1 /* 2 * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/vmSymbols.hpp" 27 #include "gc/shared/collectedHeap.hpp" 28 #include "jfr/jfrEvents.hpp" 29 #include "logging/log.hpp" 30 #include "logging/logStream.hpp" 31 #include "memory/allocation.inline.hpp" 32 #include "memory/padded.hpp" 33 #include "memory/resourceArea.hpp" 34 #include "memory/universe.hpp" 35 #include "oops/markWord.hpp" 36 #include "oops/oop.inline.hpp" 37 #include "runtime/atomic.hpp" 38 #include "runtime/basicLock.inline.hpp" 39 #include "runtime/frame.inline.hpp" 40 #include "runtime/globals.hpp" 41 #include "runtime/handles.inline.hpp" 42 #include "runtime/handshake.hpp" 43 #include "runtime/interfaceSupport.inline.hpp" 44 #include "runtime/javaThread.hpp" 45 #include "runtime/lightweightSynchronizer.hpp" 46 #include "runtime/lockStack.inline.hpp" 47 #include "runtime/mutexLocker.hpp" 48 #include "runtime/objectMonitor.hpp" 49 #include "runtime/objectMonitor.inline.hpp" 50 #include "runtime/os.inline.hpp" 51 #include "runtime/osThread.hpp" 52 #include "runtime/perfData.hpp" 53 #include "runtime/safepointMechanism.inline.hpp" 54 #include "runtime/safepointVerifiers.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "runtime/synchronizer.inline.hpp" 58 #include "runtime/threads.hpp" 59 #include "runtime/timer.hpp" 60 #include "runtime/trimNativeHeap.hpp" 61 #include "runtime/vframe.hpp" 62 #include "runtime/vmThread.hpp" 63 #include "utilities/align.hpp" 64 #include "utilities/dtrace.hpp" 65 #include "utilities/events.hpp" 66 #include "utilities/globalDefinitions.hpp" 67 #include "utilities/linkedlist.hpp" 68 #include "utilities/preserveException.hpp" 69 70 class ObjectMonitorDeflationLogging; 71 72 void MonitorList::add(ObjectMonitor* m) { 73 ObjectMonitor* head; 74 do { 75 head = Atomic::load(&_head); 76 m->set_next_om(head); 77 } while (Atomic::cmpxchg(&_head, head, m) != head); 78 79 size_t count = Atomic::add(&_count, 1u); 80 if (count > max()) { 81 Atomic::inc(&_max); 82 } 83 } 84 85 size_t MonitorList::count() const { 86 return Atomic::load(&_count); 87 } 88 89 size_t MonitorList::max() const { 90 return Atomic::load(&_max); 91 } 92 93 class ObjectMonitorDeflationSafepointer : public StackObj { 94 JavaThread* const _current; 95 ObjectMonitorDeflationLogging* const _log; 96 97 public: 98 ObjectMonitorDeflationSafepointer(JavaThread* current, ObjectMonitorDeflationLogging* log) 99 : _current(current), _log(log) {} 100 101 void block_for_safepoint(const char* op_name, const char* count_name, size_t counter); 102 }; 103 104 // Walk the in-use list and unlink deflated ObjectMonitors. 105 // Returns the number of unlinked ObjectMonitors. 106 size_t MonitorList::unlink_deflated(size_t deflated_count, 107 GrowableArray<ObjectMonitor*>* unlinked_list, 108 ObjectMonitorDeflationSafepointer* safepointer) { 109 size_t unlinked_count = 0; 110 ObjectMonitor* prev = nullptr; 111 ObjectMonitor* m = Atomic::load_acquire(&_head); 112 113 while (m != nullptr) { 114 if (m->is_being_async_deflated()) { 115 // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can 116 // modify the list once per batch. The batch starts at "m". 117 size_t unlinked_batch = 0; 118 ObjectMonitor* next = m; 119 // Look for at most MonitorUnlinkBatch monitors, or the number of 120 // deflated and not unlinked monitors, whatever comes first. 121 assert(deflated_count >= unlinked_count, "Sanity: underflow"); 122 size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch); 123 do { 124 ObjectMonitor* next_next = next->next_om(); 125 unlinked_batch++; 126 unlinked_list->append(next); 127 next = next_next; 128 if (unlinked_batch >= unlinked_batch_limit) { 129 // Reached the max batch, so bail out of the gathering loop. 130 break; 131 } 132 if (prev == nullptr && Atomic::load(&_head) != m) { 133 // Current batch used to be at head, but it is not at head anymore. 134 // Bail out and figure out where we currently are. This avoids long 135 // walks searching for new prev during unlink under heavy list inserts. 136 break; 137 } 138 } while (next != nullptr && next->is_being_async_deflated()); 139 140 // Unlink the found batch. 141 if (prev == nullptr) { 142 // The current batch is the first batch, so there is a chance that it starts at head. 143 // Optimistically assume no inserts happened, and try to unlink the entire batch from the head. 144 ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next); 145 if (prev_head != m) { 146 // Something must have updated the head. Figure out the actual prev for this batch. 147 for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) { 148 prev = n; 149 } 150 assert(prev != nullptr, "Should have found the prev for the current batch"); 151 prev->set_next_om(next); 152 } 153 } else { 154 // The current batch is preceded by another batch. This guarantees the current batch 155 // does not start at head. Unlink the entire current batch without updating the head. 156 assert(Atomic::load(&_head) != m, "Sanity"); 157 prev->set_next_om(next); 158 } 159 160 unlinked_count += unlinked_batch; 161 if (unlinked_count >= deflated_count) { 162 // Reached the max so bail out of the searching loop. 163 // There should be no more deflated monitors left. 164 break; 165 } 166 m = next; 167 } else { 168 prev = m; 169 m = m->next_om(); 170 } 171 172 // Must check for a safepoint/handshake and honor it. 173 safepointer->block_for_safepoint("unlinking", "unlinked_count", unlinked_count); 174 } 175 176 #ifdef ASSERT 177 // Invariant: the code above should unlink all deflated monitors. 178 // The code that runs after this unlinking does not expect deflated monitors. 179 // Notably, attempting to deflate the already deflated monitor would break. 180 { 181 ObjectMonitor* m = Atomic::load_acquire(&_head); 182 while (m != nullptr) { 183 assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked"); 184 m = m->next_om(); 185 } 186 } 187 #endif 188 189 Atomic::sub(&_count, unlinked_count); 190 return unlinked_count; 191 } 192 193 MonitorList::Iterator MonitorList::iterator() const { 194 return Iterator(Atomic::load_acquire(&_head)); 195 } 196 197 ObjectMonitor* MonitorList::Iterator::next() { 198 ObjectMonitor* current = _current; 199 _current = current->next_om(); 200 return current; 201 } 202 203 // The "core" versions of monitor enter and exit reside in this file. 204 // The interpreter and compilers contain specialized transliterated 205 // variants of the enter-exit fast-path operations. See c2_MacroAssembler_x86.cpp 206 // fast_lock(...) for instance. If you make changes here, make sure to modify the 207 // interpreter, and both C1 and C2 fast-path inline locking code emission. 208 // 209 // ----------------------------------------------------------------------------- 210 211 #ifdef DTRACE_ENABLED 212 213 // Only bother with this argument setup if dtrace is available 214 // TODO-FIXME: probes should not fire when caller is _blocked. assert() accordingly. 215 216 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread) \ 217 char* bytes = nullptr; \ 218 int len = 0; \ 219 jlong jtid = SharedRuntime::get_java_tid(thread); \ 220 Symbol* klassname = obj->klass()->name(); \ 221 if (klassname != nullptr) { \ 222 bytes = (char*)klassname->bytes(); \ 223 len = klassname->utf8_length(); \ 224 } 225 226 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis) \ 227 { \ 228 if (DTraceMonitorProbes) { \ 229 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 230 HOTSPOT_MONITOR_WAIT(jtid, \ 231 (uintptr_t)(monitor), bytes, len, (millis)); \ 232 } \ 233 } 234 235 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY 236 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL 237 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED 238 239 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread) \ 240 { \ 241 if (DTraceMonitorProbes) { \ 242 DTRACE_MONITOR_PROBE_COMMON(obj, thread); \ 243 HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */ \ 244 (uintptr_t)(monitor), bytes, len); \ 245 } \ 246 } 247 248 #else // ndef DTRACE_ENABLED 249 250 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon) {;} 251 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon) {;} 252 253 #endif // ndef DTRACE_ENABLED 254 255 // This exists only as a workaround of dtrace bug 6254741 256 static int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) { 257 DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr); 258 return 0; 259 } 260 261 static constexpr size_t inflation_lock_count() { 262 return 256; 263 } 264 265 // Static storage for an array of PlatformMutex. 266 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)]; 267 268 static inline PlatformMutex* inflation_lock(size_t index) { 269 return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]); 270 } 271 272 void ObjectSynchronizer::initialize() { 273 for (size_t i = 0; i < inflation_lock_count(); i++) { 274 ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex(); 275 } 276 // Start the ceiling with the estimate for one thread. 277 set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate); 278 279 // Start the timer for deflations, so it does not trigger immediately. 280 _last_async_deflation_time_ns = os::javaTimeNanos(); 281 282 if (LockingMode == LM_LIGHTWEIGHT) { 283 LightweightSynchronizer::initialize(); 284 } 285 } 286 287 MonitorList ObjectSynchronizer::_in_use_list; 288 // monitors_used_above_threshold() policy is as follows: 289 // 290 // The ratio of the current _in_use_list count to the ceiling is used 291 // to determine if we are above MonitorUsedDeflationThreshold and need 292 // to do an async monitor deflation cycle. The ceiling is increased by 293 // AvgMonitorsPerThreadEstimate when a thread is added to the system 294 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is 295 // removed from the system. 296 // 297 // Note: If the _in_use_list max exceeds the ceiling, then 298 // monitors_used_above_threshold() will use the in_use_list max instead 299 // of the thread count derived ceiling because we have used more 300 // ObjectMonitors than the estimated average. 301 // 302 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax 303 // no-progress async monitor deflation cycles in a row, then the ceiling 304 // is adjusted upwards by monitors_used_above_threshold(). 305 // 306 // Start the ceiling with the estimate for one thread in initialize() 307 // which is called after cmd line options are processed. 308 static size_t _in_use_list_ceiling = 0; 309 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false; 310 bool volatile ObjectSynchronizer::_is_final_audit = false; 311 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0; 312 static uintx _no_progress_cnt = 0; 313 static bool _no_progress_skip_increment = false; 314 315 // =====================> Quick functions 316 317 // The quick_* forms are special fast-path variants used to improve 318 // performance. In the simplest case, a "quick_*" implementation could 319 // simply return false, in which case the caller will perform the necessary 320 // state transitions and call the slow-path form. 321 // The fast-path is designed to handle frequently arising cases in an efficient 322 // manner and is just a degenerate "optimistic" variant of the slow-path. 323 // returns true -- to indicate the call was satisfied. 324 // returns false -- to indicate the call needs the services of the slow-path. 325 // A no-loitering ordinance is in effect for code in the quick_* family 326 // operators: safepoints or indefinite blocking (blocking that might span a 327 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon 328 // entry. 329 // 330 // Consider: An interesting optimization is to have the JIT recognize the 331 // following common idiom: 332 // synchronized (someobj) { .... ; notify(); } 333 // That is, we find a notify() or notifyAll() call that immediately precedes 334 // the monitorexit operation. In that case the JIT could fuse the operations 335 // into a single notifyAndExit() runtime primitive. 336 337 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) { 338 assert(current->thread_state() == _thread_in_Java, "invariant"); 339 NoSafepointVerifier nsv; 340 if (obj == nullptr) return false; // slow-path for invalid obj 341 const markWord mark = obj->mark(); 342 343 if (LockingMode == LM_LIGHTWEIGHT) { 344 if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) { 345 // Degenerate notify 346 // fast-locked by caller so by definition the implied waitset is empty. 347 return true; 348 } 349 } else if (LockingMode == LM_LEGACY) { 350 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 351 // Degenerate notify 352 // stack-locked by caller so by definition the implied waitset is empty. 353 return true; 354 } 355 } 356 357 if (mark.has_monitor()) { 358 ObjectMonitor* const mon = read_monitor(current, obj, mark); 359 if (LockingMode == LM_LIGHTWEIGHT && mon == nullptr) { 360 // Racing with inflation/deflation go slow path 361 return false; 362 } 363 assert(mon->object() == oop(obj), "invariant"); 364 if (mon->owner() != current) return false; // slow-path for IMS exception 365 366 if (mon->first_waiter() != nullptr) { 367 // We have one or more waiters. Since this is an inflated monitor 368 // that we own, we can transfer one or more threads from the waitset 369 // to the entrylist here and now, avoiding the slow-path. 370 if (all) { 371 DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current); 372 } else { 373 DTRACE_MONITOR_PROBE(notify, mon, obj, current); 374 } 375 int free_count = 0; 376 do { 377 mon->INotify(current); 378 ++free_count; 379 } while (mon->first_waiter() != nullptr && all); 380 OM_PERFDATA_OP(Notifications, inc(free_count)); 381 } 382 return true; 383 } 384 385 // other IMS exception states take the slow-path 386 return false; 387 } 388 389 static bool useHeavyMonitors() { 390 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390) 391 return LockingMode == LM_MONITOR; 392 #else 393 return false; 394 #endif 395 } 396 397 // The LockNode emitted directly at the synchronization site would have 398 // been too big if it were to have included support for the cases of inflated 399 // recursive enter and exit, so they go here instead. 400 // Note that we can't safely call AsyncPrintJavaStack() from within 401 // quick_enter() as our thread state remains _in_Java. 402 403 bool ObjectSynchronizer::quick_enter_legacy(oop obj, JavaThread* current, 404 BasicLock * lock) { 405 assert(current->thread_state() == _thread_in_Java, "invariant"); 406 407 if (useHeavyMonitors()) { 408 return false; // Slow path 409 } 410 411 if (LockingMode == LM_LIGHTWEIGHT) { 412 return LightweightSynchronizer::quick_enter(obj, current, lock); 413 } 414 415 assert(LockingMode == LM_LEGACY, "legacy mode below"); 416 417 const markWord mark = obj->mark(); 418 419 if (mark.has_monitor()) { 420 421 ObjectMonitor* const m = read_monitor(mark); 422 // An async deflation or GC can race us before we manage to make 423 // the ObjectMonitor busy by setting the owner below. If we detect 424 // that race we just bail out to the slow-path here. 425 if (m->object_peek() == nullptr) { 426 return false; 427 } 428 JavaThread* const owner = static_cast<JavaThread*>(m->owner_raw()); 429 430 // Lock contention and Transactional Lock Elision (TLE) diagnostics 431 // and observability 432 // Case: light contention possibly amenable to TLE 433 // Case: TLE inimical operations such as nested/recursive synchronization 434 435 if (owner == current) { 436 m->_recursions++; 437 current->inc_held_monitor_count(); 438 return true; 439 } 440 441 // This Java Monitor is inflated so obj's header will never be 442 // displaced to this thread's BasicLock. Make the displaced header 443 // non-null so this BasicLock is not seen as recursive nor as 444 // being locked. We do this unconditionally so that this thread's 445 // BasicLock cannot be mis-interpreted by any stack walkers. For 446 // performance reasons, stack walkers generally first check for 447 // stack-locking in the object's header, the second check is for 448 // recursive stack-locking in the displaced header in the BasicLock, 449 // and last are the inflated Java Monitor (ObjectMonitor) checks. 450 lock->set_displaced_header(markWord::unused_mark()); 451 452 if (owner == nullptr && m->try_set_owner_from(nullptr, current) == nullptr) { 453 assert(m->_recursions == 0, "invariant"); 454 current->inc_held_monitor_count(); 455 return true; 456 } 457 } 458 459 // Note that we could inflate in quick_enter. 460 // This is likely a useful optimization 461 // Critically, in quick_enter() we must not: 462 // -- block indefinitely, or 463 // -- reach a safepoint 464 465 return false; // revert to slow-path 466 } 467 468 // Handle notifications when synchronizing on value based classes 469 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) { 470 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 471 frame last_frame = locking_thread->last_frame(); 472 bool bcp_was_adjusted = false; 473 // Don't decrement bcp if it points to the frame's first instruction. This happens when 474 // handle_sync_on_value_based_class() is called because of a synchronized method. There 475 // is no actual monitorenter instruction in the byte code in this case. 476 if (last_frame.is_interpreted_frame() && 477 (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) { 478 // adjust bcp to point back to monitorenter so that we print the correct line numbers 479 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1); 480 bcp_was_adjusted = true; 481 } 482 483 if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) { 484 ResourceMark rm; 485 stringStream ss; 486 locking_thread->print_active_stack_on(&ss); 487 char* base = (char*)strstr(ss.base(), "at"); 488 char* newline = (char*)strchr(ss.base(), '\n'); 489 if (newline != nullptr) { 490 *newline = '\0'; 491 } 492 fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base); 493 } else { 494 assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses"); 495 ResourceMark rm; 496 Log(valuebasedclasses) vblog; 497 498 vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name()); 499 if (locking_thread->has_last_Java_frame()) { 500 LogStream info_stream(vblog.info()); 501 locking_thread->print_active_stack_on(&info_stream); 502 } else { 503 vblog.info("Cannot find the last Java frame"); 504 } 505 506 EventSyncOnValueBasedClass event; 507 if (event.should_commit()) { 508 event.set_valueBasedClass(obj->klass()); 509 event.commit(); 510 } 511 } 512 513 if (bcp_was_adjusted) { 514 last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1); 515 } 516 } 517 518 // ----------------------------------------------------------------------------- 519 // Monitor Enter/Exit 520 521 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 522 // When called with locking_thread != Thread::current() some mechanism must synchronize 523 // the locking_thread with respect to the current thread. Currently only used when 524 // deoptimizing and re-locking locks. See Deoptimization::relock_objects 525 assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be"); 526 527 if (LockingMode == LM_LIGHTWEIGHT) { 528 return LightweightSynchronizer::enter_for(obj, lock, locking_thread); 529 } 530 531 if (!enter_fast_impl(obj, lock, locking_thread)) { 532 // Inflated ObjectMonitor::enter_for is required 533 534 // An async deflation can race after the inflate_for() call and before 535 // enter_for() can make the ObjectMonitor busy. enter_for() returns false 536 // if we have lost the race to async deflation and we simply try again. 