1 /*
   2  * Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_Instruction.hpp"
  31 #include "c1/c1_LIRAssembler.hpp"
  32 #include "c1/c1_LIRGenerator.hpp"
  33 #include "c1/c1_Runtime1.hpp"
  34 #include "c1/c1_ValueStack.hpp"
  35 #include "ci/ciArray.hpp"
  36 #include "ci/ciObjArrayKlass.hpp"
  37 #include "ci/ciTypeArrayKlass.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "utilities/powerOfTwo.hpp"
  41 #include "vmreg_aarch64.inline.hpp"
  42 
  43 #ifdef ASSERT
  44 #define __ gen()->lir(__FILE__, __LINE__)->
  45 #else
  46 #define __ gen()->lir()->
  47 #endif
  48 
  49 // Item will be loaded into a byte register; Intel only
  50 void LIRItem::load_byte_item() {
  51   load_item();
  52 }
  53 
  54 
  55 void LIRItem::load_nonconstant() {
  56   LIR_Opr r = value()->operand();
  57   if (r->is_constant()) {
  58     _result = r;
  59   } else {
  60     load_item();
  61   }
  62 }
  63 
  64 //--------------------------------------------------------------
  65 //               LIRGenerator
  66 //--------------------------------------------------------------
  67 
  68 
  69 LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r0_oop_opr; }
  70 LIR_Opr LIRGenerator::exceptionPcOpr()  { return FrameMap::r3_opr; }
  71 LIR_Opr LIRGenerator::divInOpr()        { Unimplemented(); return LIR_OprFact::illegalOpr; }
  72 LIR_Opr LIRGenerator::divOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
  73 LIR_Opr LIRGenerator::remOutOpr()       { Unimplemented(); return LIR_OprFact::illegalOpr; }
  74 LIR_Opr LIRGenerator::shiftCountOpr()   { Unimplemented(); return LIR_OprFact::illegalOpr; }
  75 LIR_Opr LIRGenerator::syncLockOpr()     { return new_register(T_INT); }
  76 LIR_Opr LIRGenerator::syncTempOpr()     { return FrameMap::r0_opr; }
  77 LIR_Opr LIRGenerator::getThreadTemp()   { return LIR_OprFact::illegalOpr; }
  78 
  79 
  80 LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
  81   LIR_Opr opr;
  82   switch (type->tag()) {
  83     case intTag:     opr = FrameMap::r0_opr;          break;
  84     case objectTag:  opr = FrameMap::r0_oop_opr;      break;
  85     case longTag:    opr = FrameMap::long0_opr;        break;
  86     case floatTag:   opr = FrameMap::fpu0_float_opr;  break;
  87     case doubleTag:  opr = FrameMap::fpu0_double_opr;  break;
  88 
  89     case addressTag:
  90     default: ShouldNotReachHere(); return LIR_OprFact::illegalOpr;
  91   }
  92 
  93   assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
  94   return opr;
  95 }
  96 
  97 
  98 LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
  99   LIR_Opr reg = new_register(T_INT);
 100   set_vreg_flag(reg, LIRGenerator::byte_reg);
 101   return reg;
 102 }
 103 
 104 
 105 //--------- loading items into registers --------------------------------
 106 
 107 
 108 bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
 109   if (v->type()->as_IntConstant() != NULL) {
 110     return v->type()->as_IntConstant()->value() == 0L;
 111   } else if (v->type()->as_LongConstant() != NULL) {
 112     return v->type()->as_LongConstant()->value() == 0L;
 113   } else if (v->type()->as_ObjectConstant() != NULL) {
 114     return v->type()->as_ObjectConstant()->value()->is_null_object();
 115   } else {
 116     return false;
 117   }
 118 }
 119 
 120 bool LIRGenerator::can_inline_as_constant(Value v) const {
 121   // FIXME: Just a guess
 122   if (v->type()->as_IntConstant() != NULL) {
 123     return Assembler::operand_valid_for_add_sub_immediate(v->type()->as_IntConstant()->value());
 124   } else if (v->type()->as_LongConstant() != NULL) {
 125     return v->type()->as_LongConstant()->value() == 0L;
 126   } else if (v->type()->as_ObjectConstant() != NULL) {
 127     return v->type()->as_ObjectConstant()->value()->is_null_object();
 128   } else {
 129     return false;
 130   }
 131 }
 132 
 133 
 134 bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const { return false; }
 135 
 136 
 137 LIR_Opr LIRGenerator::safepoint_poll_register() {
 138   return LIR_OprFact::illegalOpr;
 139 }
 140 
 141 
 142 LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
 143                                             int shift, int disp, BasicType type) {
 144   assert(base->is_register(), "must be");
 145   intx large_disp = disp;
 146 
 147   // accumulate fixed displacements
 148   if (index->is_constant()) {
 149     LIR_Const *constant = index->as_constant_ptr();
 150     if (constant->type() == T_INT) {
 151       large_disp += index->as_jint() << shift;
 152     } else {
 153       assert(constant->type() == T_LONG, "should be");
 154       jlong c = index->as_jlong() << shift;
 155       if ((jlong)((jint)c) == c) {
 156         large_disp += c;
 157         index = LIR_OprFact::illegalOpr;
 158       } else {
 159         LIR_Opr tmp = new_register(T_LONG);
 160         __ move(index, tmp);
 161         index = tmp;
 162         // apply shift and displacement below
 163       }
 164     }
 165   }
 166 
 167   if (index->is_register()) {
 168     // apply the shift and accumulate the displacement
 169     if (shift > 0) {
 170       LIR_Opr tmp = new_pointer_register();
 171       __ shift_left(index, shift, tmp);
 172       index = tmp;
 173     }
 174     if (large_disp != 0) {
 175       LIR_Opr tmp = new_pointer_register();
 176       if (Assembler::operand_valid_for_add_sub_immediate(large_disp)) {
 177         __ add(index, LIR_OprFact::intptrConst(large_disp), tmp);
 178         index = tmp;
 179       } else {
 180         __ move(LIR_OprFact::intptrConst(large_disp), tmp);
 181         __ add(tmp, index, tmp);
 182         index = tmp;
 183       }
 184       large_disp = 0;
 185     }
 186   } else if (large_disp != 0 && !Address::offset_ok_for_immed(large_disp, shift)) {
 187     // index is illegal so replace it with the displacement loaded into a register
 188     index = new_pointer_register();
 189     __ move(LIR_OprFact::intptrConst(large_disp), index);
 190     large_disp = 0;
 191   }
 192 
 193   // at this point we either have base + index or base + displacement
 194   if (large_disp == 0 && index->is_register()) {
 195     return new LIR_Address(base, index, type);
 196   } else {
 197     assert(Address::offset_ok_for_immed(large_disp, 0), "must be");
 198     return new LIR_Address(base, large_disp, type);
 199   }
 200 }
 201 
 202 LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
 203                                               BasicType type) {
 204   int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
 205   int elem_size = type2aelembytes(type);
 206   int shift = exact_log2(elem_size);
 207 
 208   LIR_Address* addr;
 209   if (index_opr->is_constant()) {
 210     addr = new LIR_Address(array_opr,
 211                            offset_in_bytes + (intx)(index_opr->as_jint()) * elem_size, type);
 212   } else {
 213     if (offset_in_bytes) {
 214       LIR_Opr tmp = new_pointer_register();
 215       __ add(array_opr, LIR_OprFact::intConst(offset_in_bytes), tmp);
 216       array_opr = tmp;
 217       offset_in_bytes = 0;
 218     }
 219     addr =  new LIR_Address(array_opr,
 220                             index_opr,
 221                             LIR_Address::scale(type),
 222                             offset_in_bytes, type);
 223   }
 224   return addr;
 225 }
 226 
 227 LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
 228   LIR_Opr r;
 229   if (type == T_LONG) {
 230     r = LIR_OprFact::longConst(x);
 231     if (!Assembler::operand_valid_for_logical_immediate(false, x)) {
 232       LIR_Opr tmp = new_register(type);
 233       __ move(r, tmp);
 234       return tmp;
 235     }
 236   } else if (type == T_INT) {
 237     r = LIR_OprFact::intConst(x);
 238     if (!Assembler::operand_valid_for_logical_immediate(true, x)) {
 239       // This is all rather nasty.  We don't know whether our constant
 240       // is required for a logical or an arithmetic operation, wo we
 241       // don't know what the range of valid values is!!
 242       LIR_Opr tmp = new_register(type);
 243       __ move(r, tmp);
 244       return tmp;
 245     }
 246   } else {
 247     ShouldNotReachHere();
 248     r = NULL;  // unreachable
 249   }
 250   return r;
 251 }
 252 
 253 
 254 
 255 void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
 256   LIR_Opr pointer = new_pointer_register();
 257   __ move(LIR_OprFact::intptrConst(counter), pointer);
 258   LIR_Address* addr = new LIR_Address(pointer, type);
 259   increment_counter(addr, step);
 260 }
 261 
 262 
 263 void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
 264   LIR_Opr imm = NULL;
 265   switch(addr->type()) {
 266   case T_INT:
 267     imm = LIR_OprFact::intConst(step);
 268     break;
 269   case T_LONG:
 270     imm = LIR_OprFact::longConst(step);
 271     break;
 272   default:
 273     ShouldNotReachHere();
 274   }
 275   LIR_Opr reg = new_register(addr->type());
 276   __ load(addr, reg);
 277   __ add(reg, imm, reg);
 278   __ store(reg, addr);
 279 }
 280 
 281 void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
 282   LIR_Opr reg = new_register(T_INT);
 283   __ load(generate_address(base, disp, T_INT), reg, info);
 284   __ cmp(condition, reg, LIR_OprFact::intConst(c));
 285 }
 286 
 287 void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
 288   LIR_Opr reg1 = new_register(T_INT);
 289   __ load(generate_address(base, disp, type), reg1, info);
 290   __ cmp(condition, reg, reg1);
 291 }
 292 
 293 
 294 bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) {
 295 
 296   if (is_power_of_2(c - 1)) {
 297     __ shift_left(left, exact_log2(c - 1), tmp);
 298     __ add(tmp, left, result);
 299     return true;
 300   } else if (is_power_of_2(c + 1)) {
 301     __ shift_left(left, exact_log2(c + 1), tmp);
 302     __ sub(tmp, left, result);
 303     return true;
 304   } else {
 305     return false;
 306   }
 307 }
 308 
 309 void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
 310   BasicType type = item->type();
 311   __ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type));
 312 }
 313 
 314 void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info, ciMethod* profiled_method, int profiled_bci) {
 315     LIR_Opr tmp1 = new_register(objectType);
 316     LIR_Opr tmp2 = new_register(objectType);
 317     LIR_Opr tmp3 = new_register(objectType);
 318     __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
 319 }
 320 
 321 //----------------------------------------------------------------------
 322 //             visitor functions
 323 //----------------------------------------------------------------------
 324 
 325 void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
 326   assert(x->is_pinned(),"");
 327   LIRItem obj(x->obj(), this);
 328   obj.load_item();
 329 
 330   set_no_result(x);
 331 
 332   // "lock" stores the address of the monitor stack slot, so this is not an oop
 333   LIR_Opr lock = new_register(T_INT);
 334 
 335   CodeEmitInfo* info_for_exception = NULL;
 336   if (x->needs_null_check()) {
 337     info_for_exception = state_for(x);
 338   }
 339   // this CodeEmitInfo must not have the xhandlers because here the
 340   // object is already locked (xhandlers expect object to be unlocked)
 341   CodeEmitInfo* info = state_for(x, x->state(), true);
 342   monitor_enter(obj.result(), lock, syncTempOpr(), LIR_OprFact::illegalOpr,
 343                         x->monitor_no(), info_for_exception, info);
 344 }
 345 
 346 
 347 void LIRGenerator::do_MonitorExit(MonitorExit* x) {
 348   assert(x->is_pinned(),"");
 349 
 350   LIRItem obj(x->obj(), this);
 351   obj.dont_load_item();
 352 
 353   LIR_Opr lock = new_register(T_INT);
 354   LIR_Opr obj_temp = new_register(T_INT);
 355   set_no_result(x);
 356   monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
 357 }
 358 
 359 
 360 void LIRGenerator::do_NegateOp(NegateOp* x) {
 361 
 362   LIRItem from(x->x(), this);
 363   from.load_item();
 364   LIR_Opr result = rlock_result(x);
 365   __ negate (from.result(), result);
 366 
 367 }
 368 
 369 // for  _fadd, _fmul, _fsub, _fdiv, _frem
 370 //      _dadd, _dmul, _dsub, _ddiv, _drem
 371 void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
 372 
 373   if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) {
 374     // float remainder is implemented as a direct call into the runtime
 375     LIRItem right(x->x(), this);
 376     LIRItem left(x->y(), this);
 377 
 378     BasicTypeList signature(2);
 379     if (x->op() == Bytecodes::_frem) {
 380       signature.append(T_FLOAT);
 381       signature.append(T_FLOAT);
 382     } else {
 383       signature.append(T_DOUBLE);
 384       signature.append(T_DOUBLE);
 385     }
 386     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 387 
 388     const LIR_Opr result_reg = result_register_for(x->type());
 389     left.load_item_force(cc->at(1));
 390     right.load_item();
 391 
 392     __ move(right.result(), cc->at(0));
 393 
 394     address entry;
 395     if (x->op() == Bytecodes::_frem) {
 396       entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
 397     } else {
 398       entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
 399     }
 400 
 401     LIR_Opr result = rlock_result(x);
 402     __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
 403     __ move(result_reg, result);
 404 
 405     return;
 406   }
 407 
 408   LIRItem left(x->x(),  this);
 409   LIRItem right(x->y(), this);
 410   LIRItem* left_arg  = &left;
 411   LIRItem* right_arg = &right;
 412 
 413   // Always load right hand side.
 414   right.load_item();
 415 
 416   if (!left.is_register())
 417     left.load_item();
 418 
 419   LIR_Opr reg = rlock(x);
 420 
 421   arithmetic_op_fpu(x->op(), reg, left.result(), right.result());
 422 
 423   set_result(x, round_item(reg));
 424 }
 425 
 426 // for  _ladd, _lmul, _lsub, _ldiv, _lrem
 427 void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
 428 
 429   // missing test if instr is commutative and if we should swap
 430   LIRItem left(x->x(), this);
 431   LIRItem right(x->y(), this);
 432 
 433   if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
 434 
 435     left.load_item();
 436     bool need_zero_check = true;
 437     if (right.is_constant()) {
 438       jlong c = right.get_jlong_constant();
 439       // no need to do div-by-zero check if the divisor is a non-zero constant
 440       if (c != 0) need_zero_check = false;
 441       // do not load right if the divisor is a power-of-2 constant
 442       if (c > 0 && is_power_of_2(c)) {
 443         right.dont_load_item();
 444       } else {
 445         right.load_item();
 446       }
 447     } else {
 448       right.load_item();
 449     }
 450     if (need_zero_check) {
 451       CodeEmitInfo* info = state_for(x);
 452       __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
 453       __ branch(lir_cond_equal, new DivByZeroStub(info));
 454     }
 455 
 456     rlock_result(x);
 457     switch (x->op()) {
 458     case Bytecodes::_lrem:
 459       __ rem (left.result(), right.result(), x->operand());
 460       break;
 461     case Bytecodes::_ldiv:
 462       __ div (left.result(), right.result(), x->operand());
 463       break;
 464     default:
 465       ShouldNotReachHere();
 466       break;
 467     }
 468 
 469 
 470   } else {
 471     assert (x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub,
 472             "expect lmul, ladd or lsub");
 473     // add, sub, mul
 474     left.load_item();
 475     if (! right.is_register()) {
 476       if (x->op() == Bytecodes::_lmul
 477           || ! right.is_constant()
 478           || ! Assembler::operand_valid_for_add_sub_immediate(right.get_jlong_constant())) {
 479         right.load_item();
 480       } else { // add, sub
 481         assert (x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expect ladd or lsub");
 482         // don't load constants to save register
 483         right.load_nonconstant();
 484       }
 485     }
 486     rlock_result(x);
 487     arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
 488   }
 489 }
 490 
 491 // for: _iadd, _imul, _isub, _idiv, _irem
 492 void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
 493 
 494   // Test if instr is commutative and if we should swap
 495   LIRItem left(x->x(),  this);
 496   LIRItem right(x->y(), this);
 497   LIRItem* left_arg = &left;
 498   LIRItem* right_arg = &right;
 499   if (x->is_commutative() && left.is_stack() && right.is_register()) {
 500     // swap them if left is real stack (or cached) and right is real register(not cached)
 501     left_arg = &right;
 502     right_arg = &left;
 503   }
 504 
 505   left_arg->load_item();
 506 
 507   // do not need to load right, as we can handle stack and constants
 508   if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
 509 
 510     rlock_result(x);
 511     bool need_zero_check = true;
 512     if (right.is_constant()) {
 513       jint c = right.get_jint_constant();
 514       // no need to do div-by-zero check if the divisor is a non-zero constant
 515       if (c != 0) need_zero_check = false;
 516       // do not load right if the divisor is a power-of-2 constant
 517       if (c > 0 && is_power_of_2(c)) {
 518         right_arg->dont_load_item();
 519       } else {
 520         right_arg->load_item();
 521       }
 522     } else {
 523       right_arg->load_item();
 524     }
 525     if (need_zero_check) {
 526       CodeEmitInfo* info = state_for(x);
 527       __ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0));
 528       __ branch(lir_cond_equal, new DivByZeroStub(info));
 529     }
 530 
 531     LIR_Opr ill = LIR_OprFact::illegalOpr;
 532     if (x->op() == Bytecodes::_irem) {
 533       __ irem(left_arg->result(), right_arg->result(), x->operand(), ill, NULL);
 534     } else if (x->op() == Bytecodes::_idiv) {
 535       __ idiv(left_arg->result(), right_arg->result(), x->operand(), ill, NULL);
 536     }
 537 
 538   } else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) {
 539     if (right.is_constant()
 540         && Assembler::operand_valid_for_add_sub_immediate(right.get_jint_constant())) {
 541       right.load_nonconstant();
 542     } else {
 543       right.load_item();
 544     }
 545     rlock_result(x);
 546     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr);
 547   } else {
 548     assert (x->op() == Bytecodes::_imul, "expect imul");
 549     if (right.is_constant()) {
 550       jint c = right.get_jint_constant();
 551       if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) {
 552         right_arg->dont_load_item();
 553       } else {
 554         // Cannot use constant op.
 555         right_arg->load_item();
 556       }
 557     } else {
 558       right.load_item();
 559     }
 560     rlock_result(x);
 561     arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT));
 562   }
 563 }
 564 
 565 void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
 566   // when an operand with use count 1 is the left operand, then it is
 567   // likely that no move for 2-operand-LIR-form is necessary
 568   if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
 569     x->swap_operands();
 570   }
 571 
 572   ValueTag tag = x->type()->tag();
 573   assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
 574   switch (tag) {
 575     case floatTag:
 576     case doubleTag:  do_ArithmeticOp_FPU(x);  return;
 577     case longTag:    do_ArithmeticOp_Long(x); return;
 578     case intTag:     do_ArithmeticOp_Int(x);  return;
 579     default:         ShouldNotReachHere();    return;
 580   }
 581 }
 582 
 583 // _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
 584 void LIRGenerator::do_ShiftOp(ShiftOp* x) {
 585 
 586   LIRItem left(x->x(),  this);
 587   LIRItem right(x->y(), this);
 588 
 589   left.load_item();
 590 
 591   rlock_result(x);
 592   if (right.is_constant()) {
 593     right.dont_load_item();
 594 
 595     switch (x->op()) {
 596     case Bytecodes::_ishl: {
 597       int c = right.get_jint_constant() & 0x1f;
 598       __ shift_left(left.result(), c, x->operand());
 599       break;
 600     }
 601     case Bytecodes::_ishr: {
 602       int c = right.get_jint_constant() & 0x1f;
 603       __ shift_right(left.result(), c, x->operand());
 604       break;
 605     }
 606     case Bytecodes::_iushr: {
 607       int c = right.get_jint_constant() & 0x1f;
 608       __ unsigned_shift_right(left.result(), c, x->operand());
 609       break;
 610     }
 611     case Bytecodes::_lshl: {
 612       int c = right.get_jint_constant() & 0x3f;
 613       __ shift_left(left.result(), c, x->operand());
 614       break;
 615     }
 616     case Bytecodes::_lshr: {
 617       int c = right.get_jint_constant() & 0x3f;
 618       __ shift_right(left.result(), c, x->operand());
 619       break;
 620     }
 621     case Bytecodes::_lushr: {
 622       int c = right.get_jint_constant() & 0x3f;
 623       __ unsigned_shift_right(left.result(), c, x->operand());
 624       break;
 625     }
 626     default:
 627       ShouldNotReachHere();
 628     }
 629   } else {
 630     right.load_item();
 631     LIR_Opr tmp = new_register(T_INT);
 632     switch (x->op()) {
 633     case Bytecodes::_ishl: {
 634       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 635       __ shift_left(left.result(), tmp, x->operand(), tmp);
 636       break;
 637     }
 638     case Bytecodes::_ishr: {
 639       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 640       __ shift_right(left.result(), tmp, x->operand(), tmp);
 641       break;
 642     }
 643     case Bytecodes::_iushr: {
 644       __ logical_and(right.result(), LIR_OprFact::intConst(0x1f), tmp);
 645       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
 646       break;
 647     }
 648     case Bytecodes::_lshl: {
 649       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 650       __ shift_left(left.result(), tmp, x->operand(), tmp);
 651       break;
 652     }
 653     case Bytecodes::_lshr: {
 654       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 655       __ shift_right(left.result(), tmp, x->operand(), tmp);
 656       break;
 657     }
 658     case Bytecodes::_lushr: {
 659       __ logical_and(right.result(), LIR_OprFact::intConst(0x3f), tmp);
 660       __ unsigned_shift_right(left.result(), tmp, x->operand(), tmp);
 661       break;
 662     }
 663     default:
 664       ShouldNotReachHere();
 665     }
 666   }
 667 }
 668 
 669 // _iand, _land, _ior, _lor, _ixor, _lxor
 670 void LIRGenerator::do_LogicOp(LogicOp* x) {
 671 
 672   LIRItem left(x->x(),  this);
 673   LIRItem right(x->y(), this);
 674 
 675   left.load_item();
 676 
 677   rlock_result(x);
 678   if (right.is_constant()
 679       && ((right.type()->tag() == intTag
 680            && Assembler::operand_valid_for_logical_immediate(true, right.get_jint_constant()))
 681           || (right.type()->tag() == longTag
 682               && Assembler::operand_valid_for_logical_immediate(false, right.get_jlong_constant()))))  {
 683     right.dont_load_item();
 684   } else {
 685     right.load_item();
 686   }
 687   switch (x->op()) {
 688   case Bytecodes::_iand:
 689   case Bytecodes::_land:
 690     __ logical_and(left.result(), right.result(), x->operand()); break;
 691   case Bytecodes::_ior:
 692   case Bytecodes::_lor:
 693     __ logical_or (left.result(), right.result(), x->operand()); break;
 694   case Bytecodes::_ixor:
 695   case Bytecodes::_lxor:
 696     __ logical_xor(left.result(), right.result(), x->operand()); break;
 697   default: Unimplemented();
 698   }
 699 }
 700 
 701 // _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
 702 void LIRGenerator::do_CompareOp(CompareOp* x) {
 703   LIRItem left(x->x(), this);
 704   LIRItem right(x->y(), this);
 705   ValueTag tag = x->x()->type()->tag();
 706   if (tag == longTag) {
 707     left.set_destroys_register();
 708   }
 709   left.load_item();
 710   right.load_item();
 711   LIR_Opr reg = rlock_result(x);
 712 
 713   if (x->x()->type()->is_float_kind()) {
 714     Bytecodes::Code code = x->op();
 715     __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
 716   } else if (x->x()->type()->tag() == longTag) {
 717     __ lcmp2int(left.result(), right.result(), reg);
 718   } else {
 719     Unimplemented();
 720   }
 721 }
 722 
 723 LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
 724   LIR_Opr ill = LIR_OprFact::illegalOpr;  // for convenience
 725   new_value.load_item();
 726   cmp_value.load_item();
 727   LIR_Opr result = new_register(T_INT);
 728   if (is_reference_type(type)) {
 729     __ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT), result);
 730   } else if (type == T_INT) {
 731     __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 732   } else if (type == T_LONG) {
 733     __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
 734   } else {
 735     ShouldNotReachHere();
 736     Unimplemented();
 737   }
 738   __ logical_xor(FrameMap::r8_opr, LIR_OprFact::intConst(1), result);
 739   return result;
 740 }
 741 
 742 LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
 743   bool is_oop = is_reference_type(type);
 744   LIR_Opr result = new_register(type);
 745   value.load_item();
 746   assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type");
 747   LIR_Opr tmp = new_register(T_INT);
 748   __ xchg(addr, value.result(), result, tmp);
 749   return result;
 750 }
 751 
 752 LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
 753   LIR_Opr result = new_register(type);
 754   value.load_item();
 755   assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type");
 756   LIR_Opr tmp = new_register(T_INT);
 757   __ xadd(addr, value.result(), result, tmp);
 758   return result;
 759 }
 760 
 761 void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
 762   assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow), "wrong type");
 763   if (x->id() == vmIntrinsics::_dexp || x->id() == vmIntrinsics::_dlog ||
 764       x->id() == vmIntrinsics::_dpow || x->id() == vmIntrinsics::_dcos ||
 765       x->id() == vmIntrinsics::_dsin || x->id() == vmIntrinsics::_dtan ||
 766       x->id() == vmIntrinsics::_dlog10) {
 767     do_LibmIntrinsic(x);
 768     return;
 769   }
 770   switch (x->id()) {
 771     case vmIntrinsics::_dabs:
 772     case vmIntrinsics::_dsqrt: {
 773       assert(x->number_of_arguments() == 1, "wrong type");
 774       LIRItem value(x->argument_at(0), this);
 775       value.load_item();
 776       LIR_Opr dst = rlock_result(x);
 777 
 778       switch (x->id()) {
 779         case vmIntrinsics::_dsqrt: {
 780           __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
 781           break;
 782         }
 783         case vmIntrinsics::_dabs: {
 784           __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
 785           break;
 786         }
 787         default:
 788           ShouldNotReachHere();
 789       }
 790       break;
 791     }
 792     default:
 793       ShouldNotReachHere();
 794   }
 795 }
 796 
 797 void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) {
 798   LIRItem value(x->argument_at(0), this);
 799   value.set_destroys_register();
 800 
 801   LIR_Opr calc_result = rlock_result(x);
 802   LIR_Opr result_reg = result_register_for(x->type());
 803 
 804   CallingConvention* cc = NULL;
 805 
 806   if (x->id() == vmIntrinsics::_dpow) {
 807     LIRItem value1(x->argument_at(1), this);
 808 
 809     value1.set_destroys_register();
 810 
 811     BasicTypeList signature(2);
 812     signature.append(T_DOUBLE);
 813     signature.append(T_DOUBLE);
 814     cc = frame_map()->c_calling_convention(&signature);
 815     value.load_item_force(cc->at(0));
 816     value1.load_item_force(cc->at(1));
 817   } else {
 818     BasicTypeList signature(1);
 819     signature.append(T_DOUBLE);
 820     cc = frame_map()->c_calling_convention(&signature);
 821     value.load_item_force(cc->at(0));
 822   }
 823 
 824   switch (x->id()) {
 825     case vmIntrinsics::_dexp:
 826       if (StubRoutines::dexp() != NULL) {
 827         __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args());
 828       } else {
 829         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args());
 830       }
 831       break;
 832     case vmIntrinsics::_dlog:
 833       if (StubRoutines::dlog() != NULL) {
 834         __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args());
 835       } else {
 836         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args());
 837       }
 838       break;
 839     case vmIntrinsics::_dlog10:
 840       if (StubRoutines::dlog10() != NULL) {
 841         __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args());
 842       } else {
 843         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args());
 844       }
 845       break;
 846     case vmIntrinsics::_dpow:
 847       if (StubRoutines::dpow() != NULL) {
 848         __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args());
 849       } else {
 850         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args());
 851       }
 852       break;
 853     case vmIntrinsics::_dsin:
 854       if (StubRoutines::dsin() != NULL) {
 855         __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args());
 856       } else {
 857         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args());
 858       }
 859       break;
 860     case vmIntrinsics::_dcos:
 861       if (StubRoutines::dcos() != NULL) {
 862         __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args());
 863       } else {
 864         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args());
 865       }
 866       break;
 867     case vmIntrinsics::_dtan:
 868       if (StubRoutines::dtan() != NULL) {
 869         __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args());
 870       } else {
 871         __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args());
 872       }
 873       break;
 874     default:  ShouldNotReachHere();
 875   }
 876   __ move(result_reg, calc_result);
 877 }
 878 
 879 
 880 void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
 881   assert(x->number_of_arguments() == 5, "wrong type");
 882 
 883   // Make all state_for calls early since they can emit code
 884   CodeEmitInfo* info = state_for(x, x->state());
 885 
 886   LIRItem src(x->argument_at(0), this);
 887   LIRItem src_pos(x->argument_at(1), this);
 888   LIRItem dst(x->argument_at(2), this);
 889   LIRItem dst_pos(x->argument_at(3), this);
 890   LIRItem length(x->argument_at(4), this);
 891 
 892   // operands for arraycopy must use fixed registers, otherwise
 893   // LinearScan will fail allocation (because arraycopy always needs a
 894   // call)
 895 
 896   // The java calling convention will give us enough registers
 897   // so that on the stub side the args will be perfect already.
 898   // On the other slow/special case side we call C and the arg
 899   // positions are not similar enough to pick one as the best.
 900   // Also because the java calling convention is a "shifted" version
 901   // of the C convention we can process the java args trivially into C
 902   // args without worry of overwriting during the xfer
 903 
 904   src.load_item_force     (FrameMap::as_oop_opr(j_rarg0));
 905   src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
 906   dst.load_item_force     (FrameMap::as_oop_opr(j_rarg2));
 907   dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
 908   length.load_item_force  (FrameMap::as_opr(j_rarg4));
 909 
 910   LIR_Opr tmp =           FrameMap::as_opr(j_rarg5);
 911 
 912   set_no_result(x);
 913 
 914   int flags;
 915   ciArrayKlass* expected_type;
 916   arraycopy_helper(x, &flags, &expected_type);
 917 
 918   __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp, expected_type, flags, info); // does add_safepoint
 919 }
 920 
 921 void LIRGenerator::do_update_CRC32(Intrinsic* x) {
 922   assert(UseCRC32Intrinsics, "why are we here?");
 923   // Make all state_for calls early since they can emit code
 924   LIR_Opr result = rlock_result(x);
 925   int flags = 0;
 926   switch (x->id()) {
 927     case vmIntrinsics::_updateCRC32: {
 928       LIRItem crc(x->argument_at(0), this);
 929       LIRItem val(x->argument_at(1), this);
 930       // val is destroyed by update_crc32
 931       val.set_destroys_register();
 932       crc.load_item();
 933       val.load_item();
 934       __ update_crc32(crc.result(), val.result(), result);
 935       break;
 936     }
 937     case vmIntrinsics::_updateBytesCRC32:
 938     case vmIntrinsics::_updateByteBufferCRC32: {
 939       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32);
 940 
 941       LIRItem crc(x->argument_at(0), this);
 942       LIRItem buf(x->argument_at(1), this);
 943       LIRItem off(x->argument_at(2), this);
 944       LIRItem len(x->argument_at(3), this);
 945       buf.load_item();
 946       off.load_nonconstant();
 947 
 948       LIR_Opr index = off.result();
 949       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
 950       if(off.result()->is_constant()) {
 951         index = LIR_OprFact::illegalOpr;
 952        offset += off.result()->as_jint();
 953       }
 954       LIR_Opr base_op = buf.result();
 955 
 956       if (index->is_valid()) {
 957         LIR_Opr tmp = new_register(T_LONG);
 958         __ convert(Bytecodes::_i2l, index, tmp);
 959         index = tmp;
 960       }
 961 
 962       if (offset) {
 963         LIR_Opr tmp = new_pointer_register();
 964         __ add(base_op, LIR_OprFact::intConst(offset), tmp);
 965         base_op = tmp;
 966         offset = 0;
 967       }
 968 
 969       LIR_Address* a = new LIR_Address(base_op,
 970                                        index,
 971                                        offset,
 972                                        T_BYTE);
 973       BasicTypeList signature(3);
 974       signature.append(T_INT);
 975       signature.append(T_ADDRESS);
 976       signature.append(T_INT);
 977       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
 978       const LIR_Opr result_reg = result_register_for(x->type());
 979 
 980       LIR_Opr addr = new_pointer_register();
 981       __ leal(LIR_OprFact::address(a), addr);
 982 
 983       crc.load_item_force(cc->at(0));
 984       __ move(addr, cc->at(1));
 985       len.load_item_force(cc->at(2));
 986 
 987       __ call_runtime_leaf(StubRoutines::updateBytesCRC32(), getThreadTemp(), result_reg, cc->args());
 988       __ move(result_reg, result);
 989 
 990       break;
 991     }
 992     default: {
 993       ShouldNotReachHere();
 994     }
 995   }
 996 }
 997 
 998 void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
 999   assert(UseCRC32CIntrinsics, "why are we here?");
1000   // Make all state_for calls early since they can emit code
1001   LIR_Opr result = rlock_result(x);
1002   int flags = 0;
1003   switch (x->id()) {
1004     case vmIntrinsics::_updateBytesCRC32C:
1005     case vmIntrinsics::_updateDirectByteBufferCRC32C: {
1006       bool is_updateBytes = (x->id() == vmIntrinsics::_updateBytesCRC32C);
1007       int offset = is_updateBytes ? arrayOopDesc::base_offset_in_bytes(T_BYTE) : 0;
1008 
1009       LIRItem crc(x->argument_at(0), this);
1010       LIRItem buf(x->argument_at(1), this);
1011       LIRItem off(x->argument_at(2), this);
1012       LIRItem end(x->argument_at(3), this);
1013 
1014       buf.load_item();
1015       off.load_nonconstant();
1016       end.load_nonconstant();
1017 
1018       // len = end - off
1019       LIR_Opr len  = end.result();
1020       LIR_Opr tmpA = new_register(T_INT);
1021       LIR_Opr tmpB = new_register(T_INT);
1022       __ move(end.result(), tmpA);
1023       __ move(off.result(), tmpB);
1024       __ sub(tmpA, tmpB, tmpA);
1025       len = tmpA;
1026 
1027       LIR_Opr index = off.result();
1028       if(off.result()->is_constant()) {
1029         index = LIR_OprFact::illegalOpr;
1030         offset += off.result()->as_jint();
1031       }
1032       LIR_Opr base_op = buf.result();
1033 
1034       if (index->is_valid()) {
1035         LIR_Opr tmp = new_register(T_LONG);
1036         __ convert(Bytecodes::_i2l, index, tmp);
1037         index = tmp;
1038       }
1039 
1040       if (offset) {
1041         LIR_Opr tmp = new_pointer_register();
1042         __ add(base_op, LIR_OprFact::intConst(offset), tmp);
1043         base_op = tmp;
1044         offset = 0;
1045       }
1046 
1047       LIR_Address* a = new LIR_Address(base_op,
1048                                        index,
1049                                        offset,
1050                                        T_BYTE);
1051       BasicTypeList signature(3);
1052       signature.append(T_INT);
1053       signature.append(T_ADDRESS);
1054       signature.append(T_INT);
1055       CallingConvention* cc = frame_map()->c_calling_convention(&signature);
1056       const LIR_Opr result_reg = result_register_for(x->type());
1057 
1058       LIR_Opr addr = new_pointer_register();
1059       __ leal(LIR_OprFact::address(a), addr);
1060 
1061       crc.load_item_force(cc->at(0));
1062       __ move(addr, cc->at(1));
1063       __ move(len, cc->at(2));
1064 
1065       __ call_runtime_leaf(StubRoutines::updateBytesCRC32C(), getThreadTemp(), result_reg, cc->args());
1066       __ move(result_reg, result);
1067 
1068       break;
1069     }
1070     default: {
1071       ShouldNotReachHere();
1072     }
1073   }
1074 }
1075 
1076 void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
1077   assert(x->number_of_arguments() == 3, "wrong type");
1078   assert(UseFMA, "Needs FMA instructions support.");
1079   LIRItem value(x->argument_at(0), this);
1080   LIRItem value1(x->argument_at(1), this);
1081   LIRItem value2(x->argument_at(2), this);
1082 
1083   value.load_item();
1084   value1.load_item();
1085   value2.load_item();
1086 
1087   LIR_Opr calc_input = value.result();
1088   LIR_Opr calc_input1 = value1.result();
1089   LIR_Opr calc_input2 = value2.result();
1090   LIR_Opr calc_result = rlock_result(x);
1091 
1092   switch (x->id()) {
1093   case vmIntrinsics::_fmaD:   __ fmad(calc_input, calc_input1, calc_input2, calc_result); break;
1094   case vmIntrinsics::_fmaF:   __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break;
1095   default:                    ShouldNotReachHere();
1096   }
1097 }
1098 
1099 void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
1100   fatal("vectorizedMismatch intrinsic is not implemented on this platform");
1101 }
1102 
1103 // _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
1104 // _i2b, _i2c, _i2s
1105 void LIRGenerator::do_Convert(Convert* x) {
1106   LIRItem value(x->value(), this);
1107   value.load_item();
1108   LIR_Opr input = value.result();
1109   LIR_Opr result = rlock(x);
1110 
1111   // arguments of lir_convert
1112   LIR_Opr conv_input = input;
1113   LIR_Opr conv_result = result;
1114 
1115   __ convert(x->op(), conv_input, conv_result);
1116 
1117   assert(result->is_virtual(), "result must be virtual register");
1118   set_result(x, result);
1119 }
1120 
1121 void LIRGenerator::do_NewInstance(NewInstance* x) {
1122 #ifndef PRODUCT
1123   if (PrintNotLoaded && !x->klass()->is_loaded()) {
1124     tty->print_cr("   ###class not loaded at new bci %d", x->printable_bci());
1125   }
1126 #endif
1127   CodeEmitInfo* info = state_for(x, x->state());
1128   LIR_Opr reg = result_register_for(x->type());
1129   new_instance(reg, x->klass(), x->is_unresolved(),
1130                        FrameMap::r10_oop_opr,
1131                        FrameMap::r11_oop_opr,
1132                        FrameMap::r4_oop_opr,
1133                        LIR_OprFact::illegalOpr,
1134                        FrameMap::r3_metadata_opr, info);
1135   LIR_Opr result = rlock_result(x);
1136   __ move(reg, result);
1137 }
1138 
1139 void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
1140   CodeEmitInfo* info = state_for(x, x->state());
1141 
1142   LIRItem length(x->length(), this);
1143   length.load_item_force(FrameMap::r19_opr);
1144 
1145   LIR_Opr reg = result_register_for(x->type());
1146   LIR_Opr tmp1 = FrameMap::r10_oop_opr;
1147   LIR_Opr tmp2 = FrameMap::r11_oop_opr;
1148   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1149   LIR_Opr tmp4 = reg;
1150   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1151   LIR_Opr len = length.result();
1152   BasicType elem_type = x->elt_type();
1153 
1154   __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
1155 
1156   CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
1157   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
1158 
1159   LIR_Opr result = rlock_result(x);
1160   __ move(reg, result);
1161 }
1162 
1163 void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
1164   LIRItem length(x->length(), this);
1165   // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
1166   // and therefore provide the state before the parameters have been consumed
1167   CodeEmitInfo* patching_info = NULL;
1168   if (!x->klass()->is_loaded() || PatchALot) {
1169     patching_info =  state_for(x, x->state_before());
1170   }
1171 
1172   CodeEmitInfo* info = state_for(x, x->state());
1173 
1174   LIR_Opr reg = result_register_for(x->type());
1175   LIR_Opr tmp1 = FrameMap::r10_oop_opr;
1176   LIR_Opr tmp2 = FrameMap::r11_oop_opr;
1177   LIR_Opr tmp3 = FrameMap::r5_oop_opr;
1178   LIR_Opr tmp4 = reg;
1179   LIR_Opr klass_reg = FrameMap::r3_metadata_opr;
1180 
1181   length.load_item_force(FrameMap::r19_opr);
1182   LIR_Opr len = length.result();
1183 
1184   CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
1185   ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
1186   if (obj == ciEnv::unloaded_ciobjarrayklass()) {
1187     BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
1188   }
1189   klass2reg_with_patching(klass_reg, obj, patching_info);
1190   __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
1191 
1192   LIR_Opr result = rlock_result(x);
1193   __ move(reg, result);
1194 }
1195 
1196 
1197 void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
1198   Values* dims = x->dims();
1199   int i = dims->length();
1200   LIRItemList* items = new LIRItemList(i, i, NULL);
1201   while (i-- > 0) {
1202     LIRItem* size = new LIRItem(dims->at(i), this);
1203     items->at_put(i, size);
1204   }
1205 
1206   // Evaluate state_for early since it may emit code.
1207   CodeEmitInfo* patching_info = NULL;
1208   if (!x->klass()->is_loaded() || PatchALot) {
1209     patching_info = state_for(x, x->state_before());
1210 
1211     // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
1212     // clone all handlers (NOTE: Usually this is handled transparently
1213     // by the CodeEmitInfo cloning logic in CodeStub constructors but
1214     // is done explicitly here because a stub isn't being used).
1215     x->set_exception_handlers(new XHandlers(x->exception_handlers()));
1216   }
1217   CodeEmitInfo* info = state_for(x, x->state());
1218 
1219   i = dims->length();
1220   while (i-- > 0) {
1221     LIRItem* size = items->at(i);
1222     size->load_item();
1223 
1224     store_stack_parameter(size->result(), in_ByteSize(i*4));
1225   }
1226 
1227   LIR_Opr klass_reg = FrameMap::r0_metadata_opr;
1228   klass2reg_with_patching(klass_reg, x->klass(), patching_info);
1229 
1230   LIR_Opr rank = FrameMap::r19_opr;
1231   __ move(LIR_OprFact::intConst(x->rank()), rank);
1232   LIR_Opr varargs = FrameMap::r2_opr;
1233   __ move(FrameMap::sp_opr, varargs);
1234   LIR_OprList* args = new LIR_OprList(3);
1235   args->append(klass_reg);
1236   args->append(rank);
1237   args->append(varargs);
1238   LIR_Opr reg = result_register_for(x->type());
1239   __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
1240                   LIR_OprFact::illegalOpr,
1241                   reg, args, info);
1242 
1243   LIR_Opr result = rlock_result(x);
1244   __ move(reg, result);
1245 }
1246 
1247 void LIRGenerator::do_BlockBegin(BlockBegin* x) {
1248   // nothing to do for now
1249 }
1250 
1251 void LIRGenerator::do_CheckCast(CheckCast* x) {
1252   LIRItem obj(x->obj(), this);
1253 
1254   CodeEmitInfo* patching_info = NULL;
1255   if (!x->klass()->is_loaded() || (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
1256     // must do this before locking the destination register as an oop register,
1257     // and before the obj is loaded (the latter is for deoptimization)
1258     patching_info = state_for(x, x->state_before());
1259   }
1260   obj.load_item();
1261 
1262   // info for exceptions
1263   CodeEmitInfo* info_for_exception =
1264       (x->needs_exception_state() ? state_for(x) :
1265                                     state_for(x, x->state_before(), true /*ignore_xhandler*/));
1266 
1267   CodeStub* stub;
1268   if (x->is_incompatible_class_change_check()) {
1269     assert(patching_info == NULL, "can't patch this");
1270     stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr, info_for_exception);
1271   } else if (x->is_invokespecial_receiver_check()) {
1272     assert(patching_info == NULL, "can't patch this");
1273     stub = new DeoptimizeStub(info_for_exception,
1274                               Deoptimization::Reason_class_check,
1275                               Deoptimization::Action_none);
1276   } else {
1277     stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
1278   }
1279   LIR_Opr reg = rlock_result(x);
1280   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1281   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1282     tmp3 = new_register(objectType);
1283   }
1284   __ checkcast(reg, obj.result(), x->klass(),
1285                new_register(objectType), new_register(objectType), tmp3,
1286                x->direct_compare(), info_for_exception, patching_info, stub,
1287                x->profiled_method(), x->profiled_bci());
1288 }
1289 
1290 void LIRGenerator::do_InstanceOf(InstanceOf* x) {
1291   LIRItem obj(x->obj(), this);
1292 
1293   // result and test object may not be in same register
1294   LIR_Opr reg = rlock_result(x);
1295   CodeEmitInfo* patching_info = NULL;
1296   if ((!x->klass()->is_loaded() || PatchALot)) {
1297     // must do this before locking the destination register as an oop register
1298     patching_info = state_for(x, x->state_before());
1299   }
1300   obj.load_item();
1301   LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
1302   if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
1303     tmp3 = new_register(objectType);
1304   }
1305   __ instanceof(reg, obj.result(), x->klass(),
1306                 new_register(objectType), new_register(objectType), tmp3,
1307                 x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
1308 }
1309 
1310 void LIRGenerator::do_If(If* x) {
1311   assert(x->number_of_sux() == 2, "inconsistency");
1312   ValueTag tag = x->x()->type()->tag();
1313   bool is_safepoint = x->is_safepoint();
1314 
1315   If::Condition cond = x->cond();
1316 
1317   LIRItem xitem(x->x(), this);
1318   LIRItem yitem(x->y(), this);
1319   LIRItem* xin = &xitem;
1320   LIRItem* yin = &yitem;
1321 
1322   if (tag == longTag) {
1323     // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
1324     // mirror for other conditions
1325     if (cond == If::gtr || cond == If::leq) {
1326       cond = Instruction::mirror(cond);
1327       xin = &yitem;
1328       yin = &xitem;
1329     }
1330     xin->set_destroys_register();
1331   }
1332   xin->load_item();
1333 
1334   if (tag == longTag) {
1335     if (yin->is_constant()
1336         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jlong_constant())) {
1337       yin->dont_load_item();
1338     } else {
1339       yin->load_item();
1340     }
1341   } else if (tag == intTag) {
1342     if (yin->is_constant()
1343         && Assembler::operand_valid_for_add_sub_immediate(yin->get_jint_constant()))  {
1344       yin->dont_load_item();
1345     } else {
1346       yin->load_item();
1347     }
1348   } else {
1349     yin->load_item();
1350   }
1351 
1352   set_no_result(x);
1353 
1354   LIR_Opr left = xin->result();
1355   LIR_Opr right = yin->result();
1356 
1357   // add safepoint before generating condition code so it can be recomputed
1358   if (x->is_safepoint()) {
1359     // increment backedge counter if needed
1360     increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
1361         x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
1362     __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
1363   }
1364 
1365   __ cmp(lir_cond(cond), left, right);
1366   // Generate branch profiling. Profiling code doesn't kill flags.
1367   profile_branch(x, cond);
1368   move_to_phi(x->state());
1369   if (x->x()->type()->is_float_kind()) {
1370     __ branch(lir_cond(cond), x->tsux(), x->usux());
1371   } else {
1372     __ branch(lir_cond(cond), x->tsux());
1373   }
1374   assert(x->default_sux() == x->fsux(), "wrong destination above");
1375   __ jump(x->default_sux());
1376 }
1377 
1378 LIR_Opr LIRGenerator::getThreadPointer() {
1379    return FrameMap::as_pointer_opr(rthread);
1380 }
1381 
1382 void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); }
1383 
1384 void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
1385                                         CodeEmitInfo* info) {
1386   __ volatile_store_mem_reg(value, address, info);
1387 }
1388 
1389 void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
1390                                        CodeEmitInfo* info) {
1391   // 8179954: We need to make sure that the code generated for
1392   // volatile accesses forms a sequentially-consistent set of
1393   // operations when combined with STLR and LDAR.  Without a leading
1394   // membar it's possible for a simple Dekker test to fail if loads
1395   // use LD;DMB but stores use STLR.  This can happen if C2 compiles
1396   // the stores in one method and C1 compiles the loads in another.
1397   if (!CompilerConfig::is_c1_only_no_jvmci()) {
1398     __ membar();
1399   }
1400   __ volatile_load_mem_reg(address, result, info);
1401 }