1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_TYPE_HPP
  26 #define SHARE_OPTO_TYPE_HPP
  27 
  28 #include "opto/adlcVMDeps.hpp"
  29 #include "runtime/handles.hpp"
  30 
  31 // Portions of code courtesy of Clifford Click
  32 
  33 // Optimization - Graph Style
  34 
  35 
  36 // This class defines a Type lattice.  The lattice is used in the constant
  37 // propagation algorithms, and for some type-checking of the iloc code.
  38 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  39 // float & double precision constants, sets of data-labels and code-labels.
  40 // The complete lattice is described below.  Subtypes have no relationship to
  41 // up or down in the lattice; that is entirely determined by the behavior of
  42 // the MEET/JOIN functions.
  43 
  44 class Dict;
  45 class Type;
  46 class   TypeD;
  47 class   TypeF;
  48 class   TypeInteger;
  49 class     TypeInt;
  50 class     TypeLong;
  51 class   TypeNarrowPtr;
  52 class     TypeNarrowOop;
  53 class     TypeNarrowKlass;
  54 class   TypeAry;
  55 class   TypeTuple;
  56 class   TypeVect;
  57 class     TypeVectA;
  58 class     TypeVectS;
  59 class     TypeVectD;
  60 class     TypeVectX;
  61 class     TypeVectY;
  62 class     TypeVectZ;
  63 class     TypeVectMask;
  64 class   TypePtr;
  65 class     TypeRawPtr;
  66 class     TypeOopPtr;
  67 class       TypeInstPtr;
  68 class       TypeAryPtr;
  69 class     TypeKlassPtr;
  70 class       TypeInstKlassPtr;
  71 class       TypeAryKlassPtr;
  72 class     TypeMetadataPtr;
  73 class VerifyMeet;
  74 
  75 //------------------------------Type-------------------------------------------
  76 // Basic Type object, represents a set of primitive Values.
  77 // Types are hash-cons'd into a private class dictionary, so only one of each
  78 // different kind of Type exists.  Types are never modified after creation, so
  79 // all their interesting fields are constant.
  80 class Type {
  81   friend class VMStructs;
  82 
  83 public:
  84   enum TYPES {
  85     Bad=0,                      // Type check
  86     Control,                    // Control of code (not in lattice)
  87     Top,                        // Top of the lattice
  88     Int,                        // Integer range (lo-hi)
  89     Long,                       // Long integer range (lo-hi)
  90     Half,                       // Placeholder half of doubleword
  91     NarrowOop,                  // Compressed oop pointer
  92     NarrowKlass,                // Compressed klass pointer
  93 
  94     Tuple,                      // Method signature or object layout
  95     Array,                      // Array types
  96 
  97     Interfaces,                 // Set of implemented interfaces for oop types
  98 
  99     VectorMask,                 // Vector predicate/mask type
 100     VectorA,                    // (Scalable) Vector types for vector length agnostic
 101     VectorS,                    //  32bit Vector types
 102     VectorD,                    //  64bit Vector types
 103     VectorX,                    // 128bit Vector types
 104     VectorY,                    // 256bit Vector types
 105     VectorZ,                    // 512bit Vector types
 106 
 107     AnyPtr,                     // Any old raw, klass, inst, or array pointer
 108     RawPtr,                     // Raw (non-oop) pointers
 109     OopPtr,                     // Any and all Java heap entities
 110     InstPtr,                    // Instance pointers (non-array objects)
 111     AryPtr,                     // Array pointers
 112     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 113 
 114     MetadataPtr,                // Generic metadata
 115     KlassPtr,                   // Klass pointers
 116     InstKlassPtr,
 117     AryKlassPtr,
 118 
 119     Function,                   // Function signature
 120     Abio,                       // Abstract I/O
 121     Return_Address,             // Subroutine return address
 122     Memory,                     // Abstract store
 123     FloatTop,                   // No float value
 124     FloatCon,                   // Floating point constant
 125     FloatBot,                   // Any float value
 126     DoubleTop,                  // No double value
 127     DoubleCon,                  // Double precision constant
 128     DoubleBot,                  // Any double value
 129     Bottom,                     // Bottom of lattice
 130     lastype                     // Bogus ending type (not in lattice)
 131   };
 132 
 133   // Signal values for offsets from a base pointer
 134   enum OFFSET_SIGNALS {
 135     OffsetTop = -2000000000,    // undefined offset
 136     OffsetBot = -2000000001     // any possible offset
 137   };
 138 
 139   // Min and max WIDEN values.
 140   enum WIDEN {
 141     WidenMin = 0,
 142     WidenMax = 3
 143   };
 144 
 145 private:
 146   typedef struct {
 147     TYPES                dual_type;
 148     BasicType            basic_type;
 149     const char*          msg;
 150     bool                 isa_oop;
 151     uint                 ideal_reg;
 152     relocInfo::relocType reloc;
 153   } TypeInfo;
 154 
 155   // Dictionary of types shared among compilations.
 156   static Dict* _shared_type_dict;
 157   static const TypeInfo _type_info[];
 158 
 159   static int uhash( const Type *const t );
 160   // Structural equality check.  Assumes that equals() has already compared
 161   // the _base types and thus knows it can cast 't' appropriately.
 162   virtual bool eq( const Type *t ) const;
 163 
 164   // Top-level hash-table of types
 165   static Dict *type_dict() {
 166     return Compile::current()->type_dict();
 167   }
 168 
 169   // DUAL operation: reflect around lattice centerline.  Used instead of
 170   // join to ensure my lattice is symmetric up and down.  Dual is computed
 171   // lazily, on demand, and cached in _dual.
 172   const Type *_dual;            // Cached dual value
 173 
 174 
 175   const Type *meet_helper(const Type *t, bool include_speculative) const;
 176   void check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const NOT_DEBUG_RETURN;
 177 
 178 protected:
 179   // Each class of type is also identified by its base.
 180   const TYPES _base;            // Enum of Types type
 181 
 182   Type( TYPES t ) : _dual(nullptr),  _base(t) {} // Simple types
 183   // ~Type();                   // Use fast deallocation
 184   const Type *hashcons();       // Hash-cons the type
 185   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 186   const Type *join_helper(const Type *t, bool include_speculative) const {
 187     assert_type_verify_empty();
 188     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 189   }
 190 
 191   void assert_type_verify_empty() const NOT_DEBUG_RETURN;
 192 
 193 public:
 194 
 195   inline void* operator new( size_t x ) throw() {
 196     Compile* compile = Compile::current();
 197     compile->set_type_last_size(x);
 198     return compile->type_arena()->AmallocWords(x);
 199   }
 200   inline void operator delete( void* ptr ) {
 201     Compile* compile = Compile::current();
 202     compile->type_arena()->Afree(ptr,compile->type_last_size());
 203   }
 204 
 205   // Initialize the type system for a particular compilation.
 206   static void Initialize(Compile* compile);
 207 
 208   // Initialize the types shared by all compilations.
 209   static void Initialize_shared(Compile* compile);
 210 
 211   TYPES base() const {
 212     assert(_base > Bad && _base < lastype, "sanity");
 213     return _base;
 214   }
 215 
 216   // Create a new hash-consd type
 217   static const Type *make(enum TYPES);
 218   // Test for equivalence of types
 219   static bool equals(const Type* t1, const Type* t2);
 220   // Test for higher or equal in lattice
 221   // Variant that drops the speculative part of the types
 222   bool higher_equal(const Type* t) const {
 223     return equals(meet(t), t->remove_speculative());
 224   }
 225   // Variant that keeps the speculative part of the types
 226   bool higher_equal_speculative(const Type* t) const {
 227     return equals(meet_speculative(t), t);
 228   }
 229 
 230   // MEET operation; lower in lattice.
 231   // Variant that drops the speculative part of the types
 232   const Type *meet(const Type *t) const {
 233     return meet_helper(t, false);
 234   }
 235   // Variant that keeps the speculative part of the types
 236   const Type *meet_speculative(const Type *t) const {
 237     return meet_helper(t, true)->cleanup_speculative();
 238   }
 239   // WIDEN: 'widens' for Ints and other range types
 240   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 241   // NARROW: complement for widen, used by pessimistic phases
 242   virtual const Type *narrow( const Type *old ) const { return this; }
 243 
 244   // DUAL operation: reflect around lattice centerline.  Used instead of
 245   // join to ensure my lattice is symmetric up and down.
 246   const Type *dual() const { return _dual; }
 247 
 248   // Compute meet dependent on base type
 249   virtual const Type *xmeet( const Type *t ) const;
 250   virtual const Type *xdual() const;    // Compute dual right now.
 251 
 252   // JOIN operation; higher in lattice.  Done by finding the dual of the
 253   // meet of the dual of the 2 inputs.
 254   // Variant that drops the speculative part of the types
 255   const Type *join(const Type *t) const {
 256     return join_helper(t, false);
 257   }
 258   // Variant that keeps the speculative part of the types
 259   const Type *join_speculative(const Type *t) const {
 260     return join_helper(t, true)->cleanup_speculative();
 261   }
 262 
 263   // Modified version of JOIN adapted to the needs Node::Value.
 264   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 265   // Variant that drops the speculative part of the types
 266   const Type *filter(const Type *kills) const {
 267     return filter_helper(kills, false);
 268   }
 269   // Variant that keeps the speculative part of the types
 270   const Type *filter_speculative(const Type *kills) const {
 271     return filter_helper(kills, true)->cleanup_speculative();
 272   }
 273 
 274   // Returns true if this pointer points at memory which contains a
 275   // compressed oop references.
