1 /*
   2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "utilities/compilerWarnings.hpp"
  29 #include "utilities/debug.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 // Get constants like JVM_T_CHAR and JVM_SIGNATURE_INT, before pulling in <jvm.h>.
  33 #include "classfile_constants.h"
  34 
  35 #include COMPILER_HEADER(utilities/globalDefinitions)
  36 
  37 #include <cstddef>
  38 #include <cstdint>
  39 #include <type_traits>
  40 
  41 class oopDesc;
  42 
  43 // Defaults for macros that might be defined per compiler.
  44 #ifndef NOINLINE
  45 #define NOINLINE
  46 #endif
  47 #ifndef ALWAYSINLINE
  48 #define ALWAYSINLINE inline
  49 #endif
  50 
  51 #ifndef ATTRIBUTE_ALIGNED
  52 #define ATTRIBUTE_ALIGNED(x)
  53 #endif
  54 
  55 #ifndef ATTRIBUTE_FLATTEN
  56 #define ATTRIBUTE_FLATTEN
  57 #endif
  58 
  59 // These are #defines to selectively turn on/off the Print(Opto)Assembly
  60 // capabilities. Choices should be led by a tradeoff between
  61 // code size and improved supportability.
  62 // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well
  63 // to have a fallback in case hsdis is not available.
  64 #if defined(PRODUCT)
  65   #define SUPPORT_ABSTRACT_ASSEMBLY
  66   #define SUPPORT_ASSEMBLY
  67   #undef  SUPPORT_OPTO_ASSEMBLY      // Can't activate. In PRODUCT, many dump methods are missing.
  68   #undef  SUPPORT_DATA_STRUCTS       // Of limited use. In PRODUCT, many print methods are empty.
  69 #else
  70   #define SUPPORT_ABSTRACT_ASSEMBLY
  71   #define SUPPORT_ASSEMBLY
  72   #define SUPPORT_OPTO_ASSEMBLY
  73   #define SUPPORT_DATA_STRUCTS
  74 #endif
  75 #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY)
  76   #define SUPPORT_ABSTRACT_ASSEMBLY
  77 #endif
  78 
  79 // This file holds all globally used constants & types, class (forward)
  80 // declarations and a few frequently used utility functions.
  81 
  82 // Declare the named class to be noncopyable.  This macro must be followed by
  83 // a semi-colon.  The macro provides deleted declarations for the class's copy
  84 // constructor and assignment operator.  Because these operations are deleted,
  85 // they cannot be defined and potential callers will fail to compile.
  86 #define NONCOPYABLE(C) C(C const&) = delete; C& operator=(C const&) = delete /* next token must be ; */
  87 
  88 
  89 //----------------------------------------------------------------------------------------------------
  90 // Printf-style formatters for fixed- and variable-width types as pointers and
  91 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  92 // doesn't provide appropriate definitions, they should be provided in
  93 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  94 
  95 // Guide to the suffixes used in the format specifiers for integers:
  96 //        - print the decimal value:                   745565
  97 //  _X    - print as hexadecimal, without leading 0s: 0x12345
  98 //  _X_0  - print as hexadecimal, with leading 0s: 0x00012345
  99 //  _W(w) - prints w sized string with the given value right
 100 //          adjusted. Use -w to print left adjusted.
 101 //
 102 // Note that the PTR format specifiers print using 0x with leading zeros,
 103 // just like the _X_0 version for integers.
 104 
 105 // Format 8-bit quantities.
 106 #define INT8_FORMAT_X_0          "0x%02"      PRIx8
 107 #define UINT8_FORMAT_X_0         "0x%02"      PRIx8
 108 
 109 // Format 16-bit quantities.
 110 #define INT16_FORMAT_X_0         "0x%04"      PRIx16
 111 #define UINT16_FORMAT_X_0        "0x%04"      PRIx16
 112 
 113 // Format 32-bit quantities.
 114 #define INT32_FORMAT             "%"          PRId32
 115 #define INT32_FORMAT_X           "0x%"        PRIx32
 116 #define INT32_FORMAT_X_0         "0x%08"      PRIx32
 117 #define INT32_FORMAT_W(width)    "%"   #width PRId32
 118 #define UINT32_FORMAT            "%"          PRIu32
 119 #define UINT32_FORMAT_X          "0x%"        PRIx32
 120 #define UINT32_FORMAT_X_0        "0x%08"      PRIx32
 121 #define UINT32_FORMAT_W(width)   "%"   #width PRIu32
 122 
 123 // Format 64-bit quantities.
 124 #define INT64_FORMAT             "%"          PRId64
 125 #define INT64_PLUS_FORMAT        "%+"         PRId64
 126 #define INT64_FORMAT_X           "0x%"        PRIx64
 127 #define INT64_FORMAT_X_0         "0x%016"     PRIx64
 128 #define INT64_FORMAT_W(width)    "%"   #width PRId64
 129 #define UINT64_FORMAT            "%"          PRIu64
 130 #define UINT64_FORMAT_X          "0x%"        PRIx64
 131 #define UINT64_FORMAT_X_0        "0x%016"     PRIx64
 132 #define UINT64_FORMAT_W(width)   "%"   #width PRIu64
 133 
 134 // Format integers which change size between 32- and 64-bit.
 135 #define SSIZE_FORMAT             "%"          PRIdPTR
 136 #define SSIZE_PLUS_FORMAT        "%+"         PRIdPTR
 137 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
 138 #define SIZE_FORMAT              "%"          PRIuPTR
 139 #define SIZE_FORMAT_X            "0x%"        PRIxPTR
 140 #ifdef _LP64
 141 #define SIZE_FORMAT_X_0          "0x%016"     PRIxPTR
 142 #else
 143 #define SIZE_FORMAT_X_0          "0x%08"      PRIxPTR
 144 #endif
 145 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
 146 
 147 #define INTX_FORMAT              "%"          PRIdPTR
 148 #define INTX_FORMAT_X            "0x%"        PRIxPTR
 149 #define INTX_FORMAT_W(width)     "%"   #width PRIdPTR
 150 #define UINTX_FORMAT             "%"          PRIuPTR
 151 #define UINTX_FORMAT_X           "0x%"        PRIxPTR
 152 #define UINTX_FORMAT_W(width)    "%"   #width PRIuPTR
 153 
 154 // Format jlong, if necessary
 155 #ifndef JLONG_FORMAT
 156 #define JLONG_FORMAT             INT64_FORMAT
 157 #endif
 158 #ifndef JLONG_FORMAT_W
 159 #define JLONG_FORMAT_W(width)    INT64_FORMAT_W(width)
 160 #endif
 161 #ifndef JULONG_FORMAT
 162 #define JULONG_FORMAT            UINT64_FORMAT
 163 #endif
 164 #ifndef JULONG_FORMAT_X
 165 #define JULONG_FORMAT_X          UINT64_FORMAT_X
 166 #endif
 167 
 168 // Format pointers which change size between 32- and 64-bit.
