShouldNotReachHere();
5280 }
5281
5282 return (intptr_t)metadata()->constant_encoding();
5283 }
5284
5285 //------------------------------cast_to_ptr_type-------------------------------
5286 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5287 if( ptr == _ptr ) return this;
5288 return make(ptr, metadata(), _offset);
5289 }
5290
5291 //------------------------------meet-------------------------------------------
5292 // Compute the MEET of two types. It returns a new Type object.
5293 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5294 // Perform a fast test for common case; meeting the same types together.
5295 if( this == t ) return this; // Meeting same type-rep?
5296
5297 // Current "this->_base" is OopPtr
5298 switch (t->base()) { // switch on original type
5299
5300 case Int: // Mixing ints & oops happens when javac
5301 case Long: // reuses local variables
5302 case FloatTop:
5303 case FloatCon:
5304 case FloatBot:
5305 case DoubleTop:
5306 case DoubleCon:
5307 case DoubleBot:
5308 case NarrowOop:
5309 case NarrowKlass:
5310 case Bottom: // Ye Olde Default
5311 return Type::BOTTOM;
5312 case Top:
5313 return this;
5314
5315 default: // All else is a mistake
5316 typerr(t);
5317
5318 case AnyPtr: {
5319 // Found an AnyPtr type vs self-OopPtr type
5320 const TypePtr *tp = t->is_ptr();
5321 int offset = meet_offset(tp->offset());
5322 PTR ptr = meet_ptr(tp->ptr());
5323 switch (tp->ptr()) {
5324 case Null:
5325 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5326 // else fall through:
5327 case TopPTR:
5328 case AnyNull: {
5329 return make(ptr, _metadata, offset);
5330 }
5331 case BotPTR:
5332 case NotNull:
5333 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5334 default: typerr(t);
5335 }
5336 }
5337
5338 case RawPtr:
5339 case KlassPtr:
5340 case InstKlassPtr:
5341 case AryKlassPtr:
5342 case OopPtr:
5343 case InstPtr:
5344 case AryPtr:
5345 return TypePtr::BOTTOM; // Oop meet raw is not well defined
5346
5347 case MetadataPtr: {
5348 const TypeMetadataPtr *tp = t->is_metadataptr();
5349 int offset = meet_offset(tp->offset());
5350 PTR tptr = tp->ptr();
5351 PTR ptr = meet_ptr(tptr);
5352 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5353 if (tptr == TopPTR || _ptr == TopPTR ||
5354 metadata()->equals(tp->metadata())) {
5355 return make(ptr, md, offset);
5356 }
5357 // metadata is different
5358 if( ptr == Constant ) { // Cannot be equal constants, so...
5359 if( tptr == Constant && _ptr != Constant) return t;
5360 if( _ptr == Constant && tptr != Constant) return this;
5361 ptr = NotNull; // Fall down in lattice
5362 }
5363 return make(ptr, NULL, offset);
5364 break;
5365 }
5366 } // End of switch
5367 return this; // Return the double constant
5368 }
5369
5370
5371 //------------------------------xdual------------------------------------------
5372 // Dual of a pure metadata pointer.
5373 const Type *TypeMetadataPtr::xdual() const {
5374 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5375 }
5376
5377 //------------------------------dump2------------------------------------------
5378 #ifndef PRODUCT
5379 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5380 st->print("metadataptr:%s", ptr_msg[_ptr]);
5381 if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5382 switch( _offset ) {
5383 case OffsetTop: st->print("+top"); break;
5384 case OffsetBot: st->print("+any"); break;
5385 case 0: break;
5386 default: st->print("+%d",_offset); break;
5387 }
5388 }
5389 #endif
5390
5391
5392 //=============================================================================
5393 // Convenience common pre-built type.
5394 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5395
5396 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
5397 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5398 }
5399
5400 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5401 return make(Constant, m, 0);
5402 }
5403 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5404 return make(Constant, m, 0);
5405 }
5406
5407 //------------------------------make-------------------------------------------
5408 // Create a meta data constant
5409 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
5410 assert(m == NULL || !m->is_klass(), "wrong type");
5411 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5412 }
5413
5414
5415 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const {
5416 const Type* elem = _ary->_elem;
5417 bool xk = klass_is_exact();
5418 if (elem->make_oopptr() != NULL) {
5419 elem = elem->make_oopptr()->as_klass_type(try_for_exact);
5420 if (elem->is_klassptr()->klass_is_exact()) {
5421 xk = true;
5422 }
5423 }
5424 return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0);
5425 }
5426
5427 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) {
5428 if (klass->is_instance_klass()) {
5429 return TypeInstKlassPtr::make(klass, interface_handling);
5430 }
5431 return TypeAryKlassPtr::make(klass, interface_handling);
5432 }
5433
5434 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) {
5435 if (klass->is_instance_klass()) {
5436 const InterfaceSet interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
5437 return TypeInstKlassPtr::make(ptr, klass, interfaces, offset);
5438 }
5439 return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling);
5440 }
5441
5442
5443 //------------------------------TypeKlassPtr-----------------------------------
5444 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const InterfaceSet& interfaces, int offset)
5445 : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) {
5446 assert(klass == NULL || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) ||
5447 klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here");
5448 }
5449
5450 // Is there a single ciKlass* that can represent that type?
