1 /*
2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This code is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 only, as
8 * published by the Free Software Foundation.
9 *
10 * This code is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
13 * version 2 for more details (a copy is included in the LICENSE file that
14 * accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License version
17 * 2 along with this work; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
19 *
20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
21 * or visit www.oracle.com if you need additional information or have any
22 * questions.
23 *
24 */
25
26 #include "asm/macroAssembler.inline.hpp"
27 #include "compiler/compiler_globals.hpp"
28 #include "gc/shared/barrierSet.hpp"
29 #include "gc/shared/barrierSetAssembler.hpp"
30 #include "interp_masm_aarch64.hpp"
31 #include "interpreter/interpreter.hpp"
32 #include "interpreter/interpreterRuntime.hpp"
33 #include "logging/log.hpp"
34 #include "oops/arrayOop.hpp"
35 #include "oops/markWord.hpp"
36 #include "oops/method.hpp"
37 #include "oops/methodData.hpp"
38 #include "oops/resolvedFieldEntry.hpp"
39 #include "oops/resolvedIndyEntry.hpp"
40 #include "oops/resolvedMethodEntry.hpp"
41 #include "prims/jvmtiExport.hpp"
42 #include "prims/jvmtiThreadState.hpp"
43 #include "runtime/basicLock.hpp"
44 #include "runtime/frame.inline.hpp"
45 #include "runtime/javaThread.hpp"
46 #include "runtime/safepointMechanism.hpp"
47 #include "runtime/sharedRuntime.hpp"
48 #include "utilities/powerOfTwo.hpp"
49
50 void InterpreterMacroAssembler::narrow(Register result) {
51
52 // Get method->_constMethod->_result_type
53 ldr(rscratch1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
54 ldr(rscratch1, Address(rscratch1, Method::const_offset()));
55 ldrb(rscratch1, Address(rscratch1, ConstMethod::result_type_offset()));
56
57 Label done, notBool, notByte, notChar;
58
59 // common case first
60 cmpw(rscratch1, T_INT);
61 br(Assembler::EQ, done);
62
63 // mask integer result to narrower return type.
64 cmpw(rscratch1, T_BOOLEAN);
65 br(Assembler::NE, notBool);
66 andw(result, result, 0x1);
67 b(done);
68
69 bind(notBool);
70 cmpw(rscratch1, T_BYTE);
71 br(Assembler::NE, notByte);
72 sbfx(result, result, 0, 8);
73 b(done);
74
75 bind(notByte);
76 cmpw(rscratch1, T_CHAR);
77 br(Assembler::NE, notChar);
78 ubfx(result, result, 0, 16); // truncate upper 16 bits
79 b(done);
80
81 bind(notChar);
82 sbfx(result, result, 0, 16); // sign-extend short
83
84 // Nothing to do for T_INT
85 bind(done);
86 }
87
88 void InterpreterMacroAssembler::jump_to_entry(address entry) {
89 assert(entry, "Entry must have been generated by now");
90 b(entry);
91 }
92
93 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
94 if (JvmtiExport::can_pop_frame()) {
95 Label L;
96 // Initiate popframe handling only if it is not already being
97 // processed. If the flag has the popframe_processing bit set, it
98 // means that this code is called *during* popframe handling - we
99 // don't want to reenter.
100 // This method is only called just after the call into the vm in
101 // call_VM_base, so the arg registers are available.
102 ldrw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset()));
103 tbz(rscratch1, exact_log2(JavaThread::popframe_pending_bit), L);
104 tbnz(rscratch1, exact_log2(JavaThread::popframe_processing_bit), L);
105 // Call Interpreter::remove_activation_preserving_args_entry() to get the
106 // address of the same-named entrypoint in the generated interpreter code.
107 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
108 br(r0);
109 bind(L);
110 }
111 }
112
113
114 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
115 ldr(r2, Address(rthread, JavaThread::jvmti_thread_state_offset()));
116 const Address tos_addr(r2, JvmtiThreadState::earlyret_tos_offset());
117 const Address oop_addr(r2, JvmtiThreadState::earlyret_oop_offset());
118 const Address val_addr(r2, JvmtiThreadState::earlyret_value_offset());
119 switch (state) {
120 case atos: ldr(r0, oop_addr);
121 str(zr, oop_addr);
122 interp_verify_oop(r0, state); break;
123 case ltos: ldr(r0, val_addr); break;
124 case btos: // fall through
125 case ztos: // fall through
126 case ctos: // fall through
127 case stos: // fall through
128 case itos: ldrw(r0, val_addr); break;
129 case ftos: ldrs(v0, val_addr); break;
130 case dtos: ldrd(v0, val_addr); break;
131 case vtos: /* nothing to do */ break;
132 default : ShouldNotReachHere();
133 }
134 // Clean up tos value in the thread object
135 movw(rscratch1, (int) ilgl);
136 strw(rscratch1, tos_addr);
137 strw(zr, val_addr);
138 }
139
140
141 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
142 if (JvmtiExport::can_force_early_return()) {
143 Label L;
144 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
145 cbz(rscratch1, L); // if (thread->jvmti_thread_state() == nullptr) exit;
146
147 // Initiate earlyret handling only if it is not already being processed.
148 // If the flag has the earlyret_processing bit set, it means that this code
149 // is called *during* earlyret handling - we don't want to reenter.
150 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_state_offset()));
151 cmpw(rscratch1, JvmtiThreadState::earlyret_pending);
152 br(Assembler::NE, L);
153
154 // Call Interpreter::remove_activation_early_entry() to get the address of the
155 // same-named entrypoint in the generated interpreter code.
156 ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset()));
157 ldrw(rscratch1, Address(rscratch1, JvmtiThreadState::earlyret_tos_offset()));
158 call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), rscratch1);
159 br(r0);
160 bind(L);
161 }
162 }
163
164 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
165 Register reg,
166 int bcp_offset) {
167 assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
168 ldrh(reg, Address(rbcp, bcp_offset));
169 rev16(reg, reg);
170 }
171
172 void InterpreterMacroAssembler::get_dispatch() {
173 uint64_t offset;
174 adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset);
175 // Use add() here after ARDP, rather than lea().
176 // lea() does not generate anything if its offset is zero.
177 // However, relocs expect to find either an ADD or a load/store
178 // insn after an ADRP. add() always generates an ADD insn, even
179 // for add(Rn, Rn, 0).
180 add(rdispatch, rdispatch, offset);
181 }
182
183 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
184 int bcp_offset,
185 size_t index_size) {
186 assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
187 if (index_size == sizeof(u2)) {
188 load_unsigned_short(index, Address(rbcp, bcp_offset));
189 } else if (index_size == sizeof(u4)) {
190 // assert(EnableInvokeDynamic, "giant index used only for JSR 292");
191 ldrw(index, Address(rbcp, bcp_offset));
192 } else if (index_size == sizeof(u1)) {
193 load_unsigned_byte(index, Address(rbcp, bcp_offset));
194 } else {
195 ShouldNotReachHere();
196 }
197 }
198
199 void InterpreterMacroAssembler::get_method_counters(Register method,
200 Register mcs, Label& skip) {
201 Label has_counters;
202 ldr(mcs, Address(method, Method::method_counters_offset()));
203 cbnz(mcs, has_counters);
204 call_VM(noreg, CAST_FROM_FN_PTR(address,
205 InterpreterRuntime::build_method_counters), method);
206 ldr(mcs, Address(method, Method::method_counters_offset()));
207 cbz(mcs, skip); // No MethodCounters allocated, OutOfMemory
208 bind(has_counters);
209 }
210
211 // Load object from cpool->resolved_references(index)
212 void InterpreterMacroAssembler::load_resolved_reference_at_index(
213 Register result, Register index, Register tmp) {
214 assert_different_registers(result, index);
215
216 get_constant_pool(result);
217 // load pointer for resolved_references[] objArray
218 ldr(result, Address(result, ConstantPool::cache_offset()));
219 ldr(result, Address(result, ConstantPoolCache::resolved_references_offset()));
220 resolve_oop_handle(result, tmp, rscratch2);
221 // Add in the index
222 add(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
223 load_heap_oop(result, Address(result, index, Address::uxtw(LogBytesPerHeapOop)), tmp, rscratch2);
224 }
225
226 void InterpreterMacroAssembler::load_resolved_klass_at_offset(
227 Register cpool, Register index, Register klass, Register temp) {
228 add(temp, cpool, index, LSL, LogBytesPerWord);
229 ldrh(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
230 ldr(klass, Address(cpool, ConstantPool::resolved_klasses_offset())); // klass = cpool->_resolved_klasses
231 add(klass, klass, temp, LSL, LogBytesPerWord);
232 ldr(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
233 }
234
235 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
236 // subtype of super_klass.