 169 #ifdef  _LP64
 170 #define INTPTR_FORMAT            "0x%016"     PRIxPTR
 171 #define PTR_FORMAT               "0x%016"     PRIxPTR
 172 #else   // !_LP64
 173 #define INTPTR_FORMAT            "0x%08"      PRIxPTR
 174 #define PTR_FORMAT               "0x%08"      PRIxPTR
 175 #endif  // _LP64
 176 
 177 // Convert pointer to intptr_t, for use in printing pointers.
 178 inline intptr_t p2i(const volatile void* p) {
 179   return (intptr_t) p;
 180 }
 181 
 182 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
 183 
 184 //----------------------------------------------------------------------------------------------------
 185 // Forbid the use of various C library functions.
 186 // Some of these have os:: replacements that should normally be used instead.
 187 // Others are considered security concerns, with preferred alternatives.
 188 
 189 FORBID_C_FUNCTION(void exit(int), "use os::exit");
 190 FORBID_C_FUNCTION(void _exit(int), "use os::exit");
 191 FORBID_C_FUNCTION(char* strerror(int), "use os::strerror");
 192 FORBID_C_FUNCTION(char* strtok(char*, const char*), "use strtok_r");
 193 FORBID_C_FUNCTION(int sprintf(char*, const char*, ...), "use os::snprintf");
 194 FORBID_C_FUNCTION(int vsprintf(char*, const char*, va_list), "use os::vsnprintf");
 195 FORBID_C_FUNCTION(int vsnprintf(char*, size_t, const char*, va_list), "use os::vsnprintf");
 196 
 197 // All of the following functions return raw C-heap pointers (sometimes as an option, e.g. realpath or getwd)
 198 // or, in case of free(), take raw C-heap pointers. Don't use them unless you are really sure you must.
 199 FORBID_C_FUNCTION(void* malloc(size_t size), "use os::malloc");
 200 FORBID_C_FUNCTION(void* calloc(size_t nmemb, size_t size), "use os::malloc and zero out manually");
 201 FORBID_C_FUNCTION(void free(void *ptr), "use os::free");
 202 FORBID_C_FUNCTION(void* realloc(void *ptr, size_t size), "use os::realloc");
 203 FORBID_C_FUNCTION(char* strdup(const char *s), "use os::strdup");
 204 FORBID_C_FUNCTION(char* strndup(const char *s, size_t n), "don't use");
 205 FORBID_C_FUNCTION(int posix_memalign(void **memptr, size_t alignment, size_t size), "don't use");
 206 FORBID_C_FUNCTION(void* aligned_alloc(size_t alignment, size_t size), "don't use");
 207 FORBID_C_FUNCTION(char* realpath(const char* path, char* resolved_path), "use os::Posix::realpath");
 208 FORBID_C_FUNCTION(char* get_current_dir_name(void), "use os::get_current_directory()");
 209 FORBID_C_FUNCTION(char* getwd(char *buf), "use os::get_current_directory()");
 210 FORBID_C_FUNCTION(wchar_t* wcsdup(const wchar_t *s), "don't use");
 211 FORBID_C_FUNCTION(void* reallocf(void *ptr, size_t size), "don't use");
 212 
 213 //----------------------------------------------------------------------------------------------------
 214 // Constants
 215 
 216 const int LogBytesPerShort   = 1;
 217 const int LogBytesPerInt     = 2;
 218 #ifdef _LP64
 219 const int LogBytesPerWord    = 3;
 220 #else
 221 const int LogBytesPerWord    = 2;
 222 #endif
 223 const int LogBytesPerLong    = 3;
 224 
 225 const int BytesPerShort      = 1 << LogBytesPerShort;
 226 const int BytesPerInt        = 1 << LogBytesPerInt;
 227 const int BytesPerWord       = 1 << LogBytesPerWord;
 228 const int BytesPerLong       = 1 << LogBytesPerLong;
 229 
 230 const int LogBitsPerByte     = 3;
 231 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 232 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 233 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 234 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 235 
 236 const int BitsPerByte        = 1 << LogBitsPerByte;
 237 const int BitsPerShort       = 1 << LogBitsPerShort;
 238 const int BitsPerInt         = 1 << LogBitsPerInt;
 239 const int BitsPerWord        = 1 << LogBitsPerWord;
 240 const int BitsPerLong        = 1 << LogBitsPerLong;
 241 
 242 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 243 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 244 
 245 const int WordsPerLong       = 2;       // Number of stack entries for longs
 246 
 247 const int oopSize            = sizeof(char*); // Full-width oop
 248 extern int heapOopSize;                       // Oop within a java object
 249 const int wordSize           = sizeof(char*);
 250 const int longSize           = sizeof(jlong);
 251 const int jintSize           = sizeof(jint);
 252 const int size_tSize         = sizeof(size_t);
 253 
 254 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 255 
 256 extern int LogBytesPerHeapOop;                // Oop within a java object
 257 extern int LogBitsPerHeapOop;
 258 extern int BytesPerHeapOop;
 259 extern int BitsPerHeapOop;
 260 
 261 const int BitsPerJavaInteger = 32;
 262 const int BitsPerJavaLong    = 64;
 263 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 264 
 265 // Size of a char[] needed to represent a jint as a string in decimal.
 266 const int jintAsStringSize = 12;
 267 
 268 // An opaque type, so that HeapWord* can be a generic pointer into the heap.
 269 // We require that object sizes be measured in units of heap words (e.g.
 270 // pointer-sized values), so that given HeapWord* hw,
 271 //   hw += oop(hw)->foo();
 272 // works, where foo is a method (like size or scavenge) that returns the
 273 // object size.