5451 ciKlass* TypeKlassPtr::exact_klass_helper() const {
5452 assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface");
5453 if (_interfaces.empty()) {
5454 return _klass;
5455 }
5456 if (_klass != ciEnv::current()->Object_klass()) {
5457 ciKlass* k = _klass;
5458 if (_interfaces.eq(TypePtr::interfaces(k, true, false, true, ignore_interfaces))) {
5459 return _klass;
5460 }
5461 return NULL;
5462 }
5463 return _interfaces.exact_klass();
5464 }
5465
5466 //------------------------------eq---------------------------------------------
5467 // Structural equality check for Type representations
5468 bool TypeKlassPtr::eq(const Type *t) const {
5469 const TypeKlassPtr *p = t->is_klassptr();
5470 return
5471 _interfaces.eq(p->_interfaces) &&
5472 TypePtr::eq(p);
5473 }
5474
5475 //------------------------------hash-------------------------------------------
5476 // Type-specific hashing function.
5477 int TypeKlassPtr::hash(void) const {
5478 return java_add((jint)TypePtr::hash(), _interfaces.hash());
5479 }
5480
5481 //------------------------------singleton--------------------------------------
5482 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
5483 // constants
5484 bool TypeKlassPtr::singleton(void) const {
5485 // detune optimizer to not generate constant klass + constant offset as a constant!
5486 // TopPTR, Null, AnyNull, Constant are all singletons
5487 return (_offset == 0) && !below_centerline(_ptr);
5488 }
5489
5490 // Do not allow interface-vs.-noninterface joins to collapse to top.
5491 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5492 // logic here mirrors the one from TypeOopPtr::filter. See comments
5493 // there.
5494 const Type* ft = join_helper(kills, include_speculative);
5495 const TypeKlassPtr* ftkp = ft->isa_instklassptr();
5496 const TypeKlassPtr* ktkp = kills->isa_instklassptr();
5497
5498 if (ft->empty()) {
5499 return Type::TOP; // Canonical empty value
5500 }
5501
5502 return ft;
5503 }
5504
5505 TypePtr::InterfaceSet TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const {
5506 if (above_centerline(_ptr) && above_centerline(other->_ptr)) {
5507 return _interfaces.union_with(other->_interfaces);
5508 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) {
5509 return other->_interfaces;
5510 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) {
5511 return _interfaces;
5512 }
5513 return _interfaces.intersection_with(other->_interfaces);
5514 }
5515
5516 //------------------------------get_con----------------------------------------
5517 intptr_t TypeKlassPtr::get_con() const {
5518 assert( _ptr == Null || _ptr == Constant, "" );
5519 assert( _offset >= 0, "" );
5520
5521 if (_offset != 0) {
5522 // After being ported to the compiler interface, the compiler no longer
5523 // directly manipulates the addresses of oops. Rather, it only has a pointer
5524 // to a handle at compile time. This handle is embedded in the generated
5525 // code and dereferenced at the time the nmethod is made. Until that time,
5526 // it is not reasonable to do arithmetic with the addresses of oops (we don't
5527 // have access to the addresses!). This does not seem to currently happen,
5528 // but this assertion here is to help prevent its occurrence.
5529 tty->print_cr("Found oop constant with non-zero offset");
5530 ShouldNotReachHere();
5531 }
5532
5533 ciKlass* k = exact_klass();
5534
5535 return (intptr_t)k->constant_encoding();
5536 }
5537
5538 //------------------------------dump2------------------------------------------
5539 // Dump Klass Type
5540 #ifndef PRODUCT
5541 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const {
5542 switch(_ptr) {
5543 case Constant:
5544 st->print("precise ");
5545 case NotNull:
5546 {
5547 const char *name = klass()->name()->as_utf8();
5548 if (name) {
5549 st->print("%s: " INTPTR_FORMAT, name, p2i(klass()));
5550 } else {
5551 ShouldNotReachHere();
5552 }
5553 _interfaces.dump(st);
5554 }
5555 case BotPTR:
5556 if (!WizardMode && !Verbose && _ptr != Constant) break;
5557 case TopPTR:
5558 case AnyNull:
5559 st->print(":%s", ptr_msg[_ptr]);
5560 if (_ptr == Constant) st->print(":exact");
5561 break;
5562 default:
5563 break;
5564 }
5565
5566 if (_offset) { // Dump offset, if any
5567 if (_offset == OffsetBot) { st->print("+any"); }
5568 else if (_offset == OffsetTop) { st->print("+unknown"); }
5569 else { st->print("+%d", _offset); }
5570 }
5571
5572 st->print(" *");
5573 }
5574 #endif
5575
5576 //=============================================================================
5577 // Convenience common pre-built types.
5578
5579 // Not-null object klass or below
5580 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT;
5581 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL;
5582
5583 bool TypeInstKlassPtr::eq(const Type *t) const {
5584 const TypeKlassPtr *p = t->is_klassptr();
5585 return
5586 klass()->equals(p->klass()) &&
5587 TypeKlassPtr::eq(p);
5588 }
5589
5590 int TypeInstKlassPtr::hash(void) const {
5591 return java_add((jint)klass()->hash(), TypeKlassPtr::hash());
5592 }
5593
5594 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const InterfaceSet& interfaces, int offset) {
5595 TypeInstKlassPtr *r =
5596 (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons();
5597
5598 return r;
5599 }
5600
5601 //------------------------------add_offset-------------------------------------
5602 // Access internals of klass object
5603 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const {
5604 return make( _ptr, klass(), _interfaces, xadd_offset(offset) );
5605 }
5606
5607 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const {
5608 return make(_ptr, klass(), _interfaces, offset);
5609 }
5610
5611 //------------------------------cast_to_ptr_type-------------------------------
5612 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const {
5613 assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type");
5614 if( ptr == _ptr ) return this;
5615 return make(ptr, _klass, _interfaces, _offset);
5616 }
5617
5618
5619 bool TypeInstKlassPtr::must_be_exact() const {
5620 if (!_klass->is_loaded()) return false;
5621 ciInstanceKlass* ik = _klass->as_instance_klass();
5622 if (ik->is_final()) return true; // cannot clear xk
5623 return false;
5624 }
5625
5626 //-----------------------------cast_to_exactness-------------------------------
5627 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5628 if (klass_is_exact == (_ptr == Constant)) return this;
5629 if (must_be_exact()) return this;
5630 ciKlass* k = klass();
5631 return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset);
5632 }
5633
5634
5635 //-----------------------------as_instance_type--------------------------------
5636 // Corresponding type for an instance of the given class.
