1 /* 2 * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP 26 #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP 27 28 #include "utilities/compilerWarnings.hpp" 29 #include "utilities/debug.hpp" 30 #include "utilities/macros.hpp" 31 32 // Get constants like JVM_T_CHAR and JVM_SIGNATURE_INT, before pulling in <jvm.h>. 33 #include "classfile_constants.h" 34 35 #include COMPILER_HEADER(utilities/globalDefinitions) 36 37 #include <cstddef> 38 #include <cstdint> 39 #include <type_traits> 40 41 class oopDesc; 42 43 // Defaults for macros that might be defined per compiler. 44 #ifndef NOINLINE 45 #define NOINLINE 46 #endif 47 #ifndef ALWAYSINLINE 48 #define ALWAYSINLINE inline 49 #endif 50 51 #ifndef ATTRIBUTE_ALIGNED 52 #define ATTRIBUTE_ALIGNED(x) 53 #endif 54 55 #ifndef ATTRIBUTE_FLATTEN 56 #define ATTRIBUTE_FLATTEN 57 #endif 58 59 // These are #defines to selectively turn on/off the Print(Opto)Assembly 60 // capabilities. Choices should be led by a tradeoff between 61 // code size and improved supportability. 62 // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well 63 // to have a fallback in case hsdis is not available. 64 #if defined(PRODUCT) 65 #define SUPPORT_ABSTRACT_ASSEMBLY 66 #define SUPPORT_ASSEMBLY 67 #undef SUPPORT_OPTO_ASSEMBLY // Can't activate. In PRODUCT, many dump methods are missing. 68 #undef SUPPORT_DATA_STRUCTS // Of limited use. In PRODUCT, many print methods are empty. 69 #else 70 #define SUPPORT_ABSTRACT_ASSEMBLY 71 #define SUPPORT_ASSEMBLY 72 #define SUPPORT_OPTO_ASSEMBLY 73 #define SUPPORT_DATA_STRUCTS 74 #endif 75 #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY) 76 #define SUPPORT_ABSTRACT_ASSEMBLY 77 #endif 78 79 // This file holds all globally used constants & types, class (forward) 80 // declarations and a few frequently used utility functions. 81 82 // Declare the named class to be noncopyable. This macro must be followed by 83 // a semi-colon. The macro provides deleted declarations for the class's copy 84 // constructor and assignment operator. Because these operations are deleted, 85 // they cannot be defined and potential callers will fail to compile. 86 #define NONCOPYABLE(C) C(C const&) = delete; C& operator=(C const&) = delete /* next token must be ; */ 87 88 89 //---------------------------------------------------------------------------------------------------- 90 // Printf-style formatters for fixed- and variable-width types as pointers and 91 // integers. These are derived from the definitions in inttypes.h. If the platform 92 // doesn't provide appropriate definitions, they should be provided in 93 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp) 94 95 // Guide to the suffixes used in the format specifiers for integers: 96 // - print the decimal value: 745565 97 // _X - print as hexadecimal, without leading 0s: 0x12345 98 // _X_0 - print as hexadecimal, with leading 0s: 0x00012345 99 // _W(w) - prints w sized string with the given value right 100 // adjusted. Use -w to print left adjusted. 101 // 102 // Note that the PTR format specifiers print using 0x with leading zeros, 103 // just like the _X_0 version for integers. 104 105 // Format 8-bit quantities. 106 #define INT8_FORMAT_X_0 "0x%02" PRIx8 107 #define UINT8_FORMAT_X_0 "0x%02" PRIx8 108 109 // Format 16-bit quantities. 110 #define INT16_FORMAT_X_0 "0x%04" PRIx16 111 #define UINT16_FORMAT_X_0 "0x%04" PRIx16 112 113 // Format 32-bit quantities. 114 #define INT32_FORMAT "%" PRId32 115 #define INT32_FORMAT_X "0x%" PRIx32 116 #define INT32_FORMAT_X_0 "0x%08" PRIx32 117 #define INT32_FORMAT_W(width) "%" #width PRId32 118 #define UINT32_FORMAT "%" PRIu32 119 #define UINT32_FORMAT_X "0x%" PRIx32 120 #define UINT32_FORMAT_X_0 "0x%08" PRIx32 121 #define UINT32_FORMAT_W(width) "%" #width PRIu32 122 123 // Format 64-bit quantities. 124 #define INT64_FORMAT "%" PRId64 125 #define INT64_PLUS_FORMAT "%+" PRId64 126 #define INT64_FORMAT_X "0x%" PRIx64 127 #define INT64_FORMAT_X_0 "0x%016" PRIx64 128 #define INT64_FORMAT_W(width) "%" #width PRId64 129 #define UINT64_FORMAT "%" PRIu64 130 #define UINT64_FORMAT_X "0x%" PRIx64 131 #define UINT64_FORMAT_X_0 "0x%016" PRIx64 132 #define UINT64_FORMAT_W(width) "%" #width PRIu64 133 134 // Format integers which change size between 32- and 64-bit. 135 #define SSIZE_FORMAT "%" PRIdPTR 136 #define SSIZE_PLUS_FORMAT "%+" PRIdPTR 137 #define SSIZE_FORMAT_W(width) "%" #width PRIdPTR 138 #define SIZE_FORMAT "%" PRIuPTR 139 #define SIZE_FORMAT_X "0x%" PRIxPTR 140 #ifdef _LP64 141 #define SIZE_FORMAT_X_0 "0x%016" PRIxPTR 142 #else 143 #define SIZE_FORMAT_X_0 "0x%08" PRIxPTR 144 #endif 145 #define SIZE_FORMAT_W(width) "%" #width PRIuPTR 146 147 #define INTX_FORMAT "%" PRIdPTR 148 #define INTX_FORMAT_X "0x%" PRIxPTR 149 #define INTX_FORMAT_W(width) "%" #width PRIdPTR 150 #define UINTX_FORMAT "%" PRIuPTR 151 #define UINTX_FORMAT_X "0x%" PRIxPTR 152 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR 153 154 // Format jlong, if necessary 155 #ifndef JLONG_FORMAT 156 #define JLONG_FORMAT INT64_FORMAT 157 #endif 158 #ifndef JLONG_FORMAT_W 159 #define JLONG_FORMAT_W(width) INT64_FORMAT_W(width) 160 #endif 161 #ifndef JULONG_FORMAT 162 #define JULONG_FORMAT UINT64_FORMAT 163 #endif 164 #ifndef JULONG_FORMAT_X 165 #define JULONG_FORMAT_X UINT64_FORMAT_X 166 #endif 167 168 // Format pointers which change size between 32- and 64-bit. 169 #ifdef _LP64 170 #define INTPTR_FORMAT "0x%016" PRIxPTR 171 #define PTR_FORMAT "0x%016" PRIxPTR 172 #else // !_LP64 173 #define INTPTR_FORMAT "0x%08" PRIxPTR 174 #define PTR_FORMAT "0x%08" PRIxPTR 175 #endif // _LP64 176 177 // Convert pointer to intptr_t, for use in printing pointers. 178 inline intptr_t p2i(const volatile void* p) { 179 return (intptr_t) p; 180 } 181 182 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false") 183 184 //---------------------------------------------------------------------------------------------------- 185 // Forbid the use of various C library functions. 186 // Some of these have os:: replacements that should normally be used instead. 187 // Others are considered security concerns, with preferred alternatives. 