1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "ci/ciMethodData.hpp" 27 #include "ci/ciTypeFlow.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "classfile/symbolTable.hpp" 30 #include "compiler/compileLog.hpp" 31 #include "libadt/dict.hpp" 32 #include "memory/oopFactory.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "oops/instanceKlass.hpp" 35 #include "oops/instanceMirrorKlass.hpp" 36 #include "oops/objArrayKlass.hpp" 37 #include "oops/typeArrayKlass.hpp" 38 #include "opto/matcher.hpp" 39 #include "opto/node.hpp" 40 #include "opto/opcodes.hpp" 41 #include "opto/type.hpp" 42 #include "utilities/powerOfTwo.hpp" 43 #include "utilities/stringUtils.hpp" 44 45 // Portions of code courtesy of Clifford Click 46 47 // Optimization - Graph Style 48 49 // Dictionary of types shared among compilations. 50 Dict* Type::_shared_type_dict = NULL; 51 52 // Array which maps compiler types to Basic Types 53 const Type::TypeInfo Type::_type_info[Type::lastype] = { 54 { Bad, T_ILLEGAL, "bad", false, Node::NotAMachineReg, relocInfo::none }, // Bad 55 { Control, T_ILLEGAL, "control", false, 0, relocInfo::none }, // Control 56 { Bottom, T_VOID, "top", false, 0, relocInfo::none }, // Top 57 { Bad, T_INT, "int:", false, Op_RegI, relocInfo::none }, // Int 58 { Bad, T_LONG, "long:", false, Op_RegL, relocInfo::none }, // Long 59 { Half, T_VOID, "half", false, 0, relocInfo::none }, // Half 60 { Bad, T_NARROWOOP, "narrowoop:", false, Op_RegN, relocInfo::none }, // NarrowOop 61 { Bad, T_NARROWKLASS,"narrowklass:", false, Op_RegN, relocInfo::none }, // NarrowKlass 62 { Bad, T_ILLEGAL, "tuple:", false, Node::NotAMachineReg, relocInfo::none }, // Tuple 63 { Bad, T_ARRAY, "array:", false, Node::NotAMachineReg, relocInfo::none }, // Array 64 65 #if defined(PPC64) 66 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 67 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 68 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS 69 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD 70 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX 71 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY 72 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ 73 #elif defined(S390) 74 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 75 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 76 { Bad, T_ILLEGAL, "vectors:", false, 0, relocInfo::none }, // VectorS 77 { Bad, T_ILLEGAL, "vectord:", false, Op_RegL, relocInfo::none }, // VectorD 78 { Bad, T_ILLEGAL, "vectorx:", false, 0, relocInfo::none }, // VectorX 79 { Bad, T_ILLEGAL, "vectory:", false, 0, relocInfo::none }, // VectorY 80 { Bad, T_ILLEGAL, "vectorz:", false, 0, relocInfo::none }, // VectorZ 81 #else // all other 82 { Bad, T_ILLEGAL, "vectormask:", false, Op_RegVectMask, relocInfo::none }, // VectorMask. 83 { Bad, T_ILLEGAL, "vectora:", false, Op_VecA, relocInfo::none }, // VectorA. 84 { Bad, T_ILLEGAL, "vectors:", false, Op_VecS, relocInfo::none }, // VectorS 85 { Bad, T_ILLEGAL, "vectord:", false, Op_VecD, relocInfo::none }, // VectorD 86 { Bad, T_ILLEGAL, "vectorx:", false, Op_VecX, relocInfo::none }, // VectorX 87 { Bad, T_ILLEGAL, "vectory:", false, Op_VecY, relocInfo::none }, // VectorY 88 { Bad, T_ILLEGAL, "vectorz:", false, Op_VecZ, relocInfo::none }, // VectorZ 89 #endif 90 { Bad, T_ADDRESS, "anyptr:", false, Op_RegP, relocInfo::none }, // AnyPtr 91 { Bad, T_ADDRESS, "rawptr:", false, Op_RegP, relocInfo::none }, // RawPtr 92 { Bad, T_OBJECT, "oop:", true, Op_RegP, relocInfo::oop_type }, // OopPtr 93 { Bad, T_OBJECT, "inst:", true, Op_RegP, relocInfo::oop_type }, // InstPtr 94 { Bad, T_OBJECT, "ary:", true, Op_RegP, relocInfo::oop_type }, // AryPtr 95 { Bad, T_METADATA, "metadata:", false, Op_RegP, relocInfo::metadata_type }, // MetadataPtr 96 { Bad, T_METADATA, "klass:", false, Op_RegP, relocInfo::metadata_type }, // KlassPtr 97 { Bad, T_METADATA, "instklass:", false, Op_RegP, relocInfo::metadata_type }, // InstKlassPtr 98 { Bad, T_METADATA, "aryklass:", false, Op_RegP, relocInfo::metadata_type }, // AryKlassPtr 99 { Bad, T_OBJECT, "func", false, 0, relocInfo::none }, // Function 100 { Abio, T_ILLEGAL, "abIO", false, 0, relocInfo::none }, // Abio 101 { Return_Address, T_ADDRESS, "return_address",false, Op_RegP, relocInfo::none }, // Return_Address 102 { Memory, T_ILLEGAL, "memory", false, 0, relocInfo::none }, // Memory 103 { FloatBot, T_FLOAT, "float_top", false, Op_RegF, relocInfo::none }, // FloatTop 104 { FloatCon, T_FLOAT, "ftcon:", false, Op_RegF, relocInfo::none }, // FloatCon 105 { FloatTop, T_FLOAT, "float", false, Op_RegF, relocInfo::none }, // FloatBot 106 { DoubleBot, T_DOUBLE, "double_top", false, Op_RegD, relocInfo::none }, // DoubleTop 107 { DoubleCon, T_DOUBLE, "dblcon:", false, Op_RegD, relocInfo::none }, // DoubleCon 108 { DoubleTop, T_DOUBLE, "double", false, Op_RegD, relocInfo::none }, // DoubleBot 109 { Top, T_ILLEGAL, "bottom", false, 0, relocInfo::none } // Bottom 110 }; 111 112 // Map ideal registers (machine types) to ideal types 113 const Type *Type::mreg2type[_last_machine_leaf]; 114 115 // Map basic types to canonical Type* pointers. 116 const Type* Type:: _const_basic_type[T_CONFLICT+1]; 117 118 // Map basic types to constant-zero Types. 119 const Type* Type:: _zero_type[T_CONFLICT+1]; 120 121 // Map basic types to array-body alias types. 122 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1]; 123 const TypePtr::InterfaceSet* TypeAryPtr::_array_interfaces = NULL; 124 const TypePtr::InterfaceSet* TypeAryKlassPtr::_array_interfaces = NULL; 125 126 //============================================================================= 127 // Convenience common pre-built types. 128 const Type *Type::ABIO; // State-of-machine only 129 const Type *Type::BOTTOM; // All values 130 const Type *Type::CONTROL; // Control only 131 const Type *Type::DOUBLE; // All doubles 132 const Type *Type::FLOAT; // All floats 133 const Type *Type::HALF; // Placeholder half of doublewide type 134 const Type *Type::MEMORY; // Abstract store only 135 const Type *Type::RETURN_ADDRESS; 136 const Type *Type::TOP; // No values in set 137 138 //------------------------------get_const_type--------------------------- 139 const Type* Type::get_const_type(ciType* type, InterfaceHandling interface_handling) { 140 if (type == NULL) { 141 return NULL; 142 } else if (type->is_primitive_type()) { 143 return get_const_basic_type(type->basic_type()); 144 } else { 145 return TypeOopPtr::make_from_klass(type->as_klass(), interface_handling); 146 } 147 } 148 149 //---------------------------array_element_basic_type--------------------------------- 150 // Mapping to the array element's basic type. 151 BasicType Type::array_element_basic_type() const { 152 BasicType bt = basic_type(); 153 if (bt == T_INT) { 154 if (this == TypeInt::INT) return T_INT; 155 if (this == TypeInt::CHAR) return T_CHAR; 156 if (this == TypeInt::BYTE) return T_BYTE; 157 if (this == TypeInt::BOOL) return T_BOOLEAN; 158 if (this == TypeInt::SHORT) return T_SHORT; 159 return T_VOID; 160 } 161 return bt; 162 } 163 164 // For two instance arrays of same dimension, return the base element types. 165 // Otherwise or if the arrays have different dimensions, return NULL. 166 void Type::get_arrays_base_elements(const Type *a1, const Type *a2, 167 const TypeInstPtr **e1, const TypeInstPtr **e2) { 168 169 if (e1) *e1 = NULL; 170 if (e2) *e2 = NULL; 171 const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr(); 172 const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr(); 173 174 if (a1tap != NULL && a2tap != NULL) { 175 // Handle multidimensional arrays 176 const TypePtr* a1tp = a1tap->elem()->make_ptr(); 177 const TypePtr* a2tp = a2tap->elem()->make_ptr(); 178 while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) { 179 a1tap = a1tp->is_aryptr(); 180 a2tap = a2tp->is_aryptr(); 181 a1tp = a1tap->elem()->make_ptr(); 182 a2tp = a2tap->elem()->make_ptr(); 183 } 184 if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) { 185 if (e1) *e1 = a1tp->is_instptr(); 186 if (e2) *e2 = a2tp->is_instptr(); 187 } 188 } 189 } 190 191 //---------------------------get_typeflow_type--------------------------------- 192 // Import a type produced by ciTypeFlow. 193 const Type* Type::get_typeflow_type(ciType* type) { 194 switch (type->basic_type()) { 195 196 case ciTypeFlow::StateVector::T_BOTTOM: 197 assert(type == ciTypeFlow::StateVector::bottom_type(), ""); 198 return Type::BOTTOM; 199 200 case ciTypeFlow::StateVector::T_TOP: 201 assert(type == ciTypeFlow::StateVector::top_type(), ""); 202 return Type::TOP; 203 204 case ciTypeFlow::StateVector::T_NULL: 205 assert(type == ciTypeFlow::StateVector::null_type(), ""); 206 return TypePtr::NULL_PTR; 207 208 case ciTypeFlow::StateVector::T_LONG2: 209 // The ciTypeFlow pass pushes a long, then the half. 210 // We do the same. 211 assert(type == ciTypeFlow::StateVector::long2_type(), ""); 212 return TypeInt::TOP; 213 214 case ciTypeFlow::StateVector::T_DOUBLE2: 215 // The ciTypeFlow pass pushes double, then the half. 216 // Our convention is the same. 217 assert(type == ciTypeFlow::StateVector::double2_type(), ""); 218 return Type::TOP; 219 220 case T_ADDRESS: 221 assert(type->is_return_address(), ""); 222 return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci()); 223 224 default: 225 // make sure we did not mix up the cases: 226 assert(type != ciTypeFlow::StateVector::bottom_type(), ""); 227 assert(type != ciTypeFlow::StateVector::top_type(), ""); 228 assert(type != ciTypeFlow::StateVector::null_type(), ""); 229 assert(type != ciTypeFlow::StateVector::long2_type(), ""); 230 assert(type != ciTypeFlow::StateVector::double2_type(), ""); 231 assert(!type->is_return_address(), ""); 232 233 return Type::get_const_type(type); 234 } 235 } 236 237 238 //-----------------------make_from_constant------------------------------------ 239 const Type* Type::make_from_constant(ciConstant constant, bool require_constant, 240 int stable_dimension, bool is_narrow_oop, 241 bool is_autobox_cache) { 242 switch (constant.basic_type()) { 243 case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); 244 case T_CHAR: return TypeInt::make(constant.as_char()); 245 case T_BYTE: return TypeInt::make(constant.as_byte()); 246 case T_SHORT: return TypeInt::make(constant.as_short()); 247 case T_INT: return TypeInt::make(constant.as_int()); 248 case T_LONG: return TypeLong::make(constant.as_long()); 249 case T_FLOAT: return TypeF::make(constant.as_float()); 250 case T_DOUBLE: return TypeD::make(constant.as_double()); 251 case T_ARRAY: 252 case T_OBJECT: { 253 const Type* con_type = NULL; 254 ciObject* oop_constant = constant.as_object(); 255 if (oop_constant->is_null_object()) { 256 con_type = Type::get_zero_type(T_OBJECT); 257 } else { 258 guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed"); 259 con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant); 260 if (Compile::current()->eliminate_boxing() && is_autobox_cache) { 261 con_type = con_type->is_aryptr()->cast_to_autobox_cache(); 262 } 263 if (stable_dimension > 0) { 264 assert(FoldStableValues, "sanity"); 265 assert(!con_type->is_zero_type(), "default value for stable field"); 266 con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension); 267 } 268 } 269 if (is_narrow_oop) { 270 con_type = con_type->make_narrowoop(); 271 } 272 return con_type; 273 } 274 case T_ILLEGAL: 275 // Invalid ciConstant returned due to OutOfMemoryError in the CI 276 assert(Compile::current()->env()->failing(), "otherwise should not see this"); 277 return NULL; 278 default: 279 // Fall through to failure 280 return NULL; 281 } 282 } 283 284 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) { 285 BasicType conbt = con.basic_type(); 286 switch (conbt) { 287 case T_BOOLEAN: conbt = T_BYTE; break; 288 case T_ARRAY: conbt = T_OBJECT; break; 289 default: break; 290 } 291 switch (loadbt) { 292 case T_BOOLEAN: loadbt = T_BYTE; break; 293 case T_NARROWOOP: loadbt = T_OBJECT; break; 294 case T_ARRAY: loadbt = T_OBJECT; break; 295 case T_ADDRESS: loadbt = T_OBJECT; break; 296 default: break; 297 } 298 if (conbt == loadbt) { 299 if (is_unsigned && conbt == T_BYTE) { 300 // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE). 301 return ciConstant(T_INT, con.as_int() & 0xFF); 302 } else { 303 return con; 304 } 305 } 306 if (conbt == T_SHORT && loadbt == T_CHAR) { 307 // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR). 308 return ciConstant(T_INT, con.as_int() & 0xFFFF); 309 } 310 return ciConstant(); // T_ILLEGAL 311 } 312 313 // Try to constant-fold a stable array element. 314 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension, 315 BasicType loadbt, bool is_unsigned_load) { 316 // Decode the results of GraphKit::array_element_address. 317 ciConstant element_value = array->element_value_by_offset(off); 318 if (element_value.basic_type() == T_ILLEGAL) { 319 return NULL; // wrong offset 320 } 321 ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load); 322 323 assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d", 324 type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load); 325 326 if (con.is_valid() && // not a mismatched access 327 !con.is_null_or_zero()) { // not a default value 328 bool is_narrow_oop = (loadbt == T_NARROWOOP); 329 return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false); 330 } 331 return NULL; 332 } 333 334 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) { 335 ciField* field; 336 ciType* type = holder->java_mirror_type(); 337 if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) { 338 // Static field 339 field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true); 340 } else { 341 // Instance field 342 field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false); 343 } 344 if (field == NULL) { 345 return NULL; // Wrong offset 346 } 347 return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load); 348 } 349 350 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder, 351 BasicType loadbt, bool is_unsigned_load) { 352 if (!field->is_constant()) { 353 return NULL; // Non-constant field 354 } 355 ciConstant field_value; 356 if (field->is_static()) { 357 // final static field 358 field_value = field->constant_value(); 359 } else if (holder != NULL) { 360 // final or stable non-static field 361 // Treat final non-static fields of trusted classes (classes in 362 // java.lang.invoke and sun.invoke packages and subpackages) as 363 // compile time constants. 364 field_value = field->constant_value_of(holder); 365 } 366 if (!field_value.is_valid()) { 367 return NULL; // Not a constant 368 } 369 370 ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load); 371 372 assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d", 373 type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load); 374 375 bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass(); 376 int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0); 377 bool is_narrow_oop = (loadbt == T_NARROWOOP); 378 379 const Type* con_type = make_from_constant(con, /*require_constant=*/ true, 380 stable_dimension, is_narrow_oop, 381 field->is_autobox_cache()); 382 if (con_type != NULL && field->is_call_site_target()) { 383 ciCallSite* call_site = holder->as_call_site(); 384 if (!call_site->is_fully_initialized_constant_call_site()) { 385 ciMethodHandle* target = con.as_object()->as_method_handle(); 386 Compile::current()->dependencies()->assert_call_site_target_value(call_site, target); 387 } 388 } 389 return con_type; 390 } 391 392 //------------------------------make------------------------------------------- 393 // Create a simple Type, with default empty symbol sets. Then hashcons it 394 // and look for an existing copy in the type dictionary. 395 const Type *Type::make( enum TYPES t ) { 396 return (new Type(t))->hashcons(); 397 } 398 399 //------------------------------cmp-------------------------------------------- 400 int Type::cmp( const Type *const t1, const Type *const t2 ) { 401 if( t1->_base != t2->_base ) 402 return 1; // Missed badly 403 assert(t1 != t2 || t1->eq(t2), "eq must be reflexive"); 404 return !t1->eq(t2); // Return ZERO if equal 405 } 406 407 const Type* Type::maybe_remove_speculative(bool include_speculative) const { 408 if (!include_speculative) { 409 return remove_speculative(); 410 } 411 return this; 412 } 413 414 //------------------------------hash------------------------------------------- 415 int Type::uhash( const Type *const t ) { 416 return t->hash(); 417 } 418 419 #define SMALLINT ((juint)3) // a value too insignificant to consider widening 420 #define POSITIVE_INFINITE_F 0x7f800000 // hex representation for IEEE 754 single precision positive infinite 421 #define POSITIVE_INFINITE_D 0x7ff0000000000000 // hex representation for IEEE 754 double precision positive infinite 422 423 //--------------------------Initialize_shared---------------------------------- 424 void Type::Initialize_shared(Compile* current) { 425 // This method does not need to be locked because the first system 426 // compilations (stub compilations) occur serially. If they are 427 // changed to proceed in parallel, then this section will need 428 // locking. 429 430 Arena* save = current->type_arena(); 431 Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler); 432 433 current->set_type_arena(shared_type_arena); 434 _shared_type_dict = 435 new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash, 436 shared_type_arena, 128 ); 437 current->set_type_dict(_shared_type_dict); 438 439 // Make shared pre-built types. 440 CONTROL = make(Control); // Control only 441 TOP = make(Top); // No values in set 442 MEMORY = make(Memory); // Abstract store only 443 ABIO = make(Abio); // State-of-machine only 444 RETURN_ADDRESS=make(Return_Address); 445 FLOAT = make(FloatBot); // All floats 446 DOUBLE = make(DoubleBot); // All doubles 447 BOTTOM = make(Bottom); // Everything 448 HALF = make(Half); // Placeholder half of doublewide type 449 450 TypeF::MAX = TypeF::make(max_jfloat); // Float MAX 451 TypeF::MIN = TypeF::make(min_jfloat); // Float MIN 452 TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero) 453 TypeF::ONE = TypeF::make(1.0); // Float 1 454 TypeF::POS_INF = TypeF::make(jfloat_cast(POSITIVE_INFINITE_F)); 455 TypeF::NEG_INF = TypeF::make(-jfloat_cast(POSITIVE_INFINITE_F)); 456 457 TypeD::MAX = TypeD::make(max_jdouble); // Double MAX 458 TypeD::MIN = TypeD::make(min_jdouble); // Double MIN 459 TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero) 460 TypeD::ONE = TypeD::make(1.0); // Double 1 461 TypeD::POS_INF = TypeD::make(jdouble_cast(POSITIVE_INFINITE_D)); 462 TypeD::NEG_INF = TypeD::make(-jdouble_cast(POSITIVE_INFINITE_D)); 463 464 TypeInt::MAX = TypeInt::make(max_jint); // Int MAX 465 TypeInt::MIN = TypeInt::make(min_jint); // Int MIN 466 TypeInt::MINUS_1 = TypeInt::make(-1); // -1 467 TypeInt::ZERO = TypeInt::make( 0); // 0 468 TypeInt::ONE = TypeInt::make( 1); // 1 469 TypeInt::BOOL = TypeInt::make(0,1, WidenMin); // 0 or 1, FALSE or TRUE. 470 TypeInt::CC = TypeInt::make(-1, 1, WidenMin); // -1, 0 or 1, condition codes 471 TypeInt::CC_LT = TypeInt::make(-1,-1, WidenMin); // == TypeInt::MINUS_1 472 TypeInt::CC_GT = TypeInt::make( 1, 1, WidenMin); // == TypeInt::ONE 473 TypeInt::CC_EQ = TypeInt::make( 0, 0, WidenMin); // == TypeInt::ZERO 474 TypeInt::CC_LE = TypeInt::make(-1, 0, WidenMin); 475 TypeInt::CC_GE = TypeInt::make( 0, 1, WidenMin); // == TypeInt::BOOL 476 TypeInt::BYTE = TypeInt::make(-128,127, WidenMin); // Bytes 477 TypeInt::UBYTE = TypeInt::make(0, 255, WidenMin); // Unsigned Bytes 478 TypeInt::CHAR = TypeInt::make(0,65535, WidenMin); // Java chars 479 TypeInt::SHORT = TypeInt::make(-32768,32767, WidenMin); // Java shorts 480 TypeInt::POS = TypeInt::make(0,max_jint, WidenMin); // Non-neg values 481 TypeInt::POS1 = TypeInt::make(1,max_jint, WidenMin); // Positive values 482 TypeInt::INT = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers 483 TypeInt::SYMINT = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range 484 TypeInt::TYPE_DOMAIN = TypeInt::INT; 485 // CmpL is overloaded both as the bytecode computation returning 486 // a trinary (-1,0,+1) integer result AND as an efficient long 487 // compare returning optimizer ideal-type flags. 488 assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" ); 489 assert( TypeInt::CC_GT == TypeInt::ONE, "types must match for CmpL to work" ); 490 assert( TypeInt::CC_EQ == TypeInt::ZERO, "types must match for CmpL to work" ); 491 assert( TypeInt::CC_GE == TypeInt::BOOL, "types must match for CmpL to work" ); 492 assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small"); 493 494 TypeLong::MAX = TypeLong::make(max_jlong); // Long MAX 495 TypeLong::MIN = TypeLong::make(min_jlong); // Long MIN 496 TypeLong::MINUS_1 = TypeLong::make(-1); // -1 497 TypeLong::ZERO = TypeLong::make( 0); // 0 498 TypeLong::ONE = TypeLong::make( 1); // 1 499 TypeLong::POS = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values 500 TypeLong::LONG = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers 501 TypeLong::INT = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin); 502 TypeLong::UINT = TypeLong::make(0,(jlong)max_juint,WidenMin); 503 TypeLong::TYPE_DOMAIN = TypeLong::LONG; 504 505 const Type **fboth =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 506 fboth[0] = Type::CONTROL; 507 fboth[1] = Type::CONTROL; 508 TypeTuple::IFBOTH = TypeTuple::make( 2, fboth ); 509 510 const Type **ffalse =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 511 ffalse[0] = Type::CONTROL; 512 ffalse[1] = Type::TOP; 513 TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse ); 514 515 const Type **fneither =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 516 fneither[0] = Type::TOP; 517 fneither[1] = Type::TOP; 518 TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither ); 519 520 const Type **ftrue =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 521 ftrue[0] = Type::TOP; 522 ftrue[1] = Type::CONTROL; 523 TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue ); 524 525 const Type **floop =(const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 526 floop[0] = Type::CONTROL; 527 floop[1] = TypeInt::INT; 528 TypeTuple::LOOPBODY = TypeTuple::make( 2, floop ); 529 530 TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0); 531 TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot); 532 TypePtr::BOTTOM = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot); 533 534 TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR ); 535 TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull ); 536 537 const Type **fmembar = TypeTuple::fields(0); 538 TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar); 539 540 const Type **fsc = (const Type**)shared_type_arena->AmallocWords(2*sizeof(Type*)); 541 fsc[0] = TypeInt::CC; 542 fsc[1] = Type::MEMORY; 543 TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc); 544 545 TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass()); 546 TypeInstPtr::BOTTOM = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass()); 547 TypeInstPtr::MIRROR = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass()); 548 TypeInstPtr::MARK = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 549 false, 0, oopDesc::mark_offset_in_bytes()); 550 TypeInstPtr::KLASS = TypeInstPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 551 false, 0, oopDesc::klass_offset_in_bytes()); 552 TypeOopPtr::BOTTOM = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot); 553 554 TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot); 555 556 TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR ); 557 TypeNarrowOop::BOTTOM = TypeNarrowOop::make( TypeInstPtr::BOTTOM ); 558 559 TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR ); 560 561 mreg2type[Op_Node] = Type::BOTTOM; 562 mreg2type[Op_Set ] = 0; 563 mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM; 564 mreg2type[Op_RegI] = TypeInt::INT; 565 mreg2type[Op_RegP] = TypePtr::BOTTOM; 566 mreg2type[Op_RegF] = Type::FLOAT; 567 mreg2type[Op_RegD] = Type::DOUBLE; 568 mreg2type[Op_RegL] = TypeLong::LONG; 569 mreg2type[Op_RegFlags] = TypeInt::CC; 570 571 GrowableArray<ciInstanceKlass*> array_interfaces; 572 array_interfaces.push(current->env()->Cloneable_klass()); 573 array_interfaces.push(current->env()->Serializable_klass()); 574 TypeAryPtr::_array_interfaces = new TypePtr::InterfaceSet(&array_interfaces); 575 TypeAryKlassPtr::_array_interfaces = TypeAryPtr::_array_interfaces; 576 577 TypeAryPtr::RANGE = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes()); 578 579 TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot); 580 581 #ifdef _LP64 582 if (UseCompressedOops) { 583 assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop"); 584 TypeAryPtr::OOPS = TypeAryPtr::NARROWOOPS; 585 } else 586 #endif 587 { 588 // There is no shared klass for Object[]. See note in TypeAryPtr::klass(). 589 TypeAryPtr::OOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/, false, Type::OffsetBot); 590 } 591 TypeAryPtr::BYTES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE), true, Type::OffsetBot); 592 TypeAryPtr::SHORTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT), true, Type::OffsetBot); 593 TypeAryPtr::CHARS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR), true, Type::OffsetBot); 594 TypeAryPtr::INTS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT ,TypeInt::POS), ciTypeArrayKlass::make(T_INT), true, Type::OffsetBot); 595 TypeAryPtr::LONGS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG), true, Type::OffsetBot); 596 TypeAryPtr::FLOATS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT), true, Type::OffsetBot); 597 TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true, Type::OffsetBot); 598 599 // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert. 600 TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL; 601 TypeAryPtr::_array_body_type[T_OBJECT] = TypeAryPtr::OOPS; 602 TypeAryPtr::_array_body_type[T_ARRAY] = TypeAryPtr::OOPS; // arrays are stored in oop arrays 603 TypeAryPtr::_array_body_type[T_BYTE] = TypeAryPtr::BYTES; 604 TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES; // boolean[] is a byte array 605 TypeAryPtr::_array_body_type[T_SHORT] = TypeAryPtr::SHORTS; 606 TypeAryPtr::_array_body_type[T_CHAR] = TypeAryPtr::CHARS; 607 TypeAryPtr::_array_body_type[T_INT] = TypeAryPtr::INTS; 608 TypeAryPtr::_array_body_type[T_LONG] = TypeAryPtr::LONGS; 609 TypeAryPtr::_array_body_type[T_FLOAT] = TypeAryPtr::FLOATS; 610 TypeAryPtr::_array_body_type[T_DOUBLE] = TypeAryPtr::DOUBLES; 611 612 TypeInstKlassPtr::OBJECT = TypeInstKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), 0); 613 TypeInstKlassPtr::OBJECT_OR_NULL = TypeInstKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), 0); 614 615 const Type **fi2c = TypeTuple::fields(2); 616 fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method* 617 fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer 618 TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c); 619 620 const Type **intpair = TypeTuple::fields(2); 621 intpair[0] = TypeInt::INT; 622 intpair[1] = TypeInt::INT; 623 TypeTuple::INT_PAIR = TypeTuple::make(2, intpair); 624 625 const Type **longpair = TypeTuple::fields(2); 626 longpair[0] = TypeLong::LONG; 627 longpair[1] = TypeLong::LONG; 628 TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair); 629 630 const Type **intccpair = TypeTuple::fields(2); 631 intccpair[0] = TypeInt::INT; 632 intccpair[1] = TypeInt::CC; 633 TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair); 634 635 const Type **longccpair = TypeTuple::fields(2); 636 longccpair[0] = TypeLong::LONG; 637 longccpair[1] = TypeInt::CC; 638 TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair); 639 640 _const_basic_type[T_NARROWOOP] = TypeNarrowOop::BOTTOM; 641 _const_basic_type[T_NARROWKLASS] = Type::BOTTOM; 642 _const_basic_type[T_BOOLEAN] = TypeInt::BOOL; 643 _const_basic_type[T_CHAR] = TypeInt::CHAR; 644 _const_basic_type[T_BYTE] = TypeInt::BYTE; 645 _const_basic_type[T_SHORT] = TypeInt::SHORT; 646 _const_basic_type[T_INT] = TypeInt::INT; 647 _const_basic_type[T_LONG] = TypeLong::LONG; 648 _const_basic_type[T_FLOAT] = Type::FLOAT; 649 _const_basic_type[T_DOUBLE] = Type::DOUBLE; 650 _const_basic_type[T_OBJECT] = TypeInstPtr::BOTTOM; 651 _const_basic_type[T_ARRAY] = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays 652 _const_basic_type[T_VOID] = TypePtr::NULL_PTR; // reflection represents void this way 653 _const_basic_type[T_ADDRESS] = TypeRawPtr::BOTTOM; // both interpreter return addresses & random raw ptrs 654 _const_basic_type[T_CONFLICT] = Type::BOTTOM; // why not? 655 656 _zero_type[T_NARROWOOP] = TypeNarrowOop::NULL_PTR; 657 _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR; 658 _zero_type[T_BOOLEAN] = TypeInt::ZERO; // false == 0 659 _zero_type[T_CHAR] = TypeInt::ZERO; // '\0' == 0 660 _zero_type[T_BYTE] = TypeInt::ZERO; // 0x00 == 0 661 _zero_type[T_SHORT] = TypeInt::ZERO; // 0x0000 == 0 662 _zero_type[T_INT] = TypeInt::ZERO; 663 _zero_type[T_LONG] = TypeLong::ZERO; 664 _zero_type[T_FLOAT] = TypeF::ZERO; 665 _zero_type[T_DOUBLE] = TypeD::ZERO; 666 _zero_type[T_OBJECT] = TypePtr::NULL_PTR; 667 _zero_type[T_ARRAY] = TypePtr::NULL_PTR; // null array is null oop 668 _zero_type[T_ADDRESS] = TypePtr::NULL_PTR; // raw pointers use the same null 669 _zero_type[T_VOID] = Type::TOP; // the only void value is no value at all 670 671 // get_zero_type() should not happen for T_CONFLICT 672 _zero_type[T_CONFLICT]= NULL; 673 674 TypeVect::VECTMASK = (TypeVect*)(new TypeVectMask(TypeInt::BOOL, MaxVectorSize))->hashcons(); 675 mreg2type[Op_RegVectMask] = TypeVect::VECTMASK; 676 677 if (Matcher::supports_scalable_vector()) { 678 TypeVect::VECTA = TypeVect::make(T_BYTE, Matcher::scalable_vector_reg_size(T_BYTE)); 679 } 680 681 // Vector predefined types, it needs initialized _const_basic_type[]. 682 if (Matcher::vector_size_supported(T_BYTE,4)) { 683 TypeVect::VECTS = TypeVect::make(T_BYTE,4); 684 } 685 if (Matcher::vector_size_supported(T_FLOAT,2)) { 686 TypeVect::VECTD = TypeVect::make(T_FLOAT,2); 687 } 688 if (Matcher::vector_size_supported(T_FLOAT,4)) { 689 TypeVect::VECTX = TypeVect::make(T_FLOAT,4); 690 } 691 if (Matcher::vector_size_supported(T_FLOAT,8)) { 692 TypeVect::VECTY = TypeVect::make(T_FLOAT,8); 693 } 694 if (Matcher::vector_size_supported(T_FLOAT,16)) { 695 TypeVect::VECTZ = TypeVect::make(T_FLOAT,16); 696 } 697 698 mreg2type[Op_VecA] = TypeVect::VECTA; 699 mreg2type[Op_VecS] = TypeVect::VECTS; 700 mreg2type[Op_VecD] = TypeVect::VECTD; 701 mreg2type[Op_VecX] = TypeVect::VECTX; 702 mreg2type[Op_VecY] = TypeVect::VECTY; 703 mreg2type[Op_VecZ] = TypeVect::VECTZ; 704 705 // Restore working type arena. 