< prev index next >

src/hotspot/share/runtime/synchronizer.cpp

Print this page

  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "jfr/jfrEvents.hpp"
  29 #include "logging/log.hpp"
  30 #include "logging/logStream.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"

  38 #include "runtime/frame.inline.hpp"
  39 #include "runtime/globals.hpp"
  40 #include "runtime/handles.inline.hpp"
  41 #include "runtime/handshake.hpp"
  42 #include "runtime/interfaceSupport.inline.hpp"
  43 #include "runtime/javaThread.hpp"

  44 #include "runtime/lockStack.inline.hpp"
  45 #include "runtime/mutexLocker.hpp"
  46 #include "runtime/objectMonitor.hpp"
  47 #include "runtime/objectMonitor.inline.hpp"
  48 #include "runtime/os.inline.hpp"
  49 #include "runtime/osThread.hpp"
  50 #include "runtime/perfData.hpp"
  51 #include "runtime/safepointMechanism.inline.hpp"
  52 #include "runtime/safepointVerifiers.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/stubRoutines.hpp"
  55 #include "runtime/synchronizer.hpp"
  56 #include "runtime/threads.hpp"
  57 #include "runtime/timer.hpp"
  58 #include "runtime/trimNativeHeap.hpp"
  59 #include "runtime/vframe.hpp"
  60 #include "runtime/vmThread.hpp"
  61 #include "utilities/align.hpp"
  62 #include "utilities/dtrace.hpp"
  63 #include "utilities/events.hpp"
  64 #include "utilities/globalDefinitions.hpp"
  65 #include "utilities/linkedlist.hpp"
  66 #include "utilities/preserveException.hpp"
  67 
  68 class ObjectMonitorDeflationLogging;
  69 












  70 void MonitorList::add(ObjectMonitor* m) {
  71   ObjectMonitor* head;
  72   do {
  73     head = Atomic::load(&_head);
  74     m->set_next_om(head);
  75   } while (Atomic::cmpxchg(&_head, head, m) != head);
  76 
  77   size_t count = Atomic::add(&_count, 1u);
  78   if (count > max()) {
  79     Atomic::inc(&_max);
  80   }
  81 }
  82 
  83 size_t MonitorList::count() const {
  84   return Atomic::load(&_count);
  85 }
  86 
  87 size_t MonitorList::max() const {
  88   return Atomic::load(&_max);
  89 }

 259 static constexpr size_t inflation_lock_count() {
 260   return 256;
 261 }
 262 
 263 // Static storage for an array of PlatformMutex.
 264 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)];
 265 
 266 static inline PlatformMutex* inflation_lock(size_t index) {
 267   return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]);
 268 }
 269 
 270 void ObjectSynchronizer::initialize() {
 271   for (size_t i = 0; i < inflation_lock_count(); i++) {
 272     ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex();
 273   }
 274   // Start the ceiling with the estimate for one thread.
 275   set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate);
 276 
 277   // Start the timer for deflations, so it does not trigger immediately.
 278   _last_async_deflation_time_ns = os::javaTimeNanos();




 279 }
 280 
 281 MonitorList ObjectSynchronizer::_in_use_list;
 282 // monitors_used_above_threshold() policy is as follows:
 283 //
 284 // The ratio of the current _in_use_list count to the ceiling is used
 285 // to determine if we are above MonitorUsedDeflationThreshold and need
 286 // to do an async monitor deflation cycle. The ceiling is increased by
 287 // AvgMonitorsPerThreadEstimate when a thread is added to the system
 288 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is
 289 // removed from the system.
 290 //
 291 // Note: If the _in_use_list max exceeds the ceiling, then
 292 // monitors_used_above_threshold() will use the in_use_list max instead
 293 // of the thread count derived ceiling because we have used more
 294 // ObjectMonitors than the estimated average.
 295 //
 296 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax
 297 // no-progress async monitor deflation cycles in a row, then the ceiling
 298 // is adjusted upwards by monitors_used_above_threshold().

 332   assert(current->thread_state() == _thread_in_Java, "invariant");
 333   NoSafepointVerifier nsv;
 334   if (obj == nullptr) return false;  // slow-path for invalid obj
 335   const markWord mark = obj->mark();
 336 
 337   if (LockingMode == LM_LIGHTWEIGHT) {
 338     if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) {
 339       // Degenerate notify
 340       // fast-locked by caller so by definition the implied waitset is empty.
 341       return true;
 342     }
 343   } else if (LockingMode == LM_LEGACY) {
 344     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 345       // Degenerate notify
 346       // stack-locked by caller so by definition the implied waitset is empty.
 347       return true;
 348     }
 349   }
 350 
 351   if (mark.has_monitor()) {
 352     ObjectMonitor* const mon = mark.monitor();




 353     assert(mon->object() == oop(obj), "invariant");
 354     if (mon->owner() != current) return false;  // slow-path for IMS exception
 355 
 356     if (mon->first_waiter() != nullptr) {
 357       // We have one or more waiters. Since this is an inflated monitor
 358       // that we own, we can transfer one or more threads from the waitset
 359       // to the entrylist here and now, avoiding the slow-path.
 360       if (all) {
 361         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current);
 362       } else {
 363         DTRACE_MONITOR_PROBE(notify, mon, obj, current);
 364       }
 365       int free_count = 0;
 366       do {
 367         mon->INotify(current);
 368         ++free_count;
 369       } while (mon->first_waiter() != nullptr && all);
 370       OM_PERFDATA_OP(Notifications, inc(free_count));
 371     }
 372     return true;

 377 }
 378 
 379 
 380 // The LockNode emitted directly at the synchronization site would have
 381 // been too big if it were to have included support for the cases of inflated
 382 // recursive enter and exit, so they go here instead.
 383 // Note that we can't safely call AsyncPrintJavaStack() from within
 384 // quick_enter() as our thread state remains _in_Java.
 385 
 386 bool ObjectSynchronizer::quick_enter(oop obj, JavaThread* current,
 387                                      BasicLock * lock) {
 388   assert(current->thread_state() == _thread_in_Java, "invariant");
 389   NoSafepointVerifier nsv;
 390   if (obj == nullptr) return false;       // Need to throw NPE
 391 
 392   if (obj->klass()->is_value_based()) {
 393     return false;
 394   }
 395 
 396   if (LockingMode == LM_LIGHTWEIGHT) {
 397     LockStack& lock_stack = current->lock_stack();
 398     if (lock_stack.is_full()) {
 399       // Always go into runtime if the lock stack is full.
 400       return false;
 401     }
 402     if (lock_stack.try_recursive_enter(obj)) {
 403       // Recursive lock successful.
 404       current->inc_held_monitor_count();
 405       return true;
 406     }
 407   }
 408 
 409   const markWord mark = obj->mark();
 410 
 411   if (mark.has_monitor()) {
 412     ObjectMonitor* const m = mark.monitor();
 413     // An async deflation or GC can race us before we manage to make
 414     // the ObjectMonitor busy by setting the owner below. If we detect
 415     // that race we just bail out to the slow-path here.
 416     if (m->object_peek() == nullptr) {
 417       return false;
 418     }
 419     JavaThread* const owner = static_cast<JavaThread*>(m->owner_raw());
 420 
 421     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 422     // and observability
 423     // Case: light contention possibly amenable to TLE
 424     // Case: TLE inimical operations such as nested/recursive synchronization
 425 
 426     if (owner == current) {
 427       m->_recursions++;
 428       current->inc_held_monitor_count();
 429       return true;
 430     }
 431 
 432     if (LockingMode != LM_LIGHTWEIGHT) {
 433       // This Java Monitor is inflated so obj's header will never be
 434       // displaced to this thread's BasicLock. Make the displaced header
 435       // non-null so this BasicLock is not seen as recursive nor as
 436       // being locked. We do this unconditionally so that this thread's
 437       // BasicLock cannot be mis-interpreted by any stack walkers. For
 438       // performance reasons, stack walkers generally first check for
 439       // stack-locking in the object's header, the second check is for
 440       // recursive stack-locking in the displaced header in the BasicLock,
 441       // and last are the inflated Java Monitor (ObjectMonitor) checks.
 442       lock->set_displaced_header(markWord::unused_mark());
 443     }
 444 
 445     if (owner == nullptr && m->try_set_owner_from(nullptr, current) == nullptr) {
 446       assert(m->_recursions == 0, "invariant");
 447       current->inc_held_monitor_count();
 448       return true;
 449     }
 450   }
 451 
 452   // Note that we could inflate in quick_enter.

 507     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1);
 508   }
 509 }
 510 
 511 static bool useHeavyMonitors() {
 512 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390)
 513   return LockingMode == LM_MONITOR;
 514 #else
 515   return false;
 516 #endif
 517 }
 518 
 519 // -----------------------------------------------------------------------------
 520 // Monitor Enter/Exit
 521 
 522 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
 523   // When called with locking_thread != Thread::current() some mechanism must synchronize
 524   // the locking_thread with respect to the current thread. Currently only used when
 525   // deoptimizing and re-locking locks. See Deoptimization::relock_objects
 526   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");





 527   if (!enter_fast_impl(obj, lock, locking_thread)) {
 528     // Inflated ObjectMonitor::enter_for is required
 529 
 530     // An async deflation can race after the inflate_for() call and before
 531     // enter_for() can make the ObjectMonitor busy. enter_for() returns false
 532     // if we have lost the race to async deflation and we simply try again.
 533     while (true) {
 534       ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter);
 535       if (monitor->enter_for(locking_thread)) {
 536         return;
 537       }
 538       assert(monitor->is_being_async_deflated(), "must be");
 539     }
 540   }
 541 }
 542 
 543 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, JavaThread* current) {
 544   assert(current == Thread::current(), "must be");





 545   if (!enter_fast_impl(obj, lock, current)) {
 546     // Inflated ObjectMonitor::enter is required
 547 
 548     // An async deflation can race after the inflate() call and before
 549     // enter() can make the ObjectMonitor busy. enter() returns false if
 550     // we have lost the race to async deflation and we simply try again.
 551     while (true) {
 552       ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter);
 553       if (monitor->enter(current)) {
 554         return;
 555       }
 556     }
 557   }
 558 }
 559 
 560 // The interpreter and compiler assembly code tries to lock using the fast path
 561 // of this algorithm. Make sure to update that code if the following function is
 562 // changed. The implementation is extremely sensitive to race condition. Be careful.
 563 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) {

 564 
 565   if (obj->klass()->is_value_based()) {
 566     handle_sync_on_value_based_class(obj, locking_thread);
 567   }
 568 
 569   locking_thread->inc_held_monitor_count();
 570 
 571   if (!useHeavyMonitors()) {
 572     if (LockingMode == LM_LIGHTWEIGHT) {
 573       // Fast-locking does not use the 'lock' argument.
 574       LockStack& lock_stack = locking_thread->lock_stack();
 575       if (lock_stack.is_full()) {
 576         // We unconditionally make room on the lock stack by inflating
 577         // the least recently locked object on the lock stack.
 578 
 579         // About the choice to inflate least recently locked object.
 580         // First we must chose to inflate a lock, either some lock on
 581         // the lock-stack or the lock that is currently being entered
 582         // (which may or may not be on the lock-stack).
 583         // Second the best lock to inflate is a lock which is entered
 584         // in a control flow where there are only a very few locks being
 585         // used, as the costly part of inflated locking is inflation,
 586         // not locking. But this property is entirely program dependent.
 587         // Third inflating the lock currently being entered on when it
 588         // is not present on the lock-stack will result in a still full
 589         // lock-stack. This creates a scenario where every deeper nested
 590         // monitorenter must call into the runtime.
 591         // The rational here is as follows:
 592         // Because we cannot (currently) figure out the second, and want
 593         // to avoid the third, we inflate a lock on the lock-stack.
 594         // The least recently locked lock is chosen as it is the lock
 595         // with the longest critical section.
 596 
 597         log_info(monitorinflation)("LockStack capacity exceeded, inflating.");
 598         ObjectMonitor* monitor = inflate_for(locking_thread, lock_stack.bottom(), inflate_cause_vm_internal);
 599         assert(monitor->owner() == Thread::current(), "must be owner=" PTR_FORMAT " current=" PTR_FORMAT " mark=" PTR_FORMAT,
 600                p2i(monitor->owner()), p2i(Thread::current()), monitor->object()->mark_acquire().value());
 601         assert(!lock_stack.is_full(), "must have made room here");
 602       }
 603 
 604       markWord mark = obj()->mark_acquire();
 605       while (mark.is_unlocked()) {
 606         // Retry until a lock state change has been observed. cas_set_mark() may collide with non lock bits modifications.
 607         // Try to swing into 'fast-locked' state.
 608         assert(!lock_stack.contains(obj()), "thread must not already hold the lock");
 609         const markWord locked_mark = mark.set_fast_locked();
 610         const markWord old_mark = obj()->cas_set_mark(locked_mark, mark);
 611         if (old_mark == mark) {
 612           // Successfully fast-locked, push object to lock-stack and return.
 613           lock_stack.push(obj());
 614           return true;
 615         }
 616         mark = old_mark;
 617       }
 618 
 619       if (mark.is_fast_locked() && lock_stack.try_recursive_enter(obj())) {
 620         // Recursive lock successful.
 621         return true;
 622       }
 623 
 624       // Failed to fast lock.
 625       return false;
 626     } else if (LockingMode == LM_LEGACY) {
 627       markWord mark = obj->mark();
 628       if (mark.is_unlocked()) {
 629         // Anticipate successful CAS -- the ST of the displaced mark must
 630         // be visible <= the ST performed by the CAS.
 631         lock->set_displaced_header(mark);
 632         if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 633           return true;
 634         }
 635       } else if (mark.has_locker() &&
 636                  locking_thread->is_lock_owned((address) mark.locker())) {
 637         assert(lock != mark.locker(), "must not re-lock the same lock");
 638         assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock");
 639         lock->set_displaced_header(markWord::from_pointer(nullptr));
 640         return true;
 641       }
 642 
 643       // The object header will never be displaced to this lock,
 644       // so it does not matter what the value is, except that it
 645       // must be non-zero to avoid looking like a re-entrant lock,
 646       // and must not look locked either.
 647       lock->set_displaced_header(markWord::unused_mark());
 648 
 649       // Failed to fast lock.
 650       return false;
 651     }
 652   } else if (VerifyHeavyMonitors) {
 653     guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 654   }
 655 
 656   return false;
 657 }
 658 
 659 void ObjectSynchronizer::exit(oop object, BasicLock* lock, JavaThread* current) {
 660   current->dec_held_monitor_count();
 661 




 662   if (!useHeavyMonitors()) {
 663     markWord mark = object->mark();
 664     if (LockingMode == LM_LIGHTWEIGHT) {
 665       // Fast-locking does not use the 'lock' argument.
 666       LockStack& lock_stack = current->lock_stack();
 667       if (mark.is_fast_locked() && lock_stack.try_recursive_exit(object)) {
 668         // Recursively unlocked.
 669         return;
 670       }
 671 
 672       if (mark.is_fast_locked() && lock_stack.is_recursive(object)) {
 673         // This lock is recursive but is not at the top of the lock stack so we're
 674         // doing an unbalanced exit. We have to fall thru to inflation below and
 675         // let ObjectMonitor::exit() do the unlock.
 676       } else {
 677         while (mark.is_fast_locked()) {
 678           // Retry until a lock state change has been observed. cas_set_mark() may collide with non lock bits modifications.
 679           const markWord unlocked_mark = mark.set_unlocked();
 680           const markWord old_mark = object->cas_set_mark(unlocked_mark, mark);
 681           if (old_mark == mark) {
 682             size_t recursions = lock_stack.remove(object) - 1;
 683             assert(recursions == 0, "must not be recursive here");
 684             return;
 685           }
 686           mark = old_mark;
 687         }
 688       }
 689     } else if (LockingMode == LM_LEGACY) {
 690       markWord dhw = lock->displaced_header();
 691       if (dhw.value() == 0) {
 692         // If the displaced header is null, then this exit matches up with
 693         // a recursive enter. No real work to do here except for diagnostics.
 694 #ifndef PRODUCT
 695         if (mark != markWord::INFLATING()) {
 696           // Only do diagnostics if we are not racing an inflation. Simply
 697           // exiting a recursive enter of a Java Monitor that is being
 698           // inflated is safe; see the has_monitor() comment below.
 699           assert(!mark.is_unlocked(), "invariant");
 700           assert(!mark.has_locker() ||
 701                  current->is_lock_owned((address)mark.locker()), "invariant");
 702           if (mark.has_monitor()) {
 703             // The BasicLock's displaced_header is marked as a recursive
 704             // enter and we have an inflated Java Monitor (ObjectMonitor).
 705             // This is a special case where the Java Monitor was inflated
 706             // after this thread entered the stack-lock recursively. When a
 707             // Java Monitor is inflated, we cannot safely walk the Java
 708             // Monitor owner's stack and update the BasicLocks because a
 709             // Java Monitor can be asynchronously inflated by a thread that
 710             // does not own the Java Monitor.
 711             ObjectMonitor* m = mark.monitor();
 712             assert(m->object()->mark() == mark, "invariant");
 713             assert(m->is_entered(current), "invariant");
 714           }
 715         }
 716 #endif
 717         return;
 718       }
 719 
 720       if (mark == markWord::from_pointer(lock)) {
 721         // If the object is stack-locked by the current thread, try to
 722         // swing the displaced header from the BasicLock back to the mark.
 723         assert(dhw.is_neutral(), "invariant");
 724         if (object->cas_set_mark(dhw, mark) == mark) {
 725           return;
 726         }
 727       }
 728     }
 729   } else if (VerifyHeavyMonitors) {
 730     guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 731   }

 735   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 736   ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal);
 737   assert(!monitor->is_owner_anonymous(), "must not be");
 738   monitor->exit(current);
 739 }
 740 
 741 // -----------------------------------------------------------------------------
 742 // JNI locks on java objects
 743 // NOTE: must use heavy weight monitor to handle jni monitor enter
 744 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) {
 745   if (obj->klass()->is_value_based()) {
 746     handle_sync_on_value_based_class(obj, current);
 747   }
 748 
 749   // the current locking is from JNI instead of Java code
 750   current->set_current_pending_monitor_is_from_java(false);
 751   // An async deflation can race after the inflate() call and before
 752   // enter() can make the ObjectMonitor busy. enter() returns false if
 753   // we have lost the race to async deflation and we simply try again.
 754   while (true) {
 755     ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_jni_enter);
 756     if (monitor->enter(current)) {








 757       current->inc_held_monitor_count(1, true);
 758       break;
 759     }
 760   }
 761   current->set_current_pending_monitor_is_from_java(true);
 762 }
 763 
 764 // NOTE: must use heavy weight monitor to handle jni monitor exit
 765 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) {
 766   JavaThread* current = THREAD;
 767 
 768   // The ObjectMonitor* can't be async deflated until ownership is
 769   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 770   ObjectMonitor* monitor = inflate(current, obj, inflate_cause_jni_exit);





 771   // If this thread has locked the object, exit the monitor. We
 772   // intentionally do not use CHECK on check_owner because we must exit the
 773   // monitor even if an exception was already pending.
 774   if (monitor->check_owner(THREAD)) {
 775     monitor->exit(current);
 776     current->dec_held_monitor_count(1, true);
 777   }
 778 }
 779 
 780 // -----------------------------------------------------------------------------
 781 // Internal VM locks on java objects
 782 // standard constructor, allows locking failures
 783 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) {
 784   _thread = thread;
 785   _thread->check_for_valid_safepoint_state();
 786   _obj = obj;
 787 
 788   if (_obj() != nullptr) {
 789     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 790   }
 791 }
 792 
 793 ObjectLocker::~ObjectLocker() {
 794   if (_obj() != nullptr) {
 795     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 796   }
 797 }
 798 
 799 
 800 // -----------------------------------------------------------------------------
 801 //  Wait/Notify/NotifyAll
 802 // NOTE: must use heavy weight monitor to handle wait()

 803 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 804   JavaThread* current = THREAD;
 805   if (millis < 0) {
 806     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 807   }
 808   // The ObjectMonitor* can't be async deflated because the _waiters
 809   // field is incremented before ownership is dropped and decremented
 810   // after ownership is regained.
 811   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_wait);






 812 
 813   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis);
 814   monitor->wait(millis, true, THREAD); // Not CHECK as we need following code
 815 
 816   // This dummy call is in place to get around dtrace bug 6254741.  Once
 817   // that's fixed we can uncomment the following line, remove the call
 818   // and change this function back into a "void" func.
 819   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 820   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 821   return ret_code;
 822 }
 823 
 824 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 825   JavaThread* current = THREAD;
 826 
 827   markWord mark = obj->mark();
 828   if (LockingMode == LM_LIGHTWEIGHT) {
 829     if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 830       // Not inflated so there can't be any waiters to notify.
 831       return;
 832     }
 833   } else if (LockingMode == LM_LEGACY) {
 834     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 835       // Not inflated so there can't be any waiters to notify.
 836       return;
 837     }
 838   }
 839   // The ObjectMonitor* can't be async deflated until ownership is
 840   // dropped by the calling thread.
 841   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify);






 842   monitor->notify(CHECK);
 843 }
 844 
 845 // NOTE: see comment of notify()
 846 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 847   JavaThread* current = THREAD;
 848 
 849   markWord mark = obj->mark();
 850   if (LockingMode == LM_LIGHTWEIGHT) {
 851     if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 852       // Not inflated so there can't be any waiters to notify.
 853       return;
 854     }
 855   } else if (LockingMode == LM_LEGACY) {
 856     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 857       // Not inflated so there can't be any waiters to notify.
 858       return;
 859     }
 860   }
 861   // The ObjectMonitor* can't be async deflated until ownership is
 862   // dropped by the calling thread.
 863   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify);






 864   monitor->notifyAll(CHECK);
 865 }
 866 
 867 // -----------------------------------------------------------------------------
 868 // Hash Code handling
 869 
 870 struct SharedGlobals {
 871   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 872   // This is a highly shared mostly-read variable.
 873   // To avoid false-sharing it needs to be the sole occupant of a cache line.
 874   volatile int stw_random;
 875   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 876   // Hot RW variable -- Sequester to avoid false-sharing
 877   volatile int hc_sequence;
 878   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 879 };
 880 
 881 static SharedGlobals GVars;
 882 
 883 static markWord read_stable_mark(oop obj) {

 975     value = 1;            // for sensitivity testing
 976   } else if (hashCode == 3) {
 977     value = ++GVars.hc_sequence;
 978   } else if (hashCode == 4) {
 979     value = cast_from_oop<intptr_t>(obj);
 980   } else {
 981     // Marsaglia's xor-shift scheme with thread-specific state
 982     // This is probably the best overall implementation -- we'll
 983     // likely make this the default in future releases.
 984     unsigned t = current->_hashStateX;
 985     t ^= (t << 11);
 986     current->_hashStateX = current->_hashStateY;
 987     current->_hashStateY = current->_hashStateZ;
 988     current->_hashStateZ = current->_hashStateW;
 989     unsigned v = current->_hashStateW;
 990     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 991     current->_hashStateW = v;
 992     value = v;
 993   }
 994 
 995   value &= markWord::hash_mask;
 996   if (value == 0) value = 0xBAD;
 997   assert(value != markWord::no_hash, "invariant");
 998   return value;
 999 }
1000 





1001 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) {



1002 
1003   while (true) {
1004     ObjectMonitor* monitor = nullptr;
1005     markWord temp, test;
1006     intptr_t hash;
1007     markWord mark = read_stable_mark(obj);
1008     if (VerifyHeavyMonitors) {
1009       assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)");
1010       guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
1011     }
1012     if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) {
1013       hash = mark.hash();
1014       if (hash != 0) {                     // if it has a hash, just return it
1015         return hash;
1016       }
1017       hash = get_next_hash(current, obj);  // get a new hash
1018       temp = mark.copy_set_hash(hash);     // merge the hash into header
1019                                            // try to install the hash
1020       test = obj->cas_set_mark(temp, mark);
1021       if (test == mark) {                  // if the hash was installed, return it

1071       // So we have to inflate the stack-lock into an ObjectMonitor
1072       // even if the current thread owns the lock. The BasicLock on
1073       // a thread's stack can be asynchronously read by other threads
1074       // during an inflate() call so any change to that stack memory
1075       // may not propagate to other threads correctly.
1076     }
1077 
1078     // Inflate the monitor to set the hash.
1079 
1080     // An async deflation can race after the inflate() call and before we
1081     // can update the ObjectMonitor's header with the hash value below.
1082     monitor = inflate(current, obj, inflate_cause_hash_code);
1083     // Load ObjectMonitor's header/dmw field and see if it has a hash.
1084     mark = monitor->header();
1085     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1086     hash = mark.hash();
1087     if (hash == 0) {                       // if it does not have a hash
1088       hash = get_next_hash(current, obj);  // get a new hash
1089       temp = mark.copy_set_hash(hash)   ;  // merge the hash into header
1090       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1091       uintptr_t v = Atomic::cmpxchg((volatile uintptr_t*)monitor->header_addr(), mark.value(), temp.value());
1092       test = markWord(v);
1093       if (test != mark) {
1094         // The attempt to update the ObjectMonitor's header/dmw field
1095         // did not work. This can happen if another thread managed to
1096         // merge in the hash just before our cmpxchg().
1097         // If we add any new usages of the header/dmw field, this code
1098         // will need to be updated.
1099         hash = test.hash();
1100         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
1101         assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
1102       }
1103       if (monitor->is_being_async_deflated()) {
1104         // If we detect that async deflation has occurred, then we
1105         // attempt to restore the header/dmw to the object's header
1106         // so that we only retry once if the deflater thread happens
1107         // to be slow.
1108         monitor->install_displaced_markword_in_object(obj);
1109         continue;
1110       }
1111     }

1114   }
1115 }
1116 
1117 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current,
1118                                                    Handle h_obj) {
1119   assert(current == JavaThread::current(), "Can only be called on current thread");
1120   oop obj = h_obj();
1121 
1122   markWord mark = read_stable_mark(obj);
1123 
1124   if (LockingMode == LM_LEGACY && mark.has_locker()) {
1125     // stack-locked case, header points into owner's stack
1126     return current->is_lock_owned((address)mark.locker());
1127   }
1128 
1129   if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1130     // fast-locking case, see if lock is in current's lock stack
1131     return current->lock_stack().contains(h_obj());
1132   }
1133 
1134   if (mark.has_monitor()) {














1135     // Inflated monitor so header points to ObjectMonitor (tagged pointer).
1136     // The first stage of async deflation does not affect any field
1137     // used by this comparison so the ObjectMonitor* is usable here.
1138     ObjectMonitor* monitor = mark.monitor();
1139     return monitor->is_entered(current) != 0;
1140   }
1141   // Unlocked case, header in place
1142   assert(mark.is_unlocked(), "sanity check");
1143   return false;
1144 }
1145 
1146 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
1147   oop obj = h_obj();
1148   markWord mark = read_stable_mark(obj);
1149 
1150   if (LockingMode == LM_LEGACY && mark.has_locker()) {
1151     // stack-locked so header points into owner's stack.
1152     // owning_thread_from_monitor_owner() may also return null here:
1153     return Threads::owning_thread_from_monitor_owner(t_list, (address) mark.locker());
1154   }
1155 
1156   if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1157     // fast-locked so get owner from the object.
1158     // owning_thread_from_object() may also return null here:
1159     return Threads::owning_thread_from_object(t_list, h_obj());
1160   }
1161 
1162   if (mark.has_monitor()) {














1163     // Inflated monitor so header points to ObjectMonitor (tagged pointer).
1164     // The first stage of async deflation does not affect any field
1165     // used by this comparison so the ObjectMonitor* is usable here.
1166     ObjectMonitor* monitor = mark.monitor();
1167     assert(monitor != nullptr, "monitor should be non-null");
1168     // owning_thread_from_monitor() may also return null here:
1169     return Threads::owning_thread_from_monitor(t_list, monitor);
1170   }
1171 
1172   // Unlocked case, header in place
1173   // Cannot have assertion since this object may have been
1174   // locked by another thread when reaching here.
1175   // assert(mark.is_unlocked(), "sanity check");
1176 
1177   return nullptr;
1178 }
1179 
1180 // Visitors ...
1181 
1182 // Iterate over all ObjectMonitors.
1183 template <typename Function>
1184 void ObjectSynchronizer::monitors_iterate(Function function) {
1185   MonitorList::Iterator iter = _in_use_list.iterator();
1186   while (iter.has_next()) {

1222 }
1223 
1224 static bool monitors_used_above_threshold(MonitorList* list) {
1225   if (MonitorUsedDeflationThreshold == 0) {  // disabled case is easy
1226     return false;
1227   }
1228   // Start with ceiling based on a per-thread estimate:
1229   size_t ceiling = ObjectSynchronizer::in_use_list_ceiling();
1230   size_t old_ceiling = ceiling;
1231   if (ceiling < list->max()) {
1232     // The max used by the system has exceeded the ceiling so use that:
1233     ceiling = list->max();
1234   }
1235   size_t monitors_used = list->count();
1236   if (monitors_used == 0) {  // empty list is easy
1237     return false;
1238   }
1239   if (NoAsyncDeflationProgressMax != 0 &&
1240       _no_progress_cnt >= NoAsyncDeflationProgressMax) {
1241     double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0;
1242     size_t new_ceiling = ceiling + (size_t)((double)ceiling * remainder) + 1;
1243     ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling);
1244     log_info(monitorinflation)("Too many deflations without progress; "
1245                                "bumping in_use_list_ceiling from " SIZE_FORMAT
1246                                " to " SIZE_FORMAT, old_ceiling, new_ceiling);
1247     _no_progress_cnt = 0;
1248     ceiling = new_ceiling;
1249   }
1250 
1251   // Check if our monitor usage is above the threshold:
1252   size_t monitor_usage = (monitors_used * 100LL) / ceiling;
1253   if (int(monitor_usage) > MonitorUsedDeflationThreshold) {
1254     log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT
1255                                ", monitor_usage=" SIZE_FORMAT ", threshold=%d",
1256                                monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold);
1257     return true;
1258   }
1259 
1260   return false;
1261 }
1262 

1358 
1359   return ret_code;
1360 }
1361 
1362 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1363   return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS);
1364 }
1365 
1366 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1367                                        const oop obj,
1368                                        ObjectSynchronizer::InflateCause cause) {
1369   assert(event != nullptr, "invariant");
1370   event->set_monitorClass(obj->klass());
1371   event->set_address((uintptr_t)(void*)obj);
1372   event->set_cause((u1)cause);
1373   event->commit();
1374 }
1375 
1376 // Fast path code shared by multiple functions
1377 void ObjectSynchronizer::inflate_helper(oop obj) {



1378   markWord mark = obj->mark_acquire();
1379   if (mark.has_monitor()) {
1380     ObjectMonitor* monitor = mark.monitor();
1381     markWord dmw = monitor->header();
1382     assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value());
1383     return;
1384   }
1385   (void)inflate(Thread::current(), obj, inflate_cause_vm_internal);
1386 }
1387 
1388 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) {
1389   assert(current == Thread::current(), "must be");
1390   if (LockingMode == LM_LIGHTWEIGHT && current->is_Java_thread()) {
1391     return inflate_impl(JavaThread::cast(current), obj, cause);
1392   }
1393   return inflate_impl(nullptr, obj, cause);
1394 }
1395 
1396 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) {
1397   assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be");
1398   return inflate_impl(thread, obj, cause);
1399 }
1400 
1401 ObjectMonitor* ObjectSynchronizer::inflate_impl(JavaThread* inflating_thread, oop object, const InflateCause cause) {
1402   // The JavaThread* inflating_thread parameter is only used by LM_LIGHTWEIGHT and requires
1403   // that the inflating_thread == Thread::current() or is suspended throughout the call by
1404   // some other mechanism.
1405   // Even with LM_LIGHTWEIGHT the thread might be nullptr when called from a non
1406   // JavaThread. (As may still be the case from FastHashCode). However it is only
1407   // important for the correctness of the LM_LIGHTWEIGHT algorithm that the thread
1408   // is set when called from ObjectSynchronizer::enter from the owning thread,
1409   // ObjectSynchronizer::enter_for from any thread, or ObjectSynchronizer::exit.
1410   EventJavaMonitorInflate event;
1411 
1412   for (;;) {
1413     const markWord mark = object->mark_acquire();
1414 
1415     // The mark can be in one of the following states:
1416     // *  inflated     - Just return if using stack-locking.
1417     //                   If using fast-locking and the ObjectMonitor owner
1418     //                   is anonymous and the inflating_thread owns the
1419     //                   object lock, then we make the inflating_thread
1420     //                   the ObjectMonitor owner and remove the lock from
1421     //                   the inflating_thread's lock stack.
1422     // *  fast-locked  - Coerce it to inflated from fast-locked.
1423     // *  stack-locked - Coerce it to inflated from stack-locked.
1424     // *  INFLATING    - Busy wait for conversion from stack-locked to
1425     //                   inflated.
1426     // *  unlocked     - Aggressively inflate the object.
1427 
1428     // CASE: inflated
1429     if (mark.has_monitor()) {
1430       ObjectMonitor* inf = mark.monitor();
1431       markWord dmw = inf->header();
1432       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1433       if (LockingMode == LM_LIGHTWEIGHT && inf->is_owner_anonymous() &&
1434           inflating_thread != nullptr && inflating_thread->lock_stack().contains(object)) {
1435         inf->set_owner_from_anonymous(inflating_thread);
1436         size_t removed = inflating_thread->lock_stack().remove(object);
1437         inf->set_recursions(removed - 1);
1438       }
1439       return inf;
1440     }
1441 
1442     if (LockingMode != LM_LIGHTWEIGHT) {
1443       // New lightweight locking does not use INFLATING.
1444       // CASE: inflation in progress - inflating over a stack-lock.
1445       // Some other thread is converting from stack-locked to inflated.
1446       // Only that thread can complete inflation -- other threads must wait.
1447       // The INFLATING value is transient.
1448       // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1449       // We could always eliminate polling by parking the thread on some auxiliary list.
1450       if (mark == markWord::INFLATING()) {
1451         read_stable_mark(object);
1452         continue;
1453       }
1454     }
1455 
1456     // CASE: fast-locked
1457     // Could be fast-locked either by the inflating_thread or by some other thread.
1458     //
1459     // Note that we allocate the ObjectMonitor speculatively, _before_
1460     // attempting to set the object's mark to the new ObjectMonitor. If
1461     // the inflating_thread owns the monitor, then we set the ObjectMonitor's
1462     // owner to the inflating_thread. Otherwise, we set the ObjectMonitor's owner
1463     // to anonymous. If we lose the race to set the object's mark to the
1464     // new ObjectMonitor, then we just delete it and loop around again.
1465     //
1466     LogStreamHandle(Trace, monitorinflation) lsh;
1467     if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1468       ObjectMonitor* monitor = new ObjectMonitor(object);
1469       monitor->set_header(mark.set_unlocked());
1470       bool own = inflating_thread != nullptr && inflating_thread->lock_stack().contains(object);
1471       if (own) {
1472         // Owned by inflating_thread.
1473         monitor->set_owner_from(nullptr, inflating_thread);
1474       } else {
1475         // Owned by somebody else.
1476         monitor->set_owner_anonymous();
1477       }
1478       markWord monitor_mark = markWord::encode(monitor);
1479       markWord old_mark = object->cas_set_mark(monitor_mark, mark);
1480       if (old_mark == mark) {
1481         // Success! Return inflated monitor.
1482         if (own) {
1483           size_t removed = inflating_thread->lock_stack().remove(object);
1484           monitor->set_recursions(removed - 1);
1485         }
1486         // Once the ObjectMonitor is configured and object is associated
1487         // with the ObjectMonitor, it is safe to allow async deflation:
1488         _in_use_list.add(monitor);
1489 
1490         // Hopefully the performance counters are allocated on distinct
1491         // cache lines to avoid false sharing on MP systems ...
1492         OM_PERFDATA_OP(Inflations, inc());
1493         if (log_is_enabled(Trace, monitorinflation)) {
1494           ResourceMark rm;
1495           lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1496                        INTPTR_FORMAT ", type='%s'", p2i(object),
1497                        object->mark().value(), object->klass()->external_name());
1498         }
1499         if (event.should_commit()) {
1500           post_monitor_inflate_event(&event, object, cause);
1501         }
1502         return monitor;
1503       } else {
1504         delete monitor;
1505         continue;  // Interference -- just retry
1506       }
1507     }
1508 
1509     // CASE: stack-locked
1510     // Could be stack-locked either by current or by some other thread.
1511     //
1512     // Note that we allocate the ObjectMonitor speculatively, _before_ attempting
1513     // to install INFLATING into the mark word.  We originally installed INFLATING,
1514     // allocated the ObjectMonitor, and then finally STed the address of the
1515     // ObjectMonitor into the mark.  This was correct, but artificially lengthened
1516     // the interval in which INFLATING appeared in the mark, thus increasing
1517     // the odds of inflation contention. If we lose the race to set INFLATING,
1518     // then we just delete the ObjectMonitor and loop around again.
1519     //

1520     if (LockingMode == LM_LEGACY && mark.has_locker()) {
1521       assert(LockingMode != LM_LIGHTWEIGHT, "cannot happen with new lightweight locking");
1522       ObjectMonitor* m = new ObjectMonitor(object);
1523       // Optimistically prepare the ObjectMonitor - anticipate successful CAS
1524       // We do this before the CAS in order to minimize the length of time
1525       // in which INFLATING appears in the mark.
1526 
1527       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1528       if (cmp != mark) {
1529         delete m;
1530         continue;       // Interference -- just retry
1531       }
1532 
1533       // We've successfully installed INFLATING (0) into the mark-word.
1534       // This is the only case where 0 will appear in a mark-word.
1535       // Only the singular thread that successfully swings the mark-word
1536       // to 0 can perform (or more precisely, complete) inflation.
1537       //
1538       // Why do we CAS a 0 into the mark-word instead of just CASing the
1539       // mark-word from the stack-locked value directly to the new inflated state?
1540       // Consider what happens when a thread unlocks a stack-locked object.
1541       // It attempts to use CAS to swing the displaced header value from the

1633     OM_PERFDATA_OP(Inflations, inc());
1634     if (log_is_enabled(Trace, monitorinflation)) {
1635       ResourceMark rm;
1636       lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark="
1637                    INTPTR_FORMAT ", type='%s'", p2i(object),
1638                    object->mark().value(), object->klass()->external_name());
1639     }
1640     if (event.should_commit()) {
1641       post_monitor_inflate_event(&event, object, cause);
1642     }
1643     return m;
1644   }
1645 }
1646 
1647 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle
1648 // ObjectMonitors. Returns the number of deflated ObjectMonitors.
1649 //
1650 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) {
1651   MonitorList::Iterator iter = _in_use_list.iterator();
1652   size_t deflated_count = 0;

1653 
1654   while (iter.has_next()) {
1655     if (deflated_count >= (size_t)MonitorDeflationMax) {
1656       break;
1657     }
1658     ObjectMonitor* mid = iter.next();
1659     if (mid->deflate_monitor()) {
1660       deflated_count++;
1661     }
1662 
1663     // Must check for a safepoint/handshake and honor it.
1664     safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count);
1665   }
1666 
1667   return deflated_count;
1668 }
1669 
1670 class HandshakeForDeflation : public HandshakeClosure {
1671  public:
1672   HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {}
1673 
1674   void do_thread(Thread* thread) {
1675     log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread="
1676                                 INTPTR_FORMAT, p2i(thread));





1677   }
1678 };
1679 
1680 class VM_RendezvousGCThreads : public VM_Operation {
1681 public:
1682   bool evaluate_at_safepoint() const override { return false; }
1683   VMOp_Type type() const override { return VMOp_RendezvousGCThreads; }
1684   void doit() override {
1685     Universe::heap()->safepoint_synchronize_begin();
1686     Universe::heap()->safepoint_synchronize_end();
1687   };
1688 };
1689 
1690 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list,
1691                               ObjectMonitorDeflationSafepointer* safepointer) {
1692   NativeHeapTrimmer::SuspendMark sm("monitor deletion");
1693   size_t deleted_count = 0;
1694   for (ObjectMonitor* monitor: *delete_list) {
1695     delete monitor;
1696     deleted_count++;

1803   // The async deflation request has been processed.
1804   _last_async_deflation_time_ns = os::javaTimeNanos();
1805   set_is_async_deflation_requested(false);
1806 
1807   ObjectMonitorDeflationLogging log;
1808   ObjectMonitorDeflationSafepointer safepointer(current, &log);
1809 
1810   log.begin();
1811 
1812   // Deflate some idle ObjectMonitors.
1813   size_t deflated_count = deflate_monitor_list(&safepointer);
1814 
1815   // Unlink the deflated ObjectMonitors from the in-use list.
1816   size_t unlinked_count = 0;
1817   size_t deleted_count = 0;
1818   if (deflated_count > 0) {
1819     ResourceMark rm(current);
1820     GrowableArray<ObjectMonitor*> delete_list((int)deflated_count);
1821     unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer);
1822 








1823     log.before_handshake(unlinked_count);
1824 
1825     // A JavaThread needs to handshake in order to safely free the
1826     // ObjectMonitors that were deflated in this cycle.
1827     HandshakeForDeflation hfd_hc;
1828     Handshake::execute(&hfd_hc);
1829     // Also, we sync and desync GC threads around the handshake, so that they can
1830     // safely read the mark-word and look-through to the object-monitor, without
1831     // being afraid that the object-monitor is going away.
1832     VM_RendezvousGCThreads sync_gc;
1833     VMThread::execute(&sync_gc);
1834 
1835     log.after_handshake();
1836 
1837     // After the handshake, safely free the ObjectMonitors that were
1838     // deflated and unlinked in this cycle.
1839 
1840     // Delete the unlinked ObjectMonitors.
1841     deleted_count = delete_monitors(&delete_list, &safepointer);
1842     assert(unlinked_count == deleted_count, "must be");

2011   }
2012 
2013   size_t ck_in_use_max = _in_use_list.max();
2014   if (l_in_use_max == ck_in_use_max) {
2015     out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max="
2016                   SIZE_FORMAT, l_in_use_max, ck_in_use_max);
2017   } else {
2018     out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to "
2019                   "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max);
2020   }
2021 }
2022 
2023 // Check an in-use monitor entry; log any errors.
2024 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out,
2025                                           int* error_cnt_p) {
2026   if (n->owner_is_DEFLATER_MARKER()) {
2027     // This could happen when monitor deflation blocks for a safepoint.
2028     return;
2029   }
2030 
2031   if (n->header().value() == 0) {

2032     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must "
2033                   "have non-null _header field.", p2i(n));
2034     *error_cnt_p = *error_cnt_p + 1;
2035   }

2036   const oop obj = n->object_peek();
2037   if (obj != nullptr) {
2038     const markWord mark = obj->mark();
2039     if (!mark.has_monitor()) {
2040       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
2041                     "object does not think it has a monitor: obj="
2042                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2043                     p2i(obj), mark.value());
2044       *error_cnt_p = *error_cnt_p + 1;
2045     }
2046     ObjectMonitor* const obj_mon = mark.monitor();
2047     if (n != obj_mon) {
2048       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
2049                     "object does not refer to the same monitor: obj="
2050                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2051                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2052       *error_cnt_p = *error_cnt_p + 1;
2053     }




2054   }
2055 }
2056 
2057 // Log details about ObjectMonitors on the in_use_list. The 'BHL'
2058 // flags indicate why the entry is in-use, 'object' and 'object type'
2059 // indicate the associated object and its type.
2060 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) {
2061   if (_in_use_list.count() > 0) {
2062     stringStream ss;
2063     out->print_cr("In-use monitor info:");
2064     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2065     out->print_cr("%18s  %s  %18s  %18s",
2066                   "monitor", "BHL", "object", "object type");
2067     out->print_cr("==================  ===  ==================  ==================");
2068 
2069     auto is_interesting = [&](ObjectMonitor* monitor) {
2070       return log_all || monitor->has_owner() || monitor->is_busy();
2071     };
2072 
2073     monitors_iterate([&](ObjectMonitor* monitor) {
2074       if (is_interesting(monitor)) {
2075         const oop obj = monitor->object_peek();
2076         const markWord mark = monitor->header();
2077         ResourceMark rm;
2078         out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(monitor),
2079                    monitor->is_busy(), mark.hash() != 0, monitor->owner() != nullptr,
2080                    p2i(obj), obj == nullptr ? "" : obj->klass()->external_name());
2081         if (monitor->is_busy()) {
2082           out->print(" (%s)", monitor->is_busy_to_string(&ss));
2083           ss.reset();
2084         }
2085         out->cr();
2086       }
2087     });
2088   }
2089 
2090   out->flush();
2091 }

  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "jfr/jfrEvents.hpp"
  29 #include "logging/log.hpp"
  30 #include "logging/logStream.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/basicLock.inline.hpp"
  39 #include "runtime/frame.inline.hpp"
  40 #include "runtime/globals.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "runtime/handshake.hpp"
  43 #include "runtime/interfaceSupport.inline.hpp"
  44 #include "runtime/javaThread.hpp"
  45 #include "runtime/lightweightSynchronizer.hpp"
  46 #include "runtime/lockStack.inline.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/objectMonitor.hpp"
  49 #include "runtime/objectMonitor.inline.hpp"
  50 #include "runtime/os.inline.hpp"
  51 #include "runtime/osThread.hpp"
  52 #include "runtime/perfData.hpp"
  53 #include "runtime/safepointMechanism.inline.hpp"
  54 #include "runtime/safepointVerifiers.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/synchronizer.hpp"
  58 #include "runtime/threads.hpp"
  59 #include "runtime/timer.hpp"
  60 #include "runtime/trimNativeHeap.hpp"
  61 #include "runtime/vframe.hpp"
  62 #include "runtime/vmThread.hpp"
  63 #include "utilities/align.hpp"
  64 #include "utilities/dtrace.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/globalDefinitions.hpp"
  67 #include "utilities/linkedlist.hpp"
  68 #include "utilities/preserveException.hpp"
  69 
  70 class ObjectMonitorDeflationLogging;
  71 
  72 ObjectMonitor* ObjectSynchronizer::read_monitor(markWord mark) {
  73   assert(LockingMode != LM_LIGHTWEIGHT, "lightweight locking uses table");
  74   return mark.monitor();
  75 }
  76 
  77 ObjectMonitor* ObjectSynchronizer::read_monitor(Thread* current, oop obj, markWord mark) {
  78   if (LockingMode != LM_LIGHTWEIGHT) {
  79     return read_monitor(mark);
  80   }
  81   return LightweightSynchronizer::read_monitor(current, obj);
  82 }
  83 
  84 void MonitorList::add(ObjectMonitor* m) {
  85   ObjectMonitor* head;
  86   do {
  87     head = Atomic::load(&_head);
  88     m->set_next_om(head);
  89   } while (Atomic::cmpxchg(&_head, head, m) != head);
  90 
  91   size_t count = Atomic::add(&_count, 1u);
  92   if (count > max()) {
  93     Atomic::inc(&_max);
  94   }
  95 }
  96 
  97 size_t MonitorList::count() const {
  98   return Atomic::load(&_count);
  99 }
 100 
 101 size_t MonitorList::max() const {
 102   return Atomic::load(&_max);
 103 }

 273 static constexpr size_t inflation_lock_count() {
 274   return 256;
 275 }
 276 
 277 // Static storage for an array of PlatformMutex.
 278 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)];
 279 
 280 static inline PlatformMutex* inflation_lock(size_t index) {
 281   return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]);
 282 }
 283 
 284 void ObjectSynchronizer::initialize() {
 285   for (size_t i = 0; i < inflation_lock_count(); i++) {
 286     ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex();
 287   }
 288   // Start the ceiling with the estimate for one thread.
 289   set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate);
 290 
 291   // Start the timer for deflations, so it does not trigger immediately.
 292   _last_async_deflation_time_ns = os::javaTimeNanos();
 293 
 294   if (LockingMode == LM_LIGHTWEIGHT) {
 295     LightweightSynchronizer::initialize();
 296   }
 297 }
 298 
 299 MonitorList ObjectSynchronizer::_in_use_list;
 300 // monitors_used_above_threshold() policy is as follows:
 301 //
 302 // The ratio of the current _in_use_list count to the ceiling is used
 303 // to determine if we are above MonitorUsedDeflationThreshold and need
 304 // to do an async monitor deflation cycle. The ceiling is increased by
 305 // AvgMonitorsPerThreadEstimate when a thread is added to the system
 306 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is
 307 // removed from the system.
 308 //
 309 // Note: If the _in_use_list max exceeds the ceiling, then
 310 // monitors_used_above_threshold() will use the in_use_list max instead
 311 // of the thread count derived ceiling because we have used more
 312 // ObjectMonitors than the estimated average.
 313 //
 314 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax
 315 // no-progress async monitor deflation cycles in a row, then the ceiling
 316 // is adjusted upwards by monitors_used_above_threshold().

 350   assert(current->thread_state() == _thread_in_Java, "invariant");
 351   NoSafepointVerifier nsv;
 352   if (obj == nullptr) return false;  // slow-path for invalid obj
 353   const markWord mark = obj->mark();
 354 
 355   if (LockingMode == LM_LIGHTWEIGHT) {
 356     if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) {
 357       // Degenerate notify
 358       // fast-locked by caller so by definition the implied waitset is empty.
 359       return true;
 360     }
 361   } else if (LockingMode == LM_LEGACY) {
 362     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 363       // Degenerate notify
 364       // stack-locked by caller so by definition the implied waitset is empty.
 365       return true;
 366     }
 367   }
 368 
 369   if (mark.has_monitor()) {
 370     ObjectMonitor* const mon = read_monitor(current, obj, mark);
 371     if (LockingMode == LM_LIGHTWEIGHT && mon == nullptr) {
 372       // Racing with inflation/deflation go slow path
 373       return false;
 374     }
 375     assert(mon->object() == oop(obj), "invariant");
 376     if (mon->owner() != current) return false;  // slow-path for IMS exception
 377 
 378     if (mon->first_waiter() != nullptr) {
 379       // We have one or more waiters. Since this is an inflated monitor
 380       // that we own, we can transfer one or more threads from the waitset
 381       // to the entrylist here and now, avoiding the slow-path.
 382       if (all) {
 383         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current);
 384       } else {
 385         DTRACE_MONITOR_PROBE(notify, mon, obj, current);
 386       }
 387       int free_count = 0;
 388       do {
 389         mon->INotify(current);
 390         ++free_count;
 391       } while (mon->first_waiter() != nullptr && all);
 392       OM_PERFDATA_OP(Notifications, inc(free_count));
 393     }
 394     return true;

 399 }
 400 
 401 
 402 // The LockNode emitted directly at the synchronization site would have
 403 // been too big if it were to have included support for the cases of inflated
 404 // recursive enter and exit, so they go here instead.
 405 // Note that we can't safely call AsyncPrintJavaStack() from within
 406 // quick_enter() as our thread state remains _in_Java.
 407 
 408 bool ObjectSynchronizer::quick_enter(oop obj, JavaThread* current,
 409                                      BasicLock * lock) {
 410   assert(current->thread_state() == _thread_in_Java, "invariant");
 411   NoSafepointVerifier nsv;
 412   if (obj == nullptr) return false;       // Need to throw NPE
 413 
 414   if (obj->klass()->is_value_based()) {
 415     return false;
 416   }
 417 
 418   if (LockingMode == LM_LIGHTWEIGHT) {
 419     return LightweightSynchronizer::quick_enter(obj, current, lock);









 420   }
 421 
 422   const markWord mark = obj->mark();
 423 
 424   if (mark.has_monitor()) {
 425     ObjectMonitor* const m = ObjectSynchronizer::read_monitor(mark);
 426     // An async deflation or GC can race us before we manage to make
 427     // the ObjectMonitor busy by setting the owner below. If we detect
 428     // that race we just bail out to the slow-path here.
 429     if (m->object_peek() == nullptr) {
 430       return false;
 431     }
 432     JavaThread* const owner = static_cast<JavaThread*>(m->owner_raw());
 433 
 434     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 435     // and observability
 436     // Case: light contention possibly amenable to TLE
 437     // Case: TLE inimical operations such as nested/recursive synchronization
 438 
 439     if (owner == current) {
 440       m->_recursions++;
 441       current->inc_held_monitor_count();
 442       return true;
 443     }
 444 
 445     if (LockingMode == LM_LEGACY) {
 446       // This Java Monitor is inflated so obj's header will never be
 447       // displaced to this thread's BasicLock. Make the displaced header
 448       // non-null so this BasicLock is not seen as recursive nor as
 449       // being locked. We do this unconditionally so that this thread's
 450       // BasicLock cannot be mis-interpreted by any stack walkers. For
 451       // performance reasons, stack walkers generally first check for
 452       // stack-locking in the object's header, the second check is for
 453       // recursive stack-locking in the displaced header in the BasicLock,
 454       // and last are the inflated Java Monitor (ObjectMonitor) checks.
 455       lock->set_displaced_header(markWord::unused_mark());
 456     }
 457 
 458     if (owner == nullptr && m->try_set_owner_from(nullptr, current) == nullptr) {
 459       assert(m->_recursions == 0, "invariant");
 460       current->inc_held_monitor_count();
 461       return true;
 462     }
 463   }
 464 
 465   // Note that we could inflate in quick_enter.

 520     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1);
 521   }
 522 }
 523 
 524 static bool useHeavyMonitors() {
 525 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390)
 526   return LockingMode == LM_MONITOR;
 527 #else
 528   return false;
 529 #endif
 530 }
 531 
 532 // -----------------------------------------------------------------------------
 533 // Monitor Enter/Exit
 534 
 535 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
 536   // When called with locking_thread != Thread::current() some mechanism must synchronize
 537   // the locking_thread with respect to the current thread. Currently only used when
 538   // deoptimizing and re-locking locks. See Deoptimization::relock_objects
 539   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 540 
 541   if (LockingMode == LM_LIGHTWEIGHT) {
 542     return LightweightSynchronizer::enter_for(obj, lock, locking_thread);
 543   }
 544 
 545   if (!enter_fast_impl(obj, lock, locking_thread)) {
 546     // Inflated ObjectMonitor::enter_for is required
 547 
 548     // An async deflation can race after the inflate_for() call and before
 549     // enter_for() can make the ObjectMonitor busy. enter_for() returns false
 550     // if we have lost the race to async deflation and we simply try again.
 551     while (true) {
 552       ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter);
 553       if (monitor->enter_for(locking_thread)) {
 554         return;
 555       }
 556       assert(monitor->is_being_async_deflated(), "must be");
 557     }
 558   }
 559 }
 560 
 561 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, JavaThread* current) {
 562   assert(current == Thread::current(), "must be");
 563 
 564   if (LockingMode == LM_LIGHTWEIGHT) {
 565     return LightweightSynchronizer::enter(obj, lock, current);
 566   }
 567 
 568   if (!enter_fast_impl(obj, lock, current)) {
 569     // Inflated ObjectMonitor::enter is required
 570 
 571     // An async deflation can race after the inflate() call and before
 572     // enter() can make the ObjectMonitor busy. enter() returns false if
 573     // we have lost the race to async deflation and we simply try again.
 574     while (true) {
 575       ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter);
 576       if (monitor->enter(current)) {
 577         return;
 578       }
 579     }
 580   }
 581 }
 582 
 583 // The interpreter and compiler assembly code tries to lock using the fast path
 584 // of this algorithm. Make sure to update that code if the following function is
 585 // changed. The implementation is extremely sensitive to race condition. Be careful.
 586 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
 587   assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer");
 588 
 589   if (obj->klass()->is_value_based()) {
 590     handle_sync_on_value_based_class(obj, locking_thread);
 591   }
 592 
 593   locking_thread->inc_held_monitor_count();
 594 
 595   if (!useHeavyMonitors()) {
 596     if (LockingMode == LM_LEGACY) {






















































 597       markWord mark = obj->mark();
 598       if (mark.is_unlocked()) {
 599         // Anticipate successful CAS -- the ST of the displaced mark must
 600         // be visible <= the ST performed by the CAS.
 601         lock->set_displaced_header(mark);
 602         if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 603           return true;
 604         }
 605       } else if (mark.has_locker() &&
 606                  locking_thread->is_lock_owned((address) mark.locker())) {
 607         assert(lock != mark.locker(), "must not re-lock the same lock");
 608         assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock");
 609         lock->set_displaced_header(markWord::from_pointer(nullptr));
 610         return true;
 611       }
 612 
 613       // The object header will never be displaced to this lock,
 614       // so it does not matter what the value is, except that it
 615       // must be non-zero to avoid looking like a re-entrant lock,
 616       // and must not look locked either.
 617       lock->set_displaced_header(markWord::unused_mark());
 618 
 619       // Failed to fast lock.
 620       return false;
 621     }
 622   } else if (VerifyHeavyMonitors) {
 623     guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 624   }
 625 
 626   return false;
 627 }
 628 
 629 void ObjectSynchronizer::exit(oop object, BasicLock* lock, JavaThread* current) {
 630   current->dec_held_monitor_count();
 631 
 632   if (LockingMode == LM_LIGHTWEIGHT) {
 633     return LightweightSynchronizer::exit(object, current);
 634   }
 635 
 636   if (!useHeavyMonitors()) {
 637     markWord mark = object->mark();
 638     if (LockingMode == LM_LEGACY) {

























 639       markWord dhw = lock->displaced_header();
 640       if (dhw.value() == 0) {
 641         // If the displaced header is null, then this exit matches up with
 642         // a recursive enter. No real work to do here except for diagnostics.
 643 #ifndef PRODUCT
 644         if (mark != markWord::INFLATING()) {
 645           // Only do diagnostics if we are not racing an inflation. Simply
 646           // exiting a recursive enter of a Java Monitor that is being
 647           // inflated is safe; see the has_monitor() comment below.
 648           assert(!mark.is_unlocked(), "invariant");
 649           assert(!mark.has_locker() ||
 650                  current->is_lock_owned((address)mark.locker()), "invariant");
 651           if (mark.has_monitor()) {
 652             // The BasicLock's displaced_header is marked as a recursive
 653             // enter and we have an inflated Java Monitor (ObjectMonitor).
 654             // This is a special case where the Java Monitor was inflated
 655             // after this thread entered the stack-lock recursively. When a
 656             // Java Monitor is inflated, we cannot safely walk the Java
 657             // Monitor owner's stack and update the BasicLocks because a
 658             // Java Monitor can be asynchronously inflated by a thread that
 659             // does not own the Java Monitor.
 660             ObjectMonitor* m = read_monitor(mark);
 661             assert(m->object()->mark() == mark, "invariant");
 662             assert(m->is_entered(current), "invariant");
 663           }
 664         }
 665 #endif
 666         return;
 667       }
 668 
 669       if (mark == markWord::from_pointer(lock)) {
 670         // If the object is stack-locked by the current thread, try to
 671         // swing the displaced header from the BasicLock back to the mark.
 672         assert(dhw.is_neutral(), "invariant");
 673         if (object->cas_set_mark(dhw, mark) == mark) {
 674           return;
 675         }
 676       }
 677     }
 678   } else if (VerifyHeavyMonitors) {
 679     guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 680   }

 684   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 685   ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal);
 686   assert(!monitor->is_owner_anonymous(), "must not be");
 687   monitor->exit(current);
 688 }
 689 
 690 // -----------------------------------------------------------------------------
 691 // JNI locks on java objects
 692 // NOTE: must use heavy weight monitor to handle jni monitor enter
 693 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) {
 694   if (obj->klass()->is_value_based()) {
 695     handle_sync_on_value_based_class(obj, current);
 696   }
 697 
 698   // the current locking is from JNI instead of Java code
 699   current->set_current_pending_monitor_is_from_java(false);
 700   // An async deflation can race after the inflate() call and before
 701   // enter() can make the ObjectMonitor busy. enter() returns false if
 702   // we have lost the race to async deflation and we simply try again.
 703   while (true) {
 704     ObjectMonitor* monitor;
 705     bool entered;
 706     if (LockingMode == LM_LIGHTWEIGHT) {
 707       entered = LightweightSynchronizer::inflate_and_enter(obj(), current, current, inflate_cause_jni_enter) != nullptr;
 708     } else {
 709       monitor = inflate(current, obj(), inflate_cause_jni_enter);
 710       entered = monitor->enter(current);
 711     }
 712 
 713     if (entered) {
 714       current->inc_held_monitor_count(1, true);
 715       break;
 716     }
 717   }
 718   current->set_current_pending_monitor_is_from_java(true);
 719 }
 720 
 721 // NOTE: must use heavy weight monitor to handle jni monitor exit
 722 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) {
 723   JavaThread* current = THREAD;
 724 
 725   ObjectMonitor* monitor;
 726   if (LockingMode == LM_LIGHTWEIGHT) {
 727     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK);
 728   } else {
 729     // The ObjectMonitor* can't be async deflated until ownership is
 730     // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 731     monitor = inflate(current, obj, inflate_cause_jni_exit);
 732   }
 733   // If this thread has locked the object, exit the monitor. We
 734   // intentionally do not use CHECK on check_owner because we must exit the
 735   // monitor even if an exception was already pending.
 736   if (monitor->check_owner(THREAD)) {
 737     monitor->exit(current);
 738     current->dec_held_monitor_count(1, true);
 739   }
 740 }
 741 
 742 // -----------------------------------------------------------------------------
 743 // Internal VM locks on java objects
 744 // standard constructor, allows locking failures
 745 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) {
 746   _thread = thread;
 747   _thread->check_for_valid_safepoint_state();
 748   _obj = obj;
 749 
 750   if (_obj() != nullptr) {
 751     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 752   }
 753 }
 754 
 755 ObjectLocker::~ObjectLocker() {
 756   if (_obj() != nullptr) {
 757     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 758   }
 759 }
 760 
 761 
 762 // -----------------------------------------------------------------------------
 763 //  Wait/Notify/NotifyAll
 764 // NOTE: must use heavy weight monitor to handle wait()
 765 
 766 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 767   JavaThread* current = THREAD;
 768   if (millis < 0) {
 769     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 770   }
 771 
 772   ObjectMonitor* monitor;
 773   if (LockingMode == LM_LIGHTWEIGHT) {
 774     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0);
 775   } else {
 776     // The ObjectMonitor* can't be async deflated because the _waiters
 777     // field is incremented before ownership is dropped and decremented
 778     // after ownership is regained.
 779     monitor = inflate(current, obj(), inflate_cause_wait);
 780   }
 781 
 782   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis);
 783   monitor->wait(millis, true, THREAD); // Not CHECK as we need following code
 784 
 785   // This dummy call is in place to get around dtrace bug 6254741.  Once
 786   // that's fixed we can uncomment the following line, remove the call
 787   // and change this function back into a "void" func.
 788   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 789   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 790   return ret_code;
 791 }
 792 
 793 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 794   JavaThread* current = THREAD;
 795 
 796   markWord mark = obj->mark();
 797   if (LockingMode == LM_LIGHTWEIGHT) {
 798     if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 799       // Not inflated so there can't be any waiters to notify.
 800       return;
 801     }
 802   } else if (LockingMode == LM_LEGACY) {
 803     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 804       // Not inflated so there can't be any waiters to notify.
 805       return;
 806     }
 807   }
 808 
 809   ObjectMonitor* monitor;
 810   if (LockingMode == LM_LIGHTWEIGHT) {
 811     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK);
 812   } else {
 813     // The ObjectMonitor* can't be async deflated until ownership is
 814     // dropped by the calling thread.
 815     monitor = inflate(current, obj(), inflate_cause_notify);
 816   }
 817   monitor->notify(CHECK);
 818 }
 819 
 820 // NOTE: see comment of notify()
 821 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 822   JavaThread* current = THREAD;
 823 
 824   markWord mark = obj->mark();
 825   if (LockingMode == LM_LIGHTWEIGHT) {
 826     if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 827       // Not inflated so there can't be any waiters to notify.
 828       return;
 829     }
 830   } else if (LockingMode == LM_LEGACY) {
 831     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 832       // Not inflated so there can't be any waiters to notify.
 833       return;
 834     }
 835   }
 836 
 837   ObjectMonitor* monitor;
 838   if (LockingMode == LM_LIGHTWEIGHT) {
 839     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK);
 840   } else {
 841     // The ObjectMonitor* can't be async deflated until ownership is
 842     // dropped by the calling thread.
 843     monitor = inflate(current, obj(), inflate_cause_notify);
 844   }
 845   monitor->notifyAll(CHECK);
 846 }
 847 
 848 // -----------------------------------------------------------------------------
 849 // Hash Code handling
 850 
 851 struct SharedGlobals {
 852   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 853   // This is a highly shared mostly-read variable.
 854   // To avoid false-sharing it needs to be the sole occupant of a cache line.
 855   volatile int stw_random;
 856   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 857   // Hot RW variable -- Sequester to avoid false-sharing
 858   volatile int hc_sequence;
 859   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 860 };
 861 
 862 static SharedGlobals GVars;
 863 
 864 static markWord read_stable_mark(oop obj) {

 956     value = 1;            // for sensitivity testing
 957   } else if (hashCode == 3) {
 958     value = ++GVars.hc_sequence;
 959   } else if (hashCode == 4) {
 960     value = cast_from_oop<intptr_t>(obj);
 961   } else {
 962     // Marsaglia's xor-shift scheme with thread-specific state
 963     // This is probably the best overall implementation -- we'll
 964     // likely make this the default in future releases.
 965     unsigned t = current->_hashStateX;
 966     t ^= (t << 11);
 967     current->_hashStateX = current->_hashStateY;
 968     current->_hashStateY = current->_hashStateZ;
 969     current->_hashStateZ = current->_hashStateW;
 970     unsigned v = current->_hashStateW;
 971     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 972     current->_hashStateW = v;
 973     value = v;
 974   }
 975 
 976   value &= UseCompactObjectHeaders ? markWord::hash_mask_compact : markWord::hash_mask;
 977   if (value == 0) value = 0xBAD;
 978   assert(value != markWord::no_hash, "invariant");
 979   return value;
 980 }
 981 
 982 intptr_t ObjectSynchronizer::get_next_hash(Thread* current, oop obj) {
 983   // CLEANUP[Axel]: hack for LightweightSynchronizer being in different translation unit
 984   return ::get_next_hash(current, obj);
 985 }
 986 
 987 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) {
 988   if (LockingMode == LM_LIGHTWEIGHT) {
 989     return LightweightSynchronizer::FastHashCode(current, obj);
 990   }
 991 
 992   while (true) {
 993     ObjectMonitor* monitor = nullptr;
 994     markWord temp, test;
 995     intptr_t hash;
 996     markWord mark = read_stable_mark(obj);
 997     if (VerifyHeavyMonitors) {
 998       assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)");
 999       guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
1000     }
1001     if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) {
1002       hash = mark.hash();
1003       if (hash != 0) {                     // if it has a hash, just return it
1004         return hash;
1005       }
1006       hash = get_next_hash(current, obj);  // get a new hash
1007       temp = mark.copy_set_hash(hash);     // merge the hash into header
1008                                            // try to install the hash
1009       test = obj->cas_set_mark(temp, mark);
1010       if (test == mark) {                  // if the hash was installed, return it

1060       // So we have to inflate the stack-lock into an ObjectMonitor
1061       // even if the current thread owns the lock. The BasicLock on
1062       // a thread's stack can be asynchronously read by other threads
1063       // during an inflate() call so any change to that stack memory
1064       // may not propagate to other threads correctly.
1065     }
1066 
1067     // Inflate the monitor to set the hash.
1068 
1069     // An async deflation can race after the inflate() call and before we
1070     // can update the ObjectMonitor's header with the hash value below.
1071     monitor = inflate(current, obj, inflate_cause_hash_code);
1072     // Load ObjectMonitor's header/dmw field and see if it has a hash.
1073     mark = monitor->header();
1074     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1075     hash = mark.hash();
1076     if (hash == 0) {                       // if it does not have a hash
1077       hash = get_next_hash(current, obj);  // get a new hash
1078       temp = mark.copy_set_hash(hash)   ;  // merge the hash into header
1079       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1080       uintptr_t v = Atomic::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value());
1081       test = markWord(v);
1082       if (test != mark) {
1083         // The attempt to update the ObjectMonitor's header/dmw field
1084         // did not work. This can happen if another thread managed to
1085         // merge in the hash just before our cmpxchg().
1086         // If we add any new usages of the header/dmw field, this code
1087         // will need to be updated.
1088         hash = test.hash();
1089         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
1090         assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
1091       }
1092       if (monitor->is_being_async_deflated()) {
1093         // If we detect that async deflation has occurred, then we
1094         // attempt to restore the header/dmw to the object's header
1095         // so that we only retry once if the deflater thread happens
1096         // to be slow.
1097         monitor->install_displaced_markword_in_object(obj);
1098         continue;
1099       }
1100     }

1103   }
1104 }
1105 
1106 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current,
1107                                                    Handle h_obj) {
1108   assert(current == JavaThread::current(), "Can only be called on current thread");
1109   oop obj = h_obj();
1110 
1111   markWord mark = read_stable_mark(obj);
1112 
1113   if (LockingMode == LM_LEGACY && mark.has_locker()) {
1114     // stack-locked case, header points into owner's stack
1115     return current->is_lock_owned((address)mark.locker());
1116   }
1117 
1118   if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1119     // fast-locking case, see if lock is in current's lock stack
1120     return current->lock_stack().contains(h_obj());
1121   }
1122 
1123   while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) {
1124     ObjectMonitor* monitor = LightweightSynchronizer::read_monitor(current, obj);
1125     if (monitor != nullptr) {
1126       return monitor->is_entered(current) != 0;
1127     }
1128     // Racing with inflation/deflation, retry
1129     mark = obj->mark_acquire();
1130 
1131     if (mark.is_fast_locked()) {
1132       // Some other thread fast_locked, current could not have held the lock
1133       return false;
1134     }
1135   }
1136 
1137   if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) {
1138     // Inflated monitor so header points to ObjectMonitor (tagged pointer).
1139     // The first stage of async deflation does not affect any field
1140     // used by this comparison so the ObjectMonitor* is usable here.
1141     ObjectMonitor* monitor = read_monitor(mark);
1142     return monitor->is_entered(current) != 0;
1143   }
1144   // Unlocked case, header in place
1145   assert(mark.is_unlocked(), "sanity check");
1146   return false;
1147 }
1148 
1149 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
1150   oop obj = h_obj();
1151   markWord mark = read_stable_mark(obj);
1152 
1153   if (LockingMode == LM_LEGACY && mark.has_locker()) {
1154     // stack-locked so header points into owner's stack.
1155     // owning_thread_from_monitor_owner() may also return null here:
1156     return Threads::owning_thread_from_monitor_owner(t_list, (address) mark.locker());
1157   }
1158 
1159   if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1160     // fast-locked so get owner from the object.
1161     // owning_thread_from_object() may also return null here:
1162     return Threads::owning_thread_from_object(t_list, h_obj());
1163   }
1164 
1165   while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) {
1166     ObjectMonitor* monitor = LightweightSynchronizer::read_monitor(Thread::current(), obj);
1167     if (monitor != nullptr) {
1168       return Threads::owning_thread_from_monitor(t_list, monitor);
1169     }
1170     // Racing with inflation/deflation, retry
1171     mark = obj->mark_acquire();
1172 
1173     if (mark.is_fast_locked()) {
1174       // Some other thread fast_locked
1175       return Threads::owning_thread_from_object(t_list, h_obj());
1176     }
1177   }
1178 
1179   if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) {
1180     // Inflated monitor so header points to ObjectMonitor (tagged pointer).
1181     // The first stage of async deflation does not affect any field
1182     // used by this comparison so the ObjectMonitor* is usable here.
1183     ObjectMonitor* monitor = read_monitor(mark);
1184     assert(monitor != nullptr, "monitor should be non-null");
1185     // owning_thread_from_monitor() may also return null here:
1186     return Threads::owning_thread_from_monitor(t_list, monitor);
1187   }
1188 
1189   // Unlocked case, header in place
1190   // Cannot have assertion since this object may have been
1191   // locked by another thread when reaching here.
1192   // assert(mark.is_unlocked(), "sanity check");
1193 
1194   return nullptr;
1195 }
1196 
1197 // Visitors ...
1198 
1199 // Iterate over all ObjectMonitors.
1200 template <typename Function>
1201 void ObjectSynchronizer::monitors_iterate(Function function) {
1202   MonitorList::Iterator iter = _in_use_list.iterator();
1203   while (iter.has_next()) {

1239 }
1240 
1241 static bool monitors_used_above_threshold(MonitorList* list) {
1242   if (MonitorUsedDeflationThreshold == 0) {  // disabled case is easy
1243     return false;
1244   }
1245   // Start with ceiling based on a per-thread estimate:
1246   size_t ceiling = ObjectSynchronizer::in_use_list_ceiling();
1247   size_t old_ceiling = ceiling;
1248   if (ceiling < list->max()) {
1249     // The max used by the system has exceeded the ceiling so use that:
1250     ceiling = list->max();
1251   }
1252   size_t monitors_used = list->count();
1253   if (monitors_used == 0) {  // empty list is easy
1254     return false;
1255   }
1256   if (NoAsyncDeflationProgressMax != 0 &&
1257       _no_progress_cnt >= NoAsyncDeflationProgressMax) {
1258     double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0;
1259     size_t new_ceiling = ceiling / remainder + 1;
1260     ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling);
1261     log_info(monitorinflation)("Too many deflations without progress; "
1262                                "bumping in_use_list_ceiling from " SIZE_FORMAT
1263                                " to " SIZE_FORMAT, old_ceiling, new_ceiling);
1264     _no_progress_cnt = 0;
1265     ceiling = new_ceiling;
1266   }
1267 
1268   // Check if our monitor usage is above the threshold:
1269   size_t monitor_usage = (monitors_used * 100LL) / ceiling;
1270   if (int(monitor_usage) > MonitorUsedDeflationThreshold) {
1271     log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT
1272                                ", monitor_usage=" SIZE_FORMAT ", threshold=%d",
1273                                monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold);
1274     return true;
1275   }
1276 
1277   return false;
1278 }
1279 

1375 
1376   return ret_code;
1377 }
1378 
1379 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1380   return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS);
1381 }
1382 
1383 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1384                                        const oop obj,
1385                                        ObjectSynchronizer::InflateCause cause) {
1386   assert(event != nullptr, "invariant");
1387   event->set_monitorClass(obj->klass());
1388   event->set_address((uintptr_t)(void*)obj);
1389   event->set_cause((u1)cause);
1390   event->commit();
1391 }
1392 
1393 // Fast path code shared by multiple functions
1394 void ObjectSynchronizer::inflate_helper(oop obj) {
1395   if (LockingMode == LM_LIGHTWEIGHT) {
1396     return;
1397   }
1398   markWord mark = obj->mark_acquire();
1399   if (mark.has_monitor()) {
1400     ObjectMonitor* monitor = read_monitor(mark);
1401     markWord dmw = monitor->header();
1402     assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value());
1403     return;
1404   }
1405   (void)inflate(Thread::current(), obj, inflate_cause_vm_internal);
1406 }
1407 
1408 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) {
1409   assert(current == Thread::current(), "must be");
1410   assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate");
1411   return inflate_impl(obj, cause);


1412 }
1413 
1414 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) {
1415   assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be");
1416   assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_for");
1417   return inflate_impl(obj, cause);
1418 }
1419 
1420 ObjectMonitor* ObjectSynchronizer::inflate_impl(oop object, const InflateCause cause) {
1421   assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_impl");






1422   EventJavaMonitorInflate event;
1423 
1424   for (;;) {
1425     const markWord mark = object->mark_acquire();
1426 
1427     // The mark can be in one of the following states:
1428     // *  inflated     - Just return it.






1429     // *  stack-locked - Coerce it to inflated from stack-locked.
1430     // *  INFLATING    - Busy wait for conversion from stack-locked to
1431     //                   inflated.
1432     // *  unlocked     - Aggressively inflate the object.
1433 
1434     // CASE: inflated
1435     if (mark.has_monitor()) {
1436       ObjectMonitor* inf = mark.monitor();
1437       markWord dmw = inf->header();
1438       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());






1439       return inf;
1440     }
1441 
1442     // CASE: inflation in progress - inflating over a stack-lock.
1443     // Some other thread is converting from stack-locked to inflated.
1444     // Only that thread can complete inflation -- other threads must wait.
1445     // The INFLATING value is transient.
1446     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1447     // We could always eliminate polling by parking the thread on some auxiliary list.
1448     if (mark == markWord::INFLATING()) {
1449       read_stable_mark(object);
1450       continue;
























































1451     }
1452 
1453     // CASE: stack-locked
1454     // Could be stack-locked either by current or by some other thread.
1455     //
1456     // Note that we allocate the ObjectMonitor speculatively, _before_ attempting
1457     // to install INFLATING into the mark word.  We originally installed INFLATING,
1458     // allocated the ObjectMonitor, and then finally STed the address of the
1459     // ObjectMonitor into the mark.  This was correct, but artificially lengthened
1460     // the interval in which INFLATING appeared in the mark, thus increasing
1461     // the odds of inflation contention. If we lose the race to set INFLATING,
1462     // then we just delete the ObjectMonitor and loop around again.
1463     //
1464     LogStreamHandle(Trace, monitorinflation) lsh;
1465     if (LockingMode == LM_LEGACY && mark.has_locker()) {

1466       ObjectMonitor* m = new ObjectMonitor(object);
1467       // Optimistically prepare the ObjectMonitor - anticipate successful CAS
1468       // We do this before the CAS in order to minimize the length of time
1469       // in which INFLATING appears in the mark.
1470 
1471       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1472       if (cmp != mark) {
1473         delete m;
1474         continue;       // Interference -- just retry
1475       }
1476 
1477       // We've successfully installed INFLATING (0) into the mark-word.
1478       // This is the only case where 0 will appear in a mark-word.
1479       // Only the singular thread that successfully swings the mark-word
1480       // to 0 can perform (or more precisely, complete) inflation.
1481       //
1482       // Why do we CAS a 0 into the mark-word instead of just CASing the
1483       // mark-word from the stack-locked value directly to the new inflated state?
1484       // Consider what happens when a thread unlocks a stack-locked object.
1485       // It attempts to use CAS to swing the displaced header value from the

1577     OM_PERFDATA_OP(Inflations, inc());
1578     if (log_is_enabled(Trace, monitorinflation)) {
1579       ResourceMark rm;
1580       lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark="
1581                    INTPTR_FORMAT ", type='%s'", p2i(object),
1582                    object->mark().value(), object->klass()->external_name());
1583     }
1584     if (event.should_commit()) {
1585       post_monitor_inflate_event(&event, object, cause);
1586     }
1587     return m;
1588   }
1589 }
1590 
1591 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle
1592 // ObjectMonitors. Returns the number of deflated ObjectMonitors.
1593 //
1594 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) {
1595   MonitorList::Iterator iter = _in_use_list.iterator();
1596   size_t deflated_count = 0;
1597   Thread* current = Thread::current();
1598 
1599   while (iter.has_next()) {
1600     if (deflated_count >= (size_t)MonitorDeflationMax) {
1601       break;
1602     }
1603     ObjectMonitor* mid = iter.next();
1604     if (mid->deflate_monitor(current)) {
1605       deflated_count++;
1606     }
1607 
1608     // Must check for a safepoint/handshake and honor it.
1609     safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count);
1610   }
1611 
1612   return deflated_count;
1613 }
1614 
1615 class HandshakeForDeflation : public HandshakeClosure {
1616  public:
1617   HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {}
1618 
1619   void do_thread(Thread* thread) {
1620     log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread="
1621                                 INTPTR_FORMAT, p2i(thread));
1622     if (thread->is_Java_thread()) {
1623       // Clear OM cache
1624       JavaThread* jt = JavaThread::cast(thread);
1625       jt->om_clear_monitor_cache();
1626     }
1627   }
1628 };
1629 
1630 class VM_RendezvousGCThreads : public VM_Operation {
1631 public:
1632   bool evaluate_at_safepoint() const override { return false; }
1633   VMOp_Type type() const override { return VMOp_RendezvousGCThreads; }
1634   void doit() override {
1635     Universe::heap()->safepoint_synchronize_begin();
1636     Universe::heap()->safepoint_synchronize_end();
1637   };
1638 };
1639 
1640 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list,
1641                               ObjectMonitorDeflationSafepointer* safepointer) {
1642   NativeHeapTrimmer::SuspendMark sm("monitor deletion");
1643   size_t deleted_count = 0;
1644   for (ObjectMonitor* monitor: *delete_list) {
1645     delete monitor;
1646     deleted_count++;

1753   // The async deflation request has been processed.
1754   _last_async_deflation_time_ns = os::javaTimeNanos();
1755   set_is_async_deflation_requested(false);
1756 
1757   ObjectMonitorDeflationLogging log;
1758   ObjectMonitorDeflationSafepointer safepointer(current, &log);
1759 
1760   log.begin();
1761 
1762   // Deflate some idle ObjectMonitors.
1763   size_t deflated_count = deflate_monitor_list(&safepointer);
1764 
1765   // Unlink the deflated ObjectMonitors from the in-use list.
1766   size_t unlinked_count = 0;
1767   size_t deleted_count = 0;
1768   if (deflated_count > 0) {
1769     ResourceMark rm(current);
1770     GrowableArray<ObjectMonitor*> delete_list((int)deflated_count);
1771     unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer);
1772 
1773 #ifdef ASSERT
1774     if (LockingMode == LM_LIGHTWEIGHT) {
1775       for (ObjectMonitor* monitor : delete_list) {
1776         assert(!LightweightSynchronizer::contains_monitor(current, monitor), "Should have been removed");
1777       }
1778     }
1779 #endif
1780 
1781     log.before_handshake(unlinked_count);
1782 
1783     // A JavaThread needs to handshake in order to safely free the
1784     // ObjectMonitors that were deflated in this cycle.
1785     HandshakeForDeflation hfd_hc;
1786     Handshake::execute(&hfd_hc);
1787     // Also, we sync and desync GC threads around the handshake, so that they can
1788     // safely read the mark-word and look-through to the object-monitor, without
1789     // being afraid that the object-monitor is going away.
1790     VM_RendezvousGCThreads sync_gc;
1791     VMThread::execute(&sync_gc);
1792 
1793     log.after_handshake();
1794 
1795     // After the handshake, safely free the ObjectMonitors that were
1796     // deflated and unlinked in this cycle.
1797 
1798     // Delete the unlinked ObjectMonitors.
1799     deleted_count = delete_monitors(&delete_list, &safepointer);
1800     assert(unlinked_count == deleted_count, "must be");

1969   }
1970 
1971   size_t ck_in_use_max = _in_use_list.max();
1972   if (l_in_use_max == ck_in_use_max) {
1973     out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max="
1974                   SIZE_FORMAT, l_in_use_max, ck_in_use_max);
1975   } else {
1976     out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to "
1977                   "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max);
1978   }
1979 }
1980 
1981 // Check an in-use monitor entry; log any errors.
1982 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out,
1983                                           int* error_cnt_p) {
1984   if (n->owner_is_DEFLATER_MARKER()) {
1985     // This could happen when monitor deflation blocks for a safepoint.
1986     return;
1987   }
1988 
1989 
1990   if (n->metadata() == 0) {
1991     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must "
1992                   "have non-null _metadata (header/hash) field.", p2i(n));
1993     *error_cnt_p = *error_cnt_p + 1;
1994   }
1995 
1996   const oop obj = n->object_peek();
1997   if (obj == nullptr) {
1998     return;
1999   }
2000 
2001   const markWord mark = obj->mark();
2002   if (!mark.has_monitor()) {
2003     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
2004                   "object does not think it has a monitor: obj="
2005                   INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2006                   p2i(obj), mark.value());
2007     *error_cnt_p = *error_cnt_p + 1;
2008     return;
2009   }
2010 
2011   ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark);
2012   if (n != obj_mon) {
2013     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
2014                   "object does not refer to the same monitor: obj="
2015                   INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2016                   INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2017     *error_cnt_p = *error_cnt_p + 1;
2018   }
2019 }
2020 
2021 // Log details about ObjectMonitors on the in_use_list. The 'BHL'
2022 // flags indicate why the entry is in-use, 'object' and 'object type'
2023 // indicate the associated object and its type.
2024 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) {
2025   if (_in_use_list.count() > 0) {
2026     stringStream ss;
2027     out->print_cr("In-use monitor info:");
2028     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2029     out->print_cr("%18s  %s  %18s  %18s",
2030                   "monitor", "BHL", "object", "object type");
2031     out->print_cr("==================  ===  ==================  ==================");
2032 
2033     auto is_interesting = [&](ObjectMonitor* monitor) {
2034       return log_all || monitor->has_owner() || monitor->is_busy();
2035     };
2036 
2037     monitors_iterate([&](ObjectMonitor* monitor) {
2038       if (is_interesting(monitor)) {
2039         const oop obj = monitor->object_peek();
2040         const intptr_t hash = LockingMode == LM_LIGHTWEIGHT ? monitor->hash() : monitor->header().hash();
2041         ResourceMark rm;
2042         out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(monitor),
2043                    monitor->is_busy(), hash != 0, monitor->owner() != nullptr,
2044                    p2i(obj), obj == nullptr ? "" : obj->klass()->external_name());
2045         if (monitor->is_busy()) {
2046           out->print(" (%s)", monitor->is_busy_to_string(&ss));
2047           ss.reset();
2048         }
2049         out->cr();
2050       }
2051     });
2052   }
2053 
2054   out->flush();
2055 }
< prev index next >