1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_OPTO_TYPE_HPP 26 #define SHARE_OPTO_TYPE_HPP 27 28 #include "opto/adlcVMDeps.hpp" 29 #include "runtime/handles.hpp" 30 31 // Portions of code courtesy of Clifford Click 32 33 // Optimization - Graph Style 34 35 36 // This class defines a Type lattice. The lattice is used in the constant 37 // propagation algorithms, and for some type-checking of the iloc code. 38 // Basic types include RSD's (lower bound, upper bound, stride for integers), 39 // float & double precision constants, sets of data-labels and code-labels. 40 // The complete lattice is described below. Subtypes have no relationship to 41 // up or down in the lattice; that is entirely determined by the behavior of 42 // the MEET/JOIN functions. 43 44 class Dict; 45 class Type; 46 class TypeD; 47 class TypeF; 48 class TypeInteger; 49 class TypeInt; 50 class TypeLong; 51 class TypeNarrowPtr; 52 class TypeNarrowOop; 53 class TypeNarrowKlass; 54 class TypeAry; 55 class TypeTuple; 56 class TypeVect; 57 class TypeVectA; 58 class TypeVectS; 59 class TypeVectD; 60 class TypeVectX; 61 class TypeVectY; 62 class TypeVectZ; 63 class TypeVectMask; 64 class TypePtr; 65 class TypeRawPtr; 66 class TypeOopPtr; 67 class TypeInstPtr; 68 class TypeAryPtr; 69 class TypeKlassPtr; 70 class TypeInstKlassPtr; 71 class TypeAryKlassPtr; 72 class TypeMetadataPtr; 73 class VerifyMeet; 74 75 //------------------------------Type------------------------------------------- 76 // Basic Type object, represents a set of primitive Values. 77 // Types are hash-cons'd into a private class dictionary, so only one of each 78 // different kind of Type exists. Types are never modified after creation, so 79 // all their interesting fields are constant. 80 class Type { 81 friend class VMStructs; 82 83 public: 84 enum TYPES { 85 Bad=0, // Type check 86 Control, // Control of code (not in lattice) 87 Top, // Top of the lattice 88 Int, // Integer range (lo-hi) 89 Long, // Long integer range (lo-hi) 90 Half, // Placeholder half of doubleword 91 NarrowOop, // Compressed oop pointer 92 NarrowKlass, // Compressed klass pointer 93 94 Tuple, // Method signature or object layout 95 Array, // Array types 96 97 Interfaces, // Set of implemented interfaces for oop types 98 99 VectorMask, // Vector predicate/mask type 100 VectorA, // (Scalable) Vector types for vector length agnostic 101 VectorS, // 32bit Vector types 102 VectorD, // 64bit Vector types 103 VectorX, // 128bit Vector types 104 VectorY, // 256bit Vector types 105 VectorZ, // 512bit Vector types 106 107 AnyPtr, // Any old raw, klass, inst, or array pointer 108 RawPtr, // Raw (non-oop) pointers 109 OopPtr, // Any and all Java heap entities 110 InstPtr, // Instance pointers (non-array objects) 111 AryPtr, // Array pointers 112 // (Ptr order matters: See is_ptr, isa_ptr, is_oopptr, isa_oopptr.) 113 114 MetadataPtr, // Generic metadata 115 KlassPtr, // Klass pointers 116 InstKlassPtr, 117 AryKlassPtr, 118 119 Function, // Function signature 120 Abio, // Abstract I/O 121 Return_Address, // Subroutine return address 122 Memory, // Abstract store 123 FloatTop, // No float value 124 FloatCon, // Floating point constant 125 FloatBot, // Any float value 126 DoubleTop, // No double value 127 DoubleCon, // Double precision constant 128 DoubleBot, // Any double value 129 Bottom, // Bottom of lattice 130 lastype // Bogus ending type (not in lattice) 131 }; 132 133 // Signal values for offsets from a base pointer 134 enum OFFSET_SIGNALS { 135 OffsetTop = -2000000000, // undefined offset 136 OffsetBot = -2000000001 // any possible offset 137 }; 138 139 // Min and max WIDEN values. 140 enum WIDEN { 141 WidenMin = 0, 142 WidenMax = 3 143 }; 144 145 private: 146 typedef struct { 147 TYPES dual_type; 148 BasicType basic_type; 149 const char* msg; 150 bool isa_oop; 151 uint ideal_reg; 152 relocInfo::relocType reloc; 153 } TypeInfo; 154 155 // Dictionary of types shared among compilations. 156 static Dict* _shared_type_dict; 157 static const TypeInfo _type_info[]; 158 159 static int uhash( const Type *const t ); 160 // Structural equality check. Assumes that equals() has already compared 161 // the _base types and thus knows it can cast 't' appropriately. 162 virtual bool eq( const Type *t ) const; 163 164 // Top-level hash-table of types 165 static Dict *type_dict() { 166 return Compile::current()->type_dict(); 167 } 168 169 // DUAL operation: reflect around lattice centerline. Used instead of 170 // join to ensure my lattice is symmetric up and down. Dual is computed 171 // lazily, on demand, and cached in _dual. 172 const Type *_dual; // Cached dual value 173 174 175 const Type *meet_helper(const Type *t, bool include_speculative) const; 176 void check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const NOT_DEBUG_RETURN; 177 178 protected: 179 // Each class of type is also identified by its base. 180 const TYPES _base; // Enum of Types type 181 182 Type( TYPES t ) : _dual(nullptr), _base(t) {} // Simple types 183 // ~Type(); // Use fast deallocation 184 const Type *hashcons(); // Hash-cons the type 185 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 186 const Type *join_helper(const Type *t, bool include_speculative) const { 187 assert_type_verify_empty(); 188 return dual()->meet_helper(t->dual(), include_speculative)->dual(); 189 } 190 191 void assert_type_verify_empty() const NOT_DEBUG_RETURN; 192 193 public: 194 195 // This is used as a marker to identify narrow Klass* loads, which 196 // are really extracted from the mark-word, but we still want to 197 // distinguish it. 198 static int klass_offset() { 199 if (UseCompactObjectHeaders) { 200 return 1; 201 } else { 202 return oopDesc::klass_offset_in_bytes(); 203 } 204 } 205 206 inline void* operator new( size_t x ) throw() { 207 Compile* compile = Compile::current(); 208 compile->set_type_last_size(x); 209 return compile->type_arena()->AmallocWords(x); 210 } 211 inline void operator delete( void* ptr ) { 212 Compile* compile = Compile::current(); 213 compile->type_arena()->Afree(ptr,compile->type_last_size()); 214 } 215 216 // Initialize the type system for a particular compilation. 217 static void Initialize(Compile* compile); 218 219 // Initialize the types shared by all compilations. 220 static void Initialize_shared(Compile* compile); 221 222 TYPES base() const { 223 assert(_base > Bad && _base < lastype, "sanity"); 224 return _base; 225 } 226 227 // Create a new hash-consd type 228 static const Type *make(enum TYPES); 229 // Test for equivalence of types 230 static bool equals(const Type* t1, const Type* t2); 231 // Test for higher or equal in lattice 232 // Variant that drops the speculative part of the types 233 bool higher_equal(const Type* t) const { 234 return equals(meet(t), t->remove_speculative()); 235 } 236 // Variant that keeps the speculative part of the types 237 bool higher_equal_speculative(const Type* t) const { 238 return equals(meet_speculative(t), t); 239 } 240 241 // MEET operation; lower in lattice. 242 // Variant that drops the speculative part of the types 243 const Type *meet(const Type *t) const { 244 return meet_helper(t, false); 245 } 246 // Variant that keeps the speculative part of the types 247 const Type *meet_speculative(const Type *t) const { 248 return meet_helper(t, true)->cleanup_speculative(); 249 } 250 // WIDEN: 'widens' for Ints and other range types 251 virtual const Type *widen( const Type *old, const Type* limit ) const { return this; } 252 // NARROW: complement for widen, used by pessimistic phases 253 virtual const Type *narrow( const Type *old ) const { return this; } 254 255 // DUAL operation: reflect around lattice centerline. Used instead of 256 // join to ensure my lattice is symmetric up and down. 257 const Type *dual() const { return _dual; } 258 259 // Compute meet dependent on base type 260 virtual const Type *xmeet( const Type *t ) const; 261 virtual const Type *xdual() const; // Compute dual right now. 262 263 // JOIN operation; higher in lattice. Done by finding the dual of the 264 // meet of the dual of the 2 inputs. 265 // Variant that drops the speculative part of the types 266 const Type *join(const Type *t) const { 267 return join_helper(t, false); 268 } 269 // Variant that keeps the speculative part of the types 270 const Type *join_speculative(const Type *t) const { 271 return join_helper(t, true)->cleanup_speculative(); 272 } 273 274 // Modified version of JOIN adapted to the needs Node::Value. 275 // Normalizes all empty values to TOP. Does not kill _widen bits. 276 // Variant that drops the speculative part of the types 277 const Type *filter(const Type *kills) const { 278 return filter_helper(kills, false); 279 } 280 // Variant that keeps the speculative part of the types 281 const Type *filter_speculative(const Type *kills) const { 282 return filter_helper(kills, true)->cleanup_speculative(); 283 } 284 285 // Returns true if this pointer points at memory which contains a 286 // compressed oop references. 287 bool is_ptr_to_narrowoop() const; 288 bool is_ptr_to_narrowklass() const; 289 290 // Convenience access 291 float getf() const; 292 double getd() const; 293 294 const TypeInt *is_int() const; 295 const TypeInt *isa_int() const; // Returns null if not an Int 296 const TypeInteger* is_integer(BasicType bt) const; 297 const TypeInteger* isa_integer(BasicType bt) const; 298 const TypeLong *is_long() const; 299 const TypeLong *isa_long() const; // Returns null if not a Long 300 const TypeD *isa_double() const; // Returns null if not a Double{Top,Con,Bot} 301 const TypeD *is_double_constant() const; // Asserts it is a DoubleCon 302 const TypeD *isa_double_constant() const; // Returns null if not a DoubleCon 303 const TypeF *isa_float() const; // Returns null if not a Float{Top,Con,Bot} 304 const TypeF *is_float_constant() const; // Asserts it is a FloatCon 305 const TypeF *isa_float_constant() const; // Returns null if not a FloatCon 306 const TypeTuple *is_tuple() const; // Collection of fields, NOT a pointer 307 const TypeAry *is_ary() const; // Array, NOT array pointer 308 const TypeAry *isa_ary() const; // Returns null of not ary 309 const TypeVect *is_vect() const; // Vector 310 const TypeVect *isa_vect() const; // Returns null if not a Vector 311 const TypeVectMask *is_vectmask() const; // Predicate/Mask Vector 312 const TypeVectMask *isa_vectmask() const; // Returns null if not a Vector Predicate/Mask 313 const TypePtr *is_ptr() const; // Asserts it is a ptr type 314 const TypePtr *isa_ptr() const; // Returns null if not ptr type 315 const TypeRawPtr *isa_rawptr() const; // NOT Java oop 316 const TypeRawPtr *is_rawptr() const; // Asserts is rawptr 317 const TypeNarrowOop *is_narrowoop() const; // Java-style GC'd pointer 318 const TypeNarrowOop *isa_narrowoop() const; // Returns null if not oop ptr type 319 const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer 320 const TypeNarrowKlass *isa_narrowklass() const;// Returns null if not oop ptr type 321 const TypeOopPtr *isa_oopptr() const; // Returns null if not oop ptr type 322 const TypeOopPtr *is_oopptr() const; // Java-style GC'd pointer 323 const TypeInstPtr *isa_instptr() const; // Returns null if not InstPtr 324 const TypeInstPtr *is_instptr() const; // Instance 325 const TypeAryPtr *isa_aryptr() const; // Returns null if not AryPtr 326 const TypeAryPtr *is_aryptr() const; // Array oop 327 328 const TypeMetadataPtr *isa_metadataptr() const; // Returns null if not oop ptr type 329 const TypeMetadataPtr *is_metadataptr() const; // Java-style GC'd pointer 330 const TypeKlassPtr *isa_klassptr() const; // Returns null if not KlassPtr 331 const TypeKlassPtr *is_klassptr() const; // assert if not KlassPtr 332 const TypeInstKlassPtr *isa_instklassptr() const; // Returns null if not IntKlassPtr 333 const TypeInstKlassPtr *is_instklassptr() const; // assert if not IntKlassPtr 334 const TypeAryKlassPtr *isa_aryklassptr() const; // Returns null if not AryKlassPtr 335 const TypeAryKlassPtr *is_aryklassptr() const; // assert if not AryKlassPtr 336 337 virtual bool is_finite() const; // Has a finite value 338 virtual bool is_nan() const; // Is not a number (NaN) 339 340 // Returns this ptr type or the equivalent ptr type for this compressed pointer. 341 const TypePtr* make_ptr() const; 342 343 // Returns this oopptr type or the equivalent oopptr type for this compressed pointer. 344 // Asserts if the underlying type is not an oopptr or narrowoop. 345 const TypeOopPtr* make_oopptr() const; 346 347 // Returns this compressed pointer or the equivalent compressed version 348 // of this pointer type. 349 const TypeNarrowOop* make_narrowoop() const; 350 351 // Returns this compressed klass pointer or the equivalent 352 // compressed version of this pointer type. 353 const TypeNarrowKlass* make_narrowklass() const; 354 355 // Special test for register pressure heuristic 356 bool is_floatingpoint() const; // True if Float or Double base type 357 358 // Do you have memory, directly or through a tuple? 359 bool has_memory( ) const; 360 361 // TRUE if type is a singleton 362 virtual bool singleton(void) const; 363 364 // TRUE if type is above the lattice centerline, and is therefore vacuous 365 virtual bool empty(void) const; 366 367 // Return a hash for this type. The hash function is public so ConNode 368 // (constants) can hash on their constant, which is represented by a Type. 369 virtual uint hash() const; 370 371 // Map ideal registers (machine types) to ideal types 372 static const Type *mreg2type[]; 373 374 // Printing, statistics 375 #ifndef PRODUCT 376 void dump_on(outputStream *st) const; 377 void dump() const { 378 dump_on(tty); 379 } 380 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 381 static void dump_stats(); 382 // Groups of types, for debugging and visualization only. 383 enum class Category { 384 Data, 385 Memory, 386 Mixed, // Tuples with types of different categories. 387 Control, 388 Other, // {Type::Top, Type::Abio, Type::Bottom}. 389 Undef // {Type::Bad, Type::lastype}, for completeness. 390 }; 391 // Return the category of this type. 392 Category category() const; 393 // Check recursively in tuples. 394 bool has_category(Category cat) const; 395 396 static const char* str(const Type* t); 397 #endif // !PRODUCT 398 void typerr(const Type *t) const; // Mixing types error 399 400 // Create basic type 401 static const Type* get_const_basic_type(BasicType type) { 402 assert((uint)type <= T_CONFLICT && _const_basic_type[type] != nullptr, "bad type"); 403 return _const_basic_type[type]; 404 } 405 406 // For two instance arrays of same dimension, return the base element types. 407 // Otherwise or if the arrays have different dimensions, return null. 408 static void get_arrays_base_elements(const Type *a1, const Type *a2, 409 const TypeInstPtr **e1, const TypeInstPtr **e2); 410 411 // Mapping to the array element's basic type. 412 BasicType array_element_basic_type() const; 413 414 enum InterfaceHandling { 415 trust_interfaces, 416 ignore_interfaces 417 }; 418 // Create standard type for a ciType: 419 static const Type* get_const_type(ciType* type, InterfaceHandling interface_handling = ignore_interfaces); 420 421 // Create standard zero value: 422 static const Type* get_zero_type(BasicType type) { 423 assert((uint)type <= T_CONFLICT && _zero_type[type] != nullptr, "bad type"); 424 return _zero_type[type]; 425 } 426 427 // Report if this is a zero value (not top). 428 bool is_zero_type() const { 429 BasicType type = basic_type(); 430 if (type == T_VOID || type >= T_CONFLICT) 431 return false; 432 else 433 return (this == _zero_type[type]); 434 } 435 436 // Convenience common pre-built types. 437 static const Type *ABIO; 438 static const Type *BOTTOM; 439 static const Type *CONTROL; 440 static const Type *DOUBLE; 441 static const Type *FLOAT; 442 static const Type *HALF; 443 static const Type *MEMORY; 444 static const Type *MULTI; 445 static const Type *RETURN_ADDRESS; 446 static const Type *TOP; 447 448 // Mapping from compiler type to VM BasicType 449 BasicType basic_type() const { return _type_info[_base].basic_type; } 450 uint ideal_reg() const { return _type_info[_base].ideal_reg; } 451 const char* msg() const { return _type_info[_base].msg; } 452 bool isa_oop_ptr() const { return _type_info[_base].isa_oop; } 453 relocInfo::relocType reloc() const { return _type_info[_base].reloc; } 454 455 // Mapping from CI type system to compiler type: 456 static const Type* get_typeflow_type(ciType* type); 457 458 static const Type* make_from_constant(ciConstant constant, 459 bool require_constant = false, 460 int stable_dimension = 0, 461 bool is_narrow = false, 462 bool is_autobox_cache = false); 463 464 static const Type* make_constant_from_field(ciInstance* holder, 465 int off, 466 bool is_unsigned_load, 467 BasicType loadbt); 468 469 static const Type* make_constant_from_field(ciField* field, 470 ciInstance* holder, 471 BasicType loadbt, 472 bool is_unsigned_load); 473 474 static const Type* make_constant_from_array_element(ciArray* array, 475 int off, 476 int stable_dimension, 477 BasicType loadbt, 478 bool is_unsigned_load); 479 480 // Speculative type helper methods. See TypePtr. 481 virtual const TypePtr* speculative() const { return nullptr; } 482 virtual ciKlass* speculative_type() const { return nullptr; } 483 virtual ciKlass* speculative_type_not_null() const { return nullptr; } 484 virtual bool speculative_maybe_null() const { return true; } 485 virtual bool speculative_always_null() const { return true; } 486 virtual const Type* remove_speculative() const { return this; } 487 virtual const Type* cleanup_speculative() const { return this; } 488 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; } 489 virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; } 490 const Type* maybe_remove_speculative(bool include_speculative) const; 491 492 virtual bool maybe_null() const { return true; } 493 virtual bool is_known_instance() const { return false; } 494 495 private: 496 // support arrays 497 static const Type* _zero_type[T_CONFLICT+1]; 498 static const Type* _const_basic_type[T_CONFLICT+1]; 499 }; 500 501 //------------------------------TypeF------------------------------------------ 502 // Class of Float-Constant Types. 503 class TypeF : public Type { 504 TypeF( float f ) : Type(FloatCon), _f(f) {}; 505 public: 506 virtual bool eq( const Type *t ) const; 507 virtual uint hash() const; // Type specific hashing 508 virtual bool singleton(void) const; // TRUE if type is a singleton 509 virtual bool empty(void) const; // TRUE if type is vacuous 510 public: 511 const float _f; // Float constant 512 513 static const TypeF *make(float f); 514 515 virtual bool is_finite() const; // Has a finite value 516 virtual bool is_nan() const; // Is not a number (NaN) 517 518 virtual const Type *xmeet( const Type *t ) const; 519 virtual const Type *xdual() const; // Compute dual right now. 520 // Convenience common pre-built types. 521 static const TypeF *MAX; 522 static const TypeF *MIN; 523 static const TypeF *ZERO; // positive zero only 524 static const TypeF *ONE; 525 static const TypeF *POS_INF; 526 static const TypeF *NEG_INF; 527 #ifndef PRODUCT 528 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 529 #endif 530 }; 531 532 //------------------------------TypeD------------------------------------------ 533 // Class of Double-Constant Types. 534 class TypeD : public Type { 535 TypeD( double d ) : Type(DoubleCon), _d(d) {}; 536 public: 537 virtual bool eq( const Type *t ) const; 538 virtual uint hash() const; // Type specific hashing 539 virtual bool singleton(void) const; // TRUE if type is a singleton 540 virtual bool empty(void) const; // TRUE if type is vacuous 541 public: 542 const double _d; // Double constant 543 544 static const TypeD *make(double d); 545 546 virtual bool is_finite() const; // Has a finite value 547 virtual bool is_nan() const; // Is not a number (NaN) 548 549 virtual const Type *xmeet( const Type *t ) const; 550 virtual const Type *xdual() const; // Compute dual right now. 551 // Convenience common pre-built types. 552 static const TypeD *MAX; 553 static const TypeD *MIN; 554 static const TypeD *ZERO; // positive zero only 555 static const TypeD *ONE; 556 static const TypeD *POS_INF; 557 static const TypeD *NEG_INF; 558 #ifndef PRODUCT 559 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 560 #endif 561 }; 562 563 class TypeInteger : public Type { 564 protected: 565 TypeInteger(TYPES t, int w) : Type(t), _widen(w) {} 566 567 public: 568 const short _widen; // Limit on times we widen this sucker 569 570 virtual jlong hi_as_long() const = 0; 571 virtual jlong lo_as_long() const = 0; 572 jlong get_con_as_long(BasicType bt) const; 573 bool is_con() const { return lo_as_long() == hi_as_long(); } 574 virtual short widen_limit() const { return _widen; } 575 576 static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt); 577 578 static const TypeInteger* bottom(BasicType type); 579 static const TypeInteger* zero(BasicType type); 580 static const TypeInteger* one(BasicType type); 581 static const TypeInteger* minus_1(BasicType type); 582 }; 583 584 585 586 //------------------------------TypeInt---------------------------------------- 587 // Class of integer ranges, the set of integers between a lower bound and an 588 // upper bound, inclusive. 589 class TypeInt : public TypeInteger { 590 TypeInt( jint lo, jint hi, int w ); 591 protected: 592 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 593 594 public: 595 typedef jint NativeType; 596 virtual bool eq( const Type *t ) const; 597 virtual uint hash() const; // Type specific hashing 598 virtual bool singleton(void) const; // TRUE if type is a singleton 599 virtual bool empty(void) const; // TRUE if type is vacuous 600 const jint _lo, _hi; // Lower bound, upper bound 601 602 static const TypeInt *make(jint lo); 603 // must always specify w 604 static const TypeInt *make(jint lo, jint hi, int w); 605 606 // Check for single integer 607 bool is_con() const { return _lo==_hi; } 608 bool is_con(jint i) const { return is_con() && _lo == i; } 609 jint get_con() const { assert(is_con(), "" ); return _lo; } 610 611 virtual bool is_finite() const; // Has a finite value 612 613 virtual const Type *xmeet( const Type *t ) const; 614 virtual const Type *xdual() const; // Compute dual right now. 615 virtual const Type *widen( const Type *t, const Type* limit_type ) const; 616 virtual const Type *narrow( const Type *t ) const; 617 618 virtual jlong hi_as_long() const { return _hi; } 619 virtual jlong lo_as_long() const { return _lo; } 620 621 // Do not kill _widen bits. 622 // Convenience common pre-built types. 623 static const TypeInt *MAX; 624 static const TypeInt *MIN; 625 static const TypeInt *MINUS_1; 626 static const TypeInt *ZERO; 627 static const TypeInt *ONE; 628 static const TypeInt *BOOL; 629 static const TypeInt *CC; 630 static const TypeInt *CC_LT; // [-1] == MINUS_1 631 static const TypeInt *CC_GT; // [1] == ONE 632 static const TypeInt *CC_EQ; // [0] == ZERO 633 static const TypeInt *CC_LE; // [-1,0] 634 static const TypeInt *CC_GE; // [0,1] == BOOL (!) 635 static const TypeInt *BYTE; 636 static const TypeInt *UBYTE; 637 static const TypeInt *CHAR; 638 static const TypeInt *SHORT; 639 static const TypeInt *POS; 640 static const TypeInt *POS1; 641 static const TypeInt *INT; 642 static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint] 643 static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT 644 645 static const TypeInt *as_self(const Type *t) { return t->is_int(); } 646 #ifndef PRODUCT 647 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 648 #endif 649 }; 650 651 652 //------------------------------TypeLong--------------------------------------- 653 // Class of long integer ranges, the set of integers between a lower bound and 654 // an upper bound, inclusive. 655 class TypeLong : public TypeInteger { 656 TypeLong( jlong lo, jlong hi, int w ); 657 protected: 658 // Do not kill _widen bits. 659 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 660 public: 661 typedef jlong NativeType; 662 virtual bool eq( const Type *t ) const; 663 virtual uint hash() const; // Type specific hashing 664 virtual bool singleton(void) const; // TRUE if type is a singleton 665 virtual bool empty(void) const; // TRUE if type is vacuous 666 public: 667 const jlong _lo, _hi; // Lower bound, upper bound 668 669 static const TypeLong *make(jlong lo); 670 // must always specify w 671 static const TypeLong *make(jlong lo, jlong hi, int w); 672 673 // Check for single integer 674 bool is_con() const { return _lo==_hi; } 675 bool is_con(jlong i) const { return is_con() && _lo == i; } 676 jlong get_con() const { assert(is_con(), "" ); return _lo; } 677 678 // Check for positive 32-bit value. 679 int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; } 680 681 virtual bool is_finite() const; // Has a finite value 682 683 virtual jlong hi_as_long() const { return _hi; } 684 virtual jlong lo_as_long() const { return _lo; } 685 686 virtual const Type *xmeet( const Type *t ) const; 687 virtual const Type *xdual() const; // Compute dual right now. 688 virtual const Type *widen( const Type *t, const Type* limit_type ) const; 689 virtual const Type *narrow( const Type *t ) const; 690 // Convenience common pre-built types. 691 static const TypeLong *MAX; 692 static const TypeLong *MIN; 693 static const TypeLong *MINUS_1; 694 static const TypeLong *ZERO; 695 static const TypeLong *ONE; 696 static const TypeLong *POS; 697 static const TypeLong *LONG; 698 static const TypeLong *INT; // 32-bit subrange [min_jint..max_jint] 699 static const TypeLong *UINT; // 32-bit unsigned [0..max_juint] 700 static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG 701 702 // static convenience methods. 703 static const TypeLong *as_self(const Type *t) { return t->is_long(); } 704 705 #ifndef PRODUCT 706 virtual void dump2( Dict &d, uint, outputStream *st ) const;// Specialized per-Type dumping 707 #endif 708 }; 709 710 //------------------------------TypeTuple-------------------------------------- 711 // Class of Tuple Types, essentially type collections for function signatures 712 // and class layouts. It happens to also be a fast cache for the HotSpot 713 // signature types. 714 class TypeTuple : public Type { 715 TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { } 716 717 const uint _cnt; // Count of fields 718 const Type ** const _fields; // Array of field types 719 720 public: 721 virtual bool eq( const Type *t ) const; 722 virtual uint hash() const; // Type specific hashing 723 virtual bool singleton(void) const; // TRUE if type is a singleton 724 virtual bool empty(void) const; // TRUE if type is vacuous 725 726 // Accessors: 727 uint cnt() const { return _cnt; } 728 const Type* field_at(uint i) const { 729 assert(i < _cnt, "oob"); 730 return _fields[i]; 731 } 732 void set_field_at(uint i, const Type* t) { 733 assert(i < _cnt, "oob"); 734 _fields[i] = t; 735 } 736 737 static const TypeTuple *make( uint cnt, const Type **fields ); 738 static const TypeTuple *make_range(ciSignature *sig, InterfaceHandling interface_handling = ignore_interfaces); 739 static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig, InterfaceHandling interface_handling); 740 741 // Subroutine call type with space allocated for argument types 742 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly 743 static const Type **fields( uint arg_cnt ); 744 745 virtual const Type *xmeet( const Type *t ) const; 746 virtual const Type *xdual() const; // Compute dual right now. 747 // Convenience common pre-built types. 748 static const TypeTuple *IFBOTH; 749 static const TypeTuple *IFFALSE; 750 static const TypeTuple *IFTRUE; 751 static const TypeTuple *IFNEITHER; 752 static const TypeTuple *LOOPBODY; 753 static const TypeTuple *MEMBAR; 754 static const TypeTuple *STORECONDITIONAL; 755 static const TypeTuple *START_I2C; 756 static const TypeTuple *INT_PAIR; 757 static const TypeTuple *LONG_PAIR; 758 static const TypeTuple *INT_CC_PAIR; 759 static const TypeTuple *LONG_CC_PAIR; 760 #ifndef PRODUCT 761 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping 762 #endif 763 }; 764 765 //------------------------------TypeAry---------------------------------------- 766 // Class of Array Types 767 class TypeAry : public Type { 768 TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array), 769 _elem(elem), _size(size), _stable(stable) {} 770 public: 771 virtual bool eq( const Type *t ) const; 772 virtual uint hash() const; // Type specific hashing 773 virtual bool singleton(void) const; // TRUE if type is a singleton 774 virtual bool empty(void) const; // TRUE if type is vacuous 775 776 private: 777 const Type *_elem; // Element type of array 778 const TypeInt *_size; // Elements in array 779 const bool _stable; // Are elements @Stable? 780 friend class TypeAryPtr; 781 782 public: 783 static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false); 784 785 virtual const Type *xmeet( const Type *t ) const; 786 virtual const Type *xdual() const; // Compute dual right now. 787 bool ary_must_be_exact() const; // true if arrays of such are never generic 788 virtual const TypeAry* remove_speculative() const; 789 virtual const Type* cleanup_speculative() const; 790 #ifndef PRODUCT 791 virtual void dump2( Dict &d, uint, outputStream *st ) const; // Specialized per-Type dumping 792 #endif 793 }; 794 795 //------------------------------TypeVect--------------------------------------- 796 // Class of Vector Types 797 class TypeVect : public Type { 798 const BasicType _elem_bt; // Vector's element type 799 const uint _length; // Elements in vector (power of 2) 800 801 protected: 802 TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t), 803 _elem_bt(elem_bt), _length(length) {} 804 805 public: 806 BasicType element_basic_type() const { return _elem_bt; } 807 uint length() const { return _length; } 808 uint length_in_bytes() const { 809 return _length * type2aelembytes(element_basic_type()); 810 } 811 812 virtual bool eq(const Type* t) const; 813 virtual uint hash() const; // Type specific hashing 814 virtual bool singleton(void) const; // TRUE if type is a singleton 815 virtual bool empty(void) const; // TRUE if type is vacuous 816 817 static const TypeVect* make(const BasicType elem_bt, uint length, bool is_mask = false); 818 static const TypeVect* makemask(const BasicType elem_bt, uint length); 819 820 virtual const Type* xmeet( const Type *t) const; 821 virtual const Type* xdual() const; // Compute dual right now. 822 823 static const TypeVect* VECTA; 824 static const TypeVect* VECTS; 825 static const TypeVect* VECTD; 826 static const TypeVect* VECTX; 827 static const TypeVect* VECTY; 828 static const TypeVect* VECTZ; 829 static const TypeVect* VECTMASK; 830 831 #ifndef PRODUCT 832 virtual void dump2(Dict& d, uint, outputStream* st) const; // Specialized per-Type dumping 833 #endif 834 }; 835 836 class TypeVectA : public TypeVect { 837 friend class TypeVect; 838 TypeVectA(BasicType elem_bt, uint length) : TypeVect(VectorA, elem_bt, length) {} 839 }; 840 841 class TypeVectS : public TypeVect { 842 friend class TypeVect; 843 TypeVectS(BasicType elem_bt, uint length) : TypeVect(VectorS, elem_bt, length) {} 844 }; 845 846 class TypeVectD : public TypeVect { 847 friend class TypeVect; 848 TypeVectD(BasicType elem_bt, uint length) : TypeVect(VectorD, elem_bt, length) {} 849 }; 850 851 class TypeVectX : public TypeVect { 852 friend class TypeVect; 853 TypeVectX(BasicType elem_bt, uint length) : TypeVect(VectorX, elem_bt, length) {} 854 }; 855 856 class TypeVectY : public TypeVect { 857 friend class TypeVect; 858 TypeVectY(BasicType elem_bt, uint length) : TypeVect(VectorY, elem_bt, length) {} 859 }; 860 861 class TypeVectZ : public TypeVect { 862 friend class TypeVect; 863 TypeVectZ(BasicType elem_bt, uint length) : TypeVect(VectorZ, elem_bt, length) {} 864 }; 865 866 class TypeVectMask : public TypeVect { 867 public: 868 friend class TypeVect; 869 TypeVectMask(BasicType elem_bt, uint length) : TypeVect(VectorMask, elem_bt, length) {} 870 static const TypeVectMask* make(const BasicType elem_bt, uint length); 871 }; 872 873 // Set of implemented interfaces. Referenced from TypeOopPtr and TypeKlassPtr. 874 class TypeInterfaces : public Type { 875 private: 876 GrowableArrayFromArray<ciInstanceKlass*> _interfaces; 877 uint _hash; 878 ciInstanceKlass* _exact_klass; 879 DEBUG_ONLY(bool _initialized;) 880 881 void initialize(); 882 883 void verify() const NOT_DEBUG_RETURN; 884 void compute_hash(); 885 void compute_exact_klass(); 886 887 TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces); 888 889 NONCOPYABLE(TypeInterfaces); 890 public: 891 static const TypeInterfaces* make(GrowableArray<ciInstanceKlass*>* interfaces = nullptr); 892 bool eq(const Type* other) const; 893 bool eq(ciInstanceKlass* k) const; 894 uint hash() const; 895 const Type *xdual() const; 896 void dump(outputStream* st) const; 897 const TypeInterfaces* union_with(const TypeInterfaces* other) const; 898 const TypeInterfaces* intersection_with(const TypeInterfaces* other) const; 899 bool contains(const TypeInterfaces* other) const { 900 return intersection_with(other)->eq(other); 901 } 902 bool empty() const { return _interfaces.length() == 0; } 903 904 ciInstanceKlass* exact_klass() const; 905 void verify_is_loaded() const NOT_DEBUG_RETURN; 906 907 static int compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2); 908 static int compare(ciInstanceKlass** k1, ciInstanceKlass** k2); 909 910 const Type* xmeet(const Type* t) const; 911 912 bool singleton(void) const; 913 }; 914 915 //------------------------------TypePtr---------------------------------------- 916 // Class of machine Pointer Types: raw data, instances or arrays. 917 // If the _base enum is AnyPtr, then this refers to all of the above. 918 // Otherwise the _base will indicate which subset of pointers is affected, 919 // and the class will be inherited from. 920 class TypePtr : public Type { 921 friend class TypeNarrowPtr; 922 friend class Type; 923 protected: 924 static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling); 925 926 public: 927 enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR }; 928 protected: 929 TypePtr(TYPES t, PTR ptr, int offset, 930 const TypePtr* speculative = nullptr, 931 int inline_depth = InlineDepthBottom) : 932 Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset), 933 _ptr(ptr) {} 934 static const PTR ptr_meet[lastPTR][lastPTR]; 935 static const PTR ptr_dual[lastPTR]; 936 static const char * const ptr_msg[lastPTR]; 937 938 enum { 939 InlineDepthBottom = INT_MAX, 940 InlineDepthTop = -InlineDepthBottom 941 }; 942 943 // Extra type information profiling gave us. We propagate it the 944 // same way the rest of the type info is propagated. If we want to 945 // use it, then we have to emit a guard: this part of the type is 946 // not something we know but something we speculate about the type. 947 const TypePtr* _speculative; 948 // For speculative types, we record at what inlining depth the 949 // profiling point that provided the data is. We want to favor 950 // profile data coming from outer scopes which are likely better for 951 // the current compilation. 952 int _inline_depth; 953 954 // utility methods to work on the speculative part of the type 955 const TypePtr* dual_speculative() const; 956 const TypePtr* xmeet_speculative(const TypePtr* other) const; 957 bool eq_speculative(const TypePtr* other) const; 958 int hash_speculative() const; 959 const TypePtr* add_offset_speculative(intptr_t offset) const; 960 const TypePtr* with_offset_speculative(intptr_t offset) const; 961 #ifndef PRODUCT 962 void dump_speculative(outputStream *st) const; 963 #endif 964 965 // utility methods to work on the inline depth of the type 966 int dual_inline_depth() const; 967 int meet_inline_depth(int depth) const; 968 #ifndef PRODUCT 969 void dump_inline_depth(outputStream *st) const; 970 #endif 971 972 // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic. 973 // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for 974 // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what 975 // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was 976 // encountered so the right logic specific to klasses or oops can be executed., 977 enum MeetResult { 978 QUICK, 979 UNLOADED, 980 SUBTYPE, 981 NOT_SUBTYPE, 982 LCA 983 }; 984 template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type, 985 const T* other_type, ciKlass*& res_klass, bool& res_xk); 986 987 template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary, 988 ciKlass*& res_klass, bool& res_xk); 989 990 template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact); 991 template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other); 992 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact); 993 template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact); 994 template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other); 995 template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact); 996 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk); 997 template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk); 998 public: 999 const int _offset; // Offset into oop, with TOP & BOT 1000 const PTR _ptr; // Pointer equivalence class 1001 1002 int offset() const { return _offset; } 1003 PTR ptr() const { return _ptr; } 1004 1005 static const TypePtr *make(TYPES t, PTR ptr, int offset, 1006 const TypePtr* speculative = nullptr, 1007 int inline_depth = InlineDepthBottom); 1008 1009 // Return a 'ptr' version of this type 1010 virtual const TypePtr* cast_to_ptr_type(PTR ptr) const; 1011 1012 virtual intptr_t get_con() const; 1013 1014 int xadd_offset( intptr_t offset ) const; 1015 virtual const TypePtr* add_offset(intptr_t offset) const; 1016 virtual const TypePtr* with_offset(intptr_t offset) const; 1017 virtual bool eq(const Type *t) const; 1018 virtual uint hash() const; // Type specific hashing 1019 1020 virtual bool singleton(void) const; // TRUE if type is a singleton 1021 virtual bool empty(void) const; // TRUE if type is vacuous 1022 virtual const Type *xmeet( const Type *t ) const; 1023 virtual const Type *xmeet_helper( const Type *t ) const; 1024 int meet_offset( int offset ) const; 1025 int dual_offset( ) const; 1026 virtual const Type *xdual() const; // Compute dual right now. 1027 1028 // meet, dual and join over pointer equivalence sets 1029 PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; } 1030 PTR dual_ptr() const { return ptr_dual[ptr()]; } 1031 1032 // This is textually confusing unless one recalls that 1033 // join(t) == dual()->meet(t->dual())->dual(). 1034 PTR join_ptr( const PTR in_ptr ) const { 1035 return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ]; 1036 } 1037 1038 // Speculative type helper methods. 1039 virtual const TypePtr* speculative() const { return _speculative; } 1040 int inline_depth() const { return _inline_depth; } 1041 virtual ciKlass* speculative_type() const; 1042 virtual ciKlass* speculative_type_not_null() const; 1043 virtual bool speculative_maybe_null() const; 1044 virtual bool speculative_always_null() const; 1045 virtual const TypePtr* remove_speculative() const; 1046 virtual const Type* cleanup_speculative() const; 1047 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const; 1048 virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const; 1049 virtual const TypePtr* with_inline_depth(int depth) const; 1050 1051 virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); } 1052 1053 // Tests for relation to centerline of type lattice: 1054 static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); } 1055 static bool below_centerline(PTR ptr) { return (ptr >= NotNull); } 1056 // Convenience common pre-built types. 1057 static const TypePtr *NULL_PTR; 1058 static const TypePtr *NOTNULL; 1059 static const TypePtr *BOTTOM; 1060 #ifndef PRODUCT 1061 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1062 #endif 1063 }; 1064 1065 //------------------------------TypeRawPtr------------------------------------- 1066 // Class of raw pointers, pointers to things other than Oops. Examples 1067 // include the stack pointer, top of heap, card-marking area, handles, etc. 1068 class TypeRawPtr : public TypePtr { 1069 protected: 1070 TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){} 1071 public: 1072 virtual bool eq( const Type *t ) const; 1073 virtual uint hash() const; // Type specific hashing 1074 1075 const address _bits; // Constant value, if applicable 1076 1077 static const TypeRawPtr *make( PTR ptr ); 1078 static const TypeRawPtr *make( address bits ); 1079 1080 // Return a 'ptr' version of this type 1081 virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const; 1082 1083 virtual intptr_t get_con() const; 1084 1085 virtual const TypePtr* add_offset(intptr_t offset) const; 1086 virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;} 1087 1088 virtual const Type *xmeet( const Type *t ) const; 1089 virtual const Type *xdual() const; // Compute dual right now. 1090 // Convenience common pre-built types. 1091 static const TypeRawPtr *BOTTOM; 1092 static const TypeRawPtr *NOTNULL; 1093 #ifndef PRODUCT 1094 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1095 #endif 1096 }; 1097 1098 //------------------------------TypeOopPtr------------------------------------- 1099 // Some kind of oop (Java pointer), either instance or array. 1100 class TypeOopPtr : public TypePtr { 1101 friend class TypeAry; 1102 friend class TypePtr; 1103 friend class TypeInstPtr; 1104 friend class TypeAryPtr; 1105 protected: 1106 TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, int instance_id, 1107 const TypePtr* speculative, int inline_depth); 1108 public: 1109 virtual bool eq( const Type *t ) const; 1110 virtual uint hash() const; // Type specific hashing 1111 virtual bool singleton(void) const; // TRUE if type is a singleton 1112 enum { 1113 InstanceTop = -1, // undefined instance 1114 InstanceBot = 0 // any possible instance 1115 }; 1116 protected: 1117 1118 // Oop is null, unless this is a constant oop. 1119 ciObject* _const_oop; // Constant oop 1120 // If _klass is null, then so is _sig. This is an unloaded klass. 1121 ciKlass* _klass; // Klass object 1122 1123 const TypeInterfaces* _interfaces; 1124 1125 // Does the type exclude subclasses of the klass? (Inexact == polymorphic.) 