 276   bool is_ptr_to_narrowoop() const;
 277   bool is_ptr_to_narrowklass() const;
 278 
 279   // Convenience access
 280   float getf() const;
 281   double getd() const;
 282 
 283   const TypeInt    *is_int() const;
 284   const TypeInt    *isa_int() const;             // Returns null if not an Int
 285   const TypeInteger* is_integer(BasicType bt) const;
 286   const TypeInteger* isa_integer(BasicType bt) const;
 287   const TypeLong   *is_long() const;
 288   const TypeLong   *isa_long() const;            // Returns null if not a Long
 289   const TypeD      *isa_double() const;          // Returns null if not a Double{Top,Con,Bot}
 290   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 291   const TypeD      *isa_double_constant() const; // Returns null if not a DoubleCon
 292   const TypeF      *isa_float() const;           // Returns null if not a Float{Top,Con,Bot}
 293   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 294   const TypeF      *isa_float_constant() const;  // Returns null if not a FloatCon
 295   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 296   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 297   const TypeAry    *isa_ary() const;             // Returns null of not ary
 298   const TypeVect   *is_vect() const;             // Vector
 299   const TypeVect   *isa_vect() const;            // Returns null if not a Vector
 300   const TypeVectMask *is_vectmask() const;       // Predicate/Mask Vector
 301   const TypeVectMask *isa_vectmask() const;      // Returns null if not a Vector Predicate/Mask
 302   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 303   const TypePtr    *isa_ptr() const;             // Returns null if not ptr type
 304   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 305   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 306   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 307   const TypeNarrowOop  *isa_narrowoop() const;   // Returns null if not oop ptr type
 308   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 309   const TypeNarrowKlass *isa_narrowklass() const;// Returns null if not oop ptr type
 310   const TypeOopPtr   *isa_oopptr() const;        // Returns null if not oop ptr type
 311   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 312   const TypeInstPtr  *isa_instptr() const;       // Returns null if not InstPtr
 313   const TypeInstPtr  *is_instptr() const;        // Instance
 314   const TypeAryPtr   *isa_aryptr() const;        // Returns null if not AryPtr
 315   const TypeAryPtr   *is_aryptr() const;         // Array oop
 316 
 317   template <typename TypeClass>
 318   const TypeClass* cast() const;
 319 
 320   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns null if not oop ptr type
 321   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 322   const TypeKlassPtr      *isa_klassptr() const;      // Returns null if not KlassPtr
 323   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 324   const TypeInstKlassPtr  *isa_instklassptr() const;  // Returns null if not IntKlassPtr
 325   const TypeInstKlassPtr  *is_instklassptr() const;   // assert if not IntKlassPtr
 326   const TypeAryKlassPtr   *isa_aryklassptr() const;   // Returns null if not AryKlassPtr
 327   const TypeAryKlassPtr   *is_aryklassptr() const;    // assert if not AryKlassPtr
 328 
 329   virtual bool      is_finite() const;           // Has a finite value
 330   virtual bool      is_nan()    const;           // Is not a number (NaN)
 331 
 332   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 333   const TypePtr* make_ptr() const;
 334 
 335   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 336   // Asserts if the underlying type is not an oopptr or narrowoop.
 337   const TypeOopPtr* make_oopptr() const;
 338 
 339   // Returns this compressed pointer or the equivalent compressed version
 340   // of this pointer type.
 341   const TypeNarrowOop* make_narrowoop() const;
 342 
 343   // Returns this compressed klass pointer or the equivalent
 344   // compressed version of this pointer type.
 345   const TypeNarrowKlass* make_narrowklass() const;
 346 
 347   // Special test for register pressure heuristic
 348   bool is_floatingpoint() const;        // True if Float or Double base type
 349 
 350   // Do you have memory, directly or through a tuple?
 351   bool has_memory( ) const;
 352 
 353   // TRUE if type is a singleton
 354   virtual bool singleton(void) const;
 355 
 356   // TRUE if type is above the lattice centerline, and is therefore vacuous
 357   virtual bool empty(void) const;
 358 
 359   // Return a hash for this type.  The hash function is public so ConNode
 360   // (constants) can hash on their constant, which is represented by a Type.
 361   virtual uint hash() const;
 362 
 363   // Map ideal registers (machine types) to ideal types
 364   static const Type *mreg2type[];
 365 
 366   // Printing, statistics
 367 #ifndef PRODUCT
 368   void         dump_on(outputStream *st) const;
 369   void         dump() const {
 370     dump_on(tty);
 371   }
 372   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 373   static  void dump_stats();
 374   // Groups of types, for debugging and visualization only.
 375   enum class Category {
 376     Data,
 377     Memory,
 378     Mixed,   // Tuples with types of different categories.
 379     Control,
 380     Other,   // {Type::Top, Type::Abio, Type::Bottom}.
 381     Undef    // {Type::Bad, Type::lastype}, for completeness.
 382   };
 383   // Return the category of this type.
 384   Category category() const;
 385   // Check recursively in tuples.
 386   bool has_category(Category cat) const;
 387 
 388   static const char* str(const Type* t);
 389 #endif // !PRODUCT
 390   void typerr(const Type *t) const; // Mixing types error
 391 
 392   // Create basic type
 393   static const Type* get_const_basic_type(BasicType type) {
 394     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != nullptr, "bad type");
 395     return _const_basic_type[type];
 396   }
 397 
 398   // For two instance arrays of same dimension, return the base element types.
 399   // Otherwise or if the arrays have different dimensions, return null.
 400   static void get_arrays_base_elements(const Type *a1, const Type *a2,
 401                                        const TypeInstPtr **e1, const TypeInstPtr **e2);
 402 
 403   // Mapping to the array element's basic type.
 404   BasicType array_element_basic_type() const;
 405 
 406   enum InterfaceHandling {
 407       trust_interfaces,
 408       ignore_interfaces
 409   };
 410   // Create standard type for a ciType:
 411   static const Type* get_const_type(ciType* type, InterfaceHandling interface_handling = ignore_interfaces);
 412 
 413   // Create standard zero value:
 414   static const Type* get_zero_type(BasicType type) {
 415     assert((uint)type <= T_CONFLICT && _zero_type[type] != nullptr, "bad type");
 416     return _zero_type[type];
 417   }
 418 
 419   // Report if this is a zero value (not top).
 420   bool is_zero_type() const {
 421     BasicType type = basic_type();
 422     if (type == T_VOID || type >= T_CONFLICT)
 423       return false;
 424     else
 425       return (this == _zero_type[type]);
 426   }
 427 
 428   // Convenience common pre-built types.
 429   static const Type *ABIO;
 430   static const Type *BOTTOM;
 431   static const Type *CONTROL;
 432   static const Type *DOUBLE;
 433   static const Type *FLOAT;
 434   static const Type *HALF;
 435   static const Type *MEMORY;
 436   static const Type *MULTI;
 437   static const Type *RETURN_ADDRESS;
 438   static const Type *TOP;
 439 
 440   // Mapping from compiler type to VM BasicType
 441   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 442   uint ideal_reg() const             { return _type_info[_base].ideal_reg; }
 443   const char* msg() const            { return _type_info[_base].msg; }
 444   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 445   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 446 
 447   // Mapping from CI type system to compiler type:
 448   static const Type* get_typeflow_type(ciType* type);
 449 
 450   static const Type* make_from_constant(ciConstant constant,
 451                                         bool require_constant = false,
 452                                         int stable_dimension = 0,
 453                                         bool is_narrow = false,
 454                                         bool is_autobox_cache = false);
 455 
 456   static const Type* make_constant_from_field(ciInstance* holder,
 457                                               int off,
 458                                               bool is_unsigned_load,
 459                                               BasicType loadbt);
 460 
 461   static const Type* make_constant_from_field(ciField* field,
 462                                               ciInstance* holder,
 463                                               BasicType loadbt,
 464                                               bool is_unsigned_load);
 465 
 466   static const Type* make_constant_from_array_element(ciArray* array,
 467                                                       int off,
 468                                                       int stable_dimension,
 469                                                       BasicType loadbt,
 470                                                       bool is_unsigned_load);
 471 
 472   // Speculative type helper methods. See TypePtr.
 473   virtual const TypePtr* speculative() const                                  { return nullptr; }
 474   virtual ciKlass* speculative_type() const                                   { return nullptr; }
 475   virtual ciKlass* speculative_type_not_null() const                          { return nullptr; }
 476   virtual bool speculative_maybe_null() const                                 { return true; }
 477   virtual bool speculative_always_null() const                                { return true; }
 478   virtual const Type* remove_speculative() const                              { return this; }
 479   virtual const Type* cleanup_speculative() const                             { return this; }
 480   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; }
 481   virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
 482   const Type* maybe_remove_speculative(bool include_speculative) const;
 483 
 484   virtual bool maybe_null() const { return true; }
 485   virtual bool is_known_instance() const { return false; }
 486 
 487 private:
 488   // support arrays
 489   static const Type*        _zero_type[T_CONFLICT+1];
 490   static const Type* _const_basic_type[T_CONFLICT+1];
 491 };
 492 
 493 //------------------------------TypeF------------------------------------------
 494 // Class of Float-Constant Types.
 495 class TypeF : public Type {
 496   TypeF( float f ) : Type(FloatCon), _f(f) {};
 497 public:
 498   virtual bool eq( const Type *t ) const;
 499   virtual uint hash() const;             // Type specific hashing
 500   virtual bool singleton(void) const;    // TRUE if type is a singleton
 501   virtual bool empty(void) const;        // TRUE if type is vacuous
 502 public:
 503   const float _f;               // Float constant
 504 
 505   static const TypeF *make(float f);
 506 
 507   virtual bool        is_finite() const;  // Has a finite value
 508   virtual bool        is_nan()    const;  // Is not a number (NaN)
 509 
 510   virtual const Type *xmeet( const Type *t ) const;
 511   virtual const Type *xdual() const;    // Compute dual right now.
 512   // Convenience common pre-built types.
 513   static const TypeF *MAX;
 514   static const TypeF *MIN;
 515   static const TypeF *ZERO; // positive zero only
 516   static const TypeF *ONE;
 517   static const TypeF *POS_INF;
 518   static const TypeF *NEG_INF;
 519 #ifndef PRODUCT
 520   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 521 #endif
 522 };
 523 
 524 //------------------------------TypeD------------------------------------------
 525 // Class of Double-Constant Types.
