1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "gc/shared/collectedHeap.hpp" 28 #include "jfr/jfrEvents.hpp" 29 #include "logging/log.hpp" 30 #include "logging/logStream.hpp" 31 #include "memory/allocation.inline.hpp" 32 #include "memory/padded.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "runtime/atomic.hpp" 38 #include "runtime/basicLock.inline.hpp" 39 #include "runtime/frame.inline.hpp" 40 #include "runtime/globals.hpp" 41 #include "runtime/handles.inline.hpp" 42 #include "runtime/handshake.hpp" 43 #include "runtime/interfaceSupport.inline.hpp" 44 #include "runtime/javaThread.hpp" 45 #include "runtime/lightweightSynchronizer.hpp" 46 #include "runtime/lockStack.inline.hpp" 47 #include "runtime/mutexLocker.hpp" 48 #include "runtime/objectMonitor.hpp" 49 #include "runtime/objectMonitor.inline.hpp" 50 #include "runtime/os.inline.hpp" 51 #include "runtime/osThread.hpp" 52 #include "runtime/perfData.hpp" 53 #include "runtime/safepointMechanism.inline.hpp" 54 #include "runtime/safepointVerifiers.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "runtime/synchronizer.inline.hpp" 58 #include "runtime/threads.hpp" 59 #include "runtime/timer.hpp" 60 #include "runtime/trimNativeHeap.hpp" 61 #include "runtime/vframe.hpp" 62 #include "runtime/vmThread.hpp" 63 #include "utilities/align.hpp" 64 #include "utilities/dtrace.hpp" 65 #include "utilities/events.hpp" 66 #include "utilities/globalDefinitions.hpp" 67 #include "utilities/fastHash.hpp" 68 #include "utilities/linkedlist.hpp" 69 #include "utilities/preserveException.hpp" 70 71 class ObjectMonitorDeflationLogging; 72 73 void MonitorList::add(ObjectMonitor* m) { 74 ObjectMonitor* head; 75 do { 76 head = Atomic::load(&_head); 77 m->set_next_om(head); 78 } while (Atomic::cmpxchg(&_head, head, m) != head); 79 80 size_t count = Atomic::add(&_count, 1u); 81 if (count > max()) { 82 Atomic::inc(&_max); 83 } 84 } 85 86 size_t MonitorList::count() const { 87 return Atomic::load(&_count); 88 } 89 90 size_t MonitorList::max() const { 91 return Atomic::load(&_max); 92 } 93 94 class ObjectMonitorDeflationSafepointer : public StackObj { 95 JavaThread* const _current; 96 ObjectMonitorDeflationLogging* const _log; 97 98 public: 99 ObjectMonitorDeflationSafepointer(JavaThread* current, ObjectMonitorDeflationLogging* log) 100 : _current(current), _log(log) {} 101 102 void block_for_safepoint(const char* op_name, const char* count_name, size_t counter); 103 }; 104 105 // Walk the in-use list and unlink deflated ObjectMonitors. 106 // Returns the number of unlinked ObjectMonitors. 107 size_t MonitorList::unlink_deflated(size_t deflated_count, 108 GrowableArray<ObjectMonitor*>* unlinked_list, 109 ObjectMonitorDeflationSafepointer* safepointer) { 110 size_t unlinked_count = 0; 111 ObjectMonitor* prev = nullptr; 112 ObjectMonitor* m = Atomic::load_acquire(&_head); 113 114 while (m != nullptr) { 115 if (m->is_being_async_deflated()) { 116 // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can 117 // modify the list once per batch. The batch starts at "m". 118 size_t unlinked_batch = 0; 119 ObjectMonitor* next = m; 120 // Look for at most MonitorUnlinkBatch monitors, or the number of 121 // deflated and not unlinked monitors, whatever comes first. 122 assert(deflated_count >= unlinked_count, "Sanity: underflow"); 123 size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch); 124 do { 125 ObjectMonitor* next_next = next->next_om(); 126 unlinked_batch++; 127 unlinked_list->append(next); 128 next = next_next; 129 if (unlinked_batch >= unlinked_batch_limit) { 130 // Reached the max batch, so bail out of the gathering loop. 131 break; 132 } 133 if (prev == nullptr && Atomic::load(&_head) != m) { 134 // Current batch used to be at head, but it is not at head anymore. 135 // Bail out and figure out where we currently are. This avoids long 136 // walks searching for new prev during unlink under heavy list inserts. 137 break; 138 } 139 } while (next != nullptr && next->is_being_async_deflated()); 140 141 // Unlink the found batch. 142 if (prev == nullptr) { 143 // The current batch is the first batch, so there is a chance that it starts at head. 144 // Optimistically assume no inserts happened, and try to unlink the entire batch from the head. 145 ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next); 146 if (prev_head != m) { 147 // Something must have updated the head. Figure out the actual prev for this batch. 148 for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) { 149 prev = n; 150 } 151 assert(prev != nullptr, "Should have found the prev for the current batch"); 152 prev->set_next_om(next); 153 } 154 } else { 155 // The current batch is preceded by another batch. This guarantees the current batch 156 // does not start at head. Unlink the entire current batch without updating the head. 157 assert(Atomic::load(&_head) != m, "Sanity"); 158 prev->set_next_om(next); 159 } 160 161 unlinked_count += unlinked_batch; 162 if (unlinked_count >= deflated_count) { 163 // Reached the max so bail out of the searching loop. 164 // There should be no more deflated monitors left. 165 break; 166 } 167 m = next; 168 } else { 169 prev = m; 170 m = m->next_om(); 171 } 172 173 // Must check for a safepoint/handshake and honor it. 174 safepointer->block_for_safepoint("unlinking", "unlinked_count", unlinked_count); 175 } 176 177 #ifdef ASSERT 178 // Invariant: the code above should unlink all deflated monitors. 179 // The code that runs after this unlinking does not expect deflated monitors. 180 // Notably, attempting to deflate the already deflated monitor would break. 181 { 182 ObjectMonitor* m = Atomic::load_acquire(&_head); 183 while (m != nullptr) { 184 assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked"); 185 m = m->next_om(); 186 } 187 } 188 #endif 189 190 Atomic::sub(&_count, unlinked_count); 191 return unlinked_count; 192 } 193 194 MonitorList::Iterator MonitorList::iterator() const { 195 return Iterator(Atomic::load_acquire(&_head)); 196 } 197 198 ObjectMonitor* MonitorList::Iterator::next() { 199 ObjectMonitor* current = _current; 200 _current = current->next_om(); 201 return current; 202 } 203 204 // The "core" versions of monitor enter and exit reside in this file. 205 // The interpreter and compilers contain specialized transliterated 206 // variants of the enter-exit fast-path operations. See c2_MacroAssembler_x86.cpp 207 // fast_lock(...) for instance. If you make changes here, make sure to modify the 208 // interpreter, and both C1 and C2 fast-path inline locking code emission. 209 // 210 // ----------------------------------------------------------------------------- 211 212 #ifdef DTRACE_ENABLED 213 214 // Only bother with this argument setup if dtrace is available 215 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 216 217 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 218 char* bytes = nullptr; \ 219 int len = 0; \ 220 jlong jtid = SharedRuntime::get_java_tid(thread); \ 221 Symbol* klassname = obj->klass()->name(); \ 222 if (klassname != nullptr) { \ 223 bytes = (char*)klassname->bytes(); \ 224 len = klassname->utf8_length(); \ 225 } 226 227 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 228 { \ 229 if (DTraceMonitorProbes) { \ 230 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 231 HOTSPOT_MONITOR_WAIT(jtid, \ 232 (uintptr_t)(monitor), bytes, len, (millis)); \ 233 } \ 234 } 235 236 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY 237 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL 238 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED 239 240 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 241 { \ 242 if (DTraceMonitorProbes) { \ 243 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 244 HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ 245 (uintptr_t)(monitor), bytes, len); \ 246 } \ 247 } 248 249 #else // ndef DTRACE_ENABLED 250 251 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 252 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 253 254 #endif // ndef DTRACE_ENABLED 255 256 // This exists only as a workaround of dtrace bug 6254741 257 static int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) { 258 DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); 259 return 0; 260 } 261 262 static constexpr size_t inflation_lock_count() { 263 return 256; 264 } 265 266 // Static storage for an array of PlatformMutex. 267 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)]; 268 269 static inline PlatformMutex* inflation_lock(size_t index) { 270 return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]); 271 } 272 273 void ObjectSynchronizer::initialize() { 274 for (size_t i = 0; i < inflation_lock_count(); i++) { 275 ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex(); 276 } 277 // Start the ceiling with the estimate for one thread. 278 set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate); 279 280 // Start the timer for deflations, so it does not trigger immediately. 281 _last_async_deflation_time_ns = os::javaTimeNanos(); 282 283 if (LockingMode == LM_LIGHTWEIGHT) { 284 LightweightSynchronizer::initialize(); 285 } 286 } 287 288 MonitorList ObjectSynchronizer::_in_use_list; 289 // monitors_used_above_threshold() policy is as follows: 290 // 291 // The ratio of the current _in_use_list count to the ceiling is used 292 // to determine if we are above MonitorUsedDeflationThreshold and need 293 // to do an async monitor deflation cycle. The ceiling is increased by 294 // AvgMonitorsPerThreadEstimate when a thread is added to the system 295 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is 296 // removed from the system. 297 // 298 // Note: If the _in_use_list max exceeds the ceiling, then 299 // monitors_used_above_threshold() will use the in_use_list max instead 300 // of the thread count derived ceiling because we have used more 301 // ObjectMonitors than the estimated average. 302 // 303 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax 304 // no-progress async monitor deflation cycles in a row, then the ceiling 305 // is adjusted upwards by monitors_used_above_threshold(). 306 // 307 // Start the ceiling with the estimate for one thread in initialize() 308 // which is called after cmd line options are processed. 309 static size_t _in_use_list_ceiling = 0; 310 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false; 311 bool volatile ObjectSynchronizer::_is_final_audit = false; 312 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0; 313 static uintx _no_progress_cnt = 0; 314 static bool _no_progress_skip_increment = false; 315 316 // =====================> Quick functions 317 318 // The quick_* forms are special fast-path variants used to improve 319 // performance. In the simplest case, a "quick_*" implementation could 320 // simply return false, in which case the caller will perform the necessary 321 // state transitions and call the slow-path form. 322 // The fast-path is designed to handle frequently arising cases in an efficient 323 // manner and is just a degenerate "optimistic" variant of the slow-path. 324 // returns true -- to indicate the call was satisfied. 325 // returns false -- to indicate the call needs the services of the slow-path. 326 // A no-loitering ordinance is in effect for code in the quick_* family 327 // operators: safepoints or indefinite blocking (blocking that might span a 328 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon 329 // entry. 330 // 331 // Consider: An interesting optimization is to have the JIT recognize the 332 // following common idiom: 333 // synchronized (someobj) { .... ; notify(); } 334 // That is, we find a notify() or notifyAll() call that immediately precedes 335 // the monitorexit operation. In that case the JIT could fuse the operations 336 // into a single notifyAndExit() runtime primitive. 337 338 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) { 339 assert(current->thread_state() == _thread_in_Java, "invariant"); 340 NoSafepointVerifier nsv; 341 if (obj == nullptr) return false; // slow-path for invalid obj 342 const markWord mark = obj->mark(); 343 344 if (LockingMode == LM_LIGHTWEIGHT) { 345 if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) { 346 // Degenerate notify 347 // fast-locked by caller so by definition the implied waitset is empty. 348 return true; 349 } 350 } else if (LockingMode == LM_LEGACY) { 351 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 352 // Degenerate notify 353 // stack-locked by caller so by definition the implied waitset is empty. 354 return true; 355 } 356 } 357 358 if (mark.has_monitor()) { 359 ObjectMonitor* const mon = read_monitor(current, obj, mark); 360 if (LockingMode == LM_LIGHTWEIGHT && mon == nullptr) { 361 // Racing with inflation/deflation go slow path 362 return false; 363 } 364 assert(mon->object() == oop(obj), "invariant"); 365 if (!mon->has_owner(current)) return false; // slow-path for IMS exception 366 367 if (mon->first_waiter() != nullptr) { 368 // We have one or more waiters. Since this is an inflated monitor 369 // that we own, we can transfer one or more threads from the waitset 370 // to the entrylist here and now, avoiding the slow-path. 371 if (all) { 372 DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current); 373 } else { 374 DTRACE_MONITOR_PROBE(notify, mon, obj, current); 375 } 376 int free_count = 0; 377 do { 378 mon->INotify(current); 379 ++free_count; 380 } while (mon->first_waiter() != nullptr && all); 381 OM_PERFDATA_OP(Notifications, inc(free_count)); 382 } 383 return true; 384 } 385 386 // other IMS exception states take the slow-path 387 return false; 388 } 389 390 static bool useHeavyMonitors() { 391 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390) 392 return LockingMode == LM_MONITOR; 393 #else 394 return false; 395 #endif 396 } 397 398 // The LockNode emitted directly at the synchronization site would have 399 // been too big if it were to have included support for the cases of inflated 400 // recursive enter and exit, so they go here instead. 401 // Note that we can't safely call AsyncPrintJavaStack() from within 402 // quick_enter() as our thread state remains _in_Java. 403 404 bool ObjectSynchronizer::quick_enter_legacy(oop obj, BasicLock* lock, JavaThread* current) { 405 assert(current->thread_state() == _thread_in_Java, "invariant"); 406 407 if (useHeavyMonitors()) { 408 return false; // Slow path 409 } 410 411 if (LockingMode == LM_LIGHTWEIGHT) { 412 return LightweightSynchronizer::quick_enter(obj, lock, current); 413 } 414 415 assert(LockingMode == LM_LEGACY, "legacy mode below"); 416 417 const markWord mark = obj->mark(); 418 419 if (mark.has_monitor()) { 420 421 ObjectMonitor* const m = read_monitor(mark); 422 // An async deflation or GC can race us before we manage to make 423 // the ObjectMonitor busy by setting the owner below. If we detect 424 // that race we just bail out to the slow-path here. 425 if (m->object_peek() == nullptr) { 426 return false; 427 } 428 429 // Lock contention and Transactional Lock Elision (TLE) diagnostics 430 // and observability 431 // Case: light contention possibly amenable to TLE 432 // Case: TLE inimical operations such as nested/recursive synchronization 433 434 if (m->has_owner(current)) { 435 m->_recursions++; 436 current->inc_held_monitor_count(); 437 return true; 438 } 439 440 // This Java Monitor is inflated so obj's header will never be 441 // displaced to this thread's BasicLock. Make the displaced header 442 // non-null so this BasicLock is not seen as recursive nor as 443 // being locked. We do this unconditionally so that this thread's 444 // BasicLock cannot be mis-interpreted by any stack walkers. For 445 // performance reasons, stack walkers generally first check for 446 // stack-locking in the object's header, the second check is for 447 // recursive stack-locking in the displaced header in the BasicLock, 448 // and last are the inflated Java Monitor (ObjectMonitor) checks. 449 lock->set_displaced_header(markWord::unused_mark()); 450 451 if (!m->has_owner() && m->try_set_owner(current)) { 452 assert(m->_recursions == 0, "invariant"); 453 current->inc_held_monitor_count(); 454 return true; 455 } 456 } 457 458 // Note that we could inflate in quick_enter. 459 // This is likely a useful optimization 460 // Critically, in quick_enter() we must not: 461 // -- block indefinitely, or 462 // -- reach a safepoint 463 464 return false; // revert to slow-path 465 } 466 467 // Handle notifications when synchronizing on value based classes 468 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) { 469 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 470 frame last_frame = locking_thread->last_frame(); 471 bool bcp_was_adjusted = false; 472 // Don't decrement bcp if it points to the frame's first instruction. This happens when 473 // handle_sync_on_value_based_class() is called because of a synchronized method. There 474 // is no actual monitorenter instruction in the byte code in this case. 475 if (last_frame.is_interpreted_frame() && 476 (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) { 477 // adjust bcp to point back to monitorenter so that we print the correct line numbers 478 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1); 479 bcp_was_adjusted = true; 480 } 481 482 if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) { 483 ResourceMark rm; 484 stringStream ss; 485 locking_thread->print_active_stack_on(&ss); 486 char* base = (char*)strstr(ss.base(), "at"); 487 char* newline = (char*)strchr(ss.base(), '\n'); 488 if (newline != nullptr) { 489 *newline = '\0'; 490 } 491 fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base); 492 } else { 493 assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses"); 494 ResourceMark rm; 495 Log(valuebasedclasses) vblog; 496 497 vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name()); 498 if (locking_thread->has_last_Java_frame()) { 499 LogStream info_stream(vblog.info()); 500 locking_thread->print_active_stack_on(&info_stream); 501 } else { 502 vblog.info("Cannot find the last Java frame"); 503 } 504 505 EventSyncOnValueBasedClass event; 506 if (event.should_commit()) { 507 event.set_valueBasedClass(obj->klass()); 508 event.commit(); 509 } 510 } 511 512 if (bcp_was_adjusted) { 513 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1); 514 } 515 } 516 517 // ----------------------------------------------------------------------------- 518 // Monitor Enter/Exit 519 520 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 521 // When called with locking_thread != Thread::current() some mechanism must synchronize 522 // the locking_thread with respect to the current thread. Currently only used when 523 // deoptimizing and re-locking locks. See Deoptimization::relock_objects 524 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 525 526 if (LockingMode == LM_LIGHTWEIGHT) { 527 return LightweightSynchronizer::enter_for(obj, lock, locking_thread); 528 } 529 530 if (!enter_fast_impl(obj, lock, locking_thread)) { 531 // Inflated ObjectMonitor::enter_for is required 532 533 // An async deflation can race after the inflate_for() call and before 534 // enter_for() can make the ObjectMonitor busy. enter_for() returns false 535 // if we have lost the race to async deflation and we simply try again. 536 while (true) { 537 ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter); 538 if (monitor->enter_for(locking_thread)) { 539 return; 540 } 541 assert(monitor->is_being_async_deflated(), "must be"); 542 } 543 } 544 } 545 546 void ObjectSynchronizer::enter_legacy(Handle obj, BasicLock* lock, JavaThread* current) { 547 if (!enter_fast_impl(obj, lock, current)) { 548 // Inflated ObjectMonitor::enter is required 549 550 // An async deflation can race after the inflate() call and before 551 // enter() can make the ObjectMonitor busy. enter() returns false if 552 // we have lost the race to async deflation and we simply try again. 553 while (true) { 554 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter); 555 if (monitor->enter(current)) { 556 return; 557 } 558 } 559 } 560 } 561 562 // The interpreter and compiler assembly code tries to lock using the fast path 563 // of this algorithm. Make sure to update that code if the following function is 564 // changed. The implementation is extremely sensitive to race condition. Be careful. 565 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 566 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 567 568 if (obj->klass()->is_value_based()) { 569 handle_sync_on_value_based_class(obj, locking_thread); 570 } 571 572 locking_thread->inc_held_monitor_count(); 573 574 if (!useHeavyMonitors()) { 575 if (LockingMode == LM_LEGACY) { 576 markWord mark = obj->mark(); 577 if (mark.is_unlocked()) { 578 // Anticipate successful CAS -- the ST of the displaced mark must 579 // be visible <= the ST performed by the CAS. 580 lock->set_displaced_header(mark); 581 if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) { 582 return true; 583 } 584 } else if (mark.has_locker() && 585 locking_thread->is_lock_owned((address) mark.locker())) { 586 assert(lock != mark.locker(), "must not re-lock the same lock"); 587 assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock"); 588 lock->set_displaced_header(markWord::from_pointer(nullptr)); 589 return true; 590 } 591 592 // The object header will never be displaced to this lock, 593 // so it does not matter what the value is, except that it 594 // must be non-zero to avoid looking like a re-entrant lock, 595 // and must not look locked either. 596 lock->set_displaced_header(markWord::unused_mark()); 597 598 // Failed to fast lock. 599 return false; 600 } 601 } else if (VerifyHeavyMonitors) { 602 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 603 } 604 605 return false; 606 } 607 608 void ObjectSynchronizer::exit_legacy(oop object, BasicLock* lock, JavaThread* current) { 609 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 610 611 if (!useHeavyMonitors()) { 612 markWord mark = object->mark(); 613 if (LockingMode == LM_LEGACY) { 614 markWord dhw = lock->displaced_header(); 615 if (dhw.value() == 0) { 616 // If the displaced header is null, then this exit matches up with 617 // a recursive enter. No real work to do here except for diagnostics. 618 #ifndef PRODUCT 619 if (mark != markWord::INFLATING()) { 620 // Only do diagnostics if we are not racing an inflation. Simply 621 // exiting a recursive enter of a Java Monitor that is being 622 // inflated is safe; see the has_monitor() comment below. 623 assert(!mark.is_unlocked(), "invariant"); 624 assert(!mark.has_locker() || 625 current->is_lock_owned((address)mark.locker()), "invariant"); 626 if (mark.has_monitor()) { 627 // The BasicLock's displaced_header is marked as a recursive 628 // enter and we have an inflated Java Monitor (ObjectMonitor). 629 // This is a special case where the Java Monitor was inflated 630 // after this thread entered the stack-lock recursively. When a 631 // Java Monitor is inflated, we cannot safely walk the Java 632 // Monitor owner's stack and update the BasicLocks because a 633 // Java Monitor can be asynchronously inflated by a thread that 634 // does not own the Java Monitor. 635 ObjectMonitor* m = read_monitor(mark); 636 assert(m->object()->mark() == mark, "invariant"); 637 assert(m->is_entered(current), "invariant"); 638 } 639 } 640 #endif 641 return; 642 } 643 644 if (mark == markWord::from_pointer(lock)) { 645 // If the object is stack-locked by the current thread, try to 646 // swing the displaced header from the BasicLock back to the mark. 647 assert(dhw.is_neutral(), "invariant"); 648 if (object->cas_set_mark(dhw, mark) == mark) { 649 return; 650 } 651 } 652 } 653 } else if (VerifyHeavyMonitors) { 654 guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 655 } 656 657 // We have to take the slow-path of possible inflation and then exit. 658 // The ObjectMonitor* can't be async deflated until ownership is 659 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 660 ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal); 661 assert(!monitor->has_anonymous_owner(), "must not be"); 662 monitor->exit(current); 663 } 664 665 // ----------------------------------------------------------------------------- 666 // JNI locks on java objects 667 // NOTE: must use heavy weight monitor to handle jni monitor enter 668 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) { 669 // Top native frames in the stack will not be seen if we attempt 670 // preemption, since we start walking from the last Java anchor. 671 NoPreemptMark npm(current); 672 673 if (obj->klass()->is_value_based()) { 674 handle_sync_on_value_based_class(obj, current); 675 } 676 677 // the current locking is from JNI instead of Java code 678 current->set_current_pending_monitor_is_from_java(false); 679 // An async deflation can race after the inflate() call and before 680 // enter() can make the ObjectMonitor busy. enter() returns false if 681 // we have lost the race to async deflation and we simply try again. 682 while (true) { 683 ObjectMonitor* monitor; 684 bool entered; 685 if (LockingMode == LM_LIGHTWEIGHT) { 686 entered = LightweightSynchronizer::inflate_and_enter(obj(), inflate_cause_jni_enter, current, current) != nullptr; 687 } else { 688 monitor = inflate(current, obj(), inflate_cause_jni_enter); 689 entered = monitor->enter(current); 690 } 691 692 if (entered) { 693 current->inc_held_monitor_count(1, true); 694 break; 695 } 696 } 697 current->set_current_pending_monitor_is_from_java(true); 698 } 699 700 // NOTE: must use heavy weight monitor to handle jni monitor exit 701 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) { 702 JavaThread* current = THREAD; 703 704 ObjectMonitor* monitor; 705 if (LockingMode == LM_LIGHTWEIGHT) { 706 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK); 707 } else { 708 // The ObjectMonitor* can't be async deflated until ownership is 709 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 710 monitor = inflate(current, obj, inflate_cause_jni_exit); 711 } 712 // If this thread has locked the object, exit the monitor. We 713 // intentionally do not use CHECK on check_owner because we must exit the 714 // monitor even if an exception was already pending. 715 if (monitor->check_owner(THREAD)) { 716 monitor->exit(current); 717 current->dec_held_monitor_count(1, true); 718 } 719 } 720 721 // ----------------------------------------------------------------------------- 722 // Internal VM locks on java objects 723 // standard constructor, allows locking failures 724 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) : _npm(thread) { 725 _thread = thread; 726 _thread->check_for_valid_safepoint_state(); 727 _obj = obj; 728 729 if (_obj() != nullptr) { 730 ObjectSynchronizer::enter(_obj, &_lock, _thread); 731 } 732 } 733 734 ObjectLocker::~ObjectLocker() { 735 if (_obj() != nullptr) { 736 ObjectSynchronizer::exit(_obj(), &_lock, _thread); 737 } 738 } 739 740 741 // ----------------------------------------------------------------------------- 742 // Wait/Notify/NotifyAll 743 // NOTE: must use heavy weight monitor to handle wait() 744 745 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { 746 JavaThread* current = THREAD; 747 if (millis < 0) { 748 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 749 } 750 751 ObjectMonitor* monitor; 752 if (LockingMode == LM_LIGHTWEIGHT) { 753 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0); 754 } else { 755 // The ObjectMonitor* can't be async deflated because the _waiters 756 // field is incremented before ownership is dropped and decremented 757 // after ownership is regained. 758 monitor = inflate(current, obj(), inflate_cause_wait); 759 } 760 761 DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis); 762 monitor->wait(millis, true, THREAD); // Not CHECK as we need following code 763 764 // This dummy call is in place to get around dtrace bug 6254741. Once 765 // that's fixed we can uncomment the following line, remove the call 766 // and change this function back into a "void" func. 767 // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); 768 int ret_code = dtrace_waited_probe(monitor, obj, THREAD); 769 return ret_code; 770 } 771 772 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) { 773 if (millis < 0) { 774 THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 775 } 776 777 ObjectMonitor* monitor; 778 if (LockingMode == LM_LIGHTWEIGHT) { 779 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK); 780 } else { 781 monitor = inflate(THREAD, obj(), inflate_cause_wait); 782 } 783 monitor->wait(millis, false, THREAD); 784 } 785 786 787 void ObjectSynchronizer::notify(Handle obj, TRAPS) { 788 JavaThread* current = THREAD; 789 790 markWord mark = obj->mark(); 791 if (LockingMode == LM_LIGHTWEIGHT) { 792 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 793 // Not inflated so there can't be any waiters to notify. 794 return; 795 } 796 } else if (LockingMode == LM_LEGACY) { 797 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 798 // Not inflated so there can't be any waiters to notify. 799 return; 800 } 801 } 802 803 ObjectMonitor* monitor; 804 if (LockingMode == LM_LIGHTWEIGHT) { 805 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 806 } else { 807 // The ObjectMonitor* can't be async deflated until ownership is 808 // dropped by the calling thread. 809 monitor = inflate(current, obj(), inflate_cause_notify); 810 } 811 monitor->notify(CHECK); 812 } 813 814 // NOTE: see comment of notify() 815 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { 816 JavaThread* current = THREAD; 817 818 markWord mark = obj->mark(); 819 if (LockingMode == LM_LIGHTWEIGHT) { 820 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 821 // Not inflated so there can't be any waiters to notify. 822 return; 823 } 824 } else if (LockingMode == LM_LEGACY) { 825 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 826 // Not inflated so there can't be any waiters to notify. 827 return; 828 } 829 } 830 831 ObjectMonitor* monitor; 832 if (LockingMode == LM_LIGHTWEIGHT) { 833 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 834 } else { 835 // The ObjectMonitor* can't be async deflated until ownership is 836 // dropped by the calling thread. 837 monitor = inflate(current, obj(), inflate_cause_notify); 838 } 839 monitor->notifyAll(CHECK); 840 } 841 842 // ----------------------------------------------------------------------------- 843 // Hash Code handling 844 845 struct SharedGlobals { 846 char _pad_prefix[OM_CACHE_LINE_SIZE]; 847 // This is a highly shared mostly-read variable. 848 // To avoid false-sharing it needs to be the sole occupant of a cache line. 849 volatile int stw_random; 850 DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 851 // Hot RW variable -- Sequester to avoid false-sharing 852 volatile int hc_sequence; 853 DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 854 }; 855 856 static SharedGlobals GVars; 857 858 static markWord read_stable_mark(oop obj) { 859 markWord mark = obj->mark_acquire(); 860 if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) { 861 // New lightweight locking does not use the markWord::INFLATING() protocol. 862 return mark; // normal fast-path return 863 } 864 865 int its = 0; 866 for (;;) { 867 markWord mark = obj->mark_acquire(); 868 if (!mark.is_being_inflated()) { 869 return mark; // normal fast-path return 870 } 871 872 // The object is being inflated by some other thread. 873 // The caller of read_stable_mark() must wait for inflation to complete. 874 // Avoid live-lock. 875 876 ++its; 877 if (its > 10000 || !os::is_MP()) { 878 if (its & 1) { 879 os::naked_yield(); 880 } else { 881 // Note that the following code attenuates the livelock problem but is not 882 // a complete remedy. A more complete solution would require that the inflating 883 // thread hold the associated inflation lock. The following code simply restricts 884 // the number of spinners to at most one. We'll have N-2 threads blocked 885 // on the inflationlock, 1 thread holding the inflation lock and using 886 // a yield/park strategy, and 1 thread in the midst of inflation. 887 // A more refined approach would be to change the encoding of INFLATING 888 // to allow encapsulation of a native thread pointer. Threads waiting for 889 // inflation to complete would use CAS to push themselves onto a singly linked 890 // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag 891 // and calling park(). When inflation was complete the thread that accomplished inflation 892 // would detach the list and set the markword to inflated with a single CAS and 893 // then for each thread on the list, set the flag and unpark() the thread. 894 895 // Index into the lock array based on the current object address. 896 static_assert(is_power_of_2(inflation_lock_count()), "must be"); 897 size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1); 898 int YieldThenBlock = 0; 899 assert(ix < inflation_lock_count(), "invariant"); 900 inflation_lock(ix)->lock(); 901 while (obj->mark_acquire() == markWord::INFLATING()) { 902 // Beware: naked_yield() is advisory and has almost no effect on some platforms 903 // so we periodically call current->_ParkEvent->park(1). 904 // We use a mixed spin/yield/block mechanism. 905 if ((YieldThenBlock++) >= 16) { 906 Thread::current()->_ParkEvent->park(1); 907 } else { 908 os::naked_yield(); 909 } 910 } 911 inflation_lock(ix)->unlock(); 912 } 913 } else { 914 SpinPause(); // SMP-polite spinning 915 } 916 } 917 } 918 919 // hashCode() generation : 920 // 921 // Possibilities: 922 // * MD5Digest of {obj,stw_random} 923 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function. 924 // * A DES- or AES-style SBox[] mechanism 925 // * One of the Phi-based schemes, such as: 926 // 2654435761 = 2^32 * Phi (golden ratio) 927 // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ; 928 // * A variation of Marsaglia's shift-xor RNG scheme. 929 // * (obj ^ stw_random) is appealing, but can result 930 // in undesirable regularity in the hashCode values of adjacent objects 931 // (objects allocated back-to-back, in particular). This could potentially 932 // result in hashtable collisions and reduced hashtable efficiency. 933 // There are simple ways to "diffuse" the middle address bits over the 934 // generated hashCode values: 935 936 intptr_t ObjectSynchronizer::get_next_hash(Thread* current, oop obj) { 937 intptr_t value = 0; 938 if (hashCode == 0) { 939 // This form uses global Park-Miller RNG. 940 // On MP system we'll have lots of RW access to a global, so the 941 // mechanism induces lots of coherency traffic. 942 value = os::random(); 943 } else if (hashCode == 1) { 944 // This variation has the property of being stable (idempotent) 945 // between STW operations. This can be useful in some of the 1-0 946 // synchronization schemes. 947 intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3; 948 value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random; 949 } else if (hashCode == 2) { 950 value = 1; // for sensitivity testing 951 } else if (hashCode == 3) { 952 value = ++GVars.hc_sequence; 953 } else if (hashCode == 4) { 954 value = cast_from_oop<intptr_t>(obj); 955 } else if (hashCode == 5) { 956 // Marsaglia's xor-shift scheme with thread-specific state 957 // This is probably the best overall implementation -- we'll 958 // likely make this the default in future releases. 959 unsigned t = current->_hashStateX; 960 t ^= (t << 11); 961 current->_hashStateX = current->_hashStateY; 962 current->_hashStateY = current->_hashStateZ; 963 current->_hashStateZ = current->_hashStateW; 964 unsigned v = current->_hashStateW; 965 v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); 966 current->_hashStateW = v; 967 value = v; 968 } else { 969 assert(UseCompactObjectHeaders, "Only with compact i-hash"); 970 #ifdef _LP64 971 uint64_t val = cast_from_oop<uint64_t>(obj); 972 uint32_t hash = FastHash::get_hash32((uint32_t)val, (uint32_t)(val >> 32)); 973 #else 974 uint32_t val = cast_from_oop<uint32_t>(obj); 975 uint32_t hash = FastHash::get_hash32(val, UCONST64(0xAAAAAAAA)); 976 #endif 977 value= static_cast<intptr_t>(hash); 978 } 979 980 value &= markWord::hash_mask; 981 if (hashCode != 6 && value == 0) value = 0xBAD; 982 assert(value != markWord::no_hash || hashCode == 6, "invariant"); 983 return value; 984 } 985 986 static intptr_t install_hash_code(Thread* current, oop obj) { 987 assert(UseObjectMonitorTable && LockingMode == LM_LIGHTWEIGHT, "must be"); 988 989 markWord mark = obj->mark_acquire(); 990 for (;;) { 991 if (UseCompactObjectHeaders) { 992 if (mark.is_hashed()) { 993 return LightweightSynchronizer::get_hash(mark, obj); 994 } 995 intptr_t hash = ObjectSynchronizer::get_next_hash(current, obj); // get a new hash 996 markWord new_mark; 997 if (mark.is_not_hashed_expanded()) { 998 new_mark = mark.set_hashed_expanded(); 999 int offset = mark.klass()->hash_offset_in_bytes(obj); 1000 obj->int_field_put(offset, (jint) hash); 1001 } else { 1002 new_mark = mark.set_hashed_not_expanded(); 1003 } 1004 markWord old_mark = obj->cas_set_mark(new_mark, mark); 1005 if (old_mark == mark) { 1006 return hash; 1007 } 1008 mark = old_mark; 1009 } else { 1010 intptr_t hash = mark.hash(); 1011 if (hash != 0) { 1012 return hash; 1013 } 1014 1015 hash = ObjectSynchronizer::get_next_hash(current, obj); 1016 const markWord old_mark = mark; 1017 const markWord new_mark = old_mark.copy_set_hash(hash); 1018 1019 mark = obj->cas_set_mark(new_mark, old_mark); 1020 if (old_mark == mark) { 1021 return hash; 1022 } 1023 } 1024 } 1025 } 1026 1027 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) { 1028 if (UseObjectMonitorTable) { 1029 // Since the monitor isn't in the object header, the hash can simply be 1030 // installed in the object header. 1031 return install_hash_code(current, obj); 1032 } 1033 1034 while (true) { 1035 ObjectMonitor* monitor = nullptr; 1036 markWord temp, test; 1037 intptr_t hash; 1038 markWord mark = read_stable_mark(obj); 1039 if (VerifyHeavyMonitors) { 1040 assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)"); 1041 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 1042 } 1043 if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) { 1044 hash = mark.hash(); 1045 if (hash != 0) { // if it has a hash, just return it 1046 return hash; 1047 } 1048 hash = get_next_hash(current, obj); // get a new hash 1049 temp = mark.copy_set_hash(hash); // merge the hash into header 1050 // try to install the hash 1051 test = obj->cas_set_mark(temp, mark); 1052 if (test == mark) { // if the hash was installed, return it 1053 return hash; 1054 } 1055 if (LockingMode == LM_LIGHTWEIGHT) { 1056 // CAS failed, retry 1057 continue; 1058 } 1059 // Failed to install the hash. It could be that another thread 1060 // installed the hash just before our attempt or inflation has 1061 // occurred or... so we fall thru to inflate the monitor for 1062 // stability and then install the hash. 1063 } else if (mark.has_monitor()) { 1064 monitor = mark.monitor(); 1065 temp = monitor->header(); 1066 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1067 hash = temp.hash(); 1068 if (hash != 0) { 1069 // It has a hash. 1070 1071 // Separate load of dmw/header above from the loads in 1072 // is_being_async_deflated(). 1073 1074 // dmw/header and _contentions may get written by different threads. 1075 // Make sure to observe them in the same order when having several observers. 1076 OrderAccess::loadload_for_IRIW(); 1077 1078 if (monitor->is_being_async_deflated()) { 1079 // But we can't safely use the hash if we detect that async 1080 // deflation has occurred. So we attempt to restore the 1081 // header/dmw to the object's header so that we only retry 1082 // once if the deflater thread happens to be slow. 1083 monitor->install_displaced_markword_in_object(obj); 1084 continue; 1085 } 1086 return hash; 1087 } 1088 // Fall thru so we only have one place that installs the hash in 1089 // the ObjectMonitor. 1090 } else if (LockingMode == LM_LEGACY && mark.has_locker() 1091 && current->is_Java_thread() 1092 && JavaThread::cast(current)->is_lock_owned((address)mark.locker())) { 1093 // This is a stack-lock owned by the calling thread so fetch the 1094 // displaced markWord from the BasicLock on the stack. 1095 temp = mark.displaced_mark_helper(); 1096 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1097 hash = temp.hash(); 1098 if (hash != 0) { // if it has a hash, just return it 1099 return hash; 1100 } 1101 // WARNING: 1102 // The displaced header in the BasicLock on a thread's stack 1103 // is strictly immutable. It CANNOT be changed in ANY cases. 1104 // So we have to inflate the stack-lock into an ObjectMonitor 1105 // even if the current thread owns the lock. The BasicLock on 1106 // a thread's stack can be asynchronously read by other threads 1107 // during an inflate() call so any change to that stack memory 1108 // may not propagate to other threads correctly. 1109 } 1110 1111 // Inflate the monitor to set the hash. 1112 1113 // There's no need to inflate if the mark has already got a monitor. 1114 // NOTE: an async deflation can race after we get the monitor and 1115 // before we can update the ObjectMonitor's header with the hash 1116 // value below. 1117 monitor = mark.has_monitor() ? mark.monitor() : inflate(current, obj, inflate_cause_hash_code); 1118 // Load ObjectMonitor's header/dmw field and see if it has a hash. 1119 mark = monitor->header(); 1120 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1121 hash = mark.hash(); 1122 if (hash == 0) { // if it does not have a hash 1123 hash = get_next_hash(current, obj); // get a new hash 1124 temp = mark.copy_set_hash(hash) ; // merge the hash into header 1125 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1126 uintptr_t v = Atomic::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value()); 1127 test = markWord(v); 1128 if (test != mark) { 1129 // The attempt to update the ObjectMonitor's header/dmw field 1130 // did not work. This can happen if another thread managed to 1131 // merge in the hash just before our cmpxchg(). 1132 // If we add any new usages of the header/dmw field, this code 1133 // will need to be updated. 1134 hash = test.hash(); 1135 assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value()); 1136 assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash"); 1137 } 1138 if (monitor->is_being_async_deflated() && !UseObjectMonitorTable) { 1139 // If we detect that async deflation has occurred, then we 1140 // attempt to restore the header/dmw to the object's header 1141 // so that we only retry once if the deflater thread happens 1142 // to be slow. 1143 monitor->install_displaced_markword_in_object(obj); 1144 continue; 1145 } 1146 } 1147 // We finally get the hash. 1148 return hash; 1149 } 1150 } 1151 1152 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current, 1153 Handle h_obj) { 1154 assert(current == JavaThread::current(), "Can only be called on current thread"); 1155 oop obj = h_obj(); 1156 1157 markWord mark = read_stable_mark(obj); 1158 1159 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1160 // stack-locked case, header points into owner's stack 1161 return current->is_lock_owned((address)mark.locker()); 1162 } 1163 1164 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1165 // fast-locking case, see if lock is in current's lock stack 1166 return current->lock_stack().contains(h_obj()); 1167 } 1168 1169 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1170 ObjectMonitor* monitor = read_monitor(current, obj, mark); 1171 if (monitor != nullptr) { 1172 return monitor->is_entered(current) != 0; 1173 } 1174 // Racing with inflation/deflation, retry 1175 mark = obj->mark_acquire(); 1176 1177 if (mark.is_fast_locked()) { 1178 // Some other thread fast_locked, current could not have held the lock 1179 return false; 1180 } 1181 } 1182 1183 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1184 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1185 // The first stage of async deflation does not affect any field 1186 // used by this comparison so the ObjectMonitor* is usable here. 1187 ObjectMonitor* monitor = read_monitor(mark); 1188 return monitor->is_entered(current) != 0; 1189 } 1190 // Unlocked case, header in place 1191 assert(mark.is_unlocked(), "sanity check"); 1192 return false; 1193 } 1194 1195 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { 1196 oop obj = h_obj(); 1197 markWord mark = read_stable_mark(obj); 1198 1199 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1200 // stack-locked so header points into owner's stack. 1201 // owning_thread_from_monitor_owner() may also return null here: 1202 return Threads::owning_thread_from_stacklock(t_list, (address) mark.locker()); 1203 } 1204 1205 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1206 // fast-locked so get owner from the object. 1207 // owning_thread_from_object() may also return null here: 1208 return Threads::owning_thread_from_object(t_list, h_obj()); 1209 } 1210 1211 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1212 ObjectMonitor* monitor = read_monitor(Thread::current(), obj, mark); 1213 if (monitor != nullptr) { 1214 return Threads::owning_thread_from_monitor(t_list, monitor); 1215 } 1216 // Racing with inflation/deflation, retry 1217 mark = obj->mark_acquire(); 1218 1219 if (mark.is_fast_locked()) { 1220 // Some other thread fast_locked 1221 return Threads::owning_thread_from_object(t_list, h_obj()); 1222 } 1223 } 1224 1225 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1226 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1227 // The first stage of async deflation does not affect any field 1228 // used by this comparison so the ObjectMonitor* is usable here. 1229 ObjectMonitor* monitor = read_monitor(mark); 1230 assert(monitor != nullptr, "monitor should be non-null"); 1231 // owning_thread_from_monitor() may also return null here: 1232 return Threads::owning_thread_from_monitor(t_list, monitor); 1233 } 1234 1235 // Unlocked case, header in place 1236 // Cannot have assertion since this object may have been 1237 // locked by another thread when reaching here. 1238 // assert(mark.is_unlocked(), "sanity check"); 1239 1240 return nullptr; 1241 } 1242 1243 // Visitors ... 1244 1245 // Iterate over all ObjectMonitors. 1246 template <typename Function> 1247 void ObjectSynchronizer::monitors_iterate(Function function) { 1248 MonitorList::Iterator iter = _in_use_list.iterator(); 1249 while (iter.has_next()) { 1250 ObjectMonitor* monitor = iter.next(); 1251 function(monitor); 1252 } 1253 } 1254 1255 // Iterate ObjectMonitors owned by any thread and where the owner `filter` 1256 // returns true. 1257 template <typename OwnerFilter> 1258 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) { 1259 monitors_iterate([&](ObjectMonitor* monitor) { 1260 // This function is only called at a safepoint or when the 1261 // target thread is suspended or when the target thread is 1262 // operating on itself. The current closures in use today are 1263 // only interested in an owned ObjectMonitor and ownership 1264 // cannot be dropped under the calling contexts so the 1265 // ObjectMonitor cannot be async deflated. 1266 if (monitor->has_owner() && filter(monitor)) { 1267 assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating"); 1268 1269 closure->do_monitor(monitor); 1270 } 1271 }); 1272 } 1273 1274 // Iterate ObjectMonitors where the owner == thread; this does NOT include 1275 // ObjectMonitors where owner is set to a stack-lock address in thread. 1276 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) { 1277 int64_t key = ObjectMonitor::owner_id_from(thread); 1278 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1279 return owned_monitors_iterate_filtered(closure, thread_filter); 1280 } 1281 1282 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, oop vthread) { 1283 int64_t key = ObjectMonitor::owner_id_from(vthread); 1284 auto thread_filter = [&](ObjectMonitor* monitor) { return monitor->owner() == key; }; 1285 return owned_monitors_iterate_filtered(closure, thread_filter); 1286 } 1287 1288 // Iterate ObjectMonitors owned by any thread. 1289 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) { 1290 auto all_filter = [&](ObjectMonitor* monitor) { return true; }; 1291 return owned_monitors_iterate_filtered(closure, all_filter); 1292 } 1293 1294 static bool monitors_used_above_threshold(MonitorList* list) { 1295 if (MonitorUsedDeflationThreshold == 0) { // disabled case is easy 1296 return false; 1297 } 1298 // Start with ceiling based on a per-thread estimate: 1299 size_t ceiling = ObjectSynchronizer::in_use_list_ceiling(); 1300 size_t old_ceiling = ceiling; 1301 if (ceiling < list->max()) { 1302 // The max used by the system has exceeded the ceiling so use that: 1303 ceiling = list->max(); 1304 } 1305 size_t monitors_used = list->count(); 1306 if (monitors_used == 0) { // empty list is easy 1307 return false; 1308 } 1309 if (NoAsyncDeflationProgressMax != 0 && 1310 _no_progress_cnt >= NoAsyncDeflationProgressMax) { 1311 double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0; 1312 size_t new_ceiling = ceiling + (size_t)((double)ceiling * remainder) + 1; 1313 ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling); 1314 log_info(monitorinflation)("Too many deflations without progress; " 1315 "bumping in_use_list_ceiling from " SIZE_FORMAT 1316 " to " SIZE_FORMAT, old_ceiling, new_ceiling); 1317 _no_progress_cnt = 0; 1318 ceiling = new_ceiling; 1319 } 1320 1321 // Check if our monitor usage is above the threshold: 1322 size_t monitor_usage = (monitors_used * 100LL) / ceiling; 1323 if (int(monitor_usage) > MonitorUsedDeflationThreshold) { 1324 log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT 1325 ", monitor_usage=" SIZE_FORMAT ", threshold=%d", 1326 monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold); 1327 return true; 1328 } 1329 1330 return false; 1331 } 1332 1333 size_t ObjectSynchronizer::in_use_list_ceiling() { 1334 return _in_use_list_ceiling; 1335 } 1336 1337 void ObjectSynchronizer::dec_in_use_list_ceiling() { 1338 Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1339 } 1340 1341 void ObjectSynchronizer::inc_in_use_list_ceiling() { 1342 Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1343 } 1344 1345 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) { 1346 _in_use_list_ceiling = new_value; 1347 } 1348 1349 bool ObjectSynchronizer::is_async_deflation_needed() { 1350 if (is_async_deflation_requested()) { 1351 // Async deflation request. 1352 log_info(monitorinflation)("Async deflation needed: explicit request"); 1353 return true; 1354 } 1355 1356 jlong time_since_last = time_since_last_async_deflation_ms(); 1357 1358 if (AsyncDeflationInterval > 0 && 1359 time_since_last > AsyncDeflationInterval && 1360 monitors_used_above_threshold(&_in_use_list)) { 1361 // It's been longer than our specified deflate interval and there 1362 // are too many monitors in use. We don't deflate more frequently 1363 // than AsyncDeflationInterval (unless is_async_deflation_requested) 1364 // in order to not swamp the MonitorDeflationThread. 1365 log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold"); 1366 return true; 1367 } 1368 1369 if (GuaranteedAsyncDeflationInterval > 0 && 1370 time_since_last > GuaranteedAsyncDeflationInterval) { 1371 // It's been longer than our specified guaranteed deflate interval. 1372 // We need to clean up the used monitors even if the threshold is 1373 // not reached, to keep the memory utilization at bay when many threads 1374 // touched many monitors. 1375 log_info(monitorinflation)("Async deflation needed: guaranteed interval (" INTX_FORMAT " ms) " 1376 "is greater than time since last deflation (" JLONG_FORMAT " ms)", 1377 GuaranteedAsyncDeflationInterval, time_since_last); 1378 1379 // If this deflation has no progress, then it should not affect the no-progress 1380 // tracking, otherwise threshold heuristics would think it was triggered, experienced 1381 // no progress, and needs to backoff more aggressively. In this "no progress" case, 1382 // the generic code would bump the no-progress counter, and we compensate for that 1383 // by telling it to skip the update. 1384 // 1385 // If this deflation has progress, then it should let non-progress tracking 1386 // know about this, otherwise the threshold heuristics would kick in, potentially 1387 // experience no-progress due to aggressive cleanup by this deflation, and think 1388 // it is still in no-progress stride. In this "progress" case, the generic code would 1389 // zero the counter, and we allow it to happen. 1390 _no_progress_skip_increment = true; 1391 1392 return true; 1393 } 1394 1395 return false; 1396 } 1397 1398 void ObjectSynchronizer::request_deflate_idle_monitors() { 1399 MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag); 1400 set_is_async_deflation_requested(true); 1401 ml.notify_all(); 1402 } 1403 1404 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() { 1405 JavaThread* current = JavaThread::current(); 1406 bool ret_code = false; 1407 1408 jlong last_time = last_async_deflation_time_ns(); 1409 1410 request_deflate_idle_monitors(); 1411 1412 const int N_CHECKS = 5; 1413 for (int i = 0; i < N_CHECKS; i++) { // sleep for at most 5 seconds 1414 if (last_async_deflation_time_ns() > last_time) { 1415 log_info(monitorinflation)("Async Deflation happened after %d check(s).", i); 1416 ret_code = true; 1417 break; 1418 } 1419 { 1420 // JavaThread has to honor the blocking protocol. 1421 ThreadBlockInVM tbivm(current); 1422 os::naked_short_sleep(999); // sleep for almost 1 second 1423 } 1424 } 1425 if (!ret_code) { 1426 log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS); 1427 } 1428 1429 return ret_code; 1430 } 1431 1432 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() { 1433 return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS); 1434 } 1435 1436 static void post_monitor_inflate_event(EventJavaMonitorInflate* event, 1437 const oop obj, 1438 ObjectSynchronizer::InflateCause cause) { 1439 assert(event != nullptr, "invariant"); 1440 event->set_monitorClass(obj->klass()); 1441 event->set_address((uintptr_t)(void*)obj); 1442 event->set_cause((u1)cause); 1443 event->commit(); 1444 } 1445 1446 // Fast path code shared by multiple functions 1447 void ObjectSynchronizer::inflate_helper(oop obj) { 1448 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1449 markWord mark = obj->mark_acquire(); 1450 if (mark.has_monitor()) { 1451 ObjectMonitor* monitor = read_monitor(mark); 1452 markWord dmw = monitor->header(); 1453 assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value()); 1454 return; 1455 } 1456 (void)inflate(Thread::current(), obj, inflate_cause_vm_internal); 1457 } 1458 1459 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) { 1460 assert(current == Thread::current(), "must be"); 1461 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1462 return inflate_impl(current->is_Java_thread() ? JavaThread::cast(current) : nullptr, obj, cause); 1463 } 1464 1465 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) { 1466 assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be"); 1467 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_for"); 1468 return inflate_impl(thread, obj, cause); 1469 } 1470 1471 ObjectMonitor* ObjectSynchronizer::inflate_impl(JavaThread* locking_thread, oop object, const InflateCause cause) { 1472 // The JavaThread* locking_thread requires that the locking_thread == Thread::current() or 1473 // is suspended throughout the call by some other mechanism. 1474 // The thread might be nullptr when called from a non JavaThread. (As may still be 1475 // the case from FastHashCode). However it is only important for correctness that the 1476 // thread is set when called from ObjectSynchronizer::enter from the owning thread, 1477 // ObjectSynchronizer::enter_for from any thread, or ObjectSynchronizer::exit. 1478 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_impl"); 1479 EventJavaMonitorInflate event; 1480 1481 for (;;) { 1482 const markWord mark = object->mark_acquire(); 1483 1484 // The mark can be in one of the following states: 1485 // * inflated - If the ObjectMonitor owner is anonymous and the 1486 // locking_thread owns the object lock, then we 1487 // make the locking_thread the ObjectMonitor owner. 1488 // * stack-locked - Coerce it to inflated from stack-locked. 1489 // * INFLATING - Busy wait for conversion from stack-locked to 1490 // inflated. 1491 // * unlocked - Aggressively inflate the object. 1492 1493 // CASE: inflated 1494 if (mark.has_monitor()) { 1495 ObjectMonitor* inf = mark.monitor(); 1496 markWord dmw = inf->header(); 1497 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1498 if (inf->has_anonymous_owner() && locking_thread != nullptr) { 1499 assert(LockingMode == LM_LEGACY, "invariant"); 1500 if (locking_thread->is_lock_owned((address)inf->stack_locker())) { 1501 inf->set_stack_locker(nullptr); 1502 inf->set_owner_from_anonymous(locking_thread); 1503 } 1504 } 1505 return inf; 1506 } 1507 1508 // CASE: inflation in progress - inflating over a stack-lock. 1509 // Some other thread is converting from stack-locked to inflated. 1510 // Only that thread can complete inflation -- other threads must wait. 1511 // The INFLATING value is transient. 1512 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. 1513 // We could always eliminate polling by parking the thread on some auxiliary list. 1514 if (mark == markWord::INFLATING()) { 1515 read_stable_mark(object); 1516 continue; 1517 } 1518 1519 // CASE: stack-locked 1520 // Could be stack-locked either by current or by some other thread. 1521 // 1522 // Note that we allocate the ObjectMonitor speculatively, _before_ attempting 1523 // to install INFLATING into the mark word. We originally installed INFLATING, 1524 // allocated the ObjectMonitor, and then finally STed the address of the 1525 // ObjectMonitor into the mark. This was correct, but artificially lengthened 1526 // the interval in which INFLATING appeared in the mark, thus increasing 1527 // the odds of inflation contention. If we lose the race to set INFLATING, 1528 // then we just delete the ObjectMonitor and loop around again. 1529 // 1530 LogStreamHandle(Trace, monitorinflation) lsh; 1531 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1532 ObjectMonitor* m = new ObjectMonitor(object); 1533 // Optimistically prepare the ObjectMonitor - anticipate successful CAS 1534 // We do this before the CAS in order to minimize the length of time 1535 // in which INFLATING appears in the mark. 1536 1537 markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark); 1538 if (cmp != mark) { 1539 delete m; 1540 continue; // Interference -- just retry 1541 } 1542 1543 // We've successfully installed INFLATING (0) into the mark-word. 1544 // This is the only case where 0 will appear in a mark-word. 1545 // Only the singular thread that successfully swings the mark-word 1546 // to 0 can perform (or more precisely, complete) inflation. 1547 // 1548 // Why do we CAS a 0 into the mark-word instead of just CASing the 1549 // mark-word from the stack-locked value directly to the new inflated state? 1550 // Consider what happens when a thread unlocks a stack-locked object. 1551 // It attempts to use CAS to swing the displaced header value from the 1552 // on-stack BasicLock back into the object header. Recall also that the 1553 // header value (hash code, etc) can reside in (a) the object header, or 1554 // (b) a displaced header associated with the stack-lock, or (c) a displaced 1555 // header in an ObjectMonitor. The inflate() routine must copy the header 1556 // value from the BasicLock on the owner's stack to the ObjectMonitor, all 1557 // the while preserving the hashCode stability invariants. If the owner 1558 // decides to release the lock while the value is 0, the unlock will fail 1559 // and control will eventually pass from slow_exit() to inflate. The owner 1560 // will then spin, waiting for the 0 value to disappear. Put another way, 1561 // the 0 causes the owner to stall if the owner happens to try to 1562 // drop the lock (restoring the header from the BasicLock to the object) 1563 // while inflation is in-progress. This protocol avoids races that might 1564 // would otherwise permit hashCode values to change or "flicker" for an object. 1565 // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable. 1566 // 0 serves as a "BUSY" inflate-in-progress indicator. 1567 1568 1569 // fetch the displaced mark from the owner's stack. 1570 // The owner can't die or unwind past the lock while our INFLATING 1571 // object is in the mark. Furthermore the owner can't complete 1572 // an unlock on the object, either. 1573 markWord dmw = mark.displaced_mark_helper(); 1574 // Catch if the object's header is not neutral (not locked and 1575 // not marked is what we care about here). 1576 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1577 1578 // Setup monitor fields to proper values -- prepare the monitor 1579 m->set_header(dmw); 1580 1581 // Note that a thread can inflate an object 1582 // that it has stack-locked -- as might happen in wait() -- directly 1583 // with CAS. That is, we can avoid the xchg-nullptr .... ST idiom. 1584 if (locking_thread != nullptr && locking_thread->is_lock_owned((address)mark.locker())) { 1585 m->set_owner(locking_thread); 1586 } else { 1587 // Use ANONYMOUS_OWNER to indicate that the owner is the BasicLock on the stack, 1588 // and set the stack locker field in the monitor. 1589 m->set_stack_locker(mark.locker()); 1590 m->set_anonymous_owner(); 1591 } 1592 // TODO-FIXME: assert BasicLock->dhw != 0. 1593 1594 // Must preserve store ordering. The monitor state must 1595 // be stable at the time of publishing the monitor address. 1596 guarantee(object->mark() == markWord::INFLATING(), "invariant"); 1597 // Release semantics so that above set_object() is seen first. 1598 object->release_set_mark(markWord::encode(m)); 1599 1600 // Once ObjectMonitor is configured and the object is associated 1601 // with the ObjectMonitor, it is safe to allow async deflation: 1602 _in_use_list.add(m); 1603 1604 // Hopefully the performance counters are allocated on distinct cache lines 1605 // to avoid false sharing on MP systems ... 1606 OM_PERFDATA_OP(Inflations, inc()); 1607 if (log_is_enabled(Trace, monitorinflation)) { 1608 ResourceMark rm; 1609 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1610 INTPTR_FORMAT ", type='%s'", p2i(object), 1611 object->mark().value(), object->klass()->external_name()); 1612 } 1613 if (event.should_commit()) { 1614 post_monitor_inflate_event(&event, object, cause); 1615 } 1616 return m; 1617 } 1618 1619 // CASE: unlocked 1620 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. 1621 // If we know we're inflating for entry it's better to inflate by swinging a 1622 // pre-locked ObjectMonitor pointer into the object header. A successful 1623 // CAS inflates the object *and* confers ownership to the inflating thread. 1624 // In the current implementation we use a 2-step mechanism where we CAS() 1625 // to inflate and then CAS() again to try to swing _owner from null to current. 1626 // An inflateTry() method that we could call from enter() would be useful. 1627 1628 assert(mark.is_unlocked(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1629 ObjectMonitor* m = new ObjectMonitor(object); 1630 // prepare m for installation - set monitor to initial state 1631 m->set_header(mark); 1632 1633 if (object->cas_set_mark(markWord::encode(m), mark) != mark) { 1634 delete m; 1635 m = nullptr; 1636 continue; 1637 // interference - the markword changed - just retry. 1638 // The state-transitions are one-way, so there's no chance of 1639 // live-lock -- "Inflated" is an absorbing state. 1640 } 1641 1642 // Once the ObjectMonitor is configured and object is associated 1643 // with the ObjectMonitor, it is safe to allow async deflation: 1644 _in_use_list.add(m); 1645 1646 // Hopefully the performance counters are allocated on distinct 1647 // cache lines to avoid false sharing on MP systems ... 1648 OM_PERFDATA_OP(Inflations, inc()); 1649 if (log_is_enabled(Trace, monitorinflation)) { 1650 ResourceMark rm; 1651 lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark=" 1652 INTPTR_FORMAT ", type='%s'", p2i(object), 1653 object->mark().value(), object->klass()->external_name()); 1654 } 1655 if (event.should_commit()) { 1656 post_monitor_inflate_event(&event, object, cause); 1657 } 1658 return m; 1659 } 1660 } 1661 1662 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle 1663 // ObjectMonitors. Returns the number of deflated ObjectMonitors. 1664 // 1665 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) { 1666 MonitorList::Iterator iter = _in_use_list.iterator(); 1667 size_t deflated_count = 0; 1668 Thread* current = Thread::current(); 1669 1670 while (iter.has_next()) { 1671 if (deflated_count >= (size_t)MonitorDeflationMax) { 1672 break; 1673 } 1674 ObjectMonitor* mid = iter.next(); 1675 if (mid->deflate_monitor(current)) { 1676 deflated_count++; 1677 } 1678 1679 // Must check for a safepoint/handshake and honor it. 1680 safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count); 1681 } 1682 1683 return deflated_count; 1684 } 1685 1686 class HandshakeForDeflation : public HandshakeClosure { 1687 public: 1688 HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {} 1689 1690 void do_thread(Thread* thread) { 1691 log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread=" 1692 INTPTR_FORMAT, p2i(thread)); 1693 if (thread->is_Java_thread()) { 1694 // Clear OM cache 1695 JavaThread* jt = JavaThread::cast(thread); 1696 jt->om_clear_monitor_cache(); 1697 } 1698 } 1699 }; 1700 1701 class VM_RendezvousGCThreads : public VM_Operation { 1702 public: 1703 bool evaluate_at_safepoint() const override { return false; } 1704 VMOp_Type type() const override { return VMOp_RendezvousGCThreads; } 1705 void doit() override { 1706 Universe::heap()->safepoint_synchronize_begin(); 1707 Universe::heap()->safepoint_synchronize_end(); 1708 }; 1709 }; 1710 1711 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list, 1712 ObjectMonitorDeflationSafepointer* safepointer) { 1713 NativeHeapTrimmer::SuspendMark sm("monitor deletion"); 1714 size_t deleted_count = 0; 1715 for (ObjectMonitor* monitor: *delete_list) { 1716 delete monitor; 1717 deleted_count++; 1718 // A JavaThread must check for a safepoint/handshake and honor it. 1719 safepointer->block_for_safepoint("deletion", "deleted_count", deleted_count); 1720 } 1721 return deleted_count; 1722 } 1723 1724 class ObjectMonitorDeflationLogging: public StackObj { 1725 LogStreamHandle(Debug, monitorinflation) _debug; 1726 LogStreamHandle(Info, monitorinflation) _info; 1727 LogStream* _stream; 1728 elapsedTimer _timer; 1729 1730 size_t ceiling() const { return ObjectSynchronizer::in_use_list_ceiling(); } 1731 size_t count() const { return ObjectSynchronizer::_in_use_list.count(); } 1732 size_t max() const { return ObjectSynchronizer::_in_use_list.max(); } 1733 1734 public: 1735 ObjectMonitorDeflationLogging() 1736 : _debug(), _info(), _stream(nullptr) { 1737 if (_debug.is_enabled()) { 1738 _stream = &_debug; 1739 } else if (_info.is_enabled()) { 1740 _stream = &_info; 1741 } 1742 } 1743 1744 void begin() { 1745 if (_stream != nullptr) { 1746 _stream->print_cr("begin deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1747 ceiling(), count(), max()); 1748 _timer.start(); 1749 } 1750 } 1751 1752 void before_handshake(size_t unlinked_count) { 1753 if (_stream != nullptr) { 1754 _timer.stop(); 1755 _stream->print_cr("before handshaking: unlinked_count=" SIZE_FORMAT 1756 ", in_use_list stats: ceiling=" SIZE_FORMAT ", count=" 1757 SIZE_FORMAT ", max=" SIZE_FORMAT, 1758 unlinked_count, ceiling(), count(), max()); 1759 } 1760 } 1761 1762 void after_handshake() { 1763 if (_stream != nullptr) { 1764 _stream->print_cr("after handshaking: in_use_list stats: ceiling=" 1765 SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1766 ceiling(), count(), max()); 1767 _timer.start(); 1768 } 1769 } 1770 1771 void end(size_t deflated_count, size_t unlinked_count) { 1772 if (_stream != nullptr) { 1773 _timer.stop(); 1774 if (deflated_count != 0 || unlinked_count != 0 || _debug.is_enabled()) { 1775 _stream->print_cr("deflated_count=" SIZE_FORMAT ", {unlinked,deleted}_count=" SIZE_FORMAT " monitors in %3.7f secs", 1776 deflated_count, unlinked_count, _timer.seconds()); 1777 } 1778 _stream->print_cr("end deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1779 ceiling(), count(), max()); 1780 } 1781 } 1782 1783 void before_block_for_safepoint(const char* op_name, const char* cnt_name, size_t cnt) { 1784 if (_stream != nullptr) { 1785 _timer.stop(); 1786 _stream->print_cr("pausing %s: %s=" SIZE_FORMAT ", in_use_list stats: ceiling=" 1787 SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1788 op_name, cnt_name, cnt, ceiling(), count(), max()); 1789 } 1790 } 1791 1792 void after_block_for_safepoint(const char* op_name) { 1793 if (_stream != nullptr) { 1794 _stream->print_cr("resuming %s: in_use_list stats: ceiling=" SIZE_FORMAT 1795 ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, op_name, 1796 ceiling(), count(), max()); 1797 _timer.start(); 1798 } 1799 } 1800 }; 1801 1802 void ObjectMonitorDeflationSafepointer::block_for_safepoint(const char* op_name, const char* count_name, size_t counter) { 1803 if (!SafepointMechanism::should_process(_current)) { 1804 return; 1805 } 1806 1807 // A safepoint/handshake has started. 1808 _log->before_block_for_safepoint(op_name, count_name, counter); 1809 1810 { 1811 // Honor block request. 1812 ThreadBlockInVM tbivm(_current); 1813 } 1814 1815 _log->after_block_for_safepoint(op_name); 1816 } 1817 1818 // This function is called by the MonitorDeflationThread to deflate 1819 // ObjectMonitors. 1820 size_t ObjectSynchronizer::deflate_idle_monitors() { 1821 JavaThread* current = JavaThread::current(); 1822 assert(current->is_monitor_deflation_thread(), "The only monitor deflater"); 1823 1824 // The async deflation request has been processed. 1825 _last_async_deflation_time_ns = os::javaTimeNanos(); 1826 set_is_async_deflation_requested(false); 1827 1828 ObjectMonitorDeflationLogging log; 1829 ObjectMonitorDeflationSafepointer safepointer(current, &log); 1830 1831 log.begin(); 1832 1833 // Deflate some idle ObjectMonitors. 1834 size_t deflated_count = deflate_monitor_list(&safepointer); 1835 1836 // Unlink the deflated ObjectMonitors from the in-use list. 1837 size_t unlinked_count = 0; 1838 size_t deleted_count = 0; 1839 if (deflated_count > 0) { 1840 ResourceMark rm(current); 1841 GrowableArray<ObjectMonitor*> delete_list((int)deflated_count); 1842 unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer); 1843 1844 #ifdef ASSERT 1845 if (UseObjectMonitorTable) { 1846 for (ObjectMonitor* monitor : delete_list) { 1847 assert(!LightweightSynchronizer::contains_monitor(current, monitor), "Should have been removed"); 1848 } 1849 } 1850 #endif 1851 1852 log.before_handshake(unlinked_count); 1853 1854 // A JavaThread needs to handshake in order to safely free the 1855 // ObjectMonitors that were deflated in this cycle. 1856 HandshakeForDeflation hfd_hc; 1857 Handshake::execute(&hfd_hc); 1858 // Also, we sync and desync GC threads around the handshake, so that they can 1859 // safely read the mark-word and look-through to the object-monitor, without 1860 // being afraid that the object-monitor is going away. 1861 VM_RendezvousGCThreads sync_gc; 1862 VMThread::execute(&sync_gc); 1863 1864 log.after_handshake(); 1865 1866 // After the handshake, safely free the ObjectMonitors that were 1867 // deflated and unlinked in this cycle. 1868 1869 // Delete the unlinked ObjectMonitors. 1870 deleted_count = delete_monitors(&delete_list, &safepointer); 1871 assert(unlinked_count == deleted_count, "must be"); 1872 } 1873 1874 log.end(deflated_count, unlinked_count); 1875 1876 OM_PERFDATA_OP(MonExtant, set_value(_in_use_list.count())); 1877 OM_PERFDATA_OP(Deflations, inc(deflated_count)); 1878 1879 GVars.stw_random = os::random(); 1880 1881 if (deflated_count != 0) { 1882 _no_progress_cnt = 0; 1883 } else if (_no_progress_skip_increment) { 1884 _no_progress_skip_increment = false; 1885 } else { 1886 _no_progress_cnt++; 1887 } 1888 1889 return deflated_count; 1890 } 1891 1892 // Monitor cleanup on JavaThread::exit 1893 1894 // Iterate through monitor cache and attempt to release thread's monitors 1895 class ReleaseJavaMonitorsClosure: public MonitorClosure { 1896 private: 1897 JavaThread* _thread; 1898 1899 public: 1900 ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {} 1901 void do_monitor(ObjectMonitor* mid) { 1902 intx rec = mid->complete_exit(_thread); 1903 _thread->dec_held_monitor_count(rec + 1); 1904 } 1905 }; 1906 1907 // Release all inflated monitors owned by current thread. Lightweight monitors are 1908 // ignored. This is meant to be called during JNI thread detach which assumes 1909 // all remaining monitors are heavyweight. All exceptions are swallowed. 1910 // Scanning the extant monitor list can be time consuming. 1911 // A simple optimization is to add a per-thread flag that indicates a thread 1912 // called jni_monitorenter() during its lifetime. 1913 // 1914 // Instead of NoSafepointVerifier it might be cheaper to 1915 // use an idiom of the form: 1916 // auto int tmp = SafepointSynchronize::_safepoint_counter ; 1917 // <code that must not run at safepoint> 1918 // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; 1919 // Since the tests are extremely cheap we could leave them enabled 1920 // for normal product builds. 1921 1922 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) { 1923 assert(current == JavaThread::current(), "must be current Java thread"); 1924 NoSafepointVerifier nsv; 1925 ReleaseJavaMonitorsClosure rjmc(current); 1926 ObjectSynchronizer::owned_monitors_iterate(&rjmc, current); 1927 assert(!current->has_pending_exception(), "Should not be possible"); 1928 current->clear_pending_exception(); 1929 assert(current->held_monitor_count() == 0, "Should not be possible"); 1930 // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count. 1931 current->clear_jni_monitor_count(); 1932 } 1933 1934 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { 1935 switch (cause) { 1936 case inflate_cause_vm_internal: return "VM Internal"; 1937 case inflate_cause_monitor_enter: return "Monitor Enter"; 1938 case inflate_cause_wait: return "Monitor Wait"; 1939 case inflate_cause_notify: return "Monitor Notify"; 1940 case inflate_cause_hash_code: return "Monitor Hash Code"; 1941 case inflate_cause_jni_enter: return "JNI Monitor Enter"; 1942 case inflate_cause_jni_exit: return "JNI Monitor Exit"; 1943 default: 1944 ShouldNotReachHere(); 1945 } 1946 return "Unknown"; 1947 } 1948 1949 //------------------------------------------------------------------------------ 1950 // Debugging code 1951 1952 u_char* ObjectSynchronizer::get_gvars_addr() { 1953 return (u_char*)&GVars; 1954 } 1955 1956 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() { 1957 return (u_char*)&GVars.hc_sequence; 1958 } 1959 1960 size_t ObjectSynchronizer::get_gvars_size() { 1961 return sizeof(SharedGlobals); 1962 } 1963 1964 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() { 1965 return (u_char*)&GVars.stw_random; 1966 } 1967 1968 // Do the final audit and print of ObjectMonitor stats; must be done 1969 // by the VMThread at VM exit time. 1970 void ObjectSynchronizer::do_final_audit_and_print_stats() { 1971 assert(Thread::current()->is_VM_thread(), "sanity check"); 1972 1973 if (is_final_audit()) { // Only do the audit once. 1974 return; 1975 } 1976 set_is_final_audit(); 1977 log_info(monitorinflation)("Starting the final audit."); 1978 1979 if (log_is_enabled(Info, monitorinflation)) { 1980 LogStreamHandle(Info, monitorinflation) ls; 1981 audit_and_print_stats(&ls, true /* on_exit */); 1982 } 1983 } 1984 1985 // This function can be called by the MonitorDeflationThread or it can be called when 1986 // we are trying to exit the VM. The list walker functions can run in parallel with 1987 // the other list operations. 1988 // Calls to this function can be added in various places as a debugging 1989 // aid. 1990 // 1991 void ObjectSynchronizer::audit_and_print_stats(outputStream* ls, bool on_exit) { 1992 int error_cnt = 0; 1993 1994 ls->print_cr("Checking in_use_list:"); 1995 chk_in_use_list(ls, &error_cnt); 1996 1997 if (error_cnt == 0) { 1998 ls->print_cr("No errors found in in_use_list checks."); 1999 } else { 2000 log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt); 2001 } 2002 2003 // When exiting, only log the interesting entries at the Info level. 2004 // When called at intervals by the MonitorDeflationThread, log output 2005 // at the Trace level since there can be a lot of it. 2006 if (!on_exit && log_is_enabled(Trace, monitorinflation)) { 2007 LogStreamHandle(Trace, monitorinflation) ls_tr; 2008 log_in_use_monitor_details(&ls_tr, true /* log_all */); 2009 } else if (on_exit) { 2010 log_in_use_monitor_details(ls, false /* log_all */); 2011 } 2012 2013 ls->flush(); 2014 2015 guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt); 2016 } 2017 2018 // Check the in_use_list; log the results of the checks. 2019 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) { 2020 size_t l_in_use_count = _in_use_list.count(); 2021 size_t l_in_use_max = _in_use_list.max(); 2022 out->print_cr("count=" SIZE_FORMAT ", max=" SIZE_FORMAT, l_in_use_count, 2023 l_in_use_max); 2024 2025 size_t ck_in_use_count = 0; 2026 MonitorList::Iterator iter = _in_use_list.iterator(); 2027 while (iter.has_next()) { 2028 ObjectMonitor* mid = iter.next(); 2029 chk_in_use_entry(mid, out, error_cnt_p); 2030 ck_in_use_count++; 2031 } 2032 2033 if (l_in_use_count == ck_in_use_count) { 2034 out->print_cr("in_use_count=" SIZE_FORMAT " equals ck_in_use_count=" 2035 SIZE_FORMAT, l_in_use_count, ck_in_use_count); 2036 } else { 2037 out->print_cr("WARNING: in_use_count=" SIZE_FORMAT " is not equal to " 2038 "ck_in_use_count=" SIZE_FORMAT, l_in_use_count, 2039 ck_in_use_count); 2040 } 2041 2042 size_t ck_in_use_max = _in_use_list.max(); 2043 if (l_in_use_max == ck_in_use_max) { 2044 out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max=" 2045 SIZE_FORMAT, l_in_use_max, ck_in_use_max); 2046 } else { 2047 out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to " 2048 "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max); 2049 } 2050 } 2051 2052 // Check an in-use monitor entry; log any errors. 2053 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out, 2054 int* error_cnt_p) { 2055 if (n->owner_is_DEFLATER_MARKER()) { 2056 // This could happen when monitor deflation blocks for a safepoint. 2057 return; 2058 } 2059 2060 2061 if (n->metadata() == 0) { 2062 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must " 2063 "have non-null _metadata (header/hash) field.", p2i(n)); 2064 *error_cnt_p = *error_cnt_p + 1; 2065 } 2066 2067 const oop obj = n->object_peek(); 2068 if (obj == nullptr) { 2069 return; 2070 } 2071 2072 const markWord mark = obj->mark(); 2073 if (!mark.has_monitor()) { 2074 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2075 "object does not think it has a monitor: obj=" 2076 INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), 2077 p2i(obj), mark.value()); 2078 *error_cnt_p = *error_cnt_p + 1; 2079 return; 2080 } 2081 2082 ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark); 2083 if (n != obj_mon) { 2084 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2085 "object does not refer to the same monitor: obj=" 2086 INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" 2087 INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); 2088 *error_cnt_p = *error_cnt_p + 1; 2089 } 2090 } 2091 2092 // Log details about ObjectMonitors on the in_use_list. The 'BHL' 2093 // flags indicate why the entry is in-use, 'object' and 'object type' 2094 // indicate the associated object and its type. 2095 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) { 2096 if (_in_use_list.count() > 0) { 2097 stringStream ss; 2098 out->print_cr("In-use monitor info%s:", log_all ? "" : " (eliding idle monitors)"); 2099 out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); 2100 out->print_cr("%18s %s %18s %18s", 2101 "monitor", "BHL", "object", "object type"); 2102 out->print_cr("================== === ================== =================="); 2103 2104 auto is_interesting = [&](ObjectMonitor* monitor) { 2105 return log_all || monitor->has_owner() || monitor->is_busy(); 2106 }; 2107 2108 monitors_iterate([&](ObjectMonitor* monitor) { 2109 if (is_interesting(monitor)) { 2110 const oop obj = monitor->object_peek(); 2111 const intptr_t hash = UseObjectMonitorTable ? monitor->hash() : monitor->header().hash(); 2112 ResourceMark rm; 2113 out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s", p2i(monitor), 2114 monitor->is_busy(), hash != 0, monitor->has_owner(), 2115 p2i(obj), obj == nullptr ? "" : obj->klass()->external_name()); 2116 if (monitor->is_busy()) { 2117 out->print(" (%s)", monitor->is_busy_to_string(&ss)); 2118 ss.reset(); 2119 } 2120 out->cr(); 2121 } 2122 }); 2123 } 2124 2125 out->flush(); 2126 }