1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_TYPE_HPP
  26 #define SHARE_OPTO_TYPE_HPP
  27 
  28 #include "opto/adlcVMDeps.hpp"
  29 #include "opto/compile.hpp"
  30 #include "opto/rangeinference.hpp"
  31 #include "runtime/handles.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 // This class defines a Type lattice.  The lattice is used in the constant
  39 // propagation algorithms, and for some type-checking of the iloc code.
  40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  41 // float & double precision constants, sets of data-labels and code-labels.
  42 // The complete lattice is described below.  Subtypes have no relationship to
  43 // up or down in the lattice; that is entirely determined by the behavior of
  44 // the MEET/JOIN functions.
  45 
  46 class Dict;
  47 class Type;
  48 class   TypeD;
  49 class   TypeF;
  50 class   TypeH;
  51 class   TypeInteger;
  52 class     TypeInt;
  53 class     TypeLong;
  54 class   TypeNarrowPtr;
  55 class     TypeNarrowOop;
  56 class     TypeNarrowKlass;
  57 class   TypeAry;
  58 class   TypeTuple;
  59 class   TypeVect;
  60 class     TypeVectA;
  61 class     TypeVectS;
  62 class     TypeVectD;
  63 class     TypeVectX;
  64 class     TypeVectY;
  65 class     TypeVectZ;
  66 class     TypeVectMask;
  67 class   TypePtr;
  68 class     TypeRawPtr;
  69 class     TypeOopPtr;
  70 class       TypeInstPtr;
  71 class       TypeAryPtr;
  72 class     TypeKlassPtr;
  73 class       TypeInstKlassPtr;
  74 class       TypeAryKlassPtr;
  75 class     TypeMetadataPtr;
  76 class VerifyMeet;
  77 
  78 template <class T, class U>
  79 class TypeIntPrototype;
  80 
  81 //------------------------------Type-------------------------------------------
  82 // Basic Type object, represents a set of primitive Values.
  83 // Types are hash-cons'd into a private class dictionary, so only one of each
  84 // different kind of Type exists.  Types are never modified after creation, so
  85 // all their interesting fields are constant.
  86 class Type {
  87 
  88 public:
  89   enum TYPES {
  90     Bad=0,                      // Type check
  91     Control,                    // Control of code (not in lattice)
  92     Top,                        // Top of the lattice
  93     Int,                        // Integer range (lo-hi)
  94     Long,                       // Long integer range (lo-hi)
  95     Half,                       // Placeholder half of doubleword
  96     NarrowOop,                  // Compressed oop pointer
  97     NarrowKlass,                // Compressed klass pointer
  98 
  99     Tuple,                      // Method signature or object layout
 100     Array,                      // Array types
 101 
 102     Interfaces,                 // Set of implemented interfaces for oop types
 103 
 104     VectorMask,                 // Vector predicate/mask type
 105     VectorA,                    // (Scalable) Vector types for vector length agnostic
 106     VectorS,                    //  32bit Vector types
 107     VectorD,                    //  64bit Vector types
 108     VectorX,                    // 128bit Vector types
 109     VectorY,                    // 256bit Vector types
 110     VectorZ,                    // 512bit Vector types
 111 
 112     AnyPtr,                     // Any old raw, klass, inst, or array pointer
 113     RawPtr,                     // Raw (non-oop) pointers
 114     OopPtr,                     // Any and all Java heap entities
 115     InstPtr,                    // Instance pointers (non-array objects)
 116     AryPtr,                     // Array pointers
 117     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 118 
 119     MetadataPtr,                // Generic metadata
 120     KlassPtr,                   // Klass pointers
 121     InstKlassPtr,
 122     AryKlassPtr,
 123 
 124     Function,                   // Function signature
 125     Abio,                       // Abstract I/O
 126     Return_Address,             // Subroutine return address
 127     Memory,                     // Abstract store
 128     HalfFloatTop,               // No float value
 129     HalfFloatCon,               // Floating point constant
 130     HalfFloatBot,               // Any float value
 131     FloatTop,                   // No float value
 132     FloatCon,                   // Floating point constant
 133     FloatBot,                   // Any float value
 134     DoubleTop,                  // No double value
 135     DoubleCon,                  // Double precision constant
 136     DoubleBot,                  // Any double value
 137     Bottom,                     // Bottom of lattice
 138     lastype                     // Bogus ending type (not in lattice)
 139   };
 140 
 141   // Signal values for offsets from a base pointer
 142   enum OFFSET_SIGNALS {
 143     OffsetTop = -2000000000,    // undefined offset
 144     OffsetBot = -2000000001     // any possible offset
 145   };
 146 
 147   // Min and max WIDEN values.
 148   enum WIDEN {
 149     WidenMin = 0,
 150     WidenMax = 3
 151   };
 152 
 153 private:
 154   typedef struct {
 155     TYPES                dual_type;
 156     BasicType            basic_type;
 157     const char*          msg;
 158     bool                 isa_oop;
 159     uint                 ideal_reg;
 160     relocInfo::relocType reloc;
 161   } TypeInfo;
 162 
 163   // Dictionary of types shared among compilations.
 164   static Dict* _shared_type_dict;
 165   static const TypeInfo _type_info[];
 166 
 167   static int uhash( const Type *const t );
 168   // Structural equality check.  Assumes that equals() has already compared
 169   // the _base types and thus knows it can cast 't' appropriately.
 170   virtual bool eq( const Type *t ) const;
 171 
 172   // Top-level hash-table of types
 173   static Dict *type_dict() {
 174     return Compile::current()->type_dict();
 175   }
 176 
 177   // DUAL operation: reflect around lattice centerline.  Used instead of
 178   // join to ensure my lattice is symmetric up and down.  Dual is computed
 179   // lazily, on demand, and cached in _dual.
 180   const Type *_dual;            // Cached dual value
 181 
 182 
 183   const Type *meet_helper(const Type *t, bool include_speculative) const;
 184   void check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const NOT_DEBUG_RETURN;
 185 
 186 protected:
 187   // Each class of type is also identified by its base.
 188   const TYPES _base;            // Enum of Types type
 189 
 190   Type( TYPES t ) : _dual(nullptr),  _base(t) {} // Simple types
 191   // ~Type();                   // Use fast deallocation
 192   const Type *hashcons();       // Hash-cons the type
 193   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 194   const Type *join_helper(const Type *t, bool include_speculative) const {
 195     assert_type_verify_empty();
 196     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 197   }
 198 
 199   void assert_type_verify_empty() const NOT_DEBUG_RETURN;
 200 
 201 public:
 202 
 203   inline void* operator new( size_t x ) throw() {
 204     Compile* compile = Compile::current();
 205     compile->set_type_last_size(x);
 206     return compile->type_arena()->AmallocWords(x);
 207   }
 208   inline void operator delete( void* ptr ) {
 209     Compile* compile = Compile::current();
 210     compile->type_arena()->Afree(ptr,compile->type_last_size());
 211   }
 212 
 213   // Initialize the type system for a particular compilation.
 214   static void Initialize(Compile* compile);
 215 
 216   // Initialize the types shared by all compilations.
 217   static void Initialize_shared(Compile* compile);
 218 
 219   TYPES base() const {
 220     assert(_base > Bad && _base < lastype, "sanity");
 221     return _base;
 222   }
 223 
 224   // Create a new hash-consd type
 225   static const Type *make(enum TYPES);
 226   // Test for equivalence of types
 227   static bool equals(const Type* t1, const Type* t2);
 228   // Test for higher or equal in lattice
 229   // Variant that drops the speculative part of the types
 230   bool higher_equal(const Type* t) const {
 231     return equals(meet(t), t->remove_speculative());
 232   }
 233   // Variant that keeps the speculative part of the types
 234   bool higher_equal_speculative(const Type* t) const {
 235     return equals(meet_speculative(t), t);
 236   }
 237 
 238   // MEET operation; lower in lattice.
 239   // Variant that drops the speculative part of the types
 240   const Type *meet(const Type *t) const {
 241     return meet_helper(t, false);
 242   }
 243   // Variant that keeps the speculative part of the types
 244   const Type *meet_speculative(const Type *t) const {
 245     return meet_helper(t, true)->cleanup_speculative();
 246   }
 247   // WIDEN: 'widens' for Ints and other range types
 248   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 249   // NARROW: complement for widen, used by pessimistic phases
 250   virtual const Type *narrow( const Type *old ) const { return this; }
 251 
 252   // DUAL operation: reflect around lattice centerline.  Used instead of
 253   // join to ensure my lattice is symmetric up and down.
 254   const Type *dual() const { return _dual; }
 255 
 256   // Compute meet dependent on base type
 257   virtual const Type *xmeet( const Type *t ) const;
 258   virtual const Type *xdual() const;    // Compute dual right now.
 259 
 260   // JOIN operation; higher in lattice.  Done by finding the dual of the
 261   // meet of the dual of the 2 inputs.
 262   // Variant that drops the speculative part of the types
 263   const Type *join(const Type *t) const {
 264     return join_helper(t, false);
 265   }
 266   // Variant that keeps the speculative part of the types
 267   const Type *join_speculative(const Type *t) const {
 268     return join_helper(t, true)->cleanup_speculative();
 269   }
 270 
 271   // Modified version of JOIN adapted to the needs Node::Value.
 272   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 273   // Variant that drops the speculative part of the types
 274   const Type *filter(const Type *kills) const {
 275     return filter_helper(kills, false);
 276   }
 277   // Variant that keeps the speculative part of the types
 278   const Type *filter_speculative(const Type *kills) const {
 279     return filter_helper(kills, true)->cleanup_speculative();
 280   }
 281 
 282   // Returns true if this pointer points at memory which contains a
 283   // compressed oop references.
 284   bool is_ptr_to_narrowoop() const;
 285   bool is_ptr_to_narrowklass() const;
 286 
 287   // Convenience access
 288   short geth() const;
 289   virtual float getf() const;
 290   double getd() const;
 291 
 292   // This has the same semantics as std::dynamic_cast<TypeClass*>(this)
 293   template <typename TypeClass>
 294   const TypeClass* try_cast() const;
 295 
 296   const TypeInt    *is_int() const;
 297   const TypeInt    *isa_int() const;             // Returns null if not an Int
 298   const TypeInteger* is_integer(BasicType bt) const;
 299   const TypeInteger* isa_integer(BasicType bt) const;
 300   const TypeLong   *is_long() const;
 301   const TypeLong   *isa_long() const;            // Returns null if not a Long
 302   const TypeD      *isa_double() const;          // Returns null if not a Double{Top,Con,Bot}
 303   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 304   const TypeD      *isa_double_constant() const; // Returns null if not a DoubleCon
 305   const TypeH      *isa_half_float() const;          // Returns null if not a HalfFloat{Top,Con,Bot}
 306   const TypeH      *is_half_float_constant() const;  // Asserts it is a HalfFloatCon
 307   const TypeH      *isa_half_float_constant() const; // Returns null if not a HalfFloatCon
 308   const TypeF      *isa_float() const;           // Returns null if not a Float{Top,Con,Bot}
 309   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 310   const TypeF      *isa_float_constant() const;  // Returns null if not a FloatCon
 311   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 312   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 313   const TypeAry    *isa_ary() const;             // Returns null of not ary
 314   const TypeVect   *is_vect() const;             // Vector
 315   const TypeVect   *isa_vect() const;            // Returns null if not a Vector
 316   const TypeVectMask *is_vectmask() const;       // Predicate/Mask Vector
 317   const TypeVectMask *isa_vectmask() const;      // Returns null if not a Vector Predicate/Mask
 318   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 319   const TypePtr    *isa_ptr() const;             // Returns null if not ptr type
 320   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 321   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 322   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 323   const TypeNarrowOop  *isa_narrowoop() const;   // Returns null if not oop ptr type
 324   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 325   const TypeNarrowKlass *isa_narrowklass() const;// Returns null if not oop ptr type
 326   const TypeOopPtr   *isa_oopptr() const;        // Returns null if not oop ptr type
 327   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 328   const TypeInstPtr  *isa_instptr() const;       // Returns null if not InstPtr
 329   const TypeInstPtr  *is_instptr() const;        // Instance
 330   const TypeAryPtr   *isa_aryptr() const;        // Returns null if not AryPtr
 331   const TypeAryPtr   *is_aryptr() const;         // Array oop
 332 
 333   template <typename TypeClass>
 334   const TypeClass* cast() const;
 335 
 336   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns null if not oop ptr type
 337   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 338   const TypeKlassPtr      *isa_klassptr() const;      // Returns null if not KlassPtr
 339   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 340   const TypeInstKlassPtr  *isa_instklassptr() const;  // Returns null if not IntKlassPtr
 341   const TypeInstKlassPtr  *is_instklassptr() const;   // assert if not IntKlassPtr
 342   const TypeAryKlassPtr   *isa_aryklassptr() const;   // Returns null if not AryKlassPtr
 343   const TypeAryKlassPtr   *is_aryklassptr() const;    // assert if not AryKlassPtr
 344 
 345   virtual bool      is_finite() const;           // Has a finite value
 346   virtual bool      is_nan()    const;           // Is not a number (NaN)
 347 
 348   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 349   const TypePtr* make_ptr() const;
 350 
 351   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 352   // Asserts if the underlying type is not an oopptr or narrowoop.