5637 // It will be NotNull, and exact if and only if the klass type is exact.
5638 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const {
5639 ciKlass* k = klass();
5640 bool xk = klass_is_exact();
5641 Compile* C = Compile::current();
5642 Dependencies* deps = C->dependencies();
5643 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
5644 // Element is an instance
5645 bool klass_is_exact = false;
5646 TypePtr::InterfaceSet interfaces = _interfaces;
5647 if (k->is_loaded()) {
5648 // Try to set klass_is_exact.
5649 ciInstanceKlass* ik = k->as_instance_klass();
5650 klass_is_exact = ik->is_final();
5651 if (!klass_is_exact && klass_change
5652 && deps != NULL && UseUniqueSubclasses) {
5653 ciInstanceKlass* sub = ik->unique_concrete_subklass();
5654 if (sub != NULL) {
5655 ciKlass* sub_k = sub;
5656 TypePtr::InterfaceSet sub_interfaces = TypePtr::interfaces(sub_k, true, false, false, ignore_interfaces);
5657 assert(sub_k == sub, "");
5658 if (sub_interfaces.eq(_interfaces)) {
5659 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5660 k = ik = sub;
5661 xk = sub->is_final();
5662 }
5663 }
5664 }
5665 }
5666 return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, NULL, 0);
5667 }
5668
5669 //------------------------------xmeet------------------------------------------
5670 // Compute the MEET of two types, return a new Type object.
5671 const Type *TypeInstKlassPtr::xmeet( const Type *t ) const {
5672 // Perform a fast test for common case; meeting the same types together.
5673 if( this == t ) return this; // Meeting same type-rep?
5674
5675 // Current "this->_base" is Pointer
5676 switch (t->base()) { // switch on original type
5677
5678 case Int: // Mixing ints & oops happens when javac
5679 case Long: // reuses local variables
5680 case FloatTop:
5681 case FloatCon:
5682 case FloatBot:
5683 case DoubleTop:
5684 case DoubleCon:
5685 case DoubleBot:
5686 case NarrowOop:
5687 case NarrowKlass:
5688 case Bottom: // Ye Olde Default
5689 return Type::BOTTOM;
5690 case Top:
5691 return this;
5692
5693 default: // All else is a mistake
5694 typerr(t);
5695
5696 case AnyPtr: { // Meeting to AnyPtrs
5697 // Found an AnyPtr type vs self-KlassPtr type
5698 const TypePtr *tp = t->is_ptr();
5699 int offset = meet_offset(tp->offset());
5700 PTR ptr = meet_ptr(tp->ptr());
5701 switch (tp->ptr()) {
5702 case TopPTR:
5703 return this;
5704 case Null:
5705 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5706 case AnyNull:
5707 return make( ptr, klass(), _interfaces, offset );
5708 case BotPTR:
5709 case NotNull:
5710 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5711 default: typerr(t);
5712 }
5713 }
5714
5715 case RawPtr:
5716 case MetadataPtr:
5717 case OopPtr:
5718 case AryPtr: // Meet with AryPtr
5719 case InstPtr: // Meet with InstPtr
5720 return TypePtr::BOTTOM;
5721
5722 //
5723 // A-top }
5724 // / | \ } Tops
5725 // B-top A-any C-top }
5726 // | / | \ | } Any-nulls
5727 // B-any | C-any }
5728 // | | |
5729 // B-con A-con C-con } constants; not comparable across classes
5730 // | | |
5731 // B-not | C-not }
5732 // | \ | / | } not-nulls
5733 // B-bot A-not C-bot }
5734 // \ | / } Bottoms
5735 // A-bot }
5736 //
5737
5738 case InstKlassPtr: { // Meet two KlassPtr types
5739 const TypeInstKlassPtr *tkls = t->is_instklassptr();
5740 int off = meet_offset(tkls->offset());
5741 PTR ptr = meet_ptr(tkls->ptr());
5742 InterfaceSet interfaces = meet_interfaces(tkls);
5743
5744 ciKlass* res_klass = NULL;
5745 bool res_xk = false;
5746 switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) {
5747 case UNLOADED:
5748 ShouldNotReachHere();
5749 case SUBTYPE:
5750 case NOT_SUBTYPE:
5751 case LCA:
5752 case QUICK: {
5753 assert(res_xk == (ptr == Constant), "");
5754 const Type* res = make(ptr, res_klass, interfaces, off);
5755 return res;
5756 }
5757 default:
5758 ShouldNotReachHere();
5759 }
5760 } // End of case KlassPtr
5761 case AryKlassPtr: { // All arrays inherit from Object class
5762 const TypeAryKlassPtr *tp = t->is_aryklassptr();
5763 int offset = meet_offset(tp->offset());
5764 PTR ptr = meet_ptr(tp->ptr());
5765 InterfaceSet interfaces = meet_interfaces(tp);
5766 InterfaceSet tp_interfaces = tp->_interfaces;
5767 InterfaceSet this_interfaces = _interfaces;
5768
5769 switch (ptr) {
5770 case TopPTR:
5771 case AnyNull: // Fall 'down' to dual of object klass
5772 // For instances when a subclass meets a superclass we fall
5773 // below the centerline when the superclass is exact. We need to
5774 // do the same here.
