1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "ci/ciEnv.hpp" 29 #include "code/compiledIC.hpp" 30 #include "compiler/compileTask.hpp" 31 #include "compiler/disassembler.hpp" 32 #include "compiler/oopMap.hpp" 33 #include "gc/shared/barrierSet.hpp" 34 #include "gc/shared/barrierSetAssembler.hpp" 35 #include "gc/shared/cardTableBarrierSet.hpp" 36 #include "gc/shared/cardTable.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "gc/shared/tlab_globals.hpp" 39 #include "interpreter/bytecodeHistogram.hpp" 40 #include "interpreter/interpreter.hpp" 41 #include "interpreter/interpreterRuntime.hpp" 42 #include "jvm.h" 43 #include "memory/resourceArea.hpp" 44 #include "memory/universe.hpp" 45 #include "nativeInst_aarch64.hpp" 46 #include "oops/accessDecorators.hpp" 47 #include "oops/compressedKlass.inline.hpp" 48 #include "oops/compressedOops.inline.hpp" 49 #include "oops/klass.inline.hpp" 50 #include "runtime/continuation.hpp" 51 #include "runtime/icache.hpp" 52 #include "runtime/interfaceSupport.inline.hpp" 53 #include "runtime/javaThread.hpp" 54 #include "runtime/jniHandles.inline.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "utilities/globalDefinitions.hpp" 58 #include "utilities/powerOfTwo.hpp" 59 #ifdef COMPILER1 60 #include "c1/c1_LIRAssembler.hpp" 61 #endif 62 #ifdef COMPILER2 63 #include "oops/oop.hpp" 64 #include "opto/compile.hpp" 65 #include "opto/node.hpp" 66 #include "opto/output.hpp" 67 #endif 68 69 #include <sys/types.h> 70 71 #ifdef PRODUCT 72 #define BLOCK_COMMENT(str) /* nothing */ 73 #else 74 #define BLOCK_COMMENT(str) block_comment(str) 75 #endif 76 #define STOP(str) stop(str); 77 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 78 79 #ifdef ASSERT 80 extern "C" void disnm(intptr_t p); 81 #endif 82 // Target-dependent relocation processing 83 // 84 // Instruction sequences whose target may need to be retrieved or 85 // patched are distinguished by their leading instruction, sorting 86 // them into three main instruction groups and related subgroups. 87 // 88 // 1) Branch, Exception and System (insn count = 1) 89 // 1a) Unconditional branch (immediate): 90 // b/bl imm19 91 // 1b) Compare & branch (immediate): 92 // cbz/cbnz Rt imm19 93 // 1c) Test & branch (immediate): 94 // tbz/tbnz Rt imm14 95 // 1d) Conditional branch (immediate): 96 // b.cond imm19 97 // 98 // 2) Loads and Stores (insn count = 1) 99 // 2a) Load register literal: 100 // ldr Rt imm19 101 // 102 // 3) Data Processing Immediate (insn count = 2 or 3) 103 // 3a) PC-rel. addressing 104 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 105 // adr/adrp Rx imm21; add Ry Rx #imm12 106 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 107 // adr/adrp Rx imm21 108 // adr/adrp Rx imm21; movk Rx #imm16<<32 109 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 110 // The latter form can only happen when the target is an 111 // ExternalAddress, and (by definition) ExternalAddresses don't 112 // move. Because of that property, there is never any need to 113 // patch the last of the three instructions. However, 114 // MacroAssembler::target_addr_for_insn takes all three 115 // instructions into account and returns the correct address. 116 // 3b) Move wide (immediate) 117 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 118 // 119 // A switch on a subset of the instruction's bits provides an 120 // efficient dispatch to these subcases. 121 // 122 // insn[28:26] -> main group ('x' == don't care) 123 // 00x -> UNALLOCATED 124 // 100 -> Data Processing Immediate 125 // 101 -> Branch, Exception and System 126 // x1x -> Loads and Stores 127 // 128 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 129 // n.b. in some cases extra bits need to be checked to verify the 130 // instruction is as expected 131 // 132 // 1) ... xx101x Branch, Exception and System 133 // 1a) 00___x Unconditional branch (immediate) 134 // 1b) 01___0 Compare & branch (immediate) 135 // 1c) 01___1 Test & branch (immediate) 136 // 1d) 10___0 Conditional branch (immediate) 137 // other Should not happen 138 // 139 // 2) ... xxx1x0 Loads and Stores 140 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 141 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 142 // strictly should be 64 bit non-FP/SIMD i.e. 143 // 0101_000 (i.e. requires insn[31:24] == 01011000) 144 // 145 // 3) ... xx100x Data Processing Immediate 146 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 147 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 148 // strictly should be 64 bit movz #imm16<<0 149 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 150 // 151 class RelocActions { 152 protected: 153 typedef int (*reloc_insn)(address insn_addr, address &target); 154 155 virtual reloc_insn adrpMem() = 0; 156 virtual reloc_insn adrpAdd() = 0; 157 virtual reloc_insn adrpMovk() = 0; 158 159 const address _insn_addr; 160 const uint32_t _insn; 161 162 static uint32_t insn_at(address insn_addr, int n) { 163 return ((uint32_t*)insn_addr)[n]; 164 } 165 uint32_t insn_at(int n) const { 166 return insn_at(_insn_addr, n); 167 } 168 169 public: 170 171 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 172 RelocActions(address insn_addr, uint32_t insn) 173 : _insn_addr(insn_addr), _insn(insn) {} 174 175 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 176 virtual int conditionalBranch(address insn_addr, address &target) = 0; 177 virtual int testAndBranch(address insn_addr, address &target) = 0; 178 virtual int loadStore(address insn_addr, address &target) = 0; 179 virtual int adr(address insn_addr, address &target) = 0; 180 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 181 virtual int immediate(address insn_addr, address &target) = 0; 182 virtual void verify(address insn_addr, address &target) = 0; 183 184 int ALWAYSINLINE run(address insn_addr, address &target) { 185 int instructions = 1; 186 187 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 188 switch(dispatch) { 189 case 0b001010: 190 case 0b001011: { 191 instructions = unconditionalBranch(insn_addr, target); 192 break; 193 } 194 case 0b101010: // Conditional branch (immediate) 195 case 0b011010: { // Compare & branch (immediate) 196 instructions = conditionalBranch(insn_addr, target); 197 break; 198 } 199 case 0b011011: { 200 instructions = testAndBranch(insn_addr, target); 201 break; 202 } 203 case 0b001100: 204 case 0b001110: 205 case 0b011100: 206 case 0b011110: 207 case 0b101100: 208 case 0b101110: 209 case 0b111100: 210 case 0b111110: { 211 // load/store 212 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 213 // Load register (literal) 214 instructions = loadStore(insn_addr, target); 215 break; 216 } else { 217 // nothing to do 218 assert(target == nullptr, "did not expect to relocate target for polling page load"); 219 } 220 break; 221 } 222 case 0b001000: 223 case 0b011000: 224 case 0b101000: 225 case 0b111000: { 226 // adr/adrp 227 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 228 int shift = Instruction_aarch64::extract(_insn, 31, 31); 229 if (shift) { 230 uint32_t insn2 = insn_at(1); 231 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 232 Instruction_aarch64::extract(_insn, 4, 0) == 233 Instruction_aarch64::extract(insn2, 9, 5)) { 234 instructions = adrp(insn_addr, target, adrpMem()); 235 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 236 Instruction_aarch64::extract(_insn, 4, 0) == 237 Instruction_aarch64::extract(insn2, 4, 0)) { 238 instructions = adrp(insn_addr, target, adrpAdd()); 239 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 240 Instruction_aarch64::extract(_insn, 4, 0) == 241 Instruction_aarch64::extract(insn2, 4, 0)) { 242 instructions = adrp(insn_addr, target, adrpMovk()); 243 } else { 244 ShouldNotReachHere(); 245 } 246 } else { 247 instructions = adr(insn_addr, target); 248 } 249 break; 250 } 251 case 0b001001: 252 case 0b011001: 253 case 0b101001: 254 case 0b111001: { 255 instructions = immediate(insn_addr, target); 256 break; 257 } 258 default: { 259 ShouldNotReachHere(); 260 } 261 } 262 263 verify(insn_addr, target); 264 return instructions * NativeInstruction::instruction_size; 265 } 266 }; 267 268 class Patcher : public RelocActions { 269 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 270 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 271 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 272 273 public: 274 Patcher(address insn_addr) : RelocActions(insn_addr) {} 275 276 virtual int unconditionalBranch(address insn_addr, address &target) { 277 intptr_t offset = (target - insn_addr) >> 2; 278 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 279 return 1; 280 } 281 virtual int conditionalBranch(address insn_addr, address &target) { 282 intptr_t offset = (target - insn_addr) >> 2; 283 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 284 return 1; 285 } 286 virtual int testAndBranch(address insn_addr, address &target) { 287 intptr_t offset = (target - insn_addr) >> 2; 288 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 289 return 1; 290 } 291 virtual int loadStore(address insn_addr, address &target) { 292 intptr_t offset = (target - insn_addr) >> 2; 293 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 294 return 1; 295 } 296 virtual int adr(address insn_addr, address &target) { 297 #ifdef ASSERT 298 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 299 #endif 300 // PC-rel. addressing 301 ptrdiff_t offset = target - insn_addr; 302 int offset_lo = offset & 3; 303 offset >>= 2; 304 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 305 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 306 return 1; 307 } 308 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 309 int instructions = 1; 310 #ifdef ASSERT 311 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 312 #endif 313 ptrdiff_t offset = target - insn_addr; 314 instructions = 2; 315 precond(inner != nullptr); 316 // Give the inner reloc a chance to modify the target. 317 address adjusted_target = target; 318 instructions = (*inner)(insn_addr, adjusted_target); 319 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 320 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 321 offset = adr_page - pc_page; 322 int offset_lo = offset & 3; 323 offset >>= 2; 324 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 325 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 326 return instructions; 327 } 328 static int adrpMem_impl(address insn_addr, address &target) { 329 uintptr_t dest = (uintptr_t)target; 330 int offset_lo = dest & 0xfff; 331 uint32_t insn2 = insn_at(insn_addr, 1); 332 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 333 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 334 guarantee(((dest >> size) << size) == dest, "misaligned target"); 335 return 2; 336 } 337 static int adrpAdd_impl(address insn_addr, address &target) { 338 uintptr_t dest = (uintptr_t)target; 339 int offset_lo = dest & 0xfff; 340 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 341 return 2; 342 } 343 static int adrpMovk_impl(address insn_addr, address &target) { 344 uintptr_t dest = uintptr_t(target); 345 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 346 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 347 target = address(dest); 348 return 2; 349 } 350 virtual int immediate(address insn_addr, address &target) { 351 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 352 uint64_t dest = (uint64_t)target; 353 // Move wide constant 354 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 355 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 356 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 357 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 358 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 359 return 3; 360 } 361 virtual void verify(address insn_addr, address &target) { 362 #ifdef ASSERT 363 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 364 if (!(address_is == target)) { 365 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 366 disnm((intptr_t)insn_addr); 367 assert(address_is == target, "should be"); 368 } 369 #endif 370 } 371 }; 372 373 // If insn1 and insn2 use the same register to form an address, either 374 // by an offsetted LDR or a simple ADD, return the offset. If the 375 // second instruction is an LDR, the offset may be scaled. 376 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 377 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 378 Instruction_aarch64::extract(insn1, 4, 0) == 379 Instruction_aarch64::extract(insn2, 9, 5)) { 380 // Load/store register (unsigned immediate) 381 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 382 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 383 byte_offset <<= size; 384 return true; 385 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 386 Instruction_aarch64::extract(insn1, 4, 0) == 387 Instruction_aarch64::extract(insn2, 4, 0)) { 388 // add (immediate) 389 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 390 return true; 391 } 392 return false; 393 } 394 395 class AArch64Decoder : public RelocActions { 396 virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; } 397 virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; } 398 virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; } 399 400 public: 401 AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 402 403 virtual int loadStore(address insn_addr, address &target) { 404 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 405 target = insn_addr + (offset << 2); 406 return 1; 407 } 408 virtual int unconditionalBranch(address insn_addr, address &target) { 409 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 410 target = insn_addr + (offset << 2); 411 return 1; 412 } 413 virtual int conditionalBranch(address insn_addr, address &target) { 414 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 415 target = address(((uint64_t)insn_addr + (offset << 2))); 416 return 1; 417 } 418 virtual int testAndBranch(address insn_addr, address &target) { 419 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 420 target = address(((uint64_t)insn_addr + (offset << 2))); 421 return 1; 422 } 423 virtual int adr(address insn_addr, address &target) { 424 // PC-rel. addressing 425 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 426 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 427 target = address((uint64_t)insn_addr + offset); 428 return 1; 429 } 430 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 431 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 432 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 433 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 434 int shift = 12; 435 offset <<= shift; 436 uint64_t target_page = ((uint64_t)insn_addr) + offset; 437 target_page &= ((uint64_t)-1) << shift; 438 uint32_t insn2 = insn_at(1); 439 target = address(target_page); 440 precond(inner != nullptr); 441 (*inner)(insn_addr, target); 442 return 2; 443 } 444 static int adrpMem_impl(address insn_addr, address &target) { 445 uint32_t insn2 = insn_at(insn_addr, 1); 446 // Load/store register (unsigned immediate) 447 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 448 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 449 byte_offset <<= size; 450 target += byte_offset; 451 return 2; 452 } 453 static int adrpAdd_impl(address insn_addr, address &target) { 454 uint32_t insn2 = insn_at(insn_addr, 1); 455 // add (immediate) 456 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 457 target += byte_offset; 458 return 2; 459 } 460 static int adrpMovk_impl(address insn_addr, address &target) { 461 uint32_t insn2 = insn_at(insn_addr, 1); 462 uint64_t dest = uint64_t(target); 463 dest = (dest & 0xffff0000ffffffff) | 464 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 465 target = address(dest); 466 467 // We know the destination 4k page. Maybe we have a third 468 // instruction. 