 526 class TypeD : public Type {
 527   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 528 public:
 529   virtual bool eq( const Type *t ) const;
 530   virtual uint hash() const;             // Type specific hashing
 531   virtual bool singleton(void) const;    // TRUE if type is a singleton
 532   virtual bool empty(void) const;        // TRUE if type is vacuous
 533 public:
 534   const double _d;              // Double constant
 535 
 536   static const TypeD *make(double d);
 537 
 538   virtual bool        is_finite() const;  // Has a finite value
 539   virtual bool        is_nan()    const;  // Is not a number (NaN)
 540 
 541   virtual const Type *xmeet( const Type *t ) const;
 542   virtual const Type *xdual() const;    // Compute dual right now.
 543   // Convenience common pre-built types.
 544   static const TypeD *MAX;
 545   static const TypeD *MIN;
 546   static const TypeD *ZERO; // positive zero only
 547   static const TypeD *ONE;
 548   static const TypeD *POS_INF;
 549   static const TypeD *NEG_INF;
 550 #ifndef PRODUCT
 551   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 552 #endif
 553 };
 554 
 555 class TypeInteger : public Type {
 556 protected:
 557   TypeInteger(TYPES t, int w) : Type(t), _widen(w) {}
 558 
 559 public:
 560   const short _widen;           // Limit on times we widen this sucker
 561 
 562   virtual jlong hi_as_long() const = 0;
 563   virtual jlong lo_as_long() const = 0;
 564   jlong get_con_as_long(BasicType bt) const;
 565   bool is_con() const { return lo_as_long() == hi_as_long(); }
 566   virtual short widen_limit() const { return _widen; }
 567 
 568   static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt);
 569 
 570   static const TypeInteger* bottom(BasicType type);
 571   static const TypeInteger* zero(BasicType type);
 572   static const TypeInteger* one(BasicType type);
 573   static const TypeInteger* minus_1(BasicType type);
 574 };
 575 
 576 
 577 
 578 //------------------------------TypeInt----------------------------------------
 579 // Class of integer ranges, the set of integers between a lower bound and an
 580 // upper bound, inclusive.
 581 class TypeInt : public TypeInteger {
 582   TypeInt( jint lo, jint hi, int w );
 583 protected:
 584   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 585 
 586 public:
 587   typedef jint NativeType;
 588   virtual bool eq( const Type *t ) const;
 589   virtual uint hash() const;             // Type specific hashing
 590   virtual bool singleton(void) const;    // TRUE if type is a singleton
 591   virtual bool empty(void) const;        // TRUE if type is vacuous
 592   const jint _lo, _hi;          // Lower bound, upper bound
 593 
 594   static const TypeInt *make(jint lo);
 595   // must always specify w
 596   static const TypeInt *make(jint lo, jint hi, int w);
 597 
 598   // Check for single integer
 599   bool is_con() const { return _lo==_hi; }
 600   bool is_con(jint i) const { return is_con() && _lo == i; }
 601   jint get_con() const { assert(is_con(), "" );  return _lo; }
 602 
 603   virtual bool        is_finite() const;  // Has a finite value
 604 
 605   virtual const Type *xmeet( const Type *t ) const;
 606   virtual const Type *xdual() const;    // Compute dual right now.
 607   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 608   virtual const Type *narrow( const Type *t ) const;
 609 
 610   virtual jlong hi_as_long() const { return _hi; }
 611   virtual jlong lo_as_long() const { return _lo; }
 612 
 613   // Do not kill _widen bits.
 614   // Convenience common pre-built types.
 615   static const TypeInt *MAX;
 616   static const TypeInt *MIN;
 617   static const TypeInt *MINUS_1;
 618   static const TypeInt *ZERO;
 619   static const TypeInt *ONE;
 620   static const TypeInt *BOOL;
 621   static const TypeInt *CC;
 622   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 623   static const TypeInt *CC_GT;  // [1]   == ONE
 624   static const TypeInt *CC_EQ;  // [0]   == ZERO
 625   static const TypeInt *CC_LE;  // [-1,0]
 626   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 627   static const TypeInt *BYTE;
 628   static const TypeInt *UBYTE;
 629   static const TypeInt *CHAR;
 630   static const TypeInt *SHORT;
 631   static const TypeInt *POS;
 632   static const TypeInt *POS1;
 633   static const TypeInt *INT;
 634   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 635   static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT
 636 
 637   static const TypeInt *as_self(const Type *t) { return t->is_int(); }
 638 #ifndef PRODUCT
 639   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 640 #endif
 641 };
 642 
 643 
 644 //------------------------------TypeLong---------------------------------------
 645 // Class of long integer ranges, the set of integers between a lower bound and
 646 // an upper bound, inclusive.
 647 class TypeLong : public TypeInteger {
 648   TypeLong( jlong lo, jlong hi, int w );
 649 protected:
 650   // Do not kill _widen bits.
 651   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 652 public:
 653   typedef jlong NativeType;
 654   virtual bool eq( const Type *t ) const;
 655   virtual uint hash() const;             // Type specific hashing
 656   virtual bool singleton(void) const;    // TRUE if type is a singleton
 657   virtual bool empty(void) const;        // TRUE if type is vacuous
 658 public:
 659   const jlong _lo, _hi;         // Lower bound, upper bound
 660 
 661   static const TypeLong *make(jlong lo);
 662   // must always specify w
 663   static const TypeLong *make(jlong lo, jlong hi, int w);
 664 
 665   // Check for single integer
 666   bool is_con() const { return _lo==_hi; }
 667   bool is_con(jlong i) const { return is_con() && _lo == i; }
 668   jlong get_con() const { assert(is_con(), "" ); return _lo; }
 669 
 670   // Check for positive 32-bit value.
 671   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 672 
 673   virtual bool        is_finite() const;  // Has a finite value
 674 
 675   virtual jlong hi_as_long() const { return _hi; }
 676   virtual jlong lo_as_long() const { return _lo; }
 677 
 678   virtual const Type *xmeet( const Type *t ) const;
 679   virtual const Type *xdual() const;    // Compute dual right now.
 680   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 681   virtual const Type *narrow( const Type *t ) const;
 682   // Convenience common pre-built types.
 683   static const TypeLong *MAX;
 684   static const TypeLong *MIN;
 685   static const TypeLong *MINUS_1;
 686   static const TypeLong *ZERO;
 687   static const TypeLong *ONE;
 688   static const TypeLong *POS;
 689   static const TypeLong *LONG;
 690   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 691   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 692   static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG
 693 
 694   // static convenience methods.
 695   static const TypeLong *as_self(const Type *t) { return t->is_long(); }
 696 
 697 #ifndef PRODUCT
 698   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 699 #endif
 700 };
 701 
 702 //------------------------------TypeTuple--------------------------------------
 703 // Class of Tuple Types, essentially type collections for function signatures
 704 // and class layouts.  It happens to also be a fast cache for the HotSpot
 705 // signature types.
 706 class TypeTuple : public Type {
 707   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 708 
 709   const uint          _cnt;              // Count of fields
 710   const Type ** const _fields;           // Array of field types
 711 
 712 public:
 713   virtual bool eq( const Type *t ) const;
 714   virtual uint hash() const;             // Type specific hashing
 715   virtual bool singleton(void) const;    // TRUE if type is a singleton
 716   virtual bool empty(void) const;        // TRUE if type is vacuous
 717 
 718   // Accessors:
 719   uint cnt() const { return _cnt; }
 720   const Type* field_at(uint i) const {
 721     assert(i < _cnt, "oob");
 722     return _fields[i];
 723   }
 724   void set_field_at(uint i, const Type* t) {
 725     assert(i < _cnt, "oob");
 726     _fields[i] = t;
 727   }
 728 
 729   static const TypeTuple *make( uint cnt, const Type **fields );
 730   static const TypeTuple *make_range(ciSignature *sig, InterfaceHandling interface_handling = ignore_interfaces);
 731   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig, InterfaceHandling interface_handling);
 732 
 733   // Subroutine call type with space allocated for argument types
 734   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 735   static const Type **fields( uint arg_cnt );
 736 
 737   virtual const Type *xmeet( const Type *t ) const;
 738   virtual const Type *xdual() const;    // Compute dual right now.
 739   // Convenience common pre-built types.
 740   static const TypeTuple *IFBOTH;
 741   static const TypeTuple *IFFALSE;
 742   static const TypeTuple *IFTRUE;
 743   static const TypeTuple *IFNEITHER;
 744   static const TypeTuple *LOOPBODY;
 745   static const TypeTuple *MEMBAR;
 746   static const TypeTuple *STORECONDITIONAL;
 747   static const TypeTuple *START_I2C;
 748   static const TypeTuple *INT_PAIR;
 749   static const TypeTuple *LONG_PAIR;
 750   static const TypeTuple *INT_CC_PAIR;
 751   static const TypeTuple *LONG_CC_PAIR;
 752 #ifndef PRODUCT
 753   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 754 #endif
 755 };
 756 
 757 //------------------------------TypeAry----------------------------------------
 758 // Class of Array Types
 759 class TypeAry : public Type {
 760   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
 761       _elem(elem), _size(size), _stable(stable) {}
 762 public:
 763   virtual bool eq( const Type *t ) const;
 764   virtual uint hash() const;             // Type specific hashing
 765   virtual bool singleton(void) const;    // TRUE if type is a singleton
 766   virtual bool empty(void) const;        // TRUE if type is vacuous
 767 
 768 private:
 769   const Type *_elem;            // Element type of array
 770   const TypeInt *_size;         // Elements in array
 771   const bool _stable;           // Are elements @Stable?
 772   friend class TypeAryPtr;
 773 
 774 public:
 775   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
 776 
 777   virtual const Type *xmeet( const Type *t ) const;
 778   virtual const Type *xdual() const;    // Compute dual right now.
