1 /*
   2  * Copyright (c) 1997, 2023, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "utilities/attributeNoreturn.hpp"
  29 #include "utilities/compilerWarnings.hpp"
  30 #include "utilities/debug.hpp"
  31 #include "utilities/macros.hpp"
  32 
  33 // Get constants like JVM_T_CHAR and JVM_SIGNATURE_INT, before pulling in <jvm.h>.
  34 #include "classfile_constants.h"
  35 
  36 #include COMPILER_HEADER(utilities/globalDefinitions)
  37 
  38 #include <cstddef>
  39 #include <cstdint>
  40 #include <type_traits>
  41 
  42 class oopDesc;
  43 
  44 // Defaults for macros that might be defined per compiler.
  45 #ifndef NOINLINE
  46 #define NOINLINE
  47 #endif
  48 #ifndef ALWAYSINLINE
  49 #define ALWAYSINLINE inline
  50 #endif
  51 
  52 #ifndef ATTRIBUTE_ALIGNED
  53 #define ATTRIBUTE_ALIGNED(x)
  54 #endif
  55 
  56 #ifndef ATTRIBUTE_FLATTEN
  57 #define ATTRIBUTE_FLATTEN
  58 #endif
  59 
  60 // These are #defines to selectively turn on/off the Print(Opto)Assembly
  61 // capabilities. Choices should be led by a tradeoff between
  62 // code size and improved supportability.
  63 // if PRINT_ASSEMBLY then PRINT_ABSTRACT_ASSEMBLY must be true as well
  64 // to have a fallback in case hsdis is not available.
  65 #if defined(PRODUCT)
  66   #define SUPPORT_ABSTRACT_ASSEMBLY
  67   #define SUPPORT_ASSEMBLY
  68   #undef  SUPPORT_OPTO_ASSEMBLY      // Can't activate. In PRODUCT, many dump methods are missing.
  69   #undef  SUPPORT_DATA_STRUCTS       // Of limited use. In PRODUCT, many print methods are empty.
  70 #else
  71   #define SUPPORT_ABSTRACT_ASSEMBLY
  72   #define SUPPORT_ASSEMBLY
  73   #define SUPPORT_OPTO_ASSEMBLY
  74   #define SUPPORT_DATA_STRUCTS
  75 #endif
  76 #if defined(SUPPORT_ASSEMBLY) && !defined(SUPPORT_ABSTRACT_ASSEMBLY)
  77   #define SUPPORT_ABSTRACT_ASSEMBLY
  78 #endif
  79 
  80 // This file holds all globally used constants & types, class (forward)
  81 // declarations and a few frequently used utility functions.
  82 
  83 // Declare the named class to be noncopyable.  This macro must be followed by
  84 // a semi-colon.  The macro provides deleted declarations for the class's copy
  85 // constructor and assignment operator.  Because these operations are deleted,
  86 // they cannot be defined and potential callers will fail to compile.
  87 #define NONCOPYABLE(C) C(C const&) = delete; C& operator=(C const&) = delete /* next token must be ; */
  88 
  89 
  90 //----------------------------------------------------------------------------------------------------
  91 // Printf-style formatters for fixed- and variable-width types as pointers and
  92 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  93 // doesn't provide appropriate definitions, they should be provided in
  94 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  95 
  96 // Guide to the suffixes used in the format specifiers for integers:
  97 //        - print the decimal value:                   745565
  98 //  _X    - print as hexadecimal, without leading 0s: 0x12345
  99 //  _X_0  - print as hexadecimal, with leading 0s: 0x00012345
 100 //  _W(w) - prints w sized string with the given value right
 101 //          adjusted. Use -w to print left adjusted.
 102 //
 103 // Note that the PTR format specifiers print using 0x with leading zeros,
 104 // just like the _X_0 version for integers.
 105 
 106 // Format 8-bit quantities.
 107 #define INT8_FORMAT_X_0          "0x%02"      PRIx8
 108 #define UINT8_FORMAT_X_0         "0x%02"      PRIx8
 109 
 110 // Format 16-bit quantities.
 111 #define INT16_FORMAT_X_0         "0x%04"      PRIx16
 112 #define UINT16_FORMAT_X_0        "0x%04"      PRIx16
 113 
 114 // Format 32-bit quantities.
 115 #define INT32_FORMAT             "%"          PRId32
 116 #define INT32_FORMAT_X           "0x%"        PRIx32
 117 #define INT32_FORMAT_X_0         "0x%08"      PRIx32
 118 #define INT32_FORMAT_W(width)    "%"   #width PRId32
 119 #define UINT32_FORMAT            "%"          PRIu32
 120 #define UINT32_FORMAT_X          "0x%"        PRIx32
 121 #define UINT32_FORMAT_X_0        "0x%08"      PRIx32
 122 #define UINT32_FORMAT_W(width)   "%"   #width PRIu32
 123 
 124 // Format 64-bit quantities.
 125 #define INT64_FORMAT             "%"          PRId64
 126 #define INT64_PLUS_FORMAT        "%+"         PRId64
 127 #define INT64_FORMAT_X           "0x%"        PRIx64
 128 #define INT64_FORMAT_X_0         "0x%016"     PRIx64
 129 #define INT64_FORMAT_W(width)    "%"   #width PRId64
 130 #define UINT64_FORMAT            "%"          PRIu64
 131 #define UINT64_FORMAT_X          "0x%"        PRIx64
 132 #define UINT64_FORMAT_X_0        "0x%016"     PRIx64
 133 #define UINT64_FORMAT_W(width)   "%"   #width PRIu64
 134 
 135 // Format integers which change size between 32- and 64-bit.
 136 #define SSIZE_FORMAT             "%"          PRIdPTR
 137 #define SSIZE_PLUS_FORMAT        "%+"         PRIdPTR
 138 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
 139 #define SIZE_FORMAT              "%"          PRIuPTR
 140 #define SIZE_FORMAT_X            "0x%"        PRIxPTR
 141 #ifdef _LP64
 142 #define SIZE_FORMAT_X_0          "0x%016"     PRIxPTR
 143 #else
 144 #define SIZE_FORMAT_X_0          "0x%08"      PRIxPTR
 145 #endif
 146 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
 147 
 148 #define INTX_FORMAT              "%"          PRIdPTR
 149 #define INTX_FORMAT_X            "0x%"        PRIxPTR
 150 #define INTX_FORMAT_W(width)     "%"   #width PRIdPTR
 151 #define UINTX_FORMAT             "%"          PRIuPTR
 152 #define UINTX_FORMAT_X           "0x%"        PRIxPTR
 153 #define UINTX_FORMAT_W(width)    "%"   #width PRIuPTR
 154 
 155 // Format jlong, if necessary
 156 #ifndef JLONG_FORMAT
 157 #define JLONG_FORMAT             INT64_FORMAT
 158 #endif
 159 #ifndef JLONG_FORMAT_W
 160 #define JLONG_FORMAT_W(width)    INT64_FORMAT_W(width)
 161 #endif
 162 #ifndef JULONG_FORMAT
 163 #define JULONG_FORMAT            UINT64_FORMAT
 164 #endif
 165 #ifndef JULONG_FORMAT_X
 166 #define JULONG_FORMAT_X          UINT64_FORMAT_X
 167 #endif
 168 
 169 // Format pointers which change size between 32- and 64-bit.