 274 class HeapWordImpl;             // Opaque, never defined.
 275 typedef HeapWordImpl* HeapWord;
 276 
 277 // Analogous opaque struct for metadata allocated from metaspaces.
 278 class MetaWordImpl;             // Opaque, never defined.
 279 typedef MetaWordImpl* MetaWord;
 280 
 281 // HeapWordSize must be 2^LogHeapWordSize.
 282 const int HeapWordSize        = sizeof(HeapWord);
 283 #ifdef _LP64
 284 const int LogHeapWordSize     = 3;
 285 #else
 286 const int LogHeapWordSize     = 2;
 287 #endif
 288 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 289 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 290 
 291 // The minimum number of native machine words necessary to contain "byte_size"
 292 // bytes.
 293 inline size_t heap_word_size(size_t byte_size) {
 294   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 295 }
 296 
 297 inline jfloat jfloat_cast(jint x);
 298 inline jdouble jdouble_cast(jlong x);
 299 
 300 //-------------------------------------------
 301 // Constant for jlong (standardized by C++11)
 302 
 303 // Build a 64bit integer constant
 304 #define CONST64(x)  (x ## LL)
 305 #define UCONST64(x) (x ## ULL)
 306 
 307 const jlong min_jlong = CONST64(0x8000000000000000);
 308 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 309 
 310 //-------------------------------------------
 311 // Constant for jdouble
 312 const jlong min_jlongDouble = CONST64(0x0000000000000001);
 313 const jdouble min_jdouble = jdouble_cast(min_jlongDouble);
 314 const jlong max_jlongDouble = CONST64(0x7fefffffffffffff);
 315 const jdouble max_jdouble = jdouble_cast(max_jlongDouble);
 316 
 317 const size_t K                  = 1024;
 318 const size_t M                  = K*K;
 319 const size_t G                  = M*K;
 320 const size_t HWperKB            = K / sizeof(HeapWord);
 321 
 322 // Constants for converting from a base unit to milli-base units.  For
 323 // example from seconds to milliseconds and microseconds
 324 
 325 const int MILLIUNITS    = 1000;         // milli units per base unit
 326 const int MICROUNITS    = 1000000;      // micro units per base unit
 327 const int NANOUNITS     = 1000000000;   // nano units per base unit
 328 const int NANOUNITS_PER_MILLIUNIT = NANOUNITS / MILLIUNITS;
 329 
 330 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 331 const jint  NANOSECS_PER_MILLISEC = 1000000;
 332 
 333 
 334 // Unit conversion functions
 335 // The caller is responsible for considering overflow.
 336 
 337 inline int64_t nanos_to_millis(int64_t nanos) {
 338   return nanos / NANOUNITS_PER_MILLIUNIT;
 339 }
 340 inline int64_t millis_to_nanos(int64_t millis) {
 341   return millis * NANOUNITS_PER_MILLIUNIT;
 342 }
 343 
 344 // Proper units routines try to maintain at least three significant digits.
 345 // In worst case, it would print five significant digits with lower prefix.
 346 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 347 // and therefore we need to be careful.
 348 
 349 inline const char* proper_unit_for_byte_size(size_t s) {
 350 #ifdef _LP64
 351   if (s >= 100*G) {
 352     return "G";
 353   }
 354 #endif
 355   if (s >= 100*M) {
 356     return "M";
 357   } else if (s >= 100*K) {
 358     return "K";
 359   } else {
 360     return "B";
 361   }
 362 }
 363 
 364 template <class T>
 365 inline T byte_size_in_proper_unit(T s) {
 366 #ifdef _LP64
 367   if (s >= 100*G) {
 368     return (T)(s/G);
 369   }
 370 #endif
 371   if (s >= 100*M) {
 372     return (T)(s/M);
 373   } else if (s >= 100*K) {
 374     return (T)(s/K);
 375   } else {
 376     return s;
 377   }
 378 }
 379 
 380 #define PROPERFMT             SIZE_FORMAT "%s"
 381 #define PROPERFMTARGS(s)      byte_size_in_proper_unit(s), proper_unit_for_byte_size(s)
 382 
 383 inline const char* exact_unit_for_byte_size(size_t s) {
 384 #ifdef _LP64
 385   if (s >= G && (s % G) == 0) {
 386     return "G";
 387   }
 388 #endif
 389   if (s >= M && (s % M) == 0) {
 390     return "M";
 391   }
 392   if (s >= K && (s % K) == 0) {
 393     return "K";
 394   }
 395   return "B";
 396 }
 397 
 398 inline size_t byte_size_in_exact_unit(size_t s) {
 399 #ifdef _LP64
 400   if (s >= G && (s % G) == 0) {
 401     return s / G;
 402   }
 403 #endif
 404   if (s >= M && (s % M) == 0) {
 405     return s / M;
 406   }
 407   if (s >= K && (s % K) == 0) {
 408     return s / K;
 409   }
 410   return s;
 411 }
 412 
 413 // Memory size transition formatting.
 414 
 415 #define HEAP_CHANGE_FORMAT "%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)->" SIZE_FORMAT "K(" SIZE_FORMAT "K)"
 416 
 417 #define HEAP_CHANGE_FORMAT_ARGS(_name_, _prev_used_, _prev_capacity_, _used_, _capacity_) \
 418   (_name_), (_prev_used_) / K, (_prev_capacity_) / K, (_used_) / K, (_capacity_) / K
 419 
 420 //----------------------------------------------------------------------------------------------------
 421 // VM type definitions
 422 
 423 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 424 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 425 
 426 typedef intptr_t  intx;
 427 typedef uintptr_t uintx;
 428 
 429 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 430 const intx  max_intx  = (uintx)min_intx - 1;
 431 const uintx max_uintx = (uintx)-1;
 432 
 433 // Table of values:
 434 //      sizeof intx         4               8
 435 // min_intx             0x80000000      0x8000000000000000
 436 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 437 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 438 
 439 typedef unsigned int uint;   NEEDS_CLEANUP
 440 
 441 
 442 //----------------------------------------------------------------------------------------------------
 443 // Java type definitions
 444 
 445 // All kinds of 'plain' byte addresses
 446 typedef   signed char s_char;
 447 typedef unsigned char u_char;
 448 typedef u_char*       address;
 449 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 450                                     // except for some implementations of a C++
 451                                     // linkage pointer to function. Should never
 452                                     // need one of those to be placed in this
 453                                     // type anyway.