 353   const TypeOopPtr* make_oopptr() const;
 354 
 355   // Returns this compressed pointer or the equivalent compressed version
 356   // of this pointer type.
 357   const TypeNarrowOop* make_narrowoop() const;
 358 
 359   // Returns this compressed klass pointer or the equivalent
 360   // compressed version of this pointer type.
 361   const TypeNarrowKlass* make_narrowklass() const;
 362 
 363   // Special test for register pressure heuristic
 364   bool is_floatingpoint() const;        // True if Float or Double base type
 365 
 366   // Do you have memory, directly or through a tuple?
 367   bool has_memory( ) const;
 368 
 369   // TRUE if type is a singleton
 370   virtual bool singleton(void) const;
 371 
 372   // TRUE if type is above the lattice centerline, and is therefore vacuous
 373   virtual bool empty(void) const;
 374 
 375   // Return a hash for this type.  The hash function is public so ConNode
 376   // (constants) can hash on their constant, which is represented by a Type.
 377   virtual uint hash() const;
 378 
 379   // Map ideal registers (machine types) to ideal types
 380   static const Type *mreg2type[];
 381 
 382   // Printing, statistics
 383 #ifndef PRODUCT
 384   void         dump_on(outputStream *st) const;
 385   void         dump() const {
 386     dump_on(tty);
 387   }
 388   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 389   static  void dump_stats();
 390   // Groups of types, for debugging and visualization only.
 391   enum class Category {
 392     Data,
 393     Memory,
 394     Mixed,   // Tuples with types of different categories.
 395     Control,
 396     Other,   // {Type::Top, Type::Abio, Type::Bottom}.
 397     Undef    // {Type::Bad, Type::lastype}, for completeness.
 398   };
 399   // Return the category of this type.
 400   Category category() const;
 401   // Check recursively in tuples.
 402   bool has_category(Category cat) const;
 403 
 404   static const char* str(const Type* t);
 405 #endif // !PRODUCT
 406   void typerr(const Type *t) const; // Mixing types error
 407 
 408   // Create basic type
 409   static const Type* get_const_basic_type(BasicType type) {
 410     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != nullptr, "bad type");
 411     return _const_basic_type[type];
 412   }
 413 
 414   // For two instance arrays of same dimension, return the base element types.
 415   // Otherwise or if the arrays have different dimensions, return null.
 416   static void get_arrays_base_elements(const Type *a1, const Type *a2,
 417                                        const TypeInstPtr **e1, const TypeInstPtr **e2);
 418 
 419   // Mapping to the array element's basic type.
 420   BasicType array_element_basic_type() const;
 421 
 422   enum InterfaceHandling {
 423       trust_interfaces,
 424       ignore_interfaces
 425   };
 426   // Create standard type for a ciType:
 427   static const Type* get_const_type(ciType* type, InterfaceHandling interface_handling = ignore_interfaces);
 428 
 429   // Create standard zero value:
 430   static const Type* get_zero_type(BasicType type) {
 431     assert((uint)type <= T_CONFLICT && _zero_type[type] != nullptr, "bad type");
 432     return _zero_type[type];
 433   }
 434 
 435   // Report if this is a zero value (not top).
 436   bool is_zero_type() const {
 437     BasicType type = basic_type();
 438     if (type == T_VOID || type >= T_CONFLICT)
 439       return false;
 440     else
 441       return (this == _zero_type[type]);
 442   }
 443 
 444   // Convenience common pre-built types.
 445   static const Type *ABIO;
 446   static const Type *BOTTOM;
 447   static const Type *CONTROL;
 448   static const Type *DOUBLE;
 449   static const Type *FLOAT;
 450   static const Type *HALF_FLOAT;
 451   static const Type *HALF;
 452   static const Type *MEMORY;
 453   static const Type *MULTI;
 454   static const Type *RETURN_ADDRESS;
 455   static const Type *TOP;
 456 
 457   // Mapping from compiler type to VM BasicType
 458   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 459   uint ideal_reg() const             { return _type_info[_base].ideal_reg; }
 460   const char* msg() const            { return _type_info[_base].msg; }
 461   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 462   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 463 
 464   // Mapping from CI type system to compiler type:
 465   static const Type* get_typeflow_type(ciType* type);
 466 
 467   static const Type* make_from_constant(ciConstant constant,
 468                                         bool require_constant = false,
 469                                         int stable_dimension = 0,
 470                                         bool is_narrow = false,
 471                                         bool is_autobox_cache = false);
 472 
 473   static const Type* make_constant_from_field(ciInstance* holder,
 474                                               int off,
 475                                               bool is_unsigned_load,
 476                                               BasicType loadbt);
 477 
 478   static const Type* make_constant_from_field(ciField* field,
 479                                               ciInstance* holder,
 480                                               BasicType loadbt,
 481                                               bool is_unsigned_load);
 482 
 483   static const Type* make_constant_from_array_element(ciArray* array,
 484                                                       int off,
 485                                                       int stable_dimension,
 486                                                       BasicType loadbt,
 487                                                       bool is_unsigned_load);
 488 
 489   // Speculative type helper methods. See TypePtr.
 490   virtual const TypePtr* speculative() const                                  { return nullptr; }
 491   virtual ciKlass* speculative_type() const                                   { return nullptr; }
 492   virtual ciKlass* speculative_type_not_null() const                          { return nullptr; }
 493   virtual bool speculative_maybe_null() const                                 { return true; }
 494   virtual bool speculative_always_null() const                                { return true; }
 495   virtual const Type* remove_speculative() const                              { return this; }
 496   virtual const Type* cleanup_speculative() const                             { return this; }
 497   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; }
 498   virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
 499   const Type* maybe_remove_speculative(bool include_speculative) const;
 500 
 501   virtual bool maybe_null() const { return true; }
 502   virtual bool is_known_instance() const { return false; }
 503 
 504 private:
 505   // support arrays
 506   static const Type*        _zero_type[T_CONFLICT+1];
 507   static const Type* _const_basic_type[T_CONFLICT+1];
 508 };
 509 
 510 //------------------------------TypeF------------------------------------------
 511 // Class of Float-Constant Types.
 512 class TypeF : public Type {
 513   TypeF( float f ) : Type(FloatCon), _f(f) {};
 514 public:
 515   virtual bool eq( const Type *t ) const;
 516   virtual uint hash() const;             // Type specific hashing
 517   virtual bool singleton(void) const;    // TRUE if type is a singleton
 518   virtual bool empty(void) const;        // TRUE if type is vacuous
 519 public:
 520   const float _f;               // Float constant
 521 
 522   static const TypeF *make(float f);
 523 
 524   virtual bool        is_finite() const;  // Has a finite value
 525   virtual bool        is_nan()    const;  // Is not a number (NaN)
 526 
 527   virtual const Type *xmeet( const Type *t ) const;
 528   virtual const Type *xdual() const;    // Compute dual right now.
 529   // Convenience common pre-built types.
 530   static const TypeF *MAX;
 531   static const TypeF *MIN;
 532   static const TypeF *ZERO; // positive zero only
 533   static const TypeF *ONE;
 534   static const TypeF *POS_INF;
 535   static const TypeF *NEG_INF;
 536 #ifndef PRODUCT
 537   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 538 #endif
 539 };
 540 
 541 // Class of Half Float-Constant Types.
 542 class TypeH : public Type {
 543   TypeH(short f) : Type(HalfFloatCon), _f(f) {};
 544 public:
 545   virtual bool eq(const Type* t) const;
 546   virtual uint hash() const;             // Type specific hashing
 547   virtual bool singleton(void) const;    // TRUE if type is a singleton
 548   virtual bool empty(void) const;        // TRUE if type is vacuous
 549 public:
 550   const short _f;                        // Half Float constant
 551 
 552   static const TypeH* make(float f);
 553   static const TypeH* make(short f);
 554 
 555   virtual bool is_finite() const;  // Has a finite value
 556   virtual bool is_nan() const;     // Is not a number (NaN)
 557 
 558   virtual float getf() const;
 559   virtual const Type* xmeet(const Type* t) const;
 560   virtual const Type* xdual() const;    // Compute dual right now.
 561   // Convenience common pre-built types.
 562   static const TypeH* MAX;
 563   static const TypeH* MIN;
 564   static const TypeH* ZERO; // positive zero only
 565   static const TypeH* ONE;
 566   static const TypeH* POS_INF;
 567   static const TypeH* NEG_INF;
 568 #ifndef PRODUCT
 569   virtual void dump2(Dict &d, uint depth, outputStream* st) const;
 570 #endif
 571 };
 572 
 573 //------------------------------TypeD------------------------------------------
 574 // Class of Double-Constant Types.
 575 class TypeD : public Type {
 576   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 577 public:
 578   virtual bool eq( const Type *t ) const;
 579   virtual uint hash() const;             // Type specific hashing
 580   virtual bool singleton(void) const;    // TRUE if type is a singleton
 581   virtual bool empty(void) const;        // TRUE if type is vacuous
 582 public:
 583   const double _d;              // Double constant
 584 
 585   static const TypeD *make(double d);
 586 
 587   virtual bool        is_finite() const;  // Has a finite value
 588   virtual bool        is_nan()    const;  // Is not a number (NaN)
 589 
 590   virtual const Type *xmeet( const Type *t ) const;
 591   virtual const Type *xdual() const;    // Compute dual right now.
 592   // Convenience common pre-built types.
 593   static const TypeD *MAX;
 594   static const TypeD *MIN;
 595   static const TypeD *ZERO; // positive zero only
 596   static const TypeD *ONE;
 597   static const TypeD *POS_INF;
 598   static const TypeD *NEG_INF;
 599 #ifndef PRODUCT
 600   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 601 #endif
 602 };
 603 
 604 class TypeInteger : public Type {
 605 protected:
 606   TypeInteger(TYPES t, int w, bool dual) : Type(t), _is_dual(dual), _widen(w) {}
 607 
 608   // Denote that a set is a dual set.
 609   // Dual sets are only used to compute the join of 2 sets, and not used
 610   // outside.