469 uint32_t insn = insn_at(insn_addr, 0); 470 uint32_t insn3 = insn_at(insn_addr, 2); 471 ptrdiff_t byte_offset; 472 if (offset_for(insn, insn3, byte_offset)) { 473 target += byte_offset; 474 return 3; 475 } else { 476 return 2; 477 } 478 } 479 virtual int immediate(address insn_addr, address &target) { 480 uint32_t *insns = (uint32_t *)insn_addr; 481 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 482 // Move wide constant: movz, movk, movk. See movptr(). 483 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 484 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 485 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 486 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 487 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 488 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 489 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 490 return 3; 491 } 492 virtual void verify(address insn_addr, address &target) { 493 } 494 }; 495 496 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 497 AArch64Decoder decoder(insn_addr, insn); 498 address target; 499 decoder.run(insn_addr, target); 500 return target; 501 } 502 503 // Patch any kind of instruction; there may be several instructions. 504 // Return the total length (in bytes) of the instructions. 505 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 506 Patcher patcher(insn_addr); 507 return patcher.run(insn_addr, target); 508 } 509 510 int MacroAssembler::patch_oop(address insn_addr, address o) { 511 int instructions; 512 unsigned insn = *(unsigned*)insn_addr; 513 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 514 515 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 516 // narrow OOPs by setting the upper 16 bits in the first 517 // instruction. 518 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 519 // Move narrow OOP 520 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 521 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 522 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 523 instructions = 2; 524 } else { 525 // Move wide OOP 526 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 527 uintptr_t dest = (uintptr_t)o; 528 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 529 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 530 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 531 instructions = 3; 532 } 533 return instructions * NativeInstruction::instruction_size; 534 } 535 536 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 537 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 538 // We encode narrow ones by setting the upper 16 bits in the first 539 // instruction. 540 NativeInstruction *insn = nativeInstruction_at(insn_addr); 541 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 542 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 543 544 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 545 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 546 return 2 * NativeInstruction::instruction_size; 547 } 548 549 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 550 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 551 return nullptr; 552 } 553 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 554 } 555 556 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool in_nmethod, Register tmp) { 557 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 558 if (at_return) { 559 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 560 // we may safely use the sp instead to perform the stack watermark check. 561 cmp(in_nmethod ? sp : rfp, tmp); 562 br(Assembler::HI, slow_path); 563 } else { 564 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 565 } 566 } 567 568 void MacroAssembler::rt_call(address dest, Register tmp) { 569 CodeBlob *cb = CodeCache::find_blob(dest); 570 if (cb) { 571 far_call(RuntimeAddress(dest)); 572 } else { 573 lea(tmp, RuntimeAddress(dest)); 574 blr(tmp); 575 } 576 } 577 578 void MacroAssembler::push_cont_fastpath(Register java_thread) { 579 if (!Continuations::enabled()) return; 580 Label done; 581 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 582 cmp(sp, rscratch1); 583 br(Assembler::LS, done); 584 mov(rscratch1, sp); // we can't use sp as the source in str 585 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 586 bind(done); 587 } 588 589 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 590 if (!Continuations::enabled()) return; 591 Label done; 592 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 593 cmp(sp, rscratch1); 594 br(Assembler::LO, done); 595 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 596 bind(done); 597 } 598 599 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 600 // we must set sp to zero to clear frame 601 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 602 603 // must clear fp, so that compiled frames are not confused; it is 604 // possible that we need it only for debugging 605 if (clear_fp) { 606 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 607 } 608 609 // Always clear the pc because it could have been set by make_walkable() 610 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 611 } 612 613 // Calls to C land 614 // 615 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 616 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 617 // has to be reset to 0. This is required to allow proper stack traversal. 618 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 619 Register last_java_fp, 620 Register last_java_pc, 621 Register scratch) { 622 623 if (last_java_pc->is_valid()) { 624 str(last_java_pc, Address(rthread, 625 JavaThread::frame_anchor_offset() 626 + JavaFrameAnchor::last_Java_pc_offset())); 627 } 628 629 // determine last_java_sp register 630 if (last_java_sp == sp) { 631 mov(scratch, sp); 632 last_java_sp = scratch; 633 } else if (!last_java_sp->is_valid()) { 634 last_java_sp = esp; 635 } 636 637 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 638 639 // last_java_fp is optional 640 if (last_java_fp->is_valid()) { 641 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 642 } 643 } 644 645 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 646 Register last_java_fp, 647 address last_java_pc, 648 Register scratch) { 649 assert(last_java_pc != nullptr, "must provide a valid PC"); 650 651 adr(scratch, last_java_pc); 652 str(scratch, Address(rthread, 653 JavaThread::frame_anchor_offset() 654 + JavaFrameAnchor::last_Java_pc_offset())); 655 656 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 657 } 658 659 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 660 Register last_java_fp, 661 Label &L, 662 Register scratch) { 663 if (L.is_bound()) { 664 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 665 } else { 666 InstructionMark im(this); 667 L.add_patch_at(code(), locator()); 668 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 669 } 670 } 671 672 static inline bool target_needs_far_branch(address addr) { 673 if (AOTCodeCache::is_on_for_dump()) { 674 return true; 675 } 676 // codecache size <= 128M 677 if (!MacroAssembler::far_branches()) { 678 return false; 679 } 680 // codecache size > 240M 681 if (MacroAssembler::codestub_branch_needs_far_jump()) { 682 return true; 683 } 684 // codecache size: 128M..240M 685 return !CodeCache::is_non_nmethod(addr); 686 } 687 688 void MacroAssembler::far_call(Address entry, Register tmp) { 689 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 690 assert(CodeCache::find_blob(entry.target()) != nullptr, 691 "destination of far call not found in code cache"); 692 assert(entry.rspec().type() == relocInfo::external_word_type 693 || entry.rspec().type() == relocInfo::runtime_call_type 694 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 695 if (target_needs_far_branch(entry.target())) { 696 uint64_t offset; 697 // We can use ADRP here because we know that the total size of 698 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 699 adrp(tmp, entry, offset); 700 add(tmp, tmp, offset); 701 blr(tmp); 702 } else { 703 bl(entry); 704 } 705 } 706 707 int MacroAssembler::far_jump(Address entry, Register tmp) { 708 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 709 assert(CodeCache::find_blob(entry.target()) != nullptr, 710 "destination of far call not found in code cache"); 711 assert(entry.rspec().type() == relocInfo::external_word_type 712 || entry.rspec().type() == relocInfo::runtime_call_type 713 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 714 address start = pc(); 715 if (target_needs_far_branch(entry.target())) { 716 uint64_t offset; 717 // We can use ADRP here because we know that the total size of 718 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 719 adrp(tmp, entry, offset); 720 add(tmp, tmp, offset); 721 br(tmp); 722 } else { 723 b(entry); 724 } 725 return pc() - start; 726 } 727 728 void MacroAssembler::reserved_stack_check() { 729 // testing if reserved zone needs to be enabled 730 Label no_reserved_zone_enabling; 731 732 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 733 cmp(sp, rscratch1); 734 br(Assembler::LO, no_reserved_zone_enabling); 735 736 enter(); // LR and FP are live. 737 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone))); 738 mov(c_rarg0, rthread); 739 blr(rscratch1); 740 leave(); 741 742 // We have already removed our own frame. 743 // throw_delayed_StackOverflowError will think that it's been 744 // called by our caller. 745 lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 746 br(rscratch1); 747 should_not_reach_here(); 748 749 bind(no_reserved_zone_enabling); 750 } 751 752 static void pass_arg0(MacroAssembler* masm, Register arg) { 753 if (c_rarg0 != arg ) { 754 masm->mov(c_rarg0, arg); 755 } 756 } 757 758 static void pass_arg1(MacroAssembler* masm, Register arg) { 759 if (c_rarg1 != arg ) { 760 masm->mov(c_rarg1, arg); 761 } 762 } 763 764 static void pass_arg2(MacroAssembler* masm, Register arg) { 765 if (c_rarg2 != arg ) { 766 masm->mov(c_rarg2, arg); 767 } 768 } 769 770 static void pass_arg3(MacroAssembler* masm, Register arg) { 771 if (c_rarg3 != arg ) { 772 masm->mov(c_rarg3, arg); 773 } 774 } 775 776 static bool is_preemptable(address entry_point) { 777 return entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter) || 778 entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache) || 779 entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::_new); 780 } 781 782 void MacroAssembler::call_VM_base(Register oop_result, 783 Register java_thread, 784 Register last_java_sp, 785 address entry_point, 786 int number_of_arguments, 787 bool check_exceptions) { 788 // determine java_thread register 789 if (!java_thread->is_valid()) { 790 java_thread = rthread; 791 } 792 793 // determine last_java_sp register 794 if (!last_java_sp->is_valid()) { 795 last_java_sp = esp; 796 } 797 798 // debugging support 799 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 800 assert(java_thread == rthread, "unexpected register"); 801 #ifdef ASSERT 802 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 803 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 804 #endif // ASSERT 805 806 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 807 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 808 809 // push java thread (becomes first argument of C function) 810 811 mov(c_rarg0, java_thread); 812 813 // set last Java frame before call 814 assert(last_java_sp != rfp, "can't use rfp"); 815 816 Label l; 817 if (is_preemptable(entry_point)) { 818 // skip setting last_pc since we already set it to desired value. 819 set_last_Java_frame(last_java_sp, rfp, noreg, rscratch1); 820 } else { 821 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 822 } 823 824 // do the call, remove parameters 825 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 826 827 // lr could be poisoned with PAC signature during throw_pending_exception 828 // if it was tail-call optimized by compiler, since lr is not callee-saved 829 // reload it with proper value 830 adr(lr, l); 831 832 // reset last Java frame 833 // Only interpreter should have to clear fp 834 reset_last_Java_frame(true); 835 836 // C++ interp handles this in the interpreter 837 check_and_handle_popframe(java_thread); 838 check_and_handle_earlyret(java_thread); 839 840 if (check_exceptions) { 841 // check for pending exceptions (java_thread is set upon return) 842 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 843 Label ok; 844 cbz(rscratch1, ok); 845 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 846 br(rscratch1); 847 bind(ok); 848 } 849 850 // get oop result if there is one and reset the value in the thread 851 if (oop_result->is_valid()) { 852 get_vm_result_oop(oop_result, java_thread); 853 } 854 } 855 856 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 857 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 858 } 859 860 // Check the entry target is always reachable from any branch. 861 static bool is_always_within_branch_range(Address entry) { 862 if (AOTCodeCache::is_on_for_dump()) { 863 return false; 864 } 865 const address target = entry.target(); 866 867 if (!CodeCache::contains(target)) { 868 // We always use trampolines for callees outside CodeCache. 