188 189 FORBID_C_FUNCTION(void exit(int), "use os::exit"); 190 FORBID_C_FUNCTION(void _exit(int), "use os::exit"); 191 FORBID_C_FUNCTION(char* strerror(int), "use os::strerror"); 192 FORBID_C_FUNCTION(char* strtok(char*, const char*), "use strtok_r"); 193 FORBID_C_FUNCTION(int sprintf(char*, const char*, ...), "use os::snprintf"); 194 FORBID_C_FUNCTION(int vsprintf(char*, const char*, va_list), "use os::vsnprintf"); 195 FORBID_C_FUNCTION(int vsnprintf(char*, size_t, const char*, va_list), "use os::vsnprintf"); 196 197 // All of the following functions return raw C-heap pointers (sometimes as an option, e.g. realpath or getwd) 198 // or, in case of free(), take raw C-heap pointers. Don't use them unless you are really sure you must. 199 FORBID_C_FUNCTION(void* malloc(size_t size), "use os::malloc"); 200 FORBID_C_FUNCTION(void* calloc(size_t nmemb, size_t size), "use os::malloc and zero out manually"); 201 FORBID_C_FUNCTION(void free(void *ptr), "use os::free"); 202 FORBID_C_FUNCTION(void* realloc(void *ptr, size_t size), "use os::realloc"); 203 FORBID_C_FUNCTION(char* strdup(const char *s), "use os::strdup"); 204 FORBID_C_FUNCTION(char* strndup(const char *s, size_t n), "don't use"); 205 FORBID_C_FUNCTION(int posix_memalign(void **memptr, size_t alignment, size_t size), "don't use"); 206 FORBID_C_FUNCTION(void* aligned_alloc(size_t alignment, size_t size), "don't use"); 207 FORBID_C_FUNCTION(char* realpath(const char* path, char* resolved_path), "use os::Posix::realpath"); 208 FORBID_C_FUNCTION(char* get_current_dir_name(void), "use os::get_current_directory()"); 209 FORBID_C_FUNCTION(char* getwd(char *buf), "use os::get_current_directory()"); 210 FORBID_C_FUNCTION(wchar_t* wcsdup(const wchar_t *s), "don't use"); 211 FORBID_C_FUNCTION(void* reallocf(void *ptr, size_t size), "don't use"); 212 213 //---------------------------------------------------------------------------------------------------- 214 // Constants 215 216 const int LogBytesPerShort = 1; 217 const int LogBytesPerInt = 2; 218 #ifdef _LP64 219 const int LogBytesPerWord = 3; 220 #else 221 const int LogBytesPerWord = 2; 222 #endif 223 const int LogBytesPerLong = 3; 224 225 const int BytesPerShort = 1 << LogBytesPerShort; 226 const int BytesPerInt = 1 << LogBytesPerInt; 227 const int BytesPerWord = 1 << LogBytesPerWord; 228 const int BytesPerLong = 1 << LogBytesPerLong; 229 230 const int LogBitsPerByte = 3; 231 const int LogBitsPerShort = LogBitsPerByte + LogBytesPerShort; 232 const int LogBitsPerInt = LogBitsPerByte + LogBytesPerInt; 233 const int LogBitsPerWord = LogBitsPerByte + LogBytesPerWord; 234 const int LogBitsPerLong = LogBitsPerByte + LogBytesPerLong; 235 236 const int BitsPerByte = 1 << LogBitsPerByte; 237 const int BitsPerShort = 1 << LogBitsPerShort; 238 const int BitsPerInt = 1 << LogBitsPerInt; 239 const int BitsPerWord = 1 << LogBitsPerWord; 240 const int BitsPerLong = 1 << LogBitsPerLong; 241 242 const int WordAlignmentMask = (1 << LogBytesPerWord) - 1; 243 const int LongAlignmentMask = (1 << LogBytesPerLong) - 1; 244 245 const int WordsPerLong = 2; // Number of stack entries for longs 246 247 const int oopSize = sizeof(char*); // Full-width oop 248 extern int heapOopSize; // Oop within a java object 249 const int wordSize = sizeof(char*); 250 const int longSize = sizeof(jlong); 251 const int jintSize = sizeof(jint); 252 const int size_tSize = sizeof(size_t); 253 254 const int BytesPerOop = BytesPerWord; // Full-width oop 255 256 extern int LogBytesPerHeapOop; // Oop within a java object 257 extern int LogBitsPerHeapOop; 258 extern int BytesPerHeapOop; 259 extern int BitsPerHeapOop; 260 261 const int BitsPerJavaInteger = 32; 262 const int BitsPerJavaLong = 64; 263 const int BitsPerSize_t = size_tSize * BitsPerByte; 264 265 // Size of a char[] needed to represent a jint as a string in decimal. 266 const int jintAsStringSize = 12; 267 268 // An opaque type, so that HeapWord* can be a generic pointer into the heap. 269 // We require that object sizes be measured in units of heap words (e.g. 270 // pointer-sized values), so that given HeapWord* hw, 271 // hw += oop(hw)->foo(); 272 // works, where foo is a method (like size or scavenge) that returns the 273 // object size. 274 class HeapWordImpl; // Opaque, never defined. 275 typedef HeapWordImpl* HeapWord; 276 277 // Analogous opaque struct for metadata allocated from metaspaces. 278 class MetaWordImpl; // Opaque, never defined. 279 typedef MetaWordImpl* MetaWord; 280 281 // HeapWordSize must be 2^LogHeapWordSize. 282 const int HeapWordSize = sizeof(HeapWord); 283 #ifdef _LP64 284 const int LogHeapWordSize = 3; 285 #else 286 const int LogHeapWordSize = 2; 287 #endif 288 const int HeapWordsPerLong = BytesPerLong / HeapWordSize; 289 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize; 290 291 // The minimum number of native machine words necessary to contain "byte_size" 292 // bytes. 293 inline size_t heap_word_size(size_t byte_size) { 294 return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize; 295 } 296 297 inline jfloat jfloat_cast(jint x); 298 inline jdouble jdouble_cast(jlong x); 299 300 //------------------------------------------- 301 // Constant for jlong (standardized by C++11) 302 303 // Build a 64bit integer constant 304 #define CONST64(x) (x ## LL) 305 #define UCONST64(x) (x ## ULL) 306 307 const jlong min_jlong = CONST64(0x8000000000000000); 308 const jlong max_jlong = CONST64(0x7fffffffffffffff); 309 310 //------------------------------------------- 311 // Constant for jdouble 312 const jlong min_jlongDouble = CONST64(0x0000000000000001); 313 const jdouble min_jdouble = jdouble_cast(min_jlongDouble); 314 const jlong max_jlongDouble = CONST64(0x7fefffffffffffff); 315 const jdouble max_jdouble = jdouble_cast(max_jlongDouble); 316 317 const size_t K = 1024; 318 const size_t M = K*K; 319 const size_t G = M*K; 320 const size_t HWperKB = K / sizeof(HeapWord); 321 322 // Constants for converting from a base unit to milli-base units. For 323 // example from seconds to milliseconds and microseconds 324 325 const int MILLIUNITS = 1000; // milli units per base unit 326 const int MICROUNITS = 1000000; // micro units per base unit 327 const int NANOUNITS = 1000000000; // nano units per base unit 328 const int NANOUNITS_PER_MILLIUNIT = NANOUNITS / MILLIUNITS; 329 330 const jlong NANOSECS_PER_SEC = CONST64(1000000000); 331 const jint NANOSECS_PER_MILLISEC = 1000000; 332 333 334 // Unit conversion functions 335 // The caller is responsible for considering overflow. 