1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "gc/shared/collectedHeap.hpp" 28 #include "jfr/jfrEvents.hpp" 29 #include "logging/log.hpp" 30 #include "logging/logStream.hpp" 31 #include "memory/allocation.inline.hpp" 32 #include "memory/padded.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "runtime/atomic.hpp" 38 #include "runtime/basicLock.inline.hpp" 39 #include "runtime/frame.inline.hpp" 40 #include "runtime/globals.hpp" 41 #include "runtime/handles.inline.hpp" 42 #include "runtime/handshake.hpp" 43 #include "runtime/interfaceSupport.inline.hpp" 44 #include "runtime/javaThread.hpp" 45 #include "runtime/lightweightSynchronizer.hpp" 46 #include "runtime/lockStack.inline.hpp" 47 #include "runtime/mutexLocker.hpp" 48 #include "runtime/objectMonitor.hpp" 49 #include "runtime/objectMonitor.inline.hpp" 50 #include "runtime/os.inline.hpp" 51 #include "runtime/osThread.hpp" 52 #include "runtime/perfData.hpp" 53 #include "runtime/safepointMechanism.inline.hpp" 54 #include "runtime/safepointVerifiers.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "runtime/synchronizer.inline.hpp" 58 #include "runtime/threads.hpp" 59 #include "runtime/timer.hpp" 60 #include "runtime/trimNativeHeap.hpp" 61 #include "runtime/vframe.hpp" 62 #include "runtime/vmThread.hpp" 63 #include "utilities/align.hpp" 64 #include "utilities/dtrace.hpp" 65 #include "utilities/events.hpp" 66 #include "utilities/globalDefinitions.hpp" 67 #include "utilities/linkedlist.hpp" 68 #include "utilities/preserveException.hpp" 69 70 class ObjectMonitorDeflationLogging; 71 72 void MonitorList::add(ObjectMonitor* m) { 73 ObjectMonitor* head; 74 do { 75 head = Atomic::load(&_head); 76 m->set_next_om(head); 77 } while (Atomic::cmpxchg(&_head, head, m) != head); 78 79 size_t count = Atomic::add(&_count, 1u); 80 if (count > max()) { 81 Atomic::inc(&_max); 82 } 83 } 84 85 size_t MonitorList::count() const { 86 return Atomic::load(&_count); 87 } 88 89 size_t MonitorList::max() const { 90 return Atomic::load(&_max); 91 } 92 93 class ObjectMonitorDeflationSafepointer : public StackObj { 94 JavaThread* const _current; 95 ObjectMonitorDeflationLogging* const _log; 96 97 public: 98 ObjectMonitorDeflationSafepointer(JavaThread* current, ObjectMonitorDeflationLogging* log) 99 : _current(current), _log(log) {} 100 101 void block_for_safepoint(const char* op_name, const char* count_name, size_t counter); 102 }; 103 104 // Walk the in-use list and unlink deflated ObjectMonitors. 105 // Returns the number of unlinked ObjectMonitors. 106 size_t MonitorList::unlink_deflated(size_t deflated_count, 107 GrowableArray<ObjectMonitor*>* unlinked_list, 108 ObjectMonitorDeflationSafepointer* safepointer) { 109 size_t unlinked_count = 0; 110 ObjectMonitor* prev = nullptr; 111 ObjectMonitor* m = Atomic::load_acquire(&_head); 112 113 while (m != nullptr) { 114 if (m->is_being_async_deflated()) { 115 // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can 116 // modify the list once per batch. The batch starts at "m". 117 size_t unlinked_batch = 0; 118 ObjectMonitor* next = m; 119 // Look for at most MonitorUnlinkBatch monitors, or the number of 120 // deflated and not unlinked monitors, whatever comes first. 121 assert(deflated_count >= unlinked_count, "Sanity: underflow"); 122 size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch); 123 do { 124 ObjectMonitor* next_next = next->next_om(); 125 unlinked_batch++; 126 unlinked_list->append(next); 127 next = next_next; 128 if (unlinked_batch >= unlinked_batch_limit) { 129 // Reached the max batch, so bail out of the gathering loop. 130 break; 131 } 132 if (prev == nullptr && Atomic::load(&_head) != m) { 133 // Current batch used to be at head, but it is not at head anymore. 134 // Bail out and figure out where we currently are. This avoids long 135 // walks searching for new prev during unlink under heavy list inserts. 136 break; 137 } 138 } while (next != nullptr && next->is_being_async_deflated()); 139 140 // Unlink the found batch. 141 if (prev == nullptr) { 142 // The current batch is the first batch, so there is a chance that it starts at head. 143 // Optimistically assume no inserts happened, and try to unlink the entire batch from the head. 144 ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next); 145 if (prev_head != m) { 146 // Something must have updated the head. Figure out the actual prev for this batch. 147 for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) { 148 prev = n; 149 } 150 assert(prev != nullptr, "Should have found the prev for the current batch"); 151 prev->set_next_om(next); 152 } 153 } else { 154 // The current batch is preceded by another batch. This guarantees the current batch 155 // does not start at head. Unlink the entire current batch without updating the head. 156 assert(Atomic::load(&_head) != m, "Sanity"); 157 prev->set_next_om(next); 158 } 159 160 unlinked_count += unlinked_batch; 161 if (unlinked_count >= deflated_count) { 162 // Reached the max so bail out of the searching loop. 163 // There should be no more deflated monitors left. 164 break; 165 } 166 m = next; 167 } else { 168 prev = m; 169 m = m->next_om(); 170 } 171 172 // Must check for a safepoint/handshake and honor it. 173 safepointer->block_for_safepoint("unlinking", "unlinked_count", unlinked_count); 174 } 175 176 #ifdef ASSERT 177 // Invariant: the code above should unlink all deflated monitors. 178 // The code that runs after this unlinking does not expect deflated monitors. 179 // Notably, attempting to deflate the already deflated monitor would break. 180 { 181 ObjectMonitor* m = Atomic::load_acquire(&_head); 182 while (m != nullptr) { 183 assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked"); 184 m = m->next_om(); 185 } 186 } 187 #endif 188 189 Atomic::sub(&_count, unlinked_count); 190 return unlinked_count; 191 } 192 193 MonitorList::Iterator MonitorList::iterator() const { 194 return Iterator(Atomic::load_acquire(&_head)); 195 } 196 197 ObjectMonitor* MonitorList::Iterator::next() { 198 ObjectMonitor* current = _current; 199 _current = current->next_om(); 200 return current; 201 } 202 203 // The "core" versions of monitor enter and exit reside in this file. 204 // The interpreter and compilers contain specialized transliterated 205 // variants of the enter-exit fast-path operations. See c2_MacroAssembler_x86.cpp 206 // fast_lock(...) for instance. If you make changes here, make sure to modify the 207 // interpreter, and both C1 and C2 fast-path inline locking code emission. 208 // 209 // ----------------------------------------------------------------------------- 210 211 #ifdef DTRACE_ENABLED 212 213 // Only bother with this argument setup if dtrace is available 214 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 215 216 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 217 char* bytes = nullptr; \ 218 int len = 0; \ 219 jlong jtid = SharedRuntime::get_java_tid(thread); \ 220 Symbol* klassname = obj->klass()->name(); \ 221 if (klassname != nullptr) { \ 222 bytes = (char*)klassname->bytes(); \ 223 len = klassname->utf8_length(); \ 224 } 225 226 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 227 { \ 228 if (DTraceMonitorProbes) { \ 229 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 230 HOTSPOT_MONITOR_WAIT(jtid, \ 231 (uintptr_t)(monitor), bytes, len, (millis)); \ 232 } \ 233 } 234 235 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY 236 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL 237 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED 238 239 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 240 { \ 241 if (DTraceMonitorProbes) { \ 242 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 243 HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ 244 (uintptr_t)(monitor), bytes, len); \ 245 } \ 246 } 247 248 #else // ndef DTRACE_ENABLED 249 250 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 251 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 252 253 #endif // ndef DTRACE_ENABLED 254 255 // This exists only as a workaround of dtrace bug 6254741 256 static int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) { 257 DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); 258 return 0; 259 } 260 261 static constexpr size_t inflation_lock_count() { 262 return 256; 263 } 264 265 // Static storage for an array of PlatformMutex. 266 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)]; 267 268 static inline PlatformMutex* inflation_lock(size_t index) { 269 return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]); 270 } 271 272 void ObjectSynchronizer::initialize() { 273 for (size_t i = 0; i < inflation_lock_count(); i++) { 274 ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex(); 275 } 276 // Start the ceiling with the estimate for one thread. 277 set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate); 278 279 // Start the timer for deflations, so it does not trigger immediately. 280 _last_async_deflation_time_ns = os::javaTimeNanos(); 281 282 if (LockingMode == LM_LIGHTWEIGHT) { 283 LightweightSynchronizer::initialize(); 284 } 285 } 286 287 MonitorList ObjectSynchronizer::_in_use_list; 288 // monitors_used_above_threshold() policy is as follows: 289 // 290 // The ratio of the current _in_use_list count to the ceiling is used 291 // to determine if we are above MonitorUsedDeflationThreshold and need 292 // to do an async monitor deflation cycle. The ceiling is increased by 293 // AvgMonitorsPerThreadEstimate when a thread is added to the system 294 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is 295 // removed from the system. 296 // 297 // Note: If the _in_use_list max exceeds the ceiling, then 298 // monitors_used_above_threshold() will use the in_use_list max instead 299 // of the thread count derived ceiling because we have used more 300 // ObjectMonitors than the estimated average. 301 // 302 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax 303 // no-progress async monitor deflation cycles in a row, then the ceiling 304 // is adjusted upwards by monitors_used_above_threshold(). 305 // 306 // Start the ceiling with the estimate for one thread in initialize() 307 // which is called after cmd line options are processed. 308 static size_t _in_use_list_ceiling = 0; 309 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false; 310 bool volatile ObjectSynchronizer::_is_final_audit = false; 311 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0; 312 static uintx _no_progress_cnt = 0; 313 static bool _no_progress_skip_increment = false; 314 315 // =====================> Quick functions 316 317 // The quick_* forms are special fast-path variants used to improve 318 // performance. In the simplest case, a "quick_*" implementation could 319 // simply return false, in which case the caller will perform the necessary 320 // state transitions and call the slow-path form. 321 // The fast-path is designed to handle frequently arising cases in an efficient 322 // manner and is just a degenerate "optimistic" variant of the slow-path. 323 // returns true -- to indicate the call was satisfied. 324 // returns false -- to indicate the call needs the services of the slow-path. 325 // A no-loitering ordinance is in effect for code in the quick_* family 326 // operators: safepoints or indefinite blocking (blocking that might span a 327 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon 328 // entry. 329 // 330 // Consider: An interesting optimization is to have the JIT recognize the 331 // following common idiom: 332 // synchronized (someobj) { .... ; notify(); } 333 // That is, we find a notify() or notifyAll() call that immediately precedes 334 // the monitorexit operation. In that case the JIT could fuse the operations 335 // into a single notifyAndExit() runtime primitive. 336 337 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) { 338 assert(current->thread_state() == _thread_in_Java, "invariant"); 339 NoSafepointVerifier nsv; 340 if (obj == nullptr) return false; // slow-path for invalid obj 341 const markWord mark = obj->mark(); 342 343 if (LockingMode == LM_LIGHTWEIGHT) { 344 if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) { 345 // Degenerate notify 346 // fast-locked by caller so by definition the implied waitset is empty. 347 return true; 348 } 349 } else if (LockingMode == LM_LEGACY) { 350 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 351 // Degenerate notify 352 // stack-locked by caller so by definition the implied waitset is empty. 353 return true; 354 } 355 } 356 357 if (mark.has_monitor()) { 358 ObjectMonitor* const mon = read_monitor(current, obj, mark); 359 if (LockingMode == LM_LIGHTWEIGHT && mon == nullptr) { 360 // Racing with inflation/deflation go slow path 361 return false; 362 } 363 assert(mon->object() == oop(obj), "invariant"); 364 if (!mon->has_owner(current)) return false; // slow-path for IMS exception 365 366 if (mon->first_waiter() != nullptr) { 367 // We have one or more waiters. Since this is an inflated monitor 368 // that we own, we can transfer one or more threads from the waitset 369 // to the entrylist here and now, avoiding the slow-path. 370 if (all) { 371 DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current); 372 } else { 373 DTRACE_MONITOR_PROBE(notify, mon, obj, current); 374 } 375 int free_count = 0; 376 do { 377 mon->INotify(current); 378 ++free_count; 379 } while (mon->first_waiter() != nullptr && all); 380 OM_PERFDATA_OP(Notifications, inc(free_count)); 381 } 382 return true; 383 } 384 385 // other IMS exception states take the slow-path 386 return false; 387 } 388 389 static bool useHeavyMonitors() { 390 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390) 391 return LockingMode == LM_MONITOR; 392 #else 393 return false; 394 #endif 395 } 396 397 // The LockNode emitted directly at the synchronization site would have 398 // been too big if it were to have included support for the cases of inflated 399 // recursive enter and exit, so they go here instead. 400 // Note that we can't safely call AsyncPrintJavaStack() from within 401 // quick_enter() as our thread state remains _in_Java. 402 403 bool ObjectSynchronizer::quick_enter_legacy(oop obj, BasicLock* lock, JavaThread* current) { 404 assert(current->thread_state() == _thread_in_Java, "invariant"); 405 406 if (useHeavyMonitors()) { 407 return false; // Slow path 408 } 409 410 if (LockingMode == LM_LIGHTWEIGHT) { 411 return LightweightSynchronizer::quick_enter(obj, lock, current); 412 } 413 414 assert(LockingMode == LM_LEGACY, "legacy mode below"); 415 416 const markWord mark = obj->mark(); 417 418 if (mark.has_monitor()) { 419 420 ObjectMonitor* const m = read_monitor(mark); 421 // An async deflation or GC can race us before we manage to make 422 // the ObjectMonitor busy by setting the owner below. If we detect 423 // that race we just bail out to the slow-path here. 424 if (m->object_peek() == nullptr) { 425 return false; 426 } 427 428 // Lock contention and Transactional Lock Elision (TLE) diagnostics 429 // and observability 430 // Case: light contention possibly amenable to TLE 431 // Case: TLE inimical operations such as nested/recursive synchronization 432 433 if (m->has_owner(current)) { 434 m->_recursions++; 435 current->inc_held_monitor_count(); 436 return true; 437 } 438 439 // This Java Monitor is inflated so obj's header will never be 440 // displaced to this thread's BasicLock. Make the displaced header 441 // non-null so this BasicLock is not seen as recursive nor as 442 // being locked. We do this unconditionally so that this thread's 443 // BasicLock cannot be mis-interpreted by any stack walkers. For 444 // performance reasons, stack walkers generally first check for 445 // stack-locking in the object's header, the second check is for 446 // recursive stack-locking in the displaced header in the BasicLock, 447 // and last are the inflated Java Monitor (ObjectMonitor) checks. 448 lock->set_displaced_header(markWord::unused_mark()); 449 450 if (!m->has_owner() && m->try_set_owner(current)) { 451 assert(m->_recursions == 0, "invariant"); 452 current->inc_held_monitor_count(); 453 return true; 454 } 455 } 456 457 // Note that we could inflate in quick_enter. 458 // This is likely a useful optimization 459 // Critically, in quick_enter() we must not: 460 // -- block indefinitely, or 461 // -- reach a safepoint 462 463 return false; // revert to slow-path 464 } 465 466 // Handle notifications when synchronizing on value based classes 467 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) { 468 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 469 frame last_frame = locking_thread->last_frame(); 470 bool bcp_was_adjusted = false; 471 // Don't decrement bcp if it points to the frame's first instruction. This happens when 472 // handle_sync_on_value_based_class() is called because of a synchronized method. There 473 // is no actual monitorenter instruction in the byte code in this case. 474 if (last_frame.is_interpreted_frame() && 475 (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) { 476 // adjust bcp to point back to monitorenter so that we print the correct line numbers 477 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1); 478 bcp_was_adjusted = true; 479 } 480 481 if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) { 482 ResourceMark rm; 483 stringStream ss; 484 locking_thread->print_active_stack_on(&ss); 485 char* base = (char*)strstr(ss.base(), "at"); 486 char* newline = (char*)strchr(ss.base(), '\n'); 487 if (newline != nullptr) { 488 *newline = '\0'; 489 } 490 fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base); 491 } else { 492 assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses"); 493 ResourceMark rm; 494 Log(valuebasedclasses) vblog; 495 496 vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name()); 497 if (locking_thread->has_last_Java_frame()) { 498 LogStream info_stream(vblog.info()); 499 locking_thread->print_active_stack_on(&info_stream); 500 } else { 501 vblog.info("Cannot find the last Java frame"); 502 } 503 504 EventSyncOnValueBasedClass event; 505 if (event.should_commit()) { 506 event.set_valueBasedClass(obj->klass()); 507 event.commit(); 508 } 509 } 510 511 if (bcp_was_adjusted) { 512 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1); 513 } 514 } 515 516 // ----------------------------------------------------------------------------- 517 // Monitor Enter/Exit 518 519 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 520 // When called with locking_thread != Thread::current() some mechanism must synchronize 521 // the locking_thread with respect to the current thread. Currently only used when 522 // deoptimizing and re-locking locks. See Deoptimization::relock_objects 523 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 524 525 if (LockingMode == LM_LIGHTWEIGHT) { 526 return LightweightSynchronizer::enter_for(obj, lock, locking_thread); 527 } 528 529 if (!enter_fast_impl(obj, lock, locking_thread)) { 530 // Inflated ObjectMonitor::enter_for is required 531 532 // An async deflation can race after the inflate_for() call and before 533 // enter_for() can make the ObjectMonitor busy. enter_for() returns false 534 // if we have lost the race to async deflation and we simply try again. 535 while (true) { 536 ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter); 537 if (monitor->enter_for(locking_thread)) { 538 return; 539 } 540 assert(monitor->is_being_async_deflated(), "must be"); 541 } 542 } 543 } 544 545 void ObjectSynchronizer::enter_legacy(Handle obj, BasicLock* lock, JavaThread* current) { 546 if (!enter_fast_impl(obj, lock, current)) { 547 // Inflated ObjectMonitor::enter is required 548 549 // An async deflation can race after the inflate() call and before 550 // enter() can make the ObjectMonitor busy. enter() returns false if 551 // we have lost the race to async deflation and we simply try again. 552 while (true) { 553 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter); 554 if (monitor->enter(current)) { 555 return; 556 } 557 } 558 } 559 } 560 561 // The interpreter and compiler assembly code tries to lock using the fast path 562 // of this algorithm. Make sure to update that code if the following function is 563 // changed. The implementation is extremely sensitive to race condition. Be careful. 564 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 565 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 566 567 if (obj->klass()->is_value_based()) { 568 handle_sync_on_value_based_class(obj, locking_thread); 569 } 570 571 locking_thread->inc_held_monitor_count(); 572 573 if (!useHeavyMonitors()) { 574 if (LockingMode == LM_LEGACY) { 575 markWord mark = obj->mark(); 576 if (mark.is_unlocked()) { 577 // Anticipate successful CAS -- the ST of the displaced mark must 578 // be visible <= the ST performed by the CAS. 579 lock->set_displaced_header(mark); 580 if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) { 581 return true; 582 } 583 } else if (mark.has_locker() && 584 locking_thread->is_lock_owned((address) mark.locker())) { 585 assert(lock != mark.locker(), "must not re-lock the same lock"); 586 assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock"); 587 lock->set_displaced_header(markWord::from_pointer(nullptr)); 588 return true; 589 } 590 591 // The object header will never be displaced to this lock, 592 // so it does not matter what the value is, except that it 593 // must be non-zero to avoid looking like a re-entrant lock, 594 // and must not look locked either. 595 lock->set_displaced_header(markWord::unused_mark()); 596 597 // Failed to fast lock. 598 return false; 599 } 600 } else if (VerifyHeavyMonitors) { 601 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 602 } 603 604 return false; 605 } 606 607 void ObjectSynchronizer::exit_legacy(oop object, BasicLock* lock, JavaThread* current) { 608 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 609 610 if (!useHeavyMonitors()) { 611 markWord mark = object->mark(); 612 if (LockingMode == LM_LEGACY) { 613 markWord dhw = lock->displaced_header(); 614 if (dhw.value() == 0) { 615 // If the displaced header is null, then this exit matches up with 616 // a recursive enter. No real work to do here except for diagnostics. 617 #ifndef PRODUCT 618 if (mark != markWord::INFLATING()) { 619 // Only do diagnostics if we are not racing an inflation. Simply 620 // exiting a recursive enter of a Java Monitor that is being 621 // inflated is safe; see the has_monitor() comment below. 622 assert(!mark.is_unlocked(), "invariant"); 623 assert(!mark.has_locker() || 624 current->is_lock_owned((address)mark.locker()), "invariant"); 625 if (mark.has_monitor()) { 626 // The BasicLock's displaced_header is marked as a recursive 627 // enter and we have an inflated Java Monitor (ObjectMonitor). 628 // This is a special case where the Java Monitor was inflated 629 // after this thread entered the stack-lock recursively. When a 630 // Java Monitor is inflated, we cannot safely walk the Java 631 // Monitor owner's stack and update the BasicLocks because a 632 // Java Monitor can be asynchronously inflated by a thread that 633 // does not own the Java Monitor. 634 ObjectMonitor* m = read_monitor(mark); 635 assert(m->object()->mark() == mark, "invariant"); 636 assert(m->is_entered(current), "invariant"); 637 } 638 } 639 #endif 640 return; 641 } 642 643 if (mark == markWord::from_pointer(lock)) { 644 // If the object is stack-locked by the current thread, try to 645 // swing the displaced header from the BasicLock back to the mark. 646 assert(dhw.is_neutral(), "invariant"); 647 if (object->cas_set_mark(dhw, mark) == mark) { 648 return; 649 } 650 } 651 } 652 } else if (VerifyHeavyMonitors) { 653 guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 654 } 655 656 // We have to take the slow-path of possible inflation and then exit. 657 // The ObjectMonitor* can't be async deflated until ownership is 658 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 659 ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal); 660 assert(!monitor->has_anonymous_owner(), "must not be"); 661 monitor->exit(current); 662 } 663 664 // ----------------------------------------------------------------------------- 665 // JNI locks on java objects 666 // NOTE: must use heavy weight monitor to handle jni monitor enter 667 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) { 668 // Top native frames in the stack will not be seen if we attempt 669 // preemption, since we start walking from the last Java anchor. 670 NoPreemptMark npm(current); 671 672 if (obj->klass()->is_value_based()) { 673 handle_sync_on_value_based_class(obj, current); 674 } 675 676 // the current locking is from JNI instead of Java code 677 current->set_current_pending_monitor_is_from_java(false); 678 // An async deflation can race after the inflate() call and before 679 // enter() can make the ObjectMonitor busy. enter() returns false if 680 // we have lost the race to async deflation and we simply try again. 681 while (true) { 682 ObjectMonitor* monitor; 683 bool entered; 684 if (LockingMode == LM_LIGHTWEIGHT) { 685 entered = LightweightSynchronizer::inflate_and_enter(obj(), inflate_cause_jni_enter, current, current) != nullptr; 686 } else { 687 monitor = inflate(current, obj(), inflate_cause_jni_enter); 688 entered = monitor->enter(current); 689 } 690 691 if (entered) { 692 current->inc_held_monitor_count(1, true); 693 break; 694 } 695 } 696 current->set_current_pending_monitor_is_from_java(true); 697 } 698 699 // NOTE: must use heavy weight monitor to handle jni monitor exit 700 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) { 701 JavaThread* current = THREAD; 702 703 ObjectMonitor* monitor; 704 if (LockingMode == LM_LIGHTWEIGHT) { 705 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK); 706 } else { 707 // The ObjectMonitor* can't be async deflated until ownership is 708 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 709 monitor = inflate(current, obj, inflate_cause_jni_exit); 710 } 711 // If this thread has locked the object, exit the monitor. We 712 // intentionally do not use CHECK on check_owner because we must exit the 713 // monitor even if an exception was already pending. 714 if (monitor->check_owner(THREAD)) { 715 monitor->exit(current); 716 current->dec_held_monitor_count(1, true); 717 } 718 } 719 720 // ----------------------------------------------------------------------------- 721 // Internal VM locks on java objects 722 // standard constructor, allows locking failures 723 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) : _npm(thread) { 724 _thread = thread; 725 _thread->check_for_valid_safepoint_state(); 726 _obj = obj; 727 728 if (_obj() != nullptr) { 729 ObjectSynchronizer::enter(_obj, &_lock, _thread); 730 } 731 } 732 733 ObjectLocker::~ObjectLocker() { 734 if (_obj() != nullptr) { 735 ObjectSynchronizer::exit(_obj(), &_lock, _thread); 736 } 737 } 738 739 740 // ----------------------------------------------------------------------------- 741 // Wait/Notify/NotifyAll 742 // NOTE: must use heavy weight monitor to handle wait() 743 744 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { 745 JavaThread* current = THREAD; 746 if (millis < 0) { 747 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 748 } 749 750 ObjectMonitor* monitor; 751 if (LockingMode == LM_LIGHTWEIGHT) { 752 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0); 753 } else { 754 // The ObjectMonitor* can't be async deflated because the _waiters 755 // field is incremented before ownership is dropped and decremented 756 // after ownership is regained. 757 monitor = inflate(current, obj(), inflate_cause_wait); 758 } 759 760 DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis); 761 monitor->wait(millis, true, THREAD); // Not CHECK as we need following code 762 763 // This dummy call is in place to get around dtrace bug 6254741. Once 764 // that's fixed we can uncomment the following line, remove the call 765 // and change this function back into a "void" func. 766 // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); 767 int ret_code = dtrace_waited_probe(monitor, obj, THREAD); 768 return ret_code; 769 } 770 771 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) { 772 if (millis < 0) { 773 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 774 } 775 776 ObjectMonitor* monitor; 777 if (LockingMode == LM_LIGHTWEIGHT) { 778 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK); 779 } else { 780 monitor = inflate(THREAD, obj(), inflate_cause_wait); 781 } 782 monitor->wait(millis, false, THREAD); 783 } 784 785 786 void ObjectSynchronizer::notify(Handle obj, TRAPS) { 787 JavaThread* current = THREAD; 788 789 markWord mark = obj->mark(); 790 if (LockingMode == LM_LIGHTWEIGHT) { 791 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 792 // Not inflated so there can't be any waiters to notify. 793 return; 794 } 795 } else if (LockingMode == LM_LEGACY) { 796 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 797 // Not inflated so there can't be any waiters to notify. 798 return; 799 } 800 } 801 802 ObjectMonitor* monitor; 803 if (LockingMode == LM_LIGHTWEIGHT) { 804 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 805 } else { 806 // The ObjectMonitor* can't be async deflated until ownership is 807 // dropped by the calling thread. 808 monitor = inflate(current, obj(), inflate_cause_notify); 809 } 810 monitor->notify(CHECK); 811 } 812 813 // NOTE: see comment of notify() 814 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { 815 JavaThread* current = THREAD; 816 817 markWord mark = obj->mark(); 818 if (LockingMode == LM_LIGHTWEIGHT) { 819 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 820 // Not inflated so there can't be any waiters to notify. 821 return; 822 } 823 } else if (LockingMode == LM_LEGACY) { 824 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 825 // Not inflated so there can't be any waiters to notify. 826 return; 827 } 828 } 829 830 ObjectMonitor* monitor; 831 if (LockingMode == LM_LIGHTWEIGHT) { 832 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 833 } else { 834 // The ObjectMonitor* can't be async deflated until ownership is 835 // dropped by the calling thread. 836 monitor = inflate(current, obj(), inflate_cause_notify); 837 } 838 monitor->notifyAll(CHECK); 839 } 840 841 // ----------------------------------------------------------------------------- 842 // Hash Code handling 843 844 struct SharedGlobals { 845 char _pad_prefix[OM_CACHE_LINE_SIZE]; 846 // This is a highly shared mostly-read variable. 847 // To avoid false-sharing it needs to be the sole occupant of a cache line. 848 volatile int stw_random; 849 DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 850 // Hot RW variable -- Sequester to avoid false-sharing 851 volatile int hc_sequence; 852 DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 853 }; 854 855 static SharedGlobals GVars; 856 857 static markWord read_stable_mark(oop obj) { 858 markWord mark = obj->mark_acquire(); 859 if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) { 860 // New lightweight locking does not use the markWord::INFLATING() protocol. 861 return mark; // normal fast-path return 862 } 863 864 int its = 0; 865 for (;;) { 866 markWord mark = obj->mark_acquire(); 867 if (!mark.is_being_inflated()) { 868 return mark; // normal fast-path return 869 } 870 871 // The object is being inflated by some other thread. 872 // The caller of read_stable_mark() must wait for inflation to complete. 873 // Avoid live-lock. 874 875 ++its; 876 if (its > 10000 || !os::is_MP()) { 877 if (its & 1) { 878 os::naked_yield(); 879 } else { 880 // Note that the following code attenuates the livelock problem but is not 881 // a complete remedy. A more complete solution would require that the inflating 882 // thread hold the associated inflation lock. The following code simply restricts 883 // the number of spinners to at most one. We'll have N-2 threads blocked 884 // on the inflationlock, 1 thread holding the inflation lock and using 885 // a yield/park strategy, and 1 thread in the midst of inflation. 886 // A more refined approach would be to change the encoding of INFLATING 887 // to allow encapsulation of a native thread pointer. Threads waiting for 888 // inflation to complete would use CAS to push themselves onto a singly linked 889 // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag 890 // and calling park(). When inflation was complete the thread that accomplished inflation 891 // would detach the list and set the markword to inflated with a single CAS and 892 // then for each thread on the list, set the flag and unpark() the thread. 893 894 // Index into the lock array based on the current object address. 895 static_assert(is_power_of_2(inflation_lock_count()), "must be"); 896 size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1); 897 int YieldThenBlock = 0; 898 assert(ix < inflation_lock_count(), "invariant"); 899 inflation_lock(ix)->lock(); 900 while (obj->mark_acquire() == markWord::INFLATING()) { 901 // Beware: naked_yield() is advisory and has almost no effect on some platforms 902 // so we periodically call current->_ParkEvent->park(1). 903 // We use a mixed spin/yield/block mechanism. 904 if ((YieldThenBlock++) >= 16) { 905 Thread::current()->_ParkEvent->park(1); 906 } else { 907 os::naked_yield(); 908 } 909 } 910 inflation_lock(ix)->unlock(); 911 } 912 } else { 913 SpinPause(); // SMP-polite spinning 914 } 915 } 916 } 917 918 // hashCode() generation : 919 // 920 // Possibilities: 921 // * MD5Digest of {obj,stw_random} 922 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function. 923 // * A DES- or AES-style SBox[] mechanism 924 // * One of the Phi-based schemes, such as: 925 // 2654435761 = 2^32 * Phi (golden ratio) 926 // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ; 927 // * A variation of Marsaglia's shift-xor RNG scheme. 928 // * (obj ^ stw_random) is appealing, but can result 929 // in undesirable regularity in the hashCode values of adjacent objects 930 // (objects allocated back-to-back, in particular). This could potentially 931 // result in hashtable collisions and reduced hashtable efficiency. 932 // There are simple ways to "diffuse" the middle address bits over the 933 // generated hashCode values: 934 935 static intptr_t get_next_hash(Thread* current, oop obj) { 936 intptr_t value = 0; 937 if (hashCode == 0) { 938 // This form uses global Park-Miller RNG. 939 // On MP system we'll have lots of RW access to a global, so the 940 // mechanism induces lots of coherency traffic. 941 value = os::random(); 942 } else if (hashCode == 1) { 943 // This variation has the property of being stable (idempotent) 944 // between STW operations. This can be useful in some of the 1-0 945 // synchronization schemes. 946 intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3; 947 value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random; 948 } else if (hashCode == 2) { 949 value = 1; // for sensitivity testing 950 } else if (hashCode == 3) { 951 value = ++GVars.hc_sequence; 952 } else if (hashCode == 4) { 953 value = cast_from_oop<intptr_t>(obj); 954 } else { 955 // Marsaglia's xor-shift scheme with thread-specific state 956 // This is probably the best overall implementation -- we'll 957 // likely make this the default in future releases. 958 unsigned t = current->_hashStateX; 959 t ^= (t << 11); 960 current->_hashStateX = current->_hashStateY; 961 current->_hashStateY = current->_hashStateZ; 962 current->_hashStateZ = current->_hashStateW; 963 unsigned v = current->_hashStateW; 964 v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); 965 current->_hashStateW = v; 966 value = v; 967 } 968 969 value &= markWord::hash_mask; 970 if (value == 0) value = 0xBAD; 971 assert(value != markWord::no_hash, "invariant"); 972 return value; 973 } 974 975 static intptr_t install_hash_code(Thread* current, oop obj) { 976 assert(UseObjectMonitorTable && LockingMode == LM_LIGHTWEIGHT, "must be"); 977 978 markWord mark = obj->mark_acquire(); 979 for (;;) { 980 intptr_t hash = mark.hash(); 981 if (hash != 0) { 982 return hash; 983 } 984 985 hash = get_next_hash(current, obj); 986 const markWord old_mark = mark; 987 const markWord new_mark = old_mark.copy_set_hash(hash); 988 989 mark = obj->cas_set_mark(new_mark, old_mark); 990 if (old_mark == mark) { 991 return hash; 992 } 993 } 994 } 995 996 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) { 997 if (UseObjectMonitorTable) { 998 // Since the monitor isn't in the object header, the hash can simply be 999 // installed in the object header. 1000 return install_hash_code(current, obj); 1001 } 1002 1003 while (true) { 1004 ObjectMonitor* monitor = nullptr; 1005 markWord temp, test; 1006 intptr_t hash; 1007 markWord mark = read_stable_mark(obj); 1008 if (VerifyHeavyMonitors) { 1009 assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)"); 1010 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 1011 } 1012 if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) { 1013 hash = mark.hash(); 1014 if (hash != 0) { // if it has a hash, just return it 1015 return hash; 1016 } 1017 hash = get_next_hash(current, obj); // get a new hash 1018 temp = mark.copy_set_hash(hash); // merge the hash into header 1019 // try to install the hash 1020 test = obj->cas_set_mark(temp, mark); 1021 if (test == mark) { // if the hash was installed, return it 1022 return hash; 1023 } 1024 if (LockingMode == LM_LIGHTWEIGHT) { 1025 // CAS failed, retry 1026 continue; 1027 } 1028 // Failed to install the hash. It could be that another thread 1029 // installed the hash just before our attempt or inflation has 1030 // occurred or... so we fall thru to inflate the monitor for 1031 // stability and then install the hash. 1032 } else if (mark.has_monitor()) { 1033 monitor = mark.monitor(); 1034 temp = monitor->header(); 1035 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1036 hash = temp.hash(); 1037 if (hash != 0) { 1038 // It has a hash. 1039 1040 // Separate load of dmw/header above from the loads in 1041 // is_being_async_deflated(). 1042 1043 // dmw/header and _contentions may get written by different threads. 1044 // Make sure to observe them in the same order when having several observers. 1045 OrderAccess::loadload_for_IRIW(); 1046 1047 if (monitor->is_being_async_deflated()) { 1048 // But we can't safely use the hash if we detect that async 1049 // deflation has occurred. So we attempt to restore the 1050 // header/dmw to the object's header so that we only retry 1051 // once if the deflater thread happens to be slow. 1052 monitor->install_displaced_markword_in_object(obj); 1053 continue; 1054 } 1055 return hash; 1056 } 1057 // Fall thru so we only have one place that installs the hash in 1058 // the ObjectMonitor. 1059 } else if (LockingMode == LM_LEGACY && mark.has_locker() 1060 && current->is_Java_thread() 1061 && JavaThread::cast(current)->is_lock_owned((address)mark.locker())) { 1062 // This is a stack-lock owned by the calling thread so fetch the 1063 // displaced markWord from the BasicLock on the stack. 1064 temp = mark.displaced_mark_helper(); 1065 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1066 hash = temp.hash(); 1067 if (hash != 0) { // if it has a hash, just return it 1068 return hash; 1069 } 1070 // WARNING: 1071 // The displaced header in the BasicLock on a thread's stack 1072 // is strictly immutable. It CANNOT be changed in ANY cases. 1073 // So we have to inflate the stack-lock into an ObjectMonitor 1074 // even if the current thread owns the lock. The BasicLock on 1075 // a thread's stack can be asynchronously read by other threads 1076 // during an inflate() call so any change to that stack memory 1077 // may not propagate to other threads correctly. 1078 } 1079 1080 // Inflate the monitor to set the hash. 1081 1082 // There's no need to inflate if the mark has already got a monitor. 1083 // NOTE: an async deflation can race after we get the monitor and 1084 // before we can update the ObjectMonitor's header with the hash 1085 // value below. 1086 monitor = mark.has_monitor() ? mark.monitor() : inflate(current, obj, inflate_cause_hash_code); 1087 // Load ObjectMonitor's header/dmw field and see if it has a hash. 1088 mark = monitor->header(); 1089 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1090 hash = mark.hash(); 1091 if (hash == 0) { // if it does not have a hash 1092 hash = get_next_hash(current, obj); // get a new hash 1093 temp = mark.copy_set_hash(hash) ; // merge the hash into header 1094 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1095 uintptr_t v = Atomic::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value()); 1096 test = markWord(v); 1097 if (test != mark) { 1098 // The attempt to update the ObjectMonitor's header/dmw field 1099 // did not work. This can happen if another thread managed to 1100 // merge in the hash just before our cmpxchg(). 1101 // If we add any new usages of the header/dmw field, this code 1102 // will need to be updated. 1103 hash = test.hash(); 1104 assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value()); 1105 assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash"); 1106 } 1107 if (monitor->is_being_async_deflated() && !UseObjectMonitorTable) { 1108 // If we detect that async deflation has occurred, then we 1109 // attempt to restore the header/dmw to the object's header 1110 // so that we only retry once if the deflater thread happens 1111 // to be slow. 1112 monitor->install_displaced_markword_in_object(obj); 1113 continue; 1114 } 1115 } 1116 // We finally get the hash. 1117 return hash; 1118 } 1119 } 1120 1121 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current, 1122 Handle h_obj) { 1123 assert(current == JavaThread::current(), "Can only be called on current thread"); 1124 oop obj = h_obj(); 1125 1126 markWord mark = read_stable_mark(obj); 1127 1128 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1129 // stack-locked case, header points into owner's stack 1130 return current->is_lock_owned((address)mark.locker()); 1131 } 1132 1133 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1134 // fast-locking case, see if lock is in current's lock stack 1135 return current->lock_stack().contains(h_obj()); 1136 } 1137 1138 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1139 ObjectMonitor* monitor = read_monitor(current, obj, mark); 1140 if (monitor != nullptr) { 1141 return monitor->is_entered(current) != 0; 1142 } 1143 // Racing with inflation/deflation, retry 1144 mark = obj->mark_acquire(); 1145 1146 if (mark.is_fast_locked()) { 1147 // Some other thread fast_locked, current could not have held the lock 1148 return false; 1149 } 1150 } 1151 1152 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1153 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1154 // The first stage of async deflation does not affect any field 1155 // used by this comparison so the ObjectMonitor* is usable here. 1156 ObjectMonitor* monitor = read_monitor(mark); 1157 return monitor->is_entered(current) != 0; 1158 } 1159 // Unlocked case, header in place 1160 assert(mark.is_unlocked(), "sanity check"); 1161 return false; 1162 } 1163 1164 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { 1165 oop obj = h_obj(); 1166 markWord mark = read_stable_mark(obj); 1167 1168 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1169 // stack-locked so header points into owner's stack. 1170 // owning_thread_from_monitor_owner() may also return null here: 1171 return Threads::owning_thread_from_stacklock(t_list, (address) mark.locker()); 1172 } 1173 1174 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1175 // fast-locked so get owner from the object. 1176 // owning_thread_from_object() may also return null here: 1177 return Threads::owning_thread_from_object(t_list, h_obj()); 1178 } 1179 1180 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1181 ObjectMonitor* monitor = read_monitor(Thread::current(), obj, mark); 1182 if (monitor != nullptr) { 1183 return Threads::owning_thread_from_monitor(t_list, monitor); 1184 } 1185 // Racing with inflation/deflation, retry 1186 mark = obj->mark_acquire(); 1187 1188 if (mark.is_fast_locked()) { 1189 // Some other thread fast_locked 1190 return Threads::owning_thread_from_object(t_list, h_obj()); 1191 } 1192 } 1193 1194 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1195 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1196 // The first stage of async deflation does not affect any field 1197 // used by this comparison so the ObjectMonitor* is usable here. 1198 ObjectMonitor* monitor = read_monitor(mark); 1199 assert(monitor != nullptr, "monitor should be non-null"); 1200 // owning_thread_from_monitor() may also return null here: 1201 return Threads::owning_thread_from_monitor(t_list, monitor); 1202 } 1203 1204 // Unlocked case, header in place 1205 // Cannot have assertion since this object may have been 1206 // locked by another thread when reaching here. 1207 // assert(mark.is_unlocked(), "sanity check"); 1208 1209 return nullptr; 1210 } 1211 1212 // Visitors ... 1213 1214 // Iterate over all ObjectMonitors. 1215 template <typename Function> 1216 void ObjectSynchronizer::monitors_iterate(Function function) { 1217 MonitorList::Iterator iter = _in_use_list.iterator(); 1218 while (iter.has_next()) { 1219 ObjectMonitor* monitor = iter.next(); 1220 function(monitor); 1221 } 1222 } 1223 1224 // Iterate ObjectMonitors owned by any thread and where the owner `filter` 1225 // returns true. 1226 template <typename OwnerFilter> 1227 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) { 1228 monitors_iterate([&](ObjectMonitor* monitor) { 1229 // This function is only called at a safepoint or when the 1230 // target thread is suspended or when the target thread is 1231 // operating on itself. The current closures in use today are 1232 // only interested in an owned ObjectMonitor and ownership 1233 // cannot be dropped under the calling contexts so the 1234 // ObjectMonitor cannot be async deflated. 1235 if (monitor->has_owner() && filter(monitor)) { 1236 assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating"); 1237 1238 closure->do_monitor(monitor); 1239 } 1240 }); 1241 } 1242 1243 // Iterate ObjectMonitors where the owner == thread; this does NOT include 1244 // ObjectMonitors where owner is set to a stack-lock address in thread. 1245 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) { 1246 int64_t key = ObjectMonitor::owner_id_from(thread); 1247 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1248 return owned_monitors_iterate_filtered(closure, thread_filter); 1249 } 1250 1251 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, oop vthread) { 1252 int64_t key = ObjectMonitor::owner_id_from(vthread); 1253 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1254 return owned_monitors_iterate_filtered(closure, thread_filter); 1255 } 1256 1257 // Iterate ObjectMonitors owned by any thread. 1258 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) { 1259 auto all_filter = [&](ObjectMonitor* monitor) { return true; }; 1260 return owned_monitors_iterate_filtered(closure, all_filter); 1261 } 1262 1263 static bool monitors_used_above_threshold(MonitorList* list) { 1264 if (MonitorUsedDeflationThreshold == 0) { // disabled case is easy 1265 return false; 1266 } 1267 // Start with ceiling based on a per-thread estimate: 1268 size_t ceiling = ObjectSynchronizer::in_use_list_ceiling(); 1269 size_t old_ceiling = ceiling; 1270 if (ceiling < list->max()) { 1271 // The max used by the system has exceeded the ceiling so use that: 1272 ceiling = list->max(); 1273 } 1274 size_t monitors_used = list->count(); 1275 if (monitors_used == 0) { // empty list is easy 1276 return false; 1277 } 1278 if (NoAsyncDeflationProgressMax != 0 && 1279 _no_progress_cnt >= NoAsyncDeflationProgressMax) { 1280 double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0; 1281 size_t new_ceiling = ceiling + (size_t)((double)ceiling * remainder) + 1; 1282 ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling); 1283 log_info(monitorinflation)("Too many deflations without progress; " 1284 "bumping in_use_list_ceiling from " SIZE_FORMAT 1285 " to " SIZE_FORMAT, old_ceiling, new_ceiling); 1286 _no_progress_cnt = 0; 1287 ceiling = new_ceiling; 1288 } 1289 1290 // Check if our monitor usage is above the threshold: 1291 size_t monitor_usage = (monitors_used * 100LL) / ceiling; 1292 if (int(monitor_usage) > MonitorUsedDeflationThreshold) { 1293 log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT 1294 ", monitor_usage=" SIZE_FORMAT ", threshold=%d", 1295 monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold); 1296 return true; 1297 } 1298 1299 return false; 1300 } 1301 1302 size_t ObjectSynchronizer::in_use_list_ceiling() { 1303 return _in_use_list_ceiling; 1304 } 1305 1306 void ObjectSynchronizer::dec_in_use_list_ceiling() { 1307 Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1308 } 1309 1310 void ObjectSynchronizer::inc_in_use_list_ceiling() { 1311 Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1312 } 1313 1314 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) { 1315 _in_use_list_ceiling = new_value; 1316 } 1317 1318 bool ObjectSynchronizer::is_async_deflation_needed() { 1319 if (is_async_deflation_requested()) { 1320 // Async deflation request. 1321 log_info(monitorinflation)("Async deflation needed: explicit request"); 1322 return true; 1323 } 1324 1325 jlong time_since_last = time_since_last_async_deflation_ms(); 1326 1327 if (AsyncDeflationInterval > 0 && 1328 time_since_last > AsyncDeflationInterval && 1329 monitors_used_above_threshold(&_in_use_list)) { 1330 // It's been longer than our specified deflate interval and there 1331 // are too many monitors in use. We don't deflate more frequently 1332 // than AsyncDeflationInterval (unless is_async_deflation_requested) 1333 // in order to not swamp the MonitorDeflationThread. 1334 log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold"); 1335 return true; 1336 } 1337 1338 if (GuaranteedAsyncDeflationInterval > 0 && 1339 time_since_last > GuaranteedAsyncDeflationInterval) { 1340 // It's been longer than our specified guaranteed deflate interval. 1341 // We need to clean up the used monitors even if the threshold is 1342 // not reached, to keep the memory utilization at bay when many threads 1343 // touched many monitors. 1344 log_info(monitorinflation)("Async deflation needed: guaranteed interval (" INTX_FORMAT " ms) " 1345 "is greater than time since last deflation (" JLONG_FORMAT " ms)", 1346 GuaranteedAsyncDeflationInterval, time_since_last); 1347 1348 // If this deflation has no progress, then it should not affect the no-progress 1349 // tracking, otherwise threshold heuristics would think it was triggered, experienced 1350 // no progress, and needs to backoff more aggressively. In this "no progress" case, 1351 // the generic code would bump the no-progress counter, and we compensate for that 1352 // by telling it to skip the update. 1353 // 1354 // If this deflation has progress, then it should let non-progress tracking 1355 // know about this, otherwise the threshold heuristics would kick in, potentially 1356 // experience no-progress due to aggressive cleanup by this deflation, and think 1357 // it is still in no-progress stride. In this "progress" case, the generic code would 1358 // zero the counter, and we allow it to happen. 1359 _no_progress_skip_increment = true; 1360 1361 return true; 1362 } 1363 1364 return false; 1365 } 1366 1367 void ObjectSynchronizer::request_deflate_idle_monitors() { 1368 MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag); 1369 set_is_async_deflation_requested(true); 1370 ml.notify_all(); 1371 } 1372 1373 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() { 1374 JavaThread* current = JavaThread::current(); 1375 bool ret_code = false; 1376 1377 jlong last_time = last_async_deflation_time_ns(); 1378 1379 request_deflate_idle_monitors(); 1380 1381 const int N_CHECKS = 5; 1382 for (int i = 0; i < N_CHECKS; i++) { // sleep for at most 5 seconds 1383 if (last_async_deflation_time_ns() > last_time) { 1384 log_info(monitorinflation)("Async Deflation happened after %d check(s).", i); 1385 ret_code = true; 1386 break; 1387 } 1388 { 1389 // JavaThread has to honor the blocking protocol. 1390 ThreadBlockInVM tbivm(current); 1391 os::naked_short_sleep(999); // sleep for almost 1 second 1392 } 1393 } 1394 if (!ret_code) { 1395 log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS); 1396 } 1397 1398 return ret_code; 1399 } 1400 1401 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() { 1402 return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS); 1403 } 1404 1405 static void post_monitor_inflate_event(EventJavaMonitorInflate* event, 1406 const oop obj, 1407 ObjectSynchronizer::InflateCause cause) { 1408 assert(event != nullptr, "invariant"); 1409 event->set_monitorClass(obj->klass()); 1410 event->set_address((uintptr_t)(void*)obj); 1411 event->set_cause((u1)cause); 1412 event->commit(); 1413 } 1414 1415 // Fast path code shared by multiple functions 1416 void ObjectSynchronizer::inflate_helper(oop obj) { 1417 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1418 markWord mark = obj->mark_acquire(); 1419 if (mark.has_monitor()) { 1420 ObjectMonitor* monitor = read_monitor(mark); 1421 markWord dmw = monitor->header(); 1422 assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value()); 1423 return; 1424 } 1425 (void)inflate(Thread::current(), obj, inflate_cause_vm_internal); 1426 } 1427 1428 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) { 1429 assert(current == Thread::current(), "must be"); 1430 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1431 return inflate_impl(current->is_Java_thread() ? JavaThread::cast(current) : nullptr, obj, cause); 1432 } 1433 1434 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) { 1435 assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be"); 1436 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_for"); 1437 return inflate_impl(thread, obj, cause); 1438 } 1439 1440 ObjectMonitor* ObjectSynchronizer::inflate_impl(JavaThread* locking_thread, oop object, const InflateCause cause) { 1441 // The JavaThread* locking_thread requires that the locking_thread == Thread::current() or 1442 // is suspended throughout the call by some other mechanism. 1443 // The thread might be nullptr when called from a non JavaThread. (As may still be 1444 // the case from FastHashCode). However it is only important for correctness that the 1445 // thread is set when called from ObjectSynchronizer::enter from the owning thread, 1446 // ObjectSynchronizer::enter_for from any thread, or ObjectSynchronizer::exit. 1447 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_impl"); 1448 EventJavaMonitorInflate event; 1449 1450 for (;;) { 1451 const markWord mark = object->mark_acquire(); 1452 1453 // The mark can be in one of the following states: 1454 // * inflated - If the ObjectMonitor owner is anonymous and the 1455 // locking_thread owns the object lock, then we 1456 // make the locking_thread the ObjectMonitor owner. 1457 // * stack-locked - Coerce it to inflated from stack-locked. 1458 // * INFLATING - Busy wait for conversion from stack-locked to 1459 // inflated. 1460 // * unlocked - Aggressively inflate the object. 1461 1462 // CASE: inflated 1463 if (mark.has_monitor()) { 1464 ObjectMonitor* inf = mark.monitor(); 1465 markWord dmw = inf->header(); 1466 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1467 if (inf->has_anonymous_owner() && locking_thread != nullptr) { 1468 assert(LockingMode == LM_LEGACY, "invariant"); 1469 if (locking_thread->is_lock_owned((address)inf->stack_locker())) { 1470 inf->set_stack_locker(nullptr); 1471 inf->set_owner_from_anonymous(locking_thread); 1472 } 1473 } 1474 return inf; 1475 } 1476 1477 // CASE: inflation in progress - inflating over a stack-lock. 1478 // Some other thread is converting from stack-locked to inflated. 1479 // Only that thread can complete inflation -- other threads must wait. 1480 // The INFLATING value is transient. 1481 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. 1482 // We could always eliminate polling by parking the thread on some auxiliary list. 1483 if (mark == markWord::INFLATING()) { 1484 read_stable_mark(object); 1485 continue; 1486 } 1487 1488 // CASE: stack-locked 1489 // Could be stack-locked either by current or by some other thread. 1490 // 1491 // Note that we allocate the ObjectMonitor speculatively, _before_ attempting 1492 // to install INFLATING into the mark word. We originally installed INFLATING, 1493 // allocated the ObjectMonitor, and then finally STed the address of the 1494 // ObjectMonitor into the mark. This was correct, but artificially lengthened 1495 // the interval in which INFLATING appeared in the mark, thus increasing 1496 // the odds of inflation contention. If we lose the race to set INFLATING, 1497 // then we just delete the ObjectMonitor and loop around again. 1498 // 1499 LogStreamHandle(Trace, monitorinflation) lsh; 1500 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1501 ObjectMonitor* m = new ObjectMonitor(object); 1502 // Optimistically prepare the ObjectMonitor - anticipate successful CAS 1503 // We do this before the CAS in order to minimize the length of time 1504 // in which INFLATING appears in the mark. 1505 1506 markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark); 1507 if (cmp != mark) { 1508 delete m; 1509 continue; // Interference -- just retry 1510 } 1511 1512 // We've successfully installed INFLATING (0) into the mark-word. 1513 // This is the only case where 0 will appear in a mark-word. 1514 // Only the singular thread that successfully swings the mark-word 1515 // to 0 can perform (or more precisely, complete) inflation. 1516 // 1517 // Why do we CAS a 0 into the mark-word instead of just CASing the 1518 // mark-word from the stack-locked value directly to the new inflated state? 1519 // Consider what happens when a thread unlocks a stack-locked object. 1520 // It attempts to use CAS to swing the displaced header value from the 1521 // on-stack BasicLock back into the object header. Recall also that the 1522 // header value (hash code, etc) can reside in (a) the object header, or 1523 // (b) a displaced header associated with the stack-lock, or (c) a displaced 1524 // header in an ObjectMonitor. The inflate() routine must copy the header 1525 // value from the BasicLock on the owner's stack to the ObjectMonitor, all 1526 // the while preserving the hashCode stability invariants. If the owner 1527 // decides to release the lock while the value is 0, the unlock will fail 1528 // and control will eventually pass from slow_exit() to inflate. The owner 1529 // will then spin, waiting for the 0 value to disappear. Put another way, 1530 // the 0 causes the owner to stall if the owner happens to try to 1531 // drop the lock (restoring the header from the BasicLock to the object) 1532 // while inflation is in-progress. This protocol avoids races that might 1533 // would otherwise permit hashCode values to change or "flicker" for an object. 1534 // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable. 1535 // 0 serves as a "BUSY" inflate-in-progress indicator. 1536 1537 1538 // fetch the displaced mark from the owner's stack. 1539 // The owner can't die or unwind past the lock while our INFLATING 1540 // object is in the mark. Furthermore the owner can't complete 1541 // an unlock on the object, either. 1542 markWord dmw = mark.displaced_mark_helper(); 1543 // Catch if the object's header is not neutral (not locked and 1544 // not marked is what we care about here). 1545 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1546 1547 // Setup monitor fields to proper values -- prepare the monitor 1548 m->set_header(dmw); 1549 1550 // Note that a thread can inflate an object 1551 // that it has stack-locked -- as might happen in wait() -- directly 1552 // with CAS. That is, we can avoid the xchg-nullptr .... ST idiom. 1553 if (locking_thread != nullptr && locking_thread->is_lock_owned((address)mark.locker())) { 1554 m->set_owner(locking_thread); 1555 } else { 1556 // Use ANONYMOUS_OWNER to indicate that the owner is the BasicLock on the stack, 1557 // and set the stack locker field in the monitor. 1558 m->set_stack_locker(mark.locker()); 1559 m->set_anonymous_owner(); 1560 } 1561 // TODO-FIXME: assert BasicLock->dhw != 0. 1562 1563 // Must preserve store ordering. The monitor state must 1564 // be stable at the time of publishing the monitor address. 1565 guarantee(object->mark() == markWord::INFLATING(), "invariant"); 1566 // Release semantics so that above set_object() is seen first. 1567 object->release_set_mark(markWord::encode(m)); 1568 1569 // Once ObjectMonitor is configured and the object is associated 1570 // with the ObjectMonitor, it is safe to allow async deflation: 1571 _in_use_list.add(m); 1572 1573 // Hopefully the performance counters are allocated on distinct cache lines 1574 // to avoid false sharing on MP systems ... 1575 OM_PERFDATA_OP(Inflations, inc()); 1576 if (log_is_enabled(Trace, monitorinflation)) { 1577 ResourceMark rm; 1578 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1579 INTPTR_FORMAT ", type='%s'", p2i(object), 1580 object->mark().value(), object->klass()->external_name()); 1581 } 1582 if (event.should_commit()) { 1583 post_monitor_inflate_event(&event, object, cause); 1584 } 1585 return m; 1586 } 1587 1588 // CASE: unlocked 1589 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. 1590 // If we know we're inflating for entry it's better to inflate by swinging a 1591 // pre-locked ObjectMonitor pointer into the object header. A successful 1592 // CAS inflates the object *and* confers ownership to the inflating thread. 1593 // In the current implementation we use a 2-step mechanism where we CAS() 1594 // to inflate and then CAS() again to try to swing _owner from null to current. 1595 // An inflateTry() method that we could call from enter() would be useful. 1596 1597 assert(mark.is_unlocked(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1598 ObjectMonitor* m = new ObjectMonitor(object); 1599 // prepare m for installation - set monitor to initial state 1600 m->set_header(mark); 1601 1602 if (object->cas_set_mark(markWord::encode(m), mark) != mark) { 1603 delete m; 1604 m = nullptr; 1605 continue; 1606 // interference - the markword changed - just retry. 1607 // The state-transitions are one-way, so there's no chance of 1608 // live-lock -- "Inflated" is an absorbing state. 1609 } 1610 1611 // Once the ObjectMonitor is configured and object is associated 1612 // with the ObjectMonitor, it is safe to allow async deflation: 1613 _in_use_list.add(m); 1614 1615 // Hopefully the performance counters are allocated on distinct 1616 // cache lines to avoid false sharing on MP systems ... 1617 OM_PERFDATA_OP(Inflations, inc()); 1618 if (log_is_enabled(Trace, monitorinflation)) { 1619 ResourceMark rm; 1620 lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark=" 1621 INTPTR_FORMAT ", type='%s'", p2i(object), 1622 object->mark().value(), object->klass()->external_name()); 1623 } 1624 if (event.should_commit()) { 1625 post_monitor_inflate_event(&event, object, cause); 1626 } 1627 return m; 1628 } 1629 } 1630 1631 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle 1632 // ObjectMonitors. Returns the number of deflated ObjectMonitors. 1633 // 1634 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) { 1635 MonitorList::Iterator iter = _in_use_list.iterator(); 1636 size_t deflated_count = 0; 1637 Thread* current = Thread::current(); 1638 1639 while (iter.has_next()) { 1640 if (deflated_count >= (size_t)MonitorDeflationMax) { 1641 break; 1642 } 1643 ObjectMonitor* mid = iter.next(); 1644 if (mid->deflate_monitor(current)) { 1645 deflated_count++; 1646 } 1647 1648 // Must check for a safepoint/handshake and honor it. 1649 safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count); 1650 } 1651 1652 return deflated_count; 1653 } 1654 1655 class HandshakeForDeflation : public HandshakeClosure { 1656 public: 1657 HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {} 1658 1659 void do_thread(Thread* thread) { 1660 log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread=" 1661 INTPTR_FORMAT, p2i(thread)); 1662 if (thread->is_Java_thread()) { 1663 // Clear OM cache 1664 JavaThread* jt = JavaThread::cast(thread); 1665 jt->om_clear_monitor_cache(); 1666 } 1667 } 1668 }; 1669 1670 class VM_RendezvousGCThreads : public VM_Operation { 1671 public: 1672 bool evaluate_at_safepoint() const override { return false; } 1673 VMOp_Type type() const override { return VMOp_RendezvousGCThreads; } 1674 void doit() override { 1675 Universe::heap()->safepoint_synchronize_begin(); 1676 Universe::heap()->safepoint_synchronize_end(); 1677 }; 1678 }; 1679 1680 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list, 1681 ObjectMonitorDeflationSafepointer* safepointer) { 1682 NativeHeapTrimmer::SuspendMark sm("monitor deletion"); 1683 size_t deleted_count = 0; 1684 for (ObjectMonitor* monitor: *delete_list) { 1685 delete monitor; 1686 deleted_count++; 1687 // A JavaThread must check for a safepoint/handshake and honor it. 1688 safepointer->block_for_safepoint("deletion", "deleted_count", deleted_count); 1689 } 1690 return deleted_count; 1691 } 1692 1693 class ObjectMonitorDeflationLogging: public StackObj { 1694 LogStreamHandle(Debug, monitorinflation) _debug; 1695 LogStreamHandle(Info, monitorinflation) _info; 1696 LogStream* _stream; 1697 elapsedTimer _timer; 1698 1699 size_t ceiling() const { return ObjectSynchronizer::in_use_list_ceiling(); } 1700 size_t count() const { return ObjectSynchronizer::_in_use_list.count(); } 1701 size_t max() const { return ObjectSynchronizer::_in_use_list.max(); } 1702 1703 public: 1704 ObjectMonitorDeflationLogging() 1705 : _debug(), _info(), _stream(nullptr) { 1706 if (_debug.is_enabled()) { 1707 _stream = &_debug; 1708 } else if (_info.is_enabled()) { 1709 _stream = &_info; 1710 } 1711 } 1712 1713 void begin() { 1714 if (_stream != nullptr) { 1715 _stream->print_cr("begin deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1716 ceiling(), count(), max()); 1717 _timer.start(); 1718 } 1719 } 1720 1721 void before_handshake(size_t unlinked_count) { 1722 if (_stream != nullptr) { 1723 _timer.stop(); 1724 _stream->print_cr("before handshaking: unlinked_count=" SIZE_FORMAT 1725 ", in_use_list stats: ceiling=" SIZE_FORMAT ", count=" 1726 SIZE_FORMAT ", max=" SIZE_FORMAT, 1727 unlinked_count, ceiling(), count(), max()); 1728 } 1729 } 1730 1731 void after_handshake() { 1732 if (_stream != nullptr) { 1733 _stream->print_cr("after handshaking: in_use_list stats: ceiling=" 1734 SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1735 ceiling(), count(), max()); 1736 _timer.start(); 1737 } 1738 } 1739 1740 void end(size_t deflated_count, size_t unlinked_count) { 1741 if (_stream != nullptr) { 1742 _timer.stop(); 1743 if (deflated_count != 0 || unlinked_count != 0 || _debug.is_enabled()) { 1744 _stream->print_cr("deflated_count=" SIZE_FORMAT ", {unlinked,deleted}_count=" SIZE_FORMAT " monitors in %3.7f secs", 1745 deflated_count, unlinked_count, _timer.seconds()); 1746 } 1747 _stream->print_cr("end deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1748 ceiling(), count(), max()); 1749 } 1750 } 1751 1752 void before_block_for_safepoint(const char* op_name, const char* cnt_name, size_t cnt) { 1753 if (_stream != nullptr) { 1754 _timer.stop(); 1755 _stream->print_cr("pausing %s: %s=" SIZE_FORMAT ", in_use_list stats: ceiling=" 1756 SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1757 op_name, cnt_name, cnt, ceiling(), count(), max()); 1758 } 1759 } 1760 1761 void after_block_for_safepoint(const char* op_name) { 1762 if (_stream != nullptr) { 1763 _stream->print_cr("resuming %s: in_use_list stats: ceiling=" SIZE_FORMAT 1764 ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, op_name, 1765 ceiling(), count(), max()); 1766 _timer.start(); 1767 } 1768 } 1769 }; 1770 1771 void ObjectMonitorDeflationSafepointer::block_for_safepoint(const char* op_name, const char* count_name, size_t counter) { 1772 if (!SafepointMechanism::should_process(_current)) { 1773 return; 1774 } 1775 1776 // A safepoint/handshake has started. 1777 _log->before_block_for_safepoint(op_name, count_name, counter); 1778 1779 { 1780 // Honor block request. 1781 ThreadBlockInVM tbivm(_current); 1782 } 1783 1784 _log->after_block_for_safepoint(op_name); 1785 } 1786 1787 // This function is called by the MonitorDeflationThread to deflate 1788 // ObjectMonitors. 1789 size_t ObjectSynchronizer::deflate_idle_monitors() { 1790 JavaThread* current = JavaThread::current(); 1791 assert(current->is_monitor_deflation_thread(), "The only monitor deflater"); 1792 1793 // The async deflation request has been processed. 1794 _last_async_deflation_time_ns = os::javaTimeNanos(); 1795 set_is_async_deflation_requested(false); 1796 1797 ObjectMonitorDeflationLogging log; 1798 ObjectMonitorDeflationSafepointer safepointer(current, &log); 1799 1800 log.begin(); 1801 1802 // Deflate some idle ObjectMonitors. 1803 size_t deflated_count = deflate_monitor_list(&safepointer); 1804 1805 // Unlink the deflated ObjectMonitors from the in-use list. 1806 size_t unlinked_count = 0; 1807 size_t deleted_count = 0; 1808 if (deflated_count > 0) { 1809 ResourceMark rm(current); 1810 GrowableArray<ObjectMonitor*> delete_list((int)deflated_count); 1811 unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer); 1812 1813 #ifdef ASSERT 1814 if (UseObjectMonitorTable) { 1815 for (ObjectMonitor* monitor : delete_list) { 1816 assert(!LightweightSynchronizer::contains_monitor(current, monitor), "Should have been removed"); 1817 } 1818 } 1819 #endif 1820 1821 log.before_handshake(unlinked_count); 1822 1823 // A JavaThread needs to handshake in order to safely free the 1824 // ObjectMonitors that were deflated in this cycle. 1825 HandshakeForDeflation hfd_hc; 1826 Handshake::execute(&hfd_hc); 1827 // Also, we sync and desync GC threads around the handshake, so that they can 1828 // safely read the mark-word and look-through to the object-monitor, without 1829 // being afraid that the object-monitor is going away. 1830 VM_RendezvousGCThreads sync_gc; 1831 VMThread::execute(&sync_gc); 1832 1833 log.after_handshake(); 1834 1835 // After the handshake, safely free the ObjectMonitors that were 1836 // deflated and unlinked in this cycle. 1837 1838 // Delete the unlinked ObjectMonitors. 1839 deleted_count = delete_monitors(&delete_list, &safepointer); 1840 assert(unlinked_count == deleted_count, "must be"); 1841 } 1842 1843 log.end(deflated_count, unlinked_count); 1844 1845 OM_PERFDATA_OP(MonExtant, set_value(_in_use_list.count())); 1846 OM_PERFDATA_OP(Deflations, inc(deflated_count)); 1847 1848 GVars.stw_random = os::random(); 1849 1850 if (deflated_count != 0) { 1851 _no_progress_cnt = 0; 1852 } else if (_no_progress_skip_increment) { 1853 _no_progress_skip_increment = false; 1854 } else { 1855 _no_progress_cnt++; 1856 } 1857 1858 return deflated_count; 1859 } 1860 1861 // Monitor cleanup on JavaThread::exit 1862 1863 // Iterate through monitor cache and attempt to release thread's monitors 1864 class ReleaseJavaMonitorsClosure: public MonitorClosure { 1865 private: 1866 JavaThread* _thread; 1867 1868 public: 1869 ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {} 1870 void do_monitor(ObjectMonitor* mid) { 1871 intx rec = mid->complete_exit(_thread); 1872 _thread->dec_held_monitor_count(rec + 1); 1873 } 1874 }; 1875 1876 // Release all inflated monitors owned by current thread. Lightweight monitors are 1877 // ignored. This is meant to be called during JNI thread detach which assumes 1878 // all remaining monitors are heavyweight. All exceptions are swallowed. 1879 // Scanning the extant monitor list can be time consuming. 1880 // A simple optimization is to add a per-thread flag that indicates a thread 1881 // called jni_monitorenter() during its lifetime. 1882 // 1883 // Instead of NoSafepointVerifier it might be cheaper to 1884 // use an idiom of the form: 1885 // auto int tmp = SafepointSynchronize::_safepoint_counter ; 1886 // <code that must not run at safepoint> 1887 // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; 1888 // Since the tests are extremely cheap we could leave them enabled 1889 // for normal product builds. 1890 1891 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) { 1892 assert(current == JavaThread::current(), "must be current Java thread"); 1893 NoSafepointVerifier nsv; 1894 ReleaseJavaMonitorsClosure rjmc(current); 1895 ObjectSynchronizer::owned_monitors_iterate(&rjmc, current); 1896 assert(!current->has_pending_exception(), "Should not be possible"); 1897 current->clear_pending_exception(); 1898 assert(current->held_monitor_count() == 0, "Should not be possible"); 1899 // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count. 1900 current->clear_jni_monitor_count(); 1901 } 1902 1903 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { 1904 switch (cause) { 1905 case inflate_cause_vm_internal: return "VM Internal"; 1906 case inflate_cause_monitor_enter: return "Monitor Enter"; 1907 case inflate_cause_wait: return "Monitor Wait"; 1908 case inflate_cause_notify: return "Monitor Notify"; 1909 case inflate_cause_hash_code: return "Monitor Hash Code"; 1910 case inflate_cause_jni_enter: return "JNI Monitor Enter"; 1911 case inflate_cause_jni_exit: return "JNI Monitor Exit"; 1912 default: 1913 ShouldNotReachHere(); 1914 } 1915 return "Unknown"; 1916 } 1917 1918 //------------------------------------------------------------------------------ 1919 // Debugging code 1920 1921 u_char* ObjectSynchronizer::get_gvars_addr() { 1922 return (u_char*)&GVars; 1923 } 1924 1925 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() { 1926 return (u_char*)&GVars.hc_sequence; 1927 } 1928 1929 size_t ObjectSynchronizer::get_gvars_size() { 1930 return sizeof(SharedGlobals); 1931 } 1932 1933 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() { 1934 return (u_char*)&GVars.stw_random; 1935 } 1936 1937 // Do the final audit and print of ObjectMonitor stats; must be done 1938 // by the VMThread at VM exit time. 1939 void ObjectSynchronizer::do_final_audit_and_print_stats() { 1940 assert(Thread::current()->is_VM_thread(), "sanity check"); 1941 1942 if (is_final_audit()) { // Only do the audit once. 1943 return; 1944 } 1945 set_is_final_audit(); 1946 log_info(monitorinflation)("Starting the final audit."); 1947 1948 if (log_is_enabled(Info, monitorinflation)) { 1949 LogStreamHandle(Info, monitorinflation) ls; 1950 audit_and_print_stats(&ls, true /* on_exit */); 1951 } 1952 } 1953 1954 // This function can be called by the MonitorDeflationThread or it can be called when 1955 // we are trying to exit the VM. The list walker functions can run in parallel with 1956 // the other list operations. 1957 // Calls to this function can be added in various places as a debugging 1958 // aid. 1959 // 1960 void ObjectSynchronizer::audit_and_print_stats(outputStream* ls, bool on_exit) { 1961 int error_cnt = 0; 1962 1963 ls->print_cr("Checking in_use_list:"); 1964 chk_in_use_list(ls, &error_cnt); 1965 1966 if (error_cnt == 0) { 1967 ls->print_cr("No errors found in in_use_list checks."); 1968 } else { 1969 log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt); 1970 } 1971 1972 // When exiting, only log the interesting entries at the Info level. 1973 // When called at intervals by the MonitorDeflationThread, log output 1974 // at the Trace level since there can be a lot of it. 1975 if (!on_exit && log_is_enabled(Trace, monitorinflation)) { 1976 LogStreamHandle(Trace, monitorinflation) ls_tr; 1977 log_in_use_monitor_details(&ls_tr, true /* log_all */); 1978 } else if (on_exit) { 1979 log_in_use_monitor_details(ls, false /* log_all */); 1980 } 1981 1982 ls->flush(); 1983 1984 guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt); 1985 } 1986 1987 // Check the in_use_list; log the results of the checks. 1988 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) { 1989 size_t l_in_use_count = _in_use_list.count(); 1990 size_t l_in_use_max = _in_use_list.max(); 1991 out->print_cr("count=" SIZE_FORMAT ", max=" SIZE_FORMAT, l_in_use_count, 1992 l_in_use_max); 1993 1994 size_t ck_in_use_count = 0; 1995 MonitorList::Iterator iter = _in_use_list.iterator(); 1996 while (iter.has_next()) { 1997 ObjectMonitor* mid = iter.next(); 1998 chk_in_use_entry(mid, out, error_cnt_p); 1999 ck_in_use_count++; 2000 } 2001 2002 if (l_in_use_count == ck_in_use_count) { 2003 out->print_cr("in_use_count=" SIZE_FORMAT " equals ck_in_use_count=" 2004 SIZE_FORMAT, l_in_use_count, ck_in_use_count); 2005 } else { 2006 out->print_cr("WARNING: in_use_count=" SIZE_FORMAT " is not equal to " 2007 "ck_in_use_count=" SIZE_FORMAT, l_in_use_count, 2008 ck_in_use_count); 2009 } 2010 2011 size_t ck_in_use_max = _in_use_list.max(); 2012 if (l_in_use_max == ck_in_use_max) { 2013 out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max=" 2014 SIZE_FORMAT, l_in_use_max, ck_in_use_max); 2015 } else { 2016 out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to " 2017 "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max); 2018 } 2019 } 2020 2021 // Check an in-use monitor entry; log any errors. 2022 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out, 2023 int* error_cnt_p) { 2024 if (n->owner_is_DEFLATER_MARKER()) { 2025 // This could happen when monitor deflation blocks for a safepoint. 2026 return; 2027 } 2028 2029 2030 if (n->metadata() == 0) { 2031 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must " 2032 "have non-null _metadata (header/hash) field.", p2i(n)); 2033 *error_cnt_p = *error_cnt_p + 1; 2034 } 2035 2036 const oop obj = n->object_peek(); 2037 if (obj == nullptr) { 2038 return; 2039 } 2040 2041 const markWord mark = obj->mark(); 2042 if (!mark.has_monitor()) { 2043 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2044 "object does not think it has a monitor: obj=" 2045 INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), 2046 p2i(obj), mark.value()); 2047 *error_cnt_p = *error_cnt_p + 1; 2048 return; 2049 } 2050 2051 ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark); 2052 if (n != obj_mon) { 2053 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2054 "object does not refer to the same monitor: obj=" 2055 INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" 2056 INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); 2057 *error_cnt_p = *error_cnt_p + 1; 2058 } 2059 } 2060 2061 // Log details about ObjectMonitors on the in_use_list. The 'BHL' 2062 // flags indicate why the entry is in-use, 'object' and 'object type' 2063 // indicate the associated object and its type. 2064 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) { 2065 if (_in_use_list.count() > 0) { 2066 stringStream ss; 2067 out->print_cr("In-use monitor info%s:", log_all ? "" : " (eliding idle monitors)"); 2068 out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); 2069 out->print_cr("%18s %s %18s %18s", 2070 "monitor", "BHL", "object", "object type"); 2071 out->print_cr("================== === ================== =================="); 2072 2073 auto is_interesting = [&](ObjectMonitor* monitor) { 2074 return log_all || monitor->has_owner() || monitor->is_busy(); 2075 }; 2076 2077 monitors_iterate([&](ObjectMonitor* monitor) { 2078 if (is_interesting(monitor)) { 2079 const oop obj = monitor->object_peek(); 2080 const intptr_t hash = UseObjectMonitorTable ? monitor->hash() : monitor->header().hash(); 2081 ResourceMark rm; 2082 out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s", p2i(monitor), 2083 monitor->is_busy(), hash != 0, monitor->has_owner(), 2084 p2i(obj), obj == nullptr ? "" : obj->klass()->external_name()); 2085 if (monitor->is_busy()) { 2086 out->print(" (%s)", monitor->is_busy_to_string(&ss)); 2087 ss.reset(); 2088 } 2089 out->cr(); 2090 } 2091 }); 2092 } 2093 2094 out->flush(); 2095 }