869 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 870 return false; 871 } 872 873 if (!MacroAssembler::far_branches()) { 874 return true; 875 } 876 877 if (entry.rspec().type() == relocInfo::runtime_call_type) { 878 // Runtime calls are calls of a non-compiled method (stubs, adapters). 879 // Non-compiled methods stay forever in CodeCache. 880 // We check whether the longest possible branch is within the branch range. 881 assert(CodeCache::find_blob(target) != nullptr && 882 !CodeCache::find_blob(target)->is_nmethod(), 883 "runtime call of compiled method"); 884 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 885 const address left_longest_branch_start = CodeCache::low_bound(); 886 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 887 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 888 return is_reachable; 889 } 890 891 return false; 892 } 893 894 // Maybe emit a call via a trampoline. If the code cache is small 895 // trampolines won't be emitted. 896 address MacroAssembler::trampoline_call(Address entry) { 897 assert(entry.rspec().type() == relocInfo::runtime_call_type 898 || entry.rspec().type() == relocInfo::opt_virtual_call_type 899 || entry.rspec().type() == relocInfo::static_call_type 900 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 901 902 address target = entry.target(); 903 904 if (!is_always_within_branch_range(entry)) { 905 if (!in_scratch_emit_size()) { 906 // We don't want to emit a trampoline if C2 is generating dummy 907 // code during its branch shortening phase. 908 if (entry.rspec().type() == relocInfo::runtime_call_type) { 909 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 910 code()->share_trampoline_for(entry.target(), offset()); 911 } else { 912 address stub = emit_trampoline_stub(offset(), target); 913 if (stub == nullptr) { 914 postcond(pc() == badAddress); 915 return nullptr; // CodeCache is full 916 } 917 } 918 } 919 target = pc(); 920 } 921 922 address call_pc = pc(); 923 relocate(entry.rspec()); 924 bl(target); 925 926 postcond(pc() != badAddress); 927 return call_pc; 928 } 929 930 // Emit a trampoline stub for a call to a target which is too far away. 931 // 932 // code sequences: 933 // 934 // call-site: 935 // branch-and-link to <destination> or <trampoline stub> 936 // 937 // Related trampoline stub for this call site in the stub section: 938 // load the call target from the constant pool 939 // branch (LR still points to the call site above) 940 941 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 942 address dest) { 943 // Max stub size: alignment nop, TrampolineStub. 944 address stub = start_a_stub(max_trampoline_stub_size()); 945 if (stub == nullptr) { 946 return nullptr; // CodeBuffer::expand failed 947 } 948 949 // Create a trampoline stub relocation which relates this trampoline stub 950 // with the call instruction at insts_call_instruction_offset in the 951 // instructions code-section. 952 align(wordSize); 953 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 954 + insts_call_instruction_offset)); 955 const int stub_start_offset = offset(); 956 957 // Now, create the trampoline stub's code: 958 // - load the call 959 // - call 960 Label target; 961 ldr(rscratch1, target); 962 br(rscratch1); 963 bind(target); 964 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 965 "should be"); 966 emit_int64((int64_t)dest); 967 968 const address stub_start_addr = addr_at(stub_start_offset); 969 970 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 971 972 end_a_stub(); 973 return stub_start_addr; 974 } 975 976 int MacroAssembler::max_trampoline_stub_size() { 977 // Max stub size: alignment nop, TrampolineStub. 978 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 979 } 980 981 void MacroAssembler::emit_static_call_stub() { 982 // CompiledDirectCall::set_to_interpreted knows the 983 // exact layout of this stub. 984 985 isb(); 986 mov_metadata(rmethod, nullptr); 987 988 // Jump to the entry point of the c2i stub. 989 if (codestub_branch_needs_far_jump()) { 990 movptr(rscratch1, 0); 991 br(rscratch1); 992 } else { 993 b(pc()); 994 } 995 } 996 997 int MacroAssembler::static_call_stub_size() { 998 if (!codestub_branch_needs_far_jump()) { 999 // isb; movk; movz; movz; b 1000 return 5 * NativeInstruction::instruction_size; 1001 } 1002 // isb; movk; movz; movz; movk; movz; movz; br 1003 return 8 * NativeInstruction::instruction_size; 1004 } 1005 1006 void MacroAssembler::c2bool(Register x) { 1007 // implements x == 0 ? 0 : 1 1008 // note: must only look at least-significant byte of x 1009 // since C-style booleans are stored in one byte 1010 // only! (was bug) 1011 tst(x, 0xff); 1012 cset(x, Assembler::NE); 1013 } 1014 1015 address MacroAssembler::ic_call(address entry, jint method_index) { 1016 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1017 movptr(rscratch2, (intptr_t)Universe::non_oop_word()); 1018 return trampoline_call(Address(entry, rh)); 1019 } 1020 1021 int MacroAssembler::ic_check_size() { 1022 int extra_instructions = UseCompactObjectHeaders ? 1 : 0; 1023 if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) { 1024 return NativeInstruction::instruction_size * (7 + extra_instructions); 1025 } else { 1026 return NativeInstruction::instruction_size * (5 + extra_instructions); 1027 } 1028 } 1029 1030 int MacroAssembler::ic_check(int end_alignment) { 1031 Register receiver = j_rarg0; 1032 Register data = rscratch2; 1033 Register tmp1 = rscratch1; 1034 Register tmp2 = r10; 1035 1036 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1037 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1038 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1039 // before the inline cache check here, and not after 1040 align(end_alignment, offset() + ic_check_size()); 1041 1042 int uep_offset = offset(); 1043 1044 if (UseCompactObjectHeaders) { 1045 load_narrow_klass_compact(tmp1, receiver); 1046 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1047 cmpw(tmp1, tmp2); 1048 } else if (UseCompressedClassPointers) { 1049 ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1050 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1051 cmpw(tmp1, tmp2); 1052 } else { 1053 ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1054 ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1055 cmp(tmp1, tmp2); 1056 } 1057 1058 Label dont; 1059 br(Assembler::EQ, dont); 1060 far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1061 bind(dont); 1062 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1063 1064 return uep_offset; 1065 } 1066 1067 // Implementation of call_VM versions 1068 1069 void MacroAssembler::call_VM(Register oop_result, 1070 address entry_point, 1071 bool check_exceptions) { 1072 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1073 } 1074 1075 void MacroAssembler::call_VM(Register oop_result, 1076 address entry_point, 1077 Register arg_1, 1078 bool check_exceptions) { 1079 pass_arg1(this, arg_1); 1080 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1081 } 1082 1083 void MacroAssembler::call_VM(Register oop_result, 1084 address entry_point, 1085 Register arg_1, 1086 Register arg_2, 1087 bool check_exceptions) { 1088 assert_different_registers(arg_1, c_rarg2); 1089 pass_arg2(this, arg_2); 1090 pass_arg1(this, arg_1); 1091 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1092 } 1093 1094 void MacroAssembler::call_VM(Register oop_result, 1095 address entry_point, 1096 Register arg_1, 1097 Register arg_2, 1098 Register arg_3, 1099 bool check_exceptions) { 1100 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1101 assert_different_registers(arg_2, c_rarg3); 1102 pass_arg3(this, arg_3); 1103 1104 pass_arg2(this, arg_2); 1105 1106 pass_arg1(this, arg_1); 1107 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1108 } 1109 1110 void MacroAssembler::call_VM(Register oop_result, 1111 Register last_java_sp, 1112 address entry_point, 1113 int number_of_arguments, 1114 bool check_exceptions) { 1115 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1116 } 1117 1118 void MacroAssembler::call_VM(Register oop_result, 1119 Register last_java_sp, 1120 address entry_point, 1121 Register arg_1, 1122 bool check_exceptions) { 1123 pass_arg1(this, arg_1); 1124 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1125 } 1126 1127 void MacroAssembler::call_VM(Register oop_result, 1128 Register last_java_sp, 1129 address entry_point, 1130 Register arg_1, 1131 Register arg_2, 1132 bool check_exceptions) { 1133 1134 assert_different_registers(arg_1, c_rarg2); 1135 pass_arg2(this, arg_2); 1136 pass_arg1(this, arg_1); 1137 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1138 } 1139 1140 void MacroAssembler::call_VM(Register oop_result, 1141 Register last_java_sp, 1142 address entry_point, 1143 Register arg_1, 1144 Register arg_2, 1145 Register arg_3, 1146 bool check_exceptions) { 1147 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1148 assert_different_registers(arg_2, c_rarg3); 1149 pass_arg3(this, arg_3); 1150 pass_arg2(this, arg_2); 1151 pass_arg1(this, arg_1); 1152 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1153 } 1154 1155 1156 void MacroAssembler::get_vm_result_oop(Register oop_result, Register java_thread) { 1157 ldr(oop_result, Address(java_thread, JavaThread::vm_result_oop_offset())); 1158 str(zr, Address(java_thread, JavaThread::vm_result_oop_offset())); 1159 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1160 } 1161 1162 void MacroAssembler::get_vm_result_metadata(Register metadata_result, Register java_thread) { 1163 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1164 str(zr, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1165 } 1166 1167 void MacroAssembler::align(int modulus) { 1168 align(modulus, offset()); 1169 } 1170 1171 // Ensure that the code at target bytes offset from the current offset() is aligned 1172 // according to modulus. 1173 void MacroAssembler::align(int modulus, int target) { 1174 int delta = target - offset(); 1175 while ((offset() + delta) % modulus != 0) nop(); 1176 } 1177 1178 void MacroAssembler::post_call_nop() { 1179 if (!Continuations::enabled()) { 1180 return; 1181 } 1182 InstructionMark im(this); 1183 relocate(post_call_nop_Relocation::spec()); 1184 InlineSkippedInstructionsCounter skipCounter(this); 1185 nop(); 1186 movk(zr, 0); 1187 movk(zr, 0); 1188 } 1189 1190 // these are no-ops overridden by InterpreterMacroAssembler 1191 1192 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1193 1194 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1195 1196 // Look up the method for a megamorphic invokeinterface call. 1197 // The target method is determined by <intf_klass, itable_index>. 1198 // The receiver klass is in recv_klass. 1199 // On success, the result will be in method_result, and execution falls through. 1200 // On failure, execution transfers to the given label. 1201 void MacroAssembler::lookup_interface_method(Register recv_klass, 1202 Register intf_klass, 1203 RegisterOrConstant itable_index, 1204 Register method_result, 1205 Register scan_temp, 1206 Label& L_no_such_interface, 1207 bool return_method) { 1208 assert_different_registers(recv_klass, intf_klass, scan_temp); 1209 assert_different_registers(method_result, intf_klass, scan_temp); 1210 assert(recv_klass != method_result || !return_method, 1211 "recv_klass can be destroyed when method isn't needed"); 1212 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1213 "caller must use same register for non-constant itable index as for method"); 1214 1215 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1216 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1217 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1218 int scan_step = itableOffsetEntry::size() * wordSize; 1219 int vte_size = vtableEntry::size_in_bytes(); 1220 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1221 1222 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1223 1224 // Could store the aligned, prescaled offset in the klass. 1225 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1226 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1227 add(scan_temp, scan_temp, vtable_base); 1228 1229 if (return_method) { 1230 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1231 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1232 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1233 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1234 if (itentry_off) 1235 add(recv_klass, recv_klass, itentry_off); 1236 } 1237 1238 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1239 // if (scan->interface() == intf) { 1240 // result = (klass + scan->offset() + itable_index); 1241 // } 1242 // } 1243 Label search, found_method; 1244 1245 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1246 cmp(intf_klass, method_result); 1247 br(Assembler::EQ, found_method); 1248 bind(search); 1249 // Check that the previous entry is non-null. A null entry means that 1250 // the receiver class doesn't implement the interface, and wasn't the 1251 // same as when the caller was compiled. 1252 cbz(method_result, L_no_such_interface); 1253 if (itableOffsetEntry::interface_offset() != 0) { 1254 add(scan_temp, scan_temp, scan_step); 1255 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1256 } else { 1257 ldr(method_result, Address(pre(scan_temp, scan_step))); 1258 } 1259 cmp(intf_klass, method_result); 1260 br(Assembler::NE, search); 1261 1262 bind(found_method); 1263 1264 // Got a hit. 1265 if (return_method) { 1266 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1267 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1268 } 1269 } 1270 1271 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1272 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 1273 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1274 // The target method is determined by <holder_klass, itable_index>. 1275 // The receiver klass is in recv_klass. 1276 // On success, the result will be in method_result, and execution falls through. 1277 // On failure, execution transfers to the given label. 1278 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1279 Register holder_klass, 1280 Register resolved_klass, 1281 Register method_result, 1282 Register temp_itbl_klass, 1283 Register scan_temp, 1284 int itable_index, 1285 Label& L_no_such_interface) { 1286 // 'method_result' is only used as output register at the very end of this method. 