1 /*
   2  * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "jfr/jfrEvents.hpp"
  29 #include "logging/log.hpp"
  30 #include "logging/logStream.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/basicLock.inline.hpp"
  39 #include "runtime/frame.inline.hpp"
  40 #include "runtime/globals.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "runtime/handshake.hpp"
  43 #include "runtime/interfaceSupport.inline.hpp"
  44 #include "runtime/javaThread.hpp"
  45 #include "runtime/lightweightSynchronizer.hpp"
  46 #include "runtime/lockStack.inline.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/objectMonitor.hpp"
  49 #include "runtime/objectMonitor.inline.hpp"
  50 #include "runtime/os.inline.hpp"
  51 #include "runtime/osThread.hpp"
  52 #include "runtime/perfData.hpp"
  53 #include "runtime/safepointMechanism.inline.hpp"
  54 #include "runtime/safepointVerifiers.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/synchronizer.inline.hpp"
  58 #include "runtime/threads.hpp"
  59 #include "runtime/timer.hpp"
  60 #include "runtime/trimNativeHeap.hpp"
  61 #include "runtime/vframe.hpp"
  62 #include "runtime/vmThread.hpp"
  63 #include "utilities/align.hpp"
  64 #include "utilities/dtrace.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/globalDefinitions.hpp"
  67 #include "utilities/linkedlist.hpp"
  68 #include "utilities/preserveException.hpp"
  69 
  70 class ObjectMonitorDeflationLogging;
  71 
  72 void MonitorList::add(ObjectMonitor* m) {
  73   ObjectMonitor* head;
  74   do {
  75     head = Atomic::load(&_head);
  76     m->set_next_om(head);
  77   } while (Atomic::cmpxchg(&_head, head, m) != head);
  78 
  79   size_t count = Atomic::add(&_count, 1u);
  80   if (count > max()) {
  81     Atomic::inc(&_max);
  82   }
  83 }
  84 
  85 size_t MonitorList::count() const {
  86   return Atomic::load(&_count);
  87 }
  88 
  89 size_t MonitorList::max() const {
  90   return Atomic::load(&_max);
  91 }
  92 
  93 class ObjectMonitorDeflationSafepointer : public StackObj {
  94   JavaThread* const                    _current;
  95   ObjectMonitorDeflationLogging* const _log;
  96 
  97 public:
  98   ObjectMonitorDeflationSafepointer(JavaThread* current, ObjectMonitorDeflationLogging* log)
  99     : _current(current), _log(log) {}
 100 
 101   void block_for_safepoint(const char* op_name, const char* count_name, size_t counter);
 102 };
 103 
 104 // Walk the in-use list and unlink deflated ObjectMonitors.
 105 // Returns the number of unlinked ObjectMonitors.
 106 size_t MonitorList::unlink_deflated(size_t deflated_count,
 107                                     GrowableArray<ObjectMonitor*>* unlinked_list,
 108                                     ObjectMonitorDeflationSafepointer* safepointer) {
 109   size_t unlinked_count = 0;
 110   ObjectMonitor* prev = nullptr;
 111   ObjectMonitor* m = Atomic::load_acquire(&_head);
 112 
 113   while (m != nullptr) {
 114     if (m->is_being_async_deflated()) {
 115       // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can
 116       // modify the list once per batch. The batch starts at "m".
 117       size_t unlinked_batch = 0;
 118       ObjectMonitor* next = m;
 119       // Look for at most MonitorUnlinkBatch monitors, or the number of
 120       // deflated and not unlinked monitors, whatever comes first.
 121       assert(deflated_count >= unlinked_count, "Sanity: underflow");
 122       size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch);
 123       do {
 124         ObjectMonitor* next_next = next->next_om();
 125         unlinked_batch++;
 126         unlinked_list->append(next);
 127         next = next_next;
 128         if (unlinked_batch >= unlinked_batch_limit) {
 129           // Reached the max batch, so bail out of the gathering loop.
 130           break;
 131         }
 132         if (prev == nullptr && Atomic::load(&_head) != m) {
 133           // Current batch used to be at head, but it is not at head anymore.
 134           // Bail out and figure out where we currently are. This avoids long
 135           // walks searching for new prev during unlink under heavy list inserts.
 136           break;
 137         }
 138       } while (next != nullptr && next->is_being_async_deflated());
 139 
 140       // Unlink the found batch.
 141       if (prev == nullptr) {
 142         // The current batch is the first batch, so there is a chance that it starts at head.
 143         // Optimistically assume no inserts happened, and try to unlink the entire batch from the head.
 144         ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next);
 145         if (prev_head != m) {
 146           // Something must have updated the head. Figure out the actual prev for this batch.
 147           for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) {
 148             prev = n;
 149           }
 150           assert(prev != nullptr, "Should have found the prev for the current batch");
 151           prev->set_next_om(next);
 152         }
 153       } else {
 154         // The current batch is preceded by another batch. This guarantees the current batch
 155         // does not start at head. Unlink the entire current batch without updating the head.
 156         assert(Atomic::load(&_head) != m, "Sanity");
 157         prev->set_next_om(next);
 158       }
 159 
 160       unlinked_count += unlinked_batch;
 161       if (unlinked_count >= deflated_count) {
 162         // Reached the max so bail out of the searching loop.
 163         // There should be no more deflated monitors left.
 164         break;
 165       }
 166       m = next;
 167     } else {
 168       prev = m;
 169       m = m->next_om();
 170     }
 171 
 172     // Must check for a safepoint/handshake and honor it.
 173     safepointer->block_for_safepoint("unlinking", "unlinked_count", unlinked_count);
 174   }
 175 
 176 #ifdef ASSERT
 177   // Invariant: the code above should unlink all deflated monitors.
 178   // The code that runs after this unlinking does not expect deflated monitors.
 179   // Notably, attempting to deflate the already deflated monitor would break.
 180   {
 181     ObjectMonitor* m = Atomic::load_acquire(&_head);
 182     while (m != nullptr) {
 183       assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked");
 184       m = m->next_om();
 185     }
 186   }
 187 #endif
 188 
 189   Atomic::sub(&_count, unlinked_count);
 190   return unlinked_count;
 191 }
 192 
 193 MonitorList::Iterator MonitorList::iterator() const {
 194   return Iterator(Atomic::load_acquire(&_head));
 195 }
 196 
 197 ObjectMonitor* MonitorList::Iterator::next() {
 198   ObjectMonitor* current = _current;
 199   _current = current->next_om();
 200   return current;
 201 }
 202 
 203 // The "core" versions of monitor enter and exit reside in this file.
 204 // The interpreter and compilers contain specialized transliterated
 205 // variants of the enter-exit fast-path operations.  See c2_MacroAssembler_x86.cpp
 206 // fast_lock(...) for instance.  If you make changes here, make sure to modify the
 207 // interpreter, and both C1 and C2 fast-path inline locking code emission.
 208 //
 209 // -----------------------------------------------------------------------------
 210 
 211 #ifdef DTRACE_ENABLED
 212 
 213 // Only bother with this argument setup if dtrace is available
 214 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
 215 
 216 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
 217   char* bytes = nullptr;                                                      \
 218   int len = 0;                                                             \
 219   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
 220   Symbol* klassname = obj->klass()->name();                                \
 221   if (klassname != nullptr) {                                                 \
 222     bytes = (char*)klassname->bytes();                                     \
 223     len = klassname->utf8_length();                                        \
 224   }
 225 
 226 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
 227   {                                                                        \
 228     if (DTraceMonitorProbes) {                                             \
 229       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 230       HOTSPOT_MONITOR_WAIT(jtid,                                           \
 231                            (uintptr_t)(monitor), bytes, len, (millis));    \
 232     }                                                                      \
 233   }
 234 
 235 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
 236 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
 237 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
 238 
 239 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
 240   {                                                                        \
 241     if (DTraceMonitorProbes) {                                             \
 242       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 243       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
 244                                     (uintptr_t)(monitor), bytes, len);     \
 245     }                                                                      \
 246   }
 247 
 248 #else //  ndef DTRACE_ENABLED
 249 
 250 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 251 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 252 
 253 #endif // ndef DTRACE_ENABLED
 254 
 255 // This exists only as a workaround of dtrace bug 6254741
 256 static int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) {
 257   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 258   return 0;
 259 }
 260 
 261 static constexpr size_t inflation_lock_count() {
 262   return 256;
 263 }
 264 
 265 // Static storage for an array of PlatformMutex.
 266 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)];
 267 
 268 static inline PlatformMutex* inflation_lock(size_t index) {
 269   return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]);
 270 }
 271 
 272 void ObjectSynchronizer::initialize() {
 273   for (size_t i = 0; i < inflation_lock_count(); i++) {
 274     ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex();
 275   }
 276   // Start the ceiling with the estimate for one thread.
 277   set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate);
 278 
 279   // Start the timer for deflations, so it does not trigger immediately.
 280   _last_async_deflation_time_ns = os::javaTimeNanos();
 281 
 282   if (LockingMode == LM_LIGHTWEIGHT) {
 283     LightweightSynchronizer::initialize();
 284   }
 285 }
 286 
 287 MonitorList ObjectSynchronizer::_in_use_list;
 288 // monitors_used_above_threshold() policy is as follows:
 289 //
 290 // The ratio of the current _in_use_list count to the ceiling is used
 291 // to determine if we are above MonitorUsedDeflationThreshold and need
 292 // to do an async monitor deflation cycle. The ceiling is increased by
 293 // AvgMonitorsPerThreadEstimate when a thread is added to the system
 294 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is
 295 // removed from the system.
 296 //
 297 // Note: If the _in_use_list max exceeds the ceiling, then
 298 // monitors_used_above_threshold() will use the in_use_list max instead
 299 // of the thread count derived ceiling because we have used more
 300 // ObjectMonitors than the estimated average.
 301 //
 302 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax
 303 // no-progress async monitor deflation cycles in a row, then the ceiling
 304 // is adjusted upwards by monitors_used_above_threshold().
 305 //
 306 // Start the ceiling with the estimate for one thread in initialize()
 307 // which is called after cmd line options are processed.
 308 static size_t _in_use_list_ceiling = 0;
 309 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 310 bool volatile ObjectSynchronizer::_is_final_audit = false;
 311 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 312 static uintx _no_progress_cnt = 0;
 313 static bool _no_progress_skip_increment = false;
 314 
 315 // =====================> Quick functions
 316 
 317 // The quick_* forms are special fast-path variants used to improve
 318 // performance.  In the simplest case, a "quick_*" implementation could
 319 // simply return false, in which case the caller will perform the necessary
 320 // state transitions and call the slow-path form.
 321 // The fast-path is designed to handle frequently arising cases in an efficient
 322 // manner and is just a degenerate "optimistic" variant of the slow-path.
 323 // returns true  -- to indicate the call was satisfied.
 324 // returns false -- to indicate the call needs the services of the slow-path.
 325 // A no-loitering ordinance is in effect for code in the quick_* family
 326 // operators: safepoints or indefinite blocking (blocking that might span a
 327 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 328 // entry.
 329 //
 330 // Consider: An interesting optimization is to have the JIT recognize the
 331 // following common idiom:
 332 //   synchronized (someobj) { .... ; notify(); }
 333 // That is, we find a notify() or notifyAll() call that immediately precedes
 334 // the monitorexit operation.  In that case the JIT could fuse the operations
 335 // into a single notifyAndExit() runtime primitive.
 336 
 337 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) {
 338   assert(current->thread_state() == _thread_in_Java, "invariant");
 339   NoSafepointVerifier nsv;
 340   if (obj == nullptr) return false;  // slow-path for invalid obj
 341   const markWord mark = obj->mark();
 342 
 343   if (LockingMode == LM_LIGHTWEIGHT) {
 344     if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) {
 345       // Degenerate notify
 346       // fast-locked by caller so by definition the implied waitset is empty.
 347       return true;
 348     }
 349   } else if (LockingMode == LM_LEGACY) {
 350     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 351       // Degenerate notify
 352       // stack-locked by caller so by definition the implied waitset is empty.
 353       return true;
 354     }
 355   }
 356 
 357   if (mark.has_monitor()) {
 358     ObjectMonitor* const mon = read_monitor(current, obj, mark);
 359     if (LockingMode == LM_LIGHTWEIGHT && mon == nullptr) {
 360       // Racing with inflation/deflation go slow path
 361       return false;
 362     }
 363     assert(mon->object() == oop(obj), "invariant");
 364     if (mon->owner() != current) return false;  // slow-path for IMS exception
 365 
 366     if (mon->first_waiter() != nullptr) {
 367       // We have one or more waiters. Since this is an inflated monitor
 368       // that we own, we can transfer one or more threads from the waitset
 369       // to the entrylist here and now, avoiding the slow-path.
 370       if (all) {
 371         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current);
 372       } else {
 373         DTRACE_MONITOR_PROBE(notify, mon, obj, current);
 374       }
 375       int free_count = 0;
 376       do {
 377         mon->INotify(current);
 378         ++free_count;
 379       } while (mon->first_waiter() != nullptr && all);
 380       OM_PERFDATA_OP(Notifications, inc(free_count));
 381     }
 382     return true;
 383   }
 384 
 385   // other IMS exception states take the slow-path
 386   return false;
 387 }
 388 
 389 static bool useHeavyMonitors() {
 390 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390)
 391   return LockingMode == LM_MONITOR;
 392 #else
 393   return false;
 394 #endif
 395 }
 396 
 397 // The LockNode emitted directly at the synchronization site would have
 398 // been too big if it were to have included support for the cases of inflated
 399 // recursive enter and exit, so they go here instead.
 400 // Note that we can't safely call AsyncPrintJavaStack() from within
 401 // quick_enter() as our thread state remains _in_Java.
 402 
 403 bool ObjectSynchronizer::quick_enter_legacy(oop obj, JavaThread* current,
 404                                      BasicLock * lock) {
 405   assert(current->thread_state() == _thread_in_Java, "invariant");
 406 
 407   if (useHeavyMonitors()) {
 408     return false;  // Slow path
 409   }
 410 
 411   if (LockingMode == LM_LIGHTWEIGHT) {
 412     return LightweightSynchronizer::quick_enter(obj, current, lock);
 413   }
 414 
 415   assert(LockingMode == LM_LEGACY, "legacy mode below");
 416 
 417   const markWord mark = obj->mark();
 418 
 419   if (mark.has_monitor()) {
 420 
 421     ObjectMonitor* const m = read_monitor(mark);
 422     // An async deflation or GC can race us before we manage to make
 423     // the ObjectMonitor busy by setting the owner below. If we detect
 424     // that race we just bail out to the slow-path here.
 425     if (m->object_peek() == nullptr) {
 426       return false;
 427     }
 428     JavaThread* const owner = static_cast<JavaThread*>(m->owner_raw());
 429 
 430     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 431     // and observability
 432     // Case: light contention possibly amenable to TLE
 433     // Case: TLE inimical operations such as nested/recursive synchronization
 434 
 435     if (owner == current) {
 436       m->_recursions++;
 437       current->inc_held_monitor_count();
 438       return true;
 439     }
 440 
 441     // This Java Monitor is inflated so obj's header will never be
 442     // displaced to this thread's BasicLock. Make the displaced header
 443     // non-null so this BasicLock is not seen as recursive nor as
 444     // being locked. We do this unconditionally so that this thread's
 445     // BasicLock cannot be mis-interpreted by any stack walkers. For
 446     // performance reasons, stack walkers generally first check for
 447     // stack-locking in the object's header, the second check is for
 448     // recursive stack-locking in the displaced header in the BasicLock,
 449     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 450     lock->set_displaced_header(markWord::unused_mark());
 451 
 452     if (owner == nullptr && m->try_set_owner_from(nullptr, current) == nullptr) {
 453       assert(m->_recursions == 0, "invariant");
 454       current->inc_held_monitor_count();
 455       return true;
 456     }
 457   }
 458 
 459   // Note that we could inflate in quick_enter.
 460   // This is likely a useful optimization
 461   // Critically, in quick_enter() we must not:
 462   // -- block indefinitely, or
 463   // -- reach a safepoint
 464 
 465   return false;        // revert to slow-path
 466 }
 467 
 468 // Handle notifications when synchronizing on value based classes
 469 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) {
 470   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 471   frame last_frame = locking_thread->last_frame();
 472   bool bcp_was_adjusted = false;
 473   // Don't decrement bcp if it points to the frame's first instruction.  This happens when
 474   // handle_sync_on_value_based_class() is called because of a synchronized method.  There
 475   // is no actual monitorenter instruction in the byte code in this case.
 476   if (last_frame.is_interpreted_frame() &&
 477       (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) {
 478     // adjust bcp to point back to monitorenter so that we print the correct line numbers
 479     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1);
 480     bcp_was_adjusted = true;
 481   }
 482 
 483   if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) {
 484     ResourceMark rm;
 485     stringStream ss;
 486     locking_thread->print_active_stack_on(&ss);
 487     char* base = (char*)strstr(ss.base(), "at");
 488     char* newline = (char*)strchr(ss.base(), '\n');
 489     if (newline != nullptr) {
 490       *newline = '\0';
 491     }
 492     fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base);
 493   } else {
 494     assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses");
 495     ResourceMark rm;
 496     Log(valuebasedclasses) vblog;
 497 
 498     vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name());
 499     if (locking_thread->has_last_Java_frame()) {
 500       LogStream info_stream(vblog.info());
 501       locking_thread->print_active_stack_on(&info_stream);
 502     } else {
 503       vblog.info("Cannot find the last Java frame");
 504     }
 505 
 506     EventSyncOnValueBasedClass event;
 507     if (event.should_commit()) {
 508       event.set_valueBasedClass(obj->klass());
 509       event.commit();
 510     }
 511   }
 512 
 513   if (bcp_was_adjusted) {
 514     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1);
 515   }
 516 }
 517 
 518 // -----------------------------------------------------------------------------
 519 // Monitor Enter/Exit
 520 
 521 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
 522   // When called with locking_thread != Thread::current() some mechanism must synchronize
 523   // the locking_thread with respect to the current thread. Currently only used when
 524   // deoptimizing and re-locking locks. See Deoptimization::relock_objects
 525   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 526 
 527   if (LockingMode == LM_LIGHTWEIGHT) {
 528     return LightweightSynchronizer::enter_for(obj, lock, locking_thread);
 529   }
 530 
 531   if (!enter_fast_impl(obj, lock, locking_thread)) {
 532     // Inflated ObjectMonitor::enter_for is required
 533 
 534     // An async deflation can race after the inflate_for() call and before
 535     // enter_for() can make the ObjectMonitor busy. enter_for() returns false
 536     // if we have lost the race to async deflation and we simply try again.
 537     while (true) {
 538       ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter);
 539       if (monitor->enter_for(locking_thread)) {
 540         return;
 541       }
 542       assert(monitor->is_being_async_deflated(), "must be");
 543     }
 544   }
 545 }
 546 
 547 void ObjectSynchronizer::enter_legacy(Handle obj, BasicLock* lock, JavaThread* current) {
 548   if (!enter_fast_impl(obj, lock, current)) {
 549     // Inflated ObjectMonitor::enter is required
 550 
 551     // An async deflation can race after the inflate() call and before
 552     // enter() can make the ObjectMonitor busy. enter() returns false if
 553     // we have lost the race to async deflation and we simply try again.
 554     while (true) {
 555       ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter);
 556       if (monitor->enter(current)) {
 557         return;
 558       }
 559     }
 560   }
 561 }
 562 
 563 // The interpreter and compiler assembly code tries to lock using the fast path
 564 // of this algorithm. Make sure to update that code if the following function is
 565 // changed. The implementation is extremely sensitive to race condition. Be careful.
 566 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
 567   assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer");
 568 
 569   if (obj->klass()->is_value_based()) {
 570     handle_sync_on_value_based_class(obj, locking_thread);
 571   }
 572 
 573   locking_thread->inc_held_monitor_count();
 574 
 575   if (!useHeavyMonitors()) {
 576     if (LockingMode == LM_LEGACY) {
 577       markWord mark = obj->mark();
 578       if (mark.is_unlocked()) {
 579         // Anticipate successful CAS -- the ST of the displaced mark must
 580         // be visible <= the ST performed by the CAS.
 581         lock->set_displaced_header(mark);
 582         if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 583           return true;
 584         }
 585       } else if (mark.has_locker() &&
 586                  locking_thread->is_lock_owned((address) mark.locker())) {
 587         assert(lock != mark.locker(), "must not re-lock the same lock");
 588         assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock");
 589         lock->set_displaced_header(markWord::from_pointer(nullptr));
 590         return true;
 591       }
 592 
 593       // The object header will never be displaced to this lock,
 594       // so it does not matter what the value is, except that it
 595       // must be non-zero to avoid looking like a re-entrant lock,
 596       // and must not look locked either.
 597       lock->set_displaced_header(markWord::unused_mark());
 598 
 599       // Failed to fast lock.
 600       return false;
 601     }
 602   } else if (VerifyHeavyMonitors) {
 603     guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 604   }
 605 
 606   return false;
 607 }
 608 
 609 void ObjectSynchronizer::exit_legacy(oop object, BasicLock* lock, JavaThread* current) {
 610   assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer");
 611 
 612   if (!useHeavyMonitors()) {
 613     markWord mark = object->mark();
 614     if (LockingMode == LM_LEGACY) {
 615       markWord dhw = lock->displaced_header();
 616       if (dhw.value() == 0) {
 617         // If the displaced header is null, then this exit matches up with
 618         // a recursive enter. No real work to do here except for diagnostics.
 619 #ifndef PRODUCT
 620         if (mark != markWord::INFLATING()) {
 621           // Only do diagnostics if we are not racing an inflation. Simply
 622           // exiting a recursive enter of a Java Monitor that is being
 623           // inflated is safe; see the has_monitor() comment below.
 624           assert(!mark.is_unlocked(), "invariant");
 625           assert(!mark.has_locker() ||
 626                  current->is_lock_owned((address)mark.locker()), "invariant");
 627           if (mark.has_monitor()) {
 628             // The BasicLock's displaced_header is marked as a recursive
 629             // enter and we have an inflated Java Monitor (ObjectMonitor).
 630             // This is a special case where the Java Monitor was inflated
 631             // after this thread entered the stack-lock recursively. When a
 632             // Java Monitor is inflated, we cannot safely walk the Java
 633             // Monitor owner's stack and update the BasicLocks because a
 634             // Java Monitor can be asynchronously inflated by a thread that
 635             // does not own the Java Monitor.
 636             ObjectMonitor* m = read_monitor(mark);
 637             assert(m->object()->mark() == mark, "invariant");
 638             assert(m->is_entered(current), "invariant");
 639           }
 640         }
 641 #endif
 642         return;
 643       }
 644 
 645       if (mark == markWord::from_pointer(lock)) {
 646         // If the object is stack-locked by the current thread, try to
 647         // swing the displaced header from the BasicLock back to the mark.
 648         assert(dhw.is_neutral(), "invariant");
 649         if (object->cas_set_mark(dhw, mark) == mark) {
 650           return;
 651         }
 652       }
 653     }
 654   } else if (VerifyHeavyMonitors) {
 655     guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 656   }
 657 
 658   // We have to take the slow-path of possible inflation and then exit.
 659   // The ObjectMonitor* can't be async deflated until ownership is
 660   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 661   ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal);
 662   assert(!monitor->is_owner_anonymous(), "must not be");
 663   monitor->exit(current);
 664 }
 665 
 666 // -----------------------------------------------------------------------------
 667 // JNI locks on java objects
 668 // NOTE: must use heavy weight monitor to handle jni monitor enter
 669 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) {
 670   if (obj->klass()->is_value_based()) {
 671     handle_sync_on_value_based_class(obj, current);
 672   }
 673 
 674   // the current locking is from JNI instead of Java code
 675   current->set_current_pending_monitor_is_from_java(false);
 676   // An async deflation can race after the inflate() call and before
 677   // enter() can make the ObjectMonitor busy. enter() returns false if
 678   // we have lost the race to async deflation and we simply try again.
 679   while (true) {
 680     ObjectMonitor* monitor;
 681     bool entered;
 682     if (LockingMode == LM_LIGHTWEIGHT) {
 683       entered = LightweightSynchronizer::inflate_and_enter(obj(), current, current, inflate_cause_jni_enter) != nullptr;
 684     } else {
 685       monitor = inflate(current, obj(), inflate_cause_jni_enter);
 686       entered = monitor->enter(current);
 687     }
 688 
 689     if (entered) {
 690       current->inc_held_monitor_count(1, true);
 691       break;
 692     }
 693   }
 694   current->set_current_pending_monitor_is_from_java(true);
 695 }
 696 
 697 // NOTE: must use heavy weight monitor to handle jni monitor exit
 698 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) {
 699   JavaThread* current = THREAD;
 700 
 701   ObjectMonitor* monitor;
 702   if (LockingMode == LM_LIGHTWEIGHT) {
 703     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK);
 704   } else {
 705     // The ObjectMonitor* can't be async deflated until ownership is
 706     // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 707     monitor = inflate(current, obj, inflate_cause_jni_exit);
 708   }
 709   // If this thread has locked the object, exit the monitor. We
 710   // intentionally do not use CHECK on check_owner because we must exit the
 711   // monitor even if an exception was already pending.
 712   if (monitor->check_owner(THREAD)) {
 713     monitor->exit(current);
 714     current->dec_held_monitor_count(1, true);
 715   }
 716 }
 717 
 718 // -----------------------------------------------------------------------------
 719 // Internal VM locks on java objects
 720 // standard constructor, allows locking failures
 721 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) {
 722   _thread = thread;
 723   _thread->check_for_valid_safepoint_state();
 724   _obj = obj;
 725 
 726   if (_obj() != nullptr) {
 727     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 728   }
 729 }
 730 
 731 ObjectLocker::~ObjectLocker() {
 732   if (_obj() != nullptr) {
 733     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 734   }
 735 }
 736 
 737 
 738 // -----------------------------------------------------------------------------
 739 //  Wait/Notify/NotifyAll
 740 // NOTE: must use heavy weight monitor to handle wait()
 741 
 742 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 743   JavaThread* current = THREAD;
 744   if (millis < 0) {
 745     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 746   }
 747 
 748   ObjectMonitor* monitor;
 749   if (LockingMode == LM_LIGHTWEIGHT) {
 750     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0);
 751   } else {
 752     // The ObjectMonitor* can't be async deflated because the _waiters
 753     // field is incremented before ownership is dropped and decremented
 754     // after ownership is regained.
 755     monitor = inflate(current, obj(), inflate_cause_wait);
 756   }
 757 
 758   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis);
 759   monitor->wait(millis, true, THREAD); // Not CHECK as we need following code
 760 
 761   // This dummy call is in place to get around dtrace bug 6254741.  Once
 762   // that's fixed we can uncomment the following line, remove the call
 763   // and change this function back into a "void" func.
 764   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 765   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 766   return ret_code;
 767 }
 768 
 769 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 770   JavaThread* current = THREAD;
 771 
 772   markWord mark = obj->mark();
 773   if (LockingMode == LM_LIGHTWEIGHT) {
 774     if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 775       // Not inflated so there can't be any waiters to notify.
 776       return;
 777     }
 778   } else if (LockingMode == LM_LEGACY) {
 779     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 780       // Not inflated so there can't be any waiters to notify.
 781       return;
 782     }
 783   }
 784 
 785   ObjectMonitor* monitor;
 786   if (LockingMode == LM_LIGHTWEIGHT) {
 787     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK);
 788   } else {
 789     // The ObjectMonitor* can't be async deflated until ownership is
 790     // dropped by the calling thread.
 791     monitor = inflate(current, obj(), inflate_cause_notify);
 792   }
 793   monitor->notify(CHECK);
 794 }
 795 
 796 // NOTE: see comment of notify()
 797 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 798   JavaThread* current = THREAD;
 799 
 800   markWord mark = obj->mark();
 801   if (LockingMode == LM_LIGHTWEIGHT) {
 802     if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 803       // Not inflated so there can't be any waiters to notify.
 804       return;
 805     }
 806   } else if (LockingMode == LM_LEGACY) {
 807     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 808       // Not inflated so there can't be any waiters to notify.
 809       return;
 810     }
 811   }
 812 
 813   ObjectMonitor* monitor;
 814   if (LockingMode == LM_LIGHTWEIGHT) {
 815     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK);
 816   } else {
 817     // The ObjectMonitor* can't be async deflated until ownership is
 818     // dropped by the calling thread.
 819     monitor = inflate(current, obj(), inflate_cause_notify);
 820   }
 821   monitor->notifyAll(CHECK);
 822 }
 823 
 824 // -----------------------------------------------------------------------------
 825 // Hash Code handling
 826 
 827 struct SharedGlobals {
 828   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 829   // This is a highly shared mostly-read variable.
 830   // To avoid false-sharing it needs to be the sole occupant of a cache line.
 831   volatile int stw_random;
 832   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 833   // Hot RW variable -- Sequester to avoid false-sharing
 834   volatile int hc_sequence;
 835   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 836 };
 837 
 838 static SharedGlobals GVars;
 839 
 840 static markWord read_stable_mark(oop obj) {
 841   markWord mark = obj->mark_acquire();
 842   if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) {
 843     // New lightweight locking does not use the markWord::INFLATING() protocol.
 844     return mark;       // normal fast-path return
 845   }
 846 
 847   int its = 0;
 848   for (;;) {
 849     markWord mark = obj->mark_acquire();
 850     if (!mark.is_being_inflated()) {
 851       return mark;    // normal fast-path return
 852     }
 853 
 854     // The object is being inflated by some other thread.
 855     // The caller of read_stable_mark() must wait for inflation to complete.
 856     // Avoid live-lock.
 857 
 858     ++its;
 859     if (its > 10000 || !os::is_MP()) {
 860       if (its & 1) {
 861         os::naked_yield();
 862       } else {
 863         // Note that the following code attenuates the livelock problem but is not
 864         // a complete remedy.  A more complete solution would require that the inflating
 865         // thread hold the associated inflation lock.  The following code simply restricts
 866         // the number of spinners to at most one.  We'll have N-2 threads blocked
 867         // on the inflationlock, 1 thread holding the inflation lock and using
 868         // a yield/park strategy, and 1 thread in the midst of inflation.
 869         // A more refined approach would be to change the encoding of INFLATING
 870         // to allow encapsulation of a native thread pointer.  Threads waiting for
 871         // inflation to complete would use CAS to push themselves onto a singly linked
 872         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 873         // and calling park().  When inflation was complete the thread that accomplished inflation
 874         // would detach the list and set the markword to inflated with a single CAS and
 875         // then for each thread on the list, set the flag and unpark() the thread.
 876 
 877         // Index into the lock array based on the current object address.
 878         static_assert(is_power_of_2(inflation_lock_count()), "must be");
 879         size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1);
 880         int YieldThenBlock = 0;
 881         assert(ix < inflation_lock_count(), "invariant");
 882         inflation_lock(ix)->lock();
 883         while (obj->mark_acquire() == markWord::INFLATING()) {
 884           // Beware: naked_yield() is advisory and has almost no effect on some platforms
 885           // so we periodically call current->_ParkEvent->park(1).
 886           // We use a mixed spin/yield/block mechanism.
 887           if ((YieldThenBlock++) >= 16) {
 888             Thread::current()->_ParkEvent->park(1);
 889           } else {
 890             os::naked_yield();
 891           }
 892         }
 893         inflation_lock(ix)->unlock();
 894       }
 895     } else {
 896       SpinPause();       // SMP-polite spinning
 897     }
 898   }
 899 }
 900 
 901 // hashCode() generation :
 902 //
 903 // Possibilities:
 904 // * MD5Digest of {obj,stw_random}
 905 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 906 // * A DES- or AES-style SBox[] mechanism
 907 // * One of the Phi-based schemes, such as:
 908 //   2654435761 = 2^32 * Phi (golden ratio)
 909 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 910 // * A variation of Marsaglia's shift-xor RNG scheme.
 911 // * (obj ^ stw_random) is appealing, but can result
 912 //   in undesirable regularity in the hashCode values of adjacent objects
 913 //   (objects allocated back-to-back, in particular).  This could potentially
 914 //   result in hashtable collisions and reduced hashtable efficiency.
 915 //   There are simple ways to "diffuse" the middle address bits over the
 916 //   generated hashCode values:
 917 
 918 static intptr_t get_next_hash(Thread* current, oop obj) {
 919   intptr_t value = 0;
 920   if (hashCode == 0) {
 921     // This form uses global Park-Miller RNG.
 922     // On MP system we'll have lots of RW access to a global, so the
 923     // mechanism induces lots of coherency traffic.
 924     value = os::random();
 925   } else if (hashCode == 1) {
 926     // This variation has the property of being stable (idempotent)
 927     // between STW operations.  This can be useful in some of the 1-0
 928     // synchronization schemes.
 929     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 930     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 931   } else if (hashCode == 2) {
 932     value = 1;            // for sensitivity testing
 933   } else if (hashCode == 3) {
 934     value = ++GVars.hc_sequence;
 935   } else if (hashCode == 4) {
 936     value = cast_from_oop<intptr_t>(obj);
 937   } else {
 938     // Marsaglia's xor-shift scheme with thread-specific state
 939     // This is probably the best overall implementation -- we'll
 940     // likely make this the default in future releases.
 941     unsigned t = current->_hashStateX;
 942     t ^= (t << 11);
 943     current->_hashStateX = current->_hashStateY;
 944     current->_hashStateY = current->_hashStateZ;
 945     current->_hashStateZ = current->_hashStateW;
 946     unsigned v = current->_hashStateW;
 947     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 948     current->_hashStateW = v;
 949     value = v;
 950   }
 951 
 952   value &= UseCompactObjectHeaders ? markWord::hash_mask_compact : markWord::hash_mask;
 953   if (value == 0) value = 0xBAD;
 954   assert(value != markWord::no_hash, "invariant");
 955   return value;
 956 }
 957 
 958 static intptr_t install_hash_code(Thread* current, oop obj) {
 959   assert(UseObjectMonitorTable && LockingMode == LM_LIGHTWEIGHT, "must be");
 960 
 961   markWord mark = obj->mark_acquire();
 962   for(;;) {
 963     intptr_t hash = mark.hash();
 964     if (hash != 0) {
 965       return hash;
 966     }
 967 
 968     hash = get_next_hash(current, obj);
 969     const markWord old_mark = mark;
 970     const markWord new_mark = old_mark.copy_set_hash(hash);
 971 
 972     mark = obj->cas_set_mark(new_mark, old_mark);
 973     if (old_mark == mark) {
 974       return hash;
 975     }
 976   }
 977 }
 978 
 979 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) {
 980   // Since the monitor isn't in the object header, it can simply be installed.
 981   if (UseObjectMonitorTable) {
 982     return install_hash_code(current, obj);
 983   }
 984 
 985   while (true) {
 986     ObjectMonitor* monitor = nullptr;
 987     markWord temp, test;
 988     intptr_t hash;
 989     markWord mark = read_stable_mark(obj);
 990     if (VerifyHeavyMonitors) {
 991       assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)");
 992       guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 993     }
 994     if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) {
 995       hash = mark.hash();
 996       if (hash != 0) {                     // if it has a hash, just return it
 997         return hash;
 998       }
 999       hash = get_next_hash(current, obj);  // get a new hash
1000       temp = mark.copy_set_hash(hash);     // merge the hash into header
1001                                            // try to install the hash
1002       test = obj->cas_set_mark(temp, mark);
1003       if (test == mark) {                  // if the hash was installed, return it
1004         return hash;
1005       }
1006       if (LockingMode == LM_LIGHTWEIGHT) {
1007         // CAS failed, retry
1008         continue;
1009       }
1010       // Failed to install the hash. It could be that another thread
1011       // installed the hash just before our attempt or inflation has
1012       // occurred or... so we fall thru to inflate the monitor for
1013       // stability and then install the hash.
1014     } else if (mark.has_monitor()) {
1015       monitor = mark.monitor();
1016       temp = monitor->header();
1017       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1018       hash = temp.hash();
1019       if (hash != 0) {
1020         // It has a hash.
1021 
1022         // Separate load of dmw/header above from the loads in
1023         // is_being_async_deflated().
1024 
1025         // dmw/header and _contentions may get written by different threads.
1026         // Make sure to observe them in the same order when having several observers.
1027         OrderAccess::loadload_for_IRIW();
1028 
1029         if (monitor->is_being_async_deflated()) {
1030           // But we can't safely use the hash if we detect that async
1031           // deflation has occurred. So we attempt to restore the
1032           // header/dmw to the object's header so that we only retry
1033           // once if the deflater thread happens to be slow.
1034           monitor->install_displaced_markword_in_object(obj);
1035           continue;
1036         }
1037         return hash;
1038       }
1039       // Fall thru so we only have one place that installs the hash in
1040       // the ObjectMonitor.
1041     } else if (LockingMode == LM_LEGACY && mark.has_locker()
1042                && current->is_Java_thread()
1043                && JavaThread::cast(current)->is_lock_owned((address)mark.locker())) {
1044       // This is a stack-lock owned by the calling thread so fetch the
1045       // displaced markWord from the BasicLock on the stack.
1046       temp = mark.displaced_mark_helper();
1047       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1048       hash = temp.hash();
1049       if (hash != 0) {                  // if it has a hash, just return it
1050         return hash;
1051       }
1052       // WARNING:
1053       // The displaced header in the BasicLock on a thread's stack
1054       // is strictly immutable. It CANNOT be changed in ANY cases.
1055       // So we have to inflate the stack-lock into an ObjectMonitor
1056       // even if the current thread owns the lock. The BasicLock on
1057       // a thread's stack can be asynchronously read by other threads
1058       // during an inflate() call so any change to that stack memory
1059       // may not propagate to other threads correctly.
1060     }
1061 
1062     // Inflate the monitor to set the hash.
1063 
1064     // There's no need to inflate if the mark has already got a monitor.
1065     // NOTE: an async deflation can race after we get the monitor and
1066     // before we can update the ObjectMonitor's header with the hash
1067     // value below.
1068     monitor = mark.has_monitor() ? mark.monitor() : inflate(current, obj, inflate_cause_hash_code);
1069     // Load ObjectMonitor's header/dmw field and see if it has a hash.
1070     mark = monitor->header();
1071     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1072     hash = mark.hash();
1073     if (hash == 0) {                       // if it does not have a hash
1074       hash = get_next_hash(current, obj);  // get a new hash
1075       temp = mark.copy_set_hash(hash)   ;  // merge the hash into header
1076       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1077       uintptr_t v = Atomic::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value());
1078       test = markWord(v);
1079       if (test != mark) {
1080         // The attempt to update the ObjectMonitor's header/dmw field
1081         // did not work. This can happen if another thread managed to
1082         // merge in the hash just before our cmpxchg().
1083         // If we add any new usages of the header/dmw field, this code
1084         // will need to be updated.
1085         hash = test.hash();
1086         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
1087         assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
1088       }
1089       if (monitor->is_being_async_deflated() && !UseObjectMonitorTable) {
1090         // If we detect that async deflation has occurred, then we
1091         // attempt to restore the header/dmw to the object's header
1092         // so that we only retry once if the deflater thread happens
1093         // to be slow.
1094         monitor->install_displaced_markword_in_object(obj);
1095         continue;
1096       }
1097     }
1098     // We finally get the hash.
1099     return hash;
1100   }
1101 }
1102 
1103 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current,
1104                                                    Handle h_obj) {
1105   assert(current == JavaThread::current(), "Can only be called on current thread");
1106   oop obj = h_obj();
1107 
1108   markWord mark = read_stable_mark(obj);
1109 
1110   if (LockingMode == LM_LEGACY && mark.has_locker()) {
1111     // stack-locked case, header points into owner's stack
1112     return current->is_lock_owned((address)mark.locker());
1113   }
1114 
1115   if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1116     // fast-locking case, see if lock is in current's lock stack
1117     return current->lock_stack().contains(h_obj());
1118   }
1119 
1120   while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) {
1121     ObjectMonitor* monitor = read_monitor(current, obj, mark);
1122     if (monitor != nullptr) {
1123       return monitor->is_entered(current) != 0;
1124     }
1125     // Racing with inflation/deflation, retry
1126     mark = obj->mark_acquire();
1127 
1128     if (mark.is_fast_locked()) {
1129       // Some other thread fast_locked, current could not have held the lock
1130       return false;
1131     }
1132   }
1133 
1134   if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) {
1135     // Inflated monitor so header points to ObjectMonitor (tagged pointer).
1136     // The first stage of async deflation does not affect any field
1137     // used by this comparison so the ObjectMonitor* is usable here.
1138     ObjectMonitor* monitor = read_monitor(mark);
1139     return monitor->is_entered(current) != 0;
1140   }
1141   // Unlocked case, header in place
1142   assert(mark.is_unlocked(), "sanity check");
1143   return false;
1144 }
1145 
1146 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
1147   oop obj = h_obj();
1148   markWord mark = read_stable_mark(obj);
1149 
1150   if (LockingMode == LM_LEGACY && mark.has_locker()) {
1151     // stack-locked so header points into owner's stack.
1152     // owning_thread_from_monitor_owner() may also return null here:
1153     return Threads::owning_thread_from_monitor_owner(t_list, (address) mark.locker());
1154   }
1155 
1156   if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1157     // fast-locked so get owner from the object.
1158     // owning_thread_from_object() may also return null here:
1159     return Threads::owning_thread_from_object(t_list, h_obj());
1160   }
1161 
1162   while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) {
1163     ObjectMonitor* monitor = read_monitor(Thread::current(), obj, mark);
1164     if (monitor != nullptr) {
1165       return Threads::owning_thread_from_monitor(t_list, monitor);
1166     }
1167     // Racing with inflation/deflation, retry
1168     mark = obj->mark_acquire();
1169 
1170     if (mark.is_fast_locked()) {
1171       // Some other thread fast_locked
1172       return Threads::owning_thread_from_object(t_list, h_obj());
1173     }
1174   }
1175 
1176   if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) {
1177     // Inflated monitor so header points to ObjectMonitor (tagged pointer).
1178     // The first stage of async deflation does not affect any field
1179     // used by this comparison so the ObjectMonitor* is usable here.
1180     ObjectMonitor* monitor = read_monitor(mark);
1181     assert(monitor != nullptr, "monitor should be non-null");
1182     // owning_thread_from_monitor() may also return null here:
1183     return Threads::owning_thread_from_monitor(t_list, monitor);
1184   }
1185 
1186   // Unlocked case, header in place
1187   // Cannot have assertion since this object may have been
1188   // locked by another thread when reaching here.
1189   // assert(mark.is_unlocked(), "sanity check");
1190 
1191   return nullptr;
1192 }
1193 
1194 // Visitors ...
1195 
1196 // Iterate over all ObjectMonitors.
1197 template <typename Function>
1198 void ObjectSynchronizer::monitors_iterate(Function function) {
1199   MonitorList::Iterator iter = _in_use_list.iterator();
1200   while (iter.has_next()) {
1201     ObjectMonitor* monitor = iter.next();
1202     function(monitor);
1203   }
1204 }
1205 
1206 // Iterate ObjectMonitors owned by any thread and where the owner `filter`
1207 // returns true.
1208 template <typename OwnerFilter>
1209 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) {
1210   monitors_iterate([&](ObjectMonitor* monitor) {
1211     // This function is only called at a safepoint or when the
1212     // target thread is suspended or when the target thread is
1213     // operating on itself. The current closures in use today are
1214     // only interested in an owned ObjectMonitor and ownership
1215     // cannot be dropped under the calling contexts so the
1216     // ObjectMonitor cannot be async deflated.
1217     if (monitor->has_owner() && filter(monitor->owner_raw())) {
1218       assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating");
1219 
1220       closure->do_monitor(monitor);
1221     }
1222   });
1223 }
1224 
1225 // Iterate ObjectMonitors where the owner == thread; this does NOT include
1226 // ObjectMonitors where owner is set to a stack-lock address in thread.
1227 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) {
1228   auto thread_filter = [&](void* owner) { return owner == thread; };
1229   return owned_monitors_iterate_filtered(closure, thread_filter);
1230 }
1231 
1232 // Iterate ObjectMonitors owned by any thread.
1233 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) {
1234   auto all_filter = [&](void* owner) { return true; };
1235   return owned_monitors_iterate_filtered(closure, all_filter);
1236 }
1237 
1238 static bool monitors_used_above_threshold(MonitorList* list) {
1239   if (MonitorUsedDeflationThreshold == 0) {  // disabled case is easy
1240     return false;
1241   }
1242   // Start with ceiling based on a per-thread estimate:
1243   size_t ceiling = ObjectSynchronizer::in_use_list_ceiling();
1244   size_t old_ceiling = ceiling;
1245   if (ceiling < list->max()) {
1246     // The max used by the system has exceeded the ceiling so use that:
1247     ceiling = list->max();
1248   }
1249   size_t monitors_used = list->count();
1250   if (monitors_used == 0) {  // empty list is easy
1251     return false;
1252   }
1253   if (NoAsyncDeflationProgressMax != 0 &&
1254       _no_progress_cnt >= NoAsyncDeflationProgressMax) {
1255     double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0;
1256     size_t new_ceiling = ceiling / remainder + 1;
1257     ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling);
1258     log_info(monitorinflation)("Too many deflations without progress; "
1259                                "bumping in_use_list_ceiling from " SIZE_FORMAT
1260                                " to " SIZE_FORMAT, old_ceiling, new_ceiling);
1261     _no_progress_cnt = 0;
1262     ceiling = new_ceiling;
1263   }
1264 
1265   // Check if our monitor usage is above the threshold:
1266   size_t monitor_usage = (monitors_used * 100LL) / ceiling;
1267   if (int(monitor_usage) > MonitorUsedDeflationThreshold) {
1268     log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT
1269                                ", monitor_usage=" SIZE_FORMAT ", threshold=%d",
1270                                monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold);
1271     return true;
1272   }
1273 
1274   return false;
1275 }
1276 
1277 size_t ObjectSynchronizer::in_use_list_ceiling() {
1278   return _in_use_list_ceiling;
1279 }
1280 
1281 void ObjectSynchronizer::dec_in_use_list_ceiling() {
1282   Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate);
1283 }
1284 
1285 void ObjectSynchronizer::inc_in_use_list_ceiling() {
1286   Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate);
1287 }
1288 
1289 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) {
1290   _in_use_list_ceiling = new_value;
1291 }
1292 
1293 bool ObjectSynchronizer::is_async_deflation_needed() {
1294   if (is_async_deflation_requested()) {
1295     // Async deflation request.
1296     log_info(monitorinflation)("Async deflation needed: explicit request");
1297     return true;
1298   }
1299 
1300   jlong time_since_last = time_since_last_async_deflation_ms();
1301 
1302   if (AsyncDeflationInterval > 0 &&
1303       time_since_last > AsyncDeflationInterval &&
1304       monitors_used_above_threshold(&_in_use_list)) {
1305     // It's been longer than our specified deflate interval and there
1306     // are too many monitors in use. We don't deflate more frequently
1307     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1308     // in order to not swamp the MonitorDeflationThread.
1309     log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold");
1310     return true;
1311   }
1312 
1313   if (GuaranteedAsyncDeflationInterval > 0 &&
1314       time_since_last > GuaranteedAsyncDeflationInterval) {
1315     // It's been longer than our specified guaranteed deflate interval.
1316     // We need to clean up the used monitors even if the threshold is
1317     // not reached, to keep the memory utilization at bay when many threads
1318     // touched many monitors.
1319     log_info(monitorinflation)("Async deflation needed: guaranteed interval (" INTX_FORMAT " ms) "
1320                                "is greater than time since last deflation (" JLONG_FORMAT " ms)",
1321                                GuaranteedAsyncDeflationInterval, time_since_last);
1322 
1323     // If this deflation has no progress, then it should not affect the no-progress
1324     // tracking, otherwise threshold heuristics would think it was triggered, experienced
1325     // no progress, and needs to backoff more aggressively. In this "no progress" case,
1326     // the generic code would bump the no-progress counter, and we compensate for that
1327     // by telling it to skip the update.
1328     //
1329     // If this deflation has progress, then it should let non-progress tracking
1330     // know about this, otherwise the threshold heuristics would kick in, potentially
1331     // experience no-progress due to aggressive cleanup by this deflation, and think
1332     // it is still in no-progress stride. In this "progress" case, the generic code would
1333     // zero the counter, and we allow it to happen.
1334     _no_progress_skip_increment = true;
1335 
1336     return true;
1337   }
1338 
1339   return false;
1340 }
1341 
1342 void ObjectSynchronizer::request_deflate_idle_monitors() {
1343   MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag);
1344   set_is_async_deflation_requested(true);
1345   ml.notify_all();
1346 }
1347 
1348 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() {
1349   JavaThread* current = JavaThread::current();
1350   bool ret_code = false;
1351 
1352   jlong last_time = last_async_deflation_time_ns();
1353 
1354   request_deflate_idle_monitors();
1355 
1356   const int N_CHECKS = 5;
1357   for (int i = 0; i < N_CHECKS; i++) {  // sleep for at most 5 seconds
1358     if (last_async_deflation_time_ns() > last_time) {
1359       log_info(monitorinflation)("Async Deflation happened after %d check(s).", i);
1360       ret_code = true;
1361       break;
1362     }
1363     {
1364       // JavaThread has to honor the blocking protocol.
1365       ThreadBlockInVM tbivm(current);
1366       os::naked_short_sleep(999);  // sleep for almost 1 second
1367     }
1368   }
1369   if (!ret_code) {
1370     log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS);
1371   }
1372 
1373   return ret_code;
1374 }
1375 
1376 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1377   return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS);
1378 }
1379 
1380 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1381                                        const oop obj,
1382                                        ObjectSynchronizer::InflateCause cause) {
1383   assert(event != nullptr, "invariant");
1384   event->set_monitorClass(obj->klass());
1385   event->set_address((uintptr_t)(void*)obj);
1386   event->set_cause((u1)cause);
1387   event->commit();
1388 }
1389 
1390 // Fast path code shared by multiple functions
1391 void ObjectSynchronizer::inflate_helper(oop obj) {
1392   assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter");
1393   markWord mark = obj->mark_acquire();
1394   if (mark.has_monitor()) {
1395     ObjectMonitor* monitor = read_monitor(mark);
1396     markWord dmw = monitor->header();
1397     assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value());
1398     return;
1399   }
1400   (void)inflate(Thread::current(), obj, inflate_cause_vm_internal);
1401 }
1402 
1403 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) {
1404   assert(current == Thread::current(), "must be");
1405   assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter");
1406   return inflate_impl(obj, cause);
1407 }
1408 
1409 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) {
1410   assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be");
1411   assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_for");
1412   return inflate_impl(obj, cause);
1413 }
1414 
1415 ObjectMonitor* ObjectSynchronizer::inflate_impl(oop object, const InflateCause cause) {
1416   assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_impl");
1417   EventJavaMonitorInflate event;
1418 
1419   for (;;) {
1420     const markWord mark = object->mark_acquire();
1421 
1422     // The mark can be in one of the following states:
1423     // *  inflated     - Just return it.
1424     // *  stack-locked - Coerce it to inflated from stack-locked.
1425     // *  INFLATING    - Busy wait for conversion from stack-locked to
1426     //                   inflated.
1427     // *  unlocked     - Aggressively inflate the object.
1428 
1429     // CASE: inflated
1430     if (mark.has_monitor()) {
1431       ObjectMonitor* inf = mark.monitor();
1432       markWord dmw = inf->header();
1433       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1434       return inf;
1435     }
1436 
1437     // CASE: inflation in progress - inflating over a stack-lock.
1438     // Some other thread is converting from stack-locked to inflated.
1439     // Only that thread can complete inflation -- other threads must wait.
1440     // The INFLATING value is transient.
1441     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1442     // We could always eliminate polling by parking the thread on some auxiliary list.
1443     if (mark == markWord::INFLATING()) {
1444       read_stable_mark(object);
1445       continue;
1446     }
1447 
1448     // CASE: stack-locked
1449     // Could be stack-locked either by current or by some other thread.
1450     //
1451     // Note that we allocate the ObjectMonitor speculatively, _before_ attempting
1452     // to install INFLATING into the mark word.  We originally installed INFLATING,
1453     // allocated the ObjectMonitor, and then finally STed the address of the
1454     // ObjectMonitor into the mark.  This was correct, but artificially lengthened
1455     // the interval in which INFLATING appeared in the mark, thus increasing
1456     // the odds of inflation contention. If we lose the race to set INFLATING,
1457     // then we just delete the ObjectMonitor and loop around again.
1458     //
1459     LogStreamHandle(Trace, monitorinflation) lsh;
1460     if (LockingMode == LM_LEGACY && mark.has_locker()) {
1461       ObjectMonitor* m = new ObjectMonitor(object);
1462       // Optimistically prepare the ObjectMonitor - anticipate successful CAS
1463       // We do this before the CAS in order to minimize the length of time
1464       // in which INFLATING appears in the mark.
1465 
1466       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1467       if (cmp != mark) {
1468         delete m;
1469         continue;       // Interference -- just retry
1470       }
1471 
1472       // We've successfully installed INFLATING (0) into the mark-word.
1473       // This is the only case where 0 will appear in a mark-word.
1474       // Only the singular thread that successfully swings the mark-word
1475       // to 0 can perform (or more precisely, complete) inflation.
1476       //
1477       // Why do we CAS a 0 into the mark-word instead of just CASing the
1478       // mark-word from the stack-locked value directly to the new inflated state?
1479       // Consider what happens when a thread unlocks a stack-locked object.
1480       // It attempts to use CAS to swing the displaced header value from the
1481       // on-stack BasicLock back into the object header.  Recall also that the
1482       // header value (hash code, etc) can reside in (a) the object header, or
1483       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1484       // header in an ObjectMonitor.  The inflate() routine must copy the header
1485       // value from the BasicLock on the owner's stack to the ObjectMonitor, all
1486       // the while preserving the hashCode stability invariants.  If the owner
1487       // decides to release the lock while the value is 0, the unlock will fail
1488       // and control will eventually pass from slow_exit() to inflate.  The owner
1489       // will then spin, waiting for the 0 value to disappear.   Put another way,
1490       // the 0 causes the owner to stall if the owner happens to try to
1491       // drop the lock (restoring the header from the BasicLock to the object)
1492       // while inflation is in-progress.  This protocol avoids races that might
1493       // would otherwise permit hashCode values to change or "flicker" for an object.
1494       // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable.
1495       // 0 serves as a "BUSY" inflate-in-progress indicator.
1496 
1497 
1498       // fetch the displaced mark from the owner's stack.
1499       // The owner can't die or unwind past the lock while our INFLATING
1500       // object is in the mark.  Furthermore the owner can't complete
1501       // an unlock on the object, either.
1502       markWord dmw = mark.displaced_mark_helper();
1503       // Catch if the object's header is not neutral (not locked and
1504       // not marked is what we care about here).
1505       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1506 
1507       // Setup monitor fields to proper values -- prepare the monitor
1508       m->set_header(dmw);
1509 
1510       // Optimization: if the mark.locker stack address is associated
1511       // with this thread we could simply set m->_owner = current.
1512       // Note that a thread can inflate an object
1513       // that it has stack-locked -- as might happen in wait() -- directly
1514       // with CAS.  That is, we can avoid the xchg-nullptr .... ST idiom.
1515       m->set_owner_from(nullptr, mark.locker());
1516       // TODO-FIXME: assert BasicLock->dhw != 0.
1517 
1518       // Must preserve store ordering. The monitor state must
1519       // be stable at the time of publishing the monitor address.
1520       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1521       // Release semantics so that above set_object() is seen first.
1522       object->release_set_mark(markWord::encode(m));
1523 
1524       // Once ObjectMonitor is configured and the object is associated
1525       // with the ObjectMonitor, it is safe to allow async deflation:
1526       _in_use_list.add(m);
1527 
1528       // Hopefully the performance counters are allocated on distinct cache lines
1529       // to avoid false sharing on MP systems ...
1530       OM_PERFDATA_OP(Inflations, inc());
1531       if (log_is_enabled(Trace, monitorinflation)) {
1532         ResourceMark rm;
1533         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1534                      INTPTR_FORMAT ", type='%s'", p2i(object),
1535                      object->mark().value(), object->klass()->external_name());
1536       }
1537       if (event.should_commit()) {
1538         post_monitor_inflate_event(&event, object, cause);
1539       }
1540       return m;
1541     }
1542 
1543     // CASE: unlocked
1544     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1545     // If we know we're inflating for entry it's better to inflate by swinging a
1546     // pre-locked ObjectMonitor pointer into the object header.   A successful
1547     // CAS inflates the object *and* confers ownership to the inflating thread.
1548     // In the current implementation we use a 2-step mechanism where we CAS()
1549     // to inflate and then CAS() again to try to swing _owner from null to current.
1550     // An inflateTry() method that we could call from enter() would be useful.
1551 
1552     assert(mark.is_unlocked(), "invariant: header=" INTPTR_FORMAT, mark.value());
1553     ObjectMonitor* m = new ObjectMonitor(object);
1554     // prepare m for installation - set monitor to initial state
1555     m->set_header(mark);
1556 
1557     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
1558       delete m;
1559       m = nullptr;
1560       continue;
1561       // interference - the markword changed - just retry.
1562       // The state-transitions are one-way, so there's no chance of
1563       // live-lock -- "Inflated" is an absorbing state.
1564     }
1565 
1566     // Once the ObjectMonitor is configured and object is associated
1567     // with the ObjectMonitor, it is safe to allow async deflation:
1568     _in_use_list.add(m);
1569 
1570     // Hopefully the performance counters are allocated on distinct
1571     // cache lines to avoid false sharing on MP systems ...
1572     OM_PERFDATA_OP(Inflations, inc());
1573     if (log_is_enabled(Trace, monitorinflation)) {
1574       ResourceMark rm;
1575       lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark="
1576                    INTPTR_FORMAT ", type='%s'", p2i(object),
1577                    object->mark().value(), object->klass()->external_name());
1578     }
1579     if (event.should_commit()) {
1580       post_monitor_inflate_event(&event, object, cause);
1581     }
1582     return m;
1583   }
1584 }
1585 
1586 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle
1587 // ObjectMonitors. Returns the number of deflated ObjectMonitors.
1588 //
1589 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) {
1590   MonitorList::Iterator iter = _in_use_list.iterator();
1591   size_t deflated_count = 0;
1592   Thread* current = Thread::current();
1593 
1594   while (iter.has_next()) {
1595     if (deflated_count >= (size_t)MonitorDeflationMax) {
1596       break;
1597     }
1598     ObjectMonitor* mid = iter.next();
1599     if (mid->deflate_monitor(current)) {
1600       deflated_count++;
1601     }
1602 
1603     // Must check for a safepoint/handshake and honor it.
1604     safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count);
1605   }
1606 
1607   return deflated_count;
1608 }
1609 
1610 class HandshakeForDeflation : public HandshakeClosure {
1611  public:
1612   HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {}
1613 
1614   void do_thread(Thread* thread) {
1615     log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread="
1616                                 INTPTR_FORMAT, p2i(thread));
1617     if (thread->is_Java_thread()) {
1618       // Clear OM cache
1619       JavaThread* jt = JavaThread::cast(thread);
1620       jt->om_clear_monitor_cache();
1621     }
1622   }
1623 };
1624 
1625 class VM_RendezvousGCThreads : public VM_Operation {
1626 public:
1627   bool evaluate_at_safepoint() const override { return false; }
1628   VMOp_Type type() const override { return VMOp_RendezvousGCThreads; }
1629   void doit() override {
1630     Universe::heap()->safepoint_synchronize_begin();
1631     Universe::heap()->safepoint_synchronize_end();
1632   };
1633 };
1634 
1635 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list,
1636                               ObjectMonitorDeflationSafepointer* safepointer) {
1637   NativeHeapTrimmer::SuspendMark sm("monitor deletion");
1638   size_t deleted_count = 0;
1639   for (ObjectMonitor* monitor: *delete_list) {
1640     delete monitor;
1641     deleted_count++;
1642     // A JavaThread must check for a safepoint/handshake and honor it.
1643     safepointer->block_for_safepoint("deletion", "deleted_count", deleted_count);
1644   }
1645   return deleted_count;
1646 }
1647 
1648 class ObjectMonitorDeflationLogging: public StackObj {
1649   LogStreamHandle(Debug, monitorinflation) _debug;
1650   LogStreamHandle(Info, monitorinflation)  _info;
1651   LogStream*                               _stream;
1652   elapsedTimer                             _timer;
1653 
1654   size_t ceiling() const { return ObjectSynchronizer::in_use_list_ceiling(); }
1655   size_t count() const   { return ObjectSynchronizer::_in_use_list.count(); }
1656   size_t max() const     { return ObjectSynchronizer::_in_use_list.max(); }
1657 
1658 public:
1659   ObjectMonitorDeflationLogging()
1660     : _debug(), _info(), _stream(nullptr) {
1661     if (_debug.is_enabled()) {
1662       _stream = &_debug;
1663     } else if (_info.is_enabled()) {
1664       _stream = &_info;
1665     }
1666   }
1667 
1668   void begin() {
1669     if (_stream != nullptr) {
1670       _stream->print_cr("begin deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1671                         ceiling(), count(), max());
1672       _timer.start();
1673     }
1674   }
1675 
1676   void before_handshake(size_t unlinked_count) {
1677     if (_stream != nullptr) {
1678       _timer.stop();
1679       _stream->print_cr("before handshaking: unlinked_count=" SIZE_FORMAT
1680                         ", in_use_list stats: ceiling=" SIZE_FORMAT ", count="
1681                         SIZE_FORMAT ", max=" SIZE_FORMAT,
1682                         unlinked_count, ceiling(), count(), max());
1683     }
1684   }
1685 
1686   void after_handshake() {
1687     if (_stream != nullptr) {
1688       _stream->print_cr("after handshaking: in_use_list stats: ceiling="
1689                         SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1690                         ceiling(), count(), max());
1691       _timer.start();
1692     }
1693   }
1694 
1695   void end(size_t deflated_count, size_t unlinked_count) {
1696     if (_stream != nullptr) {
1697       _timer.stop();
1698       if (deflated_count != 0 || unlinked_count != 0 || _debug.is_enabled()) {
1699         _stream->print_cr("deflated_count=" SIZE_FORMAT ", {unlinked,deleted}_count=" SIZE_FORMAT " monitors in %3.7f secs",
1700                           deflated_count, unlinked_count, _timer.seconds());
1701       }
1702       _stream->print_cr("end deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1703                         ceiling(), count(), max());
1704     }
1705   }
1706 
1707   void before_block_for_safepoint(const char* op_name, const char* cnt_name, size_t cnt) {
1708     if (_stream != nullptr) {
1709       _timer.stop();
1710       _stream->print_cr("pausing %s: %s=" SIZE_FORMAT ", in_use_list stats: ceiling="
1711                         SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1712                         op_name, cnt_name, cnt, ceiling(), count(), max());
1713     }
1714   }
1715 
1716   void after_block_for_safepoint(const char* op_name) {
1717     if (_stream != nullptr) {
1718       _stream->print_cr("resuming %s: in_use_list stats: ceiling=" SIZE_FORMAT
1719                         ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, op_name,
1720                         ceiling(), count(), max());
1721       _timer.start();
1722     }
1723   }
1724 };
1725 
1726 void ObjectMonitorDeflationSafepointer::block_for_safepoint(const char* op_name, const char* count_name, size_t counter) {
1727   if (!SafepointMechanism::should_process(_current)) {
1728     return;
1729   }
1730 
1731   // A safepoint/handshake has started.
1732   _log->before_block_for_safepoint(op_name, count_name, counter);
1733 
1734   {
1735     // Honor block request.
1736     ThreadBlockInVM tbivm(_current);
1737   }
1738 
1739   _log->after_block_for_safepoint(op_name);
1740 }
1741 
1742 // This function is called by the MonitorDeflationThread to deflate
1743 // ObjectMonitors.
1744 size_t ObjectSynchronizer::deflate_idle_monitors() {
1745   JavaThread* current = JavaThread::current();
1746   assert(current->is_monitor_deflation_thread(), "The only monitor deflater");
1747 
1748   // The async deflation request has been processed.
1749   _last_async_deflation_time_ns = os::javaTimeNanos();
1750   set_is_async_deflation_requested(false);
1751 
1752   ObjectMonitorDeflationLogging log;
1753   ObjectMonitorDeflationSafepointer safepointer(current, &log);
1754 
1755   log.begin();
1756 
1757   // Deflate some idle ObjectMonitors.
1758   size_t deflated_count = deflate_monitor_list(&safepointer);
1759 
1760   // Unlink the deflated ObjectMonitors from the in-use list.
1761   size_t unlinked_count = 0;
1762   size_t deleted_count = 0;
1763   if (deflated_count > 0) {
1764     ResourceMark rm(current);
1765     GrowableArray<ObjectMonitor*> delete_list((int)deflated_count);
1766     unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer);
1767 
1768 #ifdef ASSERT
1769     if (UseObjectMonitorTable) {
1770       for (ObjectMonitor* monitor : delete_list) {
1771         assert(!LightweightSynchronizer::contains_monitor(current, monitor), "Should have been removed");
1772       }
1773     }
1774 #endif
1775 
1776     log.before_handshake(unlinked_count);
1777 
1778     // A JavaThread needs to handshake in order to safely free the
1779     // ObjectMonitors that were deflated in this cycle.
1780     HandshakeForDeflation hfd_hc;
1781     Handshake::execute(&hfd_hc);
1782     // Also, we sync and desync GC threads around the handshake, so that they can
1783     // safely read the mark-word and look-through to the object-monitor, without
1784     // being afraid that the object-monitor is going away.
1785     VM_RendezvousGCThreads sync_gc;
1786     VMThread::execute(&sync_gc);
1787 
1788     log.after_handshake();
1789 
1790     // After the handshake, safely free the ObjectMonitors that were
1791     // deflated and unlinked in this cycle.
1792 
1793     // Delete the unlinked ObjectMonitors.
1794     deleted_count = delete_monitors(&delete_list, &safepointer);
1795     assert(unlinked_count == deleted_count, "must be");
1796   }
1797 
1798   log.end(deflated_count, unlinked_count);
1799 
1800   OM_PERFDATA_OP(MonExtant, set_value(_in_use_list.count()));
1801   OM_PERFDATA_OP(Deflations, inc(deflated_count));
1802 
1803   GVars.stw_random = os::random();
1804 
1805   if (deflated_count != 0) {
1806     _no_progress_cnt = 0;
1807   } else if (_no_progress_skip_increment) {
1808     _no_progress_skip_increment = false;
1809   } else {
1810     _no_progress_cnt++;
1811   }
1812 
1813   return deflated_count;
1814 }
1815 
1816 // Monitor cleanup on JavaThread::exit
1817 
1818 // Iterate through monitor cache and attempt to release thread's monitors
1819 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1820  private:
1821   JavaThread* _thread;
1822 
1823  public:
1824   ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {}
1825   void do_monitor(ObjectMonitor* mid) {
1826     intx rec = mid->complete_exit(_thread);
1827     _thread->dec_held_monitor_count(rec + 1);
1828   }
1829 };
1830 
1831 // Release all inflated monitors owned by current thread.  Lightweight monitors are
1832 // ignored.  This is meant to be called during JNI thread detach which assumes
1833 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1834 // Scanning the extant monitor list can be time consuming.
1835 // A simple optimization is to add a per-thread flag that indicates a thread
1836 // called jni_monitorenter() during its lifetime.
1837 //
1838 // Instead of NoSafepointVerifier it might be cheaper to
1839 // use an idiom of the form:
1840 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1841 //   <code that must not run at safepoint>
1842 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1843 // Since the tests are extremely cheap we could leave them enabled
1844 // for normal product builds.
1845 
1846 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) {
1847   assert(current == JavaThread::current(), "must be current Java thread");
1848   NoSafepointVerifier nsv;
1849   ReleaseJavaMonitorsClosure rjmc(current);
1850   ObjectSynchronizer::owned_monitors_iterate(&rjmc, current);
1851   assert(!current->has_pending_exception(), "Should not be possible");
1852   current->clear_pending_exception();
1853   assert(current->held_monitor_count() == 0, "Should not be possible");
1854   // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count.
1855   current->clear_jni_monitor_count();
1856 }
1857 
1858 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1859   switch (cause) {
1860     case inflate_cause_vm_internal:    return "VM Internal";
1861     case inflate_cause_monitor_enter:  return "Monitor Enter";
1862     case inflate_cause_wait:           return "Monitor Wait";
1863     case inflate_cause_notify:         return "Monitor Notify";
1864     case inflate_cause_hash_code:      return "Monitor Hash Code";
1865     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1866     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1867     default:
1868       ShouldNotReachHere();
1869   }
1870   return "Unknown";
1871 }
1872 
1873 //------------------------------------------------------------------------------
1874 // Debugging code
1875 
1876 u_char* ObjectSynchronizer::get_gvars_addr() {
1877   return (u_char*)&GVars;
1878 }
1879 
1880 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
1881   return (u_char*)&GVars.hc_sequence;
1882 }
1883 
1884 size_t ObjectSynchronizer::get_gvars_size() {
1885   return sizeof(SharedGlobals);
1886 }
1887 
1888 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
1889   return (u_char*)&GVars.stw_random;
1890 }
1891 
1892 // Do the final audit and print of ObjectMonitor stats; must be done
1893 // by the VMThread at VM exit time.
1894 void ObjectSynchronizer::do_final_audit_and_print_stats() {
1895   assert(Thread::current()->is_VM_thread(), "sanity check");
1896 
1897   if (is_final_audit()) {  // Only do the audit once.
1898     return;
1899   }
1900   set_is_final_audit();
1901   log_info(monitorinflation)("Starting the final audit.");
1902 
1903   if (log_is_enabled(Info, monitorinflation)) {
1904     LogStreamHandle(Info, monitorinflation) ls;
1905     audit_and_print_stats(&ls, true /* on_exit */);
1906   }
1907 }
1908 
1909 // This function can be called by the MonitorDeflationThread or it can be called when
1910 // we are trying to exit the VM. The list walker functions can run in parallel with
1911 // the other list operations.
1912 // Calls to this function can be added in various places as a debugging
1913 // aid.
1914 //
1915 void ObjectSynchronizer::audit_and_print_stats(outputStream* ls, bool on_exit) {
1916   int error_cnt = 0;
1917 
1918   ls->print_cr("Checking in_use_list:");
1919   chk_in_use_list(ls, &error_cnt);
1920 
1921   if (error_cnt == 0) {
1922     ls->print_cr("No errors found in in_use_list checks.");
1923   } else {
1924     log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt);
1925   }
1926 
1927   // When exiting, only log the interesting entries at the Info level.
1928   // When called at intervals by the MonitorDeflationThread, log output
1929   // at the Trace level since there can be a lot of it.
1930   if (!on_exit && log_is_enabled(Trace, monitorinflation)) {
1931     LogStreamHandle(Trace, monitorinflation) ls_tr;
1932     log_in_use_monitor_details(&ls_tr, true /* log_all */);
1933   } else if (on_exit) {
1934     log_in_use_monitor_details(ls, false /* log_all */);
1935   }
1936 
1937   ls->flush();
1938 
1939   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
1940 }
1941 
1942 // Check the in_use_list; log the results of the checks.
1943 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) {
1944   size_t l_in_use_count = _in_use_list.count();
1945   size_t l_in_use_max = _in_use_list.max();
1946   out->print_cr("count=" SIZE_FORMAT ", max=" SIZE_FORMAT, l_in_use_count,
1947                 l_in_use_max);
1948 
1949   size_t ck_in_use_count = 0;
1950   MonitorList::Iterator iter = _in_use_list.iterator();
1951   while (iter.has_next()) {
1952     ObjectMonitor* mid = iter.next();
1953     chk_in_use_entry(mid, out, error_cnt_p);
1954     ck_in_use_count++;
1955   }
1956 
1957   if (l_in_use_count == ck_in_use_count) {
1958     out->print_cr("in_use_count=" SIZE_FORMAT " equals ck_in_use_count="
1959                   SIZE_FORMAT, l_in_use_count, ck_in_use_count);
1960   } else {
1961     out->print_cr("WARNING: in_use_count=" SIZE_FORMAT " is not equal to "
1962                   "ck_in_use_count=" SIZE_FORMAT, l_in_use_count,
1963                   ck_in_use_count);
1964   }
1965 
1966   size_t ck_in_use_max = _in_use_list.max();
1967   if (l_in_use_max == ck_in_use_max) {
1968     out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max="
1969                   SIZE_FORMAT, l_in_use_max, ck_in_use_max);
1970   } else {
1971     out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to "
1972                   "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max);
1973   }
1974 }
1975 
1976 // Check an in-use monitor entry; log any errors.
1977 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out,
1978                                           int* error_cnt_p) {
1979   if (n->owner_is_DEFLATER_MARKER()) {
1980     // This could happen when monitor deflation blocks for a safepoint.
1981     return;
1982   }
1983 
1984 
1985   if (n->metadata() == 0) {
1986     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must "
1987                   "have non-null _metadata (header/hash) field.", p2i(n));
1988     *error_cnt_p = *error_cnt_p + 1;
1989   }
1990 
1991   const oop obj = n->object_peek();
1992   if (obj == nullptr) {
1993     return;
1994   }
1995 
1996   const markWord mark = obj->mark();
1997   if (!mark.has_monitor()) {
1998     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
1999                   "object does not think it has a monitor: obj="
2000                   INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2001                   p2i(obj), mark.value());
2002     *error_cnt_p = *error_cnt_p + 1;
2003     return;
2004   }
2005 
2006   ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark);
2007   if (n != obj_mon) {
2008     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
2009                   "object does not refer to the same monitor: obj="
2010                   INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2011                   INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2012     *error_cnt_p = *error_cnt_p + 1;
2013   }
2014 }
2015 
2016 // Log details about ObjectMonitors on the in_use_list. The 'BHL'
2017 // flags indicate why the entry is in-use, 'object' and 'object type'
2018 // indicate the associated object and its type.
2019 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) {
2020   if (_in_use_list.count() > 0) {
2021     stringStream ss;
2022     out->print_cr("In-use monitor info:");
2023     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2024     out->print_cr("%18s  %s  %18s  %18s",
2025                   "monitor", "BHL", "object", "object type");
2026     out->print_cr("==================  ===  ==================  ==================");
2027 
2028     auto is_interesting = [&](ObjectMonitor* monitor) {
2029       return log_all || monitor->has_owner() || monitor->is_busy();
2030     };
2031 
2032     monitors_iterate([&](ObjectMonitor* monitor) {
2033       if (is_interesting(monitor)) {
2034         const oop obj = monitor->object_peek();
2035         const intptr_t hash = UseObjectMonitorTable ? monitor->hash() : monitor->header().hash();
2036         ResourceMark rm;
2037         out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(monitor),
2038                    monitor->is_busy(), hash != 0, monitor->owner() != nullptr,
2039                    p2i(obj), obj == nullptr ? "" : obj->klass()->external_name());
2040         if (monitor->is_busy()) {
2041           out->print(" (%s)", monitor->is_busy_to_string(&ss));
2042           ss.reset();
2043         }
2044         out->cr();
2045       }
2046     });
2047   }
2048 
2049   out->flush();
2050 }