706 current->set_type_arena(save); 707 current->set_type_dict(NULL); 708 } 709 710 //------------------------------Initialize------------------------------------- 711 void Type::Initialize(Compile* current) { 712 assert(current->type_arena() != NULL, "must have created type arena"); 713 714 if (_shared_type_dict == NULL) { 715 Initialize_shared(current); 716 } 717 718 Arena* type_arena = current->type_arena(); 719 720 // Create the hash-cons'ing dictionary with top-level storage allocation 721 Dict *tdic = new (type_arena) Dict(*_shared_type_dict, type_arena); 722 current->set_type_dict(tdic); 723 } 724 725 //------------------------------hashcons--------------------------------------- 726 // Do the hash-cons trick. If the Type already exists in the type table, 727 // delete the current Type and return the existing Type. Otherwise stick the 728 // current Type in the Type table. 729 const Type *Type::hashcons(void) { 730 debug_only(base()); // Check the assertion in Type::base(). 731 // Look up the Type in the Type dictionary 732 Dict *tdic = type_dict(); 733 Type* old = (Type*)(tdic->Insert(this, this, false)); 734 if( old ) { // Pre-existing Type? 735 if( old != this ) // Yes, this guy is not the pre-existing? 736 delete this; // Yes, Nuke this guy 737 assert( old->_dual, "" ); 738 return old; // Return pre-existing 739 } 740 741 // Every type has a dual (to make my lattice symmetric). 742 // Since we just discovered a new Type, compute its dual right now. 743 assert( !_dual, "" ); // No dual yet 744 _dual = xdual(); // Compute the dual 745 if (cmp(this, _dual) == 0) { // Handle self-symmetric 746 if (_dual != this) { 747 delete _dual; 748 _dual = this; 749 } 750 return this; 751 } 752 assert( !_dual->_dual, "" ); // No reverse dual yet 753 assert( !(*tdic)[_dual], "" ); // Dual not in type system either 754 // New Type, insert into Type table 755 tdic->Insert((void*)_dual,(void*)_dual); 756 ((Type*)_dual)->_dual = this; // Finish up being symmetric 757 #ifdef ASSERT 758 Type *dual_dual = (Type*)_dual->xdual(); 759 assert( eq(dual_dual), "xdual(xdual()) should be identity" ); 760 delete dual_dual; 761 #endif 762 return this; // Return new Type 763 } 764 765 //------------------------------eq--------------------------------------------- 766 // Structural equality check for Type representations 767 bool Type::eq( const Type * ) const { 768 return true; // Nothing else can go wrong 769 } 770 771 //------------------------------hash------------------------------------------- 772 // Type-specific hashing function. 773 int Type::hash(void) const { 774 return _base; 775 } 776 777 //------------------------------is_finite-------------------------------------- 778 // Has a finite value 779 bool Type::is_finite() const { 780 return false; 781 } 782 783 //------------------------------is_nan----------------------------------------- 784 // Is not a number (NaN) 785 bool Type::is_nan() const { 786 return false; 787 } 788 789 void Type::check_symmetrical(const Type* t, const Type* mt) const { 790 #ifdef ASSERT 791 const Type* mt2 = t->xmeet(this); 792 if (mt != mt2) { 793 tty->print_cr("=== Meet Not Commutative ==="); 794 tty->print("t = "); t->dump(); tty->cr(); 795 tty->print("this = "); dump(); tty->cr(); 796 tty->print("t meet this = "); mt2->dump(); tty->cr(); 797 tty->print("this meet t = "); mt->dump(); tty->cr(); 798 fatal("meet not commutative"); 799 } 800 const Type* dual_join = mt->_dual; 801 const Type* t2t = dual_join->xmeet(t->_dual); 802 const Type* t2this = dual_join->xmeet(this->_dual); 803 804 // Interface meet Oop is Not Symmetric: 805 // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull 806 // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull 807 808 if (t2t != t->_dual || t2this != this->_dual) { 809 tty->print_cr("=== Meet Not Symmetric ==="); 810 tty->print("t = "); t->dump(); tty->cr(); 811 tty->print("this= "); dump(); tty->cr(); 812 tty->print("mt=(t meet this)= "); mt->dump(); tty->cr(); 813 814 tty->print("t_dual= "); t->_dual->dump(); tty->cr(); 815 tty->print("this_dual= "); _dual->dump(); tty->cr(); 816 tty->print("mt_dual= "); mt->_dual->dump(); tty->cr(); 817 818 tty->print("mt_dual meet t_dual= "); t2t ->dump(); tty->cr(); 819 tty->print("mt_dual meet this_dual= "); t2this ->dump(); tty->cr(); 820 821 fatal("meet not symmetric"); 822 } 823 #endif 824 } 825 826 //------------------------------meet------------------------------------------- 827 // Compute the MEET of two types. NOT virtual. It enforces that meet is 828 // commutative and the lattice is symmetric. 829 const Type *Type::meet_helper(const Type *t, bool include_speculative) const { 830 if (isa_narrowoop() && t->isa_narrowoop()) { 831 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); 832 return result->make_narrowoop(); 833 } 834 if (isa_narrowklass() && t->isa_narrowklass()) { 835 const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative); 836 return result->make_narrowklass(); 837 } 838 839 const Type *this_t = maybe_remove_speculative(include_speculative); 840 t = t->maybe_remove_speculative(include_speculative); 841 842 const Type *mt = this_t->xmeet(t); 843 #ifdef ASSERT 844 if (isa_narrowoop() || t->isa_narrowoop()) return mt; 845 if (isa_narrowklass() || t->isa_narrowklass()) return mt; 846 Compile* C = Compile::current(); 847 if (!C->_type_verify_symmetry) { 848 return mt; 849 } 850 this_t->check_symmetrical(t, mt); 851 // In the case of an array, computing the meet above, caused the 852 // computation of the meet of the elements which at verification 853 // time caused the computation of the meet of the dual of the 854 // elements. Computing the meet of the dual of the arrays here 855 // causes the meet of the dual of the elements to be computed which 856 // would cause the meet of the dual of the dual of the elements, 857 // that is the meet of the elements already computed above to be 858 // computed. Avoid redundant computations by requesting no 859 // verification. 860 C->_type_verify_symmetry = false; 861 const Type *mt_dual = this_t->_dual->xmeet(t->_dual); 862 this_t->_dual->check_symmetrical(t->_dual, mt_dual); 863 assert(!C->_type_verify_symmetry, "shouldn't have changed"); 864 C->_type_verify_symmetry = true; 865 #endif 866 return mt; 867 } 868 869 //------------------------------xmeet------------------------------------------ 870 // Compute the MEET of two types. It returns a new Type object. 871 const Type *Type::xmeet( const Type *t ) const { 872 // Perform a fast test for common case; meeting the same types together. 873 if( this == t ) return this; // Meeting same type-rep? 874 875 // Meeting TOP with anything? 876 if( _base == Top ) return t; 877 878 // Meeting BOTTOM with anything? 879 if( _base == Bottom ) return BOTTOM; 880 881 // Current "this->_base" is one of: Bad, Multi, Control, Top, 882 // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype. 883 switch (t->base()) { // Switch on original type 884 885 // Cut in half the number of cases I must handle. Only need cases for when 886 // the given enum "t->type" is less than or equal to the local enum "type". 887 case FloatCon: 888 case DoubleCon: 889 case Int: 890 case Long: 891 return t->xmeet(this); 892 893 case OopPtr: 894 return t->xmeet(this); 895 896 case InstPtr: 897 return t->xmeet(this); 898 899 case MetadataPtr: 900 case KlassPtr: 901 case InstKlassPtr: 902 case AryKlassPtr: 903 return t->xmeet(this); 904 905 case AryPtr: 906 return t->xmeet(this); 907 908 case NarrowOop: 909 return t->xmeet(this); 910 911 case NarrowKlass: 912 return t->xmeet(this); 913 914 case Bad: // Type check 915 default: // Bogus type not in lattice 916 typerr(t); 917 return Type::BOTTOM; 918 919 case Bottom: // Ye Olde Default 920 return t; 921 922 case FloatTop: 923 if( _base == FloatTop ) return this; 924 case FloatBot: // Float 925 if( _base == FloatBot || _base == FloatTop ) return FLOAT; 926 if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM; 927 typerr(t); 928 return Type::BOTTOM; 929 930 case DoubleTop: 931 if( _base == DoubleTop ) return this; 932 case DoubleBot: // Double 933 if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE; 934 if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM; 935 typerr(t); 936 return Type::BOTTOM; 937 938 // These next few cases must match exactly or it is a compile-time error. 939 case Control: // Control of code 940 case Abio: // State of world outside of program 941 case Memory: 942 if( _base == t->_base ) return this; 943 typerr(t); 944 return Type::BOTTOM; 945 946 case Top: // Top of the lattice 947 return this; 948 } 949 950 // The type is unchanged 951 return this; 952 } 953 954 //-----------------------------filter------------------------------------------ 955 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const { 956 const Type* ft = join_helper(kills, include_speculative); 957 if (ft->empty()) 958 return Type::TOP; // Canonical empty value 959 return ft; 960 } 961 962 //------------------------------xdual------------------------------------------ 963 const Type *Type::xdual() const { 964 // Note: the base() accessor asserts the sanity of _base. 965 assert(_type_info[base()].dual_type != Bad, "implement with v-call"); 966 return new Type(_type_info[_base].dual_type); 967 } 968 969 //------------------------------has_memory------------------------------------- 970 bool Type::has_memory() const { 971 Type::TYPES tx = base(); 972 if (tx == Memory) return true; 973 if (tx == Tuple) { 974 const TypeTuple *t = is_tuple(); 975 for (uint i=0; i < t->cnt(); i++) { 976 tx = t->field_at(i)->base(); 977 if (tx == Memory) return true; 978 } 979 } 980 return false; 981 } 982 983 #ifndef PRODUCT 984 //------------------------------dump2------------------------------------------ 985 void Type::dump2( Dict &d, uint depth, outputStream *st ) const { 986 st->print("%s", _type_info[_base].msg); 987 } 988 989 //------------------------------dump------------------------------------------- 990 void Type::dump_on(outputStream *st) const { 991 ResourceMark rm; 992 Dict d(cmpkey,hashkey); // Stop recursive type dumping 993 dump2(d,1, st); 994 if (is_ptr_to_narrowoop()) { 995 st->print(" [narrow]"); 996 } else if (is_ptr_to_narrowklass()) { 997 st->print(" [narrowklass]"); 998 } 999 } 1000 1001 //----------------------------------------------------------------------------- 1002 const char* Type::str(const Type* t) { 1003 stringStream ss; 1004 t->dump_on(&ss); 1005 return ss.as_string(); 1006 } 1007 #endif 1008 1009 //------------------------------singleton-------------------------------------- 1010 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1011 // constants (Ldi nodes). Singletons are integer, float or double constants. 1012 bool Type::singleton(void) const { 1013 return _base == Top || _base == Half; 1014 } 1015 1016 //------------------------------empty------------------------------------------ 1017 // TRUE if Type is a type with no values, FALSE otherwise. 1018 bool Type::empty(void) const { 1019 switch (_base) { 1020 case DoubleTop: 1021 case FloatTop: 1022 case Top: 1023 return true; 1024 1025 case Half: 1026 case Abio: 1027 case Return_Address: 1028 case Memory: 1029 case Bottom: 1030 case FloatBot: 1031 case DoubleBot: 1032 return false; // never a singleton, therefore never empty 1033 1034 default: 1035 ShouldNotReachHere(); 1036 return false; 1037 } 1038 } 1039 1040 //------------------------------dump_stats------------------------------------- 1041 // Dump collected statistics to stderr 1042 #ifndef PRODUCT 1043 void Type::dump_stats() { 1044 tty->print("Types made: %d\n", type_dict()->Size()); 1045 } 1046 #endif 1047 1048 //------------------------------category--------------------------------------- 1049 #ifndef PRODUCT 1050 Type::Category Type::category() const { 1051 const TypeTuple* tuple; 1052 switch (base()) { 1053 case Type::Int: 1054 case Type::Long: 1055 case Type::Half: 1056 case Type::NarrowOop: 1057 case Type::NarrowKlass: 1058 case Type::Array: 1059 case Type::VectorA: 1060 case Type::VectorS: 1061 case Type::VectorD: 1062 case Type::VectorX: 1063 case Type::VectorY: 1064 case Type::VectorZ: 1065 case Type::VectorMask: 1066 case Type::AnyPtr: 1067 case Type::RawPtr: 1068 case Type::OopPtr: 1069 case Type::InstPtr: 1070 case Type::AryPtr: 1071 case Type::MetadataPtr: 1072 case Type::KlassPtr: 1073 case Type::InstKlassPtr: 1074 case Type::AryKlassPtr: 1075 case Type::Function: 1076 case Type::Return_Address: 1077 case Type::FloatTop: 1078 case Type::FloatCon: 1079 case Type::FloatBot: 1080 case Type::DoubleTop: 1081 case Type::DoubleCon: 1082 case Type::DoubleBot: 1083 return Category::Data; 1084 case Type::Memory: 1085 return Category::Memory; 1086 case Type::Control: 1087 return Category::Control; 1088 case Type::Top: 1089 case Type::Abio: 1090 case Type::Bottom: 1091 return Category::Other; 1092 case Type::Bad: 1093 case Type::lastype: 1094 return Category::Undef; 1095 case Type::Tuple: 1096 // Recursive case. Return CatMixed if the tuple contains types of 1097 // different categories (e.g. CallStaticJavaNode's type), or the specific 1098 // category if all types are of the same category (e.g. IfNode's type). 1099 tuple = is_tuple(); 1100 if (tuple->cnt() == 0) { 1101 return Category::Undef; 1102 } else { 1103 Category first = tuple->field_at(0)->category(); 1104 for (uint i = 1; i < tuple->cnt(); i++) { 1105 if (tuple->field_at(i)->category() != first) { 1106 return Category::Mixed; 1107 } 1108 } 1109 return first; 1110 } 1111 default: 1112 assert(false, "unmatched base type: all base types must be categorized"); 1113 } 1114 return Category::Undef; 1115 } 1116 1117 bool Type::has_category(Type::Category cat) const { 1118 if (category() == cat) { 1119 return true; 1120 } 1121 if (category() == Category::Mixed) { 1122 const TypeTuple* tuple = is_tuple(); 1123 for (uint i = 0; i < tuple->cnt(); i++) { 1124 if (tuple->field_at(i)->has_category(cat)) { 1125 return true; 1126 } 1127 } 1128 } 1129 return false; 1130 } 1131 #endif 1132 1133 //------------------------------typerr----------------------------------------- 1134 void Type::typerr( const Type *t ) const { 1135 #ifndef PRODUCT 1136 tty->print("\nError mixing types: "); 1137 dump(); 1138 tty->print(" and "); 1139 t->dump(); 1140 tty->print("\n"); 1141 #endif 1142 ShouldNotReachHere(); 1143 } 1144 1145 1146 //============================================================================= 1147 // Convenience common pre-built types. 1148 const TypeF *TypeF::MAX; // Floating point max 1149 const TypeF *TypeF::MIN; // Floating point min 1150 const TypeF *TypeF::ZERO; // Floating point zero 1151 const TypeF *TypeF::ONE; // Floating point one 1152 const TypeF *TypeF::POS_INF; // Floating point positive infinity 1153 const TypeF *TypeF::NEG_INF; // Floating point negative infinity 1154 1155 //------------------------------make------------------------------------------- 1156 // Create a float constant 1157 const TypeF *TypeF::make(float f) { 1158 return (TypeF*)(new TypeF(f))->hashcons(); 1159 } 1160 1161 //------------------------------meet------------------------------------------- 1162 // Compute the MEET of two types. It returns a new Type object. 1163 const Type *TypeF::xmeet( const Type *t ) const { 1164 // Perform a fast test for common case; meeting the same types together. 1165 if( this == t ) return this; // Meeting same type-rep? 1166 1167 // Current "this->_base" is FloatCon 1168 switch (t->base()) { // Switch on original type 1169 case AnyPtr: // Mixing with oops happens when javac 1170 case RawPtr: // reuses local variables 1171 case OopPtr: 1172 case InstPtr: 1173 case AryPtr: 1174 case MetadataPtr: 1175 case KlassPtr: 1176 case InstKlassPtr: 1177 case AryKlassPtr: 1178 case NarrowOop: 1179 case NarrowKlass: 1180 case Int: 1181 case Long: 1182 case DoubleTop: 1183 case DoubleCon: 1184 case DoubleBot: 1185 case Bottom: // Ye Olde Default 1186 return Type::BOTTOM; 1187 1188 case FloatBot: 1189 return t; 1190 1191 default: // All else is a mistake 1192 typerr(t); 1193 1194 case FloatCon: // Float-constant vs Float-constant? 1195 if( jint_cast(_f) != jint_cast(t->getf()) ) // unequal constants? 1196 // must compare bitwise as positive zero, negative zero and NaN have 1197 // all the same representation in C++ 1198 return FLOAT; // Return generic float 1199 // Equal constants 1200 case Top: 1201 case FloatTop: 1202 break; // Return the float constant 1203 } 1204 return this; // Return the float constant 1205 } 1206 1207 //------------------------------xdual------------------------------------------ 1208 // Dual: symmetric 1209 const Type *TypeF::xdual() const { 1210 return this; 1211 } 1212 1213 //------------------------------eq--------------------------------------------- 1214 // Structural equality check for Type representations 1215 bool TypeF::eq(const Type *t) const { 1216 // Bitwise comparison to distinguish between +/-0. These values must be treated 1217 // as different to be consistent with C1 and the interpreter. 1218 return (jint_cast(_f) == jint_cast(t->getf())); 1219 } 1220 1221 //------------------------------hash------------------------------------------- 1222 // Type-specific hashing function. 1223 int TypeF::hash(void) const { 1224 return *(int*)(&_f); 1225 } 1226 1227 //------------------------------is_finite-------------------------------------- 1228 // Has a finite value 1229 bool TypeF::is_finite() const { 1230 return g_isfinite(getf()) != 0; 1231 } 1232 1233 //------------------------------is_nan----------------------------------------- 1234 // Is not a number (NaN) 1235 bool TypeF::is_nan() const { 1236 return g_isnan(getf()) != 0; 1237 } 1238 1239 //------------------------------dump2------------------------------------------ 1240 // Dump float constant Type 1241 #ifndef PRODUCT 1242 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const { 1243 Type::dump2(d,depth, st); 1244 st->print("%f", _f); 1245 } 1246 #endif 1247 1248 //------------------------------singleton-------------------------------------- 1249 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1250 // constants (Ldi nodes). Singletons are integer, float or double constants 1251 // or a single symbol. 1252 bool TypeF::singleton(void) const { 1253 return true; // Always a singleton 1254 } 1255 1256 bool TypeF::empty(void) const { 1257 return false; // always exactly a singleton 1258 } 1259 1260 //============================================================================= 1261 // Convenience common pre-built types. 1262 const TypeD *TypeD::MAX; // Floating point max 1263 const TypeD *TypeD::MIN; // Floating point min 1264 const TypeD *TypeD::ZERO; // Floating point zero 1265 const TypeD *TypeD::ONE; // Floating point one 1266 const TypeD *TypeD::POS_INF; // Floating point positive infinity 1267 const TypeD *TypeD::NEG_INF; // Floating point negative infinity 1268 1269 //------------------------------make------------------------------------------- 1270 const TypeD *TypeD::make(double d) { 1271 return (TypeD*)(new TypeD(d))->hashcons(); 1272 } 1273 1274 //------------------------------meet------------------------------------------- 1275 // Compute the MEET of two types. It returns a new Type object. 1276 const Type *TypeD::xmeet( const Type *t ) const { 1277 // Perform a fast test for common case; meeting the same types together. 1278 if( this == t ) return this; // Meeting same type-rep? 1279 1280 // Current "this->_base" is DoubleCon 1281 switch (t->base()) { // Switch on original type 1282 case AnyPtr: // Mixing with oops happens when javac 1283 case RawPtr: // reuses local variables 1284 case OopPtr: 1285 case InstPtr: 1286 case AryPtr: 1287 case MetadataPtr: 1288 case KlassPtr: 1289 case InstKlassPtr: 1290 case AryKlassPtr: 1291 case NarrowOop: 1292 case NarrowKlass: 1293 case Int: 1294 case Long: 1295 case FloatTop: 1296 case FloatCon: 1297 case FloatBot: 1298 case Bottom: // Ye Olde Default 1299 return Type::BOTTOM; 1300 1301 case DoubleBot: 1302 return t; 1303 1304 default: // All else is a mistake 1305 typerr(t); 1306 1307 case DoubleCon: // Double-constant vs Double-constant? 1308 if( jlong_cast(_d) != jlong_cast(t->getd()) ) // unequal constants? (see comment in TypeF::xmeet) 1309 return DOUBLE; // Return generic double 1310 case Top: 1311 case DoubleTop: 1312 break; 1313 } 1314 return this; // Return the double constant 1315 } 1316 1317 //------------------------------xdual------------------------------------------ 1318 // Dual: symmetric 1319 const Type *TypeD::xdual() const { 1320 return this; 1321 } 1322 1323 //------------------------------eq--------------------------------------------- 1324 // Structural equality check for Type representations 1325 bool TypeD::eq(const Type *t) const { 1326 // Bitwise comparison to distinguish between +/-0. These values must be treated 1327 // as different to be consistent with C1 and the interpreter. 1328 return (jlong_cast(_d) == jlong_cast(t->getd())); 1329 } 1330 1331 //------------------------------hash------------------------------------------- 1332 // Type-specific hashing function. 1333 int TypeD::hash(void) const { 1334 return *(int*)(&_d); 1335 } 1336 1337 //------------------------------is_finite-------------------------------------- 1338 // Has a finite value 1339 bool TypeD::is_finite() const { 1340 return g_isfinite(getd()) != 0; 1341 } 1342 1343 //------------------------------is_nan----------------------------------------- 1344 // Is not a number (NaN) 1345 bool TypeD::is_nan() const { 1346 return g_isnan(getd()) != 0; 1347 } 1348 1349 //------------------------------dump2------------------------------------------ 1350 // Dump double constant Type 1351 #ifndef PRODUCT 1352 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const { 1353 Type::dump2(d,depth,st); 1354 st->print("%f", _d); 1355 } 1356 #endif 1357 1358 //------------------------------singleton-------------------------------------- 1359 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1360 // constants (Ldi nodes). Singletons are integer, float or double constants 1361 // or a single symbol. 1362 bool TypeD::singleton(void) const { 1363 return true; // Always a singleton 1364 } 1365 1366 bool TypeD::empty(void) const { 1367 return false; // always exactly a singleton 1368 } 1369 1370 const TypeInteger* TypeInteger::make(jlong lo, jlong hi, int w, BasicType bt) { 1371 if (bt == T_INT) { 1372 return TypeInt::make(checked_cast<jint>(lo), checked_cast<jint>(hi), w); 1373 } 1374 assert(bt == T_LONG, "basic type not an int or long"); 1375 return TypeLong::make(lo, hi, w); 1376 } 1377 1378 jlong TypeInteger::get_con_as_long(BasicType bt) const { 1379 if (bt == T_INT) { 1380 return is_int()->get_con(); 1381 } 1382 assert(bt == T_LONG, "basic type not an int or long"); 1383 return is_long()->get_con(); 1384 } 1385 1386 const TypeInteger* TypeInteger::bottom(BasicType bt) { 1387 if (bt == T_INT) { 1388 return TypeInt::INT; 1389 } 1390 assert(bt == T_LONG, "basic type not an int or long"); 1391 return TypeLong::LONG; 1392 } 1393 1394 const TypeInteger* TypeInteger::zero(BasicType bt) { 1395 if (bt == T_INT) { 1396 return TypeInt::ZERO; 1397 } 1398 assert(bt == T_LONG, "basic type not an int or long"); 1399 return TypeLong::ZERO; 1400 } 1401 1402 const TypeInteger* TypeInteger::one(BasicType bt) { 1403 if (bt == T_INT) { 1404 return TypeInt::ONE; 1405 } 1406 assert(bt == T_LONG, "basic type not an int or long"); 1407 return TypeLong::ONE; 1408 } 1409 1410 const TypeInteger* TypeInteger::minus_1(BasicType bt) { 1411 if (bt == T_INT) { 1412 return TypeInt::MINUS_1; 1413 } 1414 assert(bt == T_LONG, "basic type not an int or long"); 1415 return TypeLong::MINUS_1; 1416 } 1417 1418 //============================================================================= 1419 // Convenience common pre-built types. 1420 const TypeInt *TypeInt::MAX; // INT_MAX 1421 const TypeInt *TypeInt::MIN; // INT_MIN 1422 const TypeInt *TypeInt::MINUS_1;// -1 1423 const TypeInt *TypeInt::ZERO; // 0 1424 const TypeInt *TypeInt::ONE; // 1 1425 const TypeInt *TypeInt::BOOL; // 0 or 1, FALSE or TRUE. 1426 const TypeInt *TypeInt::CC; // -1,0 or 1, condition codes 1427 const TypeInt *TypeInt::CC_LT; // [-1] == MINUS_1 1428 const TypeInt *TypeInt::CC_GT; // [1] == ONE 1429 const TypeInt *TypeInt::CC_EQ; // [0] == ZERO 1430 const TypeInt *TypeInt::CC_LE; // [-1,0] 1431 const TypeInt *TypeInt::CC_GE; // [0,1] == BOOL (!) 1432 const TypeInt *TypeInt::BYTE; // Bytes, -128 to 127 1433 const TypeInt *TypeInt::UBYTE; // Unsigned Bytes, 0 to 255 1434 const TypeInt *TypeInt::CHAR; // Java chars, 0-65535 1435 const TypeInt *TypeInt::SHORT; // Java shorts, -32768-32767 1436 const TypeInt *TypeInt::POS; // Positive 32-bit integers or zero 1437 const TypeInt *TypeInt::POS1; // Positive 32-bit integers 1438 const TypeInt *TypeInt::INT; // 32-bit integers 1439 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint] 1440 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT 1441 1442 //------------------------------TypeInt---------------------------------------- 1443 TypeInt::TypeInt( jint lo, jint hi, int w ) : TypeInteger(Int, w), _lo(lo), _hi(hi) { 1444 } 1445 1446 //------------------------------make------------------------------------------- 1447 const TypeInt *TypeInt::make( jint lo ) { 1448 return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons(); 1449 } 1450 1451 static int normalize_int_widen( jint lo, jint hi, int w ) { 1452 // Certain normalizations keep us sane when comparing types. 1453 // The 'SMALLINT' covers constants and also CC and its relatives. 1454 if (lo <= hi) { 1455 if (((juint)hi - lo) <= SMALLINT) w = Type::WidenMin; 1456 if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT 1457 } else { 1458 if (((juint)lo - hi) <= SMALLINT) w = Type::WidenMin; 1459 if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT 1460 } 1461 return w; 1462 } 1463 1464 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) { 1465 w = normalize_int_widen(lo, hi, w); 1466 return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons(); 1467 } 1468 1469 //------------------------------meet------------------------------------------- 1470 // Compute the MEET of two types. It returns a new Type representation object 1471 // with reference count equal to the number of Types pointing at it. 1472 // Caller should wrap a Types around it. 1473 const Type *TypeInt::xmeet( const Type *t ) const { 1474 // Perform a fast test for common case; meeting the same types together. 1475 if( this == t ) return this; // Meeting same type? 1476 1477 // Currently "this->_base" is a TypeInt 1478 switch (t->base()) { // Switch on original type 1479 case AnyPtr: // Mixing with oops happens when javac 1480 case RawPtr: // reuses local variables 1481 case OopPtr: 1482 case InstPtr: 1483 case AryPtr: 1484 case MetadataPtr: 1485 case KlassPtr: 1486 case InstKlassPtr: 1487 case AryKlassPtr: 1488 case NarrowOop: 1489 case NarrowKlass: 1490 case Long: 1491 case FloatTop: 1492 case FloatCon: 1493 case FloatBot: 1494 case DoubleTop: 1495 case DoubleCon: 1496 case DoubleBot: 1497 case Bottom: // Ye Olde Default 1498 return Type::BOTTOM; 1499 default: // All else is a mistake 1500 typerr(t); 1501 case Top: // No change 1502 return this; 1503 case Int: // Int vs Int? 1504 break; 1505 } 1506 1507 // Expand covered set 1508 const TypeInt *r = t->is_int(); 1509 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); 1510 } 1511 1512 //------------------------------xdual------------------------------------------ 1513 // Dual: reverse hi & lo; flip widen 1514 const Type *TypeInt::xdual() const { 1515 int w = normalize_int_widen(_hi,_lo, WidenMax-_widen); 1516 return new TypeInt(_hi,_lo,w); 1517 } 1518 1519 //------------------------------widen------------------------------------------ 1520 // Only happens for optimistic top-down optimizations. 1521 const Type *TypeInt::widen( const Type *old, const Type* limit ) const { 1522 // Coming from TOP or such; no widening 1523 if( old->base() != Int ) return this; 1524 const TypeInt *ot = old->is_int(); 1525 1526 // If new guy is equal to old guy, no widening 1527 if( _lo == ot->_lo && _hi == ot->_hi ) 1528 return old; 1529 1530 // If new guy contains old, then we widened 1531 if( _lo <= ot->_lo && _hi >= ot->_hi ) { 1532 // New contains old 1533 // If new guy is already wider than old, no widening 1534 if( _widen > ot->_widen ) return this; 1535 // If old guy was a constant, do not bother 1536 if (ot->_lo == ot->_hi) return this; 1537 // Now widen new guy. 1538 // Check for widening too far 1539 if (_widen == WidenMax) { 1540 int max = max_jint; 1541 int min = min_jint; 1542 if (limit->isa_int()) { 1543 max = limit->is_int()->_hi; 1544 min = limit->is_int()->_lo; 1545 } 1546 if (min < _lo && _hi < max) { 1547 // If neither endpoint is extremal yet, push out the endpoint 1548 // which is closer to its respective limit. 1549 if (_lo >= 0 || // easy common case 1550 (juint)(_lo - min) >= (juint)(max - _hi)) { 1551 // Try to widen to an unsigned range type of 31 bits: 1552 return make(_lo, max, WidenMax); 1553 } else { 1554 return make(min, _hi, WidenMax); 1555 } 1556 } 1557 return TypeInt::INT; 1558 } 1559 // Returned widened new guy 1560 return make(_lo,_hi,_widen+1); 1561 } 1562 1563 // If old guy contains new, then we probably widened too far & dropped to 1564 // bottom. Return the wider fellow. 1565 if ( ot->_lo <= _lo && ot->_hi >= _hi ) 1566 return old; 1567 1568 //fatal("Integer value range is not subset"); 1569 //return this; 1570 return TypeInt::INT; 1571 } 1572 1573 //------------------------------narrow--------------------------------------- 1574 // Only happens for pessimistic optimizations. 