1287 // Until then we can reuse it as 'holder_offset'. 1288 Register holder_offset = method_result; 1289 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1290 1291 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1292 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1293 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1294 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1295 1296 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1297 1298 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1299 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1300 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1301 // temp_itbl_klass = itable[0]._interface; 1302 int vtblEntrySize = vtableEntry::size_in_bytes(); 1303 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1304 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1305 mov(holder_offset, zr); 1306 // scan_temp = &(itable[0]._interface) 1307 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1308 1309 // Initial checks: 1310 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1311 // - if (itable[0] == holder_klass), shortcut to "holder found" 1312 // - if (itable[0] == 0), no such interface 1313 cmp(resolved_klass, holder_klass); 1314 br(Assembler::NE, L_loop_search_resolved_entry); 1315 cmp(holder_klass, temp_itbl_klass); 1316 br(Assembler::EQ, L_holder_found); 1317 cbz(temp_itbl_klass, L_no_such_interface); 1318 1319 // Loop: Look for holder_klass record in itable 1320 // do { 1321 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1322 // if (temp_itbl_klass == holder_klass) { 1323 // goto L_holder_found; // Found! 1324 // } 1325 // } while (temp_itbl_klass != 0); 1326 // goto L_no_such_interface // Not found. 1327 Label L_search_holder; 1328 bind(L_search_holder); 1329 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1330 cmp(holder_klass, temp_itbl_klass); 1331 br(Assembler::EQ, L_holder_found); 1332 cbnz(temp_itbl_klass, L_search_holder); 1333 1334 b(L_no_such_interface); 1335 1336 // Loop: Look for resolved_class record in itable 1337 // while (true) { 1338 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1339 // if (temp_itbl_klass == 0) { 1340 // goto L_no_such_interface; 1341 // } 1342 // if (temp_itbl_klass == resolved_klass) { 1343 // goto L_resolved_found; // Found! 1344 // } 1345 // if (temp_itbl_klass == holder_klass) { 1346 // holder_offset = scan_temp; 1347 // } 1348 // } 1349 // 1350 Label L_loop_search_resolved; 1351 bind(L_loop_search_resolved); 1352 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1353 bind(L_loop_search_resolved_entry); 1354 cbz(temp_itbl_klass, L_no_such_interface); 1355 cmp(resolved_klass, temp_itbl_klass); 1356 br(Assembler::EQ, L_resolved_found); 1357 cmp(holder_klass, temp_itbl_klass); 1358 br(Assembler::NE, L_loop_search_resolved); 1359 mov(holder_offset, scan_temp); 1360 b(L_loop_search_resolved); 1361 1362 // See if we already have a holder klass. If not, go and scan for it. 1363 bind(L_resolved_found); 1364 cbz(holder_offset, L_search_holder); 1365 mov(scan_temp, holder_offset); 1366 1367 // Finally, scan_temp contains holder_klass vtable offset 1368 bind(L_holder_found); 1369 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1370 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1371 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1372 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1373 } 1374 1375 // virtual method calling 1376 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1377 RegisterOrConstant vtable_index, 1378 Register method_result) { 1379 assert(vtableEntry::size() * wordSize == 8, 1380 "adjust the scaling in the code below"); 1381 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1382 1383 if (vtable_index.is_register()) { 1384 lea(method_result, Address(recv_klass, 1385 vtable_index.as_register(), 1386 Address::lsl(LogBytesPerWord))); 1387 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1388 } else { 1389 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1390 ldr(method_result, 1391 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1392 } 1393 } 1394 1395 void MacroAssembler::check_klass_subtype(Register sub_klass, 1396 Register super_klass, 1397 Register temp_reg, 1398 Label& L_success) { 1399 Label L_failure; 1400 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1401 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1402 bind(L_failure); 1403 } 1404 1405 1406 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1407 Register super_klass, 1408 Register temp_reg, 1409 Label* L_success, 1410 Label* L_failure, 1411 Label* L_slow_path, 1412 Register super_check_offset) { 1413 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset); 1414 bool must_load_sco = ! super_check_offset->is_valid(); 1415 if (must_load_sco) { 1416 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1417 } 1418 1419 Label L_fallthrough; 1420 int label_nulls = 0; 1421 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1422 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1423 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1424 assert(label_nulls <= 1, "at most one null in the batch"); 1425 1426 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1427 Address super_check_offset_addr(super_klass, sco_offset); 1428 1429 // Hacked jmp, which may only be used just before L_fallthrough. 1430 #define final_jmp(label) \ 1431 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1432 else b(label) /*omit semi*/ 1433 1434 // If the pointers are equal, we are done (e.g., String[] elements). 1435 // This self-check enables sharing of secondary supertype arrays among 1436 // non-primary types such as array-of-interface. Otherwise, each such 1437 // type would need its own customized SSA. 1438 // We move this check to the front of the fast path because many 1439 // type checks are in fact trivially successful in this manner, 1440 // so we get a nicely predicted branch right at the start of the check. 1441 cmp(sub_klass, super_klass); 1442 br(Assembler::EQ, *L_success); 1443 1444 // Check the supertype display: 1445 if (must_load_sco) { 1446 ldrw(temp_reg, super_check_offset_addr); 1447 super_check_offset = temp_reg; 1448 } 1449 1450 Address super_check_addr(sub_klass, super_check_offset); 1451 ldr(rscratch1, super_check_addr); 1452 cmp(super_klass, rscratch1); // load displayed supertype 1453 br(Assembler::EQ, *L_success); 1454 1455 // This check has worked decisively for primary supers. 1456 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1457 // (Secondary supers are interfaces and very deeply nested subtypes.) 1458 // This works in the same check above because of a tricky aliasing 1459 // between the super_cache and the primary super display elements. 1460 // (The 'super_check_addr' can address either, as the case requires.) 1461 // Note that the cache is updated below if it does not help us find 1462 // what we need immediately. 1463 // So if it was a primary super, we can just fail immediately. 1464 // Otherwise, it's the slow path for us (no success at this point). 1465 1466 sub(rscratch1, super_check_offset, in_bytes(Klass::secondary_super_cache_offset())); 1467 if (L_failure == &L_fallthrough) { 1468 cbz(rscratch1, *L_slow_path); 1469 } else { 1470 cbnz(rscratch1, *L_failure); 1471 final_jmp(*L_slow_path); 1472 } 1473 1474 bind(L_fallthrough); 1475 1476 #undef final_jmp 1477 } 1478 1479 // These two are taken from x86, but they look generally useful 1480 1481 // scans count pointer sized words at [addr] for occurrence of value, 1482 // generic 1483 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1484 Register scratch) { 1485 Label Lloop, Lexit; 1486 cbz(count, Lexit); 1487 bind(Lloop); 1488 ldr(scratch, post(addr, wordSize)); 1489 cmp(value, scratch); 1490 br(EQ, Lexit); 1491 sub(count, count, 1); 1492 cbnz(count, Lloop); 1493 bind(Lexit); 1494 } 1495 1496 // scans count 4 byte words at [addr] for occurrence of value, 1497 // generic 1498 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1499 Register scratch) { 1500 Label Lloop, Lexit; 1501 cbz(count, Lexit); 1502 bind(Lloop); 1503 ldrw(scratch, post(addr, wordSize)); 1504 cmpw(value, scratch); 1505 br(EQ, Lexit); 1506 sub(count, count, 1); 1507 cbnz(count, Lloop); 1508 bind(Lexit); 1509 } 1510 1511 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 1512 Register super_klass, 1513 Register temp_reg, 1514 Register temp2_reg, 1515 Label* L_success, 1516 Label* L_failure, 1517 bool set_cond_codes) { 1518 // NB! Callers may assume that, when temp2_reg is a valid register, 1519 // this code sets it to a nonzero value. 1520 1521 assert_different_registers(sub_klass, super_klass, temp_reg); 1522 if (temp2_reg != noreg) 1523 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1524 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1525 1526 Label L_fallthrough; 1527 int label_nulls = 0; 1528 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1529 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1530 assert(label_nulls <= 1, "at most one null in the batch"); 1531 1532 // a couple of useful fields in sub_klass: 1533 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1534 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1535 Address secondary_supers_addr(sub_klass, ss_offset); 1536 Address super_cache_addr( sub_klass, sc_offset); 1537 1538 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1539 1540 // Do a linear scan of the secondary super-klass chain. 1541 // This code is rarely used, so simplicity is a virtue here. 1542 // The repne_scan instruction uses fixed registers, which we must spill. 1543 // Don't worry too much about pre-existing connections with the input regs. 1544 1545 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1546 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1547 1548 RegSet pushed_registers; 1549 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1550 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1551 1552 if (super_klass != r0) { 1553 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1554 } 1555 1556 push(pushed_registers, sp); 1557 1558 // Get super_klass value into r0 (even if it was in r5 or r2). 1559 if (super_klass != r0) { 1560 mov(r0, super_klass); 1561 } 1562 1563 #ifndef PRODUCT 1564 incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr)); 1565 #endif //PRODUCT 1566 1567 // We will consult the secondary-super array. 1568 ldr(r5, secondary_supers_addr); 1569 // Load the array length. 1570 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1571 // Skip to start of data. 1572 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1573 1574 cmp(sp, zr); // Clear Z flag; SP is never zero 1575 // Scan R2 words at [R5] for an occurrence of R0. 1576 // Set NZ/Z based on last compare. 1577 repne_scan(r5, r0, r2, rscratch1); 1578 1579 // Unspill the temp. registers: 1580 pop(pushed_registers, sp); 1581 1582 br(Assembler::NE, *L_failure); 1583 1584 // Success. Cache the super we found and proceed in triumph. 1585 1586 if (UseSecondarySupersCache) { 1587 str(super_klass, super_cache_addr); 1588 } 1589 1590 if (L_success != &L_fallthrough) { 1591 b(*L_success); 1592 } 1593 1594 #undef IS_A_TEMP 1595 1596 bind(L_fallthrough); 1597 } 1598 1599 // If Register r is invalid, remove a new register from 1600 // available_regs, and add new register to regs_to_push. 1601 Register MacroAssembler::allocate_if_noreg(Register r, 1602 RegSetIterator<Register> &available_regs, 1603 RegSet ®s_to_push) { 1604 if (!r->is_valid()) { 1605 r = *available_regs++; 1606 regs_to_push += r; 1607 } 1608 return r; 1609 } 1610 1611 // check_klass_subtype_slow_path_table() looks for super_klass in the 1612 // hash table belonging to super_klass, branching to L_success or 1613 // L_failure as appropriate. This is essentially a shim which 1614 // allocates registers as necessary then calls 1615 // lookup_secondary_supers_table() to do the work. Any of the temp 1616 // regs may be noreg, in which case this logic will chooses some 1617 // registers push and pop them from the stack. 1618 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 1619 Register super_klass, 1620 Register temp_reg, 1621 Register temp2_reg, 1622 Register temp3_reg, 1623 Register result_reg, 1624 FloatRegister vtemp, 1625 Label* L_success, 1626 Label* L_failure, 1627 bool set_cond_codes) { 1628 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 1629 1630 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1631 1632 Label L_fallthrough; 1633 int label_nulls = 0; 1634 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1635 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1636 assert(label_nulls <= 1, "at most one null in the batch"); 1637 1638 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1639 1640 RegSetIterator<Register> available_regs 1641 = (RegSet::range(r0, r15) - temps - sub_klass - super_klass).begin(); 1642 1643 RegSet pushed_regs; 1644 1645 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 1646 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 1647 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 1648 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 1649 1650 push(pushed_regs, sp); 1651 1652 lookup_secondary_supers_table_var(sub_klass, 1653 super_klass, 1654 temp_reg, temp2_reg, temp3_reg, vtemp, result_reg, 1655 nullptr); 1656 cmp(result_reg, zr); 1657 1658 // Unspill the temp. registers: 1659 pop(pushed_regs, sp); 1660 1661 // NB! Callers may assume that, when set_cond_codes is true, this 1662 // code sets temp2_reg to a nonzero value. 1663 if (set_cond_codes) { 1664 mov(temp2_reg, 1); 1665 } 1666 1667 br(Assembler::NE, *L_failure); 1668 1669 if (L_success != &L_fallthrough) { 1670 b(*L_success); 1671 } 1672 1673 bind(L_fallthrough); 1674 } 1675 1676 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1677 Register super_klass, 1678 Register temp_reg, 1679 Register temp2_reg, 1680 Label* L_success, 1681 Label* L_failure, 1682 bool set_cond_codes) { 1683 if (UseSecondarySupersTable) { 1684 check_klass_subtype_slow_path_table 1685 (sub_klass, super_klass, temp_reg, temp2_reg, /*temp3*/noreg, /*result*/noreg, 1686 /*vtemp*/fnoreg, 1687 L_success, L_failure, set_cond_codes); 1688 } else { 1689 check_klass_subtype_slow_path_linear 1690 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 1691 } 1692 } 1693 1694 1695 // Ensure that the inline code and the stub are using the same registers. 