 779   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 780   virtual const TypeAry* remove_speculative() const;
 781   virtual const Type* cleanup_speculative() const;
 782 #ifndef PRODUCT
 783   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 784 #endif
 785 };
 786 
 787 //------------------------------TypeVect---------------------------------------
 788 // Class of Vector Types
 789 class TypeVect : public Type {
 790   const BasicType _elem_bt;  // Vector's element type
 791   const uint _length;  // Elements in vector (power of 2)
 792 
 793 protected:
 794   TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
 795     _elem_bt(elem_bt), _length(length) {}
 796 
 797 public:
 798   BasicType element_basic_type() const { return _elem_bt; }
 799   uint length() const { return _length; }
 800   uint length_in_bytes() const {
 801     return _length * type2aelembytes(element_basic_type());
 802   }
 803 
 804   virtual bool eq(const Type* t) const;
 805   virtual uint hash() const;             // Type specific hashing
 806   virtual bool singleton(void) const;    // TRUE if type is a singleton
 807   virtual bool empty(void) const;        // TRUE if type is vacuous
 808 
 809   static const TypeVect* make(const BasicType elem_bt, uint length, bool is_mask = false);
 810   static const TypeVect* makemask(const BasicType elem_bt, uint length);
 811 
 812   virtual const Type* xmeet( const Type *t) const;
 813   virtual const Type* xdual() const;     // Compute dual right now.
 814 
 815   static const TypeVect* VECTA;
 816   static const TypeVect* VECTS;
 817   static const TypeVect* VECTD;
 818   static const TypeVect* VECTX;
 819   static const TypeVect* VECTY;
 820   static const TypeVect* VECTZ;
 821   static const TypeVect* VECTMASK;
 822 
 823 #ifndef PRODUCT
 824   virtual void dump2(Dict& d, uint, outputStream* st) const; // Specialized per-Type dumping
 825 #endif
 826 };
 827 
 828 class TypeVectA : public TypeVect {
 829   friend class TypeVect;
 830   TypeVectA(BasicType elem_bt, uint length) : TypeVect(VectorA, elem_bt, length) {}
 831 };
 832 
 833 class TypeVectS : public TypeVect {
 834   friend class TypeVect;
 835   TypeVectS(BasicType elem_bt, uint length) : TypeVect(VectorS, elem_bt, length) {}
 836 };
 837 
 838 class TypeVectD : public TypeVect {
 839   friend class TypeVect;
 840   TypeVectD(BasicType elem_bt, uint length) : TypeVect(VectorD, elem_bt, length) {}
 841 };
 842 
 843 class TypeVectX : public TypeVect {
 844   friend class TypeVect;
 845   TypeVectX(BasicType elem_bt, uint length) : TypeVect(VectorX, elem_bt, length) {}
 846 };
 847 
 848 class TypeVectY : public TypeVect {
 849   friend class TypeVect;
 850   TypeVectY(BasicType elem_bt, uint length) : TypeVect(VectorY, elem_bt, length) {}
 851 };
 852 
 853 class TypeVectZ : public TypeVect {
 854   friend class TypeVect;
 855   TypeVectZ(BasicType elem_bt, uint length) : TypeVect(VectorZ, elem_bt, length) {}
 856 };
 857 
 858 class TypeVectMask : public TypeVect {
 859 public:
 860   friend class TypeVect;
 861   TypeVectMask(BasicType elem_bt, uint length) : TypeVect(VectorMask, elem_bt, length) {}
 862   static const TypeVectMask* make(const BasicType elem_bt, uint length);
 863 };
 864 
 865 // Set of implemented interfaces. Referenced from TypeOopPtr and TypeKlassPtr.
 866 class TypeInterfaces : public Type {
 867 private:
 868   GrowableArrayFromArray<ciInstanceKlass*> _interfaces;
 869   uint _hash;
 870   ciInstanceKlass* _exact_klass;
 871   DEBUG_ONLY(bool _initialized;)
 872 
 873   void initialize();
 874 
 875   void verify() const NOT_DEBUG_RETURN;
 876   void compute_hash();
 877   void compute_exact_klass();
 878 
 879   TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces);
 880 
 881   NONCOPYABLE(TypeInterfaces);
 882 public:
 883   static const TypeInterfaces* make(GrowableArray<ciInstanceKlass*>* interfaces = nullptr);
 884   bool eq(const Type* other) const;
 885   bool eq(ciInstanceKlass* k) const;
 886   uint hash() const;
 887   const Type *xdual() const;
 888   void dump(outputStream* st) const;
 889   const TypeInterfaces* union_with(const TypeInterfaces* other) const;
 890   const TypeInterfaces* intersection_with(const TypeInterfaces* other) const;
 891   bool contains(const TypeInterfaces* other) const {
 892     return intersection_with(other)->eq(other);
 893   }
 894   bool empty() const { return _interfaces.length() == 0; }
 895 
 896   ciInstanceKlass* exact_klass() const;
 897   void verify_is_loaded() const NOT_DEBUG_RETURN;
 898 
 899   static int compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2);
 900   static int compare(ciInstanceKlass** k1, ciInstanceKlass** k2);
 901 
 902   const Type* xmeet(const Type* t) const;
 903 
 904   bool singleton(void) const;
 905 };
 906 
 907 //------------------------------TypePtr----------------------------------------
 908 // Class of machine Pointer Types: raw data, instances or arrays.
 909 // If the _base enum is AnyPtr, then this refers to all of the above.
 910 // Otherwise the _base will indicate which subset of pointers is affected,
 911 // and the class will be inherited from.
 912 class TypePtr : public Type {
 913   friend class TypeNarrowPtr;
 914   friend class Type;
 915 protected:
 916   static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
 917 
 918 public:
 919   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 920 protected:
 921   TypePtr(TYPES t, PTR ptr, int offset,
 922           const TypePtr* speculative = nullptr,
 923           int inline_depth = InlineDepthBottom) :
 924     Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
 925     _ptr(ptr) {}
 926   static const PTR ptr_meet[lastPTR][lastPTR];
 927   static const PTR ptr_dual[lastPTR];
 928   static const char * const ptr_msg[lastPTR];
 929 
 930   enum {
 931     InlineDepthBottom = INT_MAX,
 932     InlineDepthTop = -InlineDepthBottom
 933   };
 934 
 935   // Extra type information profiling gave us. We propagate it the
 936   // same way the rest of the type info is propagated. If we want to
 937   // use it, then we have to emit a guard: this part of the type is
 938   // not something we know but something we speculate about the type.
 939   const TypePtr*   _speculative;
 940   // For speculative types, we record at what inlining depth the
 941   // profiling point that provided the data is. We want to favor
 942   // profile data coming from outer scopes which are likely better for
 943   // the current compilation.
 944   int _inline_depth;
 945 
 946   // utility methods to work on the speculative part of the type
 947   const TypePtr* dual_speculative() const;
 948   const TypePtr* xmeet_speculative(const TypePtr* other) const;
 949   bool eq_speculative(const TypePtr* other) const;
 950   int hash_speculative() const;
 951   const TypePtr* add_offset_speculative(intptr_t offset) const;
 952   const TypePtr* with_offset_speculative(intptr_t offset) const;
 953 #ifndef PRODUCT
 954   void dump_speculative(outputStream *st) const;
 955 #endif
 956 
 957   // utility methods to work on the inline depth of the type
 958   int dual_inline_depth() const;
 959   int meet_inline_depth(int depth) const;
 960 #ifndef PRODUCT
 961   void dump_inline_depth(outputStream *st) const;
 962 #endif
 963 
 964   // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
 965   // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
 966   // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
 967   // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
 968   // encountered so the right logic specific to klasses or oops can be executed.,
 969   enum MeetResult {
 970     QUICK,
 971     UNLOADED,
 972     SUBTYPE,
 973     NOT_SUBTYPE,
 974     LCA
 975   };
 976   template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
 977                                                             const T* other_type, ciKlass*& res_klass, bool& res_xk);
 978 
 979   template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
 980                                                   ciKlass*& res_klass, bool& res_xk);
 981 
 982   template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
 983   template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
 984   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
 985   template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
 986   template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
 987   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
 988   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
 989   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
 990 public:
 991   const int _offset;            // Offset into oop, with TOP & BOT
 992   const PTR _ptr;               // Pointer equivalence class
 993 
 994   int offset() const { return _offset; }
 995   PTR ptr()    const { return _ptr; }
 996 
 997   static const TypePtr *make(TYPES t, PTR ptr, int offset,
 998                              const TypePtr* speculative = nullptr,
 999                              int inline_depth = InlineDepthBottom);
1000 
1001   // Return a 'ptr' version of this type
1002   virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1003 
1004   virtual intptr_t get_con() const;
1005 
1006   int xadd_offset( intptr_t offset ) const;
1007   virtual const TypePtr* add_offset(intptr_t offset) const;
1008   virtual const TypePtr* with_offset(intptr_t offset) const;
1009   virtual bool eq(const Type *t) const;
1010   virtual uint hash() const;             // Type specific hashing
1011 
1012   virtual bool singleton(void) const;    // TRUE if type is a singleton
1013   virtual bool empty(void) const;        // TRUE if type is vacuous
1014   virtual const Type *xmeet( const Type *t ) const;
1015   virtual const Type *xmeet_helper( const Type *t ) const;
1016   int meet_offset( int offset ) const;
1017   int dual_offset( ) const;
1018   virtual const Type *xdual() const;    // Compute dual right now.
1019 
1020   // meet, dual and join over pointer equivalence sets
1021   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1022   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
1023 
1024   // This is textually confusing unless one recalls that
1025   // join(t) == dual()->meet(t->dual())->dual().
1026   PTR join_ptr( const PTR in_ptr ) const {
1027     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1028   }
1029 
1030   // Speculative type helper methods.
1031   virtual const TypePtr* speculative() const { return _speculative; }
1032   int inline_depth() const                   { return _inline_depth; }
1033   virtual ciKlass* speculative_type() const;
1034   virtual ciKlass* speculative_type_not_null() const;
1035   virtual bool speculative_maybe_null() const;
1036   virtual bool speculative_always_null() const;
1037   virtual const TypePtr* remove_speculative() const;
1038   virtual const Type* cleanup_speculative() const;
1039   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1040   virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1041   virtual const TypePtr* with_inline_depth(int depth) const;
1042 
1043   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1044 
1045   // Tests for relation to centerline of type lattice:
1046   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1047   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1048   // Convenience common pre-built types.