 611   const bool _is_dual;
 612 
 613 public:
 614   const short _widen;           // Limit on times we widen this sucker
 615 
 616   virtual jlong hi_as_long() const = 0;
 617   virtual jlong lo_as_long() const = 0;
 618   jlong get_con_as_long(BasicType bt) const;
 619   bool is_con() const { return lo_as_long() == hi_as_long(); }
 620   virtual short widen_limit() const { return _widen; }
 621 
 622   static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt);
 623   static const TypeInteger* make(jlong con, BasicType bt);
 624 
 625   static const TypeInteger* bottom(BasicType type);
 626   static const TypeInteger* zero(BasicType type);
 627   static const TypeInteger* one(BasicType type);
 628   static const TypeInteger* minus_1(BasicType type);
 629 };
 630 
 631 /**
 632  * Definition:
 633  *
 634  * A TypeInt represents a set of non-empty jint values. A jint v is an element
 635  * of a TypeInt iff:
 636  *
 637  *   v >= _lo && v <= _hi &&
 638  *   juint(v) >= _ulo && juint(v) <= _uhi &&
 639  *   _bits.is_satisfied_by(v)
 640  *
 641  * Multiple sets of parameters can represent the same set.
 642  * E.g: consider 2 TypeInt t1, t2
 643  *
 644  * t1._lo = 2, t1._hi = 7, t1._ulo = 0, t1._uhi = 5, t1._bits._zeros = 0x00000000, t1._bits._ones = 0x1
 645  * t2._lo = 3, t2._hi = 5, t2._ulo = 3, t2._uhi = 5, t2._bits._zeros = 0xFFFFFFF8, t2._bits._ones = 0x1
 646  *
 647  * Then, t1 and t2 both represent the set {3, 5}. We can also see that the
 648  * constraints of t2 are the tightest possible. I.e there exists no TypeInt t3
 649  * which also represents {3, 5} such that any of these would be true:
 650  *
 651  *  1)  t3._lo  > t2._lo
 652  *  2)  t3._hi  < t2._hi
 653  *  3)  t3._ulo > t2._ulo
 654  *  4)  t3._uhi < t2._uhi
 655  *  5)  (t3._bits._zeros &~ t2._bis._zeros) != 0
 656  *  6)  (t3._bits._ones  &~ t2._bits._ones) != 0
 657  *
 658  * The 5-th condition mean that the subtraction of the bitsets represented by
 659  * t3._bits._zeros and t2._bits._zeros is not empty, which means that the
 660  * bits in t3._bits._zeros is not a subset of those in t2._bits._zeros, the
 661  * same applies to _bits._ones
 662  *
 663  * To simplify reasoning about the types in optimizations, we canonicalize
 664  * every TypeInt to its tightest form, already at construction. E.g a TypeInt
 665  * t with t._lo < 0 will definitely contain negative values. It also makes it
 666  * trivial to determine if a TypeInt instance is a subset of another.
 667  *
 668  * Lemmas:
 669  *
 670  * 1. Since every TypeInt instance is non-empty and canonicalized, all the
 671  *   bounds must also be elements of such TypeInt. Or else, we can tighten the
 672  *   bounds by narrowing it by one, which contradicts the assumption of the
 673  *   TypeInt being canonical.
 674  *
 675  * 2.
 676  *   2.1.  _lo <= jint(_ulo)
 677  *   2.2.  _lo <= _hi
 678  *   2.3.  _lo <= jint(_uhi)
 679  *   2.4.  _ulo <= juint(_lo)
 680  *   2.5.  _ulo <= juint(_hi)
 681  *   2.6.  _ulo <= _uhi
 682  *   2.7.  _hi >= _lo
 683  *   2.8.  _hi >= jint(_ulo)
 684  *   2.9.  _hi >= jint(_uhi)
 685  *   2.10. _uhi >= juint(_lo)
 686  *   2.11. _uhi >= _ulo
 687  *   2.12. _uhi >= juint(_hi)
 688  *
 689  *   Proof of lemma 2:
 690  *
 691  *   2.1. _lo <= jint(_ulo):
 692  *     According the lemma 1, _ulo is an element of the TypeInt, so in the
 693  *     signed domain, it must not be less than the smallest element of that
 694  *     TypeInt, which is _lo. Which means that _lo <= _ulo in the signed
 695  *     domain, or in a more programmatical way, _lo <= jint(_ulo).
 696  *   2.2. _lo <= _hi:
 697  *     According the lemma 1, _hi is an element of the TypeInt, so in the
 698  *     signed domain, it must not be less than the smallest element of that
 699  *     TypeInt, which is _lo. Which means that _lo <= _hi.
 700  *
 701  *   The other inequalities can be proved in a similar manner.
 702  *
 703  * 3. Given 2 jint values x, y where either both >= 0 or both < 0. Then:
 704  *
 705  *   x <= y iff juint(x) <= juint(y)
 706  *   I.e. x <= y in the signed domain iff x <= y in the unsigned domain
 707  *
 708  * 4. Either _lo == jint(_ulo) and _hi == jint(_uhi), or each element of a
 709  *   TypeInt lies in either interval [_lo, jint(_uhi)] or [jint(_ulo), _hi]
 710  *   (note that these intervals are disjoint in this case).
 711  *
 712  *   Proof of lemma 4:
 713  *
 714  *   For a TypeInt t, there are 3 possible cases:
 715  *
 716  *   a. t._lo >= 0, we have:
 717  *
 718  *     0 <= t_lo <= jint(t._ulo)           (lemma 2.1)
 719  *     juint(t._lo) <= juint(jint(t._ulo)) (lemma 3)
 720  *                  == t._ulo              (juint(jint(v)) == v with juint v)
 721  *                  <= juint(t._lo)        (lemma 2.4)
 722  *
 723  *     Which means that t._lo == jint(t._ulo).
 724  *
 725  *     Furthermore,
 726  *
 727  *     0 <= t._lo <= t._hi                 (lemma 2.2)
 728  *     0 <= t._lo <= jint(t._uhi)          (lemma 2.3)
 729  *     t._hi >= jint(t._uhi)               (lemma 2.9)
 730  *
 731  *     juint(t._hi) >= juint(jint(t._uhi)) (lemma 3)
 732  *                  == t._uhi              (juint(jint(v)) == v with juint v)
 733  *                  >= juint(t._hi)        (lemma 2.12)
 734  *
 735  *     Which means that t._hi == jint(t._uhi).
 736  *     In this case, t._lo == jint(t._ulo) and t._hi == jint(t._uhi)
 737  *
 738  *   b. t._hi < 0. Similarly, we can conclude that:
 739  *     t._lo == jint(t._ulo) and t._hi == jint(t._uhi)
 740  *
 741  *   c. t._lo < 0, t._hi >= 0.
 742  *
 743  *     Since t._ulo <= juint(t._hi) (lemma 2.5), we must have jint(t._ulo) >= 0
 744  *     because all negative values is larger than all non-negative values in the
 745  *     unsigned domain.
 746  *
 747  *     Since t._uhi >= juint(t._lo) (lemma 2.10), we must have jint(t._uhi) < 0
 748  *     similar to the reasoning above.
 749  *
 750  *     In this case, each element of t belongs to either [t._lo, jint(t._uhi)] or
 751  *     [jint(t._ulo), t._hi].
 752  *
 753  *     Below is an illustration of the TypeInt in this case, the intervals that
 754  *     the elements can be in are marked using the = symbol. Note how the
 755  *     negative range in the signed domain wrap around in the unsigned domain.
 756  *
 757  *     Signed:
 758  *     -----lo=========uhi---------0--------ulo==========hi-----
 759  *     Unsigned:
 760  *                                 0--------ulo==========hi----------lo=========uhi---------
 761  *
 762  *   This property is useful for our analysis of TypeInt values. Additionally,
 763  *   it can be seen that _lo and jint(_uhi) are both < 0 or both >= 0, and the
 764  *   same applies to jint(_ulo) and _hi.
 765  *
 766  *   We call [_lo, jint(_uhi)] and [jint(_ulo), _hi] "simple intervals". Then,
 767  *   a TypeInt consists of 2 simple intervals, each of which has its bounds
 768  *   being both >= 0 or both < 0. If both simple intervals lie in the same half
 769  *   of the integer domain, they must be the same (i.e _lo == jint(_ulo) and
 770  *   _hi == jint(_uhi)). Otherwise, [_lo, jint(_uhi)] must lie in the negative
 771  *   half and [jint(_ulo), _hi] must lie in the non-negative half of the signed
 772  *   domain (equivalently, [_lo, jint(_uhi)] must lie in the upper half and
 773  *   [jint(_ulo), _hi] must lie in the lower half of the unsigned domain).
 774  */
 775 class TypeInt : public TypeInteger {
 776 private:
 777   TypeInt(const TypeIntPrototype<jint, juint>& t, int w, bool dual);
 778   static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen, bool dual);
 779 
 780   friend class TypeIntHelper;
 781 
 782 protected:
 783   virtual const Type* filter_helper(const Type* kills, bool include_speculative) const;
 784 
 785 public:
 786   typedef jint NativeType;
 787   virtual bool eq(const Type* t) const;
 788   virtual uint hash() const;             // Type specific hashing
 789   virtual bool singleton(void) const;    // TRUE if type is a singleton
 790   virtual bool empty(void) const;        // TRUE if type is vacuous
 791   // A value is in the set represented by this TypeInt if it satisfies all
 792   // the below constraints, see contains(jint)
 793   const jint _lo, _hi;       // Lower bound, upper bound in the signed domain
 794   const juint _ulo, _uhi;    // Lower bound, upper bound in the unsigned domain
 795   const KnownBits<juint> _bits;
 796 
 797   static const TypeInt* make(jint con);
 798   // must always specify w
 799   static const TypeInt* make(jint lo, jint hi, int widen);
 800   static const Type* make_or_top(const TypeIntPrototype<jint, juint>& t, int widen);
 801 
 802   // Check for single integer
 803   bool is_con() const { return _lo == _hi; }
 804   bool is_con(jint i) const { return is_con() && _lo == i; }
 805   jint get_con() const { assert(is_con(), "");  return _lo; }
 806   // Check if a jint/TypeInt is a subset of this TypeInt (i.e. all elements of the
 807   // argument are also elements of this type)
 808   bool contains(jint i) const;
 809   bool contains(const TypeInt* t) const;
 810 
 811   virtual bool is_finite() const;  // Has a finite value
 812 
 813   virtual const Type* xmeet(const Type* t) const;
 814   virtual const Type* xdual() const;    // Compute dual right now.
 815   virtual const Type* widen(const Type* t, const Type* limit_type) const;
 816   virtual const Type* narrow(const Type* t) const;
 817 
 818   virtual jlong hi_as_long() const { return _hi; }
 819   virtual jlong lo_as_long() const { return _lo; }
 820 
 821   // Do not kill _widen bits.
 822   // Convenience common pre-built types.
 823   static const TypeInt* MAX;
 824   static const TypeInt* MIN;
 825   static const TypeInt* MINUS_1;
 826   static const TypeInt* ZERO;
 827   static const TypeInt* ONE;
 828   static const TypeInt* BOOL;
 829   static const TypeInt* CC;
 830   static const TypeInt* CC_LT;  // [-1]  == MINUS_1
 831   static const TypeInt* CC_GT;  // [1]   == ONE
 832   static const TypeInt* CC_EQ;  // [0]   == ZERO
 833   static const TypeInt* CC_NE;  // [-1, 1]
 834   static const TypeInt* CC_LE;  // [-1,0]
 835   static const TypeInt* CC_GE;  // [0,1] == BOOL (!)
 836   static const TypeInt* BYTE;
 837   static const TypeInt* UBYTE;
 838   static const TypeInt* CHAR;
 839   static const TypeInt* SHORT;
 840   static const TypeInt* NON_ZERO;
 841   static const TypeInt* POS;
 842   static const TypeInt* POS1;
 843   static const TypeInt* INT;
 844   static const TypeInt* SYMINT; // symmetric range [-max_jint..max_jint]
 845   static const TypeInt* TYPE_DOMAIN; // alias for TypeInt::INT
 846 
 847   static const TypeInt* as_self(const Type* t) { return t->is_int(); }
 848 #ifndef PRODUCT
 849   virtual void dump2(Dict& d, uint depth, outputStream* st) const;
 850   void dump_verbose() const;
 851 #endif
 852 };
 853 
 854 // Similar to TypeInt
 855 class TypeLong : public TypeInteger {
 856 private:
 857   TypeLong(const TypeIntPrototype<jlong, julong>& t, int w, bool dual);
 858   static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen, bool dual);
 859 
 860   friend class TypeIntHelper;
 861 
 862 protected:
 863   // Do not kill _widen bits.
 864   virtual const Type* filter_helper(const Type* kills, bool include_speculative) const;
 865 public:
 866   typedef jlong NativeType;
 867   virtual bool eq( const Type *t ) const;
 868   virtual uint hash() const;             // Type specific hashing
 869   virtual bool singleton(void) const;    // TRUE if type is a singleton
 870   virtual bool empty(void) const;        // TRUE if type is vacuous
 871 public:
 872   // A value is in the set represented by this TypeLong if it satisfies all
 873   // the below constraints, see contains(jlong)
 874   const jlong _lo, _hi;       // Lower bound, upper bound in the signed domain
 875   const julong _ulo, _uhi;    // Lower bound, upper bound in the unsigned domain
 876   const KnownBits<julong> _bits;
 877 
 878   static const TypeLong* make(jlong con);
 879   // must always specify w
 880   static const TypeLong* make(jlong lo, jlong hi, int widen);
 881   static const Type* make_or_top(const TypeIntPrototype<jlong, julong>& t, int widen);
 882 
 883   // Check for single integer
 884   bool is_con() const { return _lo == _hi; }
 885   bool is_con(jlong i) const { return is_con() && _lo == i; }
 886   jlong get_con() const { assert(is_con(), "" ); return _lo; }
 887   // Check if a jlong/TypeLong is a subset of this TypeLong (i.e. all elements of the
 888   // argument are also elements of this type)
 889   bool contains(jlong i) const;
 890   bool contains(const TypeLong* t) const;
 891 
 892   // Check for positive 32-bit value.
 893   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 894 
 895   virtual bool        is_finite() const;  // Has a finite value
 896 
 897   virtual jlong hi_as_long() const { return _hi; }
 898   virtual jlong lo_as_long() const { return _lo; }
 899 
 900   virtual const Type* xmeet(const Type* t) const;
 901   virtual const Type* xdual() const;    // Compute dual right now.
 902   virtual const Type* widen(const Type* t, const Type* limit_type) const;
 903   virtual const Type* narrow(const Type* t) const;
 904   // Convenience common pre-built types.
 905   static const TypeLong* MAX;
 906   static const TypeLong* MIN;
 907   static const TypeLong* MINUS_1;
 908   static const TypeLong* ZERO;
 909   static const TypeLong* ONE;
 910   static const TypeLong* NON_ZERO;
 911   static const TypeLong* POS;
 912   static const TypeLong* NEG;
 913   static const TypeLong* LONG;
 914   static const TypeLong* INT;    // 32-bit subrange [min_jint..max_jint]
 915   static const TypeLong* UINT;   // 32-bit unsigned [0..max_juint]
 916   static const TypeLong* TYPE_DOMAIN; // alias for TypeLong::LONG
 917 
 918   // static convenience methods.
 919   static const TypeLong* as_self(const Type* t) { return t->is_long(); }
 920 
 921 #ifndef PRODUCT
 922   virtual void dump2(Dict& d, uint, outputStream* st) const;// Specialized per-Type dumping
 923   void dump_verbose() const;
 924 #endif
 925 };
 926 
 927 //------------------------------TypeTuple--------------------------------------
 928 // Class of Tuple Types, essentially type collections for function signatures
 929 // and class layouts.  It happens to also be a fast cache for the HotSpot
 930 // signature types.
 931 class TypeTuple : public Type {
 932   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 933 
 934   const uint          _cnt;              // Count of fields
 935   const Type ** const _fields;           // Array of field types
 936 
 937 public:
 938   virtual bool eq( const Type *t ) const;
 939   virtual uint hash() const;             // Type specific hashing
 940   virtual bool singleton(void) const;    // TRUE if type is a singleton
 941   virtual bool empty(void) const;        // TRUE if type is vacuous
 942 
 943   // Accessors:
 944   uint cnt() const { return _cnt; }
 945   const Type* field_at(uint i) const {
 946     assert(i < _cnt, "oob");
 947     return _fields[i];
 948   }
 949   void set_field_at(uint i, const Type* t) {
 950     assert(i < _cnt, "oob");
 951     _fields[i] = t;
 952   }
 953 
 954   static const TypeTuple *make( uint cnt, const Type **fields );
 955   static const TypeTuple *make_range(ciSignature *sig, InterfaceHandling interface_handling = ignore_interfaces);
 956   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig, InterfaceHandling interface_handling);
 957 
 958   // Subroutine call type with space allocated for argument types
 959   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 960   static const Type **fields( uint arg_cnt );
 961 
 962   virtual const Type *xmeet( const Type *t ) const;
 963   virtual const Type *xdual() const;    // Compute dual right now.
 964   // Convenience common pre-built types.
 965   static const TypeTuple *IFBOTH;
 966   static const TypeTuple *IFFALSE;
 967   static const TypeTuple *IFTRUE;
 968   static const TypeTuple *IFNEITHER;
 969   static const TypeTuple *LOOPBODY;
 970   static const TypeTuple *MEMBAR;
 971   static const TypeTuple *STORECONDITIONAL;
 972   static const TypeTuple *START_I2C;
 973   static const TypeTuple *INT_PAIR;
 974   static const TypeTuple *LONG_PAIR;
 975   static const TypeTuple *INT_CC_PAIR;
 976   static const TypeTuple *LONG_CC_PAIR;
 977 #ifndef PRODUCT
 978   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 979 #endif
 980 };
 981 
 982 //------------------------------TypeAry----------------------------------------
 983 // Class of Array Types
 984 class TypeAry : public Type {
 985   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
 986       _elem(elem), _size(size), _stable(stable) {}
 987 public:
 988   virtual bool eq( const Type *t ) const;
 989   virtual uint hash() const;             // Type specific hashing
 990   virtual bool singleton(void) const;    // TRUE if type is a singleton
 991   virtual bool empty(void) const;        // TRUE if type is vacuous
 992 
 993 private:
 994   const Type *_elem;            // Element type of array
 995   const TypeInt *_size;         // Elements in array
 996   const bool _stable;           // Are elements @Stable?
 997   friend class TypeAryPtr;
 998 
 999 public:
1000   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
1001 
1002   virtual const Type *xmeet( const Type *t ) const;
1003   virtual const Type *xdual() const;    // Compute dual right now.
1004   bool ary_must_be_exact() const;  // true if arrays of such are never generic
1005   virtual const TypeAry* remove_speculative() const;
1006   virtual const Type* cleanup_speculative() const;
1007 #ifndef PRODUCT
1008   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
1009 #endif
1010 };
1011 
1012 //------------------------------TypeVect---------------------------------------
1013 // Class of Vector Types
1014 class TypeVect : public Type {
1015   const BasicType _elem_bt;  // Vector's element type
1016   const uint _length;  // Elements in vector (power of 2)
1017 
1018 protected:
1019   TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
1020     _elem_bt(elem_bt), _length(length) {}
1021 
1022 public:
1023   BasicType element_basic_type() const { return _elem_bt; }
1024   uint length() const { return _length; }
1025   uint length_in_bytes() const {
1026     return _length * type2aelembytes(element_basic_type());
1027   }
1028 
1029   virtual bool eq(const Type* t) const;
1030   virtual uint hash() const;             // Type specific hashing
1031   virtual bool singleton(void) const;    // TRUE if type is a singleton
1032   virtual bool empty(void) const;        // TRUE if type is vacuous
1033 
1034   static const TypeVect* make(const BasicType elem_bt, uint length, bool is_mask = false);
1035   static const TypeVect* makemask(const BasicType elem_bt, uint length);
1036 
1037   virtual const Type* xmeet( const Type *t) const;
1038   virtual const Type* xdual() const;     // Compute dual right now.
1039 
1040   static const TypeVect* VECTA;
1041   static const TypeVect* VECTS;
1042   static const TypeVect* VECTD;
1043   static const TypeVect* VECTX;
1044   static const TypeVect* VECTY;
1045   static const TypeVect* VECTZ;
1046   static const TypeVect* VECTMASK;
1047 
1048 #ifndef PRODUCT
1049   virtual void dump2(Dict& d, uint, outputStream* st) const; // Specialized per-Type dumping
1050 #endif
1051 };
1052 
1053 class TypeVectA : public TypeVect {
1054   friend class TypeVect;
1055   TypeVectA(BasicType elem_bt, uint length) : TypeVect(VectorA, elem_bt, length) {}
1056 };
1057 
1058 class TypeVectS : public TypeVect {
1059   friend class TypeVect;
1060   TypeVectS(BasicType elem_bt, uint length) : TypeVect(VectorS, elem_bt, length) {}
1061 };
1062 
1063 class TypeVectD : public TypeVect {
1064   friend class TypeVect;
1065   TypeVectD(BasicType elem_bt, uint length) : TypeVect(VectorD, elem_bt, length) {}
1066 };
1067 
1068 class TypeVectX : public TypeVect {
1069   friend class TypeVect;
1070   TypeVectX(BasicType elem_bt, uint length) : TypeVect(VectorX, elem_bt, length) {}
1071 };
1072 
1073 class TypeVectY : public TypeVect {
1074   friend class TypeVect;
1075   TypeVectY(BasicType elem_bt, uint length) : TypeVect(VectorY, elem_bt, length) {}
1076 };
1077 
1078 class TypeVectZ : public TypeVect {
1079   friend class TypeVect;
1080   TypeVectZ(BasicType elem_bt, uint length) : TypeVect(VectorZ, elem_bt, length) {}
1081 };
1082 
1083 class TypeVectMask : public TypeVect {
1084 public:
1085   friend class TypeVect;
1086   TypeVectMask(BasicType elem_bt, uint length) : TypeVect(VectorMask, elem_bt, length) {}
1087   static const TypeVectMask* make(const BasicType elem_bt, uint length);
1088 };
1089 
1090 // Set of implemented interfaces. Referenced from TypeOopPtr and TypeKlassPtr.
1091 class TypeInterfaces : public Type {
1092 private:
1093   GrowableArrayFromArray<ciInstanceKlass*> _interfaces;
1094   uint _hash;
1095   ciInstanceKlass* _exact_klass;
1096   DEBUG_ONLY(bool _initialized;)
1097 
1098   void initialize();
1099 
1100   void verify() const NOT_DEBUG_RETURN;
1101   void compute_hash();
1102   void compute_exact_klass();
1103 
1104   TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces);
1105 
1106   NONCOPYABLE(TypeInterfaces);
1107 public:
1108   static const TypeInterfaces* make(GrowableArray<ciInstanceKlass*>* interfaces = nullptr);
1109   bool eq(const Type* other) const;
1110   bool eq(ciInstanceKlass* k) const;
1111   uint hash() const;
1112   const Type *xdual() const;
1113   void dump(outputStream* st) const;
1114   const TypeInterfaces* union_with(const TypeInterfaces* other) const;
1115   const TypeInterfaces* intersection_with(const TypeInterfaces* other) const;
1116   bool contains(const TypeInterfaces* other) const {
1117     return intersection_with(other)->eq(other);
1118   }
1119   bool empty() const { return _interfaces.length() == 0; }
1120 
1121   ciInstanceKlass* exact_klass() const;
1122   void verify_is_loaded() const NOT_DEBUG_RETURN;
1123 
1124   static int compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2);
1125   static int compare(ciInstanceKlass** k1, ciInstanceKlass** k2);
1126 
1127   const Type* xmeet(const Type* t) const;
1128 
1129   bool singleton(void) const;
1130   bool has_non_array_interface() const;
1131 };
1132 
1133 //------------------------------TypePtr----------------------------------------
1134 // Class of machine Pointer Types: raw data, instances or arrays.