537 while (true) { 538 ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter); 539 if (monitor->enter_for(locking_thread)) { 540 return; 541 } 542 assert(monitor->is_being_async_deflated(), "must be"); 543 } 544 } 545 } 546 547 void ObjectSynchronizer::enter_legacy(Handle obj, BasicLock* lock, JavaThread* current) { 548 if (!enter_fast_impl(obj, lock, current)) { 549 // Inflated ObjectMonitor::enter is required 550 551 // An async deflation can race after the inflate() call and before 552 // enter() can make the ObjectMonitor busy. enter() returns false if 553 // we have lost the race to async deflation and we simply try again. 554 while (true) { 555 ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter); 556 if (monitor->enter(current)) { 557 return; 558 } 559 } 560 } 561 } 562 563 // The interpreter and compiler assembly code tries to lock using the fast path 564 // of this algorithm. Make sure to update that code if the following function is 565 // changed. The implementation is extremely sensitive to race condition. Be careful. 566 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) { 567 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 568 569 if (obj->klass()->is_value_based()) { 570 handle_sync_on_value_based_class(obj, locking_thread); 571 } 572 573 locking_thread->inc_held_monitor_count(); 574 575 if (!useHeavyMonitors()) { 576 if (LockingMode == LM_LEGACY) { 577 markWord mark = obj->mark(); 578 if (mark.is_unlocked()) { 579 // Anticipate successful CAS -- the ST of the displaced mark must 580 // be visible <= the ST performed by the CAS. 581 lock->set_displaced_header(mark); 582 if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) { 583 return true; 584 } 585 } else if (mark.has_locker() && 586 locking_thread->is_lock_owned((address) mark.locker())) { 587 assert(lock != mark.locker(), "must not re-lock the same lock"); 588 assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock"); 589 lock->set_displaced_header(markWord::from_pointer(nullptr)); 590 return true; 591 } 592 593 // The object header will never be displaced to this lock, 594 // so it does not matter what the value is, except that it 595 // must be non-zero to avoid looking like a re-entrant lock, 596 // and must not look locked either. 597 lock->set_displaced_header(markWord::unused_mark()); 598 599 // Failed to fast lock. 600 return false; 601 } 602 } else if (VerifyHeavyMonitors) { 603 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 604 } 605 606 return false; 607 } 608 609 void ObjectSynchronizer::exit_legacy(oop object, BasicLock* lock, JavaThread* current) { 610 assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer"); 611 612 if (!useHeavyMonitors()) { 613 markWord mark = object->mark(); 614 if (LockingMode == LM_LEGACY) { 615 markWord dhw = lock->displaced_header(); 616 if (dhw.value() == 0) { 617 // If the displaced header is null, then this exit matches up with 618 // a recursive enter. No real work to do here except for diagnostics. 619 #ifndef PRODUCT 620 if (mark != markWord::INFLATING()) { 621 // Only do diagnostics if we are not racing an inflation. Simply 622 // exiting a recursive enter of a Java Monitor that is being 623 // inflated is safe; see the has_monitor() comment below. 624 assert(!mark.is_unlocked(), "invariant"); 625 assert(!mark.has_locker() || 626 current->is_lock_owned((address)mark.locker()), "invariant"); 627 if (mark.has_monitor()) { 628 // The BasicLock's displaced_header is marked as a recursive 629 // enter and we have an inflated Java Monitor (ObjectMonitor). 630 // This is a special case where the Java Monitor was inflated 631 // after this thread entered the stack-lock recursively. When a 632 // Java Monitor is inflated, we cannot safely walk the Java 633 // Monitor owner's stack and update the BasicLocks because a 634 // Java Monitor can be asynchronously inflated by a thread that 635 // does not own the Java Monitor. 636 ObjectMonitor* m = read_monitor(mark); 637 assert(m->object()->mark() == mark, "invariant"); 638 assert(m->is_entered(current), "invariant"); 639 } 640 } 641 #endif 642 return; 643 } 644 645 if (mark == markWord::from_pointer(lock)) { 646 // If the object is stack-locked by the current thread, try to 647 // swing the displaced header from the BasicLock back to the mark. 648 assert(dhw.is_neutral(), "invariant"); 649 if (object->cas_set_mark(dhw, mark) == mark) { 650 return; 651 } 652 } 653 } 654 } else if (VerifyHeavyMonitors) { 655 guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 656 } 657 658 // We have to take the slow-path of possible inflation and then exit. 659 // The ObjectMonitor* can't be async deflated until ownership is 660 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 661 ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal); 662 assert(!monitor->is_owner_anonymous(), "must not be"); 663 monitor->exit(current); 664 } 665 666 // ----------------------------------------------------------------------------- 667 // JNI locks on java objects 668 // NOTE: must use heavy weight monitor to handle jni monitor enter 669 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) { 670 if (obj->klass()->is_value_based()) { 671 handle_sync_on_value_based_class(obj, current); 672 } 673 674 // the current locking is from JNI instead of Java code 675 current->set_current_pending_monitor_is_from_java(false); 676 // An async deflation can race after the inflate() call and before 677 // enter() can make the ObjectMonitor busy. enter() returns false if 678 // we have lost the race to async deflation and we simply try again. 679 while (true) { 680 ObjectMonitor* monitor; 681 bool entered; 682 if (LockingMode == LM_LIGHTWEIGHT) { 683 entered = LightweightSynchronizer::inflate_and_enter(obj(), current, current, inflate_cause_jni_enter) != nullptr; 684 } else { 685 monitor = inflate(current, obj(), inflate_cause_jni_enter); 686 entered = monitor->enter(current); 687 } 688 689 if (entered) { 690 current->inc_held_monitor_count(1, true); 691 break; 692 } 693 } 694 current->set_current_pending_monitor_is_from_java(true); 695 } 696 697 // NOTE: must use heavy weight monitor to handle jni monitor exit 698 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) { 699 JavaThread* current = THREAD; 700 701 ObjectMonitor* monitor; 702 if (LockingMode == LM_LIGHTWEIGHT) { 703 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK); 704 } else { 705 // The ObjectMonitor* can't be async deflated until ownership is 706 // dropped inside exit() and the ObjectMonitor* must be !is_busy(). 707 monitor = inflate(current, obj, inflate_cause_jni_exit); 708 } 709 // If this thread has locked the object, exit the monitor. We 710 // intentionally do not use CHECK on check_owner because we must exit the 711 // monitor even if an exception was already pending. 712 if (monitor->check_owner(THREAD)) { 713 monitor->exit(current); 714 current->dec_held_monitor_count(1, true); 715 } 716 } 717 718 // ----------------------------------------------------------------------------- 719 // Internal VM locks on java objects 720 // standard constructor, allows locking failures 721 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) { 722 _thread = thread; 723 _thread->check_for_valid_safepoint_state(); 724 _obj = obj; 725 726 if (_obj() != nullptr) { 727 ObjectSynchronizer::enter(_obj, &_lock, _thread); 728 } 729 } 730 731 ObjectLocker::~ObjectLocker() { 732 if (_obj() != nullptr) { 733 ObjectSynchronizer::exit(_obj(), &_lock, _thread); 734 } 735 } 736 737 738 // ----------------------------------------------------------------------------- 739 // Wait/Notify/NotifyAll 740 // NOTE: must use heavy weight monitor to handle wait() 741 742 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) { 743 JavaThread* current = THREAD; 744 if (millis < 0) { 745 THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative"); 746 } 747 748 ObjectMonitor* monitor; 749 if (LockingMode == LM_LIGHTWEIGHT) { 750 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0); 751 } else { 752 // The ObjectMonitor* can't be async deflated because the _waiters 753 // field is incremented before ownership is dropped and decremented 754 // after ownership is regained. 755 monitor = inflate(current, obj(), inflate_cause_wait); 756 } 757 758 DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis); 759 monitor->wait(millis, true, THREAD); // Not CHECK as we need following code 760 761 // This dummy call is in place to get around dtrace bug 6254741. Once 762 // that's fixed we can uncomment the following line, remove the call 763 // and change this function back into a "void" func. 764 // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD); 765 int ret_code = dtrace_waited_probe(monitor, obj, THREAD); 766 return ret_code; 767 } 768 769 void ObjectSynchronizer::notify(Handle obj, TRAPS) { 770 JavaThread* current = THREAD; 771 772 markWord mark = obj->mark(); 773 if (LockingMode == LM_LIGHTWEIGHT) { 774 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 775 // Not inflated so there can't be any waiters to notify. 776 return; 777 } 778 } else if (LockingMode == LM_LEGACY) { 779 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 780 // Not inflated so there can't be any waiters to notify. 781 return; 782 } 783 } 784 785 ObjectMonitor* monitor; 786 if (LockingMode == LM_LIGHTWEIGHT) { 787 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 788 } else { 789 // The ObjectMonitor* can't be async deflated until ownership is 790 // dropped by the calling thread. 791 monitor = inflate(current, obj(), inflate_cause_notify); 792 } 793 monitor->notify(CHECK); 794 } 795 796 // NOTE: see comment of notify() 797 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) { 798 JavaThread* current = THREAD; 799 800 markWord mark = obj->mark(); 801 if (LockingMode == LM_LIGHTWEIGHT) { 802 if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) { 803 // Not inflated so there can't be any waiters to notify. 804 return; 805 } 806 } else if (LockingMode == LM_LEGACY) { 807 if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) { 808 // Not inflated so there can't be any waiters to notify. 809 return; 810 } 811 } 812 813 ObjectMonitor* monitor; 814 if (LockingMode == LM_LIGHTWEIGHT) { 815 monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK); 816 } else { 817 // The ObjectMonitor* can't be async deflated until ownership is 818 // dropped by the calling thread. 819 monitor = inflate(current, obj(), inflate_cause_notify); 820 } 821 monitor->notifyAll(CHECK); 822 } 823 824 // ----------------------------------------------------------------------------- 825 // Hash Code handling 826 827 struct SharedGlobals { 828 char _pad_prefix[OM_CACHE_LINE_SIZE]; 829 // This is a highly shared mostly-read variable. 830 // To avoid false-sharing it needs to be the sole occupant of a cache line. 831 volatile int stw_random; 832 DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 833 // Hot RW variable -- Sequester to avoid false-sharing 834 volatile int hc_sequence; 835 DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int)); 836 }; 837 838 static SharedGlobals GVars; 839 840 static markWord read_stable_mark(oop obj) { 841 markWord mark = obj->mark_acquire(); 842 if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) { 843 // New lightweight locking does not use the markWord::INFLATING() protocol. 844 return mark; // normal fast-path return 845 } 846 847 int its = 0; 848 for (;;) { 849 markWord mark = obj->mark_acquire(); 850 if (!mark.is_being_inflated()) { 851 return mark; // normal fast-path return 852 } 853 854 // The object is being inflated by some other thread. 855 // The caller of read_stable_mark() must wait for inflation to complete. 856 // Avoid live-lock. 857 858 ++its; 859 if (its > 10000 || !os::is_MP()) { 860 if (its & 1) { 861 os::naked_yield(); 862 } else { 863 // Note that the following code attenuates the livelock problem but is not 864 // a complete remedy. A more complete solution would require that the inflating 865 // thread hold the associated inflation lock. The following code simply restricts 866 // the number of spinners to at most one. We'll have N-2 threads blocked 867 // on the inflationlock, 1 thread holding the inflation lock and using 868 // a yield/park strategy, and 1 thread in the midst of inflation. 869 // A more refined approach would be to change the encoding of INFLATING 870 // to allow encapsulation of a native thread pointer. Threads waiting for 871 // inflation to complete would use CAS to push themselves onto a singly linked 872 // list rooted at the markword. Once enqueued, they'd loop, checking a per-thread flag 873 // and calling park(). When inflation was complete the thread that accomplished inflation 874 // would detach the list and set the markword to inflated with a single CAS and 875 // then for each thread on the list, set the flag and unpark() the thread. 876 877 // Index into the lock array based on the current object address. 878 static_assert(is_power_of_2(inflation_lock_count()), "must be"); 879 size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1); 880 int YieldThenBlock = 0; 881 assert(ix < inflation_lock_count(), "invariant"); 882 inflation_lock(ix)->lock(); 883 while (obj->mark_acquire() == markWord::INFLATING()) { 884 // Beware: naked_yield() is advisory and has almost no effect on some platforms 885 // so we periodically call current->_ParkEvent->park(1). 886 // We use a mixed spin/yield/block mechanism. 887 if ((YieldThenBlock++) >= 16) { 888 Thread::current()->_ParkEvent->park(1); 889 } else { 890 os::naked_yield(); 891 } 892 } 893 inflation_lock(ix)->unlock(); 894 } 895 } else { 896 SpinPause(); // SMP-polite spinning 897 } 898 } 899 } 900 901 // hashCode() generation : 902 // 903 // Possibilities: 904 // * MD5Digest of {obj,stw_random} 905 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function. 906 // * A DES- or AES-style SBox[] mechanism 907 // * One of the Phi-based schemes, such as: 908 // 2654435761 = 2^32 * Phi (golden ratio) 909 // HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ; 910 // * A variation of Marsaglia's shift-xor RNG scheme. 911 // * (obj ^ stw_random) is appealing, but can result 912 // in undesirable regularity in the hashCode values of adjacent objects 913 // (objects allocated back-to-back, in particular). This could potentially 914 // result in hashtable collisions and reduced hashtable efficiency. 915 // There are simple ways to "diffuse" the middle address bits over the 916 // generated hashCode values: 917 918 static intptr_t get_next_hash(Thread* current, oop obj) { 919 intptr_t value = 0; 920 if (hashCode == 0) { 921 // This form uses global Park-Miller RNG. 922 // On MP system we'll have lots of RW access to a global, so the 923 // mechanism induces lots of coherency traffic. 924 value = os::random(); 925 } else if (hashCode == 1) { 926 // This variation has the property of being stable (idempotent) 927 // between STW operations. This can be useful in some of the 1-0 928 // synchronization schemes. 929 intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3; 930 value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random; 931 } else if (hashCode == 2) { 932 value = 1; // for sensitivity testing 933 } else if (hashCode == 3) { 934 value = ++GVars.hc_sequence; 935 } else if (hashCode == 4) { 936 value = cast_from_oop<intptr_t>(obj); 937 } else { 938 // Marsaglia's xor-shift scheme with thread-specific state 939 // This is probably the best overall implementation -- we'll 940 // likely make this the default in future releases. 941 unsigned t = current->_hashStateX; 942 t ^= (t << 11); 943 current->_hashStateX = current->_hashStateY; 944 current->_hashStateY = current->_hashStateZ; 945 current->_hashStateZ = current->_hashStateW; 946 unsigned v = current->_hashStateW; 947 v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)); 948 current->_hashStateW = v; 949 value = v; 950 } 951 952 value &= UseCompactObjectHeaders ? markWord::hash_mask_compact : markWord::hash_mask; 953 if (value == 0) value = 0xBAD; 954 assert(value != markWord::no_hash, "invariant"); 955 return value; 956 } 957 958 static intptr_t install_hash_code(Thread* current, oop obj) { 959 assert(UseObjectMonitorTable && LockingMode == LM_LIGHTWEIGHT, "must be"); 960 961 markWord mark = obj->mark_acquire(); 962 for(;;) { 963 intptr_t hash = mark.hash(); 964 if (hash != 0) { 965 return hash; 966 } 967 968 hash = get_next_hash(current, obj); 969 const markWord old_mark = mark; 970 const markWord new_mark = old_mark.copy_set_hash(hash); 971 972 mark = obj->cas_set_mark(new_mark, old_mark); 973 if (old_mark == mark) { 974 return hash; 975 } 976 } 977 } 978 979 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) { 980 // Since the monitor isn't in the object header, it can simply be installed. 981 if (UseObjectMonitorTable) { 982 return install_hash_code(current, obj); 983 } 984 985 while (true) { 986 ObjectMonitor* monitor = nullptr; 987 markWord temp, test; 988 intptr_t hash; 989 markWord mark = read_stable_mark(obj); 990 if (VerifyHeavyMonitors) { 991 assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)"); 992 guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked"); 993 } 994 if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) { 995 hash = mark.hash(); 996 if (hash != 0) { // if it has a hash, just return it 997 return hash; 998 } 999 hash = get_next_hash(current, obj); // get a new hash 1000 temp = mark.copy_set_hash(hash); // merge the hash into header 1001 // try to install the hash 1002 test = obj->cas_set_mark(temp, mark); 1003 if (test == mark) { // if the hash was installed, return it 1004 return hash; 1005 } 1006 if (LockingMode == LM_LIGHTWEIGHT) { 1007 // CAS failed, retry 1008 continue; 1009 } 1010 // Failed to install the hash. It could be that another thread 1011 // installed the hash just before our attempt or inflation has 1012 // occurred or... so we fall thru to inflate the monitor for 1013 // stability and then install the hash. 1014 } else if (mark.has_monitor()) { 1015 monitor = mark.monitor(); 1016 temp = monitor->header(); 1017 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1018 hash = temp.hash(); 1019 if (hash != 0) { 1020 // It has a hash. 1021 1022 // Separate load of dmw/header above from the loads in 1023 // is_being_async_deflated(). 1024 1025 // dmw/header and _contentions may get written by different threads. 1026 // Make sure to observe them in the same order when having several observers. 1027 OrderAccess::loadload_for_IRIW(); 1028 1029 if (monitor->is_being_async_deflated()) { 1030 // But we can't safely use the hash if we detect that async 1031 // deflation has occurred. So we attempt to restore the 1032 // header/dmw to the object's header so that we only retry 1033 // once if the deflater thread happens to be slow. 1034 monitor->install_displaced_markword_in_object(obj); 1035 continue; 1036 } 1037 return hash; 1038 } 1039 // Fall thru so we only have one place that installs the hash in 1040 // the ObjectMonitor. 1041 } else if (LockingMode == LM_LEGACY && mark.has_locker() 1042 && current->is_Java_thread() 1043 && JavaThread::cast(current)->is_lock_owned((address)mark.locker())) { 1044 // This is a stack-lock owned by the calling thread so fetch the 1045 // displaced markWord from the BasicLock on the stack. 1046 temp = mark.displaced_mark_helper(); 1047 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1048 hash = temp.hash(); 1049 if (hash != 0) { // if it has a hash, just return it 1050 return hash; 1051 } 1052 // WARNING: 1053 // The displaced header in the BasicLock on a thread's stack 1054 // is strictly immutable. It CANNOT be changed in ANY cases. 1055 // So we have to inflate the stack-lock into an ObjectMonitor 1056 // even if the current thread owns the lock. The BasicLock on 1057 // a thread's stack can be asynchronously read by other threads 1058 // during an inflate() call so any change to that stack memory 1059 // may not propagate to other threads correctly. 1060 } 1061 1062 // Inflate the monitor to set the hash. 1063 1064 // There's no need to inflate if the mark has already got a monitor. 1065 // NOTE: an async deflation can race after we get the monitor and 1066 // before we can update the ObjectMonitor's header with the hash 1067 // value below. 1068 monitor = mark.has_monitor() ? mark.monitor() : inflate(current, obj, inflate_cause_hash_code); 1069 // Load ObjectMonitor's header/dmw field and see if it has a hash. 1070 mark = monitor->header(); 1071 assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1072 hash = mark.hash(); 1073 if (hash == 0) { // if it does not have a hash 1074 hash = get_next_hash(current, obj); // get a new hash 1075 temp = mark.copy_set_hash(hash) ; // merge the hash into header 1076 assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value()); 1077 uintptr_t v = Atomic::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value()); 1078 test = markWord(v); 1079 if (test != mark) { 1080 // The attempt to update the ObjectMonitor's header/dmw field 1081 // did not work. This can happen if another thread managed to 1082 // merge in the hash just before our cmpxchg(). 1083 // If we add any new usages of the header/dmw field, this code 1084 // will need to be updated. 1085 hash = test.hash(); 1086 assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value()); 1087 assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash"); 1088 } 1089 if (monitor->is_being_async_deflated() && !UseObjectMonitorTable) { 1090 // If we detect that async deflation has occurred, then we 1091 // attempt to restore the header/dmw to the object's header 1092 // so that we only retry once if the deflater thread happens 1093 // to be slow. 1094 monitor->install_displaced_markword_in_object(obj); 1095 continue; 1096 } 1097 } 1098 // We finally get the hash. 1099 return hash; 1100 } 1101 } 1102 1103 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current, 1104 Handle h_obj) { 1105 assert(current == JavaThread::current(), "Can only be called on current thread"); 1106 oop obj = h_obj(); 1107 1108 markWord mark = read_stable_mark(obj); 1109 1110 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1111 // stack-locked case, header points into owner's stack 1112 return current->is_lock_owned((address)mark.locker()); 1113 } 1114 1115 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1116 // fast-locking case, see if lock is in current's lock stack 1117 return current->lock_stack().contains(h_obj()); 1118 } 1119 1120 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1121 ObjectMonitor* monitor = read_monitor(current, obj, mark); 1122 if (monitor != nullptr) { 1123 return monitor->is_entered(current) != 0; 1124 } 1125 // Racing with inflation/deflation, retry 1126 mark = obj->mark_acquire(); 1127 1128 if (mark.is_fast_locked()) { 1129 // Some other thread fast_locked, current could not have held the lock 1130 return false; 1131 } 1132 } 1133 1134 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1135 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1136 // The first stage of async deflation does not affect any field 1137 // used by this comparison so the ObjectMonitor* is usable here. 1138 ObjectMonitor* monitor = read_monitor(mark); 1139 return monitor->is_entered(current) != 0; 1140 } 1141 // Unlocked case, header in place 1142 assert(mark.is_unlocked(), "sanity check"); 1143 return false; 1144 } 1145 1146 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) { 1147 oop obj = h_obj(); 1148 markWord mark = read_stable_mark(obj); 1149 1150 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1151 // stack-locked so header points into owner's stack. 1152 // owning_thread_from_monitor_owner() may also return null here: 1153 return Threads::owning_thread_from_monitor_owner(t_list, (address) mark.locker()); 1154 } 1155 1156 if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) { 1157 // fast-locked so get owner from the object. 1158 // owning_thread_from_object() may also return null here: 1159 return Threads::owning_thread_from_object(t_list, h_obj()); 1160 } 1161 1162 while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) { 1163 ObjectMonitor* monitor = read_monitor(Thread::current(), obj, mark); 1164 if (monitor != nullptr) { 1165 return Threads::owning_thread_from_monitor(t_list, monitor); 1166 } 1167 // Racing with inflation/deflation, retry 1168 mark = obj->mark_acquire(); 1169 1170 if (mark.is_fast_locked()) { 1171 // Some other thread fast_locked 1172 return Threads::owning_thread_from_object(t_list, h_obj()); 1173 } 1174 } 1175 1176 if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) { 1177 // Inflated monitor so header points to ObjectMonitor (tagged pointer). 1178 // The first stage of async deflation does not affect any field 1179 // used by this comparison so the ObjectMonitor* is usable here. 1180 ObjectMonitor* monitor = read_monitor(mark); 1181 assert(monitor != nullptr, "monitor should be non-null"); 1182 // owning_thread_from_monitor() may also return null here: 1183 return Threads::owning_thread_from_monitor(t_list, monitor); 1184 } 1185 1186 // Unlocked case, header in place 1187 // Cannot have assertion since this object may have been 1188 // locked by another thread when reaching here. 1189 // assert(mark.is_unlocked(), "sanity check"); 1190 1191 return nullptr; 1192 } 1193 1194 // Visitors ... 1195 1196 // Iterate over all ObjectMonitors. 1197 template <typename Function> 1198 void ObjectSynchronizer::monitors_iterate(Function function) { 1199 MonitorList::Iterator iter = _in_use_list.iterator(); 1200 while (iter.has_next()) { 1201 ObjectMonitor* monitor = iter.next(); 1202 function(monitor); 1203 } 1204 } 1205 1206 // Iterate ObjectMonitors owned by any thread and where the owner `filter` 1207 // returns true. 1208 template <typename OwnerFilter> 1209 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) { 1210 monitors_iterate([&](ObjectMonitor* monitor) { 1211 // This function is only called at a safepoint or when the 1212 // target thread is suspended or when the target thread is 1213 // operating on itself. The current closures in use today are 1214 // only interested in an owned ObjectMonitor and ownership 1215 // cannot be dropped under the calling contexts so the 1216 // ObjectMonitor cannot be async deflated. 1217 if (monitor->has_owner() && filter(monitor->owner_raw())) { 1218 assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating"); 1219 1220 closure->do_monitor(monitor); 1221 } 1222 }); 1223 } 1224 1225 // Iterate ObjectMonitors where the owner == thread; this does NOT include 1226 // ObjectMonitors where owner is set to a stack-lock address in thread. 1227 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) { 1228 auto thread_filter = [&](void* owner) { return owner == thread; }; 1229 return owned_monitors_iterate_filtered(closure, thread_filter); 1230 } 1231 1232 // Iterate ObjectMonitors owned by any thread. 1233 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) { 1234 auto all_filter = [&](void* owner) { return true; }; 1235 return owned_monitors_iterate_filtered(closure, all_filter); 1236 } 1237 1238 static bool monitors_used_above_threshold(MonitorList* list) { 1239 if (MonitorUsedDeflationThreshold == 0) { // disabled case is easy 1240 return false; 1241 } 1242 // Start with ceiling based on a per-thread estimate: 1243 size_t ceiling = ObjectSynchronizer::in_use_list_ceiling(); 1244 size_t old_ceiling = ceiling; 1245 if (ceiling < list->max()) { 1246 // The max used by the system has exceeded the ceiling so use that: 1247 ceiling = list->max(); 1248 } 1249 size_t monitors_used = list->count(); 1250 if (monitors_used == 0) { // empty list is easy 1251 return false; 1252 } 1253 if (NoAsyncDeflationProgressMax != 0 && 1254 _no_progress_cnt >= NoAsyncDeflationProgressMax) { 1255 double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0; 1256 size_t new_ceiling = ceiling / remainder + 1; 1257 ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling); 1258 log_info(monitorinflation)("Too many deflations without progress; " 1259 "bumping in_use_list_ceiling from " SIZE_FORMAT 1260 " to " SIZE_FORMAT, old_ceiling, new_ceiling); 1261 _no_progress_cnt = 0; 1262 ceiling = new_ceiling; 1263 } 1264 1265 // Check if our monitor usage is above the threshold: 1266 size_t monitor_usage = (monitors_used * 100LL) / ceiling; 1267 if (int(monitor_usage) > MonitorUsedDeflationThreshold) { 1268 log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT 1269 ", monitor_usage=" SIZE_FORMAT ", threshold=%d", 1270 monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold); 1271 return true; 1272 } 1273 1274 return false; 1275 } 1276 1277 size_t ObjectSynchronizer::in_use_list_ceiling() { 1278 return _in_use_list_ceiling; 1279 } 1280 1281 void ObjectSynchronizer::dec_in_use_list_ceiling() { 1282 Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1283 } 1284 1285 void ObjectSynchronizer::inc_in_use_list_ceiling() { 1286 Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate); 1287 } 1288 1289 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) { 1290 _in_use_list_ceiling = new_value; 1291 } 1292 1293 bool ObjectSynchronizer::is_async_deflation_needed() { 1294 if (is_async_deflation_requested()) { 1295 // Async deflation request. 1296 log_info(monitorinflation)("Async deflation needed: explicit request"); 1297 return true; 1298 } 1299 1300 jlong time_since_last = time_since_last_async_deflation_ms(); 1301 1302 if (AsyncDeflationInterval > 0 && 1303 time_since_last > AsyncDeflationInterval && 1304 monitors_used_above_threshold(&_in_use_list)) { 1305 // It's been longer than our specified deflate interval and there 1306 // are too many monitors in use. We don't deflate more frequently 1307 // than AsyncDeflationInterval (unless is_async_deflation_requested) 1308 // in order to not swamp the MonitorDeflationThread. 1309 log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold"); 1310 return true; 1311 } 1312 1313 if (GuaranteedAsyncDeflationInterval > 0 && 1314 time_since_last > GuaranteedAsyncDeflationInterval) { 1315 // It's been longer than our specified guaranteed deflate interval. 1316 // We need to clean up the used monitors even if the threshold is 1317 // not reached, to keep the memory utilization at bay when many threads 1318 // touched many monitors. 1319 log_info(monitorinflation)("Async deflation needed: guaranteed interval (" INTX_FORMAT " ms) " 1320 "is greater than time since last deflation (" JLONG_FORMAT " ms)", 1321 GuaranteedAsyncDeflationInterval, time_since_last); 1322 1323 // If this deflation has no progress, then it should not affect the no-progress 1324 // tracking, otherwise threshold heuristics would think it was triggered, experienced 1325 // no progress, and needs to backoff more aggressively. In this "no progress" case, 1326 // the generic code would bump the no-progress counter, and we compensate for that 1327 // by telling it to skip the update. 1328 // 1329 // If this deflation has progress, then it should let non-progress tracking 1330 // know about this, otherwise the threshold heuristics would kick in, potentially 1331 // experience no-progress due to aggressive cleanup by this deflation, and think 1332 // it is still in no-progress stride. In this "progress" case, the generic code would 1333 // zero the counter, and we allow it to happen. 1334 _no_progress_skip_increment = true; 1335 1336 return true; 1337 } 1338 1339 return false; 1340 } 1341 1342 void ObjectSynchronizer::request_deflate_idle_monitors() { 1343 MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag); 1344 set_is_async_deflation_requested(true); 1345 ml.notify_all(); 1346 } 1347 1348 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() { 1349 JavaThread* current = JavaThread::current(); 1350 bool ret_code = false; 1351 1352 jlong last_time = last_async_deflation_time_ns(); 1353 1354 request_deflate_idle_monitors(); 1355 1356 const int N_CHECKS = 5; 1357 for (int i = 0; i < N_CHECKS; i++) { // sleep for at most 5 seconds 1358 if (last_async_deflation_time_ns() > last_time) { 1359 log_info(monitorinflation)("Async Deflation happened after %d check(s).", i); 1360 ret_code = true; 1361 break; 1362 } 1363 { 1364 // JavaThread has to honor the blocking protocol. 1365 ThreadBlockInVM tbivm(current); 1366 os::naked_short_sleep(999); // sleep for almost 1 second 1367 } 1368 } 1369 if (!ret_code) { 1370 log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS); 1371 } 1372 1373 return ret_code; 1374 } 1375 1376 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() { 1377 return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS); 1378 } 1379 1380 static void post_monitor_inflate_event(EventJavaMonitorInflate* event, 1381 const oop obj, 1382 ObjectSynchronizer::InflateCause cause) { 1383 assert(event != nullptr, "invariant"); 1384 event->set_monitorClass(obj->klass()); 1385 event->set_address((uintptr_t)(void*)obj); 1386 event->set_cause((u1)cause); 1387 event->commit(); 1388 } 1389 1390 // Fast path code shared by multiple functions 1391 void ObjectSynchronizer::inflate_helper(oop obj) { 1392 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1393 markWord mark = obj->mark_acquire(); 1394 if (mark.has_monitor()) { 1395 ObjectMonitor* monitor = read_monitor(mark); 1396 markWord dmw = monitor->header(); 1397 assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value()); 1398 return; 1399 } 1400 (void)inflate(Thread::current(), obj, inflate_cause_vm_internal); 1401 } 1402 1403 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) { 1404 assert(current == Thread::current(), "must be"); 1405 assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter"); 1406 return inflate_impl(obj, cause); 1407 } 1408 1409 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) { 1410 assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be"); 1411 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_for"); 1412 return inflate_impl(obj, cause); 1413 } 1414 1415 ObjectMonitor* ObjectSynchronizer::inflate_impl(oop object, const InflateCause cause) { 1416 assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_impl"); 1417 EventJavaMonitorInflate event; 1418 1419 for (;;) { 1420 const markWord mark = object->mark_acquire(); 1421 1422 // The mark can be in one of the following states: 1423 // * inflated - Just return it. 1424 // * stack-locked - Coerce it to inflated from stack-locked. 1425 // * INFLATING - Busy wait for conversion from stack-locked to 1426 // inflated. 1427 // * unlocked - Aggressively inflate the object. 1428 1429 // CASE: inflated 1430 if (mark.has_monitor()) { 1431 ObjectMonitor* inf = mark.monitor(); 1432 markWord dmw = inf->header(); 1433 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1434 return inf; 1435 } 1436 1437 // CASE: inflation in progress - inflating over a stack-lock. 1438 // Some other thread is converting from stack-locked to inflated. 1439 // Only that thread can complete inflation -- other threads must wait. 1440 // The INFLATING value is transient. 1441 // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish. 1442 // We could always eliminate polling by parking the thread on some auxiliary list. 1443 if (mark == markWord::INFLATING()) { 1444 read_stable_mark(object); 1445 continue; 1446 } 1447 1448 // CASE: stack-locked 1449 // Could be stack-locked either by current or by some other thread. 1450 // 1451 // Note that we allocate the ObjectMonitor speculatively, _before_ attempting 1452 // to install INFLATING into the mark word. We originally installed INFLATING, 1453 // allocated the ObjectMonitor, and then finally STed the address of the 1454 // ObjectMonitor into the mark. This was correct, but artificially lengthened 1455 // the interval in which INFLATING appeared in the mark, thus increasing 1456 // the odds of inflation contention. If we lose the race to set INFLATING, 1457 // then we just delete the ObjectMonitor and loop around again. 1458 // 1459 LogStreamHandle(Trace, monitorinflation) lsh; 1460 if (LockingMode == LM_LEGACY && mark.has_locker()) { 1461 ObjectMonitor* m = new ObjectMonitor(object); 1462 // Optimistically prepare the ObjectMonitor - anticipate successful CAS 1463 // We do this before the CAS in order to minimize the length of time 1464 // in which INFLATING appears in the mark. 1465 1466 markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark); 1467 if (cmp != mark) { 1468 delete m; 1469 continue; // Interference -- just retry 1470 } 1471 1472 // We've successfully installed INFLATING (0) into the mark-word. 1473 // This is the only case where 0 will appear in a mark-word. 1474 // Only the singular thread that successfully swings the mark-word 1475 // to 0 can perform (or more precisely, complete) inflation. 1476 // 1477 // Why do we CAS a 0 into the mark-word instead of just CASing the 1478 // mark-word from the stack-locked value directly to the new inflated state? 1479 // Consider what happens when a thread unlocks a stack-locked object. 1480 // It attempts to use CAS to swing the displaced header value from the 1481 // on-stack BasicLock back into the object header. Recall also that the 1482 // header value (hash code, etc) can reside in (a) the object header, or 1483 // (b) a displaced header associated with the stack-lock, or (c) a displaced 1484 // header in an ObjectMonitor. The inflate() routine must copy the header 1485 // value from the BasicLock on the owner's stack to the ObjectMonitor, all 1486 // the while preserving the hashCode stability invariants. If the owner 1487 // decides to release the lock while the value is 0, the unlock will fail 1488 // and control will eventually pass from slow_exit() to inflate. The owner 1489 // will then spin, waiting for the 0 value to disappear. Put another way, 1490 // the 0 causes the owner to stall if the owner happens to try to 1491 // drop the lock (restoring the header from the BasicLock to the object) 1492 // while inflation is in-progress. This protocol avoids races that might 1493 // would otherwise permit hashCode values to change or "flicker" for an object. 1494 // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable. 1495 // 0 serves as a "BUSY" inflate-in-progress indicator. 1496 1497 1498 // fetch the displaced mark from the owner's stack. 1499 // The owner can't die or unwind past the lock while our INFLATING 1500 // object is in the mark. Furthermore the owner can't complete 1501 // an unlock on the object, either. 1502 markWord dmw = mark.displaced_mark_helper(); 1503 // Catch if the object's header is not neutral (not locked and 1504 // not marked is what we care about here). 1505 assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value()); 1506 1507 // Setup monitor fields to proper values -- prepare the monitor 1508 m->set_header(dmw); 1509 1510 // Optimization: if the mark.locker stack address is associated 1511 // with this thread we could simply set m->_owner = current. 1512 // Note that a thread can inflate an object 1513 // that it has stack-locked -- as might happen in wait() -- directly 1514 // with CAS. That is, we can avoid the xchg-nullptr .... ST idiom. 1515 m->set_owner_from(nullptr, mark.locker()); 1516 // TODO-FIXME: assert BasicLock->dhw != 0. 1517 1518 // Must preserve store ordering. The monitor state must 1519 // be stable at the time of publishing the monitor address. 1520 guarantee(object->mark() == markWord::INFLATING(), "invariant"); 1521 // Release semantics so that above set_object() is seen first. 1522 object->release_set_mark(markWord::encode(m)); 1523 1524 // Once ObjectMonitor is configured and the object is associated 1525 // with the ObjectMonitor, it is safe to allow async deflation: 1526 _in_use_list.add(m); 1527 1528 // Hopefully the performance counters are allocated on distinct cache lines 1529 // to avoid false sharing on MP systems ... 1530 OM_PERFDATA_OP(Inflations, inc()); 1531 if (log_is_enabled(Trace, monitorinflation)) { 1532 ResourceMark rm; 1533 lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark=" 1534 INTPTR_FORMAT ", type='%s'", p2i(object), 1535 object->mark().value(), object->klass()->external_name()); 1536 } 1537 if (event.should_commit()) { 1538 post_monitor_inflate_event(&event, object, cause); 1539 } 1540 return m; 1541 } 1542 1543 // CASE: unlocked 1544 // TODO-FIXME: for entry we currently inflate and then try to CAS _owner. 1545 // If we know we're inflating for entry it's better to inflate by swinging a 1546 // pre-locked ObjectMonitor pointer into the object header. A successful 1547 // CAS inflates the object *and* confers ownership to the inflating thread. 1548 // In the current implementation we use a 2-step mechanism where we CAS() 1549 // to inflate and then CAS() again to try to swing _owner from null to current. 1550 // An inflateTry() method that we could call from enter() would be useful. 1551 1552 assert(mark.is_unlocked(), "invariant: header=" INTPTR_FORMAT, mark.value()); 1553 ObjectMonitor* m = new ObjectMonitor(object); 1554 // prepare m for installation - set monitor to initial state 1555 m->set_header(mark); 1556 1557 if (object->cas_set_mark(markWord::encode(m), mark) != mark) { 1558 delete m; 1559 m = nullptr; 1560 continue; 1561 // interference - the markword changed - just retry. 1562 // The state-transitions are one-way, so there's no chance of 1563 // live-lock -- "Inflated" is an absorbing state. 1564 } 1565 1566 // Once the ObjectMonitor is configured and object is associated 1567 // with the ObjectMonitor, it is safe to allow async deflation: 1568 _in_use_list.add(m); 1569 1570 // Hopefully the performance counters are allocated on distinct 1571 // cache lines to avoid false sharing on MP systems ... 1572 OM_PERFDATA_OP(Inflations, inc()); 1573 if (log_is_enabled(Trace, monitorinflation)) { 1574 ResourceMark rm; 1575 lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark=" 1576 INTPTR_FORMAT ", type='%s'", p2i(object), 1577 object->mark().value(), object->klass()->external_name()); 1578 } 1579 if (event.should_commit()) { 1580 post_monitor_inflate_event(&event, object, cause); 1581 } 1582 return m; 1583 } 1584 } 1585 1586 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle 1587 // ObjectMonitors. Returns the number of deflated ObjectMonitors. 1588 // 1589 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) { 1590 MonitorList::Iterator iter = _in_use_list.iterator(); 1591 size_t deflated_count = 0; 1592 Thread* current = Thread::current(); 1593 1594 while (iter.has_next()) { 1595 if (deflated_count >= (size_t)MonitorDeflationMax) { 1596 break; 1597 } 1598 ObjectMonitor* mid = iter.next(); 1599 if (mid->deflate_monitor(current)) { 1600 deflated_count++; 1601 } 1602 1603 // Must check for a safepoint/handshake and honor it. 1604 safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count); 1605 } 1606 1607 return deflated_count; 1608 } 1609 1610 class HandshakeForDeflation : public HandshakeClosure { 1611 public: 1612 HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {} 1613 1614 void do_thread(Thread* thread) { 1615 log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread=" 1616 INTPTR_FORMAT, p2i(thread)); 1617 if (thread->is_Java_thread()) { 1618 // Clear OM cache 1619 JavaThread* jt = JavaThread::cast(thread); 1620 jt->om_clear_monitor_cache(); 1621 } 1622 } 1623 }; 1624 1625 class VM_RendezvousGCThreads : public VM_Operation { 1626 public: 1627 bool evaluate_at_safepoint() const override { return false; } 1628 VMOp_Type type() const override { return VMOp_RendezvousGCThreads; } 1629 void doit() override { 1630 Universe::heap()->safepoint_synchronize_begin(); 1631 Universe::heap()->safepoint_synchronize_end(); 1632 }; 1633 }; 1634 1635 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list, 1636 ObjectMonitorDeflationSafepointer* safepointer) { 1637 NativeHeapTrimmer::SuspendMark sm("monitor deletion"); 1638 size_t deleted_count = 0; 1639 for (ObjectMonitor* monitor: *delete_list) { 1640 delete monitor; 1641 deleted_count++; 1642 // A JavaThread must check for a safepoint/handshake and honor it. 1643 safepointer->block_for_safepoint("deletion", "deleted_count", deleted_count); 1644 } 1645 return deleted_count; 1646 } 1647 1648 class ObjectMonitorDeflationLogging: public StackObj { 1649 LogStreamHandle(Debug, monitorinflation) _debug; 1650 LogStreamHandle(Info, monitorinflation) _info; 1651 LogStream* _stream; 1652 elapsedTimer _timer; 1653 1654 size_t ceiling() const { return ObjectSynchronizer::in_use_list_ceiling(); } 1655 size_t count() const { return ObjectSynchronizer::_in_use_list.count(); } 1656 size_t max() const { return ObjectSynchronizer::_in_use_list.max(); } 1657 1658 public: 1659 ObjectMonitorDeflationLogging() 1660 : _debug(), _info(), _stream(nullptr) { 1661 if (_debug.is_enabled()) { 1662 _stream = &_debug; 1663 } else if (_info.is_enabled()) { 1664 _stream = &_info; 1665 } 1666 } 1667 1668 void begin() { 1669 if (_stream != nullptr) { 1670 _stream->print_cr("begin deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1671 ceiling(), count(), max()); 1672 _timer.start(); 1673 } 1674 } 1675 1676 void before_handshake(size_t unlinked_count) { 1677 if (_stream != nullptr) { 1678 _timer.stop(); 1679 _stream->print_cr("before handshaking: unlinked_count=" SIZE_FORMAT 1680 ", in_use_list stats: ceiling=" SIZE_FORMAT ", count=" 1681 SIZE_FORMAT ", max=" SIZE_FORMAT, 1682 unlinked_count, ceiling(), count(), max()); 1683 } 1684 } 1685 1686 void after_handshake() { 1687 if (_stream != nullptr) { 1688 _stream->print_cr("after handshaking: in_use_list stats: ceiling=" 1689 SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1690 ceiling(), count(), max()); 1691 _timer.start(); 1692 } 1693 } 1694 1695 void end(size_t deflated_count, size_t unlinked_count) { 1696 if (_stream != nullptr) { 1697 _timer.stop(); 1698 if (deflated_count != 0 || unlinked_count != 0 || _debug.is_enabled()) { 1699 _stream->print_cr("deflated_count=" SIZE_FORMAT ", {unlinked,deleted}_count=" SIZE_FORMAT " monitors in %3.7f secs", 1700 deflated_count, unlinked_count, _timer.seconds()); 1701 } 1702 _stream->print_cr("end deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1703 ceiling(), count(), max()); 1704 } 1705 } 1706 1707 void before_block_for_safepoint(const char* op_name, const char* cnt_name, size_t cnt) { 1708 if (_stream != nullptr) { 1709 _timer.stop(); 1710 _stream->print_cr("pausing %s: %s=" SIZE_FORMAT ", in_use_list stats: ceiling=" 1711 SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, 1712 op_name, cnt_name, cnt, ceiling(), count(), max()); 1713 } 1714 } 1715 1716 void after_block_for_safepoint(const char* op_name) { 1717 if (_stream != nullptr) { 1718 _stream->print_cr("resuming %s: in_use_list stats: ceiling=" SIZE_FORMAT 1719 ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, op_name, 1720 ceiling(), count(), max()); 1721 _timer.start(); 1722 } 1723 } 1724 }; 1725 1726 void ObjectMonitorDeflationSafepointer::block_for_safepoint(const char* op_name, const char* count_name, size_t counter) { 1727 if (!SafepointMechanism::should_process(_current)) { 1728 return; 1729 } 1730 1731 // A safepoint/handshake has started. 1732 _log->before_block_for_safepoint(op_name, count_name, counter); 1733 1734 { 1735 // Honor block request. 1736 ThreadBlockInVM tbivm(_current); 1737 } 1738 1739 _log->after_block_for_safepoint(op_name); 1740 } 1741 1742 // This function is called by the MonitorDeflationThread to deflate 1743 // ObjectMonitors. 1744 size_t ObjectSynchronizer::deflate_idle_monitors() { 1745 JavaThread* current = JavaThread::current(); 1746 assert(current->is_monitor_deflation_thread(), "The only monitor deflater"); 1747 1748 // The async deflation request has been processed. 1749 _last_async_deflation_time_ns = os::javaTimeNanos(); 1750 set_is_async_deflation_requested(false); 1751 1752 ObjectMonitorDeflationLogging log; 1753 ObjectMonitorDeflationSafepointer safepointer(current, &log); 1754 1755 log.begin(); 1756 1757 // Deflate some idle ObjectMonitors. 1758 size_t deflated_count = deflate_monitor_list(&safepointer); 1759 1760 // Unlink the deflated ObjectMonitors from the in-use list. 1761 size_t unlinked_count = 0; 1762 size_t deleted_count = 0; 1763 if (deflated_count > 0) { 1764 ResourceMark rm(current); 1765 GrowableArray<ObjectMonitor*> delete_list((int)deflated_count); 1766 unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer); 1767 1768 #ifdef ASSERT 1769 if (UseObjectMonitorTable) { 1770 for (ObjectMonitor* monitor : delete_list) { 1771 assert(!LightweightSynchronizer::contains_monitor(current, monitor), "Should have been removed"); 1772 } 1773 } 1774 #endif 1775 1776 log.before_handshake(unlinked_count); 1777 1778 // A JavaThread needs to handshake in order to safely free the 1779 // ObjectMonitors that were deflated in this cycle. 1780 HandshakeForDeflation hfd_hc; 1781 Handshake::execute(&hfd_hc); 1782 // Also, we sync and desync GC threads around the handshake, so that they can 1783 // safely read the mark-word and look-through to the object-monitor, without 1784 // being afraid that the object-monitor is going away. 1785 VM_RendezvousGCThreads sync_gc; 1786 VMThread::execute(&sync_gc); 1787 1788 log.after_handshake(); 1789 1790 // After the handshake, safely free the ObjectMonitors that were 1791 // deflated and unlinked in this cycle. 1792 1793 // Delete the unlinked ObjectMonitors. 1794 deleted_count = delete_monitors(&delete_list, &safepointer); 1795 assert(unlinked_count == deleted_count, "must be"); 1796 } 1797 1798 log.end(deflated_count, unlinked_count); 1799 1800 OM_PERFDATA_OP(MonExtant, set_value(_in_use_list.count())); 1801 OM_PERFDATA_OP(Deflations, inc(deflated_count)); 1802 1803 GVars.stw_random = os::random(); 1804 1805 if (deflated_count != 0) { 1806 _no_progress_cnt = 0; 1807 } else if (_no_progress_skip_increment) { 1808 _no_progress_skip_increment = false; 1809 } else { 1810 _no_progress_cnt++; 1811 } 1812 1813 return deflated_count; 1814 } 1815 1816 // Monitor cleanup on JavaThread::exit 1817 1818 // Iterate through monitor cache and attempt to release thread's monitors 1819 class ReleaseJavaMonitorsClosure: public MonitorClosure { 1820 private: 1821 JavaThread* _thread; 1822 1823 public: 1824 ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {} 1825 void do_monitor(ObjectMonitor* mid) { 1826 intx rec = mid->complete_exit(_thread); 1827 _thread->dec_held_monitor_count(rec + 1); 1828 } 1829 }; 1830 1831 // Release all inflated monitors owned by current thread. Lightweight monitors are 1832 // ignored. This is meant to be called during JNI thread detach which assumes 1833 // all remaining monitors are heavyweight. All exceptions are swallowed. 1834 // Scanning the extant monitor list can be time consuming. 1835 // A simple optimization is to add a per-thread flag that indicates a thread 1836 // called jni_monitorenter() during its lifetime. 1837 // 1838 // Instead of NoSafepointVerifier it might be cheaper to 1839 // use an idiom of the form: 1840 // auto int tmp = SafepointSynchronize::_safepoint_counter ; 1841 // <code that must not run at safepoint> 1842 // guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ; 1843 // Since the tests are extremely cheap we could leave them enabled 1844 // for normal product builds. 1845 1846 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) { 1847 assert(current == JavaThread::current(), "must be current Java thread"); 1848 NoSafepointVerifier nsv; 1849 ReleaseJavaMonitorsClosure rjmc(current); 1850 ObjectSynchronizer::owned_monitors_iterate(&rjmc, current); 1851 assert(!current->has_pending_exception(), "Should not be possible"); 1852 current->clear_pending_exception(); 1853 assert(current->held_monitor_count() == 0, "Should not be possible"); 1854 // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count. 1855 current->clear_jni_monitor_count(); 1856 } 1857 1858 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) { 1859 switch (cause) { 1860 case inflate_cause_vm_internal: return "VM Internal"; 1861 case inflate_cause_monitor_enter: return "Monitor Enter"; 1862 case inflate_cause_wait: return "Monitor Wait"; 1863 case inflate_cause_notify: return "Monitor Notify"; 1864 case inflate_cause_hash_code: return "Monitor Hash Code"; 1865 case inflate_cause_jni_enter: return "JNI Monitor Enter"; 1866 case inflate_cause_jni_exit: return "JNI Monitor Exit"; 1867 default: 1868 ShouldNotReachHere(); 1869 } 1870 return "Unknown"; 1871 } 1872 1873 //------------------------------------------------------------------------------ 1874 // Debugging code 1875 1876 u_char* ObjectSynchronizer::get_gvars_addr() { 1877 return (u_char*)&GVars; 1878 } 1879 1880 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() { 1881 return (u_char*)&GVars.hc_sequence; 1882 } 1883 1884 size_t ObjectSynchronizer::get_gvars_size() { 1885 return sizeof(SharedGlobals); 1886 } 1887 1888 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() { 1889 return (u_char*)&GVars.stw_random; 1890 } 1891 1892 // Do the final audit and print of ObjectMonitor stats; must be done 1893 // by the VMThread at VM exit time. 1894 void ObjectSynchronizer::do_final_audit_and_print_stats() { 1895 assert(Thread::current()->is_VM_thread(), "sanity check"); 1896 1897 if (is_final_audit()) { // Only do the audit once. 1898 return; 1899 } 1900 set_is_final_audit(); 1901 log_info(monitorinflation)("Starting the final audit."); 1902 1903 if (log_is_enabled(Info, monitorinflation)) { 1904 LogStreamHandle(Info, monitorinflation) ls; 1905 audit_and_print_stats(&ls, true /* on_exit */); 1906 } 1907 } 1908 1909 // This function can be called by the MonitorDeflationThread or it can be called when 1910 // we are trying to exit the VM. The list walker functions can run in parallel with 1911 // the other list operations. 1912 // Calls to this function can be added in various places as a debugging 1913 // aid. 1914 // 1915 void ObjectSynchronizer::audit_and_print_stats(outputStream* ls, bool on_exit) { 1916 int error_cnt = 0; 1917 1918 ls->print_cr("Checking in_use_list:"); 1919 chk_in_use_list(ls, &error_cnt); 1920 1921 if (error_cnt == 0) { 1922 ls->print_cr("No errors found in in_use_list checks."); 1923 } else { 1924 log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt); 1925 } 1926 1927 // When exiting, only log the interesting entries at the Info level. 1928 // When called at intervals by the MonitorDeflationThread, log output 1929 // at the Trace level since there can be a lot of it. 1930 if (!on_exit && log_is_enabled(Trace, monitorinflation)) { 1931 LogStreamHandle(Trace, monitorinflation) ls_tr; 1932 log_in_use_monitor_details(&ls_tr, true /* log_all */); 1933 } else if (on_exit) { 1934 log_in_use_monitor_details(ls, false /* log_all */); 1935 } 1936 1937 ls->flush(); 1938 1939 guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt); 1940 } 1941 1942 // Check the in_use_list; log the results of the checks. 1943 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) { 1944 size_t l_in_use_count = _in_use_list.count(); 1945 size_t l_in_use_max = _in_use_list.max(); 1946 out->print_cr("count=" SIZE_FORMAT ", max=" SIZE_FORMAT, l_in_use_count, 1947 l_in_use_max); 1948 1949 size_t ck_in_use_count = 0; 1950 MonitorList::Iterator iter = _in_use_list.iterator(); 1951 while (iter.has_next()) { 1952 ObjectMonitor* mid = iter.next(); 1953 chk_in_use_entry(mid, out, error_cnt_p); 1954 ck_in_use_count++; 1955 } 1956 1957 if (l_in_use_count == ck_in_use_count) { 1958 out->print_cr("in_use_count=" SIZE_FORMAT " equals ck_in_use_count=" 1959 SIZE_FORMAT, l_in_use_count, ck_in_use_count); 1960 } else { 1961 out->print_cr("WARNING: in_use_count=" SIZE_FORMAT " is not equal to " 1962 "ck_in_use_count=" SIZE_FORMAT, l_in_use_count, 1963 ck_in_use_count); 1964 } 1965 1966 size_t ck_in_use_max = _in_use_list.max(); 1967 if (l_in_use_max == ck_in_use_max) { 1968 out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max=" 1969 SIZE_FORMAT, l_in_use_max, ck_in_use_max); 1970 } else { 1971 out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to " 1972 "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max); 1973 } 1974 } 1975 1976 // Check an in-use monitor entry; log any errors. 1977 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out, 1978 int* error_cnt_p) { 1979 if (n->owner_is_DEFLATER_MARKER()) { 1980 // This could happen when monitor deflation blocks for a safepoint. 1981 return; 1982 } 1983 1984 1985 if (n->metadata() == 0) { 1986 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must " 1987 "have non-null _metadata (header/hash) field.", p2i(n)); 1988 *error_cnt_p = *error_cnt_p + 1; 1989 } 1990 1991 const oop obj = n->object_peek(); 1992 if (obj == nullptr) { 1993 return; 1994 } 1995 1996 const markWord mark = obj->mark(); 1997 if (!mark.has_monitor()) { 1998 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 1999 "object does not think it has a monitor: obj=" 2000 INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n), 2001 p2i(obj), mark.value()); 2002 *error_cnt_p = *error_cnt_p + 1; 2003 return; 2004 } 2005 2006 ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark); 2007 if (n != obj_mon) { 2008 out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's " 2009 "object does not refer to the same monitor: obj=" 2010 INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon=" 2011 INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon)); 2012 *error_cnt_p = *error_cnt_p + 1; 2013 } 2014 } 2015 2016 // Log details about ObjectMonitors on the in_use_list. The 'BHL' 2017 // flags indicate why the entry is in-use, 'object' and 'object type' 2018 // indicate the associated object and its type. 2019 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) { 2020 if (_in_use_list.count() > 0) { 2021 stringStream ss; 2022 out->print_cr("In-use monitor info:"); 2023 out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)"); 2024 out->print_cr("%18s %s %18s %18s", 2025 "monitor", "BHL", "object", "object type"); 2026 out->print_cr("================== === ================== =================="); 2027 2028 auto is_interesting = [&](ObjectMonitor* monitor) { 2029 return log_all || monitor->has_owner() || monitor->is_busy(); 2030 }; 2031 2032 monitors_iterate([&](ObjectMonitor* monitor) { 2033 if (is_interesting(monitor)) { 2034 const oop obj = monitor->object_peek(); 2035 const intptr_t hash = UseObjectMonitorTable ? monitor->hash() : monitor->header().hash(); 2036 ResourceMark rm; 2037 out->print(INTPTR_FORMAT " %d%d%d " INTPTR_FORMAT " %s", p2i(monitor), 2038 monitor->is_busy(), hash != 0, monitor->owner() != nullptr, 2039 p2i(obj), obj == nullptr ? "" : obj->klass()->external_name()); 2040 if (monitor->is_busy()) { 2041 out->print(" (%s)", monitor->is_busy_to_string(&ss)); 2042 ss.reset(); 2043 } 2044 out->cr(); 2045 } 2046 }); 2047 } 2048 2049 out->flush(); 2050 }