1 /*
   2  * Copyright (c) 1998, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "jfr/jfrEvents.hpp"
  29 #include "logging/log.hpp"
  30 #include "logging/logStream.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/basicLock.inline.hpp"
  39 #include "runtime/frame.inline.hpp"
  40 #include "runtime/globals.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "runtime/handshake.hpp"
  43 #include "runtime/interfaceSupport.inline.hpp"
  44 #include "runtime/javaThread.hpp"
  45 #include "runtime/lightweightSynchronizer.hpp"
  46 #include "runtime/lockStack.inline.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/objectMonitor.hpp"
  49 #include "runtime/objectMonitor.inline.hpp"
  50 #include "runtime/os.inline.hpp"
  51 #include "runtime/osThread.hpp"
  52 #include "runtime/perfData.hpp"
  53 #include "runtime/safepointMechanism.inline.hpp"
  54 #include "runtime/safepointVerifiers.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/synchronizer.hpp"
  58 #include "runtime/threads.hpp"
  59 #include "runtime/timer.hpp"
  60 #include "runtime/trimNativeHeap.hpp"
  61 #include "runtime/vframe.hpp"
  62 #include "runtime/vmThread.hpp"
  63 #include "utilities/align.hpp"
  64 #include "utilities/dtrace.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/globalDefinitions.hpp"
  67 #include "utilities/linkedlist.hpp"
  68 #include "utilities/preserveException.hpp"
  69 
  70 class ObjectMonitorDeflationLogging;
  71 
  72 ObjectMonitor* ObjectSynchronizer::read_monitor(markWord mark) {
  73   assert(LockingMode != LM_LIGHTWEIGHT, "lightweight locking uses table");
  74   return mark.monitor();
  75 }
  76 
  77 ObjectMonitor* ObjectSynchronizer::read_monitor(Thread* current, oop obj, markWord mark) {
  78   if (LockingMode != LM_LIGHTWEIGHT) {
  79     return read_monitor(mark);
  80   }
  81   return LightweightSynchronizer::read_monitor(current, obj);
  82 }
  83 
  84 void MonitorList::add(ObjectMonitor* m) {
  85   ObjectMonitor* head;
  86   do {
  87     head = Atomic::load(&_head);
  88     m->set_next_om(head);
  89   } while (Atomic::cmpxchg(&_head, head, m) != head);
  90 
  91   size_t count = Atomic::add(&_count, 1u);
  92   if (count > max()) {
  93     Atomic::inc(&_max);
  94   }
  95 }
  96 
  97 size_t MonitorList::count() const {
  98   return Atomic::load(&_count);
  99 }
 100 
 101 size_t MonitorList::max() const {
 102   return Atomic::load(&_max);
 103 }
 104 
 105 class ObjectMonitorDeflationSafepointer : public StackObj {
 106   JavaThread* const                    _current;
 107   ObjectMonitorDeflationLogging* const _log;
 108 
 109 public:
 110   ObjectMonitorDeflationSafepointer(JavaThread* current, ObjectMonitorDeflationLogging* log)
 111     : _current(current), _log(log) {}
 112 
 113   void block_for_safepoint(const char* op_name, const char* count_name, size_t counter);
 114 };
 115 
 116 // Walk the in-use list and unlink deflated ObjectMonitors.
 117 // Returns the number of unlinked ObjectMonitors.
 118 size_t MonitorList::unlink_deflated(size_t deflated_count,
 119                                     GrowableArray<ObjectMonitor*>* unlinked_list,
 120                                     ObjectMonitorDeflationSafepointer* safepointer) {
 121   size_t unlinked_count = 0;
 122   ObjectMonitor* prev = nullptr;
 123   ObjectMonitor* m = Atomic::load_acquire(&_head);
 124 
 125   while (m != nullptr) {
 126     if (m->is_being_async_deflated()) {
 127       // Find next live ObjectMonitor. Batch up the unlinkable monitors, so we can
 128       // modify the list once per batch. The batch starts at "m".
 129       size_t unlinked_batch = 0;
 130       ObjectMonitor* next = m;
 131       // Look for at most MonitorUnlinkBatch monitors, or the number of
 132       // deflated and not unlinked monitors, whatever comes first.
 133       assert(deflated_count >= unlinked_count, "Sanity: underflow");
 134       size_t unlinked_batch_limit = MIN2<size_t>(deflated_count - unlinked_count, MonitorUnlinkBatch);
 135       do {
 136         ObjectMonitor* next_next = next->next_om();
 137         unlinked_batch++;
 138         unlinked_list->append(next);
 139         next = next_next;
 140         if (unlinked_batch >= unlinked_batch_limit) {
 141           // Reached the max batch, so bail out of the gathering loop.
 142           break;
 143         }
 144         if (prev == nullptr && Atomic::load(&_head) != m) {
 145           // Current batch used to be at head, but it is not at head anymore.
 146           // Bail out and figure out where we currently are. This avoids long
 147           // walks searching for new prev during unlink under heavy list inserts.
 148           break;
 149         }
 150       } while (next != nullptr && next->is_being_async_deflated());
 151 
 152       // Unlink the found batch.
 153       if (prev == nullptr) {
 154         // The current batch is the first batch, so there is a chance that it starts at head.
 155         // Optimistically assume no inserts happened, and try to unlink the entire batch from the head.
 156         ObjectMonitor* prev_head = Atomic::cmpxchg(&_head, m, next);
 157         if (prev_head != m) {
 158           // Something must have updated the head. Figure out the actual prev for this batch.
 159           for (ObjectMonitor* n = prev_head; n != m; n = n->next_om()) {
 160             prev = n;
 161           }
 162           assert(prev != nullptr, "Should have found the prev for the current batch");
 163           prev->set_next_om(next);
 164         }
 165       } else {
 166         // The current batch is preceded by another batch. This guarantees the current batch
 167         // does not start at head. Unlink the entire current batch without updating the head.
 168         assert(Atomic::load(&_head) != m, "Sanity");
 169         prev->set_next_om(next);
 170       }
 171 
 172       unlinked_count += unlinked_batch;
 173       if (unlinked_count >= deflated_count) {
 174         // Reached the max so bail out of the searching loop.
 175         // There should be no more deflated monitors left.
 176         break;
 177       }
 178       m = next;
 179     } else {
 180       prev = m;
 181       m = m->next_om();
 182     }
 183 
 184     // Must check for a safepoint/handshake and honor it.
 185     safepointer->block_for_safepoint("unlinking", "unlinked_count", unlinked_count);
 186   }
 187 
 188 #ifdef ASSERT
 189   // Invariant: the code above should unlink all deflated monitors.
 190   // The code that runs after this unlinking does not expect deflated monitors.
 191   // Notably, attempting to deflate the already deflated monitor would break.
 192   {
 193     ObjectMonitor* m = Atomic::load_acquire(&_head);
 194     while (m != nullptr) {
 195       assert(!m->is_being_async_deflated(), "All deflated monitors should be unlinked");
 196       m = m->next_om();
 197     }
 198   }
 199 #endif
 200 
 201   Atomic::sub(&_count, unlinked_count);
 202   return unlinked_count;
 203 }
 204 
 205 MonitorList::Iterator MonitorList::iterator() const {
 206   return Iterator(Atomic::load_acquire(&_head));
 207 }
 208 
 209 ObjectMonitor* MonitorList::Iterator::next() {
 210   ObjectMonitor* current = _current;
 211   _current = current->next_om();
 212   return current;
 213 }
 214 
 215 // The "core" versions of monitor enter and exit reside in this file.
 216 // The interpreter and compilers contain specialized transliterated
 217 // variants of the enter-exit fast-path operations.  See c2_MacroAssembler_x86.cpp
 218 // fast_lock(...) for instance.  If you make changes here, make sure to modify the
 219 // interpreter, and both C1 and C2 fast-path inline locking code emission.
 220 //
 221 // -----------------------------------------------------------------------------
 222 
 223 #ifdef DTRACE_ENABLED
 224 
 225 // Only bother with this argument setup if dtrace is available
 226 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
 227 
 228 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
 229   char* bytes = nullptr;                                                      \
 230   int len = 0;                                                             \
 231   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
 232   Symbol* klassname = obj->klass()->name();                                \
 233   if (klassname != nullptr) {                                                 \
 234     bytes = (char*)klassname->bytes();                                     \
 235     len = klassname->utf8_length();                                        \
 236   }
 237 
 238 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
 239   {                                                                        \
 240     if (DTraceMonitorProbes) {                                             \
 241       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 242       HOTSPOT_MONITOR_WAIT(jtid,                                           \
 243                            (uintptr_t)(monitor), bytes, len, (millis));    \
 244     }                                                                      \
 245   }
 246 
 247 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
 248 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
 249 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
 250 
 251 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
 252   {                                                                        \
 253     if (DTraceMonitorProbes) {                                             \
 254       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
 255       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
 256                                     (uintptr_t)(monitor), bytes, len);     \
 257     }                                                                      \
 258   }
 259 
 260 #else //  ndef DTRACE_ENABLED
 261 
 262 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 263 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 264 
 265 #endif // ndef DTRACE_ENABLED
 266 
 267 // This exists only as a workaround of dtrace bug 6254741
 268 static int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, JavaThread* thr) {
 269   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 270   return 0;
 271 }
 272 
 273 static constexpr size_t inflation_lock_count() {
 274   return 256;
 275 }
 276 
 277 // Static storage for an array of PlatformMutex.
 278 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)];
 279 
 280 static inline PlatformMutex* inflation_lock(size_t index) {
 281   return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]);
 282 }
 283 
 284 void ObjectSynchronizer::initialize() {
 285   for (size_t i = 0; i < inflation_lock_count(); i++) {
 286     ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex();
 287   }
 288   // Start the ceiling with the estimate for one thread.
 289   set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate);
 290 
 291   // Start the timer for deflations, so it does not trigger immediately.
 292   _last_async_deflation_time_ns = os::javaTimeNanos();
 293 
 294   if (LockingMode == LM_LIGHTWEIGHT) {
 295     LightweightSynchronizer::initialize();
 296   }
 297 }
 298 
 299 MonitorList ObjectSynchronizer::_in_use_list;
 300 // monitors_used_above_threshold() policy is as follows:
 301 //
 302 // The ratio of the current _in_use_list count to the ceiling is used
 303 // to determine if we are above MonitorUsedDeflationThreshold and need
 304 // to do an async monitor deflation cycle. The ceiling is increased by
 305 // AvgMonitorsPerThreadEstimate when a thread is added to the system
 306 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is
 307 // removed from the system.
 308 //
 309 // Note: If the _in_use_list max exceeds the ceiling, then
 310 // monitors_used_above_threshold() will use the in_use_list max instead
 311 // of the thread count derived ceiling because we have used more
 312 // ObjectMonitors than the estimated average.
 313 //
 314 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax
 315 // no-progress async monitor deflation cycles in a row, then the ceiling
 316 // is adjusted upwards by monitors_used_above_threshold().
 317 //
 318 // Start the ceiling with the estimate for one thread in initialize()
 319 // which is called after cmd line options are processed.
 320 static size_t _in_use_list_ceiling = 0;
 321 bool volatile ObjectSynchronizer::_is_async_deflation_requested = false;
 322 bool volatile ObjectSynchronizer::_is_final_audit = false;
 323 jlong ObjectSynchronizer::_last_async_deflation_time_ns = 0;
 324 static uintx _no_progress_cnt = 0;
 325 static bool _no_progress_skip_increment = false;
 326 
 327 // =====================> Quick functions
 328 
 329 // The quick_* forms are special fast-path variants used to improve
 330 // performance.  In the simplest case, a "quick_*" implementation could
 331 // simply return false, in which case the caller will perform the necessary
 332 // state transitions and call the slow-path form.
 333 // The fast-path is designed to handle frequently arising cases in an efficient
 334 // manner and is just a degenerate "optimistic" variant of the slow-path.
 335 // returns true  -- to indicate the call was satisfied.
 336 // returns false -- to indicate the call needs the services of the slow-path.
 337 // A no-loitering ordinance is in effect for code in the quick_* family
 338 // operators: safepoints or indefinite blocking (blocking that might span a
 339 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 340 // entry.
 341 //
 342 // Consider: An interesting optimization is to have the JIT recognize the
 343 // following common idiom:
 344 //   synchronized (someobj) { .... ; notify(); }
 345 // That is, we find a notify() or notifyAll() call that immediately precedes
 346 // the monitorexit operation.  In that case the JIT could fuse the operations
 347 // into a single notifyAndExit() runtime primitive.
 348 
 349 bool ObjectSynchronizer::quick_notify(oopDesc* obj, JavaThread* current, bool all) {
 350   assert(current->thread_state() == _thread_in_Java, "invariant");
 351   NoSafepointVerifier nsv;
 352   if (obj == nullptr) return false;  // slow-path for invalid obj
 353   const markWord mark = obj->mark();
 354 
 355   if (LockingMode == LM_LIGHTWEIGHT) {
 356     if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) {
 357       // Degenerate notify
 358       // fast-locked by caller so by definition the implied waitset is empty.
 359       return true;
 360     }
 361   } else if (LockingMode == LM_LEGACY) {
 362     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 363       // Degenerate notify
 364       // stack-locked by caller so by definition the implied waitset is empty.
 365       return true;
 366     }
 367   }
 368 
 369   if (mark.has_monitor()) {
 370     ObjectMonitor* const mon = read_monitor(current, obj, mark);
 371     if (LockingMode == LM_LIGHTWEIGHT && mon == nullptr) {
 372       // Racing with inflation/deflation go slow path
 373       return false;
 374     }
 375     assert(mon->object() == oop(obj), "invariant");
 376     if (mon->owner() != current) return false;  // slow-path for IMS exception
 377 
 378     if (mon->first_waiter() != nullptr) {
 379       // We have one or more waiters. Since this is an inflated monitor
 380       // that we own, we can transfer one or more threads from the waitset
 381       // to the entrylist here and now, avoiding the slow-path.
 382       if (all) {
 383         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current);
 384       } else {
 385         DTRACE_MONITOR_PROBE(notify, mon, obj, current);
 386       }
 387       int free_count = 0;
 388       do {
 389         mon->INotify(current);
 390         ++free_count;
 391       } while (mon->first_waiter() != nullptr && all);
 392       OM_PERFDATA_OP(Notifications, inc(free_count));
 393     }
 394     return true;
 395   }
 396 
 397   // other IMS exception states take the slow-path
 398   return false;
 399 }
 400 
 401 
 402 // The LockNode emitted directly at the synchronization site would have
 403 // been too big if it were to have included support for the cases of inflated
 404 // recursive enter and exit, so they go here instead.
 405 // Note that we can't safely call AsyncPrintJavaStack() from within
 406 // quick_enter() as our thread state remains _in_Java.
 407 
 408 bool ObjectSynchronizer::quick_enter(oop obj, JavaThread* current,
 409                                      BasicLock * lock) {
 410   assert(current->thread_state() == _thread_in_Java, "invariant");
 411   NoSafepointVerifier nsv;
 412   if (obj == nullptr) return false;       // Need to throw NPE
 413 
 414   if (obj->klass()->is_value_based()) {
 415     return false;
 416   }
 417 
 418   if (LockingMode == LM_LIGHTWEIGHT) {
 419     return LightweightSynchronizer::quick_enter(obj, current, lock);
 420   }
 421 
 422   const markWord mark = obj->mark();
 423 
 424   if (mark.has_monitor()) {
 425     ObjectMonitor* const m = ObjectSynchronizer::read_monitor(mark);
 426     // An async deflation or GC can race us before we manage to make
 427     // the ObjectMonitor busy by setting the owner below. If we detect
 428     // that race we just bail out to the slow-path here.
 429     if (m->object_peek() == nullptr) {
 430       return false;
 431     }
 432     JavaThread* const owner = static_cast<JavaThread*>(m->owner_raw());
 433 
 434     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 435     // and observability
 436     // Case: light contention possibly amenable to TLE
 437     // Case: TLE inimical operations such as nested/recursive synchronization
 438 
 439     if (owner == current) {
 440       m->_recursions++;
 441       current->inc_held_monitor_count();
 442       return true;
 443     }
 444 
 445     if (LockingMode == LM_LEGACY) {
 446       // This Java Monitor is inflated so obj's header will never be
 447       // displaced to this thread's BasicLock. Make the displaced header
 448       // non-null so this BasicLock is not seen as recursive nor as
 449       // being locked. We do this unconditionally so that this thread's
 450       // BasicLock cannot be mis-interpreted by any stack walkers. For
 451       // performance reasons, stack walkers generally first check for
 452       // stack-locking in the object's header, the second check is for
 453       // recursive stack-locking in the displaced header in the BasicLock,
 454       // and last are the inflated Java Monitor (ObjectMonitor) checks.
 455       lock->set_displaced_header(markWord::unused_mark());
 456     }
 457 
 458     if (owner == nullptr && m->try_set_owner_from(nullptr, current) == nullptr) {
 459       assert(m->_recursions == 0, "invariant");
 460       current->inc_held_monitor_count();
 461       return true;
 462     }
 463   }
 464 
 465   // Note that we could inflate in quick_enter.
 466   // This is likely a useful optimization
 467   // Critically, in quick_enter() we must not:
 468   // -- block indefinitely, or
 469   // -- reach a safepoint
 470 
 471   return false;        // revert to slow-path
 472 }
 473 
 474 // Handle notifications when synchronizing on value based classes
 475 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) {
 476   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 477   frame last_frame = locking_thread->last_frame();
 478   bool bcp_was_adjusted = false;
 479   // Don't decrement bcp if it points to the frame's first instruction.  This happens when
 480   // handle_sync_on_value_based_class() is called because of a synchronized method.  There
 481   // is no actual monitorenter instruction in the byte code in this case.
 482   if (last_frame.is_interpreted_frame() &&
 483       (last_frame.interpreter_frame_method()->code_base() < last_frame.interpreter_frame_bcp())) {
 484     // adjust bcp to point back to monitorenter so that we print the correct line numbers
 485     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() - 1);
 486     bcp_was_adjusted = true;
 487   }
 488 
 489   if (DiagnoseSyncOnValueBasedClasses == FATAL_EXIT) {
 490     ResourceMark rm;
 491     stringStream ss;
 492     locking_thread->print_active_stack_on(&ss);
 493     char* base = (char*)strstr(ss.base(), "at");
 494     char* newline = (char*)strchr(ss.base(), '\n');
 495     if (newline != nullptr) {
 496       *newline = '\0';
 497     }
 498     fatal("Synchronizing on object " INTPTR_FORMAT " of klass %s %s", p2i(obj()), obj->klass()->external_name(), base);
 499   } else {
 500     assert(DiagnoseSyncOnValueBasedClasses == LOG_WARNING, "invalid value for DiagnoseSyncOnValueBasedClasses");
 501     ResourceMark rm;
 502     Log(valuebasedclasses) vblog;
 503 
 504     vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name());
 505     if (locking_thread->has_last_Java_frame()) {
 506       LogStream info_stream(vblog.info());
 507       locking_thread->print_active_stack_on(&info_stream);
 508     } else {
 509       vblog.info("Cannot find the last Java frame");
 510     }
 511 
 512     EventSyncOnValueBasedClass event;
 513     if (event.should_commit()) {
 514       event.set_valueBasedClass(obj->klass());
 515       event.commit();
 516     }
 517   }
 518 
 519   if (bcp_was_adjusted) {
 520     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1);
 521   }
 522 }
 523 
 524 static bool useHeavyMonitors() {
 525 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390)
 526   return LockingMode == LM_MONITOR;
 527 #else
 528   return false;
 529 #endif
 530 }
 531 
 532 // -----------------------------------------------------------------------------
 533 // Monitor Enter/Exit
 534 
 535 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
 536   // When called with locking_thread != Thread::current() some mechanism must synchronize
 537   // the locking_thread with respect to the current thread. Currently only used when
 538   // deoptimizing and re-locking locks. See Deoptimization::relock_objects
 539   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 540 
 541   if (LockingMode == LM_LIGHTWEIGHT) {
 542     return LightweightSynchronizer::enter_for(obj, lock, locking_thread);
 543   }
 544 
 545   if (!enter_fast_impl(obj, lock, locking_thread)) {
 546     // Inflated ObjectMonitor::enter_for is required
 547 
 548     // An async deflation can race after the inflate_for() call and before
 549     // enter_for() can make the ObjectMonitor busy. enter_for() returns false
 550     // if we have lost the race to async deflation and we simply try again.
 551     while (true) {
 552       ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter);
 553       if (monitor->enter_for(locking_thread)) {
 554         return;
 555       }
 556       assert(monitor->is_being_async_deflated(), "must be");
 557     }
 558   }
 559 }
 560 
 561 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, JavaThread* current) {
 562   assert(current == Thread::current(), "must be");
 563 
 564   if (LockingMode == LM_LIGHTWEIGHT) {
 565     return LightweightSynchronizer::enter(obj, lock, current);
 566   }
 567 
 568   if (!enter_fast_impl(obj, lock, current)) {
 569     // Inflated ObjectMonitor::enter is required
 570 
 571     // An async deflation can race after the inflate() call and before
 572     // enter() can make the ObjectMonitor busy. enter() returns false if
 573     // we have lost the race to async deflation and we simply try again.
 574     while (true) {
 575       ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter);
 576       if (monitor->enter(current)) {
 577         return;
 578       }
 579     }
 580   }
 581 }
 582 
 583 // The interpreter and compiler assembly code tries to lock using the fast path
 584 // of this algorithm. Make sure to update that code if the following function is
 585 // changed. The implementation is extremely sensitive to race condition. Be careful.
 586 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
 587   assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer");
 588 
 589   if (obj->klass()->is_value_based()) {
 590     handle_sync_on_value_based_class(obj, locking_thread);
 591   }
 592 
 593   locking_thread->inc_held_monitor_count();
 594 
 595   if (!useHeavyMonitors()) {
 596     if (LockingMode == LM_LEGACY) {
 597       markWord mark = obj->mark();
 598       if (mark.is_unlocked()) {
 599         // Anticipate successful CAS -- the ST of the displaced mark must
 600         // be visible <= the ST performed by the CAS.
 601         lock->set_displaced_header(mark);
 602         if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 603           return true;
 604         }
 605       } else if (mark.has_locker() &&
 606                  locking_thread->is_lock_owned((address) mark.locker())) {
 607         assert(lock != mark.locker(), "must not re-lock the same lock");
 608         assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock");
 609         lock->set_displaced_header(markWord::from_pointer(nullptr));
 610         return true;
 611       }
 612 
 613       // The object header will never be displaced to this lock,
 614       // so it does not matter what the value is, except that it
 615       // must be non-zero to avoid looking like a re-entrant lock,
 616       // and must not look locked either.
 617       lock->set_displaced_header(markWord::unused_mark());
 618 
 619       // Failed to fast lock.
 620       return false;
 621     }
 622   } else if (VerifyHeavyMonitors) {
 623     guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 624   }
 625 
 626   return false;
 627 }
 628 
 629 void ObjectSynchronizer::exit(oop object, BasicLock* lock, JavaThread* current) {
 630   current->dec_held_monitor_count();
 631 
 632   if (LockingMode == LM_LIGHTWEIGHT) {
 633     return LightweightSynchronizer::exit(object, current);
 634   }
 635 
 636   if (!useHeavyMonitors()) {
 637     markWord mark = object->mark();
 638     if (LockingMode == LM_LEGACY) {
 639       markWord dhw = lock->displaced_header();
 640       if (dhw.value() == 0) {
 641         // If the displaced header is null, then this exit matches up with
 642         // a recursive enter. No real work to do here except for diagnostics.
 643 #ifndef PRODUCT
 644         if (mark != markWord::INFLATING()) {
 645           // Only do diagnostics if we are not racing an inflation. Simply
 646           // exiting a recursive enter of a Java Monitor that is being
 647           // inflated is safe; see the has_monitor() comment below.
 648           assert(!mark.is_unlocked(), "invariant");
 649           assert(!mark.has_locker() ||
 650                  current->is_lock_owned((address)mark.locker()), "invariant");
 651           if (mark.has_monitor()) {
 652             // The BasicLock's displaced_header is marked as a recursive
 653             // enter and we have an inflated Java Monitor (ObjectMonitor).
 654             // This is a special case where the Java Monitor was inflated
 655             // after this thread entered the stack-lock recursively. When a
 656             // Java Monitor is inflated, we cannot safely walk the Java
 657             // Monitor owner's stack and update the BasicLocks because a
 658             // Java Monitor can be asynchronously inflated by a thread that
 659             // does not own the Java Monitor.
 660             ObjectMonitor* m = read_monitor(mark);
 661             assert(m->object()->mark() == mark, "invariant");
 662             assert(m->is_entered(current), "invariant");
 663           }
 664         }
 665 #endif
 666         return;
 667       }
 668 
 669       if (mark == markWord::from_pointer(lock)) {
 670         // If the object is stack-locked by the current thread, try to
 671         // swing the displaced header from the BasicLock back to the mark.
 672         assert(dhw.is_neutral(), "invariant");
 673         if (object->cas_set_mark(dhw, mark) == mark) {
 674           return;
 675         }
 676       }
 677     }
 678   } else if (VerifyHeavyMonitors) {
 679     guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 680   }
 681 
 682   // We have to take the slow-path of possible inflation and then exit.
 683   // The ObjectMonitor* can't be async deflated until ownership is
 684   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 685   ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal);
 686   assert(!monitor->is_owner_anonymous(), "must not be");
 687   monitor->exit(current);
 688 }
 689 
 690 // -----------------------------------------------------------------------------
 691 // JNI locks on java objects
 692 // NOTE: must use heavy weight monitor to handle jni monitor enter
 693 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) {
 694   if (obj->klass()->is_value_based()) {
 695     handle_sync_on_value_based_class(obj, current);
 696   }
 697 
 698   // the current locking is from JNI instead of Java code
 699   current->set_current_pending_monitor_is_from_java(false);
 700   // An async deflation can race after the inflate() call and before
 701   // enter() can make the ObjectMonitor busy. enter() returns false if
 702   // we have lost the race to async deflation and we simply try again.
 703   while (true) {
 704     ObjectMonitor* monitor;
 705     bool entered;
 706     if (LockingMode == LM_LIGHTWEIGHT) {
 707       entered = LightweightSynchronizer::inflate_and_enter(obj(), current, current, inflate_cause_jni_enter) != nullptr;
 708     } else {
 709       monitor = inflate(current, obj(), inflate_cause_jni_enter);
 710       entered = monitor->enter(current);
 711     }
 712 
 713     if (entered) {
 714       current->inc_held_monitor_count(1, true);
 715       break;
 716     }
 717   }
 718   current->set_current_pending_monitor_is_from_java(true);
 719 }
 720 
 721 // NOTE: must use heavy weight monitor to handle jni monitor exit
 722 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) {
 723   JavaThread* current = THREAD;
 724 
 725   ObjectMonitor* monitor;
 726   if (LockingMode == LM_LIGHTWEIGHT) {
 727     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK);
 728   } else {
 729     // The ObjectMonitor* can't be async deflated until ownership is
 730     // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 731     monitor = inflate(current, obj, inflate_cause_jni_exit);
 732   }
 733   // If this thread has locked the object, exit the monitor. We
 734   // intentionally do not use CHECK on check_owner because we must exit the
 735   // monitor even if an exception was already pending.
 736   if (monitor->check_owner(THREAD)) {
 737     monitor->exit(current);
 738     current->dec_held_monitor_count(1, true);
 739   }
 740 }
 741 
 742 // -----------------------------------------------------------------------------
 743 // Internal VM locks on java objects
 744 // standard constructor, allows locking failures
 745 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) {
 746   _thread = thread;
 747   _thread->check_for_valid_safepoint_state();
 748   _obj = obj;
 749 
 750   if (_obj() != nullptr) {
 751     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 752   }
 753 }
 754 
 755 ObjectLocker::~ObjectLocker() {
 756   if (_obj() != nullptr) {
 757     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 758   }
 759 }
 760 
 761 
 762 // -----------------------------------------------------------------------------
 763 //  Wait/Notify/NotifyAll
 764 // NOTE: must use heavy weight monitor to handle wait()
 765 
 766 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 767   JavaThread* current = THREAD;
 768   if (millis < 0) {
 769     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 770   }
 771 
 772   ObjectMonitor* monitor;
 773   if (LockingMode == LM_LIGHTWEIGHT) {
 774     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0);
 775   } else {
 776     // The ObjectMonitor* can't be async deflated because the _waiters
 777     // field is incremented before ownership is dropped and decremented
 778     // after ownership is regained.
 779     monitor = inflate(current, obj(), inflate_cause_wait);
 780   }
 781 
 782   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis);
 783   monitor->wait(millis, true, THREAD); // Not CHECK as we need following code
 784 
 785   // This dummy call is in place to get around dtrace bug 6254741.  Once
 786   // that's fixed we can uncomment the following line, remove the call
 787   // and change this function back into a "void" func.
 788   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 789   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 790   return ret_code;
 791 }
 792 
 793 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 794   JavaThread* current = THREAD;
 795 
 796   markWord mark = obj->mark();
 797   if (LockingMode == LM_LIGHTWEIGHT) {
 798     if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 799       // Not inflated so there can't be any waiters to notify.
 800       return;
 801     }
 802   } else if (LockingMode == LM_LEGACY) {
 803     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 804       // Not inflated so there can't be any waiters to notify.
 805       return;
 806     }
 807   }
 808 
 809   ObjectMonitor* monitor;
 810   if (LockingMode == LM_LIGHTWEIGHT) {
 811     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK);
 812   } else {
 813     // The ObjectMonitor* can't be async deflated until ownership is
 814     // dropped by the calling thread.
 815     monitor = inflate(current, obj(), inflate_cause_notify);
 816   }
 817   monitor->notify(CHECK);
 818 }
 819 
 820 // NOTE: see comment of notify()
 821 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 822   JavaThread* current = THREAD;
 823 
 824   markWord mark = obj->mark();
 825   if (LockingMode == LM_LIGHTWEIGHT) {
 826     if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 827       // Not inflated so there can't be any waiters to notify.
 828       return;
 829     }
 830   } else if (LockingMode == LM_LEGACY) {
 831     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 832       // Not inflated so there can't be any waiters to notify.
 833       return;
 834     }
 835   }
 836 
 837   ObjectMonitor* monitor;
 838   if (LockingMode == LM_LIGHTWEIGHT) {
 839     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK);
 840   } else {
 841     // The ObjectMonitor* can't be async deflated until ownership is
 842     // dropped by the calling thread.
 843     monitor = inflate(current, obj(), inflate_cause_notify);
 844   }
 845   monitor->notifyAll(CHECK);
 846 }
 847 
 848 // -----------------------------------------------------------------------------
 849 // Hash Code handling
 850 
 851 struct SharedGlobals {
 852   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 853   // This is a highly shared mostly-read variable.
 854   // To avoid false-sharing it needs to be the sole occupant of a cache line.
 855   volatile int stw_random;
 856   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 857   // Hot RW variable -- Sequester to avoid false-sharing
 858   volatile int hc_sequence;
 859   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 860 };
 861 
 862 static SharedGlobals GVars;
 863 
 864 static markWord read_stable_mark(oop obj) {
 865   markWord mark = obj->mark_acquire();
 866   if (!mark.is_being_inflated() || LockingMode == LM_LIGHTWEIGHT) {
 867     // New lightweight locking does not use the markWord::INFLATING() protocol.
 868     return mark;       // normal fast-path return
 869   }
 870 
 871   int its = 0;
 872   for (;;) {
 873     markWord mark = obj->mark_acquire();
 874     if (!mark.is_being_inflated()) {
 875       return mark;    // normal fast-path return
 876     }
 877 
 878     // The object is being inflated by some other thread.
 879     // The caller of read_stable_mark() must wait for inflation to complete.
 880     // Avoid live-lock.
 881 
 882     ++its;
 883     if (its > 10000 || !os::is_MP()) {
 884       if (its & 1) {
 885         os::naked_yield();
 886       } else {
 887         // Note that the following code attenuates the livelock problem but is not
 888         // a complete remedy.  A more complete solution would require that the inflating
 889         // thread hold the associated inflation lock.  The following code simply restricts
 890         // the number of spinners to at most one.  We'll have N-2 threads blocked
 891         // on the inflationlock, 1 thread holding the inflation lock and using
 892         // a yield/park strategy, and 1 thread in the midst of inflation.
 893         // A more refined approach would be to change the encoding of INFLATING
 894         // to allow encapsulation of a native thread pointer.  Threads waiting for
 895         // inflation to complete would use CAS to push themselves onto a singly linked
 896         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 897         // and calling park().  When inflation was complete the thread that accomplished inflation
 898         // would detach the list and set the markword to inflated with a single CAS and
 899         // then for each thread on the list, set the flag and unpark() the thread.
 900 
 901         // Index into the lock array based on the current object address.
 902         static_assert(is_power_of_2(inflation_lock_count()), "must be");
 903         size_t ix = (cast_from_oop<intptr_t>(obj) >> 5) & (inflation_lock_count() - 1);
 904         int YieldThenBlock = 0;
 905         assert(ix < inflation_lock_count(), "invariant");
 906         inflation_lock(ix)->lock();
 907         while (obj->mark_acquire() == markWord::INFLATING()) {
 908           // Beware: naked_yield() is advisory and has almost no effect on some platforms
 909           // so we periodically call current->_ParkEvent->park(1).
 910           // We use a mixed spin/yield/block mechanism.
 911           if ((YieldThenBlock++) >= 16) {
 912             Thread::current()->_ParkEvent->park(1);
 913           } else {
 914             os::naked_yield();
 915           }
 916         }
 917         inflation_lock(ix)->unlock();
 918       }
 919     } else {
 920       SpinPause();       // SMP-polite spinning
 921     }
 922   }
 923 }
 924 
 925 // hashCode() generation :
 926 //
 927 // Possibilities:
 928 // * MD5Digest of {obj,stw_random}
 929 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 930 // * A DES- or AES-style SBox[] mechanism
 931 // * One of the Phi-based schemes, such as:
 932 //   2654435761 = 2^32 * Phi (golden ratio)
 933 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 934 // * A variation of Marsaglia's shift-xor RNG scheme.
 935 // * (obj ^ stw_random) is appealing, but can result
 936 //   in undesirable regularity in the hashCode values of adjacent objects
 937 //   (objects allocated back-to-back, in particular).  This could potentially
 938 //   result in hashtable collisions and reduced hashtable efficiency.
 939 //   There are simple ways to "diffuse" the middle address bits over the
 940 //   generated hashCode values:
 941 
 942 static inline intptr_t get_next_hash(Thread* current, oop obj) {
 943   intptr_t value = 0;
 944   if (hashCode == 0) {
 945     // This form uses global Park-Miller RNG.
 946     // On MP system we'll have lots of RW access to a global, so the
 947     // mechanism induces lots of coherency traffic.
 948     value = os::random();
 949   } else if (hashCode == 1) {
 950     // This variation has the property of being stable (idempotent)
 951     // between STW operations.  This can be useful in some of the 1-0
 952     // synchronization schemes.
 953     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 954     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 955   } else if (hashCode == 2) {
 956     value = 1;            // for sensitivity testing
 957   } else if (hashCode == 3) {
 958     value = ++GVars.hc_sequence;
 959   } else if (hashCode == 4) {
 960     value = cast_from_oop<intptr_t>(obj);
 961   } else {
 962     // Marsaglia's xor-shift scheme with thread-specific state
 963     // This is probably the best overall implementation -- we'll
 964     // likely make this the default in future releases.
 965     unsigned t = current->_hashStateX;
 966     t ^= (t << 11);
 967     current->_hashStateX = current->_hashStateY;
 968     current->_hashStateY = current->_hashStateZ;
 969     current->_hashStateZ = current->_hashStateW;
 970     unsigned v = current->_hashStateW;
 971     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 972     current->_hashStateW = v;
 973     value = v;
 974   }
 975 
 976   value &= UseCompactObjectHeaders ? markWord::hash_mask_compact : markWord::hash_mask;
 977   if (value == 0) value = 0xBAD;
 978   assert(value != markWord::no_hash, "invariant");
 979   return value;
 980 }
 981 
 982 intptr_t ObjectSynchronizer::get_next_hash(Thread* current, oop obj) {
 983   // CLEANUP[Axel]: hack for LightweightSynchronizer being in different translation unit
 984   return ::get_next_hash(current, obj);
 985 }
 986 
 987 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) {
 988   if (LockingMode == LM_LIGHTWEIGHT) {
 989     return LightweightSynchronizer::FastHashCode(current, obj);
 990   }
 991 
 992   while (true) {
 993     ObjectMonitor* monitor = nullptr;
 994     markWord temp, test;
 995     intptr_t hash;
 996     markWord mark = read_stable_mark(obj);
 997     if (VerifyHeavyMonitors) {
 998       assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)");
 999       guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
1000     }
1001     if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) {
1002       hash = mark.hash();
1003       if (hash != 0) {                     // if it has a hash, just return it
1004         return hash;
1005       }
1006       hash = get_next_hash(current, obj);  // get a new hash
1007       temp = mark.copy_set_hash(hash);     // merge the hash into header
1008                                            // try to install the hash
1009       test = obj->cas_set_mark(temp, mark);
1010       if (test == mark) {                  // if the hash was installed, return it
1011         return hash;
1012       }
1013       if (LockingMode == LM_LIGHTWEIGHT) {
1014         // CAS failed, retry
1015         continue;
1016       }
1017       // Failed to install the hash. It could be that another thread
1018       // installed the hash just before our attempt or inflation has
1019       // occurred or... so we fall thru to inflate the monitor for
1020       // stability and then install the hash.
1021     } else if (mark.has_monitor()) {
1022       monitor = mark.monitor();
1023       temp = monitor->header();
1024       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1025       hash = temp.hash();
1026       if (hash != 0) {
1027         // It has a hash.
1028 
1029         // Separate load of dmw/header above from the loads in
1030         // is_being_async_deflated().
1031 
1032         // dmw/header and _contentions may get written by different threads.
1033         // Make sure to observe them in the same order when having several observers.
1034         OrderAccess::loadload_for_IRIW();
1035 
1036         if (monitor->is_being_async_deflated()) {
1037           // But we can't safely use the hash if we detect that async
1038           // deflation has occurred. So we attempt to restore the
1039           // header/dmw to the object's header so that we only retry
1040           // once if the deflater thread happens to be slow.
1041           monitor->install_displaced_markword_in_object(obj);
1042           continue;
1043         }
1044         return hash;
1045       }
1046       // Fall thru so we only have one place that installs the hash in
1047       // the ObjectMonitor.
1048     } else if (LockingMode == LM_LEGACY && mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
1049       // This is a stack-lock owned by the calling thread so fetch the
1050       // displaced markWord from the BasicLock on the stack.
1051       temp = mark.displaced_mark_helper();
1052       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1053       hash = temp.hash();
1054       if (hash != 0) {                  // if it has a hash, just return it
1055         return hash;
1056       }
1057       // WARNING:
1058       // The displaced header in the BasicLock on a thread's stack
1059       // is strictly immutable. It CANNOT be changed in ANY cases.
1060       // So we have to inflate the stack-lock into an ObjectMonitor
1061       // even if the current thread owns the lock. The BasicLock on
1062       // a thread's stack can be asynchronously read by other threads
1063       // during an inflate() call so any change to that stack memory
1064       // may not propagate to other threads correctly.
1065     }
1066 
1067     // Inflate the monitor to set the hash.
1068 
1069     // An async deflation can race after the inflate() call and before we
1070     // can update the ObjectMonitor's header with the hash value below.
1071     monitor = inflate(current, obj, inflate_cause_hash_code);
1072     // Load ObjectMonitor's header/dmw field and see if it has a hash.
1073     mark = monitor->header();
1074     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1075     hash = mark.hash();
1076     if (hash == 0) {                       // if it does not have a hash
1077       hash = get_next_hash(current, obj);  // get a new hash
1078       temp = mark.copy_set_hash(hash)   ;  // merge the hash into header
1079       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1080       uintptr_t v = Atomic::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value());
1081       test = markWord(v);
1082       if (test != mark) {
1083         // The attempt to update the ObjectMonitor's header/dmw field
1084         // did not work. This can happen if another thread managed to
1085         // merge in the hash just before our cmpxchg().
1086         // If we add any new usages of the header/dmw field, this code
1087         // will need to be updated.
1088         hash = test.hash();
1089         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
1090         assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
1091       }
1092       if (monitor->is_being_async_deflated()) {
1093         // If we detect that async deflation has occurred, then we
1094         // attempt to restore the header/dmw to the object's header
1095         // so that we only retry once if the deflater thread happens
1096         // to be slow.
1097         monitor->install_displaced_markword_in_object(obj);
1098         continue;
1099       }
1100     }
1101     // We finally get the hash.
1102     return hash;
1103   }
1104 }
1105 
1106 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current,
1107                                                    Handle h_obj) {
1108   assert(current == JavaThread::current(), "Can only be called on current thread");
1109   oop obj = h_obj();
1110 
1111   markWord mark = read_stable_mark(obj);
1112 
1113   if (LockingMode == LM_LEGACY && mark.has_locker()) {
1114     // stack-locked case, header points into owner's stack
1115     return current->is_lock_owned((address)mark.locker());
1116   }
1117 
1118   if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1119     // fast-locking case, see if lock is in current's lock stack
1120     return current->lock_stack().contains(h_obj());
1121   }
1122 
1123   while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) {
1124     ObjectMonitor* monitor = LightweightSynchronizer::read_monitor(current, obj);
1125     if (monitor != nullptr) {
1126       return monitor->is_entered(current) != 0;
1127     }
1128     // Racing with inflation/deflation, retry
1129     mark = obj->mark_acquire();
1130 
1131     if (mark.is_fast_locked()) {
1132       // Some other thread fast_locked, current could not have held the lock
1133       return false;
1134     }
1135   }
1136 
1137   if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) {
1138     // Inflated monitor so header points to ObjectMonitor (tagged pointer).
1139     // The first stage of async deflation does not affect any field
1140     // used by this comparison so the ObjectMonitor* is usable here.
1141     ObjectMonitor* monitor = read_monitor(mark);
1142     return monitor->is_entered(current) != 0;
1143   }
1144   // Unlocked case, header in place
1145   assert(mark.is_unlocked(), "sanity check");
1146   return false;
1147 }
1148 
1149 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
1150   oop obj = h_obj();
1151   markWord mark = read_stable_mark(obj);
1152 
1153   if (LockingMode == LM_LEGACY && mark.has_locker()) {
1154     // stack-locked so header points into owner's stack.
1155     // owning_thread_from_monitor_owner() may also return null here:
1156     return Threads::owning_thread_from_monitor_owner(t_list, (address) mark.locker());
1157   }
1158 
1159   if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1160     // fast-locked so get owner from the object.
1161     // owning_thread_from_object() may also return null here:
1162     return Threads::owning_thread_from_object(t_list, h_obj());
1163   }
1164 
1165   while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) {
1166     ObjectMonitor* monitor = LightweightSynchronizer::read_monitor(Thread::current(), obj);
1167     if (monitor != nullptr) {
1168       return Threads::owning_thread_from_monitor(t_list, monitor);
1169     }
1170     // Racing with inflation/deflation, retry
1171     mark = obj->mark_acquire();
1172 
1173     if (mark.is_fast_locked()) {
1174       // Some other thread fast_locked
1175       return Threads::owning_thread_from_object(t_list, h_obj());
1176     }
1177   }
1178 
1179   if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) {
1180     // Inflated monitor so header points to ObjectMonitor (tagged pointer).
1181     // The first stage of async deflation does not affect any field
1182     // used by this comparison so the ObjectMonitor* is usable here.
1183     ObjectMonitor* monitor = read_monitor(mark);
1184     assert(monitor != nullptr, "monitor should be non-null");
1185     // owning_thread_from_monitor() may also return null here:
1186     return Threads::owning_thread_from_monitor(t_list, monitor);
1187   }
1188 
1189   // Unlocked case, header in place
1190   // Cannot have assertion since this object may have been
1191   // locked by another thread when reaching here.
1192   // assert(mark.is_unlocked(), "sanity check");
1193 
1194   return nullptr;
1195 }
1196 
1197 // Visitors ...
1198 
1199 // Iterate over all ObjectMonitors.
1200 template <typename Function>
1201 void ObjectSynchronizer::monitors_iterate(Function function) {
1202   MonitorList::Iterator iter = _in_use_list.iterator();
1203   while (iter.has_next()) {
1204     ObjectMonitor* monitor = iter.next();
1205     function(monitor);
1206   }
1207 }
1208 
1209 // Iterate ObjectMonitors owned by any thread and where the owner `filter`
1210 // returns true.
1211 template <typename OwnerFilter>
1212 void ObjectSynchronizer::owned_monitors_iterate_filtered(MonitorClosure* closure, OwnerFilter filter) {
1213   monitors_iterate([&](ObjectMonitor* monitor) {
1214     // This function is only called at a safepoint or when the
1215     // target thread is suspended or when the target thread is
1216     // operating on itself. The current closures in use today are
1217     // only interested in an owned ObjectMonitor and ownership
1218     // cannot be dropped under the calling contexts so the
1219     // ObjectMonitor cannot be async deflated.
1220     if (monitor->has_owner() && filter(monitor->owner_raw())) {
1221       assert(!monitor->is_being_async_deflated(), "Owned monitors should not be deflating");
1222 
1223       closure->do_monitor(monitor);
1224     }
1225   });
1226 }
1227 
1228 // Iterate ObjectMonitors where the owner == thread; this does NOT include
1229 // ObjectMonitors where owner is set to a stack-lock address in thread.
1230 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure, JavaThread* thread) {
1231   auto thread_filter = [&](void* owner) { return owner == thread; };
1232   return owned_monitors_iterate_filtered(closure, thread_filter);
1233 }
1234 
1235 // Iterate ObjectMonitors owned by any thread.
1236 void ObjectSynchronizer::owned_monitors_iterate(MonitorClosure* closure) {
1237   auto all_filter = [&](void* owner) { return true; };
1238   return owned_monitors_iterate_filtered(closure, all_filter);
1239 }
1240 
1241 static bool monitors_used_above_threshold(MonitorList* list) {
1242   if (MonitorUsedDeflationThreshold == 0) {  // disabled case is easy
1243     return false;
1244   }
1245   // Start with ceiling based on a per-thread estimate:
1246   size_t ceiling = ObjectSynchronizer::in_use_list_ceiling();
1247   size_t old_ceiling = ceiling;
1248   if (ceiling < list->max()) {
1249     // The max used by the system has exceeded the ceiling so use that:
1250     ceiling = list->max();
1251   }
1252   size_t monitors_used = list->count();
1253   if (monitors_used == 0) {  // empty list is easy
1254     return false;
1255   }
1256   if (NoAsyncDeflationProgressMax != 0 &&
1257       _no_progress_cnt >= NoAsyncDeflationProgressMax) {
1258     double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0;
1259     size_t new_ceiling = ceiling / remainder + 1;
1260     ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling);
1261     log_info(monitorinflation)("Too many deflations without progress; "
1262                                "bumping in_use_list_ceiling from " SIZE_FORMAT
1263                                " to " SIZE_FORMAT, old_ceiling, new_ceiling);
1264     _no_progress_cnt = 0;
1265     ceiling = new_ceiling;
1266   }
1267 
1268   // Check if our monitor usage is above the threshold:
1269   size_t monitor_usage = (monitors_used * 100LL) / ceiling;
1270   if (int(monitor_usage) > MonitorUsedDeflationThreshold) {
1271     log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT
1272                                ", monitor_usage=" SIZE_FORMAT ", threshold=%d",
1273                                monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold);
1274     return true;
1275   }
1276 
1277   return false;
1278 }
1279 
1280 size_t ObjectSynchronizer::in_use_list_ceiling() {
1281   return _in_use_list_ceiling;
1282 }
1283 
1284 void ObjectSynchronizer::dec_in_use_list_ceiling() {
1285   Atomic::sub(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate);
1286 }
1287 
1288 void ObjectSynchronizer::inc_in_use_list_ceiling() {
1289   Atomic::add(&_in_use_list_ceiling, AvgMonitorsPerThreadEstimate);
1290 }
1291 
1292 void ObjectSynchronizer::set_in_use_list_ceiling(size_t new_value) {
1293   _in_use_list_ceiling = new_value;
1294 }
1295 
1296 bool ObjectSynchronizer::is_async_deflation_needed() {
1297   if (is_async_deflation_requested()) {
1298     // Async deflation request.
1299     log_info(monitorinflation)("Async deflation needed: explicit request");
1300     return true;
1301   }
1302 
1303   jlong time_since_last = time_since_last_async_deflation_ms();
1304 
1305   if (AsyncDeflationInterval > 0 &&
1306       time_since_last > AsyncDeflationInterval &&
1307       monitors_used_above_threshold(&_in_use_list)) {
1308     // It's been longer than our specified deflate interval and there
1309     // are too many monitors in use. We don't deflate more frequently
1310     // than AsyncDeflationInterval (unless is_async_deflation_requested)
1311     // in order to not swamp the MonitorDeflationThread.
1312     log_info(monitorinflation)("Async deflation needed: monitors used are above the threshold");
1313     return true;
1314   }
1315 
1316   if (GuaranteedAsyncDeflationInterval > 0 &&
1317       time_since_last > GuaranteedAsyncDeflationInterval) {
1318     // It's been longer than our specified guaranteed deflate interval.
1319     // We need to clean up the used monitors even if the threshold is
1320     // not reached, to keep the memory utilization at bay when many threads
1321     // touched many monitors.
1322     log_info(monitorinflation)("Async deflation needed: guaranteed interval (" INTX_FORMAT " ms) "
1323                                "is greater than time since last deflation (" JLONG_FORMAT " ms)",
1324                                GuaranteedAsyncDeflationInterval, time_since_last);
1325 
1326     // If this deflation has no progress, then it should not affect the no-progress
1327     // tracking, otherwise threshold heuristics would think it was triggered, experienced
1328     // no progress, and needs to backoff more aggressively. In this "no progress" case,
1329     // the generic code would bump the no-progress counter, and we compensate for that
1330     // by telling it to skip the update.
1331     //
1332     // If this deflation has progress, then it should let non-progress tracking
1333     // know about this, otherwise the threshold heuristics would kick in, potentially
1334     // experience no-progress due to aggressive cleanup by this deflation, and think
1335     // it is still in no-progress stride. In this "progress" case, the generic code would
1336     // zero the counter, and we allow it to happen.
1337     _no_progress_skip_increment = true;
1338 
1339     return true;
1340   }
1341 
1342   return false;
1343 }
1344 
1345 void ObjectSynchronizer::request_deflate_idle_monitors() {
1346   MonitorLocker ml(MonitorDeflation_lock, Mutex::_no_safepoint_check_flag);
1347   set_is_async_deflation_requested(true);
1348   ml.notify_all();
1349 }
1350 
1351 bool ObjectSynchronizer::request_deflate_idle_monitors_from_wb() {
1352   JavaThread* current = JavaThread::current();
1353   bool ret_code = false;
1354 
1355   jlong last_time = last_async_deflation_time_ns();
1356 
1357   request_deflate_idle_monitors();
1358 
1359   const int N_CHECKS = 5;
1360   for (int i = 0; i < N_CHECKS; i++) {  // sleep for at most 5 seconds
1361     if (last_async_deflation_time_ns() > last_time) {
1362       log_info(monitorinflation)("Async Deflation happened after %d check(s).", i);
1363       ret_code = true;
1364       break;
1365     }
1366     {
1367       // JavaThread has to honor the blocking protocol.
1368       ThreadBlockInVM tbivm(current);
1369       os::naked_short_sleep(999);  // sleep for almost 1 second
1370     }
1371   }
1372   if (!ret_code) {
1373     log_info(monitorinflation)("Async Deflation DID NOT happen after %d checks.", N_CHECKS);
1374   }
1375 
1376   return ret_code;
1377 }
1378 
1379 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1380   return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS);
1381 }
1382 
1383 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1384                                        const oop obj,
1385                                        ObjectSynchronizer::InflateCause cause) {
1386   assert(event != nullptr, "invariant");
1387   event->set_monitorClass(obj->klass());
1388   event->set_address((uintptr_t)(void*)obj);
1389   event->set_cause((u1)cause);
1390   event->commit();
1391 }
1392 
1393 // Fast path code shared by multiple functions
1394 void ObjectSynchronizer::inflate_helper(oop obj) {
1395   if (LockingMode == LM_LIGHTWEIGHT) {
1396     return;
1397   }
1398   markWord mark = obj->mark_acquire();
1399   if (mark.has_monitor()) {
1400     ObjectMonitor* monitor = read_monitor(mark);
1401     markWord dmw = monitor->header();
1402     assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value());
1403     return;
1404   }
1405   (void)inflate(Thread::current(), obj, inflate_cause_vm_internal);
1406 }
1407 
1408 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) {
1409   assert(current == Thread::current(), "must be");
1410   assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate");
1411   return inflate_impl(obj, cause);
1412 }
1413 
1414 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) {
1415   assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be");
1416   assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_for");
1417   return inflate_impl(obj, cause);
1418 }
1419 
1420 ObjectMonitor* ObjectSynchronizer::inflate_impl(oop object, const InflateCause cause) {
1421   assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_impl");
1422   EventJavaMonitorInflate event;
1423 
1424   for (;;) {
1425     const markWord mark = object->mark_acquire();
1426 
1427     // The mark can be in one of the following states:
1428     // *  inflated     - Just return it.
1429     // *  stack-locked - Coerce it to inflated from stack-locked.
1430     // *  INFLATING    - Busy wait for conversion from stack-locked to
1431     //                   inflated.
1432     // *  unlocked     - Aggressively inflate the object.
1433 
1434     // CASE: inflated
1435     if (mark.has_monitor()) {
1436       ObjectMonitor* inf = mark.monitor();
1437       markWord dmw = inf->header();
1438       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1439       return inf;
1440     }
1441 
1442     // CASE: inflation in progress - inflating over a stack-lock.
1443     // Some other thread is converting from stack-locked to inflated.
1444     // Only that thread can complete inflation -- other threads must wait.
1445     // The INFLATING value is transient.
1446     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1447     // We could always eliminate polling by parking the thread on some auxiliary list.
1448     if (mark == markWord::INFLATING()) {
1449       read_stable_mark(object);
1450       continue;
1451     }
1452 
1453     // CASE: stack-locked
1454     // Could be stack-locked either by current or by some other thread.
1455     //
1456     // Note that we allocate the ObjectMonitor speculatively, _before_ attempting
1457     // to install INFLATING into the mark word.  We originally installed INFLATING,
1458     // allocated the ObjectMonitor, and then finally STed the address of the
1459     // ObjectMonitor into the mark.  This was correct, but artificially lengthened
1460     // the interval in which INFLATING appeared in the mark, thus increasing
1461     // the odds of inflation contention. If we lose the race to set INFLATING,
1462     // then we just delete the ObjectMonitor and loop around again.
1463     //
1464     LogStreamHandle(Trace, monitorinflation) lsh;
1465     if (LockingMode == LM_LEGACY && mark.has_locker()) {
1466       ObjectMonitor* m = new ObjectMonitor(object);
1467       // Optimistically prepare the ObjectMonitor - anticipate successful CAS
1468       // We do this before the CAS in order to minimize the length of time
1469       // in which INFLATING appears in the mark.
1470 
1471       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1472       if (cmp != mark) {
1473         delete m;
1474         continue;       // Interference -- just retry
1475       }
1476 
1477       // We've successfully installed INFLATING (0) into the mark-word.
1478       // This is the only case where 0 will appear in a mark-word.
1479       // Only the singular thread that successfully swings the mark-word
1480       // to 0 can perform (or more precisely, complete) inflation.
1481       //
1482       // Why do we CAS a 0 into the mark-word instead of just CASing the
1483       // mark-word from the stack-locked value directly to the new inflated state?
1484       // Consider what happens when a thread unlocks a stack-locked object.
1485       // It attempts to use CAS to swing the displaced header value from the
1486       // on-stack BasicLock back into the object header.  Recall also that the
1487       // header value (hash code, etc) can reside in (a) the object header, or
1488       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1489       // header in an ObjectMonitor.  The inflate() routine must copy the header
1490       // value from the BasicLock on the owner's stack to the ObjectMonitor, all
1491       // the while preserving the hashCode stability invariants.  If the owner
1492       // decides to release the lock while the value is 0, the unlock will fail
1493       // and control will eventually pass from slow_exit() to inflate.  The owner
1494       // will then spin, waiting for the 0 value to disappear.   Put another way,
1495       // the 0 causes the owner to stall if the owner happens to try to
1496       // drop the lock (restoring the header from the BasicLock to the object)
1497       // while inflation is in-progress.  This protocol avoids races that might
1498       // would otherwise permit hashCode values to change or "flicker" for an object.
1499       // Critically, while object->mark is 0 mark.displaced_mark_helper() is stable.
1500       // 0 serves as a "BUSY" inflate-in-progress indicator.
1501 
1502 
1503       // fetch the displaced mark from the owner's stack.
1504       // The owner can't die or unwind past the lock while our INFLATING
1505       // object is in the mark.  Furthermore the owner can't complete
1506       // an unlock on the object, either.
1507       markWord dmw = mark.displaced_mark_helper();
1508       // Catch if the object's header is not neutral (not locked and
1509       // not marked is what we care about here).
1510       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1511 
1512       // Setup monitor fields to proper values -- prepare the monitor
1513       m->set_header(dmw);
1514 
1515       // Optimization: if the mark.locker stack address is associated
1516       // with this thread we could simply set m->_owner = current.
1517       // Note that a thread can inflate an object
1518       // that it has stack-locked -- as might happen in wait() -- directly
1519       // with CAS.  That is, we can avoid the xchg-nullptr .... ST idiom.
1520       m->set_owner_from(nullptr, mark.locker());
1521       // TODO-FIXME: assert BasicLock->dhw != 0.
1522 
1523       // Must preserve store ordering. The monitor state must
1524       // be stable at the time of publishing the monitor address.
1525       guarantee(object->mark() == markWord::INFLATING(), "invariant");
1526       // Release semantics so that above set_object() is seen first.
1527       object->release_set_mark(markWord::encode(m));
1528 
1529       // Once ObjectMonitor is configured and the object is associated
1530       // with the ObjectMonitor, it is safe to allow async deflation:
1531       _in_use_list.add(m);
1532 
1533       // Hopefully the performance counters are allocated on distinct cache lines
1534       // to avoid false sharing on MP systems ...
1535       OM_PERFDATA_OP(Inflations, inc());
1536       if (log_is_enabled(Trace, monitorinflation)) {
1537         ResourceMark rm;
1538         lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1539                      INTPTR_FORMAT ", type='%s'", p2i(object),
1540                      object->mark().value(), object->klass()->external_name());
1541       }
1542       if (event.should_commit()) {
1543         post_monitor_inflate_event(&event, object, cause);
1544       }
1545       return m;
1546     }
1547 
1548     // CASE: unlocked
1549     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1550     // If we know we're inflating for entry it's better to inflate by swinging a
1551     // pre-locked ObjectMonitor pointer into the object header.   A successful
1552     // CAS inflates the object *and* confers ownership to the inflating thread.
1553     // In the current implementation we use a 2-step mechanism where we CAS()
1554     // to inflate and then CAS() again to try to swing _owner from null to current.
1555     // An inflateTry() method that we could call from enter() would be useful.
1556 
1557     assert(mark.is_unlocked(), "invariant: header=" INTPTR_FORMAT, mark.value());
1558     ObjectMonitor* m = new ObjectMonitor(object);
1559     // prepare m for installation - set monitor to initial state
1560     m->set_header(mark);
1561 
1562     if (object->cas_set_mark(markWord::encode(m), mark) != mark) {
1563       delete m;
1564       m = nullptr;
1565       continue;
1566       // interference - the markword changed - just retry.
1567       // The state-transitions are one-way, so there's no chance of
1568       // live-lock -- "Inflated" is an absorbing state.
1569     }
1570 
1571     // Once the ObjectMonitor is configured and object is associated
1572     // with the ObjectMonitor, it is safe to allow async deflation:
1573     _in_use_list.add(m);
1574 
1575     // Hopefully the performance counters are allocated on distinct
1576     // cache lines to avoid false sharing on MP systems ...
1577     OM_PERFDATA_OP(Inflations, inc());
1578     if (log_is_enabled(Trace, monitorinflation)) {
1579       ResourceMark rm;
1580       lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark="
1581                    INTPTR_FORMAT ", type='%s'", p2i(object),
1582                    object->mark().value(), object->klass()->external_name());
1583     }
1584     if (event.should_commit()) {
1585       post_monitor_inflate_event(&event, object, cause);
1586     }
1587     return m;
1588   }
1589 }
1590 
1591 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle
1592 // ObjectMonitors. Returns the number of deflated ObjectMonitors.
1593 //
1594 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) {
1595   MonitorList::Iterator iter = _in_use_list.iterator();
1596   size_t deflated_count = 0;
1597   Thread* current = Thread::current();
1598 
1599   while (iter.has_next()) {
1600     if (deflated_count >= (size_t)MonitorDeflationMax) {
1601       break;
1602     }
1603     ObjectMonitor* mid = iter.next();
1604     if (mid->deflate_monitor(current)) {
1605       deflated_count++;
1606     }
1607 
1608     // Must check for a safepoint/handshake and honor it.
1609     safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count);
1610   }
1611 
1612   return deflated_count;
1613 }
1614 
1615 class HandshakeForDeflation : public HandshakeClosure {
1616  public:
1617   HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {}
1618 
1619   void do_thread(Thread* thread) {
1620     log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread="
1621                                 INTPTR_FORMAT, p2i(thread));
1622     if (thread->is_Java_thread()) {
1623       // Clear OM cache
1624       JavaThread* jt = JavaThread::cast(thread);
1625       jt->om_clear_monitor_cache();
1626     }
1627   }
1628 };
1629 
1630 class VM_RendezvousGCThreads : public VM_Operation {
1631 public:
1632   bool evaluate_at_safepoint() const override { return false; }
1633   VMOp_Type type() const override { return VMOp_RendezvousGCThreads; }
1634   void doit() override {
1635     Universe::heap()->safepoint_synchronize_begin();
1636     Universe::heap()->safepoint_synchronize_end();
1637   };
1638 };
1639 
1640 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list,
1641                               ObjectMonitorDeflationSafepointer* safepointer) {
1642   NativeHeapTrimmer::SuspendMark sm("monitor deletion");
1643   size_t deleted_count = 0;
1644   for (ObjectMonitor* monitor: *delete_list) {
1645     delete monitor;
1646     deleted_count++;
1647     // A JavaThread must check for a safepoint/handshake and honor it.
1648     safepointer->block_for_safepoint("deletion", "deleted_count", deleted_count);
1649   }
1650   return deleted_count;
1651 }
1652 
1653 class ObjectMonitorDeflationLogging: public StackObj {
1654   LogStreamHandle(Debug, monitorinflation) _debug;
1655   LogStreamHandle(Info, monitorinflation)  _info;
1656   LogStream*                               _stream;
1657   elapsedTimer                             _timer;
1658 
1659   size_t ceiling() const { return ObjectSynchronizer::in_use_list_ceiling(); }
1660   size_t count() const   { return ObjectSynchronizer::_in_use_list.count(); }
1661   size_t max() const     { return ObjectSynchronizer::_in_use_list.max(); }
1662 
1663 public:
1664   ObjectMonitorDeflationLogging()
1665     : _debug(), _info(), _stream(nullptr) {
1666     if (_debug.is_enabled()) {
1667       _stream = &_debug;
1668     } else if (_info.is_enabled()) {
1669       _stream = &_info;
1670     }
1671   }
1672 
1673   void begin() {
1674     if (_stream != nullptr) {
1675       _stream->print_cr("begin deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1676                         ceiling(), count(), max());
1677       _timer.start();
1678     }
1679   }
1680 
1681   void before_handshake(size_t unlinked_count) {
1682     if (_stream != nullptr) {
1683       _timer.stop();
1684       _stream->print_cr("before handshaking: unlinked_count=" SIZE_FORMAT
1685                         ", in_use_list stats: ceiling=" SIZE_FORMAT ", count="
1686                         SIZE_FORMAT ", max=" SIZE_FORMAT,
1687                         unlinked_count, ceiling(), count(), max());
1688     }
1689   }
1690 
1691   void after_handshake() {
1692     if (_stream != nullptr) {
1693       _stream->print_cr("after handshaking: in_use_list stats: ceiling="
1694                         SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1695                         ceiling(), count(), max());
1696       _timer.start();
1697     }
1698   }
1699 
1700   void end(size_t deflated_count, size_t unlinked_count) {
1701     if (_stream != nullptr) {
1702       _timer.stop();
1703       if (deflated_count != 0 || unlinked_count != 0 || _debug.is_enabled()) {
1704         _stream->print_cr("deflated_count=" SIZE_FORMAT ", {unlinked,deleted}_count=" SIZE_FORMAT " monitors in %3.7f secs",
1705                           deflated_count, unlinked_count, _timer.seconds());
1706       }
1707       _stream->print_cr("end deflating: in_use_list stats: ceiling=" SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1708                         ceiling(), count(), max());
1709     }
1710   }
1711 
1712   void before_block_for_safepoint(const char* op_name, const char* cnt_name, size_t cnt) {
1713     if (_stream != nullptr) {
1714       _timer.stop();
1715       _stream->print_cr("pausing %s: %s=" SIZE_FORMAT ", in_use_list stats: ceiling="
1716                         SIZE_FORMAT ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT,
1717                         op_name, cnt_name, cnt, ceiling(), count(), max());
1718     }
1719   }
1720 
1721   void after_block_for_safepoint(const char* op_name) {
1722     if (_stream != nullptr) {
1723       _stream->print_cr("resuming %s: in_use_list stats: ceiling=" SIZE_FORMAT
1724                         ", count=" SIZE_FORMAT ", max=" SIZE_FORMAT, op_name,
1725                         ceiling(), count(), max());
1726       _timer.start();
1727     }
1728   }
1729 };
1730 
1731 void ObjectMonitorDeflationSafepointer::block_for_safepoint(const char* op_name, const char* count_name, size_t counter) {
1732   if (!SafepointMechanism::should_process(_current)) {
1733     return;
1734   }
1735 
1736   // A safepoint/handshake has started.
1737   _log->before_block_for_safepoint(op_name, count_name, counter);
1738 
1739   {
1740     // Honor block request.
1741     ThreadBlockInVM tbivm(_current);
1742   }
1743 
1744   _log->after_block_for_safepoint(op_name);
1745 }
1746 
1747 // This function is called by the MonitorDeflationThread to deflate
1748 // ObjectMonitors.
1749 size_t ObjectSynchronizer::deflate_idle_monitors() {
1750   JavaThread* current = JavaThread::current();
1751   assert(current->is_monitor_deflation_thread(), "The only monitor deflater");
1752 
1753   // The async deflation request has been processed.
1754   _last_async_deflation_time_ns = os::javaTimeNanos();
1755   set_is_async_deflation_requested(false);
1756 
1757   ObjectMonitorDeflationLogging log;
1758   ObjectMonitorDeflationSafepointer safepointer(current, &log);
1759 
1760   log.begin();
1761 
1762   // Deflate some idle ObjectMonitors.
1763   size_t deflated_count = deflate_monitor_list(&safepointer);
1764 
1765   // Unlink the deflated ObjectMonitors from the in-use list.
1766   size_t unlinked_count = 0;
1767   size_t deleted_count = 0;
1768   if (deflated_count > 0) {
1769     ResourceMark rm(current);
1770     GrowableArray<ObjectMonitor*> delete_list((int)deflated_count);
1771     unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer);
1772 
1773 #ifdef ASSERT
1774     if (LockingMode == LM_LIGHTWEIGHT) {
1775       for (ObjectMonitor* monitor : delete_list) {
1776         assert(!LightweightSynchronizer::contains_monitor(current, monitor), "Should have been removed");
1777       }
1778     }
1779 #endif
1780 
1781     log.before_handshake(unlinked_count);
1782 
1783     // A JavaThread needs to handshake in order to safely free the
1784     // ObjectMonitors that were deflated in this cycle.
1785     HandshakeForDeflation hfd_hc;
1786     Handshake::execute(&hfd_hc);
1787     // Also, we sync and desync GC threads around the handshake, so that they can
1788     // safely read the mark-word and look-through to the object-monitor, without
1789     // being afraid that the object-monitor is going away.
1790     VM_RendezvousGCThreads sync_gc;
1791     VMThread::execute(&sync_gc);
1792 
1793     log.after_handshake();
1794 
1795     // After the handshake, safely free the ObjectMonitors that were
1796     // deflated and unlinked in this cycle.
1797 
1798     // Delete the unlinked ObjectMonitors.
1799     deleted_count = delete_monitors(&delete_list, &safepointer);
1800     assert(unlinked_count == deleted_count, "must be");
1801   }
1802 
1803   log.end(deflated_count, unlinked_count);
1804 
1805   OM_PERFDATA_OP(MonExtant, set_value(_in_use_list.count()));
1806   OM_PERFDATA_OP(Deflations, inc(deflated_count));
1807 
1808   GVars.stw_random = os::random();
1809 
1810   if (deflated_count != 0) {
1811     _no_progress_cnt = 0;
1812   } else if (_no_progress_skip_increment) {
1813     _no_progress_skip_increment = false;
1814   } else {
1815     _no_progress_cnt++;
1816   }
1817 
1818   return deflated_count;
1819 }
1820 
1821 // Monitor cleanup on JavaThread::exit
1822 
1823 // Iterate through monitor cache and attempt to release thread's monitors
1824 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1825  private:
1826   JavaThread* _thread;
1827 
1828  public:
1829   ReleaseJavaMonitorsClosure(JavaThread* thread) : _thread(thread) {}
1830   void do_monitor(ObjectMonitor* mid) {
1831     intx rec = mid->complete_exit(_thread);
1832     _thread->dec_held_monitor_count(rec + 1);
1833   }
1834 };
1835 
1836 // Release all inflated monitors owned by current thread.  Lightweight monitors are
1837 // ignored.  This is meant to be called during JNI thread detach which assumes
1838 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1839 // Scanning the extant monitor list can be time consuming.
1840 // A simple optimization is to add a per-thread flag that indicates a thread
1841 // called jni_monitorenter() during its lifetime.
1842 //
1843 // Instead of NoSafepointVerifier it might be cheaper to
1844 // use an idiom of the form:
1845 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1846 //   <code that must not run at safepoint>
1847 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1848 // Since the tests are extremely cheap we could leave them enabled
1849 // for normal product builds.
1850 
1851 void ObjectSynchronizer::release_monitors_owned_by_thread(JavaThread* current) {
1852   assert(current == JavaThread::current(), "must be current Java thread");
1853   NoSafepointVerifier nsv;
1854   ReleaseJavaMonitorsClosure rjmc(current);
1855   ObjectSynchronizer::owned_monitors_iterate(&rjmc, current);
1856   assert(!current->has_pending_exception(), "Should not be possible");
1857   current->clear_pending_exception();
1858   assert(current->held_monitor_count() == 0, "Should not be possible");
1859   // All monitors (including entered via JNI) have been unlocked above, so we need to clear jni count.
1860   current->clear_jni_monitor_count();
1861 }
1862 
1863 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1864   switch (cause) {
1865     case inflate_cause_vm_internal:    return "VM Internal";
1866     case inflate_cause_monitor_enter:  return "Monitor Enter";
1867     case inflate_cause_wait:           return "Monitor Wait";
1868     case inflate_cause_notify:         return "Monitor Notify";
1869     case inflate_cause_hash_code:      return "Monitor Hash Code";
1870     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1871     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1872     default:
1873       ShouldNotReachHere();
1874   }
1875   return "Unknown";
1876 }
1877 
1878 //------------------------------------------------------------------------------
1879 // Debugging code
1880 
1881 u_char* ObjectSynchronizer::get_gvars_addr() {
1882   return (u_char*)&GVars;
1883 }
1884 
1885 u_char* ObjectSynchronizer::get_gvars_hc_sequence_addr() {
1886   return (u_char*)&GVars.hc_sequence;
1887 }
1888 
1889 size_t ObjectSynchronizer::get_gvars_size() {
1890   return sizeof(SharedGlobals);
1891 }
1892 
1893 u_char* ObjectSynchronizer::get_gvars_stw_random_addr() {
1894   return (u_char*)&GVars.stw_random;
1895 }
1896 
1897 // Do the final audit and print of ObjectMonitor stats; must be done
1898 // by the VMThread at VM exit time.
1899 void ObjectSynchronizer::do_final_audit_and_print_stats() {
1900   assert(Thread::current()->is_VM_thread(), "sanity check");
1901 
1902   if (is_final_audit()) {  // Only do the audit once.
1903     return;
1904   }
1905   set_is_final_audit();
1906   log_info(monitorinflation)("Starting the final audit.");
1907 
1908   if (log_is_enabled(Info, monitorinflation)) {
1909     LogStreamHandle(Info, monitorinflation) ls;
1910     audit_and_print_stats(&ls, true /* on_exit */);
1911   }
1912 }
1913 
1914 // This function can be called by the MonitorDeflationThread or it can be called when
1915 // we are trying to exit the VM. The list walker functions can run in parallel with
1916 // the other list operations.
1917 // Calls to this function can be added in various places as a debugging
1918 // aid.
1919 //
1920 void ObjectSynchronizer::audit_and_print_stats(outputStream* ls, bool on_exit) {
1921   int error_cnt = 0;
1922 
1923   ls->print_cr("Checking in_use_list:");
1924   chk_in_use_list(ls, &error_cnt);
1925 
1926   if (error_cnt == 0) {
1927     ls->print_cr("No errors found in in_use_list checks.");
1928   } else {
1929     log_error(monitorinflation)("found in_use_list errors: error_cnt=%d", error_cnt);
1930   }
1931 
1932   // When exiting, only log the interesting entries at the Info level.
1933   // When called at intervals by the MonitorDeflationThread, log output
1934   // at the Trace level since there can be a lot of it.
1935   if (!on_exit && log_is_enabled(Trace, monitorinflation)) {
1936     LogStreamHandle(Trace, monitorinflation) ls_tr;
1937     log_in_use_monitor_details(&ls_tr, true /* log_all */);
1938   } else if (on_exit) {
1939     log_in_use_monitor_details(ls, false /* log_all */);
1940   }
1941 
1942   ls->flush();
1943 
1944   guarantee(error_cnt == 0, "ERROR: found monitor list errors: error_cnt=%d", error_cnt);
1945 }
1946 
1947 // Check the in_use_list; log the results of the checks.
1948 void ObjectSynchronizer::chk_in_use_list(outputStream* out, int *error_cnt_p) {
1949   size_t l_in_use_count = _in_use_list.count();
1950   size_t l_in_use_max = _in_use_list.max();
1951   out->print_cr("count=" SIZE_FORMAT ", max=" SIZE_FORMAT, l_in_use_count,
1952                 l_in_use_max);
1953 
1954   size_t ck_in_use_count = 0;
1955   MonitorList::Iterator iter = _in_use_list.iterator();
1956   while (iter.has_next()) {
1957     ObjectMonitor* mid = iter.next();
1958     chk_in_use_entry(mid, out, error_cnt_p);
1959     ck_in_use_count++;
1960   }
1961 
1962   if (l_in_use_count == ck_in_use_count) {
1963     out->print_cr("in_use_count=" SIZE_FORMAT " equals ck_in_use_count="
1964                   SIZE_FORMAT, l_in_use_count, ck_in_use_count);
1965   } else {
1966     out->print_cr("WARNING: in_use_count=" SIZE_FORMAT " is not equal to "
1967                   "ck_in_use_count=" SIZE_FORMAT, l_in_use_count,
1968                   ck_in_use_count);
1969   }
1970 
1971   size_t ck_in_use_max = _in_use_list.max();
1972   if (l_in_use_max == ck_in_use_max) {
1973     out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max="
1974                   SIZE_FORMAT, l_in_use_max, ck_in_use_max);
1975   } else {
1976     out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to "
1977                   "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max);
1978   }
1979 }
1980 
1981 // Check an in-use monitor entry; log any errors.
1982 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out,
1983                                           int* error_cnt_p) {
1984   if (n->owner_is_DEFLATER_MARKER()) {
1985     // This could happen when monitor deflation blocks for a safepoint.
1986     return;
1987   }
1988 
1989 
1990   if (n->metadata() == 0) {
1991     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must "
1992                   "have non-null _metadata (header/hash) field.", p2i(n));
1993     *error_cnt_p = *error_cnt_p + 1;
1994   }
1995 
1996   const oop obj = n->object_peek();
1997   if (obj == nullptr) {
1998     return;
1999   }
2000 
2001   const markWord mark = obj->mark();
2002   if (!mark.has_monitor()) {
2003     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
2004                   "object does not think it has a monitor: obj="
2005                   INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2006                   p2i(obj), mark.value());
2007     *error_cnt_p = *error_cnt_p + 1;
2008     return;
2009   }
2010 
2011   ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark);
2012   if (n != obj_mon) {
2013     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
2014                   "object does not refer to the same monitor: obj="
2015                   INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2016                   INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2017     *error_cnt_p = *error_cnt_p + 1;
2018   }
2019 }
2020 
2021 // Log details about ObjectMonitors on the in_use_list. The 'BHL'
2022 // flags indicate why the entry is in-use, 'object' and 'object type'
2023 // indicate the associated object and its type.
2024 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) {
2025   if (_in_use_list.count() > 0) {
2026     stringStream ss;
2027     out->print_cr("In-use monitor info:");
2028     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2029     out->print_cr("%18s  %s  %18s  %18s",
2030                   "monitor", "BHL", "object", "object type");
2031     out->print_cr("==================  ===  ==================  ==================");
2032 
2033     auto is_interesting = [&](ObjectMonitor* monitor) {
2034       return log_all || monitor->has_owner() || monitor->is_busy();
2035     };
2036 
2037     monitors_iterate([&](ObjectMonitor* monitor) {
2038       if (is_interesting(monitor)) {
2039         const oop obj = monitor->object_peek();
2040         const intptr_t hash = LockingMode == LM_LIGHTWEIGHT ? monitor->hash() : monitor->header().hash();
2041         ResourceMark rm;
2042         out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(monitor),
2043                    monitor->is_busy(), hash != 0, monitor->owner() != nullptr,
2044                    p2i(obj), obj == nullptr ? "" : obj->klass()->external_name());
2045         if (monitor->is_busy()) {
2046           out->print(" (%s)", monitor->is_busy_to_string(&ss));
2047           ss.reset();
2048         }
2049         out->cr();
2050       }
2051     });
2052   }
2053 
2054   out->flush();
2055 }