1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoader.hpp" 27 #include "classfile/javaClasses.inline.hpp" 28 #include "classfile/stringTable.hpp" 29 #include "classfile/vmClasses.hpp" 30 #include "classfile/vmSymbols.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/compiledIC.hpp" 33 #include "code/nmethod.inline.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "code/vtableStubs.hpp" 36 #include "compiler/abstractCompiler.hpp" 37 #include "compiler/compileBroker.hpp" 38 #include "compiler/disassembler.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/collectedHeap.hpp" 41 #include "gc/shared/gcLocker.inline.hpp" 42 #include "interpreter/interpreter.hpp" 43 #include "interpreter/interpreterRuntime.hpp" 44 #include "jvm.h" 45 #include "jfr/jfrEvents.hpp" 46 #include "logging/log.hpp" 47 #include "memory/resourceArea.hpp" 48 #include "memory/universe.hpp" 49 #include "metaprogramming/primitiveConversions.hpp" 50 #include "oops/klass.hpp" 51 #include "oops/method.inline.hpp" 52 #include "oops/objArrayKlass.hpp" 53 #include "oops/oop.inline.hpp" 54 #include "prims/forte.hpp" 55 #include "prims/jvmtiExport.hpp" 56 #include "prims/jvmtiThreadState.hpp" 57 #include "prims/methodHandles.hpp" 58 #include "prims/nativeLookup.hpp" 59 #include "runtime/arguments.hpp" 60 #include "runtime/atomic.hpp" 61 #include "runtime/frame.inline.hpp" 62 #include "runtime/handles.inline.hpp" 63 #include "runtime/init.hpp" 64 #include "runtime/interfaceSupport.inline.hpp" 65 #include "runtime/java.hpp" 66 #include "runtime/javaCalls.hpp" 67 #include "runtime/jniHandles.inline.hpp" 68 #include "runtime/perfData.hpp" 69 #include "runtime/sharedRuntime.hpp" 70 #include "runtime/stackWatermarkSet.hpp" 71 #include "runtime/stubRoutines.hpp" 72 #include "runtime/synchronizer.hpp" 73 #include "runtime/vframe.inline.hpp" 74 #include "runtime/vframeArray.hpp" 75 #include "runtime/vm_version.hpp" 76 #include "utilities/copy.hpp" 77 #include "utilities/dtrace.hpp" 78 #include "utilities/events.hpp" 79 #include "utilities/resourceHash.hpp" 80 #include "utilities/macros.hpp" 81 #include "utilities/xmlstream.hpp" 82 #ifdef COMPILER1 83 #include "c1/c1_Runtime1.hpp" 84 #endif 85 #if INCLUDE_JFR 86 #include "jfr/jfr.hpp" 87 #endif 88 89 // Shared stub locations 90 RuntimeStub* SharedRuntime::_wrong_method_blob; 91 RuntimeStub* SharedRuntime::_wrong_method_abstract_blob; 92 RuntimeStub* SharedRuntime::_ic_miss_blob; 93 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; 94 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; 95 RuntimeStub* SharedRuntime::_resolve_static_call_blob; 96 address SharedRuntime::_resolve_static_call_entry; 97 98 DeoptimizationBlob* SharedRuntime::_deopt_blob; 99 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob; 100 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; 101 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; 102 103 #ifdef COMPILER2 104 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob; 105 #endif // COMPILER2 106 107 nmethod* SharedRuntime::_cont_doYield_stub; 108 109 //----------------------------generate_stubs----------------------------------- 110 void SharedRuntime::generate_stubs() { 111 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub"); 112 _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub"); 113 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub"); 114 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call"); 115 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call"); 116 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call"); 117 _resolve_static_call_entry = _resolve_static_call_blob->entry_point(); 118 119 AdapterHandlerLibrary::initialize(); 120 121 #if COMPILER2_OR_JVMCI 122 // Vectors are generated only by C2 and JVMCI. 123 bool support_wide = is_wide_vector(MaxVectorSize); 124 if (support_wide) { 125 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP); 126 } 127 #endif // COMPILER2_OR_JVMCI 128 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP); 129 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN); 130 131 generate_deopt_blob(); 132 133 #ifdef COMPILER2 134 generate_uncommon_trap_blob(); 135 #endif // COMPILER2 136 } 137 138 #include <math.h> 139 140 // Implementation of SharedRuntime 141 142 #ifndef PRODUCT 143 // For statistics 144 uint SharedRuntime::_ic_miss_ctr = 0; 145 uint SharedRuntime::_wrong_method_ctr = 0; 146 uint SharedRuntime::_resolve_static_ctr = 0; 147 uint SharedRuntime::_resolve_virtual_ctr = 0; 148 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 149 uint SharedRuntime::_implicit_null_throws = 0; 150 uint SharedRuntime::_implicit_div0_throws = 0; 151 152 int64_t SharedRuntime::_nof_normal_calls = 0; 153 int64_t SharedRuntime::_nof_inlined_calls = 0; 154 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 155 int64_t SharedRuntime::_nof_static_calls = 0; 156 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 157 int64_t SharedRuntime::_nof_interface_calls = 0; 158 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 159 160 uint SharedRuntime::_new_instance_ctr=0; 161 uint SharedRuntime::_new_array_ctr=0; 162 uint SharedRuntime::_multi2_ctr=0; 163 uint SharedRuntime::_multi3_ctr=0; 164 uint SharedRuntime::_multi4_ctr=0; 165 uint SharedRuntime::_multi5_ctr=0; 166 uint SharedRuntime::_mon_enter_stub_ctr=0; 167 uint SharedRuntime::_mon_exit_stub_ctr=0; 168 uint SharedRuntime::_mon_enter_ctr=0; 169 uint SharedRuntime::_mon_exit_ctr=0; 170 uint SharedRuntime::_partial_subtype_ctr=0; 171 uint SharedRuntime::_jbyte_array_copy_ctr=0; 172 uint SharedRuntime::_jshort_array_copy_ctr=0; 173 uint SharedRuntime::_jint_array_copy_ctr=0; 174 uint SharedRuntime::_jlong_array_copy_ctr=0; 175 uint SharedRuntime::_oop_array_copy_ctr=0; 176 uint SharedRuntime::_checkcast_array_copy_ctr=0; 177 uint SharedRuntime::_unsafe_array_copy_ctr=0; 178 uint SharedRuntime::_generic_array_copy_ctr=0; 179 uint SharedRuntime::_slow_array_copy_ctr=0; 180 uint SharedRuntime::_find_handler_ctr=0; 181 uint SharedRuntime::_rethrow_ctr=0; 182 uint SharedRuntime::_unsafe_set_memory_ctr=0; 183 184 int SharedRuntime::_ICmiss_index = 0; 185 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 186 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 187 188 189 void SharedRuntime::trace_ic_miss(address at) { 190 for (int i = 0; i < _ICmiss_index; i++) { 191 if (_ICmiss_at[i] == at) { 192 _ICmiss_count[i]++; 193 return; 194 } 195 } 196 int index = _ICmiss_index++; 197 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 198 _ICmiss_at[index] = at; 199 _ICmiss_count[index] = 1; 200 } 201 202 void SharedRuntime::print_ic_miss_histogram() { 203 if (ICMissHistogram) { 204 tty->print_cr("IC Miss Histogram:"); 205 int tot_misses = 0; 206 for (int i = 0; i < _ICmiss_index; i++) { 207 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 208 tot_misses += _ICmiss_count[i]; 209 } 210 tty->print_cr("Total IC misses: %7d", tot_misses); 211 } 212 } 213 #endif // PRODUCT 214 215 216 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 217 return x * y; 218 JRT_END 219 220 221 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 222 if (x == min_jlong && y == CONST64(-1)) { 223 return x; 224 } else { 225 return x / y; 226 } 227 JRT_END 228 229 230 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 231 if (x == min_jlong && y == CONST64(-1)) { 232 return 0; 233 } else { 234 return x % y; 235 } 236 JRT_END 237 238 239 #ifdef _WIN64 240 const juint float_sign_mask = 0x7FFFFFFF; 241 const juint float_infinity = 0x7F800000; 242 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 243 const julong double_infinity = CONST64(0x7FF0000000000000); 244 #endif 245 246 #if !defined(X86) 247 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 248 #ifdef _WIN64 249 // 64-bit Windows on amd64 returns the wrong values for 250 // infinity operands. 251 juint xbits = PrimitiveConversions::cast<juint>(x); 252 juint ybits = PrimitiveConversions::cast<juint>(y); 253 // x Mod Infinity == x unless x is infinity 254 if (((xbits & float_sign_mask) != float_infinity) && 255 ((ybits & float_sign_mask) == float_infinity) ) { 256 return x; 257 } 258 return ((jfloat)fmod_winx64((double)x, (double)y)); 259 #else 260 return ((jfloat)fmod((double)x,(double)y)); 261 #endif 262 JRT_END 263 264 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 265 #ifdef _WIN64 266 julong xbits = PrimitiveConversions::cast<julong>(x); 267 julong ybits = PrimitiveConversions::cast<julong>(y); 268 // x Mod Infinity == x unless x is infinity 269 if (((xbits & double_sign_mask) != double_infinity) && 270 ((ybits & double_sign_mask) == double_infinity) ) { 271 return x; 272 } 273 return ((jdouble)fmod_winx64((double)x, (double)y)); 274 #else 275 return ((jdouble)fmod((double)x,(double)y)); 276 #endif 277 JRT_END 278 #endif // !X86 279 280 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 281 return (jfloat)x; 282 JRT_END 283 284 #ifdef __SOFTFP__ 285 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 286 return x + y; 287 JRT_END 288 289 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 290 return x - y; 291 JRT_END 292 293 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 294 return x * y; 295 JRT_END 296 297 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 298 return x / y; 299 JRT_END 300 301 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 302 return x + y; 303 JRT_END 304 305 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 306 return x - y; 307 JRT_END 308 309 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 310 return x * y; 311 JRT_END 312 313 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 314 return x / y; 315 JRT_END 316 317 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 318 return (jdouble)x; 319 JRT_END 320 321 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 322 return (jdouble)x; 323 JRT_END 324 325 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 326 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 327 JRT_END 328 329 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 330 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 331 JRT_END 332 333 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 334 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 335 JRT_END 336 337 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 338 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 339 JRT_END 340 341 // Functions to return the opposite of the aeabi functions for nan. 342 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 343 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 344 JRT_END 345 346 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 347 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 348 JRT_END 349 350 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 351 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 352 JRT_END 353 354 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 355 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 356 JRT_END 357 358 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 359 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 360 JRT_END 361 362 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 363 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 364 JRT_END 365 366 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 367 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 368 JRT_END 369 370 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 371 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 372 JRT_END 373 374 // Intrinsics make gcc generate code for these. 375 float SharedRuntime::fneg(float f) { 376 return -f; 377 } 378 379 double SharedRuntime::dneg(double f) { 380 return -f; 381 } 382 383 #endif // __SOFTFP__ 384 385 #if defined(__SOFTFP__) || defined(E500V2) 386 // Intrinsics make gcc generate code for these. 387 double SharedRuntime::dabs(double f) { 388 return (f <= (double)0.0) ? (double)0.0 - f : f; 389 } 390 391 #endif 392 393 #if defined(__SOFTFP__) || defined(PPC) 394 double SharedRuntime::dsqrt(double f) { 395 return sqrt(f); 396 } 397 #endif 398 399 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 400 if (g_isnan(x)) 401 return 0; 402 if (x >= (jfloat) max_jint) 403 return max_jint; 404 if (x <= (jfloat) min_jint) 405 return min_jint; 406 return (jint) x; 407 JRT_END 408 409 410 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 411 if (g_isnan(x)) 412 return 0; 413 if (x >= (jfloat) max_jlong) 414 return max_jlong; 415 if (x <= (jfloat) min_jlong) 416 return min_jlong; 417 return (jlong) x; 418 JRT_END 419 420 421 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 422 if (g_isnan(x)) 423 return 0; 424 if (x >= (jdouble) max_jint) 425 return max_jint; 426 if (x <= (jdouble) min_jint) 427 return min_jint; 428 return (jint) x; 429 JRT_END 430 431 432 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 433 if (g_isnan(x)) 434 return 0; 435 if (x >= (jdouble) max_jlong) 436 return max_jlong; 437 if (x <= (jdouble) min_jlong) 438 return min_jlong; 439 return (jlong) x; 440 JRT_END 441 442 443 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 444 return (jfloat)x; 445 JRT_END 446 447 448 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 449 return (jfloat)x; 450 JRT_END 451 452 453 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 454 return (jdouble)x; 455 JRT_END 456 457 458 // Exception handling across interpreter/compiler boundaries 459 // 460 // exception_handler_for_return_address(...) returns the continuation address. 461 // The continuation address is the entry point of the exception handler of the 462 // previous frame depending on the return address. 