1 /*
   2  * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/oopStorage.hpp"
  28 #include "gc/shared/oopStorageSet.hpp"
  29 #include "jfr/jfrEvents.hpp"
  30 #include "jfr/support/jfrThreadId.hpp"
  31 #include "logging/log.hpp"
  32 #include "logging/logStream.hpp"
  33 #include "memory/allocation.inline.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "oops/oopHandle.inline.hpp"
  38 #include "oops/weakHandle.inline.hpp"
  39 #include "prims/jvmtiDeferredUpdates.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "runtime/atomic.hpp"
  42 #include "runtime/globals.hpp"
  43 #include "runtime/handles.inline.hpp"
  44 #include "runtime/interfaceSupport.inline.hpp"
  45 #include "runtime/javaThread.inline.hpp"
  46 #include "runtime/mutexLocker.hpp"
  47 #include "runtime/objectMonitor.hpp"
  48 #include "runtime/objectMonitor.inline.hpp"
  49 #include "runtime/orderAccess.hpp"
  50 #include "runtime/osThread.hpp"
  51 #include "runtime/perfData.hpp"
  52 #include "runtime/safefetch.hpp"
  53 #include "runtime/safepointMechanism.inline.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "services/threadService.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/globalDefinitions.hpp"
  58 #include "utilities/macros.hpp"
  59 #include "utilities/preserveException.hpp"
  60 #if INCLUDE_JFR
  61 #include "jfr/support/jfrFlush.hpp"
  62 #endif
  63 
  64 #ifdef DTRACE_ENABLED
  65 
  66 // Only bother with this argument setup if dtrace is available
  67 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  68 
  69 
  70 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  71   char* bytes = nullptr;                                                   \
  72   int len = 0;                                                             \
  73   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  74   Symbol* klassname = obj->klass()->name();                                \
  75   if (klassname != nullptr) {                                              \
  76     bytes = (char*)klassname->bytes();                                     \
  77     len = klassname->utf8_length();                                        \
  78   }
  79 
  80 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  81   {                                                                        \
  82     if (DTraceMonitorProbes) {                                             \
  83       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  84       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  85                            (monitor), bytes, len, (millis));               \
  86     }                                                                      \
  87   }
  88 
  89 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER
  90 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED
  91 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT
  92 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY
  93 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  94 
  95 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  96   {                                                                        \
  97     if (DTraceMonitorProbes) {                                             \
  98       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  99       HOTSPOT_MONITOR_##probe(jtid,                                        \
 100                               (uintptr_t)(monitor), bytes, len);           \
 101     }                                                                      \
 102   }
 103 
 104 #else //  ndef DTRACE_ENABLED
 105 
 106 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 107 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 108 
 109 #endif // ndef DTRACE_ENABLED
 110 
 111 DEBUG_ONLY(static volatile bool InitDone = false;)
 112 
 113 OopStorage* ObjectMonitor::_oop_storage = nullptr;
 114 
 115 // -----------------------------------------------------------------------------
 116 // Theory of operations -- Monitors lists, thread residency, etc:
 117 //
 118 // * A thread acquires ownership of a monitor by successfully
 119 //   CAS()ing the _owner field from null to non-null.
 120 //
 121 // * Invariant: A thread appears on at most one monitor list --
 122 //   cxq, EntryList or WaitSet -- at any one time.
 123 //
 124 // * Contending threads "push" themselves onto the cxq with CAS
 125 //   and then spin/park.
 126 //
 127 // * After a contending thread eventually acquires the lock it must
 128 //   dequeue itself from either the EntryList or the cxq.
 129 //
 130 // * The exiting thread identifies and unparks an "heir presumptive"
 131 //   tentative successor thread on the EntryList.  Critically, the
 132 //   exiting thread doesn't unlink the successor thread from the EntryList.
 133 //   After having been unparked, the wakee will recontend for ownership of
 134 //   the monitor.   The successor (wakee) will either acquire the lock or
 135 //   re-park itself.
 136 //
 137 //   Succession is provided for by a policy of competitive handoff.
 138 //   The exiting thread does _not_ grant or pass ownership to the
 139 //   successor thread.  (This is also referred to as "handoff" succession").
 140 //   Instead the exiting thread releases ownership and possibly wakes
 141 //   a successor, so the successor can (re)compete for ownership of the lock.
 142 //   If the EntryList is empty but the cxq is populated the exiting
 143 //   thread will drain the cxq into the EntryList.  It does so by
 144 //   by detaching the cxq (installing null with CAS) and folding
 145 //   the threads from the cxq into the EntryList.  The EntryList is
 146 //   doubly linked, while the cxq is singly linked because of the
 147 //   CAS-based "push" used to enqueue recently arrived threads (RATs).
 148 //
 149 // * Concurrency invariants:
 150 //
 151 //   -- only the monitor owner may access or mutate the EntryList.
 152 //      The mutex property of the monitor itself protects the EntryList
 153 //      from concurrent interference.
 154 //   -- Only the monitor owner may detach the cxq.
 155 //
 156 // * The monitor entry list operations avoid locks, but strictly speaking
 157 //   they're not lock-free.  Enter is lock-free, exit is not.
 158 //   For a description of 'Methods and apparatus providing non-blocking access
 159 //   to a resource,' see U.S. Pat. No. 7844973.
 160 //
 161 // * The cxq can have multiple concurrent "pushers" but only one concurrent
 162 //   detaching thread.  This mechanism is immune from the ABA corruption.
 163 //   More precisely, the CAS-based "push" onto cxq is ABA-oblivious.
 164 //
 165 // * Taken together, the cxq and the EntryList constitute or form a
 166 //   single logical queue of threads stalled trying to acquire the lock.
 167 //   We use two distinct lists to improve the odds of a constant-time
 168 //   dequeue operation after acquisition (in the ::enter() epilogue) and
 169 //   to reduce heat on the list ends.  (c.f. Michael Scott's "2Q" algorithm).
 170 //   A key desideratum is to minimize queue & monitor metadata manipulation
 171 //   that occurs while holding the monitor lock -- that is, we want to
 172 //   minimize monitor lock holds times.  Note that even a small amount of
 173 //   fixed spinning will greatly reduce the # of enqueue-dequeue operations
 174 //   on EntryList|cxq.  That is, spinning relieves contention on the "inner"
 175 //   locks and monitor metadata.
 176 //
 177 //   Cxq points to the set of Recently Arrived Threads attempting entry.
 178 //   Because we push threads onto _cxq with CAS, the RATs must take the form of
 179 //   a singly-linked LIFO.  We drain _cxq into EntryList  at unlock-time when
 180 //   the unlocking thread notices that EntryList is null but _cxq is != null.
 181 //
 182 //   The EntryList is ordered by the prevailing queue discipline and
 183 //   can be organized in any convenient fashion, such as a doubly-linked list or
 184 //   a circular doubly-linked list.  Critically, we want insert and delete operations
 185 //   to operate in constant-time.  If we need a priority queue then something akin
 186 //   to Solaris' sleepq would work nicely.  Viz.,
 187 //   http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c.
 188 //   Queue discipline is enforced at ::exit() time, when the unlocking thread
 189 //   drains the cxq into the EntryList, and orders or reorders the threads on the
 190 //   EntryList accordingly.
 191 //
 192 //   Barring "lock barging", this mechanism provides fair cyclic ordering,
 193 //   somewhat similar to an elevator-scan.
 194 //
 195 // * The monitor synchronization subsystem avoids the use of native
 196 //   synchronization primitives except for the narrow platform-specific
 197 //   park-unpark abstraction.  See the comments in os_solaris.cpp regarding
 198 //   the semantics of park-unpark.  Put another way, this monitor implementation
 199 //   depends only on atomic operations and park-unpark.  The monitor subsystem
 200 //   manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the
 201 //   underlying OS manages the READY<->RUN transitions.
 202 //
 203 // * Waiting threads reside on the WaitSet list -- wait() puts
 204 //   the caller onto the WaitSet.
 205 //
 206 // * notify() or notifyAll() simply transfers threads from the WaitSet to
 207 //   either the EntryList or cxq.  Subsequent exit() operations will
 208 //   unpark the notifyee.  Unparking a notifee in notify() is inefficient -
 209 //   it's likely the notifyee would simply impale itself on the lock held
 210 //   by the notifier.
 211 //
 212 // * An interesting alternative is to encode cxq as (List,LockByte) where
 213 //   the LockByte is 0 iff the monitor is owned.  _owner is simply an auxiliary
 214 //   variable, like _recursions, in the scheme.  The threads or Events that form
 215 //   the list would have to be aligned in 256-byte addresses.  A thread would
 216 //   try to acquire the lock or enqueue itself with CAS, but exiting threads
 217 //   could use a 1-0 protocol and simply STB to set the LockByte to 0.
 218 //   Note that is is *not* word-tearing, but it does presume that full-word
 219 //   CAS operations are coherent with intermix with STB operations.  That's true
 220 //   on most common processors.
 221 //
 222 // * See also http://blogs.sun.com/dave
 223 
 224 
 225 // Check that object() and set_object() are called from the right context:
 226 static void check_object_context() {
 227 #ifdef ASSERT
 228   Thread* self = Thread::current();
 229   if (self->is_Java_thread()) {
 230     // Mostly called from JavaThreads so sanity check the thread state.
 231     JavaThread* jt = JavaThread::cast(self);
 232     switch (jt->thread_state()) {
 233     case _thread_in_vm:    // the usual case
 234     case _thread_in_Java:  // during deopt
 235       break;
 236     default:
 237       fatal("called from an unsafe thread state");
 238     }
 239     assert(jt->is_active_Java_thread(), "must be active JavaThread");
 240   } else {
 241     // However, ThreadService::get_current_contended_monitor()
 242     // can call here via the VMThread so sanity check it.
 243     assert(self->is_VM_thread(), "must be");
 244   }
 245 #endif // ASSERT
 246 }
 247 
 248 ObjectMonitor::ObjectMonitor(oop object) :
 249   _header(markWord::zero()),
 250   _object(_oop_storage, object),
 251   _owner(nullptr),
 252   _previous_owner_tid(0),
 253   _next_om(nullptr),
 254   _recursions(0),
 255   _EntryList(nullptr),
 256   _cxq(nullptr),
 257   _succ(nullptr),
 258   _Responsible(nullptr),
 259   _SpinDuration(ObjectMonitor::Knob_SpinLimit),
 260   _contentions(0),
 261   _WaitSet(nullptr),
 262   _waiters(0),
 263   _WaitSetLock(0)
 264 { }
 265 
 266 ObjectMonitor::~ObjectMonitor() {
 267   _object.release(_oop_storage);
 268 }
 269 
 270 oop ObjectMonitor::object() const {
 271   check_object_context();
 272   return _object.resolve();
 273 }
 274 
 275 oop ObjectMonitor::object_peek() const {
 276   return _object.peek();
 277 }
 278 
 279 void ObjectMonitor::ExitOnSuspend::operator()(JavaThread* current) {
 280   if (current->is_suspended()) {
 281     _om->_recursions = 0;
 282     _om->_succ = nullptr;
 283     // Don't need a full fence after clearing successor here because of the call to exit().
 284     _om->exit(current, false /* not_suspended */);
 285     _om_exited = true;
 286 
 287     current->set_current_pending_monitor(_om);
 288   }
 289 }
 290 
 291 void ObjectMonitor::ClearSuccOnSuspend::operator()(JavaThread* current) {
 292   if (current->is_suspended()) {
 293     if (_om->_succ == current) {
 294       _om->_succ = nullptr;
 295       OrderAccess::fence(); // always do a full fence when successor is cleared
 296     }
 297   }
 298 }
 299 
 300 // -----------------------------------------------------------------------------
 301 // Enter support
 302 
 303 bool ObjectMonitor::enter_for(JavaThread* locking_thread) {
 304   // Used by ObjectSynchronizer::enter_for to enter for another thread.
