1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmClasses.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/debugInfoRec.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "compiler/compilationPolicy.hpp"
  36 #include "compiler/compilerDefinitions.inline.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "gc/shared/memAllocator.hpp"
  39 #include "interpreter/bytecode.hpp"
  40 #include "interpreter/bytecodeStream.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/oopMapCache.hpp"
  43 #include "jvm.h"
  44 #include "logging/log.hpp"
  45 #include "logging/logLevel.hpp"
  46 #include "logging/logMessage.hpp"
  47 #include "logging/logStream.hpp"
  48 #include "memory/allocation.inline.hpp"
  49 #include "memory/oopFactory.hpp"
  50 #include "memory/resourceArea.hpp"
  51 #include "memory/universe.hpp"
  52 #include "oops/constantPool.hpp"
  53 #include "oops/fieldStreams.inline.hpp"
  54 #include "oops/method.hpp"
  55 #include "oops/objArrayKlass.hpp"
  56 #include "oops/objArrayOop.inline.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/typeArrayOop.inline.hpp"
  59 #include "oops/verifyOopClosure.hpp"
  60 #include "prims/jvmtiDeferredUpdates.hpp"
  61 #include "prims/jvmtiExport.hpp"
  62 #include "prims/jvmtiThreadState.hpp"
  63 #include "prims/methodHandles.hpp"
  64 #include "prims/vectorSupport.hpp"
  65 #include "runtime/atomic.hpp"
  66 #include "runtime/basicLock.inline.hpp"
  67 #include "runtime/continuation.hpp"
  68 #include "runtime/continuationEntry.inline.hpp"
  69 #include "runtime/deoptimization.hpp"
  70 #include "runtime/escapeBarrier.hpp"
  71 #include "runtime/fieldDescriptor.hpp"
  72 #include "runtime/fieldDescriptor.inline.hpp"
  73 #include "runtime/frame.inline.hpp"
  74 #include "runtime/handles.inline.hpp"
  75 #include "runtime/interfaceSupport.inline.hpp"
  76 #include "runtime/javaThread.hpp"
  77 #include "runtime/jniHandles.inline.hpp"
  78 #include "runtime/keepStackGCProcessed.hpp"
  79 #include "runtime/lightweightSynchronizer.hpp"
  80 #include "runtime/lockStack.inline.hpp"
  81 #include "runtime/objectMonitor.inline.hpp"
  82 #include "runtime/osThread.hpp"
  83 #include "runtime/safepointVerifiers.hpp"
  84 #include "runtime/sharedRuntime.hpp"
  85 #include "runtime/signature.hpp"
  86 #include "runtime/stackFrameStream.inline.hpp"
  87 #include "runtime/stackValue.hpp"
  88 #include "runtime/stackWatermarkSet.hpp"
  89 #include "runtime/stubRoutines.hpp"
  90 #include "runtime/synchronizer.inline.hpp"
  91 #include "runtime/threadSMR.hpp"
  92 #include "runtime/threadWXSetters.inline.hpp"
  93 #include "runtime/vframe.hpp"
  94 #include "runtime/vframeArray.hpp"
  95 #include "runtime/vframe_hp.hpp"
  96 #include "runtime/vmOperations.hpp"
  97 #include "utilities/checkedCast.hpp"
  98 #include "utilities/events.hpp"
  99 #include "utilities/growableArray.hpp"
 100 #include "utilities/macros.hpp"
 101 #include "utilities/preserveException.hpp"
 102 #include "utilities/xmlstream.hpp"
 103 #if INCLUDE_JFR
 104 #include "jfr/jfrEvents.hpp"
 105 #include "jfr/metadata/jfrSerializer.hpp"
 106 #endif
 107 
 108 uint64_t DeoptimizationScope::_committed_deopt_gen = 0;
 109 uint64_t DeoptimizationScope::_active_deopt_gen    = 1;
 110 bool     DeoptimizationScope::_committing_in_progress = false;
 111 
 112 DeoptimizationScope::DeoptimizationScope() : _required_gen(0) {
 113   DEBUG_ONLY(_deopted = false;)
 114 
 115   MutexLocker ml(NMethodState_lock, Mutex::_no_safepoint_check_flag);
 116   // If there is nothing to deopt _required_gen is the same as comitted.
 117   _required_gen = DeoptimizationScope::_committed_deopt_gen;
 118 }
 119 
 120 DeoptimizationScope::~DeoptimizationScope() {
 121   assert(_deopted, "Deopt not executed");
 122 }
 123 
 124 void DeoptimizationScope::mark(nmethod* nm, bool inc_recompile_counts) {
 125   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 126 
 127   // If it's already marked but we still need it to be deopted.
 128   if (nm->is_marked_for_deoptimization()) {
 129     dependent(nm);
 130     return;
 131   }
 132 
 133   nmethod::DeoptimizationStatus status =
 134     inc_recompile_counts ? nmethod::deoptimize : nmethod::deoptimize_noupdate;
 135   Atomic::store(&nm->_deoptimization_status, status);
 136 
 137   // Make sure active is not committed
 138   assert(DeoptimizationScope::_committed_deopt_gen < DeoptimizationScope::_active_deopt_gen, "Must be");
 139   assert(nm->_deoptimization_generation == 0, "Is already marked");
 140 
 141   nm->_deoptimization_generation = DeoptimizationScope::_active_deopt_gen;
 142   _required_gen                  = DeoptimizationScope::_active_deopt_gen;
 143 }
 144 
 145 void DeoptimizationScope::dependent(nmethod* nm) {
 146   ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 147 
 148   // A method marked by someone else may have a _required_gen lower than what we marked with.
 149   // Therefore only store it if it's higher than _required_gen.
 150   if (_required_gen < nm->_deoptimization_generation) {
 151     _required_gen = nm->_deoptimization_generation;
 152   }
 153 }
 154 
 155 void DeoptimizationScope::deoptimize_marked() {
 156   assert(!_deopted, "Already deopted");
 157 
 158   // We are not alive yet.
 159   if (!Universe::is_fully_initialized()) {
 160     DEBUG_ONLY(_deopted = true;)
 161     return;
 162   }
 163 
 164   // Safepoints are a special case, handled here.
 165   if (SafepointSynchronize::is_at_safepoint()) {
 166     DeoptimizationScope::_committed_deopt_gen = DeoptimizationScope::_active_deopt_gen;
 167     DeoptimizationScope::_active_deopt_gen++;
 168     Deoptimization::deoptimize_all_marked();
 169     DEBUG_ONLY(_deopted = true;)
 170     return;
 171   }
 172 
 173   uint64_t comitting = 0;
 174   bool wait = false;
 175   while (true) {
 176     {
 177       ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 178 
 179       // First we check if we or someone else already deopted the gen we want.
 180       if (DeoptimizationScope::_committed_deopt_gen >= _required_gen) {
 181         DEBUG_ONLY(_deopted = true;)
 182         return;
 183       }
 184       if (!_committing_in_progress) {
 185         // The version we are about to commit.
 186         comitting = DeoptimizationScope::_active_deopt_gen;
 187         // Make sure new marks use a higher gen.
 188         DeoptimizationScope::_active_deopt_gen++;
 189         _committing_in_progress = true;
 190         wait = false;
 191       } else {
 192         // Another thread is handshaking and committing a gen.
 193         wait = true;
 194       }
 195     }
 196     if (wait) {
 197       // Wait and let the concurrent handshake be performed.
 198       ThreadBlockInVM tbivm(JavaThread::current());
 199       os::naked_yield();
 200     } else {
 201       // Performs the handshake.
 202       Deoptimization::deoptimize_all_marked(); // May safepoint and an additional deopt may have occurred.
 203       DEBUG_ONLY(_deopted = true;)
 204       {
 205         ConditionalMutexLocker ml(NMethodState_lock, !NMethodState_lock->owned_by_self(), Mutex::_no_safepoint_check_flag);
 206 
 207         // Make sure that committed doesn't go backwards.
 208         // Should only happen if we did a deopt during a safepoint above.
 209         if (DeoptimizationScope::_committed_deopt_gen < comitting) {
 210           DeoptimizationScope::_committed_deopt_gen = comitting;
 211         }
 212         _committing_in_progress = false;
 213 
 214         assert(DeoptimizationScope::_committed_deopt_gen >= _required_gen, "Must be");
 215 
 216         return;
 217       }
 218     }
 219   }
 220 }
 221 
 222 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
 223                                          int  caller_adjustment,
 224                                          int  caller_actual_parameters,
 225                                          int  number_of_frames,
 226                                          intptr_t* frame_sizes,
 227                                          address* frame_pcs,
 228                                          BasicType return_type,
 229                                          int exec_mode) {
 230   _size_of_deoptimized_frame = size_of_deoptimized_frame;
 231   _caller_adjustment         = caller_adjustment;
 232   _caller_actual_parameters  = caller_actual_parameters;
 233   _number_of_frames          = number_of_frames;
 234   _frame_sizes               = frame_sizes;
 235   _frame_pcs                 = frame_pcs;
 236   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
 237   _return_type               = return_type;
 238   _initial_info              = 0;
 239   // PD (x86 only)
 240   _counter_temp              = 0;
 241   _unpack_kind               = exec_mode;
 242   _sender_sp_temp            = 0;
 243 
 244   _total_frame_sizes         = size_of_frames();
 245   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
 246 }
 247 
 248 Deoptimization::UnrollBlock::~UnrollBlock() {
 249   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 250   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 251   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 252 }
 253 
 254 int Deoptimization::UnrollBlock::size_of_frames() const {
 255   // Account first for the adjustment of the initial frame
 256   intptr_t result = _caller_adjustment;
 257   for (int index = 0; index < number_of_frames(); index++) {
 258     result += frame_sizes()[index];
 259   }
 260   return checked_cast<int>(result);
 261 }
 262 
 263 void Deoptimization::UnrollBlock::print() {
 264   ResourceMark rm;
 265   stringStream st;
 266   st.print_cr("UnrollBlock");
 267   st.print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 268   st.print(   "  frame_sizes: ");
 269   for (int index = 0; index < number_of_frames(); index++) {
 270     st.print(INTX_FORMAT " ", frame_sizes()[index]);
 271   }
 272   st.cr();
 273   tty->print_raw(st.freeze());
 274 }
 275 
 276 // In order to make fetch_unroll_info work properly with escape
 277 // analysis, the method was changed from JRT_LEAF to JRT_BLOCK_ENTRY.
 278 // The actual reallocation of previously eliminated objects occurs in realloc_objects,
 279 // which is called from the method fetch_unroll_info_helper below.
 280 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* current, int exec_mode))
 281   // fetch_unroll_info() is called at the beginning of the deoptimization
 282   // handler. Note this fact before we start generating temporary frames
 283   // that can confuse an asynchronous stack walker. This counter is
 284   // decremented at the end of unpack_frames().
 285   current->inc_in_deopt_handler();
 286 
 287   if (exec_mode == Unpack_exception) {
 288     // When we get here, a callee has thrown an exception into a deoptimized
 289     // frame. That throw might have deferred stack watermark checking until
 290     // after unwinding. So we deal with such deferred requests here.
 291     StackWatermarkSet::after_unwind(current);
 292   }
 293 
 294   return fetch_unroll_info_helper(current, exec_mode);
 295 JRT_END
 296 
 297 #if COMPILER2_OR_JVMCI
 298 // print information about reallocated objects
 299 static void print_objects(JavaThread* deoptee_thread,
 300                           GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
 301   ResourceMark rm;
 302   stringStream st;  // change to logStream with logging
 303   st.print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(deoptee_thread));
 304   fieldDescriptor fd;
 305 
 306   for (int i = 0; i < objects->length(); i++) {
 307     ObjectValue* sv = (ObjectValue*) objects->at(i);
 308     Handle obj = sv->value();
 309 
 310     if (obj.is_null()) {
 311       st.print_cr("     nullptr");
 312       continue;
 313     }
 314 
 315     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 316 
 317     st.print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
 318     k->print_value_on(&st);
 319     st.print_cr(" allocated (" SIZE_FORMAT " bytes)", obj->size() * HeapWordSize);
 320 
 321     if (Verbose && k != nullptr) {
 322       k->oop_print_on(obj(), &st);
 323     }
 324   }
 325   tty->print_raw(st.freeze());
 326 }
 327 
 328 static bool rematerialize_objects(JavaThread* thread, int exec_mode, nmethod* compiled_method,
 329                                   frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk,
 330                                   bool& deoptimized_objects) {
 331   bool realloc_failures = false;
 332   assert (chunk->at(0)->scope() != nullptr,"expect only compiled java frames");
 333 
 334   JavaThread* deoptee_thread = chunk->at(0)->thread();
 335   assert(exec_mode == Deoptimization::Unpack_none || (deoptee_thread == thread),
 336          "a frame can only be deoptimized by the owner thread");
 337 
 338   GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects_to_rematerialize(deoptee, map);
 339 
 340   // The flag return_oop() indicates call sites which return oop
 341   // in compiled code. Such sites include java method calls,
 342   // runtime calls (for example, used to allocate new objects/arrays
 343   // on slow code path) and any other calls generated in compiled code.
 344   // It is not guaranteed that we can get such information here only
 345   // by analyzing bytecode in deoptimized frames. This is why this flag
 346   // is set during method compilation (see Compile::Process_OopMap_Node()).
 347   // If the previous frame was popped or if we are dispatching an exception,
 348   // we don't have an oop result.
 349   bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt);
 350   Handle return_value;
 351   if (save_oop_result) {
 352     // Reallocation may trigger GC. If deoptimization happened on return from
 353     // call which returns oop we need to save it since it is not in oopmap.