463 464 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 465 // Note: This is called when we have unwound the frame of the callee that did 466 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 467 // Notably, the stack is not walkable at this point, and hence the check must 468 // be deferred until later. Specifically, any of the handlers returned here in 469 // this function, will get dispatched to, and call deferred checks to 470 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 471 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 472 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 473 474 // Reset method handle flag. 475 current->set_is_method_handle_return(false); 476 477 #if INCLUDE_JVMCI 478 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 479 // and other exception handler continuations do not read it 480 current->set_exception_pc(nullptr); 481 #endif // INCLUDE_JVMCI 482 483 if (Continuation::is_return_barrier_entry(return_address)) { 484 return StubRoutines::cont_returnBarrierExc(); 485 } 486 487 // The fastest case first 488 CodeBlob* blob = CodeCache::find_blob(return_address); 489 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 490 if (nm != nullptr) { 491 // Set flag if return address is a method handle call site. 492 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 493 // native nmethods don't have exception handlers 494 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 495 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 496 if (nm->is_deopt_pc(return_address)) { 497 // If we come here because of a stack overflow, the stack may be 498 // unguarded. Reguard the stack otherwise if we return to the 499 // deopt blob and the stack bang causes a stack overflow we 500 // crash. 501 StackOverflow* overflow_state = current->stack_overflow_state(); 502 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 503 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 504 overflow_state->set_reserved_stack_activation(current->stack_base()); 505 } 506 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 507 // The deferred StackWatermarkSet::after_unwind check will be performed in 508 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 509 return SharedRuntime::deopt_blob()->unpack_with_exception(); 510 } else { 511 // The deferred StackWatermarkSet::after_unwind check will be performed in 512 // * OptoRuntime::handle_exception_C_helper for C2 code 513 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 514 return nm->exception_begin(); 515 } 516 } 517 518 // Entry code 519 if (StubRoutines::returns_to_call_stub(return_address)) { 520 // The deferred StackWatermarkSet::after_unwind check will be performed in 521 // JavaCallWrapper::~JavaCallWrapper 522 return StubRoutines::catch_exception_entry(); 523 } 524 if (blob != nullptr && blob->is_upcall_stub()) { 525 return StubRoutines::upcall_stub_exception_handler(); 526 } 527 // Interpreted code 528 if (Interpreter::contains(return_address)) { 529 // The deferred StackWatermarkSet::after_unwind check will be performed in 530 // InterpreterRuntime::exception_handler_for_exception 531 return Interpreter::rethrow_exception_entry(); 532 } 533 534 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 535 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 536 537 #ifndef PRODUCT 538 { ResourceMark rm; 539 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 540 os::print_location(tty, (intptr_t)return_address); 541 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 542 tty->print_cr("b) other problem"); 543 } 544 #endif // PRODUCT 545 ShouldNotReachHere(); 546 return nullptr; 547 } 548 549 550 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 551 return raw_exception_handler_for_return_address(current, return_address); 552 JRT_END 553 554 555 address SharedRuntime::get_poll_stub(address pc) { 556 address stub; 557 // Look up the code blob 558 CodeBlob *cb = CodeCache::find_blob(pc); 559 560 // Should be an nmethod 561 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 562 563 // Look up the relocation information 564 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 565 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 566 567 #ifdef ASSERT 568 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 569 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 570 Disassembler::decode(cb); 571 fatal("Only polling locations are used for safepoint"); 572 } 573 #endif 574 575 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 576 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 577 if (at_poll_return) { 578 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 579 "polling page return stub not created yet"); 580 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 581 } else if (has_wide_vectors) { 582 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 583 "polling page vectors safepoint stub not created yet"); 584 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 585 } else { 586 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 587 "polling page safepoint stub not created yet"); 588 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 589 } 590 log_debug(safepoint)("... found polling page %s exception at pc = " 591 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 592 at_poll_return ? "return" : "loop", 593 (intptr_t)pc, (intptr_t)stub); 594 return stub; 595 } 596 597 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 598 if (JvmtiExport::can_post_on_exceptions()) { 599 vframeStream vfst(current, true); 600 methodHandle method = methodHandle(current, vfst.method()); 601 address bcp = method()->bcp_from(vfst.bci()); 602 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 603 } 604 605 #if INCLUDE_JVMCI 606 if (EnableJVMCI && UseJVMCICompiler) { 607 vframeStream vfst(current, true); 608 methodHandle method = methodHandle(current, vfst.method()); 609 int bci = vfst.bci(); 610 MethodData* trap_mdo = method->method_data(); 611 if (trap_mdo != nullptr) { 612 // Set exception_seen if the exceptional bytecode is an invoke 613 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 614 if (call.is_valid()) { 615 ResourceMark rm(current); 616 617 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 618 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 619 620 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 621 if (pdata != nullptr && pdata->is_BitData()) { 622 BitData* bit_data = (BitData*) pdata; 623 bit_data->set_exception_seen(); 624 } 625 } 626 } 627 } 628 #endif 629 630 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 631 } 632 633 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 634 Handle h_exception = Exceptions::new_exception(current, name, message); 635 throw_and_post_jvmti_exception(current, h_exception); 636 } 637 638 #if INCLUDE_JVMTI 639 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 640 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 641 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 642 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 643 JNIHandles::destroy_local(vthread); 644 JRT_END 645 646 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 647 assert(hide == JNI_TRUE, "must be VTMS transition start"); 648 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 649 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 650 JNIHandles::destroy_local(vthread); 651 JRT_END 652 653 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 654 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 655 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 656 JNIHandles::destroy_local(vthread); 657 JRT_END 658 659 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 660 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 661 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 662 JNIHandles::destroy_local(vthread); 663 JRT_END 664 #endif // INCLUDE_JVMTI 665 666 // The interpreter code to call this tracing function is only 667 // called/generated when UL is on for redefine, class and has the right level 668 // and tags. Since obsolete methods are never compiled, we don't have 669 // to modify the compilers to generate calls to this function. 670 // 671 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 672 JavaThread* thread, Method* method)) 673 if (method->is_obsolete()) { 674 // We are calling an obsolete method, but this is not necessarily 675 // an error. Our method could have been redefined just after we 676 // fetched the Method* from the constant pool. 677 ResourceMark rm; 678 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 679 } 680 return 0; 681 JRT_END 682 683 // ret_pc points into caller; we are returning caller's exception handler 684 // for given exception 685 // Note that the implementation of this method assumes it's only called when an exception has actually occured 686 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 687 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 688 assert(nm != nullptr, "must exist"); 689 ResourceMark rm; 690 691 #if INCLUDE_JVMCI 692 if (nm->is_compiled_by_jvmci()) { 693 // lookup exception handler for this pc 694 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 695 ExceptionHandlerTable table(nm); 696 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 697 if (t != nullptr) { 698 return nm->code_begin() + t->pco(); 699 } else { 700 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 701 } 702 } 703 #endif // INCLUDE_JVMCI 704 705 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 706 // determine handler bci, if any 707 EXCEPTION_MARK; 708 709 int handler_bci = -1; 710 int scope_depth = 0; 711 if (!force_unwind) { 712 int bci = sd->bci(); 713 bool recursive_exception = false; 714 do { 715 bool skip_scope_increment = false; 716 // exception handler lookup 717 Klass* ek = exception->klass(); 718 methodHandle mh(THREAD, sd->method()); 719 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 720 if (HAS_PENDING_EXCEPTION) { 721 recursive_exception = true; 722 // We threw an exception while trying to find the exception handler. 723 // Transfer the new exception to the exception handle which will 724 // be set into thread local storage, and do another lookup for an 725 // exception handler for this exception, this time starting at the 726 // BCI of the exception handler which caused the exception to be 727 // thrown (bugs 4307310 and 4546590). Set "exception" reference 728 // argument to ensure that the correct exception is thrown (4870175). 729 recursive_exception_occurred = true; 730 exception = Handle(THREAD, PENDING_EXCEPTION); 731 CLEAR_PENDING_EXCEPTION; 732 if (handler_bci >= 0) { 733 bci = handler_bci; 734 handler_bci = -1; 735 skip_scope_increment = true; 736 } 737 } 738 else { 739 recursive_exception = false; 740 } 741 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 742 sd = sd->sender(); 743 if (sd != nullptr) { 744 bci = sd->bci(); 745 } 746 ++scope_depth; 747 } 748 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 749 } 750 751 // found handling method => lookup exception handler 752 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 753 754 ExceptionHandlerTable table(nm); 755 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 756 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 757 // Allow abbreviated catch tables. The idea is to allow a method 758 // to materialize its exceptions without committing to the exact 759 // routing of exceptions. In particular this is needed for adding 760 // a synthetic handler to unlock monitors when inlining 761 // synchronized methods since the unlock path isn't represented in 762 // the bytecodes. 763 t = table.entry_for(catch_pco, -1, 0); 764 } 765 766 #ifdef COMPILER1 767 if (t == nullptr && nm->is_compiled_by_c1()) { 768 assert(nm->unwind_handler_begin() != nullptr, ""); 769 return nm->unwind_handler_begin(); 770 } 771 #endif 772 773 if (t == nullptr) { 774 ttyLocker ttyl; 775 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 776 tty->print_cr(" Exception:"); 777 exception->print(); 778 tty->cr(); 779 tty->print_cr(" Compiled exception table :"); 780 table.print(); 781 nm->print(); 782 nm->print_code(); 783 guarantee(false, "missing exception handler"); 784 return nullptr; 785 } 786 787 if (handler_bci != -1) { // did we find a handler in this method? 788 sd->method()->set_exception_handler_entered(handler_bci); // profile 789 } 790 return nm->code_begin() + t->pco(); 791 } 792 793 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 794 // These errors occur only at call sites 795 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 796 JRT_END 797 798 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 799 // These errors occur only at call sites 800 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 801 JRT_END 802 803 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 804 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 805 JRT_END 806 807 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 808 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 809 JRT_END 810 811 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 812 // This entry point is effectively only used for NullPointerExceptions which occur at inline 813 // cache sites (when the callee activation is not yet set up) so we are at a call site 814 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 815 JRT_END 816 817 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 818 throw_StackOverflowError_common(current, false); 819 JRT_END 820 821 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 822 throw_StackOverflowError_common(current, true); 823 JRT_END 824 825 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 826 // We avoid using the normal exception construction in this case because 827 // it performs an upcall to Java, and we're already out of stack space. 828 JavaThread* THREAD = current; // For exception macros. 829 Klass* k = vmClasses::StackOverflowError_klass(); 830 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 831 if (delayed) { 832 java_lang_Throwable::set_message(exception_oop, 833 Universe::delayed_stack_overflow_error_message()); 834 } 835 Handle exception (current, exception_oop); 836 if (StackTraceInThrowable) { 837 java_lang_Throwable::fill_in_stack_trace(exception); 838 } 839 // Remove the ScopedValue bindings in case we got a 840 // StackOverflowError while we were trying to remove ScopedValue 841 // bindings. 842 current->clear_scopedValueBindings(); 843 // Increment counter for hs_err file reporting 844 Atomic::inc(&Exceptions::_stack_overflow_errors); 845 throw_and_post_jvmti_exception(current, exception); 846 } 847 848 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 849 address pc, 850 ImplicitExceptionKind exception_kind) 851 { 852 address target_pc = nullptr; 853 854 if (Interpreter::contains(pc)) { 855 switch (exception_kind) { 856 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 857 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 858 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 859 default: ShouldNotReachHere(); 860 } 861 } else { 862 switch (exception_kind) { 863 case STACK_OVERFLOW: { 864 // Stack overflow only occurs upon frame setup; the callee is 865 // going to be unwound. Dispatch to a shared runtime stub 866 // which will cause the StackOverflowError to be fabricated 867 // and processed. 868 // Stack overflow should never occur during deoptimization: 869 // the compiled method bangs the stack by as much as the 870 // interpreter would need in case of a deoptimization. The 871 // deoptimization blob and uncommon trap blob bang the stack 872 // in a debug VM to verify the correctness of the compiled 873 // method stack banging. 874 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 875 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 876 return StubRoutines::throw_StackOverflowError_entry(); 877 } 878 879 case IMPLICIT_NULL: { 880 if (VtableStubs::contains(pc)) { 881 // We haven't yet entered the callee frame. Fabricate an 882 // exception and begin dispatching it in the caller. Since 883 // the caller was at a call site, it's safe to destroy all 884 // caller-saved registers, as these entry points do. 885 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 886 887 // If vt_stub is null, then return null to signal handler to report the SEGV error. 888 if (vt_stub == nullptr) return nullptr; 889 890 if (vt_stub->is_abstract_method_error(pc)) { 891 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 892 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 893 // Instead of throwing the abstract method error here directly, we re-resolve 894 // and will throw the AbstractMethodError during resolve. As a result, we'll 895 // get a more detailed error message. 896 return SharedRuntime::get_handle_wrong_method_stub(); 897 } else { 898 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 899 // Assert that the signal comes from the expected location in stub code. 900 assert(vt_stub->is_null_pointer_exception(pc), 901 "obtained signal from unexpected location in stub code"); 902 return StubRoutines::throw_NullPointerException_at_call_entry(); 903 } 904 } else { 905 CodeBlob* cb = CodeCache::find_blob(pc); 906 907 // If code blob is null, then return null to signal handler to report the SEGV error. 908 if (cb == nullptr) return nullptr; 909 910 // Exception happened in CodeCache. Must be either: 911 // 1. Inline-cache check in C2I handler blob, 912 // 2. Inline-cache check in nmethod, or 913 // 3. Implicit null exception in nmethod 914 915 if (!cb->is_nmethod()) { 916 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 917 if (!is_in_blob) { 918 // Allow normal crash reporting to handle this 919 return nullptr; 920 } 921 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 922 // There is no handler here, so we will simply unwind. 923 return StubRoutines::throw_NullPointerException_at_call_entry(); 924 } 925 926 // Otherwise, it's a compiled method. Consult its exception handlers. 927 nmethod* nm = cb->as_nmethod(); 928 if (nm->inlinecache_check_contains(pc)) { 929 // exception happened inside inline-cache check code 930 // => the nmethod is not yet active (i.e., the frame 931 // is not set up yet) => use return address pushed by 932 // caller => don't push another return address 933 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 934 return StubRoutines::throw_NullPointerException_at_call_entry(); 935 } 936 937 if (nm->method()->is_method_handle_intrinsic()) { 938 // exception happened inside MH dispatch code, similar to a vtable stub 939 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 940 return StubRoutines::throw_NullPointerException_at_call_entry(); 941 } 942 943 #ifndef PRODUCT 944 _implicit_null_throws++; 945 #endif 946 target_pc = nm->continuation_for_implicit_null_exception(pc); 947 // If there's an unexpected fault, target_pc might be null, 948 // in which case we want to fall through into the normal 949 // error handling code. 950 } 951 952 break; // fall through 953 } 954 955 956 case IMPLICIT_DIVIDE_BY_ZERO: { 957 nmethod* nm = CodeCache::find_nmethod(pc); 958 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 959 #ifndef PRODUCT 960 _implicit_div0_throws++; 961 #endif 962 target_pc = nm->continuation_for_implicit_div0_exception(pc); 963 // If there's an unexpected fault, target_pc might be null, 964 // in which case we want to fall through into the normal 965 // error handling code. 966 break; // fall through 967 } 968 969 default: ShouldNotReachHere(); 970 } 971 972 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 973 974 if (exception_kind == IMPLICIT_NULL) { 975 #ifndef PRODUCT 976 // for AbortVMOnException flag 977 Exceptions::debug_check_abort("java.lang.NullPointerException"); 978 #endif //PRODUCT 979 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 980 } else { 981 #ifndef PRODUCT 982 // for AbortVMOnException flag 983 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 984 #endif //PRODUCT 985 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 986 } 987 return target_pc; 988 } 989 990 ShouldNotReachHere(); 991 return nullptr; 992 } 993 994 995 /** 996 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 997 * installed in the native function entry of all native Java methods before 998 * they get linked to their actual native methods. 999 * 1000 * \note 1001 * This method actually never gets called! The reason is because 1002 * the interpreter's native entries call NativeLookup::lookup() which 1003 * throws the exception when the lookup fails. The exception is then 1004 * caught and forwarded on the return from NativeLookup::lookup() call 1005 * before the call to the native function. This might change in the future. 1006 */ 1007 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1008 { 1009 // We return a bad value here to make sure that the exception is 1010 // forwarded before we look at the return value. 1011 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1012 } 1013 JNI_END 1014 1015 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1016 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1017 } 1018 1019 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1020 #if INCLUDE_JVMCI 1021 if (!obj->klass()->has_finalizer()) { 1022 return; 1023 } 1024 #endif // INCLUDE_JVMCI 1025 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1026 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1027 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1028 JRT_END 1029 1030 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1031 assert(thread != nullptr, "No thread"); 1032 if (thread == nullptr) { 1033 return 0; 1034 } 1035 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1036 "current cannot touch oops after its GC barrier is detached."); 1037 oop obj = thread->threadObj(); 1038 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1039 } 1040 1041 /** 1042 * This function ought to be a void function, but cannot be because 1043 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1044 * 6254741. Once that is fixed we can remove the dummy return value. 1045 */ 1046 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1047 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1048 } 1049 1050 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1051 return dtrace_object_alloc(thread, o, o->size()); 1052 } 1053 1054 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1055 assert(DTraceAllocProbes, "wrong call"); 1056 Klass* klass = o->klass(); 1057 Symbol* name = klass->name(); 1058 HOTSPOT_OBJECT_ALLOC( 1059 get_java_tid(thread), 1060 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1061 return 0; 1062 } 1063 1064 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1065 JavaThread* current, Method* method)) 1066 assert(current == JavaThread::current(), "pre-condition"); 1067 1068 assert(DTraceMethodProbes, "wrong call"); 1069 Symbol* kname = method->klass_name(); 1070 Symbol* name = method->name(); 1071 Symbol* sig = method->signature(); 1072 HOTSPOT_METHOD_ENTRY( 1073 get_java_tid(current), 1074 (char *) kname->bytes(), kname->utf8_length(), 1075 (char *) name->bytes(), name->utf8_length(), 1076 (char *) sig->bytes(), sig->utf8_length()); 1077 return 0; 1078 JRT_END 1079 1080 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1081 JavaThread* current, Method* method)) 1082 assert(current == JavaThread::current(), "pre-condition"); 1083 assert(DTraceMethodProbes, "wrong call"); 1084 Symbol* kname = method->klass_name(); 1085 Symbol* name = method->name(); 1086 Symbol* sig = method->signature(); 1087 HOTSPOT_METHOD_RETURN( 1088 get_java_tid(current), 1089 (char *) kname->bytes(), kname->utf8_length(), 1090 (char *) name->bytes(), name->utf8_length(), 1091 (char *) sig->bytes(), sig->utf8_length()); 1092 return 0; 1093 JRT_END 1094 1095 1096 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1097 // for a call current in progress, i.e., arguments has been pushed on stack 1098 // put callee has not been invoked yet. Used by: resolve virtual/static, 1099 // vtable updates, etc. Caller frame must be compiled. 1100 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1101 JavaThread* current = THREAD; 1102 ResourceMark rm(current); 1103 1104 // last java frame on stack (which includes native call frames) 1105 vframeStream vfst(current, true); // Do not skip and javaCalls 1106 1107 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1108 } 1109 1110 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1111 nmethod* caller = vfst.nm(); 1112 1113 address pc = vfst.frame_pc(); 1114 { // Get call instruction under lock because another thread may be busy patching it. 1115 CompiledICLocker ic_locker(caller); 1116 return caller->attached_method_before_pc(pc); 1117 } 1118 return nullptr; 1119 } 1120 1121 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1122 // for a call current in progress, i.e., arguments has been pushed on stack 1123 // but callee has not been invoked yet. Caller frame must be compiled. 1124 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1125 CallInfo& callinfo, TRAPS) { 1126 Handle receiver; 1127 Handle nullHandle; // create a handy null handle for exception returns 1128 JavaThread* current = THREAD; 1129 1130 assert(!vfst.at_end(), "Java frame must exist"); 1131 1132 // Find caller and bci from vframe 1133 methodHandle caller(current, vfst.method()); 1134 int bci = vfst.bci(); 1135 1136 if (caller->is_continuation_enter_intrinsic()) { 1137 bc = Bytecodes::_invokestatic; 1138 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1139 return receiver; 1140 } 1141 1142 Bytecode_invoke bytecode(caller, bci); 1143 int bytecode_index = bytecode.index(); 1144 bc = bytecode.invoke_code(); 1145 1146 methodHandle attached_method(current, extract_attached_method(vfst)); 1147 if (attached_method.not_null()) { 1148 Method* callee = bytecode.static_target(CHECK_NH); 1149 vmIntrinsics::ID id = callee->intrinsic_id(); 1150 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1151 // it attaches statically resolved method to the call site. 1152 if (MethodHandles::is_signature_polymorphic(id) && 1153 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1154 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1155 1156 // Adjust invocation mode according to the attached method. 1157 switch (bc) { 1158 case Bytecodes::_invokevirtual: 1159 if (attached_method->method_holder()->is_interface()) { 1160 bc = Bytecodes::_invokeinterface; 1161 } 1162 break; 1163 case Bytecodes::_invokeinterface: 1164 if (!attached_method->method_holder()->is_interface()) { 1165 bc = Bytecodes::_invokevirtual; 1166 } 1167 break; 1168 case Bytecodes::_invokehandle: 1169 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1170 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1171 : Bytecodes::_invokevirtual; 1172 } 1173 break; 1174 default: 1175 break; 1176 } 1177 } 1178 } 1179 1180 assert(bc != Bytecodes::_illegal, "not initialized"); 1181 1182 bool has_receiver = bc != Bytecodes::_invokestatic && 1183 bc != Bytecodes::_invokedynamic && 1184 bc != Bytecodes::_invokehandle; 1185 1186 // Find receiver for non-static call 1187 if (has_receiver) { 1188 // This register map must be update since we need to find the receiver for 1189 // compiled frames. The receiver might be in a register. 1190 RegisterMap reg_map2(current, 1191 RegisterMap::UpdateMap::include, 1192 RegisterMap::ProcessFrames::include, 1193 RegisterMap::WalkContinuation::skip); 1194 frame stubFrame = current->last_frame(); 1195 // Caller-frame is a compiled frame 1196 frame callerFrame = stubFrame.sender(®_map2); 1197 1198 if (attached_method.is_null()) { 1199 Method* callee = bytecode.static_target(CHECK_NH); 1200 if (callee == nullptr) { 1201 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1202 } 1203 } 1204 1205 // Retrieve from a compiled argument list 1206 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1207 assert(oopDesc::is_oop_or_null(receiver()), ""); 1208 1209 if (receiver.is_null()) { 1210 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1211 } 1212 } 1213 1214 // Resolve method 1215 if (attached_method.not_null()) { 1216 // Parameterized by attached method. 1217 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1218 } else { 1219 // Parameterized by bytecode. 1220 constantPoolHandle constants(current, caller->constants()); 1221 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1222 } 1223 1224 #ifdef ASSERT 1225 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1226 if (has_receiver) { 1227 assert(receiver.not_null(), "should have thrown exception"); 1228 Klass* receiver_klass = receiver->klass(); 1229 Klass* rk = nullptr; 1230 if (attached_method.not_null()) { 1231 // In case there's resolved method attached, use its holder during the check. 1232 rk = attached_method->method_holder(); 1233 } else { 1234 // Klass is already loaded. 1235 constantPoolHandle constants(current, caller->constants()); 1236 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1237 } 1238 Klass* static_receiver_klass = rk; 1239 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1240 "actual receiver must be subclass of static receiver klass"); 1241 if (receiver_klass->is_instance_klass()) { 1242 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1243 tty->print_cr("ERROR: Klass not yet initialized!!"); 1244 receiver_klass->print(); 1245 } 1246 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1247 } 1248 } 1249 #endif 1250 1251 return receiver; 1252 } 1253 1254 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1255 JavaThread* current = THREAD; 1256 ResourceMark rm(current); 1257 // We need first to check if any Java activations (compiled, interpreted) 1258 // exist on the stack since last JavaCall. If not, we need 1259 // to get the target method from the JavaCall wrapper. 1260 vframeStream vfst(current, true); // Do not skip any javaCalls 1261 methodHandle callee_method; 1262 if (vfst.at_end()) { 1263 // No Java frames were found on stack since we did the JavaCall. 1264 // Hence the stack can only contain an entry_frame. We need to 1265 // find the target method from the stub frame. 1266 RegisterMap reg_map(current, 1267 RegisterMap::UpdateMap::skip, 1268 RegisterMap::ProcessFrames::include, 1269 RegisterMap::WalkContinuation::skip); 1270 frame fr = current->last_frame(); 1271 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1272 fr = fr.sender(®_map); 1273 assert(fr.is_entry_frame(), "must be"); 1274 // fr is now pointing to the entry frame. 1275 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1276 } else { 1277 Bytecodes::Code bc; 1278 CallInfo callinfo; 1279 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1280 callee_method = methodHandle(current, callinfo.selected_method()); 1281 } 1282 assert(callee_method()->is_method(), "must be"); 1283 return callee_method; 1284 } 1285 1286 // Resolves a call. 1287 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1288 JavaThread* current = THREAD; 1289 ResourceMark rm(current); 1290 RegisterMap cbl_map(current, 1291 RegisterMap::UpdateMap::skip, 1292 RegisterMap::ProcessFrames::include, 1293 RegisterMap::WalkContinuation::skip); 1294 frame caller_frame = current->last_frame().sender(&cbl_map); 1295 1296 CodeBlob* caller_cb = caller_frame.cb(); 1297 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1298 nmethod* caller_nm = caller_cb->as_nmethod(); 1299 1300 // determine call info & receiver 1301 // note: a) receiver is null for static calls 1302 // b) an exception is thrown if receiver is null for non-static calls 1303 CallInfo call_info; 1304 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1305 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1306 1307 NoSafepointVerifier nsv; 1308 1309 methodHandle callee_method(current, call_info.selected_method()); 1310 1311 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1312 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1313 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1314 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1315 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1316 1317 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1318 1319 #ifndef PRODUCT 1320 // tracing/debugging/statistics 1321 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1322 (is_virtual) ? (&_resolve_virtual_ctr) : 1323 (&_resolve_static_ctr); 1324 Atomic::inc(addr); 1325 1326 if (TraceCallFixup) { 1327 ResourceMark rm(current); 1328 tty->print("resolving %s%s (%s) call to", 1329 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1330 Bytecodes::name(invoke_code)); 1331 callee_method->print_short_name(tty); 1332 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1333 p2i(caller_frame.pc()), p2i(callee_method->code())); 1334 } 1335 #endif 1336 1337 if (invoke_code == Bytecodes::_invokestatic) { 1338 assert(callee_method->method_holder()->is_initialized() || 1339 callee_method->method_holder()->is_init_thread(current), 1340 "invalid class initialization state for invoke_static"); 1341 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1342 // In order to keep class initialization check, do not patch call 1343 // site for static call when the class is not fully initialized. 1344 // Proper check is enforced by call site re-resolution on every invocation. 1345 // 1346 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1347 // explicit class initialization check is put in nmethod entry (VEP). 1348 assert(callee_method->method_holder()->is_linked(), "must be"); 1349 return callee_method; 1350 } 1351 } 1352 1353 1354 // JSR 292 key invariant: 1355 // If the resolved method is a MethodHandle invoke target, the call 1356 // site must be a MethodHandle call site, because the lambda form might tail-call 1357 // leaving the stack in a state unknown to either caller or callee 1358 1359 // Compute entry points. The computation of the entry points is independent of 1360 // patching the call. 1361 1362 // Make sure the callee nmethod does not get deoptimized and removed before 1363 // we are done patching the code. 1364 1365 1366 CompiledICLocker ml(caller_nm); 1367 if (is_virtual && !is_optimized) { 1368 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1369 inline_cache->update(&call_info, receiver->klass()); 1370 } else { 1371 // Callsite is a direct call - set it to the destination method 1372 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1373 callsite->set(callee_method); 1374 } 1375 1376 return callee_method; 1377 } 1378 1379 // Inline caches exist only in compiled code 1380 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1381 #ifdef ASSERT 1382 RegisterMap reg_map(current, 1383 RegisterMap::UpdateMap::skip, 1384 RegisterMap::ProcessFrames::include, 1385 RegisterMap::WalkContinuation::skip); 1386 frame stub_frame = current->last_frame(); 1387 assert(stub_frame.is_runtime_frame(), "sanity check"); 1388 frame caller_frame = stub_frame.sender(®_map); 1389 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1390 #endif /* ASSERT */ 1391 1392 methodHandle callee_method; 1393 JRT_BLOCK 1394 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1395 // Return Method* through TLS 1396 current->set_vm_result_2(callee_method()); 1397 JRT_BLOCK_END 1398 // return compiled code entry point after potential safepoints 1399 return get_resolved_entry(current, callee_method); 1400 JRT_END 1401 1402 1403 // Handle call site that has been made non-entrant 1404 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1405 // 6243940 We might end up in here if the callee is deoptimized 1406 // as we race to call it. We don't want to take a safepoint if 1407 // the caller was interpreted because the caller frame will look 1408 // interpreted to the stack walkers and arguments are now 1409 // "compiled" so it is much better to make this transition 1410 // invisible to the stack walking code. The i2c path will 1411 // place the callee method in the callee_target. It is stashed 1412 // there because if we try and find the callee by normal means a 1413 // safepoint is possible and have trouble gc'ing the compiled args. 1414 RegisterMap reg_map(current, 1415 RegisterMap::UpdateMap::skip, 1416 RegisterMap::ProcessFrames::include, 1417 RegisterMap::WalkContinuation::skip); 1418 frame stub_frame = current->last_frame(); 1419 assert(stub_frame.is_runtime_frame(), "sanity check"); 1420 frame caller_frame = stub_frame.sender(®_map); 1421 1422 if (caller_frame.is_interpreted_frame() || 1423 caller_frame.is_entry_frame() || 1424 caller_frame.is_upcall_stub_frame()) { 1425 Method* callee = current->callee_target(); 1426 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1427 current->set_vm_result_2(callee); 1428 current->set_callee_target(nullptr); 1429 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1430 // Bypass class initialization checks in c2i when caller is in native. 1431 // JNI calls to static methods don't have class initialization checks. 1432 // Fast class initialization checks are present in c2i adapters and call into 1433 // SharedRuntime::handle_wrong_method() on the slow path. 1434 // 1435 // JVM upcalls may land here as well, but there's a proper check present in 1436 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1437 // so bypassing it in c2i adapter is benign. 1438 return callee->get_c2i_no_clinit_check_entry(); 1439 } else { 1440 return callee->get_c2i_entry(); 1441 } 1442 } 1443 1444 // Must be compiled to compiled path which is safe to stackwalk 1445 methodHandle callee_method; 1446 JRT_BLOCK 1447 // Force resolving of caller (if we called from compiled frame) 1448 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1449 current->set_vm_result_2(callee_method()); 1450 JRT_BLOCK_END 1451 // return compiled code entry point after potential safepoints 1452 return get_resolved_entry(current, callee_method); 1453 JRT_END 1454 1455 // Handle abstract method call 1456 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1457 // Verbose error message for AbstractMethodError. 1458 // Get the called method from the invoke bytecode. 1459 vframeStream vfst(current, true); 1460 assert(!vfst.at_end(), "Java frame must exist"); 1461 methodHandle caller(current, vfst.method()); 1462 Bytecode_invoke invoke(caller, vfst.bci()); 1463 DEBUG_ONLY( invoke.verify(); ) 1464 1465 // Find the compiled caller frame. 1466 RegisterMap reg_map(current, 1467 RegisterMap::UpdateMap::include, 1468 RegisterMap::ProcessFrames::include, 1469 RegisterMap::WalkContinuation::skip); 1470 frame stubFrame = current->last_frame(); 1471 assert(stubFrame.is_runtime_frame(), "must be"); 1472 frame callerFrame = stubFrame.sender(®_map); 1473 assert(callerFrame.is_compiled_frame(), "must be"); 1474 1475 // Install exception and return forward entry. 1476 address res = StubRoutines::throw_AbstractMethodError_entry(); 1477 JRT_BLOCK 1478 methodHandle callee(current, invoke.static_target(current)); 1479 if (!callee.is_null()) { 1480 oop recv = callerFrame.retrieve_receiver(®_map); 1481 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1482 res = StubRoutines::forward_exception_entry(); 1483 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1484 } 1485 JRT_BLOCK_END 1486 return res; 1487 JRT_END 1488 1489 // return verified_code_entry if interp_only_mode is not set for the current thread; 1490 // otherwise return c2i entry. 1491 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) { 1492 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1493 // In interp_only_mode we need to go to the interpreted entry 1494 // The c2i won't patch in this mode -- see fixup_callers_callsite 1495 return callee_method->get_c2i_entry(); 1496 } 1497 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1498 return callee_method->verified_code_entry(); 1499 } 1500 1501 // resolve a static call and patch code 1502 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1503 methodHandle callee_method; 1504 bool enter_special = false; 1505 JRT_BLOCK 1506 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1507 current->set_vm_result_2(callee_method()); 1508 JRT_BLOCK_END 1509 // return compiled code entry point after potential safepoints 1510 return get_resolved_entry(current, callee_method); 1511 JRT_END 1512 1513 // resolve virtual call and update inline cache to monomorphic 1514 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1515 methodHandle callee_method; 1516 JRT_BLOCK 1517 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1518 current->set_vm_result_2(callee_method()); 1519 JRT_BLOCK_END 1520 // return compiled code entry point after potential safepoints 1521 return get_resolved_entry(current, callee_method); 1522 JRT_END 1523 1524 1525 // Resolve a virtual call that can be statically bound (e.g., always 1526 // monomorphic, so it has no inline cache). Patch code to resolved target. 1527 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1528 methodHandle callee_method; 1529 JRT_BLOCK 1530 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1531 current->set_vm_result_2(callee_method()); 1532 JRT_BLOCK_END 1533 // return compiled code entry point after potential safepoints 1534 return get_resolved_entry(current, callee_method); 1535 JRT_END 1536 1537 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1538 JavaThread* current = THREAD; 1539 ResourceMark rm(current); 1540 CallInfo call_info; 1541 Bytecodes::Code bc; 1542 1543 // receiver is null for static calls. An exception is thrown for null 1544 // receivers for non-static calls 1545 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1546 1547 methodHandle callee_method(current, call_info.selected_method()); 1548 1549 #ifndef PRODUCT 1550 Atomic::inc(&_ic_miss_ctr); 1551 1552 // Statistics & Tracing 1553 if (TraceCallFixup) { 1554 ResourceMark rm(current); 1555 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1556 callee_method->print_short_name(tty); 1557 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1558 } 1559 1560 if (ICMissHistogram) { 1561 MutexLocker m(VMStatistic_lock); 1562 RegisterMap reg_map(current, 1563 RegisterMap::UpdateMap::skip, 1564 RegisterMap::ProcessFrames::include, 1565 RegisterMap::WalkContinuation::skip); 1566 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1567 // produce statistics under the lock 1568 trace_ic_miss(f.pc()); 1569 } 1570 #endif 1571 1572 // install an event collector so that when a vtable stub is created the 1573 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1574 // event can't be posted when the stub is created as locks are held 1575 // - instead the event will be deferred until the event collector goes 1576 // out of scope. 1577 JvmtiDynamicCodeEventCollector event_collector; 1578 1579 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1580 RegisterMap reg_map(current, 1581 RegisterMap::UpdateMap::skip, 1582 RegisterMap::ProcessFrames::include, 1583 RegisterMap::WalkContinuation::skip); 1584 frame caller_frame = current->last_frame().sender(®_map); 1585 CodeBlob* cb = caller_frame.cb(); 1586 nmethod* caller_nm = cb->as_nmethod(); 1587 1588 CompiledICLocker ml(caller_nm); 1589 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1590 inline_cache->update(&call_info, receiver()->klass()); 1591 1592 return callee_method; 1593 } 1594 1595 // 1596 // Resets a call-site in compiled code so it will get resolved again. 1597 // This routines handles both virtual call sites, optimized virtual call 1598 // sites, and static call sites. Typically used to change a call sites 1599 // destination from compiled to interpreted. 1600 // 1601 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1602 JavaThread* current = THREAD; 1603 ResourceMark rm(current); 1604 RegisterMap reg_map(current, 1605 RegisterMap::UpdateMap::skip, 1606 RegisterMap::ProcessFrames::include, 1607 RegisterMap::WalkContinuation::skip); 1608 frame stub_frame = current->last_frame(); 1609 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1610 frame caller = stub_frame.sender(®_map); 1611 1612 // Do nothing if the frame isn't a live compiled frame. 1613 // nmethod could be deoptimized by the time we get here 1614 // so no update to the caller is needed. 1615 1616 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1617 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1618 1619 address pc = caller.pc(); 1620 1621 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1622 assert(caller_nm != nullptr, "did not find caller nmethod"); 1623 1624 // Default call_addr is the location of the "basic" call. 1625 // Determine the address of the call we a reresolving. With 1626 // Inline Caches we will always find a recognizable call. 1627 // With Inline Caches disabled we may or may not find a 1628 // recognizable call. We will always find a call for static 1629 // calls and for optimized virtual calls. For vanilla virtual 1630 // calls it depends on the state of the UseInlineCaches switch. 1631 // 1632 // With Inline Caches disabled we can get here for a virtual call 1633 // for two reasons: 1634 // 1 - calling an abstract method. The vtable for abstract methods 1635 // will run us thru handle_wrong_method and we will eventually 1636 // end up in the interpreter to throw the ame. 1637 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1638 // call and between the time we fetch the entry address and 1639 // we jump to it the target gets deoptimized. Similar to 1 1640 // we will wind up in the interprter (thru a c2i with c2). 1641 // 1642 CompiledICLocker ml(caller_nm); 1643 address call_addr = caller_nm->call_instruction_address(pc); 1644 1645 if (call_addr != nullptr) { 1646 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1647 // bytes back in the instruction stream so we must also check for reloc info. 1648 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1649 bool ret = iter.next(); // Get item 1650 if (ret) { 1651 switch (iter.type()) { 1652 case relocInfo::static_call_type: 1653 case relocInfo::opt_virtual_call_type: { 1654 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1655 cdc->set_to_clean(); 1656 break; 1657 } 1658 1659 case relocInfo::virtual_call_type: { 1660 // compiled, dispatched call (which used to call an interpreted method) 1661 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1662 inline_cache->set_to_clean(); 1663 break; 1664 } 1665 default: 1666 break; 1667 } 1668 } 1669 } 1670 } 1671 1672 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1673 1674 1675 #ifndef PRODUCT 1676 Atomic::inc(&_wrong_method_ctr); 1677 1678 if (TraceCallFixup) { 1679 ResourceMark rm(current); 1680 tty->print("handle_wrong_method reresolving call to"); 1681 callee_method->print_short_name(tty); 1682 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1683 } 1684 #endif 1685 1686 return callee_method; 1687 } 1688 1689 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1690 // The faulting unsafe accesses should be changed to throw the error 1691 // synchronously instead. Meanwhile the faulting instruction will be 1692 // skipped over (effectively turning it into a no-op) and an 1693 // asynchronous exception will be raised which the thread will 1694 // handle at a later point. If the instruction is a load it will 1695 // return garbage. 1696 1697 // Request an async exception. 1698 thread->set_pending_unsafe_access_error(); 1699 1700 // Return address of next instruction to execute. 1701 return next_pc; 1702 } 1703 1704 #ifdef ASSERT 1705 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1706 const BasicType* sig_bt, 1707 const VMRegPair* regs) { 1708 ResourceMark rm; 1709 const int total_args_passed = method->size_of_parameters(); 1710 const VMRegPair* regs_with_member_name = regs; 1711 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1712 1713 const int member_arg_pos = total_args_passed - 1; 1714 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1715 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1716 1717 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1718 1719 for (int i = 0; i < member_arg_pos; i++) { 1720 VMReg a = regs_with_member_name[i].first(); 1721 VMReg b = regs_without_member_name[i].first(); 1722 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1723 } 1724 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1725 } 1726 #endif 1727 1728 // --------------------------------------------------------------------------- 1729 // We are calling the interpreter via a c2i. Normally this would mean that 1730 // we were called by a compiled method. However we could have lost a race 1731 // where we went int -> i2c -> c2i and so the caller could in fact be 1732 // interpreted. If the caller is compiled we attempt to patch the caller 1733 // so he no longer calls into the interpreter. 1734 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1735 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1736 1737 // It's possible that deoptimization can occur at a call site which hasn't 1738 // been resolved yet, in which case this function will be called from 1739 // an nmethod that has been patched for deopt and we can ignore the 1740 // request for a fixup. 1741 // Also it is possible that we lost a race in that from_compiled_entry 1742 // is now back to the i2c in that case we don't need to patch and if 1743 // we did we'd leap into space because the callsite needs to use 1744 // "to interpreter" stub in order to load up the Method*. Don't 1745 // ask me how I know this... 1746 1747 // Result from nmethod::is_unloading is not stable across safepoints. 1748 NoSafepointVerifier nsv; 1749 1750 nmethod* callee = method->code(); 1751 if (callee == nullptr) { 1752 return; 1753 } 1754 1755 // write lock needed because we might patch call site by set_to_clean() 1756 // and is_unloading() can modify nmethod's state 1757 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1758 1759 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1760 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1761 return; 1762 } 1763 1764 // The check above makes sure this is an nmethod. 1765 nmethod* caller = cb->as_nmethod(); 1766 1767 // Get the return PC for the passed caller PC. 1768 address return_pc = caller_pc + frame::pc_return_offset; 1769 1770 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1771 return; 1772 } 1773 1774 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1775 CompiledICLocker ic_locker(caller); 1776 ResourceMark rm; 1777 1778 // If we got here through a static call or opt_virtual call, then we know where the 1779 // call address would be; let's peek at it 1780 address callsite_addr = (address)nativeCall_before(return_pc); 1781 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1782 if (!iter.next()) { 1783 // No reloc entry found; not a static or optimized virtual call 1784 return; 1785 } 1786 1787 relocInfo::relocType type = iter.reloc()->type(); 1788 if (type != relocInfo::static_call_type && 1789 type != relocInfo::opt_virtual_call_type) { 1790 return; 1791 } 1792 1793 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1794 callsite->set_to_clean(); 1795 JRT_END 1796 1797 1798 // same as JVM_Arraycopy, but called directly from compiled code 1799 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1800 oopDesc* dest, jint dest_pos, 1801 jint length, 1802 JavaThread* current)) { 1803 #ifndef PRODUCT 1804 _slow_array_copy_ctr++; 1805 #endif 1806 // Check if we have null pointers 1807 if (src == nullptr || dest == nullptr) { 1808 THROW(vmSymbols::java_lang_NullPointerException()); 1809 } 1810 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1811 // even though the copy_array API also performs dynamic checks to ensure 1812 // that src and dest are truly arrays (and are conformable). 1813 // The copy_array mechanism is awkward and could be removed, but 1814 // the compilers don't call this function except as a last resort, 1815 // so it probably doesn't matter. 1816 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1817 (arrayOopDesc*)dest, dest_pos, 1818 length, current); 1819 } 1820 JRT_END 1821 1822 // The caller of generate_class_cast_message() (or one of its callers) 1823 // must use a ResourceMark in order to correctly free the result. 1824 char* SharedRuntime::generate_class_cast_message( 1825 JavaThread* thread, Klass* caster_klass) { 1826 1827 // Get target class name from the checkcast instruction 1828 vframeStream vfst(thread, true); 1829 assert(!vfst.at_end(), "Java frame must exist"); 1830 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1831 constantPoolHandle cpool(thread, vfst.method()->constants()); 1832 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1833 Symbol* target_klass_name = nullptr; 1834 if (target_klass == nullptr) { 1835 // This klass should be resolved, but just in case, get the name in the klass slot. 1836 target_klass_name = cpool->klass_name_at(cc.index()); 1837 } 1838 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1839 } 1840 1841 1842 // The caller of generate_class_cast_message() (or one of its callers) 1843 // must use a ResourceMark in order to correctly free the result. 1844 char* SharedRuntime::generate_class_cast_message( 1845 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1846 const char* caster_name = caster_klass->external_name(); 1847 1848 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1849 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1850 target_klass->external_name(); 1851 1852 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1853 1854 const char* caster_klass_description = ""; 1855 const char* target_klass_description = ""; 1856 const char* klass_separator = ""; 1857 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1858 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1859 } else { 1860 caster_klass_description = caster_klass->class_in_module_of_loader(); 1861 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1862 klass_separator = (target_klass != nullptr) ? "; " : ""; 1863 } 1864 1865 // add 3 for parenthesis and preceding space 1866 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 1867 1868 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 1869 if (message == nullptr) { 1870 // Shouldn't happen, but don't cause even more problems if it does 1871 message = const_cast<char*>(caster_klass->external_name()); 1872 } else { 1873 jio_snprintf(message, 1874 msglen, 1875 "class %s cannot be cast to class %s (%s%s%s)", 1876 caster_name, 1877 target_name, 1878 caster_klass_description, 1879 klass_separator, 1880 target_klass_description 1881 ); 1882 } 1883 return message; 1884 } 1885 1886 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 1887 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 1888 JRT_END 1889 1890 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1891 if (!SafepointSynchronize::is_synchronizing()) { 1892 // Only try quick_enter() if we're not trying to reach a safepoint 1893 // so that the calling thread reaches the safepoint more quickly. 1894 if (ObjectSynchronizer::quick_enter(obj, current, lock)) { 1895 return; 1896 } 1897 } 1898 // NO_ASYNC required because an async exception on the state transition destructor 1899 // would leave you with the lock held and it would never be released. 1900 // The normal monitorenter NullPointerException is thrown without acquiring a lock 1901 // and the model is that an exception implies the method failed. 1902 JRT_BLOCK_NO_ASYNC 1903 Handle h_obj(THREAD, obj); 1904 ObjectSynchronizer::enter(h_obj, lock, current); 1905 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 1906 JRT_BLOCK_END 1907 } 1908 1909 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 1910 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 1911 SharedRuntime::monitor_enter_helper(obj, lock, current); 1912 JRT_END 1913 1914 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1915 assert(JavaThread::current() == current, "invariant"); 1916 // Exit must be non-blocking, and therefore no exceptions can be thrown. 1917 ExceptionMark em(current); 1918 // The object could become unlocked through a JNI call, which we have no other checks for. 1919 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 1920 if (obj->is_unlocked()) { 1921 if (CheckJNICalls) { 1922 fatal("Object has been unlocked by JNI"); 1923 } 1924 return; 1925 } 1926 ObjectSynchronizer::exit(obj, lock, current); 1927 } 1928 1929 // Handles the uncommon cases of monitor unlocking in compiled code 1930 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 1931 assert(current == JavaThread::current(), "pre-condition"); 1932 SharedRuntime::monitor_exit_helper(obj, lock, current); 1933 JRT_END 1934 1935 // This is only called when CheckJNICalls is true, and only 1936 // for virtual thread termination. 1937 JRT_LEAF(void, SharedRuntime::log_jni_monitor_still_held()) 1938 assert(CheckJNICalls, "Only call this when checking JNI usage"); 1939 if (log_is_enabled(Debug, jni)) { 1940 JavaThread* current = JavaThread::current(); 1941 int64_t vthread_id = java_lang_Thread::thread_id(current->vthread()); 1942 int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj()); 1943 log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT 1944 ") exiting with Objects still locked by JNI MonitorEnter.", 1945 vthread_id, carrier_id); 1946 } 1947 JRT_END 1948 1949 #ifndef PRODUCT 1950 1951 void SharedRuntime::print_statistics() { 1952 ttyLocker ttyl; 1953 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 1954 1955 SharedRuntime::print_ic_miss_histogram(); 1956 1957 // Dump the JRT_ENTRY counters 1958 if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr); 1959 if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr); 1960 if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 1961 if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 1962 if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 1963 if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 1964 1965 tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 1966 tty->print_cr("%5u wrong method", _wrong_method_ctr); 1967 tty->print_cr("%5u unresolved static call site", _resolve_static_ctr); 1968 tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 1969 tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 1970 1971 if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 1972 if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 1973 if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr); 1974 if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr); 1975 if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 1976 if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 1977 if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr); 1978 if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr); 1979 if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr); 1980 if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr); 1981 if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 1982 if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 1983 if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr); 1984 if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr); 1985 if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr); 1986 if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr); 1987 if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 1988 1989 AdapterHandlerLibrary::print_statistics(); 1990 1991 if (xtty != nullptr) xtty->tail("statistics"); 1992 } 1993 1994 inline double percent(int64_t x, int64_t y) { 1995 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 1996 } 1997 1998 class MethodArityHistogram { 1999 public: 2000 enum { MAX_ARITY = 256 }; 2001 private: 2002 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2003 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2004 static uint64_t _total_compiled_calls; 2005 static uint64_t _max_compiled_calls_per_method; 2006 static int _max_arity; // max. arity seen 2007 static int _max_size; // max. arg size seen 2008 2009 static void add_method_to_histogram(nmethod* nm) { 2010 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2011 if (method != nullptr) { 2012 ArgumentCount args(method->signature()); 2013 int arity = args.size() + (method->is_static() ? 0 : 1); 2014 int argsize = method->size_of_parameters(); 2015 arity = MIN2(arity, MAX_ARITY-1); 2016 argsize = MIN2(argsize, MAX_ARITY-1); 2017 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2018 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2019 _total_compiled_calls += count; 2020 _arity_histogram[arity] += count; 2021 _size_histogram[argsize] += count; 2022 _max_arity = MAX2(_max_arity, arity); 2023 _max_size = MAX2(_max_size, argsize); 2024 } 2025 } 2026 2027 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2028 const int N = MIN2(9, n); 2029 double sum = 0; 2030 double weighted_sum = 0; 2031 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2032 if (sum >= 1) { // prevent divide by zero or divide overflow 2033 double rest = sum; 2034 double percent = sum / 100; 2035 for (int i = 0; i <= N; i++) { 2036 rest -= (double)histo[i]; 2037 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2038 } 2039 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2040 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2041 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2042 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2043 } else { 2044 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2045 } 2046 } 2047 2048 void print_histogram() { 2049 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2050 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2051 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2052 print_histogram_helper(_max_size, _size_histogram, "size"); 2053 tty->cr(); 2054 } 2055 2056 public: 2057 MethodArityHistogram() { 2058 // Take the Compile_lock to protect against changes in the CodeBlob structures 2059 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2060 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2061 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2062 _max_arity = _max_size = 0; 2063 _total_compiled_calls = 0; 2064 _max_compiled_calls_per_method = 0; 2065 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2066 CodeCache::nmethods_do(add_method_to_histogram); 2067 print_histogram(); 2068 } 2069 }; 2070 2071 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2072 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2073 uint64_t MethodArityHistogram::_total_compiled_calls; 2074 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2075 int MethodArityHistogram::_max_arity; 2076 int MethodArityHistogram::_max_size; 2077 2078 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2079 tty->print_cr("Calls from compiled code:"); 2080 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2081 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2082 int64_t mono_i = _nof_interface_calls; 2083 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2084 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2085 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2086 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2087 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2088 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2089 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2090 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2091 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2092 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2093 tty->cr(); 2094 tty->print_cr("Note 1: counter updates are not MT-safe."); 2095 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2096 tty->print_cr(" %% in nested categories are relative to their category"); 2097 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2098 tty->cr(); 2099 2100 MethodArityHistogram h; 2101 } 2102 #endif 2103 2104 #ifndef PRODUCT 2105 static int _lookups; // number of calls to lookup 2106 static int _equals; // number of buckets checked with matching hash 2107 static int _hits; // number of successful lookups 2108 static int _compact; // number of equals calls with compact signature 2109 #endif 2110 2111 // A simple wrapper class around the calling convention information 2112 // that allows sharing of adapters for the same calling convention. 2113 class AdapterFingerPrint : public CHeapObj<mtCode> { 2114 private: 2115 enum { 2116 _basic_type_bits = 4, 2117 _basic_type_mask = right_n_bits(_basic_type_bits), 2118 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2119 _compact_int_count = 3 2120 }; 2121 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2122 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2123 2124 union { 2125 int _compact[_compact_int_count]; 2126 int* _fingerprint; 2127 } _value; 2128 int _length; // A negative length indicates the fingerprint is in the compact form, 2129 // Otherwise _value._fingerprint is the array. 2130 2131 // Remap BasicTypes that are handled equivalently by the adapters. 2132 // These are correct for the current system but someday it might be 2133 // necessary to make this mapping platform dependent. 2134 static int adapter_encoding(BasicType in) { 2135 switch (in) { 2136 case T_BOOLEAN: 2137 case T_BYTE: 2138 case T_SHORT: 2139 case T_CHAR: 2140 // There are all promoted to T_INT in the calling convention 2141 return T_INT; 2142 2143 case T_OBJECT: 2144 case T_ARRAY: 2145 // In other words, we assume that any register good enough for 2146 // an int or long is good enough for a managed pointer. 2147 #ifdef _LP64 2148 return T_LONG; 2149 #else 2150 return T_INT; 2151 #endif 2152 2153 case T_INT: 2154 case T_LONG: 2155 case T_FLOAT: 2156 case T_DOUBLE: 2157 case T_VOID: 2158 return in; 2159 2160 default: 2161 ShouldNotReachHere(); 2162 return T_CONFLICT; 2163 } 2164 } 2165 2166 public: 2167 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { 2168 // The fingerprint is based on the BasicType signature encoded 2169 // into an array of ints with eight entries per int. 2170 int* ptr; 2171 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2172 if (len <= _compact_int_count) { 2173 assert(_compact_int_count == 3, "else change next line"); 2174 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2175 // Storing the signature encoded as signed chars hits about 98% 2176 // of the time. 2177 _length = -len; 2178 ptr = _value._compact; 2179 } else { 2180 _length = len; 2181 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2182 ptr = _value._fingerprint; 2183 } 2184 2185 // Now pack the BasicTypes with 8 per int 2186 int sig_index = 0; 2187 for (int index = 0; index < len; index++) { 2188 int value = 0; 2189 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2190 int bt = adapter_encoding(sig_bt[sig_index++]); 2191 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2192 value = (value << _basic_type_bits) | bt; 2193 } 2194 ptr[index] = value; 2195 } 2196 } 2197 2198 ~AdapterFingerPrint() { 2199 if (_length > 0) { 2200 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2201 } 2202 } 2203 2204 int value(int index) { 2205 if (_length < 0) { 2206 return _value._compact[index]; 2207 } 2208 return _value._fingerprint[index]; 2209 } 2210 int length() { 2211 if (_length < 0) return -_length; 2212 return _length; 2213 } 2214 2215 bool is_compact() { 2216 return _length <= 0; 2217 } 2218 2219 unsigned int compute_hash() { 2220 int hash = 0; 2221 for (int i = 0; i < length(); i++) { 2222 int v = value(i); 2223 hash = (hash << 8) ^ v ^ (hash >> 5); 2224 } 2225 return (unsigned int)hash; 2226 } 2227 2228 const char* as_string() { 2229 stringStream st; 2230 st.print("0x"); 2231 for (int i = 0; i < length(); i++) { 2232 st.print("%x", value(i)); 2233 } 2234 return st.as_string(); 2235 } 2236 2237 #ifndef PRODUCT 2238 // Reconstitutes the basic type arguments from the fingerprint, 2239 // producing strings like LIJDF 2240 const char* as_basic_args_string() { 2241 stringStream st; 2242 bool long_prev = false; 2243 for (int i = 0; i < length(); i++) { 2244 unsigned val = (unsigned)value(i); 2245 // args are packed so that first/lower arguments are in the highest 2246 // bits of each int value, so iterate from highest to the lowest 2247 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2248 unsigned v = (val >> j) & _basic_type_mask; 2249 if (v == 0) { 2250 assert(i == length() - 1, "Only expect zeroes in the last word"); 2251 continue; 2252 } 2253 if (long_prev) { 2254 long_prev = false; 2255 if (v == T_VOID) { 2256 st.print("J"); 2257 } else { 2258 st.print("L"); 2259 } 2260 } 2261 switch (v) { 2262 case T_INT: st.print("I"); break; 2263 case T_LONG: long_prev = true; break; 2264 case T_FLOAT: st.print("F"); break; 2265 case T_DOUBLE: st.print("D"); break; 2266 case T_VOID: break; 2267 default: ShouldNotReachHere(); 2268 } 2269 } 2270 } 2271 if (long_prev) { 2272 st.print("L"); 2273 } 2274 return st.as_string(); 2275 } 2276 #endif // !product 2277 2278 bool equals(AdapterFingerPrint* other) { 2279 if (other->_length != _length) { 2280 return false; 2281 } 2282 if (_length < 0) { 2283 assert(_compact_int_count == 3, "else change next line"); 2284 return _value._compact[0] == other->_value._compact[0] && 2285 _value._compact[1] == other->_value._compact[1] && 2286 _value._compact[2] == other->_value._compact[2]; 2287 } else { 2288 for (int i = 0; i < _length; i++) { 2289 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2290 return false; 2291 } 2292 } 2293 } 2294 return true; 2295 } 2296 2297 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2298 NOT_PRODUCT(_equals++); 2299 return fp1->equals(fp2); 2300 } 2301 2302 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2303 return fp->compute_hash(); 2304 } 2305 }; 2306 2307 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2308 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2309 AnyObj::C_HEAP, mtCode, 2310 AdapterFingerPrint::compute_hash, 2311 AdapterFingerPrint::equals>; 2312 static AdapterHandlerTable* _adapter_handler_table; 2313 2314 // Find a entry with the same fingerprint if it exists 2315 static AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) { 2316 NOT_PRODUCT(_lookups++); 2317 assert_lock_strong(AdapterHandlerLibrary_lock); 2318 AdapterFingerPrint fp(total_args_passed, sig_bt); 2319 AdapterHandlerEntry** entry = _adapter_handler_table->get(&fp); 2320 if (entry != nullptr) { 2321 #ifndef PRODUCT 2322 if (fp.is_compact()) _compact++; 2323 _hits++; 2324 #endif 2325 return *entry; 2326 } 2327 return nullptr; 2328 } 2329 2330 #ifndef PRODUCT 2331 static void print_table_statistics() { 2332 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2333 return sizeof(*key) + sizeof(*a); 2334 }; 2335 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2336 ts.print(tty, "AdapterHandlerTable"); 2337 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2338 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2339 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d compact %d", 2340 _lookups, _equals, _hits, _compact); 2341 } 2342 #endif 2343 2344 // --------------------------------------------------------------------------- 2345 // Implementation of AdapterHandlerLibrary 2346 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2347 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2348 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2349 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2350 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2351 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2352 const int AdapterHandlerLibrary_size = 16*K; 2353 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2354 2355 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2356 return _buffer; 2357 } 2358 2359 static void post_adapter_creation(const AdapterBlob* new_adapter, 2360 const AdapterHandlerEntry* entry) { 2361 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2362 char blob_id[256]; 2363 jio_snprintf(blob_id, 2364 sizeof(blob_id), 2365 "%s(%s)", 2366 new_adapter->name(), 2367 entry->fingerprint()->as_string()); 2368 if (Forte::is_enabled()) { 2369 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2370 } 2371 2372 if (JvmtiExport::should_post_dynamic_code_generated()) { 2373 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2374 } 2375 } 2376 } 2377 2378 void AdapterHandlerLibrary::initialize() { 2379 ResourceMark rm; 2380 AdapterBlob* no_arg_blob = nullptr; 2381 AdapterBlob* int_arg_blob = nullptr; 2382 AdapterBlob* obj_arg_blob = nullptr; 2383 AdapterBlob* obj_int_arg_blob = nullptr; 2384 AdapterBlob* obj_obj_arg_blob = nullptr; 2385 { 2386 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2387 MutexLocker mu(AdapterHandlerLibrary_lock); 2388 2389 // Create a special handler for abstract methods. Abstract methods 2390 // are never compiled so an i2c entry is somewhat meaningless, but 2391 // throw AbstractMethodError just in case. 2392 // Pass wrong_method_abstract for the c2i transitions to return 2393 // AbstractMethodError for invalid invocations. 2394 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2395 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, nullptr), 2396 StubRoutines::throw_AbstractMethodError_entry(), 2397 wrong_method_abstract, wrong_method_abstract); 2398 2399 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2400 _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr, true); 2401 2402 BasicType obj_args[] = { T_OBJECT }; 2403 _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args, true); 2404 2405 BasicType int_args[] = { T_INT }; 2406 _int_arg_handler = create_adapter(int_arg_blob, 1, int_args, true); 2407 2408 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2409 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args, true); 2410 2411 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2412 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args, true); 2413 2414 assert(no_arg_blob != nullptr && 2415 obj_arg_blob != nullptr && 2416 int_arg_blob != nullptr && 2417 obj_int_arg_blob != nullptr && 2418 obj_obj_arg_blob != nullptr, "Initial adapters must be properly created"); 2419 } 2420 2421 // Outside of the lock 2422 post_adapter_creation(no_arg_blob, _no_arg_handler); 2423 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2424 post_adapter_creation(int_arg_blob, _int_arg_handler); 2425 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2426 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2427 } 2428 2429 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2430 address i2c_entry, 2431 address c2i_entry, 2432 address c2i_unverified_entry, 2433 address c2i_no_clinit_check_entry) { 2434 // Insert an entry into the table 2435 return new AdapterHandlerEntry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, 2436 c2i_no_clinit_check_entry); 2437 } 2438 2439 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2440 if (method->is_abstract()) { 2441 return _abstract_method_handler; 2442 } 2443 int total_args_passed = method->size_of_parameters(); // All args on stack 2444 if (total_args_passed == 0) { 2445 return _no_arg_handler; 2446 } else if (total_args_passed == 1) { 2447 if (!method->is_static()) { 2448 return _obj_arg_handler; 2449 } 2450 switch (method->signature()->char_at(1)) { 2451 case JVM_SIGNATURE_CLASS: 2452 case JVM_SIGNATURE_ARRAY: 2453 return _obj_arg_handler; 2454 case JVM_SIGNATURE_INT: 2455 case JVM_SIGNATURE_BOOLEAN: 2456 case JVM_SIGNATURE_CHAR: 2457 case JVM_SIGNATURE_BYTE: 2458 case JVM_SIGNATURE_SHORT: 2459 return _int_arg_handler; 2460 } 2461 } else if (total_args_passed == 2 && 2462 !method->is_static()) { 2463 switch (method->signature()->char_at(1)) { 2464 case JVM_SIGNATURE_CLASS: 2465 case JVM_SIGNATURE_ARRAY: 2466 return _obj_obj_arg_handler; 2467 case JVM_SIGNATURE_INT: 2468 case JVM_SIGNATURE_BOOLEAN: 2469 case JVM_SIGNATURE_CHAR: 2470 case JVM_SIGNATURE_BYTE: 2471 case JVM_SIGNATURE_SHORT: 2472 return _obj_int_arg_handler; 2473 } 2474 } 2475 return nullptr; 2476 } 2477 2478 class AdapterSignatureIterator : public SignatureIterator { 2479 private: 2480 BasicType stack_sig_bt[16]; 2481 BasicType* sig_bt; 2482 int index; 2483 2484 public: 2485 AdapterSignatureIterator(Symbol* signature, 2486 fingerprint_t fingerprint, 2487 bool is_static, 2488 int total_args_passed) : 2489 SignatureIterator(signature, fingerprint), 2490 index(0) 2491 { 2492 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2493 if (!is_static) { // Pass in receiver first 2494 sig_bt[index++] = T_OBJECT; 2495 } 2496 do_parameters_on(this); 2497 } 2498 2499 BasicType* basic_types() { 2500 return sig_bt; 2501 } 2502 2503 #ifdef ASSERT 2504 int slots() { 2505 return index; 2506 } 2507 #endif 2508 2509 private: 2510 2511 friend class SignatureIterator; // so do_parameters_on can call do_type 2512 void do_type(BasicType type) { 2513 sig_bt[index++] = type; 2514 if (type == T_LONG || type == T_DOUBLE) { 2515 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2516 } 2517 } 2518 }; 2519 2520 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2521 // Use customized signature handler. Need to lock around updates to 2522 // the _adapter_handler_table (it is not safe for concurrent readers 2523 // and a single writer: this could be fixed if it becomes a 2524 // problem). 2525 2526 // Fast-path for trivial adapters 2527 AdapterHandlerEntry* entry = get_simple_adapter(method); 2528 if (entry != nullptr) { 2529 return entry; 2530 } 2531 2532 ResourceMark rm; 2533 AdapterBlob* new_adapter = nullptr; 2534 2535 // Fill in the signature array, for the calling-convention call. 2536 int total_args_passed = method->size_of_parameters(); // All args on stack 2537 2538 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2539 method->is_static(), total_args_passed); 2540 assert(si.slots() == total_args_passed, ""); 2541 BasicType* sig_bt = si.basic_types(); 2542 { 2543 MutexLocker mu(AdapterHandlerLibrary_lock); 2544 2545 // Lookup method signature's fingerprint 2546 entry = lookup(total_args_passed, sig_bt); 2547 2548 if (entry != nullptr) { 2549 #ifdef ASSERT 2550 if (VerifyAdapterSharing) { 2551 AdapterBlob* comparison_blob = nullptr; 2552 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, false); 2553 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 2554 assert(comparison_entry->compare_code(entry), "code must match"); 2555 // Release the one just created and return the original 2556 delete comparison_entry; 2557 } 2558 #endif 2559 return entry; 2560 } 2561 2562 entry = create_adapter(new_adapter, total_args_passed, sig_bt, /* allocate_code_blob */ true); 2563 } 2564 2565 // Outside of the lock 2566 if (new_adapter != nullptr) { 2567 post_adapter_creation(new_adapter, entry); 2568 } 2569 return entry; 2570 } 2571 2572 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter, 2573 int total_args_passed, 2574 BasicType* sig_bt, 2575 bool allocate_code_blob) { 2576 if (log_is_enabled(Info, perf, class, link)) { 2577 ClassLoader::perf_method_adapters_count()->inc(); 2578 } 2579 2580 // StubRoutines::_final_stubs_code is initialized after this function can be called. As a result, 2581 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated prior 2582 // to all StubRoutines::_final_stubs_code being set. Checks refer to runtime range checks generated 2583 // in an I2C stub that ensure that an I2C stub is called from an interpreter frame or stubs. 2584 bool contains_all_checks = StubRoutines::final_stubs_code() != nullptr; 2585 2586 VMRegPair stack_regs[16]; 2587 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2588 2589 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2590 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2591 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2592 CodeBuffer buffer(buf); 2593 short buffer_locs[20]; 2594 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2595 sizeof(buffer_locs)/sizeof(relocInfo)); 2596 2597 // Make a C heap allocated version of the fingerprint to store in the adapter 2598 AdapterFingerPrint* fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt); 2599 MacroAssembler _masm(&buffer); 2600 AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 2601 total_args_passed, 2602 comp_args_on_stack, 2603 sig_bt, 2604 regs, 2605 fingerprint); 2606 2607 #ifdef ASSERT 2608 if (VerifyAdapterSharing) { 2609 entry->save_code(buf->code_begin(), buffer.insts_size()); 2610 if (!allocate_code_blob) { 2611 return entry; 2612 } 2613 } 2614 #endif 2615 2616 new_adapter = AdapterBlob::create(&buffer); 2617 NOT_PRODUCT(int insts_size = buffer.insts_size()); 2618 if (new_adapter == nullptr) { 2619 // CodeCache is full, disable compilation 2620 // Ought to log this but compile log is only per compile thread 2621 // and we're some non descript Java thread. 2622 return nullptr; 2623 } 2624 entry->relocate(new_adapter->content_begin()); 2625 #ifndef PRODUCT 2626 // debugging support 2627 if (PrintAdapterHandlers || PrintStubCode) { 2628 ttyLocker ttyl; 2629 entry->print_adapter_on(tty); 2630 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)", 2631 _adapter_handler_table->number_of_entries(), fingerprint->as_basic_args_string(), 2632 fingerprint->as_string(), insts_size); 2633 tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry())); 2634 if (Verbose || PrintStubCode) { 2635 address first_pc = entry->base_address(); 2636 if (first_pc != nullptr) { 2637 Disassembler::decode(first_pc, first_pc + insts_size, tty 2638 NOT_PRODUCT(COMMA &new_adapter->asm_remarks())); 2639 tty->cr(); 2640 } 2641 } 2642 } 2643 #endif 2644 2645 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) 2646 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. 2647 if (contains_all_checks || !VerifyAdapterCalls) { 2648 assert_lock_strong(AdapterHandlerLibrary_lock); 2649 _adapter_handler_table->put(fingerprint, entry); 2650 } 2651 return entry; 2652 } 2653 2654 address AdapterHandlerEntry::base_address() { 2655 address base = _i2c_entry; 2656 if (base == nullptr) base = _c2i_entry; 2657 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 2658 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 2659 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 2660 return base; 2661 } 2662 2663 void AdapterHandlerEntry::relocate(address new_base) { 2664 address old_base = base_address(); 2665 assert(old_base != nullptr, ""); 2666 ptrdiff_t delta = new_base - old_base; 2667 if (_i2c_entry != nullptr) 2668 _i2c_entry += delta; 2669 if (_c2i_entry != nullptr) 2670 _c2i_entry += delta; 2671 if (_c2i_unverified_entry != nullptr) 2672 _c2i_unverified_entry += delta; 2673 if (_c2i_no_clinit_check_entry != nullptr) 2674 _c2i_no_clinit_check_entry += delta; 2675 assert(base_address() == new_base, ""); 2676 } 2677 2678 2679 AdapterHandlerEntry::~AdapterHandlerEntry() { 2680 delete _fingerprint; 2681 #ifdef ASSERT 2682 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 2683 #endif 2684 } 2685 2686 2687 #ifdef ASSERT 2688 // Capture the code before relocation so that it can be compared 2689 // against other versions. If the code is captured after relocation 2690 // then relative instructions won't be equivalent. 2691 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 2692 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 2693 _saved_code_length = length; 2694 memcpy(_saved_code, buffer, length); 2695 } 2696 2697 2698 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 2699 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 2700 2701 if (other->_saved_code_length != _saved_code_length) { 2702 return false; 2703 } 2704 2705 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 2706 } 2707 #endif 2708 2709 2710 /** 2711 * Create a native wrapper for this native method. The wrapper converts the 2712 * Java-compiled calling convention to the native convention, handles 2713 * arguments, and transitions to native. On return from the native we transition 2714 * back to java blocking if a safepoint is in progress. 2715 */ 2716 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 2717 ResourceMark rm; 2718 nmethod* nm = nullptr; 2719 2720 // Check if memory should be freed before allocation 2721 CodeCache::gc_on_allocation(); 2722 2723 assert(method->is_native(), "must be native"); 2724 assert(method->is_special_native_intrinsic() || 2725 method->has_native_function(), "must have something valid to call!"); 2726 2727 { 2728 // Perform the work while holding the lock, but perform any printing outside the lock 2729 MutexLocker mu(AdapterHandlerLibrary_lock); 2730 // See if somebody beat us to it 2731 if (method->code() != nullptr) { 2732 return; 2733 } 2734 2735 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 2736 assert(compile_id > 0, "Must generate native wrapper"); 2737 2738 2739 ResourceMark rm; 2740 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2741 if (buf != nullptr) { 2742 CodeBuffer buffer(buf); 2743 2744 if (method->is_continuation_enter_intrinsic()) { 2745 buffer.initialize_stubs_size(192); 2746 } 2747 2748 struct { double data[20]; } locs_buf; 2749 struct { double data[20]; } stubs_locs_buf; 2750 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 2751 #if defined(AARCH64) || defined(PPC64) 2752 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 2753 // in the constant pool to ensure ordering between the barrier and oops 2754 // accesses. For native_wrappers we need a constant. 2755 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 2756 // static java call that is resolved in the runtime. 2757 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 2758 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 2759 } 2760 #endif 2761 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 2762 MacroAssembler _masm(&buffer); 2763 2764 // Fill in the signature array, for the calling-convention call. 2765 const int total_args_passed = method->size_of_parameters(); 2766 2767 VMRegPair stack_regs[16]; 2768 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2769 2770 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2771 method->is_static(), total_args_passed); 2772 BasicType* sig_bt = si.basic_types(); 2773 assert(si.slots() == total_args_passed, ""); 2774 BasicType ret_type = si.return_type(); 2775 2776 // Now get the compiled-Java arguments layout. 2777 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2778 2779 // Generate the compiled-to-native wrapper code 2780 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 2781 2782 if (nm != nullptr) { 2783 { 2784 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2785 if (nm->make_in_use()) { 2786 method->set_code(method, nm); 2787 } 2788 } 2789 2790 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 2791 if (directive->PrintAssemblyOption) { 2792 nm->print_code(); 2793 } 2794 DirectivesStack::release(directive); 2795 } 2796 } 2797 } // Unlock AdapterHandlerLibrary_lock 2798 2799 2800 // Install the generated code. 2801 if (nm != nullptr) { 2802 const char *msg = method->is_static() ? "(static)" : ""; 2803 CompileTask::print_ul(nm, msg); 2804 if (PrintCompilation) { 2805 ttyLocker ttyl; 2806 CompileTask::print(tty, nm, msg); 2807 } 2808 nm->post_compiled_method_load_event(); 2809 } 2810 } 2811 2812 // ------------------------------------------------------------------------- 2813 // Java-Java calling convention 2814 // (what you use when Java calls Java) 2815 2816 //------------------------------name_for_receiver---------------------------------- 2817 // For a given signature, return the VMReg for parameter 0. 2818 VMReg SharedRuntime::name_for_receiver() { 2819 VMRegPair regs; 2820 BasicType sig_bt = T_OBJECT; 2821 (void) java_calling_convention(&sig_bt, ®s, 1); 2822 // Return argument 0 register. In the LP64 build pointers 2823 // take 2 registers, but the VM wants only the 'main' name. 2824 return regs.first(); 2825 } 2826 2827 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 2828 // This method is returning a data structure allocating as a 2829 // ResourceObject, so do not put any ResourceMarks in here. 2830 2831 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 2832 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 2833 int cnt = 0; 2834 if (has_receiver) { 2835 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 2836 } 2837 2838 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 2839 BasicType type = ss.type(); 2840 sig_bt[cnt++] = type; 2841 if (is_double_word_type(type)) 2842 sig_bt[cnt++] = T_VOID; 2843 } 2844 2845 if (has_appendix) { 2846 sig_bt[cnt++] = T_OBJECT; 2847 } 2848 2849 assert(cnt < 256, "grow table size"); 2850 2851 int comp_args_on_stack; 2852 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 2853 2854 // the calling convention doesn't count out_preserve_stack_slots so 2855 // we must add that in to get "true" stack offsets. 2856 2857 if (comp_args_on_stack) { 2858 for (int i = 0; i < cnt; i++) { 2859 VMReg reg1 = regs[i].first(); 2860 if (reg1->is_stack()) { 2861 // Yuck 2862 reg1 = reg1->bias(out_preserve_stack_slots()); 2863 } 2864 VMReg reg2 = regs[i].second(); 2865 if (reg2->is_stack()) { 2866 // Yuck 2867 reg2 = reg2->bias(out_preserve_stack_slots()); 2868 } 2869 regs[i].set_pair(reg2, reg1); 2870 } 2871 } 2872 2873 // results 2874 *arg_size = cnt; 2875 return regs; 2876 } 2877 2878 // OSR Migration Code 2879 // 2880 // This code is used convert interpreter frames into compiled frames. It is 2881 // called from very start of a compiled OSR nmethod. A temp array is 2882 // allocated to hold the interesting bits of the interpreter frame. All 2883 // active locks are inflated to allow them to move. The displaced headers and 2884 // active interpreter locals are copied into the temp buffer. Then we return 2885 // back to the compiled code. The compiled code then pops the current 2886 // interpreter frame off the stack and pushes a new compiled frame. Then it 2887 // copies the interpreter locals and displaced headers where it wants. 2888 // Finally it calls back to free the temp buffer. 2889 // 2890 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 2891 2892 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 2893 assert(current == JavaThread::current(), "pre-condition"); 2894 2895 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 2896 // frame. The stack watermark code below ensures that the interpreted frame is processed 2897 // before it gets unwound. This is helpful as the size of the compiled frame could be 2898 // larger than the interpreted frame, which could result in the new frame not being 2899 // processed correctly. 2900 StackWatermarkSet::before_unwind(current); 2901 2902 // 2903 // This code is dependent on the memory layout of the interpreter local 2904 // array and the monitors. On all of our platforms the layout is identical 2905 // so this code is shared. If some platform lays the their arrays out 2906 // differently then this code could move to platform specific code or 2907 // the code here could be modified to copy items one at a time using 2908 // frame accessor methods and be platform independent. 2909 2910 frame fr = current->last_frame(); 2911 assert(fr.is_interpreted_frame(), ""); 2912 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 2913 2914 // Figure out how many monitors are active. 2915 int active_monitor_count = 0; 2916 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 2917 kptr < fr.interpreter_frame_monitor_begin(); 2918 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 2919 if (kptr->obj() != nullptr) active_monitor_count++; 2920 } 2921 2922 // QQQ we could place number of active monitors in the array so that compiled code 2923 // could double check it. 2924 2925 Method* moop = fr.interpreter_frame_method(); 2926 int max_locals = moop->max_locals(); 2927 // Allocate temp buffer, 1 word per local & 2 per active monitor 2928 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 2929 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 2930 2931 // Copy the locals. Order is preserved so that loading of longs works. 2932 // Since there's no GC I can copy the oops blindly. 2933 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 2934 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 2935 (HeapWord*)&buf[0], 2936 max_locals); 2937 2938 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 2939 int i = max_locals; 2940 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 2941 kptr2 < fr.interpreter_frame_monitor_begin(); 2942 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 2943 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 2944 BasicLock *lock = kptr2->lock(); 2945 if (LockingMode == LM_LEGACY) { 2946 // Inflate so the object's header no longer refers to the BasicLock. 2947 if (lock->displaced_header().is_unlocked()) { 2948 // The object is locked and the resulting ObjectMonitor* will also be 2949 // locked so it can't be async deflated until ownership is dropped. 2950 // See the big comment in basicLock.cpp: BasicLock::move_to(). 2951 ObjectSynchronizer::inflate_helper(kptr2->obj()); 2952 } 2953 // Now the displaced header is free to move because the 2954 // object's header no longer refers to it. 2955 buf[i] = (intptr_t)lock->displaced_header().value(); 2956 } 2957 #ifdef ASSERT 2958 else { 2959 buf[i] = badDispHeaderOSR; 2960 } 2961 #endif 2962 i++; 2963 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 2964 } 2965 } 2966 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 2967 2968 RegisterMap map(current, 2969 RegisterMap::UpdateMap::skip, 2970 RegisterMap::ProcessFrames::include, 2971 RegisterMap::WalkContinuation::skip); 2972 frame sender = fr.sender(&map); 2973 if (sender.is_interpreted_frame()) { 2974 current->push_cont_fastpath(sender.sp()); 2975 } 2976 2977 return buf; 2978 JRT_END 2979 2980 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 2981 FREE_C_HEAP_ARRAY(intptr_t, buf); 2982 JRT_END 2983 2984 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 2985 bool found = false; 2986 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2987 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 2988 }; 2989 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 2990 _adapter_handler_table->iterate(findblob); 2991 return found; 2992 } 2993 2994 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 2995 bool found = false; 2996 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2997 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 2998 found = true; 2999 st->print("Adapter for signature: "); 3000 a->print_adapter_on(st); 3001 return true; 3002 } else { 3003 return false; // keep looking 3004 } 3005 }; 3006 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3007 _adapter_handler_table->iterate(findblob); 3008 assert(found, "Should have found handler"); 3009 } 3010 3011 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3012 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3013 if (get_i2c_entry() != nullptr) { 3014 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3015 } 3016 if (get_c2i_entry() != nullptr) { 3017 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3018 } 3019 if (get_c2i_unverified_entry() != nullptr) { 3020 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3021 } 3022 if (get_c2i_no_clinit_check_entry() != nullptr) { 3023 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3024 } 3025 st->cr(); 3026 } 3027 3028 #ifndef PRODUCT 3029 3030 void AdapterHandlerLibrary::print_statistics() { 3031 print_table_statistics(); 3032 } 3033 3034 #endif /* PRODUCT */ 3035 3036 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3037 assert(current == JavaThread::current(), "pre-condition"); 3038 StackOverflow* overflow_state = current->stack_overflow_state(); 3039 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3040 overflow_state->set_reserved_stack_activation(current->stack_base()); 3041 JRT_END 3042 3043 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3044 ResourceMark rm(current); 3045 frame activation; 3046 nmethod* nm = nullptr; 3047 int count = 1; 3048 3049 assert(fr.is_java_frame(), "Must start on Java frame"); 3050 3051 RegisterMap map(JavaThread::current(), 3052 RegisterMap::UpdateMap::skip, 3053 RegisterMap::ProcessFrames::skip, 3054 RegisterMap::WalkContinuation::skip); // don't walk continuations 3055 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3056 if (!fr.is_java_frame()) { 3057 continue; 3058 } 3059 3060 Method* method = nullptr; 3061 bool found = false; 3062 if (fr.is_interpreted_frame()) { 3063 method = fr.interpreter_frame_method(); 3064 if (method != nullptr && method->has_reserved_stack_access()) { 3065 found = true; 3066 } 3067 } else { 3068 CodeBlob* cb = fr.cb(); 3069 if (cb != nullptr && cb->is_nmethod()) { 3070 nm = cb->as_nmethod(); 3071 method = nm->method(); 3072 // scope_desc_near() must be used, instead of scope_desc_at() because on 3073 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3074 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3075 method = sd->method(); 3076 if (method != nullptr && method->has_reserved_stack_access()) { 3077 found = true; 3078 } 3079 } 3080 } 3081 } 3082 if (found) { 3083 activation = fr; 3084 warning("Potentially dangerous stack overflow in " 3085 "ReservedStackAccess annotated method %s [%d]", 3086 method->name_and_sig_as_C_string(), count++); 3087 EventReservedStackActivation event; 3088 if (event.should_commit()) { 3089 event.set_method(method); 3090 event.commit(); 3091 } 3092 } 3093 } 3094 return activation; 3095 } 3096 3097 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3098 // After any safepoint, just before going back to compiled code, 3099 // we inform the GC that we will be doing initializing writes to 3100 // this object in the future without emitting card-marks, so 3101 // GC may take any compensating steps. 3102 3103 oop new_obj = current->vm_result(); 3104 if (new_obj == nullptr) return; 3105 3106 BarrierSet *bs = BarrierSet::barrier_set(); 3107 bs->on_slowpath_allocation_exit(current, new_obj); 3108 }