1049   static const TypePtr *NULL_PTR;
1050   static const TypePtr *NOTNULL;
1051   static const TypePtr *BOTTOM;
1052 #ifndef PRODUCT
1053   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1054 #endif
1055 };
1056 
1057 //------------------------------TypeRawPtr-------------------------------------
1058 // Class of raw pointers, pointers to things other than Oops.  Examples
1059 // include the stack pointer, top of heap, card-marking area, handles, etc.
1060 class TypeRawPtr : public TypePtr {
1061 protected:
1062   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
1063 public:
1064   virtual bool eq( const Type *t ) const;
1065   virtual uint hash() const;    // Type specific hashing
1066 
1067   const address _bits;          // Constant value, if applicable
1068 
1069   static const TypeRawPtr *make( PTR ptr );
1070   static const TypeRawPtr *make( address bits );
1071 
1072   // Return a 'ptr' version of this type
1073   virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1074 
1075   virtual intptr_t get_con() const;
1076 
1077   virtual const TypePtr* add_offset(intptr_t offset) const;
1078   virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1079 
1080   virtual const Type *xmeet( const Type *t ) const;
1081   virtual const Type *xdual() const;    // Compute dual right now.
1082   // Convenience common pre-built types.
1083   static const TypeRawPtr *BOTTOM;
1084   static const TypeRawPtr *NOTNULL;
1085 #ifndef PRODUCT
1086   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1087 #endif
1088 };
1089 
1090 //------------------------------TypeOopPtr-------------------------------------
1091 // Some kind of oop (Java pointer), either instance or array.
1092 class TypeOopPtr : public TypePtr {
1093   friend class TypeAry;
1094   friend class TypePtr;
1095   friend class TypeInstPtr;
1096   friend class TypeAryPtr;
1097 protected:
1098  TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, int instance_id,
1099             const TypePtr* speculative, int inline_depth);
1100 public:
1101   virtual bool eq( const Type *t ) const;
1102   virtual uint hash() const;             // Type specific hashing
1103   virtual bool singleton(void) const;    // TRUE if type is a singleton
1104   enum {
1105    InstanceTop = -1,   // undefined instance
1106    InstanceBot = 0     // any possible instance
1107   };
1108 protected:
1109 
1110   // Oop is null, unless this is a constant oop.
1111   ciObject*     _const_oop;   // Constant oop
1112   // If _klass is null, then so is _sig.  This is an unloaded klass.
1113   ciKlass*      _klass;       // Klass object
1114 
1115   const TypeInterfaces* _interfaces;
1116 
1117   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1118   bool          _klass_is_exact;
1119   bool          _is_ptr_to_narrowoop;
1120   bool          _is_ptr_to_narrowklass;
1121   bool          _is_ptr_to_boxed_value;
1122 
1123   // If not InstanceTop or InstanceBot, indicates that this is
1124   // a particular instance of this type which is distinct.
1125   // This is the node index of the allocation node creating this instance.
1126   int           _instance_id;
1127 
1128   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1129 
1130   int dual_instance_id() const;
1131   int meet_instance_id(int uid) const;
1132 
1133   const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1134 
1135   // Do not allow interface-vs.-noninterface joins to collapse to top.
1136   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1137 
1138   virtual ciKlass* exact_klass_helper() const { return nullptr; }
1139   virtual ciKlass* klass() const { return _klass;     }
1140 
1141 public:
1142 
1143   bool is_java_subtype_of(const TypeOopPtr* other) const {
1144     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1145   }
1146 
1147   bool is_same_java_type_as(const TypePtr* other) const {
1148     return is_same_java_type_as_helper(other->is_oopptr());
1149   }
1150 
1151   virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1152     ShouldNotReachHere(); return false;
1153   }
1154 
1155   bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1156     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1157   }
1158   virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1159   virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1160 
1161 
1162   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1163   // Respects UseUniqueSubclasses.
1164   // If the klass is final, the resulting type will be exact.
1165   static const TypeOopPtr* make_from_klass(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1166     return make_from_klass_common(klass, true, false, interface_handling);
1167   }
1168   // Same as before, but will produce an exact type, even if
1169   // the klass is not final, as long as it has exactly one implementation.
1170   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1171     return make_from_klass_common(klass, true, true, interface_handling);
1172   }
1173   // Same as before, but does not respects UseUniqueSubclasses.
1174   // Use this only for creating array element types.
1175   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1176     return make_from_klass_common(klass, false, false, interface_handling);
1177   }
1178   // Creates a singleton type given an object.
1179   // If the object cannot be rendered as a constant,
1180   // may return a non-singleton type.
1181   // If require_constant, produce a null if a singleton is not possible.
1182   static const TypeOopPtr* make_from_constant(ciObject* o,
1183                                               bool require_constant = false);
1184 
1185   // Make a generic (unclassed) pointer to an oop.
1186   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id,
1187                                 const TypePtr* speculative = nullptr,
1188                                 int inline_depth = InlineDepthBottom);
1189 
1190   ciObject* const_oop()    const { return _const_oop; }
1191   // Exact klass, possibly an interface or an array of interface
1192   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1193   ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1194 
1195   virtual bool  is_loaded() const { return klass()->is_loaded(); }
1196   virtual bool klass_is_exact()    const { return _klass_is_exact; }
1197 
1198   // Returns true if this pointer points at memory which contains a
1199   // compressed oop references.
1200   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1201   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1202   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1203   bool is_known_instance()       const { return _instance_id > 0; }
1204   int  instance_id()             const { return _instance_id; }
1205   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
1206 
1207   virtual intptr_t get_con() const;
1208 
1209   virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1210 
1211   virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1212 
1213   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1214 
1215   // corresponding pointer to klass, for a given instance
1216   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1217 
1218   virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1219   virtual const TypePtr* add_offset(intptr_t offset) const;
1220 
1221   // Speculative type helper methods.
1222   virtual const TypeOopPtr* remove_speculative() const;
1223   virtual const Type* cleanup_speculative() const;
1224   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1225   virtual const TypePtr* with_inline_depth(int depth) const;
1226 
1227   virtual const TypePtr* with_instance_id(int instance_id) const;
1228 
1229   virtual const Type *xdual() const;    // Compute dual right now.
1230   // the core of the computation of the meet for TypeOopPtr and for its subclasses
1231   virtual const Type *xmeet_helper(const Type *t) const;
1232 
1233   // Convenience common pre-built type.
1234   static const TypeOopPtr *BOTTOM;
1235 #ifndef PRODUCT
1236   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1237 #endif
1238 private:
1239   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1240     return is_meet_subtype_of_helper(other->is_oopptr(), klass_is_exact(), other->is_oopptr()->klass_is_exact());
1241   }
1242 
1243   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const {
1244     ShouldNotReachHere(); return false;
1245   }
1246 
1247   virtual const TypeInterfaces* interfaces() const {
1248     return _interfaces;
1249   };
1250 
1251   const TypeOopPtr* is_reference_type(const Type* other) const {
1252     return other->isa_oopptr();
1253   }
1254 
1255   const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1256     return other->isa_aryptr();
1257   }
1258 
1259   const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1260     return other->isa_instptr();
1261   }
1262 };
1263 
1264 //------------------------------TypeInstPtr------------------------------------
1265 // Class of Java object pointers, pointing either to non-array Java instances
1266 // or to a Klass* (including array klasses).
1267 class TypeInstPtr : public TypeOopPtr {
1268   TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off, int instance_id,
1269               const TypePtr* speculative, int inline_depth);
1270   virtual bool eq( const Type *t ) const;
1271   virtual uint hash() const;             // Type specific hashing
1272 
1273   ciKlass* exact_klass_helper() const;
1274 
1275 public:
1276 
1277   // Instance klass, ignoring any interface
1278   ciInstanceKlass* instance_klass() const {
1279     assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1280     return klass()->as_instance_klass();
1281   }
1282 
1283   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1284   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1285   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1286 
1287   // Make a pointer to a constant oop.
1288   static const TypeInstPtr *make(ciObject* o) {
1289     ciKlass* k = o->klass();
1290     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1291     return make(TypePtr::Constant, k, interfaces, true, o, 0, InstanceBot);
1292   }
1293   // Make a pointer to a constant oop with offset.
1294   static const TypeInstPtr *make(ciObject* o, int offset) {
1295     ciKlass* k = o->klass();
1296     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1297     return make(TypePtr::Constant, k, interfaces, true, o, offset, InstanceBot);
1298   }
1299 
1300   // Make a pointer to some value of type klass.
1301   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1302     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1303     return make(ptr, klass, interfaces, false, nullptr, 0, InstanceBot);
1304   }
1305 
1306   // Make a pointer to some non-polymorphic value of exactly type klass.
1307   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1308     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1309     return make(ptr, klass, interfaces, true, nullptr, 0, InstanceBot);
1310   }
1311 
1312   // Make a pointer to some value of type klass with offset.
1313   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1314     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1315     return make(ptr, klass, interfaces, false, nullptr, offset, InstanceBot);
1316   }
1317 
1318   static const TypeInstPtr *make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
1319                                  int instance_id = InstanceBot,
1320                                  const TypePtr* speculative = nullptr,
1321                                  int inline_depth = InlineDepthBottom);
1322 
1323   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot) {
1324     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1325     return make(ptr, k, interfaces, xk, o, offset, instance_id);
1326   }
1327 
1328   /** Create constant type for a constant boxed value */
1329   const Type* get_const_boxed_value() const;
1330 
1331   // If this is a java.lang.Class constant, return the type for it or null.
1332   // Pass to Type::get_const_type to turn it to a type, which will usually
1333   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1334   ciType* java_mirror_type() const;
1335 
1336   virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1337 
1338   virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1339 
1340   virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1341 
1342   virtual const TypePtr* add_offset(intptr_t offset) const;
1343   virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1344 
1345   // Speculative type helper methods.