1135 // If the _base enum is AnyPtr, then this refers to all of the above.
1136 // Otherwise the _base will indicate which subset of pointers is affected,
1137 // and the class will be inherited from.
1138 class TypePtr : public Type {
1139   friend class TypeNarrowPtr;
1140   friend class Type;
1141 protected:
1142   static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
1143 
1144 public:
1145   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
1146 protected:
1147   TypePtr(TYPES t, PTR ptr, int offset,
1148           const TypePtr* speculative = nullptr,
1149           int inline_depth = InlineDepthBottom) :
1150     Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
1151     _ptr(ptr) {}
1152   static const PTR ptr_meet[lastPTR][lastPTR];
1153   static const PTR ptr_dual[lastPTR];
1154   static const char * const ptr_msg[lastPTR];
1155 
1156   enum {
1157     InlineDepthBottom = INT_MAX,
1158     InlineDepthTop = -InlineDepthBottom
1159   };
1160 
1161   // Extra type information profiling gave us. We propagate it the
1162   // same way the rest of the type info is propagated. If we want to
1163   // use it, then we have to emit a guard: this part of the type is
1164   // not something we know but something we speculate about the type.
1165   const TypePtr*   _speculative;
1166   // For speculative types, we record at what inlining depth the
1167   // profiling point that provided the data is. We want to favor
1168   // profile data coming from outer scopes which are likely better for
1169   // the current compilation.
1170   int _inline_depth;
1171 
1172   // utility methods to work on the speculative part of the type
1173   const TypePtr* dual_speculative() const;
1174   const TypePtr* xmeet_speculative(const TypePtr* other) const;
1175   bool eq_speculative(const TypePtr* other) const;
1176   int hash_speculative() const;
1177   const TypePtr* add_offset_speculative(intptr_t offset) const;
1178   const TypePtr* with_offset_speculative(intptr_t offset) const;
1179 #ifndef PRODUCT
1180   void dump_speculative(outputStream *st) const;
1181 #endif
1182 
1183   // utility methods to work on the inline depth of the type
1184   int dual_inline_depth() const;
1185   int meet_inline_depth(int depth) const;
1186 #ifndef PRODUCT
1187   void dump_inline_depth(outputStream *st) const;
1188 #endif
1189 
1190   // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
1191   // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
1192   // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
1193   // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
1194   // encountered so the right logic specific to klasses or oops can be executed.,
1195   enum MeetResult {
1196     QUICK,
1197     UNLOADED,
1198     SUBTYPE,
1199     NOT_SUBTYPE,
1200     LCA
1201   };
1202   template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
1203                                                             const T* other_type, ciKlass*& res_klass, bool& res_xk);
1204 
1205   template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
1206                                                   ciKlass*& res_klass, bool& res_xk);
1207 
1208   template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1209   template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
1210   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1211   template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1212   template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
1213   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
1214   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1215   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1216 public:
1217   const int _offset;            // Offset into oop, with TOP & BOT
1218   const PTR _ptr;               // Pointer equivalence class
1219 
1220   int offset() const { return _offset; }
1221   PTR ptr()    const { return _ptr; }
1222 
1223   static const TypePtr *make(TYPES t, PTR ptr, int offset,
1224                              const TypePtr* speculative = nullptr,
1225                              int inline_depth = InlineDepthBottom);
1226 
1227   // Return a 'ptr' version of this type
1228   virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1229 
1230   virtual intptr_t get_con() const;
1231 
1232   int xadd_offset( intptr_t offset ) const;
1233   virtual const TypePtr* add_offset(intptr_t offset) const;
1234   virtual const TypePtr* with_offset(intptr_t offset) const;
1235   virtual bool eq(const Type *t) const;
1236   virtual uint hash() const;             // Type specific hashing
1237 
1238   virtual bool singleton(void) const;    // TRUE if type is a singleton
1239   virtual bool empty(void) const;        // TRUE if type is vacuous
1240   virtual const Type *xmeet( const Type *t ) const;
1241   virtual const Type *xmeet_helper( const Type *t ) const;
1242   int meet_offset( int offset ) const;
1243   int dual_offset( ) const;
1244   virtual const Type *xdual() const;    // Compute dual right now.
1245 
1246   // meet, dual and join over pointer equivalence sets
1247   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1248   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
1249 
1250   // This is textually confusing unless one recalls that
1251   // join(t) == dual()->meet(t->dual())->dual().
1252   PTR join_ptr( const PTR in_ptr ) const {
1253     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1254   }
1255 
1256   // Speculative type helper methods.
1257   virtual const TypePtr* speculative() const { return _speculative; }
1258   int inline_depth() const                   { return _inline_depth; }
1259   virtual ciKlass* speculative_type() const;
1260   virtual ciKlass* speculative_type_not_null() const;
1261   virtual bool speculative_maybe_null() const;
1262   virtual bool speculative_always_null() const;
1263   virtual const TypePtr* remove_speculative() const;
1264   virtual const Type* cleanup_speculative() const;
1265   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1266   virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1267   virtual const TypePtr* with_inline_depth(int depth) const;
1268 
1269   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1270 
1271   // Tests for relation to centerline of type lattice:
1272   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1273   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1274   // Convenience common pre-built types.
1275   static const TypePtr *NULL_PTR;
1276   static const TypePtr *NOTNULL;
1277   static const TypePtr *BOTTOM;
1278 #ifndef PRODUCT
1279   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1280 #endif
1281 };
1282 
1283 //------------------------------TypeRawPtr-------------------------------------
1284 // Class of raw pointers, pointers to things other than Oops.  Examples
1285 // include the stack pointer, top of heap, card-marking area, handles, etc.
1286 class TypeRawPtr : public TypePtr {
1287 protected:
1288   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
1289 public:
1290   virtual bool eq( const Type *t ) const;
1291   virtual uint hash() const;    // Type specific hashing
1292 
1293   const address _bits;          // Constant value, if applicable
1294 
1295   static const TypeRawPtr *make( PTR ptr );
1296   static const TypeRawPtr *make( address bits );
1297 
1298   // Return a 'ptr' version of this type
1299   virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1300 
1301   virtual intptr_t get_con() const;
1302 
1303   virtual const TypePtr* add_offset(intptr_t offset) const;
1304   virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1305 
1306   virtual const Type *xmeet( const Type *t ) const;
1307   virtual const Type *xdual() const;    // Compute dual right now.
1308   // Convenience common pre-built types.
1309   static const TypeRawPtr *BOTTOM;
1310   static const TypeRawPtr *NOTNULL;
1311 #ifndef PRODUCT
1312   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1313 #endif
1314 };
1315 
1316 //------------------------------TypeOopPtr-------------------------------------
1317 // Some kind of oop (Java pointer), either instance or array.
1318 class TypeOopPtr : public TypePtr {
1319   friend class TypeAry;
1320   friend class TypePtr;
1321   friend class TypeInstPtr;
1322   friend class TypeAryPtr;
1323 protected:
1324  TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, int instance_id,
1325             const TypePtr* speculative, int inline_depth);
1326 public:
1327   virtual bool eq( const Type *t ) const;
1328   virtual uint hash() const;             // Type specific hashing
1329   virtual bool singleton(void) const;    // TRUE if type is a singleton
1330   enum {
1331    InstanceTop = -1,   // undefined instance
1332    InstanceBot = 0     // any possible instance
1333   };
1334 protected:
1335 
1336   // Oop is null, unless this is a constant oop.
1337   ciObject*     _const_oop;   // Constant oop
1338   // If _klass is null, then so is _sig.  This is an unloaded klass.
1339   ciKlass*      _klass;       // Klass object
1340 
1341   const TypeInterfaces* _interfaces;
1342 
1343   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1344   bool          _klass_is_exact;
1345   bool          _is_ptr_to_narrowoop;
1346   bool          _is_ptr_to_narrowklass;
1347   bool          _is_ptr_to_boxed_value;
1348 
1349   // If not InstanceTop or InstanceBot, indicates that this is
1350   // a particular instance of this type which is distinct.
1351   // This is the node index of the allocation node creating this instance.
1352   int           _instance_id;
1353 
1354   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1355 
1356   int dual_instance_id() const;
1357   int meet_instance_id(int uid) const;
1358 
1359   const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1360 
1361   // Do not allow interface-vs.-noninterface joins to collapse to top.
1362   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1363 
1364   virtual ciKlass* exact_klass_helper() const { return nullptr; }
1365   virtual ciKlass* klass() const { return _klass;     }
1366 
1367 public:
1368 
1369   bool is_java_subtype_of(const TypeOopPtr* other) const {
1370     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1371   }
1372 
1373   bool is_same_java_type_as(const TypePtr* other) const {
1374     return is_same_java_type_as_helper(other->is_oopptr());
1375   }
1376 
1377   virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1378     ShouldNotReachHere(); return false;
1379   }
1380 
1381   bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1382     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1383   }
1384   virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1385   virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1386 
1387 
1388   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1389   // Respects UseUniqueSubclasses.
1390   // If the klass is final, the resulting type will be exact.
1391   static const TypeOopPtr* make_from_klass(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1392     return make_from_klass_common(klass, true, false, interface_handling);
1393   }
1394   // Same as before, but will produce an exact type, even if
1395   // the klass is not final, as long as it has exactly one implementation.
1396   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1397     return make_from_klass_common(klass, true, true, interface_handling);
1398   }
1399   // Same as before, but does not respects UseUniqueSubclasses.
1400   // Use this only for creating array element types.
1401   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1402     return make_from_klass_common(klass, false, false, interface_handling);
1403   }
1404   // Creates a singleton type given an object.
1405   // If the object cannot be rendered as a constant,
1406   // may return a non-singleton type.
1407   // If require_constant, produce a null if a singleton is not possible.
1408   static const TypeOopPtr* make_from_constant(ciObject* o,
1409                                               bool require_constant = false);
1410 
1411   // Make a generic (unclassed) pointer to an oop.
1412   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id,
1413                                 const TypePtr* speculative = nullptr,
1414                                 int inline_depth = InlineDepthBottom);
1415 
1416   ciObject* const_oop()    const { return _const_oop; }
1417   // Exact klass, possibly an interface or an array of interface
1418   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1419   ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1420 
1421   virtual bool  is_loaded() const { return klass()->is_loaded(); }
1422   virtual bool klass_is_exact()    const { return _klass_is_exact; }
1423 
1424   // Returns true if this pointer points at memory which contains a
1425   // compressed oop references.
1426   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1427   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1428   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1429   bool is_known_instance()       const { return _instance_id > 0; }
1430   int  instance_id()             const { return _instance_id; }
1431   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
1432 
1433   virtual intptr_t get_con() const;
1434 
1435   virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1436 
1437   virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1438 
1439   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1440 
1441   // corresponding pointer to klass, for a given instance
1442   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1443 
1444   virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1445   virtual const TypePtr* add_offset(intptr_t offset) const;
1446 
1447   // Speculative type helper methods.
1448   virtual const TypeOopPtr* remove_speculative() const;
1449   virtual const Type* cleanup_speculative() const;
1450   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1451   virtual const TypePtr* with_inline_depth(int depth) const;
1452 
1453   virtual const TypePtr* with_instance_id(int instance_id) const;
1454 
1455   virtual const Type *xdual() const;    // Compute dual right now.