5775 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces.contains(this_interfaces) && !klass_is_exact()) {
5776 return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset);
5777 } else {
5778 // cannot subclass, so the meet has to fall badly below the centerline
5779 ptr = NotNull;
5780 interfaces = _interfaces.intersection_with(tp->_interfaces);
5781 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5782 }
5783 case Constant:
5784 case NotNull:
5785 case BotPTR: // Fall down to object klass
5786 // LCA is object_klass, but if we subclass from the top we can do better
5787 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
5788 // If 'this' (InstPtr) is above the centerline and it is Object class
5789 // then we can subclass in the Java class hierarchy.
5790 // For instances when a subclass meets a superclass we fall
5791 // below the centerline when the superclass is exact. We need
5792 // to do the same here.
5793 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces.contains(this_interfaces) && !klass_is_exact()) {
5794 // that is, tp's array type is a subtype of my klass
5795 return TypeAryKlassPtr::make(ptr,
5796 tp->elem(), tp->klass(), offset);
5797 }
5798 }
5799 // The other case cannot happen, since I cannot be a subtype of an array.
5800 // The meet falls down to Object class below centerline.
5801 if( ptr == Constant )
5802 ptr = NotNull;
5803 interfaces = this_interfaces.intersection_with(tp_interfaces);
5804 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
5805 default: typerr(t);
5806 }
5807 }
5808
5809 } // End of switch
5810 return this; // Return the double constant
5811 }
5812
5813 //------------------------------xdual------------------------------------------
5814 // Dual: compute field-by-field dual
5815 const Type *TypeInstKlassPtr::xdual() const {
5816 return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset());
5817 }
5818
5819 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
5820 static_assert(std::is_base_of<T2, T1>::value, "");
5821 if (!this_one->is_loaded() || !other->is_loaded()) {
5822 return false;
5823 }
5824 if (!this_one->is_instance_type(other)) {
5825 return false;
5826 }
5827
5828 if (!other_exact) {
5829 return false;
5830 }
5831
5832 if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces.empty()) {
5833 return true;
5834 }
5835
5836 return this_one->_klass->is_subtype_of(other->_klass) && this_one->_interfaces.contains(other->_interfaces);
5837 }
5838
5839 bool TypeInstKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
5840 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
5841 }
5842
5843 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other) {
5844 static_assert(std::is_base_of<T2, T1>::value, "");
5845 if (!this_one->is_loaded() || !other->is_loaded()) {
5846 return false;
5847 }
5848 if (!this_one->is_instance_type(other)) {
5849 return false;
5850 }
5851 return this_one->_klass->equals(other->_klass) && this_one->_interfaces.eq(other->_interfaces);
5852 }
5853
5854 bool TypeInstKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const {
5855 return TypePtr::is_same_java_type_as_helper_for_instance(this, other);
5856 }
5857
5858 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
5859 static_assert(std::is_base_of<T2, T1>::value, "");
5860 if (!this_one->is_loaded() || !other->is_loaded()) {
5861 return true;
5862 }
5863
5864 if (this_one->is_array_type(other)) {
5865 return !this_exact && this_one->_klass->equals(ciEnv::current()->Object_klass()) && other->_interfaces.contains(this_one->_interfaces);
5866 }
5867
5868 assert(this_one->is_instance_type(other), "unsupported");
5869
5870 if (this_exact && other_exact) {
5871 return this_one->is_java_subtype_of(other);
5872 }
5873
5874 if (!this_one->_klass->is_subtype_of(other->_klass) && !other->_klass->is_subtype_of(this_one->_klass)) {
5875 return false;
5876 }
5877
5878 if (this_exact) {
5879 return this_one->_klass->is_subtype_of(other->_klass) && this_one->_interfaces.contains(other->_interfaces);
5880 }
5881
5882 return true;
5883 }
5884
5885 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
5886 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact);
5887 }
5888
5889 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const {
5890 if (!UseUniqueSubclasses) {
5891 return this;
5892 }
5893 ciKlass* k = klass();
5894 Compile* C = Compile::current();
5895 Dependencies* deps = C->dependencies();
5896 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
5897 TypePtr::InterfaceSet interfaces = _interfaces;
5898 if (k->is_loaded()) {
5899 ciInstanceKlass* ik = k->as_instance_klass();
5900 bool klass_is_exact = ik->is_final();
5901 if (!klass_is_exact &&
5902 deps != NULL) {
5903 ciInstanceKlass* sub = ik->unique_concrete_subklass();
5904 if (sub != NULL) {
5905 ciKlass *sub_k = sub;
5906 TypePtr::InterfaceSet sub_interfaces = TypePtr::interfaces(sub_k, true, false, false, ignore_interfaces);
5907 assert(sub_k == sub, "");
5908 if (sub_interfaces.eq(_interfaces)) {
5909 deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
5910 k = ik = sub;
5911 klass_is_exact = sub->is_final();
5912 return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset);
5913 }
5914 }
5915 }
5916 }
5917 return this;
5918 }
5919
5920
5921 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) {
5922 return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons();
5923 }
5924
5925 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) {
5926 if (k->is_obj_array_klass()) {
5927 // Element is an object array. Recursively call ourself.