1575 const Type *TypeInt::narrow( const Type *old ) const { 1576 if (_lo >= _hi) return this; // already narrow enough 1577 if (old == NULL) return this; 1578 const TypeInt* ot = old->isa_int(); 1579 if (ot == NULL) return this; 1580 jint olo = ot->_lo; 1581 jint ohi = ot->_hi; 1582 1583 // If new guy is equal to old guy, no narrowing 1584 if (_lo == olo && _hi == ohi) return old; 1585 1586 // If old guy was maximum range, allow the narrowing 1587 if (olo == min_jint && ohi == max_jint) return this; 1588 1589 if (_lo < olo || _hi > ohi) 1590 return this; // doesn't narrow; pretty weird 1591 1592 // The new type narrows the old type, so look for a "death march". 1593 // See comments on PhaseTransform::saturate. 1594 juint nrange = (juint)_hi - _lo; 1595 juint orange = (juint)ohi - olo; 1596 if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) { 1597 // Use the new type only if the range shrinks a lot. 1598 // We do not want the optimizer computing 2^31 point by point. 1599 return old; 1600 } 1601 1602 return this; 1603 } 1604 1605 //-----------------------------filter------------------------------------------ 1606 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const { 1607 const TypeInt* ft = join_helper(kills, include_speculative)->isa_int(); 1608 if (ft == NULL || ft->empty()) 1609 return Type::TOP; // Canonical empty value 1610 if (ft->_widen < this->_widen) { 1611 // Do not allow the value of kill->_widen to affect the outcome. 1612 // The widen bits must be allowed to run freely through the graph. 1613 ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen); 1614 } 1615 return ft; 1616 } 1617 1618 //------------------------------eq--------------------------------------------- 1619 // Structural equality check for Type representations 1620 bool TypeInt::eq( const Type *t ) const { 1621 const TypeInt *r = t->is_int(); // Handy access 1622 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; 1623 } 1624 1625 //------------------------------hash------------------------------------------- 1626 // Type-specific hashing function. 1627 int TypeInt::hash(void) const { 1628 return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int)); 1629 } 1630 1631 //------------------------------is_finite-------------------------------------- 1632 // Has a finite value 1633 bool TypeInt::is_finite() const { 1634 return true; 1635 } 1636 1637 //------------------------------dump2------------------------------------------ 1638 // Dump TypeInt 1639 #ifndef PRODUCT 1640 static const char* intname(char* buf, size_t buf_size, jint n) { 1641 if (n == min_jint) 1642 return "min"; 1643 else if (n < min_jint + 10000) 1644 os::snprintf_checked(buf, buf_size, "min+" INT32_FORMAT, n - min_jint); 1645 else if (n == max_jint) 1646 return "max"; 1647 else if (n > max_jint - 10000) 1648 os::snprintf_checked(buf, buf_size, "max-" INT32_FORMAT, max_jint - n); 1649 else 1650 os::snprintf_checked(buf, buf_size, INT32_FORMAT, n); 1651 return buf; 1652 } 1653 1654 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const { 1655 char buf[40], buf2[40]; 1656 if (_lo == min_jint && _hi == max_jint) 1657 st->print("int"); 1658 else if (is_con()) 1659 st->print("int:%s", intname(buf, sizeof(buf), get_con())); 1660 else if (_lo == BOOL->_lo && _hi == BOOL->_hi) 1661 st->print("bool"); 1662 else if (_lo == BYTE->_lo && _hi == BYTE->_hi) 1663 st->print("byte"); 1664 else if (_lo == CHAR->_lo && _hi == CHAR->_hi) 1665 st->print("char"); 1666 else if (_lo == SHORT->_lo && _hi == SHORT->_hi) 1667 st->print("short"); 1668 else if (_hi == max_jint) 1669 st->print("int:>=%s", intname(buf, sizeof(buf), _lo)); 1670 else if (_lo == min_jint) 1671 st->print("int:<=%s", intname(buf, sizeof(buf), _hi)); 1672 else 1673 st->print("int:%s..%s", intname(buf, sizeof(buf), _lo), intname(buf2, sizeof(buf2), _hi)); 1674 1675 if (_widen != 0 && this != TypeInt::INT) 1676 st->print(":%.*s", _widen, "wwww"); 1677 } 1678 #endif 1679 1680 //------------------------------singleton-------------------------------------- 1681 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1682 // constants. 1683 bool TypeInt::singleton(void) const { 1684 return _lo >= _hi; 1685 } 1686 1687 bool TypeInt::empty(void) const { 1688 return _lo > _hi; 1689 } 1690 1691 //============================================================================= 1692 // Convenience common pre-built types. 1693 const TypeLong *TypeLong::MAX; 1694 const TypeLong *TypeLong::MIN; 1695 const TypeLong *TypeLong::MINUS_1;// -1 1696 const TypeLong *TypeLong::ZERO; // 0 1697 const TypeLong *TypeLong::ONE; // 1 1698 const TypeLong *TypeLong::POS; // >=0 1699 const TypeLong *TypeLong::LONG; // 64-bit integers 1700 const TypeLong *TypeLong::INT; // 32-bit subrange 1701 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange 1702 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG 1703 1704 //------------------------------TypeLong--------------------------------------- 1705 TypeLong::TypeLong(jlong lo, jlong hi, int w) : TypeInteger(Long, w), _lo(lo), _hi(hi) { 1706 } 1707 1708 //------------------------------make------------------------------------------- 1709 const TypeLong *TypeLong::make( jlong lo ) { 1710 return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons(); 1711 } 1712 1713 static int normalize_long_widen( jlong lo, jlong hi, int w ) { 1714 // Certain normalizations keep us sane when comparing types. 1715 // The 'SMALLINT' covers constants. 1716 if (lo <= hi) { 1717 if (((julong)hi - lo) <= SMALLINT) w = Type::WidenMin; 1718 if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG 1719 } else { 1720 if (((julong)lo - hi) <= SMALLINT) w = Type::WidenMin; 1721 if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG 1722 } 1723 return w; 1724 } 1725 1726 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) { 1727 w = normalize_long_widen(lo, hi, w); 1728 return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons(); 1729 } 1730 1731 1732 //------------------------------meet------------------------------------------- 1733 // Compute the MEET of two types. It returns a new Type representation object 1734 // with reference count equal to the number of Types pointing at it. 1735 // Caller should wrap a Types around it. 1736 const Type *TypeLong::xmeet( const Type *t ) const { 1737 // Perform a fast test for common case; meeting the same types together. 1738 if( this == t ) return this; // Meeting same type? 1739 1740 // Currently "this->_base" is a TypeLong 1741 switch (t->base()) { // Switch on original type 1742 case AnyPtr: // Mixing with oops happens when javac 1743 case RawPtr: // reuses local variables 1744 case OopPtr: 1745 case InstPtr: 1746 case AryPtr: 1747 case MetadataPtr: 1748 case KlassPtr: 1749 case InstKlassPtr: 1750 case AryKlassPtr: 1751 case NarrowOop: 1752 case NarrowKlass: 1753 case Int: 1754 case FloatTop: 1755 case FloatCon: 1756 case FloatBot: 1757 case DoubleTop: 1758 case DoubleCon: 1759 case DoubleBot: 1760 case Bottom: // Ye Olde Default 1761 return Type::BOTTOM; 1762 default: // All else is a mistake 1763 typerr(t); 1764 case Top: // No change 1765 return this; 1766 case Long: // Long vs Long? 1767 break; 1768 } 1769 1770 // Expand covered set 1771 const TypeLong *r = t->is_long(); // Turn into a TypeLong 1772 return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) ); 1773 } 1774 1775 //------------------------------xdual------------------------------------------ 1776 // Dual: reverse hi & lo; flip widen 1777 const Type *TypeLong::xdual() const { 1778 int w = normalize_long_widen(_hi,_lo, WidenMax-_widen); 1779 return new TypeLong(_hi,_lo,w); 1780 } 1781 1782 //------------------------------widen------------------------------------------ 1783 // Only happens for optimistic top-down optimizations. 1784 const Type *TypeLong::widen( const Type *old, const Type* limit ) const { 1785 // Coming from TOP or such; no widening 1786 if( old->base() != Long ) return this; 1787 const TypeLong *ot = old->is_long(); 1788 1789 // If new guy is equal to old guy, no widening 1790 if( _lo == ot->_lo && _hi == ot->_hi ) 1791 return old; 1792 1793 // If new guy contains old, then we widened 1794 if( _lo <= ot->_lo && _hi >= ot->_hi ) { 1795 // New contains old 1796 // If new guy is already wider than old, no widening 1797 if( _widen > ot->_widen ) return this; 1798 // If old guy was a constant, do not bother 1799 if (ot->_lo == ot->_hi) return this; 1800 // Now widen new guy. 1801 // Check for widening too far 1802 if (_widen == WidenMax) { 1803 jlong max = max_jlong; 1804 jlong min = min_jlong; 1805 if (limit->isa_long()) { 1806 max = limit->is_long()->_hi; 1807 min = limit->is_long()->_lo; 1808 } 1809 if (min < _lo && _hi < max) { 1810 // If neither endpoint is extremal yet, push out the endpoint 1811 // which is closer to its respective limit. 1812 if (_lo >= 0 || // easy common case 1813 ((julong)_lo - min) >= ((julong)max - _hi)) { 1814 // Try to widen to an unsigned range type of 32/63 bits: 1815 if (max >= max_juint && _hi < max_juint) 1816 return make(_lo, max_juint, WidenMax); 1817 else 1818 return make(_lo, max, WidenMax); 1819 } else { 1820 return make(min, _hi, WidenMax); 1821 } 1822 } 1823 return TypeLong::LONG; 1824 } 1825 // Returned widened new guy 1826 return make(_lo,_hi,_widen+1); 1827 } 1828 1829 // If old guy contains new, then we probably widened too far & dropped to 1830 // bottom. Return the wider fellow. 1831 if ( ot->_lo <= _lo && ot->_hi >= _hi ) 1832 return old; 1833 1834 // fatal("Long value range is not subset"); 1835 // return this; 1836 return TypeLong::LONG; 1837 } 1838 1839 //------------------------------narrow---------------------------------------- 1840 // Only happens for pessimistic optimizations. 1841 const Type *TypeLong::narrow( const Type *old ) const { 1842 if (_lo >= _hi) return this; // already narrow enough 1843 if (old == NULL) return this; 1844 const TypeLong* ot = old->isa_long(); 1845 if (ot == NULL) return this; 1846 jlong olo = ot->_lo; 1847 jlong ohi = ot->_hi; 1848 1849 // If new guy is equal to old guy, no narrowing 1850 if (_lo == olo && _hi == ohi) return old; 1851 1852 // If old guy was maximum range, allow the narrowing 1853 if (olo == min_jlong && ohi == max_jlong) return this; 1854 1855 if (_lo < olo || _hi > ohi) 1856 return this; // doesn't narrow; pretty weird 1857 1858 // The new type narrows the old type, so look for a "death march". 1859 // See comments on PhaseTransform::saturate. 1860 julong nrange = _hi - _lo; 1861 julong orange = ohi - olo; 1862 if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) { 1863 // Use the new type only if the range shrinks a lot. 1864 // We do not want the optimizer computing 2^31 point by point. 1865 return old; 1866 } 1867 1868 return this; 1869 } 1870 1871 //-----------------------------filter------------------------------------------ 1872 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const { 1873 const TypeLong* ft = join_helper(kills, include_speculative)->isa_long(); 1874 if (ft == NULL || ft->empty()) 1875 return Type::TOP; // Canonical empty value 1876 if (ft->_widen < this->_widen) { 1877 // Do not allow the value of kill->_widen to affect the outcome. 1878 // The widen bits must be allowed to run freely through the graph. 1879 ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen); 1880 } 1881 return ft; 1882 } 1883 1884 //------------------------------eq--------------------------------------------- 1885 // Structural equality check for Type representations 1886 bool TypeLong::eq( const Type *t ) const { 1887 const TypeLong *r = t->is_long(); // Handy access 1888 return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen; 1889 } 1890 1891 //------------------------------hash------------------------------------------- 1892 // Type-specific hashing function. 1893 int TypeLong::hash(void) const { 1894 return (int)(_lo+_hi+_widen+(int)Type::Long); 1895 } 1896 1897 //------------------------------is_finite-------------------------------------- 1898 // Has a finite value 1899 bool TypeLong::is_finite() const { 1900 return true; 1901 } 1902 1903 //------------------------------dump2------------------------------------------ 1904 // Dump TypeLong 1905 #ifndef PRODUCT 1906 static const char* longnamenear(jlong x, const char* xname, char* buf, size_t buf_size, jlong n) { 1907 if (n > x) { 1908 if (n >= x + 10000) return NULL; 1909 os::snprintf_checked(buf, buf_size, "%s+" JLONG_FORMAT, xname, n - x); 1910 } else if (n < x) { 1911 if (n <= x - 10000) return NULL; 1912 os::snprintf_checked(buf, buf_size, "%s-" JLONG_FORMAT, xname, x - n); 1913 } else { 1914 return xname; 1915 } 1916 return buf; 1917 } 1918 1919 static const char* longname(char* buf, size_t buf_size, jlong n) { 1920 const char* str; 1921 if (n == min_jlong) 1922 return "min"; 1923 else if (n < min_jlong + 10000) 1924 os::snprintf_checked(buf, buf_size, "min+" JLONG_FORMAT, n - min_jlong); 1925 else if (n == max_jlong) 1926 return "max"; 1927 else if (n > max_jlong - 10000) 1928 os::snprintf_checked(buf, buf_size, "max-" JLONG_FORMAT, max_jlong - n); 1929 else if ((str = longnamenear(max_juint, "maxuint", buf, buf_size, n)) != NULL) 1930 return str; 1931 else if ((str = longnamenear(max_jint, "maxint", buf, buf_size, n)) != NULL) 1932 return str; 1933 else if ((str = longnamenear(min_jint, "minint", buf, buf_size, n)) != NULL) 1934 return str; 1935 else 1936 os::snprintf_checked(buf, buf_size, JLONG_FORMAT, n); 1937 return buf; 1938 } 1939 1940 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const { 1941 char buf[80], buf2[80]; 1942 if (_lo == min_jlong && _hi == max_jlong) 1943 st->print("long"); 1944 else if (is_con()) 1945 st->print("long:%s", longname(buf, sizeof(buf), get_con())); 1946 else if (_hi == max_jlong) 1947 st->print("long:>=%s", longname(buf, sizeof(buf), _lo)); 1948 else if (_lo == min_jlong) 1949 st->print("long:<=%s", longname(buf, sizeof(buf), _hi)); 1950 else 1951 st->print("long:%s..%s", longname(buf, sizeof(buf), _lo), longname(buf2,sizeof(buf2), _hi)); 1952 1953 if (_widen != 0 && this != TypeLong::LONG) 1954 st->print(":%.*s", _widen, "wwww"); 1955 } 1956 #endif 1957 1958 //------------------------------singleton-------------------------------------- 1959 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 1960 // constants 1961 bool TypeLong::singleton(void) const { 1962 return _lo >= _hi; 1963 } 1964 1965 bool TypeLong::empty(void) const { 1966 return _lo > _hi; 1967 } 1968 1969 //============================================================================= 1970 // Convenience common pre-built types. 1971 const TypeTuple *TypeTuple::IFBOTH; // Return both arms of IF as reachable 1972 const TypeTuple *TypeTuple::IFFALSE; 1973 const TypeTuple *TypeTuple::IFTRUE; 1974 const TypeTuple *TypeTuple::IFNEITHER; 1975 const TypeTuple *TypeTuple::LOOPBODY; 1976 const TypeTuple *TypeTuple::MEMBAR; 1977 const TypeTuple *TypeTuple::STORECONDITIONAL; 1978 const TypeTuple *TypeTuple::START_I2C; 1979 const TypeTuple *TypeTuple::INT_PAIR; 1980 const TypeTuple *TypeTuple::LONG_PAIR; 1981 const TypeTuple *TypeTuple::INT_CC_PAIR; 1982 const TypeTuple *TypeTuple::LONG_CC_PAIR; 1983 1984 //------------------------------make------------------------------------------- 1985 // Make a TypeTuple from the range of a method signature 1986 const TypeTuple *TypeTuple::make_range(ciSignature* sig, InterfaceHandling interface_handling) { 1987 ciType* return_type = sig->return_type(); 1988 uint arg_cnt = return_type->size(); 1989 const Type **field_array = fields(arg_cnt); 1990 switch (return_type->basic_type()) { 1991 case T_LONG: 1992 field_array[TypeFunc::Parms] = TypeLong::LONG; 1993 field_array[TypeFunc::Parms+1] = Type::HALF; 1994 break; 1995 case T_DOUBLE: 1996 field_array[TypeFunc::Parms] = Type::DOUBLE; 1997 field_array[TypeFunc::Parms+1] = Type::HALF; 1998 break; 1999 case T_OBJECT: 2000 case T_ARRAY: 2001 case T_BOOLEAN: 2002 case T_CHAR: 2003 case T_FLOAT: 2004 case T_BYTE: 2005 case T_SHORT: 2006 case T_INT: 2007 field_array[TypeFunc::Parms] = get_const_type(return_type, interface_handling); 2008 break; 2009 case T_VOID: 2010 break; 2011 default: 2012 ShouldNotReachHere(); 2013 } 2014 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); 2015 } 2016 2017 // Make a TypeTuple from the domain of a method signature 2018 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, InterfaceHandling interface_handling) { 2019 uint arg_cnt = sig->size(); 2020 2021 uint pos = TypeFunc::Parms; 2022 const Type **field_array; 2023 if (recv != NULL) { 2024 arg_cnt++; 2025 field_array = fields(arg_cnt); 2026 // Use get_const_type here because it respects UseUniqueSubclasses: 2027 field_array[pos++] = get_const_type(recv, interface_handling)->join_speculative(TypePtr::NOTNULL); 2028 } else { 2029 field_array = fields(arg_cnt); 2030 } 2031 2032 int i = 0; 2033 while (pos < TypeFunc::Parms + arg_cnt) { 2034 ciType* type = sig->type_at(i); 2035 2036 switch (type->basic_type()) { 2037 case T_LONG: 2038 field_array[pos++] = TypeLong::LONG; 2039 field_array[pos++] = Type::HALF; 2040 break; 2041 case T_DOUBLE: 2042 field_array[pos++] = Type::DOUBLE; 2043 field_array[pos++] = Type::HALF; 2044 break; 2045 case T_OBJECT: 2046 case T_ARRAY: 2047 case T_FLOAT: 2048 case T_INT: 2049 field_array[pos++] = get_const_type(type, interface_handling); 2050 break; 2051 case T_BOOLEAN: 2052 case T_CHAR: 2053 case T_BYTE: 2054 case T_SHORT: 2055 field_array[pos++] = TypeInt::INT; 2056 break; 2057 default: 2058 ShouldNotReachHere(); 2059 } 2060 i++; 2061 } 2062 2063 return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons(); 2064 } 2065 2066 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) { 2067 return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons(); 2068 } 2069 2070 //------------------------------fields----------------------------------------- 2071 // Subroutine call type with space allocated for argument types 2072 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly 2073 const Type **TypeTuple::fields( uint arg_cnt ) { 2074 const Type **flds = (const Type **)(Compile::current()->type_arena()->AmallocWords((TypeFunc::Parms+arg_cnt)*sizeof(Type*) )); 2075 flds[TypeFunc::Control ] = Type::CONTROL; 2076 flds[TypeFunc::I_O ] = Type::ABIO; 2077 flds[TypeFunc::Memory ] = Type::MEMORY; 2078 flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM; 2079 flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS; 2080 2081 return flds; 2082 } 2083 2084 //------------------------------meet------------------------------------------- 2085 // Compute the MEET of two types. It returns a new Type object. 2086 const Type *TypeTuple::xmeet( const Type *t ) const { 2087 // Perform a fast test for common case; meeting the same types together. 2088 if( this == t ) return this; // Meeting same type-rep? 2089 2090 // Current "this->_base" is Tuple 2091 switch (t->base()) { // switch on original type 2092 2093 case Bottom: // Ye Olde Default 2094 return t; 2095 2096 default: // All else is a mistake 2097 typerr(t); 2098 2099 case Tuple: { // Meeting 2 signatures? 2100 const TypeTuple *x = t->is_tuple(); 2101 assert( _cnt == x->_cnt, "" ); 2102 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) )); 2103 for( uint i=0; i<_cnt; i++ ) 2104 fields[i] = field_at(i)->xmeet( x->field_at(i) ); 2105 return TypeTuple::make(_cnt,fields); 2106 } 2107 case Top: 2108 break; 2109 } 2110 return this; // Return the double constant 2111 } 2112 2113 //------------------------------xdual------------------------------------------ 2114 // Dual: compute field-by-field dual 2115 const Type *TypeTuple::xdual() const { 2116 const Type **fields = (const Type **)(Compile::current()->type_arena()->AmallocWords( _cnt*sizeof(Type*) )); 2117 for( uint i=0; i<_cnt; i++ ) 2118 fields[i] = _fields[i]->dual(); 2119 return new TypeTuple(_cnt,fields); 2120 } 2121 2122 //------------------------------eq--------------------------------------------- 2123 // Structural equality check for Type representations 2124 bool TypeTuple::eq( const Type *t ) const { 2125 const TypeTuple *s = (const TypeTuple *)t; 2126 if (_cnt != s->_cnt) return false; // Unequal field counts 2127 for (uint i = 0; i < _cnt; i++) 2128 if (field_at(i) != s->field_at(i)) // POINTER COMPARE! NO RECURSION! 2129 return false; // Missed 2130 return true; 2131 } 2132 2133 //------------------------------hash------------------------------------------- 2134 // Type-specific hashing function. 2135 int TypeTuple::hash(void) const { 2136 intptr_t sum = _cnt; 2137 for( uint i=0; i<_cnt; i++ ) 2138 sum += (intptr_t)_fields[i]; // Hash on pointers directly 2139 return sum; 2140 } 2141 2142 //------------------------------dump2------------------------------------------ 2143 // Dump signature Type 2144 #ifndef PRODUCT 2145 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const { 2146 st->print("{"); 2147 if( !depth || d[this] ) { // Check for recursive print 2148 st->print("...}"); 2149 return; 2150 } 2151 d.Insert((void*)this, (void*)this); // Stop recursion 2152 if( _cnt ) { 2153 uint i; 2154 for( i=0; i<_cnt-1; i++ ) { 2155 st->print("%d:", i); 2156 _fields[i]->dump2(d, depth-1, st); 2157 st->print(", "); 2158 } 2159 st->print("%d:", i); 2160 _fields[i]->dump2(d, depth-1, st); 2161 } 2162 st->print("}"); 2163 } 2164 #endif 2165 2166 //------------------------------singleton-------------------------------------- 2167 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2168 // constants (Ldi nodes). Singletons are integer, float or double constants 2169 // or a single symbol. 2170 bool TypeTuple::singleton(void) const { 2171 return false; // Never a singleton 2172 } 2173 2174 bool TypeTuple::empty(void) const { 2175 for( uint i=0; i<_cnt; i++ ) { 2176 if (_fields[i]->empty()) return true; 2177 } 2178 return false; 2179 } 2180 2181 //============================================================================= 2182 // Convenience common pre-built types. 2183 2184 inline const TypeInt* normalize_array_size(const TypeInt* size) { 2185 // Certain normalizations keep us sane when comparing types. 2186 // We do not want arrayOop variables to differ only by the wideness 2187 // of their index types. Pick minimum wideness, since that is the 2188 // forced wideness of small ranges anyway. 2189 if (size->_widen != Type::WidenMin) 2190 return TypeInt::make(size->_lo, size->_hi, Type::WidenMin); 2191 else 2192 return size; 2193 } 2194 2195 //------------------------------make------------------------------------------- 2196 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) { 2197 if (UseCompressedOops && elem->isa_oopptr()) { 2198 elem = elem->make_narrowoop(); 2199 } 2200 size = normalize_array_size(size); 2201 return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons(); 2202 } 2203 2204 //------------------------------meet------------------------------------------- 2205 // Compute the MEET of two types. It returns a new Type object. 2206 const Type *TypeAry::xmeet( const Type *t ) const { 2207 // Perform a fast test for common case; meeting the same types together. 2208 if( this == t ) return this; // Meeting same type-rep? 2209 2210 // Current "this->_base" is Ary 2211 switch (t->base()) { // switch on original type 2212 2213 case Bottom: // Ye Olde Default 2214 return t; 2215 2216 default: // All else is a mistake 2217 typerr(t); 2218 2219 case Array: { // Meeting 2 arrays? 2220 const TypeAry *a = t->is_ary(); 2221 return TypeAry::make(_elem->meet_speculative(a->_elem), 2222 _size->xmeet(a->_size)->is_int(), 2223 _stable && a->_stable); 2224 } 2225 case Top: 2226 break; 2227 } 2228 return this; // Return the double constant 2229 } 2230 2231 //------------------------------xdual------------------------------------------ 2232 // Dual: compute field-by-field dual 2233 const Type *TypeAry::xdual() const { 2234 const TypeInt* size_dual = _size->dual()->is_int(); 2235 size_dual = normalize_array_size(size_dual); 2236 return new TypeAry(_elem->dual(), size_dual, !_stable); 2237 } 2238 2239 //------------------------------eq--------------------------------------------- 2240 // Structural equality check for Type representations 2241 bool TypeAry::eq( const Type *t ) const { 2242 const TypeAry *a = (const TypeAry*)t; 2243 return _elem == a->_elem && 2244 _stable == a->_stable && 2245 _size == a->_size; 2246 } 2247 2248 //------------------------------hash------------------------------------------- 2249 // Type-specific hashing function. 2250 int TypeAry::hash(void) const { 2251 return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0); 2252 } 2253 2254 /** 2255 * Return same type without a speculative part in the element 2256 */ 2257 const TypeAry* TypeAry::remove_speculative() const { 2258 return make(_elem->remove_speculative(), _size, _stable); 2259 } 2260 2261 /** 2262 * Return same type with cleaned up speculative part of element 2263 */ 2264 const Type* TypeAry::cleanup_speculative() const { 2265 return make(_elem->cleanup_speculative(), _size, _stable); 2266 } 2267 2268 /** 2269 * Return same type but with a different inline depth (used for speculation) 2270 * 2271 * @param depth depth to meet with 2272 */ 2273 const TypePtr* TypePtr::with_inline_depth(int depth) const { 2274 if (!UseInlineDepthForSpeculativeTypes) { 2275 return this; 2276 } 2277 return make(AnyPtr, _ptr, _offset, _speculative, depth); 2278 } 2279 2280 //------------------------------dump2------------------------------------------ 2281 #ifndef PRODUCT 2282 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const { 2283 if (_stable) st->print("stable:"); 2284 _elem->dump2(d, depth, st); 2285 st->print("["); 2286 _size->dump2(d, depth, st); 2287 st->print("]"); 2288 } 2289 #endif 2290 2291 //------------------------------singleton-------------------------------------- 2292 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2293 // constants (Ldi nodes). Singletons are integer, float or double constants 2294 // or a single symbol. 2295 bool TypeAry::singleton(void) const { 2296 return false; // Never a singleton 2297 } 2298 2299 bool TypeAry::empty(void) const { 2300 return _elem->empty() || _size->empty(); 2301 } 2302 2303 //--------------------------ary_must_be_exact---------------------------------- 2304 bool TypeAry::ary_must_be_exact() const { 2305 // This logic looks at the element type of an array, and returns true 2306 // if the element type is either a primitive or a final instance class. 2307 // In such cases, an array built on this ary must have no subclasses. 2308 if (_elem == BOTTOM) return false; // general array not exact 2309 if (_elem == TOP ) return false; // inverted general array not exact 2310 const TypeOopPtr* toop = NULL; 2311 if (UseCompressedOops && _elem->isa_narrowoop()) { 2312 toop = _elem->make_ptr()->isa_oopptr(); 2313 } else { 2314 toop = _elem->isa_oopptr(); 2315 } 2316 if (!toop) return true; // a primitive type, like int 2317 if (!toop->is_loaded()) return false; // unloaded class 2318 const TypeInstPtr* tinst; 2319 if (_elem->isa_narrowoop()) 2320 tinst = _elem->make_ptr()->isa_instptr(); 2321 else 2322 tinst = _elem->isa_instptr(); 2323 if (tinst) 2324 return tinst->instance_klass()->is_final(); 2325 const TypeAryPtr* tap; 2326 if (_elem->isa_narrowoop()) 2327 tap = _elem->make_ptr()->isa_aryptr(); 2328 else 2329 tap = _elem->isa_aryptr(); 2330 if (tap) 2331 return tap->ary()->ary_must_be_exact(); 2332 return false; 2333 } 2334 2335 //==============================TypeVect======================================= 2336 // Convenience common pre-built types. 2337 const TypeVect *TypeVect::VECTA = NULL; // vector length agnostic 2338 const TypeVect *TypeVect::VECTS = NULL; // 32-bit vectors 2339 const TypeVect *TypeVect::VECTD = NULL; // 64-bit vectors 2340 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors 2341 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors 2342 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors 2343 const TypeVect *TypeVect::VECTMASK = NULL; // predicate/mask vector 2344 2345 //------------------------------make------------------------------------------- 2346 const TypeVect* TypeVect::make(const Type *elem, uint length, bool is_mask) { 2347 if (is_mask) { 2348 return makemask(elem, length); 2349 } 2350 BasicType elem_bt = elem->array_element_basic_type(); 2351 assert(is_java_primitive(elem_bt), "only primitive types in vector"); 2352 assert(Matcher::vector_size_supported(elem_bt, length), "length in range"); 2353 int size = length * type2aelembytes(elem_bt); 2354 switch (Matcher::vector_ideal_reg(size)) { 2355 case Op_VecA: 2356 return (TypeVect*)(new TypeVectA(elem, length))->hashcons(); 2357 case Op_VecS: 2358 return (TypeVect*)(new TypeVectS(elem, length))->hashcons(); 2359 case Op_RegL: 2360 case Op_VecD: 2361 case Op_RegD: 2362 return (TypeVect*)(new TypeVectD(elem, length))->hashcons(); 2363 case Op_VecX: 2364 return (TypeVect*)(new TypeVectX(elem, length))->hashcons(); 2365 case Op_VecY: 2366 return (TypeVect*)(new TypeVectY(elem, length))->hashcons(); 2367 case Op_VecZ: 2368 return (TypeVect*)(new TypeVectZ(elem, length))->hashcons(); 2369 } 2370 ShouldNotReachHere(); 2371 return NULL; 2372 } 2373 2374 const TypeVect *TypeVect::makemask(const Type* elem, uint length) { 2375 BasicType elem_bt = elem->array_element_basic_type(); 2376 if (Matcher::has_predicated_vectors() && 2377 Matcher::match_rule_supported_vector_masked(Op_VectorLoadMask, length, elem_bt)) { 2378 return TypeVectMask::make(elem, length); 2379 } else { 2380 return make(elem, length); 2381 } 2382 } 2383 2384 //------------------------------meet------------------------------------------- 2385 // Compute the MEET of two types. It returns a new Type object. 2386 const Type *TypeVect::xmeet( const Type *t ) const { 2387 // Perform a fast test for common case; meeting the same types together. 2388 if( this == t ) return this; // Meeting same type-rep? 2389 2390 // Current "this->_base" is Vector 2391 switch (t->base()) { // switch on original type 2392 2393 case Bottom: // Ye Olde Default 2394 return t; 2395 2396 default: // All else is a mistake 2397 typerr(t); 2398 case VectorMask: { 2399 const TypeVectMask* v = t->is_vectmask(); 2400 assert( base() == v->base(), ""); 2401 assert(length() == v->length(), ""); 2402 assert(element_basic_type() == v->element_basic_type(), ""); 2403 return TypeVect::makemask(_elem->xmeet(v->_elem), _length); 2404 } 2405 case VectorA: 2406 case VectorS: 2407 case VectorD: 2408 case VectorX: 2409 case VectorY: 2410 case VectorZ: { // Meeting 2 vectors? 