1456   // the core of the computation of the meet for TypeOopPtr and for its subclasses
1457   virtual const Type *xmeet_helper(const Type *t) const;
1458 
1459   // Convenience common pre-built type.
1460   static const TypeOopPtr *BOTTOM;
1461 #ifndef PRODUCT
1462   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1463 #endif
1464 private:
1465   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1466     return is_meet_subtype_of_helper(other->is_oopptr(), klass_is_exact(), other->is_oopptr()->klass_is_exact());
1467   }
1468 
1469   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const {
1470     ShouldNotReachHere(); return false;
1471   }
1472 
1473   virtual const TypeInterfaces* interfaces() const {
1474     return _interfaces;
1475   };
1476 
1477   const TypeOopPtr* is_reference_type(const Type* other) const {
1478     return other->isa_oopptr();
1479   }
1480 
1481   const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1482     return other->isa_aryptr();
1483   }
1484 
1485   const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1486     return other->isa_instptr();
1487   }
1488 };
1489 
1490 //------------------------------TypeInstPtr------------------------------------
1491 // Class of Java object pointers, pointing either to non-array Java instances
1492 // or to a Klass* (including array klasses).
1493 class TypeInstPtr : public TypeOopPtr {
1494   TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off, int instance_id,
1495               const TypePtr* speculative, int inline_depth);
1496   virtual bool eq( const Type *t ) const;
1497   virtual uint hash() const;             // Type specific hashing
1498 
1499   ciKlass* exact_klass_helper() const;
1500 
1501 public:
1502 
1503   // Instance klass, ignoring any interface
1504   ciInstanceKlass* instance_klass() const {
1505     assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1506     return klass()->as_instance_klass();
1507   }
1508 
1509   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1510   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1511   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1512 
1513   // Make a pointer to a constant oop.
1514   static const TypeInstPtr *make(ciObject* o) {
1515     ciKlass* k = o->klass();
1516     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1517     return make(TypePtr::Constant, k, interfaces, true, o, 0, InstanceBot);
1518   }
1519   // Make a pointer to a constant oop with offset.
1520   static const TypeInstPtr *make(ciObject* o, int offset) {
1521     ciKlass* k = o->klass();
1522     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1523     return make(TypePtr::Constant, k, interfaces, true, o, offset, InstanceBot);
1524   }
1525 
1526   // Make a pointer to some value of type klass.
1527   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1528     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1529     return make(ptr, klass, interfaces, false, nullptr, 0, InstanceBot);
1530   }
1531 
1532   // Make a pointer to some non-polymorphic value of exactly type klass.
1533   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1534     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1535     return make(ptr, klass, interfaces, true, nullptr, 0, InstanceBot);
1536   }
1537 
1538   // Make a pointer to some value of type klass with offset.
1539   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1540     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1541     return make(ptr, klass, interfaces, false, nullptr, offset, InstanceBot);
1542   }
1543 
1544   static const TypeInstPtr *make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
1545                                  int instance_id = InstanceBot,
1546                                  const TypePtr* speculative = nullptr,
1547                                  int inline_depth = InlineDepthBottom);
1548 
1549   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot) {
1550     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1551     return make(ptr, k, interfaces, xk, o, offset, instance_id);
1552   }
1553 
1554   /** Create constant type for a constant boxed value */
1555   const Type* get_const_boxed_value() const;
1556 
1557   // If this is a java.lang.Class constant, return the type for it or null.
1558   // Pass to Type::get_const_type to turn it to a type, which will usually
1559   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1560   ciType* java_mirror_type() const;
1561 
1562   virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1563 
1564   virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1565 
1566   virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1567 
1568   virtual const TypePtr* add_offset(intptr_t offset) const;
1569   virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1570 
1571   // Speculative type helper methods.
1572   virtual const TypeInstPtr* remove_speculative() const;
1573   const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1574   virtual const TypePtr* with_inline_depth(int depth) const;
1575   virtual const TypePtr* with_instance_id(int instance_id) const;
1576 
1577   // the core of the computation of the meet of 2 types
1578   virtual const Type *xmeet_helper(const Type *t) const;
1579   virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1580   virtual const Type *xdual() const;    // Compute dual right now.
1581 
1582   const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1583 
1584   // Convenience common pre-built types.
1585   static const TypeInstPtr *NOTNULL;
1586   static const TypeInstPtr *BOTTOM;
1587   static const TypeInstPtr *MIRROR;
1588   static const TypeInstPtr *MARK;
1589   static const TypeInstPtr *KLASS;
1590 #ifndef PRODUCT
1591   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1592 #endif
1593 
1594 private:
1595   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1596 
1597   virtual bool is_meet_same_type_as(const TypePtr* other) const {
1598     return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1599   }
1600 
1601 };
1602 
1603 //------------------------------TypeAryPtr-------------------------------------
1604 // Class of Java array pointers
1605 class TypeAryPtr : public TypeOopPtr {
1606   friend class Type;
1607   friend class TypePtr;
1608   friend class TypeInterfaces;
1609 
1610   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1611               int offset, int instance_id, bool is_autobox_cache,
1612               const TypePtr* speculative, int inline_depth)
1613     : TypeOopPtr(AryPtr,ptr,k,_array_interfaces,xk,o,offset, instance_id, speculative, inline_depth),
1614     _ary(ary),
1615     _is_autobox_cache(is_autobox_cache)
1616  {
1617     int dummy;
1618     bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1619 
1620     if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1621         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes() &&
1622         _offset != arrayOopDesc::klass_offset_in_bytes()) {
1623       _is_ptr_to_narrowoop = true;
1624     }
1625 
1626   }
1627   virtual bool eq( const Type *t ) const;
1628   virtual uint hash() const;    // Type specific hashing
1629   const TypeAry *_ary;          // Array we point into
1630   const bool     _is_autobox_cache;
1631 
1632   ciKlass* compute_klass() const;
1633 
1634   // A pointer to delay allocation to Type::Initialize_shared()
1635 
1636   static const TypeInterfaces* _array_interfaces;
1637   ciKlass* exact_klass_helper() const;
1638   // Only guaranteed non null for array of basic types
1639   ciKlass* klass() const;
1640 
1641 public:
1642 
1643   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1644   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1645   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1646 
1647   // returns base element type, an instance klass (and not interface) for object arrays
1648   const Type* base_element_type(int& dims) const;
1649 
1650   // Accessors
1651   bool  is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1652 
1653   const TypeAry* ary() const  { return _ary; }
1654   const Type*    elem() const { return _ary->_elem; }
1655   const TypeInt* size() const { return _ary->_size; }
1656   bool      is_stable() const { return _ary->_stable; }
1657 
1658   bool is_autobox_cache() const { return _is_autobox_cache; }
1659 
1660   static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1661                                 int instance_id = InstanceBot,
1662                                 const TypePtr* speculative = nullptr,
1663                                 int inline_depth = InlineDepthBottom);
1664   // Constant pointer to array
1665   static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1666                                 int instance_id = InstanceBot,
1667                                 const TypePtr* speculative = nullptr,
1668                                 int inline_depth = InlineDepthBottom, bool is_autobox_cache = false);
1669 
1670   // Return a 'ptr' version of this type
1671   virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1672 
1673   virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1674 
1675   virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1676 
1677   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1678   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1679 
1680   virtual bool empty(void) const;        // TRUE if type is vacuous
1681   virtual const TypePtr *add_offset( intptr_t offset ) const;
1682   virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1683   const TypeAryPtr* with_ary(const TypeAry* ary) const;
1684 
1685   // Speculative type helper methods.
1686   virtual const TypeAryPtr* remove_speculative() const;
1687   virtual const TypePtr* with_inline_depth(int depth) const;
1688   virtual const TypePtr* with_instance_id(int instance_id) const;
1689 
1690   // the core of the computation of the meet of 2 types
1691   virtual const Type *xmeet_helper(const Type *t) const;
1692   virtual const Type *xdual() const;    // Compute dual right now.
1693 
1694   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1695   int stable_dimension() const;
1696 
1697   const TypeAryPtr* cast_to_autobox_cache() const;
1698 
1699   static jint max_array_length(BasicType etype) ;
1700   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1701 
1702   // Convenience common pre-built types.
1703   static const TypeAryPtr* BOTTOM;
1704   static const TypeAryPtr* RANGE;
1705   static const TypeAryPtr* OOPS;
1706   static const TypeAryPtr* NARROWOOPS;
1707   static const TypeAryPtr* BYTES;
1708   static const TypeAryPtr* SHORTS;
1709   static const TypeAryPtr* CHARS;
1710   static const TypeAryPtr* INTS;
1711   static const TypeAryPtr* LONGS;
1712   static const TypeAryPtr* FLOATS;
1713   static const TypeAryPtr* DOUBLES;
1714   // selects one of the above:
1715   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1716     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1717     return _array_body_type[elem];
1718   }
1719   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1720   // sharpen the type of an int which is used as an array size
1721 #ifndef PRODUCT
1722   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1723 #endif
1724 private:
1725   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1726 };
1727 
1728 //------------------------------TypeMetadataPtr-------------------------------------
1729 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1730 class TypeMetadataPtr : public TypePtr {
1731 protected:
1732   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1733   // Do not allow interface-vs.-noninterface joins to collapse to top.
1734   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1735 public:
1736   virtual bool eq( const Type *t ) const;
1737   virtual uint hash() const;             // Type specific hashing
1738   virtual bool singleton(void) const;    // TRUE if type is a singleton
1739 
1740 private:
1741   ciMetadata*   _metadata;
1742 
1743 public:
1744   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1745 
1746   static const TypeMetadataPtr* make(ciMethod* m);
1747   static const TypeMetadataPtr* make(ciMethodData* m);
1748 
1749   ciMetadata* metadata() const { return _metadata; }
1750 
1751   virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1752 
1753   virtual const TypePtr *add_offset( intptr_t offset ) const;
1754 
1755   virtual const Type *xmeet( const Type *t ) const;
1756   virtual const Type *xdual() const;    // Compute dual right now.
1757 
1758   virtual intptr_t get_con() const;
1759 
1760   // Convenience common pre-built types.
1761   static const TypeMetadataPtr *BOTTOM;
1762 
1763 #ifndef PRODUCT
1764   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1765 #endif
1766 };
1767 
1768 //------------------------------TypeKlassPtr-----------------------------------
1769 // Class of Java Klass pointers
1770 class TypeKlassPtr : public TypePtr {
1771   friend class TypeInstKlassPtr;
1772   friend class TypeAryKlassPtr;
1773   friend class TypePtr;
1774 protected:
1775   TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset);
1776 
1777   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1778 
1779 public:
1780   virtual bool eq( const Type *t ) const;
1781   virtual uint hash() const;
1782   virtual bool singleton(void) const;    // TRUE if type is a singleton
1783 
1784 protected:
1785 
1786   ciKlass* _klass;
1787   const TypeInterfaces* _interfaces;
1788   const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1789   virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1790   virtual ciKlass* exact_klass_helper() const;
1791   virtual ciKlass* klass() const { return  _klass; }
1792 
1793 public:
1794 
1795   bool is_java_subtype_of(const TypeKlassPtr* other) const {
1796     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1797   }
1798   bool is_same_java_type_as(const TypePtr* other) const {
1799     return is_same_java_type_as_helper(other->is_klassptr());
1800   }
1801 
1802   bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1803     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1804   }
1805   virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1806   virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1807   virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1808 
1809   // Exact klass, possibly an interface or an array of interface
1810   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1811   virtual bool klass_is_exact()    const { return _ptr == Constant; }
1812 
1813   static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1814   static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling = ignore_interfaces);
1815 
1816   virtual bool  is_loaded() const { return _klass->is_loaded(); }
1817 
1818   virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1819 
1820   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1821 
1822   // corresponding pointer to instance, for a given class
1823   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1824 
1825   virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1826   virtual const Type    *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1827   virtual const Type    *xdual() const { ShouldNotReachHere(); return nullptr; }
1828 
1829   virtual intptr_t get_con() const;
1830 
1831   virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1832 
1833   virtual const TypeKlassPtr* try_improve() const { return this; }
1834 
1835 #ifndef PRODUCT
1836   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1837 #endif
1838 private:
1839   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1840     return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1841   }
1842 
1843   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1844     ShouldNotReachHere(); return false;
1845   }
1846 
1847   virtual const TypeInterfaces* interfaces() const {
1848     return _interfaces;
1849   };
1850 
1851   const TypeKlassPtr* is_reference_type(const Type* other) const {
1852     return other->isa_klassptr();
1853   }
1854 
1855   const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1856     return other->isa_aryklassptr();
1857   }
1858 
1859   const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
1860     return other->isa_instklassptr();
1861   }
1862 };
1863 
1864 // Instance klass pointer, mirrors TypeInstPtr
1865 class TypeInstKlassPtr : public TypeKlassPtr {
1866 
1867   TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
1868     : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset) {
1869     assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
1870   }
1871 
1872   virtual bool must_be_exact() const;
1873 
1874 public:
1875   // Instance klass ignoring any interface
1876   ciInstanceKlass* instance_klass() const {
1877     assert(!klass()->is_interface(), "");
1878     return klass()->as_instance_klass();
1879   }
1880 
1881   bool might_be_an_array() const;
1882 
1883   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1884   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1885   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1886 
1887   static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
1888     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
1889     return make(TypePtr::Constant, k, interfaces, 0);
1890   }
1891   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset);
1892 
1893   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, int offset) {
1894     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1895     return make(ptr, k, interfaces, offset);
1896   }
1897 
1898   virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
1899 
1900   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1901 
1902   // corresponding pointer to instance, for a given class
1903   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1904   virtual uint hash() const;
1905   virtual bool eq(const Type *t) const;
1906 
1907   virtual const TypePtr *add_offset( intptr_t offset ) const;
1908   virtual const Type    *xmeet( const Type *t ) const;
1909   virtual const Type    *xdual() const;
1910   virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
1911 
1912   virtual const TypeKlassPtr* try_improve() const;
1913 
1914   // Convenience common pre-built types.
1915   static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
1916   static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1917 private:
1918   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1919 };
1920 
1921 // Array klass pointer, mirrors TypeAryPtr
1922 class TypeAryKlassPtr : public TypeKlassPtr {
1923   friend class TypeInstKlassPtr;
1924   friend class Type;
1925   friend class TypePtr;
1926 
1927   const Type *_elem;
1928 
1929   static const TypeInterfaces* _array_interfaces;
1930   TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, int offset)
1931     : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem) {
1932     assert(klass == nullptr || klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
1933   }
1934 
1935   virtual ciKlass* exact_klass_helper() const;
1936   // Only guaranteed non null for array of basic types
1937   virtual ciKlass* klass() const;
1938 
1939   virtual bool must_be_exact() const;
1940 
1941 public:
1942 
1943   // returns base element type, an instance klass (and not interface) for object arrays
1944   const Type* base_element_type(int& dims) const;
1945 
1946   static const TypeAryKlassPtr *make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling);
1947 
1948   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1949   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1950   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1951 
1952   bool  is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
1953 
1954   static const TypeAryKlassPtr *make(PTR ptr, const Type *elem, ciKlass* k, int offset);
1955   static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
1956 
1957   const Type *elem() const { return _elem; }
1958 
1959   virtual bool eq(const Type *t) const;
1960   virtual uint hash() const;             // Type specific hashing
1961 
1962   virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
1963 
1964   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1965 
1966   // corresponding pointer to instance, for a given class
1967   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1968 
1969   virtual const TypePtr *add_offset( intptr_t offset ) const;
1970   virtual const Type    *xmeet( const Type *t ) const;
1971   virtual const Type    *xdual() const;      // Compute dual right now.
1972 
1973   virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
1974 
1975   virtual bool empty(void) const {
1976     return TypeKlassPtr::empty() || _elem->empty();
1977   }
1978 
1979 #ifndef PRODUCT
1980   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1981 #endif
1982 private:
1983   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1984 };
1985 
1986 class TypeNarrowPtr : public Type {
1987 protected:
1988   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1989 
1990   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
1991                                                   _ptrtype(ptrtype) {
1992     assert(ptrtype->offset() == 0 ||
1993            ptrtype->offset() == OffsetBot ||
1994            ptrtype->offset() == OffsetTop, "no real offsets");
1995   }
1996 
1997   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1998   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1999   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
2000   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
2001   // Do not allow interface-vs.-noninterface joins to collapse to top.
2002   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
2003 public:
2004   virtual bool eq( const Type *t ) const;
2005   virtual uint hash() const;             // Type specific hashing
2006   virtual bool singleton(void) const;    // TRUE if type is a singleton
2007 
2008   virtual const Type *xmeet( const Type *t ) const;
2009   virtual const Type *xdual() const;    // Compute dual right now.
2010 
2011   virtual intptr_t get_con() const;
2012 
2013   virtual bool empty(void) const;        // TRUE if type is vacuous
2014 
2015   // returns the equivalent ptr type for this compressed pointer
2016   const TypePtr *get_ptrtype() const {
2017     return _ptrtype;
2018   }
2019 
2020   bool is_known_instance() const {
2021     return _ptrtype->is_known_instance();
2022   }
2023 
2024 #ifndef PRODUCT
2025   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2026 #endif
2027 };
2028 
2029 //------------------------------TypeNarrowOop----------------------------------
2030 // A compressed reference to some kind of Oop.  This type wraps around
2031 // a preexisting TypeOopPtr and forwards most of it's operations to
2032 // the underlying type.  It's only real purpose is to track the
2033 // oopness of the compressed oop value when we expose the conversion
2034 // between the normal and the compressed form.
2035 class TypeNarrowOop : public TypeNarrowPtr {
2036 protected:
2037   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
2038   }
2039 
2040   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
2041     return t->isa_narrowoop();
2042   }
2043 
2044   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
2045     return t->is_narrowoop();
2046   }
2047 
2048   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
2049     return new TypeNarrowOop(t);
2050   }
2051 
2052   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2053     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
2054   }
2055 
2056 public:
2057 
2058   static const TypeNarrowOop *make( const TypePtr* type);
2059 
2060   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
2061     return make(TypeOopPtr::make_from_constant(con, require_constant));
2062   }
2063 
2064   static const TypeNarrowOop *BOTTOM;
2065   static const TypeNarrowOop *NULL_PTR;
2066 
2067   virtual const TypeNarrowOop* remove_speculative() const;
2068   virtual const Type* cleanup_speculative() const;
2069 
2070 #ifndef PRODUCT
2071   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2072 #endif
2073 };
2074 
2075 //------------------------------TypeNarrowKlass----------------------------------
2076 // A compressed reference to klass pointer.  This type wraps around a
2077 // preexisting TypeKlassPtr and forwards most of it's operations to
2078 // the underlying type.
2079 class TypeNarrowKlass : public TypeNarrowPtr {
2080 protected:
2081   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
2082   }
2083 
2084   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
2085     return t->isa_narrowklass();
2086   }
2087 
2088   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
2089     return t->is_narrowklass();
2090   }
2091 
2092   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
2093     return new TypeNarrowKlass(t);
2094   }
2095 
2096   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
2097     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
2098   }
2099 
2100 public:
2101   static const TypeNarrowKlass *make( const TypePtr* type);
2102 
2103   // static const TypeNarrowKlass *BOTTOM;
2104   static const TypeNarrowKlass *NULL_PTR;
2105 
2106 #ifndef PRODUCT
2107   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
2108 #endif
2109 };
2110 
2111 //------------------------------TypeFunc---------------------------------------
2112 // Class of Array Types
2113 class TypeFunc : public Type {
2114   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
2115   virtual bool eq( const Type *t ) const;
2116   virtual uint hash() const;             // Type specific hashing
2117   virtual bool singleton(void) const;    // TRUE if type is a singleton
2118   virtual bool empty(void) const;        // TRUE if type is vacuous
2119 
2120   const TypeTuple* const _domain;     // Domain of inputs
2121   const TypeTuple* const _range;      // Range of results
2122 
2123 public:
2124   // Constants are shared among ADLC and VM
2125   enum { Control    = AdlcVMDeps::Control,
2126          I_O        = AdlcVMDeps::I_O,
2127          Memory     = AdlcVMDeps::Memory,
2128          FramePtr   = AdlcVMDeps::FramePtr,
2129          ReturnAdr  = AdlcVMDeps::ReturnAdr,
2130          Parms      = AdlcVMDeps::Parms
2131   };
2132 
2133 
2134   // Accessors:
2135   const TypeTuple* domain() const { return _domain; }
2136   const TypeTuple* range()  const { return _range; }
2137 
2138   static const TypeFunc *make(ciMethod* method);
2139   static const TypeFunc *make(ciSignature signature, const Type* extra);
2140   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
2141 
2142   virtual const Type *xmeet( const Type *t ) const;
2143   virtual const Type *xdual() const;    // Compute dual right now.
2144 
2145   BasicType return_type() const;
2146 
2147 #ifndef PRODUCT
2148   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
2149 #endif
2150   // Convenience common pre-built types.
2151 };
2152 
2153 //------------------------------accessors--------------------------------------
2154 inline bool Type::is_ptr_to_narrowoop() const {
2155 #ifdef _LP64
2156   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
2157 #else
2158   return false;
2159 #endif
2160 }
2161 
2162 inline bool Type::is_ptr_to_narrowklass() const {
2163 #ifdef _LP64
2164   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
2165 #else
2166   return false;
2167 #endif
2168 }
2169 
2170 inline float Type::getf() const {
2171   assert( _base == FloatCon, "Not a FloatCon" );
2172   return ((TypeF*)this)->_f;
2173 }
2174 
2175 inline short Type::geth() const {
2176   assert(_base == HalfFloatCon, "Not a HalfFloatCon");
2177   return ((TypeH*)this)->_f;
2178 }
2179 
2180 inline double Type::getd() const {
2181   assert( _base == DoubleCon, "Not a DoubleCon" );
2182   return ((TypeD*)this)->_d;
2183 }
2184 
2185 inline const TypeInteger *Type::is_integer(BasicType bt) const {
2186   assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int");
2187   return (TypeInteger*)this;
2188 }
2189 
2190 inline const TypeInteger *Type::isa_integer(BasicType bt) const {
2191   return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : nullptr);
2192 }
2193 
2194 inline const TypeInt *Type::is_int() const {
2195   assert( _base == Int, "Not an Int" );
2196   return (TypeInt*)this;
2197 }
2198 
2199 inline const TypeInt *Type::isa_int() const {
2200   return ( _base == Int ? (TypeInt*)this : nullptr);
2201 }
2202 
2203 inline const TypeLong *Type::is_long() const {
2204   assert( _base == Long, "Not a Long" );
2205   return (TypeLong*)this;
2206 }
2207 
2208 inline const TypeLong *Type::isa_long() const {
2209   return ( _base == Long ? (TypeLong*)this : nullptr);
2210 }
2211 
2212 inline const TypeH* Type::isa_half_float() const {
2213   return ((_base == HalfFloatTop ||
2214            _base == HalfFloatCon ||
2215            _base == HalfFloatBot) ? (TypeH*)this : nullptr);
2216 }
2217 
2218 inline const TypeH* Type::is_half_float_constant() const {
2219   assert( _base == HalfFloatCon, "Not a HalfFloat" );
2220   return (TypeH*)this;
2221 }
2222 
2223 inline const TypeH* Type::isa_half_float_constant() const {
2224   return (_base == HalfFloatCon ? (TypeH*)this : nullptr);
2225 }
2226 
2227 inline const TypeF *Type::isa_float() const {
2228   return ((_base == FloatTop ||
2229            _base == FloatCon ||
2230            _base == FloatBot) ? (TypeF*)this : nullptr);
2231 }
2232 
2233 inline const TypeF *Type::is_float_constant() const {
2234   assert( _base == FloatCon, "Not a Float" );
2235   return (TypeF*)this;
2236 }
2237 
2238 inline const TypeF *Type::isa_float_constant() const {
2239   return ( _base == FloatCon ? (TypeF*)this : nullptr);
2240 }
2241 
2242 inline const TypeD *Type::isa_double() const {
2243   return ((_base == DoubleTop ||
2244            _base == DoubleCon ||
2245            _base == DoubleBot) ? (TypeD*)this : nullptr);
2246 }
2247 
2248 inline const TypeD *Type::is_double_constant() const {
2249   assert( _base == DoubleCon, "Not a Double" );
2250   return (TypeD*)this;
2251 }
2252 
2253 inline const TypeD *Type::isa_double_constant() const {
2254   return ( _base == DoubleCon ? (TypeD*)this : nullptr);
2255 }
2256 
2257 inline const TypeTuple *Type::is_tuple() const {
2258   assert( _base == Tuple, "Not a Tuple" );
2259   return (TypeTuple*)this;
2260 }
2261 
2262 inline const TypeAry *Type::is_ary() const {
2263   assert( _base == Array , "Not an Array" );
2264   return (TypeAry*)this;
2265 }
2266 
2267 inline const TypeAry *Type::isa_ary() const {
2268   return ((_base == Array) ? (TypeAry*)this : nullptr);
2269 }
2270 
2271 inline const TypeVectMask *Type::is_vectmask() const {
2272   assert( _base == VectorMask, "Not a Vector Mask" );
2273   return (TypeVectMask*)this;
2274 }
2275 
2276 inline const TypeVectMask *Type::isa_vectmask() const {
2277   return (_base == VectorMask) ? (TypeVectMask*)this : nullptr;
2278 }
2279 
2280 inline const TypeVect *Type::is_vect() const {
2281   assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" );
2282   return (TypeVect*)this;
2283 }
2284 
2285 inline const TypeVect *Type::isa_vect() const {
2286   return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : nullptr;
2287 }
2288 
2289 inline const TypePtr *Type::is_ptr() const {
2290   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2291   assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer");
2292   return (TypePtr*)this;
2293 }
2294 
2295 inline const TypePtr *Type::isa_ptr() const {
2296   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2297   return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : nullptr;
2298 }
2299 
2300 inline const TypeOopPtr *Type::is_oopptr() const {
2301   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2302   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
2303   return (TypeOopPtr*)this;
2304 }
2305 
2306 inline const TypeOopPtr *Type::isa_oopptr() const {
2307   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2308   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : nullptr;
2309 }
2310 
2311 inline const TypeRawPtr *Type::isa_rawptr() const {
2312   return (_base == RawPtr) ? (TypeRawPtr*)this : nullptr;
2313 }
2314 
2315 inline const TypeRawPtr *Type::is_rawptr() const {
2316   assert( _base == RawPtr, "Not a raw pointer" );
2317   return (TypeRawPtr*)this;
2318 }
2319 
2320 inline const TypeInstPtr *Type::isa_instptr() const {
2321   return (_base == InstPtr) ? (TypeInstPtr*)this : nullptr;
2322 }
2323 
2324 inline const TypeInstPtr *Type::is_instptr() const {
2325   assert( _base == InstPtr, "Not an object pointer" );
2326   return (TypeInstPtr*)this;
2327 }
2328 
2329 inline const TypeAryPtr *Type::isa_aryptr() const {
2330   return (_base == AryPtr) ? (TypeAryPtr*)this : nullptr;
2331 }
2332 
2333 inline const TypeAryPtr *Type::is_aryptr() const {
2334   assert( _base == AryPtr, "Not an array pointer" );
2335   return (TypeAryPtr*)this;
2336 }
2337 
2338 inline const TypeNarrowOop *Type::is_narrowoop() const {
2339   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2340   assert(_base == NarrowOop, "Not a narrow oop" ) ;
2341   return (TypeNarrowOop*)this;
2342 }
2343 
2344 inline const TypeNarrowOop *Type::isa_narrowoop() const {
2345   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2346   return (_base == NarrowOop) ? (TypeNarrowOop*)this : nullptr;
2347 }
2348 
2349 inline const TypeNarrowKlass *Type::is_narrowklass() const {
2350   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
2351   return (TypeNarrowKlass*)this;
2352 }
2353 
2354 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
2355   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : nullptr;
2356 }
2357 
2358 inline const TypeMetadataPtr *Type::is_metadataptr() const {
2359   // MetadataPtr is the first and CPCachePtr the last
2360   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
2361   return (TypeMetadataPtr*)this;
2362 }
2363 
2364 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
2365   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : nullptr;
2366 }
2367 
2368 inline const TypeKlassPtr *Type::isa_klassptr() const {
2369   return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : nullptr;
2370 }
2371 
2372 inline const TypeKlassPtr *Type::is_klassptr() const {
2373   assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer");
2374   return (TypeKlassPtr*)this;
2375 }
2376 
2377 inline const TypeInstKlassPtr *Type::isa_instklassptr() const {
2378   return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : nullptr;
2379 }
2380 
2381 inline const TypeInstKlassPtr *Type::is_instklassptr() const {
2382   assert(_base == InstKlassPtr, "Not a klass pointer");
2383   return (TypeInstKlassPtr*)this;
2384 }
2385 
2386 inline const TypeAryKlassPtr *Type::isa_aryklassptr() const {
2387   return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : nullptr;
2388 }
2389 
2390 inline const TypeAryKlassPtr *Type::is_aryklassptr() const {
2391   assert(_base == AryKlassPtr, "Not a klass pointer");
2392   return (TypeAryKlassPtr*)this;
2393 }
2394 
2395 inline const TypePtr* Type::make_ptr() const {
2396   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
2397                               ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
2398                                                        isa_ptr());
2399 }
2400 
2401 inline const TypeOopPtr* Type::make_oopptr() const {
2402   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
2403 }
2404 
2405 inline const TypeNarrowOop* Type::make_narrowoop() const {
2406   return (_base == NarrowOop) ? is_narrowoop() :
2407                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2408 }
2409 
2410 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2411   return (_base == NarrowKlass) ? is_narrowklass() :
2412                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2413 }
2414 
2415 inline bool Type::is_floatingpoint() const {
2416   if( (_base == HalfFloatCon)  || (_base == HalfFloatBot) ||
2417       (_base == FloatCon)  || (_base == FloatBot) ||
2418       (_base == DoubleCon) || (_base == DoubleBot) )
2419     return true;
2420   return false;
2421 }
2422 
2423 template <>
2424 inline const TypeInt* Type::cast<TypeInt>() const {
2425   return is_int();
2426 }
2427 
2428 template <>
2429 inline const TypeLong* Type::cast<TypeLong>() const {
2430   return is_long();
2431 }
2432 
2433 template <>
2434 inline const TypeInt* Type::try_cast<TypeInt>() const {
2435   return isa_int();
2436 }
2437 
2438 template <>
2439 inline const TypeLong* Type::try_cast<TypeLong>() const {
2440   return isa_long();
2441 }
2442 
2443 // ===============================================================
2444 // Things that need to be 64-bits in the 64-bit build but
2445 // 32-bits in the 32-bit build.  Done this way to get full
2446 // optimization AND strong typing.
2447 #ifdef _LP64
2448 
2449 // For type queries and asserts
2450 #define is_intptr_t  is_long
2451 #define isa_intptr_t isa_long
2452 #define find_intptr_t_type find_long_type
2453 #define find_intptr_t_con  find_long_con
2454 #define TypeX        TypeLong
2455 #define Type_X       Type::Long
2456 #define TypeX_X      TypeLong::LONG
2457 #define TypeX_ZERO   TypeLong::ZERO
2458 // For 'ideal_reg' machine registers
2459 #define Op_RegX      Op_RegL
2460 // For phase->intcon variants
2461 #define MakeConX     longcon
2462 #define ConXNode     ConLNode
2463 // For array index arithmetic
2464 #define MulXNode     MulLNode
2465 #define AndXNode     AndLNode
2466 #define OrXNode      OrLNode
2467 #define CmpXNode     CmpLNode
2468 #define SubXNode     SubLNode
2469 #define LShiftXNode  LShiftLNode
2470 // For object size computation:
2471 #define AddXNode     AddLNode
2472 #define RShiftXNode  RShiftLNode
2473 // For card marks and hashcodes
2474 #define URShiftXNode URShiftLNode
2475 // For shenandoahSupport
2476 #define LoadXNode    LoadLNode
2477 #define StoreXNode   StoreLNode
2478 // Opcodes
2479 #define Op_LShiftX   Op_LShiftL
2480 #define Op_AndX      Op_AndL
2481 #define Op_AddX      Op_AddL
2482 #define Op_SubX      Op_SubL
2483 #define Op_XorX      Op_XorL
2484 #define Op_URShiftX  Op_URShiftL
2485 #define Op_LoadX     Op_LoadL
2486 // conversions
2487 #define ConvI2X(x)   ConvI2L(x)
2488 #define ConvL2X(x)   (x)
2489 #define ConvX2I(x)   ConvL2I(x)
2490 #define ConvX2L(x)   (x)
2491 #define ConvX2UL(x)  (x)
2492 
2493 #else
2494 
2495 // For type queries and asserts
2496 #define is_intptr_t  is_int
2497 #define isa_intptr_t isa_int
2498 #define find_intptr_t_type find_int_type
2499 #define find_intptr_t_con  find_int_con
2500 #define TypeX        TypeInt
2501 #define Type_X       Type::Int
2502 #define TypeX_X      TypeInt::INT
2503 #define TypeX_ZERO   TypeInt::ZERO
2504 // For 'ideal_reg' machine registers
2505 #define Op_RegX      Op_RegI
2506 // For phase->intcon variants
2507 #define MakeConX     intcon
2508 #define ConXNode     ConINode
2509 // For array index arithmetic
2510 #define MulXNode     MulINode
2511 #define AndXNode     AndINode
2512 #define OrXNode      OrINode
2513 #define CmpXNode     CmpINode
2514 #define SubXNode     SubINode
2515 #define LShiftXNode  LShiftINode
2516 // For object size computation:
2517 #define AddXNode     AddINode
2518 #define RShiftXNode  RShiftINode
2519 // For card marks and hashcodes
2520 #define URShiftXNode URShiftINode
2521 // For shenandoahSupport
2522 #define LoadXNode    LoadINode
2523 #define StoreXNode   StoreINode
2524 // Opcodes
2525 #define Op_LShiftX   Op_LShiftI
2526 #define Op_AndX      Op_AndI
2527 #define Op_AddX      Op_AddI
2528 #define Op_SubX      Op_SubI
2529 #define Op_XorX      Op_XorI
2530 #define Op_URShiftX  Op_URShiftI
2531 #define Op_LoadX     Op_LoadI
2532 // conversions
2533 #define ConvI2X(x)   (x)
2534 #define ConvL2X(x)   ConvL2I(x)
2535 #define ConvX2I(x)   (x)
2536 #define ConvX2L(x)   ConvI2L(x)
2537 #define ConvX2UL(x)  ConvI2UL(x)
2538 
2539 #endif
2540 
2541 #endif // SHARE_OPTO_TYPE_HPP