336 337 inline int64_t nanos_to_millis(int64_t nanos) { 338 return nanos / NANOUNITS_PER_MILLIUNIT; 339 } 340 inline int64_t millis_to_nanos(int64_t millis) { 341 return millis * NANOUNITS_PER_MILLIUNIT; 342 } 343 344 // Proper units routines try to maintain at least three significant digits. 345 // In worst case, it would print five significant digits with lower prefix. 346 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow, 347 // and therefore we need to be careful. 348 349 inline const char* proper_unit_for_byte_size(size_t s) { 350 #ifdef _LP64 351 if (s >= 100*G) { 352 return "G"; 353 } 354 #endif 355 if (s >= 100*M) { 356 return "M"; 357 } else if (s >= 100*K) { 358 return "K"; 359 } else { 360 return "B"; 361 } 362 } 363 364 template <class T> 365 inline T byte_size_in_proper_unit(T s) { 366 #ifdef _LP64 367 if (s >= 100*G) { 368 return (T)(s/G); 369 } 370 #endif 371 if (s >= 100*M) { 372 return (T)(s/M); 373 } else if (s >= 100*K) { 374 return (T)(s/K); 375 } else { 376 return s; 377 } 378 } 379 380 #define PROPERFMT SIZE_FORMAT "%s" 381 #define PROPERFMTARGS(s) byte_size_in_proper_unit(s), proper_unit_for_byte_size(s) 382 383 inline const char* exact_unit_for_byte_size(size_t s) { 384 #ifdef _LP64 385 if (s >= G && (s % G) == 0) { 386 return "G"; 387 } 388 #endif 389 if (s >= M && (s % M) == 0) { 390 return "M"; 391 } 392 if (s >= K && (s % K) == 0) { 393 return "K"; 394 } 395 return "B"; 396 } 397 398 inline size_t byte_size_in_exact_unit(size_t s) { 399 #ifdef _LP64 400 if (s >= G && (s % G) == 0) { 401 return s / G; 402 } 403 #endif 404 if (s >= M && (s % M) == 0) { 405 return s / M; 406 } 407 if (s >= K && (s % K) == 0) { 408 return s / K; 409 } 410 return s; 411 } 412 413 // Memory size transition formatting. 414 415 #define HEAP_CHANGE_FORMAT "%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)->" SIZE_FORMAT "K(" SIZE_FORMAT "K)" 416 417 #define HEAP_CHANGE_FORMAT_ARGS(_name_, _prev_used_, _prev_capacity_, _used_, _capacity_) \ 418 (_name_), (_prev_used_) / K, (_prev_capacity_) / K, (_used_) / K, (_capacity_) / K 419 420 //---------------------------------------------------------------------------------------------------- 421 // VM type definitions 422 423 // intx and uintx are the 'extended' int and 'extended' unsigned int types; 424 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform. 425 426 typedef intptr_t intx; 427 typedef uintptr_t uintx; 428 429 const intx min_intx = (intx)1 << (sizeof(intx)*BitsPerByte-1); 430 const intx max_intx = (uintx)min_intx - 1; 431 const uintx max_uintx = (uintx)-1; 432 433 // Table of values: 434 // sizeof intx 4 8 435 // min_intx 0x80000000 0x8000000000000000 436 // max_intx 0x7FFFFFFF 0x7FFFFFFFFFFFFFFF 437 // max_uintx 0xFFFFFFFF 0xFFFFFFFFFFFFFFFF 438 439 typedef unsigned int uint; NEEDS_CLEANUP 440 441 442 //---------------------------------------------------------------------------------------------------- 443 // Java type definitions 444 445 // All kinds of 'plain' byte addresses 446 typedef signed char s_char; 447 typedef unsigned char u_char; 448 typedef u_char* address; 449 typedef uintptr_t address_word; // unsigned integer which will hold a pointer 450 // except for some implementations of a C++ 451 // linkage pointer to function. Should never 452 // need one of those to be placed in this 453 // type anyway. 454 455 // Utility functions to "portably" (?) bit twiddle pointers 456 // Where portable means keep ANSI C++ compilers quiet 457 458 inline address set_address_bits(address x, int m) { return address(intptr_t(x) | m); } 459 inline address clear_address_bits(address x, int m) { return address(intptr_t(x) & ~m); } 460 461 // Utility functions to "portably" make cast to/from function pointers. 462 463 inline address_word mask_address_bits(address x, int m) { return address_word(x) & m; } 464 inline address_word castable_address(address x) { return address_word(x) ; } 465 inline address_word castable_address(void* x) { return address_word(x) ; } 466 467 // Pointer subtraction. 468 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have 469 // the range we might need to find differences from one end of the heap 470 // to the other. 471 // A typical use might be: 472 // if (pointer_delta(end(), top()) >= size) { 473 // // enough room for an object of size 474 // ... 475 // and then additions like 476 // ... top() + size ... 477 // are safe because we know that top() is at least size below end(). 478 inline size_t pointer_delta(const volatile void* left, 479 const volatile void* right, 480 size_t element_size) { 481 assert(left >= right, "avoid underflow - left: " PTR_FORMAT " right: " PTR_FORMAT, p2i(left), p2i(right)); 482 return (((uintptr_t) left) - ((uintptr_t) right)) / element_size; 483 } 484 485 // A version specialized for HeapWord*'s. 486 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) { 487 return pointer_delta(left, right, sizeof(HeapWord)); 488 } 489 // A version specialized for MetaWord*'s. 490 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) { 491 return pointer_delta(left, right, sizeof(MetaWord)); 492 } 493 494 // 495 // ANSI C++ does not allow casting from one pointer type to a function pointer 496 // directly without at best a warning. This macro accomplishes it silently 497 // In every case that is present at this point the value be cast is a pointer 498 // to a C linkage function. In some case the type used for the cast reflects 499 // that linkage and a picky compiler would not complain. In other cases because 500 // there is no convenient place to place a typedef with extern C linkage (i.e 501 // a platform dependent header file) it doesn't. At this point no compiler seems 502 // picky enough to catch these instances (which are few). It is possible that 503 // using templates could fix these for all cases. This use of templates is likely 504 // so far from the middle of the road that it is likely to be problematic in 505 // many C++ compilers. 