2411 const TypeVect* v = t->is_vect(); 2412 assert( base() == v->base(), ""); 2413 assert(length() == v->length(), ""); 2414 assert(element_basic_type() == v->element_basic_type(), ""); 2415 return TypeVect::make(_elem->xmeet(v->_elem), _length); 2416 } 2417 case Top: 2418 break; 2419 } 2420 return this; 2421 } 2422 2423 //------------------------------xdual------------------------------------------ 2424 // Dual: compute field-by-field dual 2425 const Type *TypeVect::xdual() const { 2426 return new TypeVect(base(), _elem->dual(), _length); 2427 } 2428 2429 //------------------------------eq--------------------------------------------- 2430 // Structural equality check for Type representations 2431 bool TypeVect::eq(const Type *t) const { 2432 const TypeVect *v = t->is_vect(); 2433 return (_elem == v->_elem) && (_length == v->_length); 2434 } 2435 2436 //------------------------------hash------------------------------------------- 2437 // Type-specific hashing function. 2438 int TypeVect::hash(void) const { 2439 return (intptr_t)_elem + (intptr_t)_length; 2440 } 2441 2442 //------------------------------singleton-------------------------------------- 2443 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2444 // constants (Ldi nodes). Vector is singleton if all elements are the same 2445 // constant value (when vector is created with Replicate code). 2446 bool TypeVect::singleton(void) const { 2447 // There is no Con node for vectors yet. 2448 // return _elem->singleton(); 2449 return false; 2450 } 2451 2452 bool TypeVect::empty(void) const { 2453 return _elem->empty(); 2454 } 2455 2456 //------------------------------dump2------------------------------------------ 2457 #ifndef PRODUCT 2458 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const { 2459 switch (base()) { 2460 case VectorA: 2461 st->print("vectora["); break; 2462 case VectorS: 2463 st->print("vectors["); break; 2464 case VectorD: 2465 st->print("vectord["); break; 2466 case VectorX: 2467 st->print("vectorx["); break; 2468 case VectorY: 2469 st->print("vectory["); break; 2470 case VectorZ: 2471 st->print("vectorz["); break; 2472 case VectorMask: 2473 st->print("vectormask["); break; 2474 default: 2475 ShouldNotReachHere(); 2476 } 2477 st->print("%d]:{", _length); 2478 _elem->dump2(d, depth, st); 2479 st->print("}"); 2480 } 2481 #endif 2482 2483 bool TypeVectMask::eq(const Type *t) const { 2484 const TypeVectMask *v = t->is_vectmask(); 2485 return (element_type() == v->element_type()) && (length() == v->length()); 2486 } 2487 2488 const Type *TypeVectMask::xdual() const { 2489 return new TypeVectMask(element_type()->dual(), length()); 2490 } 2491 2492 const TypeVectMask *TypeVectMask::make(const BasicType elem_bt, uint length) { 2493 return make(get_const_basic_type(elem_bt), length); 2494 } 2495 2496 const TypeVectMask *TypeVectMask::make(const Type* elem, uint length) { 2497 const TypeVectMask* mtype = Matcher::predicate_reg_type(elem, length); 2498 return (TypeVectMask*) const_cast<TypeVectMask*>(mtype)->hashcons(); 2499 } 2500 2501 //============================================================================= 2502 // Convenience common pre-built types. 2503 const TypePtr *TypePtr::NULL_PTR; 2504 const TypePtr *TypePtr::NOTNULL; 2505 const TypePtr *TypePtr::BOTTOM; 2506 2507 //------------------------------meet------------------------------------------- 2508 // Meet over the PTR enum 2509 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = { 2510 // TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, 2511 { /* Top */ TopPTR, AnyNull, Constant, Null, NotNull, BotPTR,}, 2512 { /* AnyNull */ AnyNull, AnyNull, Constant, BotPTR, NotNull, BotPTR,}, 2513 { /* Constant*/ Constant, Constant, Constant, BotPTR, NotNull, BotPTR,}, 2514 { /* Null */ Null, BotPTR, BotPTR, Null, BotPTR, BotPTR,}, 2515 { /* NotNull */ NotNull, NotNull, NotNull, BotPTR, NotNull, BotPTR,}, 2516 { /* BotPTR */ BotPTR, BotPTR, BotPTR, BotPTR, BotPTR, BotPTR,} 2517 }; 2518 2519 //------------------------------make------------------------------------------- 2520 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) { 2521 return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons(); 2522 } 2523 2524 //------------------------------cast_to_ptr_type------------------------------- 2525 const TypePtr* TypePtr::cast_to_ptr_type(PTR ptr) const { 2526 assert(_base == AnyPtr, "subclass must override cast_to_ptr_type"); 2527 if( ptr == _ptr ) return this; 2528 return make(_base, ptr, _offset, _speculative, _inline_depth); 2529 } 2530 2531 //------------------------------get_con---------------------------------------- 2532 intptr_t TypePtr::get_con() const { 2533 assert( _ptr == Null, "" ); 2534 return _offset; 2535 } 2536 2537 //------------------------------meet------------------------------------------- 2538 // Compute the MEET of two types. It returns a new Type object. 2539 const Type *TypePtr::xmeet(const Type *t) const { 2540 const Type* res = xmeet_helper(t); 2541 if (res->isa_ptr() == NULL) { 2542 return res; 2543 } 2544 2545 const TypePtr* res_ptr = res->is_ptr(); 2546 if (res_ptr->speculative() != NULL) { 2547 // type->speculative() == NULL means that speculation is no better 2548 // than type, i.e. type->speculative() == type. So there are 2 2549 // ways to represent the fact that we have no useful speculative 2550 // data and we should use a single one to be able to test for 2551 // equality between types. Check whether type->speculative() == 2552 // type and set speculative to NULL if it is the case. 2553 if (res_ptr->remove_speculative() == res_ptr->speculative()) { 2554 return res_ptr->remove_speculative(); 2555 } 2556 } 2557 2558 return res; 2559 } 2560 2561 const Type *TypePtr::xmeet_helper(const Type *t) const { 2562 // Perform a fast test for common case; meeting the same types together. 2563 if( this == t ) return this; // Meeting same type-rep? 2564 2565 // Current "this->_base" is AnyPtr 2566 switch (t->base()) { // switch on original type 2567 case Int: // Mixing ints & oops happens when javac 2568 case Long: // reuses local variables 2569 case FloatTop: 2570 case FloatCon: 2571 case FloatBot: 2572 case DoubleTop: 2573 case DoubleCon: 2574 case DoubleBot: 2575 case NarrowOop: 2576 case NarrowKlass: 2577 case Bottom: // Ye Olde Default 2578 return Type::BOTTOM; 2579 case Top: 2580 return this; 2581 2582 case AnyPtr: { // Meeting to AnyPtrs 2583 const TypePtr *tp = t->is_ptr(); 2584 const TypePtr* speculative = xmeet_speculative(tp); 2585 int depth = meet_inline_depth(tp->inline_depth()); 2586 return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth); 2587 } 2588 case RawPtr: // For these, flip the call around to cut down 2589 case OopPtr: 2590 case InstPtr: // on the cases I have to handle. 2591 case AryPtr: 2592 case MetadataPtr: 2593 case KlassPtr: 2594 case InstKlassPtr: 2595 case AryKlassPtr: 2596 return t->xmeet(this); // Call in reverse direction 2597 default: // All else is a mistake 2598 typerr(t); 2599 2600 } 2601 return this; 2602 } 2603 2604 //------------------------------meet_offset------------------------------------ 2605 int TypePtr::meet_offset( int offset ) const { 2606 // Either is 'TOP' offset? Return the other offset! 2607 if( _offset == OffsetTop ) return offset; 2608 if( offset == OffsetTop ) return _offset; 2609 // If either is different, return 'BOTTOM' offset 2610 if( _offset != offset ) return OffsetBot; 2611 return _offset; 2612 } 2613 2614 //------------------------------dual_offset------------------------------------ 2615 int TypePtr::dual_offset( ) const { 2616 if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM' 2617 if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP' 2618 return _offset; // Map everything else into self 2619 } 2620 2621 //------------------------------xdual------------------------------------------ 2622 // Dual: compute field-by-field dual 2623 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = { 2624 BotPTR, NotNull, Constant, Null, AnyNull, TopPTR 2625 }; 2626 const Type *TypePtr::xdual() const { 2627 return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth()); 2628 } 2629 2630 //------------------------------xadd_offset------------------------------------ 2631 int TypePtr::xadd_offset( intptr_t offset ) const { 2632 // Adding to 'TOP' offset? Return 'TOP'! 2633 if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop; 2634 // Adding to 'BOTTOM' offset? Return 'BOTTOM'! 2635 if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot; 2636 // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'! 2637 offset += (intptr_t)_offset; 2638 if (offset != (int)offset || offset == OffsetTop) return OffsetBot; 2639 2640 // assert( _offset >= 0 && _offset+offset >= 0, "" ); 2641 // It is possible to construct a negative offset during PhaseCCP 2642 2643 return (int)offset; // Sum valid offsets 2644 } 2645 2646 //------------------------------add_offset------------------------------------- 2647 const TypePtr *TypePtr::add_offset( intptr_t offset ) const { 2648 return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth); 2649 } 2650 2651 const TypePtr *TypePtr::with_offset(intptr_t offset) const { 2652 return make(AnyPtr, _ptr, offset, _speculative, _inline_depth); 2653 } 2654 2655 //------------------------------eq--------------------------------------------- 2656 // Structural equality check for Type representations 2657 bool TypePtr::eq( const Type *t ) const { 2658 const TypePtr *a = (const TypePtr*)t; 2659 return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth; 2660 } 2661 2662 //------------------------------hash------------------------------------------- 2663 // Type-specific hashing function. 2664 int TypePtr::hash(void) const { 2665 return java_add(java_add((jint)_ptr, (jint)_offset), java_add((jint)hash_speculative(), (jint)_inline_depth)); 2666 ; 2667 } 2668 2669 /** 2670 * Return same type without a speculative part 2671 */ 2672 const TypePtr* TypePtr::remove_speculative() const { 2673 if (_speculative == NULL) { 2674 return this; 2675 } 2676 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 2677 return make(AnyPtr, _ptr, _offset, NULL, _inline_depth); 2678 } 2679 2680 /** 2681 * Return same type but drop speculative part if we know we won't use 2682 * it 2683 */ 2684 const Type* TypePtr::cleanup_speculative() const { 2685 if (speculative() == NULL) { 2686 return this; 2687 } 2688 const Type* no_spec = remove_speculative(); 2689 // If this is NULL_PTR then we don't need the speculative type 2690 // (with_inline_depth in case the current type inline depth is 2691 // InlineDepthTop) 2692 if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) { 2693 return no_spec; 2694 } 2695 if (above_centerline(speculative()->ptr())) { 2696 return no_spec; 2697 } 2698 const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr(); 2699 // If the speculative may be null and is an inexact klass then it 2700 // doesn't help 2701 if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() && 2702 (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) { 2703 return no_spec; 2704 } 2705 return this; 2706 } 2707 2708 /** 2709 * dual of the speculative part of the type 2710 */ 2711 const TypePtr* TypePtr::dual_speculative() const { 2712 if (_speculative == NULL) { 2713 return NULL; 2714 } 2715 return _speculative->dual()->is_ptr(); 2716 } 2717 2718 /** 2719 * meet of the speculative parts of 2 types 2720 * 2721 * @param other type to meet with 2722 */ 2723 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const { 2724 bool this_has_spec = (_speculative != NULL); 2725 bool other_has_spec = (other->speculative() != NULL); 2726 2727 if (!this_has_spec && !other_has_spec) { 2728 return NULL; 2729 } 2730 2731 // If we are at a point where control flow meets and one branch has 2732 // a speculative type and the other has not, we meet the speculative 2733 // type of one branch with the actual type of the other. If the 2734 // actual type is exact and the speculative is as well, then the 2735 // result is a speculative type which is exact and we can continue 2736 // speculation further. 2737 const TypePtr* this_spec = _speculative; 2738 const TypePtr* other_spec = other->speculative(); 2739 2740 if (!this_has_spec) { 2741 this_spec = this; 2742 } 2743 2744 if (!other_has_spec) { 2745 other_spec = other; 2746 } 2747 2748 return this_spec->meet(other_spec)->is_ptr(); 2749 } 2750 2751 /** 2752 * dual of the inline depth for this type (used for speculation) 2753 */ 2754 int TypePtr::dual_inline_depth() const { 2755 return -inline_depth(); 2756 } 2757 2758 /** 2759 * meet of 2 inline depths (used for speculation) 2760 * 2761 * @param depth depth to meet with 2762 */ 2763 int TypePtr::meet_inline_depth(int depth) const { 2764 return MAX2(inline_depth(), depth); 2765 } 2766 2767 /** 2768 * Are the speculative parts of 2 types equal? 2769 * 2770 * @param other type to compare this one to 2771 */ 2772 bool TypePtr::eq_speculative(const TypePtr* other) const { 2773 if (_speculative == NULL || other->speculative() == NULL) { 2774 return _speculative == other->speculative(); 2775 } 2776 2777 if (_speculative->base() != other->speculative()->base()) { 2778 return false; 2779 } 2780 2781 return _speculative->eq(other->speculative()); 2782 } 2783 2784 /** 2785 * Hash of the speculative part of the type 2786 */ 2787 int TypePtr::hash_speculative() const { 2788 if (_speculative == NULL) { 2789 return 0; 2790 } 2791 2792 return _speculative->hash(); 2793 } 2794 2795 /** 2796 * add offset to the speculative part of the type 2797 * 2798 * @param offset offset to add 2799 */ 2800 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const { 2801 if (_speculative == NULL) { 2802 return NULL; 2803 } 2804 return _speculative->add_offset(offset)->is_ptr(); 2805 } 2806 2807 const TypePtr* TypePtr::with_offset_speculative(intptr_t offset) const { 2808 if (_speculative == NULL) { 2809 return NULL; 2810 } 2811 return _speculative->with_offset(offset)->is_ptr(); 2812 } 2813 2814 /** 2815 * return exact klass from the speculative type if there's one 2816 */ 2817 ciKlass* TypePtr::speculative_type() const { 2818 if (_speculative != NULL && _speculative->isa_oopptr()) { 2819 const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr(); 2820 if (speculative->klass_is_exact()) { 2821 return speculative->klass(); 2822 } 2823 } 2824 return NULL; 2825 } 2826 2827 /** 2828 * return true if speculative type may be null 2829 */ 2830 bool TypePtr::speculative_maybe_null() const { 2831 if (_speculative != NULL) { 2832 const TypePtr* speculative = _speculative->join(this)->is_ptr(); 2833 return speculative->maybe_null(); 2834 } 2835 return true; 2836 } 2837 2838 bool TypePtr::speculative_always_null() const { 2839 if (_speculative != NULL) { 2840 const TypePtr* speculative = _speculative->join(this)->is_ptr(); 2841 return speculative == TypePtr::NULL_PTR; 2842 } 2843 return false; 2844 } 2845 2846 /** 2847 * Same as TypePtr::speculative_type() but return the klass only if 2848 * the speculative tells us is not null 2849 */ 2850 ciKlass* TypePtr::speculative_type_not_null() const { 2851 if (speculative_maybe_null()) { 2852 return NULL; 2853 } 2854 return speculative_type(); 2855 } 2856 2857 /** 2858 * Check whether new profiling would improve speculative type 2859 * 2860 * @param exact_kls class from profiling 2861 * @param inline_depth inlining depth of profile point 2862 * 2863 * @return true if type profile is valuable 2864 */ 2865 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { 2866 // no profiling? 2867 if (exact_kls == NULL) { 2868 return false; 2869 } 2870 if (speculative() == TypePtr::NULL_PTR) { 2871 return false; 2872 } 2873 // no speculative type or non exact speculative type? 2874 if (speculative_type() == NULL) { 2875 return true; 2876 } 2877 // If the node already has an exact speculative type keep it, 2878 // unless it was provided by profiling that is at a deeper 2879 // inlining level. Profiling at a higher inlining depth is 2880 // expected to be less accurate. 2881 if (_speculative->inline_depth() == InlineDepthBottom) { 2882 return false; 2883 } 2884 assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison"); 2885 return inline_depth < _speculative->inline_depth(); 2886 } 2887 2888 /** 2889 * Check whether new profiling would improve ptr (= tells us it is non 2890 * null) 2891 * 2892 * @param ptr_kind always null or not null? 2893 * 2894 * @return true if ptr profile is valuable 2895 */ 2896 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const { 2897 // profiling doesn't tell us anything useful 2898 if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) { 2899 return false; 2900 } 2901 // We already know this is not null 2902 if (!this->maybe_null()) { 2903 return false; 2904 } 2905 // We already know the speculative type cannot be null 2906 if (!speculative_maybe_null()) { 2907 return false; 2908 } 2909 // We already know this is always null 2910 if (this == TypePtr::NULL_PTR) { 2911 return false; 2912 } 2913 // We already know the speculative type is always null 2914 if (speculative_always_null()) { 2915 return false; 2916 } 2917 if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) { 2918 return false; 2919 } 2920 return true; 2921 } 2922 2923 //------------------------------dump2------------------------------------------ 2924 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = { 2925 "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR" 2926 }; 2927 2928 #ifndef PRODUCT 2929 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const { 2930 if( _ptr == Null ) st->print("NULL"); 2931 else st->print("%s *", ptr_msg[_ptr]); 2932 if( _offset == OffsetTop ) st->print("+top"); 2933 else if( _offset == OffsetBot ) st->print("+bot"); 2934 else if( _offset ) st->print("+%d", _offset); 2935 dump_inline_depth(st); 2936 dump_speculative(st); 2937 } 2938 2939 /** 2940 *dump the speculative part of the type 2941 */ 2942 void TypePtr::dump_speculative(outputStream *st) const { 2943 if (_speculative != NULL) { 2944 st->print(" (speculative="); 2945 _speculative->dump_on(st); 2946 st->print(")"); 2947 } 2948 } 2949 2950 /** 2951 *dump the inline depth of the type 2952 */ 2953 void TypePtr::dump_inline_depth(outputStream *st) const { 2954 if (_inline_depth != InlineDepthBottom) { 2955 if (_inline_depth == InlineDepthTop) { 2956 st->print(" (inline_depth=InlineDepthTop)"); 2957 } else { 2958 st->print(" (inline_depth=%d)", _inline_depth); 2959 } 2960 } 2961 } 2962 #endif 2963 2964 //------------------------------singleton-------------------------------------- 2965 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 2966 // constants 2967 bool TypePtr::singleton(void) const { 2968 // TopPTR, Null, AnyNull, Constant are all singletons 2969 return (_offset != OffsetBot) && !below_centerline(_ptr); 2970 } 2971 2972 bool TypePtr::empty(void) const { 2973 return (_offset == OffsetTop) || above_centerline(_ptr); 2974 } 2975 2976 //============================================================================= 2977 // Convenience common pre-built types. 2978 const TypeRawPtr *TypeRawPtr::BOTTOM; 2979 const TypeRawPtr *TypeRawPtr::NOTNULL; 2980 2981 //------------------------------make------------------------------------------- 2982 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) { 2983 assert( ptr != Constant, "what is the constant?" ); 2984 assert( ptr != Null, "Use TypePtr for NULL" ); 2985 return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons(); 2986 } 2987 2988 const TypeRawPtr *TypeRawPtr::make( address bits ) { 2989 assert( bits, "Use TypePtr for NULL" ); 2990 return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons(); 2991 } 2992 2993 //------------------------------cast_to_ptr_type------------------------------- 2994 const TypeRawPtr* TypeRawPtr::cast_to_ptr_type(PTR ptr) const { 2995 assert( ptr != Constant, "what is the constant?" ); 2996 assert( ptr != Null, "Use TypePtr for NULL" ); 2997 assert( _bits==0, "Why cast a constant address?"); 2998 if( ptr == _ptr ) return this; 2999 return make(ptr); 3000 } 3001 3002 //------------------------------get_con---------------------------------------- 3003 intptr_t TypeRawPtr::get_con() const { 3004 assert( _ptr == Null || _ptr == Constant, "" ); 3005 return (intptr_t)_bits; 3006 } 3007 3008 //------------------------------meet------------------------------------------- 3009 // Compute the MEET of two types. It returns a new Type object. 3010 const Type *TypeRawPtr::xmeet( const Type *t ) const { 3011 // Perform a fast test for common case; meeting the same types together. 3012 if( this == t ) return this; // Meeting same type-rep? 3013 3014 // Current "this->_base" is RawPtr 3015 switch( t->base() ) { // switch on original type 3016 case Bottom: // Ye Olde Default 3017 return t; 3018 case Top: 3019 return this; 3020 case AnyPtr: // Meeting to AnyPtrs 3021 break; 3022 case RawPtr: { // might be top, bot, any/not or constant 3023 enum PTR tptr = t->is_ptr()->ptr(); 3024 enum PTR ptr = meet_ptr( tptr ); 3025 if( ptr == Constant ) { // Cannot be equal constants, so... 3026 if( tptr == Constant && _ptr != Constant) return t; 3027 if( _ptr == Constant && tptr != Constant) return this; 3028 ptr = NotNull; // Fall down in lattice 3029 } 3030 return make( ptr ); 3031 } 3032 3033 case OopPtr: 3034 case InstPtr: 3035 case AryPtr: 3036 case MetadataPtr: 3037 case KlassPtr: 3038 case InstKlassPtr: 3039 case AryKlassPtr: 3040 return TypePtr::BOTTOM; // Oop meet raw is not well defined 3041 default: // All else is a mistake 3042 typerr(t); 3043 } 3044 3045 // Found an AnyPtr type vs self-RawPtr type 3046 const TypePtr *tp = t->is_ptr(); 3047 switch (tp->ptr()) { 3048 case TypePtr::TopPTR: return this; 3049 case TypePtr::BotPTR: return t; 3050 case TypePtr::Null: 3051 if( _ptr == TypePtr::TopPTR ) return t; 3052 return TypeRawPtr::BOTTOM; 3053 case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth()); 3054 case TypePtr::AnyNull: 3055 if( _ptr == TypePtr::Constant) return this; 3056 return make( meet_ptr(TypePtr::AnyNull) ); 3057 default: ShouldNotReachHere(); 3058 } 3059 return this; 3060 } 3061 3062 //------------------------------xdual------------------------------------------ 3063 // Dual: compute field-by-field dual 3064 const Type *TypeRawPtr::xdual() const { 3065 return new TypeRawPtr( dual_ptr(), _bits ); 3066 } 3067 3068 //------------------------------add_offset------------------------------------- 3069 const TypePtr* TypeRawPtr::add_offset(intptr_t offset) const { 3070 if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer 3071 if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer 3072 if( offset == 0 ) return this; // No change 3073 switch (_ptr) { 3074 case TypePtr::TopPTR: 3075 case TypePtr::BotPTR: 3076 case TypePtr::NotNull: 3077 return this; 3078 case TypePtr::Null: 3079 case TypePtr::Constant: { 3080 address bits = _bits+offset; 3081 if ( bits == 0 ) return TypePtr::NULL_PTR; 3082 return make( bits ); 3083 } 3084 default: ShouldNotReachHere(); 3085 } 3086 return NULL; // Lint noise 3087 } 3088 3089 //------------------------------eq--------------------------------------------- 3090 // Structural equality check for Type representations 3091 bool TypeRawPtr::eq( const Type *t ) const { 3092 const TypeRawPtr *a = (const TypeRawPtr*)t; 3093 return _bits == a->_bits && TypePtr::eq(t); 3094 } 3095 3096 //------------------------------hash------------------------------------------- 3097 // Type-specific hashing function. 3098 int TypeRawPtr::hash(void) const { 3099 return (intptr_t)_bits + TypePtr::hash(); 3100 } 3101 3102 //------------------------------dump2------------------------------------------ 3103 #ifndef PRODUCT 3104 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 3105 if( _ptr == Constant ) 3106 st->print(INTPTR_FORMAT, p2i(_bits)); 3107 else 3108 st->print("rawptr:%s", ptr_msg[_ptr]); 3109 } 3110 #endif 3111 3112 //============================================================================= 3113 // Convenience common pre-built type. 3114 const TypeOopPtr *TypeOopPtr::BOTTOM; 3115 3116 TypePtr::InterfaceSet::InterfaceSet() 3117 : _list(Compile::current()->type_arena(), 0, 0, NULL), 3118 _hash_computed(0), _exact_klass_computed(0), _is_loaded_computed(0) { 3119 } 3120 3121 TypePtr::InterfaceSet::InterfaceSet(GrowableArray<ciInstanceKlass*>* interfaces) 3122 : _list(Compile::current()->type_arena(), interfaces->length(), 0, NULL), 3123 _hash_computed(0), _exact_klass_computed(0), _is_loaded_computed(0) { 3124 for (int i = 0; i < interfaces->length(); i++) { 3125 add(interfaces->at(i)); 3126 } 3127 } 3128 3129 3130 int TypePtr::InterfaceSet::compare(ciKlass* const& k1, ciKlass* const& k2) { 3131 if ((intptr_t)k1 < (intptr_t)k2) { 3132 return -1; 3133 } else if ((intptr_t)k1 > (intptr_t)k2) { 3134 return 1; 3135 } 3136 return 0; 3137 } 3138 3139 void TypePtr::InterfaceSet::add(ciKlass* interface) { 3140 assert(interface->is_interface(), "for interfaces only"); 3141 _list.insert_sorted<compare>(interface); 3142 verify(); 3143 } 3144 3145 void TypePtr::InterfaceSet::raw_add(ciKlass* interface) { 3146 assert(interface->is_interface(), "for interfaces only"); 3147 _list.push(interface); 3148 } 3149 3150 bool TypePtr::InterfaceSet::eq(const InterfaceSet& other) const { 3151 if (_list.length() != other._list.length()) { 3152 return false; 3153 } 3154 for (int i = 0; i < _list.length(); i++) { 3155 ciKlass* k1 = _list.at(i); 3156 ciKlass* k2 = other._list.at(i); 3157 if (!k1->equals(k2)) { 3158 return false; 3159 } 3160 } 3161 return true; 3162 } 3163 3164 int TypePtr::InterfaceSet::hash() const { 3165 if (_hash_computed) { 3166 return _hash; 3167 } 3168 const_cast<InterfaceSet*>(this)->compute_hash(); 3169 assert(_hash_computed, "should be computed now"); 3170 return _hash; 3171 } 3172 3173 void TypePtr::InterfaceSet::compute_hash() { 3174 int hash = 0; 3175 for (int i = 0; i < _list.length(); i++) { 3176 ciKlass* k = _list.at(i); 3177 hash += (jint)k->hash(); 3178 } 3179 _hash_computed = 1; 3180 _hash = hash; 3181 } 3182 3183 static int compare_interfaces(ciKlass** k1, ciKlass** k2) { 3184 return (int)((*k1)->ident() - (*k2)->ident()); 3185 } 3186 3187 void TypePtr::InterfaceSet::dump(outputStream *st) const { 3188 if (_list.length() == 0) { 3189 return; 3190 } 3191 ResourceMark rm; 3192 st->print(" ("); 3193 GrowableArray<ciKlass*> interfaces; 3194 interfaces.appendAll(&_list); 3195 // Sort the interfaces so they are listed in the same order from one run to the other of the same compilation 3196 interfaces.sort(compare_interfaces); 3197 for (int i = 0; i < interfaces.length(); i++) { 3198 if (i > 0) { 3199 st->print(","); 3200 } 3201 ciKlass* k = interfaces.at(i); 3202 k->print_name_on(st); 3203 } 3204 st->print(")"); 3205 } 3206 3207 void TypePtr::InterfaceSet::verify() const { 3208 #ifdef DEBUG 3209 for (int i = 1; i < _list.length(); i++) { 3210 ciKlass* k1 = _list.at(i-1); 3211 ciKlass* k2 = _list.at(i); 3212 assert(compare(k2, k1) > 0, "should be ordered"); 3213 assert(k1 != k2, "no duplicate"); 3214 } 3215 #endif 3216 } 3217 3218 TypePtr::InterfaceSet TypeOopPtr::InterfaceSet::union_with(const InterfaceSet& other) const { 3219 InterfaceSet result; 3220 int i = 0; 3221 int j = 0; 3222 while (i < _list.length() || j < other._list.length()) { 3223 while (i < _list.length() && 3224 (j >= other._list.length() || 3225 compare(_list.at(i), other._list.at(j)) < 0)) { 3226 result.raw_add(_list.at(i)); 3227 i++; 3228 } 3229 while (j < other._list.length() && 3230 (i >= _list.length() || 3231 compare(other._list.at(j), _list.at(i)) < 0)) { 3232 result.raw_add(other._list.at(j)); 3233 j++; 3234 } 3235 if (i < _list.length() && 3236 j < other._list.length() && 3237 _list.at(i) == other._list.at(j)) { 3238 result.raw_add(_list.at(i)); 3239 i++; 3240 j++; 3241 } 3242 } 3243 result.verify(); 3244 #ifdef DEBUG 3245 for (int i = 0; i < _list.length(); i++) { 3246 assert(result.contains(_list.at(i)), "missing"); 3247 } 3248 for (int i = 0; i < other._list.length(); i++) { 3249 assert(result.contains(other._list.at(i)), "missing"); 3250 } 3251 for (int i = 0; i < result._list.length(); i++) { 3252 assert(_list.contains(result._list.at(i)) || other._list.contains(result._list.at(i)), "missing"); 3253 } 3254 #endif 3255 return result; 3256 } 3257 3258 TypePtr::InterfaceSet TypeOopPtr::InterfaceSet::intersection_with(const InterfaceSet& other) const { 3259 InterfaceSet result; 3260 int i = 0; 3261 int j = 0; 3262 while (i < _list.length() || j < other._list.length()) { 3263 while (i < _list.length() && 3264 (j >= other._list.length() || 3265 compare(_list.at(i), other._list.at(j)) < 0)) { 3266 i++; 3267 } 3268 while (j < other._list.length() && 3269 (i >= _list.length() || 3270 compare(other._list.at(j), _list.at(i)) < 0)) { 3271 j++; 3272 } 3273 if (i < _list.length() && 3274 j < other._list.length() && 3275 _list.at(i) == other._list.at(j)) { 3276 result.raw_add(_list.at(i)); 3277 i++; 3278 j++; 3279 } 3280 } 3281 result.verify(); 3282 #ifdef DEBUG 3283 for (int i = 0; i < _list.length(); i++) { 3284 assert(!other._list.contains(_list.at(i)) || result.contains(_list.at(i)), "missing"); 3285 } 3286 for (int i = 0; i < other._list.length(); i++) { 3287 assert(!