< prev index next >

src/hotspot/share/runtime/synchronizer.cpp

Print this page

  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "jfr/jfrEvents.hpp"
  29 #include "logging/log.hpp"
  30 #include "logging/logStream.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"

  38 #include "runtime/frame.inline.hpp"
  39 #include "runtime/globals.hpp"
  40 #include "runtime/handles.inline.hpp"
  41 #include "runtime/handshake.hpp"
  42 #include "runtime/interfaceSupport.inline.hpp"
  43 #include "runtime/javaThread.hpp"

  44 #include "runtime/lockStack.inline.hpp"
  45 #include "runtime/mutexLocker.hpp"
  46 #include "runtime/objectMonitor.hpp"
  47 #include "runtime/objectMonitor.inline.hpp"
  48 #include "runtime/os.inline.hpp"
  49 #include "runtime/osThread.hpp"
  50 #include "runtime/perfData.hpp"
  51 #include "runtime/safepointMechanism.inline.hpp"
  52 #include "runtime/safepointVerifiers.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/stubRoutines.hpp"
  55 #include "runtime/synchronizer.hpp"
  56 #include "runtime/threads.hpp"
  57 #include "runtime/timer.hpp"
  58 #include "runtime/trimNativeHeap.hpp"
  59 #include "runtime/vframe.hpp"
  60 #include "runtime/vmThread.hpp"
  61 #include "utilities/align.hpp"
  62 #include "utilities/dtrace.hpp"
  63 #include "utilities/events.hpp"
  64 #include "utilities/globalDefinitions.hpp"
  65 #include "utilities/linkedlist.hpp"
  66 #include "utilities/preserveException.hpp"
  67 
  68 class ObjectMonitorDeflationLogging;
  69 
  70 void MonitorList::add(ObjectMonitor* m) {
  71   ObjectMonitor* head;
  72   do {
  73     head = Atomic::load(&_head);
  74     m->set_next_om(head);
  75   } while (Atomic::cmpxchg(&_head, head, m) != head);

 259 static constexpr size_t inflation_lock_count() {
 260   return 256;
 261 }
 262 
 263 // Static storage for an array of PlatformMutex.
 264 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)];
 265 
 266 static inline PlatformMutex* inflation_lock(size_t index) {
 267   return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]);
 268 }
 269 
 270 void ObjectSynchronizer::initialize() {
 271   for (size_t i = 0; i < inflation_lock_count(); i++) {
 272     ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex();
 273   }
 274   // Start the ceiling with the estimate for one thread.
 275   set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate);
 276 
 277   // Start the timer for deflations, so it does not trigger immediately.
 278   _last_async_deflation_time_ns = os::javaTimeNanos();




 279 }
 280 
 281 MonitorList ObjectSynchronizer::_in_use_list;
 282 // monitors_used_above_threshold() policy is as follows:
 283 //
 284 // The ratio of the current _in_use_list count to the ceiling is used
 285 // to determine if we are above MonitorUsedDeflationThreshold and need
 286 // to do an async monitor deflation cycle. The ceiling is increased by
 287 // AvgMonitorsPerThreadEstimate when a thread is added to the system
 288 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is
 289 // removed from the system.
 290 //
 291 // Note: If the _in_use_list max exceeds the ceiling, then
 292 // monitors_used_above_threshold() will use the in_use_list max instead
 293 // of the thread count derived ceiling because we have used more
 294 // ObjectMonitors than the estimated average.
 295 //
 296 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax
 297 // no-progress async monitor deflation cycles in a row, then the ceiling
 298 // is adjusted upwards by monitors_used_above_threshold().

 332   assert(current->thread_state() == _thread_in_Java, "invariant");
 333   NoSafepointVerifier nsv;
 334   if (obj == nullptr) return false;  // slow-path for invalid obj
 335   const markWord mark = obj->mark();
 336 
 337   if (LockingMode == LM_LIGHTWEIGHT) {
 338     if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) {
 339       // Degenerate notify
 340       // fast-locked by caller so by definition the implied waitset is empty.
 341       return true;
 342     }
 343   } else if (LockingMode == LM_LEGACY) {
 344     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 345       // Degenerate notify
 346       // stack-locked by caller so by definition the implied waitset is empty.
 347       return true;
 348     }
 349   }
 350 
 351   if (mark.has_monitor()) {
 352     ObjectMonitor* const mon = mark.monitor();




 353     assert(mon->object() == oop(obj), "invariant");
 354     if (mon->owner() != current) return false;  // slow-path for IMS exception
 355 
 356     if (mon->first_waiter() != nullptr) {
 357       // We have one or more waiters. Since this is an inflated monitor
 358       // that we own, we can transfer one or more threads from the waitset
 359       // to the entrylist here and now, avoiding the slow-path.
 360       if (all) {
 361         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current);
 362       } else {
 363         DTRACE_MONITOR_PROBE(notify, mon, obj, current);
 364       }
 365       int free_count = 0;
 366       do {
 367         mon->INotify(current);
 368         ++free_count;
 369       } while (mon->first_waiter() != nullptr && all);
 370       OM_PERFDATA_OP(Notifications, inc(free_count));
 371     }
 372     return true;
 373   }
 374 
 375   // other IMS exception states take the slow-path
 376   return false;
 377 }
 378 







 379 
 380 // The LockNode emitted directly at the synchronization site would have
 381 // been too big if it were to have included support for the cases of inflated
 382 // recursive enter and exit, so they go here instead.
 383 // Note that we can't safely call AsyncPrintJavaStack() from within
 384 // quick_enter() as our thread state remains _in_Java.
 385 
 386 bool ObjectSynchronizer::quick_enter(oop obj, JavaThread* current,
 387                                      BasicLock * lock) {
 388   assert(current->thread_state() == _thread_in_Java, "invariant");
 389   NoSafepointVerifier nsv;
 390   if (obj == nullptr) return false;       // Need to throw NPE
 391 
 392   if (obj->klass()->is_value_based()) {
 393     return false;
 394   }
 395 
 396   if (LockingMode == LM_LIGHTWEIGHT) {
 397     LockStack& lock_stack = current->lock_stack();
 398     if (lock_stack.is_full()) {
 399       // Always go into runtime if the lock stack is full.
 400       return false;
 401     }
 402     if (lock_stack.try_recursive_enter(obj)) {
 403       // Recursive lock successful.
 404       current->inc_held_monitor_count();
 405       return true;
 406     }
 407   }
 408 


 409   const markWord mark = obj->mark();
 410 
 411   if (mark.has_monitor()) {
 412     ObjectMonitor* const m = mark.monitor();

 413     // An async deflation or GC can race us before we manage to make
 414     // the ObjectMonitor busy by setting the owner below. If we detect
 415     // that race we just bail out to the slow-path here.
 416     if (m->object_peek() == nullptr) {
 417       return false;
 418     }
 419     JavaThread* const owner = static_cast<JavaThread*>(m->owner_raw());
 420 
 421     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 422     // and observability
 423     // Case: light contention possibly amenable to TLE
 424     // Case: TLE inimical operations such as nested/recursive synchronization
 425 
 426     if (owner == current) {
 427       m->_recursions++;
 428       current->inc_held_monitor_count();
 429       return true;
 430     }
 431 
 432     if (LockingMode != LM_LIGHTWEIGHT) {
 433       // This Java Monitor is inflated so obj's header will never be
 434       // displaced to this thread's BasicLock. Make the displaced header
 435       // non-null so this BasicLock is not seen as recursive nor as
 436       // being locked. We do this unconditionally so that this thread's
 437       // BasicLock cannot be mis-interpreted by any stack walkers. For
 438       // performance reasons, stack walkers generally first check for
 439       // stack-locking in the object's header, the second check is for
 440       // recursive stack-locking in the displaced header in the BasicLock,
 441       // and last are the inflated Java Monitor (ObjectMonitor) checks.
 442       lock->set_displaced_header(markWord::unused_mark());
 443     }
 444 
 445     if (owner == nullptr && m->try_set_owner_from(nullptr, current) == nullptr) {
 446       assert(m->_recursions == 0, "invariant");
 447       current->inc_held_monitor_count();
 448       return true;
 449     }
 450   }
 451 
 452   // Note that we could inflate in quick_enter.
 453   // This is likely a useful optimization
 454   // Critically, in quick_enter() we must not:
 455   // -- block indefinitely, or
 456   // -- reach a safepoint
 457 
 458   return false;        // revert to slow-path
 459 }
 460 
 461 // Handle notifications when synchronizing on value based classes
 462 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) {
 463   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");

 491     vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name());
 492     if (locking_thread->has_last_Java_frame()) {
 493       LogStream info_stream(vblog.info());
 494       locking_thread->print_active_stack_on(&info_stream);
 495     } else {
 496       vblog.info("Cannot find the last Java frame");
 497     }
 498 
 499     EventSyncOnValueBasedClass event;
 500     if (event.should_commit()) {
 501       event.set_valueBasedClass(obj->klass());
 502       event.commit();
 503     }
 504   }
 505 
 506   if (bcp_was_adjusted) {
 507     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1);
 508   }
 509 }
 510 
 511 static bool useHeavyMonitors() {
 512 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390)
 513   return LockingMode == LM_MONITOR;
 514 #else
 515   return false;
 516 #endif
 517 }
 518 
 519 // -----------------------------------------------------------------------------
 520 // Monitor Enter/Exit
 521 
 522 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
 523   // When called with locking_thread != Thread::current() some mechanism must synchronize
 524   // the locking_thread with respect to the current thread. Currently only used when
 525   // deoptimizing and re-locking locks. See Deoptimization::relock_objects
 526   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");





 527   if (!enter_fast_impl(obj, lock, locking_thread)) {
 528     // Inflated ObjectMonitor::enter_for is required
 529 
 530     // An async deflation can race after the inflate_for() call and before
 531     // enter_for() can make the ObjectMonitor busy. enter_for() returns false
 532     // if we have lost the race to async deflation and we simply try again.
 533     while (true) {
 534       ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter);
 535       if (monitor->enter_for(locking_thread)) {
 536         return;
 537       }
 538       assert(monitor->is_being_async_deflated(), "must be");
 539     }
 540   }
 541 }
 542 
 543 void ObjectSynchronizer::enter(Handle obj, BasicLock* lock, JavaThread* current) {
 544   assert(current == Thread::current(), "must be");
 545   if (!enter_fast_impl(obj, lock, current)) {
 546     // Inflated ObjectMonitor::enter is required
 547 
 548     // An async deflation can race after the inflate() call and before
 549     // enter() can make the ObjectMonitor busy. enter() returns false if
 550     // we have lost the race to async deflation and we simply try again.
 551     while (true) {
 552       ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter);
 553       if (monitor->enter(current)) {
 554         return;
 555       }
 556     }
 557   }
 558 }
 559 
 560 // The interpreter and compiler assembly code tries to lock using the fast path
 561 // of this algorithm. Make sure to update that code if the following function is
 562 // changed. The implementation is extremely sensitive to race condition. Be careful.
 563 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) {

 564 
 565   if (obj->klass()->is_value_based()) {
 566     handle_sync_on_value_based_class(obj, locking_thread);
 567   }
 568 
 569   locking_thread->inc_held_monitor_count();
 570 
 571   if (!useHeavyMonitors()) {
 572     if (LockingMode == LM_LIGHTWEIGHT) {
 573       // Fast-locking does not use the 'lock' argument.
 574       LockStack& lock_stack = locking_thread->lock_stack();
 575       if (lock_stack.is_full()) {
 576         // We unconditionally make room on the lock stack by inflating
 577         // the least recently locked object on the lock stack.
 578 
 579         // About the choice to inflate least recently locked object.
 580         // First we must chose to inflate a lock, either some lock on
 581         // the lock-stack or the lock that is currently being entered
 582         // (which may or may not be on the lock-stack).
 583         // Second the best lock to inflate is a lock which is entered
 584         // in a control flow where there are only a very few locks being
 585         // used, as the costly part of inflated locking is inflation,
 586         // not locking. But this property is entirely program dependent.
 587         // Third inflating the lock currently being entered on when it
 588         // is not present on the lock-stack will result in a still full
 589         // lock-stack. This creates a scenario where every deeper nested
 590         // monitorenter must call into the runtime.
 591         // The rational here is as follows:
 592         // Because we cannot (currently) figure out the second, and want
 593         // to avoid the third, we inflate a lock on the lock-stack.
 594         // The least recently locked lock is chosen as it is the lock
 595         // with the longest critical section.
 596 
 597         log_info(monitorinflation)("LockStack capacity exceeded, inflating.");
 598         ObjectMonitor* monitor = inflate_for(locking_thread, lock_stack.bottom(), inflate_cause_vm_internal);
 599         assert(monitor->owner() == Thread::current(), "must be owner=" PTR_FORMAT " current=" PTR_FORMAT " mark=" PTR_FORMAT,
 600                p2i(monitor->owner()), p2i(Thread::current()), monitor->object()->mark_acquire().value());
 601         assert(!lock_stack.is_full(), "must have made room here");
 602       }
 603 
 604       markWord mark = obj()->mark_acquire();
 605       while (mark.is_unlocked()) {
 606         // Retry until a lock state change has been observed. cas_set_mark() may collide with non lock bits modifications.
 607         // Try to swing into 'fast-locked' state.
 608         assert(!lock_stack.contains(obj()), "thread must not already hold the lock");
 609         const markWord locked_mark = mark.set_fast_locked();
 610         const markWord old_mark = obj()->cas_set_mark(locked_mark, mark);
 611         if (old_mark == mark) {
 612           // Successfully fast-locked, push object to lock-stack and return.
 613           lock_stack.push(obj());
 614           return true;
 615         }
 616         mark = old_mark;
 617       }
 618 
 619       if (mark.is_fast_locked() && lock_stack.try_recursive_enter(obj())) {
 620         // Recursive lock successful.
 621         return true;
 622       }
 623 
 624       // Failed to fast lock.
 625       return false;
 626     } else if (LockingMode == LM_LEGACY) {
 627       markWord mark = obj->mark();
 628       if (mark.is_unlocked()) {
 629         // Anticipate successful CAS -- the ST of the displaced mark must
 630         // be visible <= the ST performed by the CAS.
 631         lock->set_displaced_header(mark);
 632         if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 633           return true;
 634         }
 635       } else if (mark.has_locker() &&
 636                  locking_thread->is_lock_owned((address) mark.locker())) {
 637         assert(lock != mark.locker(), "must not re-lock the same lock");
 638         assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock");
 639         lock->set_displaced_header(markWord::from_pointer(nullptr));
 640         return true;
 641       }
 642 
 643       // The object header will never be displaced to this lock,
 644       // so it does not matter what the value is, except that it
 645       // must be non-zero to avoid looking like a re-entrant lock,
 646       // and must not look locked either.
 647       lock->set_displaced_header(markWord::unused_mark());
 648 
 649       // Failed to fast lock.
 650       return false;
 651     }
 652   } else if (VerifyHeavyMonitors) {
 653     guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 654   }
 655 
 656   return false;
 657 }
 658 
 659 void ObjectSynchronizer::exit(oop object, BasicLock* lock, JavaThread* current) {
 660   current->dec_held_monitor_count();
 661 
 662   if (!useHeavyMonitors()) {
 663     markWord mark = object->mark();
 664     if (LockingMode == LM_LIGHTWEIGHT) {
 665       // Fast-locking does not use the 'lock' argument.
 666       LockStack& lock_stack = current->lock_stack();
 667       if (mark.is_fast_locked() && lock_stack.try_recursive_exit(object)) {
 668         // Recursively unlocked.
 669         return;
 670       }
 671 
 672       if (mark.is_fast_locked() && lock_stack.is_recursive(object)) {
 673         // This lock is recursive but is not at the top of the lock stack so we're
 674         // doing an unbalanced exit. We have to fall thru to inflation below and
 675         // let ObjectMonitor::exit() do the unlock.
 676       } else {
 677         while (mark.is_fast_locked()) {
 678           // Retry until a lock state change has been observed. cas_set_mark() may collide with non lock bits modifications.
 679           const markWord unlocked_mark = mark.set_unlocked();
 680           const markWord old_mark = object->cas_set_mark(unlocked_mark, mark);
 681           if (old_mark == mark) {
 682             size_t recursions = lock_stack.remove(object) - 1;
 683             assert(recursions == 0, "must not be recursive here");
 684             return;
 685           }
 686           mark = old_mark;
 687         }
 688       }
 689     } else if (LockingMode == LM_LEGACY) {
 690       markWord dhw = lock->displaced_header();
 691       if (dhw.value() == 0) {
 692         // If the displaced header is null, then this exit matches up with
 693         // a recursive enter. No real work to do here except for diagnostics.
 694 #ifndef PRODUCT
 695         if (mark != markWord::INFLATING()) {
 696           // Only do diagnostics if we are not racing an inflation. Simply
 697           // exiting a recursive enter of a Java Monitor that is being
 698           // inflated is safe; see the has_monitor() comment below.
 699           assert(!mark.is_unlocked(), "invariant");
 700           assert(!mark.has_locker() ||
 701                  current->is_lock_owned((address)mark.locker()), "invariant");
 702           if (mark.has_monitor()) {
 703             // The BasicLock's displaced_header is marked as a recursive
 704             // enter and we have an inflated Java Monitor (ObjectMonitor).
 705             // This is a special case where the Java Monitor was inflated
 706             // after this thread entered the stack-lock recursively. When a
 707             // Java Monitor is inflated, we cannot safely walk the Java
 708             // Monitor owner's stack and update the BasicLocks because a
 709             // Java Monitor can be asynchronously inflated by a thread that
 710             // does not own the Java Monitor.
 711             ObjectMonitor* m = mark.monitor();
 712             assert(m->object()->mark() == mark, "invariant");
 713             assert(m->is_entered(current), "invariant");
 714           }
 715         }
 716 #endif
 717         return;
 718       }
 719 
 720       if (mark == markWord::from_pointer(lock)) {
 721         // If the object is stack-locked by the current thread, try to
 722         // swing the displaced header from the BasicLock back to the mark.
 723         assert(dhw.is_neutral(), "invariant");
 724         if (object->cas_set_mark(dhw, mark) == mark) {
 725           return;
 726         }
 727       }
 728     }
 729   } else if (VerifyHeavyMonitors) {
 730     guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 731   }

 735   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 736   ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal);
 737   assert(!monitor->is_owner_anonymous(), "must not be");
 738   monitor->exit(current);
 739 }
 740 
 741 // -----------------------------------------------------------------------------
 742 // JNI locks on java objects
 743 // NOTE: must use heavy weight monitor to handle jni monitor enter
 744 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) {
 745   if (obj->klass()->is_value_based()) {
 746     handle_sync_on_value_based_class(obj, current);
 747   }
 748 
 749   // the current locking is from JNI instead of Java code
 750   current->set_current_pending_monitor_is_from_java(false);
 751   // An async deflation can race after the inflate() call and before
 752   // enter() can make the ObjectMonitor busy. enter() returns false if
 753   // we have lost the race to async deflation and we simply try again.
 754   while (true) {
 755     ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_jni_enter);
 756     if (monitor->enter(current)) {








 757       current->inc_held_monitor_count(1, true);
 758       break;
 759     }
 760   }
 761   current->set_current_pending_monitor_is_from_java(true);
 762 }
 763 
 764 // NOTE: must use heavy weight monitor to handle jni monitor exit
 765 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) {
 766   JavaThread* current = THREAD;
 767 
 768   // The ObjectMonitor* can't be async deflated until ownership is
 769   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 770   ObjectMonitor* monitor = inflate(current, obj, inflate_cause_jni_exit);





 771   // If this thread has locked the object, exit the monitor. We
 772   // intentionally do not use CHECK on check_owner because we must exit the
 773   // monitor even if an exception was already pending.
 774   if (monitor->check_owner(THREAD)) {
 775     monitor->exit(current);
 776     current->dec_held_monitor_count(1, true);
 777   }
 778 }
 779 
 780 // -----------------------------------------------------------------------------
 781 // Internal VM locks on java objects
 782 // standard constructor, allows locking failures
 783 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) {
 784   _thread = thread;
 785   _thread->check_for_valid_safepoint_state();
 786   _obj = obj;
 787 
 788   if (_obj() != nullptr) {
 789     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 790   }
 791 }
 792 
 793 ObjectLocker::~ObjectLocker() {
 794   if (_obj() != nullptr) {
 795     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 796   }
 797 }
 798 
 799 
 800 // -----------------------------------------------------------------------------
 801 //  Wait/Notify/NotifyAll
 802 // NOTE: must use heavy weight monitor to handle wait()

 803 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 804   JavaThread* current = THREAD;
 805   if (millis < 0) {
 806     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 807   }
 808   // The ObjectMonitor* can't be async deflated because the _waiters
 809   // field is incremented before ownership is dropped and decremented
 810   // after ownership is regained.
 811   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_wait);






 812 
 813   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis);
 814   monitor->wait(millis, true, THREAD); // Not CHECK as we need following code
 815 
 816   // This dummy call is in place to get around dtrace bug 6254741.  Once
 817   // that's fixed we can uncomment the following line, remove the call
 818   // and change this function back into a "void" func.
 819   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 820   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 821   return ret_code;
 822 }
 823 
 824 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 825   JavaThread* current = THREAD;
 826 
 827   markWord mark = obj->mark();
 828   if (LockingMode == LM_LIGHTWEIGHT) {
 829     if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 830       // Not inflated so there can't be any waiters to notify.
 831       return;
 832     }
 833   } else if (LockingMode == LM_LEGACY) {
 834     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 835       // Not inflated so there can't be any waiters to notify.
 836       return;
 837     }
 838   }
 839   // The ObjectMonitor* can't be async deflated until ownership is
 840   // dropped by the calling thread.
 841   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify);






 842   monitor->notify(CHECK);
 843 }
 844 
 845 // NOTE: see comment of notify()
 846 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 847   JavaThread* current = THREAD;
 848 
 849   markWord mark = obj->mark();
 850   if (LockingMode == LM_LIGHTWEIGHT) {
 851     if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 852       // Not inflated so there can't be any waiters to notify.
 853       return;
 854     }
 855   } else if (LockingMode == LM_LEGACY) {
 856     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 857       // Not inflated so there can't be any waiters to notify.
 858       return;
 859     }
 860   }
 861   // The ObjectMonitor* can't be async deflated until ownership is
 862   // dropped by the calling thread.
 863   ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_notify);






 864   monitor->notifyAll(CHECK);
 865 }
 866 
 867 // -----------------------------------------------------------------------------
 868 // Hash Code handling
 869 
 870 struct SharedGlobals {
 871   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 872   // This is a highly shared mostly-read variable.
 873   // To avoid false-sharing it needs to be the sole occupant of a cache line.
 874   volatile int stw_random;
 875   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 876   // Hot RW variable -- Sequester to avoid false-sharing
 877   volatile int hc_sequence;
 878   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 879 };
 880 
 881 static SharedGlobals GVars;
 882 
 883 static markWord read_stable_mark(oop obj) {

 941   }
 942 }
 943 
 944 // hashCode() generation :
 945 //
 946 // Possibilities:
 947 // * MD5Digest of {obj,stw_random}
 948 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 949 // * A DES- or AES-style SBox[] mechanism
 950 // * One of the Phi-based schemes, such as:
 951 //   2654435761 = 2^32 * Phi (golden ratio)
 952 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 953 // * A variation of Marsaglia's shift-xor RNG scheme.
 954 // * (obj ^ stw_random) is appealing, but can result
 955 //   in undesirable regularity in the hashCode values of adjacent objects
 956 //   (objects allocated back-to-back, in particular).  This could potentially
 957 //   result in hashtable collisions and reduced hashtable efficiency.
 958 //   There are simple ways to "diffuse" the middle address bits over the
 959 //   generated hashCode values:
 960 
 961 static inline intptr_t get_next_hash(Thread* current, oop obj) {
 962   intptr_t value = 0;
 963   if (hashCode == 0) {
 964     // This form uses global Park-Miller RNG.
 965     // On MP system we'll have lots of RW access to a global, so the
 966     // mechanism induces lots of coherency traffic.
 967     value = os::random();
 968   } else if (hashCode == 1) {
 969     // This variation has the property of being stable (idempotent)
 970     // between STW operations.  This can be useful in some of the 1-0
 971     // synchronization schemes.
 972     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 973     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 974   } else if (hashCode == 2) {
 975     value = 1;            // for sensitivity testing
 976   } else if (hashCode == 3) {
 977     value = ++GVars.hc_sequence;
 978   } else if (hashCode == 4) {
 979     value = cast_from_oop<intptr_t>(obj);
 980   } else {
 981     // Marsaglia's xor-shift scheme with thread-specific state
 982     // This is probably the best overall implementation -- we'll
 983     // likely make this the default in future releases.
 984     unsigned t = current->_hashStateX;
 985     t ^= (t << 11);
 986     current->_hashStateX = current->_hashStateY;
 987     current->_hashStateY = current->_hashStateZ;
 988     current->_hashStateZ = current->_hashStateW;
 989     unsigned v = current->_hashStateW;
 990     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 991     current->_hashStateW = v;
 992     value = v;
 993   }
 994 
 995   value &= markWord::hash_mask;
 996   if (value == 0) value = 0xBAD;
 997   assert(value != markWord::no_hash, "invariant");
 998   return value;
 999 }
1000 





















1001 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) {




1002 
1003   while (true) {
1004     ObjectMonitor* monitor = nullptr;
1005     markWord temp, test;
1006     intptr_t hash;
1007     markWord mark = read_stable_mark(obj);
1008     if (VerifyHeavyMonitors) {
1009       assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)");
1010       guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
1011     }
1012     if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) {
1013       hash = mark.hash();
1014       if (hash != 0) {                     // if it has a hash, just return it
1015         return hash;
1016       }
1017       hash = get_next_hash(current, obj);  // get a new hash
1018       temp = mark.copy_set_hash(hash);     // merge the hash into header
1019                                            // try to install the hash
1020       test = obj->cas_set_mark(temp, mark);
1021       if (test == mark) {                  // if the hash was installed, return it

1075       // a thread's stack can be asynchronously read by other threads
1076       // during an inflate() call so any change to that stack memory
1077       // may not propagate to other threads correctly.
1078     }
1079 
1080     // Inflate the monitor to set the hash.
1081 
1082     // There's no need to inflate if the mark has already got a monitor.
1083     // NOTE: an async deflation can race after we get the monitor and
1084     // before we can update the ObjectMonitor's header with the hash
1085     // value below.
1086     monitor = mark.has_monitor() ? mark.monitor() : inflate(current, obj, inflate_cause_hash_code);
1087     // Load ObjectMonitor's header/dmw field and see if it has a hash.
1088     mark = monitor->header();
1089     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1090     hash = mark.hash();
1091     if (hash == 0) {                       // if it does not have a hash
1092       hash = get_next_hash(current, obj);  // get a new hash
1093       temp = mark.copy_set_hash(hash)   ;  // merge the hash into header
1094       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1095       uintptr_t v = Atomic::cmpxchg((volatile uintptr_t*)monitor->header_addr(), mark.value(), temp.value());
1096       test = markWord(v);
1097       if (test != mark) {
1098         // The attempt to update the ObjectMonitor's header/dmw field
1099         // did not work. This can happen if another thread managed to
1100         // merge in the hash just before our cmpxchg().
1101         // If we add any new usages of the header/dmw field, this code
1102         // will need to be updated.
1103         hash = test.hash();
1104         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
1105         assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
1106       }
1107       if (monitor->is_being_async_deflated()) {
1108         // If we detect that async deflation has occurred, then we
1109         // attempt to restore the header/dmw to the object's header
1110         // so that we only retry once if the deflater thread happens
1111         // to be slow.
1112         monitor->install_displaced_markword_in_object(obj);
1113         continue;
1114       }
1115     }
1116     // We finally get the hash.
1117     return hash;
1118   }
1119 }
1120 
1121 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current,
1122                                                    Handle h_obj) {
1123   assert(current == JavaThread::current(), "Can only be called on current thread");
1124   oop obj = h_obj();
1125 
1126   markWord mark = read_stable_mark(obj);
1127 
1128   if (LockingMode == LM_LEGACY && mark.has_locker()) {
1129     // stack-locked case, header points into owner's stack
1130     return current->is_lock_owned((address)mark.locker());
1131   }
1132 
1133   if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1134     // fast-locking case, see if lock is in current's lock stack
1135     return current->lock_stack().contains(h_obj());
1136   }
1137 
1138   if (mark.has_monitor()) {














1139     // Inflated monitor so header points to ObjectMonitor (tagged pointer).
1140     // The first stage of async deflation does not affect any field
1141     // used by this comparison so the ObjectMonitor* is usable here.
1142     ObjectMonitor* monitor = mark.monitor();
1143     return monitor->is_entered(current) != 0;
1144   }
1145   // Unlocked case, header in place
1146   assert(mark.is_unlocked(), "sanity check");
1147   return false;
1148 }
1149 
1150 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
1151   oop obj = h_obj();
1152   markWord mark = read_stable_mark(obj);
1153 
1154   if (LockingMode == LM_LEGACY && mark.has_locker()) {
1155     // stack-locked so header points into owner's stack.
1156     // owning_thread_from_monitor_owner() may also return null here:
1157     return Threads::owning_thread_from_monitor_owner(t_list, (address) mark.locker());
1158   }
1159 
1160   if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1161     // fast-locked so get owner from the object.
1162     // owning_thread_from_object() may also return null here:
1163     return Threads::owning_thread_from_object(t_list, h_obj());
1164   }
1165 
1166   if (mark.has_monitor()) {














1167     // Inflated monitor so header points to ObjectMonitor (tagged pointer).
1168     // The first stage of async deflation does not affect any field
1169     // used by this comparison so the ObjectMonitor* is usable here.
1170     ObjectMonitor* monitor = mark.monitor();
1171     assert(monitor != nullptr, "monitor should be non-null");
1172     // owning_thread_from_monitor() may also return null here:
1173     return Threads::owning_thread_from_monitor(t_list, monitor);
1174   }
1175 
1176   // Unlocked case, header in place
1177   // Cannot have assertion since this object may have been
1178   // locked by another thread when reaching here.
1179   // assert(mark.is_unlocked(), "sanity check");
1180 
1181   return nullptr;
1182 }
1183 
1184 // Visitors ...
1185 
1186 // Iterate over all ObjectMonitors.
1187 template <typename Function>
1188 void ObjectSynchronizer::monitors_iterate(Function function) {
1189   MonitorList::Iterator iter = _in_use_list.iterator();
1190   while (iter.has_next()) {

1226 }
1227 
1228 static bool monitors_used_above_threshold(MonitorList* list) {
1229   if (MonitorUsedDeflationThreshold == 0) {  // disabled case is easy
1230     return false;
1231   }
1232   // Start with ceiling based on a per-thread estimate:
1233   size_t ceiling = ObjectSynchronizer::in_use_list_ceiling();
1234   size_t old_ceiling = ceiling;
1235   if (ceiling < list->max()) {
1236     // The max used by the system has exceeded the ceiling so use that:
1237     ceiling = list->max();
1238   }
1239   size_t monitors_used = list->count();
1240   if (monitors_used == 0) {  // empty list is easy
1241     return false;
1242   }
1243   if (NoAsyncDeflationProgressMax != 0 &&
1244       _no_progress_cnt >= NoAsyncDeflationProgressMax) {
1245     double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0;
1246     size_t new_ceiling = ceiling + (size_t)((double)ceiling * remainder) + 1;
1247     ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling);
1248     log_info(monitorinflation)("Too many deflations without progress; "
1249                                "bumping in_use_list_ceiling from " SIZE_FORMAT
1250                                " to " SIZE_FORMAT, old_ceiling, new_ceiling);
1251     _no_progress_cnt = 0;
1252     ceiling = new_ceiling;
1253   }
1254 
1255   // Check if our monitor usage is above the threshold:
1256   size_t monitor_usage = (monitors_used * 100LL) / ceiling;
1257   if (int(monitor_usage) > MonitorUsedDeflationThreshold) {
1258     log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT
1259                                ", monitor_usage=" SIZE_FORMAT ", threshold=%d",
1260                                monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold);
1261     return true;
1262   }
1263 
1264   return false;
1265 }
1266 

1362 
1363   return ret_code;
1364 }
1365 
1366 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1367   return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS);
1368 }
1369 
1370 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1371                                        const oop obj,
1372                                        ObjectSynchronizer::InflateCause cause) {
1373   assert(event != nullptr, "invariant");
1374   event->set_monitorClass(obj->klass());
1375   event->set_address((uintptr_t)(void*)obj);
1376   event->set_cause((u1)cause);
1377   event->commit();
1378 }
1379 
1380 // Fast path code shared by multiple functions
1381 void ObjectSynchronizer::inflate_helper(oop obj) {

1382   markWord mark = obj->mark_acquire();
1383   if (mark.has_monitor()) {
1384     ObjectMonitor* monitor = mark.monitor();
1385     markWord dmw = monitor->header();
1386     assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value());
1387     return;
1388   }
1389   (void)inflate(Thread::current(), obj, inflate_cause_vm_internal);
1390 }
1391 
1392 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) {
1393   assert(current == Thread::current(), "must be");
1394   if (LockingMode == LM_LIGHTWEIGHT && current->is_Java_thread()) {
1395     return inflate_impl(JavaThread::cast(current), obj, cause);
1396   }
1397   return inflate_impl(nullptr, obj, cause);
1398 }
1399 
1400 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) {
1401   assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be");
1402   return inflate_impl(thread, obj, cause);
1403 }
1404 
1405 ObjectMonitor* ObjectSynchronizer::inflate_impl(JavaThread* inflating_thread, oop object, const InflateCause cause) {
1406   // The JavaThread* inflating_thread parameter is only used by LM_LIGHTWEIGHT and requires
1407   // that the inflating_thread == Thread::current() or is suspended throughout the call by
1408   // some other mechanism.
1409   // Even with LM_LIGHTWEIGHT the thread might be nullptr when called from a non
1410   // JavaThread. (As may still be the case from FastHashCode). However it is only
1411   // important for the correctness of the LM_LIGHTWEIGHT algorithm that the thread
1412   // is set when called from ObjectSynchronizer::enter from the owning thread,
1413   // ObjectSynchronizer::enter_for from any thread, or ObjectSynchronizer::exit.
1414   EventJavaMonitorInflate event;
1415 
1416   for (;;) {
1417     const markWord mark = object->mark_acquire();
1418 
1419     // The mark can be in one of the following states:
1420     // *  inflated     - Just return if using stack-locking.
1421     //                   If using fast-locking and the ObjectMonitor owner
1422     //                   is anonymous and the inflating_thread owns the
1423     //                   object lock, then we make the inflating_thread
1424     //                   the ObjectMonitor owner and remove the lock from
1425     //                   the inflating_thread's lock stack.
1426     // *  fast-locked  - Coerce it to inflated from fast-locked.
1427     // *  stack-locked - Coerce it to inflated from stack-locked.
1428     // *  INFLATING    - Busy wait for conversion from stack-locked to
1429     //                   inflated.
1430     // *  unlocked     - Aggressively inflate the object.
1431 
1432     // CASE: inflated
1433     if (mark.has_monitor()) {
1434       ObjectMonitor* inf = mark.monitor();
1435       markWord dmw = inf->header();
1436       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());
1437       if (LockingMode == LM_LIGHTWEIGHT && inf->is_owner_anonymous() &&
1438           inflating_thread != nullptr && inflating_thread->lock_stack().contains(object)) {
1439         inf->set_owner_from_anonymous(inflating_thread);
1440         size_t removed = inflating_thread->lock_stack().remove(object);
1441         inf->set_recursions(removed - 1);
1442       }
1443       return inf;
1444     }
1445 
1446     if (LockingMode != LM_LIGHTWEIGHT) {
1447       // New lightweight locking does not use INFLATING.
1448       // CASE: inflation in progress - inflating over a stack-lock.
1449       // Some other thread is converting from stack-locked to inflated.
1450       // Only that thread can complete inflation -- other threads must wait.
1451       // The INFLATING value is transient.
1452       // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1453       // We could always eliminate polling by parking the thread on some auxiliary list.
1454       if (mark == markWord::INFLATING()) {
1455         read_stable_mark(object);
1456         continue;
1457       }
1458     }
1459 
1460     // CASE: fast-locked
1461     // Could be fast-locked either by the inflating_thread or by some other thread.
1462     //
1463     // Note that we allocate the ObjectMonitor speculatively, _before_
1464     // attempting to set the object's mark to the new ObjectMonitor. If
1465     // the inflating_thread owns the monitor, then we set the ObjectMonitor's
1466     // owner to the inflating_thread. Otherwise, we set the ObjectMonitor's owner
1467     // to anonymous. If we lose the race to set the object's mark to the
1468     // new ObjectMonitor, then we just delete it and loop around again.
1469     //
1470     LogStreamHandle(Trace, monitorinflation) lsh;
1471     if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1472       ObjectMonitor* monitor = new ObjectMonitor(object);
1473       monitor->set_header(mark.set_unlocked());
1474       bool own = inflating_thread != nullptr && inflating_thread->lock_stack().contains(object);
1475       if (own) {
1476         // Owned by inflating_thread.
1477         monitor->set_owner_from(nullptr, inflating_thread);
1478       } else {
1479         // Owned by somebody else.
1480         monitor->set_owner_anonymous();
1481       }
1482       markWord monitor_mark = markWord::encode(monitor);
1483       markWord old_mark = object->cas_set_mark(monitor_mark, mark);
1484       if (old_mark == mark) {
1485         // Success! Return inflated monitor.
1486         if (own) {
1487           size_t removed = inflating_thread->lock_stack().remove(object);
1488           monitor->set_recursions(removed - 1);
1489         }
1490         // Once the ObjectMonitor is configured and object is associated
1491         // with the ObjectMonitor, it is safe to allow async deflation:
1492         _in_use_list.add(monitor);
1493 
1494         // Hopefully the performance counters are allocated on distinct
1495         // cache lines to avoid false sharing on MP systems ...
1496         OM_PERFDATA_OP(Inflations, inc());
1497         if (log_is_enabled(Trace, monitorinflation)) {
1498           ResourceMark rm;
1499           lsh.print_cr("inflate(has_locker): object=" INTPTR_FORMAT ", mark="
1500                        INTPTR_FORMAT ", type='%s'", p2i(object),
1501                        object->mark().value(), object->klass()->external_name());
1502         }
1503         if (event.should_commit()) {
1504           post_monitor_inflate_event(&event, object, cause);
1505         }
1506         return monitor;
1507       } else {
1508         delete monitor;
1509         continue;  // Interference -- just retry
1510       }
1511     }
1512 
1513     // CASE: stack-locked
1514     // Could be stack-locked either by current or by some other thread.
1515     //
1516     // Note that we allocate the ObjectMonitor speculatively, _before_ attempting
1517     // to install INFLATING into the mark word.  We originally installed INFLATING,
1518     // allocated the ObjectMonitor, and then finally STed the address of the
1519     // ObjectMonitor into the mark.  This was correct, but artificially lengthened
1520     // the interval in which INFLATING appeared in the mark, thus increasing
1521     // the odds of inflation contention. If we lose the race to set INFLATING,
1522     // then we just delete the ObjectMonitor and loop around again.
1523     //

1524     if (LockingMode == LM_LEGACY && mark.has_locker()) {
1525       assert(LockingMode != LM_LIGHTWEIGHT, "cannot happen with new lightweight locking");
1526       ObjectMonitor* m = new ObjectMonitor(object);
1527       // Optimistically prepare the ObjectMonitor - anticipate successful CAS
1528       // We do this before the CAS in order to minimize the length of time
1529       // in which INFLATING appears in the mark.
1530 
1531       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1532       if (cmp != mark) {
1533         delete m;
1534         continue;       // Interference -- just retry
1535       }
1536 
1537       // We've successfully installed INFLATING (0) into the mark-word.
1538       // This is the only case where 0 will appear in a mark-word.
1539       // Only the singular thread that successfully swings the mark-word
1540       // to 0 can perform (or more precisely, complete) inflation.
1541       //
1542       // Why do we CAS a 0 into the mark-word instead of just CASing the
1543       // mark-word from the stack-locked value directly to the new inflated state?
1544       // Consider what happens when a thread unlocks a stack-locked object.
1545       // It attempts to use CAS to swing the displaced header value from the

1637     OM_PERFDATA_OP(Inflations, inc());
1638     if (log_is_enabled(Trace, monitorinflation)) {
1639       ResourceMark rm;
1640       lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark="
1641                    INTPTR_FORMAT ", type='%s'", p2i(object),
1642                    object->mark().value(), object->klass()->external_name());
1643     }
1644     if (event.should_commit()) {
1645       post_monitor_inflate_event(&event, object, cause);
1646     }
1647     return m;
1648   }
1649 }
1650 
1651 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle
1652 // ObjectMonitors. Returns the number of deflated ObjectMonitors.
1653 //
1654 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) {
1655   MonitorList::Iterator iter = _in_use_list.iterator();
1656   size_t deflated_count = 0;

1657 
1658   while (iter.has_next()) {
1659     if (deflated_count >= (size_t)MonitorDeflationMax) {
1660       break;
1661     }
1662     ObjectMonitor* mid = iter.next();
1663     if (mid->deflate_monitor()) {
1664       deflated_count++;
1665     }
1666 
1667     // Must check for a safepoint/handshake and honor it.
1668     safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count);
1669   }
1670 
1671   return deflated_count;
1672 }
1673 
1674 class HandshakeForDeflation : public HandshakeClosure {
1675  public:
1676   HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {}
1677 
1678   void do_thread(Thread* thread) {
1679     log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread="
1680                                 INTPTR_FORMAT, p2i(thread));





1681   }
1682 };
1683 
1684 class VM_RendezvousGCThreads : public VM_Operation {
1685 public:
1686   bool evaluate_at_safepoint() const override { return false; }
1687   VMOp_Type type() const override { return VMOp_RendezvousGCThreads; }
1688   void doit() override {
1689     Universe::heap()->safepoint_synchronize_begin();
1690     Universe::heap()->safepoint_synchronize_end();
1691   };
1692 };
1693 
1694 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list,
1695                               ObjectMonitorDeflationSafepointer* safepointer) {
1696   NativeHeapTrimmer::SuspendMark sm("monitor deletion");
1697   size_t deleted_count = 0;
1698   for (ObjectMonitor* monitor: *delete_list) {
1699     delete monitor;
1700     deleted_count++;

1807   // The async deflation request has been processed.
1808   _last_async_deflation_time_ns = os::javaTimeNanos();
1809   set_is_async_deflation_requested(false);
1810 
1811   ObjectMonitorDeflationLogging log;
1812   ObjectMonitorDeflationSafepointer safepointer(current, &log);
1813 
1814   log.begin();
1815 
1816   // Deflate some idle ObjectMonitors.
1817   size_t deflated_count = deflate_monitor_list(&safepointer);
1818 
1819   // Unlink the deflated ObjectMonitors from the in-use list.
1820   size_t unlinked_count = 0;
1821   size_t deleted_count = 0;
1822   if (deflated_count > 0) {
1823     ResourceMark rm(current);
1824     GrowableArray<ObjectMonitor*> delete_list((int)deflated_count);
1825     unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer);
1826 








1827     log.before_handshake(unlinked_count);
1828 
1829     // A JavaThread needs to handshake in order to safely free the
1830     // ObjectMonitors that were deflated in this cycle.
1831     HandshakeForDeflation hfd_hc;
1832     Handshake::execute(&hfd_hc);
1833     // Also, we sync and desync GC threads around the handshake, so that they can
1834     // safely read the mark-word and look-through to the object-monitor, without
1835     // being afraid that the object-monitor is going away.
1836     VM_RendezvousGCThreads sync_gc;
1837     VMThread::execute(&sync_gc);
1838 
1839     log.after_handshake();
1840 
1841     // After the handshake, safely free the ObjectMonitors that were
1842     // deflated and unlinked in this cycle.
1843 
1844     // Delete the unlinked ObjectMonitors.
1845     deleted_count = delete_monitors(&delete_list, &safepointer);
1846     assert(unlinked_count == deleted_count, "must be");

2015   }
2016 
2017   size_t ck_in_use_max = _in_use_list.max();
2018   if (l_in_use_max == ck_in_use_max) {
2019     out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max="
2020                   SIZE_FORMAT, l_in_use_max, ck_in_use_max);
2021   } else {
2022     out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to "
2023                   "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max);
2024   }
2025 }
2026 
2027 // Check an in-use monitor entry; log any errors.
2028 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out,
2029                                           int* error_cnt_p) {
2030   if (n->owner_is_DEFLATER_MARKER()) {
2031     // This could happen when monitor deflation blocks for a safepoint.
2032     return;
2033   }
2034 
2035   if (n->header().value() == 0) {

2036     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must "
2037                   "have non-null _header field.", p2i(n));
2038     *error_cnt_p = *error_cnt_p + 1;
2039   }

2040   const oop obj = n->object_peek();
2041   if (obj != nullptr) {
2042     const markWord mark = obj->mark();
2043     if (!mark.has_monitor()) {
2044       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
2045                     "object does not think it has a monitor: obj="
2046                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2047                     p2i(obj), mark.value());
2048       *error_cnt_p = *error_cnt_p + 1;
2049     }
2050     ObjectMonitor* const obj_mon = mark.monitor();
2051     if (n != obj_mon) {
2052       out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
2053                     "object does not refer to the same monitor: obj="
2054                     INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2055                     INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2056       *error_cnt_p = *error_cnt_p + 1;
2057     }




2058   }
2059 }
2060 
2061 // Log details about ObjectMonitors on the in_use_list. The 'BHL'
2062 // flags indicate why the entry is in-use, 'object' and 'object type'
2063 // indicate the associated object and its type.
2064 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) {
2065   if (_in_use_list.count() > 0) {
2066     stringStream ss;
2067     out->print_cr("In-use monitor info:");
2068     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2069     out->print_cr("%18s  %s  %18s  %18s",
2070                   "monitor", "BHL", "object", "object type");
2071     out->print_cr("==================  ===  ==================  ==================");
2072 
2073     auto is_interesting = [&](ObjectMonitor* monitor) {
2074       return log_all || monitor->has_owner() || monitor->is_busy();
2075     };
2076 
2077     monitors_iterate([&](ObjectMonitor* monitor) {
2078       if (is_interesting(monitor)) {
2079         const oop obj = monitor->object_peek();
2080         const markWord mark = monitor->header();
2081         ResourceMark rm;
2082         out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(monitor),
2083                    monitor->is_busy(), mark.hash() != 0, monitor->owner() != nullptr,
2084                    p2i(obj), obj == nullptr ? "" : obj->klass()->external_name());
2085         if (monitor->is_busy()) {
2086           out->print(" (%s)", monitor->is_busy_to_string(&ss));
2087           ss.reset();
2088         }
2089         out->cr();
2090       }
2091     });
2092   }
2093 
2094   out->flush();
2095 }

  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "jfr/jfrEvents.hpp"
  29 #include "logging/log.hpp"
  30 #include "logging/logStream.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "memory/padded.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "memory/universe.hpp"
  35 #include "oops/markWord.hpp"
  36 #include "oops/oop.inline.hpp"
  37 #include "runtime/atomic.hpp"
  38 #include "runtime/basicLock.inline.hpp"
  39 #include "runtime/frame.inline.hpp"
  40 #include "runtime/globals.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "runtime/handshake.hpp"
  43 #include "runtime/interfaceSupport.inline.hpp"
  44 #include "runtime/javaThread.hpp"
  45 #include "runtime/lightweightSynchronizer.hpp"
  46 #include "runtime/lockStack.inline.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/objectMonitor.hpp"
  49 #include "runtime/objectMonitor.inline.hpp"
  50 #include "runtime/os.inline.hpp"
  51 #include "runtime/osThread.hpp"
  52 #include "runtime/perfData.hpp"
  53 #include "runtime/safepointMechanism.inline.hpp"
  54 #include "runtime/safepointVerifiers.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/synchronizer.inline.hpp"
  58 #include "runtime/threads.hpp"
  59 #include "runtime/timer.hpp"
  60 #include "runtime/trimNativeHeap.hpp"
  61 #include "runtime/vframe.hpp"
  62 #include "runtime/vmThread.hpp"
  63 #include "utilities/align.hpp"
  64 #include "utilities/dtrace.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/globalDefinitions.hpp"
  67 #include "utilities/linkedlist.hpp"
  68 #include "utilities/preserveException.hpp"
  69 
  70 class ObjectMonitorDeflationLogging;
  71 
  72 void MonitorList::add(ObjectMonitor* m) {
  73   ObjectMonitor* head;
  74   do {
  75     head = Atomic::load(&_head);
  76     m->set_next_om(head);
  77   } while (Atomic::cmpxchg(&_head, head, m) != head);

 261 static constexpr size_t inflation_lock_count() {
 262   return 256;
 263 }
 264 
 265 // Static storage for an array of PlatformMutex.
 266 alignas(PlatformMutex) static uint8_t _inflation_locks[inflation_lock_count()][sizeof(PlatformMutex)];
 267 
 268 static inline PlatformMutex* inflation_lock(size_t index) {
 269   return reinterpret_cast<PlatformMutex*>(_inflation_locks[index]);
 270 }
 271 
 272 void ObjectSynchronizer::initialize() {
 273   for (size_t i = 0; i < inflation_lock_count(); i++) {
 274     ::new(static_cast<void*>(inflation_lock(i))) PlatformMutex();
 275   }
 276   // Start the ceiling with the estimate for one thread.
 277   set_in_use_list_ceiling(AvgMonitorsPerThreadEstimate);
 278 
 279   // Start the timer for deflations, so it does not trigger immediately.
 280   _last_async_deflation_time_ns = os::javaTimeNanos();
 281 
 282   if (LockingMode == LM_LIGHTWEIGHT) {
 283     LightweightSynchronizer::initialize();
 284   }
 285 }
 286 
 287 MonitorList ObjectSynchronizer::_in_use_list;
 288 // monitors_used_above_threshold() policy is as follows:
 289 //
 290 // The ratio of the current _in_use_list count to the ceiling is used
 291 // to determine if we are above MonitorUsedDeflationThreshold and need
 292 // to do an async monitor deflation cycle. The ceiling is increased by
 293 // AvgMonitorsPerThreadEstimate when a thread is added to the system
 294 // and is decreased by AvgMonitorsPerThreadEstimate when a thread is
 295 // removed from the system.
 296 //
 297 // Note: If the _in_use_list max exceeds the ceiling, then
 298 // monitors_used_above_threshold() will use the in_use_list max instead
 299 // of the thread count derived ceiling because we have used more
 300 // ObjectMonitors than the estimated average.
 301 //
 302 // Note: If deflate_idle_monitors() has NoAsyncDeflationProgressMax
 303 // no-progress async monitor deflation cycles in a row, then the ceiling
 304 // is adjusted upwards by monitors_used_above_threshold().

 338   assert(current->thread_state() == _thread_in_Java, "invariant");
 339   NoSafepointVerifier nsv;
 340   if (obj == nullptr) return false;  // slow-path for invalid obj
 341   const markWord mark = obj->mark();
 342 
 343   if (LockingMode == LM_LIGHTWEIGHT) {
 344     if (mark.is_fast_locked() && current->lock_stack().contains(cast_to_oop(obj))) {
 345       // Degenerate notify
 346       // fast-locked by caller so by definition the implied waitset is empty.
 347       return true;
 348     }
 349   } else if (LockingMode == LM_LEGACY) {
 350     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 351       // Degenerate notify
 352       // stack-locked by caller so by definition the implied waitset is empty.
 353       return true;
 354     }
 355   }
 356 
 357   if (mark.has_monitor()) {
 358     ObjectMonitor* const mon = read_monitor(current, obj, mark);
 359     if (LockingMode == LM_LIGHTWEIGHT && mon == nullptr) {
 360       // Racing with inflation/deflation go slow path
 361       return false;
 362     }
 363     assert(mon->object() == oop(obj), "invariant");
 364     if (mon->owner() != current) return false;  // slow-path for IMS exception
 365 
 366     if (mon->first_waiter() != nullptr) {
 367       // We have one or more waiters. Since this is an inflated monitor
 368       // that we own, we can transfer one or more threads from the waitset
 369       // to the entrylist here and now, avoiding the slow-path.
 370       if (all) {
 371         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, current);
 372       } else {
 373         DTRACE_MONITOR_PROBE(notify, mon, obj, current);
 374       }
 375       int free_count = 0;
 376       do {
 377         mon->INotify(current);
 378         ++free_count;
 379       } while (mon->first_waiter() != nullptr && all);
 380       OM_PERFDATA_OP(Notifications, inc(free_count));
 381     }
 382     return true;
 383   }
 384 
 385   // other IMS exception states take the slow-path
 386   return false;
 387 }
 388 
 389 static bool useHeavyMonitors() {
 390 #if defined(X86) || defined(AARCH64) || defined(PPC64) || defined(RISCV64) || defined(S390)
 391   return LockingMode == LM_MONITOR;
 392 #else
 393   return false;
 394 #endif
 395 }
 396 
 397 // The LockNode emitted directly at the synchronization site would have
 398 // been too big if it were to have included support for the cases of inflated
 399 // recursive enter and exit, so they go here instead.
 400 // Note that we can't safely call AsyncPrintJavaStack() from within
 401 // quick_enter() as our thread state remains _in_Java.
 402 
 403 bool ObjectSynchronizer::quick_enter_legacy(oop obj, JavaThread* current,
 404                                      BasicLock * lock) {
 405   assert(current->thread_state() == _thread_in_Java, "invariant");


 406 
 407   if (useHeavyMonitors()) {
 408     return false;  // Slow path
 409   }
 410 
 411   if (LockingMode == LM_LIGHTWEIGHT) {
 412     return LightweightSynchronizer::quick_enter(obj, current, lock);









 413   }
 414 
 415   assert(LockingMode == LM_LEGACY, "legacy mode below");
 416 
 417   const markWord mark = obj->mark();
 418 
 419   if (mark.has_monitor()) {
 420 
 421     ObjectMonitor* const m = read_monitor(mark);
 422     // An async deflation or GC can race us before we manage to make
 423     // the ObjectMonitor busy by setting the owner below. If we detect
 424     // that race we just bail out to the slow-path here.
 425     if (m->object_peek() == nullptr) {
 426       return false;
 427     }
 428     JavaThread* const owner = static_cast<JavaThread*>(m->owner_raw());
 429 
 430     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 431     // and observability
 432     // Case: light contention possibly amenable to TLE
 433     // Case: TLE inimical operations such as nested/recursive synchronization
 434 
 435     if (owner == current) {
 436       m->_recursions++;
 437       current->inc_held_monitor_count();
 438       return true;
 439     }
 440 
 441     // This Java Monitor is inflated so obj's header will never be
 442     // displaced to this thread's BasicLock. Make the displaced header
 443     // non-null so this BasicLock is not seen as recursive nor as
 444     // being locked. We do this unconditionally so that this thread's
 445     // BasicLock cannot be mis-interpreted by any stack walkers. For
 446     // performance reasons, stack walkers generally first check for
 447     // stack-locking in the object's header, the second check is for
 448     // recursive stack-locking in the displaced header in the BasicLock,
 449     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 450     lock->set_displaced_header(markWord::unused_mark());


 451 
 452     if (owner == nullptr && m->try_set_owner_from(nullptr, current) == nullptr) {
 453       assert(m->_recursions == 0, "invariant");
 454       current->inc_held_monitor_count();
 455       return true;
 456     }
 457   }
 458 
 459   // Note that we could inflate in quick_enter.
 460   // This is likely a useful optimization
 461   // Critically, in quick_enter() we must not:
 462   // -- block indefinitely, or
 463   // -- reach a safepoint
 464 
 465   return false;        // revert to slow-path
 466 }
 467 
 468 // Handle notifications when synchronizing on value based classes
 469 void ObjectSynchronizer::handle_sync_on_value_based_class(Handle obj, JavaThread* locking_thread) {
 470   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");

 498     vblog.info("Synchronizing on object " INTPTR_FORMAT " of klass %s", p2i(obj()), obj->klass()->external_name());
 499     if (locking_thread->has_last_Java_frame()) {
 500       LogStream info_stream(vblog.info());
 501       locking_thread->print_active_stack_on(&info_stream);
 502     } else {
 503       vblog.info("Cannot find the last Java frame");
 504     }
 505 
 506     EventSyncOnValueBasedClass event;
 507     if (event.should_commit()) {
 508       event.set_valueBasedClass(obj->klass());
 509       event.commit();
 510     }
 511   }
 512 
 513   if (bcp_was_adjusted) {
 514     last_frame.interpreter_frame_set_bcp(last_frame.interpreter_frame_bcp() + 1);
 515   }
 516 }
 517 








 518 // -----------------------------------------------------------------------------
 519 // Monitor Enter/Exit
 520 
 521 void ObjectSynchronizer::enter_for(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
 522   // When called with locking_thread != Thread::current() some mechanism must synchronize
 523   // the locking_thread with respect to the current thread. Currently only used when
 524   // deoptimizing and re-locking locks. See Deoptimization::relock_objects
 525   assert(locking_thread == Thread::current() || locking_thread->is_obj_deopt_suspend(), "must be");
 526 
 527   if (LockingMode == LM_LIGHTWEIGHT) {
 528     return LightweightSynchronizer::enter_for(obj, lock, locking_thread);
 529   }
 530 
 531   if (!enter_fast_impl(obj, lock, locking_thread)) {
 532     // Inflated ObjectMonitor::enter_for is required
 533 
 534     // An async deflation can race after the inflate_for() call and before
 535     // enter_for() can make the ObjectMonitor busy. enter_for() returns false
 536     // if we have lost the race to async deflation and we simply try again.
 537     while (true) {
 538       ObjectMonitor* monitor = inflate_for(locking_thread, obj(), inflate_cause_monitor_enter);
 539       if (monitor->enter_for(locking_thread)) {
 540         return;
 541       }
 542       assert(monitor->is_being_async_deflated(), "must be");
 543     }
 544   }
 545 }
 546 
 547 void ObjectSynchronizer::enter_legacy(Handle obj, BasicLock* lock, JavaThread* current) {

 548   if (!enter_fast_impl(obj, lock, current)) {
 549     // Inflated ObjectMonitor::enter is required
 550 
 551     // An async deflation can race after the inflate() call and before
 552     // enter() can make the ObjectMonitor busy. enter() returns false if
 553     // we have lost the race to async deflation and we simply try again.
 554     while (true) {
 555       ObjectMonitor* monitor = inflate(current, obj(), inflate_cause_monitor_enter);
 556       if (monitor->enter(current)) {
 557         return;
 558       }
 559     }
 560   }
 561 }
 562 
 563 // The interpreter and compiler assembly code tries to lock using the fast path
 564 // of this algorithm. Make sure to update that code if the following function is
 565 // changed. The implementation is extremely sensitive to race condition. Be careful.
 566 bool ObjectSynchronizer::enter_fast_impl(Handle obj, BasicLock* lock, JavaThread* locking_thread) {
 567   assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer");
 568 
 569   if (obj->klass()->is_value_based()) {
 570     handle_sync_on_value_based_class(obj, locking_thread);
 571   }
 572 
 573   locking_thread->inc_held_monitor_count();
 574 
 575   if (!useHeavyMonitors()) {
 576     if (LockingMode == LM_LEGACY) {






















































 577       markWord mark = obj->mark();
 578       if (mark.is_unlocked()) {
 579         // Anticipate successful CAS -- the ST of the displaced mark must
 580         // be visible <= the ST performed by the CAS.
 581         lock->set_displaced_header(mark);
 582         if (mark == obj()->cas_set_mark(markWord::from_pointer(lock), mark)) {
 583           return true;
 584         }
 585       } else if (mark.has_locker() &&
 586                  locking_thread->is_lock_owned((address) mark.locker())) {
 587         assert(lock != mark.locker(), "must not re-lock the same lock");
 588         assert(lock != (BasicLock*) obj->mark().value(), "don't relock with same BasicLock");
 589         lock->set_displaced_header(markWord::from_pointer(nullptr));
 590         return true;
 591       }
 592 
 593       // The object header will never be displaced to this lock,
 594       // so it does not matter what the value is, except that it
 595       // must be non-zero to avoid looking like a re-entrant lock,
 596       // and must not look locked either.
 597       lock->set_displaced_header(markWord::unused_mark());
 598 
 599       // Failed to fast lock.
 600       return false;
 601     }
 602   } else if (VerifyHeavyMonitors) {
 603     guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 604   }
 605 
 606   return false;
 607 }
 608 
 609 void ObjectSynchronizer::exit_legacy(oop object, BasicLock* lock, JavaThread* current) {
 610   assert(LockingMode != LM_LIGHTWEIGHT, "Use LightweightSynchronizer");
 611 
 612   if (!useHeavyMonitors()) {
 613     markWord mark = object->mark();
 614     if (LockingMode == LM_LEGACY) {

























 615       markWord dhw = lock->displaced_header();
 616       if (dhw.value() == 0) {
 617         // If the displaced header is null, then this exit matches up with
 618         // a recursive enter. No real work to do here except for diagnostics.
 619 #ifndef PRODUCT
 620         if (mark != markWord::INFLATING()) {
 621           // Only do diagnostics if we are not racing an inflation. Simply
 622           // exiting a recursive enter of a Java Monitor that is being
 623           // inflated is safe; see the has_monitor() comment below.
 624           assert(!mark.is_unlocked(), "invariant");
 625           assert(!mark.has_locker() ||
 626                  current->is_lock_owned((address)mark.locker()), "invariant");
 627           if (mark.has_monitor()) {
 628             // The BasicLock's displaced_header is marked as a recursive
 629             // enter and we have an inflated Java Monitor (ObjectMonitor).
 630             // This is a special case where the Java Monitor was inflated
 631             // after this thread entered the stack-lock recursively. When a
 632             // Java Monitor is inflated, we cannot safely walk the Java
 633             // Monitor owner's stack and update the BasicLocks because a
 634             // Java Monitor can be asynchronously inflated by a thread that
 635             // does not own the Java Monitor.
 636             ObjectMonitor* m = read_monitor(mark);
 637             assert(m->object()->mark() == mark, "invariant");
 638             assert(m->is_entered(current), "invariant");
 639           }
 640         }
 641 #endif
 642         return;
 643       }
 644 
 645       if (mark == markWord::from_pointer(lock)) {
 646         // If the object is stack-locked by the current thread, try to
 647         // swing the displaced header from the BasicLock back to the mark.
 648         assert(dhw.is_neutral(), "invariant");
 649         if (object->cas_set_mark(dhw, mark) == mark) {
 650           return;
 651         }
 652       }
 653     }
 654   } else if (VerifyHeavyMonitors) {
 655     guarantee((object->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 656   }

 660   // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 661   ObjectMonitor* monitor = inflate(current, object, inflate_cause_vm_internal);
 662   assert(!monitor->is_owner_anonymous(), "must not be");
 663   monitor->exit(current);
 664 }
 665 
 666 // -----------------------------------------------------------------------------
 667 // JNI locks on java objects
 668 // NOTE: must use heavy weight monitor to handle jni monitor enter
 669 void ObjectSynchronizer::jni_enter(Handle obj, JavaThread* current) {
 670   if (obj->klass()->is_value_based()) {
 671     handle_sync_on_value_based_class(obj, current);
 672   }
 673 
 674   // the current locking is from JNI instead of Java code
 675   current->set_current_pending_monitor_is_from_java(false);
 676   // An async deflation can race after the inflate() call and before
 677   // enter() can make the ObjectMonitor busy. enter() returns false if
 678   // we have lost the race to async deflation and we simply try again.
 679   while (true) {
 680     ObjectMonitor* monitor;
 681     bool entered;
 682     if (LockingMode == LM_LIGHTWEIGHT) {
 683       entered = LightweightSynchronizer::inflate_and_enter(obj(), current, current, inflate_cause_jni_enter) != nullptr;
 684     } else {
 685       monitor = inflate(current, obj(), inflate_cause_jni_enter);
 686       entered = monitor->enter(current);
 687     }
 688 
 689     if (entered) {
 690       current->inc_held_monitor_count(1, true);
 691       break;
 692     }
 693   }
 694   current->set_current_pending_monitor_is_from_java(true);
 695 }
 696 
 697 // NOTE: must use heavy weight monitor to handle jni monitor exit
 698 void ObjectSynchronizer::jni_exit(oop obj, TRAPS) {
 699   JavaThread* current = THREAD;
 700 
 701   ObjectMonitor* monitor;
 702   if (LockingMode == LM_LIGHTWEIGHT) {
 703     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj, inflate_cause_jni_exit, CHECK);
 704   } else {
 705     // The ObjectMonitor* can't be async deflated until ownership is
 706     // dropped inside exit() and the ObjectMonitor* must be !is_busy().
 707     monitor = inflate(current, obj, inflate_cause_jni_exit);
 708   }
 709   // If this thread has locked the object, exit the monitor. We
 710   // intentionally do not use CHECK on check_owner because we must exit the
 711   // monitor even if an exception was already pending.
 712   if (monitor->check_owner(THREAD)) {
 713     monitor->exit(current);
 714     current->dec_held_monitor_count(1, true);
 715   }
 716 }
 717 
 718 // -----------------------------------------------------------------------------
 719 // Internal VM locks on java objects
 720 // standard constructor, allows locking failures
 721 ObjectLocker::ObjectLocker(Handle obj, JavaThread* thread) {
 722   _thread = thread;
 723   _thread->check_for_valid_safepoint_state();
 724   _obj = obj;
 725 
 726   if (_obj() != nullptr) {
 727     ObjectSynchronizer::enter(_obj, &_lock, _thread);
 728   }
 729 }
 730 
 731 ObjectLocker::~ObjectLocker() {
 732   if (_obj() != nullptr) {
 733     ObjectSynchronizer::exit(_obj(), &_lock, _thread);
 734   }
 735 }
 736 
 737 
 738 // -----------------------------------------------------------------------------
 739 //  Wait/Notify/NotifyAll
 740 // NOTE: must use heavy weight monitor to handle wait()
 741 
 742 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 743   JavaThread* current = THREAD;
 744   if (millis < 0) {
 745     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 746   }
 747 
 748   ObjectMonitor* monitor;
 749   if (LockingMode == LM_LIGHTWEIGHT) {
 750     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_wait, CHECK_0);
 751   } else {
 752     // The ObjectMonitor* can't be async deflated because the _waiters
 753     // field is incremented before ownership is dropped and decremented
 754     // after ownership is regained.
 755     monitor = inflate(current, obj(), inflate_cause_wait);
 756   }
 757 
 758   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), current, millis);
 759   monitor->wait(millis, true, THREAD); // Not CHECK as we need following code
 760 
 761   // This dummy call is in place to get around dtrace bug 6254741.  Once
 762   // that's fixed we can uncomment the following line, remove the call
 763   // and change this function back into a "void" func.
 764   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 765   int ret_code = dtrace_waited_probe(monitor, obj, THREAD);
 766   return ret_code;
 767 }
 768 
 769 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 770   JavaThread* current = THREAD;
 771 
 772   markWord mark = obj->mark();
 773   if (LockingMode == LM_LIGHTWEIGHT) {
 774     if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 775       // Not inflated so there can't be any waiters to notify.
 776       return;
 777     }
 778   } else if (LockingMode == LM_LEGACY) {
 779     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 780       // Not inflated so there can't be any waiters to notify.
 781       return;
 782     }
 783   }
 784 
 785   ObjectMonitor* monitor;
 786   if (LockingMode == LM_LIGHTWEIGHT) {
 787     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK);
 788   } else {
 789     // The ObjectMonitor* can't be async deflated until ownership is
 790     // dropped by the calling thread.
 791     monitor = inflate(current, obj(), inflate_cause_notify);
 792   }
 793   monitor->notify(CHECK);
 794 }
 795 
 796 // NOTE: see comment of notify()
 797 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 798   JavaThread* current = THREAD;
 799 
 800   markWord mark = obj->mark();
 801   if (LockingMode == LM_LIGHTWEIGHT) {
 802     if ((mark.is_fast_locked() && current->lock_stack().contains(obj()))) {
 803       // Not inflated so there can't be any waiters to notify.
 804       return;
 805     }
 806   } else if (LockingMode == LM_LEGACY) {
 807     if (mark.has_locker() && current->is_lock_owned((address)mark.locker())) {
 808       // Not inflated so there can't be any waiters to notify.
 809       return;
 810     }
 811   }
 812 
 813   ObjectMonitor* monitor;
 814   if (LockingMode == LM_LIGHTWEIGHT) {
 815     monitor = LightweightSynchronizer::inflate_locked_or_imse(obj(), inflate_cause_notify, CHECK);
 816   } else {
 817     // The ObjectMonitor* can't be async deflated until ownership is
 818     // dropped by the calling thread.
 819     monitor = inflate(current, obj(), inflate_cause_notify);
 820   }
 821   monitor->notifyAll(CHECK);
 822 }
 823 
 824 // -----------------------------------------------------------------------------
 825 // Hash Code handling
 826 
 827 struct SharedGlobals {
 828   char         _pad_prefix[OM_CACHE_LINE_SIZE];
 829   // This is a highly shared mostly-read variable.
 830   // To avoid false-sharing it needs to be the sole occupant of a cache line.
 831   volatile int stw_random;
 832   DEFINE_PAD_MINUS_SIZE(1, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 833   // Hot RW variable -- Sequester to avoid false-sharing
 834   volatile int hc_sequence;
 835   DEFINE_PAD_MINUS_SIZE(2, OM_CACHE_LINE_SIZE, sizeof(volatile int));
 836 };
 837 
 838 static SharedGlobals GVars;
 839 
 840 static markWord read_stable_mark(oop obj) {

 898   }
 899 }
 900 
 901 // hashCode() generation :
 902 //
 903 // Possibilities:
 904 // * MD5Digest of {obj,stw_random}
 905 // * CRC32 of {obj,stw_random} or any linear-feedback shift register function.
 906 // * A DES- or AES-style SBox[] mechanism
 907 // * One of the Phi-based schemes, such as:
 908 //   2654435761 = 2^32 * Phi (golden ratio)
 909 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stw_random ;
 910 // * A variation of Marsaglia's shift-xor RNG scheme.
 911 // * (obj ^ stw_random) is appealing, but can result
 912 //   in undesirable regularity in the hashCode values of adjacent objects
 913 //   (objects allocated back-to-back, in particular).  This could potentially
 914 //   result in hashtable collisions and reduced hashtable efficiency.
 915 //   There are simple ways to "diffuse" the middle address bits over the
 916 //   generated hashCode values:
 917 
 918 static intptr_t get_next_hash(Thread* current, oop obj) {
 919   intptr_t value = 0;
 920   if (hashCode == 0) {
 921     // This form uses global Park-Miller RNG.
 922     // On MP system we'll have lots of RW access to a global, so the
 923     // mechanism induces lots of coherency traffic.
 924     value = os::random();
 925   } else if (hashCode == 1) {
 926     // This variation has the property of being stable (idempotent)
 927     // between STW operations.  This can be useful in some of the 1-0
 928     // synchronization schemes.
 929     intptr_t addr_bits = cast_from_oop<intptr_t>(obj) >> 3;
 930     value = addr_bits ^ (addr_bits >> 5) ^ GVars.stw_random;
 931   } else if (hashCode == 2) {
 932     value = 1;            // for sensitivity testing
 933   } else if (hashCode == 3) {
 934     value = ++GVars.hc_sequence;
 935   } else if (hashCode == 4) {
 936     value = cast_from_oop<intptr_t>(obj);
 937   } else {
 938     // Marsaglia's xor-shift scheme with thread-specific state
 939     // This is probably the best overall implementation -- we'll
 940     // likely make this the default in future releases.
 941     unsigned t = current->_hashStateX;
 942     t ^= (t << 11);
 943     current->_hashStateX = current->_hashStateY;
 944     current->_hashStateY = current->_hashStateZ;
 945     current->_hashStateZ = current->_hashStateW;
 946     unsigned v = current->_hashStateW;
 947     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 948     current->_hashStateW = v;
 949     value = v;
 950   }
 951 
 952   value &= UseCompactObjectHeaders ? markWord::hash_mask_compact : markWord::hash_mask;
 953   if (value == 0) value = 0xBAD;
 954   assert(value != markWord::no_hash, "invariant");
 955   return value;
 956 }
 957 
 958 static intptr_t install_hash_code(Thread* current, oop obj) {
 959   assert(UseObjectMonitorTable && LockingMode == LM_LIGHTWEIGHT, "must be");
 960 
 961   markWord mark = obj->mark_acquire();
 962   for(;;) {
 963     intptr_t hash = mark.hash();
 964     if (hash != 0) {
 965       return hash;
 966     }
 967 
 968     hash = get_next_hash(current, obj);
 969     const markWord old_mark = mark;
 970     const markWord new_mark = old_mark.copy_set_hash(hash);
 971 
 972     mark = obj->cas_set_mark(new_mark, old_mark);
 973     if (old_mark == mark) {
 974       return hash;
 975     }
 976   }
 977 }
 978 
 979 intptr_t ObjectSynchronizer::FastHashCode(Thread* current, oop obj) {
 980   // Since the monitor isn't in the object header, it can simply be installed.
 981   if (UseObjectMonitorTable) {
 982     return install_hash_code(current, obj);
 983   }
 984 
 985   while (true) {
 986     ObjectMonitor* monitor = nullptr;
 987     markWord temp, test;
 988     intptr_t hash;
 989     markWord mark = read_stable_mark(obj);
 990     if (VerifyHeavyMonitors) {
 991       assert(LockingMode == LM_MONITOR, "+VerifyHeavyMonitors requires LockingMode == 0 (LM_MONITOR)");
 992       guarantee((obj->mark().value() & markWord::lock_mask_in_place) != markWord::locked_value, "must not be lightweight/stack-locked");
 993     }
 994     if (mark.is_unlocked() || (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked())) {
 995       hash = mark.hash();
 996       if (hash != 0) {                     // if it has a hash, just return it
 997         return hash;
 998       }
 999       hash = get_next_hash(current, obj);  // get a new hash
1000       temp = mark.copy_set_hash(hash);     // merge the hash into header
1001                                            // try to install the hash
1002       test = obj->cas_set_mark(temp, mark);
1003       if (test == mark) {                  // if the hash was installed, return it

1057       // a thread's stack can be asynchronously read by other threads
1058       // during an inflate() call so any change to that stack memory
1059       // may not propagate to other threads correctly.
1060     }
1061 
1062     // Inflate the monitor to set the hash.
1063 
1064     // There's no need to inflate if the mark has already got a monitor.
1065     // NOTE: an async deflation can race after we get the monitor and
1066     // before we can update the ObjectMonitor's header with the hash
1067     // value below.
1068     monitor = mark.has_monitor() ? mark.monitor() : inflate(current, obj, inflate_cause_hash_code);
1069     // Load ObjectMonitor's header/dmw field and see if it has a hash.
1070     mark = monitor->header();
1071     assert(mark.is_neutral(), "invariant: header=" INTPTR_FORMAT, mark.value());
1072     hash = mark.hash();
1073     if (hash == 0) {                       // if it does not have a hash
1074       hash = get_next_hash(current, obj);  // get a new hash
1075       temp = mark.copy_set_hash(hash)   ;  // merge the hash into header
1076       assert(temp.is_neutral(), "invariant: header=" INTPTR_FORMAT, temp.value());
1077       uintptr_t v = Atomic::cmpxchg(monitor->metadata_addr(), mark.value(), temp.value());
1078       test = markWord(v);
1079       if (test != mark) {
1080         // The attempt to update the ObjectMonitor's header/dmw field
1081         // did not work. This can happen if another thread managed to
1082         // merge in the hash just before our cmpxchg().
1083         // If we add any new usages of the header/dmw field, this code
1084         // will need to be updated.
1085         hash = test.hash();
1086         assert(test.is_neutral(), "invariant: header=" INTPTR_FORMAT, test.value());
1087         assert(hash != 0, "should only have lost the race to a thread that set a non-zero hash");
1088       }
1089       if (monitor->is_being_async_deflated() && !UseObjectMonitorTable) {
1090         // If we detect that async deflation has occurred, then we
1091         // attempt to restore the header/dmw to the object's header
1092         // so that we only retry once if the deflater thread happens
1093         // to be slow.
1094         monitor->install_displaced_markword_in_object(obj);
1095         continue;
1096       }
1097     }
1098     // We finally get the hash.
1099     return hash;
1100   }
1101 }
1102 
1103 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* current,
1104                                                    Handle h_obj) {
1105   assert(current == JavaThread::current(), "Can only be called on current thread");
1106   oop obj = h_obj();
1107 
1108   markWord mark = read_stable_mark(obj);
1109 
1110   if (LockingMode == LM_LEGACY && mark.has_locker()) {
1111     // stack-locked case, header points into owner's stack
1112     return current->is_lock_owned((address)mark.locker());
1113   }
1114 
1115   if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1116     // fast-locking case, see if lock is in current's lock stack
1117     return current->lock_stack().contains(h_obj());
1118   }
1119 
1120   while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) {
1121     ObjectMonitor* monitor = read_monitor(current, obj, mark);
1122     if (monitor != nullptr) {
1123       return monitor->is_entered(current) != 0;
1124     }
1125     // Racing with inflation/deflation, retry
1126     mark = obj->mark_acquire();
1127 
1128     if (mark.is_fast_locked()) {
1129       // Some other thread fast_locked, current could not have held the lock
1130       return false;
1131     }
1132   }
1133 
1134   if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) {
1135     // Inflated monitor so header points to ObjectMonitor (tagged pointer).
1136     // The first stage of async deflation does not affect any field
1137     // used by this comparison so the ObjectMonitor* is usable here.
1138     ObjectMonitor* monitor = read_monitor(mark);
1139     return monitor->is_entered(current) != 0;
1140   }
1141   // Unlocked case, header in place
1142   assert(mark.is_unlocked(), "sanity check");
1143   return false;
1144 }
1145 
1146 JavaThread* ObjectSynchronizer::get_lock_owner(ThreadsList * t_list, Handle h_obj) {
1147   oop obj = h_obj();
1148   markWord mark = read_stable_mark(obj);
1149 
1150   if (LockingMode == LM_LEGACY && mark.has_locker()) {
1151     // stack-locked so header points into owner's stack.
1152     // owning_thread_from_monitor_owner() may also return null here:
1153     return Threads::owning_thread_from_monitor_owner(t_list, (address) mark.locker());
1154   }
1155 
1156   if (LockingMode == LM_LIGHTWEIGHT && mark.is_fast_locked()) {
1157     // fast-locked so get owner from the object.
1158     // owning_thread_from_object() may also return null here:
1159     return Threads::owning_thread_from_object(t_list, h_obj());
1160   }
1161 
1162   while (LockingMode == LM_LIGHTWEIGHT && mark.has_monitor()) {
1163     ObjectMonitor* monitor = read_monitor(Thread::current(), obj, mark);
1164     if (monitor != nullptr) {
1165       return Threads::owning_thread_from_monitor(t_list, monitor);
1166     }
1167     // Racing with inflation/deflation, retry
1168     mark = obj->mark_acquire();
1169 
1170     if (mark.is_fast_locked()) {
1171       // Some other thread fast_locked
1172       return Threads::owning_thread_from_object(t_list, h_obj());
1173     }
1174   }
1175 
1176   if (LockingMode != LM_LIGHTWEIGHT && mark.has_monitor()) {
1177     // Inflated monitor so header points to ObjectMonitor (tagged pointer).
1178     // The first stage of async deflation does not affect any field
1179     // used by this comparison so the ObjectMonitor* is usable here.
1180     ObjectMonitor* monitor = read_monitor(mark);
1181     assert(monitor != nullptr, "monitor should be non-null");
1182     // owning_thread_from_monitor() may also return null here:
1183     return Threads::owning_thread_from_monitor(t_list, monitor);
1184   }
1185 
1186   // Unlocked case, header in place
1187   // Cannot have assertion since this object may have been
1188   // locked by another thread when reaching here.
1189   // assert(mark.is_unlocked(), "sanity check");
1190 
1191   return nullptr;
1192 }
1193 
1194 // Visitors ...
1195 
1196 // Iterate over all ObjectMonitors.
1197 template <typename Function>
1198 void ObjectSynchronizer::monitors_iterate(Function function) {
1199   MonitorList::Iterator iter = _in_use_list.iterator();
1200   while (iter.has_next()) {

1236 }
1237 
1238 static bool monitors_used_above_threshold(MonitorList* list) {
1239   if (MonitorUsedDeflationThreshold == 0) {  // disabled case is easy
1240     return false;
1241   }
1242   // Start with ceiling based on a per-thread estimate:
1243   size_t ceiling = ObjectSynchronizer::in_use_list_ceiling();
1244   size_t old_ceiling = ceiling;
1245   if (ceiling < list->max()) {
1246     // The max used by the system has exceeded the ceiling so use that:
1247     ceiling = list->max();
1248   }
1249   size_t monitors_used = list->count();
1250   if (monitors_used == 0) {  // empty list is easy
1251     return false;
1252   }
1253   if (NoAsyncDeflationProgressMax != 0 &&
1254       _no_progress_cnt >= NoAsyncDeflationProgressMax) {
1255     double remainder = (100.0 - MonitorUsedDeflationThreshold) / 100.0;
1256     size_t new_ceiling = ceiling / remainder + 1;
1257     ObjectSynchronizer::set_in_use_list_ceiling(new_ceiling);
1258     log_info(monitorinflation)("Too many deflations without progress; "
1259                                "bumping in_use_list_ceiling from " SIZE_FORMAT
1260                                " to " SIZE_FORMAT, old_ceiling, new_ceiling);
1261     _no_progress_cnt = 0;
1262     ceiling = new_ceiling;
1263   }
1264 
1265   // Check if our monitor usage is above the threshold:
1266   size_t monitor_usage = (monitors_used * 100LL) / ceiling;
1267   if (int(monitor_usage) > MonitorUsedDeflationThreshold) {
1268     log_info(monitorinflation)("monitors_used=" SIZE_FORMAT ", ceiling=" SIZE_FORMAT
1269                                ", monitor_usage=" SIZE_FORMAT ", threshold=%d",
1270                                monitors_used, ceiling, monitor_usage, MonitorUsedDeflationThreshold);
1271     return true;
1272   }
1273 
1274   return false;
1275 }
1276 

1372 
1373   return ret_code;
1374 }
1375 
1376 jlong ObjectSynchronizer::time_since_last_async_deflation_ms() {
1377   return (os::javaTimeNanos() - last_async_deflation_time_ns()) / (NANOUNITS / MILLIUNITS);
1378 }
1379 
1380 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1381                                        const oop obj,
1382                                        ObjectSynchronizer::InflateCause cause) {
1383   assert(event != nullptr, "invariant");
1384   event->set_monitorClass(obj->klass());
1385   event->set_address((uintptr_t)(void*)obj);
1386   event->set_cause((u1)cause);
1387   event->commit();
1388 }
1389 
1390 // Fast path code shared by multiple functions
1391 void ObjectSynchronizer::inflate_helper(oop obj) {
1392   assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter");
1393   markWord mark = obj->mark_acquire();
1394   if (mark.has_monitor()) {
1395     ObjectMonitor* monitor = read_monitor(mark);
1396     markWord dmw = monitor->header();
1397     assert(dmw.is_neutral(), "sanity check: header=" INTPTR_FORMAT, dmw.value());
1398     return;
1399   }
1400   (void)inflate(Thread::current(), obj, inflate_cause_vm_internal);
1401 }
1402 
1403 ObjectMonitor* ObjectSynchronizer::inflate(Thread* current, oop obj, const InflateCause cause) {
1404   assert(current == Thread::current(), "must be");
1405   assert(LockingMode != LM_LIGHTWEIGHT, "only inflate through enter");
1406   return inflate_impl(obj, cause);


1407 }
1408 
1409 ObjectMonitor* ObjectSynchronizer::inflate_for(JavaThread* thread, oop obj, const InflateCause cause) {
1410   assert(thread == Thread::current() || thread->is_obj_deopt_suspend(), "must be");
1411   assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_for");
1412   return inflate_impl(obj, cause);
1413 }
1414 
1415 ObjectMonitor* ObjectSynchronizer::inflate_impl(oop object, const InflateCause cause) {
1416   assert(LockingMode != LM_LIGHTWEIGHT, "LM_LIGHTWEIGHT cannot use inflate_impl");






1417   EventJavaMonitorInflate event;
1418 
1419   for (;;) {
1420     const markWord mark = object->mark_acquire();
1421 
1422     // The mark can be in one of the following states:
1423     // *  inflated     - Just return it.






1424     // *  stack-locked - Coerce it to inflated from stack-locked.
1425     // *  INFLATING    - Busy wait for conversion from stack-locked to
1426     //                   inflated.
1427     // *  unlocked     - Aggressively inflate the object.
1428 
1429     // CASE: inflated
1430     if (mark.has_monitor()) {
1431       ObjectMonitor* inf = mark.monitor();
1432       markWord dmw = inf->header();
1433       assert(dmw.is_neutral(), "invariant: header=" INTPTR_FORMAT, dmw.value());






1434       return inf;
1435     }
1436 
1437     // CASE: inflation in progress - inflating over a stack-lock.
1438     // Some other thread is converting from stack-locked to inflated.
1439     // Only that thread can complete inflation -- other threads must wait.
1440     // The INFLATING value is transient.
1441     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1442     // We could always eliminate polling by parking the thread on some auxiliary list.
1443     if (mark == markWord::INFLATING()) {
1444       read_stable_mark(object);
1445       continue;
























































1446     }
1447 
1448     // CASE: stack-locked
1449     // Could be stack-locked either by current or by some other thread.
1450     //
1451     // Note that we allocate the ObjectMonitor speculatively, _before_ attempting
1452     // to install INFLATING into the mark word.  We originally installed INFLATING,
1453     // allocated the ObjectMonitor, and then finally STed the address of the
1454     // ObjectMonitor into the mark.  This was correct, but artificially lengthened
1455     // the interval in which INFLATING appeared in the mark, thus increasing
1456     // the odds of inflation contention. If we lose the race to set INFLATING,
1457     // then we just delete the ObjectMonitor and loop around again.
1458     //
1459     LogStreamHandle(Trace, monitorinflation) lsh;
1460     if (LockingMode == LM_LEGACY && mark.has_locker()) {

1461       ObjectMonitor* m = new ObjectMonitor(object);
1462       // Optimistically prepare the ObjectMonitor - anticipate successful CAS
1463       // We do this before the CAS in order to minimize the length of time
1464       // in which INFLATING appears in the mark.
1465 
1466       markWord cmp = object->cas_set_mark(markWord::INFLATING(), mark);
1467       if (cmp != mark) {
1468         delete m;
1469         continue;       // Interference -- just retry
1470       }
1471 
1472       // We've successfully installed INFLATING (0) into the mark-word.
1473       // This is the only case where 0 will appear in a mark-word.
1474       // Only the singular thread that successfully swings the mark-word
1475       // to 0 can perform (or more precisely, complete) inflation.
1476       //
1477       // Why do we CAS a 0 into the mark-word instead of just CASing the
1478       // mark-word from the stack-locked value directly to the new inflated state?
1479       // Consider what happens when a thread unlocks a stack-locked object.
1480       // It attempts to use CAS to swing the displaced header value from the

1572     OM_PERFDATA_OP(Inflations, inc());
1573     if (log_is_enabled(Trace, monitorinflation)) {
1574       ResourceMark rm;
1575       lsh.print_cr("inflate(unlocked): object=" INTPTR_FORMAT ", mark="
1576                    INTPTR_FORMAT ", type='%s'", p2i(object),
1577                    object->mark().value(), object->klass()->external_name());
1578     }
1579     if (event.should_commit()) {
1580       post_monitor_inflate_event(&event, object, cause);
1581     }
1582     return m;
1583   }
1584 }
1585 
1586 // Walk the in-use list and deflate (at most MonitorDeflationMax) idle
1587 // ObjectMonitors. Returns the number of deflated ObjectMonitors.
1588 //
1589 size_t ObjectSynchronizer::deflate_monitor_list(ObjectMonitorDeflationSafepointer* safepointer) {
1590   MonitorList::Iterator iter = _in_use_list.iterator();
1591   size_t deflated_count = 0;
1592   Thread* current = Thread::current();
1593 
1594   while (iter.has_next()) {
1595     if (deflated_count >= (size_t)MonitorDeflationMax) {
1596       break;
1597     }
1598     ObjectMonitor* mid = iter.next();
1599     if (mid->deflate_monitor(current)) {
1600       deflated_count++;
1601     }
1602 
1603     // Must check for a safepoint/handshake and honor it.
1604     safepointer->block_for_safepoint("deflation", "deflated_count", deflated_count);
1605   }
1606 
1607   return deflated_count;
1608 }
1609 
1610 class HandshakeForDeflation : public HandshakeClosure {
1611  public:
1612   HandshakeForDeflation() : HandshakeClosure("HandshakeForDeflation") {}
1613 
1614   void do_thread(Thread* thread) {
1615     log_trace(monitorinflation)("HandshakeForDeflation::do_thread: thread="
1616                                 INTPTR_FORMAT, p2i(thread));
1617     if (thread->is_Java_thread()) {
1618       // Clear OM cache
1619       JavaThread* jt = JavaThread::cast(thread);
1620       jt->om_clear_monitor_cache();
1621     }
1622   }
1623 };
1624 
1625 class VM_RendezvousGCThreads : public VM_Operation {
1626 public:
1627   bool evaluate_at_safepoint() const override { return false; }
1628   VMOp_Type type() const override { return VMOp_RendezvousGCThreads; }
1629   void doit() override {
1630     Universe::heap()->safepoint_synchronize_begin();
1631     Universe::heap()->safepoint_synchronize_end();
1632   };
1633 };
1634 
1635 static size_t delete_monitors(GrowableArray<ObjectMonitor*>* delete_list,
1636                               ObjectMonitorDeflationSafepointer* safepointer) {
1637   NativeHeapTrimmer::SuspendMark sm("monitor deletion");
1638   size_t deleted_count = 0;
1639   for (ObjectMonitor* monitor: *delete_list) {
1640     delete monitor;
1641     deleted_count++;

1748   // The async deflation request has been processed.
1749   _last_async_deflation_time_ns = os::javaTimeNanos();
1750   set_is_async_deflation_requested(false);
1751 
1752   ObjectMonitorDeflationLogging log;
1753   ObjectMonitorDeflationSafepointer safepointer(current, &log);
1754 
1755   log.begin();
1756 
1757   // Deflate some idle ObjectMonitors.
1758   size_t deflated_count = deflate_monitor_list(&safepointer);
1759 
1760   // Unlink the deflated ObjectMonitors from the in-use list.
1761   size_t unlinked_count = 0;
1762   size_t deleted_count = 0;
1763   if (deflated_count > 0) {
1764     ResourceMark rm(current);
1765     GrowableArray<ObjectMonitor*> delete_list((int)deflated_count);
1766     unlinked_count = _in_use_list.unlink_deflated(deflated_count, &delete_list, &safepointer);
1767 
1768 #ifdef ASSERT
1769     if (UseObjectMonitorTable) {
1770       for (ObjectMonitor* monitor : delete_list) {
1771         assert(!LightweightSynchronizer::contains_monitor(current, monitor), "Should have been removed");
1772       }
1773     }
1774 #endif
1775 
1776     log.before_handshake(unlinked_count);
1777 
1778     // A JavaThread needs to handshake in order to safely free the
1779     // ObjectMonitors that were deflated in this cycle.
1780     HandshakeForDeflation hfd_hc;
1781     Handshake::execute(&hfd_hc);
1782     // Also, we sync and desync GC threads around the handshake, so that they can
1783     // safely read the mark-word and look-through to the object-monitor, without
1784     // being afraid that the object-monitor is going away.
1785     VM_RendezvousGCThreads sync_gc;
1786     VMThread::execute(&sync_gc);
1787 
1788     log.after_handshake();
1789 
1790     // After the handshake, safely free the ObjectMonitors that were
1791     // deflated and unlinked in this cycle.
1792 
1793     // Delete the unlinked ObjectMonitors.
1794     deleted_count = delete_monitors(&delete_list, &safepointer);
1795     assert(unlinked_count == deleted_count, "must be");

1964   }
1965 
1966   size_t ck_in_use_max = _in_use_list.max();
1967   if (l_in_use_max == ck_in_use_max) {
1968     out->print_cr("in_use_max=" SIZE_FORMAT " equals ck_in_use_max="
1969                   SIZE_FORMAT, l_in_use_max, ck_in_use_max);
1970   } else {
1971     out->print_cr("WARNING: in_use_max=" SIZE_FORMAT " is not equal to "
1972                   "ck_in_use_max=" SIZE_FORMAT, l_in_use_max, ck_in_use_max);
1973   }
1974 }
1975 
1976 // Check an in-use monitor entry; log any errors.
1977 void ObjectSynchronizer::chk_in_use_entry(ObjectMonitor* n, outputStream* out,
1978                                           int* error_cnt_p) {
1979   if (n->owner_is_DEFLATER_MARKER()) {
1980     // This could happen when monitor deflation blocks for a safepoint.
1981     return;
1982   }
1983 
1984 
1985   if (n->metadata() == 0) {
1986     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor must "
1987                   "have non-null _metadata (header/hash) field.", p2i(n));
1988     *error_cnt_p = *error_cnt_p + 1;
1989   }
1990 
1991   const oop obj = n->object_peek();
1992   if (obj == nullptr) {
1993     return;
1994   }
1995 
1996   const markWord mark = obj->mark();
1997   if (!mark.has_monitor()) {
1998     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
1999                   "object does not think it has a monitor: obj="
2000                   INTPTR_FORMAT ", mark=" INTPTR_FORMAT, p2i(n),
2001                   p2i(obj), mark.value());
2002     *error_cnt_p = *error_cnt_p + 1;
2003     return;
2004   }
2005 
2006   ObjectMonitor* const obj_mon = read_monitor(Thread::current(), obj, mark);
2007   if (n != obj_mon) {
2008     out->print_cr("ERROR: monitor=" INTPTR_FORMAT ": in-use monitor's "
2009                   "object does not refer to the same monitor: obj="
2010                   INTPTR_FORMAT ", mark=" INTPTR_FORMAT ", obj_mon="
2011                   INTPTR_FORMAT, p2i(n), p2i(obj), mark.value(), p2i(obj_mon));
2012     *error_cnt_p = *error_cnt_p + 1;
2013   }
2014 }
2015 
2016 // Log details about ObjectMonitors on the in_use_list. The 'BHL'
2017 // flags indicate why the entry is in-use, 'object' and 'object type'
2018 // indicate the associated object and its type.
2019 void ObjectSynchronizer::log_in_use_monitor_details(outputStream* out, bool log_all) {
2020   if (_in_use_list.count() > 0) {
2021     stringStream ss;
2022     out->print_cr("In-use monitor info:");
2023     out->print_cr("(B -> is_busy, H -> has hash code, L -> lock status)");
2024     out->print_cr("%18s  %s  %18s  %18s",
2025                   "monitor", "BHL", "object", "object type");
2026     out->print_cr("==================  ===  ==================  ==================");
2027 
2028     auto is_interesting = [&](ObjectMonitor* monitor) {
2029       return log_all || monitor->has_owner() || monitor->is_busy();
2030     };
2031 
2032     monitors_iterate([&](ObjectMonitor* monitor) {
2033       if (is_interesting(monitor)) {
2034         const oop obj = monitor->object_peek();
2035         const intptr_t hash = UseObjectMonitorTable ? monitor->hash() : monitor->header().hash();
2036         ResourceMark rm;
2037         out->print(INTPTR_FORMAT "  %d%d%d  " INTPTR_FORMAT "  %s", p2i(monitor),
2038                    monitor->is_busy(), hash != 0, monitor->owner() != nullptr,
2039                    p2i(obj), obj == nullptr ? "" : obj->klass()->external_name());
2040         if (monitor->is_busy()) {
2041           out->print(" (%s)", monitor->is_busy_to_string(&ss));
2042           ss.reset();
2043         }
2044         out->cr();
2045       }
2046     });
2047   }
2048 
2049   out->flush();
2050 }
< prev index next >