 305   // The monitor is private to or already owned by locking_thread which must be suspended.
 306   // So this code may only contend with deflation.
 307   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 308 
 309   // Block out deflation as soon as possible.
 310   add_to_contentions(1);
 311 
 312   bool success = false;
 313   if (!is_being_async_deflated()) {
 314     void* prev_owner = try_set_owner_from(nullptr, locking_thread);
 315 
 316     if (prev_owner == nullptr) {
 317       assert(_recursions == 0, "invariant");
 318       success = true;
 319     } else if (prev_owner == locking_thread) {
 320       _recursions++;
 321       success = true;
 322     } else if (prev_owner == DEFLATER_MARKER) {
 323       // Racing with deflation.
 324       prev_owner = try_set_owner_from(DEFLATER_MARKER, locking_thread);
 325       if (prev_owner == DEFLATER_MARKER) {
 326         // Cancelled deflation. Increment contentions as part of the deflation protocol.
 327         add_to_contentions(1);
 328         success = true;
 329       } else if (prev_owner == nullptr) {
 330         // At this point we cannot race with deflation as we have both incremented
 331         // contentions, seen contention > 0 and seen a DEFLATER_MARKER.
 332         // success will only be false if this races with something other than
 333         // deflation.
 334         prev_owner = try_set_owner_from(nullptr, locking_thread);
 335         success = prev_owner == nullptr;
 336       }
 337     } else if (LockingMode == LM_LEGACY && locking_thread->is_lock_owned((address)prev_owner)) {
 338       assert(_recursions == 0, "must be");
 339       _recursions = 1;
 340       set_owner_from_BasicLock(prev_owner, locking_thread);
 341       success = true;
 342     }
 343     assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT
 344            ", this=" INTPTR_FORMAT "{owner=" INTPTR_FORMAT "}, observed owner: " INTPTR_FORMAT,
 345            p2i(locking_thread), p2i(this), p2i(owner_raw()), p2i(prev_owner));
 346   } else {
 347     // Async deflation is in progress and our contentions increment
 348     // above lost the race to async deflation. Undo the work and
 349     // force the caller to retry.
 350     const oop l_object = object();
 351     if (l_object != nullptr) {
 352       // Attempt to restore the header/dmw to the object's header so that
 353       // we only retry once if the deflater thread happens to be slow.
 354       install_displaced_markword_in_object(l_object);
 355     }
 356   }
 357 
 358   add_to_contentions(-1);
 359 
 360   assert(!success || owner_raw() == locking_thread, "must be");
 361 
 362   return success;
 363 }
 364 
 365 bool ObjectMonitor::enter(JavaThread* current) {
 366   assert(current == JavaThread::current(), "must be");
 367   // The following code is ordered to check the most common cases first
 368   // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors.
 369 
 370   void* cur = try_set_owner_from(nullptr, current);
 371   if (cur == nullptr) {
 372     assert(_recursions == 0, "invariant");
 373     return true;
 374   }
 375 
 376   if (cur == current) {
 377     // TODO-FIXME: check for integer overflow!  BUGID 6557169.
 378     _recursions++;
 379     return true;
 380   }
 381 
 382   if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) {
 383     assert(_recursions == 0, "internal state error");
 384     _recursions = 1;
 385     set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
 386     return true;
 387   }
 388 
 389   // We've encountered genuine contention.
 390 
 391   // Try one round of spinning *before* enqueueing current
 392   // and before going through the awkward and expensive state
 393   // transitions.  The following spin is strictly optional ...
 394   // Note that if we acquire the monitor from an initial spin
 395   // we forgo posting JVMTI events and firing DTRACE probes.
 396   if (TrySpin(current)) {
 397     assert(owner_raw() == current, "must be current: owner=" INTPTR_FORMAT, p2i(owner_raw()));
 398     assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions);
 399     assert(object()->mark() == markWord::encode(this),
 400            "object mark must match encoded this: mark=" INTPTR_FORMAT
 401            ", encoded this=" INTPTR_FORMAT, object()->mark().value(),
 402            markWord::encode(this).value());
 403     return true;
 404   }
 405 
 406   assert(owner_raw() != current, "invariant");
 407   assert(_succ != current, "invariant");
 408   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 409   assert(current->thread_state() != _thread_blocked, "invariant");
 410 
 411   // Keep track of contention for JVM/TI and M&M queries.
 412   add_to_contentions(1);
 413   if (is_being_async_deflated()) {
 414     // Async deflation is in progress and our contentions increment
 415     // above lost the race to async deflation. Undo the work and
 416     // force the caller to retry.
 417     const oop l_object = object();
 418     if (l_object != nullptr) {
 419       // Attempt to restore the header/dmw to the object's header so that
 420       // we only retry once if the deflater thread happens to be slow.
 421       install_displaced_markword_in_object(l_object);
 422     }
 423     add_to_contentions(-1);
 424     return false;
 425   }
 426 
 427   JFR_ONLY(JfrConditionalFlush<EventJavaMonitorEnter> flush(current);)
 428   EventJavaMonitorEnter event;
 429   if (event.is_started()) {
 430     event.set_monitorClass(object()->klass());
 431     // Set an address that is 'unique enough', such that events close in
 432     // time and with the same address are likely (but not guaranteed) to
 433     // belong to the same object.
 434     event.set_address((uintptr_t)this);
 435   }
 436 
 437   { // Change java thread status to indicate blocked on monitor enter.
 438     JavaThreadBlockedOnMonitorEnterState jtbmes(current, this);
 439 
 440     assert(current->current_pending_monitor() == nullptr, "invariant");
 441     current->set_current_pending_monitor(this);
 442 
 443     DTRACE_MONITOR_PROBE(contended__enter, this, object(), current);
 444     if (JvmtiExport::should_post_monitor_contended_enter()) {
 445       JvmtiExport::post_monitor_contended_enter(current, this);
 446 
 447       // The current thread does not yet own the monitor and does not
 448       // yet appear on any queues that would get it made the successor.
 449       // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event
 450       // handler cannot accidentally consume an unpark() meant for the
 451       // ParkEvent associated with this ObjectMonitor.
 452     }
 453 
 454     OSThreadContendState osts(current->osthread());
 455 
 456     assert(current->thread_state() == _thread_in_vm, "invariant");
 457 
 458     for (;;) {
 459       ExitOnSuspend eos(this);
 460       {
 461         ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos, true /* allow_suspend */);
 462         EnterI(current);
 463         current->set_current_pending_monitor(nullptr);
 464         // We can go to a safepoint at the end of this block. If we
 465         // do a thread dump during that safepoint, then this thread will show
 466         // as having "-locked" the monitor, but the OS and java.lang.Thread
 467         // states will still report that the thread is blocked trying to
 468         // acquire it.
 469         // If there is a suspend request, ExitOnSuspend will exit the OM
 470         // and set the OM as pending.
 471       }
 472       if (!eos.exited()) {
 473         // ExitOnSuspend did not exit the OM
 474         assert(owner_raw() == current, "invariant");
 475         break;
 476       }
 477     }
 478 
 479     // We've just gotten past the enter-check-for-suspend dance and we now own
 480     // the monitor free and clear.
 481   }
 482 
 483   add_to_contentions(-1);
 484   assert(contentions() >= 0, "must not be negative: contentions=%d", contentions());
 485 
 486   // Must either set _recursions = 0 or ASSERT _recursions == 0.
 487   assert(_recursions == 0, "invariant");
 488   assert(owner_raw() == current, "invariant");
 489   assert(_succ != current, "invariant");
 490   assert(object()->mark() == markWord::encode(this), "invariant");
 491 
 492   // The thread -- now the owner -- is back in vm mode.
 493   // Report the glorious news via TI,DTrace and jvmstat.
 494   // The probe effect is non-trivial.  All the reportage occurs
 495   // while we hold the monitor, increasing the length of the critical
 496   // section.  Amdahl's parallel speedup law comes vividly into play.
 497   //
 498   // Another option might be to aggregate the events (thread local or
 499   // per-monitor aggregation) and defer reporting until a more opportune
 500   // time -- such as next time some thread encounters contention but has
 501   // yet to acquire the lock.  While spinning that thread could
 502   // spinning we could increment JVMStat counters, etc.
 503 
 504   DTRACE_MONITOR_PROBE(contended__entered, this, object(), current);
 505   if (JvmtiExport::should_post_monitor_contended_entered()) {
 506     JvmtiExport::post_monitor_contended_entered(current, this);
 507 
 508     // The current thread already owns the monitor and is not going to
 509     // call park() for the remainder of the monitor enter protocol. So
 510     // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED
 511     // event handler consumed an unpark() issued by the thread that
 512     // just exited the monitor.
 513   }
 514   if (event.should_commit()) {
 515     event.set_previousOwner(_previous_owner_tid);
 516     event.commit();
 517   }
 518   OM_PERFDATA_OP(ContendedLockAttempts, inc());
 519   return true;
 520 }
 521 
 522 // Caveat: TryLock() is not necessarily serializing if it returns failure.
 523 // Callers must compensate as needed.
 524 
 525 ObjectMonitor::TryLockResult ObjectMonitor::TryLock(JavaThread* current) {
 526   void* own = owner_raw();
 527   if (own != nullptr) return TryLockResult::HasOwner;
 528   if (try_set_owner_from(nullptr, current) == nullptr) {
 529     assert(_recursions == 0, "invariant");
 530     return TryLockResult::Success;
 531   }
 532   // The lock had been free momentarily, but we lost the race to the lock.
 533   // Interference -- the CAS failed.
 534   // We can either return -1 or retry.
 535   // Retry doesn't make as much sense because the lock was just acquired.
 536   return TryLockResult::Interference;
 537 }
 538 
 539 // Deflate the specified ObjectMonitor if not in-use. Returns true if it
 540 // was deflated and false otherwise.
 541 //
 542 // The async deflation protocol sets owner to DEFLATER_MARKER and
 543 // makes contentions negative as signals to contending threads that
 544 // an async deflation is in progress. There are a number of checks
 545 // as part of the protocol to make sure that the calling thread has
 546 // not lost the race to a contending thread.
 547 //
 548 // The ObjectMonitor has been successfully async deflated when:
 549 //   (contentions < 0)
 550 // Contending threads that see that condition know to retry their operation.
 551 //
 552 bool ObjectMonitor::deflate_monitor() {
 553   if (is_busy()) {
 554     // Easy checks are first - the ObjectMonitor is busy so no deflation.
 555     return false;
 556   }
 557 
 558   const oop obj = object_peek();
 559 
 560   if (obj == nullptr) {
 561     // If the object died, we can recycle the monitor without racing with
 562     // Java threads. The GC already broke the association with the object.
 563     set_owner_from(nullptr, DEFLATER_MARKER);
 564     assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions());
 565     _contentions = INT_MIN; // minimum negative int
 566   } else {
 567     // Attempt async deflation protocol.
 568 
 569     // Set a null owner to DEFLATER_MARKER to force any contending thread
 570     // through the slow path. This is just the first part of the async
 571     // deflation dance.
 572     if (try_set_owner_from(nullptr, DEFLATER_MARKER) != nullptr) {
 573       // The owner field is no longer null so we lost the race since the
 574       // ObjectMonitor is now busy.
 575       return false;
 576     }
 577 
 578     if (contentions() > 0 || _waiters != 0) {
 579       // Another thread has raced to enter the ObjectMonitor after
 580       // is_busy() above or has already entered and waited on
 581       // it which makes it busy so no deflation. Restore owner to
 582       // null if it is still DEFLATER_MARKER.
 583       if (try_set_owner_from(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) {
 584         // Deferred decrement for the JT EnterI() that cancelled the async deflation.
 585         add_to_contentions(-1);
 586       }
 587       return false;
 588     }
 589 
 590     // Make a zero contentions field negative to force any contending threads
 591     // to retry. This is the second part of the async deflation dance.
 592     if (Atomic::cmpxchg(&_contentions, 0, INT_MIN) != 0) {
 593       // Contentions was no longer 0 so we lost the race since the
 594       // ObjectMonitor is now busy. Restore owner to null if it is
 595       // still DEFLATER_MARKER:
 596       if (try_set_owner_from(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) {
 597         // Deferred decrement for the JT EnterI() that cancelled the async deflation.
 598         add_to_contentions(-1);
 599       }
 600       return false;
 601     }
 602   }
 603 
 604   // Sanity checks for the races:
 605   guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker");
 606   guarantee(contentions() < 0, "must be negative: contentions=%d",
 607             contentions());
 608   guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters);
 609   guarantee(_cxq == nullptr, "must be no contending threads: cxq="
 610             INTPTR_FORMAT, p2i(_cxq));
 611   guarantee(_EntryList == nullptr,
 612             "must be no entering threads: EntryList=" INTPTR_FORMAT,
 613             p2i(_EntryList));
 614 
 615   if (obj != nullptr) {
 616     if (log_is_enabled(Trace, monitorinflation)) {
 617       ResourceMark rm;
 618       log_trace(monitorinflation)("deflate_monitor: object=" INTPTR_FORMAT
 619                                   ", mark=" INTPTR_FORMAT ", type='%s'",
 620                                   p2i(obj), obj->mark().value(),
 621                                   obj->klass()->external_name());
 622     }
 623 
 624     // Install the old mark word if nobody else has already done it.
 625     install_displaced_markword_in_object(obj);
 626   }
 627 
 628   // We leave owner == DEFLATER_MARKER and contentions < 0
 629   // to force any racing threads to retry.
 630   return true;  // Success, ObjectMonitor has been deflated.
 631 }
 632 
 633 // Install the displaced mark word (dmw) of a deflating ObjectMonitor
 634 // into the header of the object associated with the monitor. This
 635 // idempotent method is called by a thread that is deflating a
 636 // monitor and by other threads that have detected a race with the
 637 // deflation process.
 638 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) {
 639   // This function must only be called when (owner == DEFLATER_MARKER
 640   // && contentions <= 0), but we can't guarantee that here because
 641   // those values could change when the ObjectMonitor gets moved from
 642   // the global free list to a per-thread free list.
 643 
 644   guarantee(obj != nullptr, "must be non-null");
 645 
 646   // Separate loads in is_being_async_deflated(), which is almost always
 647   // called before this function, from the load of dmw/header below.
 648 
 649   // _contentions and dmw/header may get written by different threads.
 650   // Make sure to observe them in the same order when having several observers.
 651   OrderAccess::loadload_for_IRIW();
 652 
 653   const oop l_object = object_peek();
 654   if (l_object == nullptr) {
 655     // ObjectMonitor's object ref has already been cleared by async
 656     // deflation or GC so we're done here.
 657     return;
 658   }
 659   assert(l_object == obj, "object=" INTPTR_FORMAT " must equal obj="
 660          INTPTR_FORMAT, p2i(l_object), p2i(obj));
 661 
 662   markWord dmw = header();
 663   // The dmw has to be neutral (not null, not locked and not marked).
 664   assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value());
 665 
 666   // Install displaced mark word if the object's header still points
 667   // to this ObjectMonitor. More than one racing caller to this function
 668   // can rarely reach this point, but only one can win.
 669   markWord res = obj->cas_set_mark(dmw, markWord::encode(this));
 670   if (res != markWord::encode(this)) {
 671     // This should be rare so log at the Info level when it happens.
 672     log_info(monitorinflation)("install_displaced_markword_in_object: "
 673                                "failed cas_set_mark: new_mark=" INTPTR_FORMAT
 674                                ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT,
 675                                dmw.value(), markWord::encode(this).value(),
 676                                res.value());
 677   }
 678 
 679   // Note: It does not matter which thread restored the header/dmw
 680   // into the object's header. The thread deflating the monitor just
 681   // wanted the object's header restored and it is. The threads that
 682   // detected a race with the deflation process also wanted the
 683   // object's header restored before they retry their operation and
 684   // because it is restored they will only retry once.
 685 }
 686 
 687 // Convert the fields used by is_busy() to a string that can be
 688 // used for diagnostic output.
 689 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) {
 690   ss->print("is_busy: waiters=%d"
 691             ", contentions=%d"
 692             ", owner=" PTR_FORMAT
 693             ", cxq=" PTR_FORMAT
 694             ", EntryList=" PTR_FORMAT,
 695             _waiters,
 696             (contentions() > 0 ? contentions() : 0),
 697             owner_is_DEFLATER_MARKER()
 698                 // We report null instead of DEFLATER_MARKER here because is_busy()
 699                 // ignores DEFLATER_MARKER values.
 700                 ? p2i(nullptr)
 701                 : p2i(owner_raw()),
 702             p2i(_cxq),
 703             p2i(_EntryList));
 704   return ss->base();
 705 }
 706 
 707 #define MAX_RECHECK_INTERVAL 1000
 708 
 709 void ObjectMonitor::EnterI(JavaThread* current) {
 710   assert(current->thread_state() == _thread_blocked, "invariant");
 711 
 712   // Try the lock - TATAS
 713   if (TryLock(current) == TryLockResult::Success) {
 714     assert(_succ != current, "invariant");
 715     assert(owner_raw() == current, "invariant");
 716     assert(_Responsible != current, "invariant");
 717     return;
 718   }
 719 
 720   if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
 721     // Cancelled the in-progress async deflation by changing owner from
 722     // DEFLATER_MARKER to current. As part of the contended enter protocol,
 723     // contentions was incremented to a positive value before EnterI()
 724     // was called and that prevents the deflater thread from winning the
 725     // last part of the 2-part async deflation protocol. After EnterI()
 726     // returns to enter(), contentions is decremented because the caller
 727     // now owns the monitor. We bump contentions an extra time here to
 728     // prevent the deflater thread from winning the last part of the
 729     // 2-part async deflation protocol after the regular decrement
 730     // occurs in enter(). The deflater thread will decrement contentions
 731     // after it recognizes that the async deflation was cancelled.
 732     add_to_contentions(1);
 733     assert(_succ != current, "invariant");
 734     assert(_Responsible != current, "invariant");
 735     return;
 736   }
 737 
 738   assert(InitDone, "Unexpectedly not initialized");
 739 
 740   // We try one round of spinning *before* enqueueing current.
 741   //
 742   // If the _owner is ready but OFFPROC we could use a YieldTo()
 743   // operation to donate the remainder of this thread's quantum
 744   // to the owner.  This has subtle but beneficial affinity
 745   // effects.
 746 
 747   if (TrySpin(current)) {
 748     assert(owner_raw() == current, "invariant");
 749     assert(_succ != current, "invariant");
 750     assert(_Responsible != current, "invariant");
 751     return;
 752   }
 753 
 754   // The Spin failed -- Enqueue and park the thread ...
 755   assert(_succ != current, "invariant");
 756   assert(owner_raw() != current, "invariant");
 757   assert(_Responsible != current, "invariant");
 758 
 759   // Enqueue "current" on ObjectMonitor's _cxq.
 760   //
 761   // Node acts as a proxy for current.
 762   // As an aside, if were to ever rewrite the synchronization code mostly
 763   // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class
 764   // Java objects.  This would avoid awkward lifecycle and liveness issues,
 765   // as well as eliminate a subset of ABA issues.
 766   // TODO: eliminate ObjectWaiter and enqueue either Threads or Events.
 767 
 768   ObjectWaiter node(current);
 769   current->_ParkEvent->reset();
 770   node._prev   = (ObjectWaiter*) 0xBAD;
 771   node.TState  = ObjectWaiter::TS_CXQ;
 772 
 773   // Push "current" onto the front of the _cxq.
 774   // Once on cxq/EntryList, current stays on-queue until it acquires the lock.
 775   // Note that spinning tends to reduce the rate at which threads
 776   // enqueue and dequeue on EntryList|cxq.
 777   ObjectWaiter* nxt;
 778   for (;;) {
 779     node._next = nxt = _cxq;
 780     if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break;
 781 
 782     // Interference - the CAS failed because _cxq changed.  Just retry.
 783     // As an optional optimization we retry the lock.
 784     if (TryLock(current) == TryLockResult::Success) {
 785       assert(_succ != current, "invariant");
 786       assert(owner_raw() == current, "invariant");
 787       assert(_Responsible != current, "invariant");
 788       return;
 789     }
 790   }
 791 
 792   // Check for cxq|EntryList edge transition to non-null.  This indicates
 793   // the onset of contention.  While contention persists exiting threads
 794   // will use a ST:MEMBAR:LD 1-1 exit protocol.  When contention abates exit
 795   // operations revert to the faster 1-0 mode.  This enter operation may interleave
 796   // (race) a concurrent 1-0 exit operation, resulting in stranding, so we
 797   // arrange for one of the contending thread to use a timed park() operations
 798   // to detect and recover from the race.  (Stranding is form of progress failure
 799   // where the monitor is unlocked but all the contending threads remain parked).
 800   // That is, at least one of the contended threads will periodically poll _owner.
 801   // One of the contending threads will become the designated "Responsible" thread.
 802   // The Responsible thread uses a timed park instead of a normal indefinite park
 803   // operation -- it periodically wakes and checks for and recovers from potential
 804   // strandings admitted by 1-0 exit operations.   We need at most one Responsible
 805   // thread per-monitor at any given moment.  Only threads on cxq|EntryList may
 806   // be responsible for a monitor.
 807   //
 808   // Currently, one of the contended threads takes on the added role of "Responsible".
 809   // A viable alternative would be to use a dedicated "stranding checker" thread
 810   // that periodically iterated over all the threads (or active monitors) and unparked
 811   // successors where there was risk of stranding.  This would help eliminate the
 812   // timer scalability issues we see on some platforms as we'd only have one thread
 813   // -- the checker -- parked on a timer.
 814 
 815   if (nxt == nullptr && _EntryList == nullptr) {
 816     // Try to assume the role of responsible thread for the monitor.
 817     // CONSIDER:  ST vs CAS vs { if (Responsible==null) Responsible=current }
 818     Atomic::replace_if_null(&_Responsible, current);
 819   }
 820 
 821   // The lock might have been released while this thread was occupied queueing
 822   // itself onto _cxq.  To close the race and avoid "stranding" and
 823   // progress-liveness failure we must resample-retry _owner before parking.
 824   // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner.
 825   // In this case the ST-MEMBAR is accomplished with CAS().
 826   //
 827   // TODO: Defer all thread state transitions until park-time.
 828   // Since state transitions are heavy and inefficient we'd like
 829   // to defer the state transitions until absolutely necessary,
 830   // and in doing so avoid some transitions ...
 831 
 832   int recheckInterval = 1;
 833 
 834   for (;;) {
 835 
 836     if (TryLock(current) == TryLockResult::Success) {
 837       break;
 838     }
 839     assert(owner_raw() != current, "invariant");
 840 
 841     // park self
 842     if (_Responsible == current) {
 843       current->_ParkEvent->park((jlong) recheckInterval);
 844       // Increase the recheckInterval, but clamp the value.
 845       recheckInterval *= 8;
 846       if (recheckInterval > MAX_RECHECK_INTERVAL) {
 847         recheckInterval = MAX_RECHECK_INTERVAL;
 848       }
 849     } else {
 850       current->_ParkEvent->park();
 851     }
 852 
 853     if (TryLock(current) == TryLockResult::Success) {
 854       break;
 855     }
 856 
 857     if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) {
 858       // Cancelled the in-progress async deflation by changing owner from
 859       // DEFLATER_MARKER to current. As part of the contended enter protocol,
 860       // contentions was incremented to a positive value before EnterI()
 861       // was called and that prevents the deflater thread from winning the
 862       // last part of the 2-part async deflation protocol. After EnterI()
 863       // returns to enter(), contentions is decremented because the caller
 864       // now owns the monitor. We bump contentions an extra time here to
 865       // prevent the deflater thread from winning the last part of the
 866       // 2-part async deflation protocol after the regular decrement
 867       // occurs in enter(). The deflater thread will decrement contentions
 868       // after it recognizes that the async deflation was cancelled.
 869       add_to_contentions(1);
 870       break;
 871     }
 872 
 873     // The lock is still contested.
 874 
 875     // Keep a tally of the # of futile wakeups.
 876     // Note that the counter is not protected by a lock or updated by atomics.
 877     // That is by design - we trade "lossy" counters which are exposed to
 878     // races during updates for a lower probe effect.
 879     // This PerfData object can be used in parallel with a safepoint.
 880     // See the work around in PerfDataManager::destroy().
 881     OM_PERFDATA_OP(FutileWakeups, inc());
 882 
 883     // Assuming this is not a spurious wakeup we'll normally find _succ == current.
 884     // We can defer clearing _succ until after the spin completes
 885     // TrySpin() must tolerate being called with _succ == current.
 886     // Try yet another round of adaptive spinning.
 887     if (TrySpin(current)) {
 888       break;
 889     }
 890 
 891     // We can find that we were unpark()ed and redesignated _succ while
 892     // we were spinning.  That's harmless.  If we iterate and call park(),
 893     // park() will consume the event and return immediately and we'll
 894     // just spin again.  This pattern can repeat, leaving _succ to simply
 895     // spin on a CPU.
 896 
 897     if (_succ == current) _succ = nullptr;
 898 
 899     // Invariant: after clearing _succ a thread *must* retry _owner before parking.
 900     OrderAccess::fence();
 901   }
 902 
 903   // Egress :
 904   // current has acquired the lock -- Unlink current from the cxq or EntryList.
 905   // Normally we'll find current on the EntryList .
 906   // From the perspective of the lock owner (this thread), the
 907   // EntryList is stable and cxq is prepend-only.
 908   // The head of cxq is volatile but the interior is stable.
 909   // In addition, current.TState is stable.
 910 
 911   assert(owner_raw() == current, "invariant");
 912 
 913   UnlinkAfterAcquire(current, &node);
 914   if (_succ == current) _succ = nullptr;
 915 
 916   assert(_succ != current, "invariant");
 917   if (_Responsible == current) {
 918     _Responsible = nullptr;
 919     OrderAccess::fence(); // Dekker pivot-point
 920 
 921     // We may leave threads on cxq|EntryList without a designated
 922     // "Responsible" thread.  This is benign.  When this thread subsequently
 923     // exits the monitor it can "see" such preexisting "old" threads --
 924     // threads that arrived on the cxq|EntryList before the fence, above --
 925     // by LDing cxq|EntryList.  Newly arrived threads -- that is, threads
 926     // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible
 927     // non-null and elect a new "Responsible" timer thread.
 928     //
 929     // This thread executes:
 930     //    ST Responsible=null; MEMBAR    (in enter epilogue - here)
 931     //    LD cxq|EntryList               (in subsequent exit)
 932     //
 933     // Entering threads in the slow/contended path execute:
 934     //    ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog)
 935     //    The (ST cxq; MEMBAR) is accomplished with CAS().
 936     //
 937     // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent
 938     // exit operation from floating above the ST Responsible=null.
 939   }
 940 
 941   // We've acquired ownership with CAS().
 942   // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics.
 943   // But since the CAS() this thread may have also stored into _succ,
 944   // EntryList, cxq or Responsible.  These meta-data updates must be
 945   // visible __before this thread subsequently drops the lock.
 946   // Consider what could occur if we didn't enforce this constraint --
 947   // STs to monitor meta-data and user-data could reorder with (become
 948   // visible after) the ST in exit that drops ownership of the lock.
 949   // Some other thread could then acquire the lock, but observe inconsistent
 950   // or old monitor meta-data and heap data.  That violates the JMM.
 951   // To that end, the 1-0 exit() operation must have at least STST|LDST
 952   // "release" barrier semantics.  Specifically, there must be at least a
 953   // STST|LDST barrier in exit() before the ST of null into _owner that drops
 954   // the lock.   The barrier ensures that changes to monitor meta-data and data
 955   // protected by the lock will be visible before we release the lock, and
 956   // therefore before some other thread (CPU) has a chance to acquire the lock.
 957   // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
 958   //
 959   // Critically, any prior STs to _succ or EntryList must be visible before
 960   // the ST of null into _owner in the *subsequent* (following) corresponding
 961   // monitorexit.  Recall too, that in 1-0 mode monitorexit does not necessarily
 962   // execute a serializing instruction.
 963 
 964   return;
 965 }
 966 
 967 // ReenterI() is a specialized inline form of the latter half of the
 968 // contended slow-path from EnterI().  We use ReenterI() only for
 969 // monitor reentry in wait().
 970 //
 971 // In the future we should reconcile EnterI() and ReenterI().
 972 
 973 void ObjectMonitor::ReenterI(JavaThread* current, ObjectWaiter* currentNode) {
 974   assert(current != nullptr, "invariant");
 975   assert(currentNode != nullptr, "invariant");
 976   assert(currentNode->_thread == current, "invariant");
 977   assert(_waiters > 0, "invariant");
 978   assert(object()->mark() == markWord::encode(this), "invariant");
 979 
 980   assert(current->thread_state() != _thread_blocked, "invariant");
 981 
 982   for (;;) {
 983     ObjectWaiter::TStates v = currentNode->TState;
 984     guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
 985     assert(owner_raw() != current, "invariant");
 986 
 987     // This thread has been notified so try to reacquire the lock.
 988     if (TryLock(current) == TryLockResult::Success) {
 989       break;
 990     }
 991 
 992     // If that fails, spin again.  Note that spin count may be zero so the above TryLock
 993     // is necessary.
 994     if (TrySpin(current)) {
 995         break;
 996     }
 997 
 998     {
 999       OSThreadContendState osts(current->osthread());
1000 
1001       assert(current->thread_state() == _thread_in_vm, "invariant");
1002 
1003       {
1004         ClearSuccOnSuspend csos(this);
1005         ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */);
1006         current->_ParkEvent->park();
1007       }
1008     }
1009 
1010     // Try again, but just so we distinguish between futile wakeups and
1011     // successful wakeups.  The following test isn't algorithmically
1012     // necessary, but it helps us maintain sensible statistics.
1013     if (TryLock(current) == TryLockResult::Success) {
1014       break;
1015     }
1016 
1017     // The lock is still contested.
1018 
1019     // Assuming this is not a spurious wakeup we'll normally
1020     // find that _succ == current.
1021     if (_succ == current) _succ = nullptr;
1022 
1023     // Invariant: after clearing _succ a contending thread
1024     // *must* retry  _owner before parking.
1025     OrderAccess::fence();
1026 
1027     // Keep a tally of the # of futile wakeups.
1028     // Note that the counter is not protected by a lock or updated by atomics.
1029     // That is by design - we trade "lossy" counters which are exposed to
1030     // races during updates for a lower probe effect.
1031     // This PerfData object can be used in parallel with a safepoint.
1032     // See the work around in PerfDataManager::destroy().
1033     OM_PERFDATA_OP(FutileWakeups, inc());
1034   }
1035 
1036   // current has acquired the lock -- Unlink current from the cxq or EntryList .
1037   // Normally we'll find current on the EntryList.
1038   // Unlinking from the EntryList is constant-time and atomic-free.
1039   // From the perspective of the lock owner (this thread), the
1040   // EntryList is stable and cxq is prepend-only.
1041   // The head of cxq is volatile but the interior is stable.
1042   // In addition, current.TState is stable.
1043 
1044   assert(owner_raw() == current, "invariant");
1045   assert(object()->mark() == markWord::encode(this), "invariant");
1046   UnlinkAfterAcquire(current, currentNode);
1047   if (_succ == current) _succ = nullptr;
1048   assert(_succ != current, "invariant");
1049   currentNode->TState = ObjectWaiter::TS_RUN;
1050   OrderAccess::fence();      // see comments at the end of EnterI()
1051 }
1052 
1053 // By convention we unlink a contending thread from EntryList|cxq immediately
1054 // after the thread acquires the lock in ::enter().  Equally, we could defer
1055 // unlinking the thread until ::exit()-time.
1056 
1057 void ObjectMonitor::UnlinkAfterAcquire(JavaThread* current, ObjectWaiter* currentNode) {
1058   assert(owner_raw() == current, "invariant");
1059   assert(currentNode->_thread == current, "invariant");
1060 
1061   if (currentNode->TState == ObjectWaiter::TS_ENTER) {
1062     // Normal case: remove current from the DLL EntryList .
1063     // This is a constant-time operation.
1064     ObjectWaiter* nxt = currentNode->_next;
1065     ObjectWaiter* prv = currentNode->_prev;
1066     if (nxt != nullptr) nxt->_prev = prv;
1067     if (prv != nullptr) prv->_next = nxt;
1068     if (currentNode == _EntryList) _EntryList = nxt;
1069     assert(nxt == nullptr || nxt->TState == ObjectWaiter::TS_ENTER, "invariant");
1070     assert(prv == nullptr || prv->TState == ObjectWaiter::TS_ENTER, "invariant");
1071   } else {
1072     assert(currentNode->TState == ObjectWaiter::TS_CXQ, "invariant");
1073     // Inopportune interleaving -- current is still on the cxq.
1074     // This usually means the enqueue of self raced an exiting thread.
1075     // Normally we'll find current near the front of the cxq, so
1076     // dequeueing is typically fast.  If needbe we can accelerate
1077     // this with some MCS/CHL-like bidirectional list hints and advisory
1078     // back-links so dequeueing from the interior will normally operate
1079     // in constant-time.
1080     // Dequeue current from either the head (with CAS) or from the interior
1081     // with a linear-time scan and normal non-atomic memory operations.
1082     // CONSIDER: if current is on the cxq then simply drain cxq into EntryList
1083     // and then unlink current from EntryList.  We have to drain eventually,
1084     // so it might as well be now.
1085 
1086     ObjectWaiter* v = _cxq;
1087     assert(v != nullptr, "invariant");
1088     if (v != currentNode || Atomic::cmpxchg(&_cxq, v, currentNode->_next) != v) {
1089       // The CAS above can fail from interference IFF a "RAT" arrived.
1090       // In that case current must be in the interior and can no longer be
1091       // at the head of cxq.
1092       if (v == currentNode) {
1093         assert(_cxq != v, "invariant");
1094         v = _cxq;          // CAS above failed - start scan at head of list
1095       }
1096       ObjectWaiter* p;
1097       ObjectWaiter* q = nullptr;
1098       for (p = v; p != nullptr && p != currentNode; p = p->_next) {
1099         q = p;
1100         assert(p->TState == ObjectWaiter::TS_CXQ, "invariant");
1101       }
1102       assert(v != currentNode, "invariant");
1103       assert(p == currentNode, "Node not found on cxq");
1104       assert(p != _cxq, "invariant");
1105       assert(q != nullptr, "invariant");
1106       assert(q->_next == p, "invariant");
1107       q->_next = p->_next;
1108     }
1109   }
1110 
1111 #ifdef ASSERT
1112   // Diagnostic hygiene ...
1113   currentNode->_prev  = (ObjectWaiter*) 0xBAD;
1114   currentNode->_next  = (ObjectWaiter*) 0xBAD;
1115   currentNode->TState = ObjectWaiter::TS_RUN;
1116 #endif
1117 }
1118 
1119 // -----------------------------------------------------------------------------
1120 // Exit support
1121 //
1122 // exit()
1123 // ~~~~~~
1124 // Note that the collector can't reclaim the objectMonitor or deflate
1125 // the object out from underneath the thread calling ::exit() as the
1126 // thread calling ::exit() never transitions to a stable state.
1127 // This inhibits GC, which in turn inhibits asynchronous (and
1128 // inopportune) reclamation of "this".
1129 //
1130 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ;
1131 // There's one exception to the claim above, however.  EnterI() can call
1132 // exit() to drop a lock if the acquirer has been externally suspended.
1133 // In that case exit() is called with _thread_state == _thread_blocked,
1134 // but the monitor's _contentions field is > 0, which inhibits reclamation.
1135 //
1136 // 1-0 exit
1137 // ~~~~~~~~
1138 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of
1139 // the fast-path operators have been optimized so the common ::exit()
1140 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock().
1141 // The code emitted by fast_unlock() elides the usual MEMBAR.  This
1142 // greatly improves latency -- MEMBAR and CAS having considerable local
1143 // latency on modern processors -- but at the cost of "stranding".  Absent the
1144 // MEMBAR, a thread in fast_unlock() can race a thread in the slow
1145 // ::enter() path, resulting in the entering thread being stranding
1146 // and a progress-liveness failure.   Stranding is extremely rare.
1147 // We use timers (timed park operations) & periodic polling to detect
1148 // and recover from stranding.  Potentially stranded threads periodically
1149 // wake up and poll the lock.  See the usage of the _Responsible variable.
1150 //
1151 // The CAS() in enter provides for safety and exclusion, while the CAS or
1152 // MEMBAR in exit provides for progress and avoids stranding.  1-0 locking
1153 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding.
1154 // We detect and recover from stranding with timers.
1155 //
1156 // If a thread transiently strands it'll park until (a) another
1157 // thread acquires the lock and then drops the lock, at which time the
1158 // exiting thread will notice and unpark the stranded thread, or, (b)
1159 // the timer expires.  If the lock is high traffic then the stranding latency
1160 // will be low due to (a).  If the lock is low traffic then the odds of
1161 // stranding are lower, although the worst-case stranding latency
1162 // is longer.  Critically, we don't want to put excessive load in the
1163 // platform's timer subsystem.  We want to minimize both the timer injection
1164 // rate (timers created/sec) as well as the number of timers active at
1165 // any one time.  (more precisely, we want to minimize timer-seconds, which is
1166 // the integral of the # of active timers at any instant over time).
1167 // Both impinge on OS scalability.  Given that, at most one thread parked on
1168 // a monitor will use a timer.
1169 //
1170 // There is also the risk of a futile wake-up. If we drop the lock
1171 // another thread can reacquire the lock immediately, and we can
1172 // then wake a thread unnecessarily. This is benign, and we've
1173 // structured the code so the windows are short and the frequency
1174 // of such futile wakups is low.
1175 
1176 void ObjectMonitor::exit(JavaThread* current, bool not_suspended) {
1177   void* cur = owner_raw();
1178   if (current != cur) {
1179     if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) {
1180       assert(_recursions == 0, "invariant");
1181       set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
1182       _recursions = 0;
1183     } else {
1184       // Apparent unbalanced locking ...
1185       // Naively we'd like to throw IllegalMonitorStateException.
1186       // As a practical matter we can neither allocate nor throw an
1187       // exception as ::exit() can be called from leaf routines.
1188       // see x86_32.ad Fast_Unlock() and the I1 and I2 properties.
1189       // Upon deeper reflection, however, in a properly run JVM the only
1190       // way we should encounter this situation is in the presence of
1191       // unbalanced JNI locking. TODO: CheckJNICalls.
1192       // See also: CR4414101
1193 #ifdef ASSERT
1194       LogStreamHandle(Error, monitorinflation) lsh;
1195       lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT
1196                     " is exiting an ObjectMonitor it does not own.", p2i(current));
1197       lsh.print_cr("The imbalance is possibly caused by JNI locking.");
1198       print_debug_style_on(&lsh);
1199       assert(false, "Non-balanced monitor enter/exit!");
1200 #endif
1201       return;
1202     }
1203   }
1204 
1205   if (_recursions != 0) {
1206     _recursions--;        // this is simple recursive enter
1207     return;
1208   }
1209 
1210   // Invariant: after setting Responsible=null an thread must execute
1211   // a MEMBAR or other serializing instruction before fetching EntryList|cxq.
1212   _Responsible = nullptr;
1213 
1214 #if INCLUDE_JFR
1215   // get the owner's thread id for the MonitorEnter event
1216   // if it is enabled and the thread isn't suspended
1217   if (not_suspended && EventJavaMonitorEnter::is_enabled()) {
1218     _previous_owner_tid = JFR_THREAD_ID(current);
1219   }
1220 #endif
1221 
1222   for (;;) {
1223     assert(current == owner_raw(), "invariant");
1224 
1225     // Drop the lock.
1226     // release semantics: prior loads and stores from within the critical section
1227     // must not float (reorder) past the following store that drops the lock.
1228     // Uses a storeload to separate release_store(owner) from the
1229     // successor check. The try_set_owner() below uses cmpxchg() so
1230     // we get the fence down there.
1231     release_clear_owner(current);
1232     OrderAccess::storeload();
1233 
1234     if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != nullptr) {
1235       return;
1236     }
1237     // Other threads are blocked trying to acquire the lock.
1238 
1239     // Normally the exiting thread is responsible for ensuring succession,
1240     // but if other successors are ready or other entering threads are spinning
1241     // then this thread can simply store null into _owner and exit without
1242     // waking a successor.  The existence of spinners or ready successors
1243     // guarantees proper succession (liveness).  Responsibility passes to the
1244     // ready or running successors.  The exiting thread delegates the duty.
1245     // More precisely, if a successor already exists this thread is absolved
1246     // of the responsibility of waking (unparking) one.
1247     //
1248     // The _succ variable is critical to reducing futile wakeup frequency.
1249     // _succ identifies the "heir presumptive" thread that has been made
1250     // ready (unparked) but that has not yet run.  We need only one such
1251     // successor thread to guarantee progress.
1252     // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf
1253     // section 3.3 "Futile Wakeup Throttling" for details.
1254     //
1255     // Note that spinners in Enter() also set _succ non-null.
1256     // In the current implementation spinners opportunistically set
1257     // _succ so that exiting threads might avoid waking a successor.
1258     // Another less appealing alternative would be for the exiting thread
1259     // to drop the lock and then spin briefly to see if a spinner managed
1260     // to acquire the lock.  If so, the exiting thread could exit
1261     // immediately without waking a successor, otherwise the exiting
1262     // thread would need to dequeue and wake a successor.
1263     // (Note that we'd need to make the post-drop spin short, but no
1264     // shorter than the worst-case round-trip cache-line migration time.
1265     // The dropped lock needs to become visible to the spinner, and then
1266     // the acquisition of the lock by the spinner must become visible to
1267     // the exiting thread).
1268 
1269     // It appears that an heir-presumptive (successor) must be made ready.
1270     // Only the current lock owner can manipulate the EntryList or
1271     // drain _cxq, so we need to reacquire the lock.  If we fail
1272     // to reacquire the lock the responsibility for ensuring succession
1273     // falls to the new owner.
1274     //
1275     if (try_set_owner_from(nullptr, current) != nullptr) {
1276       return;
1277     }
1278 
1279     guarantee(owner_raw() == current, "invariant");
1280 
1281     ObjectWaiter* w = nullptr;
1282 
1283     w = _EntryList;
1284     if (w != nullptr) {
1285       // I'd like to write: guarantee (w->_thread != current).
1286       // But in practice an exiting thread may find itself on the EntryList.
1287       // Let's say thread T1 calls O.wait().  Wait() enqueues T1 on O's waitset and
1288       // then calls exit().  Exit release the lock by setting O._owner to null.
1289       // Let's say T1 then stalls.  T2 acquires O and calls O.notify().  The
1290       // notify() operation moves T1 from O's waitset to O's EntryList. T2 then
1291       // release the lock "O".  T2 resumes immediately after the ST of null into
1292       // _owner, above.  T2 notices that the EntryList is populated, so it
1293       // reacquires the lock and then finds itself on the EntryList.
1294       // Given all that, we have to tolerate the circumstance where "w" is
1295       // associated with current.
1296       assert(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1297       ExitEpilog(current, w);
1298       return;
1299     }
1300 
1301     // If we find that both _cxq and EntryList are null then just
1302     // re-run the exit protocol from the top.
1303     w = _cxq;
1304     if (w == nullptr) continue;
1305 
1306     // Drain _cxq into EntryList - bulk transfer.
1307     // First, detach _cxq.
1308     // The following loop is tantamount to: w = swap(&cxq, nullptr)
1309     for (;;) {
1310       assert(w != nullptr, "Invariant");
1311       ObjectWaiter* u = Atomic::cmpxchg(&_cxq, w, (ObjectWaiter*)nullptr);
1312       if (u == w) break;
1313       w = u;
1314     }
1315 
1316     assert(w != nullptr, "invariant");
1317     assert(_EntryList == nullptr, "invariant");
1318 
1319     // Convert the LIFO SLL anchored by _cxq into a DLL.
1320     // The list reorganization step operates in O(LENGTH(w)) time.
1321     // It's critical that this step operate quickly as
1322     // "current" still holds the outer-lock, restricting parallelism
1323     // and effectively lengthening the critical section.
1324     // Invariant: s chases t chases u.
1325     // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so
1326     // we have faster access to the tail.
1327 
1328     _EntryList = w;
1329     ObjectWaiter* q = nullptr;
1330     ObjectWaiter* p;
1331     for (p = w; p != nullptr; p = p->_next) {
1332       guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant");
1333       p->TState = ObjectWaiter::TS_ENTER;
1334       p->_prev = q;
1335       q = p;
1336     }
1337 
1338     // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = nullptr
1339     // The MEMBAR is satisfied by the release_store() operation in ExitEpilog().
1340 
1341     // See if we can abdicate to a spinner instead of waking a thread.
1342     // A primary goal of the implementation is to reduce the
1343     // context-switch rate.
1344     if (_succ != nullptr) continue;
1345 
1346     w = _EntryList;
1347     if (w != nullptr) {
1348       guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant");
1349       ExitEpilog(current, w);
1350       return;
1351     }
1352   }
1353 }
1354 
1355 void ObjectMonitor::ExitEpilog(JavaThread* current, ObjectWaiter* Wakee) {
1356   assert(owner_raw() == current, "invariant");
1357 
1358   // Exit protocol:
1359   // 1. ST _succ = wakee
1360   // 2. membar #loadstore|#storestore;
1361   // 2. ST _owner = nullptr
1362   // 3. unpark(wakee)
1363 
1364   _succ = Wakee->_thread;
1365   ParkEvent * Trigger = Wakee->_event;
1366 
1367   // Hygiene -- once we've set _owner = nullptr we can't safely dereference Wakee again.
1368   // The thread associated with Wakee may have grabbed the lock and "Wakee" may be
1369   // out-of-scope (non-extant).
1370   Wakee  = nullptr;
1371 
1372   // Drop the lock.
1373   // Uses a fence to separate release_store(owner) from the LD in unpark().
1374   release_clear_owner(current);
1375   OrderAccess::fence();
1376 
1377   DTRACE_MONITOR_PROBE(contended__exit, this, object(), current);
1378   Trigger->unpark();
1379 
1380   // Maintain stats and report events to JVMTI
1381   OM_PERFDATA_OP(Parks, inc());
1382 }
1383 
1384 // complete_exit exits a lock returning recursion count
1385 // complete_exit requires an inflated monitor
1386 // The _owner field is not always the Thread addr even with an
1387 // inflated monitor, e.g. the monitor can be inflated by a non-owning
1388 // thread due to contention.
1389 intx ObjectMonitor::complete_exit(JavaThread* current) {
1390   assert(InitDone, "Unexpectedly not initialized");
1391 
1392   void* cur = owner_raw();
1393   if (current != cur) {
1394     if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) {
1395       assert(_recursions == 0, "internal state error");
1396       set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
1397       _recursions = 0;
1398     }
1399   }
1400 
1401   guarantee(current == owner_raw(), "complete_exit not owner");
1402   intx save = _recursions; // record the old recursion count
1403   _recursions = 0;         // set the recursion level to be 0
1404   exit(current);           // exit the monitor
1405   guarantee(owner_raw() != current, "invariant");
1406   return save;
1407 }
1408 
1409 // Checks that the current THREAD owns this monitor and causes an
1410 // immediate return if it doesn't. We don't use the CHECK macro
1411 // because we want the IMSE to be the only exception that is thrown
1412 // from the call site when false is returned. Any other pending
1413 // exception is ignored.
1414 #define CHECK_OWNER()                                                  \
1415   do {                                                                 \
1416     if (!check_owner(THREAD)) {                                        \
1417        assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \
1418        return;                                                         \
1419      }                                                                 \
1420   } while (false)
1421 
1422 // Returns true if the specified thread owns the ObjectMonitor.
1423 // Otherwise returns false and throws IllegalMonitorStateException
1424 // (IMSE). If there is a pending exception and the specified thread
1425 // is not the owner, that exception will be replaced by the IMSE.
1426 bool ObjectMonitor::check_owner(TRAPS) {
1427   JavaThread* current = THREAD;
1428   void* cur = owner_raw();
1429   assert(cur != anon_owner_ptr(), "no anon owner here");
1430   if (cur == current) {
1431     return true;
1432   }
1433   if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) {
1434     set_owner_from_BasicLock(cur, current);  // Convert from BasicLock* to Thread*.
1435     _recursions = 0;
1436     return true;
1437   }
1438   THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(),
1439              "current thread is not owner", false);
1440 }
1441 
1442 static inline bool is_excluded(const Klass* monitor_klass) {
1443   assert(monitor_klass != nullptr, "invariant");
1444   NOT_JFR_RETURN_(false);
1445   JFR_ONLY(return vmSymbols::jdk_jfr_internal_HiddenWait() == monitor_klass->name();)
1446 }
1447 
1448 static void post_monitor_wait_event(EventJavaMonitorWait* event,
1449                                     ObjectMonitor* monitor,
1450                                     uint64_t notifier_tid,
1451                                     jlong timeout,
1452                                     bool timedout) {
1453   assert(event != nullptr, "invariant");
1454   assert(monitor != nullptr, "invariant");
1455   const Klass* monitor_klass = monitor->object()->klass();
1456   if (is_excluded(monitor_klass)) {
1457     return;
1458   }
1459   event->set_monitorClass(monitor_klass);
1460   event->set_timeout(timeout);
1461   // Set an address that is 'unique enough', such that events close in
1462   // time and with the same address are likely (but not guaranteed) to
1463   // belong to the same object.
1464   event->set_address((uintptr_t)monitor);
1465   event->set_notifier(notifier_tid);
1466   event->set_timedOut(timedout);
1467   event->commit();
1468 }
1469 
1470 // -----------------------------------------------------------------------------
1471 // Wait/Notify/NotifyAll
1472 //
1473 // Note: a subset of changes to ObjectMonitor::wait()
1474 // will need to be replicated in complete_exit
1475 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) {
1476   JavaThread* current = THREAD;
1477 
1478   assert(InitDone, "Unexpectedly not initialized");
1479 
1480   CHECK_OWNER();  // Throws IMSE if not owner.
1481 
1482   EventJavaMonitorWait event;
1483 
1484   // check for a pending interrupt
1485   if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1486     // post monitor waited event.  Note that this is past-tense, we are done waiting.
1487     if (JvmtiExport::should_post_monitor_waited()) {
1488       // Note: 'false' parameter is passed here because the
1489       // wait was not timed out due to thread interrupt.
1490       JvmtiExport::post_monitor_waited(current, this, false);
1491 
1492       // In this short circuit of the monitor wait protocol, the
1493       // current thread never drops ownership of the monitor and
1494       // never gets added to the wait queue so the current thread
1495       // cannot be made the successor. This means that the
1496       // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally
1497       // consume an unpark() meant for the ParkEvent associated with
1498       // this ObjectMonitor.
1499     }
1500     if (event.should_commit()) {
1501       post_monitor_wait_event(&event, this, 0, millis, false);
1502     }
1503     THROW(vmSymbols::java_lang_InterruptedException());
1504     return;
1505   }
1506 
1507   current->set_current_waiting_monitor(this);
1508 
1509   // create a node to be put into the queue
1510   // Critically, after we reset() the event but prior to park(), we must check
1511   // for a pending interrupt.
1512   ObjectWaiter node(current);
1513   node.TState = ObjectWaiter::TS_WAIT;
1514   current->_ParkEvent->reset();
1515   OrderAccess::fence();          // ST into Event; membar ; LD interrupted-flag
1516 
1517   // Enter the waiting queue, which is a circular doubly linked list in this case
1518   // but it could be a priority queue or any data structure.
1519   // _WaitSetLock protects the wait queue.  Normally the wait queue is accessed only
1520   // by the owner of the monitor *except* in the case where park()
1521   // returns because of a timeout of interrupt.  Contention is exceptionally rare
1522   // so we use a simple spin-lock instead of a heavier-weight blocking lock.
1523 
1524   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add");
1525   AddWaiter(&node);
1526   Thread::SpinRelease(&_WaitSetLock);
1527 
1528   _Responsible = nullptr;
1529 
1530   intx save = _recursions;     // record the old recursion count
1531   _waiters++;                  // increment the number of waiters
1532   _recursions = 0;             // set the recursion level to be 1
1533   exit(current);               // exit the monitor
1534   guarantee(owner_raw() != current, "invariant");
1535 
1536   // The thread is on the WaitSet list - now park() it.
1537   // On MP systems it's conceivable that a brief spin before we park
1538   // could be profitable.
1539   //
1540   // TODO-FIXME: change the following logic to a loop of the form
1541   //   while (!timeout && !interrupted && _notified == 0) park()
1542 
1543   int ret = OS_OK;
1544   int WasNotified = 0;
1545 
1546   // Need to check interrupt state whilst still _thread_in_vm
1547   bool interrupted = interruptible && current->is_interrupted(false);
1548 
1549   { // State transition wrappers
1550     OSThread* osthread = current->osthread();
1551     OSThreadWaitState osts(osthread, true);
1552 
1553     assert(current->thread_state() == _thread_in_vm, "invariant");
1554 
1555     {
1556       ClearSuccOnSuspend csos(this);
1557       ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */);
1558       if (interrupted || HAS_PENDING_EXCEPTION) {
1559         // Intentionally empty
1560       } else if (node._notified == 0) {
1561         if (millis <= 0) {
1562           current->_ParkEvent->park();
1563         } else {
1564           ret = current->_ParkEvent->park(millis);
1565         }
1566       }
1567     }
1568 
1569     // Node may be on the WaitSet, the EntryList (or cxq), or in transition
1570     // from the WaitSet to the EntryList.
1571     // See if we need to remove Node from the WaitSet.
1572     // We use double-checked locking to avoid grabbing _WaitSetLock
1573     // if the thread is not on the wait queue.
1574     //
1575     // Note that we don't need a fence before the fetch of TState.
1576     // In the worst case we'll fetch a old-stale value of TS_WAIT previously
1577     // written by the is thread. (perhaps the fetch might even be satisfied
1578     // by a look-aside into the processor's own store buffer, although given
1579     // the length of the code path between the prior ST and this load that's
1580     // highly unlikely).  If the following LD fetches a stale TS_WAIT value
1581     // then we'll acquire the lock and then re-fetch a fresh TState value.
1582     // That is, we fail toward safety.
1583 
1584     if (node.TState == ObjectWaiter::TS_WAIT) {
1585       Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink");
1586       if (node.TState == ObjectWaiter::TS_WAIT) {
1587         DequeueSpecificWaiter(&node);       // unlink from WaitSet
1588         assert(node._notified == 0, "invariant");
1589         node.TState = ObjectWaiter::TS_RUN;
1590       }
1591       Thread::SpinRelease(&_WaitSetLock);
1592     }
1593 
1594     // The thread is now either on off-list (TS_RUN),
1595     // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ).
1596     // The Node's TState variable is stable from the perspective of this thread.
1597     // No other threads will asynchronously modify TState.
1598     guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant");
1599     OrderAccess::loadload();
1600     if (_succ == current) _succ = nullptr;
1601     WasNotified = node._notified;
1602 
1603     // Reentry phase -- reacquire the monitor.
1604     // re-enter contended monitor after object.wait().
1605     // retain OBJECT_WAIT state until re-enter successfully completes
1606     // Thread state is thread_in_vm and oop access is again safe,
1607     // although the raw address of the object may have changed.
1608     // (Don't cache naked oops over safepoints, of course).
1609 
1610     // post monitor waited event. Note that this is past-tense, we are done waiting.
1611     if (JvmtiExport::should_post_monitor_waited()) {
1612       JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT);
1613 
1614       if (node._notified != 0 && _succ == current) {
1615         // In this part of the monitor wait-notify-reenter protocol it
1616         // is possible (and normal) for another thread to do a fastpath
1617         // monitor enter-exit while this thread is still trying to get
1618         // to the reenter portion of the protocol.
1619         //
1620         // The ObjectMonitor was notified and the current thread is
1621         // the successor which also means that an unpark() has already
1622         // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can
1623         // consume the unpark() that was done when the successor was
1624         // set because the same ParkEvent is shared between Java
1625         // monitors and JVM/TI RawMonitors (for now).
1626         //
1627         // We redo the unpark() to ensure forward progress, i.e., we
1628         // don't want all pending threads hanging (parked) with none
1629         // entering the unlocked monitor.
1630         node._event->unpark();
1631       }
1632     }
1633 
1634     if (event.should_commit()) {
1635       post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT);
1636     }
1637 
1638     OrderAccess::fence();
1639 
1640     assert(owner_raw() != current, "invariant");
1641     ObjectWaiter::TStates v = node.TState;
1642     if (v == ObjectWaiter::TS_RUN) {
1643       enter(current);
1644     } else {
1645       guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant");
1646       ReenterI(current, &node);
1647       node.wait_reenter_end(this);
1648     }
1649 
1650     // current has reacquired the lock.
1651     // Lifecycle - the node representing current must not appear on any queues.
1652     // Node is about to go out-of-scope, but even if it were immortal we wouldn't
1653     // want residual elements associated with this thread left on any lists.
1654     guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant");
1655     assert(owner_raw() == current, "invariant");
1656     assert(_succ != current, "invariant");
1657   } // OSThreadWaitState()
1658 
1659   current->set_current_waiting_monitor(nullptr);
1660 
1661   guarantee(_recursions == 0, "invariant");
1662   int relock_count = JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current);
1663   _recursions =   save          // restore the old recursion count
1664                 + relock_count; //  increased by the deferred relock count
1665   current->inc_held_monitor_count(relock_count); // Deopt never entered these counts.
1666   _waiters--;             // decrement the number of waiters
1667 
1668   // Verify a few postconditions
1669   assert(owner_raw() == current, "invariant");
1670   assert(_succ != current, "invariant");
1671   assert(object()->mark() == markWord::encode(this), "invariant");
1672 
1673   // check if the notification happened
1674   if (!WasNotified) {
1675     // no, it could be timeout or Thread.interrupt() or both
1676     // check for interrupt event, otherwise it is timeout
1677     if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) {
1678       THROW(vmSymbols::java_lang_InterruptedException());
1679     }
1680   }
1681 
1682   // NOTE: Spurious wake up will be consider as timeout.
1683   // Monitor notify has precedence over thread interrupt.
1684 }
1685 
1686 
1687 // Consider:
1688 // If the lock is cool (cxq == null && succ == null) and we're on an MP system
1689 // then instead of transferring a thread from the WaitSet to the EntryList
1690 // we might just dequeue a thread from the WaitSet and directly unpark() it.
1691 
1692 void ObjectMonitor::INotify(JavaThread* current) {
1693   Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify");
1694   ObjectWaiter* iterator = DequeueWaiter();
1695   if (iterator != nullptr) {
1696     guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant");
1697     guarantee(iterator->_notified == 0, "invariant");
1698     // Disposition - what might we do with iterator ?
1699     // a.  add it directly to the EntryList - either tail (policy == 1)
1700     //     or head (policy == 0).
1701     // b.  push it onto the front of the _cxq (policy == 2).
1702     // For now we use (b).
1703 
1704     iterator->TState = ObjectWaiter::TS_ENTER;
1705 
1706     iterator->_notified = 1;
1707     iterator->_notifier_tid = JFR_THREAD_ID(current);
1708 
1709     ObjectWaiter* list = _EntryList;
1710     if (list != nullptr) {
1711       assert(list->_prev == nullptr, "invariant");
1712       assert(list->TState == ObjectWaiter::TS_ENTER, "invariant");
1713       assert(list != iterator, "invariant");
1714     }
1715 
1716     // prepend to cxq
1717     if (list == nullptr) {
1718       iterator->_next = iterator->_prev = nullptr;
1719       _EntryList = iterator;
1720     } else {
1721       iterator->TState = ObjectWaiter::TS_CXQ;
1722       for (;;) {
1723         ObjectWaiter* front = _cxq;
1724         iterator->_next = front;
1725         if (Atomic::cmpxchg(&_cxq, front, iterator) == front) {
1726           break;
1727         }
1728       }
1729     }
1730 
1731     // _WaitSetLock protects the wait queue, not the EntryList.  We could
1732     // move the add-to-EntryList operation, above, outside the critical section
1733     // protected by _WaitSetLock.  In practice that's not useful.  With the
1734     // exception of  wait() timeouts and interrupts the monitor owner
1735     // is the only thread that grabs _WaitSetLock.  There's almost no contention
1736     // on _WaitSetLock so it's not profitable to reduce the length of the
1737     // critical section.
1738 
1739     iterator->wait_reenter_begin(this);
1740   }
1741   Thread::SpinRelease(&_WaitSetLock);
1742 }
1743 
1744 // Consider: a not-uncommon synchronization bug is to use notify() when
1745 // notifyAll() is more appropriate, potentially resulting in stranded
1746 // threads; this is one example of a lost wakeup. A useful diagnostic
1747 // option is to force all notify() operations to behave as notifyAll().
1748 //
1749 // Note: We can also detect many such problems with a "minimum wait".
1750 // When the "minimum wait" is set to a small non-zero timeout value
1751 // and the program does not hang whereas it did absent "minimum wait",
1752 // that suggests a lost wakeup bug.
1753 
1754 void ObjectMonitor::notify(TRAPS) {
1755   JavaThread* current = THREAD;
1756   CHECK_OWNER();  // Throws IMSE if not owner.
1757   if (_WaitSet == nullptr) {
1758     return;
1759   }
1760   DTRACE_MONITOR_PROBE(notify, this, object(), current);
1761   INotify(current);
1762   OM_PERFDATA_OP(Notifications, inc(1));
1763 }
1764 
1765 
1766 // The current implementation of notifyAll() transfers the waiters one-at-a-time
1767 // from the waitset to the EntryList. This could be done more efficiently with a
1768 // single bulk transfer but in practice it's not time-critical. Beware too,
1769 // that in prepend-mode we invert the order of the waiters. Let's say that the
1770 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend
1771 // mode the waitset will be empty and the EntryList will be "DCBAXYZ".
1772 
1773 void ObjectMonitor::notifyAll(TRAPS) {
1774   JavaThread* current = THREAD;
1775   CHECK_OWNER();  // Throws IMSE if not owner.
1776   if (_WaitSet == nullptr) {
1777     return;
1778   }
1779 
1780   DTRACE_MONITOR_PROBE(notifyAll, this, object(), current);
1781   int tally = 0;
1782   while (_WaitSet != nullptr) {
1783     tally++;
1784     INotify(current);
1785   }
1786 
1787   OM_PERFDATA_OP(Notifications, inc(tally));
1788 }
1789 
1790 // -----------------------------------------------------------------------------
1791 // Adaptive Spinning Support
1792 //
1793 // Adaptive spin-then-block - rational spinning
1794 //
1795 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS
1796 // algorithm.  On high order SMP systems it would be better to start with
1797 // a brief global spin and then revert to spinning locally.  In the spirit of MCS/CLH,
1798 // a contending thread could enqueue itself on the cxq and then spin locally
1799 // on a thread-specific variable such as its ParkEvent._Event flag.
1800 // That's left as an exercise for the reader.  Note that global spinning is
1801 // not problematic on Niagara, as the L2 cache serves the interconnect and
1802 // has both low latency and massive bandwidth.
1803 //
1804 // Broadly, we can fix the spin frequency -- that is, the % of contended lock
1805 // acquisition attempts where we opt to spin --  at 100% and vary the spin count
1806 // (duration) or we can fix the count at approximately the duration of
1807 // a context switch and vary the frequency.   Of course we could also
1808 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor.
1809 // For a description of 'Adaptive spin-then-block mutual exclusion in
1810 // multi-threaded processing,' see U.S. Pat. No. 8046758.
1811 //
1812 // This implementation varies the duration "D", where D varies with
1813 // the success rate of recent spin attempts. (D is capped at approximately
1814 // length of a round-trip context switch).  The success rate for recent
1815 // spin attempts is a good predictor of the success rate of future spin
1816 // attempts.  The mechanism adapts automatically to varying critical
1817 // section length (lock modality), system load and degree of parallelism.
1818 // D is maintained per-monitor in _SpinDuration and is initialized
1819 // optimistically.  Spin frequency is fixed at 100%.
1820 //
1821 // Note that _SpinDuration is volatile, but we update it without locks
1822 // or atomics.  The code is designed so that _SpinDuration stays within
1823 // a reasonable range even in the presence of races.  The arithmetic
1824 // operations on _SpinDuration are closed over the domain of legal values,
1825 // so at worst a race will install and older but still legal value.
1826 // At the very worst this introduces some apparent non-determinism.
1827 // We might spin when we shouldn't or vice-versa, but since the spin
1828 // count are relatively short, even in the worst case, the effect is harmless.
1829 //
1830 // Care must be taken that a low "D" value does not become an
1831 // an absorbing state.  Transient spinning failures -- when spinning
1832 // is overall profitable -- should not cause the system to converge
1833 // on low "D" values.  We want spinning to be stable and predictable
1834 // and fairly responsive to change and at the same time we don't want
1835 // it to oscillate, become metastable, be "too" non-deterministic,
1836 // or converge on or enter undesirable stable absorbing states.
1837 //
1838 // We implement a feedback-based control system -- using past behavior
1839 // to predict future behavior.  We face two issues: (a) if the
1840 // input signal is random then the spin predictor won't provide optimal
1841 // results, and (b) if the signal frequency is too high then the control
1842 // system, which has some natural response lag, will "chase" the signal.
1843 // (b) can arise from multimodal lock hold times.  Transient preemption
1844 // can also result in apparent bimodal lock hold times.
1845 // Although sub-optimal, neither condition is particularly harmful, as
1846 // in the worst-case we'll spin when we shouldn't or vice-versa.
1847 // The maximum spin duration is rather short so the failure modes aren't bad.
1848 // To be conservative, I've tuned the gain in system to bias toward
1849 // _not spinning.  Relatedly, the system can sometimes enter a mode where it
1850 // "rings" or oscillates between spinning and not spinning.  This happens
1851 // when spinning is just on the cusp of profitability, however, so the
1852 // situation is not dire.  The state is benign -- there's no need to add
1853 // hysteresis control to damp the transition rate between spinning and
1854 // not spinning.
1855 
1856 int ObjectMonitor::Knob_SpinLimit    = 5000;   // derived by an external tool
1857 
1858 static int Knob_Bonus               = 100;     // spin success bonus
1859 static int Knob_Penalty             = 200;     // spin failure penalty
1860 static int Knob_Poverty             = 1000;
1861 static int Knob_FixedSpin           = 0;
1862 static int Knob_PreSpin             = 10;      // 20-100 likely better, but it's not better in my testing.
1863 
1864 inline static int adjust_up(int spin_duration) {
1865   int x = spin_duration;
1866   if (x < ObjectMonitor::Knob_SpinLimit) {
1867     if (x < Knob_Poverty) {
1868       x = Knob_Poverty;
1869     }
1870     return x + Knob_Bonus;
1871   } else {
1872     return spin_duration;
1873   }
1874 }
1875 
1876 inline static int adjust_down(int spin_duration) {
1877   // TODO: Use an AIMD-like policy to adjust _SpinDuration.
1878   // AIMD is globally stable.
1879   int x = spin_duration;
1880   if (x > 0) {
1881     // Consider an AIMD scheme like: x -= (x >> 3) + 100
1882     // This is globally sample and tends to damp the response.
1883     x -= Knob_Penalty;
1884     if (x < 0) { x = 0; }
1885     return x;
1886   } else {
1887     return spin_duration;
1888   }
1889 }
1890 
1891 bool ObjectMonitor::short_fixed_spin(JavaThread* current, int spin_count, bool adapt) {
1892   for (int ctr = 0; ctr < spin_count; ctr++) {
1893     TryLockResult status = TryLock(current);
1894     if (status == TryLockResult::Success) {
1895       if (adapt) {
1896         _SpinDuration = adjust_up(_SpinDuration);
1897       }
1898       return true;
1899     } else if (status == TryLockResult::Interference) {
1900       break;
1901     }
1902     SpinPause();
1903   }
1904   return false;
1905 }
1906 
1907 // Spinning: Fixed frequency (100%), vary duration
1908 bool ObjectMonitor::TrySpin(JavaThread* current) {
1909 
1910   // Dumb, brutal spin.  Good for comparative measurements against adaptive spinning.
1911   int knob_fixed_spin = Knob_FixedSpin;  // 0 (don't spin: default), 2000 good test
1912   if (knob_fixed_spin > 0) {
1913     return short_fixed_spin(current, knob_fixed_spin, false);
1914   }
1915 
1916   // Admission control - verify preconditions for spinning
1917   //
1918   // We always spin a little bit, just to prevent _SpinDuration == 0 from
1919   // becoming an absorbing state.  Put another way, we spin briefly to
1920   // sample, just in case the system load, parallelism, contention, or lock
1921   // modality changed.
1922 
1923   int knob_pre_spin = Knob_PreSpin; // 10 (default), 100, 1000 or 2000
1924   if (short_fixed_spin(current, knob_pre_spin, true)) {
1925     return true;
1926   }
1927 
1928   //
1929   // Consider the following alternative:
1930   // Periodically set _SpinDuration = _SpinLimit and try a long/full
1931   // spin attempt.  "Periodically" might mean after a tally of
1932   // the # of failed spin attempts (or iterations) reaches some threshold.
1933   // This takes us into the realm of 1-out-of-N spinning, where we
1934   // hold the duration constant but vary the frequency.
1935 
1936   int ctr = _SpinDuration;
1937   if (ctr <= 0) return false;
1938 
1939   // We're good to spin ... spin ingress.
1940   // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades
1941   // when preparing to LD...CAS _owner, etc and the CAS is likely
1942   // to succeed.
1943   if (_succ == nullptr) {
1944     _succ = current;
1945   }
1946   Thread* prv = nullptr;
1947 
1948   // There are three ways to exit the following loop:
1949   // 1.  A successful spin where this thread has acquired the lock.
1950   // 2.  Spin failure with prejudice
1951   // 3.  Spin failure without prejudice
1952 
1953   while (--ctr >= 0) {
1954 
1955     // Periodic polling -- Check for pending GC
1956     // Threads may spin while they're unsafe.
1957     // We don't want spinning threads to delay the JVM from reaching
1958     // a stop-the-world safepoint or to steal cycles from GC.
1959     // If we detect a pending safepoint we abort in order that
1960     // (a) this thread, if unsafe, doesn't delay the safepoint, and (b)
1961     // this thread, if safe, doesn't steal cycles from GC.
1962     // This is in keeping with the "no loitering in runtime" rule.
1963     // We periodically check to see if there's a safepoint pending.
1964     if ((ctr & 0xFF) == 0) {
1965       // Can't call SafepointMechanism::should_process() since that
1966       // might update the poll values and we could be in a thread_blocked
1967       // state here which is not allowed so just check the poll.
1968       if (SafepointMechanism::local_poll_armed(current)) {
1969         break;
1970       }
1971       SpinPause();
1972     }
1973 
1974     // Probe _owner with TATAS
1975     // If this thread observes the monitor transition or flicker
1976     // from locked to unlocked to locked, then the odds that this
1977     // thread will acquire the lock in this spin attempt go down
1978     // considerably.  The same argument applies if the CAS fails
1979     // or if we observe _owner change from one non-null value to
1980     // another non-null value.   In such cases we might abort
1981     // the spin without prejudice or apply a "penalty" to the
1982     // spin count-down variable "ctr", reducing it by 100, say.
1983 
1984     JavaThread* ox = static_cast<JavaThread*>(owner_raw());
1985     if (ox == nullptr) {
1986       ox = static_cast<JavaThread*>(try_set_owner_from(nullptr, current));
1987       if (ox == nullptr) {
1988         // The CAS succeeded -- this thread acquired ownership
1989         // Take care of some bookkeeping to exit spin state.
1990         if (_succ == current) {
1991           _succ = nullptr;
1992         }
1993 
1994         // Increase _SpinDuration :
1995         // The spin was successful (profitable) so we tend toward
1996         // longer spin attempts in the future.
1997         // CONSIDER: factor "ctr" into the _SpinDuration adjustment.
1998         // If we acquired the lock early in the spin cycle it
1999         // makes sense to increase _SpinDuration proportionally.
2000         // Note that we don't clamp SpinDuration precisely at SpinLimit.
2001         _SpinDuration = adjust_up(_SpinDuration);
2002         return true;
2003       }
2004 
2005       // The CAS failed ... we can take any of the following actions:
2006       // * penalize: ctr -= CASPenalty
2007       // * exit spin with prejudice -- abort without adapting spinner
2008       // * exit spin without prejudice.
2009       // * Since CAS is high-latency, retry again immediately.
2010       break;
2011     }
2012 
2013     // Did lock ownership change hands ?
2014     if (ox != prv && prv != nullptr) {
2015       break;
2016     }
2017     prv = ox;
2018 
2019     if (_succ == nullptr) {
2020       _succ = current;
2021     }
2022   }
2023 
2024   // Spin failed with prejudice -- reduce _SpinDuration.
2025   if (ctr < 0) {
2026     _SpinDuration = adjust_down(_SpinDuration);
2027   }
2028 
2029   if (_succ == current) {
2030     _succ = nullptr;
2031     // Invariant: after setting succ=null a contending thread
2032     // must recheck-retry _owner before parking.  This usually happens
2033     // in the normal usage of TrySpin(), but it's safest
2034     // to make TrySpin() as foolproof as possible.
2035     OrderAccess::fence();
2036     if (TryLock(current) == TryLockResult::Success) {
2037       return true;
2038     }
2039   }
2040 
2041   return false;
2042 }
2043 
2044 
2045 // -----------------------------------------------------------------------------
2046 // WaitSet management ...
2047 
2048 ObjectWaiter::ObjectWaiter(JavaThread* current) {
2049   _next     = nullptr;
2050   _prev     = nullptr;
2051   _notified = 0;
2052   _notifier_tid = 0;
2053   TState    = TS_RUN;
2054   _thread   = current;
2055   _event    = _thread->_ParkEvent;
2056   _active   = false;
2057   assert(_event != nullptr, "invariant");
2058 }
2059 
2060 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) {
2061   _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon);
2062 }
2063 
2064 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) {
2065   JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active);
2066 }
2067 
2068 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) {
2069   assert(node != nullptr, "should not add null node");
2070   assert(node->_prev == nullptr, "node already in list");
2071   assert(node->_next == nullptr, "node already in list");
2072   // put node at end of queue (circular doubly linked list)
2073   if (_WaitSet == nullptr) {
2074     _WaitSet = node;
2075     node->_prev = node;
2076     node->_next = node;
2077   } else {
2078     ObjectWaiter* head = _WaitSet;
2079     ObjectWaiter* tail = head->_prev;
2080     assert(tail->_next == head, "invariant check");
2081     tail->_next = node;
2082     head->_prev = node;
2083     node->_next = head;
2084     node->_prev = tail;
2085   }
2086 }
2087 
2088 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() {
2089   // dequeue the very first waiter
2090   ObjectWaiter* waiter = _WaitSet;
2091   if (waiter) {
2092     DequeueSpecificWaiter(waiter);
2093   }
2094   return waiter;
2095 }
2096 
2097 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) {
2098   assert(node != nullptr, "should not dequeue nullptr node");
2099   assert(node->_prev != nullptr, "node already removed from list");
2100   assert(node->_next != nullptr, "node already removed from list");
2101   // when the waiter has woken up because of interrupt,
2102   // timeout or other spurious wake-up, dequeue the
2103   // waiter from waiting list
2104   ObjectWaiter* next = node->_next;
2105   if (next == node) {
2106     assert(node->_prev == node, "invariant check");
2107     _WaitSet = nullptr;
2108   } else {
2109     ObjectWaiter* prev = node->_prev;
2110     assert(prev->_next == node, "invariant check");
2111     assert(next->_prev == node, "invariant check");
2112     next->_prev = prev;
2113     prev->_next = next;
2114     if (_WaitSet == node) {
2115       _WaitSet = next;
2116     }
2117   }
2118   node->_next = nullptr;
2119   node->_prev = nullptr;
2120 }
2121 
2122 // -----------------------------------------------------------------------------
2123 // PerfData support
2124 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts       = nullptr;
2125 PerfCounter * ObjectMonitor::_sync_FutileWakeups               = nullptr;
2126 PerfCounter * ObjectMonitor::_sync_Parks                       = nullptr;
2127 PerfCounter * ObjectMonitor::_sync_Notifications               = nullptr;
2128 PerfCounter * ObjectMonitor::_sync_Inflations                  = nullptr;
2129 PerfCounter * ObjectMonitor::_sync_Deflations                  = nullptr;
2130 PerfLongVariable * ObjectMonitor::_sync_MonExtant              = nullptr;
2131 
2132 // One-shot global initialization for the sync subsystem.
2133 // We could also defer initialization and initialize on-demand
2134 // the first time we call ObjectSynchronizer::inflate().
2135 // Initialization would be protected - like so many things - by
2136 // the MonitorCache_lock.
2137 
2138 void ObjectMonitor::Initialize() {
2139   assert(!InitDone, "invariant");
2140 
2141   if (!os::is_MP()) {
2142     Knob_SpinLimit = 0;
2143     Knob_PreSpin   = 0;
2144     Knob_FixedSpin = -1;
2145   }
2146 
2147   if (UsePerfData) {
2148     EXCEPTION_MARK;
2149 #define NEWPERFCOUNTER(n)                                                \
2150   {                                                                      \
2151     n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events,  \
2152                                         CHECK);                          \
2153   }
2154 #define NEWPERFVARIABLE(n)                                                \
2155   {                                                                       \
2156     n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events,  \
2157                                          CHECK);                          \
2158   }
2159     NEWPERFCOUNTER(_sync_Inflations);
2160     NEWPERFCOUNTER(_sync_Deflations);
2161     NEWPERFCOUNTER(_sync_ContendedLockAttempts);
2162     NEWPERFCOUNTER(_sync_FutileWakeups);
2163     NEWPERFCOUNTER(_sync_Parks);
2164     NEWPERFCOUNTER(_sync_Notifications);
2165     NEWPERFVARIABLE(_sync_MonExtant);
2166 #undef NEWPERFCOUNTER
2167 #undef NEWPERFVARIABLE
2168   }
2169 
2170   _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer);
2171 
2172   DEBUG_ONLY(InitDone = true;)
2173 }
2174 
2175 void ObjectMonitor::print_on(outputStream* st) const {
2176   // The minimal things to print for markWord printing, more can be added for debugging and logging.
2177   st->print("{contentions=0x%08x,waiters=0x%08x"
2178             ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}",
2179             contentions(), waiters(), recursions(),
2180             p2i(owner()));
2181 }
2182 void ObjectMonitor::print() const { print_on(tty); }
2183 
2184 #ifdef ASSERT
2185 // Print the ObjectMonitor like a debugger would:
2186 //
2187 // (ObjectMonitor) 0x00007fdfb6012e40 = {
2188 //   _header = 0x0000000000000001
2189 //   _object = 0x000000070ff45fd0
2190 //   _pad_buf0 = {
2191 //     [0] = '\0'
2192 //     ...
2193 //     [43] = '\0'
2194 //   }
2195 //   _owner = 0x0000000000000000
2196 //   _previous_owner_tid = 0
2197 //   _pad_buf1 = {
2198 //     [0] = '\0'
2199 //     ...
2200 //     [47] = '\0'
2201 //   }
2202 //   _next_om = 0x0000000000000000
2203 //   _recursions = 0
2204 //   _EntryList = 0x0000000000000000
2205 //   _cxq = 0x0000000000000000
2206 //   _succ = 0x0000000000000000
2207 //   _Responsible = 0x0000000000000000
2208 //   _SpinDuration = 5000
2209 //   _contentions = 0
2210 //   _WaitSet = 0x0000700009756248
2211 //   _waiters = 1
2212 //   _WaitSetLock = 0
2213 // }
2214 //
2215 void ObjectMonitor::print_debug_style_on(outputStream* st) const {
2216   st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this));
2217   st->print_cr("  _header = " INTPTR_FORMAT, header().value());
2218   st->print_cr("  _object = " INTPTR_FORMAT, p2i(object_peek()));
2219   st->print_cr("  _pad_buf0 = {");
2220   st->print_cr("    [0] = '\\0'");
2221   st->print_cr("    ...");
2222   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1);
2223   st->print_cr("  }");
2224   st->print_cr("  _owner = " INTPTR_FORMAT, p2i(owner_raw()));
2225   st->print_cr("  _previous_owner_tid = " UINT64_FORMAT, _previous_owner_tid);
2226   st->print_cr("  _pad_buf1 = {");
2227   st->print_cr("    [0] = '\\0'");
2228   st->print_cr("    ...");
2229   st->print_cr("    [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1);
2230   st->print_cr("  }");
2231   st->print_cr("  _next_om = " INTPTR_FORMAT, p2i(next_om()));
2232   st->print_cr("  _recursions = " INTX_FORMAT, _recursions);
2233   st->print_cr("  _EntryList = " INTPTR_FORMAT, p2i(_EntryList));
2234   st->print_cr("  _cxq = " INTPTR_FORMAT, p2i(_cxq));
2235   st->print_cr("  _succ = " INTPTR_FORMAT, p2i(_succ));
2236   st->print_cr("  _Responsible = " INTPTR_FORMAT, p2i(_Responsible));
2237   st->print_cr("  _SpinDuration = %d", _SpinDuration);
2238   st->print_cr("  _contentions = %d", contentions());
2239   st->print_cr("  _WaitSet = " INTPTR_FORMAT, p2i(_WaitSet));
2240   st->print_cr("  _waiters = %d", _waiters);
2241   st->print_cr("  _WaitSetLock = %d", _WaitSetLock);
2242   st->print_cr("}");
2243 }
2244 #endif