_list.contains(other._list.at(i)) || result.contains(other._list.at(i)), "missing"); 3288 } 3289 for (int i = 0; i < result._list.length(); i++) { 3290 assert(_list.contains(result._list.at(i)) && other._list.contains(result._list.at(i)), "missing"); 3291 } 3292 #endif 3293 return result; 3294 } 3295 3296 // Is there a single ciKlass* that can represent the interface set? 3297 ciKlass* TypePtr::InterfaceSet::exact_klass() const { 3298 if (_exact_klass_computed) { 3299 return _exact_klass; 3300 } 3301 const_cast<InterfaceSet*>(this)->compute_exact_klass(); 3302 assert(_exact_klass_computed, "should be computed now"); 3303 return _exact_klass; 3304 } 3305 3306 void TypePtr::InterfaceSet::compute_exact_klass() { 3307 if (_list.length() == 0) { 3308 _exact_klass_computed = 1; 3309 _exact_klass = NULL; 3310 return; 3311 } 3312 ciKlass* res = NULL; 3313 for (int i = 0; i < _list.length(); i++) { 3314 ciKlass* interface = _list.at(i); 3315 if (eq(interfaces(interface, false, true, false, trust_interfaces))) { 3316 assert(res == NULL, ""); 3317 res = _list.at(i); 3318 } 3319 } 3320 _exact_klass_computed = 1; 3321 _exact_klass = res; 3322 } 3323 3324 bool TypePtr::InterfaceSet::is_loaded() const { 3325 if (_is_loaded_computed) { 3326 return _is_loaded; 3327 } 3328 const_cast<InterfaceSet*>(this)->compute_is_loaded(); 3329 assert(_is_loaded_computed, "should be computed now"); 3330 return _is_loaded; 3331 } 3332 3333 void TypePtr::InterfaceSet::compute_is_loaded() { 3334 _is_loaded_computed = 1; 3335 for (int i = 0; i < _list.length(); i++) { 3336 ciKlass* interface = _list.at(i); 3337 if (!interface->is_loaded()) { 3338 _is_loaded = false; 3339 return; 3340 } 3341 } 3342 _is_loaded = true; 3343 } 3344 3345 //------------------------------TypeOopPtr------------------------------------- 3346 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const InterfaceSet& interfaces, bool xk, ciObject* o, int offset, 3347 int instance_id, const TypePtr* speculative, int inline_depth) 3348 : TypePtr(t, ptr, offset, speculative, inline_depth), 3349 _const_oop(o), _klass(k), 3350 _interfaces(interfaces), 3351 _klass_is_exact(xk), 3352 _is_ptr_to_narrowoop(false), 3353 _is_ptr_to_narrowklass(false), 3354 _is_ptr_to_boxed_value(false), 3355 _instance_id(instance_id) { 3356 if (Compile::current()->eliminate_boxing() && (t == InstPtr) && 3357 (offset > 0) && xk && (k != 0) && k->is_instance_klass()) { 3358 _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset); 3359 } 3360 #ifdef _LP64 3361 if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) { 3362 if (_offset == oopDesc::klass_offset_in_bytes()) { 3363 _is_ptr_to_narrowklass = UseCompressedClassPointers; 3364 } else if (klass() == NULL) { 3365 // Array with unknown body type 3366 assert(this->isa_aryptr(), "only arrays without klass"); 3367 _is_ptr_to_narrowoop = UseCompressedOops; 3368 } else if (this->isa_aryptr()) { 3369 _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() && 3370 _offset != arrayOopDesc::length_offset_in_bytes()); 3371 } else if (klass()->is_instance_klass()) { 3372 ciInstanceKlass* ik = klass()->as_instance_klass(); 3373 if (this->isa_klassptr()) { 3374 // Perm objects don't use compressed references 3375 } else if (_offset == OffsetBot || _offset == OffsetTop) { 3376 // unsafe access 3377 _is_ptr_to_narrowoop = UseCompressedOops; 3378 } else { 3379 assert(this->isa_instptr(), "must be an instance ptr."); 3380 3381 if (klass() == ciEnv::current()->Class_klass() && 3382 (_offset == java_lang_Class::klass_offset() || 3383 _offset == java_lang_Class::array_klass_offset())) { 3384 // Special hidden fields from the Class. 3385 assert(this->isa_instptr(), "must be an instance ptr."); 3386 _is_ptr_to_narrowoop = false; 3387 } else if (klass() == ciEnv::current()->Class_klass() && 3388 _offset >= InstanceMirrorKlass::offset_of_static_fields()) { 3389 // Static fields 3390 ciField* field = NULL; 3391 if (const_oop() != NULL) { 3392 ciInstanceKlass* k = const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass(); 3393 field = k->get_field_by_offset(_offset, true); 3394 } 3395 if (field != NULL) { 3396 BasicType basic_elem_type = field->layout_type(); 3397 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type); 3398 } else { 3399 // unsafe access 3400 _is_ptr_to_narrowoop = UseCompressedOops; 3401 } 3402 } else { 3403 // Instance fields which contains a compressed oop references. 3404 ciField* field = ik->get_field_by_offset(_offset, false); 3405 if (field != NULL) { 3406 BasicType basic_elem_type = field->layout_type(); 3407 _is_ptr_to_narrowoop = UseCompressedOops && ::is_reference_type(basic_elem_type); 3408 } else if (klass()->equals(ciEnv::current()->Object_klass())) { 3409 // Compile::find_alias_type() cast exactness on all types to verify 3410 // that it does not affect alias type. 3411 _is_ptr_to_narrowoop = UseCompressedOops; 3412 } else { 3413 // Type for the copy start in LibraryCallKit::inline_native_clone(). 3414 _is_ptr_to_narrowoop = UseCompressedOops; 3415 } 3416 } 3417 } 3418 } 3419 } 3420 #endif 3421 } 3422 3423 //------------------------------make------------------------------------------- 3424 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id, 3425 const TypePtr* speculative, int inline_depth) { 3426 assert(ptr != Constant, "no constant generic pointers"); 3427 ciKlass* k = Compile::current()->env()->Object_klass(); 3428 bool xk = false; 3429 ciObject* o = NULL; 3430 return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, InterfaceSet(), xk, o, offset, instance_id, speculative, inline_depth))->hashcons(); 3431 } 3432 3433 3434 //------------------------------cast_to_ptr_type------------------------------- 3435 const TypeOopPtr* TypeOopPtr::cast_to_ptr_type(PTR ptr) const { 3436 assert(_base == OopPtr, "subclass must override cast_to_ptr_type"); 3437 if( ptr == _ptr ) return this; 3438 return make(ptr, _offset, _instance_id, _speculative, _inline_depth); 3439 } 3440 3441 //-----------------------------cast_to_instance_id---------------------------- 3442 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const { 3443 // There are no instances of a general oop. 3444 // Return self unchanged. 3445 return this; 3446 } 3447 3448 //-----------------------------cast_to_exactness------------------------------- 3449 const TypeOopPtr* TypeOopPtr::cast_to_exactness(bool klass_is_exact) const { 3450 // There is no such thing as an exact general oop. 3451 // Return self unchanged. 3452 return this; 3453 } 3454 3455 3456 //------------------------------as_klass_type---------------------------------- 3457 // Return the klass type corresponding to this instance or array type. 3458 // It is the type that is loaded from an object of this type. 3459 const TypeKlassPtr* TypeOopPtr::as_klass_type(bool try_for_exact) const { 3460 ShouldNotReachHere(); 3461 return NULL; 3462 } 3463 3464 //------------------------------meet------------------------------------------- 3465 // Compute the MEET of two types. It returns a new Type object. 3466 const Type *TypeOopPtr::xmeet_helper(const Type *t) const { 3467 // Perform a fast test for common case; meeting the same types together. 3468 if( this == t ) return this; // Meeting same type-rep? 3469 3470 // Current "this->_base" is OopPtr 3471 switch (t->base()) { // switch on original type 3472 3473 case Int: // Mixing ints & oops happens when javac 3474 case Long: // reuses local variables 3475 case FloatTop: 3476 case FloatCon: 3477 case FloatBot: 3478 case DoubleTop: 3479 case DoubleCon: 3480 case DoubleBot: 3481 case NarrowOop: 3482 case NarrowKlass: 3483 case Bottom: // Ye Olde Default 3484 return Type::BOTTOM; 3485 case Top: 3486 return this; 3487 3488 default: // All else is a mistake 3489 typerr(t); 3490 3491 case RawPtr: 3492 case MetadataPtr: 3493 case KlassPtr: 3494 case InstKlassPtr: 3495 case AryKlassPtr: 3496 return TypePtr::BOTTOM; // Oop meet raw is not well defined 3497 3498 case AnyPtr: { 3499 // Found an AnyPtr type vs self-OopPtr type 3500 const TypePtr *tp = t->is_ptr(); 3501 int offset = meet_offset(tp->offset()); 3502 PTR ptr = meet_ptr(tp->ptr()); 3503 const TypePtr* speculative = xmeet_speculative(tp); 3504 int depth = meet_inline_depth(tp->inline_depth()); 3505 switch (tp->ptr()) { 3506 case Null: 3507 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 3508 // else fall through: 3509 case TopPTR: 3510 case AnyNull: { 3511 int instance_id = meet_instance_id(InstanceTop); 3512 return make(ptr, offset, instance_id, speculative, depth); 3513 } 3514 case BotPTR: 3515 case NotNull: 3516 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 3517 default: typerr(t); 3518 } 3519 } 3520 3521 case OopPtr: { // Meeting to other OopPtrs 3522 const TypeOopPtr *tp = t->is_oopptr(); 3523 int instance_id = meet_instance_id(tp->instance_id()); 3524 const TypePtr* speculative = xmeet_speculative(tp); 3525 int depth = meet_inline_depth(tp->inline_depth()); 3526 return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth); 3527 } 3528 3529 case InstPtr: // For these, flip the call around to cut down 3530 case AryPtr: 3531 return t->xmeet(this); // Call in reverse direction 3532 3533 } // End of switch 3534 return this; // Return the double constant 3535 } 3536 3537 3538 //------------------------------xdual------------------------------------------ 3539 // Dual of a pure heap pointer. No relevant klass or oop information. 3540 const Type *TypeOopPtr::xdual() const { 3541 assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here"); 3542 assert(const_oop() == NULL, "no constants here"); 3543 return new TypeOopPtr(_base, dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); 3544 } 3545 3546 //--------------------------make_from_klass_common----------------------------- 3547 // Computes the element-type given a klass. 3548 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling) { 3549 if (klass->is_instance_klass()) { 3550 Compile* C = Compile::current(); 3551 Dependencies* deps = C->dependencies(); 3552 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity"); 3553 // Element is an instance 3554 bool klass_is_exact = false; 3555 if (klass->is_loaded()) { 3556 // Try to set klass_is_exact. 3557 ciInstanceKlass* ik = klass->as_instance_klass(); 3558 klass_is_exact = ik->is_final(); 3559 if (!klass_is_exact && klass_change 3560 && deps != NULL && UseUniqueSubclasses) { 3561 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 3562 if (sub != NULL) { 3563 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 3564 klass = ik = sub; 3565 klass_is_exact = sub->is_final(); 3566 } 3567 } 3568 if (!klass_is_exact && try_for_exact && deps != NULL && 3569 !ik->is_interface() && !ik->has_subklass()) { 3570 // Add a dependence; if concrete subclass added we need to recompile 3571 deps->assert_leaf_type(ik); 3572 klass_is_exact = true; 3573 } 3574 } 3575 const TypePtr::InterfaceSet interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling); 3576 return TypeInstPtr::make(TypePtr::BotPTR, klass, interfaces, klass_is_exact, NULL, 0); 3577 } else if (klass->is_obj_array_klass()) { 3578 // Element is an object array. Recursively call ourself. 3579 ciKlass* eklass = klass->as_obj_array_klass()->element_klass(); 3580 const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(eklass, false, try_for_exact, interface_handling); 3581 bool xk = etype->klass_is_exact(); 3582 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3583 // We used to pass NotNull in here, asserting that the sub-arrays 3584 // are all not-null. This is not true in generally, as code can 3585 // slam NULLs down in the subarrays. 3586 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, NULL, xk, 0); 3587 return arr; 3588 } else if (klass->is_type_array_klass()) { 3589 // Element is an typeArray 3590 const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type()); 3591 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS); 3592 // We used to pass NotNull in here, asserting that the array pointer 3593 // is not-null. That was not true in general. 3594 const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0); 3595 return arr; 3596 } else { 3597 ShouldNotReachHere(); 3598 return NULL; 3599 } 3600 } 3601 3602 //------------------------------make_from_constant----------------------------- 3603 // Make a java pointer from an oop constant 3604 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) { 3605 assert(!o->is_null_object(), "null object not yet handled here."); 3606 3607 const bool make_constant = require_constant || o->should_be_constant(); 3608 3609 ciKlass* klass = o->klass(); 3610 if (klass->is_instance_klass()) { 3611 // Element is an instance 3612 if (make_constant) { 3613 return TypeInstPtr::make(o); 3614 } else { 3615 return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0); 3616 } 3617 } else if (klass->is_obj_array_klass()) { 3618 // Element is an object array. Recursively call ourself. 3619 const TypeOopPtr *etype = 3620 TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass(), trust_interfaces); 3621 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); 3622 // We used to pass NotNull in here, asserting that the sub-arrays 3623 // are all not-null. This is not true in generally, as code can 3624 // slam NULLs down in the subarrays. 3625 if (make_constant) { 3626 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); 3627 } else { 3628 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); 3629 } 3630 } else if (klass->is_type_array_klass()) { 3631 // Element is an typeArray 3632 const Type* etype = 3633 (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type()); 3634 const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length())); 3635 // We used to pass NotNull in here, asserting that the array pointer 3636 // is not-null. That was not true in general. 3637 if (make_constant) { 3638 return TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0); 3639 } else { 3640 return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0); 3641 } 3642 } 3643 3644 fatal("unhandled object type"); 3645 return NULL; 3646 } 3647 3648 //------------------------------get_con---------------------------------------- 3649 intptr_t TypeOopPtr::get_con() const { 3650 assert( _ptr == Null || _ptr == Constant, "" ); 3651 assert( _offset >= 0, "" ); 3652 3653 if (_offset != 0) { 3654 // After being ported to the compiler interface, the compiler no longer 3655 // directly manipulates the addresses of oops. Rather, it only has a pointer 3656 // to a handle at compile time. This handle is embedded in the generated 3657 // code and dereferenced at the time the nmethod is made. Until that time, 3658 // it is not reasonable to do arithmetic with the addresses of oops (we don't 3659 // have access to the addresses!). This does not seem to currently happen, 3660 // but this assertion here is to help prevent its occurrence. 3661 tty->print_cr("Found oop constant with non-zero offset"); 3662 ShouldNotReachHere(); 3663 } 3664 3665 return (intptr_t)const_oop()->constant_encoding(); 3666 } 3667 3668 3669 //-----------------------------filter------------------------------------------ 3670 // Do not allow interface-vs.-noninterface joins to collapse to top. 3671 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const { 3672 3673 const Type* ft = join_helper(kills, include_speculative); 3674 const TypeInstPtr* ftip = ft->isa_instptr(); 3675 const TypeInstPtr* ktip = kills->isa_instptr(); 3676 3677 if (ft->empty()) { 3678 return Type::TOP; // Canonical empty value 3679 } 3680 3681 return ft; 3682 } 3683 3684 //------------------------------eq--------------------------------------------- 3685 // Structural equality check for Type representations 3686 bool TypeOopPtr::eq( const Type *t ) const { 3687 const TypeOopPtr *a = (const TypeOopPtr*)t; 3688 if (_klass_is_exact != a->_klass_is_exact || 3689 _instance_id != a->_instance_id) return false; 3690 ciObject* one = const_oop(); 3691 ciObject* two = a->const_oop(); 3692 if (one == NULL || two == NULL) { 3693 return (one == two) && TypePtr::eq(t); 3694 } else { 3695 return one->equals(two) && TypePtr::eq(t); 3696 } 3697 } 3698 3699 //------------------------------hash------------------------------------------- 3700 // Type-specific hashing function. 3701 int TypeOopPtr::hash(void) const { 3702 return 3703 java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact), 3704 java_add((jint)_instance_id, (jint)TypePtr::hash())); 3705 } 3706 3707 //------------------------------dump2------------------------------------------ 3708 #ifndef PRODUCT 3709 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 3710 st->print("oopptr:%s", ptr_msg[_ptr]); 3711 if( _klass_is_exact ) st->print(":exact"); 3712 if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop())); 3713 switch( _offset ) { 3714 case OffsetTop: st->print("+top"); break; 3715 case OffsetBot: st->print("+any"); break; 3716 case 0: break; 3717 default: st->print("+%d",_offset); break; 3718 } 3719 if (_instance_id == InstanceTop) 3720 st->print(",iid=top"); 3721 else if (_instance_id != InstanceBot) 3722 st->print(",iid=%d",_instance_id); 3723 3724 dump_inline_depth(st); 3725 dump_speculative(st); 3726 } 3727 #endif 3728 3729 //------------------------------singleton-------------------------------------- 3730 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 3731 // constants 3732 bool TypeOopPtr::singleton(void) const { 3733 // detune optimizer to not generate constant oop + constant offset as a constant! 3734 // TopPTR, Null, AnyNull, Constant are all singletons 3735 return (_offset == 0) && !below_centerline(_ptr); 3736 } 3737 3738 //------------------------------add_offset------------------------------------- 3739 const TypePtr* TypeOopPtr::add_offset(intptr_t offset) const { 3740 return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); 3741 } 3742 3743 const TypeOopPtr* TypeOopPtr::with_offset(intptr_t offset) const { 3744 return make(_ptr, offset, _instance_id, with_offset_speculative(offset), _inline_depth); 3745 } 3746 3747 /** 3748 * Return same type without a speculative part 3749 */ 3750 const TypeOopPtr* TypeOopPtr::remove_speculative() const { 3751 if (_speculative == NULL) { 3752 return this; 3753 } 3754 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 3755 return make(_ptr, _offset, _instance_id, NULL, _inline_depth); 3756 } 3757 3758 /** 3759 * Return same type but drop speculative part if we know we won't use 3760 * it 3761 */ 3762 const Type* TypeOopPtr::cleanup_speculative() const { 3763 // If the klass is exact and the ptr is not null then there's 3764 // nothing that the speculative type can help us with 3765 if (klass_is_exact() && !maybe_null()) { 3766 return remove_speculative(); 3767 } 3768 return TypePtr::cleanup_speculative(); 3769 } 3770 3771 /** 3772 * Return same type but with a different inline depth (used for speculation) 3773 * 3774 * @param depth depth to meet with 3775 */ 3776 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const { 3777 if (!UseInlineDepthForSpeculativeTypes) { 3778 return this; 3779 } 3780 return make(_ptr, _offset, _instance_id, _speculative, depth); 3781 } 3782 3783 //------------------------------with_instance_id-------------------------------- 3784 const TypePtr* TypeOopPtr::with_instance_id(int instance_id) const { 3785 assert(_instance_id != -1, "should be known"); 3786 return make(_ptr, _offset, instance_id, _speculative, _inline_depth); 3787 } 3788 3789 //------------------------------meet_instance_id-------------------------------- 3790 int TypeOopPtr::meet_instance_id( int instance_id ) const { 3791 // Either is 'TOP' instance? Return the other instance! 3792 if( _instance_id == InstanceTop ) return instance_id; 3793 if( instance_id == InstanceTop ) return _instance_id; 3794 // If either is different, return 'BOTTOM' instance 3795 if( _instance_id != instance_id ) return InstanceBot; 3796 return _instance_id; 3797 } 3798 3799 //------------------------------dual_instance_id-------------------------------- 3800 int TypeOopPtr::dual_instance_id( ) const { 3801 if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM 3802 if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP 3803 return _instance_id; // Map everything else into self 3804 } 3805 3806 3807 TypePtr::InterfaceSet TypeOopPtr::meet_interfaces(const TypeOopPtr* other) const { 3808 if (above_centerline(_ptr) && above_centerline(other->_ptr)) { 3809 return _interfaces.union_with(other->_interfaces); 3810 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) { 3811 return other->_interfaces; 3812 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) { 3813 return _interfaces; 3814 } 3815 return _interfaces.intersection_with(other->_interfaces); 3816 } 3817 3818 /** 3819 * Check whether new profiling would improve speculative type 3820 * 3821 * @param exact_kls class from profiling 3822 * @param inline_depth inlining depth of profile point 3823 * 3824 * @return true if type profile is valuable 3825 */ 3826 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const { 3827 // no way to improve an already exact type 3828 if (klass_is_exact()) { 3829 return false; 3830 } 3831 return TypePtr::would_improve_type(exact_kls, inline_depth); 3832 } 3833 3834 //============================================================================= 3835 // Convenience common pre-built types. 3836 const TypeInstPtr *TypeInstPtr::NOTNULL; 3837 const TypeInstPtr *TypeInstPtr::BOTTOM; 3838 const TypeInstPtr *TypeInstPtr::MIRROR; 3839 const TypeInstPtr *TypeInstPtr::MARK; 3840 const TypeInstPtr *TypeInstPtr::KLASS; 3841 3842 // Is there a single ciKlass* that can represent that type? 3843 ciKlass* TypeInstPtr::exact_klass_helper() const { 3844 if (_interfaces.empty()) { 3845 return _klass; 3846 } 3847 if (_klass != ciEnv::current()->Object_klass()) { 3848 ciKlass* k = _klass; 3849 const TypePtr::InterfaceSet interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces); 3850 if (_interfaces.eq(interfaces)) { 3851 return _klass; 3852 } 3853 return NULL; 3854 } 3855 return _interfaces.exact_klass(); 3856 } 3857 3858 //------------------------------TypeInstPtr------------------------------------- 3859 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, const InterfaceSet& interfaces, bool xk, ciObject* o, int off, 3860 int instance_id, const TypePtr* speculative, int inline_depth) 3861 : TypeOopPtr(InstPtr, ptr, k, interfaces, xk, o, off, instance_id, speculative, inline_depth) { 3862 assert(k == NULL || !k->is_loaded() || !k->is_interface(), "no interface here"); 3863 assert(k != NULL && 3864 (k->is_loaded() || o == NULL), 3865 "cannot have constants with non-loaded klass"); 3866 }; 3867 3868 //------------------------------make------------------------------------------- 3869 const TypeInstPtr *TypeInstPtr::make(PTR ptr, 3870 ciKlass* k, 3871 const InterfaceSet& interfaces, 3872 bool xk, 3873 ciObject* o, 3874 int offset, 3875 int instance_id, 3876 const TypePtr* speculative, 3877 int inline_depth) { 3878 assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance"); 3879 // Either const_oop() is NULL or else ptr is Constant 3880 assert( (!o && ptr != Constant) || (o && ptr == Constant), 3881 "constant pointers must have a value supplied" ); 3882 // Ptr is never Null 3883 assert( ptr != Null, "NULL pointers are not typed" ); 3884 3885 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 3886 if (ptr == Constant) { 3887 // Note: This case includes meta-object constants, such as methods. 3888 xk = true; 3889 } else if (k->is_loaded()) { 3890 ciInstanceKlass* ik = k->as_instance_klass(); 3891 if (!xk && ik->is_final()) xk = true; // no inexact final klass 3892 assert(!ik->is_interface(), "no interface here"); 3893 if (xk && ik->is_interface()) xk = false; // no exact interface 3894 } 3895 3896 // Now hash this baby 3897 TypeInstPtr *result = 3898 (TypeInstPtr*)(new TypeInstPtr(ptr, k, interfaces, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons(); 3899 3900 return result; 3901 } 3902 3903 TypePtr::InterfaceSet TypePtr::interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling) { 3904 if (k->is_instance_klass()) { 3905 if (k->is_loaded()) { 3906 if (k->is_interface() && interface_handling == ignore_interfaces) { 3907 assert(interface, "no interface expected"); 3908 k = ciEnv::current()->Object_klass(); 3909 InterfaceSet interfaces; 3910 return interfaces; 3911 } 3912 GrowableArray<ciInstanceKlass *> *k_interfaces = k->as_instance_klass()->transitive_interfaces(); 3913 InterfaceSet interfaces(k_interfaces); 3914 if (k->is_interface()) { 3915 assert(interface, "no interface expected"); 3916 k = ciEnv::current()->Object_klass(); 3917 } else { 3918 assert(klass, "no instance klass expected"); 3919 } 3920 return interfaces; 3921 } 3922 InterfaceSet interfaces; 3923 return interfaces; 3924 } 3925 assert(array, "no array expected"); 3926 assert(k->is_array_klass(), "Not an array?"); 3927 ciType* e = k->as_array_klass()->base_element_type(); 3928 if (e->is_loaded() && e->is_instance_klass() && e->as_instance_klass()->is_interface()) { 3929 if (interface_handling == ignore_interfaces) { 3930 k = ciObjArrayKlass::make(ciEnv::current()->Object_klass(), k->as_array_klass()->dimension()); 3931 } 3932 } 3933 return *TypeAryPtr::_array_interfaces; 3934 } 3935 3936 /** 3937 * Create constant type for a constant boxed value 3938 */ 3939 const Type* TypeInstPtr::get_const_boxed_value() const { 3940 assert(is_ptr_to_boxed_value(), "should be called only for boxed value"); 3941 assert((const_oop() != NULL), "should be called only for constant object"); 3942 ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset()); 3943 BasicType bt = constant.basic_type(); 3944 switch (bt) { 3945 case T_BOOLEAN: return TypeInt::make(constant.as_boolean()); 3946 case T_INT: return TypeInt::make(constant.as_int()); 3947 case T_CHAR: return TypeInt::make(constant.as_char()); 3948 case T_BYTE: return TypeInt::make(constant.as_byte()); 3949 case T_SHORT: return TypeInt::make(constant.as_short()); 3950 case T_FLOAT: return TypeF::make(constant.as_float()); 3951 case T_DOUBLE: return TypeD::make(constant.as_double()); 3952 case T_LONG: return TypeLong::make(constant.as_long()); 3953 default: break; 3954 } 3955 fatal("Invalid boxed value type '%s'", type2name(bt)); 3956 return NULL; 3957 } 3958 3959 //------------------------------cast_to_ptr_type------------------------------- 3960 const TypeInstPtr* TypeInstPtr::cast_to_ptr_type(PTR ptr) const { 3961 if( ptr == _ptr ) return this; 3962 // Reconstruct _sig info here since not a problem with later lazy 3963 // construction, _sig will show up on demand. 3964 return make(ptr, klass(), _interfaces, klass_is_exact(), ptr == Constant ? const_oop() : NULL, _offset, _instance_id, _speculative, _inline_depth); 3965 } 3966 3967 3968 //-----------------------------cast_to_exactness------------------------------- 3969 const TypeInstPtr* TypeInstPtr::cast_to_exactness(bool klass_is_exact) const { 3970 if( klass_is_exact == _klass_is_exact ) return this; 3971 if (!_klass->is_loaded()) return this; 3972 ciInstanceKlass* ik = _klass->as_instance_klass(); 3973 if( (ik->is_final() || _const_oop) ) return this; // cannot clear xk 3974 assert(!ik->is_interface(), "no interface here"); 3975 return make(ptr(), klass(), _interfaces, klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth); 3976 } 3977 3978 //-----------------------------cast_to_instance_id---------------------------- 3979 const TypeInstPtr* TypeInstPtr::cast_to_instance_id(int instance_id) const { 3980 if( instance_id == _instance_id ) return this; 3981 return make(_ptr, klass(), _interfaces, _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth); 3982 } 3983 3984 //------------------------------xmeet_unloaded--------------------------------- 3985 // Compute the MEET of two InstPtrs when at least one is unloaded. 3986 // Assume classes are different since called after check for same name/class-loader 3987 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst, const InterfaceSet& interfaces) const { 3988 int off = meet_offset(tinst->offset()); 3989 PTR ptr = meet_ptr(tinst->ptr()); 3990 int instance_id = meet_instance_id(tinst->instance_id()); 3991 const TypePtr* speculative = xmeet_speculative(tinst); 3992 int depth = meet_inline_depth(tinst->inline_depth()); 3993 3994 const TypeInstPtr *loaded = is_loaded() ? this : tinst; 3995 const TypeInstPtr *unloaded = is_loaded() ? tinst : this; 3996 if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) { 3997 // 3998 // Meet unloaded class with java/lang/Object 3999 // 4000 // Meet 4001 // | Unloaded Class 4002 // Object | TOP | AnyNull | Constant | NotNull | BOTTOM | 4003 // =================================================================== 4004 // TOP | ..........................Unloaded......................| 4005 // AnyNull | U-AN |................Unloaded......................| 4006 // Constant | ... O-NN .................................. | O-BOT | 4007 // NotNull | ... O-NN .................................. | O-BOT | 4008 // BOTTOM | ........................Object-BOTTOM ..................| 4009 // 4010 assert(loaded->ptr() != TypePtr::Null, "insanity check"); 4011 // 4012 if (loaded->ptr() == TypePtr::TopPTR) { return unloaded; } 4013 else if (loaded->ptr() == TypePtr::AnyNull) { return make(ptr, unloaded->klass(), interfaces, false, NULL, off, instance_id, speculative, depth); } 4014 else if (loaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM; } 4015 else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) { 4016 if (unloaded->ptr() == TypePtr::BotPTR) { return TypeInstPtr::BOTTOM; } 4017 else { return TypeInstPtr::NOTNULL; } 4018 } 4019 else if (unloaded->ptr() == TypePtr::TopPTR) { return unloaded; } 4020 4021 return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr(); 4022 } 4023 4024 // Both are unloaded, not the same class, not Object 4025 // Or meet unloaded with a different loaded class, not java/lang/Object 4026 if (ptr != TypePtr::BotPTR) { 4027 return TypeInstPtr::NOTNULL; 4028 } 4029 return TypeInstPtr::BOTTOM; 4030 } 4031 4032 4033 //------------------------------meet------------------------------------------- 4034 // Compute the MEET of two types. It returns a new Type object. 4035 const Type *TypeInstPtr::xmeet_helper(const Type *t) const { 4036 // Perform a fast test for common case; meeting the same types together. 4037 if( this == t ) return this; // Meeting same type-rep? 4038 4039 // Current "this->_base" is Pointer 4040 switch (t->base()) { // switch on original type 4041 4042 case Int: // Mixing ints & oops happens when javac 4043 case Long: // reuses local variables 4044 case FloatTop: 4045 case FloatCon: 4046 case FloatBot: 4047 case DoubleTop: 4048 case DoubleCon: 4049 case DoubleBot: 4050 case NarrowOop: 4051 case NarrowKlass: 4052 case Bottom: // Ye Olde Default 4053 return Type::BOTTOM; 4054 case Top: 4055 return this; 4056 4057 default: // All else is a mistake 4058 typerr(t); 4059 4060 case MetadataPtr: 4061 case KlassPtr: 4062 case InstKlassPtr: 4063 case AryKlassPtr: 4064 case RawPtr: return TypePtr::BOTTOM; 4065 4066 case AryPtr: { // All arrays inherit from Object class 4067 // Call in reverse direction to avoid duplication 4068 return t->is_aryptr()->xmeet_helper(this); 4069 } 4070 4071 case OopPtr: { // Meeting to OopPtrs 4072 // Found a OopPtr type vs self-InstPtr type 4073 const TypeOopPtr *tp = t->is_oopptr(); 4074 int offset = meet_offset(tp->offset()); 4075 PTR ptr = meet_ptr(tp->ptr()); 4076 switch (tp->ptr()) { 4077 case TopPTR: 4078 case AnyNull: { 4079 int instance_id = meet_instance_id(InstanceTop); 4080 const TypePtr* speculative = xmeet_speculative(tp); 4081 int depth = meet_inline_depth(tp->inline_depth()); 4082 return make(ptr, klass(), _interfaces, klass_is_exact(), 4083 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth); 4084 } 4085 case NotNull: 4086 case BotPTR: { 4087 int instance_id = meet_instance_id(tp->instance_id()); 4088 const TypePtr* speculative = xmeet_speculative(tp); 4089 int depth = meet_inline_depth(tp->inline_depth()); 4090 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); 4091 } 4092 default: typerr(t); 4093 } 4094 } 4095 4096 case AnyPtr: { // Meeting to AnyPtrs 4097 // Found an AnyPtr type vs self-InstPtr type 4098 const TypePtr *tp = t->is_ptr(); 4099 int offset = meet_offset(tp->offset()); 4100 PTR ptr = meet_ptr(tp->ptr()); 4101 int instance_id = meet_instance_id(InstanceTop); 4102 const TypePtr* speculative = xmeet_speculative(tp); 4103 int depth = meet_inline_depth(tp->inline_depth()); 4104 switch (tp->ptr()) { 4105 case Null: 4106 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4107 // else fall through to AnyNull 4108 case TopPTR: 4109 case AnyNull: { 4110 return make(ptr, klass(), _interfaces, klass_is_exact(), 4111 (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth); 4112 } 4113 case NotNull: 4114 case BotPTR: 4115 return TypePtr::make(AnyPtr, ptr, offset, speculative,depth); 4116 default: typerr(t); 4117 } 4118 } 4119 4120 /* 4121 A-top } 4122 / | \ } Tops 4123 B-top A-any C-top } 4124 | / | \ | } Any-nulls 4125 B-any | C-any } 4126 | | | 4127 B-con A-con C-con } constants; not comparable across classes 4128 | | | 4129 B-not | C-not } 4130 | \ | / | } not-nulls 4131 B-bot A-not C-bot } 4132 \ | / } Bottoms 4133 A-bot } 4134 */ 4135 4136 case InstPtr: { // Meeting 2 Oops? 4137 // Found an InstPtr sub-type vs self-InstPtr type 4138 const TypeInstPtr *tinst = t->is_instptr(); 4139 int off = meet_offset(tinst->offset()); 4140 PTR ptr = meet_ptr(tinst->ptr()); 4141 int instance_id = meet_instance_id(tinst->instance_id()); 4142 const TypePtr* speculative = xmeet_speculative(tinst); 4143 int depth = meet_inline_depth(tinst->inline_depth()); 4144 InterfaceSet interfaces = meet_interfaces(tinst); 4145 4146 ciKlass* tinst_klass = tinst->klass(); 4147 ciKlass* this_klass = klass(); 4148 4149 ciKlass* res_klass = NULL; 4150 bool res_xk = false; 4151 const Type* res; 4152 MeetResult kind = meet_instptr(ptr, interfaces, this, tinst, res_klass, res_xk); 4153 4154 if (kind == UNLOADED) { 4155 // One of these classes has not been loaded 4156 const TypeInstPtr* unloaded_meet = xmeet_unloaded(tinst, interfaces); 4157 #ifndef PRODUCT 4158 if (PrintOpto && Verbose) { 4159 tty->print("meet of unloaded classes resulted in: "); 4160 unloaded_meet->dump(); 4161 tty->cr(); 4162 tty->print(" this == "); 4163 dump(); 4164 tty->cr(); 4165 tty->print(" tinst == "); 4166 tinst->dump(); 4167 tty->cr(); 4168 } 4169 #endif 4170 res = unloaded_meet; 4171 } else { 4172 if (kind == NOT_SUBTYPE && instance_id > 0) { 4173 instance_id = InstanceBot; 4174 } else if (kind == LCA) { 4175 instance_id = InstanceBot; 4176 } 4177 ciObject* o = NULL; // Assume not constant when done 4178 ciObject* this_oop = const_oop(); 4179 ciObject* tinst_oop = tinst->const_oop(); 4180 if (ptr == Constant) { 4181 if (this_oop != NULL && tinst_oop != NULL && 4182 this_oop->equals(tinst_oop)) 4183 o = this_oop; 4184 else if (above_centerline(_ptr)) { 4185 assert(!tinst_klass->is_interface(), ""); 4186 o = tinst_oop; 4187 } else if (above_centerline(tinst->_ptr)) { 4188 assert(!this_klass->is_interface(), ""); 4189 o = this_oop; 4190 } else 4191 ptr = NotNull; 4192 } 4193 res = make(ptr, res_klass, interfaces, res_xk, o, off, instance_id, speculative, depth); 4194 } 4195 4196 return res; 4197 4198 } // End of case InstPtr 4199 4200 } // End of switch 4201 return this; // Return the double constant 4202 } 4203 4204 template<class T> TypePtr::MeetResult TypePtr::meet_instptr(PTR& ptr, InterfaceSet& interfaces, const T* this_type, const T* other_type, 4205 ciKlass*& res_klass, bool& res_xk) { 4206 ciKlass* this_klass = this_type->klass(); 4207 ciKlass* other_klass = other_type->klass(); 4208 bool this_xk = this_type->klass_is_exact(); 4209 bool other_xk = other_type->klass_is_exact(); 4210 PTR this_ptr = this_type->ptr(); 4211 PTR other_ptr = other_type->ptr(); 4212 InterfaceSet this_interfaces = this_type->interfaces(); 4213 InterfaceSet other_interfaces = other_type->interfaces(); 4214 // Check for easy case; klasses are equal (and perhaps not loaded!) 4215 // If we have constants, then we created oops so classes are loaded 4216 // and we can handle the constants further down. This case handles 4217 // both-not-loaded or both-loaded classes 4218 if (ptr != Constant && this_klass->equals(other_klass) && this_xk == other_xk) { 4219 res_klass = this_klass; 4220 res_xk = this_xk; 4221 return QUICK; 4222 } 4223 4224 // Classes require inspection in the Java klass hierarchy. Must be loaded. 4225 if (!other_klass->is_loaded() || !this_klass->is_loaded()) { 4226 return UNLOADED; 4227 } 4228 4229 // !!! Here's how the symmetry requirement breaks down into invariants: 4230 // If we split one up & one down AND they subtype, take the down man. 4231 // If we split one up & one down AND they do NOT subtype, "fall hard". 4232 // If both are up and they subtype, take the subtype class. 4233 // If both are up and they do NOT subtype, "fall hard". 4234 // If both are down and they subtype, take the supertype class. 4235 // If both are down and they do NOT subtype, "fall hard". 4236 // Constants treated as down. 4237 4238 // Now, reorder the above list; observe that both-down+subtype is also 4239 // "fall hard"; "fall hard" becomes the default case: 4240 // If we split one up & one down AND they subtype, take the down man. 4241 // If both are up and they subtype, take the subtype class. 4242 4243 // If both are down and they subtype, "fall hard". 4244 // If both are down and they do NOT subtype, "fall hard". 4245 // If both are up and they do NOT subtype, "fall hard". 4246 // If we split one up & one down AND they do NOT subtype, "fall hard". 4247 4248 // If a proper subtype is exact, and we return it, we return it exactly. 4249 // If a proper supertype is exact, there can be no subtyping relationship! 4250 // If both types are equal to the subtype, exactness is and-ed below the 4251 // centerline and or-ed above it. (N.B. Constants are always exact.) 4252 4253 // Check for subtyping: 4254 const T* subtype = NULL; 4255 bool subtype_exact = false; 4256 InterfaceSet subtype_interfaces; 4257 4258 if (this_type->is_same_java_type_as(other_type)) { 4259 subtype = this_type; 4260 subtype_exact = below_centerline(ptr) ? (this_xk && other_xk) : (this_xk || other_xk); 4261 } else if (!other_xk && this_type->is_meet_subtype_of(other_type)) { 4262 subtype = this_type; // Pick subtyping class 4263 subtype_exact = this_xk; 4264 } else if(!this_xk && other_type->is_meet_subtype_of(this_type)) { 4265 subtype = other_type; // Pick subtyping class 4266 subtype_exact = other_xk; 4267 } 4268 4269 if (subtype) { 4270 if (above_centerline(ptr)) { // both are up? 4271 this_type = other_type = subtype; 4272 this_xk = other_xk = subtype_exact; 4273 } else if (above_centerline(this_ptr) && !above_centerline(other_ptr)) { 4274 this_type = other_type; // tinst is down; keep down man 4275 this_xk = other_xk; 4276 } else if (above_centerline(other_ptr) && !above_centerline(this_ptr)) { 4277 other_type = this_type; // this is down; keep down man 4278 other_xk = this_xk; 4279 } else { 4280 this_xk = subtype_exact; // either they are equal, or we'll do an LCA 4281 } 4282 } 4283 4284 // Check for classes now being equal 4285 if (this_type->is_same_java_type_as(other_type)) { 4286 // If the klasses are equal, the constants may still differ. Fall to 4287 // NotNull if they do (neither constant is NULL; that is a special case 4288 // handled elsewhere). 4289 res_klass = this_type->klass(); 4290 res_xk = this_xk; 4291 return SUBTYPE; 4292 } // Else classes are not equal 4293 4294 // Since klasses are different, we require a LCA in the Java 4295 // class hierarchy - which means we have to fall to at least NotNull. 4296 if (ptr == TopPTR || ptr == AnyNull || ptr == Constant) { 4297 ptr = NotNull; 4298 } 4299 4300 interfaces = this_interfaces.intersection_with(other_interfaces); 4301 4302 // Now we find the LCA of Java classes 4303 ciKlass* k = this_klass->least_common_ancestor(other_klass); 4304 4305 res_klass = k; 4306 res_xk = false; 4307 4308 return LCA; 4309 } 4310 4311 //------------------------java_mirror_type-------------------------------------- 4312 ciType* TypeInstPtr::java_mirror_type() const { 4313 // must be a singleton type 4314 if( const_oop() == NULL ) return NULL; 4315 4316 // must be of type java.lang.Class 4317 if( klass() != ciEnv::current()->Class_klass() ) return NULL; 4318 4319 return const_oop()->as_instance()->java_mirror_type(); 4320 } 4321 4322 4323 //------------------------------xdual------------------------------------------ 4324 // Dual: do NOT dual on klasses. This means I do NOT understand the Java 4325 // inheritance mechanism. 4326 const Type *TypeInstPtr::xdual() const { 4327 return new TypeInstPtr(dual_ptr(), klass(), _interfaces, klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth()); 4328 } 4329 4330 //------------------------------eq--------------------------------------------- 4331 // Structural equality check for Type representations 4332 bool TypeInstPtr::eq( const Type *t ) const { 4333 const TypeInstPtr *p = t->is_instptr(); 4334 return 4335 klass()->equals(p->klass()) && 4336 _interfaces.eq(p->_interfaces) && 4337 TypeOopPtr::eq(p); // Check sub-type stuff 4338 } 4339 4340 //------------------------------hash------------------------------------------- 4341 // Type-specific hashing function. 4342 int TypeInstPtr::hash(void) const { 4343 int hash = java_add(java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash()), _interfaces.hash()); 4344 return hash; 4345 } 4346 4347 bool TypeInstPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4348 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 4349 } 4350 4351 4352 bool TypeInstPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const { 4353 return TypePtr::is_same_java_type_as_helper_for_instance(this, other); 4354 } 4355 4356 bool TypeInstPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4357 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 4358 } 4359 4360 4361 //------------------------------dump2------------------------------------------ 4362 // Dump oop Type 4363 #ifndef PRODUCT 4364 void TypeInstPtr::dump2(Dict &d, uint depth, outputStream* st) const { 4365 // Print the name of the klass. 4366 klass()->print_name_on(st); 4367 _interfaces.dump(st); 4368 4369 switch( _ptr ) { 4370 case Constant: 4371 if (WizardMode || Verbose) { 4372 ResourceMark rm; 4373 stringStream ss; 4374 4375 st->print(" "); 4376 const_oop()->print_oop(&ss); 4377 // 'const_oop->print_oop()' may emit newlines('\n') into ss. 4378 // suppress newlines from it so -XX:+Verbose -XX:+PrintIdeal dumps one-liner for each node. 4379 char* buf = ss.as_string(/* c_heap= */false); 4380 StringUtils::replace_no_expand(buf, "\n", ""); 4381 st->print_raw(buf); 4382 } 4383 case BotPTR: 4384 if (!WizardMode && !Verbose) { 4385 if( _klass_is_exact ) st->print(":exact"); 4386 break; 4387 } 4388 case TopPTR: 4389 case AnyNull: 4390 case NotNull: 4391 st->print(":%s", ptr_msg[_ptr]); 4392 if( _klass_is_exact ) st->print(":exact"); 4393 break; 4394 default: 4395 break; 4396 } 4397 4398 if( _offset ) { // Dump offset, if any 4399 if( _offset == OffsetBot ) st->print("+any"); 4400 else if( _offset == OffsetTop ) st->print("+unknown"); 4401 else st->print("+%d", _offset); 4402 } 4403 4404 st->print(" *"); 4405 if (_instance_id == InstanceTop) 4406 st->print(",iid=top"); 4407 else if (_instance_id != InstanceBot) 4408 st->print(",iid=%d",_instance_id); 4409 4410 dump_inline_depth(st); 4411 dump_speculative(st); 4412 } 4413 #endif 4414 4415 //------------------------------add_offset------------------------------------- 4416 const TypePtr* TypeInstPtr::add_offset(intptr_t offset) const { 4417 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), xadd_offset(offset), 4418 _instance_id, add_offset_speculative(offset), _inline_depth); 4419 } 4420 4421 const TypeInstPtr* TypeInstPtr::with_offset(intptr_t offset) const { 4422 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), offset, 4423 _instance_id, with_offset_speculative(offset), _inline_depth); 4424 } 4425 4426 const TypeInstPtr* TypeInstPtr::remove_speculative() const { 4427 if (_speculative == NULL) { 4428 return this; 4429 } 4430 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 4431 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, 4432 _instance_id, NULL, _inline_depth); 4433 } 4434 4435 const TypePtr* TypeInstPtr::with_inline_depth(int depth) const { 4436 if (!UseInlineDepthForSpeculativeTypes) { 4437 return this; 4438 } 4439 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth); 4440 } 4441 4442 const TypePtr* TypeInstPtr::with_instance_id(int instance_id) const { 4443 assert(is_known_instance(), "should be known"); 4444 return make(_ptr, klass(), _interfaces, klass_is_exact(), const_oop(), _offset, instance_id, _speculative, _inline_depth); 4445 } 4446 4447 const TypeKlassPtr* TypeInstPtr::as_klass_type(bool try_for_exact) const { 4448 bool xk = klass_is_exact(); 4449 ciInstanceKlass* ik = klass()->as_instance_klass(); 4450 if (try_for_exact && !xk && !ik->has_subklass() && !ik->is_final()) { 4451 ciKlass* k = ik; 4452 TypePtr::InterfaceSet interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces); 4453 assert(k == ik, ""); 4454 if (interfaces.eq(_interfaces)) { 4455 Compile *C = Compile::current(); 4456 Dependencies* deps = C->dependencies(); 4457 deps->assert_leaf_type(ik); 4458 xk = true; 4459 } 4460 } 4461 return TypeInstKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, klass(), _interfaces, 0); 4462 } 4463 4464 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk) { 4465 static_assert(std::is_base_of<T2, T1>::value, ""); 4466 4467 if (!this_one->is_instance_type(other)) { 4468 return false; 4469 } 4470 4471 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces.empty()) { 4472 return true; 4473 } 4474 4475 return this_one->klass()->is_subtype_of(other->klass()) && 4476 (!this_xk || this_one->_interfaces.contains(other->_interfaces)); 4477 } 4478 4479 4480 bool TypeInstPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const { 4481 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk); 4482 } 4483 4484 template <class T1, class T2> bool TypePtr::is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk) { 4485 static_assert(std::is_base_of<T2, T1>::value, ""); 4486 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces.empty()) { 4487 return true; 4488 } 4489 4490 if (this_one->is_instance_type(other)) { 4491 return other->klass() == ciEnv::current()->Object_klass() && this_one->_interfaces.contains(other->_interfaces); 4492 } 4493 4494 int dummy; 4495 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 4496 if (this_top_or_bottom) { 4497 return false; 4498 } 4499 4500 const T1* other_ary = this_one->is_array_type(other); 4501 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 4502 const TypePtr* this_elem = this_one->elem()->make_ptr(); 4503 if (other_elem != NULL && this_elem != NULL) { 4504 return this_one->is_reference_type(this_elem)->is_meet_subtype_of_helper(this_one->is_reference_type(other_elem), this_xk, other_xk); 4505 } 4506 4507 if (other_elem == NULL && this_elem == NULL) { 4508 return this_one->_klass->is_subtype_of(other->_klass); 4509 } 4510 4511 return false; 4512 } 4513 4514 bool TypeAryPtr::is_meet_subtype_of_helper(const TypeOopPtr *other, bool this_xk, bool other_xk) const { 4515 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk); 4516 } 4517 4518 bool TypeInstKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const { 4519 return TypePtr::is_meet_subtype_of_helper_for_instance(this, other, this_xk, other_xk); 4520 } 4521 4522 bool TypeAryKlassPtr::is_meet_subtype_of_helper(const TypeKlassPtr *other, bool this_xk, bool other_xk) const { 4523 return TypePtr::is_meet_subtype_of_helper_for_array(this, other, this_xk, other_xk); 4524 } 4525 4526 //============================================================================= 4527 // Convenience common pre-built types. 4528 const TypeAryPtr *TypeAryPtr::RANGE; 4529 const TypeAryPtr *TypeAryPtr::OOPS; 4530 const TypeAryPtr *TypeAryPtr::NARROWOOPS; 4531 const TypeAryPtr *TypeAryPtr::BYTES; 4532 const TypeAryPtr *TypeAryPtr::SHORTS; 4533 const TypeAryPtr *TypeAryPtr::CHARS; 4534 const TypeAryPtr *TypeAryPtr::INTS; 4535 const TypeAryPtr *TypeAryPtr::LONGS; 4536 const TypeAryPtr *TypeAryPtr::FLOATS; 4537 const TypeAryPtr *TypeAryPtr::DOUBLES; 4538 4539 //------------------------------make------------------------------------------- 4540 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, 4541 int instance_id, const TypePtr* speculative, int inline_depth) { 4542 assert(!(k == NULL && ary->_elem->isa_int()), 4543 "integral arrays must be pre-equipped with a class"); 4544 if (!xk) xk = ary->ary_must_be_exact(); 4545 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4546 if (k != NULL && k->is_loaded() && k->is_obj_array_klass() && 4547 k->as_obj_array_klass()->base_element_klass()->is_interface()) { 4548 k = NULL; 4549 } 4550 return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons(); 4551 } 4552 4553 //------------------------------make------------------------------------------- 4554 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, 4555 int instance_id, const TypePtr* speculative, int inline_depth, 4556 bool is_autobox_cache) { 4557 assert(!(k == NULL && ary->_elem->isa_int()), 4558 "integral arrays must be pre-equipped with a class"); 4559 assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" ); 4560 if (!xk) xk = (o != NULL) || ary->ary_must_be_exact(); 4561 assert(instance_id <= 0 || xk, "instances are always exactly typed"); 4562 if (k != NULL && k->is_loaded() && k->is_obj_array_klass() && 4563 k->as_obj_array_klass()->base_element_klass()->is_interface()) { 4564 k = NULL; 4565 } 4566 return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons(); 4567 } 4568 4569 //------------------------------cast_to_ptr_type------------------------------- 4570 const TypeAryPtr* TypeAryPtr::cast_to_ptr_type(PTR ptr) const { 4571 if( ptr == _ptr ) return this; 4572 return make(ptr, ptr == Constant ? const_oop() : NULL, _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); 4573 } 4574 4575 4576 //-----------------------------cast_to_exactness------------------------------- 4577 const TypeAryPtr* TypeAryPtr::cast_to_exactness(bool klass_is_exact) const { 4578 if( klass_is_exact == _klass_is_exact ) return this; 4579 if (_ary->ary_must_be_exact()) return this; // cannot clear xk 4580 return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth); 4581 } 4582 4583 //-----------------------------cast_to_instance_id---------------------------- 4584 const TypeAryPtr* TypeAryPtr::cast_to_instance_id(int instance_id) const { 4585 if( instance_id == _instance_id ) return this; 4586 return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth); 4587 } 4588 4589 4590 //-----------------------------max_array_length------------------------------- 4591 // A wrapper around arrayOopDesc::max_array_length(etype) with some input normalization. 4592 jint TypeAryPtr::max_array_length(BasicType etype) { 4593 if (!is_java_primitive(etype) && !::is_reference_type(etype)) { 4594 if (etype == T_NARROWOOP) { 4595 etype = T_OBJECT; 4596 } else if (etype == T_ILLEGAL) { // bottom[] 4597 etype = T_BYTE; // will produce conservatively high value 4598 } else { 4599 fatal("not an element type: %s", type2name(etype)); 4600 } 4601 } 4602 return arrayOopDesc::max_array_length(etype); 4603 } 4604 4605 //-----------------------------narrow_size_type------------------------------- 4606 // Narrow the given size type to the index range for the given array base type. 4607 // Return NULL if the resulting int type becomes empty. 4608 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const { 4609 jint hi = size->_hi; 4610 jint lo = size->_lo; 4611 jint min_lo = 0; 4612 jint max_hi = max_array_length(elem()->basic_type()); 4613 //if (index_not_size) --max_hi; // type of a valid array index, FTR 4614 bool chg = false; 4615 if (lo < min_lo) { 4616 lo = min_lo; 4617 if (size->is_con()) { 4618 hi = lo; 4619 } 4620 chg = true; 4621 } 4622 if (hi > max_hi) { 4623 hi = max_hi; 4624 if (size->is_con()) { 4625 lo = hi; 4626 } 4627 chg = true; 4628 } 4629 // Negative length arrays will produce weird intermediate dead fast-path code 4630 if (lo > hi) 4631 return TypeInt::ZERO; 4632 if (!chg) 4633 return size; 4634 return TypeInt::make(lo, hi, Type::WidenMin); 4635 } 4636 4637 //-------------------------------cast_to_size---------------------------------- 4638 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const { 4639 assert(new_size != NULL, ""); 4640 new_size = narrow_size_type(new_size); 4641 if (new_size == size()) return this; 4642 const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable()); 4643 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); 4644 } 4645 4646 //------------------------------cast_to_stable--------------------------------- 4647 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const { 4648 if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable())) 4649 return this; 4650 4651 const Type* elem = this->elem(); 4652 const TypePtr* elem_ptr = elem->make_ptr(); 4653 4654 if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) { 4655 // If this is widened from a narrow oop, TypeAry::make will re-narrow it. 4656 elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1); 4657 } 4658 4659 const TypeAry* new_ary = TypeAry::make(elem, size(), stable); 4660 4661 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth); 4662 } 4663 4664 //-----------------------------stable_dimension-------------------------------- 4665 int TypeAryPtr::stable_dimension() const { 4666 if (!is_stable()) return 0; 4667 int dim = 1; 4668 const TypePtr* elem_ptr = elem()->make_ptr(); 4669 if (elem_ptr != NULL && elem_ptr->isa_aryptr()) 4670 dim += elem_ptr->is_aryptr()->stable_dimension(); 4671 return dim; 4672 } 4673 4674 //----------------------cast_to_autobox_cache----------------------------------- 4675 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache() const { 4676 if (is_autobox_cache()) return this; 4677 const TypeOopPtr* etype = elem()->make_oopptr(); 4678 if (etype == NULL) return this; 4679 // The pointers in the autobox arrays are always non-null. 4680 etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr(); 4681 const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable()); 4682 return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, /*is_autobox_cache=*/true); 4683 } 4684 4685 //------------------------------eq--------------------------------------------- 4686 // Structural equality check for Type representations 4687 bool TypeAryPtr::eq( const Type *t ) const { 4688 const TypeAryPtr *p = t->is_aryptr(); 4689 return 4690 _ary == p->_ary && // Check array 4691 TypeOopPtr::eq(p); // Check sub-parts 4692 } 4693 4694 //------------------------------hash------------------------------------------- 4695 // Type-specific hashing function. 4696 int TypeAryPtr::hash(void) const { 4697 return (intptr_t)_ary + TypeOopPtr::hash(); 4698 } 4699 4700 bool TypeAryPtr::is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4701 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 4702 } 4703 4704 bool TypeAryPtr::is_same_java_type_as_helper(const TypeOopPtr* other) const { 4705 return TypePtr::is_same_java_type_as_helper_for_array(this, other); 4706 } 4707 4708 bool TypeAryPtr::maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { 4709 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 4710 } 4711 //------------------------------meet------------------------------------------- 4712 // Compute the MEET of two types. It returns a new Type object. 4713 const Type *TypeAryPtr::xmeet_helper(const Type *t) const { 4714 // Perform a fast test for common case; meeting the same types together. 4715 if( this == t ) return this; // Meeting same type-rep? 4716 // Current "this->_base" is Pointer 4717 switch (t->base()) { // switch on original type 4718 4719 // Mixing ints & oops happens when javac reuses local variables 4720 case Int: 4721 case Long: 4722 case FloatTop: 4723 case FloatCon: 4724 case FloatBot: 4725 case DoubleTop: 4726 case DoubleCon: 4727 case DoubleBot: 4728 case NarrowOop: 4729 case NarrowKlass: 4730 case Bottom: // Ye Olde Default 4731 return Type::BOTTOM; 4732 case Top: 4733 return this; 4734 4735 default: // All else is a mistake 4736 typerr(t); 4737 4738 case OopPtr: { // Meeting to OopPtrs 4739 // Found a OopPtr type vs self-AryPtr type 4740 const TypeOopPtr *tp = t->is_oopptr(); 4741 int offset = meet_offset(tp->offset()); 4742 PTR ptr = meet_ptr(tp->ptr()); 4743 int depth = meet_inline_depth(tp->inline_depth()); 4744 const TypePtr* speculative = xmeet_speculative(tp); 4745 switch (tp->ptr()) { 4746 case TopPTR: 4747 case AnyNull: { 4748 int instance_id = meet_instance_id(InstanceTop); 4749 return make(ptr, (ptr == Constant ? const_oop() : NULL), 4750 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 4751 } 4752 case BotPTR: 4753 case NotNull: { 4754 int instance_id = meet_instance_id(tp->instance_id()); 4755 return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth); 4756 } 4757 default: ShouldNotReachHere(); 4758 } 4759 } 4760 4761 case AnyPtr: { // Meeting two AnyPtrs 4762 // Found an AnyPtr type vs self-AryPtr type 4763 const TypePtr *tp = t->is_ptr(); 4764 int offset = meet_offset(tp->offset()); 4765 PTR ptr = meet_ptr(tp->ptr()); 4766 const TypePtr* speculative = xmeet_speculative(tp); 4767 int depth = meet_inline_depth(tp->inline_depth()); 4768 switch (tp->ptr()) { 4769 case TopPTR: 4770 return this; 4771 case BotPTR: 4772 case NotNull: 4773 return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4774 case Null: 4775 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth); 4776 // else fall through to AnyNull 4777 case AnyNull: { 4778 int instance_id = meet_instance_id(InstanceTop); 4779 return make(ptr, (ptr == Constant ? const_oop() : NULL), 4780 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 4781 } 4782 default: ShouldNotReachHere(); 4783 } 4784 } 4785 4786 case MetadataPtr: 4787 case KlassPtr: 4788 case InstKlassPtr: 4789 case AryKlassPtr: 4790 case RawPtr: return TypePtr::BOTTOM; 4791 4792 case AryPtr: { // Meeting 2 references? 4793 const TypeAryPtr *tap = t->is_aryptr(); 4794 int off = meet_offset(tap->offset()); 4795 const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary(); 4796 PTR ptr = meet_ptr(tap->ptr()); 4797 int instance_id = meet_instance_id(tap->instance_id()); 4798 const TypePtr* speculative = xmeet_speculative(tap); 4799 int depth = meet_inline_depth(tap->inline_depth()); 4800 4801 ciKlass* res_klass = NULL; 4802 bool res_xk = false; 4803 const Type* elem = tary->_elem; 4804 if (meet_aryptr(ptr, elem, this, tap, res_klass, res_xk) == NOT_SUBTYPE) { 4805 instance_id = InstanceBot; 4806 } 4807 4808 ciObject* o = NULL; // Assume not constant when done 4809 ciObject* this_oop = const_oop(); 4810 ciObject* tap_oop = tap->const_oop(); 4811 if (ptr == Constant) { 4812 if (this_oop != NULL && tap_oop != NULL && 4813 this_oop->equals(tap_oop)) { 4814 o = tap_oop; 4815 } else if (above_centerline(_ptr)) { 4816 o = tap_oop; 4817 } else if (above_centerline(tap->_ptr)) { 4818 o = this_oop; 4819 } else { 4820 ptr = NotNull; 4821 } 4822 } 4823 return make(ptr, o, TypeAry::make(elem, tary->_size, tary->_stable), res_klass, res_xk, off, instance_id, speculative, depth); 4824 } 4825 4826 // All arrays inherit from Object class 4827 case InstPtr: { 4828 const TypeInstPtr *tp = t->is_instptr(); 4829 int offset = meet_offset(tp->offset()); 4830 PTR ptr = meet_ptr(tp->ptr()); 4831 int instance_id = meet_instance_id(tp->instance_id()); 4832 const TypePtr* speculative = xmeet_speculative(tp); 4833 int depth = meet_inline_depth(tp->inline_depth()); 4834 InterfaceSet interfaces = meet_interfaces(tp); 4835 InterfaceSet tp_interfaces = tp->_interfaces; 4836 InterfaceSet this_interfaces = _interfaces; 4837 4838 switch (ptr) { 4839 case TopPTR: 4840 case AnyNull: // Fall 'down' to dual of object klass 4841 // For instances when a subclass meets a superclass we fall 4842 // below the centerline when the superclass is exact. We need to 4843 // do the same here. 4844 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces.contains(tp_interfaces) && !tp->klass_is_exact()) { 4845 return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 4846 } else { 4847 // cannot subclass, so the meet has to fall badly below the centerline 4848 ptr = NotNull; 4849 instance_id = InstanceBot; 4850 interfaces = this_interfaces.intersection_with(tp_interfaces); 4851 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, NULL,offset, instance_id, speculative, depth); 4852 } 4853 case Constant: 4854 case NotNull: 4855 case BotPTR: // Fall down to object klass 4856 // LCA is object_klass, but if we subclass from the top we can do better 4857 if (above_centerline(tp->ptr())) { 4858 // If 'tp' is above the centerline and it is Object class 4859 // then we can subclass in the Java class hierarchy. 4860 // For instances when a subclass meets a superclass we fall 4861 // below the centerline when the superclass is exact. We need 4862 // to do the same here. 4863 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces.contains(tp_interfaces) && !tp->klass_is_exact()) { 4864 // that is, my array type is a subtype of 'tp' klass 4865 return make(ptr, (ptr == Constant ? const_oop() : NULL), 4866 _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth); 4867 } 4868 } 4869 // The other case cannot happen, since t cannot be a subtype of an array. 4870 // The meet falls down to Object class below centerline. 4871 if (ptr == Constant) { 4872 ptr = NotNull; 4873 } 4874 if (instance_id > 0) { 4875 instance_id = InstanceBot; 4876 } 4877 interfaces = this_interfaces.intersection_with(tp_interfaces); 4878 return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, false, NULL, offset, instance_id, speculative, depth); 4879 default: typerr(t); 4880 } 4881 } 4882 } 4883 return this; // Lint noise 4884 } 4885 4886 4887 template<class T> TypePtr::MeetResult TypePtr::meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, 4888 const T* other_ary, ciKlass*& res_klass, bool& res_xk) { 4889 int dummy; 4890 bool this_top_or_bottom = (this_ary->base_element_type(dummy) == Type::TOP || this_ary->base_element_type(dummy) == Type::BOTTOM); 4891 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 4892 ciKlass* this_klass = this_ary->klass(); 4893 ciKlass* other_klass = other_ary->klass(); 4894 bool this_xk = this_ary->klass_is_exact(); 4895 bool other_xk = other_ary->klass_is_exact(); 4896 PTR this_ptr = this_ary->ptr(); 4897 PTR other_ptr = other_ary->ptr(); 4898 res_klass = NULL; 4899 MeetResult result = SUBTYPE; 4900 if (elem->isa_int()) { 4901 // Integral array element types have irrelevant lattice relations. 4902 // It is the klass that determines array layout, not the element type. 4903 if (this_top_or_bottom) 4904 res_klass = other_klass; 4905 else if (other_top_or_bottom || other_klass == this_klass) { 4906 res_klass = this_klass; 4907 } else { 4908 // Something like byte[int+] meets char[int+]. 4909 // This must fall to bottom, not (int[-128..65535])[int+]. 4910 // instance_id = InstanceBot; 4911 elem = Type::BOTTOM; 4912 result = NOT_SUBTYPE; 4913 } 4914 } else {// Non integral arrays. 4915 // Must fall to bottom if exact klasses in upper lattice 4916 // are not equal or super klass is exact. 4917 if ((above_centerline(ptr) || ptr == Constant) && !this_ary->is_same_java_type_as(other_ary) && 4918 // meet with top[] and bottom[] are processed further down: 4919 !this_top_or_bottom && !other_top_or_bottom && 4920 // both are exact and not equal: 4921 ((other_xk && this_xk) || 4922 // 'tap' is exact and super or unrelated: 4923 (other_xk && !other_ary->is_meet_subtype_of(this_ary)) || 4924 // 'this' is exact and super or unrelated: 4925 (this_xk && !this_ary->is_meet_subtype_of(other_ary)))) { 4926 if (above_centerline(ptr) || (elem->make_ptr() && above_centerline(elem->make_ptr()->_ptr))) { 4927 elem = Type::BOTTOM; 4928 } 4929 ptr = NotNull; 4930 res_xk = false; 4931 return NOT_SUBTYPE; 4932 } 4933 } 4934 4935 res_xk = false; 4936 switch (other_ptr) { 4937 case AnyNull: 4938 case TopPTR: 4939 // Compute new klass on demand, do not use tap->_klass 4940 if (below_centerline(this_ptr)) { 4941 res_xk = this_xk; 4942 } else { 4943 res_xk = (other_xk || this_xk); 4944 } 4945 return result; 4946 case Constant: { 4947 if (this_ptr == Constant) { 4948 res_xk = true; 4949 } else if(above_centerline(this_ptr)) { 4950 res_xk = true; 4951 } else { 4952 // Only precise for identical arrays 4953 res_xk = this_xk && (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); 4954 } 4955 return result; 4956 } 4957 case NotNull: 4958 case BotPTR: 4959 // Compute new klass on demand, do not use tap->_klass 4960 if (above_centerline(this_ptr)) { 4961 res_xk = other_xk; 4962 } else { 4963 res_xk = (other_xk && this_xk) && 4964 (this_ary->is_same_java_type_as(other_ary) || (this_top_or_bottom && other_top_or_bottom)); // Only precise for identical arrays 4965 } 4966 return result; 4967 default: { 4968 ShouldNotReachHere(); 4969 return result; 4970 } 4971 } 4972 return result; 4973 } 4974 4975 4976 //------------------------------xdual------------------------------------------ 4977 // Dual: compute field-by-field dual 4978 const Type *TypeAryPtr::xdual() const { 4979 return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth()); 4980 } 4981 4982 //------------------------------dump2------------------------------------------ 4983 #ifndef PRODUCT 4984 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 4985 _ary->dump2(d,depth,st); 4986 _interfaces.dump(st); 4987 4988 switch( _ptr ) { 4989 case Constant: 4990 const_oop()->print(st); 4991 break; 4992 case BotPTR: 4993 if (!WizardMode && !Verbose) { 4994 if( _klass_is_exact ) st->print(":exact"); 4995 break; 4996 } 4997 case TopPTR: 4998 case AnyNull: 4999 case NotNull: 5000 st->print(":%s", ptr_msg[_ptr]); 5001 if( _klass_is_exact ) st->print(":exact"); 5002 break; 5003 default: 5004 break; 5005 } 5006 5007 if( _offset != 0 ) { 5008 BasicType basic_elem_type = elem()->basic_type(); 5009 int header_size = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 5010 if( _offset == OffsetTop ) st->print("+undefined"); 5011 else if( _offset == OffsetBot ) st->print("+any"); 5012 else if( _offset < header_size ) st->print("+%d", _offset); 5013 else { 5014 BasicType basic_elem_type = elem()->basic_type(); 5015 if (basic_elem_type == T_ILLEGAL) { 5016 st->print("+any"); 5017 } else { 5018 int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type); 5019 int elem_size = type2aelembytes(basic_elem_type); 5020 st->print("[%d]", (_offset - array_base)/elem_size); 5021 } 5022 } 5023 } 5024 st->print(" *"); 5025 if (_instance_id == InstanceTop) 5026 st->print(",iid=top"); 5027 else if (_instance_id != InstanceBot) 5028 st->print(",iid=%d",_instance_id); 5029 5030 dump_inline_depth(st); 5031 dump_speculative(st); 5032 } 5033 #endif 5034 5035 bool TypeAryPtr::empty(void) const { 5036 if (_ary->empty()) return true; 5037 return TypeOopPtr::empty(); 5038 } 5039 5040 //------------------------------add_offset------------------------------------- 5041 const TypePtr* TypeAryPtr::add_offset(intptr_t offset) const { 5042 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth); 5043 } 5044 5045 const TypeAryPtr* TypeAryPtr::with_offset(intptr_t offset) const { 5046 return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, offset, _instance_id, with_offset_speculative(offset), _inline_depth); 5047 } 5048 5049 const TypeAryPtr* TypeAryPtr::with_ary(const TypeAry* ary) const { 5050 return make(_ptr, _const_oop, ary, _klass, _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth); 5051 } 5052 5053 const TypeAryPtr* TypeAryPtr::remove_speculative() const { 5054 if (_speculative == NULL) { 5055 return this; 5056 } 5057 assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth"); 5058 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth); 5059 } 5060 5061 const TypePtr* TypeAryPtr::with_inline_depth(int depth) const { 5062 if (!UseInlineDepthForSpeculativeTypes) { 5063 return this; 5064 } 5065 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth); 5066 } 5067 5068 const TypePtr* TypeAryPtr::with_instance_id(int instance_id) const { 5069 assert(is_known_instance(), "should be known"); 5070 return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, instance_id, _speculative, _inline_depth); 5071 } 5072 5073 //============================================================================= 5074 5075 //------------------------------hash------------------------------------------- 5076 // Type-specific hashing function. 5077 int TypeNarrowPtr::hash(void) const { 5078 return _ptrtype->hash() + 7; 5079 } 5080 5081 bool TypeNarrowPtr::singleton(void) const { // TRUE if type is a singleton 5082 return _ptrtype->singleton(); 5083 } 5084 5085 bool TypeNarrowPtr::empty(void) const { 5086 return _ptrtype->empty(); 5087 } 5088 5089 intptr_t TypeNarrowPtr::get_con() const { 5090 return _ptrtype->get_con(); 5091 } 5092 5093 bool TypeNarrowPtr::eq( const Type *t ) const { 5094 const TypeNarrowPtr* tc = isa_same_narrowptr(t); 5095 if (tc != NULL) { 5096 if (_ptrtype->base() != tc->_ptrtype->base()) { 5097 return false; 5098 } 5099 return tc->_ptrtype->eq(_ptrtype); 5100 } 5101 return false; 5102 } 5103 5104 const Type *TypeNarrowPtr::xdual() const { // Compute dual right now. 5105 const TypePtr* odual = _ptrtype->dual()->is_ptr(); 5106 return make_same_narrowptr(odual); 5107 } 5108 5109 5110 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const { 5111 if (isa_same_narrowptr(kills)) { 5112 const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative); 5113 if (ft->empty()) 5114 return Type::TOP; // Canonical empty value 5115 if (ft->isa_ptr()) { 5116 return make_hash_same_narrowptr(ft->isa_ptr()); 5117 } 5118 return ft; 5119 } else if (kills->isa_ptr()) { 5120 const Type* ft = _ptrtype->join_helper(kills, include_speculative); 5121 if (ft->empty()) 5122 return Type::TOP; // Canonical empty value 5123 return ft; 5124 } else { 5125 return Type::TOP; 5126 } 5127 } 5128 5129 //------------------------------xmeet------------------------------------------ 5130 // Compute the MEET of two types. It returns a new Type object. 5131 const Type *TypeNarrowPtr::xmeet( const Type *t ) const { 5132 // Perform a fast test for common case; meeting the same types together. 5133 if( this == t ) return this; // Meeting same type-rep? 5134 5135 if (t->base() == base()) { 5136 const Type* result = _ptrtype->xmeet(t->make_ptr()); 5137 if (result->isa_ptr()) { 5138 return make_hash_same_narrowptr(result->is_ptr()); 5139 } 5140 return result; 5141 } 5142 5143 // Current "this->_base" is NarrowKlass or NarrowOop 5144 switch (t->base()) { // switch on original type 5145 5146 case Int: // Mixing ints & oops happens when javac 5147 case Long: // reuses local variables 5148 case FloatTop: 5149 case FloatCon: 5150 case FloatBot: 5151 case DoubleTop: 5152 case DoubleCon: 5153 case DoubleBot: 5154 case AnyPtr: 5155 case RawPtr: 5156 case OopPtr: 5157 case InstPtr: 5158 case AryPtr: 5159 case MetadataPtr: 5160 case KlassPtr: 5161 case InstKlassPtr: 5162 case AryKlassPtr: 5163 case NarrowOop: 5164 case NarrowKlass: 5165 5166 case Bottom: // Ye Olde Default 5167 return Type::BOTTOM; 5168 case Top: 5169 return this; 5170 5171 default: // All else is a mistake 5172 typerr(t); 5173 5174 } // End of switch 5175 5176 return this; 5177 } 5178 5179 #ifndef PRODUCT 5180 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const { 5181 _ptrtype->dump2(d, depth, st); 5182 } 5183 #endif 5184 5185 const TypeNarrowOop *TypeNarrowOop::BOTTOM; 5186 const TypeNarrowOop *TypeNarrowOop::NULL_PTR; 5187 5188 5189 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) { 5190 return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons(); 5191 } 5192 5193 const TypeNarrowOop* TypeNarrowOop::remove_speculative() const { 5194 return make(_ptrtype->remove_speculative()->is_ptr()); 5195 } 5196 5197 const Type* TypeNarrowOop::cleanup_speculative() const { 5198 return make(_ptrtype->cleanup_speculative()->is_ptr()); 5199 } 5200 5201 #ifndef PRODUCT 5202 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const { 5203 st->print("narrowoop: "); 5204 TypeNarrowPtr::dump2(d, depth, st); 5205 } 5206 #endif 5207 5208 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR; 5209 5210 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) { 5211 return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons(); 5212 } 5213 5214 #ifndef PRODUCT 5215 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const { 5216 st->print("narrowklass: "); 5217 TypeNarrowPtr::dump2(d, depth, st); 5218 } 5219 #endif 5220 5221 5222 //------------------------------eq--------------------------------------------- 5223 // Structural equality check for Type representations 5224 bool TypeMetadataPtr::eq( const Type *t ) const { 5225 const TypeMetadataPtr *a = (const TypeMetadataPtr*)t; 5226 ciMetadata* one = metadata(); 5227 ciMetadata* two = a->metadata(); 5228 if (one == NULL || two == NULL) { 5229 return (one == two) && TypePtr::eq(t); 5230 } else { 5231 return one->equals(two) && TypePtr::eq(t); 5232 } 5233 } 5234 5235 //------------------------------hash------------------------------------------- 5236 // Type-specific hashing function. 5237 int TypeMetadataPtr::hash(void) const { 5238 return 5239 (metadata() ? metadata()->hash() : 0) + 5240 TypePtr::hash(); 5241 } 5242 5243 //------------------------------singleton-------------------------------------- 5244 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 5245 // constants 5246 bool TypeMetadataPtr::singleton(void) const { 5247 // detune optimizer to not generate constant metadata + constant offset as a constant! 5248 // TopPTR, Null, AnyNull, Constant are all singletons 5249 return (_offset == 0) && !below_centerline(_ptr); 5250 } 5251 5252 //------------------------------add_offset------------------------------------- 5253 const TypePtr* TypeMetadataPtr::add_offset( intptr_t offset ) const { 5254 return make( _ptr, _metadata, xadd_offset(offset)); 5255 } 5256 5257 //-----------------------------filter------------------------------------------ 5258 // Do not allow interface-vs.-noninterface joins to collapse to top. 5259 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const { 5260 const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr(); 5261 if (ft == NULL || ft->empty()) 5262 return Type::TOP; // Canonical empty value 5263 return ft; 5264 } 5265 5266 //------------------------------get_con---------------------------------------- 5267 intptr_t TypeMetadataPtr::get_con() const { 5268 assert( _ptr == Null || _ptr == Constant, "" ); 5269 assert( _offset >= 0, "" ); 5270 5271 if (_offset != 0) { 5272 // After being ported to the compiler interface, the compiler no longer 5273 // directly manipulates the addresses of oops. Rather, it only has a pointer 5274 // to a handle at compile time. This handle is embedded in the generated 5275 // code and dereferenced at the time the nmethod is made. Until that time, 5276 // it is not reasonable to do arithmetic with the addresses of oops (we don't 5277 // have access to the addresses!). This does not seem to currently happen, 5278 // but this assertion here is to help prevent its occurrence. 5279 tty->print_cr("Found oop constant with non-zero offset"); 5280 ShouldNotReachHere(); 5281 } 5282 5283 return (intptr_t)metadata()->constant_encoding(); 5284 } 5285 5286 //------------------------------cast_to_ptr_type------------------------------- 5287 const TypeMetadataPtr* TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const { 5288 if( ptr == _ptr ) return this; 5289 return make(ptr, metadata(), _offset); 5290 } 5291 5292 //------------------------------meet------------------------------------------- 5293 // Compute the MEET of two types. It returns a new Type object. 5294 const Type *TypeMetadataPtr::xmeet( const Type *t ) const { 5295 // Perform a fast test for common case; meeting the same types together. 5296 if( this == t ) return this; // Meeting same type-rep? 5297 5298 // Current "this->_base" is OopPtr 5299 switch (t->base()) { // switch on original type 5300 5301 case Int: // Mixing ints & oops happens when javac 5302 case Long: // reuses local variables 5303 case FloatTop: 5304 case FloatCon: 5305 case FloatBot: 5306 case DoubleTop: 5307 case DoubleCon: 5308 case DoubleBot: 5309 case NarrowOop: 5310 case NarrowKlass: 5311 case Bottom: // Ye Olde Default 5312 return Type::BOTTOM; 5313 case Top: 5314 return this; 5315 5316 default: // All else is a mistake 5317 typerr(t); 5318 5319 case AnyPtr: { 5320 // Found an AnyPtr type vs self-OopPtr type 5321 const TypePtr *tp = t->is_ptr(); 5322 int offset = meet_offset(tp->offset()); 5323 PTR ptr = meet_ptr(tp->ptr()); 5324 switch (tp->ptr()) { 5325 case Null: 5326 if (ptr == Null) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5327 // else fall through: 5328 case TopPTR: 5329 case AnyNull: { 5330 return make(ptr, _metadata, offset); 5331 } 5332 case BotPTR: 5333 case NotNull: 5334 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5335 default: typerr(t); 5336 } 5337 } 5338 5339 case RawPtr: 5340 case KlassPtr: 5341 case InstKlassPtr: 5342 case AryKlassPtr: 5343 case OopPtr: 5344 case InstPtr: 5345 case AryPtr: 5346 return TypePtr::BOTTOM; // Oop meet raw is not well defined 5347 5348 case MetadataPtr: { 5349 const TypeMetadataPtr *tp = t->is_metadataptr(); 5350 int offset = meet_offset(tp->offset()); 5351 PTR tptr = tp->ptr(); 5352 PTR ptr = meet_ptr(tptr); 5353 ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata(); 5354 if (tptr == TopPTR || _ptr == TopPTR || 5355 metadata()->equals(tp->metadata())) { 5356 return make(ptr, md, offset); 5357 } 5358 // metadata is different 5359 if( ptr == Constant ) { // Cannot be equal constants, so... 5360 if( tptr == Constant && _ptr != Constant) return t; 5361 if( _ptr == Constant && tptr != Constant) return this; 5362 ptr = NotNull; // Fall down in lattice 5363 } 5364 return make(ptr, NULL, offset); 5365 break; 5366 } 5367 } // End of switch 5368 return this; // Return the double constant 5369 } 5370 5371 5372 //------------------------------xdual------------------------------------------ 5373 // Dual of a pure metadata pointer. 5374 const Type *TypeMetadataPtr::xdual() const { 5375 return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset()); 5376 } 5377 5378 //------------------------------dump2------------------------------------------ 5379 #ifndef PRODUCT 5380 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const { 5381 st->print("metadataptr:%s", ptr_msg[_ptr]); 5382 if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata())); 5383 switch( _offset ) { 5384 case OffsetTop: st->print("+top"); break; 5385 case OffsetBot: st->print("+any"); break; 5386 case 0: break; 5387 default: st->print("+%d",_offset); break; 5388 } 5389 } 5390 #endif 5391 5392 5393 //============================================================================= 5394 // Convenience common pre-built type. 5395 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM; 5396 5397 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset): 5398 TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) { 5399 } 5400 5401 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) { 5402 return make(Constant, m, 0); 5403 } 5404 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) { 5405 return make(Constant, m, 0); 5406 } 5407 5408 //------------------------------make------------------------------------------- 5409 // Create a meta data constant 5410 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) { 5411 assert(m == NULL || !m->is_klass(), "wrong type"); 5412 return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons(); 5413 } 5414 5415 5416 const TypeKlassPtr* TypeAryPtr::as_klass_type(bool try_for_exact) const { 5417 const Type* elem = _ary->_elem; 5418 bool xk = klass_is_exact(); 5419 if (elem->make_oopptr() != NULL) { 5420 elem = elem->make_oopptr()->as_klass_type(try_for_exact); 5421 if (elem->is_klassptr()->klass_is_exact()) { 5422 xk = true; 5423 } 5424 } 5425 return TypeAryKlassPtr::make(xk ? TypePtr::Constant : TypePtr::NotNull, elem, klass(), 0); 5426 } 5427 5428 const TypeKlassPtr* TypeKlassPtr::make(ciKlass *klass, InterfaceHandling interface_handling) { 5429 if (klass->is_instance_klass()) { 5430 return TypeInstKlassPtr::make(klass, interface_handling); 5431 } 5432 return TypeAryKlassPtr::make(klass, interface_handling); 5433 } 5434 5435 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling) { 5436 if (klass->is_instance_klass()) { 5437 const InterfaceSet interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling); 5438 return TypeInstKlassPtr::make(ptr, klass, interfaces, offset); 5439 } 5440 return TypeAryKlassPtr::make(ptr, klass, offset, interface_handling); 5441 } 5442 5443 5444 //------------------------------TypeKlassPtr----------------------------------- 5445 TypeKlassPtr::TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const InterfaceSet& interfaces, int offset) 5446 : TypePtr(t, ptr, offset), _klass(klass), _interfaces(interfaces) { 5447 assert(klass == NULL || !klass->is_loaded() || (klass->is_instance_klass() && !klass->is_interface()) || 5448 klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "no interface here"); 5449 } 5450 5451 // Is there a single ciKlass* that can represent that type? 5452 ciKlass* TypeKlassPtr::exact_klass_helper() const { 5453 assert(_klass->is_instance_klass() && !_klass->is_interface(), "No interface"); 5454 if (_interfaces.empty()) { 5455 return _klass; 5456 } 5457 if (_klass != ciEnv::current()->Object_klass()) { 5458 ciKlass* k = _klass; 5459 if (_interfaces.eq(TypePtr::interfaces(k, true, false, true, ignore_interfaces))) { 5460 return _klass; 5461 } 5462 return NULL; 5463 } 5464 return _interfaces.exact_klass(); 5465 } 5466 5467 //------------------------------eq--------------------------------------------- 5468 // Structural equality check for Type representations 5469 bool TypeKlassPtr::eq(const Type *t) const { 5470 const TypeKlassPtr *p = t->is_klassptr(); 5471 return 5472 _interfaces.eq(p->_interfaces) && 5473 TypePtr::eq(p); 5474 } 5475 5476 //------------------------------hash------------------------------------------- 5477 // Type-specific hashing function. 5478 int TypeKlassPtr::hash(void) const { 5479 return java_add((jint)TypePtr::hash(), _interfaces.hash()); 5480 } 5481 5482 //------------------------------singleton-------------------------------------- 5483 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 5484 // constants 5485 bool TypeKlassPtr::singleton(void) const { 5486 // detune optimizer to not generate constant klass + constant offset as a constant! 5487 // TopPTR, Null, AnyNull, Constant are all singletons 5488 return (_offset == 0) && !below_centerline(_ptr); 5489 } 5490 5491 // Do not allow interface-vs.-noninterface joins to collapse to top. 5492 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const { 5493 // logic here mirrors the one from TypeOopPtr::filter. See comments 5494 // there. 5495 const Type* ft = join_helper(kills, include_speculative); 5496 const TypeKlassPtr* ftkp = ft->isa_instklassptr(); 5497 const TypeKlassPtr* ktkp = kills->isa_instklassptr(); 5498 5499 if (ft->empty()) { 5500 return Type::TOP; // Canonical empty value 5501 } 5502 5503 return ft; 5504 } 5505 5506 TypePtr::InterfaceSet TypeKlassPtr::meet_interfaces(const TypeKlassPtr* other) const { 5507 if (above_centerline(_ptr) && above_centerline(other->_ptr)) { 5508 return _interfaces.union_with(other->_interfaces); 5509 } else if (above_centerline(_ptr) && !above_centerline(other->_ptr)) { 5510 return other->_interfaces; 5511 } else if (above_centerline(other->_ptr) && !above_centerline(_ptr)) { 5512 return _interfaces; 5513 } 5514 return _interfaces.intersection_with(other->_interfaces); 5515 } 5516 5517 //------------------------------get_con---------------------------------------- 5518 intptr_t TypeKlassPtr::get_con() const { 5519 assert( _ptr == Null || _ptr == Constant, "" ); 5520 assert( _offset >= 0, "" ); 5521 5522 if (_offset != 0) { 5523 // After being ported to the compiler interface, the compiler no longer 5524 // directly manipulates the addresses of oops. Rather, it only has a pointer 5525 // to a handle at compile time. This handle is embedded in the generated 5526 // code and dereferenced at the time the nmethod is made. Until that time, 5527 // it is not reasonable to do arithmetic with the addresses of oops (we don't 5528 // have access to the addresses!). This does not seem to currently happen, 5529 // but this assertion here is to help prevent its occurrence. 5530 tty->print_cr("Found oop constant with non-zero offset"); 5531 ShouldNotReachHere(); 5532 } 5533 5534 ciKlass* k = exact_klass(); 5535 5536 return (intptr_t)k->constant_encoding(); 5537 } 5538 5539 //------------------------------dump2------------------------------------------ 5540 // Dump Klass Type 5541 #ifndef PRODUCT 5542 void TypeKlassPtr::dump2(Dict & d, uint depth, outputStream *st) const { 5543 switch(_ptr) { 5544 case Constant: 5545 st->print("precise "); 5546 case NotNull: 5547 { 5548 const char *name = klass()->name()->as_utf8(); 5549 if (name) { 5550 st->print("%s: " INTPTR_FORMAT, name, p2i(klass())); 5551 } else { 5552 ShouldNotReachHere(); 5553 } 5554 _interfaces.dump(st); 5555 } 5556 case BotPTR: 5557 if (!WizardMode && !Verbose && _ptr != Constant) break; 5558 case TopPTR: 5559 case AnyNull: 5560 st->print(":%s", ptr_msg[_ptr]); 5561 if (_ptr == Constant) st->print(":exact"); 5562 break; 5563 default: 5564 break; 5565 } 5566 5567 if (_offset) { // Dump offset, if any 5568 if (_offset == OffsetBot) { st->print("+any"); } 5569 else if (_offset == OffsetTop) { st->print("+unknown"); } 5570 else { st->print("+%d", _offset); } 5571 } 5572 5573 st->print(" *"); 5574 } 5575 #endif 5576 5577 //============================================================================= 5578 // Convenience common pre-built types. 5579 5580 // Not-null object klass or below 5581 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT; 5582 const TypeInstKlassPtr *TypeInstKlassPtr::OBJECT_OR_NULL; 5583 5584 bool TypeInstKlassPtr::eq(const Type *t) const { 5585 const TypeKlassPtr *p = t->is_klassptr(); 5586 return 5587 klass()->equals(p->klass()) && 5588 TypeKlassPtr::eq(p); 5589 } 5590 5591 int TypeInstKlassPtr::hash(void) const { 5592 return java_add((jint)klass()->hash(), TypeKlassPtr::hash()); 5593 } 5594 5595 const TypeInstKlassPtr *TypeInstKlassPtr::make(PTR ptr, ciKlass* k, const InterfaceSet& interfaces, int offset) { 5596 TypeInstKlassPtr *r = 5597 (TypeInstKlassPtr*)(new TypeInstKlassPtr(ptr, k, interfaces, offset))->hashcons(); 5598 5599 return r; 5600 } 5601 5602 //------------------------------add_offset------------------------------------- 5603 // Access internals of klass object 5604 const TypePtr* TypeInstKlassPtr::add_offset( intptr_t offset ) const { 5605 return make( _ptr, klass(), _interfaces, xadd_offset(offset) ); 5606 } 5607 5608 const TypeInstKlassPtr* TypeInstKlassPtr::with_offset(intptr_t offset) const { 5609 return make(_ptr, klass(), _interfaces, offset); 5610 } 5611 5612 //------------------------------cast_to_ptr_type------------------------------- 5613 const TypeInstKlassPtr* TypeInstKlassPtr::cast_to_ptr_type(PTR ptr) const { 5614 assert(_base == InstKlassPtr, "subclass must override cast_to_ptr_type"); 5615 if( ptr == _ptr ) return this; 5616 return make(ptr, _klass, _interfaces, _offset); 5617 } 5618 5619 5620 bool TypeInstKlassPtr::must_be_exact() const { 5621 if (!_klass->is_loaded()) return false; 5622 ciInstanceKlass* ik = _klass->as_instance_klass(); 5623 if (ik->is_final()) return true; // cannot clear xk 5624 return false; 5625 } 5626 5627 //-----------------------------cast_to_exactness------------------------------- 5628 const TypeKlassPtr* TypeInstKlassPtr::cast_to_exactness(bool klass_is_exact) const { 5629 if (klass_is_exact == (_ptr == Constant)) return this; 5630 if (must_be_exact()) return this; 5631 ciKlass* k = klass(); 5632 return make(klass_is_exact ? Constant : NotNull, k, _interfaces, _offset); 5633 } 5634 5635 5636 //-----------------------------as_instance_type-------------------------------- 5637 // Corresponding type for an instance of the given class. 5638 // It will be NotNull, and exact if and only if the klass type is exact. 5639 const TypeOopPtr* TypeInstKlassPtr::as_instance_type(bool klass_change) const { 5640 ciKlass* k = klass(); 5641 bool xk = klass_is_exact(); 5642 Compile* C = Compile::current(); 5643 Dependencies* deps = C->dependencies(); 5644 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity"); 5645 // Element is an instance 5646 bool klass_is_exact = false; 5647 TypePtr::InterfaceSet interfaces = _interfaces; 5648 if (k->is_loaded()) { 5649 // Try to set klass_is_exact. 5650 ciInstanceKlass* ik = k->as_instance_klass(); 5651 klass_is_exact = ik->is_final(); 5652 if (!klass_is_exact && klass_change 5653 && deps != NULL && UseUniqueSubclasses) { 5654 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 5655 if (sub != NULL) { 5656 ciKlass* sub_k = sub; 5657 TypePtr::InterfaceSet sub_interfaces = TypePtr::interfaces(sub_k, true, false, false, ignore_interfaces); 5658 assert(sub_k == sub, ""); 5659 if (sub_interfaces.eq(_interfaces)) { 5660 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 5661 k = ik = sub; 5662 xk = sub->is_final(); 5663 } 5664 } 5665 } 5666 } 5667 return TypeInstPtr::make(TypePtr::BotPTR, k, interfaces, xk, NULL, 0); 5668 } 5669 5670 //------------------------------xmeet------------------------------------------ 5671 // Compute the MEET of two types, return a new Type object. 5672 const Type *TypeInstKlassPtr::xmeet( const Type *t ) const { 5673 // Perform a fast test for common case; meeting the same types together. 