 170 #ifdef  _LP64
 171 #define INTPTR_FORMAT            "0x%016"     PRIxPTR
 172 #define PTR_FORMAT               "0x%016"     PRIxPTR
 173 #else   // !_LP64
 174 #define INTPTR_FORMAT            "0x%08"      PRIxPTR
 175 #define PTR_FORMAT               "0x%08"      PRIxPTR
 176 #endif  // _LP64
 177 
 178 // Convert pointer to intptr_t, for use in printing pointers.
 179 inline intptr_t p2i(const volatile void* p) {
 180   return (intptr_t) p;
 181 }
 182 
 183 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
 184 
 185 //----------------------------------------------------------------------------------------------------
 186 // Forbid the use of various C library functions.
 187 // Some of these have os:: replacements that should normally be used instead.
 188 // Others are considered security concerns, with preferred alternatives.
 189 
 190 FORBID_C_FUNCTION(void exit(int), "use os::exit");
 191 FORBID_C_FUNCTION(void _exit(int), "use os::exit");
 192 FORBID_C_FUNCTION(char* strerror(int), "use os::strerror");
 193 FORBID_C_FUNCTION(char* strtok(char*, const char*), "use strtok_r");
 194 FORBID_C_FUNCTION(int sprintf(char*, const char*, ...), "use os::snprintf");
 195 FORBID_C_FUNCTION(int vsprintf(char*, const char*, va_list), "use os::vsnprintf");
 196 FORBID_C_FUNCTION(int vsnprintf(char*, size_t, const char*, va_list), "use os::vsnprintf");
 197 
 198 // All of the following functions return raw C-heap pointers (sometimes as an option, e.g. realpath or getwd)
 199 // or, in case of free(), take raw C-heap pointers. Don't use them unless you are really sure you must.
 200 FORBID_C_FUNCTION(void* malloc(size_t size), "use os::malloc");
 201 FORBID_C_FUNCTION(void* calloc(size_t nmemb, size_t size), "use os::malloc and zero out manually");
 202 FORBID_C_FUNCTION(void free(void *ptr), "use os::free");
 203 FORBID_C_FUNCTION(void* realloc(void *ptr, size_t size), "use os::realloc");
 204 FORBID_C_FUNCTION(char* strdup(const char *s), "use os::strdup");
 205 FORBID_C_FUNCTION(char* strndup(const char *s, size_t n), "don't use");
 206 FORBID_C_FUNCTION(int posix_memalign(void **memptr, size_t alignment, size_t size), "don't use");
 207 FORBID_C_FUNCTION(void* aligned_alloc(size_t alignment, size_t size), "don't use");
 208 FORBID_C_FUNCTION(char* realpath(const char* path, char* resolved_path), "use os::Posix::realpath");
 209 FORBID_C_FUNCTION(char* get_current_dir_name(void), "use os::get_current_directory()");
 210 FORBID_C_FUNCTION(char* getwd(char *buf), "use os::get_current_directory()");
 211 FORBID_C_FUNCTION(wchar_t* wcsdup(const wchar_t *s), "don't use");
 212 FORBID_C_FUNCTION(void* reallocf(void *ptr, size_t size), "don't use");
 213 
 214 //----------------------------------------------------------------------------------------------------
 215 // Constants
 216 
 217 const int LogBytesPerShort   = 1;
 218 const int LogBytesPerInt     = 2;
 219 #ifdef _LP64
 220 const int LogBytesPerWord    = 3;
 221 #else
 222 const int LogBytesPerWord    = 2;
 223 #endif
 224 const int LogBytesPerLong    = 3;
 225 
 226 const int BytesPerShort      = 1 << LogBytesPerShort;
 227 const int BytesPerInt        = 1 << LogBytesPerInt;
 228 const int BytesPerWord       = 1 << LogBytesPerWord;
 229 const int BytesPerLong       = 1 << LogBytesPerLong;
 230 
 231 const int LogBitsPerByte     = 3;
 232 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 233 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 234 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 235 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 236 
 237 const int BitsPerByte        = 1 << LogBitsPerByte;
 238 const int BitsPerShort       = 1 << LogBitsPerShort;
 239 const int BitsPerInt         = 1 << LogBitsPerInt;
 240 const int BitsPerWord        = 1 << LogBitsPerWord;
 241 const int BitsPerLong        = 1 << LogBitsPerLong;
 242 
 243 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 244 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 245 
 246 const int WordsPerLong       = 2;       // Number of stack entries for longs
 247 
 248 const int oopSize            = sizeof(char*); // Full-width oop
 249 extern int heapOopSize;                       // Oop within a java object
 250 const int wordSize           = sizeof(char*);
 251 const int longSize           = sizeof(jlong);
 252 const int jintSize           = sizeof(jint);
 253 const int size_tSize         = sizeof(size_t);
 254 
 255 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 256 
 257 extern int LogBytesPerHeapOop;                // Oop within a java object
 258 extern int LogBitsPerHeapOop;
 259 extern int BytesPerHeapOop;
 260 extern int BitsPerHeapOop;
 261 
 262 const int BitsPerJavaInteger = 32;
 263 const int BitsPerJavaLong    = 64;
 264 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 265 
 266 // Size of a char[] needed to represent a jint as a string in decimal.
 267 const int jintAsStringSize = 12;
 268 
 269 // An opaque type, so that HeapWord* can be a generic pointer into the heap.
 270 // We require that object sizes be measured in units of heap words (e.g.
 271 // pointer-sized values), so that given HeapWord* hw,
 272 //   hw += oop(hw)->foo();
 273 // works, where foo is a method (like size or scavenge) that returns the
 274 // object size.
 275 class HeapWordImpl;             // Opaque, never defined.
 276 typedef HeapWordImpl* HeapWord;
 277 
 278 // Analogous opaque struct for metadata allocated from metaspaces.
 279 class MetaWordImpl;             // Opaque, never defined.
 280 typedef MetaWordImpl* MetaWord;
 281 
 282 // HeapWordSize must be 2^LogHeapWordSize.
 283 const int HeapWordSize        = sizeof(HeapWord);
 284 #ifdef _LP64
 285 const int LogHeapWordSize     = 3;
 286 #else
 287 const int LogHeapWordSize     = 2;
 288 #endif
 289 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 290 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 291 
 292 // The minimum number of native machine words necessary to contain "byte_size"
 293 // bytes.
 294 inline size_t heap_word_size(size_t byte_size) {
 295   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 296 }
 297 
 298 inline jfloat jfloat_cast(jint x);
 299 inline jdouble jdouble_cast(jlong x);
 300 
 301 //-------------------------------------------
 302 // Constant for jlong (standardized by C++11)
 303 
 304 // Build a 64bit integer constant
 305 #define CONST64(x)  (x ## LL)
 306 #define UCONST64(x) (x ## ULL)
 307 
 308 const jlong min_jlong = CONST64(0x8000000000000000);
 309 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 310 
 311 //-------------------------------------------
 312 // Constant for jdouble
 313 const jlong min_jlongDouble = CONST64(0x0000000000000001);
 314 const jdouble min_jdouble = jdouble_cast(min_jlongDouble);
 315 const jlong max_jlongDouble = CONST64(0x7fefffffffffffff);
 316 const jdouble max_jdouble = jdouble_cast(max_jlongDouble);
 317 
 318 const size_t K                  = 1024;
 319 const size_t M                  = K*K;
 320 const size_t G                  = M*K;
 321 const size_t HWperKB            = K / sizeof(HeapWord);
 322 
 323 // Constants for converting from a base unit to milli-base units.  For
 324 // example from seconds to milliseconds and microseconds
 325 
 326 const int MILLIUNITS    = 1000;         // milli units per base unit
 327 const int MICROUNITS    = 1000000;      // micro units per base unit
 328 const int NANOUNITS     = 1000000000;   // nano units per base unit
 329 const int NANOUNITS_PER_MILLIUNIT = NANOUNITS / MILLIUNITS;
 330 
 331 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 332 const jint  NANOSECS_PER_MILLISEC = 1000000;
 333 
 334 
 335 // Unit conversion functions
 336 // The caller is responsible for considering overflow.
 337 
 338 inline int64_t nanos_to_millis(int64_t nanos) {
 339   return nanos / NANOUNITS_PER_MILLIUNIT;
 340 }
 341 inline int64_t millis_to_nanos(int64_t millis) {
 342   return millis * NANOUNITS_PER_MILLIUNIT;
 343 }
 344 
 345 // Proper units routines try to maintain at least three significant digits.
 346 // In worst case, it would print five significant digits with lower prefix.
 347 // G is close to MAX_SIZE on 32-bit platforms, so its product can easily overflow,
 348 // and therefore we need to be careful.
 349 
 350 inline const char* proper_unit_for_byte_size(size_t s) {
 351 #ifdef _LP64
 352   if (s >= 100*G) {
 353     return "G";
 354   }
 355 #endif
 356   if (s >= 100*M) {
 357     return "M";
 358   } else if (s >= 100*K) {
 359     return "K";
 360   } else {
 361     return "B";
 362   }
 363 }
 364 
 365 template <class T>
 366 inline T byte_size_in_proper_unit(T s) {
 367 #ifdef _LP64
 368   if (s >= 100*G) {
 369     return (T)(s/G);
 370   }
 371 #endif
 372   if (s >= 100*M) {
 373     return (T)(s/M);
 374   } else if (s >= 100*K) {
 375     return (T)(s/K);
 376   } else {
 377     return s;
 378   }
 379 }
 380 
 381 #define PROPERFMT             SIZE_FORMAT "%s"
 382 #define PROPERFMTARGS(s)      byte_size_in_proper_unit(s), proper_unit_for_byte_size(s)
 383 
 384 inline const char* exact_unit_for_byte_size(size_t s) {
 385 #ifdef _LP64
 386   if (s >= G && (s % G) == 0) {
 387     return "G";
 388   }
 389 #endif
 390   if (s >= M && (s % M) == 0) {
 391     return "M";
 392   }
 393   if (s >= K && (s % K) == 0) {
 394     return "K";
 395   }
 396   return "B";
 397 }
 398 
 399 inline size_t byte_size_in_exact_unit(size_t s) {
 400 #ifdef _LP64
 401   if (s >= G && (s % G) == 0) {
 402     return s / G;
 403   }
 404 #endif
 405   if (s >= M && (s % M) == 0) {
 406     return s / M;
 407   }
 408   if (s >= K && (s % K) == 0) {
 409     return s / K;
 410   }
 411   return s;
 412 }
 413 
 414 // Memory size transition formatting.
 415 
 416 #define HEAP_CHANGE_FORMAT "%s: " SIZE_FORMAT "K(" SIZE_FORMAT "K)->" SIZE_FORMAT "K(" SIZE_FORMAT "K)"
 417 
 418 #define HEAP_CHANGE_FORMAT_ARGS(_name_, _prev_used_, _prev_capacity_, _used_, _capacity_) \
 419   (_name_), (_prev_used_) / K, (_prev_capacity_) / K, (_used_) / K, (_capacity_) / K
 420 
 421 //----------------------------------------------------------------------------------------------------
 422 // VM type definitions
 423 
 424 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 425 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 426 
 427 typedef intptr_t  intx;
 428 typedef uintptr_t uintx;
 429 
 430 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 431 const intx  max_intx  = (uintx)min_intx - 1;
 432 const uintx max_uintx = (uintx)-1;
 433 
 434 // Table of values:
 435 //      sizeof intx         4               8
 436 // min_intx             0x80000000      0x8000000000000000
 437 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 438 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 439 
 440 typedef unsigned int uint;   NEEDS_CLEANUP
 441 
 442 
 443 //----------------------------------------------------------------------------------------------------
 444 // Java type definitions
 445 
 446 // All kinds of 'plain' byte addresses
 447 typedef   signed char s_char;
 448 typedef unsigned char u_char;
 449 typedef u_char*       address;
 450 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 451                                     // except for some implementations of a C++
 452                                     // linkage pointer to function. Should never
 453                                     // need one of those to be placed in this
 454                                     // type anyway.
 455 
 456 //  Utility functions to "portably" (?) bit twiddle pointers
 457 //  Where portable means keep ANSI C++ compilers quiet
 458 
 459 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 460 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 461 
 462 //  Utility functions to "portably" make cast to/from function pointers.
 463 
 464 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 465 inline address_word  castable_address(address x)              { return address_word(x) ; }
 466 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 467 
 468 // Pointer subtraction.
 469 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 470 // the range we might need to find differences from one end of the heap
 471 // to the other.
 472 // A typical use might be:
 473 //     if (pointer_delta(end(), top()) >= size) {
 474 //       // enough room for an object of size
 475 //       ...
 476 // and then additions like
 477 //       ... top() + size ...
 478 // are safe because we know that top() is at least size below end().
 479 inline size_t pointer_delta(const volatile void* left,
 480                             const volatile void* right,
 481                             size_t element_size) {
 482   assert(left >= right, "avoid underflow - left: " PTR_FORMAT " right: " PTR_FORMAT, p2i(left), p2i(right));
 483   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 484 }
 485 
 486 // A version specialized for HeapWord*'s.
 487 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 488   return pointer_delta(left, right, sizeof(HeapWord));
 489 }
 490 // A version specialized for MetaWord*'s.
 491 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 492   return pointer_delta(left, right, sizeof(MetaWord));
 493 }
 494 
 495 //
 496 // ANSI C++ does not allow casting from one pointer type to a function pointer
 497 // directly without at best a warning. This macro accomplishes it silently
 498 // In every case that is present at this point the value be cast is a pointer
 499 // to a C linkage function. In some case the type used for the cast reflects
 500 // that linkage and a picky compiler would not complain. In other cases because
 501 // there is no convenient place to place a typedef with extern C linkage (i.e
 502 // a platform dependent header file) it doesn't. At this point no compiler seems
 503 // picky enough to catch these instances (which are few). It is possible that
 504 // using templates could fix these for all cases. This use of templates is likely
 505 // so far from the middle of the road that it is likely to be problematic in
 506 // many C++ compilers.
 507 //
 508 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 509 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 510 
 511 // In many places we've added C-style casts to silence compiler
 512 // warnings, for example when truncating a size_t to an int when we
 513 // know the size_t is a small struct. Such casts are risky because
 514 // they effectively disable useful compiler warnings. We can make our
 515 // lives safer with this function, which ensures that any cast is
 516 // reversible without loss of information. It doesn't check
 517 // everything: it isn't intended to make sure that pointer types are
 518 // compatible, for example.
 519 template <typename T2, typename T1>
 520 T2 checked_cast(T1 thing) {
 521   T2 result = static_cast<T2>(thing);
 522   assert(static_cast<T1>(result) == thing, "must be");
 523   return result;
 524 }
 525 
 526 // Need the correct linkage to call qsort without warnings
 527 extern "C" {
 528   typedef int (*_sort_Fn)(const void *, const void *);
 529 }
 530 
 531 // Additional Java basic types
 532 
 533 typedef uint8_t  jubyte;
 534 typedef uint16_t jushort;
 535 typedef uint32_t juint;
 536 typedef uint64_t julong;
 537 
 538 // Unsigned byte types for os and stream.hpp
 539 
 540 // Unsigned one, two, four and eight byte quantities used for describing
 541 // the .class file format. See JVM book chapter 4.
 542 
 543 typedef jubyte  u1;
 544 typedef jushort u2;
 545 typedef juint   u4;
 546 typedef julong  u8;
 547 
 548 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 549 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 550 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 551 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 552 
 553 typedef jbyte  s1;
 554 typedef jshort s2;
 555 typedef jint   s4;
 556 typedef jlong  s8;
 557 
 558 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 559 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 560 const jshort min_jshort = -(1 << 15);    // smallest jshort
 561 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 562 
 563 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 564 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 565 
 566 const jint min_jintFloat = (jint)(0x00000001);
 567 const jfloat min_jfloat = jfloat_cast(min_jintFloat);
 568 const jint max_jintFloat = (jint)(0x7f7fffff);
 569 const jfloat max_jfloat = jfloat_cast(max_jintFloat);
 570 
 571 //----------------------------------------------------------------------------------------------------
 572 // JVM spec restrictions
 573 
 574 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 575 
 576 //----------------------------------------------------------------------------------------------------
 577 // old CDS options
 578 extern bool DumpSharedSpaces;
 579 extern bool DynamicDumpSharedSpaces;
 580 extern bool RequireSharedSpaces;
 581 extern "C" {
 582 // Make sure UseSharedSpaces is accessible to the serviceability agent.
 583 extern JNIEXPORT jboolean UseSharedSpaces;
 584 }
 585 
 586 //----------------------------------------------------------------------------------------------------
 587 // Object alignment, in units of HeapWords.
 588 //
 589 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 590 // reference fields can be naturally aligned.
 591 
 592 extern int MinObjAlignment;
 593 extern int MinObjAlignmentInBytes;
 594 extern int MinObjAlignmentInBytesMask;
 595 
 596 extern int LogMinObjAlignment;
 597 extern int LogMinObjAlignmentInBytes;
 598 
 599 // Maximal size of heap where unscaled compression can be used. Also upper bound
 600 // for heap placement: 4GB.
 601 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 602 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 603 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 604 extern uint64_t OopEncodingHeapMax;
 605 
 606 // Machine dependent stuff
 607 
 608 // The maximum size of the code cache.  Can be overridden by targets.
 609 #define CODE_CACHE_SIZE_LIMIT (2*G)
 610 // Allow targets to reduce the default size of the code cache.
 611 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 612 
 613 #include CPU_HEADER(globalDefinitions)
 614 
 615 // To assure the IRIW property on processors that are not multiple copy
 616 // atomic, sync instructions must be issued between volatile reads to
 617 // assure their ordering, instead of after volatile stores.
 618 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 619 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 620 #ifdef CPU_MULTI_COPY_ATOMIC
 621 // Not needed.
 622 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 623 #else
 624 // From all non-multi-copy-atomic architectures, only PPC64 supports IRIW at the moment.
 625 // Final decision is subject to JEP 188: Java Memory Model Update.
 626 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = PPC64_ONLY(true) NOT_PPC64(false);
 627 #endif
 628 
 629 // The expected size in bytes of a cache line, used to pad data structures.
 630 #ifndef DEFAULT_CACHE_LINE_SIZE
 631   #define DEFAULT_CACHE_LINE_SIZE 64
 632 #endif
 633 
 634 
 635 //----------------------------------------------------------------------------------------------------
 636 // Utility macros for compilers
 637 // used to silence compiler warnings
 638 
 639 #define Unused_Variable(var) var
 640 
 641 
 642 //----------------------------------------------------------------------------------------------------
 643 // Miscellaneous
 644 
 645 // 6302670 Eliminate Hotspot __fabsf dependency
 646 // All fabs() callers should call this function instead, which will implicitly
 647 // convert the operand to double, avoiding a dependency on __fabsf which
 648 // doesn't exist in early versions of Solaris 8.
 649 inline double fabsd(double value) {
 650   return fabs(value);
 651 }
 652 
 653 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 654 // is zero, return 0.0.
 655 template<typename T>
 656 inline double percent_of(T numerator, T denominator) {
 657   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 658 }
 659 
 660 //----------------------------------------------------------------------------------------------------
 661 // Special casts
 662 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 663 typedef union {
 664   jfloat f;
 665   jint i;
 666 } FloatIntConv;
 667 
 668 typedef union {
 669   jdouble d;
 670   jlong l;
 671   julong ul;
 672 } DoubleLongConv;
 673 
 674 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 675 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 676 
 677 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 678 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 679 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 680 
 681 inline jint low (jlong value)                    { return jint(value); }
 682 inline jint high(jlong value)                    { return jint(value >> 32); }
 683 
 684 // the fancy casts are a hopefully portable way
 685 // to do unsigned 32 to 64 bit type conversion
 686 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 687                                                    *value |= (jlong)(julong)(juint)low; }
 688 
 689 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 690                                                    *value |= (jlong)high       << 32; }
 691 
 692 inline jlong jlong_from(jint h, jint l) {
 693   jlong result = 0; // initialization to avoid warning
 694   set_high(&result, h);
 695   set_low(&result,  l);
 696   return result;
 697 }
 698 
 699 union jlong_accessor {
 700   jint  words[2];
 701   jlong long_value;
 702 };
 703 
 704 void basic_types_init(); // cannot define here; uses assert
 705 
 706 
 707 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 708 enum BasicType {
 709 // The values T_BOOLEAN..T_LONG (4..11) are derived from the JVMS.
 710   T_BOOLEAN     = JVM_T_BOOLEAN,
 711   T_CHAR        = JVM_T_CHAR,
 712   T_FLOAT       = JVM_T_FLOAT,
 713   T_DOUBLE      = JVM_T_DOUBLE,
 714   T_BYTE        = JVM_T_BYTE,
 715   T_SHORT       = JVM_T_SHORT,
 716   T_INT         = JVM_T_INT,
 717   T_LONG        = JVM_T_LONG,
 718   // The remaining values are not part of any standard.
 719   // T_OBJECT and T_VOID denote two more semantic choices
 720   // for method return values.
 721   // T_OBJECT and T_ARRAY describe signature syntax.
 722   // T_ADDRESS, T_METADATA, T_NARROWOOP, T_NARROWKLASS describe
 723   // internal references within the JVM as if they were Java
 724   // types in their own right.
 725   T_OBJECT      = 12,
 726   T_ARRAY       = 13,
 727   T_VOID        = 14,
 728   T_ADDRESS     = 15,
 729   T_NARROWOOP   = 16,
 730   T_METADATA    = 17,
 731   T_NARROWKLASS = 18,
 732   T_CONFLICT    = 19, // for stack value type with conflicting contents
 733   T_ILLEGAL     = 99
 734 };
 735 
 736 #define SIGNATURE_TYPES_DO(F, N)                \
 737     F(JVM_SIGNATURE_BOOLEAN, T_BOOLEAN, N)      \
 738     F(JVM_SIGNATURE_CHAR,    T_CHAR,    N)      \
 739     F(JVM_SIGNATURE_FLOAT,   T_FLOAT,   N)      \
 740     F(JVM_SIGNATURE_DOUBLE,  T_DOUBLE,  N)      \
 741     F(JVM_SIGNATURE_BYTE,    T_BYTE,    N)      \
 742     F(JVM_SIGNATURE_SHORT,   T_SHORT,   N)      \
 743     F(JVM_SIGNATURE_INT,     T_INT,     N)      \
 744     F(JVM_SIGNATURE_LONG,    T_LONG,    N)      \
 745     F(JVM_SIGNATURE_CLASS,   T_OBJECT,  N)      \
 746     F(JVM_SIGNATURE_ARRAY,   T_ARRAY,   N)      \
 747     F(JVM_SIGNATURE_VOID,    T_VOID,    N)      \
 748     /*end*/
 749 
 750 inline bool is_java_type(BasicType t) {
 751   return T_BOOLEAN <= t && t <= T_VOID;
 752 }
 753 
 754 inline bool is_java_primitive(BasicType t) {
 755   return T_BOOLEAN <= t && t <= T_LONG;
 756 }
 757 
 758 inline bool is_subword_type(BasicType t) {
 759   // these guys are processed exactly like T_INT in calling sequences:
 760   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 761 }
 762 
 763 inline bool is_signed_subword_type(BasicType t) {
 764   return (t == T_BYTE || t == T_SHORT);
 765 }
 766 
 767 inline bool is_unsigned_subword_type(BasicType t) {
 768   return (t == T_BOOLEAN || t == T_CHAR);
 769 }
 770 
 771 inline bool is_double_word_type(BasicType t) {
 772   return (t == T_DOUBLE || t == T_LONG);
 773 }
 774 
 775 inline bool is_reference_type(BasicType t, bool include_narrow_oop = false) {
 776   return (t == T_OBJECT || t == T_ARRAY || (include_narrow_oop && t == T_NARROWOOP));
 777 }
 778 
 779 inline bool is_integral_type(BasicType t) {
 780   return is_subword_type(t) || t == T_INT || t == T_LONG;
 781 }
 782 
 783 inline bool is_non_subword_integral_type(BasicType t) {
 784   return t == T_INT || t == T_LONG;
 785 }
 786 
 787 inline bool is_floating_point_type(BasicType t) {
 788   return (t == T_FLOAT || t == T_DOUBLE);
 789 }
 790 
 791 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 792 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 793 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 794 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a char*
 795 extern BasicType name2type(const char* name);
 796 
 797 const char* type2name(BasicType t);
 798 
 799 inline jlong max_signed_integer(BasicType bt) {
 800   if (bt == T_INT) {
 801     return max_jint;
 802   }
 803   assert(bt == T_LONG, "unsupported");
 804   return max_jlong;
 805 }
 806 
 807 inline jlong min_signed_integer(BasicType bt) {
 808   if (bt == T_INT) {
 809     return min_jint;
 810   }
 811   assert(bt == T_LONG, "unsupported");
 812   return min_jlong;
 813 }
 814 
 815 // Auxiliary math routines
 816 // least common multiple
 817 extern size_t lcm(size_t a, size_t b);
 818 
 819 
 820 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 821 enum BasicTypeSize {
 822   T_BOOLEAN_size     = 1,
 823   T_CHAR_size        = 1,
 824   T_FLOAT_size       = 1,
 825   T_DOUBLE_size      = 2,
 826   T_BYTE_size        = 1,
 827   T_SHORT_size       = 1,
 828   T_INT_size         = 1,
 829   T_LONG_size        = 2,
 830   T_OBJECT_size      = 1,
 831   T_ARRAY_size       = 1,
 832   T_NARROWOOP_size   = 1,
 833   T_NARROWKLASS_size = 1,
 834   T_VOID_size        = 0
 835 };
 836 
 837 // this works on valid parameter types but not T_VOID, T_CONFLICT, etc.
 838 inline int parameter_type_word_count(BasicType t) {
 839   if (is_double_word_type(t))  return 2;
 840   assert(is_java_primitive(t) || is_reference_type(t), "no goofy types here please");
 841   assert(type2size[t] == 1, "must be");
 842   return 1;
 843 }
 844 
 845 // maps a BasicType to its instance field storage type:
 846 // all sub-word integral types are widened to T_INT
 847 extern BasicType type2field[T_CONFLICT+1];
 848 extern BasicType type2wfield[T_CONFLICT+1];
 849 
 850 
 851 // size in bytes
 852 enum ArrayElementSize {
 853   T_BOOLEAN_aelem_bytes     = 1,
 854   T_CHAR_aelem_bytes        = 2,
 855   T_FLOAT_aelem_bytes       = 4,
 856   T_DOUBLE_aelem_bytes      = 8,
 857   T_BYTE_aelem_bytes        = 1,
 858   T_SHORT_aelem_bytes       = 2,
 859   T_INT_aelem_bytes         = 4,
 860   T_LONG_aelem_bytes        = 8,
 861 #ifdef _LP64
 862   T_OBJECT_aelem_bytes      = 8,
 863   T_ARRAY_aelem_bytes       = 8,
 864 #else
 865   T_OBJECT_aelem_bytes      = 4,
 866   T_ARRAY_aelem_bytes       = 4,
 867 #endif
 868   T_NARROWOOP_aelem_bytes   = 4,
 869   T_NARROWKLASS_aelem_bytes = 4,
 870   T_VOID_aelem_bytes        = 0
 871 };
 872 
 873 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 874 #ifdef ASSERT
 875 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 876 #else
 877 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 878 #endif
 879 
 880 inline bool same_type_or_subword_size(BasicType t1, BasicType t2) {
 881   return (t1 == t2) || (is_subword_type(t1) && type2aelembytes(t1) == type2aelembytes(t2));
 882 }
 883 
 884 // JavaValue serves as a container for arbitrary Java values.
 885 
 886 class JavaValue {
 887 
 888  public:
 889   typedef union JavaCallValue {
 890     jfloat   f;
 891     jdouble  d;
 892     jint     i;
 893     jlong    l;
 894     jobject  h;
 895     oopDesc* o;
 896   } JavaCallValue;
 897 
 898  private:
 899   BasicType _type;
 900   JavaCallValue _value;
 901 
 902  public:
 903   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 904 
 905   JavaValue(jfloat value) {
 906     _type    = T_FLOAT;
 907     _value.f = value;
 908   }
 909 
 910   JavaValue(jdouble value) {
 911     _type    = T_DOUBLE;
 912     _value.d = value;
 913   }
 914 
 915  jfloat get_jfloat() const { return _value.f; }
 916  jdouble get_jdouble() const { return _value.d; }
 917  jint get_jint() const { return _value.i; }
 918  jlong get_jlong() const { return _value.l; }
 919  jobject get_jobject() const { return _value.h; }
 920  oopDesc* get_oop() const { return _value.o; }
 921  JavaCallValue* get_value_addr() { return &_value; }
 922  BasicType get_type() const { return _type; }
 923 
 924  void set_jfloat(jfloat f) { _value.f = f;}
 925  void set_jdouble(jdouble d) { _value.d = d;}
 926  void set_jint(jint i) { _value.i = i;}
 927  void set_jlong(jlong l) { _value.l = l;}
 928  void set_jobject(jobject h) { _value.h = h;}
 929  void set_oop(oopDesc* o) { _value.o = o;}
 930  void set_type(BasicType t) { _type = t; }
 931 
 932  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 933  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 934  jchar get_jchar() const { return (jchar) (_value.i);}
 935  jshort get_jshort() const { return (jshort) (_value.i);}
 936 
 937 };
 938 
 939 
 940 // TosState describes the top-of-stack state before and after the execution of
 941 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 942 // registers. The TosState corresponds to the 'machine representation' of this cached
 943 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 944 // as well as a 5th state in case the top-of-stack value is actually on the top
 945 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 946 // state when it comes to machine representation but is used separately for (oop)
 947 // type specific operations (e.g. verification code).
 948 
 949 enum TosState {         // describes the tos cache contents
 950   btos = 0,             // byte, bool tos cached
 951   ztos = 1,             // byte, bool tos cached
 952   ctos = 2,             // char tos cached
 953   stos = 3,             // short tos cached
 954   itos = 4,             // int tos cached
 955   ltos = 5,             // long tos cached
 956   ftos = 6,             // float tos cached
 957   dtos = 7,             // double tos cached
 958   atos = 8,             // object cached
 959   vtos = 9,             // tos not cached
 960   number_of_states,
 961   ilgl                  // illegal state: should not occur
 962 };
 963 
 964 
 965 inline TosState as_TosState(BasicType type) {
 966   switch (type) {
 967     case T_BYTE   : return btos;
 968     case T_BOOLEAN: return ztos;
 969     case T_CHAR   : return ctos;
 970     case T_SHORT  : return stos;
 971     case T_INT    : return itos;
 972     case T_LONG   : return ltos;
 973     case T_FLOAT  : return ftos;
 974     case T_DOUBLE : return dtos;
 975     case T_VOID   : return vtos;
 976     case T_ARRAY  : // fall through
 977     case T_OBJECT : return atos;
 978     default       : return ilgl;
 979   }
 980 }
 981 
 982 inline BasicType as_BasicType(TosState state) {
 983   switch (state) {
 984     case btos : return T_BYTE;
 985     case ztos : return T_BOOLEAN;
 986     case ctos : return T_CHAR;
 987     case stos : return T_SHORT;
 988     case itos : return T_INT;
 989     case ltos : return T_LONG;
 990     case ftos : return T_FLOAT;
 991     case dtos : return T_DOUBLE;
 992     case atos : return T_OBJECT;
 993     case vtos : return T_VOID;
 994     default   : return T_ILLEGAL;
 995   }
 996 }
 997 
 998 
 999 // Helper function to convert BasicType info into TosState
1000 // Note: Cannot define here as it uses global constant at the time being.
1001 TosState as_TosState(BasicType type);
1002 
1003 
1004 // JavaThreadState keeps track of which part of the code a thread is executing in. This
1005 // information is needed by the safepoint code.
1006 //
1007 // There are 4 essential states:
1008 //
1009 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
1010 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
1011 //  _thread_in_vm       : Executing in the vm
1012 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
1013 //
1014 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
1015 // a transition from one state to another. These extra states makes it possible for the safepoint code to
1016 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
1017 //
1018 // Given a state, the xxxx_trans state can always be found by adding 1.
1019 //
1020 enum JavaThreadState {
1021   _thread_uninitialized     =  0, // should never happen (missing initialization)
1022   _thread_new               =  2, // just starting up, i.e., in process of being initialized
1023   _thread_new_trans         =  3, // corresponding transition state (not used, included for completeness)
1024   _thread_in_native         =  4, // running in native code
1025   _thread_in_native_trans   =  5, // corresponding transition state
1026   _thread_in_vm             =  6, // running in VM
1027   _thread_in_vm_trans       =  7, // corresponding transition state
1028   _thread_in_Java           =  8, // running in Java or in stub code
1029   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completeness)
1030   _thread_blocked           = 10, // blocked in vm
1031   _thread_blocked_trans     = 11, // corresponding transition state
1032   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
1033 };
1034 
1035 enum LockingMode {
1036   // Use only heavy monitors for locking
1037   LM_MONITOR     = 0,
1038   // Legacy stack-locking, with monitors as 2nd tier
1039   LM_LEGACY      = 1,
1040   // New lightweight locking, with monitors as 2nd tier
1041   LM_LIGHTWEIGHT = 2
1042 };
1043 
1044 //----------------------------------------------------------------------------------------------------
1045 // Special constants for debugging
1046 
1047 const jint     badInt           = -3;                       // generic "bad int" value
1048 const intptr_t badAddressVal    = -2;                       // generic "bad address" value
1049 const intptr_t badOopVal        = -1;                       // generic "bad oop" value
1050 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1051 const int      badStackSegVal   = 0xCA;                     // value used to zap stack segments
1052 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1053 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1054 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1055 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1056 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
1057 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1058 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1059 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1060 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1061 
1062 
1063 // (These must be implemented as #defines because C++ compilers are
1064 // not obligated to inline non-integral constants!)
1065 #define       badAddress        ((address)::badAddressVal)
1066 #define       badHeapWord       (::badHeapWordVal)
1067 
1068 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1069 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1070 
1071 //----------------------------------------------------------------------------------------------------
1072 // Utility functions for bitfield manipulations
1073 
1074 const intptr_t AllBits    = ~0; // all bits set in a word
1075 const intptr_t NoBits     =  0; // no bits set in a word
1076 const jlong    NoLongBits =  0; // no bits set in a long
1077 const intptr_t OneBit     =  1; // only right_most bit set in a word
1078 
1079 // get a word with the n.th or the right-most or left-most n bits set
1080 // (note: #define used only so that they can be used in enum constant definitions)
1081 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
1082 #define right_n_bits(n)   (nth_bit(n) - 1)
1083 
1084 // bit-operations using a mask m
1085 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1086 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1087 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1088 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1089 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1090 
1091 // bit-operations using the n.th bit
1092 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1093 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1094 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1095 
1096 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1097 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1098   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1099 }
1100 
1101 
1102 //----------------------------------------------------------------------------------------------------
1103 // Utility functions for integers
1104 
1105 // Avoid use of global min/max macros which may cause unwanted double
1106 // evaluation of arguments.
1107 #ifdef max
1108 #undef max
1109 #endif
1110 
1111 #ifdef min
1112 #undef min
1113 #endif
1114 
1115 // It is necessary to use templates here. Having normal overloaded
1116 // functions does not work because it is necessary to provide both 32-
1117 // and 64-bit overloaded functions, which does not work, and having
1118 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1119 // will be even more error-prone than macros.
1120 template<class T> constexpr T MAX2(T a, T b)           { return (a > b) ? a : b; }
1121 template<class T> constexpr T MIN2(T a, T b)           { return (a < b) ? a : b; }
1122 template<class T> constexpr T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1123 template<class T> constexpr T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1124 template<class T> constexpr T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1125 template<class T> constexpr T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1126 
1127 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1128 
1129 // Return the given value clamped to the range [min ... max]
1130 template<typename T>
1131 inline T clamp(T value, T min, T max) {
1132   assert(min <= max, "must be");
1133   return MIN2(MAX2(value, min), max);
1134 }
1135 
1136 inline bool is_odd (intx x) { return x & 1;      }
1137 inline bool is_even(intx x) { return !is_odd(x); }
1138 
1139 // abs methods which cannot overflow and so are well-defined across
1140 // the entire domain of integer types.
1141 static inline unsigned int uabs(unsigned int n) {
1142   union {
1143     unsigned int result;
1144     int value;
1145   };
1146   result = n;
1147   if (value < 0) result = 0-result;
1148   return result;
1149 }
1150 static inline julong uabs(julong n) {
1151   union {
1152     julong result;
1153     jlong value;
1154   };
1155   result = n;
1156   if (value < 0) result = 0-result;
1157   return result;
1158 }
1159 static inline julong uabs(jlong n) { return uabs((julong)n); }
1160 static inline unsigned int uabs(int n) { return uabs((unsigned int)n); }
1161 
1162 // "to" should be greater than "from."
1163 inline intx byte_size(void* from, void* to) {
1164   return (address)to - (address)from;
1165 }
1166 
1167 // Pack and extract shorts to/from ints:
1168 
1169 inline int extract_low_short_from_int(jint x) {
1170   return x & 0xffff;
1171 }
1172 
1173 inline int extract_high_short_from_int(jint x) {
1174   return (x >> 16) & 0xffff;
1175 }
1176 
1177 inline int build_int_from_shorts( jushort low, jushort high ) {
1178   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1179 }
1180 
1181 // swap a & b
1182 template<class T> static void swap(T& a, T& b) {
1183   T tmp = a;
1184   a = b;
1185   b = tmp;
1186 }
1187 
1188 // array_size_impl is a function that takes a reference to T[N] and
1189 // returns a reference to char[N].  It is not ODR-used, so not defined.
1190 template<typename T, size_t N> char (&array_size_impl(T (&)[N]))[N];
1191 
1192 #define ARRAY_SIZE(array) sizeof(array_size_impl(array))
1193 
1194 //----------------------------------------------------------------------------------------------------
1195 // Sum and product which can never overflow: they wrap, just like the
1196 // Java operations.  Note that we don't intend these to be used for
1197 // general-purpose arithmetic: their purpose is to emulate Java
1198 // operations.
1199 
1200 // The goal of this code to avoid undefined or implementation-defined
1201 // behavior.  The use of an lvalue to reference cast is explicitly
1202 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1203 // 15 in C++03]
1204 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1205 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1206   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1207   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1208   return reinterpret_cast<TYPE&>(ures);                 \
1209 }
1210 
1211 JAVA_INTEGER_OP(+, java_add, jint, juint)
1212 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1213 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1214 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1215 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1216 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1217 
1218 #undef JAVA_INTEGER_OP
1219 
1220 // Provide integer shift operations with Java semantics.  No overflow
1221 // issues - left shifts simply discard shifted out bits.  No undefined
1222 // behavior for large or negative shift quantities; instead the actual
1223 // shift distance is the argument modulo the lhs value's size in bits.
1224 // No undefined or implementation defined behavior for shifting negative
1225 // values; left shift discards bits, right shift sign extends.  We use
1226 // the same safe conversion technique as above for java_add and friends.
1227 #define JAVA_INTEGER_SHIFT_OP(OP, NAME, TYPE, XTYPE)    \
1228 inline TYPE NAME (TYPE lhs, jint rhs) {                 \
1229   const uint rhs_mask = (sizeof(TYPE) * 8) - 1;         \
1230   STATIC_ASSERT(rhs_mask == 31 || rhs_mask == 63);      \
1231   XTYPE xres = static_cast<XTYPE>(lhs);                 \
1232   xres OP ## = (rhs & rhs_mask);                        \
1233   return reinterpret_cast<TYPE&>(xres);                 \
1234 }
1235 
1236 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jint, juint)
1237 JAVA_INTEGER_SHIFT_OP(<<, java_shift_left, jlong, julong)
1238 
1239 // For signed shift right, assume C++ implementation >> sign extends.
1240 //
1241 // C++14 5.8/3: In the description of "E1 >> E2" it says "If E1 has a signed type
1242 // and a negative value, the resulting value is implementation-defined."
1243 //
1244 // However, C++20 7.6.7/3 further defines integral arithmetic, as part of
1245 // requiring two's-complement behavior.
1246 // https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0907r3.html
1247 // https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1236r1.html
1248 // The corresponding C++20 text is "Right-shift on signed integral types is an
1249 // arithmetic right shift, which performs sign-extension."
1250 //
1251 // As discussed in the two's complement proposal, all known modern C++ compilers
1252 // already behave that way. And it is unlikely any would go off and do something
1253 // different now, with C++20 tightening things up.
1254 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jint, jint)
1255 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right, jlong, jlong)
1256 // For >>> use C++ unsigned >>.
1257 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jint, juint)
1258 JAVA_INTEGER_SHIFT_OP(>>, java_shift_right_unsigned, jlong, julong)
1259 
1260 #undef JAVA_INTEGER_SHIFT_OP
1261 
1262 //----------------------------------------------------------------------------------------------------
1263 // The goal of this code is to provide saturating operations for int/uint.
1264 // Checks overflow conditions and saturates the result to min_jint/max_jint.
1265 #define SATURATED_INTEGER_OP(OP, NAME, TYPE1, TYPE2) \
1266 inline int NAME (TYPE1 in1, TYPE2 in2) {             \
1267   jlong res = static_cast<jlong>(in1);               \
1268   res OP ## = static_cast<jlong>(in2);               \
1269   if (res > max_jint) {                              \
1270     res = max_jint;                                  \
1271   } else if (res < min_jint) {                       \
1272     res = min_jint;                                  \
1273   }                                                  \
1274   return static_cast<int>(res);                      \
1275 }
1276 
1277 SATURATED_INTEGER_OP(+, saturated_add, int, int)
1278 SATURATED_INTEGER_OP(+, saturated_add, int, uint)
1279 SATURATED_INTEGER_OP(+, saturated_add, uint, int)
1280 SATURATED_INTEGER_OP(+, saturated_add, uint, uint)
1281 
1282 #undef SATURATED_INTEGER_OP
1283 
1284 // Taken from rom section 8-2 of Henry S. Warren, Jr., Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174.
1285 inline uint64_t multiply_high_unsigned(const uint64_t x, const uint64_t y) {
1286   const uint64_t x1 = x >> 32u;
1287   const uint64_t x2 = x & 0xFFFFFFFF;
1288   const uint64_t y1 = y >> 32u;
1289   const uint64_t y2 = y & 0xFFFFFFFF;
1290   const uint64_t z2 = x2 * y2;
1291   const uint64_t t = x1 * y2 + (z2 >> 32u);
1292   uint64_t z1 = t & 0xFFFFFFFF;
1293   const uint64_t z0 = t >> 32u;
1294   z1 += x2 * y1;
1295 
1296   return x1 * y1 + z0 + (z1 >> 32u);
1297 }
1298 
1299 // Taken from java.lang.Math::multiplyHigh which uses the technique from section 8-2 of Henry S. Warren, Jr.,
1300 // Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 173-174 but adapted for signed longs.
1301 inline int64_t multiply_high_signed(const int64_t x, const int64_t y) {
1302   const jlong x1 = java_shift_right((jlong)x, 32);
1303   const jlong x2 = x & 0xFFFFFFFF;
1304   const jlong y1 = java_shift_right((jlong)y, 32);
1305   const jlong y2 = y & 0xFFFFFFFF;
1306 
1307   const uint64_t z2 = x2 * y2;
1308   const int64_t t = x1 * y2 + (z2 >> 32u); // Unsigned shift
1309   int64_t z1 = t & 0xFFFFFFFF;
1310   const int64_t z0 = java_shift_right((jlong)t, 32);
1311   z1 += x2 * y1;
1312 
1313   return x1 * y1 + z0 + java_shift_right((jlong)z1, 32);
1314 }
1315 
1316 // Dereference vptr
1317 // All C++ compilers that we know of have the vtbl pointer in the first
1318 // word.  If there are exceptions, this function needs to be made compiler
1319 // specific.
1320 static inline void* dereference_vptr(const void* addr) {
1321   return *(void**)addr;
1322 }
1323 
1324 //----------------------------------------------------------------------------------------------------
1325 // String type aliases used by command line flag declarations and
1326 // processing utilities.
1327 
1328 typedef const char* ccstr;
1329 typedef const char* ccstrlist;   // represents string arguments which accumulate
1330 
1331 //----------------------------------------------------------------------------------------------------
1332 // Default hash/equals functions used by ResourceHashtable
1333 
1334 template<typename K> unsigned primitive_hash(const K& k) {
1335   unsigned hash = (unsigned)((uintptr_t)k);
1336   return hash ^ (hash >> 3); // just in case we're dealing with aligned ptrs
1337 }
1338 
1339 template<typename K> bool primitive_equals(const K& k0, const K& k1) {
1340   return k0 == k1;
1341 }
1342 
1343 //----------------------------------------------------------------------------------------------------
1344 
1345 // Allow use of C++ thread_local when approved - see JDK-8282469.
1346 #define APPROVED_CPP_THREAD_LOCAL thread_local
1347 
1348 // Converts any type T to a reference type.
1349 template<typename T>
1350 std::add_rvalue_reference_t<T> declval() noexcept;
1351 
1352 #endif // SHARE_UTILITIES_GLOBALDEFINITIONS_HPP