1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "gc/shared/oopStorage.hpp" 28 #include "gc/shared/oopStorageSet.hpp" 29 #include "jfr/jfrEvents.hpp" 30 #include "jfr/support/jfrThreadId.hpp" 31 #include "logging/log.hpp" 32 #include "logging/logStream.hpp" 33 #include "memory/allocation.inline.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "oops/oopHandle.inline.hpp" 38 #include "oops/weakHandle.inline.hpp" 39 #include "prims/jvmtiDeferredUpdates.hpp" 40 #include "prims/jvmtiExport.hpp" 41 #include "runtime/atomic.hpp" 42 #include "runtime/globals.hpp" 43 #include "runtime/handles.inline.hpp" 44 #include "runtime/interfaceSupport.inline.hpp" 45 #include "runtime/javaThread.inline.hpp" 46 #include "runtime/mutexLocker.hpp" 47 #include "runtime/objectMonitor.hpp" 48 #include "runtime/objectMonitor.inline.hpp" 49 #include "runtime/orderAccess.hpp" 50 #include "runtime/osThread.hpp" 51 #include "runtime/perfData.hpp" 52 #include "runtime/safefetch.hpp" 53 #include "runtime/safepointMechanism.inline.hpp" 54 #include "runtime/sharedRuntime.hpp" 55 #include "services/threadService.hpp" 56 #include "utilities/dtrace.hpp" 57 #include "utilities/globalDefinitions.hpp" 58 #include "utilities/macros.hpp" 59 #include "utilities/preserveException.hpp" 60 #if INCLUDE_JFR 61 #include "jfr/support/jfrFlush.hpp" 62 #endif 63 64 #ifdef DTRACE_ENABLED 65 66 // Only bother with this argument setup if dtrace is available 67 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 68 69 70 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 71 char* bytes = nullptr; \ 72 int len = 0; \ 73 jlong jtid = SharedRuntime::get_java_tid(thread); \ 74 Symbol* klassname = obj->klass()->name(); \ 75 if (klassname != nullptr) { \ 76 bytes = (char*)klassname->bytes(); \ 77 len = klassname->utf8_length(); \ 78 } 79 80 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 81 { \ 82 if (DTraceMonitorProbes) { \ 83 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 84 HOTSPOT_MONITOR_WAIT(jtid, \ 85 (monitor), bytes, len, (millis)); \ 86 } \ 87 } 88 89 #define HOTSPOT_MONITOR_contended__enter HOTSPOT_MONITOR_CONTENDED_ENTER 90 #define HOTSPOT_MONITOR_contended__entered HOTSPOT_MONITOR_CONTENDED_ENTERED 91 #define HOTSPOT_MONITOR_contended__exit HOTSPOT_MONITOR_CONTENDED_EXIT 92 #define HOTSPOT_MONITOR_notify HOTSPOT_MONITOR_NOTIFY 93 #define HOTSPOT_MONITOR_notifyAll HOTSPOT_MONITOR_NOTIFYALL 94 95 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 96 { \ 97 if (DTraceMonitorProbes) { \ 98 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 99 HOTSPOT_MONITOR_##probe(jtid, \ 100 (uintptr_t)(monitor), bytes, len); \ 101 } \ 102 } 103 104 #else // ndef DTRACE_ENABLED 105 106 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 107 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 108 109 #endif // ndef DTRACE_ENABLED 110 111 DEBUG_ONLY(static volatile bool InitDone = false;) 112 113 OopStorage* ObjectMonitor::_oop_storage = nullptr; 114 115 // ----------------------------------------------------------------------------- 116 // Theory of operations -- Monitors lists, thread residency, etc: 117 // 118 // * A thread acquires ownership of a monitor by successfully 119 // CAS()ing the _owner field from null to non-null. 120 // 121 // * Invariant: A thread appears on at most one monitor list -- 122 // cxq, EntryList or WaitSet -- at any one time. 123 // 124 // * Contending threads "push" themselves onto the cxq with CAS 125 // and then spin/park. 126 // 127 // * After a contending thread eventually acquires the lock it must 128 // dequeue itself from either the EntryList or the cxq. 129 // 130 // * The exiting thread identifies and unparks an "heir presumptive" 131 // tentative successor thread on the EntryList. Critically, the 132 // exiting thread doesn't unlink the successor thread from the EntryList. 133 // After having been unparked, the wakee will recontend for ownership of 134 // the monitor. The successor (wakee) will either acquire the lock or 135 // re-park itself. 136 // 137 // Succession is provided for by a policy of competitive handoff. 138 // The exiting thread does _not_ grant or pass ownership to the 139 // successor thread. (This is also referred to as "handoff" succession"). 140 // Instead the exiting thread releases ownership and possibly wakes 141 // a successor, so the successor can (re)compete for ownership of the lock. 142 // If the EntryList is empty but the cxq is populated the exiting 143 // thread will drain the cxq into the EntryList. It does so by 144 // by detaching the cxq (installing null with CAS) and folding 145 // the threads from the cxq into the EntryList. The EntryList is 146 // doubly linked, while the cxq is singly linked because of the 147 // CAS-based "push" used to enqueue recently arrived threads (RATs). 148 // 149 // * Concurrency invariants: 150 // 151 // -- only the monitor owner may access or mutate the EntryList. 152 // The mutex property of the monitor itself protects the EntryList 153 // from concurrent interference. 154 // -- Only the monitor owner may detach the cxq. 155 // 156 // * The monitor entry list operations avoid locks, but strictly speaking 157 // they're not lock-free. Enter is lock-free, exit is not. 158 // For a description of 'Methods and apparatus providing non-blocking access 159 // to a resource,' see U.S. Pat. No. 7844973. 160 // 161 // * The cxq can have multiple concurrent "pushers" but only one concurrent 162 // detaching thread. This mechanism is immune from the ABA corruption. 163 // More precisely, the CAS-based "push" onto cxq is ABA-oblivious. 164 // 165 // * Taken together, the cxq and the EntryList constitute or form a 166 // single logical queue of threads stalled trying to acquire the lock. 167 // We use two distinct lists to improve the odds of a constant-time 168 // dequeue operation after acquisition (in the ::enter() epilogue) and 169 // to reduce heat on the list ends. (c.f. Michael Scott's "2Q" algorithm). 170 // A key desideratum is to minimize queue & monitor metadata manipulation 171 // that occurs while holding the monitor lock -- that is, we want to 172 // minimize monitor lock holds times. Note that even a small amount of 173 // fixed spinning will greatly reduce the # of enqueue-dequeue operations 174 // on EntryList|cxq. That is, spinning relieves contention on the "inner" 175 // locks and monitor metadata. 176 // 177 // Cxq points to the set of Recently Arrived Threads attempting entry. 178 // Because we push threads onto _cxq with CAS, the RATs must take the form of 179 // a singly-linked LIFO. We drain _cxq into EntryList at unlock-time when 180 // the unlocking thread notices that EntryList is null but _cxq is != null. 181 // 182 // The EntryList is ordered by the prevailing queue discipline and 183 // can be organized in any convenient fashion, such as a doubly-linked list or 184 // a circular doubly-linked list. Critically, we want insert and delete operations 185 // to operate in constant-time. If we need a priority queue then something akin 186 // to Solaris' sleepq would work nicely. Viz., 187 // http://agg.eng/ws/on10_nightly/source/usr/src/uts/common/os/sleepq.c. 188 // Queue discipline is enforced at ::exit() time, when the unlocking thread 189 // drains the cxq into the EntryList, and orders or reorders the threads on the 190 // EntryList accordingly. 191 // 192 // Barring "lock barging", this mechanism provides fair cyclic ordering, 193 // somewhat similar to an elevator-scan. 194 // 195 // * The monitor synchronization subsystem avoids the use of native 196 // synchronization primitives except for the narrow platform-specific 197 // park-unpark abstraction. See the comments in os_solaris.cpp regarding 198 // the semantics of park-unpark. Put another way, this monitor implementation 199 // depends only on atomic operations and park-unpark. The monitor subsystem 200 // manages all RUNNING->BLOCKED and BLOCKED->READY transitions while the 201 // underlying OS manages the READY<->RUN transitions. 202 // 203 // * Waiting threads reside on the WaitSet list -- wait() puts 204 // the caller onto the WaitSet. 205 // 206 // * notify() or notifyAll() simply transfers threads from the WaitSet to 207 // either the EntryList or cxq. Subsequent exit() operations will 208 // unpark the notifyee. Unparking a notifee in notify() is inefficient - 209 // it's likely the notifyee would simply impale itself on the lock held 210 // by the notifier. 211 // 212 // * An interesting alternative is to encode cxq as (List,LockByte) where 213 // the LockByte is 0 iff the monitor is owned. _owner is simply an auxiliary 214 // variable, like _recursions, in the scheme. The threads or Events that form 215 // the list would have to be aligned in 256-byte addresses. A thread would 216 // try to acquire the lock or enqueue itself with CAS, but exiting threads 217 // could use a 1-0 protocol and simply STB to set the LockByte to 0. 218 // Note that is is *not* word-tearing, but it does presume that full-word 219 // CAS operations are coherent with intermix with STB operations. That's true 220 // on most common processors. 221 // 222 // * See also http://blogs.sun.com/dave 223 224 225 // Check that object() and set_object() are called from the right context: 226 static void check_object_context() { 227 #ifdef ASSERT 228 Thread* self = Thread::current(); 229 if (self->is_Java_thread()) { 230 // Mostly called from JavaThreads so sanity check the thread state. 231 JavaThread* jt = JavaThread::cast(self); 232 switch (jt->thread_state()) { 233 case _thread_in_vm: // the usual case 234 case _thread_in_Java: // during deopt 235 break; 236 default: 237 fatal("called from an unsafe thread state"); 238 } 239 assert(jt->is_active_Java_thread(), "must be active JavaThread"); 240 } else { 241 // However, ThreadService::get_current_contended_monitor() 242 // can call here via the VMThread so sanity check it. 243 assert(self->is_VM_thread(), "must be"); 244 } 245 #endif // ASSERT 246 } 247 248 ObjectMonitor::ObjectMonitor(oop object) : 249 _header(markWord::zero()), 250 _object(_oop_storage, object), 251 _owner(nullptr), 252 _previous_owner_tid(0), 253 _next_om(nullptr), 254 _recursions(0), 255 _EntryList(nullptr), 256 _cxq(nullptr), 257 _succ(nullptr), 258 _Responsible(nullptr), 259 _SpinDuration(ObjectMonitor::Knob_SpinLimit), 260 _contentions(0), 261 _WaitSet(nullptr), 262 _waiters(0), 263 _WaitSetLock(0) 264 { } 265 266 ObjectMonitor::~ObjectMonitor() { 267 _object.release(_oop_storage); 268 } 269 270 oop ObjectMonitor::object() const { 271 check_object_context(); 272 return _object.resolve(); 273 } 274 275 oop ObjectMonitor::object_peek() const { 276 return _object.peek(); 277 } 278 279 void ObjectMonitor::ExitOnSuspend::operator()(JavaThread* current) { 280 if (current->is_suspended()) { 281 _om->_recursions = 0; 282 _om->_succ = nullptr; 283 // Don't need a full fence after clearing successor here because of the call to exit(). 284 _om->exit(current, false /* not_suspended */); 285 _om_exited = true; 286 287 current->set_current_pending_monitor(_om); 288 } 289 } 290 291 void ObjectMonitor::ClearSuccOnSuspend::operator()(JavaThread* current) { 292 if (current->is_suspended()) { 293 if (_om->_succ == current) { 294 _om->_succ = nullptr; 295 OrderAccess::fence(); // always do a full fence when successor is cleared 296 } 297 } 298 } 299 300 // ----------------------------------------------------------------------------- 301 // Enter support 302 303 bool ObjectMonitor::enter_for(JavaThread* locking_thread) { 304 // Used by ObjectSynchronizer::enter_for to enter for another thread. 305 // The monitor is private to or already owned by locking_thread which must be suspended. 306 // So this code may only contend with deflation. 307 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 308 309 // Block out deflation as soon as possible. 310 add_to_contentions(1); 311 312 bool success = false; 313 if (!is_being_async_deflated()) { 314 void* prev_owner = try_set_owner_from(nullptr, locking_thread); 315 316 if (prev_owner == nullptr) { 317 assert(_recursions == 0, "invariant"); 318 success = true; 319 } else if (prev_owner == locking_thread) { 320 _recursions++; 321 success = true; 322 } else if (prev_owner == DEFLATER_MARKER) { 323 // Racing with deflation. 324 prev_owner = try_set_owner_from(DEFLATER_MARKER, locking_thread); 325 if (prev_owner == DEFLATER_MARKER) { 326 // Cancelled deflation. Increment contentions as part of the deflation protocol. 327 add_to_contentions(1); 328 success = true; 329 } else if (prev_owner == nullptr) { 330 // At this point we cannot race with deflation as we have both incremented 331 // contentions, seen contention > 0 and seen a DEFLATER_MARKER. 332 // success will only be false if this races with something other than 333 // deflation. 334 prev_owner = try_set_owner_from(nullptr, locking_thread); 335 success = prev_owner == nullptr; 336 } 337 } else if (LockingMode == LM_LEGACY && locking_thread->is_lock_owned((address)prev_owner)) { 338 assert(_recursions == 0, "must be"); 339 _recursions = 1; 340 set_owner_from_BasicLock(prev_owner, locking_thread); 341 success = true; 342 } 343 assert(success, "Failed to enter_for: locking_thread=" INTPTR_FORMAT 344 ", this=" INTPTR_FORMAT "{owner=" INTPTR_FORMAT "}, observed owner: " INTPTR_FORMAT, 345 p2i(locking_thread), p2i(this), p2i(owner_raw()), p2i(prev_owner)); 346 } else { 347 // Async deflation is in progress and our contentions increment 348 // above lost the race to async deflation. Undo the work and 349 // force the caller to retry. 350 const oop l_object = object(); 351 if (l_object != nullptr) { 352 // Attempt to restore the header/dmw to the object's header so that 353 // we only retry once if the deflater thread happens to be slow. 354 install_displaced_markword_in_object(l_object); 355 } 356 } 357 358 add_to_contentions(-1); 359 360 assert(!success || owner_raw() == locking_thread, "must be"); 361 362 return success; 363 } 364 365 bool ObjectMonitor::enter(JavaThread* current) { 366 assert(current == JavaThread::current(), "must be"); 367 // The following code is ordered to check the most common cases first 368 // and to reduce RTS->RTO cache line upgrades on SPARC and IA32 processors. 369 370 void* cur = try_set_owner_from(nullptr, current); 371 if (cur == nullptr) { 372 assert(_recursions == 0, "invariant"); 373 return true; 374 } 375 376 if (cur == current) { 377 // TODO-FIXME: check for integer overflow! BUGID 6557169. 378 _recursions++; 379 return true; 380 } 381 382 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 383 assert(_recursions == 0, "internal state error"); 384 _recursions = 1; 385 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 386 return true; 387 } 388 389 // We've encountered genuine contention. 390 391 // Try one round of spinning *before* enqueueing current 392 // and before going through the awkward and expensive state 393 // transitions. The following spin is strictly optional ... 394 // Note that if we acquire the monitor from an initial spin 395 // we forgo posting JVMTI events and firing DTRACE probes. 396 if (TrySpin(current)) { 397 assert(owner_raw() == current, "must be current: owner=" INTPTR_FORMAT, p2i(owner_raw())); 398 assert(_recursions == 0, "must be 0: recursions=" INTX_FORMAT, _recursions); 399 assert(object()->mark() == markWord::encode(this), 400 "object mark must match encoded this: mark=" INTPTR_FORMAT 401 ", encoded this=" INTPTR_FORMAT, object()->mark().value(), 402 markWord::encode(this).value()); 403 return true; 404 } 405 406 assert(owner_raw() != current, "invariant"); 407 assert(_succ != current, "invariant"); 408 assert(!SafepointSynchronize::is_at_safepoint(), "invariant"); 409 assert(current->thread_state() != _thread_blocked, "invariant"); 410 411 // Keep track of contention for JVM/TI and M&M queries. 412 add_to_contentions(1); 413 if (is_being_async_deflated()) { 414 // Async deflation is in progress and our contentions increment 415 // above lost the race to async deflation. Undo the work and 416 // force the caller to retry. 417 const oop l_object = object(); 418 if (l_object != nullptr) { 419 // Attempt to restore the header/dmw to the object's header so that 420 // we only retry once if the deflater thread happens to be slow. 421 install_displaced_markword_in_object(l_object); 422 } 423 add_to_contentions(-1); 424 return false; 425 } 426 427 JFR_ONLY(JfrConditionalFlush<EventJavaMonitorEnter> flush(current);) 428 EventJavaMonitorEnter event; 429 if (event.is_started()) { 430 event.set_monitorClass(object()->klass()); 431 // Set an address that is 'unique enough', such that events close in 432 // time and with the same address are likely (but not guaranteed) to 433 // belong to the same object. 434 event.set_address((uintptr_t)this); 435 } 436 437 { // Change java thread status to indicate blocked on monitor enter. 438 JavaThreadBlockedOnMonitorEnterState jtbmes(current, this); 439 440 assert(current->current_pending_monitor() == nullptr, "invariant"); 441 current->set_current_pending_monitor(this); 442 443 DTRACE_MONITOR_PROBE(contended__enter, this, object(), current); 444 if (JvmtiExport::should_post_monitor_contended_enter()) { 445 JvmtiExport::post_monitor_contended_enter(current, this); 446 447 // The current thread does not yet own the monitor and does not 448 // yet appear on any queues that would get it made the successor. 449 // This means that the JVMTI_EVENT_MONITOR_CONTENDED_ENTER event 450 // handler cannot accidentally consume an unpark() meant for the 451 // ParkEvent associated with this ObjectMonitor. 452 } 453 454 OSThreadContendState osts(current->osthread()); 455 456 assert(current->thread_state() == _thread_in_vm, "invariant"); 457 458 for (;;) { 459 ExitOnSuspend eos(this); 460 { 461 ThreadBlockInVMPreprocess<ExitOnSuspend> tbivs(current, eos, true /* allow_suspend */); 462 EnterI(current); 463 current->set_current_pending_monitor(nullptr); 464 // We can go to a safepoint at the end of this block. If we 465 // do a thread dump during that safepoint, then this thread will show 466 // as having "-locked" the monitor, but the OS and java.lang.Thread 467 // states will still report that the thread is blocked trying to 468 // acquire it. 469 // If there is a suspend request, ExitOnSuspend will exit the OM 470 // and set the OM as pending. 471 } 472 if (!eos.exited()) { 473 // ExitOnSuspend did not exit the OM 474 assert(owner_raw() == current, "invariant"); 475 break; 476 } 477 } 478 479 // We've just gotten past the enter-check-for-suspend dance and we now own 480 // the monitor free and clear. 481 } 482 483 add_to_contentions(-1); 484 assert(contentions() >= 0, "must not be negative: contentions=%d", contentions()); 485 486 // Must either set _recursions = 0 or ASSERT _recursions == 0. 487 assert(_recursions == 0, "invariant"); 488 assert(owner_raw() == current, "invariant"); 489 assert(_succ != current, "invariant"); 490 assert(object()->mark() == markWord::encode(this), "invariant"); 491 492 // The thread -- now the owner -- is back in vm mode. 493 // Report the glorious news via TI,DTrace and jvmstat. 494 // The probe effect is non-trivial. All the reportage occurs 495 // while we hold the monitor, increasing the length of the critical 496 // section. Amdahl's parallel speedup law comes vividly into play. 497 // 498 // Another option might be to aggregate the events (thread local or 499 // per-monitor aggregation) and defer reporting until a more opportune 500 // time -- such as next time some thread encounters contention but has 501 // yet to acquire the lock. While spinning that thread could 502 // spinning we could increment JVMStat counters, etc. 503 504 DTRACE_MONITOR_PROBE(contended__entered, this, object(), current); 505 if (JvmtiExport::should_post_monitor_contended_entered()) { 506 JvmtiExport::post_monitor_contended_entered(current, this); 507 508 // The current thread already owns the monitor and is not going to 509 // call park() for the remainder of the monitor enter protocol. So 510 // it doesn't matter if the JVMTI_EVENT_MONITOR_CONTENDED_ENTERED 511 // event handler consumed an unpark() issued by the thread that 512 // just exited the monitor. 513 } 514 if (event.should_commit()) { 515 event.set_previousOwner(_previous_owner_tid); 516 event.commit(); 517 } 518 OM_PERFDATA_OP(ContendedLockAttempts, inc()); 519 return true; 520 } 521 522 // Caveat: TryLock() is not necessarily serializing if it returns failure. 523 // Callers must compensate as needed. 524 525 ObjectMonitor::TryLockResult ObjectMonitor::TryLock(JavaThread* current) { 526 void* own = owner_raw(); 527 if (own != nullptr) return TryLockResult::HasOwner; 528 if (try_set_owner_from(nullptr, current) == nullptr) { 529 assert(_recursions == 0, "invariant"); 530 return TryLockResult::Success; 531 } 532 // The lock had been free momentarily, but we lost the race to the lock. 533 // Interference -- the CAS failed. 534 // We can either return -1 or retry. 535 // Retry doesn't make as much sense because the lock was just acquired. 536 return TryLockResult::Interference; 537 } 538 539 // Deflate the specified ObjectMonitor if not in-use. Returns true if it 540 // was deflated and false otherwise. 541 // 542 // The async deflation protocol sets owner to DEFLATER_MARKER and 543 // makes contentions negative as signals to contending threads that 544 // an async deflation is in progress. There are a number of checks 545 // as part of the protocol to make sure that the calling thread has 546 // not lost the race to a contending thread. 547 // 548 // The ObjectMonitor has been successfully async deflated when: 549 // (contentions < 0) 550 // Contending threads that see that condition know to retry their operation. 551 // 552 bool ObjectMonitor::deflate_monitor() { 553 if (is_busy()) { 554 // Easy checks are first - the ObjectMonitor is busy so no deflation. 555 return false; 556 } 557 558 const oop obj = object_peek(); 559 560 if (obj == nullptr) { 561 // If the object died, we can recycle the monitor without racing with 562 // Java threads. The GC already broke the association with the object. 563 set_owner_from(nullptr, DEFLATER_MARKER); 564 assert(contentions() >= 0, "must be non-negative: contentions=%d", contentions()); 565 _contentions = INT_MIN; // minimum negative int 566 } else { 567 // Attempt async deflation protocol. 568 569 // Set a null owner to DEFLATER_MARKER to force any contending thread 570 // through the slow path. This is just the first part of the async 571 // deflation dance. 572 if (try_set_owner_from(nullptr, DEFLATER_MARKER) != nullptr) { 573 // The owner field is no longer null so we lost the race since the 574 // ObjectMonitor is now busy. 575 return false; 576 } 577 578 if (contentions() > 0 || _waiters != 0) { 579 // Another thread has raced to enter the ObjectMonitor after 580 // is_busy() above or has already entered and waited on 581 // it which makes it busy so no deflation. Restore owner to 582 // null if it is still DEFLATER_MARKER. 583 if (try_set_owner_from(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) { 584 // Deferred decrement for the JT EnterI() that cancelled the async deflation. 585 add_to_contentions(-1); 586 } 587 return false; 588 } 589 590 // Make a zero contentions field negative to force any contending threads 591 // to retry. This is the second part of the async deflation dance. 592 if (Atomic::cmpxchg(&_contentions, 0, INT_MIN) != 0) { 593 // Contentions was no longer 0 so we lost the race since the 594 // ObjectMonitor is now busy. Restore owner to null if it is 595 // still DEFLATER_MARKER: 596 if (try_set_owner_from(DEFLATER_MARKER, nullptr) != DEFLATER_MARKER) { 597 // Deferred decrement for the JT EnterI() that cancelled the async deflation. 598 add_to_contentions(-1); 599 } 600 return false; 601 } 602 } 603 604 // Sanity checks for the races: 605 guarantee(owner_is_DEFLATER_MARKER(), "must be deflater marker"); 606 guarantee(contentions() < 0, "must be negative: contentions=%d", 607 contentions()); 608 guarantee(_waiters == 0, "must be 0: waiters=%d", _waiters); 609 guarantee(_cxq == nullptr, "must be no contending threads: cxq=" 610 INTPTR_FORMAT, p2i(_cxq)); 611 guarantee(_EntryList == nullptr, 612 "must be no entering threads: EntryList=" INTPTR_FORMAT, 613 p2i(_EntryList)); 614 615 if (obj != nullptr) { 616 if (log_is_enabled(Trace, monitorinflation)) { 617 ResourceMark rm; 618 log_trace(monitorinflation)("deflate_monitor: object=" INTPTR_FORMAT 619 ", mark=" INTPTR_FORMAT ", type='%s'", 620 p2i(obj), obj->mark().value(), 621 obj->klass()->external_name()); 622 } 623 624 // Install the old mark word if nobody else has already done it. 625 install_displaced_markword_in_object(obj); 626 } 627 628 // We leave owner == DEFLATER_MARKER and contentions < 0 629 // to force any racing threads to retry. 630 return true; // Success, ObjectMonitor has been deflated. 631 } 632 633 // Install the displaced mark word (dmw) of a deflating ObjectMonitor 634 // into the header of the object associated with the monitor. This 635 // idempotent method is called by a thread that is deflating a 636 // monitor and by other threads that have detected a race with the 637 // deflation process. 638 void ObjectMonitor::install_displaced_markword_in_object(const oop obj) { 639 // This function must only be called when (owner == DEFLATER_MARKER 640 // && contentions <= 0), but we can't guarantee that here because 641 // those values could change when the ObjectMonitor gets moved from 642 // the global free list to a per-thread free list. 643 644 guarantee(obj != nullptr, "must be non-null"); 645 646 // Separate loads in is_being_async_deflated(), which is almost always 647 // called before this function, from the load of dmw/header below. 648 649 // _contentions and dmw/header may get written by different threads. 650 // Make sure to observe them in the same order when having several observers. 651 OrderAccess::loadload_for_IRIW(); 652 653 const oop l_object = object_peek(); 654 if (l_object == nullptr) { 655 // ObjectMonitor's object ref has already been cleared by async 656 // deflation or GC so we're done here. 657 return; 658 } 659 assert(l_object == obj, "object=" INTPTR_FORMAT " must equal obj=" 660 INTPTR_FORMAT, p2i(l_object), p2i(obj)); 661 662 markWord dmw = header(); 663 // The dmw has to be neutral (not null, not locked and not marked). 664 assert(dmw.is_neutral(), "must be neutral: dmw=" INTPTR_FORMAT, dmw.value()); 665 666 // Install displaced mark word if the object's header still points 667 // to this ObjectMonitor. More than one racing caller to this function 668 // can rarely reach this point, but only one can win. 669 markWord res = obj->cas_set_mark(dmw, markWord::encode(this)); 670 if (res != markWord::encode(this)) { 671 // This should be rare so log at the Info level when it happens. 672 log_info(monitorinflation)("install_displaced_markword_in_object: " 673 "failed cas_set_mark: new_mark=" INTPTR_FORMAT 674 ", old_mark=" INTPTR_FORMAT ", res=" INTPTR_FORMAT, 675 dmw.value(), markWord::encode(this).value(), 676 res.value()); 677 } 678 679 // Note: It does not matter which thread restored the header/dmw 680 // into the object's header. The thread deflating the monitor just 681 // wanted the object's header restored and it is. The threads that 682 // detected a race with the deflation process also wanted the 683 // object's header restored before they retry their operation and 684 // because it is restored they will only retry once. 685 } 686 687 // Convert the fields used by is_busy() to a string that can be 688 // used for diagnostic output. 689 const char* ObjectMonitor::is_busy_to_string(stringStream* ss) { 690 ss->print("is_busy: waiters=%d" 691 ", contentions=%d" 692 ", owner=" PTR_FORMAT 693 ", cxq=" PTR_FORMAT 694 ", EntryList=" PTR_FORMAT, 695 _waiters, 696 (contentions() > 0 ? contentions() : 0), 697 owner_is_DEFLATER_MARKER() 698 // We report null instead of DEFLATER_MARKER here because is_busy() 699 // ignores DEFLATER_MARKER values. 700 ? p2i(nullptr) 701 : p2i(owner_raw()), 702 p2i(_cxq), 703 p2i(_EntryList)); 704 return ss->base(); 705 } 706 707 #define MAX_RECHECK_INTERVAL 1000 708 709 void ObjectMonitor::EnterI(JavaThread* current) { 710 assert(current->thread_state() == _thread_blocked, "invariant"); 711 712 // Try the lock - TATAS 713 if (TryLock(current) == TryLockResult::Success) { 714 assert(_succ != current, "invariant"); 715 assert(owner_raw() == current, "invariant"); 716 assert(_Responsible != current, "invariant"); 717 return; 718 } 719 720 if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) { 721 // Cancelled the in-progress async deflation by changing owner from 722 // DEFLATER_MARKER to current. As part of the contended enter protocol, 723 // contentions was incremented to a positive value before EnterI() 724 // was called and that prevents the deflater thread from winning the 725 // last part of the 2-part async deflation protocol. After EnterI() 726 // returns to enter(), contentions is decremented because the caller 727 // now owns the monitor. We bump contentions an extra time here to 728 // prevent the deflater thread from winning the last part of the 729 // 2-part async deflation protocol after the regular decrement 730 // occurs in enter(). The deflater thread will decrement contentions 731 // after it recognizes that the async deflation was cancelled. 732 add_to_contentions(1); 733 assert(_succ != current, "invariant"); 734 assert(_Responsible != current, "invariant"); 735 return; 736 } 737 738 assert(InitDone, "Unexpectedly not initialized"); 739 740 // We try one round of spinning *before* enqueueing current. 741 // 742 // If the _owner is ready but OFFPROC we could use a YieldTo() 743 // operation to donate the remainder of this thread's quantum 744 // to the owner. This has subtle but beneficial affinity 745 // effects. 746 747 if (TrySpin(current)) { 748 assert(owner_raw() == current, "invariant"); 749 assert(_succ != current, "invariant"); 750 assert(_Responsible != current, "invariant"); 751 return; 752 } 753 754 // The Spin failed -- Enqueue and park the thread ... 755 assert(_succ != current, "invariant"); 756 assert(owner_raw() != current, "invariant"); 757 assert(_Responsible != current, "invariant"); 758 759 // Enqueue "current" on ObjectMonitor's _cxq. 760 // 761 // Node acts as a proxy for current. 762 // As an aside, if were to ever rewrite the synchronization code mostly 763 // in Java, WaitNodes, ObjectMonitors, and Events would become 1st-class 764 // Java objects. This would avoid awkward lifecycle and liveness issues, 765 // as well as eliminate a subset of ABA issues. 766 // TODO: eliminate ObjectWaiter and enqueue either Threads or Events. 767 768 ObjectWaiter node(current); 769 current->_ParkEvent->reset(); 770 node._prev = (ObjectWaiter*) 0xBAD; 771 node.TState = ObjectWaiter::TS_CXQ; 772 773 // Push "current" onto the front of the _cxq. 774 // Once on cxq/EntryList, current stays on-queue until it acquires the lock. 775 // Note that spinning tends to reduce the rate at which threads 776 // enqueue and dequeue on EntryList|cxq. 777 ObjectWaiter* nxt; 778 for (;;) { 779 node._next = nxt = _cxq; 780 if (Atomic::cmpxchg(&_cxq, nxt, &node) == nxt) break; 781 782 // Interference - the CAS failed because _cxq changed. Just retry. 783 // As an optional optimization we retry the lock. 784 if (TryLock(current) == TryLockResult::Success) { 785 assert(_succ != current, "invariant"); 786 assert(owner_raw() == current, "invariant"); 787 assert(_Responsible != current, "invariant"); 788 return; 789 } 790 } 791 792 // Check for cxq|EntryList edge transition to non-null. This indicates 793 // the onset of contention. While contention persists exiting threads 794 // will use a ST:MEMBAR:LD 1-1 exit protocol. When contention abates exit 795 // operations revert to the faster 1-0 mode. This enter operation may interleave 796 // (race) a concurrent 1-0 exit operation, resulting in stranding, so we 797 // arrange for one of the contending thread to use a timed park() operations 798 // to detect and recover from the race. (Stranding is form of progress failure 799 // where the monitor is unlocked but all the contending threads remain parked). 800 // That is, at least one of the contended threads will periodically poll _owner. 801 // One of the contending threads will become the designated "Responsible" thread. 802 // The Responsible thread uses a timed park instead of a normal indefinite park 803 // operation -- it periodically wakes and checks for and recovers from potential 804 // strandings admitted by 1-0 exit operations. We need at most one Responsible 805 // thread per-monitor at any given moment. Only threads on cxq|EntryList may 806 // be responsible for a monitor. 807 // 808 // Currently, one of the contended threads takes on the added role of "Responsible". 809 // A viable alternative would be to use a dedicated "stranding checker" thread 810 // that periodically iterated over all the threads (or active monitors) and unparked 811 // successors where there was risk of stranding. This would help eliminate the 812 // timer scalability issues we see on some platforms as we'd only have one thread 813 // -- the checker -- parked on a timer. 814 815 if (nxt == nullptr && _EntryList == nullptr) { 816 // Try to assume the role of responsible thread for the monitor. 817 // CONSIDER: ST vs CAS vs { if (Responsible==null) Responsible=current } 818 Atomic::replace_if_null(&_Responsible, current); 819 } 820 821 // The lock might have been released while this thread was occupied queueing 822 // itself onto _cxq. To close the race and avoid "stranding" and 823 // progress-liveness failure we must resample-retry _owner before parking. 824 // Note the Dekker/Lamport duality: ST cxq; MEMBAR; LD Owner. 825 // In this case the ST-MEMBAR is accomplished with CAS(). 826 // 827 // TODO: Defer all thread state transitions until park-time. 828 // Since state transitions are heavy and inefficient we'd like 829 // to defer the state transitions until absolutely necessary, 830 // and in doing so avoid some transitions ... 831 832 int recheckInterval = 1; 833 834 for (;;) { 835 836 if (TryLock(current) == TryLockResult::Success) { 837 break; 838 } 839 assert(owner_raw() != current, "invariant"); 840 841 // park self 842 if (_Responsible == current) { 843 current->_ParkEvent->park((jlong) recheckInterval); 844 // Increase the recheckInterval, but clamp the value. 845 recheckInterval *= 8; 846 if (recheckInterval > MAX_RECHECK_INTERVAL) { 847 recheckInterval = MAX_RECHECK_INTERVAL; 848 } 849 } else { 850 current->_ParkEvent->park(); 851 } 852 853 if (TryLock(current) == TryLockResult::Success) { 854 break; 855 } 856 857 if (try_set_owner_from(DEFLATER_MARKER, current) == DEFLATER_MARKER) { 858 // Cancelled the in-progress async deflation by changing owner from 859 // DEFLATER_MARKER to current. As part of the contended enter protocol, 860 // contentions was incremented to a positive value before EnterI() 861 // was called and that prevents the deflater thread from winning the 862 // last part of the 2-part async deflation protocol. After EnterI() 863 // returns to enter(), contentions is decremented because the caller 864 // now owns the monitor. We bump contentions an extra time here to 865 // prevent the deflater thread from winning the last part of the 866 // 2-part async deflation protocol after the regular decrement 867 // occurs in enter(). The deflater thread will decrement contentions 868 // after it recognizes that the async deflation was cancelled. 869 add_to_contentions(1); 870 break; 871 } 872 873 // The lock is still contested. 874 875 // Keep a tally of the # of futile wakeups. 876 // Note that the counter is not protected by a lock or updated by atomics. 877 // That is by design - we trade "lossy" counters which are exposed to 878 // races during updates for a lower probe effect. 879 // This PerfData object can be used in parallel with a safepoint. 880 // See the work around in PerfDataManager::destroy(). 881 OM_PERFDATA_OP(FutileWakeups, inc()); 882 883 // Assuming this is not a spurious wakeup we'll normally find _succ == current. 884 // We can defer clearing _succ until after the spin completes 885 // TrySpin() must tolerate being called with _succ == current. 886 // Try yet another round of adaptive spinning. 887 if (TrySpin(current)) { 888 break; 889 } 890 891 // We can find that we were unpark()ed and redesignated _succ while 892 // we were spinning. That's harmless. If we iterate and call park(), 893 // park() will consume the event and return immediately and we'll 894 // just spin again. This pattern can repeat, leaving _succ to simply 895 // spin on a CPU. 896 897 if (_succ == current) _succ = nullptr; 898 899 // Invariant: after clearing _succ a thread *must* retry _owner before parking. 900 OrderAccess::fence(); 901 } 902 903 // Egress : 904 // current has acquired the lock -- Unlink current from the cxq or EntryList. 905 // Normally we'll find current on the EntryList . 906 // From the perspective of the lock owner (this thread), the 907 // EntryList is stable and cxq is prepend-only. 908 // The head of cxq is volatile but the interior is stable. 909 // In addition, current.TState is stable. 910 911 assert(owner_raw() == current, "invariant"); 912 913 UnlinkAfterAcquire(current, &node); 914 if (_succ == current) _succ = nullptr; 915 916 assert(_succ != current, "invariant"); 917 if (_Responsible == current) { 918 _Responsible = nullptr; 919 OrderAccess::fence(); // Dekker pivot-point 920 921 // We may leave threads on cxq|EntryList without a designated 922 // "Responsible" thread. This is benign. When this thread subsequently 923 // exits the monitor it can "see" such preexisting "old" threads -- 924 // threads that arrived on the cxq|EntryList before the fence, above -- 925 // by LDing cxq|EntryList. Newly arrived threads -- that is, threads 926 // that arrive on cxq after the ST:MEMBAR, above -- will set Responsible 927 // non-null and elect a new "Responsible" timer thread. 928 // 929 // This thread executes: 930 // ST Responsible=null; MEMBAR (in enter epilogue - here) 931 // LD cxq|EntryList (in subsequent exit) 932 // 933 // Entering threads in the slow/contended path execute: 934 // ST cxq=nonnull; MEMBAR; LD Responsible (in enter prolog) 935 // The (ST cxq; MEMBAR) is accomplished with CAS(). 936 // 937 // The MEMBAR, above, prevents the LD of cxq|EntryList in the subsequent 938 // exit operation from floating above the ST Responsible=null. 939 } 940 941 // We've acquired ownership with CAS(). 942 // CAS is serializing -- it has MEMBAR/FENCE-equivalent semantics. 943 // But since the CAS() this thread may have also stored into _succ, 944 // EntryList, cxq or Responsible. These meta-data updates must be 945 // visible __before this thread subsequently drops the lock. 946 // Consider what could occur if we didn't enforce this constraint -- 947 // STs to monitor meta-data and user-data could reorder with (become 948 // visible after) the ST in exit that drops ownership of the lock. 949 // Some other thread could then acquire the lock, but observe inconsistent 950 // or old monitor meta-data and heap data. That violates the JMM. 951 // To that end, the 1-0 exit() operation must have at least STST|LDST 952 // "release" barrier semantics. Specifically, there must be at least a 953 // STST|LDST barrier in exit() before the ST of null into _owner that drops 954 // the lock. The barrier ensures that changes to monitor meta-data and data 955 // protected by the lock will be visible before we release the lock, and 956 // therefore before some other thread (CPU) has a chance to acquire the lock. 957 // See also: http://gee.cs.oswego.edu/dl/jmm/cookbook.html. 958 // 959 // Critically, any prior STs to _succ or EntryList must be visible before 960 // the ST of null into _owner in the *subsequent* (following) corresponding 961 // monitorexit. Recall too, that in 1-0 mode monitorexit does not necessarily 962 // execute a serializing instruction. 963 964 return; 965 } 966 967 // ReenterI() is a specialized inline form of the latter half of the 968 // contended slow-path from EnterI(). We use ReenterI() only for 969 // monitor reentry in wait(). 970 // 971 // In the future we should reconcile EnterI() and ReenterI(). 972 973 void ObjectMonitor::ReenterI(JavaThread* current, ObjectWaiter* currentNode) { 974 assert(current != nullptr, "invariant"); 975 assert(currentNode != nullptr, "invariant"); 976 assert(currentNode->_thread == current, "invariant"); 977 assert(_waiters > 0, "invariant"); 978 assert(object()->mark() == markWord::encode(this), "invariant"); 979 980 assert(current->thread_state() != _thread_blocked, "invariant"); 981 982 for (;;) { 983 ObjectWaiter::TStates v = currentNode->TState; 984 guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant"); 985 assert(owner_raw() != current, "invariant"); 986 987 // This thread has been notified so try to reacquire the lock. 988 if (TryLock(current) == TryLockResult::Success) { 989 break; 990 } 991 992 // If that fails, spin again. Note that spin count may be zero so the above TryLock 993 // is necessary. 994 if (TrySpin(current)) { 995 break; 996 } 997 998 { 999 OSThreadContendState osts(current->osthread()); 1000 1001 assert(current->thread_state() == _thread_in_vm, "invariant"); 1002 1003 { 1004 ClearSuccOnSuspend csos(this); 1005 ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */); 1006 current->_ParkEvent->park(); 1007 } 1008 } 1009 1010 // Try again, but just so we distinguish between futile wakeups and 1011 // successful wakeups. The following test isn't algorithmically 1012 // necessary, but it helps us maintain sensible statistics. 1013 if (TryLock(current) == TryLockResult::Success) { 1014 break; 1015 } 1016 1017 // The lock is still contested. 1018 1019 // Assuming this is not a spurious wakeup we'll normally 1020 // find that _succ == current. 1021 if (_succ == current) _succ = nullptr; 1022 1023 // Invariant: after clearing _succ a contending thread 1024 // *must* retry _owner before parking. 1025 OrderAccess::fence(); 1026 1027 // Keep a tally of the # of futile wakeups. 1028 // Note that the counter is not protected by a lock or updated by atomics. 1029 // That is by design - we trade "lossy" counters which are exposed to 1030 // races during updates for a lower probe effect. 1031 // This PerfData object can be used in parallel with a safepoint. 1032 // See the work around in PerfDataManager::destroy(). 1033 OM_PERFDATA_OP(FutileWakeups, inc()); 1034 } 1035 1036 // current has acquired the lock -- Unlink current from the cxq or EntryList . 1037 // Normally we'll find current on the EntryList. 1038 // Unlinking from the EntryList is constant-time and atomic-free. 1039 // From the perspective of the lock owner (this thread), the 1040 // EntryList is stable and cxq is prepend-only. 1041 // The head of cxq is volatile but the interior is stable. 1042 // In addition, current.TState is stable. 1043 1044 assert(owner_raw() == current, "invariant"); 1045 assert(object()->mark() == markWord::encode(this), "invariant"); 1046 UnlinkAfterAcquire(current, currentNode); 1047 if (_succ == current) _succ = nullptr; 1048 assert(_succ != current, "invariant"); 1049 currentNode->TState = ObjectWaiter::TS_RUN; 1050 OrderAccess::fence(); // see comments at the end of EnterI() 1051 } 1052 1053 // By convention we unlink a contending thread from EntryList|cxq immediately 1054 // after the thread acquires the lock in ::enter(). Equally, we could defer 1055 // unlinking the thread until ::exit()-time. 1056 1057 void ObjectMonitor::UnlinkAfterAcquire(JavaThread* current, ObjectWaiter* currentNode) { 1058 assert(owner_raw() == current, "invariant"); 1059 assert(currentNode->_thread == current, "invariant"); 1060 1061 if (currentNode->TState == ObjectWaiter::TS_ENTER) { 1062 // Normal case: remove current from the DLL EntryList . 1063 // This is a constant-time operation. 1064 ObjectWaiter* nxt = currentNode->_next; 1065 ObjectWaiter* prv = currentNode->_prev; 1066 if (nxt != nullptr) nxt->_prev = prv; 1067 if (prv != nullptr) prv->_next = nxt; 1068 if (currentNode == _EntryList) _EntryList = nxt; 1069 assert(nxt == nullptr || nxt->TState == ObjectWaiter::TS_ENTER, "invariant"); 1070 assert(prv == nullptr || prv->TState == ObjectWaiter::TS_ENTER, "invariant"); 1071 } else { 1072 assert(currentNode->TState == ObjectWaiter::TS_CXQ, "invariant"); 1073 // Inopportune interleaving -- current is still on the cxq. 1074 // This usually means the enqueue of self raced an exiting thread. 1075 // Normally we'll find current near the front of the cxq, so 1076 // dequeueing is typically fast. If needbe we can accelerate 1077 // this with some MCS/CHL-like bidirectional list hints and advisory 1078 // back-links so dequeueing from the interior will normally operate 1079 // in constant-time. 1080 // Dequeue current from either the head (with CAS) or from the interior 1081 // with a linear-time scan and normal non-atomic memory operations. 1082 // CONSIDER: if current is on the cxq then simply drain cxq into EntryList 1083 // and then unlink current from EntryList. We have to drain eventually, 1084 // so it might as well be now. 1085 1086 ObjectWaiter* v = _cxq; 1087 assert(v != nullptr, "invariant"); 1088 if (v != currentNode || Atomic::cmpxchg(&_cxq, v, currentNode->_next) != v) { 1089 // The CAS above can fail from interference IFF a "RAT" arrived. 1090 // In that case current must be in the interior and can no longer be 1091 // at the head of cxq. 1092 if (v == currentNode) { 1093 assert(_cxq != v, "invariant"); 1094 v = _cxq; // CAS above failed - start scan at head of list 1095 } 1096 ObjectWaiter* p; 1097 ObjectWaiter* q = nullptr; 1098 for (p = v; p != nullptr && p != currentNode; p = p->_next) { 1099 q = p; 1100 assert(p->TState == ObjectWaiter::TS_CXQ, "invariant"); 1101 } 1102 assert(v != currentNode, "invariant"); 1103 assert(p == currentNode, "Node not found on cxq"); 1104 assert(p != _cxq, "invariant"); 1105 assert(q != nullptr, "invariant"); 1106 assert(q->_next == p, "invariant"); 1107 q->_next = p->_next; 1108 } 1109 } 1110 1111 #ifdef ASSERT 1112 // Diagnostic hygiene ... 1113 currentNode->_prev = (ObjectWaiter*) 0xBAD; 1114 currentNode->_next = (ObjectWaiter*) 0xBAD; 1115 currentNode->TState = ObjectWaiter::TS_RUN; 1116 #endif 1117 } 1118 1119 // ----------------------------------------------------------------------------- 1120 // Exit support 1121 // 1122 // exit() 1123 // ~~~~~~ 1124 // Note that the collector can't reclaim the objectMonitor or deflate 1125 // the object out from underneath the thread calling ::exit() as the 1126 // thread calling ::exit() never transitions to a stable state. 1127 // This inhibits GC, which in turn inhibits asynchronous (and 1128 // inopportune) reclamation of "this". 1129 // 1130 // We'd like to assert that: (THREAD->thread_state() != _thread_blocked) ; 1131 // There's one exception to the claim above, however. EnterI() can call 1132 // exit() to drop a lock if the acquirer has been externally suspended. 1133 // In that case exit() is called with _thread_state == _thread_blocked, 1134 // but the monitor's _contentions field is > 0, which inhibits reclamation. 1135 // 1136 // 1-0 exit 1137 // ~~~~~~~~ 1138 // ::exit() uses a canonical 1-1 idiom with a MEMBAR although some of 1139 // the fast-path operators have been optimized so the common ::exit() 1140 // operation is 1-0, e.g., see macroAssembler_x86.cpp: fast_unlock(). 1141 // The code emitted by fast_unlock() elides the usual MEMBAR. This 1142 // greatly improves latency -- MEMBAR and CAS having considerable local 1143 // latency on modern processors -- but at the cost of "stranding". Absent the 1144 // MEMBAR, a thread in fast_unlock() can race a thread in the slow 1145 // ::enter() path, resulting in the entering thread being stranding 1146 // and a progress-liveness failure. Stranding is extremely rare. 1147 // We use timers (timed park operations) & periodic polling to detect 1148 // and recover from stranding. Potentially stranded threads periodically 1149 // wake up and poll the lock. See the usage of the _Responsible variable. 1150 // 1151 // The CAS() in enter provides for safety and exclusion, while the CAS or 1152 // MEMBAR in exit provides for progress and avoids stranding. 1-0 locking 1153 // eliminates the CAS/MEMBAR from the exit path, but it admits stranding. 1154 // We detect and recover from stranding with timers. 1155 // 1156 // If a thread transiently strands it'll park until (a) another 1157 // thread acquires the lock and then drops the lock, at which time the 1158 // exiting thread will notice and unpark the stranded thread, or, (b) 1159 // the timer expires. If the lock is high traffic then the stranding latency 1160 // will be low due to (a). If the lock is low traffic then the odds of 1161 // stranding are lower, although the worst-case stranding latency 1162 // is longer. Critically, we don't want to put excessive load in the 1163 // platform's timer subsystem. We want to minimize both the timer injection 1164 // rate (timers created/sec) as well as the number of timers active at 1165 // any one time. (more precisely, we want to minimize timer-seconds, which is 1166 // the integral of the # of active timers at any instant over time). 1167 // Both impinge on OS scalability. Given that, at most one thread parked on 1168 // a monitor will use a timer. 1169 // 1170 // There is also the risk of a futile wake-up. If we drop the lock 1171 // another thread can reacquire the lock immediately, and we can 1172 // then wake a thread unnecessarily. This is benign, and we've 1173 // structured the code so the windows are short and the frequency 1174 // of such futile wakups is low. 1175 1176 void ObjectMonitor::exit(JavaThread* current, bool not_suspended) { 1177 void* cur = owner_raw(); 1178 if (current != cur) { 1179 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 1180 assert(_recursions == 0, "invariant"); 1181 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 1182 _recursions = 0; 1183 } else { 1184 // Apparent unbalanced locking ... 1185 // Naively we'd like to throw IllegalMonitorStateException. 1186 // As a practical matter we can neither allocate nor throw an 1187 // exception as ::exit() can be called from leaf routines. 1188 // see x86_32.ad Fast_Unlock() and the I1 and I2 properties. 1189 // Upon deeper reflection, however, in a properly run JVM the only 1190 // way we should encounter this situation is in the presence of 1191 // unbalanced JNI locking. TODO: CheckJNICalls. 1192 // See also: CR4414101 1193 #ifdef ASSERT 1194 LogStreamHandle(Error, monitorinflation) lsh; 1195 lsh.print_cr("ERROR: ObjectMonitor::exit(): thread=" INTPTR_FORMAT 1196 " is exiting an ObjectMonitor it does not own.", p2i(current)); 1197 lsh.print_cr("The imbalance is possibly caused by JNI locking."); 1198 print_debug_style_on(&lsh); 1199 assert(false, "Non-balanced monitor enter/exit!"); 1200 #endif 1201 return; 1202 } 1203 } 1204 1205 if (_recursions != 0) { 1206 _recursions--; // this is simple recursive enter 1207 return; 1208 } 1209 1210 // Invariant: after setting Responsible=null an thread must execute 1211 // a MEMBAR or other serializing instruction before fetching EntryList|cxq. 1212 _Responsible = nullptr; 1213 1214 #if INCLUDE_JFR 1215 // get the owner's thread id for the MonitorEnter event 1216 // if it is enabled and the thread isn't suspended 1217 if (not_suspended && EventJavaMonitorEnter::is_enabled()) { 1218 _previous_owner_tid = JFR_THREAD_ID(current); 1219 } 1220 #endif 1221 1222 for (;;) { 1223 assert(current == owner_raw(), "invariant"); 1224 1225 // Drop the lock. 1226 // release semantics: prior loads and stores from within the critical section 1227 // must not float (reorder) past the following store that drops the lock. 1228 // Uses a storeload to separate release_store(owner) from the 1229 // successor check. The try_set_owner() below uses cmpxchg() so 1230 // we get the fence down there. 1231 release_clear_owner(current); 1232 OrderAccess::storeload(); 1233 1234 if ((intptr_t(_EntryList)|intptr_t(_cxq)) == 0 || _succ != nullptr) { 1235 return; 1236 } 1237 // Other threads are blocked trying to acquire the lock. 1238 1239 // Normally the exiting thread is responsible for ensuring succession, 1240 // but if other successors are ready or other entering threads are spinning 1241 // then this thread can simply store null into _owner and exit without 1242 // waking a successor. The existence of spinners or ready successors 1243 // guarantees proper succession (liveness). Responsibility passes to the 1244 // ready or running successors. The exiting thread delegates the duty. 1245 // More precisely, if a successor already exists this thread is absolved 1246 // of the responsibility of waking (unparking) one. 1247 // 1248 // The _succ variable is critical to reducing futile wakeup frequency. 1249 // _succ identifies the "heir presumptive" thread that has been made 1250 // ready (unparked) but that has not yet run. We need only one such 1251 // successor thread to guarantee progress. 1252 // See http://www.usenix.org/events/jvm01/full_papers/dice/dice.pdf 1253 // section 3.3 "Futile Wakeup Throttling" for details. 1254 // 1255 // Note that spinners in Enter() also set _succ non-null. 1256 // In the current implementation spinners opportunistically set 1257 // _succ so that exiting threads might avoid waking a successor. 1258 // Another less appealing alternative would be for the exiting thread 1259 // to drop the lock and then spin briefly to see if a spinner managed 1260 // to acquire the lock. If so, the exiting thread could exit 1261 // immediately without waking a successor, otherwise the exiting 1262 // thread would need to dequeue and wake a successor. 1263 // (Note that we'd need to make the post-drop spin short, but no 1264 // shorter than the worst-case round-trip cache-line migration time. 1265 // The dropped lock needs to become visible to the spinner, and then 1266 // the acquisition of the lock by the spinner must become visible to 1267 // the exiting thread). 1268 1269 // It appears that an heir-presumptive (successor) must be made ready. 1270 // Only the current lock owner can manipulate the EntryList or 1271 // drain _cxq, so we need to reacquire the lock. If we fail 1272 // to reacquire the lock the responsibility for ensuring succession 1273 // falls to the new owner. 1274 // 1275 if (try_set_owner_from(nullptr, current) != nullptr) { 1276 return; 1277 } 1278 1279 guarantee(owner_raw() == current, "invariant"); 1280 1281 ObjectWaiter* w = nullptr; 1282 1283 w = _EntryList; 1284 if (w != nullptr) { 1285 // I'd like to write: guarantee (w->_thread != current). 1286 // But in practice an exiting thread may find itself on the EntryList. 1287 // Let's say thread T1 calls O.wait(). Wait() enqueues T1 on O's waitset and 1288 // then calls exit(). Exit release the lock by setting O._owner to null. 1289 // Let's say T1 then stalls. T2 acquires O and calls O.notify(). The 1290 // notify() operation moves T1 from O's waitset to O's EntryList. T2 then 1291 // release the lock "O". T2 resumes immediately after the ST of null into 1292 // _owner, above. T2 notices that the EntryList is populated, so it 1293 // reacquires the lock and then finds itself on the EntryList. 1294 // Given all that, we have to tolerate the circumstance where "w" is 1295 // associated with current. 1296 assert(w->TState == ObjectWaiter::TS_ENTER, "invariant"); 1297 ExitEpilog(current, w); 1298 return; 1299 } 1300 1301 // If we find that both _cxq and EntryList are null then just 1302 // re-run the exit protocol from the top. 1303 w = _cxq; 1304 if (w == nullptr) continue; 1305 1306 // Drain _cxq into EntryList - bulk transfer. 1307 // First, detach _cxq. 1308 // The following loop is tantamount to: w = swap(&cxq, nullptr) 1309 for (;;) { 1310 assert(w != nullptr, "Invariant"); 1311 ObjectWaiter* u = Atomic::cmpxchg(&_cxq, w, (ObjectWaiter*)nullptr); 1312 if (u == w) break; 1313 w = u; 1314 } 1315 1316 assert(w != nullptr, "invariant"); 1317 assert(_EntryList == nullptr, "invariant"); 1318 1319 // Convert the LIFO SLL anchored by _cxq into a DLL. 1320 // The list reorganization step operates in O(LENGTH(w)) time. 1321 // It's critical that this step operate quickly as 1322 // "current" still holds the outer-lock, restricting parallelism 1323 // and effectively lengthening the critical section. 1324 // Invariant: s chases t chases u. 1325 // TODO-FIXME: consider changing EntryList from a DLL to a CDLL so 1326 // we have faster access to the tail. 1327 1328 _EntryList = w; 1329 ObjectWaiter* q = nullptr; 1330 ObjectWaiter* p; 1331 for (p = w; p != nullptr; p = p->_next) { 1332 guarantee(p->TState == ObjectWaiter::TS_CXQ, "Invariant"); 1333 p->TState = ObjectWaiter::TS_ENTER; 1334 p->_prev = q; 1335 q = p; 1336 } 1337 1338 // In 1-0 mode we need: ST EntryList; MEMBAR #storestore; ST _owner = nullptr 1339 // The MEMBAR is satisfied by the release_store() operation in ExitEpilog(). 1340 1341 // See if we can abdicate to a spinner instead of waking a thread. 1342 // A primary goal of the implementation is to reduce the 1343 // context-switch rate. 1344 if (_succ != nullptr) continue; 1345 1346 w = _EntryList; 1347 if (w != nullptr) { 1348 guarantee(w->TState == ObjectWaiter::TS_ENTER, "invariant"); 1349 ExitEpilog(current, w); 1350 return; 1351 } 1352 } 1353 } 1354 1355 void ObjectMonitor::ExitEpilog(JavaThread* current, ObjectWaiter* Wakee) { 1356 assert(owner_raw() == current, "invariant"); 1357 1358 // Exit protocol: 1359 // 1. ST _succ = wakee 1360 // 2. membar #loadstore|#storestore; 1361 // 2. ST _owner = nullptr 1362 // 3. unpark(wakee) 1363 1364 _succ = Wakee->_thread; 1365 ParkEvent * Trigger = Wakee->_event; 1366 1367 // Hygiene -- once we've set _owner = nullptr we can't safely dereference Wakee again. 1368 // The thread associated with Wakee may have grabbed the lock and "Wakee" may be 1369 // out-of-scope (non-extant). 1370 Wakee = nullptr; 1371 1372 // Drop the lock. 1373 // Uses a fence to separate release_store(owner) from the LD in unpark(). 1374 release_clear_owner(current); 1375 OrderAccess::fence(); 1376 1377 DTRACE_MONITOR_PROBE(contended__exit, this, object(), current); 1378 Trigger->unpark(); 1379 1380 // Maintain stats and report events to JVMTI 1381 OM_PERFDATA_OP(Parks, inc()); 1382 } 1383 1384 // complete_exit exits a lock returning recursion count 1385 // complete_exit requires an inflated monitor 1386 // The _owner field is not always the Thread addr even with an 1387 // inflated monitor, e.g. the monitor can be inflated by a non-owning 1388 // thread due to contention. 1389 intx ObjectMonitor::complete_exit(JavaThread* current) { 1390 assert(InitDone, "Unexpectedly not initialized"); 1391 1392 void* cur = owner_raw(); 1393 if (current != cur) { 1394 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 1395 assert(_recursions == 0, "internal state error"); 1396 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 1397 _recursions = 0; 1398 } 1399 } 1400 1401 guarantee(current == owner_raw(), "complete_exit not owner"); 1402 intx save = _recursions; // record the old recursion count 1403 _recursions = 0; // set the recursion level to be 0 1404 exit(current); // exit the monitor 1405 guarantee(owner_raw() != current, "invariant"); 1406 return save; 1407 } 1408 1409 // Checks that the current THREAD owns this monitor and causes an 1410 // immediate return if it doesn't. We don't use the CHECK macro 1411 // because we want the IMSE to be the only exception that is thrown 1412 // from the call site when false is returned. Any other pending 1413 // exception is ignored. 1414 #define CHECK_OWNER() \ 1415 do { \ 1416 if (!check_owner(THREAD)) { \ 1417 assert(HAS_PENDING_EXCEPTION, "expected a pending IMSE here."); \ 1418 return; \ 1419 } \ 1420 } while (false) 1421 1422 // Returns true if the specified thread owns the ObjectMonitor. 1423 // Otherwise returns false and throws IllegalMonitorStateException 1424 // (IMSE). If there is a pending exception and the specified thread 1425 // is not the owner, that exception will be replaced by the IMSE. 1426 bool ObjectMonitor::check_owner(TRAPS) { 1427 JavaThread* current = THREAD; 1428 void* cur = owner_raw(); 1429 assert(cur != anon_owner_ptr(), "no anon owner here"); 1430 if (cur == current) { 1431 return true; 1432 } 1433 if (LockingMode != LM_LIGHTWEIGHT && current->is_lock_owned((address)cur)) { 1434 set_owner_from_BasicLock(cur, current); // Convert from BasicLock* to Thread*. 1435 _recursions = 0; 1436 return true; 1437 } 1438 THROW_MSG_(vmSymbols::java_lang_IllegalMonitorStateException(), 1439 "current thread is not owner", false); 1440 } 1441 1442 static inline bool is_excluded(const Klass* monitor_klass) { 1443 assert(monitor_klass != nullptr, "invariant"); 1444 NOT_JFR_RETURN_(false); 1445 JFR_ONLY(return vmSymbols::jdk_jfr_internal_HiddenWait() == monitor_klass->name();) 1446 } 1447 1448 static void post_monitor_wait_event(EventJavaMonitorWait* event, 1449 ObjectMonitor* monitor, 1450 uint64_t notifier_tid, 1451 jlong timeout, 1452 bool timedout) { 1453 assert(event != nullptr, "invariant"); 1454 assert(monitor != nullptr, "invariant"); 1455 const Klass* monitor_klass = monitor->object()->klass(); 1456 if (is_excluded(monitor_klass)) { 1457 return; 1458 } 1459 event->set_monitorClass(monitor_klass); 1460 event->set_timeout(timeout); 1461 // Set an address that is 'unique enough', such that events close in 1462 // time and with the same address are likely (but not guaranteed) to 1463 // belong to the same object. 1464 event->set_address((uintptr_t)monitor); 1465 event->set_notifier(notifier_tid); 1466 event->set_timedOut(timedout); 1467 event->commit(); 1468 } 1469 1470 // ----------------------------------------------------------------------------- 1471 // Wait/Notify/NotifyAll 1472 // 1473 // Note: a subset of changes to ObjectMonitor::wait() 1474 // will need to be replicated in complete_exit 1475 void ObjectMonitor::wait(jlong millis, bool interruptible, TRAPS) { 1476 JavaThread* current = THREAD; 1477 1478 assert(InitDone, "Unexpectedly not initialized"); 1479 1480 CHECK_OWNER(); // Throws IMSE if not owner. 1481 1482 EventJavaMonitorWait event; 1483 1484 // check for a pending interrupt 1485 if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) { 1486 // post monitor waited event. Note that this is past-tense, we are done waiting. 1487 if (JvmtiExport::should_post_monitor_waited()) { 1488 // Note: 'false' parameter is passed here because the 1489 // wait was not timed out due to thread interrupt. 1490 JvmtiExport::post_monitor_waited(current, this, false); 1491 1492 // In this short circuit of the monitor wait protocol, the 1493 // current thread never drops ownership of the monitor and 1494 // never gets added to the wait queue so the current thread 1495 // cannot be made the successor. This means that the 1496 // JVMTI_EVENT_MONITOR_WAITED event handler cannot accidentally 1497 // consume an unpark() meant for the ParkEvent associated with 1498 // this ObjectMonitor. 1499 } 1500 if (event.should_commit()) { 1501 post_monitor_wait_event(&event, this, 0, millis, false); 1502 } 1503 THROW(vmSymbols::java_lang_InterruptedException()); 1504 return; 1505 } 1506 1507 current->set_current_waiting_monitor(this); 1508 1509 // create a node to be put into the queue 1510 // Critically, after we reset() the event but prior to park(), we must check 1511 // for a pending interrupt. 1512 ObjectWaiter node(current); 1513 node.TState = ObjectWaiter::TS_WAIT; 1514 current->_ParkEvent->reset(); 1515 OrderAccess::fence(); // ST into Event; membar ; LD interrupted-flag 1516 1517 // Enter the waiting queue, which is a circular doubly linked list in this case 1518 // but it could be a priority queue or any data structure. 1519 // _WaitSetLock protects the wait queue. Normally the wait queue is accessed only 1520 // by the owner of the monitor *except* in the case where park() 1521 // returns because of a timeout of interrupt. Contention is exceptionally rare 1522 // so we use a simple spin-lock instead of a heavier-weight blocking lock. 1523 1524 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - add"); 1525 AddWaiter(&node); 1526 Thread::SpinRelease(&_WaitSetLock); 1527 1528 _Responsible = nullptr; 1529 1530 intx save = _recursions; // record the old recursion count 1531 _waiters++; // increment the number of waiters 1532 _recursions = 0; // set the recursion level to be 1 1533 exit(current); // exit the monitor 1534 guarantee(owner_raw() != current, "invariant"); 1535 1536 // The thread is on the WaitSet list - now park() it. 1537 // On MP systems it's conceivable that a brief spin before we park 1538 // could be profitable. 1539 // 1540 // TODO-FIXME: change the following logic to a loop of the form 1541 // while (!timeout && !interrupted && _notified == 0) park() 1542 1543 int ret = OS_OK; 1544 int WasNotified = 0; 1545 1546 // Need to check interrupt state whilst still _thread_in_vm 1547 bool interrupted = interruptible && current->is_interrupted(false); 1548 1549 { // State transition wrappers 1550 OSThread* osthread = current->osthread(); 1551 OSThreadWaitState osts(osthread, true); 1552 1553 assert(current->thread_state() == _thread_in_vm, "invariant"); 1554 1555 { 1556 ClearSuccOnSuspend csos(this); 1557 ThreadBlockInVMPreprocess<ClearSuccOnSuspend> tbivs(current, csos, true /* allow_suspend */); 1558 if (interrupted || HAS_PENDING_EXCEPTION) { 1559 // Intentionally empty 1560 } else if (node._notified == 0) { 1561 if (millis <= 0) { 1562 current->_ParkEvent->park(); 1563 } else { 1564 ret = current->_ParkEvent->park(millis); 1565 } 1566 } 1567 } 1568 1569 // Node may be on the WaitSet, the EntryList (or cxq), or in transition 1570 // from the WaitSet to the EntryList. 1571 // See if we need to remove Node from the WaitSet. 1572 // We use double-checked locking to avoid grabbing _WaitSetLock 1573 // if the thread is not on the wait queue. 1574 // 1575 // Note that we don't need a fence before the fetch of TState. 1576 // In the worst case we'll fetch a old-stale value of TS_WAIT previously 1577 // written by the is thread. (perhaps the fetch might even be satisfied 1578 // by a look-aside into the processor's own store buffer, although given 1579 // the length of the code path between the prior ST and this load that's 1580 // highly unlikely). If the following LD fetches a stale TS_WAIT value 1581 // then we'll acquire the lock and then re-fetch a fresh TState value. 1582 // That is, we fail toward safety. 1583 1584 if (node.TState == ObjectWaiter::TS_WAIT) { 1585 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - unlink"); 1586 if (node.TState == ObjectWaiter::TS_WAIT) { 1587 DequeueSpecificWaiter(&node); // unlink from WaitSet 1588 assert(node._notified == 0, "invariant"); 1589 node.TState = ObjectWaiter::TS_RUN; 1590 } 1591 Thread::SpinRelease(&_WaitSetLock); 1592 } 1593 1594 // The thread is now either on off-list (TS_RUN), 1595 // on the EntryList (TS_ENTER), or on the cxq (TS_CXQ). 1596 // The Node's TState variable is stable from the perspective of this thread. 1597 // No other threads will asynchronously modify TState. 1598 guarantee(node.TState != ObjectWaiter::TS_WAIT, "invariant"); 1599 OrderAccess::loadload(); 1600 if (_succ == current) _succ = nullptr; 1601 WasNotified = node._notified; 1602 1603 // Reentry phase -- reacquire the monitor. 1604 // re-enter contended monitor after object.wait(). 1605 // retain OBJECT_WAIT state until re-enter successfully completes 1606 // Thread state is thread_in_vm and oop access is again safe, 1607 // although the raw address of the object may have changed. 1608 // (Don't cache naked oops over safepoints, of course). 1609 1610 // post monitor waited event. Note that this is past-tense, we are done waiting. 1611 if (JvmtiExport::should_post_monitor_waited()) { 1612 JvmtiExport::post_monitor_waited(current, this, ret == OS_TIMEOUT); 1613 1614 if (node._notified != 0 && _succ == current) { 1615 // In this part of the monitor wait-notify-reenter protocol it 1616 // is possible (and normal) for another thread to do a fastpath 1617 // monitor enter-exit while this thread is still trying to get 1618 // to the reenter portion of the protocol. 1619 // 1620 // The ObjectMonitor was notified and the current thread is 1621 // the successor which also means that an unpark() has already 1622 // been done. The JVMTI_EVENT_MONITOR_WAITED event handler can 1623 // consume the unpark() that was done when the successor was 1624 // set because the same ParkEvent is shared between Java 1625 // monitors and JVM/TI RawMonitors (for now). 1626 // 1627 // We redo the unpark() to ensure forward progress, i.e., we 1628 // don't want all pending threads hanging (parked) with none 1629 // entering the unlocked monitor. 1630 node._event->unpark(); 1631 } 1632 } 1633 1634 if (event.should_commit()) { 1635 post_monitor_wait_event(&event, this, node._notifier_tid, millis, ret == OS_TIMEOUT); 1636 } 1637 1638 OrderAccess::fence(); 1639 1640 assert(owner_raw() != current, "invariant"); 1641 ObjectWaiter::TStates v = node.TState; 1642 if (v == ObjectWaiter::TS_RUN) { 1643 enter(current); 1644 } else { 1645 guarantee(v == ObjectWaiter::TS_ENTER || v == ObjectWaiter::TS_CXQ, "invariant"); 1646 ReenterI(current, &node); 1647 node.wait_reenter_end(this); 1648 } 1649 1650 // current has reacquired the lock. 1651 // Lifecycle - the node representing current must not appear on any queues. 1652 // Node is about to go out-of-scope, but even if it were immortal we wouldn't 1653 // want residual elements associated with this thread left on any lists. 