5674 if( this == t ) return this; // Meeting same type-rep? 5675 5676 // Current "this->_base" is Pointer 5677 switch (t->base()) { // switch on original type 5678 5679 case Int: // Mixing ints & oops happens when javac 5680 case Long: // reuses local variables 5681 case FloatTop: 5682 case FloatCon: 5683 case FloatBot: 5684 case DoubleTop: 5685 case DoubleCon: 5686 case DoubleBot: 5687 case NarrowOop: 5688 case NarrowKlass: 5689 case Bottom: // Ye Olde Default 5690 return Type::BOTTOM; 5691 case Top: 5692 return this; 5693 5694 default: // All else is a mistake 5695 typerr(t); 5696 5697 case AnyPtr: { // Meeting to AnyPtrs 5698 // Found an AnyPtr type vs self-KlassPtr type 5699 const TypePtr *tp = t->is_ptr(); 5700 int offset = meet_offset(tp->offset()); 5701 PTR ptr = meet_ptr(tp->ptr()); 5702 switch (tp->ptr()) { 5703 case TopPTR: 5704 return this; 5705 case Null: 5706 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5707 case AnyNull: 5708 return make( ptr, klass(), _interfaces, offset ); 5709 case BotPTR: 5710 case NotNull: 5711 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 5712 default: typerr(t); 5713 } 5714 } 5715 5716 case RawPtr: 5717 case MetadataPtr: 5718 case OopPtr: 5719 case AryPtr: // Meet with AryPtr 5720 case InstPtr: // Meet with InstPtr 5721 return TypePtr::BOTTOM; 5722 5723 // 5724 // A-top } 5725 // / | \ } Tops 5726 // B-top A-any C-top } 5727 // | / | \ | } Any-nulls 5728 // B-any | C-any } 5729 // | | | 5730 // B-con A-con C-con } constants; not comparable across classes 5731 // | | | 5732 // B-not | C-not } 5733 // | \ | / | } not-nulls 5734 // B-bot A-not C-bot } 5735 // \ | / } Bottoms 5736 // A-bot } 5737 // 5738 5739 case InstKlassPtr: { // Meet two KlassPtr types 5740 const TypeInstKlassPtr *tkls = t->is_instklassptr(); 5741 int off = meet_offset(tkls->offset()); 5742 PTR ptr = meet_ptr(tkls->ptr()); 5743 InterfaceSet interfaces = meet_interfaces(tkls); 5744 5745 ciKlass* res_klass = NULL; 5746 bool res_xk = false; 5747 switch(meet_instptr(ptr, interfaces, this, tkls, res_klass, res_xk)) { 5748 case UNLOADED: 5749 ShouldNotReachHere(); 5750 case SUBTYPE: 5751 case NOT_SUBTYPE: 5752 case LCA: 5753 case QUICK: { 5754 assert(res_xk == (ptr == Constant), ""); 5755 const Type* res = make(ptr, res_klass, interfaces, off); 5756 return res; 5757 } 5758 default: 5759 ShouldNotReachHere(); 5760 } 5761 } // End of case KlassPtr 5762 case AryKlassPtr: { // All arrays inherit from Object class 5763 const TypeAryKlassPtr *tp = t->is_aryklassptr(); 5764 int offset = meet_offset(tp->offset()); 5765 PTR ptr = meet_ptr(tp->ptr()); 5766 InterfaceSet interfaces = meet_interfaces(tp); 5767 InterfaceSet tp_interfaces = tp->_interfaces; 5768 InterfaceSet this_interfaces = _interfaces; 5769 5770 switch (ptr) { 5771 case TopPTR: 5772 case AnyNull: // Fall 'down' to dual of object klass 5773 // For instances when a subclass meets a superclass we fall 5774 // below the centerline when the superclass is exact. We need to 5775 // do the same here. 5776 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces.contains(this_interfaces) && !klass_is_exact()) { 5777 return TypeAryKlassPtr::make(ptr, tp->elem(), tp->klass(), offset); 5778 } else { 5779 // cannot subclass, so the meet has to fall badly below the centerline 5780 ptr = NotNull; 5781 interfaces = _interfaces.intersection_with(tp->_interfaces); 5782 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset); 5783 } 5784 case Constant: 5785 case NotNull: 5786 case BotPTR: // Fall down to object klass 5787 // LCA is object_klass, but if we subclass from the top we can do better 5788 if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull ) 5789 // If 'this' (InstPtr) is above the centerline and it is Object class 5790 // then we can subclass in the Java class hierarchy. 5791 // For instances when a subclass meets a superclass we fall 5792 // below the centerline when the superclass is exact. We need 5793 // to do the same here. 5794 if (klass()->equals(ciEnv::current()->Object_klass()) && tp_interfaces.contains(this_interfaces) && !klass_is_exact()) { 5795 // that is, tp's array type is a subtype of my klass 5796 return TypeAryKlassPtr::make(ptr, 5797 tp->elem(), tp->klass(), offset); 5798 } 5799 } 5800 // The other case cannot happen, since I cannot be a subtype of an array. 5801 // The meet falls down to Object class below centerline. 5802 if( ptr == Constant ) 5803 ptr = NotNull; 5804 interfaces = this_interfaces.intersection_with(tp_interfaces); 5805 return make(ptr, ciEnv::current()->Object_klass(), interfaces, offset); 5806 default: typerr(t); 5807 } 5808 } 5809 5810 } // End of switch 5811 return this; // Return the double constant 5812 } 5813 5814 //------------------------------xdual------------------------------------------ 5815 // Dual: compute field-by-field dual 5816 const Type *TypeInstKlassPtr::xdual() const { 5817 return new TypeInstKlassPtr(dual_ptr(), klass(), _interfaces, dual_offset()); 5818 } 5819 5820 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 5821 static_assert(std::is_base_of<T2, T1>::value, ""); 5822 if (!this_one->is_loaded() || !other->is_loaded()) { 5823 return false; 5824 } 5825 if (!this_one->is_instance_type(other)) { 5826 return false; 5827 } 5828 5829 if (!other_exact) { 5830 return false; 5831 } 5832 5833 if (other->klass()->equals(ciEnv::current()->Object_klass()) && other->_interfaces.empty()) { 5834 return true; 5835 } 5836 5837 return this_one->_klass->is_subtype_of(other->_klass) && this_one->_interfaces.contains(other->_interfaces); 5838 } 5839 5840 bool TypeInstKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 5841 return TypePtr::is_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 5842 } 5843 5844 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other) { 5845 static_assert(std::is_base_of<T2, T1>::value, ""); 5846 if (!this_one->is_loaded() || !other->is_loaded()) { 5847 return false; 5848 } 5849 if (!this_one->is_instance_type(other)) { 5850 return false; 5851 } 5852 return this_one->_klass->equals(other->_klass) && this_one->_interfaces.eq(other->_interfaces); 5853 } 5854 5855 bool TypeInstKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const { 5856 return TypePtr::is_same_java_type_as_helper_for_instance(this, other); 5857 } 5858 5859 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 5860 static_assert(std::is_base_of<T2, T1>::value, ""); 5861 if (!this_one->is_loaded() || !other->is_loaded()) { 5862 return true; 5863 } 5864 5865 if (this_one->is_array_type(other)) { 5866 return !this_exact && this_one->_klass->equals(ciEnv::current()->Object_klass()) && other->_interfaces.contains(this_one->_interfaces); 5867 } 5868 5869 assert(this_one->is_instance_type(other), "unsupported"); 5870 5871 if (this_exact && other_exact) { 5872 return this_one->is_java_subtype_of(other); 5873 } 5874 5875 if (!this_one->_klass->is_subtype_of(other->_klass) && !other->_klass->is_subtype_of(this_one->_klass)) { 5876 return false; 5877 } 5878 5879 if (this_exact) { 5880 return this_one->_klass->is_subtype_of(other->_klass) && this_one->_interfaces.contains(other->_interfaces); 5881 } 5882 5883 return true; 5884 } 5885 5886 bool TypeInstKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 5887 return TypePtr::maybe_java_subtype_of_helper_for_instance(this, other, this_exact, other_exact); 5888 } 5889 5890 const TypeKlassPtr* TypeInstKlassPtr::try_improve() const { 5891 if (!UseUniqueSubclasses) { 5892 return this; 5893 } 5894 ciKlass* k = klass(); 5895 Compile* C = Compile::current(); 5896 Dependencies* deps = C->dependencies(); 5897 assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity"); 5898 TypePtr::InterfaceSet interfaces = _interfaces; 5899 if (k->is_loaded()) { 5900 ciInstanceKlass* ik = k->as_instance_klass(); 5901 bool klass_is_exact = ik->is_final(); 5902 if (!klass_is_exact && 5903 deps != NULL) { 5904 ciInstanceKlass* sub = ik->unique_concrete_subklass(); 5905 if (sub != NULL) { 5906 ciKlass *sub_k = sub; 5907 TypePtr::InterfaceSet sub_interfaces = TypePtr::interfaces(sub_k, true, false, false, ignore_interfaces); 5908 assert(sub_k == sub, ""); 5909 if (sub_interfaces.eq(_interfaces)) { 5910 deps->assert_abstract_with_unique_concrete_subtype(ik, sub); 5911 k = ik = sub; 5912 klass_is_exact = sub->is_final(); 5913 return TypeKlassPtr::make(klass_is_exact ? Constant : _ptr, k, _offset); 5914 } 5915 } 5916 } 5917 } 5918 return this; 5919 } 5920 5921 5922 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, const Type* elem, ciKlass* k, int offset) { 5923 return (TypeAryKlassPtr*)(new TypeAryKlassPtr(ptr, elem, k, offset))->hashcons(); 5924 } 5925 5926 const TypeAryKlassPtr *TypeAryKlassPtr::make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling) { 5927 if (k->is_obj_array_klass()) { 5928 // Element is an object array. Recursively call ourself. 5929 ciKlass* eklass = k->as_obj_array_klass()->element_klass(); 5930 const TypeKlassPtr *etype = TypeKlassPtr::make(eklass, interface_handling)->cast_to_exactness(false); 5931 return TypeAryKlassPtr::make(ptr, etype, NULL, offset); 5932 } else if (k->is_type_array_klass()) { 5933 // Element is an typeArray 5934 const Type* etype = get_const_basic_type(k->as_type_array_klass()->element_type()); 5935 return TypeAryKlassPtr::make(ptr, etype, k, offset); 5936 } else { 5937 ShouldNotReachHere(); 5938 return NULL; 5939 } 5940 } 5941 5942 const TypeAryKlassPtr* TypeAryKlassPtr::make(ciKlass* klass, InterfaceHandling interface_handling) { 5943 return TypeAryKlassPtr::make(Constant, klass, 0, interface_handling); 5944 } 5945 5946 //------------------------------eq--------------------------------------------- 5947 // Structural equality check for Type representations 5948 bool TypeAryKlassPtr::eq(const Type *t) const { 5949 const TypeAryKlassPtr *p = t->is_aryklassptr(); 5950 return 5951 _elem == p->_elem && // Check array 5952 TypeKlassPtr::eq(p); // Check sub-parts 5953 } 5954 5955 //------------------------------hash------------------------------------------- 5956 // Type-specific hashing function. 5957 int TypeAryKlassPtr::hash(void) const { 5958 return (intptr_t)_elem + TypeKlassPtr::hash(); 5959 } 5960 5961 //----------------------compute_klass------------------------------------------ 5962 // Compute the defining klass for this class 5963 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const { 5964 // Compute _klass based on element type. 5965 ciKlass* k_ary = NULL; 5966 const TypeInstPtr *tinst; 5967 const TypeAryPtr *tary; 5968 const Type* el = elem(); 5969 if (el->isa_narrowoop()) { 5970 el = el->make_ptr(); 5971 } 5972 5973 // Get element klass 5974 if ((tinst = el->isa_instptr()) != NULL) { 5975 // Leave k_ary at NULL. 5976 } else if ((tary = el->isa_aryptr()) != NULL) { 5977 // Leave k_ary at NULL. 5978 } else if ((el->base() == Type::Top) || 5979 (el->base() == Type::Bottom)) { 5980 // element type of Bottom occurs from meet of basic type 5981 // and object; Top occurs when doing join on Bottom. 5982 // Leave k_ary at NULL. 5983 } else { 5984 // Cannot compute array klass directly from basic type, 5985 // since subtypes of TypeInt all have basic type T_INT. 5986 #ifdef ASSERT 5987 if (verify && el->isa_int()) { 5988 // Check simple cases when verifying klass. 5989 BasicType bt = T_ILLEGAL; 5990 if (el == TypeInt::BYTE) { 5991 bt = T_BYTE; 5992 } else if (el == TypeInt::SHORT) { 5993 bt = T_SHORT; 5994 } else if (el == TypeInt::CHAR) { 5995 bt = T_CHAR; 5996 } else if (el == TypeInt::INT) { 5997 bt = T_INT; 5998 } else { 5999 return _klass; // just return specified klass 6000 } 6001 return ciTypeArrayKlass::make(bt); 6002 } 6003 #endif 6004 assert(!el->isa_int(), 6005 "integral arrays must be pre-equipped with a class"); 6006 // Compute array klass directly from basic type 6007 k_ary = ciTypeArrayKlass::make(el->basic_type()); 6008 } 6009 return k_ary; 6010 } 6011 6012 //------------------------------klass------------------------------------------ 6013 // Return the defining klass for this class 6014 ciKlass* TypeAryPtr::klass() const { 6015 if( _klass ) return _klass; // Return cached value, if possible 6016 6017 // Oops, need to compute _klass and cache it 6018 ciKlass* k_ary = compute_klass(); 6019 6020 if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) { 6021 // The _klass field acts as a cache of the underlying 6022 // ciKlass for this array type. In order to set the field, 6023 // we need to cast away const-ness. 6024 // 6025 // IMPORTANT NOTE: we *never* set the _klass field for the 6026 // type TypeAryPtr::OOPS. This Type is shared between all 6027 // active compilations. However, the ciKlass which represents 6028 // this Type is *not* shared between compilations, so caching 6029 // this value would result in fetching a dangling pointer. 6030 // 6031 // Recomputing the underlying ciKlass for each request is 6032 // a bit less efficient than caching, but calls to 6033 // TypeAryPtr::OOPS->klass() are not common enough to matter. 6034 ((TypeAryPtr*)this)->_klass = k_ary; 6035 } 6036 return k_ary; 6037 } 6038 6039 // Is there a single ciKlass* that can represent that type? 6040 ciKlass* TypeAryPtr::exact_klass_helper() const { 6041 if (_ary->_elem->make_ptr() && _ary->_elem->make_ptr()->isa_oopptr()) { 6042 ciKlass* k = _ary->_elem->make_ptr()->is_oopptr()->exact_klass_helper(); 6043 if (k == NULL) { 6044 return NULL; 6045 } 6046 k = ciObjArrayKlass::make(k); 6047 return k; 6048 } 6049 6050 return klass(); 6051 } 6052 6053 const Type* TypeAryPtr::base_element_type(int& dims) const { 6054 const Type* elem = this->elem(); 6055 dims = 1; 6056 while (elem->make_ptr() && elem->make_ptr()->isa_aryptr()) { 6057 elem = elem->make_ptr()->is_aryptr()->elem(); 6058 dims++; 6059 } 6060 return elem; 6061 } 6062 6063 //------------------------------add_offset------------------------------------- 6064 // Access internals of klass object 6065 const TypePtr* TypeAryKlassPtr::add_offset(intptr_t offset) const { 6066 return make(_ptr, elem(), klass(), xadd_offset(offset)); 6067 } 6068 6069 const TypeAryKlassPtr* TypeAryKlassPtr::with_offset(intptr_t offset) const { 6070 return make(_ptr, elem(), klass(), offset); 6071 } 6072 6073 //------------------------------cast_to_ptr_type------------------------------- 6074 const TypeAryKlassPtr* TypeAryKlassPtr::cast_to_ptr_type(PTR ptr) const { 6075 assert(_base == AryKlassPtr, "subclass must override cast_to_ptr_type"); 6076 if (ptr == _ptr) return this; 6077 return make(ptr, elem(), _klass, _offset); 6078 } 6079 6080 bool TypeAryKlassPtr::must_be_exact() const { 6081 if (_elem == Type::BOTTOM) return false; 6082 if (_elem == Type::TOP ) return false; 6083 const TypeKlassPtr* tk = _elem->isa_klassptr(); 6084 if (!tk) return true; // a primitive type, like int 6085 return tk->must_be_exact(); 6086 } 6087 6088 6089 //-----------------------------cast_to_exactness------------------------------- 6090 const TypeKlassPtr *TypeAryKlassPtr::cast_to_exactness(bool klass_is_exact) const { 6091 if (must_be_exact()) return this; // cannot clear xk 6092 ciKlass* k = _klass; 6093 const Type* elem = this->elem(); 6094 if (elem->isa_klassptr() && !klass_is_exact) { 6095 elem = elem->is_klassptr()->cast_to_exactness(klass_is_exact); 6096 } 6097 return make(klass_is_exact ? Constant : NotNull, elem, k, _offset); 6098 } 6099 6100 6101 //-----------------------------as_instance_type-------------------------------- 6102 // Corresponding type for an instance of the given class. 6103 // It will be NotNull, and exact if and only if the klass type is exact. 6104 const TypeOopPtr* TypeAryKlassPtr::as_instance_type(bool klass_change) const { 6105 ciKlass* k = klass(); 6106 bool xk = klass_is_exact(); 6107 const Type* el = NULL; 6108 if (elem()->isa_klassptr()) { 6109 el = elem()->is_klassptr()->as_instance_type(false)->cast_to_exactness(false); 6110 k = NULL; 6111 } else { 6112 el = elem(); 6113 } 6114 return TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(el, TypeInt::POS), k, xk, 0); 6115 } 6116 6117 6118 //------------------------------xmeet------------------------------------------ 6119 // Compute the MEET of two types, return a new Type object. 6120 const Type *TypeAryKlassPtr::xmeet( const Type *t ) const { 6121 // Perform a fast test for common case; meeting the same types together. 6122 if( this == t ) return this; // Meeting same type-rep? 6123 6124 // Current "this->_base" is Pointer 6125 switch (t->base()) { // switch on original type 6126 6127 case Int: // Mixing ints & oops happens when javac 6128 case Long: // reuses local variables 6129 case FloatTop: 6130 case FloatCon: 6131 case FloatBot: 6132 case DoubleTop: 6133 case DoubleCon: 6134 case DoubleBot: 6135 case NarrowOop: 6136 case NarrowKlass: 6137 case Bottom: // Ye Olde Default 6138 return Type::BOTTOM; 6139 case Top: 6140 return this; 6141 6142 default: // All else is a mistake 6143 typerr(t); 6144 6145 case AnyPtr: { // Meeting to AnyPtrs 6146 // Found an AnyPtr type vs self-KlassPtr type 6147 const TypePtr *tp = t->is_ptr(); 6148 int offset = meet_offset(tp->offset()); 6149 PTR ptr = meet_ptr(tp->ptr()); 6150 switch (tp->ptr()) { 6151 case TopPTR: 6152 return this; 6153 case Null: 6154 if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 6155 case AnyNull: 6156 return make( ptr, _elem, klass(), offset ); 6157 case BotPTR: 6158 case NotNull: 6159 return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth()); 6160 default: typerr(t); 6161 } 6162 } 6163 6164 case RawPtr: 6165 case MetadataPtr: 6166 case OopPtr: 6167 case AryPtr: // Meet with AryPtr 6168 case InstPtr: // Meet with InstPtr 6169 return TypePtr::BOTTOM; 6170 6171 // 6172 // A-top } 6173 // / | \ } Tops 6174 // B-top A-any C-top } 6175 // | / | \ | } Any-nulls 6176 // B-any | C-any } 6177 // | | | 6178 // B-con A-con C-con } constants; not comparable across classes 6179 // | | | 6180 // B-not | C-not } 6181 // | \ | / | } not-nulls 6182 // B-bot A-not C-bot } 6183 // \ | / } Bottoms 6184 // A-bot } 6185 // 6186 6187 case AryKlassPtr: { // Meet two KlassPtr types 6188 const TypeAryKlassPtr *tap = t->is_aryklassptr(); 6189 int off = meet_offset(tap->offset()); 6190 const Type* elem = _elem->meet(tap->_elem); 6191 6192 PTR ptr = meet_ptr(tap->ptr()); 6193 ciKlass* res_klass = NULL; 6194 bool res_xk = false; 6195 meet_aryptr(ptr, elem, this, tap, res_klass, res_xk); 6196 assert(res_xk == (ptr == Constant), ""); 6197 return make(ptr, elem, res_klass, off); 6198 } // End of case KlassPtr 6199 case InstKlassPtr: { 6200 const TypeInstKlassPtr *tp = t->is_instklassptr(); 6201 int offset = meet_offset(tp->offset()); 6202 PTR ptr = meet_ptr(tp->ptr()); 6203 InterfaceSet interfaces = meet_interfaces(tp); 6204 InterfaceSet tp_interfaces = tp->_interfaces; 6205 InterfaceSet this_interfaces = _interfaces; 6206 6207 switch (ptr) { 6208 case TopPTR: 6209 case AnyNull: // Fall 'down' to dual of object klass 6210 // For instances when a subclass meets a superclass we fall 6211 // below the centerline when the superclass is exact. We need to 6212 // do the same here. 6213 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces.intersection_with(tp_interfaces).eq(tp_interfaces) && !tp->klass_is_exact()) { 6214 return TypeAryKlassPtr::make(ptr, _elem, _klass, offset); 6215 } else { 6216 // cannot subclass, so the meet has to fall badly below the centerline 6217 ptr = NotNull; 6218 interfaces = this_interfaces.intersection_with(tp->_interfaces); 6219 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset); 6220 } 6221 case Constant: 6222 case NotNull: 6223 case BotPTR: // Fall down to object klass 6224 // LCA is object_klass, but if we subclass from the top we can do better 6225 if (above_centerline(tp->ptr())) { 6226 // If 'tp' is above the centerline and it is Object class 6227 // then we can subclass in the Java class hierarchy. 6228 // For instances when a subclass meets a superclass we fall 6229 // below the centerline when the superclass is exact. We need 6230 // to do the same here. 6231 if (tp->klass()->equals(ciEnv::current()->Object_klass()) && this_interfaces.intersection_with(tp_interfaces).eq(tp_interfaces) && !tp->klass_is_exact()) { 6232 // that is, my array type is a subtype of 'tp' klass 6233 return make(ptr, _elem, _klass, offset); 6234 } 6235 } 6236 // The other case cannot happen, since t cannot be a subtype of an array. 6237 // The meet falls down to Object class below centerline. 6238 if (ptr == Constant) 6239 ptr = NotNull; 6240 interfaces = this_interfaces.intersection_with(tp_interfaces); 6241 return TypeInstKlassPtr::make(ptr, ciEnv::current()->Object_klass(), interfaces, offset); 6242 default: typerr(t); 6243 } 6244 } 6245 6246 } // End of switch 6247 return this; // Return the double constant 6248 } 6249 6250 template <class T1, class T2> bool TypePtr::is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 6251 static_assert(std::is_base_of<T2, T1>::value, ""); 6252 6253 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces.empty() && other_exact) { 6254 return true; 6255 } 6256 6257 int dummy; 6258 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 6259 6260 if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) { 6261 return false; 6262 } 6263 6264 if (this_one->is_instance_type(other)) { 6265 return other->klass() == ciEnv::current()->Object_klass() && other->_interfaces.intersection_with(this_one->_interfaces).eq(other->_interfaces) && other_exact; 6266 } 6267 6268 assert(this_one->is_array_type(other), ""); 6269 const T1* other_ary = this_one->is_array_type(other); 6270 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 6271 if (other_top_or_bottom) { 6272 return false; 6273 } 6274 6275 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 6276 const TypePtr* this_elem = this_one->elem()->make_ptr(); 6277 if (this_elem != NULL && other_elem != NULL) { 6278 return this_one->is_reference_type(this_elem)->is_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact); 6279 } 6280 if (this_elem == NULL && other_elem == NULL) { 6281 return this_one->_klass->is_subtype_of(other->_klass); 6282 } 6283 return false; 6284 } 6285 6286 bool TypeAryKlassPtr::is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6287 return TypePtr::is_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 6288 } 6289 6290 template <class T1, class T2> bool TypePtr::is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other) { 6291 static_assert(std::is_base_of<T2, T1>::value, ""); 6292 6293 int dummy; 6294 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 6295 6296 if (!this_one->is_array_type(other) || 6297 !this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) { 6298 return false; 6299 } 6300 const T1* other_ary = this_one->is_array_type(other); 6301 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 6302 6303 if (other_top_or_bottom) { 6304 return false; 6305 } 6306 6307 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 6308 const TypePtr* this_elem = this_one->elem()->make_ptr(); 6309 if (other_elem != NULL && this_elem != NULL) { 6310 return this_one->is_reference_type(this_elem)->is_same_java_type_as(this_one->is_reference_type(other_elem)); 6311 } 6312 if (other_elem == NULL && this_elem == NULL) { 6313 assert(this_one->_klass != NULL && other->_klass != NULL, ""); 6314 return this_one->_klass->equals(other->_klass); 6315 } 6316 return false; 6317 } 6318 6319 bool TypeAryKlassPtr::is_same_java_type_as_helper(const TypeKlassPtr* other) const { 6320 return TypePtr::is_same_java_type_as_helper_for_array(this, other); 6321 } 6322 6323 template <class T1, class T2> bool TypePtr::maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact) { 6324 static_assert(std::is_base_of<T2, T1>::value, ""); 6325 if (other->klass() == ciEnv::current()->Object_klass() && other->_interfaces.empty() && other_exact) { 6326 return true; 6327 } 6328 int dummy; 6329 bool this_top_or_bottom = (this_one->base_element_type(dummy) == Type::TOP || this_one->base_element_type(dummy) == Type::BOTTOM); 6330 if (!this_one->is_loaded() || !other->is_loaded() || this_top_or_bottom) { 6331 return true; 6332 } 6333 if (this_one->is_instance_type(other)) { 6334 return other->_klass->equals(ciEnv::current()->Object_klass()) && other->_interfaces.intersection_with(this_one->_interfaces).eq(other->_interfaces); 6335 } 6336 assert(this_one->is_array_type(other), ""); 6337 6338 const T1* other_ary = this_one->is_array_type(other); 6339 bool other_top_or_bottom = (other_ary->base_element_type(dummy) == Type::TOP || other_ary->base_element_type(dummy) == Type::BOTTOM); 6340 if (other_top_or_bottom) { 6341 return true; 6342 } 6343 if (this_exact && other_exact) { 6344 return this_one->is_java_subtype_of(other); 6345 } 6346 6347 const TypePtr* this_elem = this_one->elem()->make_ptr(); 6348 const TypePtr* other_elem = other_ary->elem()->make_ptr(); 6349 if (other_elem != NULL && this_elem != NULL) { 6350 return this_one->is_reference_type(this_elem)->maybe_java_subtype_of_helper(this_one->is_reference_type(other_elem), this_exact, other_exact); 6351 } 6352 if (other_elem == NULL && this_elem == NULL) { 6353 return this_one->_klass->is_subtype_of(other->_klass); 6354 } 6355 return false; 6356 } 6357 6358 bool TypeAryKlassPtr::maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { 6359 return TypePtr::maybe_java_subtype_of_helper_for_array(this, other, this_exact, other_exact); 6360 } 6361 6362 //------------------------------xdual------------------------------------------ 6363 // Dual: compute field-by-field dual 6364 const Type *TypeAryKlassPtr::xdual() const { 6365 return new TypeAryKlassPtr(dual_ptr(), elem()->dual(), klass(), dual_offset()); 6366 } 6367 6368 // Is there a single ciKlass* that can represent that type? 6369 ciKlass* TypeAryKlassPtr::exact_klass_helper() const { 6370 if (elem()->isa_klassptr()) { 6371 ciKlass* k = elem()->is_klassptr()->exact_klass_helper(); 6372 if (k == NULL) { 6373 return NULL; 6374 } 6375 k = ciObjArrayKlass::make(k); 6376 return k; 6377 } 6378 6379 return klass(); 6380 } 6381 6382 ciKlass* TypeAryKlassPtr::klass() const { 6383 if (_klass != NULL) { 6384 return _klass; 6385 } 6386 ciKlass* k = NULL; 6387 if (elem()->isa_klassptr()) { 6388 // leave NULL 6389 } else if ((elem()->base() == Type::Top) || 6390 (elem()->base() == Type::Bottom)) { 6391 } else { 6392 k = ciTypeArrayKlass::make(elem()->basic_type()); 6393 ((TypeAryKlassPtr*)this)->_klass = k; 6394 } 6395 return k; 6396 } 6397 6398 //------------------------------dump2------------------------------------------ 6399 // Dump Klass Type 6400 #ifndef PRODUCT 6401 void TypeAryKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const { 6402 switch( _ptr ) { 6403 case Constant: 6404 st->print("precise "); 6405 case NotNull: 6406 { 6407 st->print("["); 6408 _elem->dump2(d, depth, st); 6409 _interfaces.dump(st); 6410 st->print(": "); 6411 } 6412 case BotPTR: 6413 if( !WizardMode && !Verbose && _ptr != Constant ) break; 6414 case TopPTR: 6415 case AnyNull: 6416 st->print(":%s", ptr_msg[_ptr]); 6417 if( _ptr == Constant ) st->print(":exact"); 6418 break; 6419 default: 6420 break; 6421 } 6422 6423 if( _offset ) { // Dump offset, if any 6424 if( _offset == OffsetBot ) { st->print("+any"); } 6425 else if( _offset == OffsetTop ) { st->print("+unknown"); } 6426 else { st->print("+%d", _offset); } 6427 } 6428 6429 st->print(" *"); 6430 } 6431 #endif 6432 6433 const Type* TypeAryKlassPtr::base_element_type(int& dims) const { 6434 const Type* elem = this->elem(); 6435 dims = 1; 6436 while (elem->isa_aryklassptr()) { 6437 elem = elem->is_aryklassptr()->elem(); 6438 dims++; 6439 } 6440 return elem; 6441 } 6442 6443 //============================================================================= 6444 // Convenience common pre-built types. 6445 6446 //------------------------------make------------------------------------------- 6447 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) { 6448 return (TypeFunc*)(new TypeFunc(domain,range))->hashcons(); 6449 } 6450 6451 //------------------------------make------------------------------------------- 6452 const TypeFunc *TypeFunc::make(ciMethod* method) { 6453 Compile* C = Compile::current(); 6454 const TypeFunc* tf = C->last_tf(method); // check cache 6455 if (tf != NULL) return tf; // The hit rate here is almost 50%. 6456 const TypeTuple *domain; 6457 if (method->is_static()) { 6458 domain = TypeTuple::make_domain(NULL, method->signature(), ignore_interfaces); 6459 } else { 6460 domain = TypeTuple::make_domain(method->holder(), method->signature(), ignore_interfaces); 6461 } 6462 const TypeTuple *range = TypeTuple::make_range(method->signature(), ignore_interfaces); 6463 tf = TypeFunc::make(domain, range); 6464 C->set_last_tf(method, tf); // fill cache 6465 return tf; 6466 } 6467 6468 //------------------------------meet------------------------------------------- 6469 // Compute the MEET of two types. It returns a new Type object. 6470 const Type *TypeFunc::xmeet( const Type *t ) const { 6471 // Perform a fast test for common case; meeting the same types together. 6472 if( this == t ) return this; // Meeting same type-rep? 6473 6474 // Current "this->_base" is Func 6475 switch (t->base()) { // switch on original type 6476 6477 case Bottom: // Ye Olde Default 6478 return t; 6479 6480 default: // All else is a mistake 6481 typerr(t); 6482 6483 case Top: 6484 break; 6485 } 6486 return this; // Return the double constant 6487 } 6488 6489 //------------------------------xdual------------------------------------------ 6490 // Dual: compute field-by-field dual 6491 const Type *TypeFunc::xdual() const { 6492 return this; 6493 } 6494 6495 //------------------------------eq--------------------------------------------- 6496 // Structural equality check for Type representations 6497 bool TypeFunc::eq( const Type *t ) const { 6498 const TypeFunc *a = (const TypeFunc*)t; 6499 return _domain == a->_domain && 6500 _range == a->_range; 6501 } 6502 6503 //------------------------------hash------------------------------------------- 6504 // Type-specific hashing function. 6505 int TypeFunc::hash(void) const { 6506 return (intptr_t)_domain + (intptr_t)_range; 6507 } 6508 6509 //------------------------------dump2------------------------------------------ 6510 // Dump Function Type 6511 #ifndef PRODUCT 6512 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const { 6513 if( _range->cnt() <= Parms ) 6514 st->print("void"); 6515 else { 6516 uint i; 6517 for (i = Parms; i < _range->cnt()-1; i++) { 6518 _range->field_at(i)->dump2(d,depth,st); 6519 st->print("/"); 6520 } 6521 _range->field_at(i)->dump2(d,depth,st); 6522 } 6523 st->print(" "); 6524 st->print("( "); 6525 if( !depth || d[this] ) { // Check for recursive dump 6526 st->print("...)"); 6527 return; 6528 } 6529 d.Insert((void*)this,(void*)this); // Stop recursion 6530 if (Parms < _domain->cnt()) 6531 _domain->field_at(Parms)->dump2(d,depth-1,st); 6532 for (uint i = Parms+1; i < _domain->cnt(); i++) { 6533 st->print(", "); 6534 _domain->field_at(i)->dump2(d,depth-1,st); 6535 } 6536 st->print(" )"); 6537 } 6538 #endif 6539 6540 //------------------------------singleton-------------------------------------- 6541 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple 6542 // constants (Ldi nodes). Singletons are integer, float or double constants 6543 // or a single symbol. 6544 bool TypeFunc::singleton(void) const { 6545 return false; // Never a singleton 6546 } 6547 6548 bool TypeFunc::empty(void) const { 6549 return false; // Never empty 6550 } 6551 6552 6553 BasicType TypeFunc::return_type() const{ 6554 if (range()->cnt() == TypeFunc::Parms) { 6555 return T_VOID; 6556 } 6557 return range()->field_at(TypeFunc::Parms)->basic_type(); 6558 } --- EOF ---