1346   virtual const TypeInstPtr* remove_speculative() const;
1347   const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1348   virtual const TypePtr* with_inline_depth(int depth) const;
1349   virtual const TypePtr* with_instance_id(int instance_id) const;
1350 
1351   // the core of the computation of the meet of 2 types
1352   virtual const Type *xmeet_helper(const Type *t) const;
1353   virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1354   virtual const Type *xdual() const;    // Compute dual right now.
1355 
1356   const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1357 
1358   // Convenience common pre-built types.
1359   static const TypeInstPtr *NOTNULL;
1360   static const TypeInstPtr *BOTTOM;
1361   static const TypeInstPtr *MIRROR;
1362   static const TypeInstPtr *MARK;
1363   static const TypeInstPtr *KLASS;
1364 #ifndef PRODUCT
1365   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1366 #endif
1367 
1368 private:
1369   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1370 
1371   virtual bool is_meet_same_type_as(const TypePtr* other) const {
1372     return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1373   }
1374 
1375 };
1376 
1377 //------------------------------TypeAryPtr-------------------------------------
1378 // Class of Java array pointers
1379 class TypeAryPtr : public TypeOopPtr {
1380   friend class Type;
1381   friend class TypePtr;
1382 
1383   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1384               int offset, int instance_id, bool is_autobox_cache,
1385               const TypePtr* speculative, int inline_depth)
1386     : TypeOopPtr(AryPtr,ptr,k,_array_interfaces,xk,o,offset, instance_id, speculative, inline_depth),
1387     _ary(ary),
1388     _is_autobox_cache(is_autobox_cache)
1389  {
1390     int dummy;
1391     bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1392 
1393     if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1394         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes() &&
1395         _offset != arrayOopDesc::klass_offset_in_bytes()) {
1396       _is_ptr_to_narrowoop = true;
1397     }
1398 
1399   }
1400   virtual bool eq( const Type *t ) const;
1401   virtual uint hash() const;    // Type specific hashing
1402   const TypeAry *_ary;          // Array we point into
1403   const bool     _is_autobox_cache;
1404 
1405   ciKlass* compute_klass() const;
1406 
1407   // A pointer to delay allocation to Type::Initialize_shared()
1408 
1409   static const TypeInterfaces* _array_interfaces;
1410   ciKlass* exact_klass_helper() const;
1411   // Only guaranteed non null for array of basic types
1412   ciKlass* klass() const;
1413 
1414 public:
1415 
1416   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1417   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1418   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1419 
1420   // returns base element type, an instance klass (and not interface) for object arrays
1421   const Type* base_element_type(int& dims) const;
1422 
1423   // Accessors
1424   bool  is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1425 
1426   const TypeAry* ary() const  { return _ary; }
1427   const Type*    elem() const { return _ary->_elem; }
1428   const TypeInt* size() const { return _ary->_size; }
1429   bool      is_stable() const { return _ary->_stable; }
1430 
1431   bool is_autobox_cache() const { return _is_autobox_cache; }
1432 
1433   static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1434                                 int instance_id = InstanceBot,
1435                                 const TypePtr* speculative = nullptr,
1436                                 int inline_depth = InlineDepthBottom);
1437   // Constant pointer to array
1438   static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1439                                 int instance_id = InstanceBot,
1440                                 const TypePtr* speculative = nullptr,
1441                                 int inline_depth = InlineDepthBottom, bool is_autobox_cache = false);
1442 
1443   // Return a 'ptr' version of this type
1444   virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1445 
1446   virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1447 
1448   virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1449 
1450   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1451   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1452 
1453   virtual bool empty(void) const;        // TRUE if type is vacuous
1454   virtual const TypePtr *add_offset( intptr_t offset ) const;
1455   virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1456   const TypeAryPtr* with_ary(const TypeAry* ary) const;
1457 
1458   // Speculative type helper methods.
1459   virtual const TypeAryPtr* remove_speculative() const;
1460   virtual const TypePtr* with_inline_depth(int depth) const;
1461   virtual const TypePtr* with_instance_id(int instance_id) const;
1462 
1463   // the core of the computation of the meet of 2 types
1464   virtual const Type *xmeet_helper(const Type *t) const;
1465   virtual const Type *xdual() const;    // Compute dual right now.
1466 
1467   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1468   int stable_dimension() const;
1469 
1470   const TypeAryPtr* cast_to_autobox_cache() const;
1471 
1472   static jint max_array_length(BasicType etype) ;
1473   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1474 
1475   // Convenience common pre-built types.
1476   static const TypeAryPtr* BOTTOM;
1477   static const TypeAryPtr* RANGE;
1478   static const TypeAryPtr* OOPS;
1479   static const TypeAryPtr* NARROWOOPS;
1480   static const TypeAryPtr* BYTES;
1481   static const TypeAryPtr* SHORTS;
1482   static const TypeAryPtr* CHARS;
1483   static const TypeAryPtr* INTS;
1484   static const TypeAryPtr* LONGS;
1485   static const TypeAryPtr* FLOATS;
1486   static const TypeAryPtr* DOUBLES;
1487   // selects one of the above:
1488   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1489     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1490     return _array_body_type[elem];
1491   }
1492   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1493   // sharpen the type of an int which is used as an array size
1494 #ifndef PRODUCT
1495   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1496 #endif
1497 private:
1498   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1499 };
1500 
1501 //------------------------------TypeMetadataPtr-------------------------------------
1502 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1503 class TypeMetadataPtr : public TypePtr {
1504 protected:
1505   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1506   // Do not allow interface-vs.-noninterface joins to collapse to top.
1507   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1508 public:
1509   virtual bool eq( const Type *t ) const;
1510   virtual uint hash() const;             // Type specific hashing
1511   virtual bool singleton(void) const;    // TRUE if type is a singleton
1512 
1513 private:
1514   ciMetadata*   _metadata;
1515 
1516 public:
1517   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1518 
1519   static const TypeMetadataPtr* make(ciMethod* m);
1520   static const TypeMetadataPtr* make(ciMethodData* m);
1521 
1522   ciMetadata* metadata() const { return _metadata; }
1523 
1524   virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1525 
1526   virtual const TypePtr *add_offset( intptr_t offset ) const;
1527 
1528   virtual const Type *xmeet( const Type *t ) const;
1529   virtual const Type *xdual() const;    // Compute dual right now.
1530 
1531   virtual intptr_t get_con() const;
1532 
1533   // Convenience common pre-built types.
1534   static const TypeMetadataPtr *BOTTOM;
1535 
1536 #ifndef PRODUCT
1537   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1538 #endif
1539 };
1540 
1541 //------------------------------TypeKlassPtr-----------------------------------
1542 // Class of Java Klass pointers
1543 class TypeKlassPtr : public TypePtr {
1544   friend class TypeInstKlassPtr;
1545   friend class TypeAryKlassPtr;
1546   friend class TypePtr;
1547 protected:
1548   TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset);
1549 
1550   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1551 
1552 public:
1553   virtual bool eq( const Type *t ) const;
1554   virtual uint hash() const;
1555   virtual bool singleton(void) const;    // TRUE if type is a singleton
1556 
1557 protected:
1558 
1559   ciKlass* _klass;
1560   const TypeInterfaces* _interfaces;
1561   const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1562   virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1563   virtual ciKlass* exact_klass_helper() const;
1564   virtual ciKlass* klass() const { return  _klass; }
1565 
1566 public:
1567 
1568   bool is_java_subtype_of(const TypeKlassPtr* other) const {
1569     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1570   }
1571   bool is_same_java_type_as(const TypePtr* other) const {
1572     return is_same_java_type_as_helper(other->is_klassptr());
1573   }
1574 
1575   bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1576     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1577   }
1578   virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1579   virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1580   virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1581 
1582   // Exact klass, possibly an interface or an array of interface
1583   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1584   virtual bool klass_is_exact()    const { return _ptr == Constant; }
1585 
1586   static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1587   static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling = ignore_interfaces);
1588 
1589   virtual bool  is_loaded() const { return _klass->is_loaded(); }
1590 
1591   virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1592 
1593   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1594 
1595   // corresponding pointer to instance, for a given class
1596   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1597 
1598   virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1599   virtual const Type    *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1600   virtual const Type    *xdual() const { ShouldNotReachHere(); return nullptr; }
1601 
1602   virtual intptr_t get_con() const;
1603 
1604   virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1605 
1606   virtual const TypeKlassPtr* try_improve() const { return this; }
1607 
1608 #ifndef PRODUCT
1609   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1610 #endif
1611 private:
1612   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1613     return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1614   }
1615 
1616   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1617     ShouldNotReachHere(); return false;
1618   }
1619 
1620   virtual const TypeInterfaces* interfaces() const {
1621     return _interfaces;
1622   };
1623 
1624   const TypeKlassPtr* is_reference_type(const Type* other) const {
1625     return other->isa_klassptr();
1626   }
1627 
1628   const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1629     return other->isa_aryklassptr();
1630   }
1631 
1632   const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
1633     return other->isa_instklassptr();
1634   }
1635 };
1636 
1637 // Instance klass pointer, mirrors TypeInstPtr
1638 class TypeInstKlassPtr : public TypeKlassPtr {
1639 
1640   TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
1641     : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset) {
1642     assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
1643   }
1644 
1645   virtual bool must_be_exact() const;
1646 
1647 public:
1648   // Instance klass ignoring any interface
1649   ciInstanceKlass* instance_klass() const {
1650     assert(!klass()->is_interface(), "");
1651     return klass()->as_instance_klass();
1652   }
1653 
1654   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1655   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1656   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1657 
1658   static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
1659     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
1660     return make(TypePtr::Constant, k, interfaces, 0);
1661   }
1662   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset);
1663 
1664   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, int offset) {
1665     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1666     return make(ptr, k, interfaces, offset);
1667   }
1668 
1669   virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
1670 
1671   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1672 
1673   // corresponding pointer to instance, for a given class
1674   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1675   virtual uint hash() const;
1676   virtual bool eq(const Type *t) const;
1677 
1678   virtual const TypePtr *add_offset( intptr_t offset ) const;
1679   virtual const Type    *xmeet( const Type *t ) const;
1680   virtual const Type    *xdual() const;
1681   virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
1682 
1683   virtual const TypeKlassPtr* try_improve() const;
1684 
1685   // Convenience common pre-built types.