 454 
 455 //  Utility functions to "portably" (?) bit twiddle pointers
 456 //  Where portable means keep ANSI C++ compilers quiet
 457 
 458 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 459 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 460 
 461 //  Utility functions to "portably" make cast to/from function pointers.
 462 
 463 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 464 inline address_word  castable_address(address x)              { return address_word(x) ; }
 465 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 466 
 467 // Pointer subtraction.
 468 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 469 // the range we might need to find differences from one end of the heap
 470 // to the other.
 471 // A typical use might be:
 472 //     if (pointer_delta(end(), top()) >= size) {
 473 //       // enough room for an object of size
 474 //       ...
 475 // and then additions like
 476 //       ... top() + size ...
 477 // are safe because we know that top() is at least size below end().
 478 inline size_t pointer_delta(const volatile void* left,
 479                             const volatile void* right,
 480                             size_t element_size) {
 481   assert(left >= right, "avoid underflow - left: " PTR_FORMAT " right: " PTR_FORMAT, p2i(left), p2i(right));
 482   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 483 }
 484 
 485 // A version specialized for HeapWord*'s.
 486 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 487   return pointer_delta(left, right, sizeof(HeapWord));
 488 }
 489 // A version specialized for MetaWord*'s.
 490 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 491   return pointer_delta(left, right, sizeof(MetaWord));
 492 }
 493 
 494 //
 495 // ANSI C++ does not allow casting from one pointer type to a function pointer
 496 // directly without at best a warning. This macro accomplishes it silently
 497 // In every case that is present at this point the value be cast is a pointer
 498 // to a C linkage function. In some case the type used for the cast reflects
 499 // that linkage and a picky compiler would not complain. In other cases because
 500 // there is no convenient place to place a typedef with extern C linkage (i.e
 501 // a platform dependent header file) it doesn't. At this point no compiler seems
 502 // picky enough to catch these instances (which are few). It is possible that
 503 // using templates could fix these for all cases. This use of templates is likely
 504 // so far from the middle of the road that it is likely to be problematic in
 505 // many C++ compilers.
 506 //
 507 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 508 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 509 
 510 // In many places we've added C-style casts to silence compiler
 511 // warnings, for example when truncating a size_t to an int when we
 512 // know the size_t is a small struct. Such casts are risky because
 513 // they effectively disable useful compiler warnings. We can make our
 514 // lives safer with this function, which ensures that any cast is
 515 // reversible without loss of information. It doesn't check
 516 // everything: it isn't intended to make sure that pointer types are
 517 // compatible, for example.
 518 template <typename T2, typename T1>
 519 T2 checked_cast(T1 thing) {
 520   T2 result = static_cast<T2>(thing);
 521   assert(static_cast<T1>(result) == thing, "must be");
 522   return result;
 523 }
 524 
 525 // Need the correct linkage to call qsort without warnings
 526 extern "C" {
 527   typedef int (*_sort_Fn)(const void *, const void *);
 528 }
 529 
 530 // Additional Java basic types
 531 
 532 typedef uint8_t  jubyte;
 533 typedef uint16_t jushort;
 534 typedef uint32_t juint;
 535 typedef uint64_t julong;
 536 
 537 // Unsigned byte types for os and stream.hpp
 538 
 539 // Unsigned one, two, four and eight byte quantities used for describing
 540 // the .class file format. See JVM book chapter 4.
 541 
 542 typedef jubyte  u1;
 543 typedef jushort u2;
 544 typedef juint   u4;
 545 typedef julong  u8;
 546 
 547 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 548 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 549 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 550 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 551 
 552 typedef jbyte  s1;
 553 typedef jshort s2;
 554 typedef jint   s4;
 555 typedef jlong  s8;
 556 
 557 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 558 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 559 const jshort min_jshort = -(1 << 15);    // smallest jshort
 560 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 561 
 562 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 563 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 564 
 565 const jint min_jintFloat = (jint)(0x00000001);
 566 const jfloat min_jfloat = jfloat_cast(min_jintFloat);
 567 const jint max_jintFloat = (jint)(0x7f7fffff);
 568 const jfloat max_jfloat = jfloat_cast(max_jintFloat);
 569 
 570 //----------------------------------------------------------------------------------------------------
 571 // JVM spec restrictions
 572 
 573 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 574 
 575 //----------------------------------------------------------------------------------------------------
 576 // old CDS options
 577 extern bool DumpSharedSpaces;
 578 extern bool DynamicDumpSharedSpaces;
 579 extern bool RequireSharedSpaces;
 580 extern "C" {
 581 // Make sure UseSharedSpaces is accessible to the serviceability agent.
 582 extern JNIEXPORT jboolean UseSharedSpaces;
 583 }
 584 
 585 //----------------------------------------------------------------------------------------------------
 586 // Object alignment, in units of HeapWords.
 587 //
 588 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 589 // reference fields can be naturally aligned.
 590 
 591 extern int MinObjAlignment;
 592 extern int MinObjAlignmentInBytes;
 593 extern int MinObjAlignmentInBytesMask;
 594 
 595 extern int LogMinObjAlignment;
 596 extern int LogMinObjAlignmentInBytes;
 597 
 598 const int LogKlassAlignmentInBytes = 3;
 599 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 600 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 601 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 602 
 603 // Maximal size of heap where unscaled compression can be used. Also upper bound
 604 // for heap placement: 4GB.
 605 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 606 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 607 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 608 extern uint64_t OopEncodingHeapMax;
 609 
 610 // Maximal size of compressed class space. Above this limit compression is not possible.
 611 // Also upper bound for placement of zero based class space. (Class space is further limited
 612 // to be < 3G, see arguments.cpp.)
 613 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 614 
 615 // Machine dependent stuff
 616 
 617 // The maximum size of the code cache.  Can be overridden by targets.
 618 #define CODE_CACHE_SIZE_LIMIT (2*G)
 619 // Allow targets to reduce the default size of the code cache.
