1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "ci/ciEnv.hpp" 29 #include "code/compiledIC.hpp" 30 #include "compiler/compileTask.hpp" 31 #include "compiler/disassembler.hpp" 32 #include "compiler/oopMap.hpp" 33 #include "gc/shared/barrierSet.hpp" 34 #include "gc/shared/barrierSetAssembler.hpp" 35 #include "gc/shared/cardTableBarrierSet.hpp" 36 #include "gc/shared/cardTable.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "gc/shared/tlab_globals.hpp" 39 #include "interpreter/bytecodeHistogram.hpp" 40 #include "interpreter/interpreter.hpp" 41 #include "interpreter/interpreterRuntime.hpp" 42 #include "jvm.h" 43 #include "memory/resourceArea.hpp" 44 #include "memory/universe.hpp" 45 #include "nativeInst_aarch64.hpp" 46 #include "oops/accessDecorators.hpp" 47 #include "oops/compressedKlass.inline.hpp" 48 #include "oops/compressedOops.inline.hpp" 49 #include "oops/klass.inline.hpp" 50 #include "runtime/continuation.hpp" 51 #include "runtime/icache.hpp" 52 #include "runtime/interfaceSupport.inline.hpp" 53 #include "runtime/javaThread.hpp" 54 #include "runtime/jniHandles.inline.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "utilities/globalDefinitions.hpp" 58 #include "utilities/powerOfTwo.hpp" 59 #ifdef COMPILER1 60 #include "c1/c1_LIRAssembler.hpp" 61 #endif 62 #ifdef COMPILER2 63 #include "oops/oop.hpp" 64 #include "opto/compile.hpp" 65 #include "opto/node.hpp" 66 #include "opto/output.hpp" 67 #endif 68 69 #include <sys/types.h> 70 71 #ifdef PRODUCT 72 #define BLOCK_COMMENT(str) /* nothing */ 73 #else 74 #define BLOCK_COMMENT(str) block_comment(str) 75 #endif 76 #define STOP(str) stop(str); 77 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 78 79 #ifdef ASSERT 80 extern "C" void disnm(intptr_t p); 81 #endif 82 // Target-dependent relocation processing 83 // 84 // Instruction sequences whose target may need to be retrieved or 85 // patched are distinguished by their leading instruction, sorting 86 // them into three main instruction groups and related subgroups. 87 // 88 // 1) Branch, Exception and System (insn count = 1) 89 // 1a) Unconditional branch (immediate): 90 // b/bl imm19 91 // 1b) Compare & branch (immediate): 92 // cbz/cbnz Rt imm19 93 // 1c) Test & branch (immediate): 94 // tbz/tbnz Rt imm14 95 // 1d) Conditional branch (immediate): 96 // b.cond imm19 97 // 98 // 2) Loads and Stores (insn count = 1) 99 // 2a) Load register literal: 100 // ldr Rt imm19 101 // 102 // 3) Data Processing Immediate (insn count = 2 or 3) 103 // 3a) PC-rel. addressing 104 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 105 // adr/adrp Rx imm21; add Ry Rx #imm12 106 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 107 // adr/adrp Rx imm21 108 // adr/adrp Rx imm21; movk Rx #imm16<<32 109 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 110 // The latter form can only happen when the target is an 111 // ExternalAddress, and (by definition) ExternalAddresses don't 112 // move. Because of that property, there is never any need to 113 // patch the last of the three instructions. However, 114 // MacroAssembler::target_addr_for_insn takes all three 115 // instructions into account and returns the correct address. 116 // 3b) Move wide (immediate) 117 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 118 // 119 // A switch on a subset of the instruction's bits provides an 120 // efficient dispatch to these subcases. 121 // 122 // insn[28:26] -> main group ('x' == don't care) 123 // 00x -> UNALLOCATED 124 // 100 -> Data Processing Immediate 125 // 101 -> Branch, Exception and System 126 // x1x -> Loads and Stores 127 // 128 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 129 // n.b. in some cases extra bits need to be checked to verify the 130 // instruction is as expected 131 // 132 // 1) ... xx101x Branch, Exception and System 133 // 1a) 00___x Unconditional branch (immediate) 134 // 1b) 01___0 Compare & branch (immediate) 135 // 1c) 01___1 Test & branch (immediate) 136 // 1d) 10___0 Conditional branch (immediate) 137 // other Should not happen 138 // 139 // 2) ... xxx1x0 Loads and Stores 140 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 141 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 142 // strictly should be 64 bit non-FP/SIMD i.e. 143 // 0101_000 (i.e. requires insn[31:24] == 01011000) 144 // 145 // 3) ... xx100x Data Processing Immediate 146 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 147 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 148 // strictly should be 64 bit movz #imm16<<0 149 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 150 // 151 class RelocActions { 152 protected: 153 typedef int (*reloc_insn)(address insn_addr, address &target); 154 155 virtual reloc_insn adrpMem() = 0; 156 virtual reloc_insn adrpAdd() = 0; 157 virtual reloc_insn adrpMovk() = 0; 158 159 const address _insn_addr; 160 const uint32_t _insn; 161 162 static uint32_t insn_at(address insn_addr, int n) { 163 return ((uint32_t*)insn_addr)[n]; 164 } 165 uint32_t insn_at(int n) const { 166 return insn_at(_insn_addr, n); 167 } 168 169 public: 170 171 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 172 RelocActions(address insn_addr, uint32_t insn) 173 : _insn_addr(insn_addr), _insn(insn) {} 174 175 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 176 virtual int conditionalBranch(address insn_addr, address &target) = 0; 177 virtual int testAndBranch(address insn_addr, address &target) = 0; 178 virtual int loadStore(address insn_addr, address &target) = 0; 179 virtual int adr(address insn_addr, address &target) = 0; 180 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 181 virtual int immediate(address insn_addr, address &target) = 0; 182 virtual void verify(address insn_addr, address &target) = 0; 183 184 int ALWAYSINLINE run(address insn_addr, address &target) { 185 int instructions = 1; 186 187 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 188 switch(dispatch) { 189 case 0b001010: 190 case 0b001011: { 191 instructions = unconditionalBranch(insn_addr, target); 192 break; 193 } 194 case 0b101010: // Conditional branch (immediate) 195 case 0b011010: { // Compare & branch (immediate) 196 instructions = conditionalBranch(insn_addr, target); 197 break; 198 } 199 case 0b011011: { 200 instructions = testAndBranch(insn_addr, target); 201 break; 202 } 203 case 0b001100: 204 case 0b001110: 205 case 0b011100: 206 case 0b011110: 207 case 0b101100: 208 case 0b101110: 209 case 0b111100: 210 case 0b111110: { 211 // load/store 212 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 213 // Load register (literal) 214 instructions = loadStore(insn_addr, target); 215 break; 216 } else { 217 // nothing to do 218 assert(target == nullptr, "did not expect to relocate target for polling page load"); 219 } 220 break; 221 } 222 case 0b001000: 223 case 0b011000: 224 case 0b101000: 225 case 0b111000: { 226 // adr/adrp 227 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 228 int shift = Instruction_aarch64::extract(_insn, 31, 31); 229 if (shift) { 230 uint32_t insn2 = insn_at(1); 231 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 232 Instruction_aarch64::extract(_insn, 4, 0) == 233 Instruction_aarch64::extract(insn2, 9, 5)) { 234 instructions = adrp(insn_addr, target, adrpMem()); 235 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 236 Instruction_aarch64::extract(_insn, 4, 0) == 237 Instruction_aarch64::extract(insn2, 4, 0)) { 238 instructions = adrp(insn_addr, target, adrpAdd()); 239 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 240 Instruction_aarch64::extract(_insn, 4, 0) == 241 Instruction_aarch64::extract(insn2, 4, 0)) { 242 instructions = adrp(insn_addr, target, adrpMovk()); 243 } else { 244 ShouldNotReachHere(); 245 } 246 } else { 247 instructions = adr(insn_addr, target); 248 } 249 break; 250 } 251 case 0b001001: 252 case 0b011001: 253 case 0b101001: 254 case 0b111001: { 255 instructions = immediate(insn_addr, target); 256 break; 257 } 258 default: { 259 ShouldNotReachHere(); 260 } 261 } 262 263 verify(insn_addr, target); 264 return instructions * NativeInstruction::instruction_size; 265 } 266 }; 267 268 class Patcher : public RelocActions { 269 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 270 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 271 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 272 273 public: 274 Patcher(address insn_addr) : RelocActions(insn_addr) {} 275 276 virtual int unconditionalBranch(address insn_addr, address &target) { 277 intptr_t offset = (target - insn_addr) >> 2; 278 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 279 return 1; 280 } 281 virtual int conditionalBranch(address insn_addr, address &target) { 282 intptr_t offset = (target - insn_addr) >> 2; 283 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 284 return 1; 285 } 286 virtual int testAndBranch(address insn_addr, address &target) { 287 intptr_t offset = (target - insn_addr) >> 2; 288 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 289 return 1; 290 } 291 virtual int loadStore(address insn_addr, address &target) { 292 intptr_t offset = (target - insn_addr) >> 2; 293 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 294 return 1; 295 } 296 virtual int adr(address insn_addr, address &target) { 297 #ifdef ASSERT 298 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 299 #endif 300 // PC-rel. addressing 301 ptrdiff_t offset = target - insn_addr; 302 int offset_lo = offset & 3; 303 offset >>= 2; 304 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 305 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 306 return 1; 307 } 308 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 309 int instructions = 1; 310 #ifdef ASSERT 311 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 312 #endif 313 ptrdiff_t offset = target - insn_addr; 314 instructions = 2; 315 precond(inner != nullptr); 316 // Give the inner reloc a chance to modify the target. 317 address adjusted_target = target; 318 instructions = (*inner)(insn_addr, adjusted_target); 319 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 320 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 321 offset = adr_page - pc_page; 322 int offset_lo = offset & 3; 323 offset >>= 2; 324 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 325 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 326 return instructions; 327 } 328 static int adrpMem_impl(address insn_addr, address &target) { 329 uintptr_t dest = (uintptr_t)target; 330 int offset_lo = dest & 0xfff; 331 uint32_t insn2 = insn_at(insn_addr, 1); 332 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 333 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 334 guarantee(((dest >> size) << size) == dest, "misaligned target"); 335 return 2; 336 } 337 static int adrpAdd_impl(address insn_addr, address &target) { 338 uintptr_t dest = (uintptr_t)target; 339 int offset_lo = dest & 0xfff; 340 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 341 return 2; 342 } 343 static int adrpMovk_impl(address insn_addr, address &target) { 344 uintptr_t dest = uintptr_t(target); 345 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 346 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 347 target = address(dest); 348 return 2; 349 } 350 virtual int immediate(address insn_addr, address &target) { 351 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 352 uint64_t dest = (uint64_t)target; 353 // Move wide constant 354 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 355 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 356 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 357 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 358 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 359 return 3; 360 } 361 virtual void verify(address insn_addr, address &target) { 362 #ifdef ASSERT 363 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 364 if (!(address_is == target)) { 365 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 366 disnm((intptr_t)insn_addr); 367 assert(address_is == target, "should be"); 368 } 369 #endif 370 } 371 }; 372 373 // If insn1 and insn2 use the same register to form an address, either 374 // by an offsetted LDR or a simple ADD, return the offset. If the 375 // second instruction is an LDR, the offset may be scaled. 376 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 377 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 378 Instruction_aarch64::extract(insn1, 4, 0) == 379 Instruction_aarch64::extract(insn2, 9, 5)) { 380 // Load/store register (unsigned immediate) 381 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 382 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 383 byte_offset <<= size; 384 return true; 385 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 386 Instruction_aarch64::extract(insn1, 4, 0) == 387 Instruction_aarch64::extract(insn2, 4, 0)) { 388 // add (immediate) 389 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 390 return true; 391 } 392 return false; 393 } 394 395 class AArch64Decoder : public RelocActions { 396 virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; } 397 virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; } 398 virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; } 399 400 public: 401 AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 402 403 virtual int loadStore(address insn_addr, address &target) { 404 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 405 target = insn_addr + (offset << 2); 406 return 1; 407 } 408 virtual int unconditionalBranch(address insn_addr, address &target) { 409 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 410 target = insn_addr + (offset << 2); 411 return 1; 412 } 413 virtual int conditionalBranch(address insn_addr, address &target) { 414 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 415 target = address(((uint64_t)insn_addr + (offset << 2))); 416 return 1; 417 } 418 virtual int testAndBranch(address insn_addr, address &target) { 419 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 420 target = address(((uint64_t)insn_addr + (offset << 2))); 421 return 1; 422 } 423 virtual int adr(address insn_addr, address &target) { 424 // PC-rel. addressing 425 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 426 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 427 target = address((uint64_t)insn_addr + offset); 428 return 1; 429 } 430 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 431 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 432 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 433 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 434 int shift = 12; 435 offset <<= shift; 436 uint64_t target_page = ((uint64_t)insn_addr) + offset; 437 target_page &= ((uint64_t)-1) << shift; 438 uint32_t insn2 = insn_at(1); 439 target = address(target_page); 440 precond(inner != nullptr); 441 (*inner)(insn_addr, target); 442 return 2; 443 } 444 static int adrpMem_impl(address insn_addr, address &target) { 445 uint32_t insn2 = insn_at(insn_addr, 1); 446 // Load/store register (unsigned immediate) 447 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 448 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 449 byte_offset <<= size; 450 target += byte_offset; 451 return 2; 452 } 453 static int adrpAdd_impl(address insn_addr, address &target) { 454 uint32_t insn2 = insn_at(insn_addr, 1); 455 // add (immediate) 456 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 457 target += byte_offset; 458 return 2; 459 } 460 static int adrpMovk_impl(address insn_addr, address &target) { 461 uint32_t insn2 = insn_at(insn_addr, 1); 462 uint64_t dest = uint64_t(target); 463 dest = (dest & 0xffff0000ffffffff) | 464 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 465 target = address(dest); 466 467 // We know the destination 4k page. Maybe we have a third 468 // instruction. 469 uint32_t insn = insn_at(insn_addr, 0); 470 uint32_t insn3 = insn_at(insn_addr, 2); 471 ptrdiff_t byte_offset; 472 if (offset_for(insn, insn3, byte_offset)) { 473 target += byte_offset; 474 return 3; 475 } else { 476 return 2; 477 } 478 } 479 virtual int immediate(address insn_addr, address &target) { 480 uint32_t *insns = (uint32_t *)insn_addr; 481 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 482 // Move wide constant: movz, movk, movk. See movptr(). 483 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 484 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 485 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 486 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 487 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 488 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 489 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 490 return 3; 491 } 492 virtual void verify(address insn_addr, address &target) { 493 } 494 }; 495 496 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 497 AArch64Decoder decoder(insn_addr, insn); 498 address target; 499 decoder.run(insn_addr, target); 500 return target; 501 } 502 503 // Patch any kind of instruction; there may be several instructions. 504 // Return the total length (in bytes) of the instructions. 505 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 506 Patcher patcher(insn_addr); 507 return patcher.run(insn_addr, target); 508 } 509 510 int MacroAssembler::patch_oop(address insn_addr, address o) { 511 int instructions; 512 unsigned insn = *(unsigned*)insn_addr; 513 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 514 515 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 516 // narrow OOPs by setting the upper 16 bits in the first 517 // instruction. 518 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 519 // Move narrow OOP 520 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 521 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 522 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 523 instructions = 2; 524 } else { 525 // Move wide OOP 526 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 527 uintptr_t dest = (uintptr_t)o; 528 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 529 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 530 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 531 instructions = 3; 532 } 533 return instructions * NativeInstruction::instruction_size; 534 } 535 536 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 537 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 538 // We encode narrow ones by setting the upper 16 bits in the first 539 // instruction. 540 NativeInstruction *insn = nativeInstruction_at(insn_addr); 541 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 542 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 543 544 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 545 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 546 return 2 * NativeInstruction::instruction_size; 547 } 548 549 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 550 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 551 return nullptr; 552 } 553 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 554 } 555 556 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) { 557 if (acquire) { 558 lea(tmp, Address(rthread, JavaThread::polling_word_offset())); 559 ldar(tmp, tmp); 560 } else { 561 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 562 } 563 if (at_return) { 564 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 565 // we may safely use the sp instead to perform the stack watermark check. 566 cmp(in_nmethod ? sp : rfp, tmp); 567 br(Assembler::HI, slow_path); 568 } else { 569 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 570 } 571 } 572 573 void MacroAssembler::rt_call(address dest, Register tmp) { 574 CodeBlob *cb = CodeCache::find_blob(dest); 575 if (cb) { 576 far_call(RuntimeAddress(dest)); 577 } else { 578 lea(tmp, RuntimeAddress(dest)); 579 blr(tmp); 580 } 581 } 582 583 void MacroAssembler::push_cont_fastpath(Register java_thread) { 584 if (!Continuations::enabled()) return; 585 Label done; 586 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 587 cmp(sp, rscratch1); 588 br(Assembler::LS, done); 589 mov(rscratch1, sp); // we can't use sp as the source in str 590 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 591 bind(done); 592 } 593 594 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 595 if (!Continuations::enabled()) return; 596 Label done; 597 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 598 cmp(sp, rscratch1); 599 br(Assembler::LO, done); 600 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 601 bind(done); 602 } 603 604 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 605 // we must set sp to zero to clear frame 606 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 607 608 // must clear fp, so that compiled frames are not confused; it is 609 // possible that we need it only for debugging 610 if (clear_fp) { 611 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 612 } 613 614 // Always clear the pc because it could have been set by make_walkable() 615 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 616 } 617 618 // Calls to C land 619 // 620 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 621 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 622 // has to be reset to 0. This is required to allow proper stack traversal. 623 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 624 Register last_java_fp, 625 Register last_java_pc, 626 Register scratch) { 627 628 if (last_java_pc->is_valid()) { 629 str(last_java_pc, Address(rthread, 630 JavaThread::frame_anchor_offset() 631 + JavaFrameAnchor::last_Java_pc_offset())); 632 } 633 634 // determine last_java_sp register 635 if (last_java_sp == sp) { 636 mov(scratch, sp); 637 last_java_sp = scratch; 638 } else if (!last_java_sp->is_valid()) { 639 last_java_sp = esp; 640 } 641 642 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 643 644 // last_java_fp is optional 645 if (last_java_fp->is_valid()) { 646 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 647 } 648 } 649 650 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 651 Register last_java_fp, 652 address last_java_pc, 653 Register scratch) { 654 assert(last_java_pc != nullptr, "must provide a valid PC"); 655 656 adr(scratch, last_java_pc); 657 str(scratch, Address(rthread, 658 JavaThread::frame_anchor_offset() 659 + JavaFrameAnchor::last_Java_pc_offset())); 660 661 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 662 } 663 664 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 665 Register last_java_fp, 666 Label &L, 667 Register scratch) { 668 if (L.is_bound()) { 669 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 670 } else { 671 InstructionMark im(this); 672 L.add_patch_at(code(), locator()); 673 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 674 } 675 } 676 677 static inline bool target_needs_far_branch(address addr) { 678 // codecache size <= 128M 679 if (!MacroAssembler::far_branches()) { 680 return false; 681 } 682 // codecache size > 240M 683 if (MacroAssembler::codestub_branch_needs_far_jump()) { 684 return true; 685 } 686 // codecache size: 128M..240M 687 return !CodeCache::is_non_nmethod(addr); 688 } 689 690 void MacroAssembler::far_call(Address entry, Register tmp) { 691 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 692 assert(CodeCache::find_blob(entry.target()) != nullptr, 693 "destination of far call not found in code cache"); 694 assert(entry.rspec().type() == relocInfo::external_word_type 695 || entry.rspec().type() == relocInfo::runtime_call_type 696 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 697 if (target_needs_far_branch(entry.target())) { 698 uint64_t offset; 699 // We can use ADRP here because we know that the total size of 700 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 701 adrp(tmp, entry, offset); 702 add(tmp, tmp, offset); 703 blr(tmp); 704 } else { 705 bl(entry); 706 } 707 } 708 709 int MacroAssembler::far_jump(Address entry, Register tmp) { 710 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 711 assert(CodeCache::find_blob(entry.target()) != nullptr, 712 "destination of far call not found in code cache"); 713 assert(entry.rspec().type() == relocInfo::external_word_type 714 || entry.rspec().type() == relocInfo::runtime_call_type 715 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 716 address start = pc(); 717 if (target_needs_far_branch(entry.target())) { 718 uint64_t offset; 719 // We can use ADRP here because we know that the total size of 720 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 721 adrp(tmp, entry, offset); 722 add(tmp, tmp, offset); 723 br(tmp); 724 } else { 725 b(entry); 726 } 727 return pc() - start; 728 } 729 730 void MacroAssembler::reserved_stack_check() { 731 // testing if reserved zone needs to be enabled 732 Label no_reserved_zone_enabling; 733 734 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 735 cmp(sp, rscratch1); 736 br(Assembler::LO, no_reserved_zone_enabling); 737 738 enter(); // LR and FP are live. 739 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone))); 740 mov(c_rarg0, rthread); 741 blr(rscratch1); 742 leave(); 743 744 // We have already removed our own frame. 745 // throw_delayed_StackOverflowError will think that it's been 746 // called by our caller. 747 lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 748 br(rscratch1); 749 should_not_reach_here(); 750 751 bind(no_reserved_zone_enabling); 752 } 753 754 static void pass_arg0(MacroAssembler* masm, Register arg) { 755 if (c_rarg0 != arg ) { 756 masm->mov(c_rarg0, arg); 757 } 758 } 759 760 static void pass_arg1(MacroAssembler* masm, Register arg) { 761 if (c_rarg1 != arg ) { 762 masm->mov(c_rarg1, arg); 763 } 764 } 765 766 static void pass_arg2(MacroAssembler* masm, Register arg) { 767 if (c_rarg2 != arg ) { 768 masm->mov(c_rarg2, arg); 769 } 770 } 771 772 static void pass_arg3(MacroAssembler* masm, Register arg) { 773 if (c_rarg3 != arg ) { 774 masm->mov(c_rarg3, arg); 775 } 776 } 777 778 static bool is_preemptable(address entry_point) { 779 return entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter) || 780 entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache) || 781 entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::_new); 782 } 783 784 void MacroAssembler::call_VM_base(Register oop_result, 785 Register java_thread, 786 Register last_java_sp, 787 address entry_point, 788 int number_of_arguments, 789 bool check_exceptions) { 790 // determine java_thread register 791 if (!java_thread->is_valid()) { 792 java_thread = rthread; 793 } 794 795 // determine last_java_sp register 796 if (!last_java_sp->is_valid()) { 797 last_java_sp = esp; 798 } 799 800 // debugging support 801 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 802 assert(java_thread == rthread, "unexpected register"); 803 #ifdef ASSERT 804 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 805 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 806 #endif // ASSERT 807 808 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 809 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 810 811 // push java thread (becomes first argument of C function) 812 813 mov(c_rarg0, java_thread); 814 815 // set last Java frame before call 816 assert(last_java_sp != rfp, "can't use rfp"); 817 818 Label l; 819 if (is_preemptable(entry_point)) { 820 // skip setting last_pc since we already set it to desired value. 821 set_last_Java_frame(last_java_sp, rfp, noreg, rscratch1); 822 } else { 823 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 824 } 825 826 // do the call, remove parameters 827 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 828 829 // lr could be poisoned with PAC signature during throw_pending_exception 830 // if it was tail-call optimized by compiler, since lr is not callee-saved 831 // reload it with proper value 832 adr(lr, l); 833 834 // reset last Java frame 835 // Only interpreter should have to clear fp 836 reset_last_Java_frame(true); 837 838 // C++ interp handles this in the interpreter 839 check_and_handle_popframe(java_thread); 840 check_and_handle_earlyret(java_thread); 841 842 if (check_exceptions) { 843 // check for pending exceptions (java_thread is set upon return) 844 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 845 Label ok; 846 cbz(rscratch1, ok); 847 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 848 br(rscratch1); 849 bind(ok); 850 } 851 852 // get oop result if there is one and reset the value in the thread 853 if (oop_result->is_valid()) { 854 get_vm_result_oop(oop_result, java_thread); 855 } 856 } 857 858 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 859 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 860 } 861 862 // Check the entry target is always reachable from any branch. 