1 /*
   2  * Copyright (c) 2024, 2025, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "classfile/vmSymbols.hpp"
  26 #include "jfrfiles/jfrEventClasses.hpp"
  27 #include "logging/log.hpp"
  28 #include "memory/allStatic.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "nmt/memTag.hpp"
  31 #include "oops/oop.inline.hpp"
  32 #include "runtime/atomic.hpp"
  33 #include "runtime/basicLock.inline.hpp"
  34 #include "runtime/globals_extension.hpp"
  35 #include "runtime/interfaceSupport.inline.hpp"
  36 #include "runtime/javaThread.inline.hpp"
  37 #include "runtime/lightweightSynchronizer.hpp"
  38 #include "runtime/lockStack.inline.hpp"
  39 #include "runtime/mutexLocker.hpp"
  40 #include "runtime/objectMonitor.inline.hpp"
  41 #include "runtime/os.hpp"
  42 #include "runtime/perfData.inline.hpp"
  43 #include "runtime/safepointMechanism.inline.hpp"
  44 #include "runtime/safepointVerifiers.hpp"
  45 #include "runtime/synchronizer.inline.hpp"
  46 #include "runtime/timerTrace.hpp"
  47 #include "runtime/trimNativeHeap.hpp"
  48 #include "utilities/concurrentHashTable.inline.hpp"
  49 #include "utilities/concurrentHashTableTasks.inline.hpp"
  50 #include "utilities/globalDefinitions.hpp"
  51 
  52 // ConcurrentHashTable storing links from objects to ObjectMonitors
  53 class ObjectMonitorTable : AllStatic {
  54   struct Config {
  55     using Value = ObjectMonitor*;
  56     static uintx get_hash(Value const& value, bool* is_dead) {
  57       return (uintx)value->hash();
  58     }
  59     static void* allocate_node(void* context, size_t size, Value const& value) {
  60       ObjectMonitorTable::inc_items_count();
  61       return AllocateHeap(size, mtObjectMonitor);
  62     };
  63     static void free_node(void* context, void* memory, Value const& value) {
  64       ObjectMonitorTable::dec_items_count();
  65       FreeHeap(memory);
  66     }
  67   };
  68   using ConcurrentTable = ConcurrentHashTable<Config, mtObjectMonitor>;
  69 
  70   static ConcurrentTable* _table;
  71   static volatile size_t _items_count;
  72   static size_t _table_size;
  73   static volatile bool _resize;
  74 
  75   class Lookup : public StackObj {
  76     oop _obj;
  77 
  78    public:
  79     explicit Lookup(oop obj) : _obj(obj) {}
  80 
  81     uintx get_hash() const {
  82       uintx hash = _obj->mark().hash();
  83       assert(hash != 0, "should have a hash");
  84       return hash;
  85     }
  86 
  87     bool equals(ObjectMonitor** value) {
  88       assert(*value != nullptr, "must be");
  89       return (*value)->object_refers_to(_obj);
  90     }
  91 
  92     bool is_dead(ObjectMonitor** value) {
  93       assert(*value != nullptr, "must be");
  94       return false;
  95     }
  96   };
  97 
  98   class LookupMonitor : public StackObj {
  99     ObjectMonitor* _monitor;
 100 
 101    public:
 102     explicit LookupMonitor(ObjectMonitor* monitor) : _monitor(monitor) {}
 103 
 104     uintx get_hash() const {
 105       return _monitor->hash();
 106     }
 107 
 108     bool equals(ObjectMonitor** value) {
 109       return (*value) == _monitor;
 110     }
 111 
 112     bool is_dead(ObjectMonitor** value) {
 113       assert(*value != nullptr, "must be");
 114       return (*value)->object_is_dead();
 115     }
 116   };
 117 
 118   static void inc_items_count() {
 119     Atomic::inc(&_items_count);
 120   }
 121 
 122   static void dec_items_count() {
 123     Atomic::dec(&_items_count);
 124   }
 125 
 126   static double get_load_factor() {
 127     return (double)_items_count / (double)_table_size;
 128   }
 129 
 130   static size_t table_size(Thread* current = Thread::current()) {
 131     return ((size_t)1) << _table->get_size_log2(current);
 132   }
 133 
 134   static size_t max_log_size() {
 135     // TODO[OMTable]: Evaluate the max size.
 136     // TODO[OMTable]: Need to fix init order to use Universe::heap()->max_capacity();
 137     //                Using MaxHeapSize directly this early may be wrong, and there
 138     //                are definitely rounding errors (alignment).
 139     const size_t max_capacity = MaxHeapSize;
 140     const size_t min_object_size = CollectedHeap::min_dummy_object_size() * HeapWordSize;
 141     const size_t max_objects = max_capacity / MAX2(MinObjAlignmentInBytes, checked_cast<int>(min_object_size));
 142     const size_t log_max_objects = log2i_graceful(max_objects);
 143 
 144     return MAX2(MIN2<size_t>(SIZE_BIG_LOG2, log_max_objects), min_log_size());
 145   }
 146 
 147   static size_t min_log_size() {
 148     // ~= log(AvgMonitorsPerThreadEstimate default)
 149     return 10;
 150   }
 151 
 152   template<typename V>
 153   static size_t clamp_log_size(V log_size) {
 154     return MAX2(MIN2(log_size, checked_cast<V>(max_log_size())), checked_cast<V>(min_log_size()));
 155   }
 156 
 157   static size_t initial_log_size() {
 158     const size_t estimate = log2i(MAX2(os::processor_count(), 1)) + log2i(MAX2(AvgMonitorsPerThreadEstimate, size_t(1)));
 159     return clamp_log_size(estimate);
 160   }
 161 
 162   static size_t grow_hint () {
 163     return ConcurrentTable::DEFAULT_GROW_HINT;
 164   }
 165 
 166  public:
 167   static void create() {
 168     _table = new ConcurrentTable(initial_log_size(), max_log_size(), grow_hint());
 169     _items_count = 0;
 170     _table_size = table_size();
 171     _resize = false;
 172   }
 173 
 174   static void verify_monitor_get_result(oop obj, ObjectMonitor* monitor) {
 175 #ifdef ASSERT
 176     if (SafepointSynchronize::is_at_safepoint()) {
 177       bool has_monitor = obj->mark().has_monitor();
 178       assert(has_monitor == (monitor != nullptr),
 179           "Inconsistency between markWord and ObjectMonitorTable has_monitor: %s monitor: " PTR_FORMAT,
 180           BOOL_TO_STR(has_monitor), p2i(monitor));
 181     }
 182 #endif
 183   }
 184 
 185   static ObjectMonitor* monitor_get(Thread* current, oop obj) {
 186     ObjectMonitor* result = nullptr;
 187     Lookup lookup_f(obj);
 188     auto found_f = [&](ObjectMonitor** found) {
 189       assert((*found)->object_peek() == obj, "must be");
 190       result = *found;
 191     };
 192     _table->get(current, lookup_f, found_f);
 193     verify_monitor_get_result(obj, result);
 194     return result;
 195   }
 196 
 197   static void try_notify_grow() {
 198     if (!_table->is_max_size_reached() && !Atomic::load(&_resize)) {
 199       Atomic::store(&_resize, true);
 200       if (Service_lock->try_lock()) {
 201         Service_lock->notify();
 202         Service_lock->unlock();
 203       }
 204     }
 205   }
 206 
 207   static bool should_shrink() {
 208     // Not implemented;
 209     return false;
 210   }
 211 
 212   static constexpr double GROW_LOAD_FACTOR = 0.75;
 213 
 214   static bool should_grow() {
 215     return get_load_factor() > GROW_LOAD_FACTOR && !_table->is_max_size_reached();
 216   }
 217 
 218   static bool should_resize() {
 219     return should_grow() || should_shrink() || Atomic::load(&_resize);
 220   }
 221 
 222   template<typename Task, typename... Args>
 223   static bool run_task(JavaThread* current, Task& task, const char* task_name, Args&... args) {
 224     if (task.prepare(current)) {
 225       log_trace(monitortable)("Started to %s", task_name);
 226       TraceTime timer(task_name, TRACETIME_LOG(Debug, monitortable, perf));
 227       while (task.do_task(current, args...)) {
 228         task.pause(current);
 229         {
 230           ThreadBlockInVM tbivm(current);
 231         }
 232         task.cont(current);
 233       }
 234       task.done(current);
 235       return true;
 236     }
 237     return false;
 238   }
 239 
 240   static bool grow(JavaThread* current) {
 241     ConcurrentTable::GrowTask grow_task(_table);
 242     if (run_task(current, grow_task, "Grow")) {
 243       _table_size = table_size(current);
 244       log_info(monitortable)("Grown to size: %zu", _table_size);
 245       return true;
 246     }
 247     return false;
 248   }
 249 
 250   static bool clean(JavaThread* current) {
 251     ConcurrentTable::BulkDeleteTask clean_task(_table);
 252     auto is_dead = [&](ObjectMonitor** monitor) {
 253       return (*monitor)->object_is_dead();
 254     };
 255     auto do_nothing = [&](ObjectMonitor** monitor) {};
 256     NativeHeapTrimmer::SuspendMark sm("ObjectMonitorTable");
 257     return run_task(current, clean_task, "Clean", is_dead, do_nothing);
 258   }
 259 
 260   static bool resize(JavaThread* current) {
 261     LogTarget(Info, monitortable) lt;
 262     bool success = false;
 263 
 264     if (should_grow()) {
 265       lt.print("Start growing with load factor %f", get_load_factor());
 266       success = grow(current);
 267     } else {
 268       if (!_table->is_max_size_reached() && Atomic::load(&_resize)) {
 269         lt.print("WARNING: Getting resize hints with load factor %f", get_load_factor());
 270       }
 271       lt.print("Start cleaning with load factor %f", get_load_factor());
 272       success = clean(current);
 273     }
 274 
 275     Atomic::store(&_resize, false);
 276 
 277     return success;
 278   }
 279 
 280   static ObjectMonitor* monitor_put_get(Thread* current, ObjectMonitor* monitor, oop obj) {
 281     // Enter the monitor into the concurrent hashtable.
 282     ObjectMonitor* result = monitor;
 283     Lookup lookup_f(obj);
 284     auto found_f = [&](ObjectMonitor** found) {
 285       assert((*found)->object_peek() == obj, "must be");
 286       result = *found;
 287     };
 288     bool grow;
 289     _table->insert_get(current, lookup_f, monitor, found_f, &grow);
 290     verify_monitor_get_result(obj, result);
 291     if (grow) {
 292       try_notify_grow();
 293     }
 294     return result;
 295   }
 296 
 297   static bool remove_monitor_entry(Thread* current, ObjectMonitor* monitor) {
 298     LookupMonitor lookup_f(monitor);
 299     return _table->remove(current, lookup_f);
 300   }
 301 
 302   static bool contains_monitor(Thread* current, ObjectMonitor* monitor) {
 303     LookupMonitor lookup_f(monitor);
 304     bool result = false;
 305     auto found_f = [&](ObjectMonitor** found) {
 306       result = true;
 307     };
 308     _table->get(current, lookup_f, found_f);
 309     return result;
 310   }
 311 
 312   static void print_on(outputStream* st) {
 313     auto printer = [&] (ObjectMonitor** entry) {
 314        ObjectMonitor* om = *entry;
 315        oop obj = om->object_peek();
 316        st->print("monitor=" PTR_FORMAT ", ", p2i(om));
 317        st->print("object=" PTR_FORMAT, p2i(obj));
 318        assert(obj->mark().hash() == om->hash(), "hash must match");
 319        st->cr();
 320        return true;
 321     };
 322     if (SafepointSynchronize::is_at_safepoint()) {
 323       _table->do_safepoint_scan(printer);
 324     } else {
 325       _table->do_scan(Thread::current(), printer);
 326     }
 327   }
 328 };
 329 
 330 ObjectMonitorTable::ConcurrentTable* ObjectMonitorTable::_table = nullptr;
 331 volatile size_t ObjectMonitorTable::_items_count = 0;
 332 size_t ObjectMonitorTable::_table_size = 0;
 333 volatile bool ObjectMonitorTable::_resize = false;
 334 
 335 ObjectMonitor* LightweightSynchronizer::get_or_insert_monitor_from_table(oop object, JavaThread* current, bool* inserted) {
 336   assert(LockingMode == LM_LIGHTWEIGHT, "must be");
 337 
 338   ObjectMonitor* monitor = get_monitor_from_table(current, object);
 339   if (monitor != nullptr) {
 340     *inserted = false;
 341     return monitor;
 342   }
 343 
 344   ObjectMonitor* alloced_monitor = new ObjectMonitor(object);
 345   alloced_monitor->set_anonymous_owner();
 346 
 347   // Try insert monitor
 348   monitor = add_monitor(current, alloced_monitor, object);
 349 
 350   *inserted = alloced_monitor == monitor;
 351   if (!*inserted) {
 352     delete alloced_monitor;
 353   }
 354 
 355   return monitor;
 356 }
 357 
 358 static void log_inflate(Thread* current, oop object, ObjectSynchronizer::InflateCause cause) {
 359   if (log_is_enabled(Trace, monitorinflation)) {
 360     ResourceMark rm(current);
 361     log_trace(monitorinflation)("inflate: object=" INTPTR_FORMAT ", mark="
 362                                 INTPTR_FORMAT ", type='%s' cause=%s", p2i(object),
 363                                 object->mark().value(), object->klass()->external_name(),
 364                                 ObjectSynchronizer::inflate_cause_name(cause));
 365   }
 366 }
 367 
 368 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
 369                                        const oop obj,
 370                                        ObjectSynchronizer::InflateCause cause) {
 371   assert(event != nullptr, "invariant");
 372   event->set_monitorClass(obj->klass());
 373   event->set_address((uintptr_t)(void*)obj);
 374   event->set_cause((u1)cause);
 375   event->commit();
 376 }
 377 
 378 ObjectMonitor* LightweightSynchronizer::get_or_insert_monitor(oop object, JavaThread* current, ObjectSynchronizer::InflateCause cause) {
 379   assert(UseObjectMonitorTable, "must be");
 380 
 381   EventJavaMonitorInflate event;
 382 
 383   bool inserted;
 384   ObjectMonitor* monitor = get_or_insert_monitor_from_table(object, current, &inserted);
 385 
 386   if (inserted) {
 387     // Hopefully the performance counters are allocated on distinct
 388     // cache lines to avoid false sharing on MP systems ...
 389     OM_PERFDATA_OP(Inflations, inc());
 390     log_inflate(current, object, cause);
 391     if (event.should_commit()) {
 392       post_monitor_inflate_event(&event, object, cause);
 393     }
 394 
 395     // The monitor has an anonymous owner so it is safe from async deflation.
 396     ObjectSynchronizer::_in_use_list.add(monitor);
 397   }
 398 
 399   return monitor;
 400 }
 401 
 402 // Add the hashcode to the monitor to match the object and put it in the hashtable.
 403 ObjectMonitor* LightweightSynchronizer::add_monitor(JavaThread* current, ObjectMonitor* monitor, oop obj) {
 404   assert(UseObjectMonitorTable, "must be");
 405   assert(obj == monitor->object(), "must be");
 406 
 407   intptr_t hash = obj->mark().hash();
 408   assert(hash != 0, "must be set when claiming the object monitor");
 409   monitor->set_hash(hash);
 410 
 411   return ObjectMonitorTable::monitor_put_get(current, monitor, obj);
 412 }
 413 
 414 bool LightweightSynchronizer::remove_monitor(Thread* current, ObjectMonitor* monitor, oop obj) {
 415   assert(UseObjectMonitorTable, "must be");
 416   assert(monitor->object_peek() == obj, "must be, cleared objects are removed by is_dead");
 417 
 418   return ObjectMonitorTable::remove_monitor_entry(current, monitor);
 419 }
 420 
 421 void LightweightSynchronizer::deflate_mark_word(oop obj) {
 422   assert(UseObjectMonitorTable, "must be");
 423 
 424   markWord mark = obj->mark_acquire();
 425   assert(!mark.has_no_hash(), "obj with inflated monitor must have had a hash");
 426 
 427   while (mark.has_monitor()) {
 428     const markWord new_mark = mark.clear_lock_bits().set_unlocked();
 429     mark = obj->cas_set_mark(new_mark, mark);
 430   }
 431 }
 432 
 433 void LightweightSynchronizer::initialize() {
 434   if (!UseObjectMonitorTable) {
 435     return;
 436   }
 437   ObjectMonitorTable::create();
 438 }
 439 
 440 bool LightweightSynchronizer::needs_resize() {
 441   if (!UseObjectMonitorTable) {
 442     return false;
 443   }
 444   return ObjectMonitorTable::should_resize();
 445 }
 446 
 447 bool LightweightSynchronizer::resize_table(JavaThread* current) {
 448   if (!UseObjectMonitorTable) {
 449     return true;
 450   }
 451   return ObjectMonitorTable::resize(current);
 452 }
 453 
 454 class LightweightSynchronizer::LockStackInflateContendedLocks : private OopClosure {
 455  private:
 456   oop _contended_oops[LockStack::CAPACITY];
 457   int _length;
 458 
 459   void do_oop(oop* o) final {
 460     oop obj = *o;
 461     if (obj->mark_acquire().has_monitor()) {
 462       if (_length > 0 && _contended_oops[_length - 1] == obj) {
 463         // Recursive
 464         return;
 465       }
 466       _contended_oops[_length++] = obj;
 467     }
 468   }
 469 
 470   void do_oop(narrowOop* o) final {
 471     ShouldNotReachHere();
 472   }
 473 
 474  public:
 475   LockStackInflateContendedLocks() :
 476     _contended_oops(),
 477     _length(0) {};
 478 
 479   void inflate(JavaThread* current) {
 480     assert(current == JavaThread::current(), "must be");
 481     current->lock_stack().oops_do(this);
 482     for (int i = 0; i < _length; i++) {
 483       LightweightSynchronizer::
 484         inflate_fast_locked_object(_contended_oops[i], ObjectSynchronizer::inflate_cause_vm_internal, current, current);
 485     }
 486   }
 487 };
 488 
 489 void LightweightSynchronizer::ensure_lock_stack_space(JavaThread* current) {
 490   assert(current == JavaThread::current(), "must be");
 491   LockStack& lock_stack = current->lock_stack();
 492 
 493   // Make room on lock_stack
 494   if (lock_stack.is_full()) {
 495     // Inflate contended objects
 496     LockStackInflateContendedLocks().inflate(current);
 497     if (lock_stack.is_full()) {
 498       // Inflate the oldest object
 499       inflate_fast_locked_object(lock_stack.bottom(), ObjectSynchronizer::inflate_cause_vm_internal, current, current);
 500     }
 501   }
 502 }
 503 
 504 class LightweightSynchronizer::CacheSetter : StackObj {
 505   JavaThread* const _thread;
 506   BasicLock* const _lock;
 507   ObjectMonitor* _monitor;
 508 
 509   NONCOPYABLE(CacheSetter);
 510 
 511  public:
 512   CacheSetter(JavaThread* thread, BasicLock* lock) :
 513     _thread(thread),
 514     _lock(lock),
 515     _monitor(nullptr) {}
 516 
 517   ~CacheSetter() {
 518     // Only use the cache if using the table.
 519     if (UseObjectMonitorTable) {
 520       if (_monitor != nullptr) {
 521         _thread->om_set_monitor_cache(_monitor);
 522         _lock->set_object_monitor_cache(_monitor);
 523       } else {
 524         _lock->clear_object_monitor_cache();
 525       }
 526     }
 527   }
 528 
 529   void set_monitor(ObjectMonitor* monitor) {
 530     assert(_monitor == nullptr, "only set once");
 531     _monitor = monitor;
 532   }
 533 
 534 };
 535 
 536 class LightweightSynchronizer::VerifyThreadState {
 537   bool _no_safepoint;
 538 
 539  public:
 540   VerifyThreadState(JavaThread* locking_thread, JavaThread* current) : _no_safepoint(locking_thread != current) {
 541     assert(current == Thread::current(), "must be");
 542     assert(locking_thread == current || locking_thread->is_obj_deopt_suspend(), "locking_thread may not run concurrently");
 543     if (_no_safepoint) {
 544       DEBUG_ONLY(JavaThread::current()->inc_no_safepoint_count();)
 545     }
 546   }
 547   ~VerifyThreadState() {
 548     if (_no_safepoint){
 549       DEBUG_ONLY(JavaThread::current()->dec_no_safepoint_count();)
 550     }
 551   }
 552 };
 553 
 554 inline bool LightweightSynchronizer::fast_lock_try_enter(oop obj, LockStack& lock_stack, JavaThread* current) {
 555   markWord mark = obj->mark();
 556   while (mark.is_unlocked()) {
 557     ensure_lock_stack_space(current);
 558     assert(!lock_stack.is_full(), "must have made room on the lock stack");
 559     assert(!lock_stack.contains(obj), "thread must not already hold the lock");
 560     // Try to swing into 'fast-locked' state.
 561     markWord locked_mark = mark.set_fast_locked();
 562     markWord old_mark = mark;
 563     mark = obj->cas_set_mark(locked_mark, old_mark);
 564     if (old_mark == mark) {
 565       // Successfully fast-locked, push object to lock-stack and return.
 566       lock_stack.push(obj);
 567       return true;
 568     }
 569   }
 570   return false;
 571 }
 572 
 573 bool LightweightSynchronizer::fast_lock_spin_enter(oop obj, LockStack& lock_stack, JavaThread* current, bool observed_deflation) {
 574   assert(UseObjectMonitorTable, "must be");
 575   // Will spin with exponential backoff with an accumulative O(2^spin_limit) spins.
 576   const int log_spin_limit = os::is_MP() ? LightweightFastLockingSpins : 1;
 577   const int log_min_safepoint_check_interval = 10;
 578 
 579   markWord mark = obj->mark();
 580   const auto should_spin = [&]() {
 581     if (!mark.has_monitor()) {
 582       // Spin while not inflated.
 583       return true;
 584     } else if (observed_deflation) {
 585       // Spin while monitor is being deflated.
 586       ObjectMonitor* monitor = ObjectSynchronizer::read_monitor(current, obj, mark);
 587       return monitor == nullptr || monitor->is_being_async_deflated();
 588     }
 589     // Else stop spinning.
 590     return false;
 591   };
 592   // Always attempt to lock once even when safepoint synchronizing.
 593   bool should_process = false;
 594   for (int i = 0; should_spin() && !should_process && i < log_spin_limit; i++) {
 595     // Spin with exponential backoff.
 596     const int total_spin_count = 1 << i;
 597     const int inner_spin_count = MIN2(1 << log_min_safepoint_check_interval, total_spin_count);
 598     const int outer_spin_count = total_spin_count / inner_spin_count;
 599     for (int outer = 0; outer < outer_spin_count; outer++) {
 600       should_process = SafepointMechanism::should_process(current);
 601       if (should_process) {
 602         // Stop spinning for safepoint.
 603         break;
 604       }
 605       for (int inner = 1; inner < inner_spin_count; inner++) {
 606         SpinPause();
 607       }
 608     }
 609 
 610     if (fast_lock_try_enter(obj, lock_stack, current)) return true;
 611   }
 612   return false;
 613 }
 614 
 615 void LightweightSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
 616   assert(LockingMode == LM_LIGHTWEIGHT, "must be");
 617   JavaThread* current = JavaThread::current();
 618   VerifyThreadState vts(locking_thread, current);
 619 
 620   if (obj->klass()->is_value_based()) {
 621     ObjectSynchronizer::handle_sync_on_value_based_class(obj, locking_thread);
 622   }
 623 
 624   CacheSetter cache_setter(locking_thread, lock);
 625 
 626   LockStack& lock_stack = locking_thread->lock_stack();
 627 
 628   ObjectMonitor* monitor = nullptr;
 629   if (lock_stack.contains(obj())) {
 630     monitor = inflate_fast_locked_object(obj(), ObjectSynchronizer::inflate_cause_monitor_enter, locking_thread, current);
 631     bool entered = monitor->enter_for(locking_thread);
 632     assert(entered, "recursive ObjectMonitor::enter_for must succeed");
 633   } else {
 634     do {
 635       // It is assumed that enter_for must enter on an object without contention.
 636       monitor = inflate_and_enter(obj(), ObjectSynchronizer::inflate_cause_monitor_enter, locking_thread, current);
 637       // But there may still be a race with deflation.
 638     } while (monitor == nullptr);
 639   }
 640 
 641   assert(monitor != nullptr, "LightweightSynchronizer::enter_for must succeed");
 642   cache_setter.set_monitor(monitor);
 643 }
 644 
 645 void LightweightSynchronizer::enter(Handle obj, BasicLock* lock, JavaThread* current) {
 646   assert(LockingMode == LM_LIGHTWEIGHT, "must be");
 647   assert(current == JavaThread::current(), "must be");
 648 
 649   if (obj->klass()->is_value_based()) {
 650     ObjectSynchronizer::handle_sync_on_value_based_class(obj, current);
 651   }
 652 
 653   CacheSetter cache_setter(current, lock);
 654 
 655   // Used when deflation is observed. Progress here requires progress
 656   // from the deflator. After observing that the deflator is not
 657   // making progress (after two yields), switch to sleeping.
 658   SpinYield spin_yield(0, 2);
 659   bool observed_deflation = false;
 660 
 661   LockStack& lock_stack = current->lock_stack();
 662 
 663   if (!lock_stack.is_full() && lock_stack.try_recursive_enter(obj())) {
 664     // Recursively fast locked
 665     return;
 666   }
 667 
 668   if (lock_stack.contains(obj())) {
 669     ObjectMonitor* monitor = inflate_fast_locked_object(obj(), ObjectSynchronizer::inflate_cause_monitor_enter, current, current);
 670     bool entered = monitor->enter(current);
 671     assert(entered, "recursive ObjectMonitor::enter must succeed");
 672     cache_setter.set_monitor(monitor);
 673     return;
 674   }
 675 
 676   while (true) {
 677     // Fast-locking does not use the 'lock' argument.
 678     // Fast-lock spinning to avoid inflating for short critical sections.
 679     // The goal is to only inflate when the extra cost of using ObjectMonitors
 680     // is worth it.
 681     // If deflation has been observed we also spin while deflation is ongoing.
 682     if (fast_lock_try_enter(obj(), lock_stack, current)) {
 683       return;
 684     } else if (UseObjectMonitorTable && fast_lock_spin_enter(obj(), lock_stack, current, observed_deflation)) {
 685       return;
 686     }
 687 
 688     if (observed_deflation) {
 689       spin_yield.wait();
 690     }
 691 
 692     ObjectMonitor* monitor = inflate_and_enter(obj(), ObjectSynchronizer::inflate_cause_monitor_enter, current, current);
 693     if (monitor != nullptr) {
 694       cache_setter.set_monitor(monitor);
 695       return;
 696     }
 697 
 698     // If inflate_and_enter returns nullptr it is because a deflated monitor
 699     // was encountered. Fallback to fast locking. The deflater is responsible
 700     // for clearing out the monitor and transitioning the markWord back to
 701     // fast locking.
 702     observed_deflation = true;
 703   }
 704 }
 705 
 706 void LightweightSynchronizer::exit(oop object, JavaThread* current) {
 707   assert(LockingMode == LM_LIGHTWEIGHT, "must be");
 708   assert(current == Thread::current(), "must be");
 709 
 710   markWord mark = object->mark();
 711   assert(!mark.is_unlocked(), "must be");
 712 
 713   LockStack& lock_stack = current->lock_stack();
 714   if (mark.is_fast_locked()) {
 715     if (lock_stack.try_recursive_exit(object)) {
 716       // This is a recursive exit which succeeded
 717       return;
 718     }
 719     if (lock_stack.is_recursive(object)) {
 720       // Must inflate recursive locks if try_recursive_exit fails
 721       // This happens for un-structured unlocks, could potentially
 722       // fix try_recursive_exit to handle these.
 723       inflate_fast_locked_object(object, ObjectSynchronizer::inflate_cause_vm_internal, current, current);
 724     }
 725   }
 726 
 727   while (mark.is_fast_locked()) {
 728     markWord unlocked_mark = mark.set_unlocked();
 729     markWord old_mark = mark;
 730     mark = object->cas_set_mark(unlocked_mark, old_mark);
 731     if (old_mark == mark) {
 732       // CAS successful, remove from lock_stack
 733       size_t recursion = lock_stack.remove(object) - 1;
 734       assert(recursion == 0, "Should not have unlocked here");
 735       return;
 736     }
 737   }
 738 
 739   assert(mark.has_monitor(), "must be");
 740   // The monitor exists
 741   ObjectMonitor* monitor = ObjectSynchronizer::read_monitor(current, object, mark);
 742   if (monitor->has_anonymous_owner()) {
 743     assert(current->lock_stack().contains(object), "current must have object on its lock stack");
 744     monitor->set_owner_from_anonymous(current);
 745     monitor->set_recursions(current->lock_stack().remove(object) - 1);
 746   }
 747 
 748   monitor->exit(current);
 749 }
 750 
 751 // LightweightSynchronizer::inflate_locked_or_imse is used to to get an inflated
 752 // ObjectMonitor* with LM_LIGHTWEIGHT. It is used from contexts which require
 753 // an inflated ObjectMonitor* for a monitor, and expects to throw a
 754 // java.lang.IllegalMonitorStateException if it is not held by the current
 755 // thread. Such as notify/wait and jni_exit. LM_LIGHTWEIGHT keeps it invariant
 756 // that it only inflates if it is already locked by the current thread or the
 757 // current thread is in the process of entering. To maintain this invariant we
 758 // need to throw a java.lang.IllegalMonitorStateException before inflating if
 759 // the current thread is not the owner.
 760 // LightweightSynchronizer::inflate_locked_or_imse facilitates this.
 761 ObjectMonitor* LightweightSynchronizer::inflate_locked_or_imse(oop obj, ObjectSynchronizer::InflateCause cause, TRAPS) {
 762   assert(LockingMode == LM_LIGHTWEIGHT, "must be");
 763   JavaThread* current = THREAD;
 764 
 765   for (;;) {
 766     markWord mark = obj->mark_acquire();
 767     if (mark.is_unlocked()) {
 768       // No lock, IMSE.
 769       THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
 770                  "current thread is not owner", nullptr);
 771     }
 772 
 773     if (mark.is_fast_locked()) {
 774       if (!current->lock_stack().contains(obj)) {
 775         // Fast locked by other thread, IMSE.
 776         THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
 777                    "current thread is not owner", nullptr);
 778       } else {
 779         // Current thread owns the lock, must inflate
 780         return inflate_fast_locked_object(obj, cause, current, current);
 781       }
 782     }
 783 
 784     assert(mark.has_monitor(), "must be");
 785     ObjectMonitor* monitor = ObjectSynchronizer::read_monitor(current, obj, mark);
 786     if (monitor != nullptr) {
 787       if (monitor->has_anonymous_owner()) {
 788         LockStack& lock_stack = current->lock_stack();
 789         if (lock_stack.contains(obj)) {
 790           // Current thread owns the lock but someone else inflated it.
 791           // Fix owner and pop lock stack.
 792           monitor->set_owner_from_anonymous(current);
 793           monitor->set_recursions(lock_stack.remove(obj) - 1);
 794         } else {
 795           // Fast locked (and inflated) by other thread, or deflation in progress, IMSE.
 796           THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
 797                      "current thread is not owner", nullptr);
 798         }
 799       }
 800       return monitor;
 801     }
 802   }
 803 }
 804 
 805 ObjectMonitor* LightweightSynchronizer::inflate_into_object_header(oop object, ObjectSynchronizer::InflateCause cause, JavaThread* locking_thread, Thread* current) {
 806 
 807   // The JavaThread* locking_thread parameter is only used by LM_LIGHTWEIGHT and requires
 808   // that the locking_thread == Thread::current() or is suspended throughout the call by
 809   // some other mechanism.
 810   // Even with LM_LIGHTWEIGHT the thread might be nullptr when called from a non
 811   // JavaThread. (As may still be the case from FastHashCode). However it is only
 812   // important for the correctness of the LM_LIGHTWEIGHT algorithm that the thread
 813   // is set when called from ObjectSynchronizer::enter from the owning thread,
 814   // ObjectSynchronizer::enter_for from any thread, or ObjectSynchronizer::exit.
 815   EventJavaMonitorInflate event;
 816 
 817   for (;;) {
 818     const markWord mark = object->mark_acquire();
 819 
 820     // The mark can be in one of the following states:
 821     // *  inflated     - Just return if using stack-locking.
 822     //                   If using fast-locking and the ObjectMonitor owner
 823     //                   is anonymous and the locking_thread owns the
 824     //                   object lock, then we make the locking_thread
 825     //                   the ObjectMonitor owner and remove the lock from
 826     //                   the locking_thread's lock stack.
 827     // *  fast-locked  - Coerce it to inflated from fast-locked.
 828     // *  unlocked     - Aggressively inflate the object.
 829 
 830     // CASE: inflated
 831     if (mark.has_monitor()) {
 832       ObjectMonitor* inf = mark.monitor();
 833       markWord dmw = inf->header();
 834       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
 835       if (inf->has_anonymous_owner() &&
 836           locking_thread != nullptr && locking_thread->lock_stack().contains(object)) {
 837         inf->set_owner_from_anonymous(locking_thread);
 838         size_t removed = locking_thread->lock_stack().remove(object);
 839         inf->set_recursions(removed - 1);
 840       }
 841       return inf;
 842     }
 843 
 844     // CASE: fast-locked
 845     // Could be fast-locked either by the locking_thread or by some other thread.
 846     //
 847     // Note that we allocate the ObjectMonitor speculatively, _before_
 848     // attempting to set the object's mark to the new ObjectMonitor. If
 849     // the locking_thread owns the monitor, then we set the ObjectMonitor's
 850     // owner to the locking_thread. Otherwise, we set the ObjectMonitor's owner
 851     // to anonymous. If we lose the race to set the object's mark to the
 852     // new ObjectMonitor, then we just delete it and loop around again.
 853     //
 854     if (mark.is_fast_locked()) {
 855       ObjectMonitor* monitor = new ObjectMonitor(object);
 856       monitor->set_header(mark.set_unlocked());
 857       bool own = locking_thread != nullptr && locking_thread->lock_stack().contains(object);
 858       if (own) {
 859         // Owned by locking_thread.
 860         monitor->set_owner(locking_thread);
 861       } else {
 862         // Owned by somebody else.
 863         monitor->set_anonymous_owner();
 864       }
 865       markWord monitor_mark = markWord::encode(monitor);
 866       markWord old_mark = object->cas_set_mark(monitor_mark, mark);
 867       if (old_mark == mark) {
 868         // Success! Return inflated monitor.
 869         if (own) {
 870           size_t removed = locking_thread->lock_stack().remove(object);
 871           monitor->set_recursions(removed - 1);
 872         }
 873         // Once the ObjectMonitor is configured and object is associated
 874         // with the ObjectMonitor, it is safe to allow async deflation:
 875         ObjectSynchronizer::_in_use_list.add(monitor);
 876 
 877         // Hopefully the performance counters are allocated on distinct
 878         // cache lines to avoid false sharing on MP systems ...
 879         OM_PERFDATA_OP(Inflations, inc());
 880         log_inflate(current, object, cause);
 881         if (event.should_commit()) {
 882           post_monitor_inflate_event(&event, object, cause);
 883         }
 884         return monitor;
 885       } else {
 886         delete monitor;
 887         continue;  // Interference -- just retry
 888       }
 889     }
 890 
 891     // CASE: unlocked
 892     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
 893     // If we know we're inflating for entry it's better to inflate by swinging a
 894     // pre-locked ObjectMonitor pointer into the object header.   A successful
 895     // CAS inflates the object *and* confers ownership to the inflating thread.
 896     // In the current implementation we use a 2-step mechanism where we CAS()
 897     // to inflate and then CAS() again to try to swing _owner from null to current.
 898     // An inflateTry() method that we could call from enter() would be useful.
 899 
 900     assert(mark.is_unlocked(), "invariant: header=" INTPTR_FORMAT, mark.value());
 901     ObjectMonitor* m = new ObjectMonitor(object);
 902     // prepare m for installation - set monitor to initial state
 903     m->set_header(mark);
 904 
 905     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
 906       delete m;
 907       m = nullptr;
 908       continue;
 909       // interference - the markword changed - just retry.
 910       // The state-transitions are one-way, so there's no chance of
 911       // live-lock -- "Inflated" is an absorbing state.
 912     }
 913 
 914     // Once the ObjectMonitor is configured and object is associated
 915     // with the ObjectMonitor, it is safe to allow async deflation:
 916     ObjectSynchronizer::_in_use_list.add(m);
 917 
 918     // Hopefully the performance counters are allocated on distinct
 919     // cache lines to avoid false sharing on MP systems ...
 920     OM_PERFDATA_OP(Inflations, inc());
 921     log_inflate(current, object, cause);
 922     if (event.should_commit()) {
 923       post_monitor_inflate_event(&event, object, cause);
 924     }
 925     return m;
 926   }
 927 }
 928 
 929 ObjectMonitor* LightweightSynchronizer::inflate_fast_locked_object(oop object, ObjectSynchronizer::InflateCause cause, JavaThread* locking_thread, JavaThread* current) {
 930   assert(LockingMode == LM_LIGHTWEIGHT, "only used for lightweight");
 931   VerifyThreadState vts(locking_thread, current);
 932   assert(locking_thread->lock_stack().contains(object), "locking_thread must have object on its lock stack");
 933 
 934   ObjectMonitor* monitor;
 935 
 936   if (!UseObjectMonitorTable) {
 937     return inflate_into_object_header(object, cause, locking_thread, current);
 938   }
 939 
 940   // Inflating requires a hash code
 941   ObjectSynchronizer::FastHashCode(current, object);
 942 
 943   markWord mark = object->mark_acquire();
 944   assert(!mark.is_unlocked(), "Cannot be unlocked");
 945 
 946   for (;;) {
 947     // Fetch the monitor from the table
 948     monitor = get_or_insert_monitor(object, current, cause);
 949 
 950     // ObjectMonitors are always inserted as anonymously owned, this thread is
 951     // the current holder of the monitor. So unless the entry is stale and
 952     // contains a deflating monitor it must be anonymously owned.
 953     if (monitor->has_anonymous_owner()) {
 954       // The monitor must be anonymously owned if it was added
 955       assert(monitor == get_monitor_from_table(current, object), "The monitor must be found");
 956       // New fresh monitor
 957       break;
 958     }
 959 
 960     // If the monitor was not anonymously owned then we got a deflating monitor
 961     // from the table. We need to let the deflator make progress and remove this
 962     // entry before we are allowed to add a new one.
 963     os::naked_yield();
 964     assert(monitor->is_being_async_deflated(), "Should be the reason");
 965   }
 966 
 967   // Set the mark word; loop to handle concurrent updates to other parts of the mark word
 968   while (mark.is_fast_locked()) {
 969     mark = object->cas_set_mark(mark.set_has_monitor(), mark);
 970   }
 971 
 972   // Indicate that the monitor now has a known owner
 973   monitor->set_owner_from_anonymous(locking_thread);
 974 
 975   // Remove the entry from the thread's lock stack
 976   monitor->set_recursions(locking_thread->lock_stack().remove(object) - 1);
 977 
 978   if (locking_thread == current) {
 979     // Only change the thread local state of the current thread.
 980     locking_thread->om_set_monitor_cache(monitor);
 981   }
 982 
 983   return monitor;
 984 }
 985 
 986 ObjectMonitor* LightweightSynchronizer::inflate_and_enter(oop object, ObjectSynchronizer::InflateCause cause, JavaThread* locking_thread, JavaThread* current) {
 987   assert(LockingMode == LM_LIGHTWEIGHT, "only used for lightweight");
 988   VerifyThreadState vts(locking_thread, current);
 989 
 990   // Note: In some paths (deoptimization) the 'current' thread inflates and
 991   // enters the lock on behalf of the 'locking_thread' thread.
 992 
 993   ObjectMonitor* monitor = nullptr;
 994 
 995   if (!UseObjectMonitorTable) {
 996     // Do the old inflate and enter.
 997     monitor = inflate_into_object_header(object, cause, locking_thread, current);
 998 
 999     bool entered;
1000     if (locking_thread == current) {
1001       entered = monitor->enter(locking_thread);
1002     } else {
1003       entered = monitor->enter_for(locking_thread);
1004     }
1005 
1006     // enter returns false for deflation found.
1007     return entered ? monitor : nullptr;
1008   }
1009 
1010   NoSafepointVerifier nsv;
1011 
1012   // Lightweight monitors require that hash codes are installed first
1013   ObjectSynchronizer::FastHashCode(locking_thread, object);
1014 
1015   // Try to get the monitor from the thread-local cache.
1016   // There's no need to use the cache if we are locking
1017   // on behalf of another thread.
1018   if (current == locking_thread) {
1019     monitor = current->om_get_from_monitor_cache(object);
1020   }
1021 
1022   // Get or create the monitor
1023   if (monitor == nullptr) {
1024     monitor = get_or_insert_monitor(object, current, cause);
1025   }
1026 
1027   if (monitor->try_enter(locking_thread)) {
1028     return monitor;
1029   }
1030 
1031   // Holds is_being_async_deflated() stable throughout this function.
1032   ObjectMonitorContentionMark contention_mark(monitor);
1033 
1034   /// First handle the case where the monitor from the table is deflated
1035   if (monitor->is_being_async_deflated()) {
1036     // The MonitorDeflation thread is deflating the monitor. The locking thread
1037     // must spin until further progress has been made.
1038 
1039     const markWord mark = object->mark_acquire();
1040 
1041     if (mark.has_monitor()) {
1042       // Waiting on the deflation thread to remove the deflated monitor from the table.
1043       os::naked_yield();
1044 
1045     } else if (mark.is_fast_locked()) {
1046       // Some other thread managed to fast-lock the lock, or this is a
1047       // recursive lock from the same thread; yield for the deflation
1048       // thread to remove the deflated monitor from the table.
1049       os::naked_yield();
1050 
1051     } else {
1052       assert(mark.is_unlocked(), "Implied");
1053       // Retry immediately
1054     }
1055 
1056     // Retry
1057     return nullptr;
1058   }
1059 
1060   for (;;) {
1061     const markWord mark = object->mark_acquire();
1062     // The mark can be in one of the following states:
1063     // *  inflated     - If the ObjectMonitor owner is anonymous
1064     //                   and the locking_thread owns the object
1065     //                   lock, then we make the locking_thread
1066     //                   the ObjectMonitor owner and remove the
1067     //                   lock from the locking_thread's lock stack.
1068     // *  fast-locked  - Coerce it to inflated from fast-locked.
1069     // *  neutral      - Inflate the object. Successful CAS is locked
1070 
1071     // CASE: inflated
1072     if (mark.has_monitor()) {
1073       LockStack& lock_stack = locking_thread->lock_stack();
1074       if (monitor->has_anonymous_owner() && lock_stack.contains(object)) {
1075         // The lock is fast-locked by the locking thread,
1076         // convert it to a held monitor with a known owner.
1077         monitor->set_owner_from_anonymous(locking_thread);
1078         monitor->set_recursions(lock_stack.remove(object) - 1);
1079       }
1080 
1081       break; // Success
1082     }
1083 
1084     // CASE: fast-locked
1085     // Could be fast-locked either by locking_thread or by some other thread.
1086     //
1087     if (mark.is_fast_locked()) {
1088       markWord old_mark = object->cas_set_mark(mark.set_has_monitor(), mark);
1089       if (old_mark != mark) {
1090         // CAS failed
1091         continue;
1092       }
1093 
1094       // Success! Return inflated monitor.
1095       LockStack& lock_stack = locking_thread->lock_stack();
1096       if (lock_stack.contains(object)) {
1097         // The lock is fast-locked by the locking thread,
1098         // convert it to a held monitor with a known owner.
1099         monitor->set_owner_from_anonymous(locking_thread);
1100         monitor->set_recursions(lock_stack.remove(object) - 1);
1101       }
1102 
1103       break; // Success
1104     }
1105 
1106     // CASE: neutral (unlocked)
1107 
1108     // Catch if the object's header is not neutral (not locked and
1109     // not marked is what we care about here).
1110     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1111     markWord old_mark = object->cas_set_mark(mark.set_has_monitor(), mark);
1112     if (old_mark != mark) {
1113       // CAS failed
1114       continue;
1115     }
1116 
1117     // Transitioned from unlocked to monitor means locking_thread owns the lock.
1118     monitor->set_owner_from_anonymous(locking_thread);
1119 
1120     return monitor;
1121   }
1122 
1123   if (current == locking_thread) {
1124     // One round of spinning
1125     if (monitor->spin_enter(locking_thread)) {
1126       return monitor;
1127     }
1128 
1129     // Monitor is contended, take the time before entering to fix the lock stack.
1130     LockStackInflateContendedLocks().inflate(current);
1131   }
1132 
1133   // enter can block for safepoints; clear the unhandled object oop
1134   PauseNoSafepointVerifier pnsv(&nsv);
1135   object = nullptr;
1136 
1137   if (current == locking_thread) {
1138     monitor->enter_with_contention_mark(locking_thread, contention_mark);
1139   } else {
1140     monitor->enter_for_with_contention_mark(locking_thread, contention_mark);
1141   }
1142 
1143   return monitor;
1144 }
1145 
1146 void LightweightSynchronizer::deflate_monitor(Thread* current, oop obj, ObjectMonitor* monitor) {
1147   if (obj != nullptr) {
1148     deflate_mark_word(obj);
1149   }
1150   bool removed = remove_monitor(current, monitor, obj);
1151   if (obj != nullptr) {
1152     assert(removed, "Should have removed the entry if obj was alive");
1153   }
1154 }
1155 
1156 ObjectMonitor* LightweightSynchronizer::get_monitor_from_table(Thread* current, oop obj) {
1157   assert(UseObjectMonitorTable, "must be");
1158   return ObjectMonitorTable::monitor_get(current, obj);
1159 }
1160 
1161 bool LightweightSynchronizer::contains_monitor(Thread* current, ObjectMonitor* monitor) {
1162   assert(UseObjectMonitorTable, "must be");
1163   return ObjectMonitorTable::contains_monitor(current, monitor);
1164 }
1165 
1166 bool LightweightSynchronizer::quick_enter(oop obj, BasicLock* lock, JavaThread* current) {
1167   assert(current->thread_state() == _thread_in_Java, "must be");
1168   assert(obj != nullptr, "must be");
1169   NoSafepointVerifier nsv;
1170 
1171   // If quick_enter succeeds with entering, the cache should be in a valid initialized state.
1172   CacheSetter cache_setter(current, lock);
1173 
1174   LockStack& lock_stack = current->lock_stack();
1175   if (lock_stack.is_full()) {
1176     // Always go into runtime if the lock stack is full.
1177     return false;
1178   }
1179 
1180   const markWord mark = obj->mark();
1181 
1182 #ifndef _LP64
1183   // Only for 32bit which has limited support for fast locking outside the runtime.
1184   if (lock_stack.try_recursive_enter(obj)) {
1185     // Recursive lock successful.
1186     return true;
1187   }
1188 
1189   if (mark.is_unlocked()) {
1190     markWord locked_mark = mark.set_fast_locked();
1191     if (obj->cas_set_mark(locked_mark, mark) == mark) {
1192       // Successfully fast-locked, push object to lock-stack and return.
1193       lock_stack.push(obj);
1194       return true;
1195     }
1196   }
1197 #endif
1198 
1199   if (mark.has_monitor()) {
1200     ObjectMonitor* const monitor = UseObjectMonitorTable ? current->om_get_from_monitor_cache(obj) :
1201                                                            ObjectSynchronizer::read_monitor(mark);
1202 
1203     if (monitor == nullptr) {
1204       // Take the slow-path on a cache miss.
1205       return false;
1206     }
1207 
1208     if (monitor->try_enter(current)) {
1209       // ObjectMonitor enter successful.
1210       cache_setter.set_monitor(monitor);
1211       return true;
1212     }
1213   }
1214 
1215   // Slow-path.
1216   return false;
1217 }