 620 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 621 
 622 #include CPU_HEADER(globalDefinitions)
 623 
 624 // To assure the IRIW property on processors that are not multiple copy
 625 // atomic, sync instructions must be issued between volatile reads to
 626 // assure their ordering, instead of after volatile stores.
 627 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 628 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 629 #ifdef CPU_MULTI_COPY_ATOMIC
 630 // Not needed.
 631 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 632 #else
 633 // From all non-multi-copy-atomic architectures, only PPC64 supports IRIW at the moment.
 634 // Final decision is subject to JEP 188: Java Memory Model Update.
 635 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = PPC64_ONLY(true) NOT_PPC64(false);
 636 #endif
 637 
 638 // The expected size in bytes of a cache line, used to pad data structures.
 639 #ifndef DEFAULT_CACHE_LINE_SIZE
 640   #define DEFAULT_CACHE_LINE_SIZE 64
 641 #endif
 642 
 643 
 644 //----------------------------------------------------------------------------------------------------
 645 // Utility macros for compilers
 646 // used to silence compiler warnings
 647 
 648 #define Unused_Variable(var) var
 649 
 650 
 651 //----------------------------------------------------------------------------------------------------
 652 // Miscellaneous
 653 
 654 // 6302670 Eliminate Hotspot __fabsf dependency
 655 // All fabs() callers should call this function instead, which will implicitly
 656 // convert the operand to double, avoiding a dependency on __fabsf which
 657 // doesn't exist in early versions of Solaris 8.
 658 inline double fabsd(double value) {
 659   return fabs(value);
 660 }
 661 
 662 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 663 // is zero, return 0.0.
 664 template<typename T>
 665 inline double percent_of(T numerator, T denominator) {
 666   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 667 }
 668 
 669 //----------------------------------------------------------------------------------------------------
 670 // Special casts
 671 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 672 typedef union {
 673   jfloat f;
 674   jint i;
 675 } FloatIntConv;
 676 
 677 typedef union {
 678   jdouble d;
 679   jlong l;
 680   julong ul;
 681 } DoubleLongConv;
 682 
 683 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 684 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 685 
 686 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 687 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 688 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 689 
 690 inline jint low (jlong value)                    { return jint(value); }
 691 inline jint high(jlong value)                    { return jint(value >> 32); }
 692 
 693 // the fancy casts are a hopefully portable way
 694 // to do unsigned 32 to 64 bit type conversion
 695 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 696                                                    *value |= (jlong)(julong)(juint)low; }
 697 
 698 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 699                                                    *value |= (jlong)high       << 32; }
 700 
 701 inline jlong jlong_from(jint h, jint l) {
 702   jlong result = 0; // initialization to avoid warning
 703   set_high(&result, h);
 704   set_low(&result,  l);
 705   return result;
 706 }
 707 
 708 union jlong_accessor {
 709   jint  words[2];
 710   jlong long_value;
 711 };
 712 
 713 void basic_types_init(); // cannot define here; uses assert
 714 
 715 
 716 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 717 enum BasicType {
 718 // The values T_BOOLEAN..T_LONG (4..11) are derived from the JVMS.
 719   T_BOOLEAN     = JVM_T_BOOLEAN,
 720   T_CHAR        = JVM_T_CHAR,
 721   T_FLOAT       = JVM_T_FLOAT,
 722   T_DOUBLE      = JVM_T_DOUBLE,
 723   T_BYTE        = JVM_T_BYTE,
 724   T_SHORT       = JVM_T_SHORT,
 725   T_INT         = JVM_T_INT,
 726   T_LONG        = JVM_T_LONG,
 727   // The remaining values are not part of any standard.
 728   // T_OBJECT and T_VOID denote two more semantic choices
 729   // for method return values.
 730   // T_OBJECT and T_ARRAY describe signature syntax.
 731   // T_ADDRESS, T_METADATA, T_NARROWOOP, T_NARROWKLASS describe
 732   // internal references within the JVM as if they were Java
 733   // types in their own right.
 734   T_OBJECT      = 12,
 735   T_ARRAY       = 13,
 736   T_VOID        = 14,
 737   T_ADDRESS     = 15,
 738   T_NARROWOOP   = 16,
 739   T_METADATA    = 17,
 740   T_NARROWKLASS = 18,
 741   T_CONFLICT    = 19, // for stack value type with conflicting contents
 742   T_ILLEGAL     = 99
 743 };
 744 
 745 #define SIGNATURE_TYPES_DO(F, N)                \
 746     F(JVM_SIGNATURE_BOOLEAN, T_BOOLEAN, N)      \
 747     F(JVM_SIGNATURE_CHAR,    T_CHAR,    N)      \
 748     F(JVM_SIGNATURE_FLOAT,   T_FLOAT,   N)      \
 749     F(JVM_SIGNATURE_DOUBLE,  T_DOUBLE,  N)      \
 750     F(JVM_SIGNATURE_BYTE,    T_BYTE,    N)      \
 751     F(JVM_SIGNATURE_SHORT,   T_SHORT,   N)      \
 752     F(JVM_SIGNATURE_INT,     T_INT,     N)      \
 753     F(JVM_SIGNATURE_LONG,    T_LONG,    N)      \
 754     F(JVM_SIGNATURE_CLASS,   T_OBJECT,  N)      \
 755     F(JVM_SIGNATURE_ARRAY,   T_ARRAY,   N)      \
 756     F(JVM_SIGNATURE_VOID,    T_VOID,    N)      \
 757     /*end*/
 758 
 759 inline bool is_java_type(BasicType t) {
 760   return T_BOOLEAN <= t && t <= T_VOID;
 761 }
 762 
 763 inline bool is_java_primitive(BasicType t) {
 764   return T_BOOLEAN <= t && t <= T_LONG;
 765 }
 766 
 767 inline bool is_subword_type(BasicType t) {
 768   // these guys are processed exactly like T_INT in calling sequences:
 769   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 770 }
 771 
 772 inline bool is_signed_subword_type(BasicType t) {
 773   return (t == T_BYTE || t == T_SHORT);
 774 }
 775 
 776 inline bool is_unsigned_subword_type(BasicType t) {