1686   static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
1687   static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1688 private:
1689   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1690 };
1691 
1692 // Array klass pointer, mirrors TypeAryPtr
1693 class TypeAryKlassPtr : public TypeKlassPtr {
1694   friend class TypeInstKlassPtr;
1695   friend class Type;
1696   friend class TypePtr;
1697 
1698   const Type *_elem;
1699 
1700   static const TypeInterfaces* _array_interfaces;
1701   TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, int offset)
1702     : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem) {
1703     assert(klass == nullptr || klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
1704   }
1705 
1706   virtual ciKlass* exact_klass_helper() const;
1707   // Only guaranteed non null for array of basic types
1708   virtual ciKlass* klass() const;
1709 
1710   virtual bool must_be_exact() const;
1711 
1712 public:
1713 
1714   // returns base element type, an instance klass (and not interface) for object arrays
1715   const Type* base_element_type(int& dims) const;
1716 
1717   static const TypeAryKlassPtr *make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling);
1718 
1719   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1720   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1721   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1722 
1723   bool  is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
1724 
1725   static const TypeAryKlassPtr *make(PTR ptr, const Type *elem, ciKlass* k, int offset);
1726   static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
1727 
1728   const Type *elem() const { return _elem; }
1729 
1730   virtual bool eq(const Type *t) const;
1731   virtual uint hash() const;             // Type specific hashing
1732 
1733   virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
1734 
1735   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1736 
1737   // corresponding pointer to instance, for a given class
1738   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1739 
1740   virtual const TypePtr *add_offset( intptr_t offset ) const;
1741   virtual const Type    *xmeet( const Type *t ) const;
1742   virtual const Type    *xdual() const;      // Compute dual right now.
1743 
1744   virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
1745 
1746   virtual bool empty(void) const {
1747     return TypeKlassPtr::empty() || _elem->empty();
1748   }
1749 
1750 #ifndef PRODUCT
1751   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1752 #endif
1753 private:
1754   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1755 };
1756 
1757 class TypeNarrowPtr : public Type {
1758 protected:
1759   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1760 
1761   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
1762                                                   _ptrtype(ptrtype) {
1763     assert(ptrtype->offset() == 0 ||
1764            ptrtype->offset() == OffsetBot ||
1765            ptrtype->offset() == OffsetTop, "no real offsets");
1766   }
1767 
1768   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1769   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1770   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1771   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1772   // Do not allow interface-vs.-noninterface joins to collapse to top.
1773   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1774 public:
1775   virtual bool eq( const Type *t ) const;
1776   virtual uint hash() const;             // Type specific hashing
1777   virtual bool singleton(void) const;    // TRUE if type is a singleton
1778 
1779   virtual const Type *xmeet( const Type *t ) const;
1780   virtual const Type *xdual() const;    // Compute dual right now.
1781 
1782   virtual intptr_t get_con() const;
1783 
1784   virtual bool empty(void) const;        // TRUE if type is vacuous
1785 
1786   // returns the equivalent ptr type for this compressed pointer
1787   const TypePtr *get_ptrtype() const {
1788     return _ptrtype;
1789   }
1790 
1791   bool is_known_instance() const {
1792     return _ptrtype->is_known_instance();
1793   }
1794 
1795 #ifndef PRODUCT
1796   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1797 #endif
1798 };
1799 
1800 //------------------------------TypeNarrowOop----------------------------------
1801 // A compressed reference to some kind of Oop.  This type wraps around
1802 // a preexisting TypeOopPtr and forwards most of it's operations to
1803 // the underlying type.  It's only real purpose is to track the
1804 // oopness of the compressed oop value when we expose the conversion
1805 // between the normal and the compressed form.
1806 class TypeNarrowOop : public TypeNarrowPtr {
1807 protected:
1808   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1809   }
1810 
1811   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1812     return t->isa_narrowoop();
1813   }
1814 
1815   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1816     return t->is_narrowoop();
1817   }
1818 
1819   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1820     return new TypeNarrowOop(t);
1821   }
1822 
1823   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1824     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1825   }
1826 
1827 public:
1828 
1829   static const TypeNarrowOop *make( const TypePtr* type);
1830 
1831   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1832     return make(TypeOopPtr::make_from_constant(con, require_constant));
1833   }
1834 
1835   static const TypeNarrowOop *BOTTOM;
1836   static const TypeNarrowOop *NULL_PTR;
1837 
1838   virtual const TypeNarrowOop* remove_speculative() const;
1839   virtual const Type* cleanup_speculative() const;
1840 
1841 #ifndef PRODUCT
1842   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1843 #endif
1844 };
1845 
1846 //------------------------------TypeNarrowKlass----------------------------------
1847 // A compressed reference to klass pointer.  This type wraps around a
1848 // preexisting TypeKlassPtr and forwards most of it's operations to
1849 // the underlying type.
1850 class TypeNarrowKlass : public TypeNarrowPtr {
1851 protected:
1852   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1853   }
1854 
1855   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1856     return t->isa_narrowklass();
1857   }
1858 
1859   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1860     return t->is_narrowklass();
1861   }
1862 
1863   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1864     return new TypeNarrowKlass(t);
1865   }
1866 
1867   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1868     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1869   }
1870 
1871 public:
1872   static const TypeNarrowKlass *make( const TypePtr* type);
1873 
1874   // static const TypeNarrowKlass *BOTTOM;
1875   static const TypeNarrowKlass *NULL_PTR;
1876 
1877 #ifndef PRODUCT
1878   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1879 #endif
1880 };
1881 
1882 //------------------------------TypeFunc---------------------------------------
1883 // Class of Array Types
1884 class TypeFunc : public Type {
1885   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
1886   virtual bool eq( const Type *t ) const;
1887   virtual uint hash() const;             // Type specific hashing
1888   virtual bool singleton(void) const;    // TRUE if type is a singleton
1889   virtual bool empty(void) const;        // TRUE if type is vacuous
1890 
1891   const TypeTuple* const _domain;     // Domain of inputs
1892   const TypeTuple* const _range;      // Range of results
1893 
1894 public:
1895   // Constants are shared among ADLC and VM
1896   enum { Control    = AdlcVMDeps::Control,
1897          I_O        = AdlcVMDeps::I_O,
1898          Memory     = AdlcVMDeps::Memory,
1899          FramePtr   = AdlcVMDeps::FramePtr,
1900          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1901          Parms      = AdlcVMDeps::Parms
1902   };
1903 
1904 
1905   // Accessors:
1906   const TypeTuple* domain() const { return _domain; }
1907   const TypeTuple* range()  const { return _range; }
1908 
1909   static const TypeFunc *make(ciMethod* method);
1910   static const TypeFunc *make(ciSignature signature, const Type* extra);
1911   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1912 
1913   virtual const Type *xmeet( const Type *t ) const;
1914   virtual const Type *xdual() const;    // Compute dual right now.
1915 
1916   BasicType return_type() const;
1917 
1918 #ifndef PRODUCT
1919   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1920 #endif
1921   // Convenience common pre-built types.