5928 ciKlass* eklass = k->as_obj_array_klass()->element_klass();
5929 const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false);
5930 return TypeAryKlassPtr::make(ptr, etype, NULL, offset);
5931 } else if (k->is_type_array_klass()) {
5932 // Element is an typeArray
5933 const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type());
5934 return TypeAryKlassPtr::make(ptr, etype, k, offset);
5935 } else {
5936 ShouldNotReachHere();
5937 return NULL;
5938 }
5939 }
5940
5941 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) {
5942 return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling);
5943 }
5944
5945 //------------------------------eq---------------------------------------------
5946 // Structural equality check for Type representations
5947 bool TypeAryKlassPtr::eq(const Type *t) const {
5948 const TypeAryKlassPtr *p = t->is_aryklassptr();
5949 return
5950 _elem == p->_elem && // Check array
5951 TypeKlassPtr::eq(p); // Check sub-parts
5952 }
5953
5954 //------------------------------hash-------------------------------------------
5955 // Type-specific hashing function.
5956 int TypeAryKlassPtr::hash(void) const {
5957 return (intptr_t)_elem + TypeKlassPtr::hash();
5958 }
5959
5960 //----------------------compute_klass------------------------------------------
5961 // Compute the defining klass for this class
5962 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5963 // Compute _klass based on element type.
5964 ciKlass* k_ary = NULL;
5965 const TypeInstPtr *tinst;
5966 const TypeAryPtr *tary;
5967 const Type* el = elem();
5968 if (el->isa_narrowoop()) {
5969 el = el->make_ptr();
5970 }
5971
5972 // Get element klass
5973 if ((tinst = el->isa_instptr()) != NULL) {
5974 // Leave k_ary at NULL.
5975 } else if ((tary = el->isa_aryptr()) != NULL) {
5976 // Leave k_ary at NULL.
5977 } else if ((el->base() == Type::Top) ||
5978 (el->base() == Type::Bottom)) {
5979 // element type of Bottom occurs from meet of basic type
5980 // and object; Top occurs when doing join on Bottom.
5981 // Leave k_ary at NULL.
5982 } else {
5983 // Cannot compute array klass directly from basic type,
5984 // since subtypes of TypeInt all have basic type T_INT.
5985 #ifdef ASSERT
5986 if (verify && el->isa_int()) {
5987 // Check simple cases when verifying klass.
5988 BasicType bt = T_ILLEGAL;
5989 if (el == TypeInt::BYTE) {
5990 bt = T_BYTE;
5991 } else if (el == TypeInt::SHORT) {
5992 bt = T_SHORT;
5993 } else if (el == TypeInt::CHAR) {
5994 bt = T_CHAR;
5995 } else if (el == TypeInt::INT) {
5996 bt = T_INT;
5997 } else {
5998 return _klass; // just return specified klass
5999 }
6000 return ciTypeArrayKlass::make(bt);
6001 }
6002 #endif
6003 assert(!el->isa_int(),
6004 "integral arrays must be pre-equipped with a class");
6005 // Compute array klass directly from basic type
6006 k_ary = ciTypeArrayKlass::make(el->basic_type());
6007 }
6008 return k_ary;
6009 }
6010
6011 //------------------------------klass------------------------------------------
6012 // Return the defining klass for this class
6013 ciKlass* TypeAryPtr::klass() const {
6014 if( _klass ) return _klass; // Return cached value, if possible
6015
6016 // Oops, need to compute _klass and cache it
6017 ciKlass* k_ary = compute_klass();
6018
6019 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
6020 // The _klass field acts as a cache of the underlying
6021 // ciKlass for this array type. In order to set the field,
6022 // we need to cast away const-ness.
6023 //
6024 // IMPORTANT NOTE: we *never* set the _klass field for the
6025 // type TypeAryPtr::OOPS. This Type is shared between all
6026 // active compilations. However, the ciKlass which represents
6027 // this Type is *not* shared between compilations, so caching
6028 // this value would result in fetching a dangling pointer.
6029 //
6030 // Recomputing the underlying ciKlass for each request is
6031 // a bit less efficient than caching, but calls to
6032 // TypeAryPtr::OOPS->klass() are not common enough to matter.
6033 ((TypeAryPtr*)this)->_klass = k_ary;
6034 }
6035 return k_ary;
6036 }
6037
6038 // Is there a single ciKlass* that can represent that type?
6039 ciKlass* TypeAryPtr::exact_klass_helper() const {
6040 if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) {
6041 ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper();
6042 if (k == NULL) {
6043 return NULL;
6044 }
6045 k = ciObjArrayKlass::make(k);
6046 return k;
6047 }
6048
6049 return klass();
6050 }
6051
6052 const Type* TypeAryPtr::base_element_type(int& dims) const {
6053 const Type* elem = this->elem();
6054 dims = 1;
6055 while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) {
6056 elem = elem->make_ptr()->is_aryptr()->elem();
6057 dims++;
6058 }
6059 return elem;
6060 }
6061
6062 //------------------------------add_offset-------------------------------------
6063 // Access internals of klass object
6064 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const {
6065 return make(_ptr, elem(), klass(), xadd_offset(offset));
6066 }
6067
6068 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const {
6069 return make(_ptr, elem(), klass(), offset);
6070 }
6071
6072 //------------------------------cast_to_ptr_type-------------------------------
6073 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const {
6074 assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type");
6075 if (ptr == _ptr) return this;
6076 return make(ptr, elem(), _klass, _offset);
6077 }
6078
6079 bool TypeAryKlassPtr::must_be_exact() const {
6080 if (_elem == Type::BOTTOM) return false;
6081 if (_elem == Type::TOP ) return false;
6082 const TypeKlassPtr* tk = _elem->isa_klassptr();
6083 if (!tk) return true; // a primitive type, like int
6084 return tk->must_be_exact();
6085 }
6086
6087
6088 //-----------------------------cast_to_exactness-------------------------------
6089 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const {
6090 if (must_be_exact()) return this; // cannot clear xk
6091 ciKlass* k = _klass;
6092 const Type* elem = this->elem();
6093 if (elem->isa_klassptr() && !klass_is_exact) {
6094 elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact);
6095 }
6096 return make(klass_is_exact ? Constant : NotNull, elem, k, _offset);
6097 }
6098
6099
6100 //-----------------------------as_instance_type--------------------------------
6101 // Corresponding type for an instance of the given class.
6102 // It will be NotNull, and exact if and only if the klass type is exact.
6103 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const {
6104 ciKlass* k = klass();
6105 bool xk = klass_is_exact();
6106 const Type* el = NULL;
6107 if (elem()->isa_klassptr()) {
6108 el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false);
6109 k = NULL;
6110 } else {
6111 el = elem();
6112 }
6113 return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0);
6114 }
6115
6116
6117 //------------------------------xmeet------------------------------------------
6118 // Compute the MEET of two types, return a new Type object.
6119 const Type *TypeAryKlassPtr::xmeet( const Type *t ) const {
6120 // Perform a fast test for common case; meeting the same types together.
6121 if( this == t ) return this; // Meeting same type-rep?
6122
6123 // Current "this->_base" is Pointer
6124 switch (t->base()) { // switch on original type
6125
6126 case Int: // Mixing ints & oops happens when javac
6127 case Long: // reuses local variables
6128 case FloatTop:
6129 case FloatCon:
6130 case FloatBot:
6131 case DoubleTop:
6132 case DoubleCon:
6133 case DoubleBot:
6134 case NarrowOop:
6135 case NarrowKlass:
6136 case Bottom: // Ye Olde Default
6137 return Type::BOTTOM;
6138 case Top:
6139 return this;
6140
6141 default: // All else is a mistake
6142 typerr(t);
6143
6144 case AnyPtr: { // Meeting to AnyPtrs
6145 // Found an AnyPtr type vs self-KlassPtr type
6146 const TypePtr *tp = t->is_ptr();
6147 int offset = meet_offset(tp->offset());
6148 PTR ptr = meet_ptr(tp->ptr());
6149 switch (tp->ptr()) {
6150 case TopPTR:
6151 return this;
6152 case Null:
6153 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6154 case AnyNull:
6155 return make( ptr, _elem, klass(), offset );
6156 case BotPTR:
6157 case NotNull:
6158 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
6159 default: typerr(t);
6160 }
6161 }
6162
6163 case RawPtr:
6164 case MetadataPtr:
6165 case OopPtr:
6166 case AryPtr: // Meet with AryPtr
6167 case InstPtr: // Meet with InstPtr
6168 return TypePtr::BOTTOM;
6169
6170 //
6171 // A-top }
6172 // / | \ } Tops
6173 // B-top A-any C-top }
6174 // | / | \ | } Any-nulls
6175 // B-any | C-any }
6176 // | | |
6177 // B-con A-con C-con } constants; not comparable across classes
6178 // | | |
6179 // B-not | C-not }
6180 // | \ | / | } not-nulls
6181 // B-bot A-not C-bot }
6182 // \ | / } Bottoms
6183 // A-bot }
6184 //
6185
6186 case AryKlassPtr: { // Meet two KlassPtr types
6187 const TypeAryKlassPtr *tap = t->is_aryklassptr();
6188 int off = meet_offset(tap->offset());
6189 const Type* elem = _elem->meet(tap->_elem);
6190
6191 PTR ptr = meet_ptr(tap->ptr());
6192 ciKlass* res_klass = NULL;
6193 bool res_xk = false;
6194 meet_aryptr(ptr, elem, this, tap, res_klass, res_xk);
6195 assert(res_xk == (ptr == Constant), "");
6196 return make(ptr, elem, res_klass, off);
6197 } // End of case KlassPtr
6198 case InstKlassPtr: {
6199 const TypeInstKlassPtr *tp = t->is_instklassptr();
6200 int offset = meet_offset(tp->offset());
6201 PTR ptr = meet_ptr(tp->ptr());
6202 InterfaceSet interfaces = meet_interfaces(tp);
6203 InterfaceSet tp_interfaces = tp->_interfaces;
6204 InterfaceSet this_interfaces = _interfaces;
6205
6206 switch (ptr) {
6207 case TopPTR:
6208 case AnyNull: // Fall 'down' to dual of object klass
6209 // For instances when a subclass meets a superclass we fall
6210 // below the centerline when the superclass is exact. We need to
6211 // do the same here.
6212 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces.intersection_with(tp_interfaces).eq(tp_interfaces) && !tp->klass_is_exact()) {
6213 return TypeAryKlassPtr::make(ptr, _elem, _klass, offset);
6214 } else {
6215 // cannot subclass, so the meet has to fall badly below the centerline
6216 ptr = NotNull;
6217 interfaces = this_interfaces.intersection_with(tp->_interfaces);
6218 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6219 }
6220 case Constant:
6221 case NotNull:
6222 case BotPTR: // Fall down to object klass
6223 // LCA is object_klass, but if we subclass from the top we can do better
6224 if (above_centerline(tp->ptr())) {
6225 // If 'tp' is above the centerline and it is Object class
6226 // then we can subclass in the Java class hierarchy.
6227 // For instances when a subclass meets a superclass we fall
6228 // below the centerline when the superclass is exact. We need
6229 // to do the same here.
6230 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces.intersection_with(tp_interfaces).eq(tp_interfaces) && !tp->klass_is_exact()) {
6231 // that is, my array type is a subtype of 'tp' klass
6232 return make(ptr, _elem, _klass, offset);
6233 }
6234 }
6235 // The other case cannot happen, since t cannot be a subtype of an array.
6236 // The meet falls down to Object class below centerline.
6237 if (ptr == Constant)
6238 ptr = NotNull;
6239 interfaces = this_interfaces.intersection_with(tp_interfaces);
6240 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset);
6241 default: typerr(t);
6242 }
6243 }
6244
6245 } // End of switch
6246 return this; // Return the double constant
6247 }
6248
6249 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6250 static_assert(std::is_base_of<T2, T1>::value, "");
6251
6252 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces.empty() && other_exact) {
6253 return true;
6254 }
6255
6256 int dummy;
6257 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6258
6259 if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6260 return false;
6261 }
6262
6263 if (this_one->is_instance_type(other)) {
6264 return other->klass() == ciEnv::current()->Object_klass() && other->_interfaces.intersection_with(this_one->_interfaces).eq(other->_interfaces) && other_exact;
6265 }
6266
6267 assert(this_one->is_array_type(other), "");
6268 const T1* other_ary = this_one->is_array_type(other);
6269 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6270 if (other_top_or_bottom) {
6271 return false;
6272 }
6273
6274 const TypePtr* other_elem = other_ary->elem()->make_ptr();
6275 const TypePtr* this_elem = this_one->elem()->make_ptr();
6276 if (this_elem != NULL && other_elem != NULL) {
6277 return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6278 }
6279 if (this_elem == NULL && other_elem == NULL) {
6280 return this_one->_klass->is_subtype_of(other->_klass);
6281 }
6282 return false;
6283 }
6284
6285 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6286 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6287 }
6288
6289 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) {
6290 static_assert(std::is_base_of<T2, T1>::value, "");
6291
6292 int dummy;
6293 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6294
6295 if (!this_one->is_array_type(other) ||
6296 !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6297 return false;
6298 }
6299 const T1* other_ary = this_one->is_array_type(other);
6300 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6301
6302 if (other_top_or_bottom) {
6303 return false;
6304 }
6305
6306 const TypePtr* other_elem = other_ary->elem()->make_ptr();
6307 const TypePtr* this_elem = this_one->elem()->make_ptr();
6308 if (other_elem != NULL && this_elem != NULL) {
6309 return this_one->is_reference_type(this_elem)->is_same_java_type_as(this_one->is_reference_type(other_elem));
6310 }
6311 if (other_elem == NULL && this_elem == NULL) {
6312 assert(this_one->_klass != NULL && other->_klass != NULL, "");
6313 return this_one->_klass->equals(other->_klass);
6314 }
6315 return false;
6316 }
6317
6318 bool TypeAryKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const {
6319 return TypePtr::is_same_java_type_as_helper_for_array(this, other);
6320 }
6321
6322 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) {
6323 static_assert(std::is_base_of<T2, T1>::value, "");
6324 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces.empty() && other_exact) {
6325 return true;
6326 }
6327 int dummy;
6328 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM);
6329 if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) {
6330 return true;
6331 }
6332 if (this_one->is_instance_type(other)) {
6333 return other->_klass->equals(ciEnv::current()->Object_klass()) && other->_interfaces.intersection_with(this_one->_interfaces).eq(other->_interfaces);
6334 }
6335 assert(this_one->is_array_type(other), "");
6336
6337 const T1* other_ary = this_one->is_array_type(other);
6338 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM);
6339 if (other_top_or_bottom) {
6340 return true;
6341 }
6342 if (this_exact && other_exact) {
6343 return this_one->is_java_subtype_of(other);
6344 }
6345
6346 const TypePtr* this_elem = this_one->elem()->make_ptr();
6347 const TypePtr* other_elem = other_ary->elem()->make_ptr();
6348 if (other_elem != NULL && this_elem != NULL) {
6349 return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact);
6350 }
6351 if (other_elem == NULL && this_elem == NULL) {
6352 return this_one->_klass->is_subtype_of(other->_klass);
6353 }
6354 return false;
6355 }
6356
6357 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const {
6358 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact);
6359 }
6360
6361 //------------------------------xdual------------------------------------------
6362 // Dual: compute field-by-field dual
6363 const Type *TypeAryKlassPtr::xdual() const {
6364 return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset());
6365 }
6366
6367 // Is there a single ciKlass* that can represent that type?