 354     oop result = deoptee.saved_oop_result(&map);
 355     assert(oopDesc::is_oop_or_null(result), "must be oop");
 356     return_value = Handle(thread, result);
 357     assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 358     if (TraceDeoptimization) {
 359       tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 360       tty->cr();
 361     }
 362   }
 363   if (objects != nullptr) {
 364     if (exec_mode == Deoptimization::Unpack_none) {
 365       assert(thread->thread_state() == _thread_in_vm, "assumption");
 366       JavaThread* THREAD = thread; // For exception macros.
 367       // Clear pending OOM if reallocation fails and return true indicating allocation failure
 368       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, CHECK_AND_CLEAR_(true));
 369       deoptimized_objects = true;
 370     } else {
 371       JavaThread* current = thread; // For JRT_BLOCK
 372       JRT_BLOCK
 373       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD);
 374       JRT_END
 375     }
 376     bool skip_internal = (compiled_method != nullptr) && !compiled_method->is_compiled_by_jvmci();
 377     Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 378     if (TraceDeoptimization) {
 379       print_objects(deoptee_thread, objects, realloc_failures);
 380     }
 381   }
 382   if (save_oop_result) {
 383     // Restore result.
 384     deoptee.set_saved_oop_result(&map, return_value());
 385   }
 386   return realloc_failures;
 387 }
 388 
 389 static void restore_eliminated_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures,
 390                                      frame& deoptee, int exec_mode, bool& deoptimized_objects) {
 391   JavaThread* deoptee_thread = chunk->at(0)->thread();
 392   assert(!EscapeBarrier::objs_are_deoptimized(deoptee_thread, deoptee.id()), "must relock just once");
 393   assert(thread == Thread::current(), "should be");
 394   HandleMark hm(thread);
 395 #ifndef PRODUCT
 396   bool first = true;
 397 #endif // !PRODUCT
 398   // Start locking from outermost/oldest frame
 399   for (int i = (chunk->length() - 1); i >= 0; i--) {
 400     compiledVFrame* cvf = chunk->at(i);
 401     assert (cvf->scope() != nullptr,"expect only compiled java frames");
 402     GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 403     if (monitors->is_nonempty()) {
 404       bool relocked = Deoptimization::relock_objects(thread, monitors, deoptee_thread, deoptee,
 405                                                      exec_mode, realloc_failures);
 406       deoptimized_objects = deoptimized_objects || relocked;
 407 #ifndef PRODUCT
 408       if (PrintDeoptimizationDetails) {
 409         ResourceMark rm;
 410         stringStream st;
 411         for (int j = 0; j < monitors->length(); j++) {
 412           MonitorInfo* mi = monitors->at(j);
 413           if (mi->eliminated()) {
 414             if (first) {
 415               first = false;
 416               st.print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 417             }
 418             if (exec_mode == Deoptimization::Unpack_none) {
 419               ObjectMonitor* monitor = deoptee_thread->current_waiting_monitor();
 420               if (monitor != nullptr && monitor->object() == mi->owner()) {
 421                 st.print_cr("     object <" INTPTR_FORMAT "> DEFERRED relocking after wait", p2i(mi->owner()));
 422                 continue;
 423               }
 424             }
 425             if (mi->owner_is_scalar_replaced()) {
 426               Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 427               st.print_cr("     failed reallocation for klass %s", k->external_name());
 428             } else {
 429               st.print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 430             }
 431           }
 432         }
 433         tty->print_raw(st.freeze());
 434       }
 435 #endif // !PRODUCT
 436     }
 437   }
 438 }
 439 
 440 // Deoptimize objects, that is reallocate and relock them, just before they escape through JVMTI.
 441 // The given vframes cover one physical frame.
 442 bool Deoptimization::deoptimize_objects_internal(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk,
 443                                                  bool& realloc_failures) {
 444   frame deoptee = chunk->at(0)->fr();
 445   JavaThread* deoptee_thread = chunk->at(0)->thread();
 446   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 447   RegisterMap map(chunk->at(0)->register_map());
 448   bool deoptimized_objects = false;
 449 
 450   bool const jvmci_enabled = JVMCI_ONLY(UseJVMCICompiler) NOT_JVMCI(false);
 451 
 452   // Reallocate the non-escaping objects and restore their fields.
 453   if (jvmci_enabled COMPILER2_PRESENT(|| (DoEscapeAnalysis && EliminateAllocations)
 454                                       || EliminateAutoBox || EnableVectorAggressiveReboxing)) {
 455     realloc_failures = rematerialize_objects(thread, Unpack_none, nm, deoptee, map, chunk, deoptimized_objects);
 456   }
 457 
 458   // MonitorInfo structures used in eliminate_locks are not GC safe.
 459   NoSafepointVerifier no_safepoint;
 460 
 461   // Now relock objects if synchronization on them was eliminated.
 462   if (jvmci_enabled COMPILER2_PRESENT(|| ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks))) {
 463     restore_eliminated_locks(thread, chunk, realloc_failures, deoptee, Unpack_none, deoptimized_objects);
 464   }
 465   return deoptimized_objects;
 466 }
 467 #endif // COMPILER2_OR_JVMCI
 468 
 469 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 470 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* current, int exec_mode) {
 471   // When we get here we are about to unwind the deoptee frame. In order to
 472   // catch not yet safe to use frames, the following stack watermark barrier
 473   // poll will make such frames safe to use.
 474   StackWatermarkSet::before_unwind(current);
 475 
 476   // Note: there is a safepoint safety issue here. No matter whether we enter
 477   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 478   // the vframeArray is created.
 479   //
 480 
 481   // Allocate our special deoptimization ResourceMark
 482   DeoptResourceMark* dmark = new DeoptResourceMark(current);
 483   assert(current->deopt_mark() == nullptr, "Pending deopt!");
 484   current->set_deopt_mark(dmark);
 485 
 486   frame stub_frame = current->last_frame(); // Makes stack walkable as side effect
 487   RegisterMap map(current,
 488                   RegisterMap::UpdateMap::include,
 489                   RegisterMap::ProcessFrames::include,
 490                   RegisterMap::WalkContinuation::skip);
 491   RegisterMap dummy_map(current,
 492                         RegisterMap::UpdateMap::skip,
 493                         RegisterMap::ProcessFrames::include,
 494                         RegisterMap::WalkContinuation::skip);
 495   // Now get the deoptee with a valid map
 496   frame deoptee = stub_frame.sender(&map);
 497   // Set the deoptee nmethod
 498   assert(current->deopt_compiled_method() == nullptr, "Pending deopt!");
 499   nmethod* nm = deoptee.cb()->as_nmethod_or_null();
 500   current->set_deopt_compiled_method(nm);
 501 
 502   if (VerifyStack) {
 503     current->validate_frame_layout();
 504   }
 505 
 506   // Create a growable array of VFrames where each VFrame represents an inlined
 507   // Java frame.  This storage is allocated with the usual system arena.
 508   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 509   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 510   vframe* vf = vframe::new_vframe(&deoptee, &map, current);
 511   while (!vf->is_top()) {
 512     assert(vf->is_compiled_frame(), "Wrong frame type");
 513     chunk->push(compiledVFrame::cast(vf));
 514     vf = vf->sender();
 515   }
 516   assert(vf->is_compiled_frame(), "Wrong frame type");
 517   chunk->push(compiledVFrame::cast(vf));
 518 
 519   bool realloc_failures = false;
 520 
 521 #if COMPILER2_OR_JVMCI
 522   bool const jvmci_enabled = JVMCI_ONLY(EnableJVMCI) NOT_JVMCI(false);
 523 
 524   // Reallocate the non-escaping objects and restore their fields. Then
 525   // relock objects if synchronization on them was eliminated.
 526   if (jvmci_enabled COMPILER2_PRESENT( || (DoEscapeAnalysis && EliminateAllocations)
 527                                        || EliminateAutoBox || EnableVectorAggressiveReboxing )) {
 528     bool unused;
 529     realloc_failures = rematerialize_objects(current, exec_mode, nm, deoptee, map, chunk, unused);
 530   }
 531 #endif // COMPILER2_OR_JVMCI
 532 
 533   // Ensure that no safepoint is taken after pointers have been stored
 534   // in fields of rematerialized objects.  If a safepoint occurs from here on
 535   // out the java state residing in the vframeArray will be missed.
 536   // Locks may be rebaised in a safepoint.
 537   NoSafepointVerifier no_safepoint;
 538 
 539 #if COMPILER2_OR_JVMCI
 540   if ((jvmci_enabled COMPILER2_PRESENT( || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks) ))
 541       && !EscapeBarrier::objs_are_deoptimized(current, deoptee.id())) {
 542     bool unused = false;
 543     restore_eliminated_locks(current, chunk, realloc_failures, deoptee, exec_mode, unused);
 544   }
 545 #endif // COMPILER2_OR_JVMCI
 546 
 547   ScopeDesc* trap_scope = chunk->at(0)->scope();
 548   Handle exceptionObject;
 549   if (trap_scope->rethrow_exception()) {
 550 #ifndef PRODUCT
 551     if (PrintDeoptimizationDetails) {
 552       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 553     }
 554 #endif // !PRODUCT
 555 
 556     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 557     guarantee(expressions != nullptr && expressions->length() > 0, "must have exception to throw");
 558     ScopeValue* topOfStack = expressions->top();
 559     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 560     guarantee(exceptionObject() != nullptr, "exception oop can not be null");
 561   }
 562 
 563   vframeArray* array = create_vframeArray(current, deoptee, &map, chunk, realloc_failures);
 564 #if COMPILER2_OR_JVMCI
 565   if (realloc_failures) {
 566     // This destroys all ScopedValue bindings.
 567     current->clear_scopedValueBindings();
 568     pop_frames_failed_reallocs(current, array);
 569   }
 570 #endif
 571 
 572   assert(current->vframe_array_head() == nullptr, "Pending deopt!");
 573   current->set_vframe_array_head(array);
 574 
 575   // Now that the vframeArray has been created if we have any deferred local writes
 576   // added by jvmti then we can free up that structure as the data is now in the
 577   // vframeArray
 578 
 579   JvmtiDeferredUpdates::delete_updates_for_frame(current, array->original().id());
 580 
 581   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 582   CodeBlob* cb = stub_frame.cb();
 583   // Verify we have the right vframeArray
 584   assert(cb->frame_size() >= 0, "Unexpected frame size");
 585   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 586 
 587   // If the deopt call site is a MethodHandle invoke call site we have
 588   // to adjust the unpack_sp.
 589   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 590   if (deoptee_nm != nullptr && deoptee_nm->is_method_handle_return(deoptee.pc()))
 591     unpack_sp = deoptee.unextended_sp();
 592 
 593 #ifdef ASSERT
 594   assert(cb->is_deoptimization_stub() ||
 595          cb->is_uncommon_trap_stub() ||
 596          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 597          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 598          "unexpected code blob: %s", cb->name());
 599 #endif
 600 
 601   // This is a guarantee instead of an assert because if vframe doesn't match
 602   // we will unpack the wrong deoptimized frame and wind up in strange places
 603   // where it will be very difficult to figure out what went wrong. Better
 604   // to die an early death here than some very obscure death later when the
 605   // trail is cold.
 606   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 607   // in that it will fail to detect a problem when there is one. This needs
 608   // more work in tiger timeframe.
 609   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 610 
 611   int number_of_frames = array->frames();
 612 
 613   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 614   // virtual activation, which is the reverse of the elements in the vframes array.
 615   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 616   // +1 because we always have an interpreter return address for the final slot.
 617   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 618   int popframe_extra_args = 0;
 619   // Create an interpreter return address for the stub to use as its return
 620   // address so the skeletal frames are perfectly walkable
 621   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 622 
 623   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 624   // activation be put back on the expression stack of the caller for reexecution
 625   if (JvmtiExport::can_pop_frame() && current->popframe_forcing_deopt_reexecution()) {
 626     popframe_extra_args = in_words(current->popframe_preserved_args_size_in_words());
 627   }
 628 
 629   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 630   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 631   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 632   //
 633   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 634   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 635 
 636   // It's possible that the number of parameters at the call site is
 637   // different than number of arguments in the callee when method
 638   // handles are used.  If the caller is interpreted get the real
 639   // value so that the proper amount of space can be added to it's
 640   // frame.
 641   bool caller_was_method_handle = false;
 642   if (deopt_sender.is_interpreted_frame()) {
 643     methodHandle method(current, deopt_sender.interpreter_frame_method());
 644     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 645     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 646       // Method handle invokes may involve fairly arbitrary chains of
 647       // calls so it's impossible to know how much actual space the
 648       // caller has for locals.
 649       caller_was_method_handle = true;
 650     }
 651   }
 652 
 653   //
 654   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 655   // frame_sizes/frame_pcs[1] next oldest frame (int)
 656   // frame_sizes/frame_pcs[n] youngest frame (int)
 657   //
 658   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 659   // owns the space for the return address to it's caller).  Confusing ain't it.
 660   //
 661   // The vframe array can address vframes with indices running from
 662   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 663   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 664   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 665   // so things look a little strange in this loop.
 666   //
 667   int callee_parameters = 0;
 668   int callee_locals = 0;
 669   for (int index = 0; index < array->frames(); index++ ) {
 670     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 671     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 672     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 673     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 674                                                                                                     callee_locals,
 675                                                                                                     index == 0,
 676                                                                                                     popframe_extra_args);
 677     // This pc doesn't have to be perfect just good enough to identify the frame
 678     // as interpreted so the skeleton frame will be walkable
 679     // The correct pc will be set when the skeleton frame is completely filled out
 680     // The final pc we store in the loop is wrong and will be overwritten below
 681     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 682 
 683     callee_parameters = array->element(index)->method()->size_of_parameters();
 684     callee_locals = array->element(index)->method()->max_locals();
 685     popframe_extra_args = 0;
 686   }
 687 
 688   // Compute whether the root vframe returns a float or double value.
 689   BasicType return_type;
 690   {
 691     methodHandle method(current, array->element(0)->method());
 692     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 693     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 694   }
 695 
 696   // Compute information for handling adapters and adjusting the frame size of the caller.
 697   int caller_adjustment = 0;
 698 
 699   // Compute the amount the oldest interpreter frame will have to adjust
 700   // its caller's stack by. If the caller is a compiled frame then
 701   // we pretend that the callee has no parameters so that the
 702   // extension counts for the full amount of locals and not just
 703   // locals-parms. This is because without a c2i adapter the parm
 704   // area as created by the compiled frame will not be usable by
 705   // the interpreter. (Depending on the calling convention there
 706   // may not even be enough space).
 707 
 708   // QQQ I'd rather see this pushed down into last_frame_adjust
 709   // and have it take the sender (aka caller).
 710 
 711   if (!deopt_sender.is_interpreted_frame() || caller_was_method_handle) {
 712     caller_adjustment = last_frame_adjust(0, callee_locals);
 713   } else if (callee_locals > callee_parameters) {
 714     // The caller frame may need extending to accommodate
 715     // non-parameter locals of the first unpacked interpreted frame.
 716     // Compute that adjustment.
 717     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 718   }
 719 
 720   // If the sender is deoptimized the we must retrieve the address of the handler
 721   // since the frame will "magically" show the original pc before the deopt
 722   // and we'd undo the deopt.
 723 
 724   frame_pcs[0] = Continuation::is_cont_barrier_frame(deoptee) ? StubRoutines::cont_returnBarrier() : deopt_sender.raw_pc();
 725   if (Continuation::is_continuation_enterSpecial(deopt_sender)) {
 726     ContinuationEntry::from_frame(deopt_sender)->set_argsize(0);
 727   }
 728 
 729   assert(CodeCache::find_blob(frame_pcs[0]) != nullptr, "bad pc");
 730 
 731 #if INCLUDE_JVMCI
 732   if (exceptionObject() != nullptr) {
 733     current->set_exception_oop(exceptionObject());
 734     exec_mode = Unpack_exception;
 735   }
 736 #endif
 737 
 738   if (current->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 739     assert(current->has_pending_exception(), "should have thrown OOME");
 740     current->set_exception_oop(current->pending_exception());
 741     current->clear_pending_exception();
 742     exec_mode = Unpack_exception;
 743   }
 744 
 745 #if INCLUDE_JVMCI
 746   if (current->frames_to_pop_failed_realloc() > 0) {
 747     current->set_pending_monitorenter(false);
 748   }
 749 #endif
 750 
 751   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 752                                       caller_adjustment * BytesPerWord,
 753                                       caller_was_method_handle ? 0 : callee_parameters,
 754                                       number_of_frames,
 755                                       frame_sizes,
 756                                       frame_pcs,
 757                                       return_type,
 758                                       exec_mode);
 759   // On some platforms, we need a way to pass some platform dependent
 760   // information to the unpacking code so the skeletal frames come out
 761   // correct (initial fp value, unextended sp, ...)
 762   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 763 
 764   if (array->frames() > 1) {
 765     if (VerifyStack && TraceDeoptimization) {
 766       tty->print_cr("Deoptimizing method containing inlining");
 767     }
 768   }
 769 
 770   array->set_unroll_block(info);
 771   return info;
 772 }
 773 
 774 // Called to cleanup deoptimization data structures in normal case
 775 // after unpacking to stack and when stack overflow error occurs
 776 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 777                                         vframeArray *array) {
 778 
 779   // Get array if coming from exception
 780   if (array == nullptr) {
 781     array = thread->vframe_array_head();
 782   }
 783   thread->set_vframe_array_head(nullptr);
 784 
 785   // Free the previous UnrollBlock
 786   vframeArray* old_array = thread->vframe_array_last();
 787   thread->set_vframe_array_last(array);
 788 
 789   if (old_array != nullptr) {
 790     UnrollBlock* old_info = old_array->unroll_block();
 791     old_array->set_unroll_block(nullptr);
 792     delete old_info;
 793     delete old_array;
 794   }
 795 
 796   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 797   // inside the vframeArray (StackValueCollections)
 798 
 799   delete thread->deopt_mark();
 800   thread->set_deopt_mark(nullptr);
 801   thread->set_deopt_compiled_method(nullptr);
 802 
 803 
 804   if (JvmtiExport::can_pop_frame()) {
 805     // Regardless of whether we entered this routine with the pending
 806     // popframe condition bit set, we should always clear it now
 807     thread->clear_popframe_condition();
 808   }
 809 
 810   // unpack_frames() is called at the end of the deoptimization handler
 811   // and (in C2) at the end of the uncommon trap handler. Note this fact
 812   // so that an asynchronous stack walker can work again. This counter is
 813   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 814   // the beginning of uncommon_trap().
 815   thread->dec_in_deopt_handler();
 816 }
 817 
 818 // Moved from cpu directories because none of the cpus has callee save values.
 819 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 820 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 821 
 822   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 823   // the days we had adapter frames. When we deoptimize a situation where a
 824   // compiled caller calls a compiled caller will have registers it expects
 825   // to survive the call to the callee. If we deoptimize the callee the only
 826   // way we can restore these registers is to have the oldest interpreter
 827   // frame that we create restore these values. That is what this routine
 828   // will accomplish.
 829 
 830   // At the moment we have modified c2 to not have any callee save registers
 831   // so this problem does not exist and this routine is just a place holder.
 832 
 833   assert(f->is_interpreted_frame(), "must be interpreted");
 834 }
 835 
 836 #ifndef PRODUCT
 837 static bool falls_through(Bytecodes::Code bc) {
 838   switch (bc) {
 839     // List may be incomplete.  Here we really only care about bytecodes where compiled code
 840     // can deoptimize.
 841     case Bytecodes::_goto:
 842     case Bytecodes::_goto_w:
 843     case Bytecodes::_athrow:
 844       return false;
 845     default:
 846       return true;
 847   }
 848 }
 849 #endif
 850 
 851 // Return BasicType of value being returned
 852 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 853   assert(thread == JavaThread::current(), "pre-condition");
 854 
 855   // We are already active in the special DeoptResourceMark any ResourceObj's we
 856   // allocate will be freed at the end of the routine.
 857 
 858   // JRT_LEAF methods don't normally allocate handles and there is a
 859   // NoHandleMark to enforce that. It is actually safe to use Handles
 860   // in a JRT_LEAF method, and sometimes desirable, but to do so we
 861   // must use ResetNoHandleMark to bypass the NoHandleMark, and
 862   // then use a HandleMark to ensure any Handles we do create are
 863   // cleaned up in this scope.
 864   ResetNoHandleMark rnhm;
 865   HandleMark hm(thread);
 866 
 867   frame stub_frame = thread->last_frame();
 868 
 869   Continuation::notify_deopt(thread, stub_frame.sp());
 870 
 871   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 872   // must point to the vframeArray for the unpack frame.
 873   vframeArray* array = thread->vframe_array_head();
 874   UnrollBlock* info = array->unroll_block();
 875 
 876   // We set the last_Java frame. But the stack isn't really parsable here. So we
 877   // clear it to make sure JFR understands not to try and walk stacks from events
 878   // in here.
 879   intptr_t* sp = thread->frame_anchor()->last_Java_sp();
 880   thread->frame_anchor()->set_last_Java_sp(nullptr);
 881 
 882   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 883   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 884 
 885   thread->frame_anchor()->set_last_Java_sp(sp);
 886 
 887   BasicType bt = info->return_type();
 888 
 889   // If we have an exception pending, claim that the return type is an oop
 890   // so the deopt_blob does not overwrite the exception_oop.
 891 
 892   if (exec_mode == Unpack_exception)
 893     bt = T_OBJECT;
 894 
 895   // Cleanup thread deopt data
 896   cleanup_deopt_info(thread, array);
 897 
 898 #ifndef PRODUCT
 899   if (VerifyStack) {
 900     ResourceMark res_mark;
 901     // Clear pending exception to not break verification code (restored afterwards)
 902     PreserveExceptionMark pm(thread);
 903 
 904     thread->validate_frame_layout();
 905 
 906     // Verify that the just-unpacked frames match the interpreter's
 907     // notions of expression stack and locals
 908     vframeArray* cur_array = thread->vframe_array_last();
 909     RegisterMap rm(thread,
 910                    RegisterMap::UpdateMap::skip,
 911                    RegisterMap::ProcessFrames::include,
 912                    RegisterMap::WalkContinuation::skip);
 913     rm.set_include_argument_oops(false);
 914     bool is_top_frame = true;
 915     int callee_size_of_parameters = 0;
 916     int callee_max_locals = 0;
 917     for (int i = 0; i < cur_array->frames(); i++) {
 918       vframeArrayElement* el = cur_array->element(i);
 919       frame* iframe = el->iframe();
 920       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 921 
 922       // Get the oop map for this bci
 923       InterpreterOopMap mask;
 924       int cur_invoke_parameter_size = 0;
 925       bool try_next_mask = false;
 926       int next_mask_expression_stack_size = -1;
 927       int top_frame_expression_stack_adjustment = 0;
 928       methodHandle mh(thread, iframe->interpreter_frame_method());
 929       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 930       BytecodeStream str(mh, iframe->interpreter_frame_bci());
 931       int max_bci = mh->code_size();
 932       // Get to the next bytecode if possible
 933       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 934       // Check to see if we can grab the number of outgoing arguments
 935       // at an uncommon trap for an invoke (where the compiler
 936       // generates debug info before the invoke has executed)
 937       Bytecodes::Code cur_code = str.next();
 938       Bytecodes::Code next_code = Bytecodes::_shouldnotreachhere;
 939       if (Bytecodes::is_invoke(cur_code)) {
 940         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 941         cur_invoke_parameter_size = invoke.size_of_parameters();
 942         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 943           callee_size_of_parameters++;
 944         }
 945       }
 946       if (str.bci() < max_bci) {
 947         next_code = str.next();
 948         if (next_code >= 0) {
 949           // The interpreter oop map generator reports results before
 950           // the current bytecode has executed except in the case of
 951           // calls. It seems to be hard to tell whether the compiler
 952           // has emitted debug information matching the "state before"
 953           // a given bytecode or the state after, so we try both
 954           if (!Bytecodes::is_invoke(cur_code) && falls_through(cur_code)) {
 955             // Get expression stack size for the next bytecode
 956             InterpreterOopMap next_mask;
 957             OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 958             next_mask_expression_stack_size = next_mask.expression_stack_size();
 959             if (Bytecodes::is_invoke(next_code)) {
 960               Bytecode_invoke invoke(mh, str.bci());
 961               next_mask_expression_stack_size += invoke.size_of_parameters();
 962             }
 963             // Need to subtract off the size of the result type of
 964             // the bytecode because this is not described in the
 965             // debug info but returned to the interpreter in the TOS
 966             // caching register
 967             BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 968             if (bytecode_result_type != T_ILLEGAL) {
 969               top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 970             }
 971             assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 972             try_next_mask = true;
 973           }
 974         }
 975       }
 976 
 977       // Verify stack depth and oops in frame
 978       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 979       if (!(
 980             /* SPARC */
 981             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 982             /* x86 */
 983             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 984             (try_next_mask &&
 985              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 986                                                                     top_frame_expression_stack_adjustment))) ||
 987             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 988             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 989              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 990             )) {
 991         {
 992           // Print out some information that will help us debug the problem
 993           tty->print_cr("Wrong number of expression stack elements during deoptimization");
 994           tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 995           tty->print_cr("  Current code %s", Bytecodes::name(cur_code));
 996           if (try_next_mask) {
 997             tty->print_cr("  Next code %s", Bytecodes::name(next_code));
 998           }
 999           tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
1000                         iframe->interpreter_frame_expression_stack_size());
1001           tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
1002           tty->print_cr("  try_next_mask = %d", try_next_mask);
1003           tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
1004           tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
1005           tty->print_cr("  callee_max_locals = %d", callee_max_locals);
1006           tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
1007           tty->print_cr("  exec_mode = %d", exec_mode);
1008           tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
1009           tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
1010           tty->print_cr("  Interpreted frames:");
1011           for (int k = 0; k < cur_array->frames(); k++) {
1012             vframeArrayElement* el = cur_array->element(k);
1013             tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
1014           }
1015           cur_array->print_on_2(tty);
1016         }
1017         guarantee(false, "wrong number of expression stack elements during deopt");
1018       }
1019       VerifyOopClosure verify;
1020       iframe->oops_interpreted_do(&verify, &rm, false);
1021       callee_size_of_parameters = mh->size_of_parameters();
1022       callee_max_locals = mh->max_locals();
1023       is_top_frame = false;
1024     }
1025   }
1026 #endif // !PRODUCT
1027 
1028   return bt;
1029 JRT_END
1030 
1031 class DeoptimizeMarkedClosure : public HandshakeClosure {
1032  public:
1033   DeoptimizeMarkedClosure() : HandshakeClosure("Deoptimize") {}
1034   void do_thread(Thread* thread) {
1035     JavaThread* jt = JavaThread::cast(thread);
1036     jt->deoptimize_marked_methods();
1037   }
1038 };
1039 
1040 void Deoptimization::deoptimize_all_marked() {
1041   ResourceMark rm;
1042 
1043   // Make the dependent methods not entrant
1044   CodeCache::make_marked_nmethods_deoptimized();
1045 
1046   DeoptimizeMarkedClosure deopt;
1047   if (SafepointSynchronize::is_at_safepoint()) {
1048     Threads::java_threads_do(&deopt);
1049   } else {
1050     Handshake::execute(&deopt);
1051   }
1052 }
1053 
1054 Deoptimization::DeoptAction Deoptimization::_unloaded_action
1055   = Deoptimization::Action_reinterpret;
1056 
1057 #if INCLUDE_JVMCI
1058 template<typename CacheType>
1059 class BoxCacheBase : public CHeapObj<mtCompiler> {
1060 protected:
1061   static InstanceKlass* find_cache_klass(Thread* thread, Symbol* klass_name) {
1062     ResourceMark rm(thread);
1063     char* klass_name_str = klass_name->as_C_string();
1064     InstanceKlass* ik = SystemDictionary::find_instance_klass(thread, klass_name, Handle(), Handle());
1065     guarantee(ik != nullptr, "%s must be loaded", klass_name_str);
1066     if (!ik->is_in_error_state()) {
1067       guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str);
1068       CacheType::compute_offsets(ik);
1069     }
1070     return ik;
1071   }
1072 };
1073 
1074 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache  : public BoxCacheBase<CacheType> {
1075   PrimitiveType _low;
1076   PrimitiveType _high;
1077   jobject _cache;
1078 protected:
1079   static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton;
1080   BoxCache(Thread* thread) {
1081     InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(thread, CacheType::symbol());
1082     if (ik->is_in_error_state()) {
1083       _low = 1;
1084       _high = 0;
1085       _cache = nullptr;
1086     } else {
1087       objArrayOop cache = CacheType::cache(ik);
1088       assert(cache->length() > 0, "Empty cache");
1089       _low = BoxType::value(cache->obj_at(0));
1090       _high = checked_cast<PrimitiveType>(_low + cache->length() - 1);
1091       _cache = JNIHandles::make_global(Handle(thread, cache));
1092     }
1093   }
1094   ~BoxCache() {
1095     JNIHandles::destroy_global(_cache);
1096   }
1097 public:
1098   static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) {
1099     if (_singleton == nullptr) {
1100       BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread);
1101       if (!Atomic::replace_if_null(&_singleton, s)) {
1102         delete s;
1103       }
1104     }
1105     return _singleton;
1106   }
1107   oop lookup(PrimitiveType value) {
1108     if (_low <= value && value <= _high) {
1109       int offset = checked_cast<int>(value - _low);
1110       return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset);
1111     }
1112     return nullptr;
1113   }
1114   oop lookup_raw(intptr_t raw_value, bool& cache_init_error) {
1115     if (_cache == nullptr) {
1116       cache_init_error = true;
1117       return nullptr;
1118     }
1119     // Have to cast to avoid little/big-endian problems.