1696 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 1697 do { \ 1698 assert(r_super_klass == r0 && \ 1699 r_array_base == r1 && \ 1700 r_array_length == r2 && \ 1701 (r_array_index == r3 || r_array_index == noreg) && \ 1702 (r_sub_klass == r4 || r_sub_klass == noreg) && \ 1703 (r_bitmap == rscratch2 || r_bitmap == noreg) && \ 1704 (result == r5 || result == noreg), "registers must match aarch64.ad"); \ 1705 } while(0) 1706 1707 bool MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 1708 Register r_super_klass, 1709 Register temp1, 1710 Register temp2, 1711 Register temp3, 1712 FloatRegister vtemp, 1713 Register result, 1714 u1 super_klass_slot, 1715 bool stub_is_near) { 1716 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1717 1718 Label L_fallthrough; 1719 1720 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1721 1722 const Register 1723 r_array_base = temp1, // r1 1724 r_array_length = temp2, // r2 1725 r_array_index = temp3, // r3 1726 r_bitmap = rscratch2; 1727 1728 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1729 1730 u1 bit = super_klass_slot; 1731 1732 // Make sure that result is nonzero if the TBZ below misses. 1733 mov(result, 1); 1734 1735 // We're going to need the bitmap in a vector reg and in a core reg, 1736 // so load both now. 1737 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1738 if (bit != 0) { 1739 ldrd(vtemp, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1740 } 1741 // First check the bitmap to see if super_klass might be present. If 1742 // the bit is zero, we are certain that super_klass is not one of 1743 // the secondary supers. 1744 tbz(r_bitmap, bit, L_fallthrough); 1745 1746 // Get the first array index that can contain super_klass into r_array_index. 1747 if (bit != 0) { 1748 shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit); 1749 cnt(vtemp, T8B, vtemp); 1750 addv(vtemp, T8B, vtemp); 1751 fmovd(r_array_index, vtemp); 1752 } else { 1753 mov(r_array_index, (u1)1); 1754 } 1755 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1756 1757 // We will consult the secondary-super array. 1758 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1759 1760 // The value i in r_array_index is >= 1, so even though r_array_base 1761 // points to the length, we don't need to adjust it to point to the 1762 // data. 1763 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1764 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1765 1766 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1767 eor(result, result, r_super_klass); 1768 cbz(result, L_fallthrough); // Found a match 1769 1770 // Is there another entry to check? Consult the bitmap. 1771 tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough); 1772 1773 // Linear probe. 1774 if (bit != 0) { 1775 ror(r_bitmap, r_bitmap, bit); 1776 } 1777 1778 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1779 // The next slot to be inspected, by the stub we're about to call, 1780 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1781 // have been checked. 1782 Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()); 1783 if (stub_is_near) { 1784 bl(stub); 1785 } else { 1786 address call = trampoline_call(stub); 1787 if (call == nullptr) { 1788 return false; // trampoline allocation failed 1789 } 1790 } 1791 1792 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1793 1794 bind(L_fallthrough); 1795 1796 if (VerifySecondarySupers) { 1797 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1798 temp1, temp2, result); // r1, r2, r5 1799 } 1800 return true; 1801 } 1802 1803 // At runtime, return 0 in result if r_super_klass is a superclass of 1804 // r_sub_klass, otherwise return nonzero. Use this version of 1805 // lookup_secondary_supers_table() if you don't know ahead of time 1806 // which superclass will be searched for. Used by interpreter and 1807 // runtime stubs. It is larger and has somewhat greater latency than 1808 // the version above, which takes a constant super_klass_slot. 1809 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 1810 Register r_super_klass, 1811 Register temp1, 1812 Register temp2, 1813 Register temp3, 1814 FloatRegister vtemp, 1815 Register result, 1816 Label *L_success) { 1817 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1818 1819 Label L_fallthrough; 1820 1821 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1822 1823 const Register 1824 r_array_index = temp3, 1825 slot = rscratch1, 1826 r_bitmap = rscratch2; 1827 1828 ldrb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 1829 1830 // Make sure that result is nonzero if the test below misses. 1831 mov(result, 1); 1832 1833 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1834 1835 // First check the bitmap to see if super_klass might be present. If 1836 // the bit is zero, we are certain that super_klass is not one of 1837 // the secondary supers. 1838 1839 // This next instruction is equivalent to: 1840 // mov(tmp_reg, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1841 // sub(temp2, tmp_reg, slot); 1842 eor(temp2, slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1843 lslv(temp2, r_bitmap, temp2); 1844 tbz(temp2, Klass::SECONDARY_SUPERS_TABLE_SIZE - 1, L_fallthrough); 1845 1846 bool must_save_v0 = (vtemp == fnoreg); 1847 if (must_save_v0) { 1848 // temp1 and result are free, so use them to preserve vtemp 1849 vtemp = v0; 1850 mov(temp1, vtemp, D, 0); 1851 mov(result, vtemp, D, 1); 1852 } 1853 1854 // Get the first array index that can contain super_klass into r_array_index. 1855 mov(vtemp, D, 0, temp2); 1856 cnt(vtemp, T8B, vtemp); 1857 addv(vtemp, T8B, vtemp); 1858 mov(r_array_index, vtemp, D, 0); 1859 1860 if (must_save_v0) { 1861 mov(vtemp, D, 0, temp1 ); 1862 mov(vtemp, D, 1, result); 1863 } 1864 1865 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1866 1867 const Register 1868 r_array_base = temp1, 1869 r_array_length = temp2; 1870 1871 // The value i in r_array_index is >= 1, so even though r_array_base 1872 // points to the length, we don't need to adjust it to point to the 1873 // data. 1874 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1875 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1876 1877 // We will consult the secondary-super array. 1878 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1879 1880 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1881 eor(result, result, r_super_klass); 1882 cbz(result, L_success ? *L_success : L_fallthrough); // Found a match 1883 1884 // Is there another entry to check? Consult the bitmap. 1885 rorv(r_bitmap, r_bitmap, slot); 1886 // rol(r_bitmap, r_bitmap, 1); 1887 tbz(r_bitmap, 1, L_fallthrough); 1888 1889 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1890 // The next slot to be inspected, by the logic we're about to call, 1891 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1892 // have been checked. 1893 lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, 1894 r_bitmap, r_array_length, result, /*is_stub*/false); 1895 1896 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1897 1898 bind(L_fallthrough); 1899 1900 if (VerifySecondarySupers) { 1901 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1902 temp1, temp2, result); // r1, r2, r5 1903 } 1904 1905 if (L_success) { 1906 cbz(result, *L_success); 1907 } 1908 } 1909 1910 // Called by code generated by check_klass_subtype_slow_path 1911 // above. This is called when there is a collision in the hashed 1912 // lookup in the secondary supers array. 1913 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 1914 Register r_array_base, 1915 Register r_array_index, 1916 Register r_bitmap, 1917 Register temp1, 1918 Register result, 1919 bool is_stub) { 1920 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1); 1921 1922 const Register 1923 r_array_length = temp1, 1924 r_sub_klass = noreg; // unused 1925 1926 if (is_stub) { 1927 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1928 } 1929 1930 Label L_fallthrough, L_huge; 1931 1932 // Load the array length. 1933 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1934 // And adjust the array base to point to the data. 1935 // NB! Effectively increments current slot index by 1. 1936 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 1937 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1938 1939 // The bitmap is full to bursting. 1940 // Implicit invariant: BITMAP_FULL implies (length > 0) 1941 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 1942 cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2)); 1943 br(GT, L_huge); 1944 1945 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 1946 // current slot (at secondary_supers[r_array_index]) has not yet 1947 // been inspected, and r_array_index may be out of bounds if we 1948 // wrapped around the end of the array. 1949 1950 { // This is conventional linear probing, but instead of terminating 1951 // when a null entry is found in the table, we maintain a bitmap 1952 // in which a 0 indicates missing entries. 1953 // As long as the bitmap is not completely full, 1954 // array_length == popcount(bitmap). The array_length check above 1955 // guarantees there are 0s in the bitmap, so the loop eventually 1956 // terminates. 1957 Label L_loop; 1958 bind(L_loop); 1959 1960 // Check for wraparound. 1961 cmp(r_array_index, r_array_length); 1962 csel(r_array_index, zr, r_array_index, GE); 1963 1964 ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1965 eor(result, rscratch1, r_super_klass); 1966 cbz(result, L_fallthrough); 1967 1968 tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero 1969 1970 ror(r_bitmap, r_bitmap, 1); 1971 add(r_array_index, r_array_index, 1); 1972 b(L_loop); 1973 } 1974 1975 { // Degenerate case: more than 64 secondary supers. 1976 // FIXME: We could do something smarter here, maybe a vectorized 1977 // comparison or a binary search, but is that worth any added 1978 // complexity? 1979 bind(L_huge); 1980 cmp(sp, zr); // Clear Z flag; SP is never zero 1981 repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1); 1982 cset(result, NE); // result == 0 iff we got a match. 1983 } 1984 1985 bind(L_fallthrough); 1986 } 1987 1988 // Make sure that the hashed lookup and a linear scan agree. 1989 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 1990 Register r_super_klass, 1991 Register temp1, 1992 Register temp2, 1993 Register result) { 1994 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1); 1995 1996 const Register 1997 r_array_base = temp1, 1998 r_array_length = temp2, 1999 r_array_index = noreg, // unused 2000 r_bitmap = noreg; // unused 2001 2002 BLOCK_COMMENT("verify_secondary_supers_table {"); 2003 2004 // We will consult the secondary-super array. 2005 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 2006 2007 // Load the array length. 2008 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 2009 // And adjust the array base to point to the data. 2010 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 2011 2012 cmp(sp, zr); // Clear Z flag; SP is never zero 2013 // Scan R2 words at [R5] for an occurrence of R0. 2014 // Set NZ/Z based on last compare. 2015 repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2); 2016 // rscratch1 == 0 iff we got a match. 2017 cset(rscratch1, NE); 2018 2019 Label passed; 2020 cmp(result, zr); 2021 cset(result, NE); // normalize result to 0/1 for comparison 2022 2023 cmp(rscratch1, result); 2024 br(EQ, passed); 2025 { 2026 mov(r0, r_super_klass); // r0 <- r0 2027 mov(r1, r_sub_klass); // r1 <- r4 2028 mov(r2, /*expected*/rscratch1); // r2 <- r8 2029 mov(r3, result); // r3 <- r5 2030 mov(r4, (address)("mismatch")); // r4 <- const 2031 rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2); 2032 should_not_reach_here(); 2033 } 2034 bind(passed); 2035 2036 BLOCK_COMMENT("} verify_secondary_supers_table"); 2037 } 2038 2039 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 2040 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 2041 assert_different_registers(klass, rthread, scratch); 2042 2043 Label L_fallthrough, L_tmp; 2044 if (L_fast_path == nullptr) { 2045 L_fast_path = &L_fallthrough; 2046 } else if (L_slow_path == nullptr) { 2047 L_slow_path = &L_fallthrough; 2048 } 2049 // Fast path check: class is fully initialized 2050 lea(scratch, Address(klass, InstanceKlass::init_state_offset())); 2051 ldarb(scratch, scratch); 2052 cmp(scratch, InstanceKlass::fully_initialized); 2053 br(Assembler::EQ, *L_fast_path); 2054 2055 // Fast path check: current thread is initializer thread 2056 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 2057 cmp(rthread, scratch); 2058 2059 if (L_slow_path == &L_fallthrough) { 2060 br(Assembler::EQ, *L_fast_path); 2061 bind(*L_slow_path); 2062 } else if (L_fast_path == &L_fallthrough) { 2063 br(Assembler::NE, *L_slow_path); 2064 bind(*L_fast_path); 2065 } else { 2066 Unimplemented(); 2067 } 2068 } 2069 2070 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 2071 if (!VerifyOops) return; 2072 2073 // Pass register number to verify_oop_subroutine 2074 const char* b = nullptr; 2075 { 2076 ResourceMark rm; 2077 stringStream ss; 2078 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 2079 b = code_string(ss.as_string()); 2080 } 2081 BLOCK_COMMENT("verify_oop {"); 2082 2083 strip_return_address(); // This might happen within a stack frame. 2084 protect_return_address(); 2085 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2086 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2087 2088 mov(r0, reg); 2089 movptr(rscratch1, (uintptr_t)(address)b); 2090 2091 // call indirectly to solve generation ordering problem 2092 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2093 ldr(rscratch2, Address(rscratch2)); 2094 blr(rscratch2); 2095 2096 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2097 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2098 authenticate_return_address(); 2099 2100 BLOCK_COMMENT("} verify_oop"); 2101 } 2102 2103 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 2104 if (!VerifyOops) return; 2105 2106 const char* b = nullptr; 2107 { 2108 ResourceMark rm; 2109 stringStream ss; 2110 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 2111 b = code_string(ss.as_string()); 2112 } 2113 BLOCK_COMMENT("verify_oop_addr {"); 2114 2115 strip_return_address(); // This might happen within a stack frame. 