 777   return (t == T_BOOLEAN || t == T_CHAR);
 778 }
 779 
 780 inline bool is_double_word_type(BasicType t) {
 781   return (t == T_DOUBLE || t == T_LONG);
 782 }
 783 
 784 inline bool is_reference_type(BasicType t, bool include_narrow_oop = false) {
 785   return (t == T_OBJECT || t == T_ARRAY || (include_narrow_oop && t == T_NARROWOOP));
 786 }
 787 
 788 inline bool is_integral_type(BasicType t) {
 789   return is_subword_type(t) || t == T_INT || t == T_LONG;
 790 }
 791 
 792 inline bool is_non_subword_integral_type(BasicType t) {
 793   return t == T_INT || t == T_LONG;
 794 }
 795 
 796 inline bool is_floating_point_type(BasicType t) {
 797   return (t == T_FLOAT || t == T_DOUBLE);
 798 }
 799 
 800 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 801 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 802 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 803 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a char*
 804 extern BasicType name2type(const char* name);
 805 
 806 const char* type2name(BasicType t);
 807 
 808 inline jlong max_signed_integer(BasicType bt) {
 809   if (bt == T_INT) {
 810     return max_jint;
 811   }
 812   assert(bt == T_LONG, "unsupported");
 813   return max_jlong;
 814 }
 815 
 816 inline jlong min_signed_integer(BasicType bt) {
 817   if (bt == T_INT) {
 818     return min_jint;
 819   }
 820   assert(bt == T_LONG, "unsupported");
 821   return min_jlong;
 822 }
 823 
 824 // Auxiliary math routines
 825 // least common multiple
 826 extern size_t lcm(size_t a, size_t b);
 827 
 828 
 829 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 830 enum BasicTypeSize {
 831   T_BOOLEAN_size     = 1,
 832   T_CHAR_size        = 1,
 833   T_FLOAT_size       = 1,
 834   T_DOUBLE_size      = 2,
 835   T_BYTE_size        = 1,
 836   T_SHORT_size       = 1,
 837   T_INT_size         = 1,
 838   T_LONG_size        = 2,
 839   T_OBJECT_size      = 1,
 840   T_ARRAY_size       = 1,
 841   T_NARROWOOP_size   = 1,
 842   T_NARROWKLASS_size = 1,
 843   T_VOID_size        = 0
 844 };
 845 
 846 // this works on valid parameter types but not T_VOID, T_CONFLICT, etc.
 847 inline int parameter_type_word_count(BasicType t) {
 848   if (is_double_word_type(t))  return 2;
 849   assert(is_java_primitive(t) || is_reference_type(t), "no goofy types here please");
 850   assert(type2size[t] == 1, "must be");
 851   return 1;
 852 }
 853 
 854 // maps a BasicType to its instance field storage type:
 855 // all sub-word integral types are widened to T_INT
 856 extern BasicType type2field[T_CONFLICT+1];
 857 extern BasicType type2wfield[T_CONFLICT+1];
 858 
 859 
 860 // size in bytes
 861 enum ArrayElementSize {
 862   T_BOOLEAN_aelem_bytes     = 1,
 863   T_CHAR_aelem_bytes        = 2,
 864   T_FLOAT_aelem_bytes       = 4,
 865   T_DOUBLE_aelem_bytes      = 8,
 866   T_BYTE_aelem_bytes        = 1,
 867   T_SHORT_aelem_bytes       = 2,
 868   T_INT_aelem_bytes         = 4,
 869   T_LONG_aelem_bytes        = 8,
 870 #ifdef _LP64
 871   T_OBJECT_aelem_bytes      = 8,
 872   T_ARRAY_aelem_bytes       = 8,
 873 #else
 874   T_OBJECT_aelem_bytes      = 4,
 875   T_ARRAY_aelem_bytes       = 4,
 876 #endif
 877   T_NARROWOOP_aelem_bytes   = 4,
 878   T_NARROWKLASS_aelem_bytes = 4,
 879   T_VOID_aelem_bytes        = 0
 880 };
 881 
 882 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 883 #ifdef ASSERT
 884 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 885 #else
 886 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 887 #endif
 888 
 889 inline bool same_type_or_subword_size(BasicType t1, BasicType t2) {
 890   return (t1 == t2) || (is_subword_type(t1) && type2aelembytes(t1) == type2aelembytes(t2));
 891 }
 892 
 893 // JavaValue serves as a container for arbitrary Java values.
 894 
 895 class JavaValue {
 896 
 897  public:
 898   typedef union JavaCallValue {
 899     jfloat   f;
 900     jdouble  d;
 901     jint     i;
 902     jlong    l;
 903     jobject  h;
 904     oopDesc* o;
 905   } JavaCallValue;
 906 
 907  private:
 908   BasicType _type;
 909   JavaCallValue _value;
 910 
 911  public:
 912   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 913 
 914   JavaValue(jfloat value) {
 915     _type    = T_FLOAT;
 916     _value.f = value;
 917   }
 918 
 919   JavaValue(jdouble value) {
 920     _type    = T_DOUBLE;
 921     _value.d = value;
 922   }
 923 
 924  jfloat get_jfloat() const { return _value.f; }
 925  jdouble get_jdouble() const { return _value.d; }
 926  jint get_jint() const { return _value.i; }
 927  jlong get_jlong() const { return _value.l; }
 928  jobject get_jobject() const { return _value.h; }
 929  oopDesc* get_oop() const { return _value.o; }
 930  JavaCallValue* get_value_addr() { return &_value; }
 931  BasicType get_type() const { return _type; }
 932 
 933  void set_jfloat(jfloat f) { _value.f = f;}
 934  void set_jdouble(jdouble d) { _value.d = d;}
 935  void set_jint(jint i) { _value.i = i;}
 936  void set_jlong(jlong l) { _value.l = l;}
 937  void set_jobject(jobject h) { _value.h = h;}
 938  void set_oop(oopDesc* o) { _value.o = o;}
 939  void set_type(BasicType t) { _type = t; }
 940 
 941  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 942  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 943  jchar get_jchar() const { return (jchar) (_value.i);}
 944  jshort get_jshort() const { return (jshort) (_value.i);}
 945 
 946 };
 947 
 948 
 949 // TosState describes the top-of-stack state before and after the execution of
 950 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 951 // registers. The TosState corresponds to the 'machine representation' of this cached
 952 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 953 // as well as a 5th state in case the top-of-stack value is actually on the top
 954 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 955 // state when it comes to machine representation but is used separately for (oop)
 956 // type specific operations (e.g. verification code).