1922 };
1923 
1924 //------------------------------accessors--------------------------------------
1925 inline bool Type::is_ptr_to_narrowoop() const {
1926 #ifdef _LP64
1927   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
1928 #else
1929   return false;
1930 #endif
1931 }
1932 
1933 inline bool Type::is_ptr_to_narrowklass() const {
1934 #ifdef _LP64
1935   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
1936 #else
1937   return false;
1938 #endif
1939 }
1940 
1941 inline float Type::getf() const {
1942   assert( _base == FloatCon, "Not a FloatCon" );
1943   return ((TypeF*)this)->_f;
1944 }
1945 
1946 inline double Type::getd() const {
1947   assert( _base == DoubleCon, "Not a DoubleCon" );
1948   return ((TypeD*)this)->_d;
1949 }
1950 
1951 inline const TypeInteger *Type::is_integer(BasicType bt) const {
1952   assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int");
1953   return (TypeInteger*)this;
1954 }
1955 
1956 inline const TypeInteger *Type::isa_integer(BasicType bt) const {
1957   return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : nullptr);
1958 }
1959 
1960 inline const TypeInt *Type::is_int() const {
1961   assert( _base == Int, "Not an Int" );
1962   return (TypeInt*)this;
1963 }
1964 
1965 inline const TypeInt *Type::isa_int() const {
1966   return ( _base == Int ? (TypeInt*)this : nullptr);
1967 }
1968 
1969 inline const TypeLong *Type::is_long() const {
1970   assert( _base == Long, "Not a Long" );
1971   return (TypeLong*)this;
1972 }
1973 
1974 inline const TypeLong *Type::isa_long() const {
1975   return ( _base == Long ? (TypeLong*)this : nullptr);
1976 }
1977 
1978 inline const TypeF *Type::isa_float() const {
1979   return ((_base == FloatTop ||
1980            _base == FloatCon ||
1981            _base == FloatBot) ? (TypeF*)this : nullptr);
1982 }
1983 
1984 inline const TypeF *Type::is_float_constant() const {
1985   assert( _base == FloatCon, "Not a Float" );
1986   return (TypeF*)this;
1987 }
1988 
1989 inline const TypeF *Type::isa_float_constant() const {
1990   return ( _base == FloatCon ? (TypeF*)this : nullptr);
1991 }
1992 
1993 inline const TypeD *Type::isa_double() const {
1994   return ((_base == DoubleTop ||
1995            _base == DoubleCon ||
1996            _base == DoubleBot) ? (TypeD*)this : nullptr);
1997 }
1998 
1999 inline const TypeD *Type::is_double_constant() const {
2000   assert( _base == DoubleCon, "Not a Double" );
2001   return (TypeD*)this;
2002 }
2003 
2004 inline const TypeD *Type::isa_double_constant() const {
2005   return ( _base == DoubleCon ? (TypeD*)this : nullptr);
2006 }
2007 
2008 inline const TypeTuple *Type::is_tuple() const {
2009   assert( _base == Tuple, "Not a Tuple" );
2010   return (TypeTuple*)this;
2011 }
2012 
2013 inline const TypeAry *Type::is_ary() const {
2014   assert( _base == Array , "Not an Array" );
2015   return (TypeAry*)this;
2016 }
2017 
2018 inline const TypeAry *Type::isa_ary() const {
2019   return ((_base == Array) ? (TypeAry*)this : nullptr);
2020 }
2021 
2022 inline const TypeVectMask *Type::is_vectmask() const {
2023   assert( _base == VectorMask, "Not a Vector Mask" );
2024   return (TypeVectMask*)this;
2025 }
2026 
2027 inline const TypeVectMask *Type::isa_vectmask() const {
2028   return (_base == VectorMask) ? (TypeVectMask*)this : nullptr;
2029 }
2030 
2031 inline const TypeVect *Type::is_vect() const {
2032   assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" );
2033   return (TypeVect*)this;
2034 }
2035 
2036 inline const TypeVect *Type::isa_vect() const {
2037   return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : nullptr;
2038 }
2039 
2040 inline const TypePtr *Type::is_ptr() const {
2041   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2042   assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer");
2043   return (TypePtr*)this;
2044 }
2045 
2046 inline const TypePtr *Type::isa_ptr() const {
2047   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2048   return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : nullptr;
2049 }
2050 
2051 inline const TypeOopPtr *Type::is_oopptr() const {
2052   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2053   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
2054   return (TypeOopPtr*)this;
2055 }
2056 
2057 inline const TypeOopPtr *Type::isa_oopptr() const {
2058   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2059   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : nullptr;
2060 }
2061 
2062 inline const TypeRawPtr *Type::isa_rawptr() const {
2063   return (_base == RawPtr) ? (TypeRawPtr*)this : nullptr;
2064 }
2065 
2066 inline const TypeRawPtr *Type::is_rawptr() const {
2067   assert( _base == RawPtr, "Not a raw pointer" );
2068   return (TypeRawPtr*)this;
2069 }
2070 
2071 inline const TypeInstPtr *Type::isa_instptr() const {
2072   return (_base == InstPtr) ? (TypeInstPtr*)this : nullptr;
2073 }
2074 
2075 inline const TypeInstPtr *Type::is_instptr() const {
2076   assert( _base == InstPtr, "Not an object pointer" );
2077   return (TypeInstPtr*)this;
2078 }
2079 
2080 inline const TypeAryPtr *Type::isa_aryptr() const {
2081   return (_base == AryPtr) ? (TypeAryPtr*)this : nullptr;
2082 }
2083 
2084 inline const TypeAryPtr *Type::is_aryptr() const {
2085   assert( _base == AryPtr, "Not an array pointer" );
2086   return (TypeAryPtr*)this;
2087 }
2088 
2089 inline const TypeNarrowOop *Type::is_narrowoop() const {
2090   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2091   assert(_base == NarrowOop, "Not a narrow oop" ) ;
2092   return (TypeNarrowOop*)this;
2093 }
2094 
2095 inline const TypeNarrowOop *Type::isa_narrowoop() const {
2096   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2097   return (_base == NarrowOop) ? (TypeNarrowOop*)this : nullptr;
2098 }
2099 
2100 inline const TypeNarrowKlass *Type::is_narrowklass() const {
2101   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
2102   return (TypeNarrowKlass*)this;
2103 }
2104 
2105 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
2106   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : nullptr;
2107 }
2108 
2109 inline const TypeMetadataPtr *Type::is_metadataptr() const {
2110   // MetadataPtr is the first and CPCachePtr the last
2111   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
2112   return (TypeMetadataPtr*)this;
2113 }
2114 
2115 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
2116   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : nullptr;
2117 }
2118 
2119 inline const TypeKlassPtr *Type::isa_klassptr() const {
2120   return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : nullptr;
2121 }
2122 
2123 inline const TypeKlassPtr *Type::is_klassptr() const {
2124   assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer");
2125   return (TypeKlassPtr*)this;
2126 }
2127 
2128 inline const TypeInstKlassPtr *Type::isa_instklassptr() const {
2129   return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : nullptr;
2130 }
2131 
2132 inline const TypeInstKlassPtr *Type::is_instklassptr() const {
2133   assert(_base == InstKlassPtr, "Not a klass pointer");
2134   return (TypeInstKlassPtr*)this;
2135 }
2136 
2137 inline const TypeAryKlassPtr *Type::isa_aryklassptr() const {
2138   return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : nullptr;
2139 }
2140 
2141 inline const TypeAryKlassPtr *Type::is_aryklassptr() const {
2142   assert(_base == AryKlassPtr, "Not a klass pointer");
2143   return (TypeAryKlassPtr*)this;
2144 }
2145 
2146 inline const TypePtr* Type::make_ptr() const {
2147   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
2148                               ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
2149                                                        isa_ptr());
2150 }
2151 
2152 inline const TypeOopPtr* Type::make_oopptr() const {
2153   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
2154 }
2155 
2156 inline const TypeNarrowOop* Type::make_narrowoop() const {
2157   return (_base == NarrowOop) ? is_narrowoop() :
2158                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2159 }
2160 
2161 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2162   return (_base == NarrowKlass) ? is_narrowklass() :
2163                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2164 }
2165 
2166 inline bool Type::is_floatingpoint() const {
2167   if( (_base == FloatCon)  || (_base == FloatBot) ||
2168       (_base == DoubleCon) || (_base == DoubleBot) )
2169     return true;
2170   return false;
2171 }
2172 
2173 template <>
2174 inline const TypeInt* Type::cast<TypeInt>() const {
2175   return is_int();
2176 }
2177 
2178 template <>
2179 inline const TypeLong* Type::cast<TypeLong>() const {
2180   return is_long();
2181 }
2182 
2183 // ===============================================================
2184 // Things that need to be 64-bits in the 64-bit build but
2185 // 32-bits in the 32-bit build.  Done this way to get full
2186 // optimization AND strong typing.
2187 #ifdef _LP64
2188 
2189 // For type queries and asserts
2190 #define is_intptr_t  is_long
2191 #define isa_intptr_t isa_long
2192 #define find_intptr_t_type find_long_type
2193 #define find_intptr_t_con  find_long_con
2194 #define TypeX        TypeLong
2195 #define Type_X       Type::Long
2196 #define TypeX_X      TypeLong::LONG
2197 #define TypeX_ZERO   TypeLong::ZERO
2198 // For 'ideal_reg' machine registers
2199 #define Op_RegX      Op_RegL
2200 // For phase->intcon variants
2201 #define MakeConX     longcon
2202 #define ConXNode     ConLNode
2203 // For array index arithmetic
2204 #define MulXNode     MulLNode
2205 #define AndXNode     AndLNode
2206 #define OrXNode      OrLNode
2207 #define CmpXNode     CmpLNode
2208 #define SubXNode     SubLNode
2209 #define LShiftXNode  LShiftLNode
2210 // For object size computation:
2211 #define AddXNode     AddLNode
2212 #define RShiftXNode  RShiftLNode
2213 // For card marks and hashcodes
2214 #define URShiftXNode URShiftLNode
2215 // For shenandoahSupport
2216 #define LoadXNode    LoadLNode
2217 #define StoreXNode   StoreLNode
2218 // Opcodes
2219 #define Op_LShiftX   Op_LShiftL
2220 #define Op_AndX      Op_AndL
2221 #define Op_AddX      Op_AddL
2222 #define Op_SubX      Op_SubL
2223 #define Op_XorX      Op_XorL
2224 #define Op_URShiftX  Op_URShiftL
2225 #define Op_LoadX     Op_LoadL
2226 // conversions
2227 #define ConvI2X(x)   ConvI2L(x)
2228 #define ConvL2X(x)   (x)
2229 #define ConvX2I(x)   ConvL2I(x)
2230 #define ConvX2L(x)   (x)
2231 #define ConvX2UL(x)  (x)
2232 
2233 #else
2234 
2235 // For type queries and asserts
2236 #define is_intptr_t  is_int
2237 #define isa_intptr_t isa_int
2238 #define find_intptr_t_type find_int_type
2239 #define find_intptr_t_con  find_int_con
2240 #define TypeX        TypeInt
2241 #define Type_X       Type::Int
2242 #define TypeX_X      TypeInt::INT
2243 #define TypeX_ZERO   TypeInt::ZERO
2244 // For 'ideal_reg' machine registers
2245 #define Op_RegX      Op_RegI
2246 // For phase->intcon variants
2247 #define MakeConX     intcon
2248 #define ConXNode     ConINode
2249 // For array index arithmetic
2250 #define MulXNode     MulINode
2251 #define AndXNode     AndINode
2252 #define OrXNode      OrINode
2253 #define CmpXNode     CmpINode
2254 #define SubXNode     SubINode
2255 #define LShiftXNode  LShiftINode
2256 // For object size computation:
2257 #define AddXNode     AddINode
2258 #define RShiftXNode  RShiftINode
2259 // For card marks and hashcodes
2260 #define URShiftXNode URShiftINode
2261 // For shenandoahSupport
2262 #define LoadXNode    LoadINode
2263 #define StoreXNode   StoreINode
2264 // Opcodes
2265 #define Op_LShiftX   Op_LShiftI
2266 #define Op_AndX      Op_AndI
2267 #define Op_AddX      Op_AddI
2268 #define Op_SubX      Op_SubI
2269 #define Op_XorX      Op_XorI
2270 #define Op_URShiftX  Op_URShiftI
2271 #define Op_LoadX     Op_LoadI
2272 // conversions
2273 #define ConvI2X(x)   (x)
2274 #define ConvL2X(x)   ConvL2I(x)
2275 #define ConvX2I(x)   (x)
2276 #define ConvX2L(x)   ConvI2L(x)
2277 #define ConvX2UL(x)  ConvI2UL(x)
2278 
2279 #endif
2280 
2281 #endif // SHARE_OPTO_TYPE_HPP