2116 protect_return_address(); 2117 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2118 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2119 2120 // addr may contain sp so we will have to adjust it based on the 2121 // pushes that we just did. 2122 if (addr.uses(sp)) { 2123 lea(r0, addr); 2124 ldr(r0, Address(r0, 4 * wordSize)); 2125 } else { 2126 ldr(r0, addr); 2127 } 2128 movptr(rscratch1, (uintptr_t)(address)b); 2129 2130 // call indirectly to solve generation ordering problem 2131 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2132 ldr(rscratch2, Address(rscratch2)); 2133 blr(rscratch2); 2134 2135 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2136 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2137 authenticate_return_address(); 2138 2139 BLOCK_COMMENT("} verify_oop_addr"); 2140 } 2141 2142 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 2143 int extra_slot_offset) { 2144 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 2145 int stackElementSize = Interpreter::stackElementSize; 2146 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 2147 #ifdef ASSERT 2148 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 2149 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 2150 #endif 2151 if (arg_slot.is_constant()) { 2152 return Address(esp, arg_slot.as_constant() * stackElementSize 2153 + offset); 2154 } else { 2155 add(rscratch1, esp, arg_slot.as_register(), 2156 ext::uxtx, exact_log2(stackElementSize)); 2157 return Address(rscratch1, offset); 2158 } 2159 } 2160 2161 void MacroAssembler::call_VM_leaf_base(address entry_point, 2162 int number_of_arguments, 2163 Label *retaddr) { 2164 Label E, L; 2165 2166 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 2167 2168 mov(rscratch1, RuntimeAddress(entry_point)); 2169 blr(rscratch1); 2170 if (retaddr) 2171 bind(*retaddr); 2172 2173 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 2174 } 2175 2176 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 2177 call_VM_leaf_base(entry_point, number_of_arguments); 2178 } 2179 2180 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 2181 pass_arg0(this, arg_0); 2182 call_VM_leaf_base(entry_point, 1); 2183 } 2184 2185 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2186 assert_different_registers(arg_1, c_rarg0); 2187 pass_arg0(this, arg_0); 2188 pass_arg1(this, arg_1); 2189 call_VM_leaf_base(entry_point, 2); 2190 } 2191 2192 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 2193 Register arg_1, Register arg_2) { 2194 assert_different_registers(arg_1, c_rarg0); 2195 assert_different_registers(arg_2, c_rarg0, c_rarg1); 2196 pass_arg0(this, arg_0); 2197 pass_arg1(this, arg_1); 2198 pass_arg2(this, arg_2); 2199 call_VM_leaf_base(entry_point, 3); 2200 } 2201 2202 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 2203 pass_arg0(this, arg_0); 2204 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2205 } 2206 2207 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2208 2209 assert_different_registers(arg_0, c_rarg1); 2210 pass_arg1(this, arg_1); 2211 pass_arg0(this, arg_0); 2212 MacroAssembler::call_VM_leaf_base(entry_point, 2); 2213 } 2214 2215 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 2216 assert_different_registers(arg_0, c_rarg1, c_rarg2); 2217 assert_different_registers(arg_1, c_rarg2); 2218 pass_arg2(this, arg_2); 2219 pass_arg1(this, arg_1); 2220 pass_arg0(this, arg_0); 2221 MacroAssembler::call_VM_leaf_base(entry_point, 3); 2222 } 2223 2224 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 2225 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 2226 assert_different_registers(arg_1, c_rarg2, c_rarg3); 2227 assert_different_registers(arg_2, c_rarg3); 2228 pass_arg3(this, arg_3); 2229 pass_arg2(this, arg_2); 2230 pass_arg1(this, arg_1); 2231 pass_arg0(this, arg_0); 2232 MacroAssembler::call_VM_leaf_base(entry_point, 4); 2233 } 2234 2235 void MacroAssembler::null_check(Register reg, int offset) { 2236 if (needs_explicit_null_check(offset)) { 2237 // provoke OS null exception if reg is null by 2238 // accessing M[reg] w/o changing any registers 2239 // NOTE: this is plenty to provoke a segv 2240 ldr(zr, Address(reg)); 2241 } else { 2242 // nothing to do, (later) access of M[reg + offset] 2243 // will provoke OS null exception if reg is null 2244 } 2245 } 2246 2247 // MacroAssembler protected routines needed to implement 2248 // public methods 2249 2250 void MacroAssembler::mov(Register r, Address dest) { 2251 code_section()->relocate(pc(), dest.rspec()); 2252 uint64_t imm64 = (uint64_t)dest.target(); 2253 movptr(r, imm64); 2254 } 2255 2256 // Move a constant pointer into r. In AArch64 mode the virtual 2257 // address space is 48 bits in size, so we only need three 2258 // instructions to create a patchable instruction sequence that can 2259 // reach anywhere. 2260 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 2261 #ifndef PRODUCT 2262 { 2263 char buffer[64]; 2264 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 2265 block_comment(buffer); 2266 } 2267 #endif 2268 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 2269 movz(r, imm64 & 0xffff); 2270 imm64 >>= 16; 2271 movk(r, imm64 & 0xffff, 16); 2272 imm64 >>= 16; 2273 movk(r, imm64 & 0xffff, 32); 2274 } 2275 2276 // Macro to mov replicated immediate to vector register. 2277 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 2278 // the upper 56/48/32 bits must be zeros for B/H/S type. 2279 // Vd will get the following values for different arrangements in T 2280 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 2281 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 2282 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 2283 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 2284 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 2285 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 2286 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 2287 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 2288 // Clobbers rscratch1 2289 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 2290 assert(T != T1Q, "unsupported"); 2291 if (T == T1D || T == T2D) { 2292 int imm = operand_valid_for_movi_immediate(imm64, T); 2293 if (-1 != imm) { 2294 movi(Vd, T, imm); 2295 } else { 2296 mov(rscratch1, imm64); 2297 dup(Vd, T, rscratch1); 2298 } 2299 return; 2300 } 2301 2302 #ifdef ASSERT 2303 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 2304 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 2305 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 2306 #endif 2307 int shift = operand_valid_for_movi_immediate(imm64, T); 2308 uint32_t imm32 = imm64 & 0xffffffffULL; 2309 if (shift >= 0) { 2310 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 2311 } else { 2312 movw(rscratch1, imm32); 2313 dup(Vd, T, rscratch1); 2314 } 2315 } 2316 2317 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 2318 { 2319 #ifndef PRODUCT 2320 { 2321 char buffer[64]; 2322 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 2323 block_comment(buffer); 2324 } 2325 #endif 2326 if (operand_valid_for_logical_immediate(false, imm64)) { 2327 orr(dst, zr, imm64); 2328 } else { 2329 // we can use a combination of MOVZ or MOVN with 2330 // MOVK to build up the constant 2331 uint64_t imm_h[4]; 2332 int zero_count = 0; 2333 int neg_count = 0; 2334 int i; 2335 for (i = 0; i < 4; i++) { 2336 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 2337 if (imm_h[i] == 0) { 2338 zero_count++; 2339 } else if (imm_h[i] == 0xffffL) { 2340 neg_count++; 2341 } 2342 } 2343 if (zero_count == 4) { 2344 // one MOVZ will do 2345 movz(dst, 0); 2346 } else if (neg_count == 4) { 2347 // one MOVN will do 2348 movn(dst, 0); 2349 } else if (zero_count == 3) { 2350 for (i = 0; i < 4; i++) { 2351 if (imm_h[i] != 0L) { 2352 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2353 break; 2354 } 2355 } 2356 } else if (neg_count == 3) { 2357 // one MOVN will do 2358 for (int i = 0; i < 4; i++) { 2359 if (imm_h[i] != 0xffffL) { 2360 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2361 break; 2362 } 2363 } 2364 } else if (zero_count == 2) { 2365 // one MOVZ and one MOVK will do 2366 for (i = 0; i < 3; i++) { 2367 if (imm_h[i] != 0L) { 2368 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2369 i++; 2370 break; 2371 } 2372 } 2373 for (;i < 4; i++) { 2374 if (imm_h[i] != 0L) { 2375 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2376 } 2377 } 2378 } else if (neg_count == 2) { 2379 // one MOVN and one MOVK will do 2380 for (i = 0; i < 4; i++) { 2381 if (imm_h[i] != 0xffffL) { 2382 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2383 i++; 2384 break; 2385 } 2386 } 2387 for (;i < 4; i++) { 2388 if (imm_h[i] != 0xffffL) { 2389 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2390 } 2391 } 2392 } else if (zero_count == 1) { 2393 // one MOVZ and two MOVKs will do 2394 for (i = 0; i < 4; i++) { 2395 if (imm_h[i] != 0L) { 2396 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2397 i++; 2398 break; 2399 } 2400 } 2401 for (;i < 4; i++) { 2402 if (imm_h[i] != 0x0L) { 2403 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2404 } 2405 } 2406 } else if (neg_count == 1) { 2407 // one MOVN and two MOVKs will do 2408 for (i = 0; i < 4; i++) { 2409 if (imm_h[i] != 0xffffL) { 2410 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2411 i++; 2412 break; 2413 } 2414 } 2415 for (;i < 4; i++) { 2416 if (imm_h[i] != 0xffffL) { 2417 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2418 } 2419 } 2420 } else { 2421 // use a MOVZ and 3 MOVKs (makes it easier to debug) 2422 movz(dst, (uint32_t)imm_h[0], 0); 2423 for (i = 1; i < 4; i++) { 2424 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2425 } 2426 } 2427 } 2428 } 2429 2430 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 2431 { 2432 #ifndef PRODUCT 2433 { 2434 char buffer[64]; 2435 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 2436 block_comment(buffer); 2437 } 2438 #endif 2439 if (operand_valid_for_logical_immediate(true, imm32)) { 2440 orrw(dst, zr, imm32); 2441 } else { 2442 // we can use MOVZ, MOVN or two calls to MOVK to build up the 2443 // constant 2444 uint32_t imm_h[2]; 2445 imm_h[0] = imm32 & 0xffff; 2446 imm_h[1] = ((imm32 >> 16) & 0xffff); 2447 if (imm_h[0] == 0) { 2448 movzw(dst, imm_h[1], 16); 2449 } else if (imm_h[0] == 0xffff) { 2450 movnw(dst, imm_h[1] ^ 0xffff, 16); 2451 } else if (imm_h[1] == 0) { 2452 movzw(dst, imm_h[0], 0); 2453 } else if (imm_h[1] == 0xffff) { 2454 movnw(dst, imm_h[0] ^ 0xffff, 0); 2455 } else { 2456 // use a MOVZ and MOVK (makes it easier to debug) 2457 movzw(dst, imm_h[0], 0); 2458 movkw(dst, imm_h[1], 16); 2459 } 2460 } 2461 } 2462 2463 // Form an address from base + offset in Rd. Rd may or may 2464 // not actually be used: you must use the Address that is returned. 2465 // It is up to you to ensure that the shift provided matches the size 2466 // of your data. 2467 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 2468 if (Address::offset_ok_for_immed(byte_offset, shift)) 2469 // It fits; no need for any heroics 2470 return Address(base, byte_offset); 2471 2472 // Don't do anything clever with negative or misaligned offsets 2473 unsigned mask = (1 << shift) - 1; 2474 if (byte_offset < 0 || byte_offset & mask) { 2475 mov(Rd, byte_offset); 2476 add(Rd, base, Rd); 2477 return Address(Rd); 2478 } 2479 2480 // See if we can do this with two 12-bit offsets 2481 { 2482 uint64_t word_offset = byte_offset >> shift; 2483 uint64_t masked_offset = word_offset & 0xfff000; 2484 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 2485 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 2486 add(Rd, base, masked_offset << shift); 2487 word_offset -= masked_offset; 2488 return Address(Rd, word_offset << shift); 2489 } 2490 } 2491 2492 // Do it the hard way 2493 mov(Rd, byte_offset); 2494 add(Rd, base, Rd); 2495 return Address(Rd); 2496 } 2497 2498 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2499 bool want_remainder, Register scratch) 2500 { 2501 // Full implementation of Java idiv and irem. The function 2502 // returns the (pc) offset of the div instruction - may be needed 2503 // for implicit exceptions. 2504 // 2505 // constraint : ra/rb =/= scratch 2506 // normal case 2507 // 2508 // input : ra: dividend 2509 // rb: divisor 2510 // 2511 // result: either 2512 // quotient (= ra idiv rb) 2513 // remainder (= ra irem rb) 2514 2515 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2516 2517 int idivl_offset = offset(); 2518 if (! want_remainder) { 2519 sdivw(result, ra, rb); 2520 } else { 2521 sdivw(scratch, ra, rb); 2522 Assembler::msubw(result, scratch, rb, ra); 2523 } 2524 2525 return idivl_offset; 2526 } 2527 2528 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2529 bool want_remainder, Register scratch) 2530 { 2531 // Full implementation of Java ldiv and lrem. The function 2532 // returns the (pc) offset of the div instruction - may be needed 2533 // for implicit exceptions. 2534 // 2535 // constraint : ra/rb =/= scratch 2536 // normal case 2537 // 2538 // input : ra: dividend 2539 // rb: divisor 2540 // 2541 // result: either 2542 // quotient (= ra idiv rb) 2543 // remainder (= ra irem rb) 2544 2545 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2546 2547 int idivq_offset = offset(); 2548 if (! want_remainder) { 2549 sdiv(result, ra, rb); 2550 } else { 2551 sdiv(scratch, ra, rb); 2552 Assembler::msub(result, scratch, rb, ra); 2553 } 2554 2555 return idivq_offset; 2556 } 2557 2558 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2559 address prev = pc() - NativeMembar::instruction_size; 2560 address last = code()->last_insn(); 2561 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2562 NativeMembar *bar = NativeMembar_at(prev); 2563 if (AlwaysMergeDMB) { 2564 bar->set_kind(bar->get_kind() | order_constraint); 2565 BLOCK_COMMENT("merged membar(always)"); 2566 return; 2567 } 2568 // Don't promote DMB ST|DMB LD to DMB (a full barrier) because 2569 // doing so would introduce a StoreLoad which the caller did not 2570 // intend 2571 if (bar->get_kind() == order_constraint 2572 || bar->get_kind() == AnyAny 2573 || order_constraint == AnyAny) { 2574 // We are merging two memory barrier instructions. On AArch64 we 2575 // can do this simply by ORing them together. 