 957 
 958 enum TosState {         // describes the tos cache contents
 959   btos = 0,             // byte, bool tos cached
 960   ztos = 1,             // byte, bool tos cached
 961   ctos = 2,             // char tos cached
 962   stos = 3,             // short tos cached
 963   itos = 4,             // int tos cached
 964   ltos = 5,             // long tos cached
 965   ftos = 6,             // float tos cached
 966   dtos = 7,             // double tos cached
 967   atos = 8,             // object cached
 968   vtos = 9,             // tos not cached
 969   number_of_states,
 970   ilgl                  // illegal state: should not occur
 971 };
 972 
 973 
 974 inline TosState as_TosState(BasicType type) {
 975   switch (type) {
 976     case T_BYTE   : return btos;
 977     case T_BOOLEAN: return ztos;
 978     case T_CHAR   : return ctos;
 979     case T_SHORT  : return stos;
 980     case T_INT    : return itos;
 981     case T_LONG   : return ltos;
 982     case T_FLOAT  : return ftos;
 983     case T_DOUBLE : return dtos;
 984     case T_VOID   : return vtos;
 985     case T_ARRAY  : // fall through
 986     case T_OBJECT : return atos;
 987     default       : return ilgl;
 988   }
 989 }
 990 
 991 inline BasicType as_BasicType(TosState state) {
 992   switch (state) {
 993     case btos : return T_BYTE;
 994     case ztos : return T_BOOLEAN;
 995     case ctos : return T_CHAR;
 996     case stos : return T_SHORT;
 997     case itos : return T_INT;
 998     case ltos : return T_LONG;
 999     case ftos : return T_FLOAT;
1000     case dtos : return T_DOUBLE;
1001     case atos : return T_OBJECT;
1002     case vtos : return T_VOID;
1003     default   : return T_ILLEGAL;
1004   }
1005 }
1006 
1007 
1008 // Helper function to convert BasicType info into TosState
1009 // Note: Cannot define here as it uses global constant at the time being.
1010 TosState as_TosState(BasicType type);
1011 
1012 
1013 // JavaThreadState keeps track of which part of the code a thread is executing in. This
1014 // information is needed by the safepoint code.
1015 //
1016 // There are 4 essential states:
1017 //
1018 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
1019 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
1020 //  _thread_in_vm       : Executing in the vm
1021 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
1022 //
1023 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
1024 // a transition from one state to another. These extra states makes it possible for the safepoint code to
1025 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
1026 //
1027 // Given a state, the xxxx_trans state can always be found by adding 1.
1028 //
1029 enum JavaThreadState {
1030   _thread_uninitialized     =  0, // should never happen (missing initialization)
1031   _thread_new               =  2, // just starting up, i.e., in process of being initialized
1032   _thread_new_trans         =  3, // corresponding transition state (not used, included for completeness)
1033   _thread_in_native         =  4, // running in native code
1034   _thread_in_native_trans   =  5, // corresponding transition state
1035   _thread_in_vm             =  6, // running in VM
1036   _thread_in_vm_trans       =  7, // corresponding transition state
1037   _thread_in_Java           =  8, // running in Java or in stub code
1038   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completeness)
1039   _thread_blocked           = 10, // blocked in vm
1040   _thread_blocked_trans     = 11, // corresponding transition state
1041   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
1042 };
1043 
1044 //----------------------------------------------------------------------------------------------------
1045 // Special constants for debugging
1046 
1047 const jint     badInt           = -3;                       // generic "bad int" value
1048 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
1049 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
1050 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1051 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
1052 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1053 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1054 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1055 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1056 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
1057 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1058 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1059 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1060 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1061 
1062 
1063 // (These must be implemented as #defines because C++ compilers are
1064 // not obligated to inline non-integral constants!)
1065 #define       badAddress        ((address)::badAddressVal)
1066 #define       badHeapWord       (::badHeapWordVal)
1067 
1068 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1069 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1070 
1071 //----------------------------------------------------------------------------------------------------
1072 // Utility functions for bitfield manipulations
1073 
1074 const intptr_t AllBits    = ~0; // all bits set in a word
1075 const intptr_t NoBits     =  0; // no bits set in a word
1076 const jlong    NoLongBits =  0; // no bits set in a long
1077 const intptr_t OneBit     =  1; // only right_most bit set in a word
1078 
1079 // get a word with the n.th or the right-most or left-most n bits set
1080 // (note: #define used only so that they can be used in enum constant definitions)
1081 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
1082 #define right_n_bits(n)   (nth_bit(n) - 1)
1083 
1084 // bit-operations using a mask m
1085 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1086 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1087 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1088 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1089 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1090 
1091 // bit-operations using the n.th bit
1092 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1093 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1094 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1095 
1096 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1097 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1098   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1099 }
1100 
1101 
1102 //----------------------------------------------------------------------------------------------------
1103 // Utility functions for integers
1104 
1105 // Avoid use of global min/max macros which may cause unwanted double
1106 // evaluation of arguments.
1107 #ifdef max
1108 #undef max
1109 #endif
1110 
1111 #ifdef min
1112 #undef min
1113 #endif
1114 
1115 // It is necessary to use templates here. Having normal overloaded
1116 // functions does not work because it is necessary to provide both 32-
1117 // and 64-bit overloaded functions, which does not work, and having
1118 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1119 // will be even more error-prone than macros.
1120 template<class T> constexpr T MAX2(T a, T b)           { return (a > b) ? a : b; }
1121 template<class T> constexpr T MIN2(T a, T b)           { return (a < b) ? a : b; }
1122 template<class T> constexpr T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1123 template<class T> constexpr T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1124 template<class T> constexpr T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1125 template<class T> constexpr T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1126 
1127 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1128 
1129 // Return the given value clamped to the range [min ... max]
1130 template<typename T>
1131 inline T clamp(T value, T min, T max) {
1132   assert(min <= max, "must be");
1133   return MIN2(MAX2(value, min), max);
1134 }
1135 
1136 inline bool is_odd (intx x) { return x & 1;      }
1137 inline bool is_even(intx x) { return !is_odd(x); }
1138 
1139 // abs methods which cannot overflow and so are well-defined across
1140 // the entire domain of integer types.