1126 bool _klass_is_exact; 1127 bool _is_ptr_to_narrowoop; 1128 bool _is_ptr_to_narrowklass; 1129 bool _is_ptr_to_boxed_value; 1130 1131 // If not InstanceTop or InstanceBot, indicates that this is 1132 // a particular instance of this type which is distinct. 1133 // This is the node index of the allocation node creating this instance. 1134 int _instance_id; 1135 1136 static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling); 1137 1138 int dual_instance_id() const; 1139 int meet_instance_id(int uid) const; 1140 1141 const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const; 1142 1143 // Do not allow interface-vs.-noninterface joins to collapse to top. 1144 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 1145 1146 virtual ciKlass* exact_klass_helper() const { return nullptr; } 1147 virtual ciKlass* klass() const { return _klass; } 1148 1149 public: 1150 1151 bool is_java_subtype_of(const TypeOopPtr* other) const { 1152 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact()); 1153 } 1154 1155 bool is_same_java_type_as(const TypePtr* other) const { 1156 return is_same_java_type_as_helper(other->is_oopptr()); 1157 } 1158 1159 virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const { 1160 ShouldNotReachHere(); return false; 1161 } 1162 1163 bool maybe_java_subtype_of(const TypeOopPtr* other) const { 1164 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact()); 1165 } 1166 virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; } 1167 virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; } 1168 1169 1170 // Creates a type given a klass. Correctly handles multi-dimensional arrays 1171 // Respects UseUniqueSubclasses. 1172 // If the klass is final, the resulting type will be exact. 1173 static const TypeOopPtr* make_from_klass(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) { 1174 return make_from_klass_common(klass, true, false, interface_handling); 1175 } 1176 // Same as before, but will produce an exact type, even if 1177 // the klass is not final, as long as it has exactly one implementation. 1178 static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) { 1179 return make_from_klass_common(klass, true, true, interface_handling); 1180 } 1181 // Same as before, but does not respects UseUniqueSubclasses. 1182 // Use this only for creating array element types. 1183 static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) { 1184 return make_from_klass_common(klass, false, false, interface_handling); 1185 } 1186 // Creates a singleton type given an object. 1187 // If the object cannot be rendered as a constant, 1188 // may return a non-singleton type. 1189 // If require_constant, produce a null if a singleton is not possible. 1190 static const TypeOopPtr* make_from_constant(ciObject* o, 1191 bool require_constant = false); 1192 1193 // Make a generic (unclassed) pointer to an oop. 1194 static const TypeOopPtr* make(PTR ptr, int offset, int instance_id, 1195 const TypePtr* speculative = nullptr, 1196 int inline_depth = InlineDepthBottom); 1197 1198 ciObject* const_oop() const { return _const_oop; } 1199 // Exact klass, possibly an interface or an array of interface 1200 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; } 1201 ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); } 1202 1203 virtual bool is_loaded() const { return klass()->is_loaded(); } 1204 virtual bool klass_is_exact() const { return _klass_is_exact; } 1205 1206 // Returns true if this pointer points at memory which contains a 1207 // compressed oop references. 1208 bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; } 1209 bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; } 1210 bool is_ptr_to_boxed_value() const { return _is_ptr_to_boxed_value; } 1211 bool is_known_instance() const { return _instance_id > 0; } 1212 int instance_id() const { return _instance_id; } 1213 bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; } 1214 1215 virtual intptr_t get_con() const; 1216 1217 virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const; 1218 1219 virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const; 1220 1221 virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const; 1222 1223 // corresponding pointer to klass, for a given instance 1224 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const; 1225 1226 virtual const TypeOopPtr* with_offset(intptr_t offset) const; 1227 virtual const TypePtr* add_offset(intptr_t offset) const; 1228 1229 // Speculative type helper methods. 1230 virtual const TypeOopPtr* remove_speculative() const; 1231 virtual const Type* cleanup_speculative() const; 1232 virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const; 1233 virtual const TypePtr* with_inline_depth(int depth) const; 1234 1235 virtual const TypePtr* with_instance_id(int instance_id) const; 1236 1237 virtual const Type *xdual() const; // Compute dual right now. 1238 // the core of the computation of the meet for TypeOopPtr and for its subclasses 1239 virtual const Type *xmeet_helper(const Type *t) const; 1240 1241 // Convenience common pre-built type. 1242 static const TypeOopPtr *BOTTOM; 1243 #ifndef PRODUCT 1244 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1245 #endif 1246 private: 1247 virtual bool is_meet_subtype_of(const TypePtr* other) const { 1248 return is_meet_subtype_of_helper(other->is_oopptr(), klass_is_exact(), other->is_oopptr()->klass_is_exact()); 1249 } 1250 1251 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const { 1252 ShouldNotReachHere(); return false; 1253 } 1254 1255 virtual const TypeInterfaces* interfaces() const { 1256 return _interfaces; 1257 }; 1258 1259 const TypeOopPtr* is_reference_type(const Type* other) const { 1260 return other->isa_oopptr(); 1261 } 1262 1263 const TypeAryPtr* is_array_type(const TypeOopPtr* other) const { 1264 return other->isa_aryptr(); 1265 } 1266 1267 const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const { 1268 return other->isa_instptr(); 1269 } 1270 }; 1271 1272 //------------------------------TypeInstPtr------------------------------------ 1273 // Class of Java object pointers, pointing either to non-array Java instances 1274 // or to a Klass* (including array klasses). 1275 class TypeInstPtr : public TypeOopPtr { 1276 TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off, int instance_id, 1277 const TypePtr* speculative, int inline_depth); 1278 virtual bool eq( const Type *t ) const; 1279 virtual uint hash() const; // Type specific hashing 1280 1281 ciKlass* exact_klass_helper() const; 1282 1283 public: 1284 1285 // Instance klass, ignoring any interface 1286 ciInstanceKlass* instance_klass() const { 1287 assert(!(klass()->is_loaded() && klass()->is_interface()), ""); 1288 return klass()->as_instance_klass(); 1289 } 1290 1291 bool is_same_java_type_as_helper(const TypeOopPtr* other) const; 1292 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const; 1293 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const; 1294 1295 // Make a pointer to a constant oop. 1296 static const TypeInstPtr *make(ciObject* o) { 1297 ciKlass* k = o->klass(); 1298 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces); 1299 return make(TypePtr::Constant, k, interfaces, true, o, 0, InstanceBot); 1300 } 1301 // Make a pointer to a constant oop with offset. 1302 static const TypeInstPtr *make(ciObject* o, int offset) { 1303 ciKlass* k = o->klass(); 1304 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces); 1305 return make(TypePtr::Constant, k, interfaces, true, o, offset, InstanceBot); 1306 } 1307 1308 // Make a pointer to some value of type klass. 1309 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) { 1310 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling); 1311 return make(ptr, klass, interfaces, false, nullptr, 0, InstanceBot); 1312 } 1313 1314 // Make a pointer to some non-polymorphic value of exactly type klass. 1315 static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) { 1316 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces); 1317 return make(ptr, klass, interfaces, true, nullptr, 0, InstanceBot); 1318 } 1319 1320 // Make a pointer to some value of type klass with offset. 1321 static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) { 1322 const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces); 1323 return make(ptr, klass, interfaces, false, nullptr, offset, InstanceBot); 1324 } 1325 1326 static const TypeInstPtr *make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, 1327 int instance_id = InstanceBot, 1328 const TypePtr* speculative = nullptr, 1329 int inline_depth = InlineDepthBottom); 1330 1331 static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot) { 1332 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces); 1333 return make(ptr, k, interfaces, xk, o, offset, instance_id); 1334 } 1335 1336 /** Create constant type for a constant boxed value */ 1337 const Type* get_const_boxed_value() const; 1338 1339 // If this is a java.lang.Class constant, return the type for it or null. 1340 // Pass to Type::get_const_type to turn it to a type, which will usually 1341 // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc. 1342 ciType* java_mirror_type() const; 1343 1344 virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const; 1345 1346 virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const; 1347 1348 virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const; 1349 1350 virtual const TypePtr* add_offset(intptr_t offset) const; 1351 virtual const TypeInstPtr* with_offset(intptr_t offset) const; 1352 1353 // Speculative type helper methods. 1354 virtual const TypeInstPtr* remove_speculative() const; 1355 const TypeInstPtr* with_speculative(const TypePtr* speculative) const; 1356 virtual const TypePtr* with_inline_depth(int depth) const; 1357 virtual const TypePtr* with_instance_id(int instance_id) const; 1358 1359 // the core of the computation of the meet of 2 types 1360 virtual const Type *xmeet_helper(const Type *t) const; 1361 virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const; 1362 virtual const Type *xdual() const; // Compute dual right now. 1363 1364 const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const; 1365 1366 // Convenience common pre-built types. 1367 static const TypeInstPtr *NOTNULL; 1368 static const TypeInstPtr *BOTTOM; 1369 static const TypeInstPtr *MIRROR; 1370 static const TypeInstPtr *MARK; 1371 static const TypeInstPtr *KLASS; 1372 #ifndef PRODUCT 1373 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 1374 #endif 1375 1376 private: 1377 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const; 1378 1379 virtual bool is_meet_same_type_as(const TypePtr* other) const { 1380 return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces); 1381 } 1382 1383 }; 1384 1385 //------------------------------TypeAryPtr------------------------------------- 1386 // Class of Java array pointers 1387 class TypeAryPtr : public TypeOopPtr { 1388 friend class Type; 1389 friend class TypePtr; 1390 1391 TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, 1392 int offset, int instance_id, bool is_autobox_cache, 1393 const TypePtr* speculative, int inline_depth) 1394 : TypeOopPtr(AryPtr,ptr,k,_array_interfaces,xk,o,offset, instance_id, speculative, inline_depth), 1395 _ary(ary), 1396 _is_autobox_cache(is_autobox_cache) 1397 { 1398 int dummy; 1399 bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM); 1400 1401 if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) && 1402 _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes() && 1403 _offset != Type::klass_offset()) { 1404 _is_ptr_to_narrowoop = true; 1405 } 1406 1407 } 1408 virtual bool eq( const Type *t ) const; 1409 virtual uint hash() const; // Type specific hashing 1410 const TypeAry *_ary; // Array we point into 1411 const bool _is_autobox_cache; 1412 1413 ciKlass* compute_klass() const; 1414 1415 // A pointer to delay allocation to Type::Initialize_shared() 1416 1417 static const TypeInterfaces* _array_interfaces; 1418 ciKlass* exact_klass_helper() const; 1419 // Only guaranteed non null for array of basic types 1420 ciKlass* klass() const; 1421 1422 public: 1423 1424 bool is_same_java_type_as_helper(const TypeOopPtr* other) const; 1425 bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const; 1426 bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const; 1427 1428 // returns base element type, an instance klass (and not interface) for object arrays 1429 const Type* base_element_type(int& dims) const; 1430 1431 // Accessors 1432 bool is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); } 1433 1434 const TypeAry* ary() const { return _ary; } 1435 const Type* elem() const { return _ary->_elem; } 1436 const TypeInt* size() const { return _ary->_size; } 1437 bool is_stable() const { return _ary->_stable; } 1438 1439 bool is_autobox_cache() const { return _is_autobox_cache; } 1440 1441 static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset, 1442 int instance_id = InstanceBot, 1443 const TypePtr* speculative = nullptr, 1444 int inline_depth = InlineDepthBottom); 1445 // Constant pointer to array 1446 static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset, 1447 int instance_id = InstanceBot, 1448 const TypePtr* speculative = nullptr, 1449 int inline_depth = InlineDepthBottom, bool is_autobox_cache = false); 1450 1451 // Return a 'ptr' version of this type 1452 virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const; 1453 1454 virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const; 1455 1456 virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const; 1457 1458 virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const; 1459 virtual const TypeInt* narrow_size_type(const TypeInt* size) const; 1460 1461 virtual bool empty(void) const; // TRUE if type is vacuous 1462 virtual const TypePtr *add_offset( intptr_t offset ) const; 1463 virtual const TypeAryPtr *with_offset( intptr_t offset ) const; 1464 const TypeAryPtr* with_ary(const TypeAry* ary) const; 1465 1466 // Speculative type helper methods. 1467 virtual const TypeAryPtr* remove_speculative() const; 1468 virtual const TypePtr* with_inline_depth(int depth) const; 1469 virtual const TypePtr* with_instance_id(int instance_id) const; 1470 1471 // the core of the computation of the meet of 2 types 1472 virtual const Type *xmeet_helper(const Type *t) const; 1473 virtual const Type *xdual() const; // Compute dual right now. 1474 1475 const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const; 1476 int stable_dimension() const; 1477 1478 const TypeAryPtr* cast_to_autobox_cache() const; 1479 1480 static jint max_array_length(BasicType etype) ; 1481 virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const; 1482 1483 // Convenience common pre-built types. 1484 static const TypeAryPtr *RANGE; 1485 static const TypeAryPtr *OOPS; 1486 static const TypeAryPtr *NARROWOOPS; 1487 static const TypeAryPtr *BYTES; 1488 static const TypeAryPtr *SHORTS; 1489 static const TypeAryPtr *CHARS; 1490 static const TypeAryPtr *INTS; 1491 static const TypeAryPtr *LONGS; 1492 static const TypeAryPtr *FLOATS; 1493 static const TypeAryPtr *DOUBLES; 1494 // selects one of the above: 1495 static const TypeAryPtr *get_array_body_type(BasicType elem) { 1496 assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type"); 1497 return _array_body_type[elem]; 1498 } 1499 static const TypeAryPtr *_array_body_type[T_CONFLICT+1]; 1500 // sharpen the type of an int which is used as an array size 1501 #ifndef PRODUCT 1502 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 1503 #endif 1504 private: 1505 virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const; 1506 }; 1507 1508 //------------------------------TypeMetadataPtr------------------------------------- 1509 // Some kind of metadata, either Method*, MethodData* or CPCacheOop 1510 class TypeMetadataPtr : public TypePtr { 1511 protected: 1512 TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset); 1513 // Do not allow interface-vs.-noninterface joins to collapse to top. 1514 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 1515 public: 1516 virtual bool eq( const Type *t ) const; 1517 virtual uint hash() const; // Type specific hashing 1518 virtual bool singleton(void) const; // TRUE if type is a singleton 1519 1520 private: 1521 ciMetadata* _metadata; 1522 1523 public: 1524 static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset); 1525 1526 static const TypeMetadataPtr* make(ciMethod* m); 1527 static const TypeMetadataPtr* make(ciMethodData* m); 1528 1529 ciMetadata* metadata() const { return _metadata; } 1530 1531 virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const; 1532 1533 virtual const TypePtr *add_offset( intptr_t offset ) const; 1534 1535 virtual const Type *xmeet( const Type *t ) const; 1536 virtual const Type *xdual() const; // Compute dual right now. 1537 1538 virtual intptr_t get_con() const; 1539 1540 // Convenience common pre-built types. 1541 static const TypeMetadataPtr *BOTTOM; 1542 1543 #ifndef PRODUCT 1544 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1545 #endif 1546 }; 1547 1548 //------------------------------TypeKlassPtr----------------------------------- 1549 // Class of Java Klass pointers 1550 class TypeKlassPtr : public TypePtr { 1551 friend class TypeInstKlassPtr; 1552 friend class TypeAryKlassPtr; 1553 friend class TypePtr; 1554 protected: 1555 TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset); 1556 1557 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 1558 1559 public: 1560 virtual bool eq( const Type *t ) const; 1561 virtual uint hash() const; 1562 virtual bool singleton(void) const; // TRUE if type is a singleton 1563 1564 protected: 1565 1566 ciKlass* _klass; 1567 const TypeInterfaces* _interfaces; 1568 const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const; 1569 virtual bool must_be_exact() const { ShouldNotReachHere(); return false; } 1570 virtual ciKlass* exact_klass_helper() const; 1571 virtual ciKlass* klass() const { return _klass; } 1572 1573 public: 1574 1575 bool is_java_subtype_of(const TypeKlassPtr* other) const { 1576 return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact()); 1577 } 1578 bool is_same_java_type_as(const TypePtr* other) const { 1579 return is_same_java_type_as_helper(other->is_klassptr()); 1580 } 1581 1582 bool maybe_java_subtype_of(const TypeKlassPtr* other) const { 1583 return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact()); 1584 } 1585 virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; } 1586 virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; } 1587 virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; } 1588 1589 // Exact klass, possibly an interface or an array of interface 1590 ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k; } 1591 virtual bool klass_is_exact() const { return _ptr == Constant; } 1592 1593 static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces); 1594 static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling = ignore_interfaces); 1595 1596 virtual bool is_loaded() const { return _klass->is_loaded(); } 1597 1598 virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; } 1599 1600 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; } 1601 1602 // corresponding pointer to instance, for a given class 1603 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; } 1604 1605 virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; } 1606 virtual const Type *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; } 1607 virtual const Type *xdual() const { ShouldNotReachHere(); return nullptr; } 1608 1609 virtual intptr_t get_con() const; 1610 1611 virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; } 1612 1613 virtual const TypeKlassPtr* try_improve() const { return this; } 1614 1615 #ifndef PRODUCT 1616 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 1617 #endif 1618 private: 1619 virtual bool is_meet_subtype_of(const TypePtr* other) const { 1620 return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact()); 1621 } 1622 1623 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const { 1624 ShouldNotReachHere(); return false; 1625 } 1626 1627 virtual const TypeInterfaces* interfaces() const { 1628 return _interfaces; 1629 }; 1630 1631 const TypeKlassPtr* is_reference_type(const Type* other) const { 1632 return other->isa_klassptr(); 1633 } 1634 1635 const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const { 1636 return other->isa_aryklassptr(); 1637 } 1638 1639 const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const { 1640 return other->isa_instklassptr(); 1641 } 1642 }; 1643 1644 // Instance klass pointer, mirrors TypeInstPtr 1645 class TypeInstKlassPtr : public TypeKlassPtr { 1646 1647 TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset) 1648 : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset) { 1649 assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), ""); 1650 } 1651 1652 virtual bool must_be_exact() const; 1653 1654 public: 1655 // Instance klass ignoring any interface 1656 ciInstanceKlass* instance_klass() const { 1657 assert(!klass()->is_interface(), ""); 1658 return klass()->as_instance_klass(); 1659 } 1660 1661 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const; 1662 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const; 1663 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const; 1664 1665 static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) { 1666 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling); 1667 return make(TypePtr::Constant, k, interfaces, 0); 1668 } 1669 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset); 1670 1671 static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, int offset) { 1672 const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces); 1673 return make(ptr, k, interfaces, offset); 1674 } 1675 1676 virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const; 1677 1678 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const; 1679 1680 // corresponding pointer to instance, for a given class 1681 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const; 1682 virtual uint hash() const; 1683 virtual bool eq(const Type *t) const; 1684 1685 virtual const TypePtr *add_offset( intptr_t offset ) const; 1686 virtual const Type *xmeet( const Type *t ) const; 1687 virtual const Type *xdual() const; 1688 virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const; 1689 1690 virtual const TypeKlassPtr* try_improve() const; 1691 1692 // Convenience common pre-built types. 1693 static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below 1694 static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same 1695 private: 1696 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const; 1697 }; 1698 1699 // Array klass pointer, mirrors TypeAryPtr 1700 class TypeAryKlassPtr : public TypeKlassPtr { 1701 friend class TypeInstKlassPtr; 1702 friend class Type; 1703 friend class TypePtr; 1704 1705 const Type *_elem; 1706 1707 static const TypeInterfaces* _array_interfaces; 1708 TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, int offset) 1709 : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem) { 1710 assert(klass == nullptr || klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), ""); 1711 } 1712 1713 virtual ciKlass* exact_klass_helper() const; 1714 // Only guaranteed non null for array of basic types 1715 virtual ciKlass* klass() const; 1716 1717 virtual bool must_be_exact() const; 1718 1719 public: 1720 1721 // returns base element type, an instance klass (and not interface) for object arrays 1722 const Type* base_element_type(int& dims) const; 1723 1724 static const TypeAryKlassPtr *make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling); 1725 1726 bool is_same_java_type_as_helper(const TypeKlassPtr* other) const; 1727 bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const; 1728 bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const; 1729 1730 bool is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); } 1731 1732 static const TypeAryKlassPtr *make(PTR ptr, const Type *elem, ciKlass* k, int offset); 1733 static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling); 1734 1735 const Type *elem() const { return _elem; } 1736 1737 virtual bool eq(const Type *t) const; 1738 virtual uint hash() const; // Type specific hashing 1739 1740 virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const; 1741 1742 virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const; 1743 1744 // corresponding pointer to instance, for a given class 1745 virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const; 1746 1747 virtual const TypePtr *add_offset( intptr_t offset ) const; 1748 virtual const Type *xmeet( const Type *t ) const; 1749 virtual const Type *xdual() const; // Compute dual right now. 1750 1751 virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const; 1752 1753 virtual bool empty(void) const { 1754 return TypeKlassPtr::empty() || _elem->empty(); 1755 } 1756 1757 #ifndef PRODUCT 1758 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 1759 #endif 1760 private: 1761 virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const; 1762 }; 1763 1764 class TypeNarrowPtr : public Type { 1765 protected: 1766 const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR 1767 1768 TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t), 1769 _ptrtype(ptrtype) { 1770 assert(ptrtype->offset() == 0 || 1771 ptrtype->offset() == OffsetBot || 1772 ptrtype->offset() == OffsetTop, "no real offsets"); 1773 } 1774 1775 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0; 1776 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0; 1777 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0; 1778 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0; 1779 // Do not allow interface-vs.-noninterface joins to collapse to top. 1780 virtual const Type *filter_helper(const Type *kills, bool include_speculative) const; 1781 public: 1782 virtual bool eq( const Type *t ) const; 1783 virtual uint hash() const; // Type specific hashing 1784 virtual bool singleton(void) const; // TRUE if type is a singleton 1785 1786 virtual const Type *xmeet( const Type *t ) const; 1787 virtual const Type *xdual() const; // Compute dual right now. 1788 1789 virtual intptr_t get_con() const; 1790 1791 virtual bool empty(void) const; // TRUE if type is vacuous 1792 1793 // returns the equivalent ptr type for this compressed pointer 1794 const TypePtr *get_ptrtype() const { 1795 return _ptrtype; 1796 } 1797 1798 bool is_known_instance() const { 1799 return _ptrtype->is_known_instance(); 1800 } 1801 1802 #ifndef PRODUCT 1803 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1804 #endif 1805 }; 1806 1807 //------------------------------TypeNarrowOop---------------------------------- 1808 // A compressed reference to some kind of Oop. This type wraps around 1809 // a preexisting TypeOopPtr and forwards most of it's operations to 1810 // the underlying type. It's only real purpose is to track the 1811 // oopness of the compressed oop value when we expose the conversion 1812 // between the normal and the compressed form. 1813 class TypeNarrowOop : public TypeNarrowPtr { 1814 protected: 1815 TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) { 1816 } 1817 1818 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const { 1819 return t->isa_narrowoop(); 1820 } 1821 1822 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const { 1823 return t->is_narrowoop(); 1824 } 1825 1826 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const { 1827 return new TypeNarrowOop(t); 1828 } 1829 1830 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const { 1831 return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons()); 1832 } 1833 1834 public: 1835 1836 static const TypeNarrowOop *make( const TypePtr* type); 1837 1838 static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) { 1839 return make(TypeOopPtr::make_from_constant(con, require_constant)); 1840 } 1841 1842 static const TypeNarrowOop *BOTTOM; 1843 static const TypeNarrowOop *NULL_PTR; 1844 1845 virtual const TypeNarrowOop* remove_speculative() const; 1846 virtual const Type* cleanup_speculative() const; 1847 1848 #ifndef PRODUCT 1849 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1850 #endif 1851 }; 1852 1853 //------------------------------TypeNarrowKlass---------------------------------- 1854 // A compressed reference to klass pointer. This type wraps around a 1855 // preexisting TypeKlassPtr and forwards most of it's operations to 1856 // the underlying type. 1857 class TypeNarrowKlass : public TypeNarrowPtr { 1858 protected: 1859 TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) { 1860 } 1861 1862 virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const { 1863 return t->isa_narrowklass(); 1864 } 1865 1866 virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const { 1867 return t->is_narrowklass(); 1868 } 1869 1870 virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const { 1871 return new TypeNarrowKlass(t); 1872 } 1873 1874 virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const { 1875 return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons()); 1876 } 1877 1878 public: 1879 static const TypeNarrowKlass *make( const TypePtr* type); 1880 1881 // static const TypeNarrowKlass *BOTTOM; 1882 static const TypeNarrowKlass *NULL_PTR; 1883 1884 #ifndef PRODUCT 1885 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; 1886 #endif 1887 }; 1888 1889 //------------------------------TypeFunc--------------------------------------- 1890 // Class of Array Types 1891 class TypeFunc : public Type { 1892 TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function), _domain(domain), _range(range) {} 1893 virtual bool eq( const Type *t ) const; 1894 virtual uint hash() const; // Type specific hashing 1895 virtual bool singleton(void) const; // TRUE if type is a singleton 1896 virtual bool empty(void) const; // TRUE if type is vacuous 1897 1898 const TypeTuple* const _domain; // Domain of inputs 1899 const TypeTuple* const _range; // Range of results 1900 1901 public: 1902 // Constants are shared among ADLC and VM 1903 enum { Control = AdlcVMDeps::Control, 1904 I_O = AdlcVMDeps::I_O, 1905 Memory = AdlcVMDeps::Memory, 1906 FramePtr = AdlcVMDeps::FramePtr, 1907 ReturnAdr = AdlcVMDeps::ReturnAdr, 1908 Parms = AdlcVMDeps::Parms 1909 }; 1910 1911 1912 // Accessors: 1913 const TypeTuple* domain() const { return _domain; } 1914 const TypeTuple* range() const { return _range; } 1915 1916 static const TypeFunc *make(ciMethod* method); 1917 static const TypeFunc *make(ciSignature signature, const Type* extra); 1918 static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range); 1919 1920 virtual const Type *xmeet( const Type *t ) const; 1921 virtual const Type *xdual() const; // Compute dual right now. 1922 1923 BasicType return_type() const; 1924 1925 #ifndef PRODUCT 1926 virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping 1927 #endif 1928 // Convenience common pre-built types. 1929 }; 1930 1931 //------------------------------accessors-------------------------------------- 1932 inline bool Type::is_ptr_to_narrowoop() const { 1933 #ifdef _LP64 1934 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv()); 1935 #else 1936 return false; 1937 #endif 1938 } 1939 1940 inline bool Type::is_ptr_to_narrowklass() const { 1941 #ifdef _LP64 1942 return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv()); 1943 #else 1944 return false; 1945 #endif 1946 } 1947 1948 inline float Type::getf() const { 1949 assert( _base == FloatCon, "Not a FloatCon" ); 1950 return ((TypeF*)this)->_f; 1951 } 1952 1953 inline double Type::getd() const { 1954 assert( _base == DoubleCon, "Not a DoubleCon" ); 1955 return ((TypeD*)this)->_d; 1956 } 1957 1958 inline const TypeInteger *Type::is_integer(BasicType bt) const { 1959 assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int"); 1960 return (TypeInteger*)this; 1961 } 1962 1963 inline const TypeInteger *Type::isa_integer(BasicType bt) const { 1964 return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : nullptr); 1965 } 1966 1967 inline const TypeInt *Type::is_int() const { 1968 assert( _base == Int, "Not an Int" ); 1969 return (TypeInt*)this; 1970 } 1971 1972 inline const TypeInt *Type::isa_int() const { 1973 return ( _base == Int ? (TypeInt*)this : nullptr); 1974 } 1975 1976 inline const TypeLong *Type::is_long() const { 1977 assert( _base == Long, "Not a Long" ); 1978 return (TypeLong*)this; 1979 } 1980 1981 inline const TypeLong *Type::isa_long() const { 1982 return ( _base == Long ? (TypeLong*)this : nullptr); 1983 } 1984 1985 inline const TypeF *Type::isa_float() const { 1986 return ((_base == FloatTop || 1987 _base == FloatCon || 1988 _base == FloatBot) ? (TypeF*)this : nullptr); 1989 } 1990 1991 inline const TypeF *Type::is_float_constant() const { 1992 assert( _base == FloatCon, "Not a Float" ); 1993 return (TypeF*)this; 1994 } 1995 1996 inline const TypeF *Type::isa_float_constant() const { 1997 return ( _base == FloatCon ? (TypeF*)this : nullptr); 1998 } 1999 2000 inline const TypeD *Type::isa_double() const { 2001 return ((_base == DoubleTop || 2002 _base == DoubleCon || 2003 _base == DoubleBot) ? (TypeD*)this : nullptr); 2004 } 2005 2006 inline const TypeD *Type::is_double_constant() const { 2007 assert( _base == DoubleCon, "Not a Double" ); 2008 return (TypeD*)this; 2009 } 2010 2011 inline const TypeD *Type::isa_double_constant() const { 2012 return ( _base == DoubleCon ? (TypeD*)this : nullptr); 2013 } 2014 2015 inline const TypeTuple *Type::is_tuple() const { 2016 assert( _base == Tuple, "Not a Tuple" ); 2017 return (TypeTuple*)this; 2018 } 2019 2020 inline const TypeAry *Type::is_ary() const { 2021 assert( _base == Array , "Not an Array" ); 2022 return (TypeAry*)this; 2023 } 2024 2025 inline const TypeAry *Type::isa_ary() const { 2026 return ((_base == Array) ? (TypeAry*)this : nullptr); 2027 } 2028 2029 inline const TypeVectMask *Type::is_vectmask() const { 2030 assert( _base == VectorMask, "Not a Vector Mask" ); 2031 return (TypeVectMask*)this; 2032 } 2033 2034 inline const TypeVectMask *Type::isa_vectmask() const { 2035 return (_base == VectorMask) ? (TypeVectMask*)this : nullptr; 2036 } 2037 2038 inline const TypeVect *Type::is_vect() const { 2039 assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" ); 2040 return (TypeVect*)this; 2041 } 2042 2043 inline const TypeVect *Type::isa_vect() const { 2044 return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : nullptr; 2045 } 2046 2047 inline const TypePtr *Type::is_ptr() const { 2048 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between. 2049 assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer"); 2050 return (TypePtr*)this; 2051 } 2052 2053 inline const TypePtr *Type::isa_ptr() const { 2054 // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between. 2055 return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : nullptr; 2056 } 2057 2058 inline const TypeOopPtr *Type::is_oopptr() const { 2059 // OopPtr is the first and KlassPtr the last, with no non-oops between. 2060 assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ; 2061 return (TypeOopPtr*)this; 2062 } 2063 2064 inline const TypeOopPtr *Type::isa_oopptr() const { 2065 // OopPtr is the first and KlassPtr the last, with no non-oops between. 2066 return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : nullptr; 2067 } 2068 2069 inline const TypeRawPtr *Type::isa_rawptr() const { 2070 return (_base == RawPtr) ? (TypeRawPtr*)this : nullptr; 2071 } 2072 2073 inline const TypeRawPtr *Type::is_rawptr() const { 2074 assert( _base == RawPtr, "Not a raw pointer" ); 2075 return (TypeRawPtr*)this; 2076 } 2077 2078 inline const TypeInstPtr *Type::isa_instptr() const { 2079 return (_base == InstPtr) ? (TypeInstPtr*)this : nullptr; 2080 } 2081 2082 inline const TypeInstPtr *Type::is_instptr() const { 2083 assert( _base == InstPtr, "Not an object pointer" ); 2084 return (TypeInstPtr*)this; 2085 } 2086 2087 inline const TypeAryPtr *Type::isa_aryptr() const { 2088 return (_base == AryPtr) ? (TypeAryPtr*)this : nullptr; 2089 } 2090 2091 inline const TypeAryPtr *Type::is_aryptr() const { 2092 assert( _base == AryPtr, "Not an array pointer" ); 2093 return (TypeAryPtr*)this; 2094 } 2095 2096 inline const TypeNarrowOop *Type::is_narrowoop() const { 2097 // OopPtr is the first and KlassPtr the last, with no non-oops between. 2098 assert(_base == NarrowOop, "Not a narrow oop" ) ; 2099 return (TypeNarrowOop*)this; 2100 } 2101 2102 inline const TypeNarrowOop *Type::isa_narrowoop() const { 2103 // OopPtr is the first and KlassPtr the last, with no non-oops between. 2104 return (_base == NarrowOop) ? (TypeNarrowOop*)this : nullptr; 2105 } 2106 2107 inline const TypeNarrowKlass *Type::is_narrowklass() const { 2108 assert(_base == NarrowKlass, "Not a narrow oop" ) ; 2109 return (TypeNarrowKlass*)this; 2110 } 2111 2112 inline const TypeNarrowKlass *Type::isa_narrowklass() const { 2113 return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : nullptr; 2114 } 2115 2116 inline const TypeMetadataPtr *Type::is_metadataptr() const { 2117 // MetadataPtr is the first and CPCachePtr the last 2118 assert(_base == MetadataPtr, "Not a metadata pointer" ) ; 2119 return (TypeMetadataPtr*)this; 2120 } 2121 2122 inline const TypeMetadataPtr *Type::isa_metadataptr() const { 2123 return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : nullptr; 2124 } 2125 2126 inline const TypeKlassPtr *Type::isa_klassptr() const { 2127 return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : nullptr; 2128 } 2129 2130 inline const TypeKlassPtr *Type::is_klassptr() const { 2131 assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer"); 2132 return (TypeKlassPtr*)this; 2133 } 2134 2135 inline const TypeInstKlassPtr *Type::isa_instklassptr() const { 2136 return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : nullptr; 2137 } 2138 2139 inline const TypeInstKlassPtr *Type::is_instklassptr() const { 2140 assert(_base == InstKlassPtr, "Not a klass pointer"); 2141 return (TypeInstKlassPtr*)this; 2142 } 2143 2144 inline const TypeAryKlassPtr *Type::isa_aryklassptr() const { 2145 return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : nullptr; 2146 } 2147 2148 inline const TypeAryKlassPtr *Type::is_aryklassptr() const { 2149 assert(_base == AryKlassPtr, "Not a klass pointer"); 2150 return (TypeAryKlassPtr*)this; 2151 } 2152 2153 inline const TypePtr* Type::make_ptr() const { 2154 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() : 2155 ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() : 2156 isa_ptr()); 2157 } 2158 2159 inline const TypeOopPtr* Type::make_oopptr() const { 2160 return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr(); 2161 } 2162 2163 inline const TypeNarrowOop* Type::make_narrowoop() const { 2164 return (_base == NarrowOop) ? is_narrowoop() : 2165 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr); 2166 } 2167 2168 inline const TypeNarrowKlass* Type::make_narrowklass() const { 2169 return (_base == NarrowKlass) ? is_narrowklass() : 2170 (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr); 2171 } 2172 2173 inline bool Type::is_floatingpoint() const { 2174 if( (_base == FloatCon) || (_base == FloatBot) || 2175 (_base == DoubleCon) || (_base == DoubleBot) ) 2176 return true; 2177 return false; 2178 } 2179 2180 2181 // =============================================================== 2182 // Things that need to be 64-bits in the 64-bit build but 2183 // 32-bits in the 32-bit build. Done this way to get full 2184 // optimization AND strong typing. 2185 #ifdef _LP64 2186 2187 // For type queries and asserts 2188 #define is_intptr_t is_long 2189 #define isa_intptr_t isa_long 2190 #define find_intptr_t_type find_long_type 2191 #define find_intptr_t_con find_long_con 2192 #define TypeX TypeLong 2193 #define Type_X Type::Long 2194 #define TypeX_X TypeLong::LONG 2195 #define TypeX_ZERO TypeLong::ZERO 2196 // For 'ideal_reg' machine registers 2197 #define Op_RegX Op_RegL 2198 // For phase->intcon variants 2199 #define MakeConX longcon 2200 #define ConXNode ConLNode 2201 // For array index arithmetic 2202 #define MulXNode MulLNode 2203 #define AndXNode AndLNode 2204 #define OrXNode OrLNode 2205 #define CmpXNode CmpLNode 2206 #define SubXNode SubLNode 2207 #define LShiftXNode LShiftLNode 2208 // For object size computation: 2209 #define AddXNode AddLNode 2210 #define RShiftXNode RShiftLNode 2211 // For card marks and hashcodes 2212 #define URShiftXNode URShiftLNode 2213 // For shenandoahSupport 2214 #define LoadXNode LoadLNode 2215 #define StoreXNode StoreLNode 2216 // Opcodes 2217 #define Op_LShiftX Op_LShiftL 2218 #define Op_AndX Op_AndL 2219 #define Op_AddX Op_AddL 2220 #define Op_SubX Op_SubL 2221 #define Op_XorX Op_XorL 2222 #define Op_URShiftX Op_URShiftL 2223 #define Op_LoadX Op_LoadL 2224 // conversions 2225 #define ConvI2X(x) ConvI2L(x) 2226 #define ConvL2X(x) (x) 2227 #define ConvX2I(x) ConvL2I(x) 2228 #define ConvX2L(x) (x) 2229 #define ConvX2UL(x) (x) 2230 2231 #else 2232 2233 // For type queries and asserts 2234 #define is_intptr_t is_int 2235 #define isa_intptr_t isa_int 2236 #define find_intptr_t_type find_int_type 2237 #define find_intptr_t_con find_int_con 2238 #define TypeX TypeInt 2239 #define Type_X Type::Int 2240 #define TypeX_X TypeInt::INT 2241 #define TypeX_ZERO TypeInt::ZERO 2242 // For 'ideal_reg' machine registers 2243 #define Op_RegX Op_RegI 2244 // For phase->intcon variants 2245 #define MakeConX intcon 2246 #define ConXNode ConINode 2247 // For array index arithmetic 2248 #define MulXNode MulINode 2249 #define AndXNode AndINode 2250 #define OrXNode OrINode 2251 #define CmpXNode CmpINode 2252 #define SubXNode SubINode 2253 #define LShiftXNode LShiftINode 2254 // For object size computation: 2255 #define AddXNode AddINode 2256 #define RShiftXNode RShiftINode 2257 // For card marks and hashcodes 2258 #define URShiftXNode URShiftINode 2259 // For shenandoahSupport 2260 #define LoadXNode LoadINode 2261 #define StoreXNode StoreINode 2262 // Opcodes 2263 #define Op_LShiftX Op_LShiftI 2264 #define Op_AndX Op_AndI 2265 #define Op_AddX Op_AddI 2266 #define Op_SubX Op_SubI 2267 #define Op_XorX Op_XorI 2268 #define Op_URShiftX Op_URShiftI 2269 #define Op_LoadX Op_LoadI 2270 // conversions 2271 #define ConvI2X(x) (x) 2272 #define ConvL2X(x) ConvL2I(x) 2273 #define ConvX2I(x) (x) 2274 #define ConvX2L(x) ConvI2L(x) 2275 #define ConvX2UL(x) ConvI2UL(x) 2276 2277 #endif 2278 2279 #endif // SHARE_OPTO_TYPE_HPP