863 static bool is_always_within_branch_range(Address entry) { 864 const address target = entry.target(); 865 866 if (!CodeCache::contains(target)) { 867 // We always use trampolines for callees outside CodeCache. 868 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 869 return false; 870 } 871 872 if (!MacroAssembler::far_branches()) { 873 return true; 874 } 875 876 if (entry.rspec().type() == relocInfo::runtime_call_type) { 877 // Runtime calls are calls of a non-compiled method (stubs, adapters). 878 // Non-compiled methods stay forever in CodeCache. 879 // We check whether the longest possible branch is within the branch range. 880 assert(CodeCache::find_blob(target) != nullptr && 881 !CodeCache::find_blob(target)->is_nmethod(), 882 "runtime call of compiled method"); 883 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 884 const address left_longest_branch_start = CodeCache::low_bound(); 885 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 886 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 887 return is_reachable; 888 } 889 890 return false; 891 } 892 893 // Maybe emit a call via a trampoline. If the code cache is small 894 // trampolines won't be emitted. 895 address MacroAssembler::trampoline_call(Address entry) { 896 assert(entry.rspec().type() == relocInfo::runtime_call_type 897 || entry.rspec().type() == relocInfo::opt_virtual_call_type 898 || entry.rspec().type() == relocInfo::static_call_type 899 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 900 901 address target = entry.target(); 902 903 if (!is_always_within_branch_range(entry)) { 904 if (!in_scratch_emit_size()) { 905 // We don't want to emit a trampoline if C2 is generating dummy 906 // code during its branch shortening phase. 907 if (entry.rspec().type() == relocInfo::runtime_call_type) { 908 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 909 code()->share_trampoline_for(entry.target(), offset()); 910 } else { 911 address stub = emit_trampoline_stub(offset(), target); 912 if (stub == nullptr) { 913 postcond(pc() == badAddress); 914 return nullptr; // CodeCache is full 915 } 916 } 917 } 918 target = pc(); 919 } 920 921 address call_pc = pc(); 922 relocate(entry.rspec()); 923 bl(target); 924 925 postcond(pc() != badAddress); 926 return call_pc; 927 } 928 929 // Emit a trampoline stub for a call to a target which is too far away. 930 // 931 // code sequences: 932 // 933 // call-site: 934 // branch-and-link to <destination> or <trampoline stub> 935 // 936 // Related trampoline stub for this call site in the stub section: 937 // load the call target from the constant pool 938 // branch (LR still points to the call site above) 939 940 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 941 address dest) { 942 // Max stub size: alignment nop, TrampolineStub. 943 address stub = start_a_stub(max_trampoline_stub_size()); 944 if (stub == nullptr) { 945 return nullptr; // CodeBuffer::expand failed 946 } 947 948 // Create a trampoline stub relocation which relates this trampoline stub 949 // with the call instruction at insts_call_instruction_offset in the 950 // instructions code-section. 951 align(wordSize); 952 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 953 + insts_call_instruction_offset)); 954 const int stub_start_offset = offset(); 955 956 // Now, create the trampoline stub's code: 957 // - load the call 958 // - call 959 Label target; 960 ldr(rscratch1, target); 961 br(rscratch1); 962 bind(target); 963 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 964 "should be"); 965 emit_int64((int64_t)dest); 966 967 const address stub_start_addr = addr_at(stub_start_offset); 968 969 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 970 971 end_a_stub(); 972 return stub_start_addr; 973 } 974 975 int MacroAssembler::max_trampoline_stub_size() { 976 // Max stub size: alignment nop, TrampolineStub. 977 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 978 } 979 980 void MacroAssembler::emit_static_call_stub() { 981 // CompiledDirectCall::set_to_interpreted knows the 982 // exact layout of this stub. 983 984 isb(); 985 mov_metadata(rmethod, nullptr); 986 987 // Jump to the entry point of the c2i stub. 988 movptr(rscratch1, 0); 989 br(rscratch1); 990 } 991 992 int MacroAssembler::static_call_stub_size() { 993 // isb; movk; movz; movz; movk; movz; movz; br 994 return 8 * NativeInstruction::instruction_size; 995 } 996 997 void MacroAssembler::c2bool(Register x) { 998 // implements x == 0 ? 0 : 1 999 // note: must only look at least-significant byte of x 1000 // since C-style booleans are stored in one byte 1001 // only! (was bug) 1002 tst(x, 0xff); 1003 cset(x, Assembler::NE); 1004 } 1005 1006 address MacroAssembler::ic_call(address entry, jint method_index) { 1007 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1008 // address const_ptr = long_constant((jlong)Universe::non_oop_word()); 1009 // uintptr_t offset; 1010 // ldr_constant(rscratch2, const_ptr); 1011 movptr(rscratch2, (intptr_t)Universe::non_oop_word()); 1012 return trampoline_call(Address(entry, rh)); 1013 } 1014 1015 int MacroAssembler::ic_check_size() { 1016 int extra_instructions = UseCompactObjectHeaders ? 1 : 0; 1017 if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) { 1018 return NativeInstruction::instruction_size * (7 + extra_instructions); 1019 } else { 1020 return NativeInstruction::instruction_size * (5 + extra_instructions); 1021 } 1022 } 1023 1024 int MacroAssembler::ic_check(int end_alignment) { 1025 Register receiver = j_rarg0; 1026 Register data = rscratch2; 1027 Register tmp1 = rscratch1; 1028 Register tmp2 = r10; 1029 1030 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1031 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1032 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1033 // before the inline cache check here, and not after 1034 align(end_alignment, offset() + ic_check_size()); 1035 1036 int uep_offset = offset(); 1037 1038 if (UseCompactObjectHeaders) { 1039 load_narrow_klass_compact(tmp1, receiver); 1040 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1041 cmpw(tmp1, tmp2); 1042 } else if (UseCompressedClassPointers) { 1043 ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1044 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1045 cmpw(tmp1, tmp2); 1046 } else { 1047 ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1048 ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1049 cmp(tmp1, tmp2); 1050 } 1051 1052 Label dont; 1053 br(Assembler::EQ, dont); 1054 far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1055 bind(dont); 1056 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1057 1058 return uep_offset; 1059 } 1060 1061 // Implementation of call_VM versions 1062 1063 void MacroAssembler::call_VM(Register oop_result, 1064 address entry_point, 1065 bool check_exceptions) { 1066 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1067 } 1068 1069 void MacroAssembler::call_VM(Register oop_result, 1070 address entry_point, 1071 Register arg_1, 1072 bool check_exceptions) { 1073 pass_arg1(this, arg_1); 1074 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1075 } 1076 1077 void MacroAssembler::call_VM(Register oop_result, 1078 address entry_point, 1079 Register arg_1, 1080 Register arg_2, 1081 bool check_exceptions) { 1082 assert_different_registers(arg_1, c_rarg2); 1083 pass_arg2(this, arg_2); 1084 pass_arg1(this, arg_1); 1085 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1086 } 1087 1088 void MacroAssembler::call_VM(Register oop_result, 1089 address entry_point, 1090 Register arg_1, 1091 Register arg_2, 1092 Register arg_3, 1093 bool check_exceptions) { 1094 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1095 assert_different_registers(arg_2, c_rarg3); 1096 pass_arg3(this, arg_3); 1097 1098 pass_arg2(this, arg_2); 1099 1100 pass_arg1(this, arg_1); 1101 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1102 } 1103 1104 void MacroAssembler::call_VM(Register oop_result, 1105 Register last_java_sp, 1106 address entry_point, 1107 int number_of_arguments, 1108 bool check_exceptions) { 1109 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1110 } 1111 1112 void MacroAssembler::call_VM(Register oop_result, 1113 Register last_java_sp, 1114 address entry_point, 1115 Register arg_1, 1116 bool check_exceptions) { 1117 pass_arg1(this, arg_1); 1118 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1119 } 1120 1121 void MacroAssembler::call_VM(Register oop_result, 1122 Register last_java_sp, 1123 address entry_point, 1124 Register arg_1, 1125 Register arg_2, 1126 bool check_exceptions) { 1127 1128 assert_different_registers(arg_1, c_rarg2); 1129 pass_arg2(this, arg_2); 1130 pass_arg1(this, arg_1); 1131 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1132 } 1133 1134 void MacroAssembler::call_VM(Register oop_result, 1135 Register last_java_sp, 1136 address entry_point, 1137 Register arg_1, 1138 Register arg_2, 1139 Register arg_3, 1140 bool check_exceptions) { 1141 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1142 assert_different_registers(arg_2, c_rarg3); 1143 pass_arg3(this, arg_3); 1144 pass_arg2(this, arg_2); 1145 pass_arg1(this, arg_1); 1146 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1147 } 1148 1149 1150 void MacroAssembler::get_vm_result_oop(Register oop_result, Register java_thread) { 1151 ldr(oop_result, Address(java_thread, JavaThread::vm_result_oop_offset())); 1152 str(zr, Address(java_thread, JavaThread::vm_result_oop_offset())); 1153 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1154 } 1155 1156 void MacroAssembler::get_vm_result_metadata(Register metadata_result, Register java_thread) { 1157 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1158 str(zr, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1159 } 1160 1161 void MacroAssembler::align(int modulus) { 1162 align(modulus, offset()); 1163 } 1164 1165 // Ensure that the code at target bytes offset from the current offset() is aligned 1166 // according to modulus. 1167 void MacroAssembler::align(int modulus, int target) { 1168 int delta = target - offset(); 1169 while ((offset() + delta) % modulus != 0) nop(); 1170 } 1171 1172 void MacroAssembler::post_call_nop() { 1173 if (!Continuations::enabled()) { 1174 return; 1175 } 1176 InstructionMark im(this); 1177 relocate(post_call_nop_Relocation::spec()); 1178 InlineSkippedInstructionsCounter skipCounter(this); 1179 nop(); 1180 movk(zr, 0); 1181 movk(zr, 0); 1182 } 1183 1184 // these are no-ops overridden by InterpreterMacroAssembler 1185 1186 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1187 1188 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1189 1190 // Look up the method for a megamorphic invokeinterface call. 1191 // The target method is determined by <intf_klass, itable_index>. 1192 // The receiver klass is in recv_klass. 1193 // On success, the result will be in method_result, and execution falls through. 1194 // On failure, execution transfers to the given label. 1195 void MacroAssembler::lookup_interface_method(Register recv_klass, 1196 Register intf_klass, 1197 RegisterOrConstant itable_index, 1198 Register method_result, 1199 Register scan_temp, 1200 Label& L_no_such_interface, 1201 bool return_method) { 1202 assert_different_registers(recv_klass, intf_klass, scan_temp); 1203 assert_different_registers(method_result, intf_klass, scan_temp); 1204 assert(recv_klass != method_result || !return_method, 1205 "recv_klass can be destroyed when method isn't needed"); 1206 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1207 "caller must use same register for non-constant itable index as for method"); 1208 1209 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1210 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1211 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1212 int scan_step = itableOffsetEntry::size() * wordSize; 1213 int vte_size = vtableEntry::size_in_bytes(); 1214 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1215 1216 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1217 1218 // Could store the aligned, prescaled offset in the klass. 1219 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1220 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1221 add(scan_temp, scan_temp, vtable_base); 1222 1223 if (return_method) { 1224 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1225 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1226 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1227 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1228 if (itentry_off) 1229 add(recv_klass, recv_klass, itentry_off); 1230 } 1231 1232 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1233 // if (scan->interface() == intf) { 1234 // result = (klass + scan->offset() + itable_index); 1235 // } 1236 // } 1237 Label search, found_method; 1238 1239 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1240 cmp(intf_klass, method_result); 1241 br(Assembler::EQ, found_method); 1242 bind(search); 1243 // Check that the previous entry is non-null. A null entry means that 1244 // the receiver class doesn't implement the interface, and wasn't the 1245 // same as when the caller was compiled. 1246 cbz(method_result, L_no_such_interface); 1247 if (itableOffsetEntry::interface_offset() != 0) { 1248 add(scan_temp, scan_temp, scan_step); 1249 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1250 } else { 1251 ldr(method_result, Address(pre(scan_temp, scan_step))); 1252 } 1253 cmp(intf_klass, method_result); 1254 br(Assembler::NE, search); 1255 1256 bind(found_method); 1257 1258 // Got a hit. 1259 if (return_method) { 1260 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1261 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1262 } 1263 } 1264 1265 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1266 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 1267 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1268 // The target method is determined by <holder_klass, itable_index>. 1269 // The receiver klass is in recv_klass. 1270 // On success, the result will be in method_result, and execution falls through. 1271 // On failure, execution transfers to the given label. 1272 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1273 Register holder_klass, 1274 Register resolved_klass, 1275 Register method_result, 1276 Register temp_itbl_klass, 1277 Register scan_temp, 1278 int itable_index, 1279 Label& L_no_such_interface) { 1280 // 'method_result' is only used as output register at the very end of this method. 1281 // Until then we can reuse it as 'holder_offset'. 1282 Register holder_offset = method_result; 1283 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1284 1285 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1286 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1287 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1288 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1289 1290 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1291 1292 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1293 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1294 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1295 // temp_itbl_klass = itable[0]._interface; 1296 int vtblEntrySize = vtableEntry::size_in_bytes(); 1297 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1298 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1299 mov(holder_offset, zr); 1300 // scan_temp = &(itable[0]._interface) 1301 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1302 1303 // Initial checks: 1304 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1305 // - if (itable[0] == holder_klass), shortcut to "holder found" 1306 // - if (itable[0] == 0), no such interface 1307 cmp(resolved_klass, holder_klass); 1308 br(Assembler::NE, L_loop_search_resolved_entry); 1309 cmp(holder_klass, temp_itbl_klass); 1310 br(Assembler::EQ, L_holder_found); 1311 cbz(temp_itbl_klass, L_no_such_interface); 1312 1313 // Loop: Look for holder_klass record in itable 1314 // do { 1315 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1316 // if (temp_itbl_klass == holder_klass) { 1317 // goto L_holder_found; // Found! 1318 // } 1319 // } while (temp_itbl_klass != 0); 1320 // goto L_no_such_interface // Not found. 1321 Label L_search_holder; 1322 bind(L_search_holder); 1323 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1324 cmp(holder_klass, temp_itbl_klass); 1325 br(Assembler::EQ, L_holder_found); 1326 cbnz(temp_itbl_klass, L_search_holder); 1327 1328 b(L_no_such_interface); 1329 1330 // Loop: Look for resolved_class record in itable 1331 // while (true) { 1332 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1333 // if (temp_itbl_klass == 0) { 1334 // goto L_no_such_interface; 1335 // } 1336 // if (temp_itbl_klass == resolved_klass) { 1337 // goto L_resolved_found; // Found! 1338 // } 1339 // if (temp_itbl_klass == holder_klass) { 1340 // holder_offset = scan_temp; 1341 // } 1342 // } 1343 // 1344 Label L_loop_search_resolved; 1345 bind(L_loop_search_resolved); 1346 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1347 bind(L_loop_search_resolved_entry); 1348 cbz(temp_itbl_klass, L_no_such_interface); 1349 cmp(resolved_klass, temp_itbl_klass); 1350 br(Assembler::EQ, L_resolved_found); 1351 cmp(holder_klass, temp_itbl_klass); 1352 br(Assembler::NE, L_loop_search_resolved); 1353 mov(holder_offset, scan_temp); 1354 b(L_loop_search_resolved); 1355 1356 // See if we already have a holder klass. If not, go and scan for it. 1357 bind(L_resolved_found); 1358 cbz(holder_offset, L_search_holder); 1359 mov(scan_temp, holder_offset); 1360 1361 // Finally, scan_temp contains holder_klass vtable offset 1362 bind(L_holder_found); 1363 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1364 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1365 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1366 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1367 } 1368 1369 // virtual method calling 1370 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1371 RegisterOrConstant vtable_index, 1372 Register method_result) { 1373 assert(vtableEntry::size() * wordSize == 8, 1374 "adjust the scaling in the code below"); 1375 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1376 1377 if (vtable_index.is_register()) { 1378 lea(method_result, Address(recv_klass, 1379 vtable_index.as_register(), 1380 Address::lsl(LogBytesPerWord))); 1381 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1382 } else { 1383 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1384 ldr(method_result, 1385 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1386 } 1387 } 1388 1389 void MacroAssembler::check_klass_subtype(Register sub_klass, 1390 Register super_klass, 1391 Register temp_reg, 1392 Label& L_success) { 1393 Label L_failure; 1394 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1395 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1396 bind(L_failure); 1397 } 1398 1399 1400 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1401 Register super_klass, 1402 Register temp_reg, 1403 Label* L_success, 1404 Label* L_failure, 1405 Label* L_slow_path, 1406 Register super_check_offset) { 1407 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset); 1408 bool must_load_sco = ! super_check_offset->is_valid(); 1409 if (must_load_sco) { 1410 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1411 } 1412 1413 Label L_fallthrough; 1414 int label_nulls = 0; 1415 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1416 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1417 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1418 assert(label_nulls <= 1, "at most one null in the batch"); 1419 1420 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1421 Address super_check_offset_addr(super_klass, sco_offset); 1422 1423 // Hacked jmp, which may only be used just before L_fallthrough. 1424 #define final_jmp(label) \ 1425 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1426 else b(label) /*omit semi*/ 1427 1428 // If the pointers are equal, we are done (e.g., String[] elements). 1429 // This self-check enables sharing of secondary supertype arrays among 1430 // non-primary types such as array-of-interface. Otherwise, each such 1431 // type would need its own customized SSA. 1432 // We move this check to the front of the fast path because many 1433 // type checks are in fact trivially successful in this manner, 1434 // so we get a nicely predicted branch right at the start of the check. 1435 cmp(sub_klass, super_klass); 1436 br(Assembler::EQ, *L_success); 1437 1438 // Check the supertype display: 1439 if (must_load_sco) { 1440 ldrw(temp_reg, super_check_offset_addr); 1441 super_check_offset = temp_reg; 1442 } 1443 1444 Address super_check_addr(sub_klass, super_check_offset); 1445 ldr(rscratch1, super_check_addr); 1446 cmp(super_klass, rscratch1); // load displayed supertype 1447 br(Assembler::EQ, *L_success); 1448 1449 // This check has worked decisively for primary supers. 1450 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1451 // (Secondary supers are interfaces and very deeply nested subtypes.) 1452 // This works in the same check above because of a tricky aliasing 1453 // between the super_cache and the primary super display elements. 1454 // (The 'super_check_addr' can address either, as the case requires.) 1455 // Note that the cache is updated below if it does not help us find 1456 // what we need immediately. 1457 // So if it was a primary super, we can just fail immediately. 1458 // Otherwise, it's the slow path for us (no success at this point). 1459 1460 sub(rscratch1, super_check_offset, in_bytes(Klass::secondary_super_cache_offset())); 1461 if (L_failure == &L_fallthrough) { 1462 cbz(rscratch1, *L_slow_path); 1463 } else { 1464 cbnz(rscratch1, *L_failure); 1465 final_jmp(*L_slow_path); 1466 } 1467 1468 bind(L_fallthrough); 1469 1470 #undef final_jmp 1471 } 1472 1473 // These two are taken from x86, but they look generally useful 1474 1475 // scans count pointer sized words at [addr] for occurrence of value, 1476 // generic 1477 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1478 Register scratch) { 1479 Label Lloop, Lexit; 1480 cbz(count, Lexit); 1481 bind(Lloop); 1482 ldr(scratch, post(addr, wordSize)); 1483 cmp(value, scratch); 1484 br(EQ, Lexit); 1485 sub(count, count, 1); 1486 cbnz(count, Lloop); 1487 bind(Lexit); 1488 } 1489 1490 // scans count 4 byte words at [addr] for occurrence of value, 1491 // generic 1492 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1493 Register scratch) { 1494 Label Lloop, Lexit; 1495 cbz(count, Lexit); 1496 bind(Lloop); 1497 ldrw(scratch, post(addr, wordSize)); 1498 cmpw(value, scratch); 1499 br(EQ, Lexit); 1500 sub(count, count, 1); 1501 cbnz(count, Lloop); 1502 bind(Lexit); 1503 } 1504 1505 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 1506 Register super_klass, 1507 Register temp_reg, 1508 Register temp2_reg, 1509 Label* L_success, 1510 Label* L_failure, 1511 bool set_cond_codes) { 1512 // NB! Callers may assume that, when temp2_reg is a valid register, 1513 // this code sets it to a nonzero value. 1514 1515 assert_different_registers(sub_klass, super_klass, temp_reg); 1516 if (temp2_reg != noreg) 1517 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1518 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1519 1520 Label L_fallthrough; 1521 int label_nulls = 0; 1522 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1523 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1524 assert(label_nulls <= 1, "at most one null in the batch"); 1525 1526 // a couple of useful fields in sub_klass: 1527 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1528 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1529 Address secondary_supers_addr(sub_klass, ss_offset); 1530 Address super_cache_addr( sub_klass, sc_offset); 1531 1532 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1533 1534 // Do a linear scan of the secondary super-klass chain. 1535 // This code is rarely used, so simplicity is a virtue here. 1536 // The repne_scan instruction uses fixed registers, which we must spill. 1537 // Don't worry too much about pre-existing connections with the input regs. 1538 1539 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1540 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1541 1542 RegSet pushed_registers; 1543 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1544 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1545 1546 if (super_klass != r0) { 1547 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1548 } 1549 1550 push(pushed_registers, sp); 1551 1552 // Get super_klass value into r0 (even if it was in r5 or r2). 1553 if (super_klass != r0) { 1554 mov(r0, super_klass); 1555 } 1556 1557 #ifndef PRODUCT 1558 incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr)); 1559 #endif //PRODUCT 1560 1561 // We will consult the secondary-super array. 1562 ldr(r5, secondary_supers_addr); 1563 // Load the array length. 1564 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1565 // Skip to start of data. 1566 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1567 1568 cmp(sp, zr); // Clear Z flag; SP is never zero 1569 // Scan R2 words at [R5] for an occurrence of R0. 1570 // Set NZ/Z based on last compare. 1571 repne_scan(r5, r0, r2, rscratch1); 1572 1573 // Unspill the temp. registers: 1574 pop(pushed_registers, sp); 1575 1576 br(Assembler::NE, *L_failure); 1577 1578 // Success. Cache the super we found and proceed in triumph. 1579 1580 if (UseSecondarySupersCache) { 1581 str(super_klass, super_cache_addr); 1582 } 1583 1584 if (L_success != &L_fallthrough) { 1585 b(*L_success); 1586 } 1587 1588 #undef IS_A_TEMP 1589 1590 bind(L_fallthrough); 1591 } 1592 1593 // If Register r is invalid, remove a new register from 1594 // available_regs, and add new register to regs_to_push. 1595 Register MacroAssembler::allocate_if_noreg(Register r, 1596 RegSetIterator<Register> &available_regs, 1597 RegSet ®s_to_push) { 1598 if (!r->is_valid()) { 1599 r = *available_regs++; 1600 regs_to_push += r; 1601 } 1602 return r; 1603 } 1604 1605 // check_klass_subtype_slow_path_table() looks for super_klass in the 1606 // hash table belonging to super_klass, branching to L_success or 1607 // L_failure as appropriate. This is essentially a shim which 1608 // allocates registers as necessary then calls 1609 // lookup_secondary_supers_table() to do the work. Any of the temp 1610 // regs may be noreg, in which case this logic will chooses some 1611 // registers push and pop them from the stack. 1612 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 1613 Register super_klass, 1614 Register temp_reg, 1615 Register temp2_reg, 1616 Register temp3_reg, 1617 Register result_reg, 1618 FloatRegister vtemp, 1619 Label* L_success, 1620 Label* L_failure, 1621 bool set_cond_codes) { 1622 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 1623 1624 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1625 1626 Label L_fallthrough; 1627 int label_nulls = 0; 1628 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1629 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1630 assert(label_nulls <= 1, "at most one null in the batch"); 1631 1632 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1633 1634 RegSetIterator<Register> available_regs 1635 = (RegSet::range(r0, r15) - temps - sub_klass - super_klass).begin(); 1636 1637 RegSet pushed_regs; 1638 1639 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 1640 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 1641 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 1642 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 1643 1644 push(pushed_regs, sp); 1645 1646 lookup_secondary_supers_table_var(sub_klass, 1647 super_klass, 1648 temp_reg, temp2_reg, temp3_reg, vtemp, result_reg, 1649 nullptr); 1650 cmp(result_reg, zr); 1651 1652 // Unspill the temp. registers: 1653 pop(pushed_regs, sp); 1654 1655 // NB! Callers may assume that, when set_cond_codes is true, this 1656 // code sets temp2_reg to a nonzero value. 1657 if (set_cond_codes) { 1658 mov(temp2_reg, 1); 1659 } 1660 1661 br(Assembler::NE, *L_failure); 1662 1663 if (L_success != &L_fallthrough) { 1664 b(*L_success); 1665 } 1666 1667 bind(L_fallthrough); 1668 } 1669 1670 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1671 Register super_klass, 1672 Register temp_reg, 1673 Register temp2_reg, 1674 Label* L_success, 1675 Label* L_failure, 1676 bool set_cond_codes) { 1677 if (UseSecondarySupersTable) { 1678 check_klass_subtype_slow_path_table 1679 (sub_klass, super_klass, temp_reg, temp2_reg, /*temp3*/noreg, /*result*/noreg, 1680 /*vtemp*/fnoreg, 1681 L_success, L_failure, set_cond_codes); 1682 } else { 1683 check_klass_subtype_slow_path_linear 1684 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 1685 } 1686 } 1687 1688 1689 // Ensure that the inline code and the stub are using the same registers. 1690 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 1691 do { \ 1692 assert(r_super_klass == r0 && \ 1693 r_array_base == r1 && \ 1694 r_array_length == r2 && \ 1695 (r_array_index == r3 || r_array_index == noreg) && \ 1696 (r_sub_klass == r4 || r_sub_klass == noreg) && \ 1697 (r_bitmap == rscratch2 || r_bitmap == noreg) && \ 1698 (result == r5 || result == noreg), "registers must match aarch64.ad"); \ 1699 } while(0) 1700 1701 bool MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 1702 Register r_super_klass, 1703 Register temp1, 1704 Register temp2, 1705 Register temp3, 1706 FloatRegister vtemp, 1707 Register result, 1708 u1 super_klass_slot, 1709 bool stub_is_near) { 1710 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1711 1712 Label L_fallthrough; 1713 1714 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1715 1716 const Register 1717 r_array_base = temp1, // r1 1718 r_array_length = temp2, // r2 1719 r_array_index = temp3, // r3 1720 r_bitmap = rscratch2; 1721 1722 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1723 1724 u1 bit = super_klass_slot; 1725 1726 // Make sure that result is nonzero if the TBZ below misses. 1727 mov(result, 1); 1728 1729 // We're going to need the bitmap in a vector reg and in a core reg, 1730 // so load both now. 1731 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1732 if (bit != 0) { 1733 ldrd(vtemp, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1734 } 1735 // First check the bitmap to see if super_klass might be present. If 1736 // the bit is zero, we are certain that super_klass is not one of 1737 // the secondary supers. 1738 tbz(r_bitmap, bit, L_fallthrough); 1739 1740 // Get the first array index that can contain super_klass into r_array_index. 1741 if (bit != 0) { 1742 shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit); 1743 cnt(vtemp, T8B, vtemp); 1744 addv(vtemp, T8B, vtemp); 1745 fmovd(r_array_index, vtemp); 1746 } else { 1747 mov(r_array_index, (u1)1); 1748 } 1749 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1750 1751 // We will consult the secondary-super array. 1752 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1753 1754 // The value i in r_array_index is >= 1, so even though r_array_base 1755 // points to the length, we don't need to adjust it to point to the 1756 // data. 1757 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1758 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1759 1760 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1761 eor(result, result, r_super_klass); 1762 cbz(result, L_fallthrough); // Found a match 1763 1764 // Is there another entry to check? Consult the bitmap. 1765 tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough); 1766 1767 // Linear probe. 1768 if (bit != 0) { 1769 ror(r_bitmap, r_bitmap, bit); 1770 } 1771 1772 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1773 // The next slot to be inspected, by the stub we're about to call, 1774 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1775 // have been checked. 1776 Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()); 1777 if (stub_is_near) { 1778 bl(stub); 1779 } else { 1780 address call = trampoline_call(stub); 1781 if (call == nullptr) { 1782 return false; // trampoline allocation failed 1783 } 1784 } 1785 1786 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1787 1788 bind(L_fallthrough); 1789 1790 if (VerifySecondarySupers) { 1791 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1792 temp1, temp2, result); // r1, r2, r5 1793 } 1794 return true; 1795 } 1796 1797 // At runtime, return 0 in result if r_super_klass is a superclass of 1798 // r_sub_klass, otherwise return nonzero. Use this version of 1799 // lookup_secondary_supers_table() if you don't know ahead of time 1800 // which superclass will be searched for. Used by interpreter and 1801 // runtime stubs. It is larger and has somewhat greater latency than 1802 // the version above, which takes a constant super_klass_slot. 1803 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 1804 Register r_super_klass, 1805 Register temp1, 1806 Register temp2, 1807 Register temp3, 1808 FloatRegister vtemp, 1809 Register result, 1810 Label *L_success) { 1811 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1812 1813 Label L_fallthrough; 1814 1815 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1816 1817 const Register 1818 r_array_index = temp3, 1819 slot = rscratch1, 1820 r_bitmap = rscratch2; 1821 1822 ldrb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 1823 1824 // Make sure that result is nonzero if the test below misses. 1825 mov(result, 1); 1826 1827 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1828 1829 // First check the bitmap to see if super_klass might be present. If 1830 // the bit is zero, we are certain that super_klass is not one of 1831 // the secondary supers. 1832 1833 // This next instruction is equivalent to: 1834 // mov(tmp_reg, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1835 // sub(temp2, tmp_reg, slot); 1836 eor(temp2, slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1837 lslv(temp2, r_bitmap, temp2); 1838 tbz(temp2, Klass::SECONDARY_SUPERS_TABLE_SIZE - 1, L_fallthrough); 1839 1840 bool must_save_v0 = (vtemp == fnoreg); 1841 if (must_save_v0) { 1842 // temp1 and result are free, so use them to preserve vtemp 1843 vtemp = v0; 1844 mov(temp1, vtemp, D, 0); 1845 mov(result, vtemp, D, 1); 1846 } 1847 1848 // Get the first array index that can contain super_klass into r_array_index. 1849 mov(vtemp, D, 0, temp2); 1850 cnt(vtemp, T8B, vtemp); 1851 addv(vtemp, T8B, vtemp); 1852 mov(r_array_index, vtemp, D, 0); 1853 1854 if (must_save_v0) { 1855 mov(vtemp, D, 0, temp1 ); 1856 mov(vtemp, D, 1, result); 1857 } 1858 1859 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1860 1861 const Register 1862 r_array_base = temp1, 1863 r_array_length = temp2; 1864 1865 // The value i in r_array_index is >= 1, so even though r_array_base 1866 // points to the length, we don't need to adjust it to point to the 1867 // data. 1868 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1869 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1870 1871 // We will consult the secondary-super array. 1872 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1873 1874 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1875 eor(result, result, r_super_klass); 1876 cbz(result, L_success ? *L_success : L_fallthrough); // Found a match 1877 1878 // Is there another entry to check? Consult the bitmap. 1879 rorv(r_bitmap, r_bitmap, slot); 1880 // rol(r_bitmap, r_bitmap, 1); 1881 tbz(r_bitmap, 1, L_fallthrough); 1882 1883 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1884 // The next slot to be inspected, by the logic we're about to call, 1885 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1886 // have been checked. 1887 lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, 1888 r_bitmap, r_array_length, result, /*is_stub*/false); 1889 1890 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1891 1892 bind(L_fallthrough); 1893 1894 if (VerifySecondarySupers) { 1895 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1896 temp1, temp2, result); // r1, r2, r5 1897 } 1898 1899 if (L_success) { 1900 cbz(result, *L_success); 1901 } 1902 } 1903 1904 // Called by code generated by check_klass_subtype_slow_path 1905 // above. This is called when there is a collision in the hashed 1906 // lookup in the secondary supers array. 1907 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 1908 Register r_array_base, 1909 Register r_array_index, 1910 Register r_bitmap, 1911 Register temp1, 1912 Register result, 1913 bool is_stub) { 1914 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1); 1915 1916 const Register 1917 r_array_length = temp1, 1918 r_sub_klass = noreg; // unused 1919 1920 if (is_stub) { 1921 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1922 } 1923 1924 Label L_fallthrough, L_huge; 1925 1926 // Load the array length. 1927 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1928 // And adjust the array base to point to the data. 1929 // NB! Effectively increments current slot index by 1. 1930 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 1931 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1932 1933 // The bitmap is full to bursting. 1934 // Implicit invariant: BITMAP_FULL implies (length > 0) 1935 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 1936 cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2)); 1937 br(GT, L_huge); 1938 1939 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 1940 // current slot (at secondary_supers[r_array_index]) has not yet 1941 // been inspected, and r_array_index may be out of bounds if we 1942 // wrapped around the end of the array. 1943 1944 { // This is conventional linear probing, but instead of terminating 1945 // when a null entry is found in the table, we maintain a bitmap 1946 // in which a 0 indicates missing entries. 1947 // As long as the bitmap is not completely full, 1948 // array_length == popcount(bitmap). The array_length check above 1949 // guarantees there are 0s in the bitmap, so the loop eventually 1950 // terminates. 1951 Label L_loop; 1952 bind(L_loop); 1953 1954 // Check for wraparound. 1955 cmp(r_array_index, r_array_length); 1956 csel(r_array_index, zr, r_array_index, GE); 1957 1958 ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1959 eor(result, rscratch1, r_super_klass); 1960 cbz(result, L_fallthrough); 1961 1962 tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero 1963 1964 ror(r_bitmap, r_bitmap, 1); 1965 add(r_array_index, r_array_index, 1); 1966 b(L_loop); 1967 } 1968 1969 { // Degenerate case: more than 64 secondary supers. 1970 // FIXME: We could do something smarter here, maybe a vectorized 1971 // comparison or a binary search, but is that worth any added 1972 // complexity? 1973 bind(L_huge); 1974 cmp(sp, zr); // Clear Z flag; SP is never zero 1975 repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1); 1976 cset(result, NE); // result == 0 iff we got a match. 1977 } 1978 1979 bind(L_fallthrough); 1980 } 1981 1982 // Make sure that the hashed lookup and a linear scan agree. 1983 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 1984 Register r_super_klass, 1985 Register temp1, 1986 Register temp2, 1987 Register result) { 1988 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1); 1989 1990 const Register 1991 r_array_base = temp1, 1992 r_array_length = temp2, 1993 r_array_index = noreg, // unused 1994 r_bitmap = noreg; // unused 1995 1996 BLOCK_COMMENT("verify_secondary_supers_table {"); 1997 1998 // We will consult the secondary-super array. 1999 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 2000 2001 // Load the array length. 2002 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 2003 // And adjust the array base to point to the data. 2004 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 2005 2006 cmp(sp, zr); // Clear Z flag; SP is never zero 2007 // Scan R2 words at [R5] for an occurrence of R0. 2008 // Set NZ/Z based on last compare. 2009 repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2); 2010 // rscratch1 == 0 iff we got a match. 2011 cset(rscratch1, NE); 2012 2013 Label passed; 2014 cmp(result, zr); 2015 cset(result, NE); // normalize result to 0/1 for comparison 2016 2017 cmp(rscratch1, result); 2018 br(EQ, passed); 2019 { 2020 mov(r0, r_super_klass); // r0 <- r0 2021 mov(r1, r_sub_klass); // r1 <- r4 2022 mov(r2, /*expected*/rscratch1); // r2 <- r8 2023 mov(r3, result); // r3 <- r5 2024 mov(r4, (address)("mismatch")); // r4 <- const 2025 rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2); 2026 should_not_reach_here(); 2027 } 2028 bind(passed); 2029 2030 BLOCK_COMMENT("} verify_secondary_supers_table"); 2031 } 2032 2033 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 2034 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 2035 assert_different_registers(klass, rthread, scratch); 2036 2037 Label L_fallthrough, L_tmp; 2038 if (L_fast_path == nullptr) { 2039 L_fast_path = &L_fallthrough; 2040 } else if (L_slow_path == nullptr) { 2041 L_slow_path = &L_fallthrough; 2042 } 2043 // Fast path check: class is fully initialized 2044 lea(scratch, Address(klass, InstanceKlass::init_state_offset())); 2045 ldarb(scratch, scratch); 2046 subs(zr, scratch, InstanceKlass::fully_initialized); 2047 br(Assembler::EQ, *L_fast_path); 2048 2049 // Fast path check: current thread is initializer thread 2050 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 2051 cmp(rthread, scratch); 2052 2053 if (L_slow_path == &L_fallthrough) { 2054 br(Assembler::EQ, *L_fast_path); 2055 bind(*L_slow_path); 2056 } else if (L_fast_path == &L_fallthrough) { 2057 br(Assembler::NE, *L_slow_path); 2058 bind(*L_fast_path); 2059 } else { 2060 Unimplemented(); 2061 } 2062 } 2063 2064 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 2065 if (!VerifyOops) return; 2066 2067 // Pass register number to verify_oop_subroutine 2068 const char* b = nullptr; 2069 { 2070 ResourceMark rm; 2071 stringStream ss; 2072 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 2073 b = code_string(ss.as_string()); 2074 } 2075 BLOCK_COMMENT("verify_oop {"); 2076 2077 strip_return_address(); // This might happen within a stack frame. 2078 protect_return_address(); 2079 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2080 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2081 2082 mov(r0, reg); 2083 movptr(rscratch1, (uintptr_t)(address)b); 2084 2085 // call indirectly to solve generation ordering problem 2086 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2087 ldr(rscratch2, Address(rscratch2)); 2088 blr(rscratch2); 2089 2090 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2091 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2092 authenticate_return_address(); 2093 2094 BLOCK_COMMENT("} verify_oop"); 2095 } 2096 2097 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 2098 if (!VerifyOops) return; 2099 2100 const char* b = nullptr; 2101 { 2102 ResourceMark rm; 2103 stringStream ss; 2104 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 2105 b = code_string(ss.as_string()); 2106 } 2107 BLOCK_COMMENT("verify_oop_addr {"); 2108 2109 strip_return_address(); // This might happen within a stack frame. 2110 protect_return_address(); 2111 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2112 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2113 2114 // addr may contain sp so we will have to adjust it based on the 2115 // pushes that we just did. 2116 if (addr.uses(sp)) { 2117 lea(r0, addr); 2118 ldr(r0, Address(r0, 4 * wordSize)); 2119 } else { 2120 ldr(r0, addr); 2121 } 2122 movptr(rscratch1, (uintptr_t)(address)b); 2123 2124 // call indirectly to solve generation ordering problem 2125 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2126 ldr(rscratch2, Address(rscratch2)); 2127 blr(rscratch2); 2128 2129 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2130 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2131 authenticate_return_address(); 2132 2133 BLOCK_COMMENT("} verify_oop_addr"); 2134 } 2135 2136 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 2137 int extra_slot_offset) { 2138 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 2139 int stackElementSize = Interpreter::stackElementSize; 2140 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 2141 #ifdef ASSERT 2142 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 2143 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 2144 #endif 2145 if (arg_slot.is_constant()) { 2146 return Address(esp, arg_slot.as_constant() * stackElementSize 2147 + offset); 2148 } else { 2149 add(rscratch1, esp, arg_slot.as_register(), 2150 ext::uxtx, exact_log2(stackElementSize)); 2151 return Address(rscratch1, offset); 2152 } 2153 } 2154 2155 void MacroAssembler::call_VM_leaf_base(address entry_point, 2156 int number_of_arguments, 2157 Label *retaddr) { 2158 Label E, L; 2159 2160 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 2161 2162 mov(rscratch1, entry_point); 2163 blr(rscratch1); 2164 if (retaddr) 2165 bind(*retaddr); 2166 2167 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 2168 } 2169 2170 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 2171 call_VM_leaf_base(entry_point, number_of_arguments); 2172 } 2173 2174 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 2175 pass_arg0(this, arg_0); 2176 call_VM_leaf_base(entry_point, 1); 2177 } 2178 2179 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2180 assert_different_registers(arg_1, c_rarg0); 2181 pass_arg0(this, arg_0); 2182 pass_arg1(this, arg_1); 2183 call_VM_leaf_base(entry_point, 2); 2184 } 2185 2186 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 2187 Register arg_1, Register arg_2) { 2188 assert_different_registers(arg_1, c_rarg0); 2189 assert_different_registers(arg_2, c_rarg0, c_rarg1); 2190 pass_arg0(this, arg_0); 2191 pass_arg1(this, arg_1); 2192 pass_arg2(this, arg_2); 2193 call_VM_leaf_base(entry_point, 3); 2194 } 2195 2196 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 2197 pass_arg0(this, arg_0); 2198 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2199 } 2200 2201 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2202 2203 assert_different_registers(arg_0, c_rarg1); 2204 pass_arg1(this, arg_1); 2205 pass_arg0(this, arg_0); 2206 MacroAssembler::call_VM_leaf_base(entry_point, 2); 2207 } 2208 2209 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 2210 assert_different_registers(arg_0, c_rarg1, c_rarg2); 2211 assert_different_registers(arg_1, c_rarg2); 2212 pass_arg2(this, arg_2); 2213 pass_arg1(this, arg_1); 2214 pass_arg0(this, arg_0); 2215 MacroAssembler::call_VM_leaf_base(entry_point, 3); 2216 } 2217 2218 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 2219 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 2220 assert_different_registers(arg_1, c_rarg2, c_rarg3); 2221 assert_different_registers(arg_2, c_rarg3); 2222 pass_arg3(this, arg_3); 2223 pass_arg2(this, arg_2); 2224 pass_arg1(this, arg_1); 2225 pass_arg0(this, arg_0); 2226 MacroAssembler::call_VM_leaf_base(entry_point, 4); 2227 } 2228 2229 void MacroAssembler::null_check(Register reg, int offset) { 2230 if (needs_explicit_null_check(offset)) { 2231 // provoke OS null exception if reg is null by 2232 // accessing M[reg] w/o changing any registers 2233 // NOTE: this is plenty to provoke a segv 2234 ldr(zr, Address(reg)); 2235 } else { 2236 // nothing to do, (later) access of M[reg + offset] 2237 // will provoke OS null exception if reg is null 2238 } 2239 } 2240 2241 // MacroAssembler protected routines needed to implement 2242 // public methods 2243 2244 void MacroAssembler::mov(Register r, Address dest) { 2245 code_section()->relocate(pc(), dest.rspec()); 2246 uint64_t imm64 = (uint64_t)dest.target(); 2247 movptr(r, imm64); 2248 } 2249 2250 // Move a constant pointer into r. In AArch64 mode the virtual 2251 // address space is 48 bits in size, so we only need three 2252 // instructions to create a patchable instruction sequence that can 2253 // reach anywhere. 2254 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 2255 #ifndef PRODUCT 2256 { 2257 char buffer[64]; 2258 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 2259 block_comment(buffer); 2260 } 2261 #endif 2262 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 2263 movz(r, imm64 & 0xffff); 2264 imm64 >>= 16; 2265 movk(r, imm64 & 0xffff, 16); 2266 imm64 >>= 16; 2267 movk(r, imm64 & 0xffff, 32); 2268 } 2269 2270 // Macro to mov replicated immediate to vector register. 2271 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 2272 // the upper 56/48/32 bits must be zeros for B/H/S type. 2273 // Vd will get the following values for different arrangements in T 2274 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 2275 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 2276 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 2277 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 2278 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 2279 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 2280 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 2281 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 2282 // Clobbers rscratch1 2283 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 2284 assert(T != T1Q, "unsupported"); 2285 if (T == T1D || T == T2D) { 2286 int imm = operand_valid_for_movi_immediate(imm64, T); 2287 if (-1 != imm) { 2288 movi(Vd, T, imm); 2289 } else { 2290 mov(rscratch1, imm64); 2291 dup(Vd, T, rscratch1); 2292 } 2293 return; 2294 } 2295 2296 #ifdef ASSERT 2297 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 2298 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 2299 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 2300 #endif 2301 int shift = operand_valid_for_movi_immediate(imm64, T); 2302 uint32_t imm32 = imm64 & 0xffffffffULL; 2303 if (shift >= 0) { 2304 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 2305 } else { 2306 movw(rscratch1, imm32); 2307 dup(Vd, T, rscratch1); 2308 } 2309 } 2310 2311 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 2312 { 2313 #ifndef PRODUCT 2314 { 2315 char buffer[64]; 2316 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 2317 block_comment(buffer); 2318 } 2319 #endif 2320 if (operand_valid_for_logical_immediate(false, imm64)) { 2321 orr(dst, zr, imm64); 2322 } else { 2323 // we can use a combination of MOVZ or MOVN with 2324 // MOVK to build up the constant 2325 uint64_t imm_h[4]; 2326 int zero_count = 0; 2327 int neg_count = 0; 2328 int i; 2329 for (i = 0; i < 4; i++) { 2330 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 2331 if (imm_h[i] == 0) { 2332 zero_count++; 2333 } else if (imm_h[i] == 0xffffL) { 2334 neg_count++; 2335 } 2336 } 2337 if (zero_count == 4) { 2338 // one MOVZ will do 2339 movz(dst, 0); 2340 } else if (neg_count == 4) { 2341 // one MOVN will do 2342 movn(dst, 0); 2343 } else if (zero_count == 3) { 2344 for (i = 0; i < 4; i++) { 2345 if (imm_h[i] != 0L) { 2346 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2347 break; 2348 } 2349 } 2350 } else if (neg_count == 3) { 2351 // one MOVN will do 2352 for (int i = 0; i < 4; i++) { 2353 if (imm_h[i] != 0xffffL) { 2354 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2355 break; 2356 } 2357 } 2358 } else if (zero_count == 2) { 2359 // one MOVZ and one MOVK will do 2360 for (i = 0; i < 3; i++) { 2361 if (imm_h[i] != 0L) { 2362 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2363 i++; 2364 break; 2365 } 2366 } 2367 for (;i < 4; i++) { 2368 if (imm_h[i] != 0L) { 2369 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2370 } 2371 } 2372 } else if (neg_count == 2) { 2373 // one MOVN and one MOVK will do 2374 for (i = 0; i < 4; i++) { 2375 if (imm_h[i] != 0xffffL) { 2376 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2377 i++; 2378 break; 2379 } 2380 } 2381 for (;i < 4; i++) { 2382 if (imm_h[i] != 0xffffL) { 2383 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2384 } 2385 } 2386 } else if (zero_count == 1) { 2387 // one MOVZ and two MOVKs will do 2388 for (i = 0; i < 4; i++) { 2389 if (imm_h[i] != 0L) { 2390 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2391 i++; 2392 break; 2393 } 2394 } 2395 for (;i < 4; i++) { 2396 if (imm_h[i] != 0x0L) { 2397 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2398 } 2399 } 2400 } else if (neg_count == 1) { 2401 // one MOVN and two MOVKs will do 2402 for (i = 0; i < 4; i++) { 2403 if (imm_h[i] != 0xffffL) { 2404 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2405 i++; 2406 break; 2407 } 2408 } 2409 for (;i < 4; i++) { 2410 if (imm_h[i] != 0xffffL) { 2411 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2412 } 2413 } 2414 } else { 2415 // use a MOVZ and 3 MOVKs (makes it easier to debug) 2416 movz(dst, (uint32_t)imm_h[0], 0); 2417 for (i = 1; i < 4; i++) { 2418 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2419 } 2420 } 2421 } 2422 } 2423 2424 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 2425 { 2426 #ifndef PRODUCT 2427 { 2428 char buffer[64]; 2429 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 2430 block_comment(buffer); 2431 } 2432 #endif 2433 if (operand_valid_for_logical_immediate(true, imm32)) { 2434 orrw(dst, zr, imm32); 2435 } else { 2436 // we can use MOVZ, MOVN or two calls to MOVK to build up the 2437 // constant 2438 uint32_t imm_h[2]; 2439 imm_h[0] = imm32 & 0xffff; 2440 imm_h[1] = ((imm32 >> 16) & 0xffff); 2441 if (imm_h[0] == 0) { 2442 movzw(dst, imm_h[1], 16); 2443 } else if (imm_h[0] == 0xffff) { 2444 movnw(dst, imm_h[1] ^ 0xffff, 16); 2445 } else if (imm_h[1] == 0) { 2446 movzw(dst, imm_h[0], 0); 2447 } else if (imm_h[1] == 0xffff) { 2448 movnw(dst, imm_h[0] ^ 0xffff, 0); 2449 } else { 2450 // use a MOVZ and MOVK (makes it easier to debug) 2451 movzw(dst, imm_h[0], 0); 2452 movkw(dst, imm_h[1], 16); 2453 } 2454 } 2455 } 2456 2457 // Form an address from base + offset in Rd. Rd may or may 2458 // not actually be used: you must use the Address that is returned. 2459 // It is up to you to ensure that the shift provided matches the size 2460 // of your data. 2461 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 2462 if (Address::offset_ok_for_immed(byte_offset, shift)) 2463 // It fits; no need for any heroics 2464 return Address(base, byte_offset); 2465 2466 // Don't do anything clever with negative or misaligned offsets 2467 unsigned mask = (1 << shift) - 1; 2468 if (byte_offset < 0 || byte_offset & mask) { 2469 mov(Rd, byte_offset); 2470 add(Rd, base, Rd); 2471 return Address(Rd); 2472 } 2473 2474 // See if we can do this with two 12-bit offsets 2475 { 2476 uint64_t word_offset = byte_offset >> shift; 2477 uint64_t masked_offset = word_offset & 0xfff000; 2478 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 2479 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 2480 add(Rd, base, masked_offset << shift); 2481 word_offset -= masked_offset; 2482 return Address(Rd, word_offset << shift); 2483 } 2484 } 2485 2486 // Do it the hard way 2487 mov(Rd, byte_offset); 2488 add(Rd, base, Rd); 2489 return Address(Rd); 2490 } 2491 2492 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2493 bool want_remainder, Register scratch) 2494 { 2495 // Full implementation of Java idiv and irem. The function 2496 // returns the (pc) offset of the div instruction - may be needed 2497 // for implicit exceptions. 2498 // 2499 // constraint : ra/rb =/= scratch 2500 // normal case 2501 // 2502 // input : ra: dividend 2503 // rb: divisor 2504 // 2505 // result: either 2506 // quotient (= ra idiv rb) 2507 // remainder (= ra irem rb) 2508 2509 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2510 2511 int idivl_offset = offset(); 2512 if (! want_remainder) { 2513 sdivw(result, ra, rb); 2514 } else { 2515 sdivw(scratch, ra, rb); 2516 Assembler::msubw(result, scratch, rb, ra); 2517 } 2518 2519 return idivl_offset; 2520 } 2521 2522 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2523 bool want_remainder, Register scratch) 2524 { 2525 // Full implementation of Java ldiv and lrem. The function 2526 // returns the (pc) offset of the div instruction - may be needed 2527 // for implicit exceptions. 2528 // 2529 // constraint : ra/rb =/= scratch 2530 // normal case 2531 // 2532 // input : ra: dividend 2533 // rb: divisor 2534 // 2535 // result: either 2536 // quotient (= ra idiv rb) 2537 // remainder (= ra irem rb) 2538 2539 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2540 2541 int idivq_offset = offset(); 2542 if (! want_remainder) { 2543 sdiv(result, ra, rb); 2544 } else { 2545 sdiv(scratch, ra, rb); 2546 Assembler::msub(result, scratch, rb, ra); 2547 } 2548 2549 return idivq_offset; 2550 } 2551 2552 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2553 address prev = pc() - NativeMembar::instruction_size; 2554 address last = code()->last_insn(); 2555 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2556 NativeMembar *bar = NativeMembar_at(prev); 2557 if (AlwaysMergeDMB) { 2558 bar->set_kind(bar->get_kind() | order_constraint); 2559 BLOCK_COMMENT("merged membar(always)"); 2560 return; 2561 } 2562 // Don't promote DMB ST|DMB LD to DMB (a full barrier) because 2563 // doing so would introduce a StoreLoad which the caller did not 2564 // intend 2565 if (bar->get_kind() == order_constraint 2566 || bar->get_kind() == AnyAny 2567 || order_constraint == AnyAny) { 2568 // We are merging two memory barrier instructions. On AArch64 we 2569 // can do this simply by ORing them together. 2570 bar->set_kind(bar->get_kind() | order_constraint); 2571 BLOCK_COMMENT("merged membar"); 2572 return; 2573 } else { 2574 // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped 2575 // We need check the last 2 instructions 2576 address prev2 = prev - NativeMembar::instruction_size; 2577 if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) { 2578 NativeMembar *bar2 = NativeMembar_at(prev2); 2579 assert(bar2->get_kind() == order_constraint, "it should be merged before"); 2580 BLOCK_COMMENT("merged membar(elided)"); 2581 return; 2582 } 2583 } 2584 } 2585 code()->set_last_insn(pc()); 2586 dmb(Assembler::barrier(order_constraint)); 2587 } 2588 2589 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2590 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2591 merge_ldst(rt, adr, size_in_bytes, is_store); 2592 code()->clear_last_insn(); 2593 return true; 2594 } else { 2595 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2596 const uint64_t mask = size_in_bytes - 1; 2597 if (adr.getMode() == Address::base_plus_offset && 2598 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2599 code()->set_last_insn(pc()); 2600 } 2601 return false; 2602 } 2603 } 2604 2605 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2606 // We always try to merge two adjacent loads into one ldp. 2607 if (!try_merge_ldst(Rx, adr, 8, false)) { 2608 Assembler::ldr(Rx, adr); 2609 } 2610 } 2611 2612 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2613 // We always try to merge two adjacent loads into one ldp. 2614 if (!try_merge_ldst(Rw, adr, 4, false)) { 2615 Assembler::ldrw(Rw, adr); 2616 } 2617 } 2618 2619 void MacroAssembler::str(Register Rx, const Address &adr) { 2620 // We always try to merge two adjacent stores into one stp. 2621 if (!try_merge_ldst(Rx, adr, 8, true)) { 2622 Assembler::str(Rx, adr); 2623 } 2624 } 2625 2626 void MacroAssembler::strw(Register Rw, const Address &adr) { 2627 // We always try to merge two adjacent stores into one stp. 2628 if (!try_merge_ldst(Rw, adr, 4, true)) { 2629 Assembler::strw(Rw, adr); 2630 } 2631 } 2632 2633 // MacroAssembler routines found actually to be needed 2634 2635 void MacroAssembler::push(Register src) 2636 { 2637 str(src, Address(pre(esp, -1 * wordSize))); 2638 } 2639 2640 void MacroAssembler::pop(Register dst) 2641 { 2642 ldr(dst, Address(post(esp, 1 * wordSize))); 2643 } 2644 2645 // Note: load_unsigned_short used to be called load_unsigned_word. 2646 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2647 int off = offset(); 2648 ldrh(dst, src); 2649 return off; 2650 } 2651 2652 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2653 int off = offset(); 2654 ldrb(dst, src); 2655 return off; 2656 } 2657 2658 int MacroAssembler::load_signed_short(Register dst, Address src) { 2659 int off = offset(); 2660 ldrsh(dst, src); 2661 return off; 2662 } 2663 2664 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2665 int off = offset(); 2666 ldrsb(dst, src); 2667 return off; 2668 } 2669 2670 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2671 int off = offset(); 2672 ldrshw(dst, src); 2673 return off; 2674 } 2675 2676 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2677 int off = offset(); 2678 ldrsbw(dst, src); 2679 return off; 2680 } 2681 2682 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2683 switch (size_in_bytes) { 2684 case 8: ldr(dst, src); break; 2685 case 4: ldrw(dst, src); break; 2686 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2687 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2688 default: ShouldNotReachHere(); 2689 } 2690 } 2691 2692 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2693 switch (size_in_bytes) { 2694 case 8: str(src, dst); break; 2695 case 4: strw(src, dst); break; 2696 case 2: strh(src, dst); break; 2697 case 1: strb(src, dst); break; 2698 default: ShouldNotReachHere(); 2699 } 2700 } 2701 2702 void MacroAssembler::decrementw(Register reg, int value) 2703 { 2704 if (value < 0) { incrementw(reg, -value); return; } 2705 if (value == 0) { return; } 2706 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2707 /* else */ { 2708 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2709 movw(rscratch2, (unsigned)value); 2710 subw(reg, reg, rscratch2); 2711 } 2712 } 2713 2714 void MacroAssembler::decrement(Register reg, int value) 2715 { 2716 if (value < 0) { increment(reg, -value); return; } 2717 if (value == 0) { return; } 2718 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2719 /* else */ { 2720 assert(reg != rscratch2, "invalid dst for register decrement"); 2721 mov(rscratch2, (uint64_t)value); 2722 sub(reg, reg, rscratch2); 2723 } 2724 } 2725 2726 void MacroAssembler::decrementw(Address dst, int value) 2727 { 2728 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2729 if (dst.getMode() == Address::literal) { 2730 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2731 lea(rscratch2, dst); 2732 dst = Address(rscratch2); 2733 } 2734 ldrw(rscratch1, dst); 2735 decrementw(rscratch1, value); 2736 strw(rscratch1, dst); 2737 } 2738 2739 void MacroAssembler::decrement(Address dst, int value) 2740 { 2741 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2742 if (dst.getMode() == Address::literal) { 2743 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2744 lea(rscratch2, dst); 2745 dst = Address(rscratch2); 2746 } 2747 ldr(rscratch1, dst); 2748 decrement(rscratch1, value); 2749 str(rscratch1, dst); 2750 } 2751 2752 void MacroAssembler::incrementw(Register reg, int value) 2753 { 2754 if (value < 0) { decrementw(reg, -value); return; } 2755 if (value == 0) { return; } 2756 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2757 /* else */ { 2758 assert(reg != rscratch2, "invalid dst for register increment"); 2759 movw(rscratch2, (unsigned)value); 2760 addw(reg, reg, rscratch2); 2761 } 2762 } 2763 2764 void MacroAssembler::increment(Register reg, int value) 2765 { 2766 if (value < 0) { decrement(reg, -value); return; } 2767 if (value == 0) { return; } 2768 if (value < (1 << 12)) { add(reg, reg, value); return; } 2769 /* else */ { 2770 assert(reg != rscratch2, "invalid dst for register increment"); 2771 movw(rscratch2, (unsigned)value); 2772 add(reg, reg, rscratch2); 2773 } 2774 } 2775 2776 void MacroAssembler::incrementw(Address dst, int value) 2777 { 2778 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2779 if (dst.getMode() == Address::literal) { 2780 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2781 lea(rscratch2, dst); 2782 dst = Address(rscratch2); 2783 } 2784 ldrw(rscratch1, dst); 2785 incrementw(rscratch1, value); 2786 strw(rscratch1, dst); 2787 } 2788 2789 void MacroAssembler::increment(Address dst, int value) 2790 { 2791 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2792 if (dst.getMode() == Address::literal) { 2793 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2794 lea(rscratch2, dst); 2795 dst = Address(rscratch2); 2796 } 2797 ldr(rscratch1, dst); 2798 increment(rscratch1, value); 2799 str(rscratch1, dst); 2800 } 2801 2802 // Push lots of registers in the bit set supplied. Don't push sp. 2803 // Return the number of words pushed 2804 int MacroAssembler::push(unsigned int bitset, Register stack) { 2805 int words_pushed = 0; 2806 2807 // Scan bitset to accumulate register pairs 2808 unsigned char regs[32]; 2809 int count = 0; 2810 for (int reg = 0; reg <= 30; reg++) { 2811 if (1 & bitset) 2812 regs[count++] = reg; 2813 bitset >>= 1; 2814 } 2815 regs[count++] = zr->raw_encoding(); 2816 count &= ~1; // Only push an even number of regs 2817 2818 if (count) { 2819 stp(as_Register(regs[0]), as_Register(regs[1]), 2820 Address(pre(stack, -count * wordSize))); 2821 words_pushed += 2; 2822 } 2823 for (int i = 2; i < count; i += 2) { 2824 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2825 Address(stack, i * wordSize)); 2826 words_pushed += 2; 2827 } 2828 2829 assert(words_pushed == count, "oops, pushed != count"); 2830 2831 return count; 2832 } 2833 2834 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2835 int words_pushed = 0; 2836 2837 // Scan bitset to accumulate register pairs 2838 unsigned char regs[32]; 2839 int count = 0; 2840 for (int reg = 0; reg <= 30; reg++) { 2841 if (1 & bitset) 2842 regs[count++] = reg; 2843 bitset >>= 1; 2844 } 2845 regs[count++] = zr->raw_encoding(); 2846 count &= ~1; 2847 2848 for (int i = 2; i < count; i += 2) { 2849 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2850 Address(stack, i * wordSize)); 2851 words_pushed += 2; 2852 } 2853 if (count) { 2854 ldp(as_Register(regs[0]), as_Register(regs[1]), 2855 Address(post(stack, count * wordSize))); 2856 words_pushed += 2; 2857 } 2858 2859 assert(words_pushed == count, "oops, pushed != count"); 2860 2861 return count; 2862 } 2863 2864 // Push lots of registers in the bit set supplied. Don't push sp. 2865 // Return the number of dwords pushed 2866 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2867 int words_pushed = 0; 2868 bool use_sve = false; 2869 int sve_vector_size_in_bytes = 0; 2870 2871 #ifdef COMPILER2 2872 use_sve = Matcher::supports_scalable_vector(); 2873 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2874 #endif 2875 2876 // Scan bitset to accumulate register pairs 2877 unsigned char regs[32]; 2878 int count = 0; 2879 for (int reg = 0; reg <= 31; reg++) { 2880 if (1 & bitset) 2881 regs[count++] = reg; 2882 bitset >>= 1; 2883 } 2884 2885 if (count == 0) { 2886 return 0; 2887 } 2888 2889 if (mode == PushPopFull) { 2890 if (use_sve && sve_vector_size_in_bytes > 16) { 2891 mode = PushPopSVE; 2892 } else { 2893 mode = PushPopNeon; 2894 } 2895 } 2896 2897 #ifndef PRODUCT 2898 { 2899 char buffer[48]; 2900 if (mode == PushPopSVE) { 2901 snprintf(buffer, sizeof(buffer), "push_fp: %d SVE registers", count); 2902 } else if (mode == PushPopNeon) { 2903 snprintf(buffer, sizeof(buffer), "push_fp: %d Neon registers", count); 2904 } else { 2905 snprintf(buffer, sizeof(buffer), "push_fp: %d fp registers", count); 2906 } 2907 block_comment(buffer); 2908 } 2909 #endif 2910 2911 if (mode == PushPopSVE) { 2912 sub(stack, stack, sve_vector_size_in_bytes * count); 2913 for (int i = 0; i < count; i++) { 2914 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2915 } 2916 return count * sve_vector_size_in_bytes / 8; 2917 } 2918 2919 if (mode == PushPopNeon) { 2920 if (count == 1) { 2921 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2922 return 2; 2923 } 2924 2925 bool odd = (count & 1) == 1; 2926 int push_slots = count + (odd ? 1 : 0); 2927 2928 // Always pushing full 128 bit registers. 2929 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2930 words_pushed += 2; 2931 2932 for (int i = 2; i + 1 < count; i += 2) { 2933 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2934 words_pushed += 2; 2935 } 2936 2937 if (odd) { 2938 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2939 words_pushed++; 2940 } 2941 2942 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2943 return count * 2; 2944 } 2945 2946 if (mode == PushPopFp) { 2947 bool odd = (count & 1) == 1; 2948 int push_slots = count + (odd ? 1 : 0); 2949 2950 if (count == 1) { 2951 // Stack pointer must be 16 bytes aligned 2952 strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize))); 2953 return 1; 2954 } 2955 2956 stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize))); 2957 words_pushed += 2; 2958 2959 for (int i = 2; i + 1 < count; i += 2) { 2960 stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 2961 words_pushed += 2; 2962 } 2963 2964 if (odd) { 2965 // Stack pointer must be 16 bytes aligned 2966 strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 2967 words_pushed++; 2968 } 2969 2970 assert(words_pushed == count, "oops, pushed != count"); 2971 2972 return count; 2973 } 2974 2975 return 0; 2976 } 2977 2978 // Return the number of dwords popped 2979 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2980 int words_pushed = 0; 2981 bool use_sve = false; 2982 int sve_vector_size_in_bytes = 0; 2983 2984 #ifdef COMPILER2 2985 use_sve = Matcher::supports_scalable_vector(); 2986 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2987 #endif 2988 // Scan bitset to accumulate register pairs 2989 unsigned char regs[32]; 2990 int count = 0; 2991 for (int reg = 0; reg <= 31; reg++) { 2992 if (1 & bitset) 2993 regs[count++] = reg; 2994 bitset >>= 1; 2995 } 2996 2997 if (count == 0) { 2998 return 0; 2999 } 3000 3001 if (mode == PushPopFull) { 3002 if (use_sve && sve_vector_size_in_bytes > 16) { 3003 mode = PushPopSVE; 3004 } else { 3005 mode = PushPopNeon; 3006 } 3007 } 3008 3009 #ifndef PRODUCT 3010 { 3011 char buffer[48]; 3012 if (mode == PushPopSVE) { 3013 snprintf(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count); 3014 } else if (mode == PushPopNeon) { 3015 snprintf(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count); 3016 } else { 3017 snprintf(buffer, sizeof(buffer), "pop_fp: %d fp registers", count); 3018 } 3019 block_comment(buffer); 3020 } 3021 #endif 3022 3023 if (mode == PushPopSVE) { 3024 for (int i = count - 1; i >= 0; i--) { 3025 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 3026 } 3027 add(stack, stack, sve_vector_size_in_bytes * count); 3028 return count * sve_vector_size_in_bytes / 8; 3029 } 3030 3031 if (mode == PushPopNeon) { 3032 if (count == 1) { 3033 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 3034 return 2; 3035 } 3036 3037 bool odd = (count & 1) == 1; 3038 int push_slots = count + (odd ? 1 : 0); 3039 3040 if (odd) { 3041 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3042 words_pushed++; 3043 } 3044 3045 for (int i = 2; i + 1 < count; i += 2) { 3046 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3047 words_pushed += 2; 3048 } 3049 3050 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 3051 words_pushed += 2; 3052 3053 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3054 3055 return count * 2; 3056 } 3057 3058 if (mode == PushPopFp) { 3059 bool odd = (count & 1) == 1; 3060 int push_slots = count + (odd ? 1 : 0); 3061 3062 if (count == 1) { 3063 ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize))); 3064 return 1; 3065 } 3066 3067 if (odd) { 3068 ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3069 words_pushed++; 3070 } 3071 3072 for (int i = 2; i + 1 < count; i += 2) { 3073 ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3074 words_pushed += 2; 3075 } 3076 3077 ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize))); 3078 words_pushed += 2; 3079 3080 assert(words_pushed == count, "oops, pushed != count"); 3081 3082 return count; 3083 } 3084 3085 return 0; 3086 } 3087 3088 // Return the number of dwords pushed 3089 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 3090 bool use_sve = false; 3091 int sve_predicate_size_in_slots = 0; 3092 3093 #ifdef COMPILER2 3094 use_sve = Matcher::supports_scalable_vector(); 3095 if (use_sve) { 3096 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3097 } 3098 #endif 3099 3100 if (!use_sve) { 3101 return 0; 3102 } 3103 3104 unsigned char regs[PRegister::number_of_registers]; 3105 int count = 0; 3106 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3107 if (1 & bitset) 3108 regs[count++] = reg; 3109 bitset >>= 1; 3110 } 3111 3112 if (count == 0) { 3113 return 0; 3114 } 3115 3116 int total_push_bytes = align_up(sve_predicate_size_in_slots * 3117 VMRegImpl::stack_slot_size * count, 16); 3118 sub(stack, stack, total_push_bytes); 3119 for (int i = 0; i < count; i++) { 3120 sve_str(as_PRegister(regs[i]), Address(stack, i)); 3121 } 3122 return total_push_bytes / 8; 3123 } 3124 3125 // Return the number of dwords popped 3126 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 3127 bool use_sve = false; 3128 int sve_predicate_size_in_slots = 0; 3129 3130 #ifdef COMPILER2 3131 use_sve = Matcher::supports_scalable_vector(); 3132 if (use_sve) { 3133 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3134 } 3135 #endif 3136 3137 if (!use_sve) { 3138 return 0; 3139 } 3140 3141 unsigned char regs[PRegister::number_of_registers]; 3142 int count = 0; 3143 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3144 if (1 & bitset) 3145 regs[count++] = reg; 3146 bitset >>= 1; 3147 } 3148 3149 if (count == 0) { 3150 return 0; 3151 } 3152 3153 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 3154 VMRegImpl::stack_slot_size * count, 16); 3155 for (int i = count - 1; i >= 0; i--) { 3156 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 3157 } 3158 add(stack, stack, total_pop_bytes); 3159 return total_pop_bytes / 8; 3160 } 3161 3162 #ifdef ASSERT 3163 void MacroAssembler::verify_heapbase(const char* msg) { 3164 #if 0 3165 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 3166 assert (Universe::heap() != nullptr, "java heap should be initialized"); 3167 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 3168 // rheapbase is allocated as general register 3169 return; 3170 } 3171 if (CheckCompressedOops) { 3172 Label ok; 3173 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 3174 cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3175 br(Assembler::EQ, ok); 3176 stop(msg); 3177 bind(ok); 3178 pop(1 << rscratch1->encoding(), sp); 3179 } 3180 #endif 3181 } 3182 #endif 3183 3184 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 3185 assert_different_registers(value, tmp1, tmp2); 3186 Label done, tagged, weak_tagged; 3187 3188 cbz(value, done); // Use null as-is. 3189 tst(value, JNIHandles::tag_mask); // Test for tag. 3190 br(Assembler::NE, tagged); 3191 3192 // Resolve local handle 3193 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 3194 verify_oop(value); 3195 b(done); 3196 3197 bind(tagged); 3198 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 3199 tbnz(value, 0, weak_tagged); // Test for weak tag. 3200 3201 // Resolve global handle 3202 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3203 verify_oop(value); 3204 b(done); 3205 3206 bind(weak_tagged); 3207 // Resolve jweak. 3208 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3209 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 3210 verify_oop(value); 3211 3212 bind(done); 3213 } 3214 3215 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 3216 assert_different_registers(value, tmp1, tmp2); 3217 Label done; 3218 3219 cbz(value, done); // Use null as-is. 3220 3221 #ifdef ASSERT 3222 { 3223 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 3224 Label valid_global_tag; 3225 tbnz(value, 1, valid_global_tag); // Test for global tag 3226 stop("non global jobject using resolve_global_jobject"); 3227 bind(valid_global_tag); 3228 } 3229 #endif 3230 3231 // Resolve global handle 3232 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3233 verify_oop(value); 3234 3235 bind(done); 3236 } 3237 3238 void MacroAssembler::stop(const char* msg) { 3239 BLOCK_COMMENT(msg); 3240 dcps1(0xdeae); 3241 emit_int64((uintptr_t)msg); 3242 } 3243 3244 void MacroAssembler::unimplemented(const char* what) { 3245 const char* buf = nullptr; 3246 { 3247 ResourceMark rm; 3248 stringStream ss; 3249 ss.print("unimplemented: %s", what); 3250 buf = code_string(ss.as_string()); 3251 } 3252 stop(buf); 3253 } 3254 3255 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 3256 #ifdef ASSERT 3257 Label OK; 3258 br(cc, OK); 3259 stop(msg); 3260 bind(OK); 3261 #endif 3262 } 3263 3264 // If a constant does not fit in an immediate field, generate some 3265 // number of MOV instructions and then perform the operation. 3266 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 3267 add_sub_imm_insn insn1, 3268 add_sub_reg_insn insn2, 3269 bool is32) { 3270 assert(Rd != zr, "Rd = zr and not setting flags?"); 3271 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3272 if (fits) { 3273 (this->*insn1)(Rd, Rn, imm); 3274 } else { 3275 if (uabs(imm) < (1 << 24)) { 3276 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 3277 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 3278 } else { 3279 assert_different_registers(Rd, Rn); 3280 mov(Rd, imm); 3281 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3282 } 3283 } 3284 } 3285 3286 // Separate vsn which sets the flags. Optimisations are more restricted 3287 // because we must set the flags correctly. 3288 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 3289 add_sub_imm_insn insn1, 3290 add_sub_reg_insn insn2, 3291 bool is32) { 3292 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3293 if (fits) { 3294 (this->*insn1)(Rd, Rn, imm); 3295 } else { 3296 assert_different_registers(Rd, Rn); 3297 assert(Rd != zr, "overflow in immediate operand"); 3298 mov(Rd, imm); 3299 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3300 } 3301 } 3302 3303 3304 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 3305 if (increment.is_register()) { 3306 add(Rd, Rn, increment.as_register()); 3307 } else { 3308 add(Rd, Rn, increment.as_constant()); 3309 } 3310 } 3311 3312 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 3313 if (increment.is_register()) { 3314 addw(Rd, Rn, increment.as_register()); 3315 } else { 3316 addw(Rd, Rn, increment.as_constant()); 3317 } 3318 } 3319 3320 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 3321 if (decrement.is_register()) { 3322 sub(Rd, Rn, decrement.as_register()); 3323 } else { 3324 sub(Rd, Rn, decrement.as_constant()); 3325 } 3326 } 3327 3328 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 3329 if (decrement.is_register()) { 3330 subw(Rd, Rn, decrement.as_register()); 3331 } else { 3332 subw(Rd, Rn, decrement.as_constant()); 3333 } 3334 } 3335 3336 void MacroAssembler::reinit_heapbase() 3337 { 3338 if (UseCompressedOops) { 3339 if (Universe::is_fully_initialized()) { 3340 mov(rheapbase, CompressedOops::base()); 3341 } else { 3342 lea(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3343 ldr(rheapbase, Address(rheapbase)); 3344 } 3345 } 3346 } 3347 3348 // this simulates the behaviour of the x86 cmpxchg instruction using a 3349 // load linked/store conditional pair. we use the acquire/release 3350 // versions of these instructions so that we flush pending writes as 3351 // per Java semantics. 3352 3353 // n.b the x86 version assumes the old value to be compared against is 3354 // in rax and updates rax with the value located in memory if the 3355 // cmpxchg fails. we supply a register for the old value explicitly 3356 3357 // the aarch64 load linked/store conditional instructions do not 3358 // accept an offset. so, unlike x86, we must provide a plain register 3359 // to identify the memory word to be compared/exchanged rather than a 3360 // register+offset Address. 3361 3362 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 3363 Label &succeed, Label *fail) { 3364 // oldv holds comparison value 3365 // newv holds value to write in exchange 3366 // addr identifies memory word to compare against/update 3367 if (UseLSE) { 3368 mov(tmp, oldv); 3369 casal(Assembler::xword, oldv, newv, addr); 3370 cmp(tmp, oldv); 3371 br(Assembler::EQ, succeed); 3372 membar(AnyAny); 3373 } else { 3374 Label retry_load, nope; 3375 prfm(Address(addr), PSTL1STRM); 3376 bind(retry_load); 3377 // flush and load exclusive from the memory location 3378 // and fail if it is not what we expect 3379 ldaxr(tmp, addr); 3380 cmp(tmp, oldv); 3381 br(Assembler::NE, nope); 3382 // if we store+flush with no intervening write tmp will be zero 3383 stlxr(tmp, newv, addr); 3384 cbzw(tmp, succeed); 3385 // retry so we only ever return after a load fails to compare 3386 // ensures we don't return a stale value after a failed write. 3387 b(retry_load); 3388 // if the memory word differs we return it in oldv and signal a fail 3389 bind(nope); 3390 membar(AnyAny); 3391 mov(oldv, tmp); 3392 } 3393 if (fail) 3394 b(*fail); 3395 } 3396 3397 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 3398 Label &succeed, Label *fail) { 3399 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 3400 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 3401 } 3402 3403 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 3404 Label &succeed, Label *fail) { 3405 // oldv holds comparison value 3406 // newv holds value to write in exchange 3407 // addr identifies memory word to compare against/update 3408 // tmp returns 0/1 for success/failure 3409 if (UseLSE) { 3410 mov(tmp, oldv); 3411 casal(Assembler::word, oldv, newv, addr); 3412 cmp(tmp, oldv); 3413 br(Assembler::EQ, succeed); 3414 membar(AnyAny); 3415 } else { 3416 Label retry_load, nope; 3417 prfm(Address(addr), PSTL1STRM); 3418 bind(retry_load); 3419 // flush and load exclusive from the memory location 3420 // and fail if it is not what we expect 3421 ldaxrw(tmp, addr); 3422 cmp(tmp, oldv); 3423 br(Assembler::NE, nope); 3424 // if we store+flush with no intervening write tmp will be zero 3425 stlxrw(tmp, newv, addr); 3426 cbzw(tmp, succeed); 3427 // retry so we only ever return after a load fails to compare 3428 // ensures we don't return a stale value after a failed write. 3429 b(retry_load); 3430 // if the memory word differs we return it in oldv and signal a fail 3431 bind(nope); 3432 membar(AnyAny); 3433 mov(oldv, tmp); 3434 } 3435 if (fail) 3436 b(*fail); 3437 } 3438 3439 // A generic CAS; success or failure is in the EQ flag. A weak CAS 3440 // doesn't retry and may fail spuriously. If the oldval is wanted, 3441 // Pass a register for the result, otherwise pass noreg. 3442 3443 // Clobbers rscratch1 3444 void MacroAssembler::cmpxchg(Register addr, Register expected, 3445 Register new_val, 3446 enum operand_size size, 3447 bool acquire, bool release, 3448 bool weak, 3449 Register result) { 3450 if (result == noreg) result = rscratch1; 3451 BLOCK_COMMENT("cmpxchg {"); 3452 if (UseLSE) { 3453 mov(result, expected); 3454 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 3455 compare_eq(result, expected, size); 3456 #ifdef ASSERT 3457 // Poison rscratch1 which is written on !UseLSE branch 3458 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 3459 #endif 3460 } else { 3461 Label retry_load, done; 3462 prfm(Address(addr), PSTL1STRM); 3463 bind(retry_load); 3464 load_exclusive(result, addr, size, acquire); 3465 compare_eq(result, expected, size); 3466 br(Assembler::NE, done); 3467 store_exclusive(rscratch1, new_val, addr, size, release); 3468 if (weak) { 3469 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 3470 } else { 3471 cbnzw(rscratch1, retry_load); 3472 } 3473 bind(done); 3474 } 3475 BLOCK_COMMENT("} cmpxchg"); 3476 } 3477 3478 // A generic comparison. Only compares for equality, clobbers rscratch1. 3479 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 3480 if (size == xword) { 3481 cmp(rm, rn); 3482 } else if (size == word) { 3483 cmpw(rm, rn); 3484 } else if (size == halfword) { 3485 eorw(rscratch1, rm, rn); 3486 ands(zr, rscratch1, 0xffff); 3487 } else if (size == byte) { 3488 eorw(rscratch1, rm, rn); 3489 ands(zr, rscratch1, 0xff); 3490 } else { 3491 ShouldNotReachHere(); 3492 } 3493 } 3494 3495 3496 static bool different(Register a, RegisterOrConstant b, Register c) { 3497 if (b.is_constant()) 3498 return a != c; 3499 else 3500 return a != b.as_register() && a != c && b.as_register() != c; 3501 } 3502 3503 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 3504 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 3505 if (UseLSE) { \ 3506 prev = prev->is_valid() ? prev : zr; \ 3507 if (incr.is_register()) { \ 3508 AOP(sz, incr.as_register(), prev, addr); \ 3509 } else { \ 3510 mov(rscratch2, incr.as_constant()); \ 3511 AOP(sz, rscratch2, prev, addr); \ 3512 } \ 3513 return; \ 3514 } \ 3515 Register result = rscratch2; \ 3516 if (prev->is_valid()) \ 3517 result = different(prev, incr, addr) ? prev : rscratch2; \ 3518 \ 3519 Label retry_load; \ 3520 prfm(Address(addr), PSTL1STRM); \ 3521 bind(retry_load); \ 3522 LDXR(result, addr); \ 3523 OP(rscratch1, result, incr); \ 3524 STXR(rscratch2, rscratch1, addr); \ 3525 cbnzw(rscratch2, retry_load); \ 3526 if (prev->is_valid() && prev != result) { \ 3527 IOP(prev, rscratch1, incr); \ 3528 } \ 3529 } 3530 3531 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 3532 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 3533 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 3534 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 3535 3536 #undef ATOMIC_OP 3537 3538 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 3539 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 3540 if (UseLSE) { \ 3541 prev = prev->is_valid() ? prev : zr; \ 3542 AOP(sz, newv, prev, addr); \ 3543 return; \ 3544 } \ 3545 Register result = rscratch2; \ 3546 if (prev->is_valid()) \ 3547 result = different(prev, newv, addr) ? prev : rscratch2; \ 3548 \ 3549 Label retry_load; \ 3550 prfm(Address(addr), PSTL1STRM); \ 3551 bind(retry_load); \ 3552 LDXR(result, addr); \ 3553 STXR(rscratch1, newv, addr); \ 3554 cbnzw(rscratch1, retry_load); \ 3555 if (prev->is_valid() && prev != result) \ 3556 mov(prev, result); \ 3557 } 3558 3559 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 3560 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 3561 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 3562 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 3563 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 3564 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 3565 3566 #undef ATOMIC_XCHG 3567 3568 #ifndef PRODUCT 3569 extern "C" void findpc(intptr_t x); 3570 #endif 3571 3572 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 3573 { 3574 // In order to get locks to work, we need to fake a in_VM state 3575 if (ShowMessageBoxOnError ) { 3576 JavaThread* thread = JavaThread::current(); 3577 JavaThreadState saved_state = thread->thread_state(); 3578 thread->set_thread_state(_thread_in_vm); 3579 #ifndef PRODUCT 3580 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 3581 ttyLocker ttyl; 3582 BytecodeCounter::print(); 3583 } 3584 #endif 3585 if (os::message_box(msg, "Execution stopped, print registers?")) { 3586 ttyLocker ttyl; 3587 tty->print_cr(" pc = 0x%016" PRIx64, pc); 3588 #ifndef PRODUCT 3589 tty->cr(); 3590 findpc(pc); 3591 tty->cr(); 3592 #endif 3593 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 3594 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 3595 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 3596 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 3597 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 3598 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 3599 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 3600 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 3601 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 3602 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 3603 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 3604 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 3605 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 3606 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 3607 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 3608 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 3609 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 3610 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3611 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3612 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3613 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3614 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3615 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3616 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3617 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3618 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3619 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3620 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3621 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3622 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3623 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3624 BREAKPOINT; 3625 } 3626 } 3627 fatal("DEBUG MESSAGE: %s", msg); 3628 } 3629 3630 RegSet MacroAssembler::call_clobbered_gp_registers() { 3631 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3632 #ifndef R18_RESERVED 3633 regs += r18_tls; 3634 #endif 3635 return regs; 3636 } 3637 3638 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3639 int step = 4 * wordSize; 3640 push(call_clobbered_gp_registers() - exclude, sp); 3641 sub(sp, sp, step); 3642 mov(rscratch1, -step); 3643 // Push v0-v7, v16-v31. 3644 for (int i = 31; i>= 4; i -= 4) { 3645 if (i <= v7->encoding() || i >= v16->encoding()) 3646 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3647 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3648 } 3649 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3650 as_FloatRegister(3), T1D, Address(sp)); 3651 } 3652 3653 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3654 for (int i = 0; i < 32; i += 4) { 3655 if (i <= v7->encoding() || i >= v16->encoding()) 3656 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3657 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3658 } 3659 3660 reinitialize_ptrue(); 3661 3662 pop(call_clobbered_gp_registers() - exclude, sp); 3663 } 3664 3665 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3666 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3667 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3668 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3669 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3670 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3671 sve_str(as_FloatRegister(i), Address(sp, i)); 3672 } 3673 } else { 3674 int step = (save_vectors ? 8 : 4) * wordSize; 3675 mov(rscratch1, -step); 3676 sub(sp, sp, step); 3677 for (int i = 28; i >= 4; i -= 4) { 3678 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3679 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3680 } 3681 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3682 } 3683 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3684 sub(sp, sp, total_predicate_in_bytes); 3685 for (int i = 0; i < PRegister::number_of_registers; i++) { 3686 sve_str(as_PRegister(i), Address(sp, i)); 3687 } 3688 } 3689 } 3690 3691 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3692 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3693 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3694 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3695 sve_ldr(as_PRegister(i), Address(sp, i)); 3696 } 3697 add(sp, sp, total_predicate_in_bytes); 3698 } 3699 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3700 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3701 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3702 } 3703 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3704 } else { 3705 int step = (restore_vectors ? 8 : 4) * wordSize; 3706 for (int i = 0; i <= 28; i += 4) 3707 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3708 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3709 } 3710 3711 // We may use predicate registers and rely on ptrue with SVE, 3712 // regardless of wide vector (> 8 bytes) used or not. 3713 if (use_sve) { 3714 reinitialize_ptrue(); 3715 } 3716 3717 // integer registers except lr & sp 3718 pop(RegSet::range(r0, r17), sp); 3719 #ifdef R18_RESERVED 3720 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3721 pop(RegSet::range(r20, r29), sp); 3722 #else 3723 pop(RegSet::range(r18_tls, r29), sp); 3724 #endif 3725 } 3726 3727 /** 3728 * Helpers for multiply_to_len(). 3729 */ 3730 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3731 Register src1, Register src2) { 3732 adds(dest_lo, dest_lo, src1); 3733 adc(dest_hi, dest_hi, zr); 3734 adds(dest_lo, dest_lo, src2); 3735 adc(final_dest_hi, dest_hi, zr); 3736 } 3737 3738 // Generate an address from (r + r1 extend offset). "size" is the 3739 // size of the operand. The result may be in rscratch2. 3740 Address MacroAssembler::offsetted_address(Register r, Register r1, 3741 Address::extend ext, int offset, int size) { 3742 if (offset || (ext.shift() % size != 0)) { 3743 lea(rscratch2, Address(r, r1, ext)); 3744 return Address(rscratch2, offset); 3745 } else { 3746 return Address(r, r1, ext); 3747 } 3748 } 3749 3750 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3751 { 3752 assert(offset >= 0, "spill to negative address?"); 3753 // Offset reachable ? 3754 // Not aligned - 9 bits signed offset 3755 // Aligned - 12 bits unsigned offset shifted 3756 Register base = sp; 3757 if ((offset & (size-1)) && offset >= (1<<8)) { 3758 add(tmp, base, offset & ((1<<12)-1)); 3759 base = tmp; 3760 offset &= -1u<<12; 3761 } 3762 3763 if (offset >= (1<<12) * size) { 3764 add(tmp, base, offset & (((1<<12)-1)<<12)); 3765 base = tmp; 3766 offset &= ~(((1<<12)-1)<<12); 3767 } 3768 3769 return Address(base, offset); 3770 } 3771 3772 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3773 assert(offset >= 0, "spill to negative address?"); 3774 3775 Register base = sp; 3776 3777 // An immediate offset in the range 0 to 255 which is multiplied 3778 // by the current vector or predicate register size in bytes. 3779 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3780 return Address(base, offset / sve_reg_size_in_bytes); 3781 } 3782 3783 add(tmp, base, offset); 3784 return Address(tmp); 3785 } 3786 3787 // Checks whether offset is aligned. 3788 // Returns true if it is, else false. 3789 bool MacroAssembler::merge_alignment_check(Register base, 3790 size_t size, 3791 int64_t cur_offset, 3792 int64_t prev_offset) const { 3793 if (AvoidUnalignedAccesses) { 3794 if (base == sp) { 3795 // Checks whether low offset if aligned to pair of registers. 3796 int64_t pair_mask = size * 2 - 1; 3797 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3798 return (offset & pair_mask) == 0; 3799 } else { // If base is not sp, we can't guarantee the access is aligned. 3800 return false; 3801 } 3802 } else { 3803 int64_t mask = size - 1; 3804 // Load/store pair instruction only supports element size aligned offset. 3805 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3806 } 3807 } 3808 3809 // Checks whether current and previous loads/stores can be merged. 3810 // Returns true if it can be merged, else false. 3811 bool MacroAssembler::ldst_can_merge(Register rt, 3812 const Address &adr, 3813 size_t cur_size_in_bytes, 3814 bool is_store) const { 3815 address prev = pc() - NativeInstruction::instruction_size; 3816 address last = code()->last_insn(); 3817 3818 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3819 return false; 3820 } 3821 3822 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3823 return false; 3824 } 3825 3826 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3827 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3828 3829 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3830 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3831 3832 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3833 return false; 3834 } 3835 3836 int64_t max_offset = 63 * prev_size_in_bytes; 3837 int64_t min_offset = -64 * prev_size_in_bytes; 3838 3839 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3840 3841 // Only same base can be merged. 3842 if (adr.base() != prev_ldst->base()) { 3843 return false; 3844 } 3845 3846 int64_t cur_offset = adr.offset(); 3847 int64_t prev_offset = prev_ldst->offset(); 3848 size_t diff = abs(cur_offset - prev_offset); 3849 if (diff != prev_size_in_bytes) { 3850 return false; 3851 } 3852 3853 // Following cases can not be merged: 3854 // ldr x2, [x2, #8] 3855 // ldr x3, [x2, #16] 3856 // or: 3857 // ldr x2, [x3, #8] 3858 // ldr x2, [x3, #16] 3859 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3860 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3861 return false; 3862 } 3863 3864 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3865 // Offset range must be in ldp/stp instruction's range. 3866 if (low_offset > max_offset || low_offset < min_offset) { 3867 return false; 3868 } 3869 3870 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3871 return true; 3872 } 3873 3874 return false; 3875 } 3876 3877 // Merge current load/store with previous load/store into ldp/stp. 3878 void MacroAssembler::merge_ldst(Register rt, 3879 const Address &adr, 3880 size_t cur_size_in_bytes, 3881 bool is_store) { 3882 3883 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3884 3885 Register rt_low, rt_high; 3886 address prev = pc() - NativeInstruction::instruction_size; 3887 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3888 3889 int64_t offset; 3890 3891 if (adr.offset() < prev_ldst->offset()) { 3892 offset = adr.offset(); 3893 rt_low = rt; 3894 rt_high = prev_ldst->target(); 3895 } else { 3896 offset = prev_ldst->offset(); 3897 rt_low = prev_ldst->target(); 3898 rt_high = rt; 3899 } 3900 3901 Address adr_p = Address(prev_ldst->base(), offset); 3902 // Overwrite previous generated binary. 3903 code_section()->set_end(prev); 3904 3905 const size_t sz = prev_ldst->size_in_bytes(); 3906 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 3907 if (!is_store) { 3908 BLOCK_COMMENT("merged ldr pair"); 3909 if (sz == 8) { 3910 ldp(rt_low, rt_high, adr_p); 3911 } else { 3912 ldpw(rt_low, rt_high, adr_p); 3913 } 3914 } else { 3915 BLOCK_COMMENT("merged str pair"); 3916 if (sz == 8) { 3917 stp(rt_low, rt_high, adr_p); 3918 } else { 3919 stpw(rt_low, rt_high, adr_p); 3920 } 3921 } 3922 } 3923 3924 /** 3925 * Multiply 64 bit by 64 bit first loop. 3926 */ 3927 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 3928 Register y, Register y_idx, Register z, 3929 Register carry, Register product, 3930 Register idx, Register kdx) { 3931 // 3932 // jlong carry, x[], y[], z[]; 3933 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3934 // huge_128 product = y[idx] * x[xstart] + carry; 3935 // z[kdx] = (jlong)product; 3936 // carry = (jlong)(product >>> 64); 3937 // } 3938 // z[xstart] = carry; 3939 // 3940 3941 Label L_first_loop, L_first_loop_exit; 3942 Label L_one_x, L_one_y, L_multiply; 3943 3944 subsw(xstart, xstart, 1); 3945 br(Assembler::MI, L_one_x); 3946 3947 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 3948 ldr(x_xstart, Address(rscratch1)); 3949 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 3950 3951 bind(L_first_loop); 3952 subsw(idx, idx, 1); 3953 br(Assembler::MI, L_first_loop_exit); 3954 subsw(idx, idx, 1); 3955 br(Assembler::MI, L_one_y); 3956 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3957 ldr(y_idx, Address(rscratch1)); 3958 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 3959 bind(L_multiply); 3960 3961 // AArch64 has a multiply-accumulate instruction that we can't use 3962 // here because it has no way to process carries, so we have to use 3963 // separate add and adc instructions. Bah. 3964 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 3965 mul(product, x_xstart, y_idx); 3966 adds(product, product, carry); 3967 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 3968 3969 subw(kdx, kdx, 2); 3970 ror(product, product, 32); // back to big-endian 3971 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 3972 3973 b(L_first_loop); 3974 3975 bind(L_one_y); 3976 ldrw(y_idx, Address(y, 0)); 3977 b(L_multiply); 3978 3979 bind(L_one_x); 3980 ldrw(x_xstart, Address(x, 0)); 3981 b(L_first_loop); 3982 3983 bind(L_first_loop_exit); 3984 } 3985 3986 /** 3987 * Multiply 128 bit by 128. Unrolled inner loop. 3988 * 3989 */ 3990 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 3991 Register carry, Register carry2, 3992 Register idx, Register jdx, 3993 Register yz_idx1, Register yz_idx2, 3994 Register tmp, Register tmp3, Register tmp4, 3995 Register tmp6, Register product_hi) { 3996 3997 // jlong carry, x[], y[], z[]; 3998 // int kdx = ystart+1; 3999 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 4000 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 4001 // jlong carry2 = (jlong)(tmp3 >>> 64); 4002 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 4003 // carry = (jlong)(tmp4 >>> 64); 4004 // z[kdx+idx+1] = (jlong)tmp3; 4005 // z[kdx+idx] = (jlong)tmp4; 4006 // } 4007 // idx += 2; 4008 // if (idx > 0) { 4009 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 4010 // z[kdx+idx] = (jlong)yz_idx1; 4011 // carry = (jlong)(yz_idx1 >>> 64); 4012 // } 4013 // 4014 4015 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 4016 4017 lsrw(jdx, idx, 2); 4018 4019 bind(L_third_loop); 4020 4021 subsw(jdx, jdx, 1); 4022 br(Assembler::MI, L_third_loop_exit); 4023 subw(idx, idx, 4); 4024 4025 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4026 4027 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 4028 4029 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4030 4031 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 4032 ror(yz_idx2, yz_idx2, 32); 4033 4034 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 4035 4036 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4037 umulh(tmp4, product_hi, yz_idx1); 4038 4039 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 4040 ror(rscratch2, rscratch2, 32); 4041 4042 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 4043 umulh(carry2, product_hi, yz_idx2); 4044 4045 // propagate sum of both multiplications into carry:tmp4:tmp3 4046 adds(tmp3, tmp3, carry); 4047 adc(tmp4, tmp4, zr); 4048 adds(tmp3, tmp3, rscratch1); 4049 adcs(tmp4, tmp4, tmp); 4050 adc(carry, carry2, zr); 4051 adds(tmp4, tmp4, rscratch2); 4052 adc(carry, carry, zr); 4053 4054 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 4055 ror(tmp4, tmp4, 32); 4056 stp(tmp4, tmp3, Address(tmp6, 0)); 4057 4058 b(L_third_loop); 4059 bind (L_third_loop_exit); 4060 4061 andw (idx, idx, 0x3); 4062 cbz(idx, L_post_third_loop_done); 4063 4064 Label L_check_1; 4065 subsw(idx, idx, 2); 4066 br(Assembler::MI, L_check_1); 4067 4068 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4069 ldr(yz_idx1, Address(rscratch1, 0)); 4070 ror(yz_idx1, yz_idx1, 32); 4071 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4072 umulh(tmp4, product_hi, yz_idx1); 4073 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4074 ldr(yz_idx2, Address(rscratch1, 0)); 4075 ror(yz_idx2, yz_idx2, 32); 4076 4077 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 4078 4079 ror(tmp3, tmp3, 32); 4080 str(tmp3, Address(rscratch1, 0)); 4081 4082 bind (L_check_1); 4083 4084 andw (idx, idx, 0x1); 4085 subsw(idx, idx, 1); 4086 br(Assembler::MI, L_post_third_loop_done); 4087 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4088 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 4089 umulh(carry2, tmp4, product_hi); 4090 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4091 4092 add2_with_carry(carry2, tmp3, tmp4, carry); 4093 4094 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4095 extr(carry, carry2, tmp3, 32); 4096 4097 bind(L_post_third_loop_done); 4098 } 4099 4100 /** 4101 * Code for BigInteger::multiplyToLen() intrinsic. 4102 * 4103 * r0: x 4104 * r1: xlen 4105 * r2: y 4106 * r3: ylen 4107 * r4: z 4108 * r5: tmp0 4109 * r10: tmp1 4110 * r11: tmp2 4111 * r12: tmp3 4112 * r13: tmp4 4113 * r14: tmp5 4114 * r15: tmp6 4115 * r16: tmp7 4116 * 4117 */ 4118 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 4119 Register z, Register tmp0, 4120 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 4121 Register tmp5, Register tmp6, Register product_hi) { 4122 4123 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi); 4124 4125 const Register idx = tmp1; 4126 const Register kdx = tmp2; 4127 const Register xstart = tmp3; 4128 4129 const Register y_idx = tmp4; 4130 const Register carry = tmp5; 4131 const Register product = xlen; 4132 const Register x_xstart = tmp0; 4133 4134 // First Loop. 4135 // 4136 // final static long LONG_MASK = 0xffffffffL; 4137 // int xstart = xlen - 1; 4138 // int ystart = ylen - 1; 4139 // long carry = 0; 4140 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4141 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 4142 // z[kdx] = (int)product; 4143 // carry = product >>> 32; 4144 // } 4145 // z[xstart] = (int)carry; 4146 // 4147 4148 movw(idx, ylen); // idx = ylen; 4149 addw(kdx, xlen, ylen); // kdx = xlen+ylen; 4150 mov(carry, zr); // carry = 0; 4151 4152 Label L_done; 4153 4154 movw(xstart, xlen); 4155 subsw(xstart, xstart, 1); 4156 br(Assembler::MI, L_done); 4157 4158 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 4159 4160 Label L_second_loop; 4161 cbzw(kdx, L_second_loop); 4162 4163 Label L_carry; 4164 subw(kdx, kdx, 1); 4165 cbzw(kdx, L_carry); 4166 4167 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4168 lsr(carry, carry, 32); 4169 subw(kdx, kdx, 1); 4170 4171 bind(L_carry); 4172 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4173 4174 // Second and third (nested) loops. 4175 // 4176 // for (int i = xstart-1; i >= 0; i--) { // Second loop 4177 // carry = 0; 4178 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 4179 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 4180 // (z[k] & LONG_MASK) + carry; 4181 // z[k] = (int)product; 4182 // carry = product >>> 32; 4183 // } 4184 // z[i] = (int)carry; 4185 // } 4186 // 4187 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 4188 4189 const Register jdx = tmp1; 4190 4191 bind(L_second_loop); 4192 mov(carry, zr); // carry = 0; 4193 movw(jdx, ylen); // j = ystart+1 4194 4195 subsw(xstart, xstart, 1); // i = xstart-1; 4196 br(Assembler::MI, L_done); 4197 4198 str(z, Address(pre(sp, -4 * wordSize))); 4199 4200 Label L_last_x; 4201 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 4202 subsw(xstart, xstart, 1); // i = xstart-1; 4203 br(Assembler::MI, L_last_x); 4204 4205 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 4206 ldr(product_hi, Address(rscratch1)); 4207 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 4208 4209 Label L_third_loop_prologue; 4210 bind(L_third_loop_prologue); 4211 4212 str(ylen, Address(sp, wordSize)); 4213 stp(x, xstart, Address(sp, 2 * wordSize)); 4214 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 4215 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 4216 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 4217 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 4218 4219 addw(tmp3, xlen, 1); 4220 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4221 subsw(tmp3, tmp3, 1); 4222 br(Assembler::MI, L_done); 4223 4224 lsr(carry, carry, 32); 4225 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4226 b(L_second_loop); 4227 4228 // Next infrequent code is moved outside loops. 4229 bind(L_last_x); 4230 ldrw(product_hi, Address(x, 0)); 4231 b(L_third_loop_prologue); 4232 4233 bind(L_done); 4234 } 4235 4236 // Code for BigInteger::mulAdd intrinsic 4237 // out = r0 4238 // in = r1 4239 // offset = r2 (already out.length-offset) 4240 // len = r3 4241 // k = r4 4242 // 4243 // pseudo code from java implementation: 4244 // carry = 0; 4245 // offset = out.length-offset - 1; 4246 // for (int j=len-1; j >= 0; j--) { 4247 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 4248 // out[offset--] = (int)product; 4249 // carry = product >>> 32; 4250 // } 4251 // return (int)carry; 4252 void MacroAssembler::mul_add(Register out, Register in, Register offset, 4253 Register len, Register k) { 4254 Label LOOP, END; 4255 // pre-loop 4256 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 4257 csel(out, zr, out, Assembler::EQ); 4258 br(Assembler::EQ, END); 4259 add(in, in, len, LSL, 2); // in[j+1] address 4260 add(offset, out, offset, LSL, 2); // out[offset + 1] address 4261 mov(out, zr); // used to keep carry now 4262 BIND(LOOP); 4263 ldrw(rscratch1, Address(pre(in, -4))); 4264 madd(rscratch1, rscratch1, k, out); 4265 ldrw(rscratch2, Address(pre(offset, -4))); 4266 add(rscratch1, rscratch1, rscratch2); 4267 strw(rscratch1, Address(offset)); 4268 lsr(out, rscratch1, 32); 4269 subs(len, len, 1); 4270 br(Assembler::NE, LOOP); 4271 BIND(END); 4272 } 4273 4274 /** 4275 * Emits code to update CRC-32 with a byte value according to constants in table 4276 * 4277 * @param [in,out]crc Register containing the crc. 4278 * @param [in]val Register containing the byte to fold into the CRC. 4279 * @param [in]table Register containing the table of crc constants. 4280 * 4281 * uint32_t crc; 4282 * val = crc_table[(val ^ crc) & 0xFF]; 4283 * crc = val ^ (crc >> 8); 4284 * 4285 */ 4286 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 4287 eor(val, val, crc); 4288 andr(val, val, 0xff); 4289 ldrw(val, Address(table, val, Address::lsl(2))); 4290 eor(crc, val, crc, Assembler::LSR, 8); 4291 } 4292 4293 /** 4294 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 4295 * 4296 * @param [in,out]crc Register containing the crc. 4297 * @param [in]v Register containing the 32-bit to fold into the CRC. 4298 * @param [in]table0 Register containing table 0 of crc constants. 4299 * @param [in]table1 Register containing table 1 of crc constants. 4300 * @param [in]table2 Register containing table 2 of crc constants. 4301 * @param [in]table3 Register containing table 3 of crc constants. 4302 * 4303 * uint32_t crc; 4304 * v = crc ^ v 4305 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 4306 * 4307 */ 4308 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 4309 Register table0, Register table1, Register table2, Register table3, 4310 bool upper) { 4311 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 4312 uxtb(tmp, v); 4313 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 4314 ubfx(tmp, v, 8, 8); 4315 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 4316 eor(crc, crc, tmp); 4317 ubfx(tmp, v, 16, 8); 4318 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 4319 eor(crc, crc, tmp); 4320 ubfx(tmp, v, 24, 8); 4321 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 4322 eor(crc, crc, tmp); 4323 } 4324 4325 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 4326 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4327 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4328 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4329 4330 subs(tmp0, len, 384); 4331 mvnw(crc, crc); 4332 br(Assembler::GE, CRC_by128_pre); 4333 BIND(CRC_less128); 4334 subs(len, len, 32); 4335 br(Assembler::GE, CRC_by32_loop); 4336 BIND(CRC_less32); 4337 adds(len, len, 32 - 4); 4338 br(Assembler::GE, CRC_by4_loop); 4339 adds(len, len, 4); 4340 br(Assembler::GT, CRC_by1_loop); 4341 b(L_exit); 4342 4343 BIND(CRC_by32_loop); 4344 ldp(tmp0, tmp1, Address(buf)); 4345 crc32x(crc, crc, tmp0); 4346 ldp(tmp2, tmp3, Address(buf, 16)); 4347 crc32x(crc, crc, tmp1); 4348 add(buf, buf, 32); 4349 crc32x(crc, crc, tmp2); 4350 subs(len, len, 32); 4351 crc32x(crc, crc, tmp3); 4352 br(Assembler::GE, CRC_by32_loop); 4353 cmn(len, (u1)32); 4354 br(Assembler::NE, CRC_less32); 4355 b(L_exit); 4356 4357 BIND(CRC_by4_loop); 4358 ldrw(tmp0, Address(post(buf, 4))); 4359 subs(len, len, 4); 4360 crc32w(crc, crc, tmp0); 4361 br(Assembler::GE, CRC_by4_loop); 4362 adds(len, len, 4); 4363 br(Assembler::LE, L_exit); 4364 BIND(CRC_by1_loop); 4365 ldrb(tmp0, Address(post(buf, 1))); 4366 subs(len, len, 1); 4367 crc32b(crc, crc, tmp0); 4368 br(Assembler::GT, CRC_by1_loop); 4369 b(L_exit); 4370 4371 BIND(CRC_by128_pre); 4372 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4373 4*256*sizeof(juint) + 8*sizeof(juint)); 4374 mov(crc, 0); 4375 crc32x(crc, crc, tmp0); 4376 crc32x(crc, crc, tmp1); 4377 4378 cbnz(len, CRC_less128); 4379 4380 BIND(L_exit); 4381 mvnw(crc, crc); 4382 } 4383 4384 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 4385 Register len, Register tmp0, Register tmp1, Register tmp2, 4386 Register tmp3) { 4387 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4388 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4389 4390 mvnw(crc, crc); 4391 4392 subs(len, len, 128); 4393 br(Assembler::GE, CRC_by64_pre); 4394 BIND(CRC_less64); 4395 adds(len, len, 128-32); 4396 br(Assembler::GE, CRC_by32_loop); 4397 BIND(CRC_less32); 4398 adds(len, len, 32-4); 4399 br(Assembler::GE, CRC_by4_loop); 4400 adds(len, len, 4); 4401 br(Assembler::GT, CRC_by1_loop); 4402 b(L_exit); 4403 4404 BIND(CRC_by32_loop); 4405 ldp(tmp0, tmp1, Address(post(buf, 16))); 4406 subs(len, len, 32); 4407 crc32x(crc, crc, tmp0); 4408 ldr(tmp2, Address(post(buf, 8))); 4409 crc32x(crc, crc, tmp1); 4410 ldr(tmp3, Address(post(buf, 8))); 4411 crc32x(crc, crc, tmp2); 4412 crc32x(crc, crc, tmp3); 4413 br(Assembler::GE, CRC_by32_loop); 4414 cmn(len, (u1)32); 4415 br(Assembler::NE, CRC_less32); 4416 b(L_exit); 4417 4418 BIND(CRC_by4_loop); 4419 ldrw(tmp0, Address(post(buf, 4))); 4420 subs(len, len, 4); 4421 crc32w(crc, crc, tmp0); 4422 br(Assembler::GE, CRC_by4_loop); 4423 adds(len, len, 4); 4424 br(Assembler::LE, L_exit); 4425 BIND(CRC_by1_loop); 4426 ldrb(tmp0, Address(post(buf, 1))); 4427 subs(len, len, 1); 4428 crc32b(crc, crc, tmp0); 4429 br(Assembler::GT, CRC_by1_loop); 4430 b(L_exit); 4431 4432 BIND(CRC_by64_pre); 4433 sub(buf, buf, 8); 4434 ldp(tmp0, tmp1, Address(buf, 8)); 4435 crc32x(crc, crc, tmp0); 4436 ldr(tmp2, Address(buf, 24)); 4437 crc32x(crc, crc, tmp1); 4438 ldr(tmp3, Address(buf, 32)); 4439 crc32x(crc, crc, tmp2); 4440 ldr(tmp0, Address(buf, 40)); 4441 crc32x(crc, crc, tmp3); 4442 ldr(tmp1, Address(buf, 48)); 4443 crc32x(crc, crc, tmp0); 4444 ldr(tmp2, Address(buf, 56)); 4445 crc32x(crc, crc, tmp1); 4446 ldr(tmp3, Address(pre(buf, 64))); 4447 4448 b(CRC_by64_loop); 4449 4450 align(CodeEntryAlignment); 4451 BIND(CRC_by64_loop); 4452 subs(len, len, 64); 4453 crc32x(crc, crc, tmp2); 4454 ldr(tmp0, Address(buf, 8)); 4455 crc32x(crc, crc, tmp3); 4456 ldr(tmp1, Address(buf, 16)); 4457 crc32x(crc, crc, tmp0); 4458 ldr(tmp2, Address(buf, 24)); 4459 crc32x(crc, crc, tmp1); 4460 ldr(tmp3, Address(buf, 32)); 4461 crc32x(crc, crc, tmp2); 4462 ldr(tmp0, Address(buf, 40)); 4463 crc32x(crc, crc, tmp3); 4464 ldr(tmp1, Address(buf, 48)); 4465 crc32x(crc, crc, tmp0); 4466 ldr(tmp2, Address(buf, 56)); 4467 crc32x(crc, crc, tmp1); 4468 ldr(tmp3, Address(pre(buf, 64))); 4469 br(Assembler::GE, CRC_by64_loop); 4470 4471 // post-loop 4472 crc32x(crc, crc, tmp2); 4473 crc32x(crc, crc, tmp3); 4474 4475 sub(len, len, 64); 4476 add(buf, buf, 8); 4477 cmn(len, (u1)128); 4478 br(Assembler::NE, CRC_less64); 4479 BIND(L_exit); 4480 mvnw(crc, crc); 4481 } 4482 4483 /** 4484 * @param crc register containing existing CRC (32-bit) 4485 * @param buf register pointing to input byte buffer (byte*) 4486 * @param len register containing number of bytes 4487 * @param table register that will contain address of CRC table 4488 * @param tmp scratch register 4489 */ 4490 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 4491 Register table0, Register table1, Register table2, Register table3, 4492 Register tmp, Register tmp2, Register tmp3) { 4493 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 4494 4495 if (UseCryptoPmullForCRC32) { 4496 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4497 return; 4498 } 4499 4500 if (UseCRC32) { 4501 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 4502 return; 4503 } 4504 4505 mvnw(crc, crc); 4506 4507 { 4508 uint64_t offset; 4509 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4510 add(table0, table0, offset); 4511 } 4512 add(table1, table0, 1*256*sizeof(juint)); 4513 add(table2, table0, 2*256*sizeof(juint)); 4514 add(table3, table0, 3*256*sizeof(juint)); 4515 4516 { // Neon code start 4517 cmp(len, (u1)64); 4518 br(Assembler::LT, L_by16); 4519 eor(v16, T16B, v16, v16); 4520 4521 Label L_fold; 4522 4523 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 4524 4525 ld1(v0, v1, T2D, post(buf, 32)); 4526 ld1r(v4, T2D, post(tmp, 8)); 4527 ld1r(v5, T2D, post(tmp, 8)); 4528 ld1r(v6, T2D, post(tmp, 8)); 4529 ld1r(v7, T2D, post(tmp, 8)); 4530 mov(v16, S, 0, crc); 4531 4532 eor(v0, T16B, v0, v16); 4533 sub(len, len, 64); 4534 4535 BIND(L_fold); 4536 pmull(v22, T8H, v0, v5, T8B); 4537 pmull(v20, T8H, v0, v7, T8B); 4538 pmull(v23, T8H, v0, v4, T8B); 4539 pmull(v21, T8H, v0, v6, T8B); 4540 4541 pmull2(v18, T8H, v0, v5, T16B); 4542 pmull2(v16, T8H, v0, v7, T16B); 4543 pmull2(v19, T8H, v0, v4, T16B); 4544 pmull2(v17, T8H, v0, v6, T16B); 4545 4546 uzp1(v24, T8H, v20, v22); 4547 uzp2(v25, T8H, v20, v22); 4548 eor(v20, T16B, v24, v25); 4549 4550 uzp1(v26, T8H, v16, v18); 4551 uzp2(v27, T8H, v16, v18); 4552 eor(v16, T16B, v26, v27); 4553 4554 ushll2(v22, T4S, v20, T8H, 8); 4555 ushll(v20, T4S, v20, T4H, 8); 4556 4557 ushll2(v18, T4S, v16, T8H, 8); 4558 ushll(v16, T4S, v16, T4H, 8); 4559 4560 eor(v22, T16B, v23, v22); 4561 eor(v18, T16B, v19, v18); 4562 eor(v20, T16B, v21, v20); 4563 eor(v16, T16B, v17, v16); 4564 4565 uzp1(v17, T2D, v16, v20); 4566 uzp2(v21, T2D, v16, v20); 4567 eor(v17, T16B, v17, v21); 4568 4569 ushll2(v20, T2D, v17, T4S, 16); 4570 ushll(v16, T2D, v17, T2S, 16); 4571 4572 eor(v20, T16B, v20, v22); 4573 eor(v16, T16B, v16, v18); 4574 4575 uzp1(v17, T2D, v20, v16); 4576 uzp2(v21, T2D, v20, v16); 4577 eor(v28, T16B, v17, v21); 4578 4579 pmull(v22, T8H, v1, v5, T8B); 4580 pmull(v20, T8H, v1, v7, T8B); 4581 pmull(v23, T8H, v1, v4, T8B); 4582 pmull(v21, T8H, v1, v6, T8B); 4583 4584 pmull2(v18, T8H, v1, v5, T16B); 4585 pmull2(v16, T8H, v1, v7, T16B); 4586 pmull2(v19, T8H, v1, v4, T16B); 4587 pmull2(v17, T8H, v1, v6, T16B); 4588 4589 ld1(v0, v1, T2D, post(buf, 32)); 4590 4591 uzp1(v24, T8H, v20, v22); 4592 uzp2(v25, T8H, v20, v22); 4593 eor(v20, T16B, v24, v25); 4594 4595 uzp1(v26, T8H, v16, v18); 4596 uzp2(v27, T8H, v16, v18); 4597 eor(v16, T16B, v26, v27); 4598 4599 ushll2(v22, T4S, v20, T8H, 8); 4600 ushll(v20, T4S, v20, T4H, 8); 4601 4602 ushll2(v18, T4S, v16, T8H, 8); 4603 ushll(v16, T4S, v16, T4H, 8); 4604 4605 eor(v22, T16B, v23, v22); 4606 eor(v18, T16B, v19, v18); 4607 eor(v20, T16B, v21, v20); 4608 eor(v16, T16B, v17, v16); 4609 4610 uzp1(v17, T2D, v16, v20); 4611 uzp2(v21, T2D, v16, v20); 4612 eor(v16, T16B, v17, v21); 4613 4614 ushll2(v20, T2D, v16, T4S, 16); 4615 ushll(v16, T2D, v16, T2S, 16); 4616 4617 eor(v20, T16B, v22, v20); 4618 eor(v16, T16B, v16, v18); 4619 4620 uzp1(v17, T2D, v20, v16); 4621 uzp2(v21, T2D, v20, v16); 4622 eor(v20, T16B, v17, v21); 4623 4624 shl(v16, T2D, v28, 1); 4625 shl(v17, T2D, v20, 1); 4626 4627 eor(v0, T16B, v0, v16); 4628 eor(v1, T16B, v1, v17); 4629 4630 subs(len, len, 32); 4631 br(Assembler::GE, L_fold); 4632 4633 mov(crc, 0); 4634 mov(tmp, v0, D, 0); 4635 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4636 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4637 mov(tmp, v0, D, 1); 4638 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4639 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4640 mov(tmp, v1, D, 0); 4641 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4642 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4643 mov(tmp, v1, D, 1); 4644 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4645 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4646 4647 add(len, len, 32); 4648 } // Neon code end 4649 4650 BIND(L_by16); 4651 subs(len, len, 16); 4652 br(Assembler::GE, L_by16_loop); 4653 adds(len, len, 16-4); 4654 br(Assembler::GE, L_by4_loop); 4655 adds(len, len, 4); 4656 br(Assembler::GT, L_by1_loop); 4657 b(L_exit); 4658 4659 BIND(L_by4_loop); 4660 ldrw(tmp, Address(post(buf, 4))); 4661 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4662 subs(len, len, 4); 4663 br(Assembler::GE, L_by4_loop); 4664 adds(len, len, 4); 4665 br(Assembler::LE, L_exit); 4666 BIND(L_by1_loop); 4667 subs(len, len, 1); 4668 ldrb(tmp, Address(post(buf, 1))); 4669 update_byte_crc32(crc, tmp, table0); 4670 br(Assembler::GT, L_by1_loop); 4671 b(L_exit); 4672 4673 align(CodeEntryAlignment); 4674 BIND(L_by16_loop); 4675 subs(len, len, 16); 4676 ldp(tmp, tmp3, Address(post(buf, 16))); 4677 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4678 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4679 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4680 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4681 br(Assembler::GE, L_by16_loop); 4682 adds(len, len, 16-4); 4683 br(Assembler::GE, L_by4_loop); 4684 adds(len, len, 4); 4685 br(Assembler::GT, L_by1_loop); 4686 BIND(L_exit); 4687 mvnw(crc, crc); 4688 } 4689 4690 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4691 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4692 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4693 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4694 4695 subs(tmp0, len, 384); 4696 br(Assembler::GE, CRC_by128_pre); 4697 BIND(CRC_less128); 4698 subs(len, len, 32); 4699 br(Assembler::GE, CRC_by32_loop); 4700 BIND(CRC_less32); 4701 adds(len, len, 32 - 4); 4702 br(Assembler::GE, CRC_by4_loop); 4703 adds(len, len, 4); 4704 br(Assembler::GT, CRC_by1_loop); 4705 b(L_exit); 4706 4707 BIND(CRC_by32_loop); 4708 ldp(tmp0, tmp1, Address(buf)); 4709 crc32cx(crc, crc, tmp0); 4710 ldr(tmp2, Address(buf, 16)); 4711 crc32cx(crc, crc, tmp1); 4712 ldr(tmp3, Address(buf, 24)); 4713 crc32cx(crc, crc, tmp2); 4714 add(buf, buf, 32); 4715 subs(len, len, 32); 4716 crc32cx(crc, crc, tmp3); 4717 br(Assembler::GE, CRC_by32_loop); 4718 cmn(len, (u1)32); 4719 br(Assembler::NE, CRC_less32); 4720 b(L_exit); 4721 4722 BIND(CRC_by4_loop); 4723 ldrw(tmp0, Address(post(buf, 4))); 4724 subs(len, len, 4); 4725 crc32cw(crc, crc, tmp0); 4726 br(Assembler::GE, CRC_by4_loop); 4727 adds(len, len, 4); 4728 br(Assembler::LE, L_exit); 4729 BIND(CRC_by1_loop); 4730 ldrb(tmp0, Address(post(buf, 1))); 4731 subs(len, len, 1); 4732 crc32cb(crc, crc, tmp0); 4733 br(Assembler::GT, CRC_by1_loop); 4734 b(L_exit); 4735 4736 BIND(CRC_by128_pre); 4737 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4738 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4739 mov(crc, 0); 4740 crc32cx(crc, crc, tmp0); 4741 crc32cx(crc, crc, tmp1); 4742 4743 cbnz(len, CRC_less128); 4744 4745 BIND(L_exit); 4746 } 4747 4748 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4749 Register len, Register tmp0, Register tmp1, Register tmp2, 4750 Register tmp3) { 4751 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4752 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4753 4754 subs(len, len, 128); 4755 br(Assembler::GE, CRC_by64_pre); 4756 BIND(CRC_less64); 4757 adds(len, len, 128-32); 4758 br(Assembler::GE, CRC_by32_loop); 4759 BIND(CRC_less32); 4760 adds(len, len, 32-4); 4761 br(Assembler::GE, CRC_by4_loop); 4762 adds(len, len, 4); 4763 br(Assembler::GT, CRC_by1_loop); 4764 b(L_exit); 4765 4766 BIND(CRC_by32_loop); 4767 ldp(tmp0, tmp1, Address(post(buf, 16))); 4768 subs(len, len, 32); 4769 crc32cx(crc, crc, tmp0); 4770 ldr(tmp2, Address(post(buf, 8))); 4771 crc32cx(crc, crc, tmp1); 4772 ldr(tmp3, Address(post(buf, 8))); 4773 crc32cx(crc, crc, tmp2); 4774 crc32cx(crc, crc, tmp3); 4775 br(Assembler::GE, CRC_by32_loop); 4776 cmn(len, (u1)32); 4777 br(Assembler::NE, CRC_less32); 4778 b(L_exit); 4779 4780 BIND(CRC_by4_loop); 4781 ldrw(tmp0, Address(post(buf, 4))); 4782 subs(len, len, 4); 4783 crc32cw(crc, crc, tmp0); 4784 br(Assembler::GE, CRC_by4_loop); 4785 adds(len, len, 4); 4786 br(Assembler::LE, L_exit); 4787 BIND(CRC_by1_loop); 4788 ldrb(tmp0, Address(post(buf, 1))); 4789 subs(len, len, 1); 4790 crc32cb(crc, crc, tmp0); 4791 br(Assembler::GT, CRC_by1_loop); 4792 b(L_exit); 4793 4794 BIND(CRC_by64_pre); 4795 sub(buf, buf, 8); 4796 ldp(tmp0, tmp1, Address(buf, 8)); 4797 crc32cx(crc, crc, tmp0); 4798 ldr(tmp2, Address(buf, 24)); 4799 crc32cx(crc, crc, tmp1); 4800 ldr(tmp3, Address(buf, 32)); 4801 crc32cx(crc, crc, tmp2); 4802 ldr(tmp0, Address(buf, 40)); 4803 crc32cx(crc, crc, tmp3); 4804 ldr(tmp1, Address(buf, 48)); 4805 crc32cx(crc, crc, tmp0); 4806 ldr(tmp2, Address(buf, 56)); 4807 crc32cx(crc, crc, tmp1); 4808 ldr(tmp3, Address(pre(buf, 64))); 4809 4810 b(CRC_by64_loop); 4811 4812 align(CodeEntryAlignment); 4813 BIND(CRC_by64_loop); 4814 subs(len, len, 64); 4815 crc32cx(crc, crc, tmp2); 4816 ldr(tmp0, Address(buf, 8)); 4817 crc32cx(crc, crc, tmp3); 4818 ldr(tmp1, Address(buf, 16)); 4819 crc32cx(crc, crc, tmp0); 4820 ldr(tmp2, Address(buf, 24)); 4821 crc32cx(crc, crc, tmp1); 4822 ldr(tmp3, Address(buf, 32)); 4823 crc32cx(crc, crc, tmp2); 4824 ldr(tmp0, Address(buf, 40)); 4825 crc32cx(crc, crc, tmp3); 4826 ldr(tmp1, Address(buf, 48)); 4827 crc32cx(crc, crc, tmp0); 4828 ldr(tmp2, Address(buf, 56)); 4829 crc32cx(crc, crc, tmp1); 4830 ldr(tmp3, Address(pre(buf, 64))); 4831 br(Assembler::GE, CRC_by64_loop); 4832 4833 // post-loop 4834 crc32cx(crc, crc, tmp2); 4835 crc32cx(crc, crc, tmp3); 4836 4837 sub(len, len, 64); 4838 add(buf, buf, 8); 4839 cmn(len, (u1)128); 4840 br(Assembler::NE, CRC_less64); 4841 BIND(L_exit); 4842 } 4843 4844 /** 4845 * @param crc register containing existing CRC (32-bit) 4846 * @param buf register pointing to input byte buffer (byte*) 4847 * @param len register containing number of bytes 4848 * @param table register that will contain address of CRC table 4849 * @param tmp scratch register 4850 */ 4851 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4852 Register table0, Register table1, Register table2, Register table3, 4853 Register tmp, Register tmp2, Register tmp3) { 4854 if (UseCryptoPmullForCRC32) { 4855 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4856 } else { 4857 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4858 } 4859 } 4860 4861 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4862 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4863 Label CRC_by128_loop; 4864 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4865 4866 sub(len, len, 256); 4867 Register table = tmp0; 4868 { 4869 uint64_t offset; 4870 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4871 add(table, table, offset); 4872 } 4873 add(table, table, table_offset); 4874 4875 // Registers v0..v7 are used as data registers. 4876 // Registers v16..v31 are used as tmp registers. 4877 sub(buf, buf, 0x10); 4878 ldrq(v0, Address(buf, 0x10)); 4879 ldrq(v1, Address(buf, 0x20)); 4880 ldrq(v2, Address(buf, 0x30)); 4881 ldrq(v3, Address(buf, 0x40)); 4882 ldrq(v4, Address(buf, 0x50)); 4883 ldrq(v5, Address(buf, 0x60)); 4884 ldrq(v6, Address(buf, 0x70)); 4885 ldrq(v7, Address(pre(buf, 0x80))); 4886 4887 movi(v31, T4S, 0); 4888 mov(v31, S, 0, crc); 4889 eor(v0, T16B, v0, v31); 4890 4891 // Register v16 contains constants from the crc table. 4892 ldrq(v16, Address(table)); 4893 b(CRC_by128_loop); 4894 4895 align(OptoLoopAlignment); 4896 BIND(CRC_by128_loop); 4897 pmull (v17, T1Q, v0, v16, T1D); 4898 pmull2(v18, T1Q, v0, v16, T2D); 4899 ldrq(v0, Address(buf, 0x10)); 4900 eor3(v0, T16B, v17, v18, v0); 4901 4902 pmull (v19, T1Q, v1, v16, T1D); 4903 pmull2(v20, T1Q, v1, v16, T2D); 4904 ldrq(v1, Address(buf, 0x20)); 4905 eor3(v1, T16B, v19, v20, v1); 4906 4907 pmull (v21, T1Q, v2, v16, T1D); 4908 pmull2(v22, T1Q, v2, v16, T2D); 4909 ldrq(v2, Address(buf, 0x30)); 4910 eor3(v2, T16B, v21, v22, v2); 4911 4912 pmull (v23, T1Q, v3, v16, T1D); 4913 pmull2(v24, T1Q, v3, v16, T2D); 4914 ldrq(v3, Address(buf, 0x40)); 4915 eor3(v3, T16B, v23, v24, v3); 4916 4917 pmull (v25, T1Q, v4, v16, T1D); 4918 pmull2(v26, T1Q, v4, v16, T2D); 4919 ldrq(v4, Address(buf, 0x50)); 4920 eor3(v4, T16B, v25, v26, v4); 4921 4922 pmull (v27, T1Q, v5, v16, T1D); 4923 pmull2(v28, T1Q, v5, v16, T2D); 4924 ldrq(v5, Address(buf, 0x60)); 4925 eor3(v5, T16B, v27, v28, v5); 4926 4927 pmull (v29, T1Q, v6, v16, T1D); 4928 pmull2(v30, T1Q, v6, v16, T2D); 4929 ldrq(v6, Address(buf, 0x70)); 4930 eor3(v6, T16B, v29, v30, v6); 4931 4932 // Reuse registers v23, v24. 4933 // Using them won't block the first instruction of the next iteration. 4934 pmull (v23, T1Q, v7, v16, T1D); 4935 pmull2(v24, T1Q, v7, v16, T2D); 4936 ldrq(v7, Address(pre(buf, 0x80))); 4937 eor3(v7, T16B, v23, v24, v7); 4938 4939 subs(len, len, 0x80); 4940 br(Assembler::GE, CRC_by128_loop); 4941 4942 // fold into 512 bits 4943 // Use v31 for constants because v16 can be still in use. 4944 ldrq(v31, Address(table, 0x10)); 4945 4946 pmull (v17, T1Q, v0, v31, T1D); 4947 pmull2(v18, T1Q, v0, v31, T2D); 4948 eor3(v0, T16B, v17, v18, v4); 4949 4950 pmull (v19, T1Q, v1, v31, T1D); 4951 pmull2(v20, T1Q, v1, v31, T2D); 4952 eor3(v1, T16B, v19, v20, v5); 4953 4954 pmull (v21, T1Q, v2, v31, T1D); 4955 pmull2(v22, T1Q, v2, v31, T2D); 4956 eor3(v2, T16B, v21, v22, v6); 4957 4958 pmull (v23, T1Q, v3, v31, T1D); 4959 pmull2(v24, T1Q, v3, v31, T2D); 4960 eor3(v3, T16B, v23, v24, v7); 4961 4962 // fold into 128 bits 4963 // Use v17 for constants because v31 can be still in use. 4964 ldrq(v17, Address(table, 0x20)); 4965 pmull (v25, T1Q, v0, v17, T1D); 4966 pmull2(v26, T1Q, v0, v17, T2D); 4967 eor3(v3, T16B, v3, v25, v26); 4968 4969 // Use v18 for constants because v17 can be still in use. 4970 ldrq(v18, Address(table, 0x30)); 4971 pmull (v27, T1Q, v1, v18, T1D); 4972 pmull2(v28, T1Q, v1, v18, T2D); 4973 eor3(v3, T16B, v3, v27, v28); 4974 4975 // Use v19 for constants because v18 can be still in use. 4976 ldrq(v19, Address(table, 0x40)); 4977 pmull (v29, T1Q, v2, v19, T1D); 4978 pmull2(v30, T1Q, v2, v19, T2D); 4979 eor3(v0, T16B, v3, v29, v30); 4980 4981 add(len, len, 0x80); 4982 add(buf, buf, 0x10); 4983 4984 mov(tmp0, v0, D, 0); 4985 mov(tmp1, v0, D, 1); 4986 } 4987 4988 void MacroAssembler::addptr(const Address &dst, int32_t src) { 4989 Address adr; 4990 switch(dst.getMode()) { 4991 case Address::base_plus_offset: 4992 // This is the expected mode, although we allow all the other 4993 // forms below. 4994 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 4995 break; 4996 default: 4997 lea(rscratch2, dst); 4998 adr = Address(rscratch2); 4999 break; 5000 } 5001 ldr(rscratch1, adr); 5002 add(rscratch1, rscratch1, src); 5003 str(rscratch1, adr); 5004 } 5005 5006 void MacroAssembler::cmpptr(Register src1, Address src2) { 5007 uint64_t offset; 5008 adrp(rscratch1, src2, offset); 5009 ldr(rscratch1, Address(rscratch1, offset)); 5010 cmp(src1, rscratch1); 5011 } 5012 5013 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 5014 cmp(obj1, obj2); 5015 } 5016 5017 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5018 load_method_holder(rresult, rmethod); 5019 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5020 } 5021 5022 void MacroAssembler::load_method_holder(Register holder, Register method) { 5023 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 5024 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5025 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5026 } 5027 5028 // Loads the obj's Klass* into dst. 5029 // Preserves all registers (incl src, rscratch1 and rscratch2). 5030 // Input: 5031 // src - the oop we want to load the klass from. 5032 // dst - output narrow klass. 5033 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5034 assert(UseCompactObjectHeaders, "expects UseCompactObjectHeaders"); 5035 ldr(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5036 lsr(dst, dst, markWord::klass_shift); 5037 } 5038 5039 void MacroAssembler::load_klass(Register dst, Register src) { 5040 if (UseCompactObjectHeaders) { 5041 load_narrow_klass_compact(dst, src); 5042 decode_klass_not_null(dst); 5043 } else if (UseCompressedClassPointers) { 5044 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5045 decode_klass_not_null(dst); 5046 } else { 5047 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5048 } 5049 } 5050 5051 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) { 5052 if (RestoreMXCSROnJNICalls) { 5053 Label OK; 5054 get_fpcr(tmp1); 5055 mov(tmp2, tmp1); 5056 // Set FPCR to the state we need. We do want Round to Nearest. We 5057 // don't want non-IEEE rounding modes or floating-point traps. 5058 bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode 5059 bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12) 5060 bfi(tmp1, zr, 0, 2); // Clear AH:FIZ 5061 eor(tmp2, tmp1, tmp2); 5062 cbz(tmp2, OK); // Only reset FPCR if it's wrong 5063 set_fpcr(tmp1); 5064 bind(OK); 5065 } 5066 } 5067 5068 // ((OopHandle)result).resolve(); 5069 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 5070 // OopHandle::resolve is an indirection. 5071 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 5072 } 5073 5074 // ((WeakHandle)result).resolve(); 5075 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 5076 assert_different_registers(result, tmp1, tmp2); 5077 Label resolved; 5078 5079 // A null weak handle resolves to null. 5080 cbz(result, resolved); 5081 5082 // Only 64 bit platforms support GCs that require a tmp register 5083 // WeakHandle::resolve is an indirection like jweak. 5084 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5085 result, Address(result), tmp1, tmp2); 5086 bind(resolved); 5087 } 5088 5089 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 5090 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5091 ldr(dst, Address(rmethod, Method::const_offset())); 5092 ldr(dst, Address(dst, ConstMethod::constants_offset())); 5093 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 5094 ldr(dst, Address(dst, mirror_offset)); 5095 resolve_oop_handle(dst, tmp1, tmp2); 5096 } 5097 5098 void MacroAssembler::cmp_klass(Register obj, Register klass, Register tmp) { 5099 assert_different_registers(obj, klass, tmp); 5100 if (UseCompressedClassPointers) { 5101 if (UseCompactObjectHeaders) { 5102 load_narrow_klass_compact(tmp, obj); 5103 } else { 5104 ldrw(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5105 } 5106 if (CompressedKlassPointers::base() == nullptr) { 5107 cmp(klass, tmp, LSL, CompressedKlassPointers::shift()); 5108 return; 5109 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 5110 && CompressedKlassPointers::shift() == 0) { 5111 // Only the bottom 32 bits matter 5112 cmpw(klass, tmp); 5113 return; 5114 } 5115 decode_klass_not_null(tmp); 5116 } else { 5117 ldr(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5118 } 5119 cmp(klass, tmp); 5120 } 5121 5122 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 5123 if (UseCompactObjectHeaders) { 5124 load_narrow_klass_compact(tmp1, obj1); 5125 load_narrow_klass_compact(tmp2, obj2); 5126 cmpw(tmp1, tmp2); 5127 } else if (UseCompressedClassPointers) { 5128 ldrw(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5129 ldrw(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5130 cmpw(tmp1, tmp2); 5131 } else { 5132 ldr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5133 ldr(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5134 cmp(tmp1, tmp2); 5135 } 5136 } 5137 5138 void MacroAssembler::store_klass(Register dst, Register src) { 5139 // FIXME: Should this be a store release? concurrent gcs assumes 5140 // klass length is valid if klass field is not null. 5141 assert(!UseCompactObjectHeaders, "not with compact headers"); 5142 if (UseCompressedClassPointers) { 5143 encode_klass_not_null(src); 5144 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5145 } else { 5146 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5147 } 5148 } 5149 5150 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5151 assert(!UseCompactObjectHeaders, "not with compact headers"); 5152 if (UseCompressedClassPointers) { 5153 // Store to klass gap in destination 5154 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 5155 } 5156 } 5157 5158 // Algorithm must match CompressedOops::encode. 5159 void MacroAssembler::encode_heap_oop(Register d, Register s) { 5160 #ifdef ASSERT 5161 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5162 #endif 5163 verify_oop_msg(s, "broken oop in encode_heap_oop"); 5164 if (CompressedOops::base() == nullptr) { 5165 if (CompressedOops::shift() != 0) { 5166 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5167 lsr(d, s, LogMinObjAlignmentInBytes); 5168 } else { 5169 mov(d, s); 5170 } 5171 } else { 5172 subs(d, s, rheapbase); 5173 csel(d, d, zr, Assembler::HS); 5174 lsr(d, d, LogMinObjAlignmentInBytes); 5175 5176 /* Old algorithm: is this any worse? 5177 Label nonnull; 5178 cbnz(r, nonnull); 5179 sub(r, r, rheapbase); 5180 bind(nonnull); 5181 lsr(r, r, LogMinObjAlignmentInBytes); 5182 */ 5183 } 5184 } 5185 5186 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5187 #ifdef ASSERT 5188 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5189 if (CheckCompressedOops) { 5190 Label ok; 5191 cbnz(r, ok); 5192 stop("null oop passed to encode_heap_oop_not_null"); 5193 bind(ok); 5194 } 5195 #endif 5196 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5197 if (CompressedOops::base() != nullptr) { 5198 sub(r, r, rheapbase); 5199 } 5200 if (CompressedOops::shift() != 0) { 5201 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5202 lsr(r, r, LogMinObjAlignmentInBytes); 5203 } 5204 } 5205 5206 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5207 #ifdef ASSERT 5208 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5209 if (CheckCompressedOops) { 5210 Label ok; 5211 cbnz(src, ok); 5212 stop("null oop passed to encode_heap_oop_not_null2"); 5213 bind(ok); 5214 } 5215 #endif 5216 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5217 5218 Register data = src; 5219 if (CompressedOops::base() != nullptr) { 5220 sub(dst, src, rheapbase); 5221 data = dst; 5222 } 5223 if (CompressedOops::shift() != 0) { 5224 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5225 lsr(dst, data, LogMinObjAlignmentInBytes); 5226 data = dst; 5227 } 5228 if (data == src) 5229 mov(dst, src); 5230 } 5231 5232 void MacroAssembler::decode_heap_oop(Register d, Register s) { 5233 #ifdef ASSERT 5234 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5235 #endif 5236 if (CompressedOops::base() == nullptr) { 5237 if (CompressedOops::shift() != 0) { 5238 lsl(d, s, CompressedOops::shift()); 5239 } else if (d != s) { 5240 mov(d, s); 5241 } 5242 } else { 5243 Label done; 5244 if (d != s) 5245 mov(d, s); 5246 cbz(s, done); 5247 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 5248 bind(done); 5249 } 5250 verify_oop_msg(d, "broken oop in decode_heap_oop"); 5251 } 5252 5253 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5254 assert (UseCompressedOops, "should only be used for compressed headers"); 5255 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5256 // Cannot assert, unverified entry point counts instructions (see .ad file) 5257 // vtableStubs also counts instructions in pd_code_size_limit. 5258 // Also do not verify_oop as this is called by verify_oop. 5259 if (CompressedOops::shift() != 0) { 5260 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5261 if (CompressedOops::base() != nullptr) { 5262 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5263 } else { 5264 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5265 } 5266 } else { 5267 assert (CompressedOops::base() == nullptr, "sanity"); 5268 } 5269 } 5270 5271 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5272 assert (UseCompressedOops, "should only be used for compressed headers"); 5273 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5274 // Cannot assert, unverified entry point counts instructions (see .ad file) 5275 // vtableStubs also counts instructions in pd_code_size_limit. 5276 // Also do not verify_oop as this is called by verify_oop. 5277 if (CompressedOops::shift() != 0) { 5278 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5279 if (CompressedOops::base() != nullptr) { 5280 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5281 } else { 5282 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5283 } 5284 } else { 5285 assert (CompressedOops::base() == nullptr, "sanity"); 5286 if (dst != src) { 5287 mov(dst, src); 5288 } 5289 } 5290 } 5291 5292 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 5293 5294 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 5295 assert(Metaspace::initialized(), "metaspace not initialized yet"); 5296 assert(_klass_decode_mode != KlassDecodeNone, "should be initialized"); 5297 return _klass_decode_mode; 5298 } 5299 5300 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode(address base, int shift, const size_t range) { 5301 assert(UseCompressedClassPointers, "not using compressed class pointers"); 5302 5303 // KlassDecodeMode shouldn't be set already. 5304 assert(_klass_decode_mode == KlassDecodeNone, "set once"); 5305 5306 if (base == nullptr) { 5307 return KlassDecodeZero; 5308 } 5309 5310 if (operand_valid_for_logical_immediate( 5311 /*is32*/false, (uint64_t)base)) { 5312 const uint64_t range_mask = right_n_bits(log2i_ceil(range)); 5313 if (((uint64_t)base & range_mask) == 0) { 5314 return KlassDecodeXor; 5315 } 5316 } 5317 5318 const uint64_t shifted_base = 5319 (uint64_t)base >> shift; 5320 if ((shifted_base & 0xffff0000ffffffff) == 0) { 5321 return KlassDecodeMovk; 5322 } 5323 5324 // No valid encoding. 5325 return KlassDecodeNone; 5326 } 5327 5328 // Check if one of the above decoding modes will work for given base, shift and range. 5329 bool MacroAssembler::check_klass_decode_mode(address base, int shift, const size_t range) { 5330 return klass_decode_mode(base, shift, range) != KlassDecodeNone; 5331 } 5332 5333 bool MacroAssembler::set_klass_decode_mode(address base, int shift, const size_t range) { 5334 _klass_decode_mode = klass_decode_mode(base, shift, range); 5335 return _klass_decode_mode != KlassDecodeNone; 5336 } 5337 5338 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 5339 switch (klass_decode_mode()) { 5340 case KlassDecodeZero: 5341 if (CompressedKlassPointers::shift() != 0) { 5342 lsr(dst, src, CompressedKlassPointers::shift()); 5343 } else { 5344 if (dst != src) mov(dst, src); 5345 } 5346 break; 5347 5348 case KlassDecodeXor: 5349 if (CompressedKlassPointers::shift() != 0) { 5350 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5351 lsr(dst, dst, CompressedKlassPointers::shift()); 5352 } else { 5353 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5354 } 5355 break; 5356 5357 case KlassDecodeMovk: 5358 if (CompressedKlassPointers::shift() != 0) { 5359 ubfx(dst, src, CompressedKlassPointers::shift(), 32); 5360 } else { 5361 movw(dst, src); 5362 } 5363 break; 5364 5365 case KlassDecodeNone: 5366 ShouldNotReachHere(); 5367 break; 5368 } 5369 } 5370 5371 void MacroAssembler::encode_klass_not_null(Register r) { 5372 encode_klass_not_null(r, r); 5373 } 5374 5375 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 5376 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5377 5378 switch (klass_decode_mode()) { 5379 case KlassDecodeZero: 5380 if (CompressedKlassPointers::shift() != 0) { 5381 lsl(dst, src, CompressedKlassPointers::shift()); 5382 } else { 5383 if (dst != src) mov(dst, src); 5384 } 5385 break; 5386 5387 case KlassDecodeXor: 5388 if (CompressedKlassPointers::shift() != 0) { 5389 lsl(dst, src, CompressedKlassPointers::shift()); 5390 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 5391 } else { 5392 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5393 } 5394 break; 5395 5396 case KlassDecodeMovk: { 5397 const uint64_t shifted_base = 5398 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5399 5400 if (dst != src) movw(dst, src); 5401 movk(dst, shifted_base >> 32, 32); 5402 5403 if (CompressedKlassPointers::shift() != 0) { 5404 lsl(dst, dst, CompressedKlassPointers::shift()); 5405 } 5406 5407 break; 5408 } 5409 5410 case KlassDecodeNone: 5411 ShouldNotReachHere(); 5412 break; 5413 } 5414 } 5415 5416 void MacroAssembler::decode_klass_not_null(Register r) { 5417 decode_klass_not_null(r, r); 5418 } 5419 5420 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5421 #ifdef ASSERT 5422 { 5423 ThreadInVMfromUnknown tiv; 5424 assert (UseCompressedOops, "should only be used for compressed oops"); 5425 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5426 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5427 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5428 } 5429 #endif 5430 int oop_index = oop_recorder()->find_index(obj); 5431 InstructionMark im(this); 5432 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5433 code_section()->relocate(inst_mark(), rspec); 5434 movz(dst, 0xDEAD, 16); 5435 movk(dst, 0xBEEF); 5436 } 5437 5438 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5439 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5440 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5441 int index = oop_recorder()->find_index(k); 5442 assert(! Universe::heap()->is_in(k), "should not be an oop"); 5443 5444 InstructionMark im(this); 5445 RelocationHolder rspec = metadata_Relocation::spec(index); 5446 code_section()->relocate(inst_mark(), rspec); 5447 narrowKlass nk = CompressedKlassPointers::encode(k); 5448 movz(dst, (nk >> 16), 16); 5449 movk(dst, nk & 0xffff); 5450 } 5451 5452 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 5453 Register dst, Address src, 5454 Register tmp1, Register tmp2) { 5455 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5456 decorators = AccessInternal::decorator_fixup(decorators, type); 5457 bool as_raw = (decorators & AS_RAW) != 0; 5458 if (as_raw) { 5459 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 5460 } else { 5461 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 5462 } 5463 } 5464 5465 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 5466 Address dst, Register val, 5467 Register tmp1, Register tmp2, Register tmp3) { 5468 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5469 decorators = AccessInternal::decorator_fixup(decorators, type); 5470 bool as_raw = (decorators & AS_RAW) != 0; 5471 if (as_raw) { 5472 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5473 } else { 5474 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5475 } 5476 } 5477 5478 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5479 Register tmp2, DecoratorSet decorators) { 5480 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 5481 } 5482 5483 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5484 Register tmp2, DecoratorSet decorators) { 5485 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 5486 } 5487 5488 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5489 Register tmp2, Register tmp3, DecoratorSet decorators) { 5490 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5491 } 5492 5493 // Used for storing nulls. 5494 void MacroAssembler::store_heap_oop_null(Address dst) { 5495 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5496 } 5497 5498 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 5499 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 5500 int index = oop_recorder()->allocate_metadata_index(obj); 5501 RelocationHolder rspec = metadata_Relocation::spec(index); 5502 return Address((address)obj, rspec); 5503 } 5504 5505 // Move an oop into a register. 5506 void MacroAssembler::movoop(Register dst, jobject obj) { 5507 int oop_index; 5508 if (obj == nullptr) { 5509 oop_index = oop_recorder()->allocate_oop_index(obj); 5510 } else { 5511 #ifdef ASSERT 5512 { 5513 ThreadInVMfromUnknown tiv; 5514 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5515 } 5516 #endif 5517 oop_index = oop_recorder()->find_index(obj); 5518 } 5519 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5520 5521 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 5522 mov(dst, Address((address)obj, rspec)); 5523 } else { 5524 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 5525 ldr_constant(dst, Address(dummy, rspec)); 5526 } 5527 5528 } 5529 5530 // Move a metadata address into a register. 5531 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 5532 int oop_index; 5533 if (obj == nullptr) { 5534 oop_index = oop_recorder()->allocate_metadata_index(obj); 5535 } else { 5536 oop_index = oop_recorder()->find_index(obj); 5537 } 5538 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 5539 mov(dst, Address((address)obj, rspec)); 5540 } 5541 5542 Address MacroAssembler::constant_oop_address(jobject obj) { 5543 #ifdef ASSERT 5544 { 5545 ThreadInVMfromUnknown tiv; 5546 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5547 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 5548 } 5549 #endif 5550 int oop_index = oop_recorder()->find_index(obj); 5551 return Address((address)obj, oop_Relocation::spec(oop_index)); 5552 } 5553 5554 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 5555 void MacroAssembler::tlab_allocate(Register obj, 5556 Register var_size_in_bytes, 5557 int con_size_in_bytes, 5558 Register t1, 5559 Register t2, 5560 Label& slow_case) { 5561 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5562 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 5563 } 5564 5565 void MacroAssembler::inc_held_monitor_count(Register tmp) { 5566 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5567 #ifdef ASSERT 5568 ldr(tmp, dst); 5569 increment(tmp); 5570 str(tmp, dst); 5571 Label ok; 5572 tbz(tmp, 63, ok); 5573 STOP("assert(held monitor count underflow)"); 5574 should_not_reach_here(); 5575 bind(ok); 5576 #else 5577 increment(dst); 5578 #endif 5579 } 5580 5581 void MacroAssembler::dec_held_monitor_count(Register tmp) { 5582 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5583 #ifdef ASSERT 5584 ldr(tmp, dst); 5585 decrement(tmp); 5586 str(tmp, dst); 5587 Label ok; 5588 tbz(tmp, 63, ok); 5589 STOP("assert(held monitor count underflow)"); 5590 should_not_reach_here(); 5591 bind(ok); 5592 #else 5593 decrement(dst); 5594 #endif 5595 } 5596 5597 void MacroAssembler::verify_tlab() { 5598 #ifdef ASSERT 5599 if (UseTLAB && VerifyOops) { 5600 Label next, ok; 5601 5602 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 5603 5604 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5605 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 5606 cmp(rscratch2, rscratch1); 5607 br(Assembler::HS, next); 5608 STOP("assert(top >= start)"); 5609 should_not_reach_here(); 5610 5611 bind(next); 5612 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 5613 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5614 cmp(rscratch2, rscratch1); 5615 br(Assembler::HS, ok); 5616 STOP("assert(top <= end)"); 5617 should_not_reach_here(); 5618 5619 bind(ok); 5620 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 5621 } 5622 #endif 5623 } 5624 5625 // Writes to stack successive pages until offset reached to check for 5626 // stack overflow + shadow pages. This clobbers tmp. 5627 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 5628 assert_different_registers(tmp, size, rscratch1); 5629 mov(tmp, sp); 5630 // Bang stack for total size given plus shadow page size. 5631 // Bang one page at a time because large size can bang beyond yellow and 5632 // red zones. 5633 Label loop; 5634 mov(rscratch1, (int)os::vm_page_size()); 5635 bind(loop); 5636 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5637 subsw(size, size, rscratch1); 5638 str(size, Address(tmp)); 5639 br(Assembler::GT, loop); 5640 5641 // Bang down shadow pages too. 5642 // At this point, (tmp-0) is the last address touched, so don't 5643 // touch it again. (It was touched as (tmp-pagesize) but then tmp 5644 // was post-decremented.) Skip this address by starting at i=1, and 5645 // touch a few more pages below. N.B. It is important to touch all 5646 // the way down to and including i=StackShadowPages. 5647 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 5648 // this could be any sized move but this is can be a debugging crumb 5649 // so the bigger the better. 5650 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5651 str(size, Address(tmp)); 5652 } 5653 } 5654 5655 // Move the address of the polling page into dest. 5656 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 5657 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 5658 } 5659 5660 // Read the polling page. The address of the polling page must 5661 // already be in r. 5662 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 5663 address mark; 5664 { 5665 InstructionMark im(this); 5666 code_section()->relocate(inst_mark(), rtype); 5667 ldrw(zr, Address(r, 0)); 5668 mark = inst_mark(); 5669 } 5670 verify_cross_modify_fence_not_required(); 5671 return mark; 5672 } 5673 5674 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 5675 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 5676 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 5677 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 5678 uint64_t dest_page = (uint64_t)dest.target() >> 12; 5679 int64_t offset_low = dest_page - low_page; 5680 int64_t offset_high = dest_page - high_page; 5681 5682 assert(is_valid_AArch64_address(dest.target()), "bad address"); 5683 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 5684 5685 InstructionMark im(this); 5686 code_section()->relocate(inst_mark(), dest.rspec()); 5687 // 8143067: Ensure that the adrp can reach the dest from anywhere within 5688 // the code cache so that if it is relocated we know it will still reach 5689 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 5690 _adrp(reg1, dest.target()); 5691 } else { 5692 uint64_t target = (uint64_t)dest.target(); 5693 uint64_t adrp_target 5694 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5695 5696 _adrp(reg1, (address)adrp_target); 5697 movk(reg1, target >> 32, 32); 5698 } 5699 byte_offset = (uint64_t)dest.target() & 0xfff; 5700 } 5701 5702 void MacroAssembler::load_byte_map_base(Register reg) { 5703 CardTable::CardValue* byte_map_base = 5704 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5705 5706 // Strictly speaking the byte_map_base isn't an address at all, and it might 5707 // even be negative. It is thus materialised as a constant. 5708 mov(reg, (uint64_t)byte_map_base); 5709 } 5710 5711 void MacroAssembler::build_frame(int framesize) { 5712 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5713 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5714 protect_return_address(); 5715 if (framesize < ((1 << 9) + 2 * wordSize)) { 5716 sub(sp, sp, framesize); 5717 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5718 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 5719 } else { 5720 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 5721 if (PreserveFramePointer) mov(rfp, sp); 5722 if (framesize < ((1 << 12) + 2 * wordSize)) 5723 sub(sp, sp, framesize - 2 * wordSize); 5724 else { 5725 mov(rscratch1, framesize - 2 * wordSize); 5726 sub(sp, sp, rscratch1); 5727 } 5728 } 5729 verify_cross_modify_fence_not_required(); 5730 } 5731 5732 void MacroAssembler::remove_frame(int framesize) { 5733 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5734 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5735 if (framesize < ((1 << 9) + 2 * wordSize)) { 5736 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5737 add(sp, sp, framesize); 5738 } else { 5739 if (framesize < ((1 << 12) + 2 * wordSize)) 5740 add(sp, sp, framesize - 2 * wordSize); 5741 else { 5742 mov(rscratch1, framesize - 2 * wordSize); 5743 add(sp, sp, rscratch1); 5744 } 5745 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5746 } 5747 authenticate_return_address(); 5748 } 5749 5750 5751 // This method counts leading positive bytes (highest bit not set) in provided byte array 5752 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 5753 // Simple and most common case of aligned small array which is not at the 5754 // end of memory page is placed here. All other cases are in stub. 5755 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 5756 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 5757 assert_different_registers(ary1, len, result); 5758 5759 mov(result, len); 5760 cmpw(len, 0); 5761 br(LE, DONE); 5762 cmpw(len, 4 * wordSize); 5763 br(GE, STUB_LONG); // size > 32 then go to stub 5764 5765 int shift = 64 - exact_log2(os::vm_page_size()); 5766 lsl(rscratch1, ary1, shift); 5767 mov(rscratch2, (size_t)(4 * wordSize) << shift); 5768 adds(rscratch2, rscratch1, rscratch2); // At end of page? 5769 br(CS, STUB); // at the end of page then go to stub 5770 subs(len, len, wordSize); 5771 br(LT, END); 5772 5773 BIND(LOOP); 5774 ldr(rscratch1, Address(post(ary1, wordSize))); 5775 tst(rscratch1, UPPER_BIT_MASK); 5776 br(NE, SET_RESULT); 5777 subs(len, len, wordSize); 5778 br(GE, LOOP); 5779 cmpw(len, -wordSize); 5780 br(EQ, DONE); 5781 5782 BIND(END); 5783 ldr(rscratch1, Address(ary1)); 5784 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 5785 lslv(rscratch1, rscratch1, rscratch2); 5786 tst(rscratch1, UPPER_BIT_MASK); 5787 br(NE, SET_RESULT); 5788 b(DONE); 5789 5790 BIND(STUB); 5791 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 5792 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 5793 address tpc1 = trampoline_call(count_pos); 5794 if (tpc1 == nullptr) { 5795 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 5796 postcond(pc() == badAddress); 5797 return nullptr; 5798 } 5799 b(DONE); 5800 5801 BIND(STUB_LONG); 5802 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 5803 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 5804 address tpc2 = trampoline_call(count_pos_long); 5805 if (tpc2 == nullptr) { 5806 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 5807 postcond(pc() == badAddress); 5808 return nullptr; 5809 } 5810 b(DONE); 5811 5812 BIND(SET_RESULT); 5813 5814 add(len, len, wordSize); 5815 sub(result, result, len); 5816 5817 BIND(DONE); 5818 postcond(pc() != badAddress); 5819 return pc(); 5820 } 5821 5822 // Clobbers: rscratch1, rscratch2, rflags 5823 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 5824 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 5825 Register tmp4, Register tmp5, Register result, 5826 Register cnt1, int elem_size) { 5827 Label DONE, SAME; 5828 Register tmp1 = rscratch1; 5829 Register tmp2 = rscratch2; 5830 int elem_per_word = wordSize/elem_size; 5831 int log_elem_size = exact_log2(elem_size); 5832 int klass_offset = arrayOopDesc::klass_offset_in_bytes(); 5833 int length_offset = arrayOopDesc::length_offset_in_bytes(); 5834 int base_offset 5835 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 5836 // When the length offset is not aligned to 8 bytes, 5837 // then we align it down. This is valid because the new 5838 // offset will always be the klass which is the same 5839 // for type arrays. 5840 int start_offset = align_down(length_offset, BytesPerWord); 5841 int extra_length = base_offset - start_offset; 5842 assert(start_offset == length_offset || start_offset == klass_offset, 5843 "start offset must be 8-byte-aligned or be the klass offset"); 5844 assert(base_offset != start_offset, "must include the length field"); 5845 extra_length = extra_length / elem_size; // We count in elements, not bytes. 5846 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 5847 5848 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 5849 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5850 5851 #ifndef PRODUCT 5852 { 5853 const char kind = (elem_size == 2) ? 'U' : 'L'; 5854 char comment[64]; 5855 snprintf(comment, sizeof comment, "array_equals%c{", kind); 5856 BLOCK_COMMENT(comment); 5857 } 5858 #endif 5859 5860 // if (a1 == a2) 5861 // return true; 5862 cmpoop(a1, a2); // May have read barriers for a1 and a2. 5863 br(EQ, SAME); 5864 5865 if (UseSimpleArrayEquals) { 5866 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 5867 // if (a1 == nullptr || a2 == nullptr) 5868 // return false; 5869 // a1 & a2 == 0 means (some-pointer is null) or 5870 // (very-rare-or-even-probably-impossible-pointer-values) 5871 // so, we can save one branch in most cases 5872 tst(a1, a2); 5873 mov(result, false); 5874 br(EQ, A_MIGHT_BE_NULL); 5875 // if (a1.length != a2.length) 5876 // return false; 5877 bind(A_IS_NOT_NULL); 5878 ldrw(cnt1, Address(a1, length_offset)); 5879 // Increase loop counter by diff between base- and actual start-offset. 5880 addw(cnt1, cnt1, extra_length); 5881 lea(a1, Address(a1, start_offset)); 5882 lea(a2, Address(a2, start_offset)); 5883 // Check for short strings, i.e. smaller than wordSize. 5884 subs(cnt1, cnt1, elem_per_word); 5885 br(Assembler::LT, SHORT); 5886 // Main 8 byte comparison loop. 5887 bind(NEXT_WORD); { 5888 ldr(tmp1, Address(post(a1, wordSize))); 5889 ldr(tmp2, Address(post(a2, wordSize))); 5890 subs(cnt1, cnt1, elem_per_word); 5891 eor(tmp5, tmp1, tmp2); 5892 cbnz(tmp5, DONE); 5893 } br(GT, NEXT_WORD); 5894 // Last longword. In the case where length == 4 we compare the 5895 // same longword twice, but that's still faster than another 5896 // conditional branch. 5897 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5898 // length == 4. 5899 if (log_elem_size > 0) 5900 lsl(cnt1, cnt1, log_elem_size); 5901 ldr(tmp3, Address(a1, cnt1)); 5902 ldr(tmp4, Address(a2, cnt1)); 5903 eor(tmp5, tmp3, tmp4); 5904 cbnz(tmp5, DONE); 5905 b(SAME); 5906 bind(A_MIGHT_BE_NULL); 5907 // in case both a1 and a2 are not-null, proceed with loads 5908 cbz(a1, DONE); 5909 cbz(a2, DONE); 5910 b(A_IS_NOT_NULL); 5911 bind(SHORT); 5912 5913 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 5914 { 5915 ldrw(tmp1, Address(post(a1, 4))); 5916 ldrw(tmp2, Address(post(a2, 4))); 5917 eorw(tmp5, tmp1, tmp2); 5918 cbnzw(tmp5, DONE); 5919 } 5920 bind(TAIL03); 5921 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 5922 { 5923 ldrh(tmp3, Address(post(a1, 2))); 5924 ldrh(tmp4, Address(post(a2, 2))); 5925 eorw(tmp5, tmp3, tmp4); 5926 cbnzw(tmp5, DONE); 5927 } 5928 bind(TAIL01); 5929 if (elem_size == 1) { // Only needed when comparing byte arrays. 5930 tbz(cnt1, 0, SAME); // 0-1 bytes left. 5931 { 5932 ldrb(tmp1, a1); 5933 ldrb(tmp2, a2); 5934 eorw(tmp5, tmp1, tmp2); 5935 cbnzw(tmp5, DONE); 5936 } 5937 } 5938 } else { 5939 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 5940 CSET_EQ, LAST_CHECK; 5941 mov(result, false); 5942 cbz(a1, DONE); 5943 ldrw(cnt1, Address(a1, length_offset)); 5944 cbz(a2, DONE); 5945 // Increase loop counter by diff between base- and actual start-offset. 5946 addw(cnt1, cnt1, extra_length); 5947 5948 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 5949 // faster to perform another branch before comparing a1 and a2 5950 cmp(cnt1, (u1)elem_per_word); 5951 br(LE, SHORT); // short or same 5952 ldr(tmp3, Address(pre(a1, start_offset))); 5953 subs(zr, cnt1, stubBytesThreshold); 5954 br(GE, STUB); 5955 ldr(tmp4, Address(pre(a2, start_offset))); 5956 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5957 5958 // Main 16 byte comparison loop with 2 exits 5959 bind(NEXT_DWORD); { 5960 ldr(tmp1, Address(pre(a1, wordSize))); 5961 ldr(tmp2, Address(pre(a2, wordSize))); 5962 subs(cnt1, cnt1, 2 * elem_per_word); 5963 br(LE, TAIL); 5964 eor(tmp4, tmp3, tmp4); 5965 cbnz(tmp4, DONE); 5966 ldr(tmp3, Address(pre(a1, wordSize))); 5967 ldr(tmp4, Address(pre(a2, wordSize))); 5968 cmp(cnt1, (u1)elem_per_word); 5969 br(LE, TAIL2); 5970 cmp(tmp1, tmp2); 5971 } br(EQ, NEXT_DWORD); 5972 b(DONE); 5973 5974 bind(TAIL); 5975 eor(tmp4, tmp3, tmp4); 5976 eor(tmp2, tmp1, tmp2); 5977 lslv(tmp2, tmp2, tmp5); 5978 orr(tmp5, tmp4, tmp2); 5979 cmp(tmp5, zr); 5980 b(CSET_EQ); 5981 5982 bind(TAIL2); 5983 eor(tmp2, tmp1, tmp2); 5984 cbnz(tmp2, DONE); 5985 b(LAST_CHECK); 5986 5987 bind(STUB); 5988 ldr(tmp4, Address(pre(a2, start_offset))); 5989 if (elem_size == 2) { // convert to byte counter 5990 lsl(cnt1, cnt1, 1); 5991 } 5992 eor(tmp5, tmp3, tmp4); 5993 cbnz(tmp5, DONE); 5994 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 5995 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 5996 address tpc = trampoline_call(stub); 5997 if (tpc == nullptr) { 5998 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 5999 postcond(pc() == badAddress); 6000 return nullptr; 6001 } 6002 b(DONE); 6003 6004 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 6005 // so, if a2 == null => return false(0), else return true, so we can return a2 6006 mov(result, a2); 6007 b(DONE); 6008 bind(SHORT); 6009 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6010 ldr(tmp3, Address(a1, start_offset)); 6011 ldr(tmp4, Address(a2, start_offset)); 6012 bind(LAST_CHECK); 6013 eor(tmp4, tmp3, tmp4); 6014 lslv(tmp5, tmp4, tmp5); 6015 cmp(tmp5, zr); 6016 bind(CSET_EQ); 6017 cset(result, EQ); 6018 b(DONE); 6019 } 6020 6021 bind(SAME); 6022 mov(result, true); 6023 // That's it. 6024 bind(DONE); 6025 6026 BLOCK_COMMENT("} array_equals"); 6027 postcond(pc() != badAddress); 6028 return pc(); 6029 } 6030 6031 // Compare Strings 6032 6033 // For Strings we're passed the address of the first characters in a1 6034 // and a2 and the length in cnt1. 6035 // There are two implementations. For arrays >= 8 bytes, all 6036 // comparisons (including the final one, which may overlap) are 6037 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 6038 // halfword, then a short, and then a byte. 6039 6040 void MacroAssembler::string_equals(Register a1, Register a2, 6041 Register result, Register cnt1) 6042 { 6043 Label SAME, DONE, SHORT, NEXT_WORD; 6044 Register tmp1 = rscratch1; 6045 Register tmp2 = rscratch2; 6046 Register cnt2 = tmp2; // cnt2 only used in array length compare 6047 6048 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6049 6050 #ifndef PRODUCT 6051 { 6052 char comment[64]; 6053 snprintf(comment, sizeof comment, "{string_equalsL"); 6054 BLOCK_COMMENT(comment); 6055 } 6056 #endif 6057 6058 mov(result, false); 6059 6060 // Check for short strings, i.e. smaller than wordSize. 6061 subs(cnt1, cnt1, wordSize); 6062 br(Assembler::LT, SHORT); 6063 // Main 8 byte comparison loop. 6064 bind(NEXT_WORD); { 6065 ldr(tmp1, Address(post(a1, wordSize))); 6066 ldr(tmp2, Address(post(a2, wordSize))); 6067 subs(cnt1, cnt1, wordSize); 6068 eor(tmp1, tmp1, tmp2); 6069 cbnz(tmp1, DONE); 6070 } br(GT, NEXT_WORD); 6071 // Last longword. In the case where length == 4 we compare the 6072 // same longword twice, but that's still faster than another 6073 // conditional branch. 6074 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6075 // length == 4. 6076 ldr(tmp1, Address(a1, cnt1)); 6077 ldr(tmp2, Address(a2, cnt1)); 6078 eor(tmp2, tmp1, tmp2); 6079 cbnz(tmp2, DONE); 6080 b(SAME); 6081 6082 bind(SHORT); 6083 Label TAIL03, TAIL01; 6084 6085 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 6086 { 6087 ldrw(tmp1, Address(post(a1, 4))); 6088 ldrw(tmp2, Address(post(a2, 4))); 6089 eorw(tmp1, tmp1, tmp2); 6090 cbnzw(tmp1, DONE); 6091 } 6092 bind(TAIL03); 6093 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 6094 { 6095 ldrh(tmp1, Address(post(a1, 2))); 6096 ldrh(tmp2, Address(post(a2, 2))); 6097 eorw(tmp1, tmp1, tmp2); 6098 cbnzw(tmp1, DONE); 6099 } 6100 bind(TAIL01); 6101 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6102 { 6103 ldrb(tmp1, a1); 6104 ldrb(tmp2, a2); 6105 eorw(tmp1, tmp1, tmp2); 6106 cbnzw(tmp1, DONE); 6107 } 6108 // Arrays are equal. 6109 bind(SAME); 6110 mov(result, true); 6111 6112 // That's it. 6113 bind(DONE); 6114 BLOCK_COMMENT("} string_equals"); 6115 } 6116 6117 6118 // The size of the blocks erased by the zero_blocks stub. We must 6119 // handle anything smaller than this ourselves in zero_words(). 6120 const int MacroAssembler::zero_words_block_size = 8; 6121 6122 // zero_words() is used by C2 ClearArray patterns and by 6123 // C1_MacroAssembler. It is as small as possible, handling small word 6124 // counts locally and delegating anything larger to the zero_blocks 6125 // stub. It is expanded many times in compiled code, so it is 6126 // important to keep it short. 6127 6128 // ptr: Address of a buffer to be zeroed. 6129 // cnt: Count in HeapWords. 6130 // 6131 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 6132 address MacroAssembler::zero_words(Register ptr, Register cnt) 6133 { 6134 assert(is_power_of_2(zero_words_block_size), "adjust this"); 6135 6136 BLOCK_COMMENT("zero_words {"); 6137 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 6138 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6139 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6140 6141 subs(rscratch1, cnt, zero_words_block_size); 6142 Label around; 6143 br(LO, around); 6144 { 6145 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6146 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6147 // Make sure this is a C2 compilation. C1 allocates space only for 6148 // trampoline stubs generated by Call LIR ops, and in any case it 6149 // makes sense for a C1 compilation task to proceed as quickly as 6150 // possible. 6151 CompileTask* task; 6152 if (StubRoutines::aarch64::complete() 6153 && Thread::current()->is_Compiler_thread() 6154 && (task = ciEnv::current()->task()) 6155 && is_c2_compile(task->comp_level())) { 6156 address tpc = trampoline_call(zero_blocks); 6157 if (tpc == nullptr) { 6158 DEBUG_ONLY(reset_labels(around)); 6159 return nullptr; 6160 } 6161 } else { 6162 far_call(zero_blocks); 6163 } 6164 } 6165 bind(around); 6166 6167 // We have a few words left to do. zero_blocks has adjusted r10 and r11 6168 // for us. 6169 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 6170 Label l; 6171 tbz(cnt, exact_log2(i), l); 6172 for (int j = 0; j < i; j += 2) { 6173 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 6174 } 6175 bind(l); 6176 } 6177 { 6178 Label l; 6179 tbz(cnt, 0, l); 6180 str(zr, Address(ptr)); 6181 bind(l); 6182 } 6183 6184 BLOCK_COMMENT("} zero_words"); 6185 return pc(); 6186 } 6187 6188 // base: Address of a buffer to be zeroed, 8 bytes aligned. 6189 // cnt: Immediate count in HeapWords. 6190 // 6191 // r10, r11, rscratch1, and rscratch2 are clobbered. 6192 address MacroAssembler::zero_words(Register base, uint64_t cnt) 6193 { 6194 assert(wordSize <= BlockZeroingLowLimit, 6195 "increase BlockZeroingLowLimit"); 6196 address result = nullptr; 6197 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 6198 #ifndef PRODUCT 6199 { 6200 char buf[64]; 6201 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 6202 BLOCK_COMMENT(buf); 6203 } 6204 #endif 6205 if (cnt >= 16) { 6206 uint64_t loops = cnt/16; 6207 if (loops > 1) { 6208 mov(rscratch2, loops - 1); 6209 } 6210 { 6211 Label loop; 6212 bind(loop); 6213 for (int i = 0; i < 16; i += 2) { 6214 stp(zr, zr, Address(base, i * BytesPerWord)); 6215 } 6216 add(base, base, 16 * BytesPerWord); 6217 if (loops > 1) { 6218 subs(rscratch2, rscratch2, 1); 6219 br(GE, loop); 6220 } 6221 } 6222 } 6223 cnt %= 16; 6224 int i = cnt & 1; // store any odd word to start 6225 if (i) str(zr, Address(base)); 6226 for (; i < (int)cnt; i += 2) { 6227 stp(zr, zr, Address(base, i * wordSize)); 6228 } 6229 BLOCK_COMMENT("} zero_words"); 6230 result = pc(); 6231 } else { 6232 mov(r10, base); mov(r11, cnt); 6233 result = zero_words(r10, r11); 6234 } 6235 return result; 6236 } 6237 6238 // Zero blocks of memory by using DC ZVA. 6239 // 6240 // Aligns the base address first sufficiently for DC ZVA, then uses 6241 // DC ZVA repeatedly for every full block. cnt is the size to be 6242 // zeroed in HeapWords. Returns the count of words left to be zeroed 6243 // in cnt. 6244 // 6245 // NOTE: This is intended to be used in the zero_blocks() stub. If 6246 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 6247 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 6248 Register tmp = rscratch1; 6249 Register tmp2 = rscratch2; 6250 int zva_length = VM_Version::zva_length(); 6251 Label initial_table_end, loop_zva; 6252 Label fini; 6253 6254 // Base must be 16 byte aligned. If not just return and let caller handle it 6255 tst(base, 0x0f); 6256 br(Assembler::NE, fini); 6257 // Align base with ZVA length. 6258 neg(tmp, base); 6259 andr(tmp, tmp, zva_length - 1); 6260 6261 // tmp: the number of bytes to be filled to align the base with ZVA length. 6262 add(base, base, tmp); 6263 sub(cnt, cnt, tmp, Assembler::ASR, 3); 6264 adr(tmp2, initial_table_end); 6265 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 6266 br(tmp2); 6267 6268 for (int i = -zva_length + 16; i < 0; i += 16) 6269 stp(zr, zr, Address(base, i)); 6270 bind(initial_table_end); 6271 6272 sub(cnt, cnt, zva_length >> 3); 6273 bind(loop_zva); 6274 dc(Assembler::ZVA, base); 6275 subs(cnt, cnt, zva_length >> 3); 6276 add(base, base, zva_length); 6277 br(Assembler::GE, loop_zva); 6278 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 6279 bind(fini); 6280 } 6281 6282 // base: Address of a buffer to be filled, 8 bytes aligned. 6283 // cnt: Count in 8-byte unit. 6284 // value: Value to be filled with. 6285 // base will point to the end of the buffer after filling. 6286 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 6287 { 6288 // Algorithm: 6289 // 6290 // if (cnt == 0) { 6291 // return; 6292 // } 6293 // if ((p & 8) != 0) { 6294 // *p++ = v; 6295 // } 6296 // 6297 // scratch1 = cnt & 14; 6298 // cnt -= scratch1; 6299 // p += scratch1; 6300 // switch (scratch1 / 2) { 6301 // do { 6302 // cnt -= 16; 6303 // p[-16] = v; 6304 // p[-15] = v; 6305 // case 7: 6306 // p[-14] = v; 6307 // p[-13] = v; 6308 // case 6: 6309 // p[-12] = v; 6310 // p[-11] = v; 6311 // // ... 6312 // case 1: 6313 // p[-2] = v; 6314 // p[-1] = v; 6315 // case 0: 6316 // p += 16; 6317 // } while (cnt); 6318 // } 6319 // if ((cnt & 1) == 1) { 6320 // *p++ = v; 6321 // } 6322 6323 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 6324 6325 Label fini, skip, entry, loop; 6326 const int unroll = 8; // Number of stp instructions we'll unroll 6327 6328 cbz(cnt, fini); 6329 tbz(base, 3, skip); 6330 str(value, Address(post(base, 8))); 6331 sub(cnt, cnt, 1); 6332 bind(skip); 6333 6334 andr(rscratch1, cnt, (unroll-1) * 2); 6335 sub(cnt, cnt, rscratch1); 6336 add(base, base, rscratch1, Assembler::LSL, 3); 6337 adr(rscratch2, entry); 6338 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 6339 br(rscratch2); 6340 6341 bind(loop); 6342 add(base, base, unroll * 16); 6343 for (int i = -unroll; i < 0; i++) 6344 stp(value, value, Address(base, i * 16)); 6345 bind(entry); 6346 subs(cnt, cnt, unroll * 2); 6347 br(Assembler::GE, loop); 6348 6349 tbz(cnt, 0, fini); 6350 str(value, Address(post(base, 8))); 6351 bind(fini); 6352 } 6353 6354 // Intrinsic for 6355 // 6356 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 6357 // return the number of characters copied. 6358 // - java/lang/StringUTF16.compress 6359 // return index of non-latin1 character if copy fails, otherwise 'len'. 6360 // 6361 // This version always returns the number of characters copied, and does not 6362 // clobber the 'len' register. A successful copy will complete with the post- 6363 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 6364 // post-condition: 0 <= 'res' < 'len'. 6365 // 6366 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 6367 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 6368 // beyond the acceptable, even though the footprint would be smaller. 6369 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 6370 // avoid additional bloat. 6371 // 6372 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 6373 void MacroAssembler::encode_iso_array(Register src, Register dst, 6374 Register len, Register res, bool ascii, 6375 FloatRegister vtmp0, FloatRegister vtmp1, 6376 FloatRegister vtmp2, FloatRegister vtmp3, 6377 FloatRegister vtmp4, FloatRegister vtmp5) 6378 { 6379 Register cnt = res; 6380 Register max = rscratch1; 6381 Register chk = rscratch2; 6382 6383 prfm(Address(src), PLDL1STRM); 6384 movw(cnt, len); 6385 6386 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 6387 6388 Label LOOP_32, DONE_32, FAIL_32; 6389 6390 BIND(LOOP_32); 6391 { 6392 cmpw(cnt, 32); 6393 br(LT, DONE_32); 6394 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 6395 // Extract lower bytes. 6396 FloatRegister vlo0 = vtmp4; 6397 FloatRegister vlo1 = vtmp5; 6398 uzp1(vlo0, T16B, vtmp0, vtmp1); 6399 uzp1(vlo1, T16B, vtmp2, vtmp3); 6400 // Merge bits... 6401 orr(vtmp0, T16B, vtmp0, vtmp1); 6402 orr(vtmp2, T16B, vtmp2, vtmp3); 6403 // Extract merged upper bytes. 6404 FloatRegister vhix = vtmp0; 6405 uzp2(vhix, T16B, vtmp0, vtmp2); 6406 // ISO-check on hi-parts (all zero). 6407 // ASCII-check on lo-parts (no sign). 6408 FloatRegister vlox = vtmp1; // Merge lower bytes. 6409 ASCII(orr(vlox, T16B, vlo0, vlo1)); 6410 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 6411 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 6412 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 6413 ASCII(orr(chk, chk, max)); 6414 cbnz(chk, FAIL_32); 6415 subw(cnt, cnt, 32); 6416 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 6417 b(LOOP_32); 6418 } 6419 BIND(FAIL_32); 6420 sub(src, src, 64); 6421 BIND(DONE_32); 6422 6423 Label LOOP_8, SKIP_8; 6424 6425 BIND(LOOP_8); 6426 { 6427 cmpw(cnt, 8); 6428 br(LT, SKIP_8); 6429 FloatRegister vhi = vtmp0; 6430 FloatRegister vlo = vtmp1; 6431 ld1(vtmp3, T8H, src); 6432 uzp1(vlo, T16B, vtmp3, vtmp3); 6433 uzp2(vhi, T16B, vtmp3, vtmp3); 6434 // ISO-check on hi-parts (all zero). 6435 // ASCII-check on lo-parts (no sign). 6436 ASCII(cm(LT, vtmp2, T16B, vlo)); 6437 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 6438 ASCII(umov(max, vtmp2, B, 0)); 6439 ASCII(orr(chk, chk, max)); 6440 cbnz(chk, SKIP_8); 6441 6442 strd(vlo, Address(post(dst, 8))); 6443 subw(cnt, cnt, 8); 6444 add(src, src, 16); 6445 b(LOOP_8); 6446 } 6447 BIND(SKIP_8); 6448 6449 #undef ASCII 6450 6451 Label LOOP, DONE; 6452 6453 cbz(cnt, DONE); 6454 BIND(LOOP); 6455 { 6456 Register chr = rscratch1; 6457 ldrh(chr, Address(post(src, 2))); 6458 tst(chr, ascii ? 0xff80 : 0xff00); 6459 br(NE, DONE); 6460 strb(chr, Address(post(dst, 1))); 6461 subs(cnt, cnt, 1); 6462 br(GT, LOOP); 6463 } 6464 BIND(DONE); 6465 // Return index where we stopped. 6466 subw(res, len, cnt); 6467 } 6468 6469 // Inflate byte[] array to char[]. 6470 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 6471 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 6472 FloatRegister vtmp1, FloatRegister vtmp2, 6473 FloatRegister vtmp3, Register tmp4) { 6474 Label big, done, after_init, to_stub; 6475 6476 assert_different_registers(src, dst, len, tmp4, rscratch1); 6477 6478 fmovd(vtmp1, 0.0); 6479 lsrw(tmp4, len, 3); 6480 bind(after_init); 6481 cbnzw(tmp4, big); 6482 // Short string: less than 8 bytes. 6483 { 6484 Label loop, tiny; 6485 6486 cmpw(len, 4); 6487 br(LT, tiny); 6488 // Use SIMD to do 4 bytes. 6489 ldrs(vtmp2, post(src, 4)); 6490 zip1(vtmp3, T8B, vtmp2, vtmp1); 6491 subw(len, len, 4); 6492 strd(vtmp3, post(dst, 8)); 6493 6494 cbzw(len, done); 6495 6496 // Do the remaining bytes by steam. 6497 bind(loop); 6498 ldrb(tmp4, post(src, 1)); 6499 strh(tmp4, post(dst, 2)); 6500 subw(len, len, 1); 6501 6502 bind(tiny); 6503 cbnz(len, loop); 6504 6505 b(done); 6506 } 6507 6508 if (SoftwarePrefetchHintDistance >= 0) { 6509 bind(to_stub); 6510 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 6511 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 6512 address tpc = trampoline_call(stub); 6513 if (tpc == nullptr) { 6514 DEBUG_ONLY(reset_labels(big, done)); 6515 postcond(pc() == badAddress); 6516 return nullptr; 6517 } 6518 b(after_init); 6519 } 6520 6521 // Unpack the bytes 8 at a time. 6522 bind(big); 6523 { 6524 Label loop, around, loop_last, loop_start; 6525 6526 if (SoftwarePrefetchHintDistance >= 0) { 6527 const int large_loop_threshold = (64 + 16)/8; 6528 ldrd(vtmp2, post(src, 8)); 6529 andw(len, len, 7); 6530 cmp(tmp4, (u1)large_loop_threshold); 6531 br(GE, to_stub); 6532 b(loop_start); 6533 6534 bind(loop); 6535 ldrd(vtmp2, post(src, 8)); 6536 bind(loop_start); 6537 subs(tmp4, tmp4, 1); 6538 br(EQ, loop_last); 6539 zip1(vtmp2, T16B, vtmp2, vtmp1); 6540 ldrd(vtmp3, post(src, 8)); 6541 st1(vtmp2, T8H, post(dst, 16)); 6542 subs(tmp4, tmp4, 1); 6543 zip1(vtmp3, T16B, vtmp3, vtmp1); 6544 st1(vtmp3, T8H, post(dst, 16)); 6545 br(NE, loop); 6546 b(around); 6547 bind(loop_last); 6548 zip1(vtmp2, T16B, vtmp2, vtmp1); 6549 st1(vtmp2, T8H, post(dst, 16)); 6550 bind(around); 6551 cbz(len, done); 6552 } else { 6553 andw(len, len, 7); 6554 bind(loop); 6555 ldrd(vtmp2, post(src, 8)); 6556 sub(tmp4, tmp4, 1); 6557 zip1(vtmp3, T16B, vtmp2, vtmp1); 6558 st1(vtmp3, T8H, post(dst, 16)); 6559 cbnz(tmp4, loop); 6560 } 6561 } 6562 6563 // Do the tail of up to 8 bytes. 6564 add(src, src, len); 6565 ldrd(vtmp3, Address(src, -8)); 6566 add(dst, dst, len, ext::uxtw, 1); 6567 zip1(vtmp3, T16B, vtmp3, vtmp1); 6568 strq(vtmp3, Address(dst, -16)); 6569 6570 bind(done); 6571 postcond(pc() != badAddress); 6572 return pc(); 6573 } 6574 6575 // Compress char[] array to byte[]. 6576 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 6577 // Return the array length if every element in array can be encoded, 6578 // otherwise, the index of first non-latin1 (> 0xff) character. 6579 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 6580 Register res, 6581 FloatRegister tmp0, FloatRegister tmp1, 6582 FloatRegister tmp2, FloatRegister tmp3, 6583 FloatRegister tmp4, FloatRegister tmp5) { 6584 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 6585 } 6586 6587 // java.math.round(double a) 6588 // Returns the closest long to the argument, with ties rounding to 6589 // positive infinity. This requires some fiddling for corner 6590 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 6591 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 6592 FloatRegister ftmp) { 6593 Label DONE; 6594 BLOCK_COMMENT("java_round_double: { "); 6595 fmovd(rscratch1, src); 6596 // Use RoundToNearestTiesAway unless src small and -ve. 6597 fcvtasd(dst, src); 6598 // Test if src >= 0 || abs(src) >= 0x1.0p52 6599 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 6600 mov(rscratch2, julong_cast(0x1.0p52)); 6601 cmp(rscratch1, rscratch2); 6602 br(HS, DONE); { 6603 // src < 0 && abs(src) < 0x1.0p52 6604 // src may have a fractional part, so add 0.5 6605 fmovd(ftmp, 0.5); 6606 faddd(ftmp, src, ftmp); 6607 // Convert double to jlong, use RoundTowardsNegative 6608 fcvtmsd(dst, ftmp); 6609 } 6610 bind(DONE); 6611 BLOCK_COMMENT("} java_round_double"); 6612 } 6613 6614 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 6615 FloatRegister ftmp) { 6616 Label DONE; 6617 BLOCK_COMMENT("java_round_float: { "); 6618 fmovs(rscratch1, src); 6619 // Use RoundToNearestTiesAway unless src small and -ve. 6620 fcvtassw(dst, src); 6621 // Test if src >= 0 || abs(src) >= 0x1.0p23 6622 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 6623 mov(rscratch2, jint_cast(0x1.0p23f)); 6624 cmp(rscratch1, rscratch2); 6625 br(HS, DONE); { 6626 // src < 0 && |src| < 0x1.0p23 6627 // src may have a fractional part, so add 0.5 6628 fmovs(ftmp, 0.5f); 6629 fadds(ftmp, src, ftmp); 6630 // Convert float to jint, use RoundTowardsNegative 6631 fcvtmssw(dst, ftmp); 6632 } 6633 bind(DONE); 6634 BLOCK_COMMENT("} java_round_float"); 6635 } 6636 6637 // get_thread() can be called anywhere inside generated code so we 6638 // need to save whatever non-callee save context might get clobbered 6639 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 6640 // the call setup code. 6641 // 6642 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 6643 // On other systems, the helper is a usual C function. 6644 // 6645 void MacroAssembler::get_thread(Register dst) { 6646 RegSet saved_regs = 6647 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 6648 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 6649 6650 protect_return_address(); 6651 push(saved_regs, sp); 6652 6653 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 6654 blr(lr); 6655 if (dst != c_rarg0) { 6656 mov(dst, c_rarg0); 6657 } 6658 6659 pop(saved_regs, sp); 6660 authenticate_return_address(); 6661 } 6662 6663 void MacroAssembler::cache_wb(Address line) { 6664 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 6665 assert(line.index() == noreg, "index should be noreg"); 6666 assert(line.offset() == 0, "offset should be 0"); 6667 // would like to assert this 6668 // assert(line._ext.shift == 0, "shift should be zero"); 6669 if (VM_Version::supports_dcpop()) { 6670 // writeback using clear virtual address to point of persistence 6671 dc(Assembler::CVAP, line.base()); 6672 } else { 6673 // no need to generate anything as Unsafe.writebackMemory should 6674 // never invoke this stub 6675 } 6676 } 6677 6678 void MacroAssembler::cache_wbsync(bool is_pre) { 6679 // we only need a barrier post sync 6680 if (!is_pre) { 6681 membar(Assembler::AnyAny); 6682 } 6683 } 6684 6685 void MacroAssembler::verify_sve_vector_length(Register tmp) { 6686 if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) { 6687 return; 6688 } 6689 // Make sure that native code does not change SVE vector length. 6690 Label verify_ok; 6691 movw(tmp, zr); 6692 sve_inc(tmp, B); 6693 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 6694 br(EQ, verify_ok); 6695 stop("Error: SVE vector length has changed since jvm startup"); 6696 bind(verify_ok); 6697 } 6698 6699 void MacroAssembler::verify_ptrue() { 6700 Label verify_ok; 6701 if (!UseSVE) { 6702 return; 6703 } 6704 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 6705 sve_dec(rscratch1, B); 6706 cbz(rscratch1, verify_ok); 6707 stop("Error: the preserved predicate register (p7) elements are not all true"); 6708 bind(verify_ok); 6709 } 6710 6711 void MacroAssembler::safepoint_isb() { 6712 isb(); 6713 #ifndef PRODUCT 6714 if (VerifyCrossModifyFence) { 6715 // Clear the thread state. 6716 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6717 } 6718 #endif 6719 } 6720 6721 #ifndef PRODUCT 6722 void MacroAssembler::verify_cross_modify_fence_not_required() { 6723 if (VerifyCrossModifyFence) { 6724 // Check if thread needs a cross modify fence. 6725 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6726 Label fence_not_required; 6727 cbz(rscratch1, fence_not_required); 6728 // If it does then fail. 6729 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure))); 6730 mov(c_rarg0, rthread); 6731 blr(rscratch1); 6732 bind(fence_not_required); 6733 } 6734 } 6735 #endif 6736 6737 void MacroAssembler::spin_wait() { 6738 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 6739 switch (VM_Version::spin_wait_desc().inst()) { 6740 case SpinWait::NOP: 6741 nop(); 6742 break; 6743 case SpinWait::ISB: 6744 isb(); 6745 break; 6746 case SpinWait::YIELD: 6747 yield(); 6748 break; 6749 default: 6750 ShouldNotReachHere(); 6751 } 6752 } 6753 } 6754 6755 // Stack frame creation/removal 6756 6757 void MacroAssembler::enter(bool strip_ret_addr) { 6758 if (strip_ret_addr) { 6759 // Addresses can only be signed once. If there are multiple nested frames being created 6760 // in the same function, then the return address needs stripping first. 6761 strip_return_address(); 6762 } 6763 protect_return_address(); 6764 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6765 mov(rfp, sp); 6766 } 6767 6768 void MacroAssembler::leave() { 6769 mov(sp, rfp); 6770 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6771 authenticate_return_address(); 6772 } 6773 6774 // ROP Protection 6775 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 6776 // destroying stack frames or whenever directly loading/storing the LR to memory. 6777 // If ROP protection is not set then these functions are no-ops. 6778 // For more details on PAC see pauth_aarch64.hpp. 6779 6780 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 6781 // Uses value zero as the modifier. 6782 // 6783 void MacroAssembler::protect_return_address() { 6784 if (VM_Version::use_rop_protection()) { 6785 check_return_address(); 6786 paciaz(); 6787 } 6788 } 6789 6790 // Sign the return value in the given register. Use before updating the LR in the existing stack 6791 // frame for the current function. 6792 // Uses value zero as the modifier. 6793 // 6794 void MacroAssembler::protect_return_address(Register return_reg) { 6795 if (VM_Version::use_rop_protection()) { 6796 check_return_address(return_reg); 6797 paciza(return_reg); 6798 } 6799 } 6800 6801 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 6802 // Uses value zero as the modifier. 6803 // 6804 void MacroAssembler::authenticate_return_address() { 6805 if (VM_Version::use_rop_protection()) { 6806 autiaz(); 6807 check_return_address(); 6808 } 6809 } 6810 6811 // Authenticate the return value in the given register. Use before updating the LR in the existing 6812 // stack frame for the current function. 6813 // Uses value zero as the modifier. 6814 // 6815 void MacroAssembler::authenticate_return_address(Register return_reg) { 6816 if (VM_Version::use_rop_protection()) { 6817 autiza(return_reg); 6818 check_return_address(return_reg); 6819 } 6820 } 6821 6822 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 6823 // there is no guaranteed way of authenticating the LR. 6824 // 6825 void MacroAssembler::strip_return_address() { 6826 if (VM_Version::use_rop_protection()) { 6827 xpaclri(); 6828 } 6829 } 6830 6831 #ifndef PRODUCT 6832 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 6833 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 6834 // it is difficult to debug back to the callee function. 6835 // This function simply loads from the address in the given register. 6836 // Use directly after authentication to catch authentication failures. 6837 // Also use before signing to check that the pointer is valid and hasn't already been signed. 6838 // 6839 void MacroAssembler::check_return_address(Register return_reg) { 6840 if (VM_Version::use_rop_protection()) { 6841 ldr(zr, Address(return_reg)); 6842 } 6843 } 6844 #endif 6845 6846 // The java_calling_convention describes stack locations as ideal slots on 6847 // a frame with no abi restrictions. Since we must observe abi restrictions 6848 // (like the placement of the register window) the slots must be biased by 6849 // the following value. 6850 static int reg2offset_in(VMReg r) { 6851 // Account for saved rfp and lr 6852 // This should really be in_preserve_stack_slots 6853 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 6854 } 6855 6856 static int reg2offset_out(VMReg r) { 6857 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 6858 } 6859 6860 // On 64bit we will store integer like items to the stack as 6861 // 64bits items (AArch64 ABI) even though java would only store 6862 // 32bits for a parameter. On 32bit it will simply be 32bits 6863 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 6864 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 6865 if (src.first()->is_stack()) { 6866 if (dst.first()->is_stack()) { 6867 // stack to stack 6868 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6869 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6870 } else { 6871 // stack to reg 6872 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6873 } 6874 } else if (dst.first()->is_stack()) { 6875 // reg to stack 6876 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6877 } else { 6878 if (dst.first() != src.first()) { 6879 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 6880 } 6881 } 6882 } 6883 6884 // An oop arg. Must pass a handle not the oop itself 6885 void MacroAssembler::object_move( 6886 OopMap* map, 6887 int oop_handle_offset, 6888 int framesize_in_slots, 6889 VMRegPair src, 6890 VMRegPair dst, 6891 bool is_receiver, 6892 int* receiver_offset) { 6893 6894 // must pass a handle. First figure out the location we use as a handle 6895 6896 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 6897 6898 // See if oop is null if it is we need no handle 6899 6900 if (src.first()->is_stack()) { 6901 6902 // Oop is already on the stack as an argument 6903 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 6904 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 6905 if (is_receiver) { 6906 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 6907 } 6908 6909 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 6910 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 6911 // conditionally move a null 6912 cmp(rscratch1, zr); 6913 csel(rHandle, zr, rHandle, Assembler::EQ); 6914 } else { 6915 6916 // Oop is in an a register we must store it to the space we reserve 6917 // on the stack for oop_handles and pass a handle if oop is non-null 6918 6919 const Register rOop = src.first()->as_Register(); 6920 int oop_slot; 6921 if (rOop == j_rarg0) 6922 oop_slot = 0; 6923 else if (rOop == j_rarg1) 6924 oop_slot = 1; 6925 else if (rOop == j_rarg2) 6926 oop_slot = 2; 6927 else if (rOop == j_rarg3) 6928 oop_slot = 3; 6929 else if (rOop == j_rarg4) 6930 oop_slot = 4; 6931 else if (rOop == j_rarg5) 6932 oop_slot = 5; 6933 else if (rOop == j_rarg6) 6934 oop_slot = 6; 6935 else { 6936 assert(rOop == j_rarg7, "wrong register"); 6937 oop_slot = 7; 6938 } 6939 6940 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 6941 int offset = oop_slot*VMRegImpl::stack_slot_size; 6942 6943 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 6944 // Store oop in handle area, may be null 6945 str(rOop, Address(sp, offset)); 6946 if (is_receiver) { 6947 *receiver_offset = offset; 6948 } 6949 6950 cmp(rOop, zr); 6951 lea(rHandle, Address(sp, offset)); 6952 // conditionally move a null 6953 csel(rHandle, zr, rHandle, Assembler::EQ); 6954 } 6955 6956 // If arg is on the stack then place it otherwise it is already in correct reg. 6957 if (dst.first()->is_stack()) { 6958 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 6959 } 6960 } 6961 6962 // A float arg may have to do float reg int reg conversion 6963 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 6964 if (src.first()->is_stack()) { 6965 if (dst.first()->is_stack()) { 6966 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 6967 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 6968 } else { 6969 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 6970 } 6971 } else if (src.first() != dst.first()) { 6972 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 6973 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 6974 else 6975 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 6976 } 6977 } 6978 6979 // A long move 6980 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 6981 if (src.first()->is_stack()) { 6982 if (dst.first()->is_stack()) { 6983 // stack to stack 6984 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6985 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6986 } else { 6987 // stack to reg 6988 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6989 } 6990 } else if (dst.first()->is_stack()) { 6991 // reg to stack 6992 // Do we really have to sign extend??? 6993 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 6994 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6995 } else { 6996 if (dst.first() != src.first()) { 6997 mov(dst.first()->as_Register(), src.first()->as_Register()); 6998 } 6999 } 7000 } 7001 7002 7003 // A double move 7004 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 7005 if (src.first()->is_stack()) { 7006 if (dst.first()->is_stack()) { 7007 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7008 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7009 } else { 7010 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7011 } 7012 } else if (src.first() != dst.first()) { 7013 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7014 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7015 else 7016 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7017 } 7018 } 7019 7020 // Implements lightweight-locking. 7021 // 7022 // - obj: the object to be locked 7023 // - t1, t2, t3: temporary registers, will be destroyed 7024 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 7025 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) { 7026 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7027 assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1); 7028 7029 Label push; 7030 const Register top = t1; 7031 const Register mark = t2; 7032 const Register t = t3; 7033 7034 // Preload the markWord. It is important that this is the first 7035 // instruction emitted as it is part of C1's null check semantics. 7036 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7037 7038 if (UseObjectMonitorTable) { 7039 // Clear cache in case fast locking succeeds. 7040 str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes())))); 7041 } 7042 7043 // Check if the lock-stack is full. 7044 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7045 cmpw(top, (unsigned)LockStack::end_offset()); 7046 br(Assembler::GE, slow); 7047 7048 // Check for recursion. 7049 subw(t, top, oopSize); 7050 ldr(t, Address(rthread, t)); 7051 cmp(obj, t); 7052 br(Assembler::EQ, push); 7053 7054 // Check header for monitor (0b10). 7055 tst(mark, markWord::monitor_value); 7056 br(Assembler::NE, slow); 7057 7058 // Try to lock. Transition lock bits 0b01 => 0b00 7059 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7060 orr(mark, mark, markWord::unlocked_value); 7061 eor(t, mark, markWord::unlocked_value); 7062 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 7063 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 7064 br(Assembler::NE, slow); 7065 7066 bind(push); 7067 // After successful lock, push object on lock-stack. 7068 str(obj, Address(rthread, top)); 7069 addw(top, top, oopSize); 7070 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7071 } 7072 7073 // Implements lightweight-unlocking. 7074 // 7075 // - obj: the object to be unlocked 7076 // - t1, t2, t3: temporary registers 7077 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 7078 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 7079 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7080 // cmpxchg clobbers rscratch1. 7081 assert_different_registers(obj, t1, t2, t3, rscratch1); 7082 7083 #ifdef ASSERT 7084 { 7085 // Check for lock-stack underflow. 7086 Label stack_ok; 7087 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 7088 cmpw(t1, (unsigned)LockStack::start_offset()); 7089 br(Assembler::GE, stack_ok); 7090 STOP("Lock-stack underflow"); 7091 bind(stack_ok); 7092 } 7093 #endif 7094 7095 Label unlocked, push_and_slow; 7096 const Register top = t1; 7097 const Register mark = t2; 7098 const Register t = t3; 7099 7100 // Check if obj is top of lock-stack. 7101 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7102 subw(top, top, oopSize); 7103 ldr(t, Address(rthread, top)); 7104 cmp(obj, t); 7105 br(Assembler::NE, slow); 7106 7107 // Pop lock-stack. 7108 DEBUG_ONLY(str(zr, Address(rthread, top));) 7109 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7110 7111 // Check if recursive. 7112 subw(t, top, oopSize); 7113 ldr(t, Address(rthread, t)); 7114 cmp(obj, t); 7115 br(Assembler::EQ, unlocked); 7116 7117 // Not recursive. Check header for monitor (0b10). 7118 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7119 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 7120 7121 #ifdef ASSERT 7122 // Check header not unlocked (0b01). 7123 Label not_unlocked; 7124 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 7125 stop("lightweight_unlock already unlocked"); 7126 bind(not_unlocked); 7127 #endif 7128 7129 // Try to unlock. Transition lock bits 0b00 => 0b01 7130 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7131 orr(t, mark, markWord::unlocked_value); 7132 cmpxchg(obj, mark, t, Assembler::xword, 7133 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 7134 br(Assembler::EQ, unlocked); 7135 7136 bind(push_and_slow); 7137 // Restore lock-stack and handle the unlock in runtime. 7138 DEBUG_ONLY(str(obj, Address(rthread, top));) 7139 addw(top, top, oopSize); 7140 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7141 b(slow); 7142 7143 bind(unlocked); 7144 }