2576 bar->set_kind(bar->get_kind() | order_constraint); 2577 BLOCK_COMMENT("merged membar"); 2578 return; 2579 } else { 2580 // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped 2581 // We need check the last 2 instructions 2582 address prev2 = prev - NativeMembar::instruction_size; 2583 if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) { 2584 NativeMembar *bar2 = NativeMembar_at(prev2); 2585 assert(bar2->get_kind() == order_constraint, "it should be merged before"); 2586 BLOCK_COMMENT("merged membar(elided)"); 2587 return; 2588 } 2589 } 2590 } 2591 code()->set_last_insn(pc()); 2592 dmb(Assembler::barrier(order_constraint)); 2593 } 2594 2595 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2596 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2597 merge_ldst(rt, adr, size_in_bytes, is_store); 2598 code()->clear_last_insn(); 2599 return true; 2600 } else { 2601 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2602 const uint64_t mask = size_in_bytes - 1; 2603 if (adr.getMode() == Address::base_plus_offset && 2604 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2605 code()->set_last_insn(pc()); 2606 } 2607 return false; 2608 } 2609 } 2610 2611 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2612 // We always try to merge two adjacent loads into one ldp. 2613 if (!try_merge_ldst(Rx, adr, 8, false)) { 2614 Assembler::ldr(Rx, adr); 2615 } 2616 } 2617 2618 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2619 // We always try to merge two adjacent loads into one ldp. 2620 if (!try_merge_ldst(Rw, adr, 4, false)) { 2621 Assembler::ldrw(Rw, adr); 2622 } 2623 } 2624 2625 void MacroAssembler::str(Register Rx, const Address &adr) { 2626 // We always try to merge two adjacent stores into one stp. 2627 if (!try_merge_ldst(Rx, adr, 8, true)) { 2628 Assembler::str(Rx, adr); 2629 } 2630 } 2631 2632 void MacroAssembler::strw(Register Rw, const Address &adr) { 2633 // We always try to merge two adjacent stores into one stp. 2634 if (!try_merge_ldst(Rw, adr, 4, true)) { 2635 Assembler::strw(Rw, adr); 2636 } 2637 } 2638 2639 // MacroAssembler routines found actually to be needed 2640 2641 void MacroAssembler::push(Register src) 2642 { 2643 str(src, Address(pre(esp, -1 * wordSize))); 2644 } 2645 2646 void MacroAssembler::pop(Register dst) 2647 { 2648 ldr(dst, Address(post(esp, 1 * wordSize))); 2649 } 2650 2651 // Note: load_unsigned_short used to be called load_unsigned_word. 2652 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2653 int off = offset(); 2654 ldrh(dst, src); 2655 return off; 2656 } 2657 2658 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2659 int off = offset(); 2660 ldrb(dst, src); 2661 return off; 2662 } 2663 2664 int MacroAssembler::load_signed_short(Register dst, Address src) { 2665 int off = offset(); 2666 ldrsh(dst, src); 2667 return off; 2668 } 2669 2670 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2671 int off = offset(); 2672 ldrsb(dst, src); 2673 return off; 2674 } 2675 2676 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2677 int off = offset(); 2678 ldrshw(dst, src); 2679 return off; 2680 } 2681 2682 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2683 int off = offset(); 2684 ldrsbw(dst, src); 2685 return off; 2686 } 2687 2688 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2689 switch (size_in_bytes) { 2690 case 8: ldr(dst, src); break; 2691 case 4: ldrw(dst, src); break; 2692 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2693 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2694 default: ShouldNotReachHere(); 2695 } 2696 } 2697 2698 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2699 switch (size_in_bytes) { 2700 case 8: str(src, dst); break; 2701 case 4: strw(src, dst); break; 2702 case 2: strh(src, dst); break; 2703 case 1: strb(src, dst); break; 2704 default: ShouldNotReachHere(); 2705 } 2706 } 2707 2708 void MacroAssembler::decrementw(Register reg, int value) 2709 { 2710 if (value < 0) { incrementw(reg, -value); return; } 2711 if (value == 0) { return; } 2712 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2713 /* else */ { 2714 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2715 movw(rscratch2, (unsigned)value); 2716 subw(reg, reg, rscratch2); 2717 } 2718 } 2719 2720 void MacroAssembler::decrement(Register reg, int value) 2721 { 2722 if (value < 0) { increment(reg, -value); return; } 2723 if (value == 0) { return; } 2724 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2725 /* else */ { 2726 assert(reg != rscratch2, "invalid dst for register decrement"); 2727 mov(rscratch2, (uint64_t)value); 2728 sub(reg, reg, rscratch2); 2729 } 2730 } 2731 2732 void MacroAssembler::decrementw(Address dst, int value) 2733 { 2734 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2735 if (dst.getMode() == Address::literal) { 2736 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2737 lea(rscratch2, dst); 2738 dst = Address(rscratch2); 2739 } 2740 ldrw(rscratch1, dst); 2741 decrementw(rscratch1, value); 2742 strw(rscratch1, dst); 2743 } 2744 2745 void MacroAssembler::decrement(Address dst, int value) 2746 { 2747 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2748 if (dst.getMode() == Address::literal) { 2749 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2750 lea(rscratch2, dst); 2751 dst = Address(rscratch2); 2752 } 2753 ldr(rscratch1, dst); 2754 decrement(rscratch1, value); 2755 str(rscratch1, dst); 2756 } 2757 2758 void MacroAssembler::incrementw(Register reg, int value) 2759 { 2760 if (value < 0) { decrementw(reg, -value); return; } 2761 if (value == 0) { return; } 2762 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2763 /* else */ { 2764 assert(reg != rscratch2, "invalid dst for register increment"); 2765 movw(rscratch2, (unsigned)value); 2766 addw(reg, reg, rscratch2); 2767 } 2768 } 2769 2770 void MacroAssembler::increment(Register reg, int value) 2771 { 2772 if (value < 0) { decrement(reg, -value); return; } 2773 if (value == 0) { return; } 2774 if (value < (1 << 12)) { add(reg, reg, value); return; } 2775 /* else */ { 2776 assert(reg != rscratch2, "invalid dst for register increment"); 2777 movw(rscratch2, (unsigned)value); 2778 add(reg, reg, rscratch2); 2779 } 2780 } 2781 2782 void MacroAssembler::incrementw(Address dst, int value) 2783 { 2784 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2785 if (dst.getMode() == Address::literal) { 2786 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2787 lea(rscratch2, dst); 2788 dst = Address(rscratch2); 2789 } 2790 ldrw(rscratch1, dst); 2791 incrementw(rscratch1, value); 2792 strw(rscratch1, dst); 2793 } 2794 2795 void MacroAssembler::increment(Address dst, int value) 2796 { 2797 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2798 if (dst.getMode() == Address::literal) { 2799 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2800 lea(rscratch2, dst); 2801 dst = Address(rscratch2); 2802 } 2803 ldr(rscratch1, dst); 2804 increment(rscratch1, value); 2805 str(rscratch1, dst); 2806 } 2807 2808 // Push lots of registers in the bit set supplied. Don't push sp. 2809 // Return the number of words pushed 2810 int MacroAssembler::push(unsigned int bitset, Register stack) { 2811 int words_pushed = 0; 2812 2813 // Scan bitset to accumulate register pairs 2814 unsigned char regs[32]; 2815 int count = 0; 2816 for (int reg = 0; reg <= 30; reg++) { 2817 if (1 & bitset) 2818 regs[count++] = reg; 2819 bitset >>= 1; 2820 } 2821 regs[count++] = zr->raw_encoding(); 2822 count &= ~1; // Only push an even number of regs 2823 2824 if (count) { 2825 stp(as_Register(regs[0]), as_Register(regs[1]), 2826 Address(pre(stack, -count * wordSize))); 2827 words_pushed += 2; 2828 } 2829 for (int i = 2; i < count; i += 2) { 2830 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2831 Address(stack, i * wordSize)); 2832 words_pushed += 2; 2833 } 2834 2835 assert(words_pushed == count, "oops, pushed != count"); 2836 2837 return count; 2838 } 2839 2840 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2841 int words_pushed = 0; 2842 2843 // Scan bitset to accumulate register pairs 2844 unsigned char regs[32]; 2845 int count = 0; 2846 for (int reg = 0; reg <= 30; reg++) { 2847 if (1 & bitset) 2848 regs[count++] = reg; 2849 bitset >>= 1; 2850 } 2851 regs[count++] = zr->raw_encoding(); 2852 count &= ~1; 2853 2854 for (int i = 2; i < count; i += 2) { 2855 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2856 Address(stack, i * wordSize)); 2857 words_pushed += 2; 2858 } 2859 if (count) { 2860 ldp(as_Register(regs[0]), as_Register(regs[1]), 2861 Address(post(stack, count * wordSize))); 2862 words_pushed += 2; 2863 } 2864 2865 assert(words_pushed == count, "oops, pushed != count"); 2866 2867 return count; 2868 } 2869 2870 // Push lots of registers in the bit set supplied. Don't push sp. 2871 // Return the number of dwords pushed 2872 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2873 int words_pushed = 0; 2874 bool use_sve = false; 2875 int sve_vector_size_in_bytes = 0; 2876 2877 #ifdef COMPILER2 2878 use_sve = Matcher::supports_scalable_vector(); 2879 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2880 #endif 2881 2882 // Scan bitset to accumulate register pairs 2883 unsigned char regs[32]; 2884 int count = 0; 2885 for (int reg = 0; reg <= 31; reg++) { 2886 if (1 & bitset) 2887 regs[count++] = reg; 2888 bitset >>= 1; 2889 } 2890 2891 if (count == 0) { 2892 return 0; 2893 } 2894 2895 if (mode == PushPopFull) { 2896 if (use_sve && sve_vector_size_in_bytes > 16) { 2897 mode = PushPopSVE; 2898 } else { 2899 mode = PushPopNeon; 2900 } 2901 } 2902 2903 #ifndef PRODUCT 2904 { 2905 char buffer[48]; 2906 if (mode == PushPopSVE) { 2907 snprintf(buffer, sizeof(buffer), "push_fp: %d SVE registers", count); 2908 } else if (mode == PushPopNeon) { 2909 snprintf(buffer, sizeof(buffer), "push_fp: %d Neon registers", count); 2910 } else { 2911 snprintf(buffer, sizeof(buffer), "push_fp: %d fp registers", count); 2912 } 2913 block_comment(buffer); 2914 } 2915 #endif 2916 2917 if (mode == PushPopSVE) { 2918 sub(stack, stack, sve_vector_size_in_bytes * count); 2919 for (int i = 0; i < count; i++) { 2920 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2921 } 2922 return count * sve_vector_size_in_bytes / 8; 2923 } 2924 2925 if (mode == PushPopNeon) { 2926 if (count == 1) { 2927 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2928 return 2; 2929 } 2930 2931 bool odd = (count & 1) == 1; 2932 int push_slots = count + (odd ? 1 : 0); 2933 2934 // Always pushing full 128 bit registers. 2935 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2936 words_pushed += 2; 2937 2938 for (int i = 2; i + 1 < count; i += 2) { 2939 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2940 words_pushed += 2; 2941 } 2942 2943 if (odd) { 2944 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2945 words_pushed++; 2946 } 2947 2948 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2949 return count * 2; 2950 } 2951 2952 if (mode == PushPopFp) { 2953 bool odd = (count & 1) == 1; 2954 int push_slots = count + (odd ? 1 : 0); 2955 2956 if (count == 1) { 2957 // Stack pointer must be 16 bytes aligned 2958 strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize))); 2959 return 1; 2960 } 2961 2962 stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize))); 2963 words_pushed += 2; 2964 2965 for (int i = 2; i + 1 < count; i += 2) { 2966 stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 2967 words_pushed += 2; 2968 } 2969 2970 if (odd) { 2971 // Stack pointer must be 16 bytes aligned 2972 strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 2973 words_pushed++; 2974 } 2975 2976 assert(words_pushed == count, "oops, pushed != count"); 2977 2978 return count; 2979 } 2980 2981 return 0; 2982 } 2983 2984 // Return the number of dwords popped 2985 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2986 int words_pushed = 0; 2987 bool use_sve = false; 2988 int sve_vector_size_in_bytes = 0; 2989 2990 #ifdef COMPILER2 2991 use_sve = Matcher::supports_scalable_vector(); 2992 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2993 #endif 2994 // Scan bitset to accumulate register pairs 2995 unsigned char regs[32]; 2996 int count = 0; 2997 for (int reg = 0; reg <= 31; reg++) { 2998 if (1 & bitset) 2999 regs[count++] = reg; 3000 bitset >>= 1; 3001 } 3002 3003 if (count == 0) { 3004 return 0; 3005 } 3006 3007 if (mode == PushPopFull) { 3008 if (use_sve && sve_vector_size_in_bytes > 16) { 3009 mode = PushPopSVE; 3010 } else { 3011 mode = PushPopNeon; 3012 } 3013 } 3014 3015 #ifndef PRODUCT 3016 { 3017 char buffer[48]; 3018 if (mode == PushPopSVE) { 3019 snprintf(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count); 3020 } else if (mode == PushPopNeon) { 3021 snprintf(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count); 3022 } else { 3023 snprintf(buffer, sizeof(buffer), "pop_fp: %d fp registers", count); 3024 } 3025 block_comment(buffer); 3026 } 3027 #endif 3028 3029 if (mode == PushPopSVE) { 3030 for (int i = count - 1; i >= 0; i--) { 3031 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 3032 } 3033 add(stack, stack, sve_vector_size_in_bytes * count); 3034 return count * sve_vector_size_in_bytes / 8; 3035 } 3036 3037 if (mode == PushPopNeon) { 3038 if (count == 1) { 3039 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 3040 return 2; 3041 } 3042 3043 bool odd = (count & 1) == 1; 3044 int push_slots = count + (odd ? 1 : 0); 3045 3046 if (odd) { 3047 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3048 words_pushed++; 3049 } 3050 3051 for (int i = 2; i + 1 < count; i += 2) { 3052 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3053 words_pushed += 2; 3054 } 3055 3056 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 3057 words_pushed += 2; 3058 3059 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3060 3061 return count * 2; 3062 } 3063 3064 if (mode == PushPopFp) { 3065 bool odd = (count & 1) == 1; 3066 int push_slots = count + (odd ? 