237 //
238 // Args:
239 // r0: superklass
240 // Rsub_klass: subklass
241 //
242 // Kills:
243 // r2, r5
244 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
245 Label& ok_is_subtype) {
246 assert(Rsub_klass != r0, "r0 holds superklass");
247 assert(Rsub_klass != r2, "r2 holds 2ndary super array length");
248 assert(Rsub_klass != r5, "r5 holds 2ndary super array scan ptr");
249
250 // Profile the not-null value's klass.
251 profile_typecheck(r2, Rsub_klass, r5); // blows r2, reloads r5
252
253 // Do the check.
254 check_klass_subtype(Rsub_klass, r0, r2, ok_is_subtype); // blows r2
255 }
256
257 // Java Expression Stack
258
259 void InterpreterMacroAssembler::pop_ptr(Register r) {
260 ldr(r, post(esp, wordSize));
261 }
262
263 void InterpreterMacroAssembler::pop_i(Register r) {
264 ldrw(r, post(esp, wordSize));
265 }
266
267 void InterpreterMacroAssembler::pop_l(Register r) {
268 ldr(r, post(esp, 2 * Interpreter::stackElementSize));
269 }
270
271 void InterpreterMacroAssembler::push_ptr(Register r) {
272 str(r, pre(esp, -wordSize));
273 }
274
275 void InterpreterMacroAssembler::push_i(Register r) {
276 str(r, pre(esp, -wordSize));
277 }
278
279 void InterpreterMacroAssembler::push_l(Register r) {
280 str(zr, pre(esp, -wordSize));
281 str(r, pre(esp, - wordSize));
282 }
283
284 void InterpreterMacroAssembler::pop_f(FloatRegister r) {
285 ldrs(r, post(esp, wordSize));
286 }
287
288 void InterpreterMacroAssembler::pop_d(FloatRegister r) {
289 ldrd(r, post(esp, 2 * Interpreter::stackElementSize));
290 }
291
292 void InterpreterMacroAssembler::push_f(FloatRegister r) {
293 strs(r, pre(esp, -wordSize));
294 }
295
296 void InterpreterMacroAssembler::push_d(FloatRegister r) {
297 strd(r, pre(esp, 2* -wordSize));
298 }
299
300 void InterpreterMacroAssembler::pop(TosState state) {
301 switch (state) {
302 case atos: pop_ptr(); break;
303 case btos:
304 case ztos:
305 case ctos:
306 case stos:
307 case itos: pop_i(); break;
308 case ltos: pop_l(); break;
309 case ftos: pop_f(); break;
310 case dtos: pop_d(); break;
311 case vtos: /* nothing to do */ break;
312 default: ShouldNotReachHere();
313 }
314 interp_verify_oop(r0, state);
315 }
316
317 void InterpreterMacroAssembler::push(TosState state) {
318 interp_verify_oop(r0, state);
319 switch (state) {
320 case atos: push_ptr(); break;
321 case btos:
322 case ztos:
323 case ctos:
324 case stos:
325 case itos: push_i(); break;
326 case ltos: push_l(); break;
327 case ftos: push_f(); break;
328 case dtos: push_d(); break;
329 case vtos: /* nothing to do */ break;
330 default : ShouldNotReachHere();
331 }
332 }
333
334 // Helpers for swap and dup
335 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
336 ldr(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
337 }
338
339 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
340 str(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
341 }
342
343 void InterpreterMacroAssembler::load_float(Address src) {
344 ldrs(v0, src);
345 }
346
347 void InterpreterMacroAssembler::load_double(Address src) {
348 ldrd(v0, src);
349 }
350
351 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
352 // set sender sp
353 mov(r19_sender_sp, sp);
354 // record last_sp
355 sub(rscratch1, esp, rfp);
356 asr(rscratch1, rscratch1, Interpreter::logStackElementSize);
357 str(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
358 }
359
360 // Jump to from_interpreted entry of a call unless single stepping is possible
361 // in this thread in which case we must call the i2i entry
362 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
363 prepare_to_jump_from_interpreted();
364
365 if (JvmtiExport::can_post_interpreter_events()) {
366 Label run_compiled_code;
367 // JVMTI events, such as single-stepping, are implemented partly by avoiding running
368 // compiled code in threads for which the event is enabled. Check here for
369 // interp_only_mode if these events CAN be enabled.
370 ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
371 cbzw(rscratch1, run_compiled_code);
372 ldr(rscratch1, Address(method, Method::interpreter_entry_offset()));
373 br(rscratch1);
374 bind(run_compiled_code);
375 }
376
377 ldr(rscratch1, Address(method, Method::from_interpreted_offset()));
378 br(rscratch1);
379 }
380
381 // The following two routines provide a hook so that an implementation
382 // can schedule the dispatch in two parts. amd64 does not do this.
383 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
384 }
385
386 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
387 dispatch_next(state, step);
388 }
389
390 void InterpreterMacroAssembler::dispatch_base(TosState state,
391 address* table,
392 bool verifyoop,
393 bool generate_poll) {
394 if (VerifyActivationFrameSize) {
395 Label L;
396 sub(rscratch2, rfp, esp);
397 int min_frame_size = (frame::link_offset - frame::interpreter_frame_initial_sp_offset) * wordSize;
398 subs(rscratch2, rscratch2, min_frame_size);
399 br(Assembler::GE, L);
400 stop("broken stack frame");
401 bind(L);
402 }
403 if (verifyoop) {
404 interp_verify_oop(r0, state);
405 }
406
407 Label safepoint;
408 address* const safepoint_table = Interpreter::safept_table(state);
409 bool needs_thread_local_poll = generate_poll && table != safepoint_table;
410
411 if (needs_thread_local_poll) {
412 NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
413 ldr(rscratch2, Address(rthread, JavaThread::polling_word_offset()));
414 tbnz(rscratch2, exact_log2(SafepointMechanism::poll_bit()), safepoint);
415 }
416
417 if (table == Interpreter::dispatch_table(state)) {
418 addw(rscratch2, rscratch1, Interpreter::distance_from_dispatch_table(state));
419 ldr(rscratch2, Address(rdispatch, rscratch2, Address::uxtw(3)));
420 } else {
421 mov(rscratch2, (address)table);
422 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
423 }
424 br(rscratch2);
425
426 if (needs_thread_local_poll) {
427 bind(safepoint);
428 lea(rscratch2, ExternalAddress((address)safepoint_table));
429 ldr(rscratch2, Address(rscratch2, rscratch1, Address::uxtw(3)));
430 br(rscratch2);
431 }
432 }
433
434 void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll) {
435 dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
436 }
437
438 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
439 dispatch_base(state, Interpreter::normal_table(state));
440 }
441
442 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
443 dispatch_base(state, Interpreter::normal_table(state), false);
444 }
445
446
447 void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
448 // load next bytecode
449 ldrb(rscratch1, Address(pre(rbcp, step)));
450 dispatch_base(state, Interpreter::dispatch_table(state), /*verifyoop*/true, generate_poll);
451 }
452
453 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
454 // load current bytecode
455 ldrb(rscratch1, Address(rbcp, 0));
456 dispatch_base(state, table);
457 }
458
459 // remove activation
460 //
461 // Unlock the receiver if this is a synchronized method.
462 // Unlock any Java monitors from synchronized blocks.
463 // Apply stack watermark barrier.
464 // Notify JVMTI.
465 // Remove the activation from the stack.
466 //
467 // If there are locked Java monitors
468 // If throw_monitor_exception
469 // throws IllegalMonitorStateException
470 // Else if install_monitor_exception
471 // installs IllegalMonitorStateException
472 // Else
473 // no error processing
474 void InterpreterMacroAssembler::remove_activation(TosState state,
475 bool throw_monitor_exception,
476 bool install_monitor_exception,
477 bool notify_jvmdi) {
478 // Note: Registers r3 xmm0 may be in use for the
479 // result check if synchronized method
480 Label unlocked, unlock, no_unlock;
481
482 #ifdef ASSERT
483 Label not_preempted;
484 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
485 cbz(rscratch1, not_preempted);
486 stop("remove_activation: should not have alternate return address set");
487 bind(not_preempted);
488 #endif /* ASSERT */
489
490 // get the value of _do_not_unlock_if_synchronized into r3
491 const Address do_not_unlock_if_synchronized(rthread,
492 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
493 ldrb(r3, do_not_unlock_if_synchronized);
494 strb(zr, do_not_unlock_if_synchronized); // reset the flag
495
496 // get method access flags
497 ldr(r1, Address(rfp, frame::interpreter_frame_method_offset * wordSize));
498 ldrh(r2, Address(r1, Method::access_flags_offset()));
499 tbz(r2, exact_log2(JVM_ACC_SYNCHRONIZED), unlocked);
500
501 // Don't unlock anything if the _do_not_unlock_if_synchronized flag
502 // is set.
503 cbnz(r3, no_unlock);
504
505 // unlock monitor
506 push(state); // save result
507
508 // BasicObjectLock will be first in list, since this is a
509 // synchronized method. However, need to check that the object has
510 // not been unlocked by an explicit monitorexit bytecode.
511 const Address monitor(rfp, frame::interpreter_frame_initial_sp_offset *
512 wordSize - (int) sizeof(BasicObjectLock));
513 // We use c_rarg1 so that if we go slow path it will be the correct
514 // register for unlock_object to pass to VM directly
515 lea(c_rarg1, monitor); // address of first monitor
516
517 ldr(r0, Address(c_rarg1, BasicObjectLock::obj_offset()));
518 cbnz(r0, unlock);
519
520 pop(state);
521 if (throw_monitor_exception) {
522 // Entry already unlocked, need to throw exception
523 call_VM(noreg, CAST_FROM_FN_PTR(address,
524 InterpreterRuntime::throw_illegal_monitor_state_exception));
525 should_not_reach_here();
526 } else {
527 // Monitor already unlocked during a stack unroll. If requested,
528 // install an illegal_monitor_state_exception. Continue with
529 // stack unrolling.
530 if (install_monitor_exception) {
531 call_VM(noreg, CAST_FROM_FN_PTR(address,
532 InterpreterRuntime::new_illegal_monitor_state_exception));
533 }
534 b(unlocked);
535 }
536
537 bind(unlock);
538 unlock_object(c_rarg1);
539 pop(state);
540
541 // Check that for block-structured locking (i.e., that all locked
542 // objects has been unlocked)
543 bind(unlocked);
544
545 // r0: Might contain return value
546
547 // Check that all monitors are unlocked
548 {
549 Label loop, exception, entry, restart;
550 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes();
551 const Address monitor_block_top(
552 rfp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
553 const Address monitor_block_bot(
554 rfp, frame::interpreter_frame_initial_sp_offset * wordSize);
555
556 bind(restart);
557 // We use c_rarg1 so that if we go slow path it will be the correct
558 // register for unlock_object to pass to VM directly
559 ldr(c_rarg1, monitor_block_top); // derelativize pointer
560 lea(c_rarg1, Address(rfp, c_rarg1, Address::lsl(Interpreter::logStackElementSize)));
561 // c_rarg1 points to current entry, starting with top-most entry
562
563 lea(r19, monitor_block_bot); // points to word before bottom of
564 // monitor block
565 b(entry);
566
567 // Entry already locked, need to throw exception
568 bind(exception);
569
570 if (throw_monitor_exception) {
571 // Throw exception
572 MacroAssembler::call_VM(noreg,
573 CAST_FROM_FN_PTR(address, InterpreterRuntime::
574 throw_illegal_monitor_state_exception));
575 should_not_reach_here();
576 } else {
577 // Stack unrolling. Unlock object and install illegal_monitor_exception.
578 // Unlock does not block, so don't have to worry about the frame.
579 // We don't have to preserve c_rarg1 since we are going to throw an exception.
580
581 push(state);
582 unlock_object(c_rarg1);
583 pop(state);
584
585 if (install_monitor_exception) {
586 call_VM(noreg, CAST_FROM_FN_PTR(address,
587 InterpreterRuntime::
588 new_illegal_monitor_state_exception));
589 }
590
591 b(restart);
592 }
593
594 bind(loop);
595 // check if current entry is used
596 ldr(rscratch1, Address(c_rarg1, BasicObjectLock::obj_offset()));
597 cbnz(rscratch1, exception);
598
599 add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
600 bind(entry);
601 cmp(c_rarg1, r19); // check if bottom reached
602 br(Assembler::NE, loop); // if not at bottom then check this entry
603 }
604
605 bind(no_unlock);
606
607 JFR_ONLY(enter_jfr_critical_section();)
608
609 // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
610 // that would normally not be safe to use. Such bad returns into unsafe territory of
611 // the stack, will call InterpreterRuntime::at_unwind.
612 Label slow_path;
613 Label fast_path;
614 safepoint_poll(slow_path, true /* at_return */, false /* in_nmethod */);
615 br(Assembler::AL, fast_path);
616 bind(slow_path);
617 push(state);
618 set_last_Java_frame(esp, rfp, pc(), rscratch1);
619 super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), rthread);
620 reset_last_Java_frame(true);
621 pop(state);
622 bind(fast_path);
623
624 // JVMTI support. Make sure the safepoint poll test is issued prior.
625 if (notify_jvmdi) {
626 notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
627 } else {
628 notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
629 }
630
631 // remove activation
632 // get sender esp
633 ldr(rscratch2,
634 Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize));
635 if (StackReservedPages > 0) {
636 // testing if reserved zone needs to be re-enabled
637 Label no_reserved_zone_enabling;
638
639 // check if already enabled - if so no re-enabling needed
640 assert(sizeof(StackOverflow::StackGuardState) == 4, "unexpected size");
641 ldrw(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
642 cmpw(rscratch1, (u1)StackOverflow::stack_guard_enabled);
643 br(Assembler::EQ, no_reserved_zone_enabling);
644
645 // look for an overflow into the stack reserved zone, i.e.
646 // interpreter_frame_sender_sp <= JavaThread::reserved_stack_activation
647 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset()));
648 cmp(rscratch2, rscratch1);
649 br(Assembler::LS, no_reserved_zone_enabling);
650
651 JFR_ONLY(leave_jfr_critical_section();)
652
653 call_VM_leaf(
654 CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), rthread);
655 call_VM(noreg, CAST_FROM_FN_PTR(address,
656 InterpreterRuntime::throw_delayed_StackOverflowError));
657 should_not_reach_here();
658
659 bind(no_reserved_zone_enabling);
660 }
661
662 // remove frame anchor
663 leave();
664
665 JFR_ONLY(leave_jfr_critical_section();)
666
667 // restore sender esp
668 mov(esp, rscratch2);
669
670 // If we're returning to interpreted code we will shortly be
671 // adjusting SP to allow some space for ESP. If we're returning to
672 // compiled code the saved sender SP was saved in sender_sp, so this
673 // restores it.
674 andr(sp, esp, -16);
675 }
676
677 #if INCLUDE_JFR
678 void InterpreterMacroAssembler::enter_jfr_critical_section() {
679 const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
680 mov(rscratch1, true);
681 strb(rscratch1, sampling_critical_section);
682 }
683
684 void InterpreterMacroAssembler::leave_jfr_critical_section() {
685 const Address sampling_critical_section(rthread, in_bytes(SAMPLING_CRITICAL_SECTION_OFFSET_JFR));
686 strb(zr, sampling_critical_section);
687 }
688 #endif // INCLUDE_JFR
689
690 // Lock object
691 //
692 // Args:
693 // c_rarg1: BasicObjectLock to be used for locking
694 //
695 // Kills:
696 // r0
697 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, .. (param regs)
698 // rscratch1, rscratch2 (scratch regs)
699 void InterpreterMacroAssembler::lock_object(Register lock_reg)
700 {
701 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
702
703 const Register tmp = c_rarg2;
704 const Register obj_reg = c_rarg3; // Will contain the oop
705 const Register tmp2 = c_rarg4;
706 const Register tmp3 = c_rarg5;
707
708 // Load object pointer into obj_reg %c_rarg3
709 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
710
711 Label slow_case, done;
712 lightweight_lock(lock_reg, obj_reg, tmp, tmp2, tmp3, slow_case);
713 b(done);
714
715 bind(slow_case);
716
717 // Call the runtime routine for slow case
718 call_VM_preemptable(noreg,
719 CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
720 lock_reg);
721
722 bind(done);
723 }
724
725
726 // Unlocks an object. Used in monitorexit bytecode and
727 // remove_activation. Throws an IllegalMonitorException if object is
728 // not locked by current thread.
729 //
730 // Args:
731 // c_rarg1: BasicObjectLock for lock
732 //
733 // Kills:
734 // r0
735 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
736 // rscratch1, rscratch2 (scratch regs)
737 void InterpreterMacroAssembler::unlock_object(Register lock_reg)
738 {
739 assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
740
741 const Register swap_reg = r0;
742 const Register header_reg = c_rarg2; // Will contain the old oopMark
743 const Register obj_reg = c_rarg3; // Will contain the oop
744 const Register tmp_reg = c_rarg4; // Temporary used by lightweight_unlock
745
746 save_bcp(); // Save in case of exception
747
748 // Load oop into obj_reg(%c_rarg3)
749 ldr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset()));
750
751 // Free entry
752 str(zr, Address(lock_reg, BasicObjectLock::obj_offset()));
753
754 Label slow_case, done;
755 lightweight_unlock(obj_reg, header_reg, swap_reg, tmp_reg, slow_case);
756 b(done);
757
758 bind(slow_case);
759 // Call the runtime routine for slow case.
760 str(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset())); // restore obj
761 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
762 bind(done);
763 restore_bcp();
764 }
765
766 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
767 Label& zero_continue) {
768 assert(ProfileInterpreter, "must be profiling interpreter");
769 ldr(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
770 cbz(mdp, zero_continue);
771 }
772
773 // Set the method data pointer for the current bcp.
774 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
775 assert(ProfileInterpreter, "must be profiling interpreter");
776 Label set_mdp;
777 stp(r0, r1, Address(pre(sp, -2 * wordSize)));
778
779 // Test MDO to avoid the call if it is null.
780 ldr(r0, Address(rmethod, in_bytes(Method::method_data_offset())));
781 cbz(r0, set_mdp);
782 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rmethod, rbcp);
783 // r0: mdi
784 // mdo is guaranteed to be non-zero here, we checked for it before the call.
785 ldr(r1, Address(rmethod, in_bytes(Method::method_data_offset())));
786 lea(r1, Address(r1, in_bytes(MethodData::data_offset())));
787 add(r0, r1, r0);
788 str(r0, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
789 bind(set_mdp);
790 ldp(r0, r1, Address(post(sp, 2 * wordSize)));
791 }
792
793 void InterpreterMacroAssembler::verify_method_data_pointer() {
794 assert(ProfileInterpreter, "must be profiling interpreter");
795 #ifdef ASSERT
796 Label verify_continue;
797 stp(r0, r1, Address(pre(sp, -2 * wordSize)));
798 stp(r2, r3, Address(pre(sp, -2 * wordSize)));
799 test_method_data_pointer(r3, verify_continue); // If mdp is zero, continue
800 get_method(r1);
801
802 // If the mdp is valid, it will point to a DataLayout header which is
803 // consistent with the bcp. The converse is highly probable also.
804 ldrsh(r2, Address(r3, in_bytes(DataLayout::bci_offset())));
805 ldr(rscratch1, Address(r1, Method::const_offset()));
806 add(r2, r2, rscratch1, Assembler::LSL);
807 lea(r2, Address(r2, ConstMethod::codes_offset()));
808 cmp(r2, rbcp);
809 br(Assembler::EQ, verify_continue);
810 // r1: method
811 // rbcp: bcp // rbcp == 22
812 // r3: mdp
813 call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
814 r1, rbcp, r3);
815 bind(verify_continue);
816 ldp(r2, r3, Address(post(sp, 2 * wordSize)));
817 ldp(r0, r1, Address(post(sp, 2 * wordSize)));
818 #endif // ASSERT
819 }
820
821
822 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
823 int constant,
824 Register value) {
825 assert(ProfileInterpreter, "must be profiling interpreter");
826 Address data(mdp_in, constant);
827 str(value, data);
828 }
829
830
831 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
832 int constant) {
833 increment_mdp_data_at(mdp_in, noreg, constant);
834 }
835
836 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
837 Register index,
838 int constant) {
839 assert(ProfileInterpreter, "must be profiling interpreter");
840
841 assert_different_registers(rscratch2, rscratch1, mdp_in, index);
842
843 Address addr1(mdp_in, constant);
844 Address addr2(rscratch2, index, Address::lsl(0));
845 Address &addr = addr1;
846 if (index != noreg) {
847 lea(rscratch2, addr1);
848 addr = addr2;
849 }
850
851 increment(addr, DataLayout::counter_increment);
852 }
853
854 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
855 int flag_byte_constant) {
856 assert(ProfileInterpreter, "must be profiling interpreter");
857 int flags_offset = in_bytes(DataLayout::flags_offset());
858 // Set the flag
859 ldrb(rscratch1, Address(mdp_in, flags_offset));
860 orr(rscratch1, rscratch1, flag_byte_constant);
861 strb(rscratch1, Address(mdp_in, flags_offset));
862 }
863
864
865 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
866 int offset,
867 Register value,
868 Register test_value_out,
869 Label& not_equal_continue) {
870 assert(ProfileInterpreter, "must be profiling interpreter");
871 if (test_value_out == noreg) {
872 ldr(rscratch1, Address(mdp_in, offset));
873 cmp(value, rscratch1);
874 } else {
875 // Put the test value into a register, so caller can use it:
876 ldr(test_value_out, Address(mdp_in, offset));
877 cmp(value, test_value_out);
878 }
879 br(Assembler::NE, not_equal_continue);
880 }
881
882
883 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
884 int offset_of_disp) {
885 assert(ProfileInterpreter, "must be profiling interpreter");
886 ldr(rscratch1, Address(mdp_in, offset_of_disp));
887 add(mdp_in, mdp_in, rscratch1, LSL);
888 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
889 }
890
891
892 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
893 Register reg,
894 int offset_of_disp) {
895 assert(ProfileInterpreter, "must be profiling interpreter");
896 lea(rscratch1, Address(mdp_in, offset_of_disp));
897 ldr(rscratch1, Address(rscratch1, reg, Address::lsl(0)));
898 add(mdp_in, mdp_in, rscratch1, LSL);
899 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
900 }
901
902
903 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
904 int constant) {
905 assert(ProfileInterpreter, "must be profiling interpreter");
906 add(mdp_in, mdp_in, (unsigned)constant);
907 str(mdp_in, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
908 }
909
910
911 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
912 assert(ProfileInterpreter, "must be profiling interpreter");
913 // save/restore across call_VM
914 stp(zr, return_bci, Address(pre(sp, -2 * wordSize)));
915 call_VM(noreg,
916 CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
917 return_bci);
918 ldp(zr, return_bci, Address(post(sp, 2 * wordSize)));
919 }
920
921
922 void InterpreterMacroAssembler::profile_taken_branch(Register mdp) {
923 if (ProfileInterpreter) {
924 Label profile_continue;
925
926 // If no method data exists, go to profile_continue.
927 test_method_data_pointer(mdp, profile_continue);
928
929 // We are taking a branch. Increment the taken count.
930 increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
931
932 // The method data pointer needs to be updated to reflect the new target.
933 update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
934 bind(profile_continue);
935 }
936 }
937
938
939 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
940 if (ProfileInterpreter) {
941 Label profile_continue;
942
943 // If no method data exists, go to profile_continue.
944 test_method_data_pointer(mdp, profile_continue);
945
946 // We are not taking a branch. Increment the not taken count.
947 increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
948
949 // The method data pointer needs to be updated to correspond to
950 // the next bytecode
951 update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
952 bind(profile_continue);
953 }
954 }
955
956
957 void InterpreterMacroAssembler::profile_call(Register mdp) {
958 if (ProfileInterpreter) {
959 Label profile_continue;
960
961 // If no method data exists, go to profile_continue.
962 test_method_data_pointer(mdp, profile_continue);
963
964 // We are making a call. Increment the count.
965 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
966
967 // The method data pointer needs to be updated to reflect the new target.
968 update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
969 bind(profile_continue);
970 }
971 }
972
973 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
974 if (ProfileInterpreter) {
975 Label profile_continue;
976
977 // If no method data exists, go to profile_continue.
978 test_method_data_pointer(mdp, profile_continue);
979
980 // We are making a call. Increment the count.
981 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
982
983 // The method data pointer needs to be updated to reflect the new target.
984 update_mdp_by_constant(mdp,
985 in_bytes(VirtualCallData::
986 virtual_call_data_size()));
987 bind(profile_continue);
988 }
989 }
990
991
992 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
993 Register mdp,
994 Register reg2,
995 bool receiver_can_be_null) {
996 if (ProfileInterpreter) {
997 Label profile_continue;
998
999 // If no method data exists, go to profile_continue.
1000 test_method_data_pointer(mdp, profile_continue);
1001
1002 Label skip_receiver_profile;
1003 if (receiver_can_be_null) {
1004 Label not_null;
1005 // We are making a call. Increment the count for null receiver.
1006 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1007 b(skip_receiver_profile);
1008 bind(not_null);
1009 }
1010
1011 // Record the receiver type.
1012 record_klass_in_profile(receiver, mdp, reg2);
1013 bind(skip_receiver_profile);
1014
1015 // The method data pointer needs to be updated to reflect the new target.
1016 update_mdp_by_constant(mdp, in_bytes(VirtualCallData::virtual_call_data_size()));
1017 bind(profile_continue);
1018 }
1019 }
1020
1021 // This routine creates a state machine for updating the multi-row
1022 // type profile at a virtual call site (or other type-sensitive bytecode).
1023 // The machine visits each row (of receiver/count) until the receiver type
1024 // is found, or until it runs out of rows. At the same time, it remembers
1025 // the location of the first empty row. (An empty row records null for its
1026 // receiver, and can be allocated for a newly-observed receiver type.)
1027 // Because there are two degrees of freedom in the state, a simple linear
1028 // search will not work; it must be a decision tree. Hence this helper
1029 // function is recursive, to generate the required tree structured code.
1030 // It's the interpreter, so we are trading off code space for speed.
1031 // See below for example code.
1032 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1033 Register receiver, Register mdp,
1034 Register reg2, int start_row,
1035 Label& done) {
1036 if (TypeProfileWidth == 0) {
1037 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1038 } else {
1039 record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
1040 &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset);
1041 }
1042 }
1043
1044 void InterpreterMacroAssembler::record_item_in_profile_helper(Register item, Register mdp,
1045 Register reg2, int start_row, Label& done, int total_rows,
1046 OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn) {
1047 int last_row = total_rows - 1;
1048 assert(start_row <= last_row, "must be work left to do");
1049 // Test this row for both the item and for null.
1050 // Take any of three different outcomes:
1051 // 1. found item => increment count and goto done
1052 // 2. found null => keep looking for case 1, maybe allocate this cell
1053 // 3. found something else => keep looking for cases 1 and 2
1054 // Case 3 is handled by a recursive call.
1055 for (int row = start_row; row <= last_row; row++) {
1056 Label next_test;
1057 bool test_for_null_also = (row == start_row);
1058
1059 // See if the item is item[n].
1060 int item_offset = in_bytes(item_offset_fn(row));
1061 test_mdp_data_at(mdp, item_offset, item,
1062 (test_for_null_also ? reg2 : noreg),
1063 next_test);
1064 // (Reg2 now contains the item from the CallData.)
1065
1066 // The item is item[n]. Increment count[n].
1067 int count_offset = in_bytes(item_count_offset_fn(row));
1068 increment_mdp_data_at(mdp, count_offset);
1069 b(done);
1070 bind(next_test);
1071
1072 if (test_for_null_also) {
1073 Label found_null;
1074 // Failed the equality check on item[n]... Test for null.
1075 if (start_row == last_row) {
1076 // The only thing left to do is handle the null case.
1077 cbz(reg2, found_null);
1078 // Item did not match any saved item and there is no empty row for it.
1079 // Increment total counter to indicate polymorphic case.
1080 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1081 b(done);
1082 bind(found_null);
1083 break;
1084 }
1085 // Since null is rare, make it be the branch-taken case.
1086 cbz(reg2, found_null);
1087
1088 // Put all the "Case 3" tests here.
1089 record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
1090 item_offset_fn, item_count_offset_fn);
1091
1092 // Found a null. Keep searching for a matching item,
1093 // but remember that this is an empty (unused) slot.
1094 bind(found_null);
1095 }
1096 }
1097
1098 // In the fall-through case, we found no matching item, but we
1099 // observed the item[start_row] is null.
1100
1101 // Fill in the item field and increment the count.
1102 int item_offset = in_bytes(item_offset_fn(start_row));
1103 set_mdp_data_at(mdp, item_offset, item);
1104 int count_offset = in_bytes(item_count_offset_fn(start_row));
1105 mov(reg2, DataLayout::counter_increment);
1106 set_mdp_data_at(mdp, count_offset, reg2);
1107 if (start_row > 0) {
1108 b(done);
1109 }
1110 }
1111
1112 // Example state machine code for three profile rows:
1113 // // main copy of decision tree, rooted at row[1]
1114 // if (row[0].rec == rec) { row[0].incr(); goto done; }
1115 // if (row[0].rec != nullptr) {
1116 // // inner copy of decision tree, rooted at row[1]
1117 // if (row[1].rec == rec) { row[1].incr(); goto done; }
1118 // if (row[1].rec != nullptr) {
1119 // // degenerate decision tree, rooted at row[2]
1120 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1121 // if (row[2].rec != nullptr) { count.incr(); goto done; } // overflow
1122 // row[2].init(rec); goto done;
1123 // } else {
1124 // // remember row[1] is empty
1125 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1126 // row[1].init(rec); goto done;
1127 // }
1128 // } else {
1129 // // remember row[0] is empty
1130 // if (row[1].rec == rec) { row[1].incr(); goto done; }
1131 // if (row[2].rec == rec) { row[2].incr(); goto done; }
1132 // row[0].init(rec); goto done;
1133 // }
1134 // done:
1135
1136 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1137 Register mdp, Register reg2) {
1138 assert(ProfileInterpreter, "must be profiling");
1139 Label done;
1140
1141 record_klass_in_profile_helper(receiver, mdp, reg2, 0, done);
1142
1143 bind (done);
1144 }
1145
1146 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1147 Register mdp) {
1148 if (ProfileInterpreter) {
1149 Label profile_continue;
1150 uint row;
1151
1152 // If no method data exists, go to profile_continue.
1153 test_method_data_pointer(mdp, profile_continue);
1154
1155 // Update the total ret count.
1156 increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1157
1158 for (row = 0; row < RetData::row_limit(); row++) {
1159 Label next_test;
1160
1161 // See if return_bci is equal to bci[n]:
1162 test_mdp_data_at(mdp,
1163 in_bytes(RetData::bci_offset(row)),
1164 return_bci, noreg,
1165 next_test);
1166
1167 // return_bci is equal to bci[n]. Increment the count.
1168 increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1169
1170 // The method data pointer needs to be updated to reflect the new target.
1171 update_mdp_by_offset(mdp,
1172 in_bytes(RetData::bci_displacement_offset(row)));
1173 b(profile_continue);
1174 bind(next_test);
1175 }
1176
1177 update_mdp_for_ret(return_bci);
1178
1179 bind(profile_continue);
1180 }
1181 }
1182
1183 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1184 if (ProfileInterpreter) {
1185 Label profile_continue;
1186
1187 // If no method data exists, go to profile_continue.
1188 test_method_data_pointer(mdp, profile_continue);
1189
1190 set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1191
1192 // The method data pointer needs to be updated.
1193 int mdp_delta = in_bytes(BitData::bit_data_size());
1194 if (TypeProfileCasts) {
1195 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1196 }
1197 update_mdp_by_constant(mdp, mdp_delta);
1198
1199 bind(profile_continue);
1200 }
1201 }
1202
1203 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1204 if (ProfileInterpreter) {
1205 Label profile_continue;
1206
1207 // If no method data exists, go to profile_continue.
1208 test_method_data_pointer(mdp, profile_continue);
1209
1210 // The method data pointer needs to be updated.
1211 int mdp_delta = in_bytes(BitData::bit_data_size());
1212 if (TypeProfileCasts) {
1213 mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1214
1215 // Record the object type.
1216 record_klass_in_profile(klass, mdp, reg2);
1217 }
1218 update_mdp_by_constant(mdp, mdp_delta);
1219
1220 bind(profile_continue);
1221 }
1222 }
1223
1224 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1225 if (ProfileInterpreter) {
1226 Label profile_continue;
1227
1228 // If no method data exists, go to profile_continue.
1229 test_method_data_pointer(mdp, profile_continue);
1230
1231 // Update the default case count
1232 increment_mdp_data_at(mdp,
1233 in_bytes(MultiBranchData::default_count_offset()));
1234
1235 // The method data pointer needs to be updated.
1236 update_mdp_by_offset(mdp,
1237 in_bytes(MultiBranchData::
1238 default_displacement_offset()));
1239
1240 bind(profile_continue);
1241 }
1242 }
1243
1244 void InterpreterMacroAssembler::profile_switch_case(Register index,
1245 Register mdp,
1246 Register reg2) {
1247 if (ProfileInterpreter) {
1248 Label profile_continue;
1249
1250 // If no method data exists, go to profile_continue.
1251 test_method_data_pointer(mdp, profile_continue);
1252
1253 // Build the base (index * per_case_size_in_bytes()) +
1254 // case_array_offset_in_bytes()
1255 movw(reg2, in_bytes(MultiBranchData::per_case_size()));
1256 movw(rscratch1, in_bytes(MultiBranchData::case_array_offset()));
1257 Assembler::maddw(index, index, reg2, rscratch1);
1258
1259 // Update the case count
1260 increment_mdp_data_at(mdp,
1261 index,
1262 in_bytes(MultiBranchData::relative_count_offset()));
1263
1264 // The method data pointer needs to be updated.
1265 update_mdp_by_offset(mdp,
1266 index,
1267 in_bytes(MultiBranchData::
1268 relative_displacement_offset()));
1269
1270 bind(profile_continue);
1271 }
1272 }
1273
1274 void InterpreterMacroAssembler::_interp_verify_oop(Register reg, TosState state, const char* file, int line) {
1275 if (state == atos) {
1276 MacroAssembler::_verify_oop_checked(reg, "broken oop", file, line);
1277 }
1278 }
1279
1280 void InterpreterMacroAssembler::notify_method_entry() {
1281 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1282 // track stack depth. If it is possible to enter interp_only_mode we add
1283 // the code to check if the event should be sent.
1284 if (JvmtiExport::can_post_interpreter_events()) {
1285 Label L;
1286 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1287 cbzw(r3, L);
1288 call_VM(noreg, CAST_FROM_FN_PTR(address,
1289 InterpreterRuntime::post_method_entry));
1290 bind(L);
1291 }
1292
1293 if (DTraceMethodProbes) {
1294 get_method(c_rarg1);
1295 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1296 rthread, c_rarg1);
1297 }
1298
1299 // RedefineClasses() tracing support for obsolete method entry
1300 if (log_is_enabled(Trace, redefine, class, obsolete)) {
1301 get_method(c_rarg1);
1302 call_VM_leaf(
1303 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1304 rthread, c_rarg1);
1305 }
1306
1307 }
1308
1309
1310 void InterpreterMacroAssembler::notify_method_exit(
1311 TosState state, NotifyMethodExitMode mode) {
1312 // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1313 // track stack depth. If it is possible to enter interp_only_mode we add
1314 // the code to check if the event should be sent.
1315 if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1316 Label L;
1317 // Note: frame::interpreter_frame_result has a dependency on how the
1318 // method result is saved across the call to post_method_exit. If this
1319 // is changed then the interpreter_frame_result implementation will
1320 // need to be updated too.
1321
1322 // template interpreter will leave the result on the top of the stack.
1323 push(state);
1324 ldrw(r3, Address(rthread, JavaThread::interp_only_mode_offset()));
1325 cbz(r3, L);
1326 call_VM(noreg,
1327 CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1328 bind(L);
1329 pop(state);
1330 }
1331
1332 if (DTraceMethodProbes) {
1333 push(state);
1334 get_method(c_rarg1);
1335 call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1336 rthread, c_rarg1);
1337 pop(state);
1338 }
1339 }
1340
1341
1342 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1343 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1344 int increment, Address mask,
1345 Register scratch, Register scratch2,
1346 bool preloaded, Condition cond,
1347 Label* where) {
1348 if (!preloaded) {
1349 ldrw(scratch, counter_addr);
1350 }
1351 add(scratch, scratch, increment);
1352 strw(scratch, counter_addr);
1353 ldrw(scratch2, mask);
1354 ands(scratch, scratch, scratch2);
1355 br(cond, *where);
1356 }
1357
1358 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
1359 int number_of_arguments) {
1360 // interpreter specific
1361 //
1362 // Note: No need to save/restore rbcp & rlocals pointer since these
1363 // are callee saved registers and no blocking/ GC can happen
1364 // in leaf calls.
1365 #ifdef ASSERT
1366 {
1367 Label L;
1368 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1369 cbz(rscratch1, L);
1370 stop("InterpreterMacroAssembler::call_VM_leaf_base:"
1371 " last_sp != nullptr");
1372 bind(L);
1373 }
1374 #endif /* ASSERT */
1375 // super call
1376 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
1377 }
1378
1379 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
1380 Register java_thread,
1381 Register last_java_sp,
1382 Label* return_pc,
1383 address entry_point,
1384 int number_of_arguments,
1385 bool check_exceptions) {
1386 // interpreter specific
1387 //
1388 // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
1389 // really make a difference for these runtime calls, since they are
1390 // slow anyway. Btw., bcp must be saved/restored since it may change
1391 // due to GC.
1392 // assert(java_thread == noreg , "not expecting a precomputed java thread");
1393 save_bcp();
1394 #ifdef ASSERT
1395 {
1396 Label L;
1397 ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
1398 cbz(rscratch1, L);
1399 stop("InterpreterMacroAssembler::call_VM_base:"
1400 " last_sp != nullptr");
1401 bind(L);
1402 }
1403 #endif /* ASSERT */
1404 // super call
1405 MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
1406 return_pc, entry_point,
1407 number_of_arguments, check_exceptions);
1408 // interpreter specific
1409 restore_bcp();
1410 restore_locals();
1411 }
1412
1413 void InterpreterMacroAssembler::call_VM_preemptable_helper(Register oop_result,
1414 address entry_point,
1415 int number_of_arguments,
1416 bool check_exceptions) {
1417 assert(InterpreterRuntime::is_preemptable_call(entry_point), "VM call not preemptable, should use call_VM()");
1418 Label resume_pc, not_preempted;
1419
1420 #ifdef ASSERT
1421 {
1422 Label L1, L2;
1423 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1424 cbz(rscratch1, L1);
1425 stop("call_VM_preemptable_helper: Should not have alternate return address set");
1426 bind(L1);
1427 // We check this counter in patch_return_pc_with_preempt_stub() during freeze.
1428 incrementw(Address(rthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1429 ldrw(rscratch1, Address(rthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1430 cmpw(rscratch1, 0);
1431 br(Assembler::GT, L2);
1432 stop("call_VM_preemptable_helper: should be > 0");
1433 bind(L2);
1434 }
1435 #endif /* ASSERT */
1436
1437 // Force freeze slow path.
1438 push_cont_fastpath();
1439
1440 // Make VM call. In case of preemption set last_pc to the one we want to resume to.
1441 // Note: call_VM_base will use resume_pc label to set last_Java_pc.
1442 call_VM_base(noreg, noreg, noreg, &resume_pc, entry_point, number_of_arguments, false /*check_exceptions*/);
1443
1444 pop_cont_fastpath();
1445
1446 #ifdef ASSERT
1447 {
1448 Label L;
1449 decrementw(Address(rthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1450 ldrw(rscratch1, Address(rthread, JavaThread::interp_at_preemptable_vmcall_cnt_offset()));
1451 cmpw(rscratch1, 0);
1452 br(Assembler::GE, L);
1453 stop("call_VM_preemptable_helper: should be >= 0");
1454 bind(L);
1455 }
1456 #endif /* ASSERT */
1457
1458 // Check if preempted.
1459 ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1460 cbz(rscratch1, not_preempted);
1461 str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1462 br(rscratch1);
1463
1464 // In case of preemption, this is where we will resume once we finally acquire the monitor.
1465 bind(resume_pc);
1466 restore_after_resume(false /* is_native */);
1467
1468 bind(not_preempted);
1469 if (check_exceptions) {
1470 // check for pending exceptions
1471 ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
1472 Label ok;
1473 cbz(rscratch1, ok);
1474 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
1475 br(rscratch1);
1476 bind(ok);
1477 }
1478
1479 // get oop result if there is one and reset the value in the thread
1480 if (oop_result->is_valid()) {
1481 get_vm_result_oop(oop_result, rthread);
1482 }
1483 }
1484
1485 static void pass_arg1(MacroAssembler* masm, Register arg) {
1486 if (c_rarg1 != arg ) {
1487 masm->mov(c_rarg1, arg);
1488 }
1489 }
1490
1491 static void pass_arg2(MacroAssembler* masm, Register arg) {
1492 if (c_rarg2 != arg ) {
1493 masm->mov(c_rarg2, arg);
1494 }
1495 }
1496
1497 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
1498 address entry_point,
1499 Register arg_1,
1500 bool check_exceptions) {
1501 pass_arg1(this, arg_1);
1502 call_VM_preemptable_helper(oop_result, entry_point, 1, check_exceptions);
1503 }
1504
1505 void InterpreterMacroAssembler::call_VM_preemptable(Register oop_result,
1506 address entry_point,
1507 Register arg_1,
1508 Register arg_2,
1509 bool check_exceptions) {
1510 LP64_ONLY(assert_different_registers(arg_1, c_rarg2));
1511 pass_arg2(this, arg_2);
1512 pass_arg1(this, arg_1);
1513 call_VM_preemptable_helper(oop_result, entry_point, 2, check_exceptions);
1514 }
1515
1516 void InterpreterMacroAssembler::restore_after_resume(bool is_native) {
1517 lea(rscratch1, ExternalAddress(Interpreter::cont_resume_interpreter_adapter()));
1518 blr(rscratch1);
1519 if (is_native) {
1520 // On resume we need to set up stack as expected
1521 push(dtos);
1522 push(ltos);
1523 }
1524 }
1525
1526 void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr) {
1527 assert_different_registers(obj, rscratch1, mdo_addr.base(), mdo_addr.index());
1528 Label update, next, none;
1529
1530 verify_oop(obj);
1531
1532 cbnz(obj, update);
1533 orptr(mdo_addr, TypeEntries::null_seen);
1534 b(next);
1535
1536 bind(update);
1537 load_klass(obj, obj);
1538
1539 ldr(rscratch1, mdo_addr);
1540 eor(obj, obj, rscratch1);
1541 tst(obj, TypeEntries::type_klass_mask);
1542 br(Assembler::EQ, next); // klass seen before, nothing to
1543 // do. The unknown bit may have been
1544 // set already but no need to check.
1545
1546 tbnz(obj, exact_log2(TypeEntries::type_unknown), next);
1547 // already unknown. Nothing to do anymore.
1548
1549 cbz(rscratch1, none);
1550 cmp(rscratch1, (u1)TypeEntries::null_seen);
1551 br(Assembler::EQ, none);
1552 // There is a chance that the checks above
1553 // fail if another thread has just set the
1554 // profiling to this obj's klass
1555 eor(obj, obj, rscratch1); // get back original value before XOR
1556 ldr(rscratch1, mdo_addr);
1557 eor(obj, obj, rscratch1);
1558 tst(obj, TypeEntries::type_klass_mask);
1559 br(Assembler::EQ, next);
1560
1561 // different than before. Cannot keep accurate profile.
1562 orptr(mdo_addr, TypeEntries::type_unknown);
1563 b(next);
1564
1565 bind(none);
1566 // first time here. Set profile type.
1567 str(obj, mdo_addr);
1568 #ifdef ASSERT
1569 andr(obj, obj, TypeEntries::type_mask);
1570 verify_klass_ptr(obj);
1571 #endif
1572
1573 bind(next);
1574 }
1575
1576 void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
1577 if (!ProfileInterpreter) {
1578 return;
1579 }
1580
1581 if (MethodData::profile_arguments() || MethodData::profile_return()) {
1582 Label profile_continue;
1583
1584 test_method_data_pointer(mdp, profile_continue);
1585
1586 int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
1587
1588 ldrb(rscratch1, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
1589 cmp(rscratch1, u1(is_virtual ? DataLayout::virtual_call_type_data_tag : DataLayout::call_type_data_tag));
1590 br(Assembler::NE, profile_continue);
1591
1592 if (MethodData::profile_arguments()) {
1593 Label done;
1594 int off_to_args = in_bytes(TypeEntriesAtCall::args_data_offset());
1595
1596 for (int i = 0; i < TypeProfileArgsLimit; i++) {
1597 if (i > 0 || MethodData::profile_return()) {
1598 // If return value type is profiled we may have no argument to profile
1599 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1600 sub(tmp, tmp, i*TypeStackSlotEntries::per_arg_count());
1601 cmp(tmp, (u1)TypeStackSlotEntries::per_arg_count());
1602 add(rscratch1, mdp, off_to_args);
1603 br(Assembler::LT, done);
1604 }
1605 ldr(tmp, Address(callee, Method::const_offset()));
1606 load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
1607 // stack offset o (zero based) from the start of the argument
1608 // list, for n arguments translates into offset n - o - 1 from
1609 // the end of the argument list
1610 ldr(rscratch1, Address(mdp, in_bytes(TypeEntriesAtCall::stack_slot_offset(i))));
1611 sub(tmp, tmp, rscratch1);
1612 sub(tmp, tmp, 1);
1613 Address arg_addr = argument_address(tmp);
1614 ldr(tmp, arg_addr);
1615
1616 Address mdo_arg_addr(mdp, in_bytes(TypeEntriesAtCall::argument_type_offset(i)));
1617 profile_obj_type(tmp, mdo_arg_addr);
1618
1619 int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
1620 off_to_args += to_add;
1621 }
1622
1623 if (MethodData::profile_return()) {
1624 ldr(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
1625 sub(tmp, tmp, TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
1626 }
1627
1628 add(rscratch1, mdp, off_to_args);
1629 bind(done);
1630 mov(mdp, rscratch1);
1631
1632 if (MethodData::profile_return()) {
1633 // We're right after the type profile for the last
1634 // argument. tmp is the number of cells left in the
1635 // CallTypeData/VirtualCallTypeData to reach its end. Non null
1636 // if there's a return to profile.
1637 assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
1638 add(mdp, mdp, tmp, LSL, exact_log2(DataLayout::cell_size));
1639 }
1640 str(mdp, Address(rfp, frame::interpreter_frame_mdp_offset * wordSize));
1641 } else {
1642 assert(MethodData::profile_return(), "either profile call args or call ret");
1643 update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
1644 }
1645
1646 // mdp points right after the end of the
1647 // CallTypeData/VirtualCallTypeData, right after the cells for the
1648 // return value type if there's one
1649
1650 bind(profile_continue);
1651 }
1652 }
1653
1654 void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
1655 assert_different_registers(mdp, ret, tmp, rbcp);
1656 if (ProfileInterpreter && MethodData::profile_return()) {
1657 Label profile_continue, done;
1658
1659 test_method_data_pointer(mdp, profile_continue);
1660
1661 if (MethodData::profile_return_jsr292_only()) {
1662 assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
1663
1664 // If we don't profile all invoke bytecodes we must make sure
1665 // it's a bytecode we indeed profile. We can't go back to the
1666 // beginning of the ProfileData we intend to update to check its
1667 // type because we're right after it and we don't known its
1668 // length
1669 Label do_profile;
1670 ldrb(rscratch1, Address(rbcp, 0));
1671 cmp(rscratch1, (u1)Bytecodes::_invokedynamic);
1672 br(Assembler::EQ, do_profile);
1673 cmp(rscratch1, (u1)Bytecodes::_invokehandle);
1674 br(Assembler::EQ, do_profile);
1675 get_method(tmp);
1676 ldrh(rscratch1, Address(tmp, Method::intrinsic_id_offset()));
1677 subs(zr, rscratch1, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
1678 br(Assembler::NE, profile_continue);
1679
1680 bind(do_profile);
1681 }
1682
1683 Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
1684 mov(tmp, ret);
1685 profile_obj_type(tmp, mdo_ret_addr);
1686
1687 bind(profile_continue);
1688 }
1689 }
1690
1691 void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2) {
1692 assert_different_registers(rscratch1, rscratch2, mdp, tmp1, tmp2);
1693 if (ProfileInterpreter && MethodData::profile_parameters()) {
1694 Label profile_continue, done;
1695
1696 test_method_data_pointer(mdp, profile_continue);
1697
1698 // Load the offset of the area within the MDO used for
1699 // parameters. If it's negative we're not profiling any parameters
1700 ldrw(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
1701 tbnz(tmp1, 31, profile_continue); // i.e. sign bit set
1702
1703 // Compute a pointer to the area for parameters from the offset
1704 // and move the pointer to the slot for the last
1705 // parameters. Collect profiling from last parameter down.
1706 // mdo start + parameters offset + array length - 1
1707 add(mdp, mdp, tmp1);
1708 ldr(tmp1, Address(mdp, ArrayData::array_len_offset()));
1709 sub(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1710
1711 Label loop;
1712 bind(loop);
1713
1714 int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
1715 int type_base = in_bytes(ParametersTypeData::type_offset(0));
1716 int per_arg_scale = exact_log2(DataLayout::cell_size);
1717 add(rscratch1, mdp, off_base);
1718 add(rscratch2, mdp, type_base);
1719
1720 Address arg_off(rscratch1, tmp1, Address::lsl(per_arg_scale));
1721 Address arg_type(rscratch2, tmp1, Address::lsl(per_arg_scale));
1722
1723 // load offset on the stack from the slot for this parameter
1724 ldr(tmp2, arg_off);
1725 neg(tmp2, tmp2);
1726 // read the parameter from the local area
1727 ldr(tmp2, Address(rlocals, tmp2, Address::lsl(Interpreter::logStackElementSize)));
1728
1729 // profile the parameter
1730 profile_obj_type(tmp2, arg_type);
1731
1732 // go to next parameter
1733 subs(tmp1, tmp1, TypeStackSlotEntries::per_arg_count());
1734 br(Assembler::GE, loop);
1735
1736 bind(profile_continue);
1737 }
1738 }
1739
1740 void InterpreterMacroAssembler::load_resolved_indy_entry(Register cache, Register index) {
1741 // Get index out of bytecode pointer, get_cache_entry_pointer_at_bcp
1742 get_cache_index_at_bcp(index, 1, sizeof(u4));
1743 // Get address of invokedynamic array
1744 ldr(cache, Address(rcpool, in_bytes(ConstantPoolCache::invokedynamic_entries_offset())));
1745 // Scale the index to be the entry index * sizeof(ResolvedIndyEntry)
1746 lsl(index, index, log2i_exact(sizeof(ResolvedIndyEntry)));
1747 add(cache, cache, Array<ResolvedIndyEntry>::base_offset_in_bytes());
1748 lea(cache, Address(cache, index));
1749 }
1750
1751 void InterpreterMacroAssembler::load_field_entry(Register cache, Register index, int bcp_offset) {
1752 // Get index out of bytecode pointer
1753 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1754 // Take shortcut if the size is a power of 2
1755 if (is_power_of_2(sizeof(ResolvedFieldEntry))) {
1756 lsl(index, index, log2i_exact(sizeof(ResolvedFieldEntry))); // Scale index by power of 2
1757 } else {
1758 mov(cache, sizeof(ResolvedFieldEntry));
1759 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedFieldEntry)
1760 }
1761 // Get address of field entries array
1762 ldr(cache, Address(rcpool, ConstantPoolCache::field_entries_offset()));
1763 add(cache, cache, Array<ResolvedFieldEntry>::base_offset_in_bytes());
1764 lea(cache, Address(cache, index));
1765 // Prevents stale data from being read after the bytecode is patched to the fast bytecode
1766 membar(MacroAssembler::LoadLoad);
1767 }
1768
1769 void InterpreterMacroAssembler::load_method_entry(Register cache, Register index, int bcp_offset) {
1770 // Get index out of bytecode pointer
1771 get_cache_index_at_bcp(index, bcp_offset, sizeof(u2));
1772 mov(cache, sizeof(ResolvedMethodEntry));
1773 mul(index, index, cache); // Scale the index to be the entry index * sizeof(ResolvedMethodEntry)
1774
1775 // Get address of field entries array
1776 ldr(cache, Address(rcpool, ConstantPoolCache::method_entries_offset()));
1777 add(cache, cache, Array<ResolvedMethodEntry>::base_offset_in_bytes());
1778 lea(cache, Address(cache, index));
1779 }
1780
1781 #ifdef ASSERT
1782 void InterpreterMacroAssembler::verify_field_offset(Register reg) {
1783 // Verify the field offset is not in the header, implicitly checks for 0
1784 Label L;
1785 subs(zr, reg, oopDesc::base_offset_in_bytes());
1786 br(Assembler::GE, L);
1787 stop("bad field offset");
1788 bind(L);
1789 }
1790 #endif