1141 static inline unsigned int uabs(unsigned int n) {
1142   union {
1143     unsigned int result;
1144     int value;
1145   };
1146   result = n;
1147   if (value < 0) result = 0-result;
1148   return result;
1149 }
1150 static inline julong uabs(julong n) {
1151   union {
1152     julong result;
1153     jlong value;
1154   };
1155   result = n;
1156   if (value < 0) result = 0-result;
1157   return result;
1158 }
1159 static inline julong uabs(jlong n) { return uabs((julong)n); }
1160 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1161 
1162 // "to" should be greater than "from."
1163 inline intx byte_size(void* from, void* to) {
1164   return (address)to - (address)from;
1165 }
1166 
1167 // Pack and extract shorts to/from ints:
1168 
1169 inline int extract_low_short_from_int(jint x) {
1170   return x & 0xffff;
1171 }
1172 
1173 inline int extract_high_short_from_int(jint x) {
1174   return (x >> 16) & 0xffff;
1175 }
1176 
1177 inline int build_int_from_shorts( jushort low, jushort high ) {
1178   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1179 }
1180 
1181 // swap a & b
1182 template<class T> static void swap(T& a, T& b) {
1183   T tmp = a;
1184   a = b;
1185   b = tmp;
1186 }
1187 
1188 // array_size_impl is a function that takes a reference to T[N] and
1189 // returns a reference to char[N].  It is not ODR-used, so not defined.
1190 template<typename T, size_t N> char (&array_size_impl(T (&)[N]))[N];
1191 
1192 #define ARRAY_SIZE(array) sizeof(array_size_impl(array))
1193 
1194 //----------------------------------------------------------------------------------------------------
1195 // Sum and product which can never overflow: they wrap, just like the
1196 // Java operations.  Note that we don't intend these to be used for
1197 // general-purpose arithmetic: their purpose is to emulate Java
1198 // operations.
1199 
1200 // The goal of this code to avoid undefined or implementation-defined
1201 // behavior.  The use of an lvalue to reference cast is explicitly
1202 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1203 // 15 in C++03]
1204 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1205 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1206   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1207   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1208   return reinterpret_cast<TYPE&>(ures);                 \
1209 }
1210 
1211 JAVA_INTEGER_OP(+, java_add, jint, juint)
1212 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1213 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1214 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1215 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1216 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1217 
1218 #undef JAVA_INTEGER_OP
1219 
1220 // Provide integer shift operations with Java semantics.  No overflow
1221 // issues - left shifts simply discard shifted out bits.  No undefined
1222 // behavior for large or negative shift quantities; instead the actual
1223 // shift distance is the argument modulo the lhs value's size in bits.
1224 // No undefined or implementation defined behavior for shifting negative
1225 // values; left shift discards bits, right shift sign extends.  We use
1226 // the same safe conversion technique as above for java_add and friends.
1227 #define JAVA_INTEGER_SHIFT_OP(OP, NAME, TYPE, XTYPE)    \
1228 inline TYPE NAME (TYPE lhs, jint rhs) {                 \
1229   const uint rhs_mask = (sizeof(TYPE) * 8) - 1;         \
1230   STATIC_ASSERT(rhs_mask == 31 || rhs_mask == 63);      \
1231   XTYPE xres = static_cast<XTYPE>(lhs);                 \
1232   xres OP ## = (rhs & rhs_mask);                        \
1233   return reinterpret_cast<TYPE&>(xres);                 \
1234 }
1235 
1236 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jint, juint)
1237 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jlong, julong)
1238 // For signed shift right, assume C++ implementation >> sign extends.
1239 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jint, jint)
1240 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jlong, jlong)
1241 // For >>> use C++ unsigned >>.
1242 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jint, juint)
1243 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jlong, julong)
1244 
1245 #undef JAVA_INTEGER_SHIFT_OP
1246 
1247 //----------------------------------------------------------------------------------------------------
1248 // The goal of this code is to provide saturating operations for int/uint.
1249 // Checks overflow conditions and saturates the result to min_jint/max_jint.
1250 #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \
1251 inline int NAME (TYPE1 in1, TYPE2 in2) {             \
1252   jlong res = static_cast<jlong>(in1);               \
1253   res OP ## = static_cast<jlong>(in2);               \
1254   if (res > max_jint) {                              \
1255     res = max_jint;                                  \
1256   } else if (res < min_jint) {                       \
1257     res = min_jint;                                  \
1258   }                                                  \
1259   return static_cast<int>(res);                      \
1260 }
1261 
1262 SATURATED_INTEGER_OP(+, saturated_add, int, int)
1263 SATURATED_INTEGER_OP(+, saturated_add, int, uint)
1264 SATURATED_INTEGER_OP(+, saturated_add, uint, int)
1265 SATURATED_INTEGER_OP(+, saturated_add, uint, uint)
1266 
1267 #undef SATURATED_INTEGER_OP
1268 
1269 // Dereference vptr
1270 // All C++ compilers that we know of have the vtbl pointer in the first
1271 // word.  If there are exceptions, this function needs to be made compiler
1272 // specific.
1273 static inline void* dereference_vptr(const void* addr) {
1274   return *(void**)addr;
1275 }
1276 
1277 //----------------------------------------------------------------------------------------------------
1278 // String type aliases used by command line flag declarations and
1279 // processing utilities.
1280 
1281 typedef const char* ccstr;
1282 typedef const char* ccstrlist;   // represents string arguments which accumulate
1283 
1284 //----------------------------------------------------------------------------------------------------
1285 // Default hash/equals functions used by ResourceHashtable
1286 
1287 template<typename K> unsigned primitive_hash(const K& k) {
1288   unsigned hash = (unsigned)((uintptr_t)k);
1289   return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs
1290 }
1291 
1292 template<typename K> bool primitive_equals(const K& k0, const K& k1) {
1293   return k0 == k1;
1294 }
1295 
1296 //----------------------------------------------------------------------------------------------------
1297 
1298 // Allow use of C++ thread_local when approved - see JDK-8282469.
1299 #define APPROVED_CPP_THREAD_LOCAL thread_local
1300 
1301 // Converts any type T to a reference type.
1302 template<typename T>
1303 std::add_rvalue_reference_t<T> declval() noexcept;
1304 
1305 #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP