1 /* 2 * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/classLoader.hpp" 27 #include "classfile/javaClasses.inline.hpp" 28 #include "classfile/stringTable.hpp" 29 #include "classfile/vmClasses.hpp" 30 #include "classfile/vmSymbols.hpp" 31 #include "code/codeCache.hpp" 32 #include "code/compiledIC.hpp" 33 #include "code/nmethod.inline.hpp" 34 #include "code/scopeDesc.hpp" 35 #include "code/vtableStubs.hpp" 36 #include "compiler/abstractCompiler.hpp" 37 #include "compiler/compileBroker.hpp" 38 #include "compiler/disassembler.hpp" 39 #include "gc/shared/barrierSet.hpp" 40 #include "gc/shared/collectedHeap.hpp" 41 #include "gc/shared/gcLocker.inline.hpp" 42 #include "interpreter/interpreter.hpp" 43 #include "interpreter/interpreterRuntime.hpp" 44 #include "jvm.h" 45 #include "jfr/jfrEvents.hpp" 46 #include "logging/log.hpp" 47 #include "memory/resourceArea.hpp" 48 #include "memory/universe.hpp" 49 #include "metaprogramming/primitiveConversions.hpp" 50 #include "oops/klass.hpp" 51 #include "oops/method.inline.hpp" 52 #include "oops/objArrayKlass.hpp" 53 #include "oops/oop.inline.hpp" 54 #include "prims/forte.hpp" 55 #include "prims/jvmtiExport.hpp" 56 #include "prims/jvmtiThreadState.hpp" 57 #include "prims/methodHandles.hpp" 58 #include "prims/nativeLookup.hpp" 59 #include "runtime/arguments.hpp" 60 #include "runtime/atomic.hpp" 61 #include "runtime/basicLock.inline.hpp" 62 #include "runtime/frame.inline.hpp" 63 #include "runtime/handles.inline.hpp" 64 #include "runtime/init.hpp" 65 #include "runtime/interfaceSupport.inline.hpp" 66 #include "runtime/java.hpp" 67 #include "runtime/javaCalls.hpp" 68 #include "runtime/jniHandles.inline.hpp" 69 #include "runtime/perfData.hpp" 70 #include "runtime/sharedRuntime.hpp" 71 #include "runtime/stackWatermarkSet.hpp" 72 #include "runtime/stubRoutines.hpp" 73 #include "runtime/synchronizer.inline.hpp" 74 #include "runtime/vframe.inline.hpp" 75 #include "runtime/vframeArray.hpp" 76 #include "runtime/vm_version.hpp" 77 #include "utilities/copy.hpp" 78 #include "utilities/dtrace.hpp" 79 #include "utilities/events.hpp" 80 #include "utilities/globalDefinitions.hpp" 81 #include "utilities/resourceHash.hpp" 82 #include "utilities/macros.hpp" 83 #include "utilities/xmlstream.hpp" 84 #ifdef COMPILER1 85 #include "c1/c1_Runtime1.hpp" 86 #endif 87 #if INCLUDE_JFR 88 #include "jfr/jfr.hpp" 89 #endif 90 91 // Shared stub locations 92 RuntimeStub* SharedRuntime::_wrong_method_blob; 93 RuntimeStub* SharedRuntime::_wrong_method_abstract_blob; 94 RuntimeStub* SharedRuntime::_ic_miss_blob; 95 RuntimeStub* SharedRuntime::_resolve_opt_virtual_call_blob; 96 RuntimeStub* SharedRuntime::_resolve_virtual_call_blob; 97 RuntimeStub* SharedRuntime::_resolve_static_call_blob; 98 address SharedRuntime::_resolve_static_call_entry; 99 100 DeoptimizationBlob* SharedRuntime::_deopt_blob; 101 SafepointBlob* SharedRuntime::_polling_page_vectors_safepoint_handler_blob; 102 SafepointBlob* SharedRuntime::_polling_page_safepoint_handler_blob; 103 SafepointBlob* SharedRuntime::_polling_page_return_handler_blob; 104 105 #ifdef COMPILER2 106 UncommonTrapBlob* SharedRuntime::_uncommon_trap_blob; 107 #endif // COMPILER2 108 109 nmethod* SharedRuntime::_cont_doYield_stub; 110 111 //----------------------------generate_stubs----------------------------------- 112 void SharedRuntime::generate_stubs() { 113 _wrong_method_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method), "wrong_method_stub"); 114 _wrong_method_abstract_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub"); 115 _ic_miss_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub"); 116 _resolve_opt_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C), "resolve_opt_virtual_call"); 117 _resolve_virtual_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C), "resolve_virtual_call"); 118 _resolve_static_call_blob = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C), "resolve_static_call"); 119 _resolve_static_call_entry = _resolve_static_call_blob->entry_point(); 120 121 AdapterHandlerLibrary::initialize(); 122 123 #if COMPILER2_OR_JVMCI 124 // Vectors are generated only by C2 and JVMCI. 125 bool support_wide = is_wide_vector(MaxVectorSize); 126 if (support_wide) { 127 _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP); 128 } 129 #endif // COMPILER2_OR_JVMCI 130 _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP); 131 _polling_page_return_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN); 132 133 generate_deopt_blob(); 134 135 #ifdef COMPILER2 136 generate_uncommon_trap_blob(); 137 #endif // COMPILER2 138 } 139 140 #include <math.h> 141 142 // Implementation of SharedRuntime 143 144 #ifndef PRODUCT 145 // For statistics 146 uint SharedRuntime::_ic_miss_ctr = 0; 147 uint SharedRuntime::_wrong_method_ctr = 0; 148 uint SharedRuntime::_resolve_static_ctr = 0; 149 uint SharedRuntime::_resolve_virtual_ctr = 0; 150 uint SharedRuntime::_resolve_opt_virtual_ctr = 0; 151 uint SharedRuntime::_implicit_null_throws = 0; 152 uint SharedRuntime::_implicit_div0_throws = 0; 153 154 int64_t SharedRuntime::_nof_normal_calls = 0; 155 int64_t SharedRuntime::_nof_inlined_calls = 0; 156 int64_t SharedRuntime::_nof_megamorphic_calls = 0; 157 int64_t SharedRuntime::_nof_static_calls = 0; 158 int64_t SharedRuntime::_nof_inlined_static_calls = 0; 159 int64_t SharedRuntime::_nof_interface_calls = 0; 160 int64_t SharedRuntime::_nof_inlined_interface_calls = 0; 161 162 uint SharedRuntime::_new_instance_ctr=0; 163 uint SharedRuntime::_new_array_ctr=0; 164 uint SharedRuntime::_multi2_ctr=0; 165 uint SharedRuntime::_multi3_ctr=0; 166 uint SharedRuntime::_multi4_ctr=0; 167 uint SharedRuntime::_multi5_ctr=0; 168 uint SharedRuntime::_mon_enter_stub_ctr=0; 169 uint SharedRuntime::_mon_exit_stub_ctr=0; 170 uint SharedRuntime::_mon_enter_ctr=0; 171 uint SharedRuntime::_mon_exit_ctr=0; 172 uint SharedRuntime::_partial_subtype_ctr=0; 173 uint SharedRuntime::_jbyte_array_copy_ctr=0; 174 uint SharedRuntime::_jshort_array_copy_ctr=0; 175 uint SharedRuntime::_jint_array_copy_ctr=0; 176 uint SharedRuntime::_jlong_array_copy_ctr=0; 177 uint SharedRuntime::_oop_array_copy_ctr=0; 178 uint SharedRuntime::_checkcast_array_copy_ctr=0; 179 uint SharedRuntime::_unsafe_array_copy_ctr=0; 180 uint SharedRuntime::_generic_array_copy_ctr=0; 181 uint SharedRuntime::_slow_array_copy_ctr=0; 182 uint SharedRuntime::_find_handler_ctr=0; 183 uint SharedRuntime::_rethrow_ctr=0; 184 uint SharedRuntime::_unsafe_set_memory_ctr=0; 185 186 int SharedRuntime::_ICmiss_index = 0; 187 int SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count]; 188 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count]; 189 190 191 void SharedRuntime::trace_ic_miss(address at) { 192 for (int i = 0; i < _ICmiss_index; i++) { 193 if (_ICmiss_at[i] == at) { 194 _ICmiss_count[i]++; 195 return; 196 } 197 } 198 int index = _ICmiss_index++; 199 if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1; 200 _ICmiss_at[index] = at; 201 _ICmiss_count[index] = 1; 202 } 203 204 void SharedRuntime::print_ic_miss_histogram() { 205 if (ICMissHistogram) { 206 tty->print_cr("IC Miss Histogram:"); 207 int tot_misses = 0; 208 for (int i = 0; i < _ICmiss_index; i++) { 209 tty->print_cr(" at: " INTPTR_FORMAT " nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]); 210 tot_misses += _ICmiss_count[i]; 211 } 212 tty->print_cr("Total IC misses: %7d", tot_misses); 213 } 214 } 215 #endif // PRODUCT 216 217 218 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x)) 219 return x * y; 220 JRT_END 221 222 223 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x)) 224 if (x == min_jlong && y == CONST64(-1)) { 225 return x; 226 } else { 227 return x / y; 228 } 229 JRT_END 230 231 232 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x)) 233 if (x == min_jlong && y == CONST64(-1)) { 234 return 0; 235 } else { 236 return x % y; 237 } 238 JRT_END 239 240 241 #ifdef _WIN64 242 const juint float_sign_mask = 0x7FFFFFFF; 243 const juint float_infinity = 0x7F800000; 244 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF); 245 const julong double_infinity = CONST64(0x7FF0000000000000); 246 #endif 247 248 #if !defined(X86) 249 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat x, jfloat y)) 250 #ifdef _WIN64 251 // 64-bit Windows on amd64 returns the wrong values for 252 // infinity operands. 253 juint xbits = PrimitiveConversions::cast<juint>(x); 254 juint ybits = PrimitiveConversions::cast<juint>(y); 255 // x Mod Infinity == x unless x is infinity 256 if (((xbits & float_sign_mask) != float_infinity) && 257 ((ybits & float_sign_mask) == float_infinity) ) { 258 return x; 259 } 260 return ((jfloat)fmod_winx64((double)x, (double)y)); 261 #else 262 return ((jfloat)fmod((double)x,(double)y)); 263 #endif 264 JRT_END 265 266 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y)) 267 #ifdef _WIN64 268 julong xbits = PrimitiveConversions::cast<julong>(x); 269 julong ybits = PrimitiveConversions::cast<julong>(y); 270 // x Mod Infinity == x unless x is infinity 271 if (((xbits & double_sign_mask) != double_infinity) && 272 ((ybits & double_sign_mask) == double_infinity) ) { 273 return x; 274 } 275 return ((jdouble)fmod_winx64((double)x, (double)y)); 276 #else 277 return ((jdouble)fmod((double)x,(double)y)); 278 #endif 279 JRT_END 280 #endif // !X86 281 282 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x)) 283 return (jfloat)x; 284 JRT_END 285 286 #ifdef __SOFTFP__ 287 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y)) 288 return x + y; 289 JRT_END 290 291 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y)) 292 return x - y; 293 JRT_END 294 295 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y)) 296 return x * y; 297 JRT_END 298 299 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y)) 300 return x / y; 301 JRT_END 302 303 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y)) 304 return x + y; 305 JRT_END 306 307 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y)) 308 return x - y; 309 JRT_END 310 311 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y)) 312 return x * y; 313 JRT_END 314 315 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y)) 316 return x / y; 317 JRT_END 318 319 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x)) 320 return (jdouble)x; 321 JRT_END 322 323 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x)) 324 return (jdouble)x; 325 JRT_END 326 327 JRT_LEAF(int, SharedRuntime::fcmpl(float x, float y)) 328 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan*/ 329 JRT_END 330 331 JRT_LEAF(int, SharedRuntime::fcmpg(float x, float y)) 332 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 333 JRT_END 334 335 JRT_LEAF(int, SharedRuntime::dcmpl(double x, double y)) 336 return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */ 337 JRT_END 338 339 JRT_LEAF(int, SharedRuntime::dcmpg(double x, double y)) 340 return x<y ? -1 : (x==y ? 0 : 1); /* x>y or is_nan */ 341 JRT_END 342 343 // Functions to return the opposite of the aeabi functions for nan. 344 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y)) 345 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 346 JRT_END 347 348 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y)) 349 return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 350 JRT_END 351 352 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y)) 353 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 354 JRT_END 355 356 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y)) 357 return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 358 JRT_END 359 360 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y)) 361 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 362 JRT_END 363 364 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y)) 365 return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 366 JRT_END 367 368 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y)) 369 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 370 JRT_END 371 372 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y)) 373 return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0); 374 JRT_END 375 376 // Intrinsics make gcc generate code for these. 377 float SharedRuntime::fneg(float f) { 378 return -f; 379 } 380 381 double SharedRuntime::dneg(double f) { 382 return -f; 383 } 384 385 #endif // __SOFTFP__ 386 387 #if defined(__SOFTFP__) || defined(E500V2) 388 // Intrinsics make gcc generate code for these. 389 double SharedRuntime::dabs(double f) { 390 return (f <= (double)0.0) ? (double)0.0 - f : f; 391 } 392 393 #endif 394 395 #if defined(__SOFTFP__) || defined(PPC) 396 double SharedRuntime::dsqrt(double f) { 397 return sqrt(f); 398 } 399 #endif 400 401 JRT_LEAF(jint, SharedRuntime::f2i(jfloat x)) 402 if (g_isnan(x)) 403 return 0; 404 if (x >= (jfloat) max_jint) 405 return max_jint; 406 if (x <= (jfloat) min_jint) 407 return min_jint; 408 return (jint) x; 409 JRT_END 410 411 412 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat x)) 413 if (g_isnan(x)) 414 return 0; 415 if (x >= (jfloat) max_jlong) 416 return max_jlong; 417 if (x <= (jfloat) min_jlong) 418 return min_jlong; 419 return (jlong) x; 420 JRT_END 421 422 423 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x)) 424 if (g_isnan(x)) 425 return 0; 426 if (x >= (jdouble) max_jint) 427 return max_jint; 428 if (x <= (jdouble) min_jint) 429 return min_jint; 430 return (jint) x; 431 JRT_END 432 433 434 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x)) 435 if (g_isnan(x)) 436 return 0; 437 if (x >= (jdouble) max_jlong) 438 return max_jlong; 439 if (x <= (jdouble) min_jlong) 440 return min_jlong; 441 return (jlong) x; 442 JRT_END 443 444 445 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x)) 446 return (jfloat)x; 447 JRT_END 448 449 450 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x)) 451 return (jfloat)x; 452 JRT_END 453 454 455 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x)) 456 return (jdouble)x; 457 JRT_END 458 459 460 // Exception handling across interpreter/compiler boundaries 461 // 462 // exception_handler_for_return_address(...) returns the continuation address. 463 // The continuation address is the entry point of the exception handler of the 464 // previous frame depending on the return address. 465 466 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* current, address return_address) { 467 // Note: This is called when we have unwound the frame of the callee that did 468 // throw an exception. So far, no check has been performed by the StackWatermarkSet. 469 // Notably, the stack is not walkable at this point, and hence the check must 470 // be deferred until later. Specifically, any of the handlers returned here in 471 // this function, will get dispatched to, and call deferred checks to 472 // StackWatermarkSet::after_unwind at a point where the stack is walkable. 473 assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address)); 474 assert(current->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?"); 475 476 // Reset method handle flag. 477 current->set_is_method_handle_return(false); 478 479 #if INCLUDE_JVMCI 480 // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear 481 // and other exception handler continuations do not read it 482 current->set_exception_pc(nullptr); 483 #endif // INCLUDE_JVMCI 484 485 if (Continuation::is_return_barrier_entry(return_address)) { 486 return StubRoutines::cont_returnBarrierExc(); 487 } 488 489 // The fastest case first 490 CodeBlob* blob = CodeCache::find_blob(return_address); 491 nmethod* nm = (blob != nullptr) ? blob->as_nmethod_or_null() : nullptr; 492 if (nm != nullptr) { 493 // Set flag if return address is a method handle call site. 494 current->set_is_method_handle_return(nm->is_method_handle_return(return_address)); 495 // native nmethods don't have exception handlers 496 assert(!nm->is_native_method() || nm->method()->is_continuation_enter_intrinsic(), "no exception handler"); 497 assert(nm->header_begin() != nm->exception_begin(), "no exception handler"); 498 if (nm->is_deopt_pc(return_address)) { 499 // If we come here because of a stack overflow, the stack may be 500 // unguarded. Reguard the stack otherwise if we return to the 501 // deopt blob and the stack bang causes a stack overflow we 502 // crash. 503 StackOverflow* overflow_state = current->stack_overflow_state(); 504 bool guard_pages_enabled = overflow_state->reguard_stack_if_needed(); 505 if (overflow_state->reserved_stack_activation() != current->stack_base()) { 506 overflow_state->set_reserved_stack_activation(current->stack_base()); 507 } 508 assert(guard_pages_enabled, "stack banging in deopt blob may cause crash"); 509 // The deferred StackWatermarkSet::after_unwind check will be performed in 510 // Deoptimization::fetch_unroll_info (with exec_mode == Unpack_exception) 511 return SharedRuntime::deopt_blob()->unpack_with_exception(); 512 } else { 513 // The deferred StackWatermarkSet::after_unwind check will be performed in 514 // * OptoRuntime::handle_exception_C_helper for C2 code 515 // * exception_handler_for_pc_helper via Runtime1::handle_exception_from_callee_id for C1 code 516 return nm->exception_begin(); 517 } 518 } 519 520 // Entry code 521 if (StubRoutines::returns_to_call_stub(return_address)) { 522 // The deferred StackWatermarkSet::after_unwind check will be performed in 523 // JavaCallWrapper::~JavaCallWrapper 524 return StubRoutines::catch_exception_entry(); 525 } 526 if (blob != nullptr && blob->is_upcall_stub()) { 527 return StubRoutines::upcall_stub_exception_handler(); 528 } 529 // Interpreted code 530 if (Interpreter::contains(return_address)) { 531 // The deferred StackWatermarkSet::after_unwind check will be performed in 532 // InterpreterRuntime::exception_handler_for_exception 533 return Interpreter::rethrow_exception_entry(); 534 } 535 536 guarantee(blob == nullptr || !blob->is_runtime_stub(), "caller should have skipped stub"); 537 guarantee(!VtableStubs::contains(return_address), "null exceptions in vtables should have been handled already!"); 538 539 #ifndef PRODUCT 540 { ResourceMark rm; 541 tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address)); 542 os::print_location(tty, (intptr_t)return_address); 543 tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here"); 544 tty->print_cr("b) other problem"); 545 } 546 #endif // PRODUCT 547 ShouldNotReachHere(); 548 return nullptr; 549 } 550 551 552 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* current, address return_address)) 553 return raw_exception_handler_for_return_address(current, return_address); 554 JRT_END 555 556 557 address SharedRuntime::get_poll_stub(address pc) { 558 address stub; 559 // Look up the code blob 560 CodeBlob *cb = CodeCache::find_blob(pc); 561 562 // Should be an nmethod 563 guarantee(cb != nullptr && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod"); 564 565 // Look up the relocation information 566 assert(cb->as_nmethod()->is_at_poll_or_poll_return(pc), 567 "safepoint polling: type must be poll at pc " INTPTR_FORMAT, p2i(pc)); 568 569 #ifdef ASSERT 570 if (!((NativeInstruction*)pc)->is_safepoint_poll()) { 571 tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc)); 572 Disassembler::decode(cb); 573 fatal("Only polling locations are used for safepoint"); 574 } 575 #endif 576 577 bool at_poll_return = cb->as_nmethod()->is_at_poll_return(pc); 578 bool has_wide_vectors = cb->as_nmethod()->has_wide_vectors(); 579 if (at_poll_return) { 580 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 581 "polling page return stub not created yet"); 582 stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 583 } else if (has_wide_vectors) { 584 assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != nullptr, 585 "polling page vectors safepoint stub not created yet"); 586 stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point(); 587 } else { 588 assert(SharedRuntime::polling_page_safepoint_handler_blob() != nullptr, 589 "polling page safepoint stub not created yet"); 590 stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point(); 591 } 592 log_debug(safepoint)("... found polling page %s exception at pc = " 593 INTPTR_FORMAT ", stub =" INTPTR_FORMAT, 594 at_poll_return ? "return" : "loop", 595 (intptr_t)pc, (intptr_t)stub); 596 return stub; 597 } 598 599 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Handle h_exception) { 600 if (JvmtiExport::can_post_on_exceptions()) { 601 vframeStream vfst(current, true); 602 methodHandle method = methodHandle(current, vfst.method()); 603 address bcp = method()->bcp_from(vfst.bci()); 604 JvmtiExport::post_exception_throw(current, method(), bcp, h_exception()); 605 } 606 607 #if INCLUDE_JVMCI 608 if (EnableJVMCI && UseJVMCICompiler) { 609 vframeStream vfst(current, true); 610 methodHandle method = methodHandle(current, vfst.method()); 611 int bci = vfst.bci(); 612 MethodData* trap_mdo = method->method_data(); 613 if (trap_mdo != nullptr) { 614 // Set exception_seen if the exceptional bytecode is an invoke 615 Bytecode_invoke call = Bytecode_invoke_check(method, bci); 616 if (call.is_valid()) { 617 ResourceMark rm(current); 618 619 // Lock to read ProfileData, and ensure lock is not broken by a safepoint 620 MutexLocker ml(trap_mdo->extra_data_lock(), Mutex::_no_safepoint_check_flag); 621 622 ProfileData* pdata = trap_mdo->allocate_bci_to_data(bci, nullptr); 623 if (pdata != nullptr && pdata->is_BitData()) { 624 BitData* bit_data = (BitData*) pdata; 625 bit_data->set_exception_seen(); 626 } 627 } 628 } 629 } 630 #endif 631 632 Exceptions::_throw(current, __FILE__, __LINE__, h_exception); 633 } 634 635 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread* current, Symbol* name, const char *message) { 636 Handle h_exception = Exceptions::new_exception(current, name, message); 637 throw_and_post_jvmti_exception(current, h_exception); 638 } 639 640 #if INCLUDE_JVMTI 641 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_start(oopDesc* vt, jboolean hide, JavaThread* current)) 642 assert(hide == JNI_FALSE, "must be VTMS transition finish"); 643 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 644 JvmtiVTMSTransitionDisabler::VTMS_vthread_start(vthread); 645 JNIHandles::destroy_local(vthread); 646 JRT_END 647 648 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_end(oopDesc* vt, jboolean hide, JavaThread* current)) 649 assert(hide == JNI_TRUE, "must be VTMS transition start"); 650 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 651 JvmtiVTMSTransitionDisabler::VTMS_vthread_end(vthread); 652 JNIHandles::destroy_local(vthread); 653 JRT_END 654 655 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_mount(oopDesc* vt, jboolean hide, JavaThread* current)) 656 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 657 JvmtiVTMSTransitionDisabler::VTMS_vthread_mount(vthread, hide); 658 JNIHandles::destroy_local(vthread); 659 JRT_END 660 661 JRT_ENTRY(void, SharedRuntime::notify_jvmti_vthread_unmount(oopDesc* vt, jboolean hide, JavaThread* current)) 662 jobject vthread = JNIHandles::make_local(const_cast<oopDesc*>(vt)); 663 JvmtiVTMSTransitionDisabler::VTMS_vthread_unmount(vthread, hide); 664 JNIHandles::destroy_local(vthread); 665 JRT_END 666 #endif // INCLUDE_JVMTI 667 668 // The interpreter code to call this tracing function is only 669 // called/generated when UL is on for redefine, class and has the right level 670 // and tags. Since obsolete methods are never compiled, we don't have 671 // to modify the compilers to generate calls to this function. 672 // 673 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry( 674 JavaThread* thread, Method* method)) 675 if (method->is_obsolete()) { 676 // We are calling an obsolete method, but this is not necessarily 677 // an error. Our method could have been redefined just after we 678 // fetched the Method* from the constant pool. 679 ResourceMark rm; 680 log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string()); 681 } 682 return 0; 683 JRT_END 684 685 // ret_pc points into caller; we are returning caller's exception handler 686 // for given exception 687 // Note that the implementation of this method assumes it's only called when an exception has actually occured 688 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception, 689 bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) { 690 assert(nm != nullptr, "must exist"); 691 ResourceMark rm; 692 693 #if INCLUDE_JVMCI 694 if (nm->is_compiled_by_jvmci()) { 695 // lookup exception handler for this pc 696 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 697 ExceptionHandlerTable table(nm); 698 HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0); 699 if (t != nullptr) { 700 return nm->code_begin() + t->pco(); 701 } else { 702 return Deoptimization::deoptimize_for_missing_exception_handler(nm); 703 } 704 } 705 #endif // INCLUDE_JVMCI 706 707 ScopeDesc* sd = nm->scope_desc_at(ret_pc); 708 // determine handler bci, if any 709 EXCEPTION_MARK; 710 711 int handler_bci = -1; 712 int scope_depth = 0; 713 if (!force_unwind) { 714 int bci = sd->bci(); 715 bool recursive_exception = false; 716 do { 717 bool skip_scope_increment = false; 718 // exception handler lookup 719 Klass* ek = exception->klass(); 720 methodHandle mh(THREAD, sd->method()); 721 handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD); 722 if (HAS_PENDING_EXCEPTION) { 723 recursive_exception = true; 724 // We threw an exception while trying to find the exception handler. 725 // Transfer the new exception to the exception handle which will 726 // be set into thread local storage, and do another lookup for an 727 // exception handler for this exception, this time starting at the 728 // BCI of the exception handler which caused the exception to be 729 // thrown (bugs 4307310 and 4546590). Set "exception" reference 730 // argument to ensure that the correct exception is thrown (4870175). 731 recursive_exception_occurred = true; 732 exception = Handle(THREAD, PENDING_EXCEPTION); 733 CLEAR_PENDING_EXCEPTION; 734 if (handler_bci >= 0) { 735 bci = handler_bci; 736 handler_bci = -1; 737 skip_scope_increment = true; 738 } 739 } 740 else { 741 recursive_exception = false; 742 } 743 if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) { 744 sd = sd->sender(); 745 if (sd != nullptr) { 746 bci = sd->bci(); 747 } 748 ++scope_depth; 749 } 750 } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != nullptr)); 751 } 752 753 // found handling method => lookup exception handler 754 int catch_pco = pointer_delta_as_int(ret_pc, nm->code_begin()); 755 756 ExceptionHandlerTable table(nm); 757 HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth); 758 if (t == nullptr && (nm->is_compiled_by_c1() || handler_bci != -1)) { 759 // Allow abbreviated catch tables. The idea is to allow a method 760 // to materialize its exceptions without committing to the exact 761 // routing of exceptions. In particular this is needed for adding 762 // a synthetic handler to unlock monitors when inlining 763 // synchronized methods since the unlock path isn't represented in 764 // the bytecodes. 765 t = table.entry_for(catch_pco, -1, 0); 766 } 767 768 #ifdef COMPILER1 769 if (t == nullptr && nm->is_compiled_by_c1()) { 770 assert(nm->unwind_handler_begin() != nullptr, ""); 771 return nm->unwind_handler_begin(); 772 } 773 #endif 774 775 if (t == nullptr) { 776 ttyLocker ttyl; 777 tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d, catch_pco: %d", p2i(ret_pc), handler_bci, catch_pco); 778 tty->print_cr(" Exception:"); 779 exception->print(); 780 tty->cr(); 781 tty->print_cr(" Compiled exception table :"); 782 table.print(); 783 nm->print(); 784 nm->print_code(); 785 guarantee(false, "missing exception handler"); 786 return nullptr; 787 } 788 789 if (handler_bci != -1) { // did we find a handler in this method? 790 sd->method()->set_exception_handler_entered(handler_bci); // profile 791 } 792 return nm->code_begin() + t->pco(); 793 } 794 795 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* current)) 796 // These errors occur only at call sites 797 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_AbstractMethodError()); 798 JRT_END 799 800 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* current)) 801 // These errors occur only at call sites 802 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub"); 803 JRT_END 804 805 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* current)) 806 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_ArithmeticException(), "/ by zero"); 807 JRT_END 808 809 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* current)) 810 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 811 JRT_END 812 813 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* current)) 814 // This entry point is effectively only used for NullPointerExceptions which occur at inline 815 // cache sites (when the callee activation is not yet set up) so we are at a call site 816 throw_and_post_jvmti_exception(current, vmSymbols::java_lang_NullPointerException(), nullptr); 817 JRT_END 818 819 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* current)) 820 throw_StackOverflowError_common(current, false); 821 JRT_END 822 823 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* current)) 824 throw_StackOverflowError_common(current, true); 825 JRT_END 826 827 void SharedRuntime::throw_StackOverflowError_common(JavaThread* current, bool delayed) { 828 // We avoid using the normal exception construction in this case because 829 // it performs an upcall to Java, and we're already out of stack space. 830 JavaThread* THREAD = current; // For exception macros. 831 Klass* k = vmClasses::StackOverflowError_klass(); 832 oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK); 833 if (delayed) { 834 java_lang_Throwable::set_message(exception_oop, 835 Universe::delayed_stack_overflow_error_message()); 836 } 837 Handle exception (current, exception_oop); 838 if (StackTraceInThrowable) { 839 java_lang_Throwable::fill_in_stack_trace(exception); 840 } 841 // Remove the ScopedValue bindings in case we got a 842 // StackOverflowError while we were trying to remove ScopedValue 843 // bindings. 844 current->clear_scopedValueBindings(); 845 // Increment counter for hs_err file reporting 846 Atomic::inc(&Exceptions::_stack_overflow_errors); 847 throw_and_post_jvmti_exception(current, exception); 848 } 849 850 address SharedRuntime::continuation_for_implicit_exception(JavaThread* current, 851 address pc, 852 ImplicitExceptionKind exception_kind) 853 { 854 address target_pc = nullptr; 855 856 if (Interpreter::contains(pc)) { 857 switch (exception_kind) { 858 case IMPLICIT_NULL: return Interpreter::throw_NullPointerException_entry(); 859 case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry(); 860 case STACK_OVERFLOW: return Interpreter::throw_StackOverflowError_entry(); 861 default: ShouldNotReachHere(); 862 } 863 } else { 864 switch (exception_kind) { 865 case STACK_OVERFLOW: { 866 // Stack overflow only occurs upon frame setup; the callee is 867 // going to be unwound. Dispatch to a shared runtime stub 868 // which will cause the StackOverflowError to be fabricated 869 // and processed. 870 // Stack overflow should never occur during deoptimization: 871 // the compiled method bangs the stack by as much as the 872 // interpreter would need in case of a deoptimization. The 873 // deoptimization blob and uncommon trap blob bang the stack 874 // in a debug VM to verify the correctness of the compiled 875 // method stack banging. 876 assert(current->deopt_mark() == nullptr, "no stack overflow from deopt blob/uncommon trap"); 877 Events::log_exception(current, "StackOverflowError at " INTPTR_FORMAT, p2i(pc)); 878 return StubRoutines::throw_StackOverflowError_entry(); 879 } 880 881 case IMPLICIT_NULL: { 882 if (VtableStubs::contains(pc)) { 883 // We haven't yet entered the callee frame. Fabricate an 884 // exception and begin dispatching it in the caller. Since 885 // the caller was at a call site, it's safe to destroy all 886 // caller-saved registers, as these entry points do. 887 VtableStub* vt_stub = VtableStubs::stub_containing(pc); 888 889 // If vt_stub is null, then return null to signal handler to report the SEGV error. 890 if (vt_stub == nullptr) return nullptr; 891 892 if (vt_stub->is_abstract_method_error(pc)) { 893 assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs"); 894 Events::log_exception(current, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc)); 895 // Instead of throwing the abstract method error here directly, we re-resolve 896 // and will throw the AbstractMethodError during resolve. As a result, we'll 897 // get a more detailed error message. 898 return SharedRuntime::get_handle_wrong_method_stub(); 899 } else { 900 Events::log_exception(current, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc)); 901 // Assert that the signal comes from the expected location in stub code. 902 assert(vt_stub->is_null_pointer_exception(pc), 903 "obtained signal from unexpected location in stub code"); 904 return StubRoutines::throw_NullPointerException_at_call_entry(); 905 } 906 } else { 907 CodeBlob* cb = CodeCache::find_blob(pc); 908 909 // If code blob is null, then return null to signal handler to report the SEGV error. 910 if (cb == nullptr) return nullptr; 911 912 // Exception happened in CodeCache. Must be either: 913 // 1. Inline-cache check in C2I handler blob, 914 // 2. Inline-cache check in nmethod, or 915 // 3. Implicit null exception in nmethod 916 917 if (!cb->is_nmethod()) { 918 bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(); 919 if (!is_in_blob) { 920 // Allow normal crash reporting to handle this 921 return nullptr; 922 } 923 Events::log_exception(current, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc)); 924 // There is no handler here, so we will simply unwind. 925 return StubRoutines::throw_NullPointerException_at_call_entry(); 926 } 927 928 // Otherwise, it's a compiled method. Consult its exception handlers. 929 nmethod* nm = cb->as_nmethod(); 930 if (nm->inlinecache_check_contains(pc)) { 931 // exception happened inside inline-cache check code 932 // => the nmethod is not yet active (i.e., the frame 933 // is not set up yet) => use return address pushed by 934 // caller => don't push another return address 935 Events::log_exception(current, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc)); 936 return StubRoutines::throw_NullPointerException_at_call_entry(); 937 } 938 939 if (nm->method()->is_method_handle_intrinsic()) { 940 // exception happened inside MH dispatch code, similar to a vtable stub 941 Events::log_exception(current, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc)); 942 return StubRoutines::throw_NullPointerException_at_call_entry(); 943 } 944 945 #ifndef PRODUCT 946 _implicit_null_throws++; 947 #endif 948 target_pc = nm->continuation_for_implicit_null_exception(pc); 949 // If there's an unexpected fault, target_pc might be null, 950 // in which case we want to fall through into the normal 951 // error handling code. 952 } 953 954 break; // fall through 955 } 956 957 958 case IMPLICIT_DIVIDE_BY_ZERO: { 959 nmethod* nm = CodeCache::find_nmethod(pc); 960 guarantee(nm != nullptr, "must have containing compiled method for implicit division-by-zero exceptions"); 961 #ifndef PRODUCT 962 _implicit_div0_throws++; 963 #endif 964 target_pc = nm->continuation_for_implicit_div0_exception(pc); 965 // If there's an unexpected fault, target_pc might be null, 966 // in which case we want to fall through into the normal 967 // error handling code. 968 break; // fall through 969 } 970 971 default: ShouldNotReachHere(); 972 } 973 974 assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind"); 975 976 if (exception_kind == IMPLICIT_NULL) { 977 #ifndef PRODUCT 978 // for AbortVMOnException flag 979 Exceptions::debug_check_abort("java.lang.NullPointerException"); 980 #endif //PRODUCT 981 Events::log_exception(current, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 982 } else { 983 #ifndef PRODUCT 984 // for AbortVMOnException flag 985 Exceptions::debug_check_abort("java.lang.ArithmeticException"); 986 #endif //PRODUCT 987 Events::log_exception(current, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc)); 988 } 989 return target_pc; 990 } 991 992 ShouldNotReachHere(); 993 return nullptr; 994 } 995 996 997 /** 998 * Throws an java/lang/UnsatisfiedLinkError. The address of this method is 999 * installed in the native function entry of all native Java methods before 1000 * they get linked to their actual native methods. 1001 * 1002 * \note 1003 * This method actually never gets called! The reason is because 1004 * the interpreter's native entries call NativeLookup::lookup() which 1005 * throws the exception when the lookup fails. The exception is then 1006 * caught and forwarded on the return from NativeLookup::lookup() call 1007 * before the call to the native function. This might change in the future. 1008 */ 1009 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...)) 1010 { 1011 // We return a bad value here to make sure that the exception is 1012 // forwarded before we look at the return value. 1013 THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badAddress); 1014 } 1015 JNI_END 1016 1017 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() { 1018 return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error); 1019 } 1020 1021 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* current, oopDesc* obj)) 1022 #if INCLUDE_JVMCI 1023 if (!obj->klass()->has_finalizer()) { 1024 return; 1025 } 1026 #endif // INCLUDE_JVMCI 1027 assert(oopDesc::is_oop(obj), "must be a valid oop"); 1028 assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise"); 1029 InstanceKlass::register_finalizer(instanceOop(obj), CHECK); 1030 JRT_END 1031 1032 jlong SharedRuntime::get_java_tid(JavaThread* thread) { 1033 assert(thread != nullptr, "No thread"); 1034 if (thread == nullptr) { 1035 return 0; 1036 } 1037 guarantee(Thread::current() != thread || thread->is_oop_safe(), 1038 "current cannot touch oops after its GC barrier is detached."); 1039 oop obj = thread->threadObj(); 1040 return (obj == nullptr) ? 0 : java_lang_Thread::thread_id(obj); 1041 } 1042 1043 /** 1044 * This function ought to be a void function, but cannot be because 1045 * it gets turned into a tail-call on sparc, which runs into dtrace bug 1046 * 6254741. Once that is fixed we can remove the dummy return value. 1047 */ 1048 int SharedRuntime::dtrace_object_alloc(oopDesc* o) { 1049 return dtrace_object_alloc(JavaThread::current(), o, o->size()); 1050 } 1051 1052 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o) { 1053 return dtrace_object_alloc(thread, o, o->size()); 1054 } 1055 1056 int SharedRuntime::dtrace_object_alloc(JavaThread* thread, oopDesc* o, size_t size) { 1057 assert(DTraceAllocProbes, "wrong call"); 1058 Klass* klass = o->klass(); 1059 Symbol* name = klass->name(); 1060 HOTSPOT_OBJECT_ALLOC( 1061 get_java_tid(thread), 1062 (char *) name->bytes(), name->utf8_length(), size * HeapWordSize); 1063 return 0; 1064 } 1065 1066 JRT_LEAF(int, SharedRuntime::dtrace_method_entry( 1067 JavaThread* current, Method* method)) 1068 assert(current == JavaThread::current(), "pre-condition"); 1069 1070 assert(DTraceMethodProbes, "wrong call"); 1071 Symbol* kname = method->klass_name(); 1072 Symbol* name = method->name(); 1073 Symbol* sig = method->signature(); 1074 HOTSPOT_METHOD_ENTRY( 1075 get_java_tid(current), 1076 (char *) kname->bytes(), kname->utf8_length(), 1077 (char *) name->bytes(), name->utf8_length(), 1078 (char *) sig->bytes(), sig->utf8_length()); 1079 return 0; 1080 JRT_END 1081 1082 JRT_LEAF(int, SharedRuntime::dtrace_method_exit( 1083 JavaThread* current, Method* method)) 1084 assert(current == JavaThread::current(), "pre-condition"); 1085 assert(DTraceMethodProbes, "wrong call"); 1086 Symbol* kname = method->klass_name(); 1087 Symbol* name = method->name(); 1088 Symbol* sig = method->signature(); 1089 HOTSPOT_METHOD_RETURN( 1090 get_java_tid(current), 1091 (char *) kname->bytes(), kname->utf8_length(), 1092 (char *) name->bytes(), name->utf8_length(), 1093 (char *) sig->bytes(), sig->utf8_length()); 1094 return 0; 1095 JRT_END 1096 1097 1098 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode) 1099 // for a call current in progress, i.e., arguments has been pushed on stack 1100 // put callee has not been invoked yet. Used by: resolve virtual/static, 1101 // vtable updates, etc. Caller frame must be compiled. 1102 Handle SharedRuntime::find_callee_info(Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) { 1103 JavaThread* current = THREAD; 1104 ResourceMark rm(current); 1105 1106 // last java frame on stack (which includes native call frames) 1107 vframeStream vfst(current, true); // Do not skip and javaCalls 1108 1109 return find_callee_info_helper(vfst, bc, callinfo, THREAD); 1110 } 1111 1112 Method* SharedRuntime::extract_attached_method(vframeStream& vfst) { 1113 nmethod* caller = vfst.nm(); 1114 1115 address pc = vfst.frame_pc(); 1116 { // Get call instruction under lock because another thread may be busy patching it. 1117 CompiledICLocker ic_locker(caller); 1118 return caller->attached_method_before_pc(pc); 1119 } 1120 return nullptr; 1121 } 1122 1123 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode 1124 // for a call current in progress, i.e., arguments has been pushed on stack 1125 // but callee has not been invoked yet. Caller frame must be compiled. 1126 Handle SharedRuntime::find_callee_info_helper(vframeStream& vfst, Bytecodes::Code& bc, 1127 CallInfo& callinfo, TRAPS) { 1128 Handle receiver; 1129 Handle nullHandle; // create a handy null handle for exception returns 1130 JavaThread* current = THREAD; 1131 1132 assert(!vfst.at_end(), "Java frame must exist"); 1133 1134 // Find caller and bci from vframe 1135 methodHandle caller(current, vfst.method()); 1136 int bci = vfst.bci(); 1137 1138 if (caller->is_continuation_enter_intrinsic()) { 1139 bc = Bytecodes::_invokestatic; 1140 LinkResolver::resolve_continuation_enter(callinfo, CHECK_NH); 1141 return receiver; 1142 } 1143 1144 Bytecode_invoke bytecode(caller, bci); 1145 int bytecode_index = bytecode.index(); 1146 bc = bytecode.invoke_code(); 1147 1148 methodHandle attached_method(current, extract_attached_method(vfst)); 1149 if (attached_method.not_null()) { 1150 Method* callee = bytecode.static_target(CHECK_NH); 1151 vmIntrinsics::ID id = callee->intrinsic_id(); 1152 // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call, 1153 // it attaches statically resolved method to the call site. 1154 if (MethodHandles::is_signature_polymorphic(id) && 1155 MethodHandles::is_signature_polymorphic_intrinsic(id)) { 1156 bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id); 1157 1158 // Adjust invocation mode according to the attached method. 1159 switch (bc) { 1160 case Bytecodes::_invokevirtual: 1161 if (attached_method->method_holder()->is_interface()) { 1162 bc = Bytecodes::_invokeinterface; 1163 } 1164 break; 1165 case Bytecodes::_invokeinterface: 1166 if (!attached_method->method_holder()->is_interface()) { 1167 bc = Bytecodes::_invokevirtual; 1168 } 1169 break; 1170 case Bytecodes::_invokehandle: 1171 if (!MethodHandles::is_signature_polymorphic_method(attached_method())) { 1172 bc = attached_method->is_static() ? Bytecodes::_invokestatic 1173 : Bytecodes::_invokevirtual; 1174 } 1175 break; 1176 default: 1177 break; 1178 } 1179 } 1180 } 1181 1182 assert(bc != Bytecodes::_illegal, "not initialized"); 1183 1184 bool has_receiver = bc != Bytecodes::_invokestatic && 1185 bc != Bytecodes::_invokedynamic && 1186 bc != Bytecodes::_invokehandle; 1187 1188 // Find receiver for non-static call 1189 if (has_receiver) { 1190 // This register map must be update since we need to find the receiver for 1191 // compiled frames. The receiver might be in a register. 1192 RegisterMap reg_map2(current, 1193 RegisterMap::UpdateMap::include, 1194 RegisterMap::ProcessFrames::include, 1195 RegisterMap::WalkContinuation::skip); 1196 frame stubFrame = current->last_frame(); 1197 // Caller-frame is a compiled frame 1198 frame callerFrame = stubFrame.sender(®_map2); 1199 1200 if (attached_method.is_null()) { 1201 Method* callee = bytecode.static_target(CHECK_NH); 1202 if (callee == nullptr) { 1203 THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle); 1204 } 1205 } 1206 1207 // Retrieve from a compiled argument list 1208 receiver = Handle(current, callerFrame.retrieve_receiver(®_map2)); 1209 assert(oopDesc::is_oop_or_null(receiver()), ""); 1210 1211 if (receiver.is_null()) { 1212 THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle); 1213 } 1214 } 1215 1216 // Resolve method 1217 if (attached_method.not_null()) { 1218 // Parameterized by attached method. 1219 LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH); 1220 } else { 1221 // Parameterized by bytecode. 1222 constantPoolHandle constants(current, caller->constants()); 1223 LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH); 1224 } 1225 1226 #ifdef ASSERT 1227 // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls 1228 if (has_receiver) { 1229 assert(receiver.not_null(), "should have thrown exception"); 1230 Klass* receiver_klass = receiver->klass(); 1231 Klass* rk = nullptr; 1232 if (attached_method.not_null()) { 1233 // In case there's resolved method attached, use its holder during the check. 1234 rk = attached_method->method_holder(); 1235 } else { 1236 // Klass is already loaded. 1237 constantPoolHandle constants(current, caller->constants()); 1238 rk = constants->klass_ref_at(bytecode_index, bc, CHECK_NH); 1239 } 1240 Klass* static_receiver_klass = rk; 1241 assert(receiver_klass->is_subtype_of(static_receiver_klass), 1242 "actual receiver must be subclass of static receiver klass"); 1243 if (receiver_klass->is_instance_klass()) { 1244 if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) { 1245 tty->print_cr("ERROR: Klass not yet initialized!!"); 1246 receiver_klass->print(); 1247 } 1248 assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized"); 1249 } 1250 } 1251 #endif 1252 1253 return receiver; 1254 } 1255 1256 methodHandle SharedRuntime::find_callee_method(TRAPS) { 1257 JavaThread* current = THREAD; 1258 ResourceMark rm(current); 1259 // We need first to check if any Java activations (compiled, interpreted) 1260 // exist on the stack since last JavaCall. If not, we need 1261 // to get the target method from the JavaCall wrapper. 1262 vframeStream vfst(current, true); // Do not skip any javaCalls 1263 methodHandle callee_method; 1264 if (vfst.at_end()) { 1265 // No Java frames were found on stack since we did the JavaCall. 1266 // Hence the stack can only contain an entry_frame. We need to 1267 // find the target method from the stub frame. 1268 RegisterMap reg_map(current, 1269 RegisterMap::UpdateMap::skip, 1270 RegisterMap::ProcessFrames::include, 1271 RegisterMap::WalkContinuation::skip); 1272 frame fr = current->last_frame(); 1273 assert(fr.is_runtime_frame(), "must be a runtimeStub"); 1274 fr = fr.sender(®_map); 1275 assert(fr.is_entry_frame(), "must be"); 1276 // fr is now pointing to the entry frame. 1277 callee_method = methodHandle(current, fr.entry_frame_call_wrapper()->callee_method()); 1278 } else { 1279 Bytecodes::Code bc; 1280 CallInfo callinfo; 1281 find_callee_info_helper(vfst, bc, callinfo, CHECK_(methodHandle())); 1282 callee_method = methodHandle(current, callinfo.selected_method()); 1283 } 1284 assert(callee_method()->is_method(), "must be"); 1285 return callee_method; 1286 } 1287 1288 // Resolves a call. 1289 methodHandle SharedRuntime::resolve_helper(bool is_virtual, bool is_optimized, TRAPS) { 1290 JavaThread* current = THREAD; 1291 ResourceMark rm(current); 1292 RegisterMap cbl_map(current, 1293 RegisterMap::UpdateMap::skip, 1294 RegisterMap::ProcessFrames::include, 1295 RegisterMap::WalkContinuation::skip); 1296 frame caller_frame = current->last_frame().sender(&cbl_map); 1297 1298 CodeBlob* caller_cb = caller_frame.cb(); 1299 guarantee(caller_cb != nullptr && caller_cb->is_nmethod(), "must be called from compiled method"); 1300 nmethod* caller_nm = caller_cb->as_nmethod(); 1301 1302 // determine call info & receiver 1303 // note: a) receiver is null for static calls 1304 // b) an exception is thrown if receiver is null for non-static calls 1305 CallInfo call_info; 1306 Bytecodes::Code invoke_code = Bytecodes::_illegal; 1307 Handle receiver = find_callee_info(invoke_code, call_info, CHECK_(methodHandle())); 1308 1309 NoSafepointVerifier nsv; 1310 1311 methodHandle callee_method(current, call_info.selected_method()); 1312 1313 assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) || 1314 (!is_virtual && invoke_code == Bytecodes::_invokespecial) || 1315 (!is_virtual && invoke_code == Bytecodes::_invokehandle ) || 1316 (!is_virtual && invoke_code == Bytecodes::_invokedynamic) || 1317 ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode"); 1318 1319 assert(!caller_nm->is_unloading(), "It should not be unloading"); 1320 1321 #ifndef PRODUCT 1322 // tracing/debugging/statistics 1323 uint *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) : 1324 (is_virtual) ? (&_resolve_virtual_ctr) : 1325 (&_resolve_static_ctr); 1326 Atomic::inc(addr); 1327 1328 if (TraceCallFixup) { 1329 ResourceMark rm(current); 1330 tty->print("resolving %s%s (%s) call to", 1331 (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static", 1332 Bytecodes::name(invoke_code)); 1333 callee_method->print_short_name(tty); 1334 tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, 1335 p2i(caller_frame.pc()), p2i(callee_method->code())); 1336 } 1337 #endif 1338 1339 if (invoke_code == Bytecodes::_invokestatic) { 1340 assert(callee_method->method_holder()->is_initialized() || 1341 callee_method->method_holder()->is_init_thread(current), 1342 "invalid class initialization state for invoke_static"); 1343 if (!VM_Version::supports_fast_class_init_checks() && callee_method->needs_clinit_barrier()) { 1344 // In order to keep class initialization check, do not patch call 1345 // site for static call when the class is not fully initialized. 1346 // Proper check is enforced by call site re-resolution on every invocation. 1347 // 1348 // When fast class initialization checks are supported (VM_Version::supports_fast_class_init_checks() == true), 1349 // explicit class initialization check is put in nmethod entry (VEP). 1350 assert(callee_method->method_holder()->is_linked(), "must be"); 1351 return callee_method; 1352 } 1353 } 1354 1355 1356 // JSR 292 key invariant: 1357 // If the resolved method is a MethodHandle invoke target, the call 1358 // site must be a MethodHandle call site, because the lambda form might tail-call 1359 // leaving the stack in a state unknown to either caller or callee 1360 1361 // Compute entry points. The computation of the entry points is independent of 1362 // patching the call. 1363 1364 // Make sure the callee nmethod does not get deoptimized and removed before 1365 // we are done patching the code. 1366 1367 1368 CompiledICLocker ml(caller_nm); 1369 if (is_virtual && !is_optimized) { 1370 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1371 inline_cache->update(&call_info, receiver->klass()); 1372 } else { 1373 // Callsite is a direct call - set it to the destination method 1374 CompiledDirectCall* callsite = CompiledDirectCall::before(caller_frame.pc()); 1375 callsite->set(callee_method); 1376 } 1377 1378 return callee_method; 1379 } 1380 1381 // Inline caches exist only in compiled code 1382 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* current)) 1383 #ifdef ASSERT 1384 RegisterMap reg_map(current, 1385 RegisterMap::UpdateMap::skip, 1386 RegisterMap::ProcessFrames::include, 1387 RegisterMap::WalkContinuation::skip); 1388 frame stub_frame = current->last_frame(); 1389 assert(stub_frame.is_runtime_frame(), "sanity check"); 1390 frame caller_frame = stub_frame.sender(®_map); 1391 assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame() && !caller_frame.is_upcall_stub_frame(), "unexpected frame"); 1392 #endif /* ASSERT */ 1393 1394 methodHandle callee_method; 1395 JRT_BLOCK 1396 callee_method = SharedRuntime::handle_ic_miss_helper(CHECK_NULL); 1397 // Return Method* through TLS 1398 current->set_vm_result_2(callee_method()); 1399 JRT_BLOCK_END 1400 // return compiled code entry point after potential safepoints 1401 return get_resolved_entry(current, callee_method); 1402 JRT_END 1403 1404 1405 // Handle call site that has been made non-entrant 1406 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* current)) 1407 // 6243940 We might end up in here if the callee is deoptimized 1408 // as we race to call it. We don't want to take a safepoint if 1409 // the caller was interpreted because the caller frame will look 1410 // interpreted to the stack walkers and arguments are now 1411 // "compiled" so it is much better to make this transition 1412 // invisible to the stack walking code. The i2c path will 1413 // place the callee method in the callee_target. It is stashed 1414 // there because if we try and find the callee by normal means a 1415 // safepoint is possible and have trouble gc'ing the compiled args. 1416 RegisterMap reg_map(current, 1417 RegisterMap::UpdateMap::skip, 1418 RegisterMap::ProcessFrames::include, 1419 RegisterMap::WalkContinuation::skip); 1420 frame stub_frame = current->last_frame(); 1421 assert(stub_frame.is_runtime_frame(), "sanity check"); 1422 frame caller_frame = stub_frame.sender(®_map); 1423 1424 if (caller_frame.is_interpreted_frame() || 1425 caller_frame.is_entry_frame() || 1426 caller_frame.is_upcall_stub_frame()) { 1427 Method* callee = current->callee_target(); 1428 guarantee(callee != nullptr && callee->is_method(), "bad handshake"); 1429 current->set_vm_result_2(callee); 1430 current->set_callee_target(nullptr); 1431 if (caller_frame.is_entry_frame() && VM_Version::supports_fast_class_init_checks()) { 1432 // Bypass class initialization checks in c2i when caller is in native. 1433 // JNI calls to static methods don't have class initialization checks. 1434 // Fast class initialization checks are present in c2i adapters and call into 1435 // SharedRuntime::handle_wrong_method() on the slow path. 1436 // 1437 // JVM upcalls may land here as well, but there's a proper check present in 1438 // LinkResolver::resolve_static_call (called from JavaCalls::call_static), 1439 // so bypassing it in c2i adapter is benign. 1440 return callee->get_c2i_no_clinit_check_entry(); 1441 } else { 1442 return callee->get_c2i_entry(); 1443 } 1444 } 1445 1446 // Must be compiled to compiled path which is safe to stackwalk 1447 methodHandle callee_method; 1448 JRT_BLOCK 1449 // Force resolving of caller (if we called from compiled frame) 1450 callee_method = SharedRuntime::reresolve_call_site(CHECK_NULL); 1451 current->set_vm_result_2(callee_method()); 1452 JRT_BLOCK_END 1453 // return compiled code entry point after potential safepoints 1454 return get_resolved_entry(current, callee_method); 1455 JRT_END 1456 1457 // Handle abstract method call 1458 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* current)) 1459 // Verbose error message for AbstractMethodError. 1460 // Get the called method from the invoke bytecode. 1461 vframeStream vfst(current, true); 1462 assert(!vfst.at_end(), "Java frame must exist"); 1463 methodHandle caller(current, vfst.method()); 1464 Bytecode_invoke invoke(caller, vfst.bci()); 1465 DEBUG_ONLY( invoke.verify(); ) 1466 1467 // Find the compiled caller frame. 1468 RegisterMap reg_map(current, 1469 RegisterMap::UpdateMap::include, 1470 RegisterMap::ProcessFrames::include, 1471 RegisterMap::WalkContinuation::skip); 1472 frame stubFrame = current->last_frame(); 1473 assert(stubFrame.is_runtime_frame(), "must be"); 1474 frame callerFrame = stubFrame.sender(®_map); 1475 assert(callerFrame.is_compiled_frame(), "must be"); 1476 1477 // Install exception and return forward entry. 1478 address res = StubRoutines::throw_AbstractMethodError_entry(); 1479 JRT_BLOCK 1480 methodHandle callee(current, invoke.static_target(current)); 1481 if (!callee.is_null()) { 1482 oop recv = callerFrame.retrieve_receiver(®_map); 1483 Klass *recv_klass = (recv != nullptr) ? recv->klass() : nullptr; 1484 res = StubRoutines::forward_exception_entry(); 1485 LinkResolver::throw_abstract_method_error(callee, recv_klass, CHECK_(res)); 1486 } 1487 JRT_BLOCK_END 1488 return res; 1489 JRT_END 1490 1491 // return verified_code_entry if interp_only_mode is not set for the current thread; 1492 // otherwise return c2i entry. 1493 address SharedRuntime::get_resolved_entry(JavaThread* current, methodHandle callee_method) { 1494 if (current->is_interp_only_mode() && !callee_method->is_special_native_intrinsic()) { 1495 // In interp_only_mode we need to go to the interpreted entry 1496 // The c2i won't patch in this mode -- see fixup_callers_callsite 1497 return callee_method->get_c2i_entry(); 1498 } 1499 assert(callee_method->verified_code_entry() != nullptr, " Jump to zero!"); 1500 return callee_method->verified_code_entry(); 1501 } 1502 1503 // resolve a static call and patch code 1504 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread* current )) 1505 methodHandle callee_method; 1506 bool enter_special = false; 1507 JRT_BLOCK 1508 callee_method = SharedRuntime::resolve_helper(false, false, CHECK_NULL); 1509 current->set_vm_result_2(callee_method()); 1510 JRT_BLOCK_END 1511 // return compiled code entry point after potential safepoints 1512 return get_resolved_entry(current, callee_method); 1513 JRT_END 1514 1515 // resolve virtual call and update inline cache to monomorphic 1516 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread* current)) 1517 methodHandle callee_method; 1518 JRT_BLOCK 1519 callee_method = SharedRuntime::resolve_helper(true, false, CHECK_NULL); 1520 current->set_vm_result_2(callee_method()); 1521 JRT_BLOCK_END 1522 // return compiled code entry point after potential safepoints 1523 return get_resolved_entry(current, callee_method); 1524 JRT_END 1525 1526 1527 // Resolve a virtual call that can be statically bound (e.g., always 1528 // monomorphic, so it has no inline cache). Patch code to resolved target. 1529 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread* current)) 1530 methodHandle callee_method; 1531 JRT_BLOCK 1532 callee_method = SharedRuntime::resolve_helper(true, true, CHECK_NULL); 1533 current->set_vm_result_2(callee_method()); 1534 JRT_BLOCK_END 1535 // return compiled code entry point after potential safepoints 1536 return get_resolved_entry(current, callee_method); 1537 JRT_END 1538 1539 methodHandle SharedRuntime::handle_ic_miss_helper(TRAPS) { 1540 JavaThread* current = THREAD; 1541 ResourceMark rm(current); 1542 CallInfo call_info; 1543 Bytecodes::Code bc; 1544 1545 // receiver is null for static calls. An exception is thrown for null 1546 // receivers for non-static calls 1547 Handle receiver = find_callee_info(bc, call_info, CHECK_(methodHandle())); 1548 1549 methodHandle callee_method(current, call_info.selected_method()); 1550 1551 #ifndef PRODUCT 1552 Atomic::inc(&_ic_miss_ctr); 1553 1554 // Statistics & Tracing 1555 if (TraceCallFixup) { 1556 ResourceMark rm(current); 1557 tty->print("IC miss (%s) call to", Bytecodes::name(bc)); 1558 callee_method->print_short_name(tty); 1559 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1560 } 1561 1562 if (ICMissHistogram) { 1563 MutexLocker m(VMStatistic_lock); 1564 RegisterMap reg_map(current, 1565 RegisterMap::UpdateMap::skip, 1566 RegisterMap::ProcessFrames::include, 1567 RegisterMap::WalkContinuation::skip); 1568 frame f = current->last_frame().real_sender(®_map);// skip runtime stub 1569 // produce statistics under the lock 1570 trace_ic_miss(f.pc()); 1571 } 1572 #endif 1573 1574 // install an event collector so that when a vtable stub is created the 1575 // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The 1576 // event can't be posted when the stub is created as locks are held 1577 // - instead the event will be deferred until the event collector goes 1578 // out of scope. 1579 JvmtiDynamicCodeEventCollector event_collector; 1580 1581 // Update inline cache to megamorphic. Skip update if we are called from interpreted. 1582 RegisterMap reg_map(current, 1583 RegisterMap::UpdateMap::skip, 1584 RegisterMap::ProcessFrames::include, 1585 RegisterMap::WalkContinuation::skip); 1586 frame caller_frame = current->last_frame().sender(®_map); 1587 CodeBlob* cb = caller_frame.cb(); 1588 nmethod* caller_nm = cb->as_nmethod(); 1589 1590 CompiledICLocker ml(caller_nm); 1591 CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc()); 1592 inline_cache->update(&call_info, receiver()->klass()); 1593 1594 return callee_method; 1595 } 1596 1597 // 1598 // Resets a call-site in compiled code so it will get resolved again. 1599 // This routines handles both virtual call sites, optimized virtual call 1600 // sites, and static call sites. Typically used to change a call sites 1601 // destination from compiled to interpreted. 1602 // 1603 methodHandle SharedRuntime::reresolve_call_site(TRAPS) { 1604 JavaThread* current = THREAD; 1605 ResourceMark rm(current); 1606 RegisterMap reg_map(current, 1607 RegisterMap::UpdateMap::skip, 1608 RegisterMap::ProcessFrames::include, 1609 RegisterMap::WalkContinuation::skip); 1610 frame stub_frame = current->last_frame(); 1611 assert(stub_frame.is_runtime_frame(), "must be a runtimeStub"); 1612 frame caller = stub_frame.sender(®_map); 1613 1614 // Do nothing if the frame isn't a live compiled frame. 1615 // nmethod could be deoptimized by the time we get here 1616 // so no update to the caller is needed. 1617 1618 if ((caller.is_compiled_frame() && !caller.is_deoptimized_frame()) || 1619 (caller.is_native_frame() && caller.cb()->as_nmethod()->method()->is_continuation_enter_intrinsic())) { 1620 1621 address pc = caller.pc(); 1622 1623 nmethod* caller_nm = CodeCache::find_nmethod(pc); 1624 assert(caller_nm != nullptr, "did not find caller nmethod"); 1625 1626 // Default call_addr is the location of the "basic" call. 1627 // Determine the address of the call we a reresolving. With 1628 // Inline Caches we will always find a recognizable call. 1629 // With Inline Caches disabled we may or may not find a 1630 // recognizable call. We will always find a call for static 1631 // calls and for optimized virtual calls. For vanilla virtual 1632 // calls it depends on the state of the UseInlineCaches switch. 1633 // 1634 // With Inline Caches disabled we can get here for a virtual call 1635 // for two reasons: 1636 // 1 - calling an abstract method. The vtable for abstract methods 1637 // will run us thru handle_wrong_method and we will eventually 1638 // end up in the interpreter to throw the ame. 1639 // 2 - a racing deoptimization. We could be doing a vanilla vtable 1640 // call and between the time we fetch the entry address and 1641 // we jump to it the target gets deoptimized. Similar to 1 1642 // we will wind up in the interprter (thru a c2i with c2). 1643 // 1644 CompiledICLocker ml(caller_nm); 1645 address call_addr = caller_nm->call_instruction_address(pc); 1646 1647 if (call_addr != nullptr) { 1648 // On x86 the logic for finding a call instruction is blindly checking for a call opcode 5 1649 // bytes back in the instruction stream so we must also check for reloc info. 1650 RelocIterator iter(caller_nm, call_addr, call_addr+1); 1651 bool ret = iter.next(); // Get item 1652 if (ret) { 1653 switch (iter.type()) { 1654 case relocInfo::static_call_type: 1655 case relocInfo::opt_virtual_call_type: { 1656 CompiledDirectCall* cdc = CompiledDirectCall::at(call_addr); 1657 cdc->set_to_clean(); 1658 break; 1659 } 1660 1661 case relocInfo::virtual_call_type: { 1662 // compiled, dispatched call (which used to call an interpreted method) 1663 CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr); 1664 inline_cache->set_to_clean(); 1665 break; 1666 } 1667 default: 1668 break; 1669 } 1670 } 1671 } 1672 } 1673 1674 methodHandle callee_method = find_callee_method(CHECK_(methodHandle())); 1675 1676 1677 #ifndef PRODUCT 1678 Atomic::inc(&_wrong_method_ctr); 1679 1680 if (TraceCallFixup) { 1681 ResourceMark rm(current); 1682 tty->print("handle_wrong_method reresolving call to"); 1683 callee_method->print_short_name(tty); 1684 tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code())); 1685 } 1686 #endif 1687 1688 return callee_method; 1689 } 1690 1691 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) { 1692 // The faulting unsafe accesses should be changed to throw the error 1693 // synchronously instead. Meanwhile the faulting instruction will be 1694 // skipped over (effectively turning it into a no-op) and an 1695 // asynchronous exception will be raised which the thread will 1696 // handle at a later point. If the instruction is a load it will 1697 // return garbage. 1698 1699 // Request an async exception. 1700 thread->set_pending_unsafe_access_error(); 1701 1702 // Return address of next instruction to execute. 1703 return next_pc; 1704 } 1705 1706 #ifdef ASSERT 1707 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method, 1708 const BasicType* sig_bt, 1709 const VMRegPair* regs) { 1710 ResourceMark rm; 1711 const int total_args_passed = method->size_of_parameters(); 1712 const VMRegPair* regs_with_member_name = regs; 1713 VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1); 1714 1715 const int member_arg_pos = total_args_passed - 1; 1716 assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob"); 1717 assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object"); 1718 1719 java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1); 1720 1721 for (int i = 0; i < member_arg_pos; i++) { 1722 VMReg a = regs_with_member_name[i].first(); 1723 VMReg b = regs_without_member_name[i].first(); 1724 assert(a->value() == b->value(), "register allocation mismatch: a= %d, b= %d", a->value(), b->value()); 1725 } 1726 assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg"); 1727 } 1728 #endif 1729 1730 // --------------------------------------------------------------------------- 1731 // We are calling the interpreter via a c2i. Normally this would mean that 1732 // we were called by a compiled method. However we could have lost a race 1733 // where we went int -> i2c -> c2i and so the caller could in fact be 1734 // interpreted. If the caller is compiled we attempt to patch the caller 1735 // so he no longer calls into the interpreter. 1736 JRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc)) 1737 AARCH64_PORT_ONLY(assert(pauth_ptr_is_raw(caller_pc), "should be raw")); 1738 1739 // It's possible that deoptimization can occur at a call site which hasn't 1740 // been resolved yet, in which case this function will be called from 1741 // an nmethod that has been patched for deopt and we can ignore the 1742 // request for a fixup. 1743 // Also it is possible that we lost a race in that from_compiled_entry 1744 // is now back to the i2c in that case we don't need to patch and if 1745 // we did we'd leap into space because the callsite needs to use 1746 // "to interpreter" stub in order to load up the Method*. Don't 1747 // ask me how I know this... 1748 1749 // Result from nmethod::is_unloading is not stable across safepoints. 1750 NoSafepointVerifier nsv; 1751 1752 nmethod* callee = method->code(); 1753 if (callee == nullptr) { 1754 return; 1755 } 1756 1757 // write lock needed because we might patch call site by set_to_clean() 1758 // and is_unloading() can modify nmethod's state 1759 MACOS_AARCH64_ONLY(ThreadWXEnable __wx(WXWrite, JavaThread::current())); 1760 1761 CodeBlob* cb = CodeCache::find_blob(caller_pc); 1762 if (cb == nullptr || !cb->is_nmethod() || !callee->is_in_use() || callee->is_unloading()) { 1763 return; 1764 } 1765 1766 // The check above makes sure this is an nmethod. 1767 nmethod* caller = cb->as_nmethod(); 1768 1769 // Get the return PC for the passed caller PC. 1770 address return_pc = caller_pc + frame::pc_return_offset; 1771 1772 if (!caller->is_in_use() || !NativeCall::is_call_before(return_pc)) { 1773 return; 1774 } 1775 1776 // Expect to find a native call there (unless it was no-inline cache vtable dispatch) 1777 CompiledICLocker ic_locker(caller); 1778 ResourceMark rm; 1779 1780 // If we got here through a static call or opt_virtual call, then we know where the 1781 // call address would be; let's peek at it 1782 address callsite_addr = (address)nativeCall_before(return_pc); 1783 RelocIterator iter(caller, callsite_addr, callsite_addr + 1); 1784 if (!iter.next()) { 1785 // No reloc entry found; not a static or optimized virtual call 1786 return; 1787 } 1788 1789 relocInfo::relocType type = iter.reloc()->type(); 1790 if (type != relocInfo::static_call_type && 1791 type != relocInfo::opt_virtual_call_type) { 1792 return; 1793 } 1794 1795 CompiledDirectCall* callsite = CompiledDirectCall::before(return_pc); 1796 callsite->set_to_clean(); 1797 JRT_END 1798 1799 1800 // same as JVM_Arraycopy, but called directly from compiled code 1801 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src, jint src_pos, 1802 oopDesc* dest, jint dest_pos, 1803 jint length, 1804 JavaThread* current)) { 1805 #ifndef PRODUCT 1806 _slow_array_copy_ctr++; 1807 #endif 1808 // Check if we have null pointers 1809 if (src == nullptr || dest == nullptr) { 1810 THROW(vmSymbols::java_lang_NullPointerException()); 1811 } 1812 // Do the copy. The casts to arrayOop are necessary to the copy_array API, 1813 // even though the copy_array API also performs dynamic checks to ensure 1814 // that src and dest are truly arrays (and are conformable). 1815 // The copy_array mechanism is awkward and could be removed, but 1816 // the compilers don't call this function except as a last resort, 1817 // so it probably doesn't matter. 1818 src->klass()->copy_array((arrayOopDesc*)src, src_pos, 1819 (arrayOopDesc*)dest, dest_pos, 1820 length, current); 1821 } 1822 JRT_END 1823 1824 // The caller of generate_class_cast_message() (or one of its callers) 1825 // must use a ResourceMark in order to correctly free the result. 1826 char* SharedRuntime::generate_class_cast_message( 1827 JavaThread* thread, Klass* caster_klass) { 1828 1829 // Get target class name from the checkcast instruction 1830 vframeStream vfst(thread, true); 1831 assert(!vfst.at_end(), "Java frame must exist"); 1832 Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci())); 1833 constantPoolHandle cpool(thread, vfst.method()->constants()); 1834 Klass* target_klass = ConstantPool::klass_at_if_loaded(cpool, cc.index()); 1835 Symbol* target_klass_name = nullptr; 1836 if (target_klass == nullptr) { 1837 // This klass should be resolved, but just in case, get the name in the klass slot. 1838 target_klass_name = cpool->klass_name_at(cc.index()); 1839 } 1840 return generate_class_cast_message(caster_klass, target_klass, target_klass_name); 1841 } 1842 1843 1844 // The caller of generate_class_cast_message() (or one of its callers) 1845 // must use a ResourceMark in order to correctly free the result. 1846 char* SharedRuntime::generate_class_cast_message( 1847 Klass* caster_klass, Klass* target_klass, Symbol* target_klass_name) { 1848 const char* caster_name = caster_klass->external_name(); 1849 1850 assert(target_klass != nullptr || target_klass_name != nullptr, "one must be provided"); 1851 const char* target_name = target_klass == nullptr ? target_klass_name->as_klass_external_name() : 1852 target_klass->external_name(); 1853 1854 size_t msglen = strlen(caster_name) + strlen("class ") + strlen(" cannot be cast to class ") + strlen(target_name) + 1; 1855 1856 const char* caster_klass_description = ""; 1857 const char* target_klass_description = ""; 1858 const char* klass_separator = ""; 1859 if (target_klass != nullptr && caster_klass->module() == target_klass->module()) { 1860 caster_klass_description = caster_klass->joint_in_module_of_loader(target_klass); 1861 } else { 1862 caster_klass_description = caster_klass->class_in_module_of_loader(); 1863 target_klass_description = (target_klass != nullptr) ? target_klass->class_in_module_of_loader() : ""; 1864 klass_separator = (target_klass != nullptr) ? "; " : ""; 1865 } 1866 1867 // add 3 for parenthesis and preceding space 1868 msglen += strlen(caster_klass_description) + strlen(target_klass_description) + strlen(klass_separator) + 3; 1869 1870 char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen); 1871 if (message == nullptr) { 1872 // Shouldn't happen, but don't cause even more problems if it does 1873 message = const_cast<char*>(caster_klass->external_name()); 1874 } else { 1875 jio_snprintf(message, 1876 msglen, 1877 "class %s cannot be cast to class %s (%s%s%s)", 1878 caster_name, 1879 target_name, 1880 caster_klass_description, 1881 klass_separator, 1882 target_klass_description 1883 ); 1884 } 1885 return message; 1886 } 1887 1888 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages()) 1889 (void) JavaThread::current()->stack_overflow_state()->reguard_stack(); 1890 JRT_END 1891 1892 void SharedRuntime::monitor_enter_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1893 if (!SafepointSynchronize::is_synchronizing()) { 1894 // Only try quick_enter() if we're not trying to reach a safepoint 1895 // so that the calling thread reaches the safepoint more quickly. 1896 if (ObjectSynchronizer::quick_enter(obj, current, lock)) { 1897 return; 1898 } 1899 } 1900 // NO_ASYNC required because an async exception on the state transition destructor 1901 // would leave you with the lock held and it would never be released. 1902 // The normal monitorenter NullPointerException is thrown without acquiring a lock 1903 // and the model is that an exception implies the method failed. 1904 JRT_BLOCK_NO_ASYNC 1905 Handle h_obj(THREAD, obj); 1906 ObjectSynchronizer::enter(h_obj, lock, current); 1907 assert(!HAS_PENDING_EXCEPTION, "Should have no exception here"); 1908 JRT_BLOCK_END 1909 } 1910 1911 // Handles the uncommon case in locking, i.e., contention or an inflated lock. 1912 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 1913 SharedRuntime::monitor_enter_helper(obj, lock, current); 1914 JRT_END 1915 1916 void SharedRuntime::monitor_exit_helper(oopDesc* obj, BasicLock* lock, JavaThread* current) { 1917 assert(JavaThread::current() == current, "invariant"); 1918 // Exit must be non-blocking, and therefore no exceptions can be thrown. 1919 ExceptionMark em(current); 1920 // The object could become unlocked through a JNI call, which we have no other checks for. 1921 // Give a fatal message if CheckJNICalls. Otherwise we ignore it. 1922 if (obj->is_unlocked()) { 1923 if (CheckJNICalls) { 1924 fatal("Object has been unlocked by JNI"); 1925 } 1926 return; 1927 } 1928 ObjectSynchronizer::exit(obj, lock, current); 1929 } 1930 1931 // Handles the uncommon cases of monitor unlocking in compiled code 1932 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* obj, BasicLock* lock, JavaThread* current)) 1933 assert(current == JavaThread::current(), "pre-condition"); 1934 SharedRuntime::monitor_exit_helper(obj, lock, current); 1935 JRT_END 1936 1937 // This is only called when CheckJNICalls is true, and only 1938 // for virtual thread termination. 1939 JRT_LEAF(void, SharedRuntime::log_jni_monitor_still_held()) 1940 assert(CheckJNICalls, "Only call this when checking JNI usage"); 1941 if (log_is_enabled(Debug, jni)) { 1942 JavaThread* current = JavaThread::current(); 1943 int64_t vthread_id = java_lang_Thread::thread_id(current->vthread()); 1944 int64_t carrier_id = java_lang_Thread::thread_id(current->threadObj()); 1945 log_debug(jni)("VirtualThread (tid: " INT64_FORMAT ", carrier id: " INT64_FORMAT 1946 ") exiting with Objects still locked by JNI MonitorEnter.", 1947 vthread_id, carrier_id); 1948 } 1949 JRT_END 1950 1951 #ifndef PRODUCT 1952 1953 void SharedRuntime::print_statistics() { 1954 ttyLocker ttyl; 1955 if (xtty != nullptr) xtty->head("statistics type='SharedRuntime'"); 1956 1957 SharedRuntime::print_ic_miss_histogram(); 1958 1959 // Dump the JRT_ENTRY counters 1960 if (_new_instance_ctr) tty->print_cr("%5u new instance requires GC", _new_instance_ctr); 1961 if (_new_array_ctr) tty->print_cr("%5u new array requires GC", _new_array_ctr); 1962 if (_multi2_ctr) tty->print_cr("%5u multianewarray 2 dim", _multi2_ctr); 1963 if (_multi3_ctr) tty->print_cr("%5u multianewarray 3 dim", _multi3_ctr); 1964 if (_multi4_ctr) tty->print_cr("%5u multianewarray 4 dim", _multi4_ctr); 1965 if (_multi5_ctr) tty->print_cr("%5u multianewarray 5 dim", _multi5_ctr); 1966 1967 tty->print_cr("%5u inline cache miss in compiled", _ic_miss_ctr); 1968 tty->print_cr("%5u wrong method", _wrong_method_ctr); 1969 tty->print_cr("%5u unresolved static call site", _resolve_static_ctr); 1970 tty->print_cr("%5u unresolved virtual call site", _resolve_virtual_ctr); 1971 tty->print_cr("%5u unresolved opt virtual call site", _resolve_opt_virtual_ctr); 1972 1973 if (_mon_enter_stub_ctr) tty->print_cr("%5u monitor enter stub", _mon_enter_stub_ctr); 1974 if (_mon_exit_stub_ctr) tty->print_cr("%5u monitor exit stub", _mon_exit_stub_ctr); 1975 if (_mon_enter_ctr) tty->print_cr("%5u monitor enter slow", _mon_enter_ctr); 1976 if (_mon_exit_ctr) tty->print_cr("%5u monitor exit slow", _mon_exit_ctr); 1977 if (_partial_subtype_ctr) tty->print_cr("%5u slow partial subtype", _partial_subtype_ctr); 1978 if (_jbyte_array_copy_ctr) tty->print_cr("%5u byte array copies", _jbyte_array_copy_ctr); 1979 if (_jshort_array_copy_ctr) tty->print_cr("%5u short array copies", _jshort_array_copy_ctr); 1980 if (_jint_array_copy_ctr) tty->print_cr("%5u int array copies", _jint_array_copy_ctr); 1981 if (_jlong_array_copy_ctr) tty->print_cr("%5u long array copies", _jlong_array_copy_ctr); 1982 if (_oop_array_copy_ctr) tty->print_cr("%5u oop array copies", _oop_array_copy_ctr); 1983 if (_checkcast_array_copy_ctr) tty->print_cr("%5u checkcast array copies", _checkcast_array_copy_ctr); 1984 if (_unsafe_array_copy_ctr) tty->print_cr("%5u unsafe array copies", _unsafe_array_copy_ctr); 1985 if (_generic_array_copy_ctr) tty->print_cr("%5u generic array copies", _generic_array_copy_ctr); 1986 if (_slow_array_copy_ctr) tty->print_cr("%5u slow array copies", _slow_array_copy_ctr); 1987 if (_find_handler_ctr) tty->print_cr("%5u find exception handler", _find_handler_ctr); 1988 if (_rethrow_ctr) tty->print_cr("%5u rethrow handler", _rethrow_ctr); 1989 if (_unsafe_set_memory_ctr) tty->print_cr("%5u unsafe set memorys", _unsafe_set_memory_ctr); 1990 1991 AdapterHandlerLibrary::print_statistics(); 1992 1993 if (xtty != nullptr) xtty->tail("statistics"); 1994 } 1995 1996 inline double percent(int64_t x, int64_t y) { 1997 return 100.0 * (double)x / (double)MAX2(y, (int64_t)1); 1998 } 1999 2000 class MethodArityHistogram { 2001 public: 2002 enum { MAX_ARITY = 256 }; 2003 private: 2004 static uint64_t _arity_histogram[MAX_ARITY]; // histogram of #args 2005 static uint64_t _size_histogram[MAX_ARITY]; // histogram of arg size in words 2006 static uint64_t _total_compiled_calls; 2007 static uint64_t _max_compiled_calls_per_method; 2008 static int _max_arity; // max. arity seen 2009 static int _max_size; // max. arg size seen 2010 2011 static void add_method_to_histogram(nmethod* nm) { 2012 Method* method = (nm == nullptr) ? nullptr : nm->method(); 2013 if (method != nullptr) { 2014 ArgumentCount args(method->signature()); 2015 int arity = args.size() + (method->is_static() ? 0 : 1); 2016 int argsize = method->size_of_parameters(); 2017 arity = MIN2(arity, MAX_ARITY-1); 2018 argsize = MIN2(argsize, MAX_ARITY-1); 2019 uint64_t count = (uint64_t)method->compiled_invocation_count(); 2020 _max_compiled_calls_per_method = count > _max_compiled_calls_per_method ? count : _max_compiled_calls_per_method; 2021 _total_compiled_calls += count; 2022 _arity_histogram[arity] += count; 2023 _size_histogram[argsize] += count; 2024 _max_arity = MAX2(_max_arity, arity); 2025 _max_size = MAX2(_max_size, argsize); 2026 } 2027 } 2028 2029 void print_histogram_helper(int n, uint64_t* histo, const char* name) { 2030 const int N = MIN2(9, n); 2031 double sum = 0; 2032 double weighted_sum = 0; 2033 for (int i = 0; i <= n; i++) { sum += (double)histo[i]; weighted_sum += (double)(i*histo[i]); } 2034 if (sum >= 1) { // prevent divide by zero or divide overflow 2035 double rest = sum; 2036 double percent = sum / 100; 2037 for (int i = 0; i <= N; i++) { 2038 rest -= (double)histo[i]; 2039 tty->print_cr("%4d: " UINT64_FORMAT_W(12) " (%5.1f%%)", i, histo[i], (double)histo[i] / percent); 2040 } 2041 tty->print_cr("rest: " INT64_FORMAT_W(12) " (%5.1f%%)", (int64_t)rest, rest / percent); 2042 tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n); 2043 tty->print_cr("(total # of compiled calls = " INT64_FORMAT_W(14) ")", _total_compiled_calls); 2044 tty->print_cr("(max # of compiled calls = " INT64_FORMAT_W(14) ")", _max_compiled_calls_per_method); 2045 } else { 2046 tty->print_cr("Histogram generation failed for %s. n = %d, sum = %7.5f", name, n, sum); 2047 } 2048 } 2049 2050 void print_histogram() { 2051 tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):"); 2052 print_histogram_helper(_max_arity, _arity_histogram, "arity"); 2053 tty->print_cr("\nHistogram of parameter block size (in words, incl. rcvr):"); 2054 print_histogram_helper(_max_size, _size_histogram, "size"); 2055 tty->cr(); 2056 } 2057 2058 public: 2059 MethodArityHistogram() { 2060 // Take the Compile_lock to protect against changes in the CodeBlob structures 2061 MutexLocker mu1(Compile_lock, Mutex::_safepoint_check_flag); 2062 // Take the CodeCache_lock to protect against changes in the CodeHeap structure 2063 MutexLocker mu2(CodeCache_lock, Mutex::_no_safepoint_check_flag); 2064 _max_arity = _max_size = 0; 2065 _total_compiled_calls = 0; 2066 _max_compiled_calls_per_method = 0; 2067 for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0; 2068 CodeCache::nmethods_do(add_method_to_histogram); 2069 print_histogram(); 2070 } 2071 }; 2072 2073 uint64_t MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY]; 2074 uint64_t MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY]; 2075 uint64_t MethodArityHistogram::_total_compiled_calls; 2076 uint64_t MethodArityHistogram::_max_compiled_calls_per_method; 2077 int MethodArityHistogram::_max_arity; 2078 int MethodArityHistogram::_max_size; 2079 2080 void SharedRuntime::print_call_statistics(uint64_t comp_total) { 2081 tty->print_cr("Calls from compiled code:"); 2082 int64_t total = _nof_normal_calls + _nof_interface_calls + _nof_static_calls; 2083 int64_t mono_c = _nof_normal_calls - _nof_megamorphic_calls; 2084 int64_t mono_i = _nof_interface_calls; 2085 tty->print_cr("\t" INT64_FORMAT_W(12) " (100%%) total non-inlined ", total); 2086 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- virtual calls ", _nof_normal_calls, percent(_nof_normal_calls, total)); 2087 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls)); 2088 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_c, percent(mono_c, _nof_normal_calls)); 2089 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- megamorphic ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls)); 2090 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- interface calls ", _nof_interface_calls, percent(_nof_interface_calls, total)); 2091 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls)); 2092 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- monomorphic ", mono_i, percent(mono_i, _nof_interface_calls)); 2093 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.1f%%) |- static/special calls", _nof_static_calls, percent(_nof_static_calls, total)); 2094 tty->print_cr("\t" INT64_FORMAT_W(12) " (%4.0f%%) | |- inlined ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls)); 2095 tty->cr(); 2096 tty->print_cr("Note 1: counter updates are not MT-safe."); 2097 tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;"); 2098 tty->print_cr(" %% in nested categories are relative to their category"); 2099 tty->print_cr(" (and thus add up to more than 100%% with inlining)"); 2100 tty->cr(); 2101 2102 MethodArityHistogram h; 2103 } 2104 #endif 2105 2106 #ifndef PRODUCT 2107 static int _lookups; // number of calls to lookup 2108 static int _equals; // number of buckets checked with matching hash 2109 static int _hits; // number of successful lookups 2110 static int _compact; // number of equals calls with compact signature 2111 #endif 2112 2113 // A simple wrapper class around the calling convention information 2114 // that allows sharing of adapters for the same calling convention. 2115 class AdapterFingerPrint : public CHeapObj<mtCode> { 2116 private: 2117 enum { 2118 _basic_type_bits = 4, 2119 _basic_type_mask = right_n_bits(_basic_type_bits), 2120 _basic_types_per_int = BitsPerInt / _basic_type_bits, 2121 _compact_int_count = 3 2122 }; 2123 // TO DO: Consider integrating this with a more global scheme for compressing signatures. 2124 // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive. 2125 2126 union { 2127 int _compact[_compact_int_count]; 2128 int* _fingerprint; 2129 } _value; 2130 int _length; // A negative length indicates the fingerprint is in the compact form, 2131 // Otherwise _value._fingerprint is the array. 2132 2133 // Remap BasicTypes that are handled equivalently by the adapters. 2134 // These are correct for the current system but someday it might be 2135 // necessary to make this mapping platform dependent. 2136 static int adapter_encoding(BasicType in) { 2137 switch (in) { 2138 case T_BOOLEAN: 2139 case T_BYTE: 2140 case T_SHORT: 2141 case T_CHAR: 2142 // There are all promoted to T_INT in the calling convention 2143 return T_INT; 2144 2145 case T_OBJECT: 2146 case T_ARRAY: 2147 // In other words, we assume that any register good enough for 2148 // an int or long is good enough for a managed pointer. 2149 #ifdef _LP64 2150 return T_LONG; 2151 #else 2152 return T_INT; 2153 #endif 2154 2155 case T_INT: 2156 case T_LONG: 2157 case T_FLOAT: 2158 case T_DOUBLE: 2159 case T_VOID: 2160 return in; 2161 2162 default: 2163 ShouldNotReachHere(); 2164 return T_CONFLICT; 2165 } 2166 } 2167 2168 public: 2169 AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) { 2170 // The fingerprint is based on the BasicType signature encoded 2171 // into an array of ints with eight entries per int. 2172 int* ptr; 2173 int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int; 2174 if (len <= _compact_int_count) { 2175 assert(_compact_int_count == 3, "else change next line"); 2176 _value._compact[0] = _value._compact[1] = _value._compact[2] = 0; 2177 // Storing the signature encoded as signed chars hits about 98% 2178 // of the time. 2179 _length = -len; 2180 ptr = _value._compact; 2181 } else { 2182 _length = len; 2183 _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode); 2184 ptr = _value._fingerprint; 2185 } 2186 2187 // Now pack the BasicTypes with 8 per int 2188 int sig_index = 0; 2189 for (int index = 0; index < len; index++) { 2190 int value = 0; 2191 for (int byte = 0; sig_index < total_args_passed && byte < _basic_types_per_int; byte++) { 2192 int bt = adapter_encoding(sig_bt[sig_index++]); 2193 assert((bt & _basic_type_mask) == bt, "must fit in 4 bits"); 2194 value = (value << _basic_type_bits) | bt; 2195 } 2196 ptr[index] = value; 2197 } 2198 } 2199 2200 ~AdapterFingerPrint() { 2201 if (_length > 0) { 2202 FREE_C_HEAP_ARRAY(int, _value._fingerprint); 2203 } 2204 } 2205 2206 int value(int index) { 2207 if (_length < 0) { 2208 return _value._compact[index]; 2209 } 2210 return _value._fingerprint[index]; 2211 } 2212 int length() { 2213 if (_length < 0) return -_length; 2214 return _length; 2215 } 2216 2217 bool is_compact() { 2218 return _length <= 0; 2219 } 2220 2221 unsigned int compute_hash() { 2222 int hash = 0; 2223 for (int i = 0; i < length(); i++) { 2224 int v = value(i); 2225 hash = (hash << 8) ^ v ^ (hash >> 5); 2226 } 2227 return (unsigned int)hash; 2228 } 2229 2230 const char* as_string() { 2231 stringStream st; 2232 st.print("0x"); 2233 for (int i = 0; i < length(); i++) { 2234 st.print("%x", value(i)); 2235 } 2236 return st.as_string(); 2237 } 2238 2239 #ifndef PRODUCT 2240 // Reconstitutes the basic type arguments from the fingerprint, 2241 // producing strings like LIJDF 2242 const char* as_basic_args_string() { 2243 stringStream st; 2244 bool long_prev = false; 2245 for (int i = 0; i < length(); i++) { 2246 unsigned val = (unsigned)value(i); 2247 // args are packed so that first/lower arguments are in the highest 2248 // bits of each int value, so iterate from highest to the lowest 2249 for (int j = 32 - _basic_type_bits; j >= 0; j -= _basic_type_bits) { 2250 unsigned v = (val >> j) & _basic_type_mask; 2251 if (v == 0) { 2252 assert(i == length() - 1, "Only expect zeroes in the last word"); 2253 continue; 2254 } 2255 if (long_prev) { 2256 long_prev = false; 2257 if (v == T_VOID) { 2258 st.print("J"); 2259 } else { 2260 st.print("L"); 2261 } 2262 } 2263 switch (v) { 2264 case T_INT: st.print("I"); break; 2265 case T_LONG: long_prev = true; break; 2266 case T_FLOAT: st.print("F"); break; 2267 case T_DOUBLE: st.print("D"); break; 2268 case T_VOID: break; 2269 default: ShouldNotReachHere(); 2270 } 2271 } 2272 } 2273 if (long_prev) { 2274 st.print("L"); 2275 } 2276 return st.as_string(); 2277 } 2278 #endif // !product 2279 2280 bool equals(AdapterFingerPrint* other) { 2281 if (other->_length != _length) { 2282 return false; 2283 } 2284 if (_length < 0) { 2285 assert(_compact_int_count == 3, "else change next line"); 2286 return _value._compact[0] == other->_value._compact[0] && 2287 _value._compact[1] == other->_value._compact[1] && 2288 _value._compact[2] == other->_value._compact[2]; 2289 } else { 2290 for (int i = 0; i < _length; i++) { 2291 if (_value._fingerprint[i] != other->_value._fingerprint[i]) { 2292 return false; 2293 } 2294 } 2295 } 2296 return true; 2297 } 2298 2299 static bool equals(AdapterFingerPrint* const& fp1, AdapterFingerPrint* const& fp2) { 2300 NOT_PRODUCT(_equals++); 2301 return fp1->equals(fp2); 2302 } 2303 2304 static unsigned int compute_hash(AdapterFingerPrint* const& fp) { 2305 return fp->compute_hash(); 2306 } 2307 }; 2308 2309 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries 2310 using AdapterHandlerTable = ResourceHashtable<AdapterFingerPrint*, AdapterHandlerEntry*, 293, 2311 AnyObj::C_HEAP, mtCode, 2312 AdapterFingerPrint::compute_hash, 2313 AdapterFingerPrint::equals>; 2314 static AdapterHandlerTable* _adapter_handler_table; 2315 2316 // Find a entry with the same fingerprint if it exists 2317 static AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) { 2318 NOT_PRODUCT(_lookups++); 2319 assert_lock_strong(AdapterHandlerLibrary_lock); 2320 AdapterFingerPrint fp(total_args_passed, sig_bt); 2321 AdapterHandlerEntry** entry = _adapter_handler_table->get(&fp); 2322 if (entry != nullptr) { 2323 #ifndef PRODUCT 2324 if (fp.is_compact()) _compact++; 2325 _hits++; 2326 #endif 2327 return *entry; 2328 } 2329 return nullptr; 2330 } 2331 2332 #ifndef PRODUCT 2333 static void print_table_statistics() { 2334 auto size = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2335 return sizeof(*key) + sizeof(*a); 2336 }; 2337 TableStatistics ts = _adapter_handler_table->statistics_calculate(size); 2338 ts.print(tty, "AdapterHandlerTable"); 2339 tty->print_cr("AdapterHandlerTable (table_size=%d, entries=%d)", 2340 _adapter_handler_table->table_size(), _adapter_handler_table->number_of_entries()); 2341 tty->print_cr("AdapterHandlerTable: lookups %d equals %d hits %d compact %d", 2342 _lookups, _equals, _hits, _compact); 2343 } 2344 #endif 2345 2346 // --------------------------------------------------------------------------- 2347 // Implementation of AdapterHandlerLibrary 2348 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = nullptr; 2349 AdapterHandlerEntry* AdapterHandlerLibrary::_no_arg_handler = nullptr; 2350 AdapterHandlerEntry* AdapterHandlerLibrary::_int_arg_handler = nullptr; 2351 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_arg_handler = nullptr; 2352 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_int_arg_handler = nullptr; 2353 AdapterHandlerEntry* AdapterHandlerLibrary::_obj_obj_arg_handler = nullptr; 2354 const int AdapterHandlerLibrary_size = 16*K; 2355 BufferBlob* AdapterHandlerLibrary::_buffer = nullptr; 2356 2357 BufferBlob* AdapterHandlerLibrary::buffer_blob() { 2358 return _buffer; 2359 } 2360 2361 static void post_adapter_creation(const AdapterBlob* new_adapter, 2362 const AdapterHandlerEntry* entry) { 2363 if (Forte::is_enabled() || JvmtiExport::should_post_dynamic_code_generated()) { 2364 char blob_id[256]; 2365 jio_snprintf(blob_id, 2366 sizeof(blob_id), 2367 "%s(%s)", 2368 new_adapter->name(), 2369 entry->fingerprint()->as_string()); 2370 if (Forte::is_enabled()) { 2371 Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2372 } 2373 2374 if (JvmtiExport::should_post_dynamic_code_generated()) { 2375 JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end()); 2376 } 2377 } 2378 } 2379 2380 void AdapterHandlerLibrary::initialize() { 2381 ResourceMark rm; 2382 AdapterBlob* no_arg_blob = nullptr; 2383 AdapterBlob* int_arg_blob = nullptr; 2384 AdapterBlob* obj_arg_blob = nullptr; 2385 AdapterBlob* obj_int_arg_blob = nullptr; 2386 AdapterBlob* obj_obj_arg_blob = nullptr; 2387 { 2388 _adapter_handler_table = new (mtCode) AdapterHandlerTable(); 2389 MutexLocker mu(AdapterHandlerLibrary_lock); 2390 2391 // Create a special handler for abstract methods. Abstract methods 2392 // are never compiled so an i2c entry is somewhat meaningless, but 2393 // throw AbstractMethodError just in case. 2394 // Pass wrong_method_abstract for the c2i transitions to return 2395 // AbstractMethodError for invalid invocations. 2396 address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub(); 2397 _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, nullptr), 2398 StubRoutines::throw_AbstractMethodError_entry(), 2399 wrong_method_abstract, wrong_method_abstract); 2400 2401 _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size); 2402 _no_arg_handler = create_adapter(no_arg_blob, 0, nullptr, true); 2403 2404 BasicType obj_args[] = { T_OBJECT }; 2405 _obj_arg_handler = create_adapter(obj_arg_blob, 1, obj_args, true); 2406 2407 BasicType int_args[] = { T_INT }; 2408 _int_arg_handler = create_adapter(int_arg_blob, 1, int_args, true); 2409 2410 BasicType obj_int_args[] = { T_OBJECT, T_INT }; 2411 _obj_int_arg_handler = create_adapter(obj_int_arg_blob, 2, obj_int_args, true); 2412 2413 BasicType obj_obj_args[] = { T_OBJECT, T_OBJECT }; 2414 _obj_obj_arg_handler = create_adapter(obj_obj_arg_blob, 2, obj_obj_args, true); 2415 2416 assert(no_arg_blob != nullptr && 2417 obj_arg_blob != nullptr && 2418 int_arg_blob != nullptr && 2419 obj_int_arg_blob != nullptr && 2420 obj_obj_arg_blob != nullptr, "Initial adapters must be properly created"); 2421 } 2422 2423 // Outside of the lock 2424 post_adapter_creation(no_arg_blob, _no_arg_handler); 2425 post_adapter_creation(obj_arg_blob, _obj_arg_handler); 2426 post_adapter_creation(int_arg_blob, _int_arg_handler); 2427 post_adapter_creation(obj_int_arg_blob, _obj_int_arg_handler); 2428 post_adapter_creation(obj_obj_arg_blob, _obj_obj_arg_handler); 2429 } 2430 2431 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint, 2432 address i2c_entry, 2433 address c2i_entry, 2434 address c2i_unverified_entry, 2435 address c2i_no_clinit_check_entry) { 2436 // Insert an entry into the table 2437 return new AdapterHandlerEntry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, 2438 c2i_no_clinit_check_entry); 2439 } 2440 2441 AdapterHandlerEntry* AdapterHandlerLibrary::get_simple_adapter(const methodHandle& method) { 2442 if (method->is_abstract()) { 2443 return _abstract_method_handler; 2444 } 2445 int total_args_passed = method->size_of_parameters(); // All args on stack 2446 if (total_args_passed == 0) { 2447 return _no_arg_handler; 2448 } else if (total_args_passed == 1) { 2449 if (!method->is_static()) { 2450 return _obj_arg_handler; 2451 } 2452 switch (method->signature()->char_at(1)) { 2453 case JVM_SIGNATURE_CLASS: 2454 case JVM_SIGNATURE_ARRAY: 2455 return _obj_arg_handler; 2456 case JVM_SIGNATURE_INT: 2457 case JVM_SIGNATURE_BOOLEAN: 2458 case JVM_SIGNATURE_CHAR: 2459 case JVM_SIGNATURE_BYTE: 2460 case JVM_SIGNATURE_SHORT: 2461 return _int_arg_handler; 2462 } 2463 } else if (total_args_passed == 2 && 2464 !method->is_static()) { 2465 switch (method->signature()->char_at(1)) { 2466 case JVM_SIGNATURE_CLASS: 2467 case JVM_SIGNATURE_ARRAY: 2468 return _obj_obj_arg_handler; 2469 case JVM_SIGNATURE_INT: 2470 case JVM_SIGNATURE_BOOLEAN: 2471 case JVM_SIGNATURE_CHAR: 2472 case JVM_SIGNATURE_BYTE: 2473 case JVM_SIGNATURE_SHORT: 2474 return _obj_int_arg_handler; 2475 } 2476 } 2477 return nullptr; 2478 } 2479 2480 class AdapterSignatureIterator : public SignatureIterator { 2481 private: 2482 BasicType stack_sig_bt[16]; 2483 BasicType* sig_bt; 2484 int index; 2485 2486 public: 2487 AdapterSignatureIterator(Symbol* signature, 2488 fingerprint_t fingerprint, 2489 bool is_static, 2490 int total_args_passed) : 2491 SignatureIterator(signature, fingerprint), 2492 index(0) 2493 { 2494 sig_bt = (total_args_passed <= 16) ? stack_sig_bt : NEW_RESOURCE_ARRAY(BasicType, total_args_passed); 2495 if (!is_static) { // Pass in receiver first 2496 sig_bt[index++] = T_OBJECT; 2497 } 2498 do_parameters_on(this); 2499 } 2500 2501 BasicType* basic_types() { 2502 return sig_bt; 2503 } 2504 2505 #ifdef ASSERT 2506 int slots() { 2507 return index; 2508 } 2509 #endif 2510 2511 private: 2512 2513 friend class SignatureIterator; // so do_parameters_on can call do_type 2514 void do_type(BasicType type) { 2515 sig_bt[index++] = type; 2516 if (type == T_LONG || type == T_DOUBLE) { 2517 sig_bt[index++] = T_VOID; // Longs & doubles take 2 Java slots 2518 } 2519 } 2520 }; 2521 2522 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) { 2523 // Use customized signature handler. Need to lock around updates to 2524 // the _adapter_handler_table (it is not safe for concurrent readers 2525 // and a single writer: this could be fixed if it becomes a 2526 // problem). 2527 2528 // Fast-path for trivial adapters 2529 AdapterHandlerEntry* entry = get_simple_adapter(method); 2530 if (entry != nullptr) { 2531 return entry; 2532 } 2533 2534 ResourceMark rm; 2535 AdapterBlob* new_adapter = nullptr; 2536 2537 // Fill in the signature array, for the calling-convention call. 2538 int total_args_passed = method->size_of_parameters(); // All args on stack 2539 2540 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2541 method->is_static(), total_args_passed); 2542 assert(si.slots() == total_args_passed, ""); 2543 BasicType* sig_bt = si.basic_types(); 2544 { 2545 MutexLocker mu(AdapterHandlerLibrary_lock); 2546 2547 // Lookup method signature's fingerprint 2548 entry = lookup(total_args_passed, sig_bt); 2549 2550 if (entry != nullptr) { 2551 #ifdef ASSERT 2552 if (VerifyAdapterSharing) { 2553 AdapterBlob* comparison_blob = nullptr; 2554 AdapterHandlerEntry* comparison_entry = create_adapter(comparison_blob, total_args_passed, sig_bt, false); 2555 assert(comparison_blob == nullptr, "no blob should be created when creating an adapter for comparison"); 2556 assert(comparison_entry->compare_code(entry), "code must match"); 2557 // Release the one just created and return the original 2558 delete comparison_entry; 2559 } 2560 #endif 2561 return entry; 2562 } 2563 2564 entry = create_adapter(new_adapter, total_args_passed, sig_bt, /* allocate_code_blob */ true); 2565 } 2566 2567 // Outside of the lock 2568 if (new_adapter != nullptr) { 2569 post_adapter_creation(new_adapter, entry); 2570 } 2571 return entry; 2572 } 2573 2574 AdapterHandlerEntry* AdapterHandlerLibrary::create_adapter(AdapterBlob*& new_adapter, 2575 int total_args_passed, 2576 BasicType* sig_bt, 2577 bool allocate_code_blob) { 2578 if (log_is_enabled(Info, perf, class, link)) { 2579 ClassLoader::perf_method_adapters_count()->inc(); 2580 } 2581 2582 // StubRoutines::_final_stubs_code is initialized after this function can be called. As a result, 2583 // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated prior 2584 // to all StubRoutines::_final_stubs_code being set. Checks refer to runtime range checks generated 2585 // in an I2C stub that ensure that an I2C stub is called from an interpreter frame or stubs. 2586 bool contains_all_checks = StubRoutines::final_stubs_code() != nullptr; 2587 2588 VMRegPair stack_regs[16]; 2589 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2590 2591 // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage 2592 int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2593 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2594 CodeBuffer buffer(buf); 2595 short buffer_locs[20]; 2596 buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs, 2597 sizeof(buffer_locs)/sizeof(relocInfo)); 2598 2599 // Make a C heap allocated version of the fingerprint to store in the adapter 2600 AdapterFingerPrint* fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt); 2601 MacroAssembler _masm(&buffer); 2602 AdapterHandlerEntry* entry = SharedRuntime::generate_i2c2i_adapters(&_masm, 2603 total_args_passed, 2604 comp_args_on_stack, 2605 sig_bt, 2606 regs, 2607 fingerprint); 2608 2609 #ifdef ASSERT 2610 if (VerifyAdapterSharing) { 2611 entry->save_code(buf->code_begin(), buffer.insts_size()); 2612 if (!allocate_code_blob) { 2613 return entry; 2614 } 2615 } 2616 #endif 2617 2618 new_adapter = AdapterBlob::create(&buffer); 2619 NOT_PRODUCT(int insts_size = buffer.insts_size()); 2620 if (new_adapter == nullptr) { 2621 // CodeCache is full, disable compilation 2622 // Ought to log this but compile log is only per compile thread 2623 // and we're some non descript Java thread. 2624 return nullptr; 2625 } 2626 entry->relocate(new_adapter->content_begin()); 2627 #ifndef PRODUCT 2628 // debugging support 2629 if (PrintAdapterHandlers || PrintStubCode) { 2630 ttyLocker ttyl; 2631 entry->print_adapter_on(tty); 2632 tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)", 2633 _adapter_handler_table->number_of_entries(), fingerprint->as_basic_args_string(), 2634 fingerprint->as_string(), insts_size); 2635 tty->print_cr("c2i argument handler starts at " INTPTR_FORMAT, p2i(entry->get_c2i_entry())); 2636 if (Verbose || PrintStubCode) { 2637 address first_pc = entry->base_address(); 2638 if (first_pc != nullptr) { 2639 Disassembler::decode(first_pc, first_pc + insts_size, tty 2640 NOT_PRODUCT(COMMA &new_adapter->asm_remarks())); 2641 tty->cr(); 2642 } 2643 } 2644 } 2645 #endif 2646 2647 // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp) 2648 // The checks are inserted only if -XX:+VerifyAdapterCalls is specified. 2649 if (contains_all_checks || !VerifyAdapterCalls) { 2650 assert_lock_strong(AdapterHandlerLibrary_lock); 2651 _adapter_handler_table->put(fingerprint, entry); 2652 } 2653 return entry; 2654 } 2655 2656 address AdapterHandlerEntry::base_address() { 2657 address base = _i2c_entry; 2658 if (base == nullptr) base = _c2i_entry; 2659 assert(base <= _c2i_entry || _c2i_entry == nullptr, ""); 2660 assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == nullptr, ""); 2661 assert(base <= _c2i_no_clinit_check_entry || _c2i_no_clinit_check_entry == nullptr, ""); 2662 return base; 2663 } 2664 2665 void AdapterHandlerEntry::relocate(address new_base) { 2666 address old_base = base_address(); 2667 assert(old_base != nullptr, ""); 2668 ptrdiff_t delta = new_base - old_base; 2669 if (_i2c_entry != nullptr) 2670 _i2c_entry += delta; 2671 if (_c2i_entry != nullptr) 2672 _c2i_entry += delta; 2673 if (_c2i_unverified_entry != nullptr) 2674 _c2i_unverified_entry += delta; 2675 if (_c2i_no_clinit_check_entry != nullptr) 2676 _c2i_no_clinit_check_entry += delta; 2677 assert(base_address() == new_base, ""); 2678 } 2679 2680 2681 AdapterHandlerEntry::~AdapterHandlerEntry() { 2682 delete _fingerprint; 2683 #ifdef ASSERT 2684 FREE_C_HEAP_ARRAY(unsigned char, _saved_code); 2685 #endif 2686 } 2687 2688 2689 #ifdef ASSERT 2690 // Capture the code before relocation so that it can be compared 2691 // against other versions. If the code is captured after relocation 2692 // then relative instructions won't be equivalent. 2693 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) { 2694 _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode); 2695 _saved_code_length = length; 2696 memcpy(_saved_code, buffer, length); 2697 } 2698 2699 2700 bool AdapterHandlerEntry::compare_code(AdapterHandlerEntry* other) { 2701 assert(_saved_code != nullptr && other->_saved_code != nullptr, "code not saved"); 2702 2703 if (other->_saved_code_length != _saved_code_length) { 2704 return false; 2705 } 2706 2707 return memcmp(other->_saved_code, _saved_code, _saved_code_length) == 0; 2708 } 2709 #endif 2710 2711 2712 /** 2713 * Create a native wrapper for this native method. The wrapper converts the 2714 * Java-compiled calling convention to the native convention, handles 2715 * arguments, and transitions to native. On return from the native we transition 2716 * back to java blocking if a safepoint is in progress. 2717 */ 2718 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) { 2719 ResourceMark rm; 2720 nmethod* nm = nullptr; 2721 2722 // Check if memory should be freed before allocation 2723 CodeCache::gc_on_allocation(); 2724 2725 assert(method->is_native(), "must be native"); 2726 assert(method->is_special_native_intrinsic() || 2727 method->has_native_function(), "must have something valid to call!"); 2728 2729 { 2730 // Perform the work while holding the lock, but perform any printing outside the lock 2731 MutexLocker mu(AdapterHandlerLibrary_lock); 2732 // See if somebody beat us to it 2733 if (method->code() != nullptr) { 2734 return; 2735 } 2736 2737 const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci); 2738 assert(compile_id > 0, "Must generate native wrapper"); 2739 2740 2741 ResourceMark rm; 2742 BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache 2743 if (buf != nullptr) { 2744 CodeBuffer buffer(buf); 2745 2746 if (method->is_continuation_enter_intrinsic()) { 2747 buffer.initialize_stubs_size(192); 2748 } 2749 2750 struct { double data[20]; } locs_buf; 2751 struct { double data[20]; } stubs_locs_buf; 2752 buffer.insts()->initialize_shared_locs((relocInfo*)&locs_buf, sizeof(locs_buf) / sizeof(relocInfo)); 2753 #if defined(AARCH64) || defined(PPC64) 2754 // On AArch64 with ZGC and nmethod entry barriers, we need all oops to be 2755 // in the constant pool to ensure ordering between the barrier and oops 2756 // accesses. For native_wrappers we need a constant. 2757 // On PPC64 the continuation enter intrinsic needs the constant pool for the compiled 2758 // static java call that is resolved in the runtime. 2759 if (PPC64_ONLY(method->is_continuation_enter_intrinsic() &&) true) { 2760 buffer.initialize_consts_size(8 PPC64_ONLY(+ 24)); 2761 } 2762 #endif 2763 buffer.stubs()->initialize_shared_locs((relocInfo*)&stubs_locs_buf, sizeof(stubs_locs_buf) / sizeof(relocInfo)); 2764 MacroAssembler _masm(&buffer); 2765 2766 // Fill in the signature array, for the calling-convention call. 2767 const int total_args_passed = method->size_of_parameters(); 2768 2769 VMRegPair stack_regs[16]; 2770 VMRegPair* regs = (total_args_passed <= 16) ? stack_regs : NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed); 2771 2772 AdapterSignatureIterator si(method->signature(), method->constMethod()->fingerprint(), 2773 method->is_static(), total_args_passed); 2774 BasicType* sig_bt = si.basic_types(); 2775 assert(si.slots() == total_args_passed, ""); 2776 BasicType ret_type = si.return_type(); 2777 2778 // Now get the compiled-Java arguments layout. 2779 SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed); 2780 2781 // Generate the compiled-to-native wrapper code 2782 nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type); 2783 2784 if (nm != nullptr) { 2785 { 2786 MutexLocker pl(NMethodState_lock, Mutex::_no_safepoint_check_flag); 2787 if (nm->make_in_use()) { 2788 method->set_code(method, nm); 2789 } 2790 } 2791 2792 DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, CompileBroker::compiler(CompLevel_simple)); 2793 if (directive->PrintAssemblyOption) { 2794 nm->print_code(); 2795 } 2796 DirectivesStack::release(directive); 2797 } 2798 } 2799 } // Unlock AdapterHandlerLibrary_lock 2800 2801 2802 // Install the generated code. 2803 if (nm != nullptr) { 2804 const char *msg = method->is_static() ? "(static)" : ""; 2805 CompileTask::print_ul(nm, msg); 2806 if (PrintCompilation) { 2807 ttyLocker ttyl; 2808 CompileTask::print(tty, nm, msg); 2809 } 2810 nm->post_compiled_method_load_event(); 2811 } 2812 } 2813 2814 // ------------------------------------------------------------------------- 2815 // Java-Java calling convention 2816 // (what you use when Java calls Java) 2817 2818 //------------------------------name_for_receiver---------------------------------- 2819 // For a given signature, return the VMReg for parameter 0. 2820 VMReg SharedRuntime::name_for_receiver() { 2821 VMRegPair regs; 2822 BasicType sig_bt = T_OBJECT; 2823 (void) java_calling_convention(&sig_bt, ®s, 1); 2824 // Return argument 0 register. In the LP64 build pointers 2825 // take 2 registers, but the VM wants only the 'main' name. 2826 return regs.first(); 2827 } 2828 2829 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) { 2830 // This method is returning a data structure allocating as a 2831 // ResourceObject, so do not put any ResourceMarks in here. 2832 2833 BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256); 2834 VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256); 2835 int cnt = 0; 2836 if (has_receiver) { 2837 sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature 2838 } 2839 2840 for (SignatureStream ss(sig); !ss.at_return_type(); ss.next()) { 2841 BasicType type = ss.type(); 2842 sig_bt[cnt++] = type; 2843 if (is_double_word_type(type)) 2844 sig_bt[cnt++] = T_VOID; 2845 } 2846 2847 if (has_appendix) { 2848 sig_bt[cnt++] = T_OBJECT; 2849 } 2850 2851 assert(cnt < 256, "grow table size"); 2852 2853 int comp_args_on_stack; 2854 comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt); 2855 2856 // the calling convention doesn't count out_preserve_stack_slots so 2857 // we must add that in to get "true" stack offsets. 2858 2859 if (comp_args_on_stack) { 2860 for (int i = 0; i < cnt; i++) { 2861 VMReg reg1 = regs[i].first(); 2862 if (reg1->is_stack()) { 2863 // Yuck 2864 reg1 = reg1->bias(out_preserve_stack_slots()); 2865 } 2866 VMReg reg2 = regs[i].second(); 2867 if (reg2->is_stack()) { 2868 // Yuck 2869 reg2 = reg2->bias(out_preserve_stack_slots()); 2870 } 2871 regs[i].set_pair(reg2, reg1); 2872 } 2873 } 2874 2875 // results 2876 *arg_size = cnt; 2877 return regs; 2878 } 2879 2880 // OSR Migration Code 2881 // 2882 // This code is used convert interpreter frames into compiled frames. It is 2883 // called from very start of a compiled OSR nmethod. A temp array is 2884 // allocated to hold the interesting bits of the interpreter frame. All 2885 // active locks are inflated to allow them to move. The displaced headers and 2886 // active interpreter locals are copied into the temp buffer. Then we return 2887 // back to the compiled code. The compiled code then pops the current 2888 // interpreter frame off the stack and pushes a new compiled frame. Then it 2889 // copies the interpreter locals and displaced headers where it wants. 2890 // Finally it calls back to free the temp buffer. 2891 // 2892 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed. 2893 2894 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *current) ) 2895 assert(current == JavaThread::current(), "pre-condition"); 2896 2897 // During OSR migration, we unwind the interpreted frame and replace it with a compiled 2898 // frame. The stack watermark code below ensures that the interpreted frame is processed 2899 // before it gets unwound. This is helpful as the size of the compiled frame could be 2900 // larger than the interpreted frame, which could result in the new frame not being 2901 // processed correctly. 2902 StackWatermarkSet::before_unwind(current); 2903 2904 // 2905 // This code is dependent on the memory layout of the interpreter local 2906 // array and the monitors. On all of our platforms the layout is identical 2907 // so this code is shared. If some platform lays the their arrays out 2908 // differently then this code could move to platform specific code or 2909 // the code here could be modified to copy items one at a time using 2910 // frame accessor methods and be platform independent. 2911 2912 frame fr = current->last_frame(); 2913 assert(fr.is_interpreted_frame(), ""); 2914 assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks"); 2915 2916 // Figure out how many monitors are active. 2917 int active_monitor_count = 0; 2918 for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end(); 2919 kptr < fr.interpreter_frame_monitor_begin(); 2920 kptr = fr.next_monitor_in_interpreter_frame(kptr) ) { 2921 if (kptr->obj() != nullptr) active_monitor_count++; 2922 } 2923 2924 // QQQ we could place number of active monitors in the array so that compiled code 2925 // could double check it. 2926 2927 Method* moop = fr.interpreter_frame_method(); 2928 int max_locals = moop->max_locals(); 2929 // Allocate temp buffer, 1 word per local & 2 per active monitor 2930 int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size(); 2931 intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode); 2932 2933 // Copy the locals. Order is preserved so that loading of longs works. 2934 // Since there's no GC I can copy the oops blindly. 2935 assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code"); 2936 Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1), 2937 (HeapWord*)&buf[0], 2938 max_locals); 2939 2940 // Inflate locks. Copy the displaced headers. Be careful, there can be holes. 2941 int i = max_locals; 2942 for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end(); 2943 kptr2 < fr.interpreter_frame_monitor_begin(); 2944 kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) { 2945 if (kptr2->obj() != nullptr) { // Avoid 'holes' in the monitor array 2946 BasicLock *lock = kptr2->lock(); 2947 if (LockingMode == LM_LEGACY) { 2948 // Inflate so the object's header no longer refers to the BasicLock. 2949 if (lock->displaced_header().is_unlocked()) { 2950 // The object is locked and the resulting ObjectMonitor* will also be 2951 // locked so it can't be async deflated until ownership is dropped. 2952 // See the big comment in basicLock.cpp: BasicLock::move_to(). 2953 ObjectSynchronizer::inflate_helper(kptr2->obj()); 2954 } 2955 // Now the displaced header is free to move because the 2956 // object's header no longer refers to it. 2957 buf[i] = (intptr_t)lock->displaced_header().value(); 2958 } else if (UseObjectMonitorTable) { 2959 buf[i] = (intptr_t)lock->object_monitor_cache(); 2960 } 2961 #ifdef ASSERT 2962 else { 2963 buf[i] = badDispHeaderOSR; 2964 } 2965 #endif 2966 i++; 2967 buf[i++] = cast_from_oop<intptr_t>(kptr2->obj()); 2968 } 2969 } 2970 assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors"); 2971 2972 RegisterMap map(current, 2973 RegisterMap::UpdateMap::skip, 2974 RegisterMap::ProcessFrames::include, 2975 RegisterMap::WalkContinuation::skip); 2976 frame sender = fr.sender(&map); 2977 if (sender.is_interpreted_frame()) { 2978 current->push_cont_fastpath(sender.sp()); 2979 } 2980 2981 return buf; 2982 JRT_END 2983 2984 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) ) 2985 FREE_C_HEAP_ARRAY(intptr_t, buf); 2986 JRT_END 2987 2988 bool AdapterHandlerLibrary::contains(const CodeBlob* b) { 2989 bool found = false; 2990 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 2991 return (found = (b == CodeCache::find_blob(a->get_i2c_entry()))); 2992 }; 2993 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 2994 _adapter_handler_table->iterate(findblob); 2995 return found; 2996 } 2997 2998 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) { 2999 bool found = false; 3000 auto findblob = [&] (AdapterFingerPrint* key, AdapterHandlerEntry* a) { 3001 if (b == CodeCache::find_blob(a->get_i2c_entry())) { 3002 found = true; 3003 st->print("Adapter for signature: "); 3004 a->print_adapter_on(st); 3005 return true; 3006 } else { 3007 return false; // keep looking 3008 } 3009 }; 3010 assert_locked_or_safepoint(AdapterHandlerLibrary_lock); 3011 _adapter_handler_table->iterate(findblob); 3012 assert(found, "Should have found handler"); 3013 } 3014 3015 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const { 3016 st->print("AHE@" INTPTR_FORMAT ": %s", p2i(this), fingerprint()->as_string()); 3017 if (get_i2c_entry() != nullptr) { 3018 st->print(" i2c: " INTPTR_FORMAT, p2i(get_i2c_entry())); 3019 } 3020 if (get_c2i_entry() != nullptr) { 3021 st->print(" c2i: " INTPTR_FORMAT, p2i(get_c2i_entry())); 3022 } 3023 if (get_c2i_unverified_entry() != nullptr) { 3024 st->print(" c2iUV: " INTPTR_FORMAT, p2i(get_c2i_unverified_entry())); 3025 } 3026 if (get_c2i_no_clinit_check_entry() != nullptr) { 3027 st->print(" c2iNCI: " INTPTR_FORMAT, p2i(get_c2i_no_clinit_check_entry())); 3028 } 3029 st->cr(); 3030 } 3031 3032 #ifndef PRODUCT 3033 3034 void AdapterHandlerLibrary::print_statistics() { 3035 print_table_statistics(); 3036 } 3037 3038 #endif /* PRODUCT */ 3039 3040 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* current)) 3041 assert(current == JavaThread::current(), "pre-condition"); 3042 StackOverflow* overflow_state = current->stack_overflow_state(); 3043 overflow_state->enable_stack_reserved_zone(/*check_if_disabled*/true); 3044 overflow_state->set_reserved_stack_activation(current->stack_base()); 3045 JRT_END 3046 3047 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* current, frame fr) { 3048 ResourceMark rm(current); 3049 frame activation; 3050 nmethod* nm = nullptr; 3051 int count = 1; 3052 3053 assert(fr.is_java_frame(), "Must start on Java frame"); 3054 3055 RegisterMap map(JavaThread::current(), 3056 RegisterMap::UpdateMap::skip, 3057 RegisterMap::ProcessFrames::skip, 3058 RegisterMap::WalkContinuation::skip); // don't walk continuations 3059 for (; !fr.is_first_frame(); fr = fr.sender(&map)) { 3060 if (!fr.is_java_frame()) { 3061 continue; 3062 } 3063 3064 Method* method = nullptr; 3065 bool found = false; 3066 if (fr.is_interpreted_frame()) { 3067 method = fr.interpreter_frame_method(); 3068 if (method != nullptr && method->has_reserved_stack_access()) { 3069 found = true; 3070 } 3071 } else { 3072 CodeBlob* cb = fr.cb(); 3073 if (cb != nullptr && cb->is_nmethod()) { 3074 nm = cb->as_nmethod(); 3075 method = nm->method(); 3076 // scope_desc_near() must be used, instead of scope_desc_at() because on 3077 // SPARC, the pcDesc can be on the delay slot after the call instruction. 3078 for (ScopeDesc *sd = nm->scope_desc_near(fr.pc()); sd != nullptr; sd = sd->sender()) { 3079 method = sd->method(); 3080 if (method != nullptr && method->has_reserved_stack_access()) { 3081 found = true; 3082 } 3083 } 3084 } 3085 } 3086 if (found) { 3087 activation = fr; 3088 warning("Potentially dangerous stack overflow in " 3089 "ReservedStackAccess annotated method %s [%d]", 3090 method->name_and_sig_as_C_string(), count++); 3091 EventReservedStackActivation event; 3092 if (event.should_commit()) { 3093 event.set_method(method); 3094 event.commit(); 3095 } 3096 } 3097 } 3098 return activation; 3099 } 3100 3101 void SharedRuntime::on_slowpath_allocation_exit(JavaThread* current) { 3102 // After any safepoint, just before going back to compiled code, 3103 // we inform the GC that we will be doing initializing writes to 3104 // this object in the future without emitting card-marks, so 3105 // GC may take any compensating steps. 3106 3107 oop new_obj = current->vm_result(); 3108 if (new_obj == nullptr) return; 3109 3110 BarrierSet *bs = BarrierSet::barrier_set(); 3111 bs->on_slowpath_allocation_exit(current, new_obj); 3112 }