1120     if (sizeof(PrimitiveType) > sizeof(jint)) {
1121       jlong value = (jlong)raw_value;
1122       return lookup(value);
1123     }
1124     PrimitiveType value = (PrimitiveType)*((jint*)&raw_value);
1125     return lookup(value);
1126   }
1127 };
1128 
1129 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache;
1130 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache;
1131 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache;
1132 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache;
1133 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache;
1134 
1135 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = nullptr;
1136 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = nullptr;
1137 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = nullptr;
1138 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = nullptr;
1139 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = nullptr;
1140 
1141 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> {
1142   jobject _true_cache;
1143   jobject _false_cache;
1144 protected:
1145   static BooleanBoxCache *_singleton;
1146   BooleanBoxCache(Thread *thread) {
1147     InstanceKlass* ik = find_cache_klass(thread, java_lang_Boolean::symbol());
1148     if (ik->is_in_error_state()) {
1149       _true_cache = nullptr;
1150       _false_cache = nullptr;
1151     } else {
1152       _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik)));
1153       _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik)));
1154     }
1155   }
1156   ~BooleanBoxCache() {
1157     JNIHandles::destroy_global(_true_cache);
1158     JNIHandles::destroy_global(_false_cache);
1159   }
1160 public:
1161   static BooleanBoxCache* singleton(Thread* thread) {
1162     if (_singleton == nullptr) {
1163       BooleanBoxCache* s = new BooleanBoxCache(thread);
1164       if (!Atomic::replace_if_null(&_singleton, s)) {
1165         delete s;
1166       }
1167     }
1168     return _singleton;
1169   }
1170   oop lookup_raw(intptr_t raw_value, bool& cache_in_error) {
1171     if (_true_cache == nullptr) {
1172       cache_in_error = true;
1173       return nullptr;
1174     }
1175     // Have to cast to avoid little/big-endian problems.
1176     jboolean value = (jboolean)*((jint*)&raw_value);
1177     return lookup(value);
1178   }
1179   oop lookup(jboolean value) {
1180     if (value != 0) {
1181       return JNIHandles::resolve_non_null(_true_cache);
1182     }
1183     return JNIHandles::resolve_non_null(_false_cache);
1184   }
1185 };
1186 
1187 BooleanBoxCache* BooleanBoxCache::_singleton = nullptr;
1188 
1189 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, bool& cache_init_error, TRAPS) {
1190    Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()());
1191    BasicType box_type = vmClasses::box_klass_type(k);
1192    if (box_type != T_OBJECT) {
1193      StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0));
1194      switch(box_type) {
1195        case T_INT:     return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1196        case T_CHAR:    return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1197        case T_SHORT:   return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1198        case T_BYTE:    return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1199        case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1200        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_intptr(), cache_init_error);
1201        default:;
1202      }
1203    }
1204    return nullptr;
1205 }
1206 #endif // INCLUDE_JVMCI
1207 
1208 #if COMPILER2_OR_JVMCI
1209 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
1210   Handle pending_exception(THREAD, thread->pending_exception());
1211   const char* exception_file = thread->exception_file();
1212   int exception_line = thread->exception_line();
1213   thread->clear_pending_exception();
1214 
1215   bool failures = false;
1216 
1217   for (int i = 0; i < objects->length(); i++) {
1218     assert(objects->at(i)->is_object(), "invalid debug information");
1219     ObjectValue* sv = (ObjectValue*) objects->at(i);
1220 
1221     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1222     oop obj = nullptr;
1223 
1224     bool cache_init_error = false;
1225     if (k->is_instance_klass()) {
1226 #if INCLUDE_JVMCI
1227       nmethod* nm = fr->cb()->as_nmethod_or_null();
1228       if (nm->is_compiled_by_jvmci() && sv->is_auto_box()) {
1229         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
1230         obj = get_cached_box(abv, fr, reg_map, cache_init_error, THREAD);
1231         if (obj != nullptr) {
1232           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
1233           abv->set_cached(true);
1234         } else if (cache_init_error) {
1235           // Results in an OOME which is valid (as opposed to a class initialization error)
1236           // and is fine for the rare case a cache initialization failing.
1237           failures = true;
1238         }
1239       }
1240 #endif // INCLUDE_JVMCI
1241 
1242       InstanceKlass* ik = InstanceKlass::cast(k);
1243       if (obj == nullptr && !cache_init_error) {
1244         InternalOOMEMark iom(THREAD);
1245         if (EnableVectorSupport && VectorSupport::is_vector(ik)) {
1246           obj = VectorSupport::allocate_vector(ik, fr, reg_map, sv, THREAD);
1247         } else {
1248           obj = ik->allocate_instance(THREAD);
1249         }
1250       }
1251     } else if (k->is_typeArray_klass()) {
1252       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1253       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
1254       int len = sv->field_size() / type2size[ak->element_type()];
1255       InternalOOMEMark iom(THREAD);
1256       obj = ak->allocate(len, THREAD);
1257     } else if (k->is_objArray_klass()) {
1258       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
1259       InternalOOMEMark iom(THREAD);
1260       obj = ak->allocate(sv->field_size(), THREAD);
1261     }
1262 
1263     if (obj == nullptr) {
1264       failures = true;
1265     }
1266 
1267     assert(sv->value().is_null(), "redundant reallocation");
1268     assert(obj != nullptr || HAS_PENDING_EXCEPTION || cache_init_error, "allocation should succeed or we should get an exception");
1269     CLEAR_PENDING_EXCEPTION;
1270     sv->set_value(obj);
1271   }
1272 
1273   if (failures) {
1274     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1275   } else if (pending_exception.not_null()) {
1276     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1277   }
1278 
1279   return failures;
1280 }
1281 
1282 #if INCLUDE_JVMCI
1283 /**
1284  * For primitive types whose kind gets "erased" at runtime (shorts become stack ints),
1285  * we need to somehow be able to recover the actual kind to be able to write the correct
1286  * amount of bytes.
1287  * For that purpose, this method assumes that, for an entry spanning n bytes at index i,
1288  * the entries at index n + 1 to n + i are 'markers'.
1289  * For example, if we were writing a short at index 4 of a byte array of size 8, the
1290  * expected form of the array would be:
1291  *
1292  * {b0, b1, b2, b3, INT, marker, b6, b7}
1293  *
1294  * Thus, in order to get back the size of the entry, we simply need to count the number
1295  * of marked entries
1296  *
1297  * @param virtualArray the virtualized byte array
1298  * @param i index of the virtual entry we are recovering
1299  * @return The number of bytes the entry spans
1300  */
1301 static int count_number_of_bytes_for_entry(ObjectValue *virtualArray, int i) {
1302   int index = i;
1303   while (++index < virtualArray->field_size() &&
1304            virtualArray->field_at(index)->is_marker()) {}
1305   return index - i;
1306 }
1307 
1308 /**
1309  * If there was a guarantee for byte array to always start aligned to a long, we could
1310  * do a simple check on the parity of the index. Unfortunately, that is not always the
1311  * case. Thus, we check alignment of the actual address we are writing to.
1312  * In the unlikely case index 0 is 5-aligned for example, it would then be possible to
1313  * write a long to index 3.
1314  */
1315 static jbyte* check_alignment_get_addr(typeArrayOop obj, int index, int expected_alignment) {
1316     jbyte* res = obj->byte_at_addr(index);
1317     assert((((intptr_t) res) % expected_alignment) == 0, "Non-aligned write");
1318     return res;
1319 }
1320 
1321 static void byte_array_put(typeArrayOop obj, StackValue* value, int index, int byte_count) {
1322   switch (byte_count) {
1323     case 1:
1324       obj->byte_at_put(index, (jbyte) value->get_jint());
1325       break;
1326     case 2:
1327       *((jshort *) check_alignment_get_addr(obj, index, 2)) = (jshort) value->get_jint();
1328       break;
1329     case 4:
1330       *((jint *) check_alignment_get_addr(obj, index, 4)) = value->get_jint();
1331       break;
1332     case 8:
1333       *((jlong *) check_alignment_get_addr(obj, index, 8)) = (jlong) value->get_intptr();
1334       break;
1335     default:
1336       ShouldNotReachHere();
1337   }
1338 }
1339 #endif // INCLUDE_JVMCI
1340 
1341 
1342 // restore elements of an eliminated type array
1343 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
1344   int index = 0;
1345 
1346   for (int i = 0; i < sv->field_size(); i++) {
1347     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1348     switch(type) {
1349     case T_LONG: case T_DOUBLE: {
1350       assert(value->type() == T_INT, "Agreement.");
1351       StackValue* low =
1352         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1353 #ifdef _LP64
1354       jlong res = (jlong)low->get_intptr();
1355 #else
1356       jlong res = jlong_from(value->get_jint(), low->get_jint());
1357 #endif
1358       obj->long_at_put(index, res);
1359       break;
1360     }
1361 
1362     case T_INT: case T_FLOAT: { // 4 bytes.
1363       assert(value->type() == T_INT, "Agreement.");
1364       bool big_value = false;
1365       if (i + 1 < sv->field_size() && type == T_INT) {
1366         if (sv->field_at(i)->is_location()) {
1367           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
1368           if (type == Location::dbl || type == Location::lng) {
1369             big_value = true;
1370           }
1371         } else if (sv->field_at(i)->is_constant_int()) {
1372           ScopeValue* next_scope_field = sv->field_at(i + 1);
1373           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1374             big_value = true;
1375           }
1376         }
1377       }
1378 
1379       if (big_value) {
1380         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1381   #ifdef _LP64
1382         jlong res = (jlong)low->get_intptr();
1383   #else
1384         jlong res = jlong_from(value->get_jint(), low->get_jint());
1385   #endif
1386         obj->int_at_put(index, *(jint*)&res);
1387         obj->int_at_put(++index, *((jint*)&res + 1));
1388       } else {
1389         obj->int_at_put(index, value->get_jint());
1390       }
1391       break;
1392     }
1393 
1394     case T_SHORT:
1395       assert(value->type() == T_INT, "Agreement.");
1396       obj->short_at_put(index, (jshort)value->get_jint());
1397       break;
1398 
1399     case T_CHAR:
1400       assert(value->type() == T_INT, "Agreement.");
1401       obj->char_at_put(index, (jchar)value->get_jint());
1402       break;
1403 
1404     case T_BYTE: {
1405       assert(value->type() == T_INT, "Agreement.");
1406 #if INCLUDE_JVMCI
1407       // The value we get is erased as a regular int. We will need to find its actual byte count 'by hand'.
1408       int byte_count = count_number_of_bytes_for_entry(sv, i);
1409       byte_array_put(obj, value, index, byte_count);
1410       // According to byte_count contract, the values from i + 1 to i + byte_count are illegal values. Skip.
1411       i += byte_count - 1; // Balance the loop counter.
1412       index += byte_count;
1413       // index has been updated so continue at top of loop
1414       continue;
1415 #else
1416       obj->byte_at_put(index, (jbyte)value->get_jint());
1417       break;
1418 #endif // INCLUDE_JVMCI
1419     }
1420 
1421     case T_BOOLEAN: {
1422       assert(value->type() == T_INT, "Agreement.");
1423       obj->bool_at_put(index, (jboolean)value->get_jint());
1424       break;
1425     }
1426 
1427       default:
1428         ShouldNotReachHere();
1429     }
1430     index++;
1431   }
1432 }
1433 
1434 // restore fields of an eliminated object array
1435 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1436   for (int i = 0; i < sv->field_size(); i++) {
1437     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1438     assert(value->type() == T_OBJECT, "object element expected");
1439     obj->obj_at_put(i, value->get_obj()());
1440   }
1441 }
1442 
1443 class ReassignedField {
1444 public:
1445   int _offset;
1446   BasicType _type;
1447 public:
1448   ReassignedField() {
1449     _offset = 0;
1450     _type = T_ILLEGAL;
1451   }
1452 };
1453 
1454 static int compare(ReassignedField* left, ReassignedField* right) {
1455   return left->_offset - right->_offset;
1456 }
1457 
1458 // Restore fields of an eliminated instance object using the same field order
1459 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
1460 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
1461   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
1462   InstanceKlass* ik = klass;
1463   while (ik != nullptr) {
1464     for (AllFieldStream fs(ik); !fs.done(); fs.next()) {
1465       if (!fs.access_flags().is_static() && (!skip_internal || !fs.field_flags().is_injected())) {
1466         ReassignedField field;
1467         field._offset = fs.offset();
1468         field._type = Signature::basic_type(fs.signature());
1469         fields->append(field);
1470       }
1471     }
1472     ik = ik->superklass();
1473   }
1474   fields->sort(compare);
1475   for (int i = 0; i < fields->length(); i++) {
1476     ScopeValue* scope_field = sv->field_at(svIndex);
1477     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1478     int offset = fields->at(i)._offset;
1479     BasicType type = fields->at(i)._type;
1480     switch (type) {
1481       case T_OBJECT: case T_ARRAY:
1482         assert(value->type() == T_OBJECT, "Agreement.");
1483         obj->obj_field_put(offset, value->get_obj()());
1484         break;
1485 
1486       case T_INT: case T_FLOAT: { // 4 bytes.
1487         assert(value->type() == T_INT, "Agreement.");
1488         bool big_value = false;
1489         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1490           if (scope_field->is_location()) {
1491             Location::Type type = ((LocationValue*) scope_field)->location().type();
1492             if (type == Location::dbl || type == Location::lng) {
1493               big_value = true;
1494             }
1495           }
1496           if (scope_field->is_constant_int()) {
1497             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1498             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1499               big_value = true;
1500             }
1501           }
1502         }
1503 
1504         if (big_value) {
1505           i++;
1506           assert(i < fields->length(), "second T_INT field needed");
1507           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1508         } else {
1509           obj->int_field_put(offset, value->get_jint());
1510           break;
1511         }
1512       }
1513         /* no break */
1514 
1515       case T_LONG: case T_DOUBLE: {
1516         assert(value->type() == T_INT, "Agreement.");
1517         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1518 #ifdef _LP64
1519         jlong res = (jlong)low->get_intptr();
1520 #else
1521         jlong res = jlong_from(value->get_jint(), low->get_jint());
1522 #endif
1523         obj->long_field_put(offset, res);
1524         break;
1525       }
1526 
1527       case T_SHORT:
1528         assert(value->type() == T_INT, "Agreement.");
1529         obj->short_field_put(offset, (jshort)value->get_jint());
1530         break;
1531 
1532       case T_CHAR:
1533         assert(value->type() == T_INT, "Agreement.");
1534         obj->char_field_put(offset, (jchar)value->get_jint());
1535         break;
1536 
1537       case T_BYTE:
1538         assert(value->type() == T_INT, "Agreement.");
1539         obj->byte_field_put(offset, (jbyte)value->get_jint());
1540         break;
1541 
1542       case T_BOOLEAN:
1543         assert(value->type() == T_INT, "Agreement.");
1544         obj->bool_field_put(offset, (jboolean)value->get_jint());
1545         break;
1546 
1547       default:
1548         ShouldNotReachHere();
1549     }
1550     svIndex++;
1551   }
1552   return svIndex;
1553 }
1554 
1555 // restore fields of all eliminated objects and arrays
1556 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1557   for (int i = 0; i < objects->length(); i++) {
1558     assert(objects->at(i)->is_object(), "invalid debug information");
1559     ObjectValue* sv = (ObjectValue*) objects->at(i);
1560     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1561     Handle obj = sv->value();
1562     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1563 #ifndef PRODUCT
1564     if (PrintDeoptimizationDetails) {
1565       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1566     }
1567 #endif // !PRODUCT
1568 
1569     if (obj.is_null()) {
1570       continue;
1571     }
1572 
1573 #if INCLUDE_JVMCI
1574     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1575     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1576       continue;
1577     }
1578 #endif // INCLUDE_JVMCI
1579     if (EnableVectorSupport && VectorSupport::is_vector(k)) {
1580       assert(sv->field_size() == 1, "%s not a vector", k->name()->as_C_string());
1581       ScopeValue* payload = sv->field_at(0);
1582       if (payload->is_location() &&
1583           payload->as_LocationValue()->location().type() == Location::vector) {
1584 #ifndef PRODUCT
1585         if (PrintDeoptimizationDetails) {
1586           tty->print_cr("skip field reassignment for this vector - it should be assigned already");
1587           if (Verbose) {
1588             Handle obj = sv->value();
1589             k->oop_print_on(obj(), tty);
1590           }
1591         }
1592 #endif // !PRODUCT
1593         continue; // Such vector's value was already restored in VectorSupport::allocate_vector().
1594       }
1595       // Else fall-through to do assignment for scalar-replaced boxed vector representation
1596       // which could be restored after vector object allocation.
1597     }
1598     if (k->is_instance_klass()) {
1599       InstanceKlass* ik = InstanceKlass::cast(k);
1600       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1601     } else if (k->is_typeArray_klass()) {
1602       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1603       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1604     } else if (k->is_objArray_klass()) {
1605       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1606     }
1607   }
1608   // These objects may escape when we return to Interpreter after deoptimization.
1609   // We need barrier so that stores that initialize these objects can't be reordered
1610   // with subsequent stores that make these objects accessible by other threads.
1611   OrderAccess::storestore();
1612 }
1613 
1614 
1615 // relock objects for which synchronization was eliminated
1616 bool Deoptimization::relock_objects(JavaThread* thread, GrowableArray<MonitorInfo*>* monitors,
1617                                     JavaThread* deoptee_thread, frame& fr, int exec_mode, bool realloc_failures) {
1618   bool relocked_objects = false;
1619   for (int i = 0; i < monitors->length(); i++) {
1620     MonitorInfo* mon_info = monitors->at(i);
1621     if (mon_info->eliminated()) {
1622       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1623       relocked_objects = true;
1624       if (!mon_info->owner_is_scalar_replaced()) {
1625         Handle obj(thread, mon_info->owner());
1626         markWord mark = obj->mark();
1627         if (exec_mode == Unpack_none) {
1628           if (LockingMode == LM_LEGACY && mark.has_locker() && fr.sp() > (intptr_t*)mark.locker()) {
1629             // With exec_mode == Unpack_none obj may be thread local and locked in
1630             // a callee frame. Make the lock in the callee a recursive lock and restore the displaced header.
1631             markWord dmw = mark.displaced_mark_helper();
1632             mark.locker()->set_displaced_header(markWord::encode((BasicLock*) nullptr));
1633             obj->set_mark(dmw);
1634           }
1635           if (mark.has_monitor()) {
1636             // defer relocking if the deoptee thread is currently waiting for obj
1637             ObjectMonitor* waiting_monitor = deoptee_thread->current_waiting_monitor();
1638             if (waiting_monitor != nullptr && waiting_monitor->object() == obj()) {
1639               assert(fr.is_deoptimized_frame(), "frame must be scheduled for deoptimization");
1640               if (LockingMode == LM_LEGACY) {
1641                 mon_info->lock()->set_displaced_header(markWord::unused_mark());
1642               } else if (UseObjectMonitorTable) {
1643                 mon_info->lock()->clear_object_monitor_cache();
1644               }
1645 #ifdef ASSERT
1646               else {
1647                 assert(LockingMode == LM_MONITOR || !UseObjectMonitorTable, "must be");
1648                 mon_info->lock()->set_bad_metadata_deopt();
1649               }
1650 #endif
1651               JvmtiDeferredUpdates::inc_relock_count_after_wait(deoptee_thread);
1652               continue;
1653             }
1654           }
1655         }
1656         BasicLock* lock = mon_info->lock();
1657         if (LockingMode == LM_LIGHTWEIGHT) {
1658           // We have lost information about the correct state of the lock stack.
1659           // Entering may create an invalid lock stack. Inflate the lock if it
1660           // was fast_locked to restore the valid lock stack.
1661           ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1662           if (deoptee_thread->lock_stack().contains(obj())) {
1663             LightweightSynchronizer::inflate_fast_locked_object(obj(), deoptee_thread, thread,
1664                                                                 ObjectSynchronizer::InflateCause::inflate_cause_vm_internal);
1665           }
1666           assert(mon_info->owner()->is_locked(), "object must be locked now");
1667           assert(obj->mark().has_monitor(), "must be");
1668           assert(!deoptee_thread->lock_stack().contains(obj()), "must be");
1669           assert(ObjectSynchronizer::read_monitor(thread, obj(), obj->mark())->owner() == deoptee_thread, "must be");
1670         } else {

1671           ObjectSynchronizer::enter_for(obj, lock, deoptee_thread);
1672           assert(mon_info->owner()->is_locked(), "object must be locked now");
1673         }
1674       }
1675     }
1676   }
1677   return relocked_objects;
1678 }
1679 #endif // COMPILER2_OR_JVMCI
1680 
1681 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1682   Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1683 
1684   // Register map for next frame (used for stack crawl).  We capture
1685   // the state of the deopt'ing frame's caller.  Thus if we need to
1686   // stuff a C2I adapter we can properly fill in the callee-save
1687   // register locations.
1688   frame caller = fr.sender(reg_map);
1689   int frame_size = pointer_delta_as_int(caller.sp(), fr.sp());
1690 
1691   frame sender = caller;
1692 
1693   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1694   // the vframeArray containing the unpacking information is allocated in the C heap.
1695   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1696   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1697 
1698   // Compare the vframeArray to the collected vframes
1699   assert(array->structural_compare(thread, chunk), "just checking");
1700 
1701   if (TraceDeoptimization) {
1702     ResourceMark rm;
1703     stringStream st;
1704     st.print_cr("DEOPT PACKING thread=" INTPTR_FORMAT " vframeArray=" INTPTR_FORMAT, p2i(thread), p2i(array));
1705     st.print("   ");
1706     fr.print_on(&st);
1707     st.print_cr("   Virtual frames (innermost/newest first):");
1708     for (int index = 0; index < chunk->length(); index++) {
1709       compiledVFrame* vf = chunk->at(index);
1710       int bci = vf->raw_bci();
1711       const char* code_name;
1712       if (bci == SynchronizationEntryBCI) {
1713         code_name = "sync entry";
1714       } else {
1715         Bytecodes::Code code = vf->method()->code_at(bci);
1716         code_name = Bytecodes::name(code);
1717       }
1718 
1719       st.print("      VFrame %d (" INTPTR_FORMAT ")", index, p2i(vf));
1720       st.print(" - %s", vf->method()->name_and_sig_as_C_string());
1721       st.print(" - %s", code_name);
1722       st.print_cr(" @ bci=%d ", bci);
1723     }
1724     tty->print_raw(st.freeze());
1725     tty->cr();
1726   }
1727 
1728   return array;
1729 }
1730 
1731 #if COMPILER2_OR_JVMCI
1732 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1733   // Reallocation of some scalar replaced objects failed. Record
1734   // that we need to pop all the interpreter frames for the
1735   // deoptimized compiled frame.
1736   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1737   thread->set_frames_to_pop_failed_realloc(array->frames());
1738   // Unlock all monitors here otherwise the interpreter will see a
1739   // mix of locked and unlocked monitors (because of failed
1740   // reallocations of synchronized objects) and be confused.
1741   for (int i = 0; i < array->frames(); i++) {
1742     MonitorChunk* monitors = array->element(i)->monitors();
1743     if (monitors != nullptr) {
1744       // Unlock in reverse order starting from most nested monitor.
1745       for (int j = (monitors->number_of_monitors() - 1); j >= 0; j--) {
1746         BasicObjectLock* src = monitors->at(j);
1747         if (src->obj() != nullptr) {
1748           ObjectSynchronizer::exit(src->obj(), src->lock(), thread);
1749         }
1750       }
1751       array->element(i)->free_monitors();
1752 #ifdef ASSERT
1753       array->element(i)->set_removed_monitors();
1754 #endif
1755     }
1756   }
1757 }
1758 #endif
1759 
1760 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1761   assert(fr.can_be_deoptimized(), "checking frame type");
1762 
1763   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1764 
1765   if (LogCompilation && xtty != nullptr) {
1766     nmethod* nm = fr.cb()->as_nmethod_or_null();
1767     assert(nm != nullptr, "only compiled methods can deopt");
1768 
1769     ttyLocker ttyl;
1770     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1771     nm->log_identity(xtty);
1772     xtty->end_head();
1773     for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1774       xtty->begin_elem("jvms bci='%d'", sd->bci());
1775       xtty->method(sd->method());
1776       xtty->end_elem();
1777       if (sd->is_top())  break;
1778     }
1779     xtty->tail("deoptimized");
1780   }
1781 
1782   Continuation::notify_deopt(thread, fr.sp());
1783 
1784   // Patch the compiled method so that when execution returns to it we will
1785   // deopt the execution state and return to the interpreter.
1786   fr.deoptimize(thread);
1787 }
1788 
1789 void Deoptimization::deoptimize(JavaThread* thread, frame fr, DeoptReason reason) {
1790   // Deoptimize only if the frame comes from compile code.
1791   // Do not deoptimize the frame which is already patched
1792   // during the execution of the loops below.
1793   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1794     return;
1795   }
1796   ResourceMark rm;
1797   deoptimize_single_frame(thread, fr, reason);
1798 }
1799 
1800 #if INCLUDE_JVMCI
1801 address Deoptimization::deoptimize_for_missing_exception_handler(nmethod* nm) {
1802   // there is no exception handler for this pc => deoptimize
1803   nm->make_not_entrant();
1804 
1805   // Use Deoptimization::deoptimize for all of its side-effects:
1806   // gathering traps statistics, logging...
1807   // it also patches the return pc but we do not care about that
1808   // since we return a continuation to the deopt_blob below.
1809   JavaThread* thread = JavaThread::current();
1810   RegisterMap reg_map(thread,
1811                       RegisterMap::UpdateMap::skip,
1812                       RegisterMap::ProcessFrames::include,
1813                       RegisterMap::WalkContinuation::skip);
1814   frame runtime_frame = thread->last_frame();
1815   frame caller_frame = runtime_frame.sender(&reg_map);
1816   assert(caller_frame.cb()->as_nmethod_or_null() == nm, "expect top frame compiled method");
1817   vframe* vf = vframe::new_vframe(&caller_frame, &reg_map, thread);
1818   compiledVFrame* cvf = compiledVFrame::cast(vf);
1819   ScopeDesc* imm_scope = cvf->scope();
1820   MethodData* imm_mdo = get_method_data(thread, methodHandle(thread, imm_scope->method()), true);
1821   if (imm_mdo != nullptr) {
1822     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
1823     MutexLocker ml(imm_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
1824 
1825     ProfileData* pdata = imm_mdo->allocate_bci_to_data(imm_scope->bci(), nullptr);
1826     if (pdata != nullptr && pdata->is_BitData()) {
1827       BitData* bit_data = (BitData*) pdata;
1828       bit_data->set_exception_seen();
1829     }
1830   }
1831 
1832   Deoptimization::deoptimize(thread, caller_frame, Deoptimization::Reason_not_compiled_exception_handler);
1833 
1834   MethodData* trap_mdo = get_method_data(thread, methodHandle(thread, nm->method()), true);
1835   if (trap_mdo != nullptr) {
1836     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1837   }
1838 
1839   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1840 }
1841 #endif
1842 
1843 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1844   assert(thread == Thread::current() ||
1845          thread->is_handshake_safe_for(Thread::current()) ||
1846          SafepointSynchronize::is_at_safepoint(),
1847          "can only deoptimize other thread at a safepoint/handshake");
1848   // Compute frame and register map based on thread and sp.
1849   RegisterMap reg_map(thread,
1850                       RegisterMap::UpdateMap::skip,
1851                       RegisterMap::ProcessFrames::include,
1852                       RegisterMap::WalkContinuation::skip);
1853   frame fr = thread->last_frame();
1854   while (fr.id() != id) {
1855     fr = fr.sender(&reg_map);
1856   }
1857   deoptimize(thread, fr, reason);
1858 }
1859 
1860 
1861 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1862   Thread* current = Thread::current();
1863   if (thread == current || thread->is_handshake_safe_for(current)) {
1864     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1865   } else {
1866     VM_DeoptimizeFrame deopt(thread, id, reason);
1867     VMThread::execute(&deopt);
1868   }
1869 }
1870 
1871 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1872   deoptimize_frame(thread, id, Reason_constraint);
1873 }
1874 
1875 // JVMTI PopFrame support
1876 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1877 {
1878   assert(thread == JavaThread::current(), "pre-condition");
1879   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1880 }
1881 JRT_END
1882 
1883 MethodData*
1884 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1885                                 bool create_if_missing) {
1886   JavaThread* THREAD = thread; // For exception macros.
1887   MethodData* mdo = m()->method_data();
1888   if (mdo == nullptr && create_if_missing && !HAS_PENDING_EXCEPTION) {
1889     // Build an MDO.  Ignore errors like OutOfMemory;
1890     // that simply means we won't have an MDO to update.
1891     Method::build_profiling_method_data(m, THREAD);
1892     if (HAS_PENDING_EXCEPTION) {
1893       // Only metaspace OOM is expected. No Java code executed.
1894       assert((PENDING_EXCEPTION->is_a(vmClasses::OutOfMemoryError_klass())), "we expect only an OOM error here");
1895       CLEAR_PENDING_EXCEPTION;
1896     }
1897     mdo = m()->method_data();
1898   }
1899   return mdo;
1900 }
1901 
1902 #if COMPILER2_OR_JVMCI
1903 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1904   // In case of an unresolved klass entry, load the class.
1905   // This path is exercised from case _ldc in Parse::do_one_bytecode,
1906   // and probably nowhere else.
1907   // Even that case would benefit from simply re-interpreting the
1908   // bytecode, without paying special attention to the class index.
1909   // So this whole "class index" feature should probably be removed.
1910 
1911   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1912     Klass* tk = constant_pool->klass_at(index, THREAD);
1913     if (HAS_PENDING_EXCEPTION) {
1914       // Exception happened during classloading. We ignore the exception here, since it
1915       // is going to be rethrown since the current activation is going to be deoptimized and
1916       // the interpreter will re-execute the bytecode.
1917       // Do not clear probable Async Exceptions.
1918       CLEAR_PENDING_NONASYNC_EXCEPTION;
1919       // Class loading called java code which may have caused a stack
1920       // overflow. If the exception was thrown right before the return
1921       // to the runtime the stack is no longer guarded. Reguard the
1922       // stack otherwise if we return to the uncommon trap blob and the
1923       // stack bang causes a stack overflow we crash.
1924       JavaThread* jt = THREAD;
1925       bool guard_pages_enabled = jt->stack_overflow_state()->reguard_stack_if_needed();
1926       assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1927     }
1928     return;
1929   }
1930 
1931   assert(!constant_pool->tag_at(index).is_symbol(),
1932          "no symbolic names here, please");
1933 }
1934 
1935 #if INCLUDE_JFR
1936 
1937 class DeoptReasonSerializer : public JfrSerializer {
1938  public:
1939   void serialize(JfrCheckpointWriter& writer) {
1940     writer.write_count((u4)(Deoptimization::Reason_LIMIT + 1)); // + Reason::many (-1)
1941     for (int i = -1; i < Deoptimization::Reason_LIMIT; ++i) {
1942       writer.write_key((u8)i);
1943       writer.write(Deoptimization::trap_reason_name(i));
1944     }
1945   }
1946 };
1947 
1948 class DeoptActionSerializer : public JfrSerializer {
1949  public:
1950   void serialize(JfrCheckpointWriter& writer) {
1951     static const u4 nof_actions = Deoptimization::Action_LIMIT;
1952     writer.write_count(nof_actions);
1953     for (u4 i = 0; i < Deoptimization::Action_LIMIT; ++i) {
1954       writer.write_key(i);
1955       writer.write(Deoptimization::trap_action_name((int)i));
1956     }
1957   }
1958 };
1959 
1960 static void register_serializers() {
1961   static int critical_section = 0;
1962   if (1 == critical_section || Atomic::cmpxchg(&critical_section, 0, 1) == 1) {
1963     return;
1964   }
1965   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONREASON, true, new DeoptReasonSerializer());
1966   JfrSerializer::register_serializer(TYPE_DEOPTIMIZATIONACTION, true, new DeoptActionSerializer());
1967 }
1968 
1969 static void post_deoptimization_event(nmethod* nm,
1970                                       const Method* method,
1971                                       int trap_bci,
1972                                       int instruction,
1973                                       Deoptimization::DeoptReason reason,
1974                                       Deoptimization::DeoptAction action) {
1975   assert(nm != nullptr, "invariant");
1976   assert(method != nullptr, "invariant");
1977   if (EventDeoptimization::is_enabled()) {
1978     static bool serializers_registered = false;
1979     if (!serializers_registered) {
1980       register_serializers();
1981       serializers_registered = true;
1982     }
1983     EventDeoptimization event;
1984     event.set_compileId(nm->compile_id());
1985     event.set_compiler(nm->compiler_type());
1986     event.set_method(method);
1987     event.set_lineNumber(method->line_number_from_bci(trap_bci));
1988     event.set_bci(trap_bci);
1989     event.set_instruction(instruction);
1990     event.set_reason(reason);
1991     event.set_action(action);
1992     event.commit();
1993   }
1994 }
1995 
1996 #endif // INCLUDE_JFR
1997 
1998 static void log_deopt(nmethod* nm, Method* tm, intptr_t pc, frame& fr, int trap_bci,
1999                               const char* reason_name, const char* reason_action) {
2000   LogTarget(Debug, deoptimization) lt;
2001   if (lt.is_enabled()) {
2002     LogStream ls(lt);
2003     bool is_osr = nm->is_osr_method();
2004     ls.print("cid=%4d %s level=%d",
2005              nm->compile_id(), (is_osr ? "osr" : "   "), nm->comp_level());
2006     ls.print(" %s", tm->name_and_sig_as_C_string());
2007     ls.print(" trap_bci=%d ", trap_bci);
2008     if (is_osr) {
2009       ls.print("osr_bci=%d ", nm->osr_entry_bci());
2010     }
2011     ls.print("%s ", reason_name);
2012     ls.print("%s ", reason_action);
2013     ls.print_cr("pc=" INTPTR_FORMAT " relative_pc=" INTPTR_FORMAT,
2014              pc, fr.pc() - nm->code_begin());
2015   }
2016 }
2017 
2018 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* current, jint trap_request)) {
2019   HandleMark hm(current);
2020 
2021   // uncommon_trap() is called at the beginning of the uncommon trap
2022   // handler. Note this fact before we start generating temporary frames
2023   // that can confuse an asynchronous stack walker. This counter is
2024   // decremented at the end of unpack_frames().
2025 
2026   current->inc_in_deopt_handler();
2027 
2028 #if INCLUDE_JVMCI
2029   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
2030   RegisterMap reg_map(current,
2031                       RegisterMap::UpdateMap::include,
2032                       RegisterMap::ProcessFrames::include,
2033                       RegisterMap::WalkContinuation::skip);
2034 #else
2035   RegisterMap reg_map(current,
2036                       RegisterMap::UpdateMap::skip,
2037                       RegisterMap::ProcessFrames::include,
2038                       RegisterMap::WalkContinuation::skip);
2039 #endif
2040   frame stub_frame = current->last_frame();
2041   frame fr = stub_frame.sender(&reg_map);
2042 
2043   // Log a message
2044   Events::log_deopt_message(current, "Uncommon trap: trap_request=" INT32_FORMAT_X_0 " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
2045               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
2046 
2047   {
2048     ResourceMark rm;
2049 
2050     DeoptReason reason = trap_request_reason(trap_request);
2051     DeoptAction action = trap_request_action(trap_request);
2052 #if INCLUDE_JVMCI
2053     int debug_id = trap_request_debug_id(trap_request);
2054 #endif
2055     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
2056 
2057     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, current);
2058     compiledVFrame* cvf = compiledVFrame::cast(vf);
2059 
2060     nmethod* nm = cvf->code();
2061 
2062     ScopeDesc*      trap_scope  = cvf->scope();
2063 
2064     bool is_receiver_constraint_failure = COMPILER2_PRESENT(VerifyReceiverTypes &&) (reason == Deoptimization::Reason_receiver_constraint);
2065 
2066     if (is_receiver_constraint_failure) {
2067       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"),
2068                     trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
2069                     JVMCI_ONLY(COMMA debug_id));
2070     }
2071 
2072     methodHandle    trap_method(current, trap_scope->method());
2073     int             trap_bci    = trap_scope->bci();
2074 #if INCLUDE_JVMCI
2075     jlong           speculation = current->pending_failed_speculation();
2076     if (nm->is_compiled_by_jvmci()) {
2077       nm->update_speculation(current);
2078     } else {
2079       assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers");
2080     }
2081 
2082     if (trap_bci == SynchronizationEntryBCI) {
2083       trap_bci = 0;
2084       current->set_pending_monitorenter(true);
2085     }
2086 
2087     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
2088       current->set_pending_transfer_to_interpreter(true);
2089     }
2090 #endif
2091 
2092     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
2093     // Record this event in the histogram.
2094     gather_statistics(reason, action, trap_bc);
2095 
2096     // Ensure that we can record deopt. history:
2097     bool create_if_missing = ProfileTraps;
2098 
2099     methodHandle profiled_method;
2100 #if INCLUDE_JVMCI
2101     if (nm->is_compiled_by_jvmci()) {
2102       profiled_method = methodHandle(current, nm->method());
2103     } else {
2104       profiled_method = trap_method;
2105     }
2106 #else
2107     profiled_method = trap_method;
2108 #endif
2109 
2110     MethodData* trap_mdo =
2111       get_method_data(current, profiled_method, create_if_missing);
2112 
2113     { // Log Deoptimization event for JFR, UL and event system
2114       Method* tm = trap_method();
2115       const char* reason_name = trap_reason_name(reason);
2116       const char* reason_action = trap_action_name(action);
2117       intptr_t pc = p2i(fr.pc());
2118 
2119       JFR_ONLY(post_deoptimization_event(nm, tm, trap_bci, trap_bc, reason, action);)
2120       log_deopt(nm, tm, pc, fr, trap_bci, reason_name, reason_action);
2121       Events::log_deopt_message(current, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
2122                                 reason_name, reason_action, pc,
2123                                 tm->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
2124     }
2125 
2126     // Print a bunch of diagnostics, if requested.
2127     if (TraceDeoptimization || LogCompilation || is_receiver_constraint_failure) {
2128       ResourceMark rm;
2129 
2130       // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2131       // We must do this already now, since we cannot acquire this lock while
2132       // holding the tty lock (lock ordering by rank).
2133       MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2134 
2135       ttyLocker ttyl;
2136 
2137       char buf[100];
2138       if (xtty != nullptr) {
2139         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
2140                          os::current_thread_id(),
2141                          format_trap_request(buf, sizeof(buf), trap_request));
2142 #if INCLUDE_JVMCI
2143         if (speculation != 0) {
2144           xtty->print(" speculation='" JLONG_FORMAT "'", speculation);
2145         }
2146 #endif
2147         nm->log_identity(xtty);
2148       }
2149       Symbol* class_name = nullptr;
2150       bool unresolved = false;
2151       if (unloaded_class_index >= 0) {
2152         constantPoolHandle constants (current, trap_method->constants());
2153         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
2154           class_name = constants->klass_name_at(unloaded_class_index);
2155           unresolved = true;
2156           if (xtty != nullptr)
2157             xtty->print(" unresolved='1'");
2158         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
2159           class_name = constants->symbol_at(unloaded_class_index);
2160         }
2161         if (xtty != nullptr)
2162           xtty->name(class_name);
2163       }
2164       if (xtty != nullptr && trap_mdo != nullptr && (int)reason < (int)MethodData::_trap_hist_limit) {
2165         // Dump the relevant MDO state.
2166         // This is the deopt count for the current reason, any previous
2167         // reasons or recompiles seen at this point.
2168         int dcnt = trap_mdo->trap_count(reason);
2169         if (dcnt != 0)
2170           xtty->print(" count='%d'", dcnt);
2171 
2172         // We need to lock to read the ProfileData. But to keep the locks ordered, we need to
2173         // lock extra_data_lock before the tty lock.
2174         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
2175         int dos = (pdata == nullptr)? 0: pdata->trap_state();
2176         if (dos != 0) {
2177           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
2178           if (trap_state_is_recompiled(dos)) {
2179             int recnt2 = trap_mdo->overflow_recompile_count();
2180             if (recnt2 != 0)
2181               xtty->print(" recompiles2='%d'", recnt2);
2182           }
2183         }
2184       }
2185       if (xtty != nullptr) {
2186         xtty->stamp();
2187         xtty->end_head();
2188       }
2189       if (TraceDeoptimization) {  // make noise on the tty
2190         stringStream st;
2191         st.print("UNCOMMON TRAP method=%s", trap_scope->method()->name_and_sig_as_C_string());
2192         st.print("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT JVMCI_ONLY(", debug_id=%d"),
2193                  trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin() JVMCI_ONLY(COMMA debug_id));
2194         st.print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
2195 #if INCLUDE_JVMCI
2196         if (nm->is_compiled_by_jvmci()) {
2197           const char* installed_code_name = nm->jvmci_name();
2198           if (installed_code_name != nullptr) {
2199             st.print(" (JVMCI: installed code name=%s) ", installed_code_name);
2200           }
2201         }
2202 #endif
2203         st.print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
2204                    p2i(fr.pc()),
2205                    os::current_thread_id(),
2206                    trap_reason_name(reason),
2207                    trap_action_name(action),
2208                    unloaded_class_index
2209 #if INCLUDE_JVMCI
2210                    , debug_id
2211 #endif
2212                    );
2213         if (class_name != nullptr) {
2214           st.print(unresolved ? " unresolved class: " : " symbol: ");
2215           class_name->print_symbol_on(&st);
2216         }
2217         st.cr();
2218         tty->print_raw(st.freeze());
2219       }
2220       if (xtty != nullptr) {
2221         // Log the precise location of the trap.
2222         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
2223           xtty->begin_elem("jvms bci='%d'", sd->bci());
2224           xtty->method(sd->method());
2225           xtty->end_elem();
2226           if (sd->is_top())  break;
2227         }
2228         xtty->tail("uncommon_trap");
2229       }
2230     }
2231     // (End diagnostic printout.)
2232 
2233     if (is_receiver_constraint_failure) {
2234       fatal("missing receiver type check");
2235     }
2236 
2237     // Load class if necessary
2238     if (unloaded_class_index >= 0) {
2239       constantPoolHandle constants(current, trap_method->constants());
2240       load_class_by_index(constants, unloaded_class_index, THREAD);
2241     }
2242 
2243     // Flush the nmethod if necessary and desirable.
2244     //
2245     // We need to avoid situations where we are re-flushing the nmethod
2246     // because of a hot deoptimization site.  Repeated flushes at the same
2247     // point need to be detected by the compiler and avoided.  If the compiler
2248     // cannot avoid them (or has a bug and "refuses" to avoid them), this
2249     // module must take measures to avoid an infinite cycle of recompilation
2250     // and deoptimization.  There are several such measures:
2251     //
2252     //   1. If a recompilation is ordered a second time at some site X
2253     //   and for the same reason R, the action is adjusted to 'reinterpret',
2254     //   to give the interpreter time to exercise the method more thoroughly.
2255     //   If this happens, the method's overflow_recompile_count is incremented.
2256     //
2257     //   2. If the compiler fails to reduce the deoptimization rate, then
2258     //   the method's overflow_recompile_count will begin to exceed the set
2259     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
2260     //   is adjusted to 'make_not_compilable', and the method is abandoned
2261     //   to the interpreter.  This is a performance hit for hot methods,
2262     //   but is better than a disastrous infinite cycle of recompilations.
2263     //   (Actually, only the method containing the site X is abandoned.)
2264     //
2265     //   3. In parallel with the previous measures, if the total number of
2266     //   recompilations of a method exceeds the much larger set limit
2267     //   PerMethodRecompilationCutoff, the method is abandoned.
2268     //   This should only happen if the method is very large and has
2269     //   many "lukewarm" deoptimizations.  The code which enforces this
2270     //   limit is elsewhere (class nmethod, class Method).
2271     //
2272     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
2273     // to recompile at each bytecode independently of the per-BCI cutoff.
2274     //
2275     // The decision to update code is up to the compiler, and is encoded
2276     // in the Action_xxx code.  If the compiler requests Action_none
2277     // no trap state is changed, no compiled code is changed, and the
2278     // computation suffers along in the interpreter.
2279     //
2280     // The other action codes specify various tactics for decompilation
2281     // and recompilation.  Action_maybe_recompile is the loosest, and
2282     // allows the compiled code to stay around until enough traps are seen,
2283     // and until the compiler gets around to recompiling the trapping method.
2284     //
2285     // The other actions cause immediate removal of the present code.
2286 
2287     // Traps caused by injected profile shouldn't pollute trap counts.
2288     bool injected_profile_trap = trap_method->has_injected_profile() &&
2289                                  (reason == Reason_intrinsic || reason == Reason_unreached);
2290 
2291     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
2292     bool make_not_entrant = false;
2293     bool make_not_compilable = false;
2294     bool reprofile = false;
2295     switch (action) {
2296     case Action_none:
2297       // Keep the old code.
2298       update_trap_state = false;
2299       break;
2300     case Action_maybe_recompile:
2301       // Do not need to invalidate the present code, but we can
2302       // initiate another
2303       // Start compiler without (necessarily) invalidating the nmethod.
2304       // The system will tolerate the old code, but new code should be
2305       // generated when possible.
2306       break;
2307     case Action_reinterpret:
2308       // Go back into the interpreter for a while, and then consider
2309       // recompiling form scratch.
2310       make_not_entrant = true;
2311       // Reset invocation counter for outer most method.
2312       // This will allow the interpreter to exercise the bytecodes
2313       // for a while before recompiling.
2314       // By contrast, Action_make_not_entrant is immediate.
2315       //
2316       // Note that the compiler will track null_check, null_assert,
2317       // range_check, and class_check events and log them as if they
2318       // had been traps taken from compiled code.  This will update
2319       // the MDO trap history so that the next compilation will
2320       // properly detect hot trap sites.
2321       reprofile = true;
2322       break;
2323     case Action_make_not_entrant:
2324       // Request immediate recompilation, and get rid of the old code.
2325       // Make them not entrant, so next time they are called they get
2326       // recompiled.  Unloaded classes are loaded now so recompile before next
2327       // time they are called.  Same for uninitialized.  The interpreter will
2328       // link the missing class, if any.
2329       make_not_entrant = true;
2330       break;
2331     case Action_make_not_compilable:
2332       // Give up on compiling this method at all.
2333       make_not_entrant = true;
2334       make_not_compilable = true;
2335       break;
2336     default:
2337       ShouldNotReachHere();
2338     }
2339 
2340     // Setting +ProfileTraps fixes the following, on all platforms:
2341     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
2342     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
2343     // recompile relies on a MethodData* to record heroic opt failures.
2344 
2345     // Whether the interpreter is producing MDO data or not, we also need
2346     // to use the MDO to detect hot deoptimization points and control
2347     // aggressive optimization.
2348     bool inc_recompile_count = false;
2349 
2350     // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2351     ConditionalMutexLocker ml((trap_mdo != nullptr) ? trap_mdo->extra_data_lock() : nullptr,
2352                               (trap_mdo != nullptr),
2353                               Mutex::_no_safepoint_check_flag);
2354     ProfileData* pdata = nullptr;
2355     if (ProfileTraps && CompilerConfig::is_c2_or_jvmci_compiler_enabled() && update_trap_state && trap_mdo != nullptr) {
2356       assert(trap_mdo == get_method_data(current, profiled_method, false), "sanity");
2357       uint this_trap_count = 0;
2358       bool maybe_prior_trap = false;
2359       bool maybe_prior_recompile = false;
2360 
2361       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
2362 #if INCLUDE_JVMCI
2363                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
2364 #endif
2365                                    nm->method(),
2366                                    //outputs:
2367                                    this_trap_count,
2368                                    maybe_prior_trap,
2369                                    maybe_prior_recompile);
2370       // Because the interpreter also counts null, div0, range, and class
2371       // checks, these traps from compiled code are double-counted.
2372       // This is harmless; it just means that the PerXTrapLimit values
2373       // are in effect a little smaller than they look.
2374 
2375       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2376       if (per_bc_reason != Reason_none) {
2377         // Now take action based on the partially known per-BCI history.
2378         if (maybe_prior_trap
2379             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
2380           // If there are too many traps at this BCI, force a recompile.
2381           // This will allow the compiler to see the limit overflow, and
2382           // take corrective action, if possible.  The compiler generally
2383           // does not use the exact PerBytecodeTrapLimit value, but instead
2384           // changes its tactics if it sees any traps at all.  This provides
2385           // a little hysteresis, delaying a recompile until a trap happens
2386           // several times.
2387           //
2388           // Actually, since there is only one bit of counter per BCI,
2389           // the possible per-BCI counts are {0,1,(per-method count)}.
2390           // This produces accurate results if in fact there is only
2391           // one hot trap site, but begins to get fuzzy if there are
2392           // many sites.  For example, if there are ten sites each
2393           // trapping two or more times, they each get the blame for
2394           // all of their traps.
2395           make_not_entrant = true;
2396         }
2397 
2398         // Detect repeated recompilation at the same BCI, and enforce a limit.
2399         if (make_not_entrant && maybe_prior_recompile) {
2400           // More than one recompile at this point.
2401           inc_recompile_count = maybe_prior_trap;
2402         }
2403       } else {
2404         // For reasons which are not recorded per-bytecode, we simply
2405         // force recompiles unconditionally.
2406         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
2407         make_not_entrant = true;
2408       }
2409 
2410       // Go back to the compiler if there are too many traps in this method.
2411       if (this_trap_count >= per_method_trap_limit(reason)) {
2412         // If there are too many traps in this method, force a recompile.
2413         // This will allow the compiler to see the limit overflow, and
2414         // take corrective action, if possible.
2415         // (This condition is an unlikely backstop only, because the
2416         // PerBytecodeTrapLimit is more likely to take effect first,
2417         // if it is applicable.)
2418         make_not_entrant = true;
2419       }
2420 
2421       // Here's more hysteresis:  If there has been a recompile at
2422       // this trap point already, run the method in the interpreter
2423       // for a while to exercise it more thoroughly.
2424       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
2425         reprofile = true;
2426       }
2427     }
2428 
2429     // Take requested actions on the method:
2430 
2431     // Recompile
2432     if (make_not_entrant) {
2433       if (!nm->make_not_entrant()) {
2434         return; // the call did not change nmethod's state
2435       }
2436 
2437       if (pdata != nullptr) {
2438         // Record the recompilation event, if any.
2439         int tstate0 = pdata->trap_state();
2440         int tstate1 = trap_state_set_recompiled(tstate0, true);
2441         if (tstate1 != tstate0)
2442           pdata->set_trap_state(tstate1);
2443       }
2444 
2445       // For code aging we count traps separately here, using make_not_entrant()
2446       // as a guard against simultaneous deopts in multiple threads.
2447       if (reason == Reason_tenured && trap_mdo != nullptr) {
2448         trap_mdo->inc_tenure_traps();
2449       }
2450     }
2451 
2452     if (inc_recompile_count) {
2453       trap_mdo->inc_overflow_recompile_count();
2454       if ((uint)trap_mdo->overflow_recompile_count() >
2455           (uint)PerBytecodeRecompilationCutoff) {
2456         // Give up on the method containing the bad BCI.
2457         if (trap_method() == nm->method()) {
2458           make_not_compilable = true;
2459         } else {
2460           trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization);
2461           // But give grace to the enclosing nm->method().
2462         }
2463       }
2464     }
2465 
2466     // Reprofile
2467     if (reprofile) {
2468       CompilationPolicy::reprofile(trap_scope, nm->is_osr_method());
2469     }
2470 
2471     // Give up compiling
2472     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2473       assert(make_not_entrant, "consistent");
2474       nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization);
2475     }
2476 
2477     if (ProfileExceptionHandlers && trap_mdo != nullptr) {
2478       BitData* exception_handler_data = trap_mdo->exception_handler_bci_to_data_or_null(trap_bci);
2479       if (exception_handler_data != nullptr) {
2480         // uncommon trap at the start of an exception handler.
2481         // C2 generates these for un-entered exception handlers.
2482         // mark the handler as entered to avoid generating
2483         // another uncommon trap the next time the handler is compiled
2484         exception_handler_data->set_exception_handler_entered();
2485       }
2486     }
2487 
2488   } // Free marked resources
2489 
2490 }
2491 JRT_END
2492 
2493 ProfileData*
2494 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2495                                          int trap_bci,
2496                                          Deoptimization::DeoptReason reason,
2497                                          bool update_total_trap_count,
2498 #if INCLUDE_JVMCI
2499                                          bool is_osr,
2500 #endif
2501                                          Method* compiled_method,
2502                                          //outputs:
2503                                          uint& ret_this_trap_count,
2504                                          bool& ret_maybe_prior_trap,
2505                                          bool& ret_maybe_prior_recompile) {
2506   trap_mdo->check_extra_data_locked();
2507 
2508   bool maybe_prior_trap = false;
2509   bool maybe_prior_recompile = false;
2510   uint this_trap_count = 0;
2511   if (update_total_trap_count) {
2512     uint idx = reason;
2513 #if INCLUDE_JVMCI
2514     if (is_osr) {
2515       // Upper half of history array used for traps in OSR compilations
2516       idx += Reason_TRAP_HISTORY_LENGTH;
2517     }
2518 #endif
2519     uint prior_trap_count = trap_mdo->trap_count(idx);
2520     this_trap_count  = trap_mdo->inc_trap_count(idx);
2521 
2522     // If the runtime cannot find a place to store trap history,
2523     // it is estimated based on the general condition of the method.
2524     // If the method has ever been recompiled, or has ever incurred
2525     // a trap with the present reason , then this BCI is assumed
2526     // (pessimistically) to be the culprit.
2527     maybe_prior_trap      = (prior_trap_count != 0);
2528     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2529   }
2530   ProfileData* pdata = nullptr;
2531 
2532 
2533   // For reasons which are recorded per bytecode, we check per-BCI data.
2534   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2535   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2536   if (per_bc_reason != Reason_none) {
2537     // Find the profile data for this BCI.  If there isn't one,
2538     // try to allocate one from the MDO's set of spares.
2539     // This will let us detect a repeated trap at this point.
2540     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : nullptr);
2541 
2542     if (pdata != nullptr) {
2543       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2544         if (LogCompilation && xtty != nullptr) {
2545           ttyLocker ttyl;
2546           // no more room for speculative traps in this MDO
2547           xtty->elem("speculative_traps_oom");
2548         }
2549       }
2550       // Query the trap state of this profile datum.
2551       int tstate0 = pdata->trap_state();
2552       if (!trap_state_has_reason(tstate0, per_bc_reason))
2553         maybe_prior_trap = false;
2554       if (!trap_state_is_recompiled(tstate0))
2555         maybe_prior_recompile = false;
2556 
2557       // Update the trap state of this profile datum.
2558       int tstate1 = tstate0;
2559       // Record the reason.
2560       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2561       // Store the updated state on the MDO, for next time.
2562       if (tstate1 != tstate0)
2563         pdata->set_trap_state(tstate1);
2564     } else {
2565       if (LogCompilation && xtty != nullptr) {
2566         ttyLocker ttyl;
2567         // Missing MDP?  Leave a small complaint in the log.
2568         xtty->elem("missing_mdp bci='%d'", trap_bci);
2569       }
2570     }
2571   }
2572 
2573   // Return results:
2574   ret_this_trap_count = this_trap_count;
2575   ret_maybe_prior_trap = maybe_prior_trap;
2576   ret_maybe_prior_recompile = maybe_prior_recompile;
2577   return pdata;
2578 }
2579 
2580 void
2581 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2582   ResourceMark rm;
2583   // Ignored outputs:
2584   uint ignore_this_trap_count;
2585   bool ignore_maybe_prior_trap;
2586   bool ignore_maybe_prior_recompile;
2587   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2588   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2589   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
2590 
2591   // Lock to read ProfileData, and ensure lock is not broken by a safepoint
2592   MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag);
2593 
2594   query_update_method_data(trap_mdo, trap_bci,
2595                            (DeoptReason)reason,
2596                            update_total_counts,
2597 #if INCLUDE_JVMCI
2598                            false,
2599 #endif
2600                            nullptr,
2601                            ignore_this_trap_count,
2602                            ignore_maybe_prior_trap,
2603                            ignore_maybe_prior_recompile);
2604 }
2605 
2606 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* current, jint trap_request, jint exec_mode) {
2607   // Enable WXWrite: current function is called from methods compiled by C2 directly
2608   MACOS_AARCH64_ONLY(ThreadWXEnable wx(WXWrite, current));
2609 
2610   // Still in Java no safepoints
2611   {
2612     // This enters VM and may safepoint
2613     uncommon_trap_inner(current, trap_request);
2614   }
2615   HandleMark hm(current);
2616   return fetch_unroll_info_helper(current, exec_mode);
2617 }
2618 
2619 // Local derived constants.
2620 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2621 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2622 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2623 
2624 //---------------------------trap_state_reason---------------------------------
2625 Deoptimization::DeoptReason
2626 Deoptimization::trap_state_reason(int trap_state) {
2627   // This assert provides the link between the width of DataLayout::trap_bits
2628   // and the encoding of "recorded" reasons.  It ensures there are enough
2629   // bits to store all needed reasons in the per-BCI MDO profile.
2630   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2631   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2632   trap_state -= recompile_bit;
2633   if (trap_state == DS_REASON_MASK) {
2634     return Reason_many;
2635   } else {
2636     assert((int)Reason_none == 0, "state=0 => Reason_none");
2637     return (DeoptReason)trap_state;
2638   }
2639 }
2640 //-------------------------trap_state_has_reason-------------------------------
2641 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2642   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2643   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2644   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2645   trap_state -= recompile_bit;
2646   if (trap_state == DS_REASON_MASK) {
2647     return -1;  // true, unspecifically (bottom of state lattice)
2648   } else if (trap_state == reason) {
2649     return 1;   // true, definitely
2650   } else if (trap_state == 0) {
2651     return 0;   // false, definitely (top of state lattice)
2652   } else {
2653     return 0;   // false, definitely
2654   }
2655 }
2656 //-------------------------trap_state_add_reason-------------------------------
2657 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2658   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2659   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2660   trap_state -= recompile_bit;
2661   if (trap_state == DS_REASON_MASK) {
2662     return trap_state + recompile_bit;     // already at state lattice bottom
2663   } else if (trap_state == reason) {
2664     return trap_state + recompile_bit;     // the condition is already true
2665   } else if (trap_state == 0) {
2666     return reason + recompile_bit;          // no condition has yet been true
2667   } else {
2668     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2669   }
2670 }
2671 //-----------------------trap_state_is_recompiled------------------------------
2672 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2673   return (trap_state & DS_RECOMPILE_BIT) != 0;
2674 }
2675 //-----------------------trap_state_set_recompiled-----------------------------
2676 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2677   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2678   else    return trap_state & ~DS_RECOMPILE_BIT;
2679 }
2680 //---------------------------format_trap_state---------------------------------
2681 // This is used for debugging and diagnostics, including LogFile output.
2682 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2683                                               int trap_state) {
2684   assert(buflen > 0, "sanity");
2685   DeoptReason reason      = trap_state_reason(trap_state);
2686   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2687   // Re-encode the state from its decoded components.
2688   int decoded_state = 0;
2689   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2690     decoded_state = trap_state_add_reason(decoded_state, reason);
2691   if (recomp_flag)
2692     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2693   // If the state re-encodes properly, format it symbolically.
2694   // Because this routine is used for debugging and diagnostics,
2695   // be robust even if the state is a strange value.
2696   size_t len;
2697   if (decoded_state != trap_state) {
2698     // Random buggy state that doesn't decode??
2699     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2700   } else {
2701     len = jio_snprintf(buf, buflen, "%s%s",
2702                        trap_reason_name(reason),
2703                        recomp_flag ? " recompiled" : "");
2704   }
2705   return buf;
2706 }
2707 
2708 
2709 //--------------------------------statics--------------------------------------
2710 const char* Deoptimization::_trap_reason_name[] = {
2711   // Note:  Keep this in sync. with enum DeoptReason.
2712   "none",
2713   "null_check",
2714   "null_assert" JVMCI_ONLY("_or_unreached0"),
2715   "range_check",
2716   "class_check",
2717   "array_check",
2718   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2719   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2720   "profile_predicate",
2721   "unloaded",
2722   "uninitialized",
2723   "initialized",
2724   "unreached",
2725   "unhandled",
2726   "constraint",
2727   "div0_check",
2728   "age",
2729   "predicate",
2730   "loop_limit_check",
2731   "speculate_class_check",
2732   "speculate_null_check",
2733   "speculate_null_assert",
2734   "unstable_if",
2735   "unstable_fused_if",
2736   "receiver_constraint",
2737 #if INCLUDE_JVMCI
2738   "aliasing",
2739   "transfer_to_interpreter",
2740   "not_compiled_exception_handler",
2741   "unresolved",
2742   "jsr_mismatch",
2743 #endif
2744   "tenured"
2745 };
2746 const char* Deoptimization::_trap_action_name[] = {
2747   // Note:  Keep this in sync. with enum DeoptAction.
2748   "none",
2749   "maybe_recompile",
2750   "reinterpret",
2751   "make_not_entrant",
2752   "make_not_compilable"
2753 };
2754 
2755 const char* Deoptimization::trap_reason_name(int reason) {
2756   // Check that every reason has a name
2757   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2758 
2759   if (reason == Reason_many)  return "many";
2760   if ((uint)reason < Reason_LIMIT)
2761     return _trap_reason_name[reason];
2762   static char buf[20];
2763   os::snprintf_checked(buf, sizeof(buf), "reason%d", reason);
2764   return buf;
2765 }
2766 const char* Deoptimization::trap_action_name(int action) {
2767   // Check that every action has a name
2768   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2769 
2770   if ((uint)action < Action_LIMIT)
2771     return _trap_action_name[action];
2772   static char buf[20];
2773   os::snprintf_checked(buf, sizeof(buf), "action%d", action);
2774   return buf;
2775 }
2776 
2777 // This is used for debugging and diagnostics, including LogFile output.
2778 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2779                                                 int trap_request) {
2780   jint unloaded_class_index = trap_request_index(trap_request);
2781   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2782   const char* action = trap_action_name(trap_request_action(trap_request));
2783 #if INCLUDE_JVMCI
2784   int debug_id = trap_request_debug_id(trap_request);
2785 #endif
2786   size_t len;
2787   if (unloaded_class_index < 0) {
2788     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2789                        reason, action
2790 #if INCLUDE_JVMCI
2791                        ,debug_id
2792 #endif
2793                        );
2794   } else {
2795     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2796                        reason, action, unloaded_class_index
2797 #if INCLUDE_JVMCI
2798                        ,debug_id
2799 #endif
2800                        );
2801   }
2802   return buf;
2803 }
2804 
2805 juint Deoptimization::_deoptimization_hist
2806         [Deoptimization::Reason_LIMIT]
2807     [1 + Deoptimization::Action_LIMIT]
2808         [Deoptimization::BC_CASE_LIMIT]
2809   = {0};
2810 
2811 enum {
2812   LSB_BITS = 8,
2813   LSB_MASK = right_n_bits(LSB_BITS)
2814 };
2815 
2816 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2817                                        Bytecodes::Code bc) {
2818   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2819   assert(action >= 0 && action < Action_LIMIT, "oob");
2820   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2821   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2822   juint* cases = _deoptimization_hist[reason][1+action];
2823   juint* bc_counter_addr = nullptr;
2824   juint  bc_counter      = 0;
2825   // Look for an unused counter, or an exact match to this BC.
2826   if (bc != Bytecodes::_illegal) {
2827     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2828       juint* counter_addr = &cases[bc_case];
2829       juint  counter = *counter_addr;
2830       if ((counter == 0 && bc_counter_addr == nullptr)
2831           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2832         // this counter is either free or is already devoted to this BC
2833         bc_counter_addr = counter_addr;
2834         bc_counter = counter | bc;
2835       }
2836     }
2837   }
2838   if (bc_counter_addr == nullptr) {
2839     // Overflow, or no given bytecode.
2840     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2841     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2842   }
2843   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2844 }
2845 
2846 jint Deoptimization::total_deoptimization_count() {
2847   return _deoptimization_hist[Reason_none][0][0];
2848 }
2849 
2850 // Get the deopt count for a specific reason and a specific action. If either
2851 // one of 'reason' or 'action' is null, the method returns the sum of all
2852 // deoptimizations with the specific 'action' or 'reason' respectively.
2853 // If both arguments are null, the method returns the total deopt count.
2854 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2855   if (reason_str == nullptr && action_str == nullptr) {
2856     return total_deoptimization_count();
2857   }
2858   juint counter = 0;
2859   for (int reason = 0; reason < Reason_LIMIT; reason++) {
2860     if (reason_str == nullptr || !strcmp(reason_str, trap_reason_name(reason))) {
2861       for (int action = 0; action < Action_LIMIT; action++) {
2862         if (action_str == nullptr || !strcmp(action_str, trap_action_name(action))) {
2863           juint* cases = _deoptimization_hist[reason][1+action];
2864           for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2865             counter += cases[bc_case] >> LSB_BITS;
2866           }
2867         }
2868       }
2869     }
2870   }
2871   return counter;
2872 }
2873 
2874 void Deoptimization::print_statistics() {
2875   juint total = total_deoptimization_count();
2876   juint account = total;
2877   if (total != 0) {
2878     ttyLocker ttyl;
2879     if (xtty != nullptr)  xtty->head("statistics type='deoptimization'");
2880     tty->print_cr("Deoptimization traps recorded:");
2881     #define PRINT_STAT_LINE(name, r) \
2882       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2883     PRINT_STAT_LINE("total", total);
2884     // For each non-zero entry in the histogram, print the reason,
2885     // the action, and (if specifically known) the type of bytecode.
2886     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2887       for (int action = 0; action < Action_LIMIT; action++) {
2888         juint* cases = _deoptimization_hist[reason][1+action];
2889         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2890           juint counter = cases[bc_case];
2891           if (counter != 0) {
2892             char name[1*K];
2893             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2894             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2895               bc = Bytecodes::_illegal;
2896             os::snprintf_checked(name, sizeof(name), "%s/%s/%s",
2897                     trap_reason_name(reason),
2898                     trap_action_name(action),
2899                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2900             juint r = counter >> LSB_BITS;
2901             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2902             account -= r;
2903           }
2904         }
2905       }
2906     }
2907     if (account != 0) {
2908       PRINT_STAT_LINE("unaccounted", account);
2909     }
2910     #undef PRINT_STAT_LINE
2911     if (xtty != nullptr)  xtty->tail("statistics");
2912   }
2913 }
2914 
2915 #else // COMPILER2_OR_JVMCI
2916 
2917 
2918 // Stubs for C1 only system.
2919 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2920   return false;
2921 }
2922 
2923 const char* Deoptimization::trap_reason_name(int reason) {
2924   return "unknown";
2925 }
2926 
2927 jint Deoptimization::total_deoptimization_count() {
2928   return 0;
2929 }
2930 
2931 jint Deoptimization::deoptimization_count(const char *reason_str, const char *action_str) {
2932   return 0;
2933 }
2934 
2935 void Deoptimization::print_statistics() {
2936   // no output
2937 }
2938 
2939 void
2940 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2941   // no update
2942 }
2943 
2944 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2945   return 0;
2946 }
2947 
2948 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2949                                        Bytecodes::Code bc) {
2950   // no update
2951 }
2952 
2953 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2954                                               int trap_state) {
2955   jio_snprintf(buf, buflen, "#%d", trap_state);
2956   return buf;
2957 }
2958 
2959 #endif // COMPILER2_OR_JVMCI
--- EOF ---