1 /*
   2  * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_TYPE_HPP
  26 #define SHARE_OPTO_TYPE_HPP
  27 
  28 #include "opto/adlcVMDeps.hpp"
  29 #include "runtime/handles.hpp"
  30 
  31 // Portions of code courtesy of Clifford Click
  32 
  33 // Optimization - Graph Style
  34 
  35 
  36 // This class defines a Type lattice.  The lattice is used in the constant
  37 // propagation algorithms, and for some type-checking of the iloc code.
  38 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  39 // float & double precision constants, sets of data-labels and code-labels.
  40 // The complete lattice is described below.  Subtypes have no relationship to
  41 // up or down in the lattice; that is entirely determined by the behavior of
  42 // the MEET/JOIN functions.
  43 
  44 class Dict;
  45 class Type;
  46 class   TypeD;
  47 class   TypeF;
  48 class   TypeInteger;
  49 class     TypeInt;
  50 class     TypeLong;
  51 class   TypeNarrowPtr;
  52 class     TypeNarrowOop;
  53 class     TypeNarrowKlass;
  54 class   TypeAry;
  55 class   TypeTuple;
  56 class   TypeVect;
  57 class     TypeVectA;
  58 class     TypeVectS;
  59 class     TypeVectD;
  60 class     TypeVectX;
  61 class     TypeVectY;
  62 class     TypeVectZ;
  63 class     TypeVectMask;
  64 class   TypePtr;
  65 class     TypeRawPtr;
  66 class     TypeOopPtr;
  67 class       TypeInstPtr;
  68 class       TypeAryPtr;
  69 class     TypeKlassPtr;
  70 class       TypeInstKlassPtr;
  71 class       TypeAryKlassPtr;
  72 class     TypeMetadataPtr;
  73 class VerifyMeet;
  74 
  75 //------------------------------Type-------------------------------------------
  76 // Basic Type object, represents a set of primitive Values.
  77 // Types are hash-cons'd into a private class dictionary, so only one of each
  78 // different kind of Type exists.  Types are never modified after creation, so
  79 // all their interesting fields are constant.
  80 class Type {
  81   friend class VMStructs;
  82 
  83 public:
  84   enum TYPES {
  85     Bad=0,                      // Type check
  86     Control,                    // Control of code (not in lattice)
  87     Top,                        // Top of the lattice
  88     Int,                        // Integer range (lo-hi)
  89     Long,                       // Long integer range (lo-hi)
  90     Half,                       // Placeholder half of doubleword
  91     NarrowOop,                  // Compressed oop pointer
  92     NarrowKlass,                // Compressed klass pointer
  93 
  94     Tuple,                      // Method signature or object layout
  95     Array,                      // Array types
  96 
  97     Interfaces,                 // Set of implemented interfaces for oop types
  98 
  99     VectorMask,                 // Vector predicate/mask type
 100     VectorA,                    // (Scalable) Vector types for vector length agnostic
 101     VectorS,                    //  32bit Vector types
 102     VectorD,                    //  64bit Vector types
 103     VectorX,                    // 128bit Vector types
 104     VectorY,                    // 256bit Vector types
 105     VectorZ,                    // 512bit Vector types
 106 
 107     AnyPtr,                     // Any old raw, klass, inst, or array pointer
 108     RawPtr,                     // Raw (non-oop) pointers
 109     OopPtr,                     // Any and all Java heap entities
 110     InstPtr,                    // Instance pointers (non-array objects)
 111     AryPtr,                     // Array pointers
 112     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 113 
 114     MetadataPtr,                // Generic metadata
 115     KlassPtr,                   // Klass pointers
 116     InstKlassPtr,
 117     AryKlassPtr,
 118 
 119     Function,                   // Function signature
 120     Abio,                       // Abstract I/O
 121     Return_Address,             // Subroutine return address
 122     Memory,                     // Abstract store
 123     FloatTop,                   // No float value
 124     FloatCon,                   // Floating point constant
 125     FloatBot,                   // Any float value
 126     DoubleTop,                  // No double value
 127     DoubleCon,                  // Double precision constant
 128     DoubleBot,                  // Any double value
 129     Bottom,                     // Bottom of lattice
 130     lastype                     // Bogus ending type (not in lattice)
 131   };
 132 
 133   // Signal values for offsets from a base pointer
 134   enum OFFSET_SIGNALS {
 135     OffsetTop = -2000000000,    // undefined offset
 136     OffsetBot = -2000000001     // any possible offset
 137   };
 138 
 139   // Min and max WIDEN values.
 140   enum WIDEN {
 141     WidenMin = 0,
 142     WidenMax = 3
 143   };
 144 
 145 private:
 146   typedef struct {
 147     TYPES                dual_type;
 148     BasicType            basic_type;
 149     const char*          msg;
 150     bool                 isa_oop;
 151     uint                 ideal_reg;
 152     relocInfo::relocType reloc;
 153   } TypeInfo;
 154 
 155   // Dictionary of types shared among compilations.
 156   static Dict* _shared_type_dict;
 157   static const TypeInfo _type_info[];
 158 
 159   static int uhash( const Type *const t );
 160   // Structural equality check.  Assumes that equals() has already compared
 161   // the _base types and thus knows it can cast 't' appropriately.
 162   virtual bool eq( const Type *t ) const;
 163 
 164   // Top-level hash-table of types
 165   static Dict *type_dict() {
 166     return Compile::current()->type_dict();
 167   }
 168 
 169   // DUAL operation: reflect around lattice centerline.  Used instead of
 170   // join to ensure my lattice is symmetric up and down.  Dual is computed
 171   // lazily, on demand, and cached in _dual.
 172   const Type *_dual;            // Cached dual value
 173 
 174 
 175   const Type *meet_helper(const Type *t, bool include_speculative) const;
 176   void check_symmetrical(const Type* t, const Type* mt, const VerifyMeet& verify) const NOT_DEBUG_RETURN;
 177 
 178 protected:
 179   // Each class of type is also identified by its base.
 180   const TYPES _base;            // Enum of Types type
 181 
 182   Type( TYPES t ) : _dual(nullptr),  _base(t) {} // Simple types
 183   // ~Type();                   // Use fast deallocation
 184   const Type *hashcons();       // Hash-cons the type
 185   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 186   const Type *join_helper(const Type *t, bool include_speculative) const {
 187     assert_type_verify_empty();
 188     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 189   }
 190 
 191   void assert_type_verify_empty() const NOT_DEBUG_RETURN;
 192 
 193 public:
 194 
 195   // This is used as a marker to identify narrow Klass* loads, which
 196   // are really extracted from the mark-word, but we still want to
 197   // distinguish it.
 198   static int klass_offset() {
 199     if (UseCompactObjectHeaders) {
 200       return 1;
 201     } else {
 202       return oopDesc::klass_offset_in_bytes();
 203     }
 204   }
 205 
 206   inline void* operator new( size_t x ) throw() {
 207     Compile* compile = Compile::current();
 208     compile->set_type_last_size(x);
 209     return compile->type_arena()->AmallocWords(x);
 210   }
 211   inline void operator delete( void* ptr ) {
 212     Compile* compile = Compile::current();
 213     compile->type_arena()->Afree(ptr,compile->type_last_size());
 214   }
 215 
 216   // Initialize the type system for a particular compilation.
 217   static void Initialize(Compile* compile);
 218 
 219   // Initialize the types shared by all compilations.
 220   static void Initialize_shared(Compile* compile);
 221 
 222   TYPES base() const {
 223     assert(_base > Bad && _base < lastype, "sanity");
 224     return _base;
 225   }
 226 
 227   // Create a new hash-consd type
 228   static const Type *make(enum TYPES);
 229   // Test for equivalence of types
 230   static bool equals(const Type* t1, const Type* t2);
 231   // Test for higher or equal in lattice
 232   // Variant that drops the speculative part of the types
 233   bool higher_equal(const Type* t) const {
 234     return equals(meet(t), t->remove_speculative());
 235   }
 236   // Variant that keeps the speculative part of the types
 237   bool higher_equal_speculative(const Type* t) const {
 238     return equals(meet_speculative(t), t);
 239   }
 240 
 241   // MEET operation; lower in lattice.
 242   // Variant that drops the speculative part of the types
 243   const Type *meet(const Type *t) const {
 244     return meet_helper(t, false);
 245   }
 246   // Variant that keeps the speculative part of the types
 247   const Type *meet_speculative(const Type *t) const {
 248     return meet_helper(t, true)->cleanup_speculative();
 249   }
 250   // WIDEN: 'widens' for Ints and other range types
 251   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 252   // NARROW: complement for widen, used by pessimistic phases
 253   virtual const Type *narrow( const Type *old ) const { return this; }
 254 
 255   // DUAL operation: reflect around lattice centerline.  Used instead of
 256   // join to ensure my lattice is symmetric up and down.
 257   const Type *dual() const { return _dual; }
 258 
 259   // Compute meet dependent on base type
 260   virtual const Type *xmeet( const Type *t ) const;
 261   virtual const Type *xdual() const;    // Compute dual right now.
 262 
 263   // JOIN operation; higher in lattice.  Done by finding the dual of the
 264   // meet of the dual of the 2 inputs.
 265   // Variant that drops the speculative part of the types
 266   const Type *join(const Type *t) const {
 267     return join_helper(t, false);
 268   }
 269   // Variant that keeps the speculative part of the types
 270   const Type *join_speculative(const Type *t) const {
 271     return join_helper(t, true)->cleanup_speculative();
 272   }
 273 
 274   // Modified version of JOIN adapted to the needs Node::Value.
 275   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 276   // Variant that drops the speculative part of the types
 277   const Type *filter(const Type *kills) const {
 278     return filter_helper(kills, false);
 279   }
 280   // Variant that keeps the speculative part of the types
 281   const Type *filter_speculative(const Type *kills) const {
 282     return filter_helper(kills, true)->cleanup_speculative();
 283   }
 284 
 285   // Returns true if this pointer points at memory which contains a
 286   // compressed oop references.
 287   bool is_ptr_to_narrowoop() const;
 288   bool is_ptr_to_narrowklass() const;
 289 
 290   // Convenience access
 291   float getf() const;
 292   double getd() const;
 293 
 294   const TypeInt    *is_int() const;
 295   const TypeInt    *isa_int() const;             // Returns null if not an Int
 296   const TypeInteger* is_integer(BasicType bt) const;
 297   const TypeInteger* isa_integer(BasicType bt) const;
 298   const TypeLong   *is_long() const;
 299   const TypeLong   *isa_long() const;            // Returns null if not a Long
 300   const TypeD      *isa_double() const;          // Returns null if not a Double{Top,Con,Bot}
 301   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 302   const TypeD      *isa_double_constant() const; // Returns null if not a DoubleCon
 303   const TypeF      *isa_float() const;           // Returns null if not a Float{Top,Con,Bot}
 304   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 305   const TypeF      *isa_float_constant() const;  // Returns null if not a FloatCon
 306   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 307   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 308   const TypeAry    *isa_ary() const;             // Returns null of not ary
 309   const TypeVect   *is_vect() const;             // Vector
 310   const TypeVect   *isa_vect() const;            // Returns null if not a Vector
 311   const TypeVectMask *is_vectmask() const;       // Predicate/Mask Vector
 312   const TypeVectMask *isa_vectmask() const;      // Returns null if not a Vector Predicate/Mask
 313   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 314   const TypePtr    *isa_ptr() const;             // Returns null if not ptr type
 315   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 316   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 317   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 318   const TypeNarrowOop  *isa_narrowoop() const;   // Returns null if not oop ptr type
 319   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 320   const TypeNarrowKlass *isa_narrowklass() const;// Returns null if not oop ptr type
 321   const TypeOopPtr   *isa_oopptr() const;        // Returns null if not oop ptr type
 322   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 323   const TypeInstPtr  *isa_instptr() const;       // Returns null if not InstPtr
 324   const TypeInstPtr  *is_instptr() const;        // Instance
 325   const TypeAryPtr   *isa_aryptr() const;        // Returns null if not AryPtr
 326   const TypeAryPtr   *is_aryptr() const;         // Array oop
 327 
 328   template <typename TypeClass>
 329   const TypeClass* cast() const;
 330 
 331   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns null if not oop ptr type
 332   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 333   const TypeKlassPtr      *isa_klassptr() const;      // Returns null if not KlassPtr
 334   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 335   const TypeInstKlassPtr  *isa_instklassptr() const;  // Returns null if not IntKlassPtr
 336   const TypeInstKlassPtr  *is_instklassptr() const;   // assert if not IntKlassPtr
 337   const TypeAryKlassPtr   *isa_aryklassptr() const;   // Returns null if not AryKlassPtr
 338   const TypeAryKlassPtr   *is_aryklassptr() const;    // assert if not AryKlassPtr
 339 
 340   virtual bool      is_finite() const;           // Has a finite value
 341   virtual bool      is_nan()    const;           // Is not a number (NaN)
 342 
 343   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 344   const TypePtr* make_ptr() const;
 345 
 346   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 347   // Asserts if the underlying type is not an oopptr or narrowoop.
 348   const TypeOopPtr* make_oopptr() const;
 349 
 350   // Returns this compressed pointer or the equivalent compressed version
 351   // of this pointer type.
 352   const TypeNarrowOop* make_narrowoop() const;
 353 
 354   // Returns this compressed klass pointer or the equivalent
 355   // compressed version of this pointer type.
 356   const TypeNarrowKlass* make_narrowklass() const;
 357 
 358   // Special test for register pressure heuristic
 359   bool is_floatingpoint() const;        // True if Float or Double base type
 360 
 361   // Do you have memory, directly or through a tuple?
 362   bool has_memory( ) const;
 363 
 364   // TRUE if type is a singleton
 365   virtual bool singleton(void) const;
 366 
 367   // TRUE if type is above the lattice centerline, and is therefore vacuous
 368   virtual bool empty(void) const;
 369 
 370   // Return a hash for this type.  The hash function is public so ConNode
 371   // (constants) can hash on their constant, which is represented by a Type.
 372   virtual uint hash() const;
 373 
 374   // Map ideal registers (machine types) to ideal types
 375   static const Type *mreg2type[];
 376 
 377   // Printing, statistics
 378 #ifndef PRODUCT
 379   void         dump_on(outputStream *st) const;
 380   void         dump() const {
 381     dump_on(tty);
 382   }
 383   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 384   static  void dump_stats();
 385   // Groups of types, for debugging and visualization only.
 386   enum class Category {
 387     Data,
 388     Memory,
 389     Mixed,   // Tuples with types of different categories.
 390     Control,
 391     Other,   // {Type::Top, Type::Abio, Type::Bottom}.
 392     Undef    // {Type::Bad, Type::lastype}, for completeness.
 393   };
 394   // Return the category of this type.
 395   Category category() const;
 396   // Check recursively in tuples.
 397   bool has_category(Category cat) const;
 398 
 399   static const char* str(const Type* t);
 400 #endif // !PRODUCT
 401   void typerr(const Type *t) const; // Mixing types error
 402 
 403   // Create basic type
 404   static const Type* get_const_basic_type(BasicType type) {
 405     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != nullptr, "bad type");
 406     return _const_basic_type[type];
 407   }
 408 
 409   // For two instance arrays of same dimension, return the base element types.
 410   // Otherwise or if the arrays have different dimensions, return null.
 411   static void get_arrays_base_elements(const Type *a1, const Type *a2,
 412                                        const TypeInstPtr **e1, const TypeInstPtr **e2);
 413 
 414   // Mapping to the array element's basic type.
 415   BasicType array_element_basic_type() const;
 416 
 417   enum InterfaceHandling {
 418       trust_interfaces,
 419       ignore_interfaces
 420   };
 421   // Create standard type for a ciType:
 422   static const Type* get_const_type(ciType* type, InterfaceHandling interface_handling = ignore_interfaces);
 423 
 424   // Create standard zero value:
 425   static const Type* get_zero_type(BasicType type) {
 426     assert((uint)type <= T_CONFLICT && _zero_type[type] != nullptr, "bad type");
 427     return _zero_type[type];
 428   }
 429 
 430   // Report if this is a zero value (not top).
 431   bool is_zero_type() const {
 432     BasicType type = basic_type();
 433     if (type == T_VOID || type >= T_CONFLICT)
 434       return false;
 435     else
 436       return (this == _zero_type[type]);
 437   }
 438 
 439   // Convenience common pre-built types.
 440   static const Type *ABIO;
 441   static const Type *BOTTOM;
 442   static const Type *CONTROL;
 443   static const Type *DOUBLE;
 444   static const Type *FLOAT;
 445   static const Type *HALF;
 446   static const Type *MEMORY;
 447   static const Type *MULTI;
 448   static const Type *RETURN_ADDRESS;
 449   static const Type *TOP;
 450 
 451   // Mapping from compiler type to VM BasicType
 452   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 453   uint ideal_reg() const             { return _type_info[_base].ideal_reg; }
 454   const char* msg() const            { return _type_info[_base].msg; }
 455   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 456   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 457 
 458   // Mapping from CI type system to compiler type:
 459   static const Type* get_typeflow_type(ciType* type);
 460 
 461   static const Type* make_from_constant(ciConstant constant,
 462                                         bool require_constant = false,
 463                                         int stable_dimension = 0,
 464                                         bool is_narrow = false,
 465                                         bool is_autobox_cache = false);
 466 
 467   static const Type* make_constant_from_field(ciInstance* holder,
 468                                               int off,
 469                                               bool is_unsigned_load,
 470                                               BasicType loadbt);
 471 
 472   static const Type* make_constant_from_field(ciField* field,
 473                                               ciInstance* holder,
 474                                               BasicType loadbt,
 475                                               bool is_unsigned_load);
 476 
 477   static const Type* make_constant_from_array_element(ciArray* array,
 478                                                       int off,
 479                                                       int stable_dimension,
 480                                                       BasicType loadbt,
 481                                                       bool is_unsigned_load);
 482 
 483   // Speculative type helper methods. See TypePtr.
 484   virtual const TypePtr* speculative() const                                  { return nullptr; }
 485   virtual ciKlass* speculative_type() const                                   { return nullptr; }
 486   virtual ciKlass* speculative_type_not_null() const                          { return nullptr; }
 487   virtual bool speculative_maybe_null() const                                 { return true; }
 488   virtual bool speculative_always_null() const                                { return true; }
 489   virtual const Type* remove_speculative() const                              { return this; }
 490   virtual const Type* cleanup_speculative() const                             { return this; }
 491   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != nullptr; }
 492   virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
 493   const Type* maybe_remove_speculative(bool include_speculative) const;
 494 
 495   virtual bool maybe_null() const { return true; }
 496   virtual bool is_known_instance() const { return false; }
 497 
 498 private:
 499   // support arrays
 500   static const Type*        _zero_type[T_CONFLICT+1];
 501   static const Type* _const_basic_type[T_CONFLICT+1];
 502 };
 503 
 504 //------------------------------TypeF------------------------------------------
 505 // Class of Float-Constant Types.
 506 class TypeF : public Type {
 507   TypeF( float f ) : Type(FloatCon), _f(f) {};
 508 public:
 509   virtual bool eq( const Type *t ) const;
 510   virtual uint hash() const;             // Type specific hashing
 511   virtual bool singleton(void) const;    // TRUE if type is a singleton
 512   virtual bool empty(void) const;        // TRUE if type is vacuous
 513 public:
 514   const float _f;               // Float constant
 515 
 516   static const TypeF *make(float f);
 517 
 518   virtual bool        is_finite() const;  // Has a finite value
 519   virtual bool        is_nan()    const;  // Is not a number (NaN)
 520 
 521   virtual const Type *xmeet( const Type *t ) const;
 522   virtual const Type *xdual() const;    // Compute dual right now.
 523   // Convenience common pre-built types.
 524   static const TypeF *MAX;
 525   static const TypeF *MIN;
 526   static const TypeF *ZERO; // positive zero only
 527   static const TypeF *ONE;
 528   static const TypeF *POS_INF;
 529   static const TypeF *NEG_INF;
 530 #ifndef PRODUCT
 531   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 532 #endif
 533 };
 534 
 535 //------------------------------TypeD------------------------------------------
 536 // Class of Double-Constant Types.
 537 class TypeD : public Type {
 538   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 539 public:
 540   virtual bool eq( const Type *t ) const;
 541   virtual uint hash() const;             // Type specific hashing
 542   virtual bool singleton(void) const;    // TRUE if type is a singleton
 543   virtual bool empty(void) const;        // TRUE if type is vacuous
 544 public:
 545   const double _d;              // Double constant
 546 
 547   static const TypeD *make(double d);
 548 
 549   virtual bool        is_finite() const;  // Has a finite value
 550   virtual bool        is_nan()    const;  // Is not a number (NaN)
 551 
 552   virtual const Type *xmeet( const Type *t ) const;
 553   virtual const Type *xdual() const;    // Compute dual right now.
 554   // Convenience common pre-built types.
 555   static const TypeD *MAX;
 556   static const TypeD *MIN;
 557   static const TypeD *ZERO; // positive zero only
 558   static const TypeD *ONE;
 559   static const TypeD *POS_INF;
 560   static const TypeD *NEG_INF;
 561 #ifndef PRODUCT
 562   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 563 #endif
 564 };
 565 
 566 class TypeInteger : public Type {
 567 protected:
 568   TypeInteger(TYPES t, int w) : Type(t), _widen(w) {}
 569 
 570 public:
 571   const short _widen;           // Limit on times we widen this sucker
 572 
 573   virtual jlong hi_as_long() const = 0;
 574   virtual jlong lo_as_long() const = 0;
 575   jlong get_con_as_long(BasicType bt) const;
 576   bool is_con() const { return lo_as_long() == hi_as_long(); }
 577   virtual short widen_limit() const { return _widen; }
 578 
 579   static const TypeInteger* make(jlong lo, jlong hi, int w, BasicType bt);
 580 
 581   static const TypeInteger* bottom(BasicType type);
 582   static const TypeInteger* zero(BasicType type);
 583   static const TypeInteger* one(BasicType type);
 584   static const TypeInteger* minus_1(BasicType type);
 585 };
 586 
 587 
 588 
 589 //------------------------------TypeInt----------------------------------------
 590 // Class of integer ranges, the set of integers between a lower bound and an
 591 // upper bound, inclusive.
 592 class TypeInt : public TypeInteger {
 593   TypeInt( jint lo, jint hi, int w );
 594 protected:
 595   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 596 
 597 public:
 598   typedef jint NativeType;
 599   virtual bool eq( const Type *t ) const;
 600   virtual uint hash() const;             // Type specific hashing
 601   virtual bool singleton(void) const;    // TRUE if type is a singleton
 602   virtual bool empty(void) const;        // TRUE if type is vacuous
 603   const jint _lo, _hi;          // Lower bound, upper bound
 604 
 605   static const TypeInt *make(jint lo);
 606   // must always specify w
 607   static const TypeInt *make(jint lo, jint hi, int w);
 608 
 609   // Check for single integer
 610   bool is_con() const { return _lo==_hi; }
 611   bool is_con(jint i) const { return is_con() && _lo == i; }
 612   jint get_con() const { assert(is_con(), "" );  return _lo; }
 613 
 614   virtual bool        is_finite() const;  // Has a finite value
 615 
 616   virtual const Type *xmeet( const Type *t ) const;
 617   virtual const Type *xdual() const;    // Compute dual right now.
 618   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 619   virtual const Type *narrow( const Type *t ) const;
 620 
 621   virtual jlong hi_as_long() const { return _hi; }
 622   virtual jlong lo_as_long() const { return _lo; }
 623 
 624   // Do not kill _widen bits.
 625   // Convenience common pre-built types.
 626   static const TypeInt *MAX;
 627   static const TypeInt *MIN;
 628   static const TypeInt *MINUS_1;
 629   static const TypeInt *ZERO;
 630   static const TypeInt *ONE;
 631   static const TypeInt *BOOL;
 632   static const TypeInt *CC;
 633   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 634   static const TypeInt *CC_GT;  // [1]   == ONE
 635   static const TypeInt *CC_EQ;  // [0]   == ZERO
 636   static const TypeInt *CC_LE;  // [-1,0]
 637   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 638   static const TypeInt *BYTE;
 639   static const TypeInt *UBYTE;
 640   static const TypeInt *CHAR;
 641   static const TypeInt *SHORT;
 642   static const TypeInt *POS;
 643   static const TypeInt *POS1;
 644   static const TypeInt *INT;
 645   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 646   static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT
 647 
 648   static const TypeInt *as_self(const Type *t) { return t->is_int(); }
 649 #ifndef PRODUCT
 650   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 651 #endif
 652 };
 653 
 654 
 655 //------------------------------TypeLong---------------------------------------
 656 // Class of long integer ranges, the set of integers between a lower bound and
 657 // an upper bound, inclusive.
 658 class TypeLong : public TypeInteger {
 659   TypeLong( jlong lo, jlong hi, int w );
 660 protected:
 661   // Do not kill _widen bits.
 662   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 663 public:
 664   typedef jlong NativeType;
 665   virtual bool eq( const Type *t ) const;
 666   virtual uint hash() const;             // Type specific hashing
 667   virtual bool singleton(void) const;    // TRUE if type is a singleton
 668   virtual bool empty(void) const;        // TRUE if type is vacuous
 669 public:
 670   const jlong _lo, _hi;         // Lower bound, upper bound
 671 
 672   static const TypeLong *make(jlong lo);
 673   // must always specify w
 674   static const TypeLong *make(jlong lo, jlong hi, int w);
 675 
 676   // Check for single integer
 677   bool is_con() const { return _lo==_hi; }
 678   bool is_con(jlong i) const { return is_con() && _lo == i; }
 679   jlong get_con() const { assert(is_con(), "" ); return _lo; }
 680 
 681   // Check for positive 32-bit value.
 682   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 683 
 684   virtual bool        is_finite() const;  // Has a finite value
 685 
 686   virtual jlong hi_as_long() const { return _hi; }
 687   virtual jlong lo_as_long() const { return _lo; }
 688 
 689   virtual const Type *xmeet( const Type *t ) const;
 690   virtual const Type *xdual() const;    // Compute dual right now.
 691   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 692   virtual const Type *narrow( const Type *t ) const;
 693   // Convenience common pre-built types.
 694   static const TypeLong *MAX;
 695   static const TypeLong *MIN;
 696   static const TypeLong *MINUS_1;
 697   static const TypeLong *ZERO;
 698   static const TypeLong *ONE;
 699   static const TypeLong *POS;
 700   static const TypeLong *LONG;
 701   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 702   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 703   static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG
 704 
 705   // static convenience methods.
 706   static const TypeLong *as_self(const Type *t) { return t->is_long(); }
 707 
 708 #ifndef PRODUCT
 709   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 710 #endif
 711 };
 712 
 713 //------------------------------TypeTuple--------------------------------------
 714 // Class of Tuple Types, essentially type collections for function signatures
 715 // and class layouts.  It happens to also be a fast cache for the HotSpot
 716 // signature types.
 717 class TypeTuple : public Type {
 718   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 719 
 720   const uint          _cnt;              // Count of fields
 721   const Type ** const _fields;           // Array of field types
 722 
 723 public:
 724   virtual bool eq( const Type *t ) const;
 725   virtual uint hash() const;             // Type specific hashing
 726   virtual bool singleton(void) const;    // TRUE if type is a singleton
 727   virtual bool empty(void) const;        // TRUE if type is vacuous
 728 
 729   // Accessors:
 730   uint cnt() const { return _cnt; }
 731   const Type* field_at(uint i) const {
 732     assert(i < _cnt, "oob");
 733     return _fields[i];
 734   }
 735   void set_field_at(uint i, const Type* t) {
 736     assert(i < _cnt, "oob");
 737     _fields[i] = t;
 738   }
 739 
 740   static const TypeTuple *make( uint cnt, const Type **fields );
 741   static const TypeTuple *make_range(ciSignature *sig, InterfaceHandling interface_handling = ignore_interfaces);
 742   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig, InterfaceHandling interface_handling);
 743 
 744   // Subroutine call type with space allocated for argument types
 745   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 746   static const Type **fields( uint arg_cnt );
 747 
 748   virtual const Type *xmeet( const Type *t ) const;
 749   virtual const Type *xdual() const;    // Compute dual right now.
 750   // Convenience common pre-built types.
 751   static const TypeTuple *IFBOTH;
 752   static const TypeTuple *IFFALSE;
 753   static const TypeTuple *IFTRUE;
 754   static const TypeTuple *IFNEITHER;
 755   static const TypeTuple *LOOPBODY;
 756   static const TypeTuple *MEMBAR;
 757   static const TypeTuple *STORECONDITIONAL;
 758   static const TypeTuple *START_I2C;
 759   static const TypeTuple *INT_PAIR;
 760   static const TypeTuple *LONG_PAIR;
 761   static const TypeTuple *INT_CC_PAIR;
 762   static const TypeTuple *LONG_CC_PAIR;
 763 #ifndef PRODUCT
 764   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 765 #endif
 766 };
 767 
 768 //------------------------------TypeAry----------------------------------------
 769 // Class of Array Types
 770 class TypeAry : public Type {
 771   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
 772       _elem(elem), _size(size), _stable(stable) {}
 773 public:
 774   virtual bool eq( const Type *t ) const;
 775   virtual uint hash() const;             // Type specific hashing
 776   virtual bool singleton(void) const;    // TRUE if type is a singleton
 777   virtual bool empty(void) const;        // TRUE if type is vacuous
 778 
 779 private:
 780   const Type *_elem;            // Element type of array
 781   const TypeInt *_size;         // Elements in array
 782   const bool _stable;           // Are elements @Stable?
 783   friend class TypeAryPtr;
 784 
 785 public:
 786   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
 787 
 788   virtual const Type *xmeet( const Type *t ) const;
 789   virtual const Type *xdual() const;    // Compute dual right now.
 790   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 791   virtual const TypeAry* remove_speculative() const;
 792   virtual const Type* cleanup_speculative() const;
 793 #ifndef PRODUCT
 794   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 795 #endif
 796 };
 797 
 798 //------------------------------TypeVect---------------------------------------
 799 // Class of Vector Types
 800 class TypeVect : public Type {
 801   const BasicType _elem_bt;  // Vector's element type
 802   const uint _length;  // Elements in vector (power of 2)
 803 
 804 protected:
 805   TypeVect(TYPES t, BasicType elem_bt, uint length) : Type(t),
 806     _elem_bt(elem_bt), _length(length) {}
 807 
 808 public:
 809   BasicType element_basic_type() const { return _elem_bt; }
 810   uint length() const { return _length; }
 811   uint length_in_bytes() const {
 812     return _length * type2aelembytes(element_basic_type());
 813   }
 814 
 815   virtual bool eq(const Type* t) const;
 816   virtual uint hash() const;             // Type specific hashing
 817   virtual bool singleton(void) const;    // TRUE if type is a singleton
 818   virtual bool empty(void) const;        // TRUE if type is vacuous
 819 
 820   static const TypeVect* make(const BasicType elem_bt, uint length, bool is_mask = false);
 821   static const TypeVect* makemask(const BasicType elem_bt, uint length);
 822 
 823   virtual const Type* xmeet( const Type *t) const;
 824   virtual const Type* xdual() const;     // Compute dual right now.
 825 
 826   static const TypeVect* VECTA;
 827   static const TypeVect* VECTS;
 828   static const TypeVect* VECTD;
 829   static const TypeVect* VECTX;
 830   static const TypeVect* VECTY;
 831   static const TypeVect* VECTZ;
 832   static const TypeVect* VECTMASK;
 833 
 834 #ifndef PRODUCT
 835   virtual void dump2(Dict& d, uint, outputStream* st) const; // Specialized per-Type dumping
 836 #endif
 837 };
 838 
 839 class TypeVectA : public TypeVect {
 840   friend class TypeVect;
 841   TypeVectA(BasicType elem_bt, uint length) : TypeVect(VectorA, elem_bt, length) {}
 842 };
 843 
 844 class TypeVectS : public TypeVect {
 845   friend class TypeVect;
 846   TypeVectS(BasicType elem_bt, uint length) : TypeVect(VectorS, elem_bt, length) {}
 847 };
 848 
 849 class TypeVectD : public TypeVect {
 850   friend class TypeVect;
 851   TypeVectD(BasicType elem_bt, uint length) : TypeVect(VectorD, elem_bt, length) {}
 852 };
 853 
 854 class TypeVectX : public TypeVect {
 855   friend class TypeVect;
 856   TypeVectX(BasicType elem_bt, uint length) : TypeVect(VectorX, elem_bt, length) {}
 857 };
 858 
 859 class TypeVectY : public TypeVect {
 860   friend class TypeVect;
 861   TypeVectY(BasicType elem_bt, uint length) : TypeVect(VectorY, elem_bt, length) {}
 862 };
 863 
 864 class TypeVectZ : public TypeVect {
 865   friend class TypeVect;
 866   TypeVectZ(BasicType elem_bt, uint length) : TypeVect(VectorZ, elem_bt, length) {}
 867 };
 868 
 869 class TypeVectMask : public TypeVect {
 870 public:
 871   friend class TypeVect;
 872   TypeVectMask(BasicType elem_bt, uint length) : TypeVect(VectorMask, elem_bt, length) {}
 873   static const TypeVectMask* make(const BasicType elem_bt, uint length);
 874 };
 875 
 876 // Set of implemented interfaces. Referenced from TypeOopPtr and TypeKlassPtr.
 877 class TypeInterfaces : public Type {
 878 private:
 879   GrowableArrayFromArray<ciInstanceKlass*> _interfaces;
 880   uint _hash;
 881   ciInstanceKlass* _exact_klass;
 882   DEBUG_ONLY(bool _initialized;)
 883 
 884   void initialize();
 885 
 886   void verify() const NOT_DEBUG_RETURN;
 887   void compute_hash();
 888   void compute_exact_klass();
 889 
 890   TypeInterfaces(ciInstanceKlass** interfaces_base, int nb_interfaces);
 891 
 892   NONCOPYABLE(TypeInterfaces);
 893 public:
 894   static const TypeInterfaces* make(GrowableArray<ciInstanceKlass*>* interfaces = nullptr);
 895   bool eq(const Type* other) const;
 896   bool eq(ciInstanceKlass* k) const;
 897   uint hash() const;
 898   const Type *xdual() const;
 899   void dump(outputStream* st) const;
 900   const TypeInterfaces* union_with(const TypeInterfaces* other) const;
 901   const TypeInterfaces* intersection_with(const TypeInterfaces* other) const;
 902   bool contains(const TypeInterfaces* other) const {
 903     return intersection_with(other)->eq(other);
 904   }
 905   bool empty() const { return _interfaces.length() == 0; }
 906 
 907   ciInstanceKlass* exact_klass() const;
 908   void verify_is_loaded() const NOT_DEBUG_RETURN;
 909 
 910   static int compare(ciInstanceKlass* const& k1, ciInstanceKlass* const& k2);
 911   static int compare(ciInstanceKlass** k1, ciInstanceKlass** k2);
 912 
 913   const Type* xmeet(const Type* t) const;
 914 
 915   bool singleton(void) const;
 916 };
 917 
 918 //------------------------------TypePtr----------------------------------------
 919 // Class of machine Pointer Types: raw data, instances or arrays.
 920 // If the _base enum is AnyPtr, then this refers to all of the above.
 921 // Otherwise the _base will indicate which subset of pointers is affected,
 922 // and the class will be inherited from.
 923 class TypePtr : public Type {
 924   friend class TypeNarrowPtr;
 925   friend class Type;
 926 protected:
 927   static const TypeInterfaces* interfaces(ciKlass*& k, bool klass, bool interface, bool array, InterfaceHandling interface_handling);
 928 
 929 public:
 930   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 931 protected:
 932   TypePtr(TYPES t, PTR ptr, int offset,
 933           const TypePtr* speculative = nullptr,
 934           int inline_depth = InlineDepthBottom) :
 935     Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
 936     _ptr(ptr) {}
 937   static const PTR ptr_meet[lastPTR][lastPTR];
 938   static const PTR ptr_dual[lastPTR];
 939   static const char * const ptr_msg[lastPTR];
 940 
 941   enum {
 942     InlineDepthBottom = INT_MAX,
 943     InlineDepthTop = -InlineDepthBottom
 944   };
 945 
 946   // Extra type information profiling gave us. We propagate it the
 947   // same way the rest of the type info is propagated. If we want to
 948   // use it, then we have to emit a guard: this part of the type is
 949   // not something we know but something we speculate about the type.
 950   const TypePtr*   _speculative;
 951   // For speculative types, we record at what inlining depth the
 952   // profiling point that provided the data is. We want to favor
 953   // profile data coming from outer scopes which are likely better for
 954   // the current compilation.
 955   int _inline_depth;
 956 
 957   // utility methods to work on the speculative part of the type
 958   const TypePtr* dual_speculative() const;
 959   const TypePtr* xmeet_speculative(const TypePtr* other) const;
 960   bool eq_speculative(const TypePtr* other) const;
 961   int hash_speculative() const;
 962   const TypePtr* add_offset_speculative(intptr_t offset) const;
 963   const TypePtr* with_offset_speculative(intptr_t offset) const;
 964 #ifndef PRODUCT
 965   void dump_speculative(outputStream *st) const;
 966 #endif
 967 
 968   // utility methods to work on the inline depth of the type
 969   int dual_inline_depth() const;
 970   int meet_inline_depth(int depth) const;
 971 #ifndef PRODUCT
 972   void dump_inline_depth(outputStream *st) const;
 973 #endif
 974 
 975   // TypeInstPtr (TypeAryPtr resp.) and TypeInstKlassPtr (TypeAryKlassPtr resp.) implement very similar meet logic.
 976   // The logic for meeting 2 instances (2 arrays resp.) is shared in the 2 utility methods below. However the logic for
 977   // the oop and klass versions can be slightly different and extra logic may have to be executed depending on what
 978   // exact case the meet falls into. The MeetResult struct is used by the utility methods to communicate what case was
 979   // encountered so the right logic specific to klasses or oops can be executed.,
 980   enum MeetResult {
 981     QUICK,
 982     UNLOADED,
 983     SUBTYPE,
 984     NOT_SUBTYPE,
 985     LCA
 986   };
 987   template<class T> static TypePtr::MeetResult meet_instptr(PTR& ptr, const TypeInterfaces*& interfaces, const T* this_type,
 988                                                             const T* other_type, ciKlass*& res_klass, bool& res_xk);
 989 
 990   template<class T> static MeetResult meet_aryptr(PTR& ptr, const Type*& elem, const T* this_ary, const T* other_ary,
 991                                                   ciKlass*& res_klass, bool& res_xk);
 992 
 993   template <class T1, class T2> static bool is_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
 994   template <class T1, class T2> static bool is_same_java_type_as_helper_for_instance(const T1* this_one, const T2* other);
 995   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
 996   template <class T1, class T2> static bool is_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
 997   template <class T1, class T2> static bool is_same_java_type_as_helper_for_array(const T1* this_one, const T2* other);
 998   template <class T1, class T2> static bool maybe_java_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_exact, bool other_exact);
 999   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_instance(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1000   template <class T1, class T2> static bool is_meet_subtype_of_helper_for_array(const T1* this_one, const T2* other, bool this_xk, bool other_xk);
1001 public:
1002   const int _offset;            // Offset into oop, with TOP & BOT
1003   const PTR _ptr;               // Pointer equivalence class
1004 
1005   int offset() const { return _offset; }
1006   PTR ptr()    const { return _ptr; }
1007 
1008   static const TypePtr *make(TYPES t, PTR ptr, int offset,
1009                              const TypePtr* speculative = nullptr,
1010                              int inline_depth = InlineDepthBottom);
1011 
1012   // Return a 'ptr' version of this type
1013   virtual const TypePtr* cast_to_ptr_type(PTR ptr) const;
1014 
1015   virtual intptr_t get_con() const;
1016 
1017   int xadd_offset( intptr_t offset ) const;
1018   virtual const TypePtr* add_offset(intptr_t offset) const;
1019   virtual const TypePtr* with_offset(intptr_t offset) const;
1020   virtual bool eq(const Type *t) const;
1021   virtual uint hash() const;             // Type specific hashing
1022 
1023   virtual bool singleton(void) const;    // TRUE if type is a singleton
1024   virtual bool empty(void) const;        // TRUE if type is vacuous
1025   virtual const Type *xmeet( const Type *t ) const;
1026   virtual const Type *xmeet_helper( const Type *t ) const;
1027   int meet_offset( int offset ) const;
1028   int dual_offset( ) const;
1029   virtual const Type *xdual() const;    // Compute dual right now.
1030 
1031   // meet, dual and join over pointer equivalence sets
1032   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
1033   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
1034 
1035   // This is textually confusing unless one recalls that
1036   // join(t) == dual()->meet(t->dual())->dual().
1037   PTR join_ptr( const PTR in_ptr ) const {
1038     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
1039   }
1040 
1041   // Speculative type helper methods.
1042   virtual const TypePtr* speculative() const { return _speculative; }
1043   int inline_depth() const                   { return _inline_depth; }
1044   virtual ciKlass* speculative_type() const;
1045   virtual ciKlass* speculative_type_not_null() const;
1046   virtual bool speculative_maybe_null() const;
1047   virtual bool speculative_always_null() const;
1048   virtual const TypePtr* remove_speculative() const;
1049   virtual const Type* cleanup_speculative() const;
1050   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1051   virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
1052   virtual const TypePtr* with_inline_depth(int depth) const;
1053 
1054   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
1055 
1056   // Tests for relation to centerline of type lattice:
1057   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
1058   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
1059   // Convenience common pre-built types.
1060   static const TypePtr *NULL_PTR;
1061   static const TypePtr *NOTNULL;
1062   static const TypePtr *BOTTOM;
1063 #ifndef PRODUCT
1064   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1065 #endif
1066 };
1067 
1068 //------------------------------TypeRawPtr-------------------------------------
1069 // Class of raw pointers, pointers to things other than Oops.  Examples
1070 // include the stack pointer, top of heap, card-marking area, handles, etc.
1071 class TypeRawPtr : public TypePtr {
1072 protected:
1073   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
1074 public:
1075   virtual bool eq( const Type *t ) const;
1076   virtual uint hash() const;    // Type specific hashing
1077 
1078   const address _bits;          // Constant value, if applicable
1079 
1080   static const TypeRawPtr *make( PTR ptr );
1081   static const TypeRawPtr *make( address bits );
1082 
1083   // Return a 'ptr' version of this type
1084   virtual const TypeRawPtr* cast_to_ptr_type(PTR ptr) const;
1085 
1086   virtual intptr_t get_con() const;
1087 
1088   virtual const TypePtr* add_offset(intptr_t offset) const;
1089   virtual const TypeRawPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr;}
1090 
1091   virtual const Type *xmeet( const Type *t ) const;
1092   virtual const Type *xdual() const;    // Compute dual right now.
1093   // Convenience common pre-built types.
1094   static const TypeRawPtr *BOTTOM;
1095   static const TypeRawPtr *NOTNULL;
1096 #ifndef PRODUCT
1097   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1098 #endif
1099 };
1100 
1101 //------------------------------TypeOopPtr-------------------------------------
1102 // Some kind of oop (Java pointer), either instance or array.
1103 class TypeOopPtr : public TypePtr {
1104   friend class TypeAry;
1105   friend class TypePtr;
1106   friend class TypeInstPtr;
1107   friend class TypeAryPtr;
1108 protected:
1109  TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset, int instance_id,
1110             const TypePtr* speculative, int inline_depth);
1111 public:
1112   virtual bool eq( const Type *t ) const;
1113   virtual uint hash() const;             // Type specific hashing
1114   virtual bool singleton(void) const;    // TRUE if type is a singleton
1115   enum {
1116    InstanceTop = -1,   // undefined instance
1117    InstanceBot = 0     // any possible instance
1118   };
1119 protected:
1120 
1121   // Oop is null, unless this is a constant oop.
1122   ciObject*     _const_oop;   // Constant oop
1123   // If _klass is null, then so is _sig.  This is an unloaded klass.
1124   ciKlass*      _klass;       // Klass object
1125 
1126   const TypeInterfaces* _interfaces;
1127 
1128   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1129   bool          _klass_is_exact;
1130   bool          _is_ptr_to_narrowoop;
1131   bool          _is_ptr_to_narrowklass;
1132   bool          _is_ptr_to_boxed_value;
1133 
1134   // If not InstanceTop or InstanceBot, indicates that this is
1135   // a particular instance of this type which is distinct.
1136   // This is the node index of the allocation node creating this instance.
1137   int           _instance_id;
1138 
1139   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact, InterfaceHandling interface_handling);
1140 
1141   int dual_instance_id() const;
1142   int meet_instance_id(int uid) const;
1143 
1144   const TypeInterfaces* meet_interfaces(const TypeOopPtr* other) const;
1145 
1146   // Do not allow interface-vs.-noninterface joins to collapse to top.
1147   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1148 
1149   virtual ciKlass* exact_klass_helper() const { return nullptr; }
1150   virtual ciKlass* klass() const { return _klass;     }
1151 
1152 public:
1153 
1154   bool is_java_subtype_of(const TypeOopPtr* other) const {
1155     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1156   }
1157 
1158   bool is_same_java_type_as(const TypePtr* other) const {
1159     return is_same_java_type_as_helper(other->is_oopptr());
1160   }
1161 
1162   virtual bool is_same_java_type_as_helper(const TypeOopPtr* other) const {
1163     ShouldNotReachHere(); return false;
1164   }
1165 
1166   bool maybe_java_subtype_of(const TypeOopPtr* other) const {
1167     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1168   }
1169   virtual bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1170   virtual bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1171 
1172 
1173   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1174   // Respects UseUniqueSubclasses.
1175   // If the klass is final, the resulting type will be exact.
1176   static const TypeOopPtr* make_from_klass(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1177     return make_from_klass_common(klass, true, false, interface_handling);
1178   }
1179   // Same as before, but will produce an exact type, even if
1180   // the klass is not final, as long as it has exactly one implementation.
1181   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass, InterfaceHandling interface_handling= ignore_interfaces) {
1182     return make_from_klass_common(klass, true, true, interface_handling);
1183   }
1184   // Same as before, but does not respects UseUniqueSubclasses.
1185   // Use this only for creating array element types.
1186   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1187     return make_from_klass_common(klass, false, false, interface_handling);
1188   }
1189   // Creates a singleton type given an object.
1190   // If the object cannot be rendered as a constant,
1191   // may return a non-singleton type.
1192   // If require_constant, produce a null if a singleton is not possible.
1193   static const TypeOopPtr* make_from_constant(ciObject* o,
1194                                               bool require_constant = false);
1195 
1196   // Make a generic (unclassed) pointer to an oop.
1197   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id,
1198                                 const TypePtr* speculative = nullptr,
1199                                 int inline_depth = InlineDepthBottom);
1200 
1201   ciObject* const_oop()    const { return _const_oop; }
1202   // Exact klass, possibly an interface or an array of interface
1203   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1204   ciKlass* unloaded_klass() const { assert(!is_loaded(), "only for unloaded types"); return klass(); }
1205 
1206   virtual bool  is_loaded() const { return klass()->is_loaded(); }
1207   virtual bool klass_is_exact()    const { return _klass_is_exact; }
1208 
1209   // Returns true if this pointer points at memory which contains a
1210   // compressed oop references.
1211   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1212   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1213   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1214   bool is_known_instance()       const { return _instance_id > 0; }
1215   int  instance_id()             const { return _instance_id; }
1216   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }
1217 
1218   virtual intptr_t get_con() const;
1219 
1220   virtual const TypeOopPtr* cast_to_ptr_type(PTR ptr) const;
1221 
1222   virtual const TypeOopPtr* cast_to_exactness(bool klass_is_exact) const;
1223 
1224   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1225 
1226   // corresponding pointer to klass, for a given instance
1227   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1228 
1229   virtual const TypeOopPtr* with_offset(intptr_t offset) const;
1230   virtual const TypePtr* add_offset(intptr_t offset) const;
1231 
1232   // Speculative type helper methods.
1233   virtual const TypeOopPtr* remove_speculative() const;
1234   virtual const Type* cleanup_speculative() const;
1235   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1236   virtual const TypePtr* with_inline_depth(int depth) const;
1237 
1238   virtual const TypePtr* with_instance_id(int instance_id) const;
1239 
1240   virtual const Type *xdual() const;    // Compute dual right now.
1241   // the core of the computation of the meet for TypeOopPtr and for its subclasses
1242   virtual const Type *xmeet_helper(const Type *t) const;
1243 
1244   // Convenience common pre-built type.
1245   static const TypeOopPtr *BOTTOM;
1246 #ifndef PRODUCT
1247   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1248 #endif
1249 private:
1250   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1251     return is_meet_subtype_of_helper(other->is_oopptr(), klass_is_exact(), other->is_oopptr()->klass_is_exact());
1252   }
1253 
1254   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const {
1255     ShouldNotReachHere(); return false;
1256   }
1257 
1258   virtual const TypeInterfaces* interfaces() const {
1259     return _interfaces;
1260   };
1261 
1262   const TypeOopPtr* is_reference_type(const Type* other) const {
1263     return other->isa_oopptr();
1264   }
1265 
1266   const TypeAryPtr* is_array_type(const TypeOopPtr* other) const {
1267     return other->isa_aryptr();
1268   }
1269 
1270   const TypeInstPtr* is_instance_type(const TypeOopPtr* other) const {
1271     return other->isa_instptr();
1272   }
1273 };
1274 
1275 //------------------------------TypeInstPtr------------------------------------
1276 // Class of Java object pointers, pointing either to non-array Java instances
1277 // or to a Klass* (including array klasses).
1278 class TypeInstPtr : public TypeOopPtr {
1279   TypeInstPtr(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int off, int instance_id,
1280               const TypePtr* speculative, int inline_depth);
1281   virtual bool eq( const Type *t ) const;
1282   virtual uint hash() const;             // Type specific hashing
1283 
1284   ciKlass* exact_klass_helper() const;
1285 
1286 public:
1287 
1288   // Instance klass, ignoring any interface
1289   ciInstanceKlass* instance_klass() const {
1290     assert(!(klass()->is_loaded() && klass()->is_interface()), "");
1291     return klass()->as_instance_klass();
1292   }
1293 
1294   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1295   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1296   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1297 
1298   // Make a pointer to a constant oop.
1299   static const TypeInstPtr *make(ciObject* o) {
1300     ciKlass* k = o->klass();
1301     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1302     return make(TypePtr::Constant, k, interfaces, true, o, 0, InstanceBot);
1303   }
1304   // Make a pointer to a constant oop with offset.
1305   static const TypeInstPtr *make(ciObject* o, int offset) {
1306     ciKlass* k = o->klass();
1307     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1308     return make(TypePtr::Constant, k, interfaces, true, o, offset, InstanceBot);
1309   }
1310 
1311   // Make a pointer to some value of type klass.
1312   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces) {
1313     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, true, false, interface_handling);
1314     return make(ptr, klass, interfaces, false, nullptr, 0, InstanceBot);
1315   }
1316 
1317   // Make a pointer to some non-polymorphic value of exactly type klass.
1318   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1319     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1320     return make(ptr, klass, interfaces, true, nullptr, 0, InstanceBot);
1321   }
1322 
1323   // Make a pointer to some value of type klass with offset.
1324   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1325     const TypeInterfaces* interfaces = TypePtr::interfaces(klass, true, false, false, ignore_interfaces);
1326     return make(ptr, klass, interfaces, false, nullptr, offset, InstanceBot);
1327   }
1328 
1329   static const TypeInstPtr *make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, bool xk, ciObject* o, int offset,
1330                                  int instance_id = InstanceBot,
1331                                  const TypePtr* speculative = nullptr,
1332                                  int inline_depth = InlineDepthBottom);
1333 
1334   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id = InstanceBot) {
1335     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1336     return make(ptr, k, interfaces, xk, o, offset, instance_id);
1337   }
1338 
1339   /** Create constant type for a constant boxed value */
1340   const Type* get_const_boxed_value() const;
1341 
1342   // If this is a java.lang.Class constant, return the type for it or null.
1343   // Pass to Type::get_const_type to turn it to a type, which will usually
1344   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1345   ciType* java_mirror_type() const;
1346 
1347   virtual const TypeInstPtr* cast_to_ptr_type(PTR ptr) const;
1348 
1349   virtual const TypeInstPtr* cast_to_exactness(bool klass_is_exact) const;
1350 
1351   virtual const TypeInstPtr* cast_to_instance_id(int instance_id) const;
1352 
1353   virtual const TypePtr* add_offset(intptr_t offset) const;
1354   virtual const TypeInstPtr* with_offset(intptr_t offset) const;
1355 
1356   // Speculative type helper methods.
1357   virtual const TypeInstPtr* remove_speculative() const;
1358   const TypeInstPtr* with_speculative(const TypePtr* speculative) const;
1359   virtual const TypePtr* with_inline_depth(int depth) const;
1360   virtual const TypePtr* with_instance_id(int instance_id) const;
1361 
1362   // the core of the computation of the meet of 2 types
1363   virtual const Type *xmeet_helper(const Type *t) const;
1364   virtual const TypeInstPtr *xmeet_unloaded(const TypeInstPtr *tinst, const TypeInterfaces* interfaces) const;
1365   virtual const Type *xdual() const;    // Compute dual right now.
1366 
1367   const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1368 
1369   // Convenience common pre-built types.
1370   static const TypeInstPtr *NOTNULL;
1371   static const TypeInstPtr *BOTTOM;
1372   static const TypeInstPtr *MIRROR;
1373   static const TypeInstPtr *MARK;
1374   static const TypeInstPtr *KLASS;
1375 #ifndef PRODUCT
1376   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1377 #endif
1378 
1379 private:
1380   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1381 
1382   virtual bool is_meet_same_type_as(const TypePtr* other) const {
1383     return _klass->equals(other->is_instptr()->_klass) && _interfaces->eq(other->is_instptr()->_interfaces);
1384   }
1385 
1386 };
1387 
1388 //------------------------------TypeAryPtr-------------------------------------
1389 // Class of Java array pointers
1390 class TypeAryPtr : public TypeOopPtr {
1391   friend class Type;
1392   friend class TypePtr;
1393 
1394   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1395               int offset, int instance_id, bool is_autobox_cache,
1396               const TypePtr* speculative, int inline_depth)
1397     : TypeOopPtr(AryPtr,ptr,k,_array_interfaces,xk,o,offset, instance_id, speculative, inline_depth),
1398     _ary(ary),
1399     _is_autobox_cache(is_autobox_cache)
1400  {
1401     int dummy;
1402     bool top_or_bottom = (base_element_type(dummy) == Type::TOP || base_element_type(dummy) == Type::BOTTOM);
1403 
1404     if (UseCompressedOops && (elem()->make_oopptr() != nullptr && !top_or_bottom) &&
1405         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes() &&
1406         _offset != Type::klass_offset()) {
1407       _is_ptr_to_narrowoop = true;
1408     }
1409 
1410   }
1411   virtual bool eq( const Type *t ) const;
1412   virtual uint hash() const;    // Type specific hashing
1413   const TypeAry *_ary;          // Array we point into
1414   const bool     _is_autobox_cache;
1415 
1416   ciKlass* compute_klass() const;
1417 
1418   // A pointer to delay allocation to Type::Initialize_shared()
1419 
1420   static const TypeInterfaces* _array_interfaces;
1421   ciKlass* exact_klass_helper() const;
1422   // Only guaranteed non null for array of basic types
1423   ciKlass* klass() const;
1424 
1425 public:
1426 
1427   bool is_same_java_type_as_helper(const TypeOopPtr* other) const;
1428   bool is_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1429   bool maybe_java_subtype_of_helper(const TypeOopPtr* other, bool this_exact, bool other_exact) const;
1430 
1431   // returns base element type, an instance klass (and not interface) for object arrays
1432   const Type* base_element_type(int& dims) const;
1433 
1434   // Accessors
1435   bool  is_loaded() const { return (_ary->_elem->make_oopptr() ? _ary->_elem->make_oopptr()->is_loaded() : true); }
1436 
1437   const TypeAry* ary() const  { return _ary; }
1438   const Type*    elem() const { return _ary->_elem; }
1439   const TypeInt* size() const { return _ary->_size; }
1440   bool      is_stable() const { return _ary->_stable; }
1441 
1442   bool is_autobox_cache() const { return _is_autobox_cache; }
1443 
1444   static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1445                                 int instance_id = InstanceBot,
1446                                 const TypePtr* speculative = nullptr,
1447                                 int inline_depth = InlineDepthBottom);
1448   // Constant pointer to array
1449   static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
1450                                 int instance_id = InstanceBot,
1451                                 const TypePtr* speculative = nullptr,
1452                                 int inline_depth = InlineDepthBottom, bool is_autobox_cache = false);
1453 
1454   // Return a 'ptr' version of this type
1455   virtual const TypeAryPtr* cast_to_ptr_type(PTR ptr) const;
1456 
1457   virtual const TypeAryPtr* cast_to_exactness(bool klass_is_exact) const;
1458 
1459   virtual const TypeAryPtr* cast_to_instance_id(int instance_id) const;
1460 
1461   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1462   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1463 
1464   virtual bool empty(void) const;        // TRUE if type is vacuous
1465   virtual const TypePtr *add_offset( intptr_t offset ) const;
1466   virtual const TypeAryPtr *with_offset( intptr_t offset ) const;
1467   const TypeAryPtr* with_ary(const TypeAry* ary) const;
1468 
1469   // Speculative type helper methods.
1470   virtual const TypeAryPtr* remove_speculative() const;
1471   virtual const TypePtr* with_inline_depth(int depth) const;
1472   virtual const TypePtr* with_instance_id(int instance_id) const;
1473 
1474   // the core of the computation of the meet of 2 types
1475   virtual const Type *xmeet_helper(const Type *t) const;
1476   virtual const Type *xdual() const;    // Compute dual right now.
1477 
1478   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1479   int stable_dimension() const;
1480 
1481   const TypeAryPtr* cast_to_autobox_cache() const;
1482 
1483   static jint max_array_length(BasicType etype) ;
1484   virtual const TypeKlassPtr* as_klass_type(bool try_for_exact = false) const;
1485 
1486   // Convenience common pre-built types.
1487   static const TypeAryPtr* BOTTOM;
1488   static const TypeAryPtr* RANGE;
1489   static const TypeAryPtr* OOPS;
1490   static const TypeAryPtr* NARROWOOPS;
1491   static const TypeAryPtr* BYTES;
1492   static const TypeAryPtr* SHORTS;
1493   static const TypeAryPtr* CHARS;
1494   static const TypeAryPtr* INTS;
1495   static const TypeAryPtr* LONGS;
1496   static const TypeAryPtr* FLOATS;
1497   static const TypeAryPtr* DOUBLES;
1498   // selects one of the above:
1499   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1500     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != nullptr, "bad elem type");
1501     return _array_body_type[elem];
1502   }
1503   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1504   // sharpen the type of an int which is used as an array size
1505 #ifndef PRODUCT
1506   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1507 #endif
1508 private:
1509   virtual bool is_meet_subtype_of_helper(const TypeOopPtr* other, bool this_xk, bool other_xk) const;
1510 };
1511 
1512 //------------------------------TypeMetadataPtr-------------------------------------
1513 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1514 class TypeMetadataPtr : public TypePtr {
1515 protected:
1516   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1517   // Do not allow interface-vs.-noninterface joins to collapse to top.
1518   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1519 public:
1520   virtual bool eq( const Type *t ) const;
1521   virtual uint hash() const;             // Type specific hashing
1522   virtual bool singleton(void) const;    // TRUE if type is a singleton
1523 
1524 private:
1525   ciMetadata*   _metadata;
1526 
1527 public:
1528   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1529 
1530   static const TypeMetadataPtr* make(ciMethod* m);
1531   static const TypeMetadataPtr* make(ciMethodData* m);
1532 
1533   ciMetadata* metadata() const { return _metadata; }
1534 
1535   virtual const TypeMetadataPtr* cast_to_ptr_type(PTR ptr) const;
1536 
1537   virtual const TypePtr *add_offset( intptr_t offset ) const;
1538 
1539   virtual const Type *xmeet( const Type *t ) const;
1540   virtual const Type *xdual() const;    // Compute dual right now.
1541 
1542   virtual intptr_t get_con() const;
1543 
1544   // Convenience common pre-built types.
1545   static const TypeMetadataPtr *BOTTOM;
1546 
1547 #ifndef PRODUCT
1548   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1549 #endif
1550 };
1551 
1552 //------------------------------TypeKlassPtr-----------------------------------
1553 // Class of Java Klass pointers
1554 class TypeKlassPtr : public TypePtr {
1555   friend class TypeInstKlassPtr;
1556   friend class TypeAryKlassPtr;
1557   friend class TypePtr;
1558 protected:
1559   TypeKlassPtr(TYPES t, PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset);
1560 
1561   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1562 
1563 public:
1564   virtual bool eq( const Type *t ) const;
1565   virtual uint hash() const;
1566   virtual bool singleton(void) const;    // TRUE if type is a singleton
1567 
1568 protected:
1569 
1570   ciKlass* _klass;
1571   const TypeInterfaces* _interfaces;
1572   const TypeInterfaces* meet_interfaces(const TypeKlassPtr* other) const;
1573   virtual bool must_be_exact() const { ShouldNotReachHere(); return false; }
1574   virtual ciKlass* exact_klass_helper() const;
1575   virtual ciKlass* klass() const { return  _klass; }
1576 
1577 public:
1578 
1579   bool is_java_subtype_of(const TypeKlassPtr* other) const {
1580     return is_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1581   }
1582   bool is_same_java_type_as(const TypePtr* other) const {
1583     return is_same_java_type_as_helper(other->is_klassptr());
1584   }
1585 
1586   bool maybe_java_subtype_of(const TypeKlassPtr* other) const {
1587     return maybe_java_subtype_of_helper(other, klass_is_exact(), other->klass_is_exact());
1588   }
1589   virtual bool is_same_java_type_as_helper(const TypeKlassPtr* other) const { ShouldNotReachHere(); return false; }
1590   virtual bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1591   virtual bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const { ShouldNotReachHere(); return false; }
1592 
1593   // Exact klass, possibly an interface or an array of interface
1594   ciKlass* exact_klass(bool maybe_null = false) const { assert(klass_is_exact(), ""); ciKlass* k = exact_klass_helper(); assert(k != nullptr || maybe_null, ""); return k;  }
1595   virtual bool klass_is_exact()    const { return _ptr == Constant; }
1596 
1597   static const TypeKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling = ignore_interfaces);
1598   static const TypeKlassPtr *make(PTR ptr, ciKlass* klass, int offset, InterfaceHandling interface_handling = ignore_interfaces);
1599 
1600   virtual bool  is_loaded() const { return _klass->is_loaded(); }
1601 
1602   virtual const TypeKlassPtr* cast_to_ptr_type(PTR ptr) const { ShouldNotReachHere(); return nullptr; }
1603 
1604   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const { ShouldNotReachHere(); return nullptr; }
1605 
1606   // corresponding pointer to instance, for a given class
1607   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const { ShouldNotReachHere(); return nullptr; }
1608 
1609   virtual const TypePtr *add_offset( intptr_t offset ) const { ShouldNotReachHere(); return nullptr; }
1610   virtual const Type    *xmeet( const Type *t ) const { ShouldNotReachHere(); return nullptr; }
1611   virtual const Type    *xdual() const { ShouldNotReachHere(); return nullptr; }
1612 
1613   virtual intptr_t get_con() const;
1614 
1615   virtual const TypeKlassPtr* with_offset(intptr_t offset) const { ShouldNotReachHere(); return nullptr; }
1616 
1617   virtual const TypeKlassPtr* try_improve() const { return this; }
1618 
1619 #ifndef PRODUCT
1620   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1621 #endif
1622 private:
1623   virtual bool is_meet_subtype_of(const TypePtr* other) const {
1624     return is_meet_subtype_of_helper(other->is_klassptr(), klass_is_exact(), other->is_klassptr()->klass_is_exact());
1625   }
1626 
1627   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const {
1628     ShouldNotReachHere(); return false;
1629   }
1630 
1631   virtual const TypeInterfaces* interfaces() const {
1632     return _interfaces;
1633   };
1634 
1635   const TypeKlassPtr* is_reference_type(const Type* other) const {
1636     return other->isa_klassptr();
1637   }
1638 
1639   const TypeAryKlassPtr* is_array_type(const TypeKlassPtr* other) const {
1640     return other->isa_aryklassptr();
1641   }
1642 
1643   const TypeInstKlassPtr* is_instance_type(const TypeKlassPtr* other) const {
1644     return other->isa_instklassptr();
1645   }
1646 };
1647 
1648 // Instance klass pointer, mirrors TypeInstPtr
1649 class TypeInstKlassPtr : public TypeKlassPtr {
1650 
1651   TypeInstKlassPtr(PTR ptr, ciKlass* klass, const TypeInterfaces* interfaces, int offset)
1652     : TypeKlassPtr(InstKlassPtr, ptr, klass, interfaces, offset) {
1653     assert(klass->is_instance_klass() && (!klass->is_loaded() || !klass->is_interface()), "");
1654   }
1655 
1656   virtual bool must_be_exact() const;
1657 
1658 public:
1659   // Instance klass ignoring any interface
1660   ciInstanceKlass* instance_klass() const {
1661     assert(!klass()->is_interface(), "");
1662     return klass()->as_instance_klass();
1663   }
1664 
1665   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1666   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1667   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1668 
1669   static const TypeInstKlassPtr *make(ciKlass* k, InterfaceHandling interface_handling) {
1670     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, true, false, interface_handling);
1671     return make(TypePtr::Constant, k, interfaces, 0);
1672   }
1673   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, const TypeInterfaces* interfaces, int offset);
1674 
1675   static const TypeInstKlassPtr* make(PTR ptr, ciKlass* k, int offset) {
1676     const TypeInterfaces* interfaces = TypePtr::interfaces(k, true, false, false, ignore_interfaces);
1677     return make(ptr, k, interfaces, offset);
1678   }
1679 
1680   virtual const TypeInstKlassPtr* cast_to_ptr_type(PTR ptr) const;
1681 
1682   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1683 
1684   // corresponding pointer to instance, for a given class
1685   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1686   virtual uint hash() const;
1687   virtual bool eq(const Type *t) const;
1688 
1689   virtual const TypePtr *add_offset( intptr_t offset ) const;
1690   virtual const Type    *xmeet( const Type *t ) const;
1691   virtual const Type    *xdual() const;
1692   virtual const TypeInstKlassPtr* with_offset(intptr_t offset) const;
1693 
1694   virtual const TypeKlassPtr* try_improve() const;
1695 
1696   // Convenience common pre-built types.
1697   static const TypeInstKlassPtr* OBJECT; // Not-null object klass or below
1698   static const TypeInstKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1699 private:
1700   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1701 };
1702 
1703 // Array klass pointer, mirrors TypeAryPtr
1704 class TypeAryKlassPtr : public TypeKlassPtr {
1705   friend class TypeInstKlassPtr;
1706   friend class Type;
1707   friend class TypePtr;
1708 
1709   const Type *_elem;
1710 
1711   static const TypeInterfaces* _array_interfaces;
1712   TypeAryKlassPtr(PTR ptr, const Type *elem, ciKlass* klass, int offset)
1713     : TypeKlassPtr(AryKlassPtr, ptr, klass, _array_interfaces, offset), _elem(elem) {
1714     assert(klass == nullptr || klass->is_type_array_klass() || !klass->as_obj_array_klass()->base_element_klass()->is_interface(), "");
1715   }
1716 
1717   virtual ciKlass* exact_klass_helper() const;
1718   // Only guaranteed non null for array of basic types
1719   virtual ciKlass* klass() const;
1720 
1721   virtual bool must_be_exact() const;
1722 
1723 public:
1724 
1725   // returns base element type, an instance klass (and not interface) for object arrays
1726   const Type* base_element_type(int& dims) const;
1727 
1728   static const TypeAryKlassPtr *make(PTR ptr, ciKlass* k, int offset, InterfaceHandling interface_handling);
1729 
1730   bool is_same_java_type_as_helper(const TypeKlassPtr* other) const;
1731   bool is_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1732   bool maybe_java_subtype_of_helper(const TypeKlassPtr* other, bool this_exact, bool other_exact) const;
1733 
1734   bool  is_loaded() const { return (_elem->isa_klassptr() ? _elem->is_klassptr()->is_loaded() : true); }
1735 
1736   static const TypeAryKlassPtr *make(PTR ptr, const Type *elem, ciKlass* k, int offset);
1737   static const TypeAryKlassPtr* make(ciKlass* klass, InterfaceHandling interface_handling);
1738 
1739   const Type *elem() const { return _elem; }
1740 
1741   virtual bool eq(const Type *t) const;
1742   virtual uint hash() const;             // Type specific hashing
1743 
1744   virtual const TypeAryKlassPtr* cast_to_ptr_type(PTR ptr) const;
1745 
1746   virtual const TypeKlassPtr *cast_to_exactness(bool klass_is_exact) const;
1747 
1748   // corresponding pointer to instance, for a given class
1749   virtual const TypeOopPtr* as_instance_type(bool klass_change = true) const;
1750 
1751   virtual const TypePtr *add_offset( intptr_t offset ) const;
1752   virtual const Type    *xmeet( const Type *t ) const;
1753   virtual const Type    *xdual() const;      // Compute dual right now.
1754 
1755   virtual const TypeAryKlassPtr* with_offset(intptr_t offset) const;
1756 
1757   virtual bool empty(void) const {
1758     return TypeKlassPtr::empty() || _elem->empty();
1759   }
1760 
1761 #ifndef PRODUCT
1762   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1763 #endif
1764 private:
1765   virtual bool is_meet_subtype_of_helper(const TypeKlassPtr* other, bool this_xk, bool other_xk) const;
1766 };
1767 
1768 class TypeNarrowPtr : public Type {
1769 protected:
1770   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1771 
1772   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
1773                                                   _ptrtype(ptrtype) {
1774     assert(ptrtype->offset() == 0 ||
1775            ptrtype->offset() == OffsetBot ||
1776            ptrtype->offset() == OffsetTop, "no real offsets");
1777   }
1778 
1779   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1780   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1781   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1782   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1783   // Do not allow interface-vs.-noninterface joins to collapse to top.
1784   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1785 public:
1786   virtual bool eq( const Type *t ) const;
1787   virtual uint hash() const;             // Type specific hashing
1788   virtual bool singleton(void) const;    // TRUE if type is a singleton
1789 
1790   virtual const Type *xmeet( const Type *t ) const;
1791   virtual const Type *xdual() const;    // Compute dual right now.
1792 
1793   virtual intptr_t get_con() const;
1794 
1795   virtual bool empty(void) const;        // TRUE if type is vacuous
1796 
1797   // returns the equivalent ptr type for this compressed pointer
1798   const TypePtr *get_ptrtype() const {
1799     return _ptrtype;
1800   }
1801 
1802   bool is_known_instance() const {
1803     return _ptrtype->is_known_instance();
1804   }
1805 
1806 #ifndef PRODUCT
1807   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1808 #endif
1809 };
1810 
1811 //------------------------------TypeNarrowOop----------------------------------
1812 // A compressed reference to some kind of Oop.  This type wraps around
1813 // a preexisting TypeOopPtr and forwards most of it's operations to
1814 // the underlying type.  It's only real purpose is to track the
1815 // oopness of the compressed oop value when we expose the conversion
1816 // between the normal and the compressed form.
1817 class TypeNarrowOop : public TypeNarrowPtr {
1818 protected:
1819   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1820   }
1821 
1822   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1823     return t->isa_narrowoop();
1824   }
1825 
1826   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1827     return t->is_narrowoop();
1828   }
1829 
1830   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1831     return new TypeNarrowOop(t);
1832   }
1833 
1834   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1835     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1836   }
1837 
1838 public:
1839 
1840   static const TypeNarrowOop *make( const TypePtr* type);
1841 
1842   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1843     return make(TypeOopPtr::make_from_constant(con, require_constant));
1844   }
1845 
1846   static const TypeNarrowOop *BOTTOM;
1847   static const TypeNarrowOop *NULL_PTR;
1848 
1849   virtual const TypeNarrowOop* remove_speculative() const;
1850   virtual const Type* cleanup_speculative() const;
1851 
1852 #ifndef PRODUCT
1853   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1854 #endif
1855 };
1856 
1857 //------------------------------TypeNarrowKlass----------------------------------
1858 // A compressed reference to klass pointer.  This type wraps around a
1859 // preexisting TypeKlassPtr and forwards most of it's operations to
1860 // the underlying type.
1861 class TypeNarrowKlass : public TypeNarrowPtr {
1862 protected:
1863   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1864   }
1865 
1866   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1867     return t->isa_narrowklass();
1868   }
1869 
1870   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1871     return t->is_narrowklass();
1872   }
1873 
1874   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1875     return new TypeNarrowKlass(t);
1876   }
1877 
1878   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1879     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1880   }
1881 
1882 public:
1883   static const TypeNarrowKlass *make( const TypePtr* type);
1884 
1885   // static const TypeNarrowKlass *BOTTOM;
1886   static const TypeNarrowKlass *NULL_PTR;
1887 
1888 #ifndef PRODUCT
1889   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1890 #endif
1891 };
1892 
1893 //------------------------------TypeFunc---------------------------------------
1894 // Class of Array Types
1895 class TypeFunc : public Type {
1896   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}
1897   virtual bool eq( const Type *t ) const;
1898   virtual uint hash() const;             // Type specific hashing
1899   virtual bool singleton(void) const;    // TRUE if type is a singleton
1900   virtual bool empty(void) const;        // TRUE if type is vacuous
1901 
1902   const TypeTuple* const _domain;     // Domain of inputs
1903   const TypeTuple* const _range;      // Range of results
1904 
1905 public:
1906   // Constants are shared among ADLC and VM
1907   enum { Control    = AdlcVMDeps::Control,
1908          I_O        = AdlcVMDeps::I_O,
1909          Memory     = AdlcVMDeps::Memory,
1910          FramePtr   = AdlcVMDeps::FramePtr,
1911          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1912          Parms      = AdlcVMDeps::Parms
1913   };
1914 
1915 
1916   // Accessors:
1917   const TypeTuple* domain() const { return _domain; }
1918   const TypeTuple* range()  const { return _range; }
1919 
1920   static const TypeFunc *make(ciMethod* method);
1921   static const TypeFunc *make(ciSignature signature, const Type* extra);
1922   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1923 
1924   virtual const Type *xmeet( const Type *t ) const;
1925   virtual const Type *xdual() const;    // Compute dual right now.
1926 
1927   BasicType return_type() const;
1928 
1929 #ifndef PRODUCT
1930   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1931 #endif
1932   // Convenience common pre-built types.
1933 };
1934 
1935 //------------------------------accessors--------------------------------------
1936 inline bool Type::is_ptr_to_narrowoop() const {
1937 #ifdef _LP64
1938   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowoop_nv());
1939 #else
1940   return false;
1941 #endif
1942 }
1943 
1944 inline bool Type::is_ptr_to_narrowklass() const {
1945 #ifdef _LP64
1946   return (isa_oopptr() != nullptr && is_oopptr()->is_ptr_to_narrowklass_nv());
1947 #else
1948   return false;
1949 #endif
1950 }
1951 
1952 inline float Type::getf() const {
1953   assert( _base == FloatCon, "Not a FloatCon" );
1954   return ((TypeF*)this)->_f;
1955 }
1956 
1957 inline double Type::getd() const {
1958   assert( _base == DoubleCon, "Not a DoubleCon" );
1959   return ((TypeD*)this)->_d;
1960 }
1961 
1962 inline const TypeInteger *Type::is_integer(BasicType bt) const {
1963   assert((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long), "Not an Int");
1964   return (TypeInteger*)this;
1965 }
1966 
1967 inline const TypeInteger *Type::isa_integer(BasicType bt) const {
1968   return (((bt == T_INT && _base == Int) || (bt == T_LONG && _base == Long)) ? (TypeInteger*)this : nullptr);
1969 }
1970 
1971 inline const TypeInt *Type::is_int() const {
1972   assert( _base == Int, "Not an Int" );
1973   return (TypeInt*)this;
1974 }
1975 
1976 inline const TypeInt *Type::isa_int() const {
1977   return ( _base == Int ? (TypeInt*)this : nullptr);
1978 }
1979 
1980 inline const TypeLong *Type::is_long() const {
1981   assert( _base == Long, "Not a Long" );
1982   return (TypeLong*)this;
1983 }
1984 
1985 inline const TypeLong *Type::isa_long() const {
1986   return ( _base == Long ? (TypeLong*)this : nullptr);
1987 }
1988 
1989 inline const TypeF *Type::isa_float() const {
1990   return ((_base == FloatTop ||
1991            _base == FloatCon ||
1992            _base == FloatBot) ? (TypeF*)this : nullptr);
1993 }
1994 
1995 inline const TypeF *Type::is_float_constant() const {
1996   assert( _base == FloatCon, "Not a Float" );
1997   return (TypeF*)this;
1998 }
1999 
2000 inline const TypeF *Type::isa_float_constant() const {
2001   return ( _base == FloatCon ? (TypeF*)this : nullptr);
2002 }
2003 
2004 inline const TypeD *Type::isa_double() const {
2005   return ((_base == DoubleTop ||
2006            _base == DoubleCon ||
2007            _base == DoubleBot) ? (TypeD*)this : nullptr);
2008 }
2009 
2010 inline const TypeD *Type::is_double_constant() const {
2011   assert( _base == DoubleCon, "Not a Double" );
2012   return (TypeD*)this;
2013 }
2014 
2015 inline const TypeD *Type::isa_double_constant() const {
2016   return ( _base == DoubleCon ? (TypeD*)this : nullptr);
2017 }
2018 
2019 inline const TypeTuple *Type::is_tuple() const {
2020   assert( _base == Tuple, "Not a Tuple" );
2021   return (TypeTuple*)this;
2022 }
2023 
2024 inline const TypeAry *Type::is_ary() const {
2025   assert( _base == Array , "Not an Array" );
2026   return (TypeAry*)this;
2027 }
2028 
2029 inline const TypeAry *Type::isa_ary() const {
2030   return ((_base == Array) ? (TypeAry*)this : nullptr);
2031 }
2032 
2033 inline const TypeVectMask *Type::is_vectmask() const {
2034   assert( _base == VectorMask, "Not a Vector Mask" );
2035   return (TypeVectMask*)this;
2036 }
2037 
2038 inline const TypeVectMask *Type::isa_vectmask() const {
2039   return (_base == VectorMask) ? (TypeVectMask*)this : nullptr;
2040 }
2041 
2042 inline const TypeVect *Type::is_vect() const {
2043   assert( _base >= VectorMask && _base <= VectorZ, "Not a Vector" );
2044   return (TypeVect*)this;
2045 }
2046 
2047 inline const TypeVect *Type::isa_vect() const {
2048   return (_base >= VectorMask && _base <= VectorZ) ? (TypeVect*)this : nullptr;
2049 }
2050 
2051 inline const TypePtr *Type::is_ptr() const {
2052   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2053   assert(_base >= AnyPtr && _base <= AryKlassPtr, "Not a pointer");
2054   return (TypePtr*)this;
2055 }
2056 
2057 inline const TypePtr *Type::isa_ptr() const {
2058   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
2059   return (_base >= AnyPtr && _base <= AryKlassPtr) ? (TypePtr*)this : nullptr;
2060 }
2061 
2062 inline const TypeOopPtr *Type::is_oopptr() const {
2063   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2064   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
2065   return (TypeOopPtr*)this;
2066 }
2067 
2068 inline const TypeOopPtr *Type::isa_oopptr() const {
2069   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2070   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : nullptr;
2071 }
2072 
2073 inline const TypeRawPtr *Type::isa_rawptr() const {
2074   return (_base == RawPtr) ? (TypeRawPtr*)this : nullptr;
2075 }
2076 
2077 inline const TypeRawPtr *Type::is_rawptr() const {
2078   assert( _base == RawPtr, "Not a raw pointer" );
2079   return (TypeRawPtr*)this;
2080 }
2081 
2082 inline const TypeInstPtr *Type::isa_instptr() const {
2083   return (_base == InstPtr) ? (TypeInstPtr*)this : nullptr;
2084 }
2085 
2086 inline const TypeInstPtr *Type::is_instptr() const {
2087   assert( _base == InstPtr, "Not an object pointer" );
2088   return (TypeInstPtr*)this;
2089 }
2090 
2091 inline const TypeAryPtr *Type::isa_aryptr() const {
2092   return (_base == AryPtr) ? (TypeAryPtr*)this : nullptr;
2093 }
2094 
2095 inline const TypeAryPtr *Type::is_aryptr() const {
2096   assert( _base == AryPtr, "Not an array pointer" );
2097   return (TypeAryPtr*)this;
2098 }
2099 
2100 inline const TypeNarrowOop *Type::is_narrowoop() const {
2101   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2102   assert(_base == NarrowOop, "Not a narrow oop" ) ;
2103   return (TypeNarrowOop*)this;
2104 }
2105 
2106 inline const TypeNarrowOop *Type::isa_narrowoop() const {
2107   // OopPtr is the first and KlassPtr the last, with no non-oops between.
2108   return (_base == NarrowOop) ? (TypeNarrowOop*)this : nullptr;
2109 }
2110 
2111 inline const TypeNarrowKlass *Type::is_narrowklass() const {
2112   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
2113   return (TypeNarrowKlass*)this;
2114 }
2115 
2116 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
2117   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : nullptr;
2118 }
2119 
2120 inline const TypeMetadataPtr *Type::is_metadataptr() const {
2121   // MetadataPtr is the first and CPCachePtr the last
2122   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
2123   return (TypeMetadataPtr*)this;
2124 }
2125 
2126 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
2127   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : nullptr;
2128 }
2129 
2130 inline const TypeKlassPtr *Type::isa_klassptr() const {
2131   return (_base >= KlassPtr && _base <= AryKlassPtr ) ? (TypeKlassPtr*)this : nullptr;
2132 }
2133 
2134 inline const TypeKlassPtr *Type::is_klassptr() const {
2135   assert(_base >= KlassPtr && _base <= AryKlassPtr, "Not a klass pointer");
2136   return (TypeKlassPtr*)this;
2137 }
2138 
2139 inline const TypeInstKlassPtr *Type::isa_instklassptr() const {
2140   return (_base == InstKlassPtr) ? (TypeInstKlassPtr*)this : nullptr;
2141 }
2142 
2143 inline const TypeInstKlassPtr *Type::is_instklassptr() const {
2144   assert(_base == InstKlassPtr, "Not a klass pointer");
2145   return (TypeInstKlassPtr*)this;
2146 }
2147 
2148 inline const TypeAryKlassPtr *Type::isa_aryklassptr() const {
2149   return (_base == AryKlassPtr) ? (TypeAryKlassPtr*)this : nullptr;
2150 }
2151 
2152 inline const TypeAryKlassPtr *Type::is_aryklassptr() const {
2153   assert(_base == AryKlassPtr, "Not a klass pointer");
2154   return (TypeAryKlassPtr*)this;
2155 }
2156 
2157 inline const TypePtr* Type::make_ptr() const {
2158   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
2159                               ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
2160                                                        isa_ptr());
2161 }
2162 
2163 inline const TypeOopPtr* Type::make_oopptr() const {
2164   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
2165 }
2166 
2167 inline const TypeNarrowOop* Type::make_narrowoop() const {
2168   return (_base == NarrowOop) ? is_narrowoop() :
2169                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : nullptr);
2170 }
2171 
2172 inline const TypeNarrowKlass* Type::make_narrowklass() const {
2173   return (_base == NarrowKlass) ? is_narrowklass() :
2174                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : nullptr);
2175 }
2176 
2177 inline bool Type::is_floatingpoint() const {
2178   if( (_base == FloatCon)  || (_base == FloatBot) ||
2179       (_base == DoubleCon) || (_base == DoubleBot) )
2180     return true;
2181   return false;
2182 }
2183 
2184 template <>
2185 inline const TypeInt* Type::cast<TypeInt>() const {
2186   return is_int();
2187 }
2188 
2189 template <>
2190 inline const TypeLong* Type::cast<TypeLong>() const {
2191   return is_long();
2192 }
2193 
2194 // ===============================================================
2195 // Things that need to be 64-bits in the 64-bit build but
2196 // 32-bits in the 32-bit build.  Done this way to get full
2197 // optimization AND strong typing.
2198 #ifdef _LP64
2199 
2200 // For type queries and asserts
2201 #define is_intptr_t  is_long
2202 #define isa_intptr_t isa_long
2203 #define find_intptr_t_type find_long_type
2204 #define find_intptr_t_con  find_long_con
2205 #define TypeX        TypeLong
2206 #define Type_X       Type::Long
2207 #define TypeX_X      TypeLong::LONG
2208 #define TypeX_ZERO   TypeLong::ZERO
2209 // For 'ideal_reg' machine registers
2210 #define Op_RegX      Op_RegL
2211 // For phase->intcon variants
2212 #define MakeConX     longcon
2213 #define ConXNode     ConLNode
2214 // For array index arithmetic
2215 #define MulXNode     MulLNode
2216 #define AndXNode     AndLNode
2217 #define OrXNode      OrLNode
2218 #define CmpXNode     CmpLNode
2219 #define SubXNode     SubLNode
2220 #define LShiftXNode  LShiftLNode
2221 // For object size computation:
2222 #define AddXNode     AddLNode
2223 #define RShiftXNode  RShiftLNode
2224 // For card marks and hashcodes
2225 #define URShiftXNode URShiftLNode
2226 // For shenandoahSupport
2227 #define LoadXNode    LoadLNode
2228 #define StoreXNode   StoreLNode
2229 // Opcodes
2230 #define Op_LShiftX   Op_LShiftL
2231 #define Op_AndX      Op_AndL
2232 #define Op_AddX      Op_AddL
2233 #define Op_SubX      Op_SubL
2234 #define Op_XorX      Op_XorL
2235 #define Op_URShiftX  Op_URShiftL
2236 #define Op_LoadX     Op_LoadL
2237 // conversions
2238 #define ConvI2X(x)   ConvI2L(x)
2239 #define ConvL2X(x)   (x)
2240 #define ConvX2I(x)   ConvL2I(x)
2241 #define ConvX2L(x)   (x)
2242 #define ConvX2UL(x)  (x)
2243 
2244 #else
2245 
2246 // For type queries and asserts
2247 #define is_intptr_t  is_int
2248 #define isa_intptr_t isa_int
2249 #define find_intptr_t_type find_int_type
2250 #define find_intptr_t_con  find_int_con
2251 #define TypeX        TypeInt
2252 #define Type_X       Type::Int
2253 #define TypeX_X      TypeInt::INT
2254 #define TypeX_ZERO   TypeInt::ZERO
2255 // For 'ideal_reg' machine registers
2256 #define Op_RegX      Op_RegI
2257 // For phase->intcon variants
2258 #define MakeConX     intcon
2259 #define ConXNode     ConINode
2260 // For array index arithmetic
2261 #define MulXNode     MulINode
2262 #define AndXNode     AndINode
2263 #define OrXNode      OrINode
2264 #define CmpXNode     CmpINode
2265 #define SubXNode     SubINode
2266 #define LShiftXNode  LShiftINode
2267 // For object size computation:
2268 #define AddXNode     AddINode
2269 #define RShiftXNode  RShiftINode
2270 // For card marks and hashcodes
2271 #define URShiftXNode URShiftINode
2272 // For shenandoahSupport
2273 #define LoadXNode    LoadINode
2274 #define StoreXNode   StoreINode
2275 // Opcodes
2276 #define Op_LShiftX   Op_LShiftI
2277 #define Op_AndX      Op_AndI
2278 #define Op_AddX      Op_AddI
2279 #define Op_SubX      Op_SubI
2280 #define Op_XorX      Op_XorI
2281 #define Op_URShiftX  Op_URShiftI
2282 #define Op_LoadX     Op_LoadI
2283 // conversions
2284 #define ConvI2X(x)   (x)
2285 #define ConvL2X(x)   ConvL2I(x)
2286 #define ConvX2I(x)   (x)
2287 #define ConvX2L(x)   ConvI2L(x)
2288 #define ConvX2UL(x)  ConvI2UL(x)
2289 
2290 #endif
2291 
2292 #endif // SHARE_OPTO_TYPE_HPP