1654 guarantee(node.TState == ObjectWaiter::TS_RUN, "invariant"); 1655 assert(owner_raw() == current, "invariant"); 1656 assert(_succ != current, "invariant"); 1657 } // OSThreadWaitState() 1658 1659 current->set_current_waiting_monitor(nullptr); 1660 1661 guarantee(_recursions == 0, "invariant"); 1662 int relock_count = JvmtiDeferredUpdates::get_and_reset_relock_count_after_wait(current); 1663 _recursions = save // restore the old recursion count 1664 + relock_count; // increased by the deferred relock count 1665 current->inc_held_monitor_count(relock_count); // Deopt never entered these counts. 1666 _waiters--; // decrement the number of waiters 1667 1668 // Verify a few postconditions 1669 assert(owner_raw() == current, "invariant"); 1670 assert(_succ != current, "invariant"); 1671 assert(object()->mark() == markWord::encode(this), "invariant"); 1672 1673 // check if the notification happened 1674 if (!WasNotified) { 1675 // no, it could be timeout or Thread.interrupt() or both 1676 // check for interrupt event, otherwise it is timeout 1677 if (interruptible && current->is_interrupted(true) && !HAS_PENDING_EXCEPTION) { 1678 THROW(vmSymbols::java_lang_InterruptedException()); 1679 } 1680 } 1681 1682 // NOTE: Spurious wake up will be consider as timeout. 1683 // Monitor notify has precedence over thread interrupt. 1684 } 1685 1686 1687 // Consider: 1688 // If the lock is cool (cxq == null && succ == null) and we're on an MP system 1689 // then instead of transferring a thread from the WaitSet to the EntryList 1690 // we might just dequeue a thread from the WaitSet and directly unpark() it. 1691 1692 void ObjectMonitor::INotify(JavaThread* current) { 1693 Thread::SpinAcquire(&_WaitSetLock, "WaitSet - notify"); 1694 ObjectWaiter* iterator = DequeueWaiter(); 1695 if (iterator != nullptr) { 1696 guarantee(iterator->TState == ObjectWaiter::TS_WAIT, "invariant"); 1697 guarantee(iterator->_notified == 0, "invariant"); 1698 // Disposition - what might we do with iterator ? 1699 // a. add it directly to the EntryList - either tail (policy == 1) 1700 // or head (policy == 0). 1701 // b. push it onto the front of the _cxq (policy == 2). 1702 // For now we use (b). 1703 1704 iterator->TState = ObjectWaiter::TS_ENTER; 1705 1706 iterator->_notified = 1; 1707 iterator->_notifier_tid = JFR_THREAD_ID(current); 1708 1709 ObjectWaiter* list = _EntryList; 1710 if (list != nullptr) { 1711 assert(list->_prev == nullptr, "invariant"); 1712 assert(list->TState == ObjectWaiter::TS_ENTER, "invariant"); 1713 assert(list != iterator, "invariant"); 1714 } 1715 1716 // prepend to cxq 1717 if (list == nullptr) { 1718 iterator->_next = iterator->_prev = nullptr; 1719 _EntryList = iterator; 1720 } else { 1721 iterator->TState = ObjectWaiter::TS_CXQ; 1722 for (;;) { 1723 ObjectWaiter* front = _cxq; 1724 iterator->_next = front; 1725 if (Atomic::cmpxchg(&_cxq, front, iterator) == front) { 1726 break; 1727 } 1728 } 1729 } 1730 1731 // _WaitSetLock protects the wait queue, not the EntryList. We could 1732 // move the add-to-EntryList operation, above, outside the critical section 1733 // protected by _WaitSetLock. In practice that's not useful. With the 1734 // exception of wait() timeouts and interrupts the monitor owner 1735 // is the only thread that grabs _WaitSetLock. There's almost no contention 1736 // on _WaitSetLock so it's not profitable to reduce the length of the 1737 // critical section. 1738 1739 iterator->wait_reenter_begin(this); 1740 } 1741 Thread::SpinRelease(&_WaitSetLock); 1742 } 1743 1744 // Consider: a not-uncommon synchronization bug is to use notify() when 1745 // notifyAll() is more appropriate, potentially resulting in stranded 1746 // threads; this is one example of a lost wakeup. A useful diagnostic 1747 // option is to force all notify() operations to behave as notifyAll(). 1748 // 1749 // Note: We can also detect many such problems with a "minimum wait". 1750 // When the "minimum wait" is set to a small non-zero timeout value 1751 // and the program does not hang whereas it did absent "minimum wait", 1752 // that suggests a lost wakeup bug. 1753 1754 void ObjectMonitor::notify(TRAPS) { 1755 JavaThread* current = THREAD; 1756 CHECK_OWNER(); // Throws IMSE if not owner. 1757 if (_WaitSet == nullptr) { 1758 return; 1759 } 1760 DTRACE_MONITOR_PROBE(notify, this, object(), current); 1761 INotify(current); 1762 OM_PERFDATA_OP(Notifications, inc(1)); 1763 } 1764 1765 1766 // The current implementation of notifyAll() transfers the waiters one-at-a-time 1767 // from the waitset to the EntryList. This could be done more efficiently with a 1768 // single bulk transfer but in practice it's not time-critical. Beware too, 1769 // that in prepend-mode we invert the order of the waiters. Let's say that the 1770 // waitset is "ABCD" and the EntryList is "XYZ". After a notifyAll() in prepend 1771 // mode the waitset will be empty and the EntryList will be "DCBAXYZ". 1772 1773 void ObjectMonitor::notifyAll(TRAPS) { 1774 JavaThread* current = THREAD; 1775 CHECK_OWNER(); // Throws IMSE if not owner. 1776 if (_WaitSet == nullptr) { 1777 return; 1778 } 1779 1780 DTRACE_MONITOR_PROBE(notifyAll, this, object(), current); 1781 int tally = 0; 1782 while (_WaitSet != nullptr) { 1783 tally++; 1784 INotify(current); 1785 } 1786 1787 OM_PERFDATA_OP(Notifications, inc(tally)); 1788 } 1789 1790 // ----------------------------------------------------------------------------- 1791 // Adaptive Spinning Support 1792 // 1793 // Adaptive spin-then-block - rational spinning 1794 // 1795 // Note that we spin "globally" on _owner with a classic SMP-polite TATAS 1796 // algorithm. On high order SMP systems it would be better to start with 1797 // a brief global spin and then revert to spinning locally. In the spirit of MCS/CLH, 1798 // a contending thread could enqueue itself on the cxq and then spin locally 1799 // on a thread-specific variable such as its ParkEvent._Event flag. 1800 // That's left as an exercise for the reader. Note that global spinning is 1801 // not problematic on Niagara, as the L2 cache serves the interconnect and 1802 // has both low latency and massive bandwidth. 1803 // 1804 // Broadly, we can fix the spin frequency -- that is, the % of contended lock 1805 // acquisition attempts where we opt to spin -- at 100% and vary the spin count 1806 // (duration) or we can fix the count at approximately the duration of 1807 // a context switch and vary the frequency. Of course we could also 1808 // vary both satisfying K == Frequency * Duration, where K is adaptive by monitor. 1809 // For a description of 'Adaptive spin-then-block mutual exclusion in 1810 // multi-threaded processing,' see U.S. Pat. No. 8046758. 1811 // 1812 // This implementation varies the duration "D", where D varies with 1813 // the success rate of recent spin attempts. (D is capped at approximately 1814 // length of a round-trip context switch). The success rate for recent 1815 // spin attempts is a good predictor of the success rate of future spin 1816 // attempts. The mechanism adapts automatically to varying critical 1817 // section length (lock modality), system load and degree of parallelism. 1818 // D is maintained per-monitor in _SpinDuration and is initialized 1819 // optimistically. Spin frequency is fixed at 100%. 1820 // 1821 // Note that _SpinDuration is volatile, but we update it without locks 1822 // or atomics. The code is designed so that _SpinDuration stays within 1823 // a reasonable range even in the presence of races. The arithmetic 1824 // operations on _SpinDuration are closed over the domain of legal values, 1825 // so at worst a race will install and older but still legal value. 1826 // At the very worst this introduces some apparent non-determinism. 1827 // We might spin when we shouldn't or vice-versa, but since the spin 1828 // count are relatively short, even in the worst case, the effect is harmless. 1829 // 1830 // Care must be taken that a low "D" value does not become an 1831 // an absorbing state. Transient spinning failures -- when spinning 1832 // is overall profitable -- should not cause the system to converge 1833 // on low "D" values. We want spinning to be stable and predictable 1834 // and fairly responsive to change and at the same time we don't want 1835 // it to oscillate, become metastable, be "too" non-deterministic, 1836 // or converge on or enter undesirable stable absorbing states. 1837 // 1838 // We implement a feedback-based control system -- using past behavior 1839 // to predict future behavior. We face two issues: (a) if the 1840 // input signal is random then the spin predictor won't provide optimal 1841 // results, and (b) if the signal frequency is too high then the control 1842 // system, which has some natural response lag, will "chase" the signal. 1843 // (b) can arise from multimodal lock hold times. Transient preemption 1844 // can also result in apparent bimodal lock hold times. 1845 // Although sub-optimal, neither condition is particularly harmful, as 1846 // in the worst-case we'll spin when we shouldn't or vice-versa. 1847 // The maximum spin duration is rather short so the failure modes aren't bad. 1848 // To be conservative, I've tuned the gain in system to bias toward 1849 // _not spinning. Relatedly, the system can sometimes enter a mode where it 1850 // "rings" or oscillates between spinning and not spinning. This happens 1851 // when spinning is just on the cusp of profitability, however, so the 1852 // situation is not dire. The state is benign -- there's no need to add 1853 // hysteresis control to damp the transition rate between spinning and 1854 // not spinning. 1855 1856 int ObjectMonitor::Knob_SpinLimit = 5000; // derived by an external tool 1857 1858 static int Knob_Bonus = 100; // spin success bonus 1859 static int Knob_Penalty = 200; // spin failure penalty 1860 static int Knob_Poverty = 1000; 1861 static int Knob_FixedSpin = 0; 1862 static int Knob_PreSpin = 10; // 20-100 likely better, but it's not better in my testing. 1863 1864 inline static int adjust_up(int spin_duration) { 1865 int x = spin_duration; 1866 if (x < ObjectMonitor::Knob_SpinLimit) { 1867 if (x < Knob_Poverty) { 1868 x = Knob_Poverty; 1869 } 1870 return x + Knob_Bonus; 1871 } else { 1872 return spin_duration; 1873 } 1874 } 1875 1876 inline static int adjust_down(int spin_duration) { 1877 // TODO: Use an AIMD-like policy to adjust _SpinDuration. 1878 // AIMD is globally stable. 1879 int x = spin_duration; 1880 if (x > 0) { 1881 // Consider an AIMD scheme like: x -= (x >> 3) + 100 1882 // This is globally sample and tends to damp the response. 1883 x -= Knob_Penalty; 1884 if (x < 0) { x = 0; } 1885 return x; 1886 } else { 1887 return spin_duration; 1888 } 1889 } 1890 1891 bool ObjectMonitor::short_fixed_spin(JavaThread* current, int spin_count, bool adapt) { 1892 for (int ctr = 0; ctr < spin_count; ctr++) { 1893 TryLockResult status = TryLock(current); 1894 if (status == TryLockResult::Success) { 1895 if (adapt) { 1896 _SpinDuration = adjust_up(_SpinDuration); 1897 } 1898 return true; 1899 } else if (status == TryLockResult::Interference) { 1900 break; 1901 } 1902 SpinPause(); 1903 } 1904 return false; 1905 } 1906 1907 // Spinning: Fixed frequency (100%), vary duration 1908 bool ObjectMonitor::TrySpin(JavaThread* current) { 1909 1910 // Dumb, brutal spin. Good for comparative measurements against adaptive spinning. 1911 int knob_fixed_spin = Knob_FixedSpin; // 0 (don't spin: default), 2000 good test 1912 if (knob_fixed_spin > 0) { 1913 return short_fixed_spin(current, knob_fixed_spin, false); 1914 } 1915 1916 // Admission control - verify preconditions for spinning 1917 // 1918 // We always spin a little bit, just to prevent _SpinDuration == 0 from 1919 // becoming an absorbing state. Put another way, we spin briefly to 1920 // sample, just in case the system load, parallelism, contention, or lock 1921 // modality changed. 1922 1923 int knob_pre_spin = Knob_PreSpin; // 10 (default), 100, 1000 or 2000 1924 if (short_fixed_spin(current, knob_pre_spin, true)) { 1925 return true; 1926 } 1927 1928 // 1929 // Consider the following alternative: 1930 // Periodically set _SpinDuration = _SpinLimit and try a long/full 1931 // spin attempt. "Periodically" might mean after a tally of 1932 // the # of failed spin attempts (or iterations) reaches some threshold. 1933 // This takes us into the realm of 1-out-of-N spinning, where we 1934 // hold the duration constant but vary the frequency. 1935 1936 int ctr = _SpinDuration; 1937 if (ctr <= 0) return false; 1938 1939 // We're good to spin ... spin ingress. 1940 // CONSIDER: use Prefetch::write() to avoid RTS->RTO upgrades 1941 // when preparing to LD...CAS _owner, etc and the CAS is likely 1942 // to succeed. 1943 if (_succ == nullptr) { 1944 _succ = current; 1945 } 1946 Thread* prv = nullptr; 1947 1948 // There are three ways to exit the following loop: 1949 // 1. A successful spin where this thread has acquired the lock. 1950 // 2. Spin failure with prejudice 1951 // 3. Spin failure without prejudice 1952 1953 while (--ctr >= 0) { 1954 1955 // Periodic polling -- Check for pending GC 1956 // Threads may spin while they're unsafe. 1957 // We don't want spinning threads to delay the JVM from reaching 1958 // a stop-the-world safepoint or to steal cycles from GC. 1959 // If we detect a pending safepoint we abort in order that 1960 // (a) this thread, if unsafe, doesn't delay the safepoint, and (b) 1961 // this thread, if safe, doesn't steal cycles from GC. 1962 // This is in keeping with the "no loitering in runtime" rule. 1963 // We periodically check to see if there's a safepoint pending. 1964 if ((ctr & 0xFF) == 0) { 1965 // Can't call SafepointMechanism::should_process() since that 1966 // might update the poll values and we could be in a thread_blocked 1967 // state here which is not allowed so just check the poll. 1968 if (SafepointMechanism::local_poll_armed(current)) { 1969 break; 1970 } 1971 SpinPause(); 1972 } 1973 1974 // Probe _owner with TATAS 1975 // If this thread observes the monitor transition or flicker 1976 // from locked to unlocked to locked, then the odds that this 1977 // thread will acquire the lock in this spin attempt go down 1978 // considerably. The same argument applies if the CAS fails 1979 // or if we observe _owner change from one non-null value to 1980 // another non-null value. In such cases we might abort 1981 // the spin without prejudice or apply a "penalty" to the 1982 // spin count-down variable "ctr", reducing it by 100, say. 1983 1984 JavaThread* ox = static_cast<JavaThread*>(owner_raw()); 1985 if (ox == nullptr) { 1986 ox = static_cast<JavaThread*>(try_set_owner_from(nullptr, current)); 1987 if (ox == nullptr) { 1988 // The CAS succeeded -- this thread acquired ownership 1989 // Take care of some bookkeeping to exit spin state. 1990 if (_succ == current) { 1991 _succ = nullptr; 1992 } 1993 1994 // Increase _SpinDuration : 1995 // The spin was successful (profitable) so we tend toward 1996 // longer spin attempts in the future. 1997 // CONSIDER: factor "ctr" into the _SpinDuration adjustment. 1998 // If we acquired the lock early in the spin cycle it 1999 // makes sense to increase _SpinDuration proportionally. 2000 // Note that we don't clamp SpinDuration precisely at SpinLimit. 2001 _SpinDuration = adjust_up(_SpinDuration); 2002 return true; 2003 } 2004 2005 // The CAS failed ... we can take any of the following actions: 2006 // * penalize: ctr -= CASPenalty 2007 // * exit spin with prejudice -- abort without adapting spinner 2008 // * exit spin without prejudice. 2009 // * Since CAS is high-latency, retry again immediately. 2010 break; 2011 } 2012 2013 // Did lock ownership change hands ? 2014 if (ox != prv && prv != nullptr) { 2015 break; 2016 } 2017 prv = ox; 2018 2019 if (_succ == nullptr) { 2020 _succ = current; 2021 } 2022 } 2023 2024 // Spin failed with prejudice -- reduce _SpinDuration. 2025 if (ctr < 0) { 2026 _SpinDuration = adjust_down(_SpinDuration); 2027 } 2028 2029 if (_succ == current) { 2030 _succ = nullptr; 2031 // Invariant: after setting succ=null a contending thread 2032 // must recheck-retry _owner before parking. This usually happens 2033 // in the normal usage of TrySpin(), but it's safest 2034 // to make TrySpin() as foolproof as possible. 2035 OrderAccess::fence(); 2036 if (TryLock(current) == TryLockResult::Success) { 2037 return true; 2038 } 2039 } 2040 2041 return false; 2042 } 2043 2044 2045 // ----------------------------------------------------------------------------- 2046 // WaitSet management ... 2047 2048 ObjectWaiter::ObjectWaiter(JavaThread* current) { 2049 _next = nullptr; 2050 _prev = nullptr; 2051 _notified = 0; 2052 _notifier_tid = 0; 2053 TState = TS_RUN; 2054 _thread = current; 2055 _event = _thread->_ParkEvent; 2056 _active = false; 2057 assert(_event != nullptr, "invariant"); 2058 } 2059 2060 void ObjectWaiter::wait_reenter_begin(ObjectMonitor * const mon) { 2061 _active = JavaThreadBlockedOnMonitorEnterState::wait_reenter_begin(_thread, mon); 2062 } 2063 2064 void ObjectWaiter::wait_reenter_end(ObjectMonitor * const mon) { 2065 JavaThreadBlockedOnMonitorEnterState::wait_reenter_end(_thread, _active); 2066 } 2067 2068 inline void ObjectMonitor::AddWaiter(ObjectWaiter* node) { 2069 assert(node != nullptr, "should not add null node"); 2070 assert(node->_prev == nullptr, "node already in list"); 2071 assert(node->_next == nullptr, "node already in list"); 2072 // put node at end of queue (circular doubly linked list) 2073 if (_WaitSet == nullptr) { 2074 _WaitSet = node; 2075 node->_prev = node; 2076 node->_next = node; 2077 } else { 2078 ObjectWaiter* head = _WaitSet; 2079 ObjectWaiter* tail = head->_prev; 2080 assert(tail->_next == head, "invariant check"); 2081 tail->_next = node; 2082 head->_prev = node; 2083 node->_next = head; 2084 node->_prev = tail; 2085 } 2086 } 2087 2088 inline ObjectWaiter* ObjectMonitor::DequeueWaiter() { 2089 // dequeue the very first waiter 2090 ObjectWaiter* waiter = _WaitSet; 2091 if (waiter) { 2092 DequeueSpecificWaiter(waiter); 2093 } 2094 return waiter; 2095 } 2096 2097 inline void ObjectMonitor::DequeueSpecificWaiter(ObjectWaiter* node) { 2098 assert(node != nullptr, "should not dequeue nullptr node"); 2099 assert(node->_prev != nullptr, "node already removed from list"); 2100 assert(node->_next != nullptr, "node already removed from list"); 2101 // when the waiter has woken up because of interrupt, 2102 // timeout or other spurious wake-up, dequeue the 2103 // waiter from waiting list 2104 ObjectWaiter* next = node->_next; 2105 if (next == node) { 2106 assert(node->_prev == node, "invariant check"); 2107 _WaitSet = nullptr; 2108 } else { 2109 ObjectWaiter* prev = node->_prev; 2110 assert(prev->_next == node, "invariant check"); 2111 assert(next->_prev == node, "invariant check"); 2112 next->_prev = prev; 2113 prev->_next = next; 2114 if (_WaitSet == node) { 2115 _WaitSet = next; 2116 } 2117 } 2118 node->_next = nullptr; 2119 node->_prev = nullptr; 2120 } 2121 2122 // ----------------------------------------------------------------------------- 2123 // PerfData support 2124 PerfCounter * ObjectMonitor::_sync_ContendedLockAttempts = nullptr; 2125 PerfCounter * ObjectMonitor::_sync_FutileWakeups = nullptr; 2126 PerfCounter * ObjectMonitor::_sync_Parks = nullptr; 2127 PerfCounter * ObjectMonitor::_sync_Notifications = nullptr; 2128 PerfCounter * ObjectMonitor::_sync_Inflations = nullptr; 2129 PerfCounter * ObjectMonitor::_sync_Deflations = nullptr; 2130 PerfLongVariable * ObjectMonitor::_sync_MonExtant = nullptr; 2131 2132 // One-shot global initialization for the sync subsystem. 2133 // We could also defer initialization and initialize on-demand 2134 // the first time we call ObjectSynchronizer::inflate(). 2135 // Initialization would be protected - like so many things - by 2136 // the MonitorCache_lock. 2137 2138 void ObjectMonitor::Initialize() { 2139 assert(!InitDone, "invariant"); 2140 2141 if (!os::is_MP()) { 2142 Knob_SpinLimit = 0; 2143 Knob_PreSpin = 0; 2144 Knob_FixedSpin = -1; 2145 } 2146 2147 if (UsePerfData) { 2148 EXCEPTION_MARK; 2149 #define NEWPERFCOUNTER(n) \ 2150 { \ 2151 n = PerfDataManager::create_counter(SUN_RT, #n, PerfData::U_Events, \ 2152 CHECK); \ 2153 } 2154 #define NEWPERFVARIABLE(n) \ 2155 { \ 2156 n = PerfDataManager::create_variable(SUN_RT, #n, PerfData::U_Events, \ 2157 CHECK); \ 2158 } 2159 NEWPERFCOUNTER(_sync_Inflations); 2160 NEWPERFCOUNTER(_sync_Deflations); 2161 NEWPERFCOUNTER(_sync_ContendedLockAttempts); 2162 NEWPERFCOUNTER(_sync_FutileWakeups); 2163 NEWPERFCOUNTER(_sync_Parks); 2164 NEWPERFCOUNTER(_sync_Notifications); 2165 NEWPERFVARIABLE(_sync_MonExtant); 2166 #undef NEWPERFCOUNTER 2167 #undef NEWPERFVARIABLE 2168 } 2169 2170 _oop_storage = OopStorageSet::create_weak("ObjectSynchronizer Weak", mtSynchronizer); 2171 2172 DEBUG_ONLY(InitDone = true;) 2173 } 2174 2175 void ObjectMonitor::print_on(outputStream* st) const { 2176 // The minimal things to print for markWord printing, more can be added for debugging and logging. 2177 st->print("{contentions=0x%08x,waiters=0x%08x" 2178 ",recursions=" INTX_FORMAT ",owner=" INTPTR_FORMAT "}", 2179 contentions(), waiters(), recursions(), 2180 p2i(owner())); 2181 } 2182 void ObjectMonitor::print() const { print_on(tty); } 2183 2184 #ifdef ASSERT 2185 // Print the ObjectMonitor like a debugger would: 2186 // 2187 // (ObjectMonitor) 0x00007fdfb6012e40 = { 2188 // _header = 0x0000000000000001 2189 // _object = 0x000000070ff45fd0 2190 // _pad_buf0 = { 2191 // [0] = '\0' 2192 // ... 2193 // [43] = '\0' 2194 // } 2195 // _owner = 0x0000000000000000 2196 // _previous_owner_tid = 0 2197 // _pad_buf1 = { 2198 // [0] = '\0' 2199 // ... 2200 // [47] = '\0' 2201 // } 2202 // _next_om = 0x0000000000000000 2203 // _recursions = 0 2204 // _EntryList = 0x0000000000000000 2205 // _cxq = 0x0000000000000000 2206 // _succ = 0x0000000000000000 2207 // _Responsible = 0x0000000000000000 2208 // _SpinDuration = 5000 2209 // _contentions = 0 2210 // _WaitSet = 0x0000700009756248 2211 // _waiters = 1 2212 // _WaitSetLock = 0 2213 // } 2214 // 2215 void ObjectMonitor::print_debug_style_on(outputStream* st) const { 2216 st->print_cr("(ObjectMonitor*) " INTPTR_FORMAT " = {", p2i(this)); 2217 st->print_cr(" _header = " INTPTR_FORMAT, header().value()); 2218 st->print_cr(" _object = " INTPTR_FORMAT, p2i(object_peek())); 2219 st->print_cr(" _pad_buf0 = {"); 2220 st->print_cr(" [0] = '\\0'"); 2221 st->print_cr(" ..."); 2222 st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf0) - 1); 2223 st->print_cr(" }"); 2224 st->print_cr(" _owner = " INTPTR_FORMAT, p2i(owner_raw())); 2225 st->print_cr(" _previous_owner_tid = " UINT64_FORMAT, _previous_owner_tid); 2226 st->print_cr(" _pad_buf1 = {"); 2227 st->print_cr(" [0] = '\\0'"); 2228 st->print_cr(" ..."); 2229 st->print_cr(" [%d] = '\\0'", (int)sizeof(_pad_buf1) - 1); 2230 st->print_cr(" }"); 2231 st->print_cr(" _next_om = " INTPTR_FORMAT, p2i(next_om())); 2232 st->print_cr(" _recursions = " INTX_FORMAT, _recursions); 2233 st->print_cr(" _EntryList = " INTPTR_FORMAT, p2i(_EntryList)); 2234 st->print_cr(" _cxq = " INTPTR_FORMAT, p2i(_cxq)); 2235 st->print_cr(" _succ = " INTPTR_FORMAT, p2i(_succ)); 2236 st->print_cr(" _Responsible = " INTPTR_FORMAT, p2i(_Responsible)); 2237 st->print_cr(" _SpinDuration = %d", _SpinDuration); 2238 st->print_cr(" _contentions = %d", contentions()); 2239 st->print_cr(" _WaitSet = " INTPTR_FORMAT, p2i(_WaitSet)); 2240 st->print_cr(" _waiters = %d", _waiters); 2241 st->print_cr(" _WaitSetLock = %d", _WaitSetLock); 2242 st->print_cr("}"); 2243 } 2244 #endif --- EOF ---