6368 ciKlass* TypeAryKlassPtr::exact_klass_helper() const {
6369 if (elem()->isa_klassptr()) {
6370 ciKlass* k = elem()->is_klassptr()->exact_klass_helper();
6371 if (k == NULL) {
6372 return NULL;
6373 }
6374 k = ciObjArrayKlass::make(k);
6375 return k;
6376 }
6377
6378 return klass();
6379 }
6380
6381 ciKlass* TypeAryKlassPtr::klass() const {
6382 if (_klass != NULL) {
6383 return _klass;
6384 }
6385 ciKlass* k = NULL;
6386 if (elem()->isa_klassptr()) {
6387 // leave NULL
6388 } else if ((elem()->base() == Type::Top) ||
6389 (elem()->base() == Type::Bottom)) {
6390 } else {
6391 k = ciTypeArrayKlass::make(elem()->basic_type());
6392 ((TypeAryKlassPtr*)this)->_klass = k;
6393 }
6394 return k;
6395 }
6396
6397 //------------------------------dump2------------------------------------------
6398 // Dump Klass Type
6399 #ifndef PRODUCT
6400 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
6401 switch( _ptr ) {
6402 case Constant:
6403 st->print("precise ");
6404 case NotNull:
6405 {
6406 st->print("[");
6407 _elem->dump2(d, depth, st);
6408 _interfaces.dump(st);
6409 st->print(": ");
6410 }
6411 case BotPTR:
6412 if( !WizardMode && !Verbose && _ptr != Constant ) break;
6413 case TopPTR:
6414 case AnyNull:
6415 st->print(":%s", ptr_msg[_ptr]);
6416 if( _ptr == Constant ) st->print(":exact");
6417 break;
6418 default:
6419 break;
6420 }
6421
6422 if( _offset ) { // Dump offset, if any
6423 if( _offset == OffsetBot ) { st->print("+any"); }
6424 else if( _offset == OffsetTop ) { st->print("+unknown"); }
6425 else { st->print("+%d", _offset); }
6426 }
6427
6428 st->print(" *");
6429 }
6430 #endif
6431
6432 const Type* TypeAryKlassPtr::base_element_type(int& dims) const {
6433 const Type* elem = this->elem();
6434 dims = 1;
6435 while (elem->isa_aryklassptr()) {
6436 elem = elem->is_aryklassptr()->elem();
6437 dims++;
6438 }
6439 return elem;
6440 }
6441
6442 //=============================================================================
6443 // Convenience common pre-built types.
6444
6445 //------------------------------make-------------------------------------------
6446 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
6447 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
6448 }
6449
6450 //------------------------------make-------------------------------------------
6451 const TypeFunc *TypeFunc::make(ciMethod* method) {
6452 Compile* C = Compile::current();
6453 const TypeFunc* tf = C->last_tf(method); // check cache
6454 if (tf != NULL) return tf; // The hit rate here is almost 50%.
6455 const TypeTuple *domain;
6456 if (method->is_static()) {
6457 domain = TypeTuple::make_domain(NULL, method->signature(), ignore_interfaces);
6458 } else {
6459 domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces);
6460 }
6461 const TypeTuple *range = TypeTuple::make_range(method->signature(), ignore_interfaces);
6462 tf = TypeFunc::make(domain, range);
6463 C->set_last_tf(method, tf); // fill cache
6464 return tf;
6465 }
6466
6467 //------------------------------meet-------------------------------------------
6468 // Compute the MEET of two types. It returns a new Type object.
6469 const Type *TypeFunc::xmeet( const Type *t ) const {
6470 // Perform a fast test for common case; meeting the same types together.
6471 if( this == t ) return this; // Meeting same type-rep?
6472
6473 // Current "this->_base" is Func
6474 switch (t->base()) { // switch on original type
6475
6476 case Bottom: // Ye Olde Default
6477 return t;
6478
6479 default: // All else is a mistake
6480 typerr(t);
6481
6482 case Top:
6483 break;
6484 }
6485 return this; // Return the double constant
6486 }
6487
6488 //------------------------------xdual------------------------------------------
6489 // Dual: compute field-by-field dual
6490 const Type *TypeFunc::xdual() const {
6491 return this;
6492 }
6493
6494 //------------------------------eq---------------------------------------------
6495 // Structural equality check for Type representations
6496 bool TypeFunc::eq( const Type *t ) const {
6497 const TypeFunc *a = (const TypeFunc*)t;
6498 return _domain == a->_domain &&
6499 _range == a->_range;
6500 }
6501
6502 //------------------------------hash-------------------------------------------
6503 // Type-specific hashing function.
6504 int TypeFunc::hash(void) const {
6505 return (intptr_t)_domain + (intptr_t)_range;
6506 }
6507
6508 //------------------------------dump2------------------------------------------
6509 // Dump Function Type
6510 #ifndef PRODUCT
6511 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
6512 if( _range->cnt() <= Parms )
6513 st->print("void");
6514 else {
6515 uint i;
6516 for (i = Parms; i < _range->cnt()-1; i++) {
6517 _range->field_at(i)->dump2(d,depth,st);
6518 st->print("/");
6519 }
6520 _range->field_at(i)->dump2(d,depth,st);
6521 }
6522 st->print(" ");
6523 st->print("( ");
6524 if( !depth || d[this] ) { // Check for recursive dump
6525 st->print("...)");
6526 return;
6527 }
6528 d.Insert((void*)this,(void*)this); // Stop recursion
6529 if (Parms < _domain->cnt())
6530 _domain->field_at(Parms)->dump2(d,depth-1,st);
6531 for (uint i = Parms+1; i < _domain->cnt(); i++) {
6532 st->print(", ");
6533 _domain->field_at(i)->dump2(d,depth-1,st);
6534 }
6535 st->print(" )");
6536 }
6537 #endif
6538
6539 //------------------------------singleton--------------------------------------
6540 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple
6541 // constants (Ldi nodes). Singletons are integer, float or double constants
6542 // or a single symbol.
6543 bool TypeFunc::singleton(void) const {
6544 return false; // Never a singleton
6545 }
6546
6547 bool TypeFunc::empty(void) const {
6548 return false; // Never empty
6549 }
6550
6551
6552 BasicType TypeFunc::return_type() const{
6553 if (range()->cnt() == TypeFunc::Parms) {
6554 return T_VOID;
6555 }
6556 return range()->field_at(TypeFunc::Parms)->basic_type();
6557 }
--- EOF ---