506 // 507 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value)) 508 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr))) 509 510 // In many places we've added C-style casts to silence compiler 511 // warnings, for example when truncating a size_t to an int when we 512 // know the size_t is a small struct. Such casts are risky because 513 // they effectively disable useful compiler warnings. We can make our 514 // lives safer with this function, which ensures that any cast is 515 // reversible without loss of information. It doesn't check 516 // everything: it isn't intended to make sure that pointer types are 517 // compatible, for example. 518 template <typename T2, typename T1> 519 T2 checked_cast(T1 thing) { 520 T2 result = static_cast<T2>(thing); 521 assert(static_cast<T1>(result) == thing, "must be"); 522 return result; 523 } 524 525 // Need the correct linkage to call qsort without warnings 526 extern "C" { 527 typedef int (*_sort_Fn)(const void *, const void *); 528 } 529 530 // Additional Java basic types 531 532 typedef uint8_t jubyte; 533 typedef uint16_t jushort; 534 typedef uint32_t juint; 535 typedef uint64_t julong; 536 537 // Unsigned byte types for os and stream.hpp 538 539 // Unsigned one, two, four and eight byte quantities used for describing 540 // the .class file format. See JVM book chapter 4. 541 542 typedef jubyte u1; 543 typedef jushort u2; 544 typedef juint u4; 545 typedef julong u8; 546 547 const jubyte max_jubyte = (jubyte)-1; // 0xFF largest jubyte 548 const jushort max_jushort = (jushort)-1; // 0xFFFF largest jushort 549 const juint max_juint = (juint)-1; // 0xFFFFFFFF largest juint 550 const julong max_julong = (julong)-1; // 0xFF....FF largest julong 551 552 typedef jbyte s1; 553 typedef jshort s2; 554 typedef jint s4; 555 typedef jlong s8; 556 557 const jbyte min_jbyte = -(1 << 7); // smallest jbyte 558 const jbyte max_jbyte = (1 << 7) - 1; // largest jbyte 559 const jshort min_jshort = -(1 << 15); // smallest jshort 560 const jshort max_jshort = (1 << 15) - 1; // largest jshort 561 562 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint 563 const jint max_jint = (juint)min_jint - 1; // 0x7FFFFFFF == largest jint 564 565 const jint min_jintFloat = (jint)(0x00000001); 566 const jfloat min_jfloat = jfloat_cast(min_jintFloat); 567 const jint max_jintFloat = (jint)(0x7f7fffff); 568 const jfloat max_jfloat = jfloat_cast(max_jintFloat); 569 570 //---------------------------------------------------------------------------------------------------- 571 // JVM spec restrictions 572 573 const int max_method_code_size = 64*K - 1; // JVM spec, 2nd ed. section 4.8.1 (p.134) 574 575 //---------------------------------------------------------------------------------------------------- 576 // old CDS options 577 extern bool DumpSharedSpaces; 578 extern bool DynamicDumpSharedSpaces; 579 extern bool RequireSharedSpaces; 580 extern "C" { 581 // Make sure UseSharedSpaces is accessible to the serviceability agent. 582 extern JNIEXPORT jboolean UseSharedSpaces; 583 } 584 585 //---------------------------------------------------------------------------------------------------- 586 // Object alignment, in units of HeapWords. 587 // 588 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and 589 // reference fields can be naturally aligned. 590 591 extern int MinObjAlignment; 592 extern int MinObjAlignmentInBytes; 593 extern int MinObjAlignmentInBytesMask; 594 595 extern int LogMinObjAlignment; 596 extern int LogMinObjAlignmentInBytes; 597 598 const int LogKlassAlignmentInBytes = 3; 599 const int LogKlassAlignment = LogKlassAlignmentInBytes - LogHeapWordSize; 600 const int KlassAlignmentInBytes = 1 << LogKlassAlignmentInBytes; 601 const int KlassAlignment = KlassAlignmentInBytes / HeapWordSize; 602 603 // Maximal size of heap where unscaled compression can be used. Also upper bound 604 // for heap placement: 4GB. 605 const uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1); 606 // Maximal size of heap where compressed oops can be used. Also upper bound for heap 607 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes. 608 extern uint64_t OopEncodingHeapMax; 609 610 // Maximal size of compressed class space. Above this limit compression is not possible. 611 // Also upper bound for placement of zero based class space. (Class space is further limited 612 // to be < 3G, see arguments.cpp.) 613 const uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes; 614 615 // Machine dependent stuff 616 617 // The maximum size of the code cache. Can be overridden by targets. 618 #define CODE_CACHE_SIZE_LIMIT (2*G) 619 // Allow targets to reduce the default size of the code cache. 620 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT 621 622 #include CPU_HEADER(globalDefinitions) 623 624 // To assure the IRIW property on processors that are not multiple copy 625 // atomic, sync instructions must be issued between volatile reads to 626 // assure their ordering, instead of after volatile stores. 627 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models" 628 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge) 629 #ifdef CPU_MULTI_COPY_ATOMIC 630 // Not needed. 631 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false; 632 #else 633 // From all non-multi-copy-atomic architectures, only PPC64 supports IRIW at the moment. 634 // Final decision is subject to JEP 188: Java Memory Model Update. 635 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = PPC64_ONLY(true) NOT_PPC64(false); 636 #endif 637 638 // The expected size in bytes of a cache line, used to pad data structures. 639 #ifndef DEFAULT_CACHE_LINE_SIZE 640 #define DEFAULT_CACHE_LINE_SIZE 64 641 #endif 642 643 644 //---------------------------------------------------------------------------------------------------- 645 // Utility macros for compilers 646 // used to silence compiler warnings 647 648 #define Unused_Variable(var) var 649 650 651 //---------------------------------------------------------------------------------------------------- 652 // Miscellaneous 653 654 // 6302670 Eliminate Hotspot __fabsf dependency 655 // All fabs() callers should call this function instead, which will implicitly 656 // convert the operand to double, avoiding a dependency on __fabsf which 657 // doesn't exist in early versions of Solaris 8. 658 inline double fabsd(double value) { 659 return fabs(value); 660 } 661 662 // Returns numerator/denominator as percentage value from 0 to 100. If denominator 663 // is zero, return 0.0. 664 template<typename T> 665 inline double percent_of(T numerator, T denominator) { 666 return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0; 667 } 668 669 //---------------------------------------------------------------------------------------------------- 670 // Special casts 671 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern 672 typedef union { 673 jfloat f; 674 jint i; 675 } FloatIntConv; 676 677 typedef union { 678 jdouble d; 679 jlong l; 680 julong ul; 681 } DoubleLongConv; 682 683 inline jint jint_cast (jfloat x) { return ((FloatIntConv*)&x)->i; } 684 inline jfloat jfloat_cast (jint x) { return ((FloatIntConv*)&x)->f; } 685 686 inline jlong jlong_cast (jdouble x) { return ((DoubleLongConv*)&x)->l; } 687 inline julong julong_cast (jdouble x) { return ((DoubleLongConv*)&x)->ul; } 688 inline jdouble jdouble_cast (jlong x) { return ((DoubleLongConv*)&x)->d; } 689 690 inline jint low (jlong value) { return jint(value); } 691 inline jint high(jlong value) { return jint(value >> 32); } 692 693 // the fancy casts are a hopefully portable way 694 // to do unsigned 32 to 64 bit type conversion 695 inline void set_low (jlong* value, jint low ) { *value &= (jlong)0xffffffff << 32; 696 *value |= (jlong)(julong)(juint)low; } 697 698 inline void set_high(jlong* value, jint high) { *value &= (jlong)(julong)(juint)0xffffffff; 699 *value |= (jlong)high << 32; } 700 701 inline jlong jlong_from(jint h, jint l) { 702 jlong result = 0; // initialization to avoid warning 703 set_high(&result, h); 704 set_low(&result, l); 705 return result; 706 } 707 708 union jlong_accessor { 709 jint words[2]; 710 jlong long_value; 711 }; 712 713 void basic_types_init(); // cannot define here; uses assert 714 715 716 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 717 enum BasicType { 718 // The values T_BOOLEAN..T_LONG (4..11) are derived from the JVMS. 719 T_BOOLEAN = JVM_T_BOOLEAN, 720 T_CHAR = JVM_T_CHAR, 721 T_FLOAT = JVM_T_FLOAT, 722 T_DOUBLE = JVM_T_DOUBLE, 723 T_BYTE = JVM_T_BYTE, 724 T_SHORT = JVM_T_SHORT, 725 T_INT = JVM_T_INT, 726 T_LONG = JVM_T_LONG, 727 // The remaining values are not part of any standard. 728 // T_OBJECT and T_VOID denote two more semantic choices 729 // for method return values. 730 // T_OBJECT and T_ARRAY describe signature syntax. 731 // T_ADDRESS, T_METADATA, T_NARROWOOP, T_NARROWKLASS describe 732 // internal references within the JVM as if they were Java 733 // types in their own right. 734 T_OBJECT = 12, 735 T_ARRAY = 13, 736 T_VOID = 14, 737 T_ADDRESS = 15, 738 T_NARROWOOP = 16, 739 T_METADATA = 17, 740 T_NARROWKLASS = 18, 741 T_CONFLICT = 19, // for stack value type with conflicting contents 742 T_ILLEGAL = 99 743 }; 744 745 #define SIGNATURE_TYPES_DO(F, N) \ 746 F(JVM_SIGNATURE_BOOLEAN, T_BOOLEAN, N) \ 747 F(JVM_SIGNATURE_CHAR, T_CHAR, N) \ 748 F(JVM_SIGNATURE_FLOAT, T_FLOAT, N) \ 749 F(JVM_SIGNATURE_DOUBLE, T_DOUBLE, N) \ 750 F(JVM_SIGNATURE_BYTE, T_BYTE, N) \ 751 F(JVM_SIGNATURE_SHORT, T_SHORT, N) \ 752 F(JVM_SIGNATURE_INT, T_INT, N) \ 753 F(JVM_SIGNATURE_LONG, T_LONG, N) \ 754 F(JVM_SIGNATURE_CLASS, T_OBJECT, N) \ 755 F(JVM_SIGNATURE_ARRAY, T_ARRAY, N) \ 756 F(JVM_SIGNATURE_VOID, T_VOID, N) \ 757 /*end*/ 758 759 inline bool is_java_type(BasicType t) { 760 return T_BOOLEAN <= t && t <= T_VOID; 761 } 762 763 inline bool is_java_primitive(BasicType t) { 764 return T_BOOLEAN <= t && t <= T_LONG; 765 } 766 767 inline bool is_subword_type(BasicType t) { 768 // these guys are processed exactly like T_INT in calling sequences: 769 return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT); 770 } 771 772 inline bool is_signed_subword_type(BasicType t) { 773 return (t == T_BYTE || t == T_SHORT); 774 } 775 776 inline bool is_unsigned_subword_type(BasicType t) { 777 return (t == T_BOOLEAN || t == T_CHAR); 778 } 779 780 inline bool is_double_word_type(BasicType t) { 781 return (t == T_DOUBLE || t == T_LONG); 782 } 783 784 inline bool is_reference_type(BasicType t, bool include_narrow_oop = false) { 785 return (t == T_OBJECT || t == T_ARRAY || (include_narrow_oop && t == T_NARROWOOP)); 786 } 787 788 inline bool is_integral_type(BasicType t) { 789 return is_subword_type(t) || t == T_INT || t == T_LONG; 790 } 791 792 inline bool is_non_subword_integral_type(BasicType t) { 793 return t == T_INT || t == T_LONG; 794 } 795 796 inline bool is_floating_point_type(BasicType t) { 797 return (t == T_FLOAT || t == T_DOUBLE); 798 } 799 800 extern char type2char_tab[T_CONFLICT+1]; // Map a BasicType to a jchar 801 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; } 802 extern int type2size[T_CONFLICT+1]; // Map BasicType to result stack elements 803 extern const char* type2name_tab[T_CONFLICT+1]; // Map a BasicType to a char* 804 extern BasicType name2type(const char* name); 805 806 const char* type2name(BasicType t); 807 808 inline jlong max_signed_integer(BasicType bt) { 809 if (bt == T_INT) { 810 return max_jint; 811 } 812 assert(bt == T_LONG, "unsupported"); 813 return max_jlong; 814 } 815 816 inline jlong min_signed_integer(BasicType bt) { 817 if (bt == T_INT) { 818 return min_jint; 819 } 820 assert(bt == T_LONG, "unsupported"); 821 return min_jlong; 822 } 823 824 // Auxiliary math routines 825 // least common multiple 826 extern size_t lcm(size_t a, size_t b); 827 828 829 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java 830 enum BasicTypeSize { 831 T_BOOLEAN_size = 1, 832 T_CHAR_size = 1, 833 T_FLOAT_size = 1, 834 T_DOUBLE_size = 2, 835 T_BYTE_size = 1, 836 T_SHORT_size = 1, 837 T_INT_size = 1, 838 T_LONG_size = 2, 839 T_OBJECT_size = 1, 840 T_ARRAY_size = 1, 841 T_NARROWOOP_size = 1, 842 T_NARROWKLASS_size = 1, 843 T_VOID_size = 0 844 }; 845 846 // this works on valid parameter types but not T_VOID, T_CONFLICT, etc. 847 inline int parameter_type_word_count(BasicType t) { 848 if (is_double_word_type(t)) return 2; 849 assert(is_java_primitive(t) || is_reference_type(t), "no goofy types here please"); 850 assert(type2size[t] == 1, "must be"); 851 return 1; 852 } 853 854 // maps a BasicType to its instance field storage type: 855 // all sub-word integral types are widened to T_INT 856 extern BasicType type2field[T_CONFLICT+1]; 857 extern BasicType type2wfield[T_CONFLICT+1]; 858 859 860 // size in bytes 861 enum ArrayElementSize { 862 T_BOOLEAN_aelem_bytes = 1, 863 T_CHAR_aelem_bytes = 2, 864 T_FLOAT_aelem_bytes = 4, 865 T_DOUBLE_aelem_bytes = 8, 866 T_BYTE_aelem_bytes = 1, 867 T_SHORT_aelem_bytes = 2, 868 T_INT_aelem_bytes = 4, 869 T_LONG_aelem_bytes = 8, 870 #ifdef _LP64 871 T_OBJECT_aelem_bytes = 8, 872 T_ARRAY_aelem_bytes = 8, 873 #else 874 T_OBJECT_aelem_bytes = 4, 875 T_ARRAY_aelem_bytes = 4, 876 #endif 877 T_NARROWOOP_aelem_bytes = 4, 878 T_NARROWKLASS_aelem_bytes = 4, 879 T_VOID_aelem_bytes = 0 880 }; 881 882 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element 883 #ifdef ASSERT 884 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts 885 #else 886 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; } 887 #endif 888 889 inline bool same_type_or_subword_size(BasicType t1, BasicType t2) { 890 return (t1 == t2) || (is_subword_type(t1) && type2aelembytes(t1) == type2aelembytes(t2)); 891 } 892 893 // JavaValue serves as a container for arbitrary Java values. 894 895 class JavaValue { 896 897 public: 898 typedef union JavaCallValue { 899 jfloat f; 900 jdouble d; 901 jint i; 902 jlong l; 903 jobject h; 904 oopDesc* o; 905 } JavaCallValue; 906 907 private: 908 BasicType _type; 909 JavaCallValue _value; 910 911 public: 912 JavaValue(BasicType t = T_ILLEGAL) { _type = t; } 913 914 JavaValue(jfloat value) { 915 _type = T_FLOAT; 916 _value.f = value; 917 } 918 919 JavaValue(jdouble value) { 920 _type = T_DOUBLE; 921 _value.d = value; 922 } 923 924 jfloat get_jfloat() const { return _value.f; } 925 jdouble get_jdouble() const { return _value.d; } 926 jint get_jint() const { return _value.i; } 927 jlong get_jlong() const { return _value.l; } 928 jobject get_jobject() const { return _value.h; } 929 oopDesc* get_oop() const { return _value.o; } 930 JavaCallValue* get_value_addr() { return &_value; } 931 BasicType get_type() const { return _type; } 932 933 void set_jfloat(jfloat f) { _value.f = f;} 934 void set_jdouble(jdouble d) { _value.d = d;} 935 void set_jint(jint i) { _value.i = i;} 936 void set_jlong(jlong l) { _value.l = l;} 937 void set_jobject(jobject h) { _value.h = h;} 938 void set_oop(oopDesc* o) { _value.o = o;} 939 void set_type(BasicType t) { _type = t; } 940 941 jboolean get_jboolean() const { return (jboolean) (_value.i);} 942 jbyte get_jbyte() const { return (jbyte) (_value.i);} 943 jchar get_jchar() const { return (jchar) (_value.i);} 944 jshort get_jshort() const { return (jshort) (_value.i);} 945 946 }; 947 948 949 // TosState describes the top-of-stack state before and after the execution of 950 // a bytecode or method. The top-of-stack value may be cached in one or more CPU 951 // registers. The TosState corresponds to the 'machine representation' of this cached 952 // value. There's 4 states corresponding to the JAVA types int, long, float & double 953 // as well as a 5th state in case the top-of-stack value is actually on the top 954 // of stack (in memory) and thus not cached. The atos state corresponds to the itos 955 // state when it comes to machine representation but is used separately for (oop) 956 // type specific operations (e.g. verification code). 957 958 enum TosState { // describes the tos cache contents 959 btos = 0, // byte, bool tos cached 960 ztos = 1, // byte, bool tos cached 961 ctos = 2, // char tos cached 962 stos = 3, // short tos cached 963 itos = 4, // int tos cached 964 ltos = 5, // long tos cached 965 ftos = 6, // float tos cached 966 dtos = 7, // double tos cached 967 atos = 8, // object cached 968 vtos = 9, // tos not cached 969 number_of_states, 970 ilgl // illegal state: should not occur 971 }; 972 973 974 inline TosState as_TosState(BasicType type) { 975 switch (type) { 976 case T_BYTE : return btos; 977 case T_BOOLEAN: return ztos; 978 case T_CHAR : return ctos; 979 case T_SHORT : return stos; 980 case T_INT : return itos; 981 case T_LONG : return ltos; 982 case T_FLOAT : return ftos; 983 case T_DOUBLE : return dtos; 984 case T_VOID : return vtos; 985 case T_ARRAY : // fall through 986 case T_OBJECT : return atos; 987 default : return ilgl; 988 } 989 } 990 991 inline BasicType as_BasicType(TosState state) { 992 switch (state) { 993 case btos : return T_BYTE; 994 case ztos : return T_BOOLEAN; 995 case ctos : return T_CHAR; 996 case stos : return T_SHORT; 997 case itos : return T_INT; 998 case ltos : return T_LONG; 999 case ftos : return T_FLOAT; 1000 case dtos : return T_DOUBLE; 1001 case atos : return T_OBJECT; 1002 case vtos : return T_VOID; 1003 default : return T_ILLEGAL; 1004 } 1005 } 1006 1007 1008 // Helper function to convert BasicType info into TosState 1009 // Note: Cannot define here as it uses global constant at the time being. 1010 TosState as_TosState(BasicType type); 1011 1012 1013 // JavaThreadState keeps track of which part of the code a thread is executing in. This 1014 // information is needed by the safepoint code. 1015 // 1016 // There are 4 essential states: 1017 // 1018 // _thread_new : Just started, but not executed init. code yet (most likely still in OS init code) 1019 // _thread_in_native : In native code. This is a safepoint region, since all oops will be in jobject handles 1020 // _thread_in_vm : Executing in the vm 1021 // _thread_in_Java : Executing either interpreted or compiled Java code (or could be in a stub) 1022 // 1023 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in 1024 // a transition from one state to another. These extra states makes it possible for the safepoint code to 1025 // handle certain thread_states without having to suspend the thread - making the safepoint code faster. 1026 // 1027 // Given a state, the xxxx_trans state can always be found by adding 1. 1028 // 1029 enum JavaThreadState { 1030 _thread_uninitialized = 0, // should never happen (missing initialization) 1031 _thread_new = 2, // just starting up, i.e., in process of being initialized 1032 _thread_new_trans = 3, // corresponding transition state (not used, included for completeness) 1033 _thread_in_native = 4, // running in native code 1034 _thread_in_native_trans = 5, // corresponding transition state 1035 _thread_in_vm = 6, // running in VM 1036 _thread_in_vm_trans = 7, // corresponding transition state 1037 _thread_in_Java = 8, // running in Java or in stub code 1038 _thread_in_Java_trans = 9, // corresponding transition state (not used, included for completeness) 1039 _thread_blocked = 10, // blocked in vm 1040 _thread_blocked_trans = 11, // corresponding transition state 1041 _thread_max_state = 12 // maximum thread state+1 - used for statistics allocation 1042 }; 1043 1044 //---------------------------------------------------------------------------------------------------- 1045 // Special constants for debugging 1046 1047 const jint badInt = -3; // generic "bad int" value 1048 const intptr_t badAddressVal = -2; // generic "bad address" value 1049 const intptr_t badOopVal = -1; // generic "bad oop" value 1050 const intptr_t badHeapOopVal = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC 1051 const int badStackSegVal = 0xCA; // value used to zap stack segments 1052 const int badHandleValue = 0xBC; // value used to zap vm handle area 1053 const int badResourceValue = 0xAB; // value used to zap resource area 1054 const int freeBlockPad = 0xBA; // value used to pad freed blocks. 1055 const int uninitBlockPad = 0xF1; // value used to zap newly malloc'd blocks. 1056 const juint uninitMetaWordVal= 0xf7f7f7f7; // value used to zap newly allocated metachunk 1057 const juint badHeapWordVal = 0xBAADBABE; // value used to zap heap after GC 1058 const juint badMetaWordVal = 0xBAADFADE; // value used to zap metadata heap after GC 1059 const int badCodeHeapNewVal= 0xCC; // value used to zap Code heap at allocation 1060 const int badCodeHeapFreeVal = 0xDD; // value used to zap Code heap at deallocation 1061 1062 1063 // (These must be implemented as #defines because C++ compilers are 1064 // not obligated to inline non-integral constants!) 1065 #define badAddress ((address)::badAddressVal) 1066 #define badHeapWord (::badHeapWordVal) 1067 1068 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit) 1069 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17)) 1070 1071 //---------------------------------------------------------------------------------------------------- 1072 // Utility functions for bitfield manipulations 1073 1074 const intptr_t AllBits = ~0; // all bits set in a word 1075 const intptr_t NoBits = 0; // no bits set in a word 1076 const jlong NoLongBits = 0; // no bits set in a long 1077 const intptr_t OneBit = 1; // only right_most bit set in a word 1078 1079 // get a word with the n.th or the right-most or left-most n bits set 1080 // (note: #define used only so that they can be used in enum constant definitions) 1081 #define nth_bit(n) (((n) >= BitsPerWord) ? 0 : (OneBit << (n))) 1082 #define right_n_bits(n) (nth_bit(n) - 1) 1083 1084 // bit-operations using a mask m 1085 inline void set_bits (intptr_t& x, intptr_t m) { x |= m; } 1086 inline void clear_bits (intptr_t& x, intptr_t m) { x &= ~m; } 1087 inline intptr_t mask_bits (intptr_t x, intptr_t m) { return x & m; } 1088 inline jlong mask_long_bits (jlong x, jlong m) { return x & m; } 1089 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; } 1090 1091 // bit-operations using the n.th bit 1092 inline void set_nth_bit(intptr_t& x, int n) { set_bits (x, nth_bit(n)); } 1093 inline void clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); } 1094 inline bool is_set_nth_bit(intptr_t x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; } 1095 1096 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!) 1097 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) { 1098 return mask_bits(x >> start_bit_no, right_n_bits(field_length)); 1099 } 1100 1101 1102 //---------------------------------------------------------------------------------------------------- 1103 // Utility functions for integers 1104 1105 // Avoid use of global min/max macros which may cause unwanted double 1106 // evaluation of arguments. 1107 #ifdef max 1108 #undef max 1109 #endif 1110 1111 #ifdef min 1112 #undef min 1113 #endif 1114 1115 // It is necessary to use templates here. Having normal overloaded 1116 // functions does not work because it is necessary to provide both 32- 1117 // and 64-bit overloaded functions, which does not work, and having 1118 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L) 1119 // will be even more error-prone than macros. 1120 template<class T> constexpr T MAX2(T a, T b) { return (a > b) ? a : b; } 1121 template<class T> constexpr T MIN2(T a, T b) { return (a < b) ? a : b; } 1122 template<class T> constexpr T MAX3(T a, T b, T c) { return MAX2(MAX2(a, b), c); } 1123 template<class T> constexpr T MIN3(T a, T b, T c) { return MIN2(MIN2(a, b), c); } 1124 template<class T> constexpr T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); } 1125 template<class T> constexpr T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); } 1126 1127 template<class T> inline T ABS(T x) { return (x > 0) ? x : -x; } 1128 1129 // Return the given value clamped to the range [min ... max] 1130 template<typename T> 1131 inline T clamp(T value, T min, T max) { 1132 assert(min <= max, "must be"); 1133 return MIN2(MAX2(value, min), max); 1134 } 1135 1136 inline bool is_odd (intx x) { return x & 1; } 1137 inline bool is_even(intx x) { return !is_odd(x); } 1138 1139 // abs methods which cannot overflow and so are well-defined across 1140 // the entire domain of integer types. 1141 static inline unsigned int uabs(unsigned int n) { 1142 union { 1143 unsigned int result; 1144 int value; 1145 }; 1146 result = n; 1147 if (value < 0) result = 0-result; 1148 return result; 1149 } 1150 static inline julong uabs(julong n) { 1151 union { 1152 julong result; 1153 jlong value; 1154 }; 1155 result = n; 1156 if (value < 0) result = 0-result; 1157 return result; 1158 } 1159 static inline julong uabs(jlong n) { return uabs((julong)n); } 1160 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); } 1161 1162 // "to" should be greater than "from." 1163 inline intx byte_size(void* from, void* to) { 1164 return (address)to - (address)from; 1165 } 1166 1167 // Pack and extract shorts to/from ints: 1168 1169 inline int extract_low_short_from_int(jint x) { 1170 return x & 0xffff; 1171 } 1172 1173 inline int extract_high_short_from_int(jint x) { 1174 return (x >> 16) & 0xffff; 1175 } 1176 1177 inline int build_int_from_shorts( jushort low, jushort high ) { 1178 return ((int)((unsigned int)high << 16) | (unsigned int)low); 1179 } 1180 1181 // swap a & b 1182 template<class T> static void swap(T& a, T& b) { 1183 T tmp = a; 1184 a = b; 1185 b = tmp; 1186 } 1187 1188 // array_size_impl is a function that takes a reference to T[N] and 1189 // returns a reference to char[N]. It is not ODR-used, so not defined. 1190 template<typename T, size_t N> char (&array_size_impl(T (&)[N]))[N]; 1191 1192 #define ARRAY_SIZE(array) sizeof(array_size_impl(array)) 1193 1194 //---------------------------------------------------------------------------------------------------- 1195 // Sum and product which can never overflow: they wrap, just like the 1196 // Java operations. Note that we don't intend these to be used for 1197 // general-purpose arithmetic: their purpose is to emulate Java 1198 // operations. 1199 1200 // The goal of this code to avoid undefined or implementation-defined 1201 // behavior. The use of an lvalue to reference cast is explicitly 1202 // permitted by Lvalues and rvalues [basic.lval]. [Section 3.10 Para 1203 // 15 in C++03] 1204 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE) \ 1205 inline TYPE NAME (TYPE in1, TYPE in2) { \ 1206 UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \ 1207 ures OP ## = static_cast<UNSIGNED_TYPE>(in2); \ 1208 return reinterpret_cast<TYPE&>(ures); \ 1209 } 1210 1211 JAVA_INTEGER_OP(+, java_add, jint, juint) 1212 JAVA_INTEGER_OP(-, java_subtract, jint, juint) 1213 JAVA_INTEGER_OP(*, java_multiply, jint, juint) 1214 JAVA_INTEGER_OP(+, java_add, jlong, julong) 1215 JAVA_INTEGER_OP(-, java_subtract, jlong, julong) 1216 JAVA_INTEGER_OP(*, java_multiply, jlong, julong) 1217 1218 #undef JAVA_INTEGER_OP 1219 1220 // Provide integer shift operations with Java semantics. No overflow 1221 // issues - left shifts simply discard shifted out bits. No undefined 1222 // behavior for large or negative shift quantities; instead the actual 1223 // shift distance is the argument modulo the lhs value's size in bits. 1224 // No undefined or implementation defined behavior for shifting negative 1225 // values; left shift discards bits, right shift sign extends. We use 1226 // the same safe conversion technique as above for java_add and friends. 1227 #define JAVA_INTEGER_SHIFT_OP(OP, NAME, TYPE, XTYPE) \ 1228 inline TYPE NAME (TYPE lhs, jint rhs) { \ 1229 const uint rhs_mask = (sizeof(TYPE) * 8) - 1; \ 1230 STATIC_ASSERT(rhs_mask == 31 || rhs_mask == 63); \ 1231 XTYPE xres = static_cast<XTYPE>(lhs); \ 1232 xres OP ## = (rhs & rhs_mask); \ 1233 return reinterpret_cast<TYPE&>(xres); \ 1234 } 1235 1236 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jint, juint) 1237 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jlong, julong) 1238 // For signed shift right, assume C++ implementation >> sign extends. 1239 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jint, jint) 1240 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jlong, jlong) 1241 // For >>> use C++ unsigned >>. 1242 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jint, juint) 1243 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jlong, julong) 1244 1245 #undef JAVA_INTEGER_SHIFT_OP 1246 1247 //---------------------------------------------------------------------------------------------------- 1248 // The goal of this code is to provide saturating operations for int/uint. 1249 // Checks overflow conditions and saturates the result to min_jint/max_jint. 1250 #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \ 1251 inline int NAME (TYPE1 in1, TYPE2 in2) { \ 1252 jlong res = static_cast<jlong>(in1); \ 1253 res OP ## = static_cast<jlong>(in2); \ 1254 if (res > max_jint) { \ 1255 res = max_jint; \ 1256 } else if (res < min_jint) { \ 1257 res = min_jint; \ 1258 } \ 1259 return static_cast<int>(res); \ 1260 } 1261 1262 SATURATED_INTEGER_OP(+, saturated_add, int, int) 1263 SATURATED_INTEGER_OP(+, saturated_add, int, uint) 1264 SATURATED_INTEGER_OP(+, saturated_add, uint, int) 1265 SATURATED_INTEGER_OP(+, saturated_add, uint, uint) 1266 1267 #undef SATURATED_INTEGER_OP 1268 1269 // Dereference vptr 1270 // All C++ compilers that we know of have the vtbl pointer in the first 1271 // word. If there are exceptions, this function needs to be made compiler 1272 // specific. 1273 static inline void* dereference_vptr(const void* addr) { 1274 return *(void**)addr; 1275 } 1276 1277 //---------------------------------------------------------------------------------------------------- 1278 // String type aliases used by command line flag declarations and 1279 // processing utilities. 1280 1281 typedef const char* ccstr; 1282 typedef const char* ccstrlist; // represents string arguments which accumulate 1283 1284 //---------------------------------------------------------------------------------------------------- 1285 // Default hash/equals functions used by ResourceHashtable 1286 1287 template<typename K> unsigned primitive_hash(const K& k) { 1288 unsigned hash = (unsigned)((uintptr_t)k); 1289 return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs 1290 } 1291 1292 template<typename K> bool primitive_equals(const K& k0, const K& k1) { 1293 return k0 == k1; 1294 } 1295 1296 //---------------------------------------------------------------------------------------------------- 1297 1298 // Allow use of C++ thread_local when approved - see JDK-8282469. 1299 #define APPROVED_CPP_THREAD_LOCAL thread_local 1300 1301 // Converts any type T to a reference type. 1302 template<typename T> 1303 std::add_rvalue_reference_t<T> declval() noexcept; 1304 1305 #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP