1 /* 2 * Copyright (c) 1998, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "gc/shared/suspendibleThreadSet.hpp" 28 #include "jfr/jfrEvents.hpp" 29 #include "gc/shared/suspendibleThreadSet.hpp" 30 #include "logging/log.hpp" 31 #include "logging/logStream.hpp" 32 #include "memory/allocation.inline.hpp" 33 #include "memory/padded.hpp" 34 #include "memory/resourceArea.hpp" 35 #include "memory/universe.hpp" 36 #include "oops/markWord.hpp" 37 #include "oops/oop.inline.hpp" 38 #include "runtime/atomic.hpp" 39 #include "runtime/frame.inline.hpp" 40 #include "runtime/handles.inline.hpp" 41 #include "runtime/handshake.hpp" 42 #include "runtime/interfaceSupport.inline.hpp" 43 #include "runtime/javaThread.hpp" 44 #include "runtime/lockStack.inline.hpp" 45 #include "runtime/mutexLocker.hpp" 46 #include "runtime/objectMonitor.hpp" 47 #include "runtime/objectMonitor.inline.hpp" 48 #include "runtime/os.inline.hpp" 49 #include "runtime/osThread.hpp" 50 #include "runtime/perfData.hpp" 51 #include "runtime/safepointMechanism.inline.hpp" 52 #include "runtime/safepointVerifiers.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "runtime/stubRoutines.hpp" 55 #include "runtime/synchronizer.hpp" 56 #include "runtime/threads.hpp" 57 #include "runtime/timer.hpp" 58 #include "runtime/trimNativeHeap.hpp" 59 #include "runtime/vframe.hpp" 60 #include "runtime/vmThread.hpp" 61 #include "utilities/align.hpp" 62 #include "utilities/dtrace.hpp" 63 #include "utilities/events.hpp" 64 #include "utilities/linkedlist.hpp" 65 #include "utilities/preserveException.hpp" 66 67 class ObjectMonitorsHashtable::PtrList : 68 public LinkedListImpl<ObjectMonitor*, 69 AnyObj::C_HEAP, mtThread, 70 AllocFailStrategy::RETURN_NULL> {}; 71 72 class CleanupObjectMonitorsHashtable: StackObj { 73 public: 74 bool do_entry(void*& key, ObjectMonitorsHashtable::PtrList*& list) { 75 list->clear(); // clear the LinkListNodes 76 delete list; // then delete the LinkedList 77 return true; 78 } 79 }; 80 81 ObjectMonitorsHashtable::~ObjectMonitorsHashtable() { 82 CleanupObjectMonitorsHashtable cleanup; 83 _ptrs->unlink(&cleanup); // cleanup the LinkedLists 84 delete _ptrs; // then delete the hash table 85 } 86 87 void ObjectMonitorsHashtable::add_entry(void* key, ObjectMonitor* om) { 88 ObjectMonitorsHashtable::PtrList* list = get_entry(key); 89 if (list == nullptr) { 90 // Create new list and add it to the hash table: 91 list = new (mtThread) ObjectMonitorsHashtable::PtrList; 92 add_entry(key, list); 93 } 94 list->add(om); // Add the ObjectMonitor to the list. 95 _om_count++; 96 } 97 98 bool ObjectMonitorsHashtable::has_entry(void* key, ObjectMonitor* om) { 99 ObjectMonitorsHashtable::PtrList* list = get_entry(key); 100 if (list == nullptr || list->find(om) == nullptr) { 101 return false; 102 } 103 return true; 104 } 105 106 void MonitorList::add(ObjectMonitor* m) { 107 ObjectMonitor* head; 108 do { 109 head = Atomic::load(&_head); 110 m->set_next_om(head); 111 } while (Atomic::cmpxchg(&_head, head, m) != head); 112 113 size_t count = Atomic::add(&_count, 1u); 114 if (count > max()) { 115 Atomic::inc(&_max); 116 } 117 } 118 119 size_t MonitorList::count() const { 120 return Atomic::load(&_count); 121 } 122 123 size_t MonitorList::max() const { 124 return Atomic::load(&_max); 125 } 126 127 // Walk the in-use list and unlink (at most MonitorDeflationMax) deflated 128 // ObjectMonitors. Returns the number of unlinked ObjectMonitors. 129 size_t MonitorList::unlink_deflated(Thread* current, LogStream* ls, 130 elapsedTimer* timer_p, 131 GrowableArray<ObjectMonitor*>* unlinked_list) { 132 size_t unlinked_count = 0; 133 ObjectMonitor* prev = nullptr; 134 ObjectMonitor* head = Atomic::load_acquire(&_head); 135 ObjectMonitor* m = head; 136 // The in-use list head can be null during the final audit. 137 while (m != nullptr) { 138 if (m->is_being_async_deflated()) { 139 // Find next live ObjectMonitor. 140 ObjectMonitor* next = m; 141 do { 142 ObjectMonitor* next_next = next->next_om(); 143 unlinked_count++; 144 unlinked_list->append(next); 145 next = next_next; 146 if (unlinked_count >= (size_t)MonitorDeflationMax) { 147 // Reached the max so bail out on the gathering loop. 148 break; 149 } 150 } while (next != nullptr && next->is_being_async_deflated()); 151 if (prev == nullptr) { 152 ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, head, next); 153 if (prev_head != head) { 154 // Find new prev ObjectMonitor that just got inserted. 155 for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) { 156 prev = n; 157 } 158 prev->set_next_om(next); 159 } 160 } else { 161 prev->set_next_om(next); 162 } 163 if (unlinked_count >= (size_t)MonitorDeflationMax) { 164 // Reached the max so bail out on the searching loop. 165 break; 166 } 167 m = next; 168 } else { 169 prev = m; 170 m = m->next_om(); 171 } 172 173 if (current->is_Java_thread()) { 174 // A JavaThread must check for a safepoint/handshake and honor it. 175 ObjectSynchronizer::chk_for_block_req(JavaThread::cast(current), "unlinking", 176 "unlinked_count", unlinked_count, 177 ls, timer_p); 178 } 179 } 180 Atomic::sub(&_count, unlinked_count); 181 return unlinked_count; 182 } 183 184 MonitorList::Iterator MonitorList::iterator() const { 185 return Iterator(Atomic::load_acquire(&_head)); 186 } 187 188 ObjectMonitor* MonitorList::Iterator::next() { 189 ObjectMonitor* current = _current; 190 _current = current->next_om(); 191 return current; 192 } 193 194 // The "core" versions of monitor enter and exit reside in this file. 195 // The interpreter and compilers contain specialized transliterated 196 // variants of the enter-exit fast-path operations. See c2_MacroAssembler_x86.cpp 197 // fast_lock(...) for instance. If you make changes here, make sure to modify the 198 // interpreter, and both C1 and C2 fast-path inline locking code emission. 199 // 200 // ----------------------------------------------------------------------------- 201 202 #ifdef DTRACE_ENABLED 203 204 // Only bother with this argument setup if dtrace is available 205 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 206 207 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 208 char* bytes = nullptr; \ 209 int len = 0; \ 210 jlong jtid = SharedRuntime::get_java_tid(thread); \ 211 Symbol* klassname = obj->klass()->name(); \ 212 if (klassname != nullptr) { \ 213 bytes = (char*)klassname->bytes(); \ 214 len = klassname->utf8_length(); \ 215 } 216 217 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 218 { \ 219 if (DTraceMonitorProbes) { \ 220 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 221 HOTSPOT_MONITOR_WAIT(jtid, \ 222 (uintptr_t)(monitor), bytes, len, (millis)); \ 223 } \ 224 } 225 226 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY 227 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL 228 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED 229 230 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 231 { \ 232 if (DTraceMonitorProbes) { \ 233 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 234 HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ 235 (uintptr_t)(monitor), bytes, len); \ 236 } \ 237 } 238 239 #else // ndef DTRACE_ENABLED 240 241 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 242 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 243 244 #endif // ndef DTRACE_ENABLED 245 246 // This exists only as a workaround of dtrace bug 6254741 247 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) { 248 DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); 249 return 0; 250 } 251 252 static constexpr size_t inflation_lock_count() { 253 return 256; 254 } 255 256 // Static storage for an array of PlatformMutex. 257 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)]; 258 259 static inline PlatformMutex* inflation_lock(size_t index) { 260 return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]); 261 } 262 263 void ObjectSynchronizer::initialize() { 264 for (size_t i = 0; i < inflation_lock_count(); i++) { 265 ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex(); 266 } 267 // Start the ceiling with the estimate for one thread. 268 set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate); 269 270 // Start the timer for deflations, so it does not trigger immediately. 271 _last_async_deflation_time_ns = os::javaTimeNanos(); 272 } 273 274 MonitorList ObjectSynchronizer::_in_use_list; 275 // monitors_used_above_threshold() policy is as follows: 276 // 277 // The ratio of the current _in_use_list count to the ceiling is used 278 // to determine if we are above MonitorUsedDeflationThreshold and need 279 // to do an async monitor deflation cycle. The ceiling is increased by 280 // AvgMonitorsPerThreadEstimate when a thread is added to the system 281 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is 282 // removed from the system. 283 // 284 // Note: If the _in_use_list max exceeds the ceiling, then 285 // monitors_used_above_threshold() will use the in_use_list max instead 286 // of the thread count derived ceiling because we have used more 287 // ObjectMonitors than the estimated average. 288 // 289 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax 290 // no-progress async monitor deflation cycles in a row, then the ceiling 291 // is adjusted upwards by monitors_used_above_threshold(). 292 // 293 // Start the ceiling with the estimate for one thread in initialize() 294 // which is called after cmd line options are processed. 295 static size_t _in_use_list_ceiling = 0; 296 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false; 297 bool volatile ObjectSynchronizer::_is_final_audit = false; 298 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0; 299 static uintx _no_progress_cnt = 0; 300 static bool _no_progress_skip_increment = false; 301 302 // =====================> Quick functions 303 304 // The quick_* forms are special fast-path variants used to improve 305 // performance. In the simplest case, a "quick_*" implementation could 306 // simply return false, in which case the caller will perform the necessary 307 // state transitions and call the slow-path form. 308 // The fast-path is designed to handle frequently arising cases in an efficient 309 // manner and is just a degenerate "optimistic" variant of the slow-path. 310 // returns true -- to indicate the call was satisfied. 311 // returns false -- to indicate the call needs the services of the slow-path. 312 // A no-loitering ordinance is in effect for code in the quick_* family 313 // operators: safepoints or indefinite blocking (blocking that might span a 314 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon 315 // entry. 316 // 317 // Consider: An interesting optimization is to have the JIT recognize the 318 // following common idiom: 319 // synchronized (someobj) { .... ; notify(); } 320 // That is, we find a notify() or notifyAll() call that immediately precedes 321 // the monitorexit operation. In that case the JIT could fuse the operations 322 // into a single notifyAndExit() runtime primitive. 323 324 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) { 325 assert(current->thread_state() == _thread_in_Java, "invariant"); 326 NoSafepointVerifier nsv; 327 if (obj == nullptr) return false; // slow-path for invalid obj 328 const markWord mark = obj->mark(); 329 330 if (LockingMode == LM_LIGHTWEIGHT) { 331 if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) { 332 // Degenerate notify 333 // fast-locked by caller so by definition the implied waitset is empty. 334 return true; 335 } 336 } else if (LockingMode == LM_LEGACY) { 337 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 338 // Degenerate notify 339 // stack-locked by caller so by definition the implied waitset is empty. 340 return true; 341 } 342 } 343 344 if (mark.has_monitor()) { 345 ObjectMonitor* const mon = mark.monitor(); 346 assert(mon->object() == oop(obj), "invariant"); 347 if (mon->owner() != current) return false; // slow-path for IMS exception 348 349 if (mon->first_waiter() != nullptr) { 350 // We have one or more waiters. Since this is an inflated monitor 351 // that we own, we can transfer one or more threads from the waitset 352 // to the entrylist here and now, avoiding the slow-path. 353 if (all) { 354 DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current); 355 } else { 356 DTRACE_MONITOR_PROBE(notify, mon, obj, current); 357 } 358 int free_count = 0; 359 do { 360 mon->INotify(current); 361 ++free_count; 362 } while (mon->first_waiter() != nullptr && all); 363 OM_PERFDATA_OP(Notifications, inc(free_count)); 364 } 365 return true; 366 } 367 368 // other IMS exception states take the slow-path 369 return false; 370 } 371 372 373 // The LockNode emitted directly at the synchronization site would have 374 // been too big if it were to have included support for the cases of inflated 375 // recursive enter and exit, so they go here instead. 376 // Note that we can't safely call AsyncPrintJavaStack() from within 377 // quick_enter() as our thread state remains _in_Java. 378 379 bool ObjectSynchronizer::quick_enter(oop obj, JavaThread* current, 380 BasicLock * lock) { 381 assert(current->thread_state() == _thread_in_Java, "invariant"); 382 NoSafepointVerifier nsv; 383 if (obj == nullptr) return false; // Need to throw NPE 384 385 if (obj->klass()->is_value_based()) { 386 return false; 387 } 388 389 const markWord mark = obj->mark(); 390 391 if (mark.has_monitor()) { 392 ObjectMonitor* const m = mark.monitor(); 393 // An async deflation or GC can race us before we manage to make 394 // the ObjectMonitor busy by setting the owner below. If we detect 395 // that race we just bail out to the slow-path here. 396 if (m->object_peek() == nullptr) { 397 return false; 398 } 399 JavaThread* const owner = static_cast<JavaThread*>(m->owner_raw()); 400 401 // Lock contention and Transactional Lock Elision (TLE) diagnostics 402 // and observability 403 // Case: light contention possibly amenable to TLE 404 // Case: TLE inimical operations such as nested/recursive synchronization 405 406 if (owner == current) { 407 m->_recursions++; 408 current->inc_held_monitor_count(); 409 return true; 410 } 411 412 if (LockingMode != LM_LIGHTWEIGHT) { 413 // This Java Monitor is inflated so obj's header will never be 414 // displaced to this thread's BasicLock. Make the displaced header 415 // non-null so this BasicLock is not seen as recursive nor as 416 // being locked. We do this unconditionally so that this thread's 417 // BasicLock cannot be mis-interpreted by any stack walkers. For 418 // performance reasons, stack walkers generally first check for 419 // stack-locking in the object's header, the second check is for 420 // recursive stack-locking in the displaced header in the BasicLock, 421 // and last are the inflated Java Monitor (ObjectMonitor) checks. 422 lock->set_displaced_header(markWord::unused_mark()); 423 } 424 425 if (owner == nullptr && m->try_set_owner_from(nullptr, current) == nullptr) { 426 assert(m->_recursions == 0, "invariant"); 427 current->inc_held_monitor_count(); 428 return true; 429 } 430 } 431 432 // Note that we could inflate in quick_enter. 433 // This is likely a useful optimization 434 // Critically, in quick_enter() we must not: 435 // -- block indefinitely, or 436 // -- reach a safepoint 437 438 return false; // revert to slow-path 439 } 440 441 // Handle notifications when synchronizing on value based classes 442 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* current) { 443 frame last_frame = current->last_frame(); 444 bool bcp_was_adjusted = false; 445 // Don't decrement bcp if it points to the frame's first instruction. This happens when 446 // handle_sync_on_value_based_class() is called because of a synchronized method. There 447 // is no actual monitorenter instruction in the byte code in this case. 448 if (last_frame.is_interpreted_frame() && 449 (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) { 450 // adjust bcp to point back to monitorenter so that we print the correct line numbers 451 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1); 452 bcp_was_adjusted = true; 453 } 454 455 if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) { 456 ResourceMark rm(current); 457 stringStream ss; 458 current->print_active_stack_on(&ss); 459 char* base = (char*)strstr(ss.base(), "at"); 460 char* newline = (char*)strchr(ss.base(), '\n'); 461 if (newline != nullptr) { 462 *newline = '\0'; 463 } 464 fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base); 465 } else { 466 assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses"); 467 ResourceMark rm(current); 468 Log(valuebasedclasses) vblog; 469 470 vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name()); 471 if (current->has_last_Java_frame()) { 472 LogStream info_stream(vblog.info()); 473 current->print_active_stack_on(&info_stream); 474 } else { 475 vblog.info("Cannot find the last Java frame"); 476 } 477 478 EventSyncOnValueBasedClass event; 479 if (event.should_commit()) { 480 event.set_valueBasedClass(obj->klass()); 481 event.commit(); 482 } 483 } 484 485 if (bcp_was_adjusted) { 486 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1); 487 } 488 } 489 490 static bool useHeavyMonitors() { 491 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390) 492 return LockingMode == LM_MONITOR; 493 #else 494 return false; 495 #endif 496 } 497 498 // ----------------------------------------------------------------------------- 499 // Monitor Enter/Exit 500 // The interpreter and compiler assembly code tries to lock using the fast path 501 // of this algorithm. Make sure to update that code if the following function is 502 // changed. The implementation is extremely sensitive to race condition. Be careful. 503 504 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, JavaThread* current) { 505 if (obj->klass()->is_value_based()) { 506 handle_sync_on_value_based_class(obj, current); 507 } 508 509 current->inc_held_monitor_count(); 510 511 if (!useHeavyMonitors()) { 512 if (LockingMode == LM_LIGHTWEIGHT) { 513 // Fast-locking does not use the 'lock' argument. 514 LockStack& lock_stack = current->lock_stack(); 515 if (lock_stack.can_push()) { 516 markWord mark = obj()->mark_acquire(); 517 if (mark.is_neutral()) { 518 assert(!lock_stack.contains(obj()), "thread must not already hold the lock"); 519 // Try to swing into 'fast-locked' state. 520 markWord locked_mark = mark.set_fast_locked(); 521 markWord old_mark = obj()->cas_set_mark(locked_mark, mark); 522 if (old_mark == mark) { 523 // Successfully fast-locked, push object to lock-stack and return. 524 lock_stack.push(obj()); 525 return; 526 } 527 } 528 } 529 // All other paths fall-through to inflate-enter. 530 } else if (LockingMode == LM_LEGACY) { 531 markWord mark = obj->mark(); 532 if (mark.is_neutral()) { 533 // Anticipate successful CAS -- the ST of the displaced mark must 534 // be visible <= the ST performed by the CAS. 535 lock->set_displaced_header(mark); 536 if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) { 537 return; 538 } 539 // Fall through to inflate() ... 540 } else if (mark.has_locker() && 541 current->is_lock_owned((address) mark.locker())) { 542 assert(lock != mark.locker(), "must not re-lock the same lock"); 543 assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock"); 544 lock->set_displaced_header(markWord::from_pointer(nullptr)); 545 return; 546 } 547 548 // The object header will never be displaced to this lock, 549 // so it does not matter what the value is, except that it 550 // must be non-zero to avoid looking like a re-entrant lock, 551 // and must not look locked either. 552 lock->set_displaced_header(markWord::unused_mark()); 553 } 554 } else if (VerifyHeavyMonitors) { 555 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 556 } 557 558 // An async deflation can race after the inflate() call and before 559 // enter() can make the ObjectMonitor busy. enter() returns false if 560 // we have lost the race to async deflation and we simply try again. 561 while (true) { 562 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter); 563 if (monitor->enter(current)) { 564 return; 565 } 566 } 567 } 568 569 void ObjectSynchronizer::exit(oop object, BasicLock* lock, JavaThread* current) { 570 current->dec_held_monitor_count(); 571 572 if (!useHeavyMonitors()) { 573 markWord mark = object->mark(); 574 if (LockingMode == LM_LIGHTWEIGHT) { 575 // Fast-locking does not use the 'lock' argument. 576 if (mark.is_fast_locked()) { 577 markWord unlocked_mark = mark.set_unlocked(); 578 markWord old_mark = object->cas_set_mark(unlocked_mark, mark); 579 if (old_mark != mark) { 580 // Another thread won the CAS, it must have inflated the monitor. 581 // It can only have installed an anonymously locked monitor at this point. 582 // Fetch that monitor, set owner correctly to this thread, and 583 // exit it (allowing waiting threads to enter). 584 assert(old_mark.has_monitor(), "must have monitor"); 585 ObjectMonitor* monitor = old_mark.monitor(); 586 assert(monitor->is_owner_anonymous(), "must be anonymous owner"); 587 monitor->set_owner_from_anonymous(current); 588 monitor->exit(current); 589 } 590 LockStack& lock_stack = current->lock_stack(); 591 lock_stack.remove(object); 592 return; 593 } 594 } else if (LockingMode == LM_LEGACY) { 595 markWord dhw = lock->displaced_header(); 596 if (dhw.value() == 0) { 597 // If the displaced header is null, then this exit matches up with 598 // a recursive enter. No real work to do here except for diagnostics. 599 #ifndef PRODUCT 600 if (mark != markWord::INFLATING()) { 601 // Only do diagnostics if we are not racing an inflation. Simply 602 // exiting a recursive enter of a Java Monitor that is being 603 // inflated is safe; see the has_monitor() comment below. 604 assert(!mark.is_neutral(), "invariant"); 605 assert(!mark.has_locker() || 606 current->is_lock_owned((address)mark.locker()), "invariant"); 607 if (mark.has_monitor()) { 608 // The BasicLock's displaced_header is marked as a recursive 609 // enter and we have an inflated Java Monitor (ObjectMonitor). 610 // This is a special case where the Java Monitor was inflated 611 // after this thread entered the stack-lock recursively. When a 612 // Java Monitor is inflated, we cannot safely walk the Java 613 // Monitor owner's stack and update the BasicLocks because a 614 // Java Monitor can be asynchronously inflated by a thread that 615 // does not own the Java Monitor. 616 ObjectMonitor* m = mark.monitor(); 617 assert(m->object()->mark() == mark, "invariant"); 618 assert(m->is_entered(current), "invariant"); 619 } 620 } 621 #endif 622 return; 623 } 624 625 if (mark == markWord::from_pointer(lock)) { 626 // If the object is stack-locked by the current thread, try to 627 // swing the displaced header from the BasicLock back to the mark. 628 assert(dhw.is_neutral(), "invariant"); 629 if (object->cas_set_mark(dhw, mark) == mark) { 630 return; 631 } 632 } 633 } 634 } else if (VerifyHeavyMonitors) { 635 guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 636 } 637 638 // We have to take the slow-path of possible inflation and then exit. 639 // The ObjectMonitor* can't be async deflated until ownership is 640 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 641 ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal); 642 if (LockingMode == LM_LIGHTWEIGHT && monitor->is_owner_anonymous()) { 643 // It must be owned by us. Pop lock object from lock stack. 644 LockStack& lock_stack = current->lock_stack(); 645 oop popped = lock_stack.pop(); 646 assert(popped == object, "must be owned by this thread"); 647 monitor->set_owner_from_anonymous(current); 648 } 649 monitor->exit(current); 650 } 651 652 // ----------------------------------------------------------------------------- 653 // JNI locks on java objects 654 // NOTE: must use heavy weight monitor to handle jni monitor enter 655 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) { 656 if (obj->klass()->is_value_based()) { 657 handle_sync_on_value_based_class(obj, current); 658 } 659 660 // the current locking is from JNI instead of Java code 661 current->set_current_pending_monitor_is_from_java(false); 662 // An async deflation can race after the inflate() call and before 663 // enter() can make the ObjectMonitor busy. enter() returns false if 664 // we have lost the race to async deflation and we simply try again. 665 while (true) { 666 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_jni_enter); 667 if (monitor->enter(current)) { 668 current->inc_held_monitor_count(1, true); 669 break; 670 } 671 } 672 current->set_current_pending_monitor_is_from_java(true); 673 } 674 675 // NOTE: must use heavy weight monitor to handle jni monitor exit 676 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) { 677 JavaThread* current = THREAD; 678 679 // The ObjectMonitor* can't be async deflated until ownership is 680 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 681 ObjectMonitor* monitor = inflate(current, obj, inflate_cause_jni_exit); 682 // If this thread has locked the object, exit the monitor. We 683 // intentionally do not use CHECK on check_owner because we must exit the 684 // monitor even if an exception was already pending. 685 if (monitor->check_owner(THREAD)) { 686 monitor->exit(current); 687 current->dec_held_monitor_count(1, true); 688 } 689 } 690 691 // ----------------------------------------------------------------------------- 692 // Internal VM locks on java objects 693 // standard constructor, allows locking failures 694 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) { 695 _thread = thread; 696 _thread->check_for_valid_safepoint_state(); 697 _obj = obj; 698 699 if (_obj() != nullptr) { 700 ObjectSynchronizer::enter(_obj, &_lock, _thread); 701 } 702 } 703 704 ObjectLocker::~ObjectLocker() { 705 if (_obj() != nullptr) { 706 ObjectSynchronizer::exit(_obj(), &_lock, _thread); 707 } 708 } 709 710 711 // ----------------------------------------------------------------------------- 712 // Wait/Notify/NotifyAll 713 // NOTE: must use heavy weight monitor to handle wait() 714 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { 715 JavaThread* current = THREAD; 716 if (millis < 0) { 717 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 718 } 719 // The ObjectMonitor* can't be async deflated because the _waiters 720 // field is incremented before ownership is dropped and decremented 721 // after ownership is regained. 722 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_wait); 723 724 DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis); 725 monitor->wait(millis, true, THREAD); // Not CHECK as we need following code 726 727 // This dummy call is in place to get around dtrace bug 6254741. Once 728 // that's fixed we can uncomment the following line, remove the call 729 // and change this function back into a "void" func. 730 // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); 731 int ret_code = dtrace_waited_probe(monitor, obj, THREAD); 732 return ret_code; 733 } 734 735 void ObjectSynchronizer::notify(Handle obj, TRAPS) { 736 JavaThread* current = THREAD; 737 738 markWord mark = obj->mark(); 739 if (LockingMode == LM_LIGHTWEIGHT) { 740 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 741 // Not inflated so there can't be any waiters to notify. 742 return; 743 } 744 } else if (LockingMode == LM_LEGACY) { 745 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 746 // Not inflated so there can't be any waiters to notify. 747 return; 748 } 749 } 750 // The ObjectMonitor* can't be async deflated until ownership is 751 // dropped by the calling thread. 752 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify); 753 monitor->notify(CHECK); 754 } 755 756 // NOTE: see comment of notify() 757 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { 758 JavaThread* current = THREAD; 759 760 markWord mark = obj->mark(); 761 if (LockingMode == LM_LIGHTWEIGHT) { 762 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 763 // Not inflated so there can't be any waiters to notify. 764 return; 765 } 766 } else if (LockingMode == LM_LEGACY) { 767 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 768 // Not inflated so there can't be any waiters to notify. 769 return; 770 } 771 } 772 // The ObjectMonitor* can't be async deflated until ownership is 773 // dropped by the calling thread. 774 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify); 775 monitor->notifyAll(CHECK); 776 } 777 778 // ----------------------------------------------------------------------------- 779 // Hash Code handling 780 781 struct SharedGlobals { 782 char _pad_prefix[OM_CACHE_LINE_SIZE]; 783 // This is a highly shared mostly-read variable. 784 // To avoid false-sharing it needs to be the sole occupant of a cache line. 785 volatile int stw_random; 786 DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 787 // Hot RW variable -- Sequester to avoid false-sharing 788 volatile int hc_sequence; 789 DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 790 }; 791 792 static SharedGlobals GVars; 793 794 static markWord read_stable_mark(oop obj) { 795 markWord mark = obj->mark_acquire(); 796 if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) { 797 // New lightweight locking does not use the markWord::INFLATING() protocol. 798 return mark; // normal fast-path return 799 } 800 801 int its = 0; 802 for (;;) { 803 markWord mark = obj->mark_acquire(); 804 if (!mark.is_being_inflated()) { 805 return mark; // normal fast-path return 806 } 807 808 // The object is being inflated by some other thread. 809 // The caller of read_stable_mark() must wait for inflation to complete. 810 // Avoid live-lock. 811 812 ++its; 813 if (its > 10000 || !os::is_MP()) { 814 if (its & 1) { 815 os::naked_yield(); 816 } else { 817 // Note that the following code attenuates the livelock problem but is not 818 // a complete remedy. A more complete solution would require that the inflating 819 // thread hold the associated inflation lock. The following code simply restricts 820 // the number of spinners to at most one. We'll have N-2 threads blocked 821 // on the inflationlock, 1 thread holding the inflation lock and using 822 // a yield/park strategy, and 1 thread in the midst of inflation. 823 // A more refined approach would be to change the encoding of INFLATING 824 // to allow encapsulation of a native thread pointer. Threads waiting for 825 // inflation to complete would use CAS to push themselves onto a singly linked 826 // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag 827 // and calling park(). When inflation was complete the thread that accomplished inflation 828 // would detach the list and set the markword to inflated with a single CAS and 829 // then for each thread on the list, set the flag and unpark() the thread. 830 831 // Index into the lock array based on the current object address. 832 static_assert(is_power_of_2(inflation_lock_count()), "must be"); 833 size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1); 834 int YieldThenBlock = 0; 835 assert(ix < inflation_lock_count(), "invariant"); 836 inflation_lock(ix)->lock(); 837 while (obj->mark_acquire() == markWord::INFLATING()) { 838 // Beware: naked_yield() is advisory and has almost no effect on some platforms 839 // so we periodically call current->_ParkEvent->park(1). 840 // We use a mixed spin/yield/block mechanism. 841 if ((YieldThenBlock++) >= 16) { 842 Thread::current()->_ParkEvent->park(1); 843 } else { 844 os::naked_yield(); 845 } 846 } 847 inflation_lock(ix)->unlock(); 848 } 849 } else { 850 SpinPause(); // SMP-polite spinning 851 } 852 } 853 } 854 855 // hashCode() generation : 856 // 857 // Possibilities: 858 // * MD5Digest of {obj,stw_random} 859 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function. 860 // * A DES- or AES-style SBox[] mechanism 861 // * One of the Phi-based schemes, such as: 862 // 2654435761 = 2^32 * Phi (golden ratio) 863 // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ; 864 // * A variation of Marsaglia's shift-xor RNG scheme. 865 // * (obj ^ stw_random) is appealing, but can result 866 // in undesirable regularity in the hashCode values of adjacent objects 867 // (objects allocated back-to-back, in particular). This could potentially 868 // result in hashtable collisions and reduced hashtable efficiency. 869 // There are simple ways to "diffuse" the middle address bits over the 870 // generated hashCode values: 871 872 static inline intptr_t get_next_hash(Thread* current, oop obj) { 873 intptr_t value = 0; 874 if (hashCode == 0) { 875 // This form uses global Park-Miller RNG. 876 // On MP system we'll have lots of RW access to a global, so the 877 // mechanism induces lots of coherency traffic. 878 value = os::random(); 879 } else if (hashCode == 1) { 880 // This variation has the property of being stable (idempotent) 881 // between STW operations. This can be useful in some of the 1-0 882 // synchronization schemes. 883 intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3; 884 value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random; 885 } else if (hashCode == 2) { 886 value = 1; // for sensitivity testing 887 } else if (hashCode == 3) { 888 value = ++GVars.hc_sequence; 889 } else if (hashCode == 4) { 890 value = cast_from_oop<intptr_t>(obj); 891 } else { 892 // Marsaglia's xor-shift scheme with thread-specific state 893 // This is probably the best overall implementation -- we'll 894 // likely make this the default in future releases. 895 unsigned t = current->_hashStateX; 896 t ^= (t << 11); 897 current->_hashStateX = current->_hashStateY; 898 current->_hashStateY = current->_hashStateZ; 899 current->_hashStateZ = current->_hashStateW; 900 unsigned v = current->_hashStateW; 901 v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); 902 current->_hashStateW = v; 903 value = v; 904 } 905 906 value &= UseCompactObjectHeaders ? markWord::hash_mask_compact : markWord::hash_mask; 907 if (value == 0) value = 0xBAD; 908 assert(value != markWord::no_hash, "invariant"); 909 return value; 910 } 911 912 // Can be called from non JavaThreads (e.g., VMThread) for FastHashCode 913 // calculations as part of JVM/TI tagging. 914 static bool is_lock_owned(Thread* thread, oop obj) { 915 assert(LockingMode == LM_LIGHTWEIGHT, "only call this with new lightweight locking enabled"); 916 return thread->is_Java_thread() ? JavaThread::cast(thread)->lock_stack().contains(obj) : false; 917 } 918 919 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) { 920 921 while (true) { 922 ObjectMonitor* monitor = nullptr; 923 markWord temp, test; 924 intptr_t hash; 925 markWord mark = read_stable_mark(obj); 926 if (VerifyHeavyMonitors) { 927 assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)"); 928 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 929 } 930 if (mark.is_neutral()) { // if this is a normal header 931 hash = mark.hash(); 932 if (hash != 0) { // if it has a hash, just return it 933 return hash; 934 } 935 hash = get_next_hash(current, obj); // get a new hash 936 temp = mark.copy_set_hash(hash); // merge the hash into header 937 // try to install the hash 938 test = obj->cas_set_mark(temp, mark); 939 if (test == mark) { // if the hash was installed, return it 940 return hash; 941 } 942 // Failed to install the hash. It could be that another thread 943 // installed the hash just before our attempt or inflation has 944 // occurred or... so we fall thru to inflate the monitor for 945 // stability and then install the hash. 946 } else if (mark.has_monitor()) { 947 monitor = mark.monitor(); 948 temp = monitor->header(); 949 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 950 hash = temp.hash(); 951 if (hash != 0) { 952 // It has a hash. 953 954 // Separate load of dmw/header above from the loads in 955 // is_being_async_deflated(). 956 957 // dmw/header and _contentions may get written by different threads. 958 // Make sure to observe them in the same order when having several observers. 959 OrderAccess::loadload_for_IRIW(); 960 961 if (monitor->is_being_async_deflated()) { 962 // But we can't safely use the hash if we detect that async 963 // deflation has occurred. So we attempt to restore the 964 // header/dmw to the object's header so that we only retry 965 // once if the deflater thread happens to be slow. 966 monitor->install_displaced_markword_in_object(obj); 967 continue; 968 } 969 return hash; 970 } 971 // Fall thru so we only have one place that installs the hash in 972 // the ObjectMonitor. 973 } else if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked() && is_lock_owned(current, obj)) { 974 // This is a fast-lock owned by the calling thread so use the 975 // markWord from the object. 976 hash = mark.hash(); 977 if (hash != 0) { // if it has a hash, just return it 978 return hash; 979 } 980 } else if (LockingMode == LM_LEGACY && mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 981 // This is a stack-lock owned by the calling thread so fetch the 982 // displaced markWord from the BasicLock on the stack. 983 temp = mark.displaced_mark_helper(); 984 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 985 hash = temp.hash(); 986 if (hash != 0) { // if it has a hash, just return it 987 return hash; 988 } 989 // WARNING: 990 // The displaced header in the BasicLock on a thread's stack 991 // is strictly immutable. It CANNOT be changed in ANY cases. 992 // So we have to inflate the stack-lock into an ObjectMonitor 993 // even if the current thread owns the lock. The BasicLock on 994 // a thread's stack can be asynchronously read by other threads 995 // during an inflate() call so any change to that stack memory 996 // may not propagate to other threads correctly. 997 } 998 999 // Inflate the monitor to set the hash. 1000 1001 // An async deflation can race after the inflate() call and before we 1002 // can update the ObjectMonitor's header with the hash value below. 1003 monitor = inflate(current, obj, inflate_cause_hash_code); 1004 // Load ObjectMonitor's header/dmw field and see if it has a hash. 1005 mark = monitor->header(); 1006 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1007 hash = mark.hash(); 1008 if (hash == 0) { // if it does not have a hash 1009 hash = get_next_hash(current, obj); // get a new hash 1010 temp = mark.copy_set_hash(hash) ; // merge the hash into header 1011 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1012 uintptr_t v = Atomic::cmpxchg((volatile uintptr_t*)monitor->header_addr(), mark.value(), temp.value()); 1013 test = markWord(v); 1014 if (test != mark) { 1015 // The attempt to update the ObjectMonitor's header/dmw field 1016 // did not work. This can happen if another thread managed to 1017 // merge in the hash just before our cmpxchg(). 1018 // If we add any new usages of the header/dmw field, this code 1019 // will need to be updated. 1020 hash = test.hash(); 1021 assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value()); 1022 assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash"); 1023 } 1024 if (monitor->is_being_async_deflated()) { 1025 // If we detect that async deflation has occurred, then we 1026 // attempt to restore the header/dmw to the object's header 1027 // so that we only retry once if the deflater thread happens 1028 // to be slow. 1029 monitor->install_displaced_markword_in_object(obj); 1030 continue; 1031 } 1032 } 1033 // We finally get the hash. 1034 return hash; 1035 } 1036 } 1037 1038 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current, 1039 Handle h_obj) { 1040 assert(current == JavaThread::current(), "Can only be called on current thread"); 1041 oop obj = h_obj(); 1042 1043 markWord mark = read_stable_mark(obj); 1044 1045 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1046 // stack-locked case, header points into owner's stack 1047 return current->is_lock_owned((address)mark.locker()); 1048 } 1049 1050 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1051 // fast-locking case, see if lock is in current's lock stack 1052 return current->lock_stack().contains(h_obj()); 1053 } 1054 1055 if (mark.has_monitor()) { 1056 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1057 // The first stage of async deflation does not affect any field 1058 // used by this comparison so the ObjectMonitor* is usable here. 1059 ObjectMonitor* monitor = mark.monitor(); 1060 return monitor->is_entered(current) != 0; 1061 } 1062 // Unlocked case, header in place 1063 assert(mark.is_neutral(), "sanity check"); 1064 return false; 1065 } 1066 1067 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { 1068 oop obj = h_obj(); 1069 markWord mark = read_stable_mark(obj); 1070 1071 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1072 // stack-locked so header points into owner's stack. 1073 // owning_thread_from_monitor_owner() may also return null here: 1074 return Threads::owning_thread_from_monitor_owner(t_list, (address) mark.locker()); 1075 } 1076 1077 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1078 // fast-locked so get owner from the object. 1079 // owning_thread_from_object() may also return null here: 1080 return Threads::owning_thread_from_object(t_list, h_obj()); 1081 } 1082 1083 if (mark.has_monitor()) { 1084 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1085 // The first stage of async deflation does not affect any field 1086 // used by this comparison so the ObjectMonitor* is usable here. 1087 ObjectMonitor* monitor = mark.monitor(); 1088 assert(monitor != nullptr, "monitor should be non-null"); 1089 // owning_thread_from_monitor() may also return null here: 1090 return Threads::owning_thread_from_monitor(t_list, monitor); 1091 } 1092 1093 // Unlocked case, header in place 1094 // Cannot have assertion since this object may have been 1095 // locked by another thread when reaching here. 1096 // assert(mark.is_neutral(), "sanity check"); 1097 1098 return nullptr; 1099 } 1100 1101 // Visitors ... 1102 1103 // Iterate ObjectMonitors where the owner == thread; this does NOT include 1104 // ObjectMonitors where owner is set to a stack-lock address in thread. 1105 // 1106 // This version of monitors_iterate() works with the in-use monitor list. 1107 // 1108 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure, JavaThread* thread) { 1109 MonitorList::Iterator iter = _in_use_list.iterator(); 1110 while (iter.has_next()) { 1111 ObjectMonitor* mid = iter.next(); 1112 if (mid->owner() != thread) { 1113 // Not owned by the target thread and intentionally skips when owner 1114 // is set to a stack-lock address in the target thread. 1115 continue; 1116 } 1117 if (!mid->is_being_async_deflated() && mid->object_peek() != nullptr) { 1118 // Only process with closure if the object is set. 1119 1120 // monitors_iterate() is only called at a safepoint or when the 1121 // target thread is suspended or when the target thread is 1122 // operating on itself. The current closures in use today are 1123 // only interested in an owned ObjectMonitor and ownership 1124 // cannot be dropped under the calling contexts so the 1125 // ObjectMonitor cannot be async deflated. 1126 closure->do_monitor(mid); 1127 } 1128 } 1129 } 1130 1131 // This version of monitors_iterate() works with the specified linked list. 1132 // 1133 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure, 1134 ObjectMonitorsHashtable::PtrList* list, 1135 JavaThread* thread) { 1136 typedef LinkedListIterator<ObjectMonitor*> ObjectMonitorIterator; 1137 ObjectMonitorIterator iter(list->head()); 1138 while (!iter.is_empty()) { 1139 ObjectMonitor* mid = *iter.next(); 1140 // Owner set to a stack-lock address in thread should never be seen here: 1141 assert(mid->owner() == thread, "must be"); 1142 if (!mid->is_being_async_deflated() && mid->object_peek() != nullptr) { 1143 // Only process with closure if the object is set. 1144 1145 // monitors_iterate() is only called at a safepoint or when the 1146 // target thread is suspended or when the target thread is 1147 // operating on itself. The current closures in use today are 1148 // only interested in an owned ObjectMonitor and ownership 1149 // cannot be dropped under the calling contexts so the 1150 // ObjectMonitor cannot be async deflated. 1151 closure->do_monitor(mid); 1152 } 1153 } 1154 } 1155 1156 static bool monitors_used_above_threshold(MonitorList* list) { 1157 if (MonitorUsedDeflationThreshold == 0) { // disabled case is easy 1158 return false; 1159 } 1160 // Start with ceiling based on a per-thread estimate: 1161 size_t ceiling = ObjectSynchronizer::in_use_list_ceiling(); 1162 size_t old_ceiling = ceiling; 1163 if (ceiling < list->max()) { 1164 // The max used by the system has exceeded the ceiling so use that: 1165 ceiling = list->max(); 1166 } 1167 size_t monitors_used = list->count(); 1168 if (monitors_used == 0) { // empty list is easy 1169 return false; 1170 } 1171 if (NoAsyncDeflationProgressMax != 0 && 1172 _no_progress_cnt >= NoAsyncDeflationProgressMax) { 1173 double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0; 1174 size_t new_ceiling = ceiling + (size_t)((double)ceiling * remainder) + 1; 1175 ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling); 1176 log_info(monitorinflation)("Too many deflations without progress; " 1177 "bumping in_use_list_ceiling from " SIZE_FORMAT 1178 " to " SIZE_FORMAT, old_ceiling, new_ceiling); 1179 _no_progress_cnt = 0; 1180 ceiling = new_ceiling; 1181 } 1182 1183 // Check if our monitor usage is above the threshold: 1184 size_t monitor_usage = (monitors_used * 100LL) / ceiling; 1185 if (int(monitor_usage) > MonitorUsedDeflationThreshold) { 1186 log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT 1187 ", monitor_usage=" SIZE_FORMAT ", threshold=%d", 1188 monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold); 1189 return true; 1190 } 1191 1192 return false; 1193 } 1194 1195 size_t ObjectSynchronizer::in_use_list_ceiling() { 1196 return _in_use_list_ceiling; 1197 } 1198 1199 void ObjectSynchronizer::dec_in_use_list_ceiling() { 1200 Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1201 } 1202 1203 void ObjectSynchronizer::inc_in_use_list_ceiling() { 1204 Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1205 } 1206 1207 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) { 1208 _in_use_list_ceiling = new_value; 1209 } 1210 1211 bool ObjectSynchronizer::is_async_deflation_needed() { 1212 if (is_async_deflation_requested()) { 1213 // Async deflation request. 1214 log_info(monitorinflation)("Async deflation needed: explicit request"); 1215 return true; 1216 } 1217 1218 jlong time_since_last = time_since_last_async_deflation_ms(); 1219 1220 if (AsyncDeflationInterval > 0 && 1221 time_since_last > AsyncDeflationInterval && 1222 monitors_used_above_threshold(&_in_use_list)) { 1223 // It's been longer than our specified deflate interval and there 1224 // are too many monitors in use. We don't deflate more frequently 1225 // than AsyncDeflationInterval (unless is_async_deflation_requested) 1226 // in order to not swamp the MonitorDeflationThread. 1227 log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold"); 1228 return true; 1229 } 1230 1231 if (GuaranteedAsyncDeflationInterval > 0 && 1232 time_since_last > GuaranteedAsyncDeflationInterval) { 1233 // It's been longer than our specified guaranteed deflate interval. 1234 // We need to clean up the used monitors even if the threshold is 1235 // not reached, to keep the memory utilization at bay when many threads 1236 // touched many monitors. 1237 log_info(monitorinflation)("Async deflation needed: guaranteed interval (" INTX_FORMAT " ms) " 1238 "is greater than time since last deflation (" JLONG_FORMAT " ms)", 1239 GuaranteedAsyncDeflationInterval, time_since_last); 1240 1241 // If this deflation has no progress, then it should not affect the no-progress 1242 // tracking, otherwise threshold heuristics would think it was triggered, experienced 1243 // no progress, and needs to backoff more aggressively. In this "no progress" case, 1244 // the generic code would bump the no-progress counter, and we compensate for that 1245 // by telling it to skip the update. 1246 // 1247 // If this deflation has progress, then it should let non-progress tracking 1248 // know about this, otherwise the threshold heuristics would kick in, potentially 1249 // experience no-progress due to aggressive cleanup by this deflation, and think 1250 // it is still in no-progress stride. In this "progress" case, the generic code would 1251 // zero the counter, and we allow it to happen. 1252 _no_progress_skip_increment = true; 1253 1254 return true; 1255 } 1256 1257 return false; 1258 } 1259 1260 bool ObjectSynchronizer::request_deflate_idle_monitors() { 1261 JavaThread* current = JavaThread::current(); 1262 bool ret_code = false; 1263 1264 jlong last_time = last_async_deflation_time_ns(); 1265 set_is_async_deflation_requested(true); 1266 { 1267 MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag); 1268 ml.notify_all(); 1269 } 1270 const int N_CHECKS = 5; 1271 for (int i = 0; i < N_CHECKS; i++) { // sleep for at most 5 seconds 1272 if (last_async_deflation_time_ns() > last_time) { 1273 log_info(monitorinflation)("Async Deflation happened after %d check(s).", i); 1274 ret_code = true; 1275 break; 1276 } 1277 { 1278 // JavaThread has to honor the blocking protocol. 1279 ThreadBlockInVM tbivm(current); 1280 os::naked_short_sleep(999); // sleep for almost 1 second 1281 } 1282 } 1283 if (!ret_code) { 1284 log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS); 1285 } 1286 1287 return ret_code; 1288 } 1289 1290 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() { 1291 return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS); 1292 } 1293 1294 static void post_monitor_inflate_event(EventJavaMonitorInflate* event, 1295 const oop obj, 1296 ObjectSynchronizer::InflateCause cause) { 1297 assert(event != nullptr, "invariant"); 1298 event->set_monitorClass(obj->klass()); 1299 event->set_address((uintptr_t)(void*)obj); 1300 event->set_cause((u1)cause); 1301 event->commit(); 1302 } 1303 1304 // Fast path code shared by multiple functions 1305 void ObjectSynchronizer::inflate_helper(oop obj) { 1306 markWord mark = obj->mark_acquire(); 1307 if (mark.has_monitor()) { 1308 ObjectMonitor* monitor = mark.monitor(); 1309 markWord dmw = monitor->header(); 1310 assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value()); 1311 return; 1312 } 1313 (void)inflate(Thread::current(), obj, inflate_cause_vm_internal); 1314 } 1315 1316 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop object, 1317 const InflateCause cause) { 1318 EventJavaMonitorInflate event; 1319 1320 for (;;) { 1321 const markWord mark = object->mark_acquire(); 1322 1323 // The mark can be in one of the following states: 1324 // * inflated - Just return if using stack-locking. 1325 // If using fast-locking and the ObjectMonitor owner 1326 // is anonymous and the current thread owns the 1327 // object lock, then we make the current thread the 1328 // ObjectMonitor owner and remove the lock from the 1329 // current thread's lock stack. 1330 // * fast-locked - Coerce it to inflated from fast-locked. 1331 // * stack-locked - Coerce it to inflated from stack-locked. 1332 // * INFLATING - Busy wait for conversion from stack-locked to 1333 // inflated. 1334 // * neutral - Aggressively inflate the object. 1335 1336 // CASE: inflated 1337 if (mark.has_monitor()) { 1338 ObjectMonitor* inf = mark.monitor(); 1339 markWord dmw = inf->header(); 1340 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1341 if (LockingMode == LM_LIGHTWEIGHT && inf->is_owner_anonymous() && is_lock_owned(current, object)) { 1342 inf->set_owner_from_anonymous(current); 1343 JavaThread::cast(current)->lock_stack().remove(object); 1344 } 1345 return inf; 1346 } 1347 1348 if (LockingMode != LM_LIGHTWEIGHT) { 1349 // New lightweight locking does not use INFLATING. 1350 // CASE: inflation in progress - inflating over a stack-lock. 1351 // Some other thread is converting from stack-locked to inflated. 1352 // Only that thread can complete inflation -- other threads must wait. 1353 // The INFLATING value is transient. 1354 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. 1355 // We could always eliminate polling by parking the thread on some auxiliary list. 1356 if (mark == markWord::INFLATING()) { 1357 read_stable_mark(object); 1358 continue; 1359 } 1360 } 1361 1362 // CASE: fast-locked 1363 // Could be fast-locked either by current or by some other thread. 1364 // 1365 // Note that we allocate the ObjectMonitor speculatively, _before_ 1366 // attempting to set the object's mark to the new ObjectMonitor. If 1367 // this thread owns the monitor, then we set the ObjectMonitor's 1368 // owner to this thread. Otherwise, we set the ObjectMonitor's owner 1369 // to anonymous. If we lose the race to set the object's mark to the 1370 // new ObjectMonitor, then we just delete it and loop around again. 1371 // 1372 LogStreamHandle(Trace, monitorinflation) lsh; 1373 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1374 ObjectMonitor* monitor = new ObjectMonitor(object); 1375 monitor->set_header(mark.set_unlocked()); 1376 bool own = is_lock_owned(current, object); 1377 if (own) { 1378 // Owned by us. 1379 monitor->set_owner_from(nullptr, current); 1380 } else { 1381 // Owned by somebody else. 1382 monitor->set_owner_anonymous(); 1383 } 1384 markWord monitor_mark = markWord::encode(monitor); 1385 markWord old_mark = object->cas_set_mark(monitor_mark, mark); 1386 if (old_mark == mark) { 1387 // Success! Return inflated monitor. 1388 if (own) { 1389 JavaThread::cast(current)->lock_stack().remove(object); 1390 } 1391 // Once the ObjectMonitor is configured and object is associated 1392 // with the ObjectMonitor, it is safe to allow async deflation: 1393 _in_use_list.add(monitor); 1394 1395 // Hopefully the performance counters are allocated on distinct 1396 // cache lines to avoid false sharing on MP systems ... 1397 OM_PERFDATA_OP(Inflations, inc()); 1398 if (log_is_enabled(Trace, monitorinflation)) { 1399 ResourceMark rm(current); 1400 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1401 INTPTR_FORMAT ", type='%s'", p2i(object), 1402 object->mark().value(), object->klass()->external_name()); 1403 } 1404 if (event.should_commit()) { 1405 post_monitor_inflate_event(&event, object, cause); 1406 } 1407 return monitor; 1408 } else { 1409 delete monitor; 1410 continue; // Interference -- just retry 1411 } 1412 } 1413 1414 // CASE: stack-locked 1415 // Could be stack-locked either by current or by some other thread. 1416 // 1417 // Note that we allocate the ObjectMonitor speculatively, _before_ attempting 1418 // to install INFLATING into the mark word. We originally installed INFLATING, 1419 // allocated the ObjectMonitor, and then finally STed the address of the 1420 // ObjectMonitor into the mark. This was correct, but artificially lengthened 1421 // the interval in which INFLATING appeared in the mark, thus increasing 1422 // the odds of inflation contention. If we lose the race to set INFLATING, 1423 // then we just delete the ObjectMonitor and loop around again. 1424 // 1425 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1426 assert(LockingMode != LM_LIGHTWEIGHT, "cannot happen with new lightweight locking"); 1427 ObjectMonitor* m = new ObjectMonitor(object); 1428 // Optimistically prepare the ObjectMonitor - anticipate successful CAS 1429 // We do this before the CAS in order to minimize the length of time 1430 // in which INFLATING appears in the mark. 1431 1432 markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark); 1433 if (cmp != mark) { 1434 delete m; 1435 continue; // Interference -- just retry 1436 } 1437 1438 // We've successfully installed INFLATING (0) into the mark-word. 1439 // This is the only case where 0 will appear in a mark-word. 1440 // Only the singular thread that successfully swings the mark-word 1441 // to 0 can perform (or more precisely, complete) inflation. 1442 // 1443 // Why do we CAS a 0 into the mark-word instead of just CASing the 1444 // mark-word from the stack-locked value directly to the new inflated state? 1445 // Consider what happens when a thread unlocks a stack-locked object. 1446 // It attempts to use CAS to swing the displaced header value from the 1447 // on-stack BasicLock back into the object header. Recall also that the 1448 // header value (hash code, etc) can reside in (a) the object header, or 1449 // (b) a displaced header associated with the stack-lock, or (c) a displaced 1450 // header in an ObjectMonitor. The inflate() routine must copy the header 1451 // value from the BasicLock on the owner's stack to the ObjectMonitor, all 1452 // the while preserving the hashCode stability invariants. If the owner 1453 // decides to release the lock while the value is 0, the unlock will fail 1454 // and control will eventually pass from slow_exit() to inflate. The owner 1455 // will then spin, waiting for the 0 value to disappear. Put another way, 1456 // the 0 causes the owner to stall if the owner happens to try to 1457 // drop the lock (restoring the header from the BasicLock to the object) 1458 // while inflation is in-progress. This protocol avoids races that might 1459 // would otherwise permit hashCode values to change or "flicker" for an object. 1460 // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable. 1461 // 0 serves as a "BUSY" inflate-in-progress indicator. 1462 1463 1464 // fetch the displaced mark from the owner's stack. 1465 // The owner can't die or unwind past the lock while our INFLATING 1466 // object is in the mark. Furthermore the owner can't complete 1467 // an unlock on the object, either. 1468 markWord dmw = mark.displaced_mark_helper(); 1469 // Catch if the object's header is not neutral (not locked and 1470 // not marked is what we care about here). 1471 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1472 1473 // Setup monitor fields to proper values -- prepare the monitor 1474 m->set_header(dmw); 1475 1476 // Optimization: if the mark.locker stack address is associated 1477 // with this thread we could simply set m->_owner = current. 1478 // Note that a thread can inflate an object 1479 // that it has stack-locked -- as might happen in wait() -- directly 1480 // with CAS. That is, we can avoid the xchg-nullptr .... ST idiom. 1481 m->set_owner_from(nullptr, mark.locker()); 1482 // TODO-FIXME: assert BasicLock->dhw != 0. 1483 1484 // Must preserve store ordering. The monitor state must 1485 // be stable at the time of publishing the monitor address. 1486 guarantee(object->mark() == markWord::INFLATING(), "invariant"); 1487 // Release semantics so that above set_object() is seen first. 1488 object->release_set_mark(markWord::encode(m)); 1489 1490 // Once ObjectMonitor is configured and the object is associated 1491 // with the ObjectMonitor, it is safe to allow async deflation: 1492 _in_use_list.add(m); 1493 1494 // Hopefully the performance counters are allocated on distinct cache lines 1495 // to avoid false sharing on MP systems ... 1496 OM_PERFDATA_OP(Inflations, inc()); 1497 if (log_is_enabled(Trace, monitorinflation)) { 1498 ResourceMark rm(current); 1499 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1500 INTPTR_FORMAT ", type='%s'", p2i(object), 1501 object->mark().value(), object->klass()->external_name()); 1502 } 1503 if (event.should_commit()) { 1504 post_monitor_inflate_event(&event, object, cause); 1505 } 1506 return m; 1507 } 1508 1509 // CASE: neutral 1510 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. 1511 // If we know we're inflating for entry it's better to inflate by swinging a 1512 // pre-locked ObjectMonitor pointer into the object header. A successful 1513 // CAS inflates the object *and* confers ownership to the inflating thread. 1514 // In the current implementation we use a 2-step mechanism where we CAS() 1515 // to inflate and then CAS() again to try to swing _owner from null to current. 1516 // An inflateTry() method that we could call from enter() would be useful. 1517 1518 // Catch if the object's header is not neutral (not locked and 1519 // not marked is what we care about here). 1520 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1521 ObjectMonitor* m = new ObjectMonitor(object); 1522 // prepare m for installation - set monitor to initial state 1523 m->set_header(mark); 1524 1525 if (object->cas_set_mark(markWord::encode(m), mark) != mark) { 1526 delete m; 1527 m = nullptr; 1528 continue; 1529 // interference - the markword changed - just retry. 1530 // The state-transitions are one-way, so there's no chance of 1531 // live-lock -- "Inflated" is an absorbing state. 1532 } 1533 1534 // Once the ObjectMonitor is configured and object is associated 1535 // with the ObjectMonitor, it is safe to allow async deflation: 1536 _in_use_list.add(m); 1537 1538 // Hopefully the performance counters are allocated on distinct 1539 // cache lines to avoid false sharing on MP systems ... 1540 OM_PERFDATA_OP(Inflations, inc()); 1541 if (log_is_enabled(Trace, monitorinflation)) { 1542 ResourceMark rm(current); 1543 lsh.print_cr("inflate(neutral): object=" INTPTR_FORMAT ", mark=" 1544 INTPTR_FORMAT ", type='%s'", p2i(object), 1545 object->mark().value(), object->klass()->external_name()); 1546 } 1547 if (event.should_commit()) { 1548 post_monitor_inflate_event(&event, object, cause); 1549 } 1550 return m; 1551 } 1552 } 1553 1554 void ObjectSynchronizer::chk_for_block_req(JavaThread* current, const char* op_name, 1555 const char* cnt_name, size_t cnt, 1556 LogStream* ls, elapsedTimer* timer_p) { 1557 if (!SafepointMechanism::should_process(current)) { 1558 return; 1559 } 1560 1561 // A safepoint/handshake has started. 1562 if (ls != nullptr) { 1563 timer_p->stop(); 1564 ls->print_cr("pausing %s: %s=" SIZE_FORMAT ", in_use_list stats: ceiling=" 1565 SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1566 op_name, cnt_name, cnt, in_use_list_ceiling(), 1567 _in_use_list.count(), _in_use_list.max()); 1568 } 1569 1570 { 1571 // Honor block request. 1572 ThreadBlockInVM tbivm(current); 1573 } 1574 1575 if (ls != nullptr) { 1576 ls->print_cr("resuming %s: in_use_list stats: ceiling=" SIZE_FORMAT 1577 ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, op_name, 1578 in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); 1579 timer_p->start(); 1580 } 1581 } 1582 1583 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle 1584 // ObjectMonitors. Returns the number of deflated ObjectMonitors. 1585 // 1586 // If table != nullptr, we gather owned ObjectMonitors indexed by the 1587 // owner in the table. Please note that ObjectMonitors where the owner 1588 // is set to a stack-lock address are NOT associated with the JavaThread 1589 // that holds that stack-lock. All of the current consumers of 1590 // ObjectMonitorsHashtable info only care about JNI locked monitors and 1591 // those do not have the owner set to a stack-lock address. 1592 // 1593 size_t ObjectSynchronizer::deflate_monitor_list(Thread* current, LogStream* ls, 1594 elapsedTimer* timer_p, 1595 ObjectMonitorsHashtable* table) { 1596 MonitorList::Iterator iter = _in_use_list.iterator(); 1597 size_t deflated_count = 0; 1598 1599 while (iter.has_next()) { 1600 if (deflated_count >= (size_t)MonitorDeflationMax) { 1601 break; 1602 } 1603 ObjectMonitor* mid = iter.next(); 1604 if (mid->deflate_monitor()) { 1605 deflated_count++; 1606 } else if (table != nullptr) { 1607 // The caller is interested in the owned ObjectMonitors. This does 1608 // not include when owner is set to a stack-lock address in thread. 1609 // This also does not capture unowned ObjectMonitors that cannot be 1610 // deflated because of a waiter. 1611 void* key = mid->owner(); 1612 // Since deflate_idle_monitors() and deflate_monitor_list() can be 1613 // called more than once, we have to make sure the entry has not 1614 // already been added. 1615 if (key != nullptr && !table->has_entry(key, mid)) { 1616 table->add_entry(key, mid); 1617 } 1618 } 1619 1620 if (current->is_Java_thread()) { 1621 // A JavaThread must check for a safepoint/handshake and honor it. 1622 chk_for_block_req(JavaThread::cast(current), "deflation", "deflated_count", 1623 deflated_count, ls, timer_p); 1624 } 1625 } 1626 1627 return deflated_count; 1628 } 1629 1630 class HandshakeForDeflation : public HandshakeClosure { 1631 public: 1632 HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {} 1633 1634 void do_thread(Thread* thread) { 1635 log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread=" 1636 INTPTR_FORMAT, p2i(thread)); 1637 } 1638 }; 1639 1640 class VM_RendezvousGCThreads : public VM_Operation { 1641 public: 1642 bool evaluate_at_safepoint() const override { return false; } 1643 VMOp_Type type() const override { return VMOp_RendezvousGCThreads; } 1644 void doit() override { 1645 SuspendibleThreadSet::synchronize(); 1646 SuspendibleThreadSet::desynchronize(); 1647 }; 1648 }; 1649 1650 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list) { 1651 NativeHeapTrimmer::SuspendMark sm("monitor deletion"); 1652 size_t count = 0; 1653 for (ObjectMonitor* monitor: *delete_list) { 1654 delete monitor; 1655 count++; 1656 } 1657 return count; 1658 } 1659 1660 // This function is called by the MonitorDeflationThread to deflate 1661 // ObjectMonitors. It is also called via do_final_audit_and_print_stats() 1662 // and VM_ThreadDump::doit() by the VMThread. 1663 size_t ObjectSynchronizer::deflate_idle_monitors(ObjectMonitorsHashtable* table) { 1664 Thread* current = Thread::current(); 1665 if (current->is_Java_thread()) { 1666 // The async deflation request has been processed. 1667 _last_async_deflation_time_ns = os::javaTimeNanos(); 1668 set_is_async_deflation_requested(false); 1669 } 1670 1671 LogStreamHandle(Debug, monitorinflation) lsh_debug; 1672 LogStreamHandle(Info, monitorinflation) lsh_info; 1673 LogStream* ls = nullptr; 1674 if (log_is_enabled(Debug, monitorinflation)) { 1675 ls = &lsh_debug; 1676 } else if (log_is_enabled(Info, monitorinflation)) { 1677 ls = &lsh_info; 1678 } 1679 1680 elapsedTimer timer; 1681 if (ls != nullptr) { 1682 ls->print_cr("begin deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1683 in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); 1684 timer.start(); 1685 } 1686 1687 // Deflate some idle ObjectMonitors. 1688 size_t deflated_count = deflate_monitor_list(current, ls, &timer, table); 1689 size_t unlinked_count = 0; 1690 size_t deleted_count = 0; 1691 if (deflated_count > 0 || is_final_audit()) { 1692 // There are ObjectMonitors that have been deflated or this is the 1693 // final audit and all the remaining ObjectMonitors have been 1694 // deflated, BUT the MonitorDeflationThread blocked for the final 1695 // safepoint during unlinking. 1696 1697 // Unlink deflated ObjectMonitors from the in-use list. 1698 ResourceMark rm; 1699 GrowableArray<ObjectMonitor*> delete_list((int)deflated_count); 1700 unlinked_count = _in_use_list.unlink_deflated(current, ls, &timer, &delete_list); 1701 if (current->is_monitor_deflation_thread()) { 1702 if (ls != nullptr) { 1703 timer.stop(); 1704 ls->print_cr("before handshaking: unlinked_count=" SIZE_FORMAT 1705 ", in_use_list stats: ceiling=" SIZE_FORMAT ", count=" 1706 SIZE_FORMAT ", max=" SIZE_FORMAT, 1707 unlinked_count, in_use_list_ceiling(), 1708 _in_use_list.count(), _in_use_list.max()); 1709 } 1710 1711 // A JavaThread needs to handshake in order to safely free the 1712 // ObjectMonitors that were deflated in this cycle. 1713 // Also, we sync and desync GC threads around the handshake, so that they can 1714 // safely read the mark-word and look-through to the object-monitor, without 1715 // being afraid that the object-monitor is going away. 1716 HandshakeForDeflation hfd_hc; 1717 Handshake::execute(&hfd_hc); 1718 // Also, we sync and desync GC threads around the handshake, so that they can 1719 // safely read the mark-word and look-through to the object-monitor, without 1720 // being afraid that the object-monitor is going away. 1721 VM_RendezvousGCThreads sync_gc; 1722 VMThread::execute(&sync_gc); 1723 1724 if (ls != nullptr) { 1725 ls->print_cr("after handshaking: in_use_list stats: ceiling=" 1726 SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1727 in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); 1728 timer.start(); 1729 } 1730 } else { 1731 // This is not a monitor deflation thread. 1732 // No handshake or rendezvous is needed when we are already at safepoint. 1733 assert_at_safepoint(); 1734 } 1735 1736 // After the handshake, safely free the ObjectMonitors that were 1737 // deflated and unlinked in this cycle. 1738 if (current->is_Java_thread()) { 1739 if (ls != NULL) { 1740 timer.stop(); 1741 ls->print_cr("before setting blocked: unlinked_count=" SIZE_FORMAT 1742 ", in_use_list stats: ceiling=" SIZE_FORMAT ", count=" 1743 SIZE_FORMAT ", max=" SIZE_FORMAT, 1744 unlinked_count, in_use_list_ceiling(), 1745 _in_use_list.count(), _in_use_list.max()); 1746 } 1747 // Mark the calling JavaThread blocked (safepoint safe) while we free 1748 // the ObjectMonitors so we don't delay safepoints whilst doing that. 1749 ThreadBlockInVM tbivm(JavaThread::cast(current)); 1750 if (ls != NULL) { 1751 ls->print_cr("after setting blocked: in_use_list stats: ceiling=" 1752 SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1753 in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); 1754 timer.start(); 1755 } 1756 deleted_count = delete_monitors(&delete_list); 1757 // ThreadBlockInVM is destroyed here 1758 } else { 1759 // A non-JavaThread can just free the ObjectMonitors: 1760 deleted_count = delete_monitors(&delete_list); 1761 } 1762 assert(unlinked_count == deleted_count, "must be"); 1763 } 1764 1765 if (ls != nullptr) { 1766 timer.stop(); 1767 if (deflated_count != 0 || unlinked_count != 0 || log_is_enabled(Debug, monitorinflation)) { 1768 ls->print_cr("deflated_count=" SIZE_FORMAT ", {unlinked,deleted}_count=" SIZE_FORMAT " monitors in %3.7f secs", 1769 deflated_count, unlinked_count, timer.seconds()); 1770 } 1771 ls->print_cr("end deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1772 in_use_list_ceiling(), _in_use_list.count(), _in_use_list.max()); 1773 if (table != nullptr) { 1774 ls->print_cr("ObjectMonitorsHashtable: key_count=" SIZE_FORMAT ", om_count=" SIZE_FORMAT, 1775 table->key_count(), table->om_count()); 1776 } 1777 } 1778 1779 OM_PERFDATA_OP(MonExtant, set_value(_in_use_list.count())); 1780 OM_PERFDATA_OP(Deflations, inc(deflated_count)); 1781 1782 GVars.stw_random = os::random(); 1783 1784 if (deflated_count != 0) { 1785 _no_progress_cnt = 0; 1786 } else if (_no_progress_skip_increment) { 1787 _no_progress_skip_increment = false; 1788 } else { 1789 _no_progress_cnt++; 1790 } 1791 1792 return deflated_count; 1793 } 1794 1795 // Monitor cleanup on JavaThread::exit 1796 1797 // Iterate through monitor cache and attempt to release thread's monitors 1798 class ReleaseJavaMonitorsClosure: public MonitorClosure { 1799 private: 1800 JavaThread* _thread; 1801 1802 public: 1803 ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {} 1804 void do_monitor(ObjectMonitor* mid) { 1805 intx rec = mid->complete_exit(_thread); 1806 _thread->dec_held_monitor_count(rec + 1); 1807 } 1808 }; 1809 1810 // Release all inflated monitors owned by current thread. Lightweight monitors are 1811 // ignored. This is meant to be called during JNI thread detach which assumes 1812 // all remaining monitors are heavyweight. All exceptions are swallowed. 1813 // Scanning the extant monitor list can be time consuming. 1814 // A simple optimization is to add a per-thread flag that indicates a thread 1815 // called jni_monitorenter() during its lifetime. 1816 // 1817 // Instead of NoSafepointVerifier it might be cheaper to 1818 // use an idiom of the form: 1819 // auto int tmp = SafepointSynchronize::_safepoint_counter ; 1820 // <code that must not run at safepoint> 1821 // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; 1822 // Since the tests are extremely cheap we could leave them enabled 1823 // for normal product builds. 1824 1825 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) { 1826 assert(current == JavaThread::current(), "must be current Java thread"); 1827 NoSafepointVerifier nsv; 1828 ReleaseJavaMonitorsClosure rjmc(current); 1829 ObjectSynchronizer::monitors_iterate(&rjmc, current); 1830 assert(!current->has_pending_exception(), "Should not be possible"); 1831 current->clear_pending_exception(); 1832 assert(current->held_monitor_count() == 0, "Should not be possible"); 1833 // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count. 1834 current->clear_jni_monitor_count(); 1835 } 1836 1837 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { 1838 switch (cause) { 1839 case inflate_cause_vm_internal: return "VM Internal"; 1840 case inflate_cause_monitor_enter: return "Monitor Enter"; 1841 case inflate_cause_wait: return "Monitor Wait"; 1842 case inflate_cause_notify: return "Monitor Notify"; 1843 case inflate_cause_hash_code: return "Monitor Hash Code"; 1844 case inflate_cause_jni_enter: return "JNI Monitor Enter"; 1845 case inflate_cause_jni_exit: return "JNI Monitor Exit"; 1846 default: 1847 ShouldNotReachHere(); 1848 } 1849 return "Unknown"; 1850 } 1851 1852 //------------------------------------------------------------------------------ 1853 // Debugging code 1854 1855 u_char* ObjectSynchronizer::get_gvars_addr() { 1856 return (u_char*)&GVars; 1857 } 1858 1859 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() { 1860 return (u_char*)&GVars.hc_sequence; 1861 } 1862 1863 size_t ObjectSynchronizer::get_gvars_size() { 1864 return sizeof(SharedGlobals); 1865 } 1866 1867 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() { 1868 return (u_char*)&GVars.stw_random; 1869 } 1870 1871 // Do the final audit and print of ObjectMonitor stats; must be done 1872 // by the VMThread at VM exit time. 1873 void ObjectSynchronizer::do_final_audit_and_print_stats() { 1874 assert(Thread::current()->is_VM_thread(), "sanity check"); 1875 1876 if (is_final_audit()) { // Only do the audit once. 1877 return; 1878 } 1879 set_is_final_audit(); 1880 log_info(monitorinflation)("Starting the final audit."); 1881 1882 if (log_is_enabled(Info, monitorinflation)) { 1883 // Do deflations in order to reduce the in-use monitor population 1884 // that is reported by ObjectSynchronizer::log_in_use_monitor_details() 1885 // which is called by ObjectSynchronizer::audit_and_print_stats(). 1886 while (deflate_idle_monitors(/* ObjectMonitorsHashtable is not needed here */ nullptr) > 0) { 1887 ; // empty 1888 } 1889 // The other audit_and_print_stats() call is done at the Debug 1890 // level at a safepoint in SafepointSynchronize::do_cleanup_tasks. 1891 audit_and_print_stats(true /* on_exit */); 1892 } 1893 } 1894 1895 // This function can be called at a safepoint or it can be called when 1896 // we are trying to exit the VM. When we are trying to exit the VM, the 1897 // list walker functions can run in parallel with the other list 1898 // operations so spin-locking is used for safety. 1899 // 1900 // Calls to this function can be added in various places as a debugging 1901 // aid; pass 'true' for the 'on_exit' parameter to have in-use monitor 1902 // details logged at the Info level and 'false' for the 'on_exit' 1903 // parameter to have in-use monitor details logged at the Trace level. 1904 // 1905 void ObjectSynchronizer::audit_and_print_stats(bool on_exit) { 1906 assert(on_exit || SafepointSynchronize::is_at_safepoint(), "invariant"); 1907 1908 LogStreamHandle(Debug, monitorinflation) lsh_debug; 1909 LogStreamHandle(Info, monitorinflation) lsh_info; 1910 LogStreamHandle(Trace, monitorinflation) lsh_trace; 1911 LogStream* ls = nullptr; 1912 if (log_is_enabled(Trace, monitorinflation)) { 1913 ls = &lsh_trace; 1914 } else if (log_is_enabled(Debug, monitorinflation)) { 1915 ls = &lsh_debug; 1916 } else if (log_is_enabled(Info, monitorinflation)) { 1917 ls = &lsh_info; 1918 } 1919 assert(ls != nullptr, "sanity check"); 1920 1921 int error_cnt = 0; 1922 1923 ls->print_cr("Checking in_use_list:"); 1924 chk_in_use_list(ls, &error_cnt); 1925 1926 if (error_cnt == 0) { 1927 ls->print_cr("No errors found in in_use_list checks."); 1928 } else { 1929 log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt); 1930 } 1931 1932 if ((on_exit && log_is_enabled(Info, monitorinflation)) || 1933 (!on_exit && log_is_enabled(Trace, monitorinflation))) { 1934 // When exiting this log output is at the Info level. When called 1935 // at a safepoint, this log output is at the Trace level since 1936 // there can be a lot of it. 1937 log_in_use_monitor_details(ls); 1938 } 1939 1940 ls->flush(); 1941 1942 guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt); 1943 } 1944 1945 // Check the in_use_list; log the results of the checks. 1946 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) { 1947 size_t l_in_use_count = _in_use_list.count(); 1948 size_t l_in_use_max = _in_use_list.max(); 1949 out->print_cr("count=" SIZE_FORMAT ", max=" SIZE_FORMAT, l_in_use_count, 1950 l_in_use_max); 1951 1952 size_t ck_in_use_count = 0; 1953 MonitorList::Iterator iter = _in_use_list.iterator(); 1954 while (iter.has_next()) { 1955 ObjectMonitor* mid = iter.next(); 1956 chk_in_use_entry(mid, out, error_cnt_p); 1957 ck_in_use_count++; 1958 } 1959 1960 if (l_in_use_count == ck_in_use_count) { 1961 out->print_cr("in_use_count=" SIZE_FORMAT " equals ck_in_use_count=" 1962 SIZE_FORMAT, l_in_use_count, ck_in_use_count); 1963 } else { 1964 out->print_cr("WARNING: in_use_count=" SIZE_FORMAT " is not equal to " 1965 "ck_in_use_count=" SIZE_FORMAT, l_in_use_count, 1966 ck_in_use_count); 1967 } 1968 1969 size_t ck_in_use_max = _in_use_list.max(); 1970 if (l_in_use_max == ck_in_use_max) { 1971 out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max=" 1972 SIZE_FORMAT, l_in_use_max, ck_in_use_max); 1973 } else { 1974 out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to " 1975 "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max); 1976 } 1977 } 1978 1979 // Check an in-use monitor entry; log any errors. 1980 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out, 1981 int* error_cnt_p) { 1982 if (n->owner_is_DEFLATER_MARKER()) { 1983 // This should not happen, but if it does, it is not fatal. 1984 out->print_cr("WARNING: monitor=" INTPTR_FORMAT ": in-use monitor is " 1985 "deflated.", p2i(n)); 1986 return; 1987 } 1988 if (n->header().value() == 0) { 1989 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must " 1990 "have non-null _header field.", p2i(n)); 1991 *error_cnt_p = *error_cnt_p + 1; 1992 } 1993 const oop obj = n->object_peek(); 1994 if (obj != nullptr) { 1995 const markWord mark = obj->mark(); 1996 if (!mark.has_monitor()) { 1997 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 1998 "object does not think it has a monitor: obj=" 1999 INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), 2000 p2i(obj), mark.value()); 2001 *error_cnt_p = *error_cnt_p + 1; 2002 } 2003 ObjectMonitor* const obj_mon = mark.monitor(); 2004 if (n != obj_mon) { 2005 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2006 "object does not refer to the same monitor: obj=" 2007 INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" 2008 INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); 2009 *error_cnt_p = *error_cnt_p + 1; 2010 } 2011 } 2012 } 2013 2014 // Log details about ObjectMonitors on the in_use_list. The 'BHL' 2015 // flags indicate why the entry is in-use, 'object' and 'object type' 2016 // indicate the associated object and its type. 2017 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out) { 2018 stringStream ss; 2019 if (_in_use_list.count() > 0) { 2020 out->print_cr("In-use monitor info:"); 2021 out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); 2022 out->print_cr("%18s %s %18s %18s", 2023 "monitor", "BHL", "object", "object type"); 2024 out->print_cr("================== === ================== =================="); 2025 MonitorList::Iterator iter = _in_use_list.iterator(); 2026 while (iter.has_next()) { 2027 ObjectMonitor* mid = iter.next(); 2028 const oop obj = mid->object_peek(); 2029 const markWord mark = mid->header(); 2030 ResourceMark rm; 2031 out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s", p2i(mid), 2032 mid->is_busy(), mark.hash() != 0, mid->owner() != nullptr, 2033 p2i(obj), obj == nullptr ? "" : obj->klass()->external_name()); 2034 if (mid->is_busy()) { 2035 out->print(" (%s)", mid->is_busy_to_string(&ss)); 2036 ss.reset(); 2037 } 2038 out->cr(); 2039 } 2040 } 2041 2042 out->flush(); 2043 }