1 : 0); 3067 3068 if (count == 1) { 3069 ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize))); 3070 return 1; 3071 } 3072 3073 if (odd) { 3074 ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3075 words_pushed++; 3076 } 3077 3078 for (int i = 2; i + 1 < count; i += 2) { 3079 ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3080 words_pushed += 2; 3081 } 3082 3083 ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize))); 3084 words_pushed += 2; 3085 3086 assert(words_pushed == count, "oops, pushed != count"); 3087 3088 return count; 3089 } 3090 3091 return 0; 3092 } 3093 3094 // Return the number of dwords pushed 3095 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 3096 bool use_sve = false; 3097 int sve_predicate_size_in_slots = 0; 3098 3099 #ifdef COMPILER2 3100 use_sve = Matcher::supports_scalable_vector(); 3101 if (use_sve) { 3102 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3103 } 3104 #endif 3105 3106 if (!use_sve) { 3107 return 0; 3108 } 3109 3110 unsigned char regs[PRegister::number_of_registers]; 3111 int count = 0; 3112 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3113 if (1 & bitset) 3114 regs[count++] = reg; 3115 bitset >>= 1; 3116 } 3117 3118 if (count == 0) { 3119 return 0; 3120 } 3121 3122 int total_push_bytes = align_up(sve_predicate_size_in_slots * 3123 VMRegImpl::stack_slot_size * count, 16); 3124 sub(stack, stack, total_push_bytes); 3125 for (int i = 0; i < count; i++) { 3126 sve_str(as_PRegister(regs[i]), Address(stack, i)); 3127 } 3128 return total_push_bytes / 8; 3129 } 3130 3131 // Return the number of dwords popped 3132 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 3133 bool use_sve = false; 3134 int sve_predicate_size_in_slots = 0; 3135 3136 #ifdef COMPILER2 3137 use_sve = Matcher::supports_scalable_vector(); 3138 if (use_sve) { 3139 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3140 } 3141 #endif 3142 3143 if (!use_sve) { 3144 return 0; 3145 } 3146 3147 unsigned char regs[PRegister::number_of_registers]; 3148 int count = 0; 3149 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3150 if (1 & bitset) 3151 regs[count++] = reg; 3152 bitset >>= 1; 3153 } 3154 3155 if (count == 0) { 3156 return 0; 3157 } 3158 3159 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 3160 VMRegImpl::stack_slot_size * count, 16); 3161 for (int i = count - 1; i >= 0; i--) { 3162 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 3163 } 3164 add(stack, stack, total_pop_bytes); 3165 return total_pop_bytes / 8; 3166 } 3167 3168 #ifdef ASSERT 3169 void MacroAssembler::verify_heapbase(const char* msg) { 3170 #if 0 3171 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 3172 assert (Universe::heap() != nullptr, "java heap should be initialized"); 3173 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 3174 // rheapbase is allocated as general register 3175 return; 3176 } 3177 if (CheckCompressedOops) { 3178 Label ok; 3179 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 3180 cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3181 br(Assembler::EQ, ok); 3182 stop(msg); 3183 bind(ok); 3184 pop(1 << rscratch1->encoding(), sp); 3185 } 3186 #endif 3187 } 3188 #endif 3189 3190 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 3191 assert_different_registers(value, tmp1, tmp2); 3192 Label done, tagged, weak_tagged; 3193 3194 cbz(value, done); // Use null as-is. 3195 tst(value, JNIHandles::tag_mask); // Test for tag. 3196 br(Assembler::NE, tagged); 3197 3198 // Resolve local handle 3199 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 3200 verify_oop(value); 3201 b(done); 3202 3203 bind(tagged); 3204 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 3205 tbnz(value, 0, weak_tagged); // Test for weak tag. 3206 3207 // Resolve global handle 3208 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3209 verify_oop(value); 3210 b(done); 3211 3212 bind(weak_tagged); 3213 // Resolve jweak. 3214 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3215 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 3216 verify_oop(value); 3217 3218 bind(done); 3219 } 3220 3221 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 3222 assert_different_registers(value, tmp1, tmp2); 3223 Label done; 3224 3225 cbz(value, done); // Use null as-is. 3226 3227 #ifdef ASSERT 3228 { 3229 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 3230 Label valid_global_tag; 3231 tbnz(value, 1, valid_global_tag); // Test for global tag 3232 stop("non global jobject using resolve_global_jobject"); 3233 bind(valid_global_tag); 3234 } 3235 #endif 3236 3237 // Resolve global handle 3238 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3239 verify_oop(value); 3240 3241 bind(done); 3242 } 3243 3244 void MacroAssembler::stop(const char* msg) { 3245 // Skip AOT caching C strings in scratch buffer. 3246 const char* str = (code_section()->scratch_emit()) ? msg : AOTCodeCache::add_C_string(msg); 3247 BLOCK_COMMENT(str); 3248 // load msg into r0 so we can access it from the signal handler 3249 // ExternalAddress enables saving and restoring via the code cache 3250 lea(c_rarg0, ExternalAddress((address) str)); 3251 dcps1(0xdeae); 3252 } 3253 3254 void MacroAssembler::unimplemented(const char* what) { 3255 const char* buf = nullptr; 3256 { 3257 ResourceMark rm; 3258 stringStream ss; 3259 ss.print("unimplemented: %s", what); 3260 buf = code_string(ss.as_string()); 3261 } 3262 stop(buf); 3263 } 3264 3265 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 3266 #ifdef ASSERT 3267 Label OK; 3268 br(cc, OK); 3269 stop(msg); 3270 bind(OK); 3271 #endif 3272 } 3273 3274 // If a constant does not fit in an immediate field, generate some 3275 // number of MOV instructions and then perform the operation. 3276 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 3277 add_sub_imm_insn insn1, 3278 add_sub_reg_insn insn2, 3279 bool is32) { 3280 assert(Rd != zr, "Rd = zr and not setting flags?"); 3281 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3282 if (fits) { 3283 (this->*insn1)(Rd, Rn, imm); 3284 } else { 3285 if (g_uabs(imm) < (1 << 24)) { 3286 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 3287 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 3288 } else { 3289 assert_different_registers(Rd, Rn); 3290 mov(Rd, imm); 3291 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3292 } 3293 } 3294 } 3295 3296 // Separate vsn which sets the flags. Optimisations are more restricted 3297 // because we must set the flags correctly. 3298 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 3299 add_sub_imm_insn insn1, 3300 add_sub_reg_insn insn2, 3301 bool is32) { 3302 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3303 if (fits) { 3304 (this->*insn1)(Rd, Rn, imm); 3305 } else { 3306 assert_different_registers(Rd, Rn); 3307 assert(Rd != zr, "overflow in immediate operand"); 3308 mov(Rd, imm); 3309 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3310 } 3311 } 3312 3313 3314 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 3315 if (increment.is_register()) { 3316 add(Rd, Rn, increment.as_register()); 3317 } else { 3318 add(Rd, Rn, increment.as_constant()); 3319 } 3320 } 3321 3322 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 3323 if (increment.is_register()) { 3324 addw(Rd, Rn, increment.as_register()); 3325 } else { 3326 addw(Rd, Rn, increment.as_constant()); 3327 } 3328 } 3329 3330 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 3331 if (decrement.is_register()) { 3332 sub(Rd, Rn, decrement.as_register()); 3333 } else { 3334 sub(Rd, Rn, decrement.as_constant()); 3335 } 3336 } 3337 3338 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 3339 if (decrement.is_register()) { 3340 subw(Rd, Rn, decrement.as_register()); 3341 } else { 3342 subw(Rd, Rn, decrement.as_constant()); 3343 } 3344 } 3345 3346 void MacroAssembler::reinit_heapbase() 3347 { 3348 if (UseCompressedOops) { 3349 if (Universe::is_fully_initialized()) { 3350 mov(rheapbase, CompressedOops::base()); 3351 } else { 3352 lea(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3353 ldr(rheapbase, Address(rheapbase)); 3354 } 3355 } 3356 } 3357 3358 // this simulates the behaviour of the x86 cmpxchg instruction using a 3359 // load linked/store conditional pair. we use the acquire/release 3360 // versions of these instructions so that we flush pending writes as 3361 // per Java semantics. 3362 3363 // n.b the x86 version assumes the old value to be compared against is 3364 // in rax and updates rax with the value located in memory if the 3365 // cmpxchg fails. we supply a register for the old value explicitly 3366 3367 // the aarch64 load linked/store conditional instructions do not 3368 // accept an offset. so, unlike x86, we must provide a plain register 3369 // to identify the memory word to be compared/exchanged rather than a 3370 // register+offset Address. 3371 3372 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 3373 Label &succeed, Label *fail) { 3374 // oldv holds comparison value 3375 // newv holds value to write in exchange 3376 // addr identifies memory word to compare against/update 3377 if (UseLSE) { 3378 mov(tmp, oldv); 3379 casal(Assembler::xword, oldv, newv, addr); 3380 cmp(tmp, oldv); 3381 br(Assembler::EQ, succeed); 3382 membar(AnyAny); 3383 } else { 3384 Label retry_load, nope; 3385 prfm(Address(addr), PSTL1STRM); 3386 bind(retry_load); 3387 // flush and load exclusive from the memory location 3388 // and fail if it is not what we expect 3389 ldaxr(tmp, addr); 3390 cmp(tmp, oldv); 3391 br(Assembler::NE, nope); 3392 // if we store+flush with no intervening write tmp will be zero 3393 stlxr(tmp, newv, addr); 3394 cbzw(tmp, succeed); 3395 // retry so we only ever return after a load fails to compare 3396 // ensures we don't return a stale value after a failed write. 3397 b(retry_load); 3398 // if the memory word differs we return it in oldv and signal a fail 3399 bind(nope); 3400 membar(AnyAny); 3401 mov(oldv, tmp); 3402 } 3403 if (fail) 3404 b(*fail); 3405 } 3406 3407 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 3408 Label &succeed, Label *fail) { 3409 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 3410 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 3411 } 3412 3413 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 3414 Label &succeed, Label *fail) { 3415 // oldv holds comparison value 3416 // newv holds value to write in exchange 3417 // addr identifies memory word to compare against/update 3418 // tmp returns 0/1 for success/failure 3419 if (UseLSE) { 3420 mov(tmp, oldv); 3421 casal(Assembler::word, oldv, newv, addr); 3422 cmp(tmp, oldv); 3423 br(Assembler::EQ, succeed); 3424 membar(AnyAny); 3425 } else { 3426 Label retry_load, nope; 3427 prfm(Address(addr), PSTL1STRM); 3428 bind(retry_load); 3429 // flush and load exclusive from the memory location 3430 // and fail if it is not what we expect 3431 ldaxrw(tmp, addr); 3432 cmp(tmp, oldv); 3433 br(Assembler::NE, nope); 3434 // if we store+flush with no intervening write tmp will be zero 3435 stlxrw(tmp, newv, addr); 3436 cbzw(tmp, succeed); 3437 // retry so we only ever return after a load fails to compare 3438 // ensures we don't return a stale value after a failed write. 3439 b(retry_load); 3440 // if the memory word differs we return it in oldv and signal a fail 3441 bind(nope); 3442 membar(AnyAny); 3443 mov(oldv, tmp); 3444 } 3445 if (fail) 3446 b(*fail); 3447 } 3448 3449 // A generic CAS; success or failure is in the EQ flag. A weak CAS 3450 // doesn't retry and may fail spuriously. If the oldval is wanted, 3451 // Pass a register for the result, otherwise pass noreg. 3452 3453 // Clobbers rscratch1 3454 void MacroAssembler::cmpxchg(Register addr, Register expected, 3455 Register new_val, 3456 enum operand_size size, 3457 bool acquire, bool release, 3458 bool weak, 3459 Register result) { 3460 if (result == noreg) result = rscratch1; 3461 BLOCK_COMMENT("cmpxchg {"); 3462 if (UseLSE) { 3463 mov(result, expected); 3464 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 3465 compare_eq(result, expected, size); 3466 #ifdef ASSERT 3467 // Poison rscratch1 which is written on !UseLSE branch 3468 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 3469 #endif 3470 } else { 3471 Label retry_load, done; 3472 prfm(Address(addr), PSTL1STRM); 3473 bind(retry_load); 3474 load_exclusive(result, addr, size, acquire); 3475 compare_eq(result, expected, size); 3476 br(Assembler::NE, done); 3477 store_exclusive(rscratch1, new_val, addr, size, release); 3478 if (weak) { 3479 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 3480 } else { 3481 cbnzw(rscratch1, retry_load); 3482 } 3483 bind(done); 3484 } 3485 BLOCK_COMMENT("} cmpxchg"); 3486 } 3487 3488 // A generic comparison. Only compares for equality, clobbers rscratch1. 3489 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 3490 if (size == xword) { 3491 cmp(rm, rn); 3492 } else if (size == word) { 3493 cmpw(rm, rn); 3494 } else if (size == halfword) { 3495 eorw(rscratch1, rm, rn); 3496 ands(zr, rscratch1, 0xffff); 3497 } else if (size == byte) { 3498 eorw(rscratch1, rm, rn); 3499 ands(zr, rscratch1, 0xff); 3500 } else { 3501 ShouldNotReachHere(); 3502 } 3503 } 3504 3505 3506 static bool different(Register a, RegisterOrConstant b, Register c) { 3507 if (b.is_constant()) 3508 return a != c; 3509 else 3510 return a != b.as_register() && a != c && b.as_register() != c; 3511 } 3512 3513 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 3514 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 3515 if (UseLSE) { \ 3516 prev = prev->is_valid() ? prev : zr; \ 3517 if (incr.is_register()) { \ 3518 AOP(sz, incr.as_register(), prev, addr); \ 3519 } else { \ 3520 mov(rscratch2, incr.as_constant()); \ 3521 AOP(sz, rscratch2, prev, addr); \ 3522 } \ 3523 return; \ 3524 } \ 3525 Register result = rscratch2; \ 3526 if (prev->is_valid()) \ 3527 result = different(prev, incr, addr) ? prev : rscratch2; \ 3528 \ 3529 Label retry_load; \ 3530 prfm(Address(addr), PSTL1STRM); \ 3531 bind(retry_load); \ 3532 LDXR(result, addr); \ 3533 OP(rscratch1, result, incr); \ 3534 STXR(rscratch2, rscratch1, addr); \ 3535 cbnzw(rscratch2, retry_load); \ 3536 if (prev->is_valid() && prev != result) { \ 3537 IOP(prev, rscratch1, incr); \ 3538 } \ 3539 } 3540 3541 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 3542 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 3543 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 3544 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 3545 3546 #undef ATOMIC_OP 3547 3548 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 3549 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 3550 if (UseLSE) { \ 3551 prev = prev->is_valid() ? prev : zr; \ 3552 AOP(sz, newv, prev, addr); \ 3553 return; \ 3554 } \ 3555 Register result = rscratch2; \ 3556 if (prev->is_valid()) \ 3557 result = different(prev, newv, addr) ? prev : rscratch2; \ 3558 \ 3559 Label retry_load; \ 3560 prfm(Address(addr), PSTL1STRM); \ 3561 bind(retry_load); \ 3562 LDXR(result, addr); \ 3563 STXR(rscratch1, newv, addr); \ 3564 cbnzw(rscratch1, retry_load); \ 3565 if (prev->is_valid() && prev != result) \ 3566 mov(prev, result); \ 3567 } 3568 3569 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 3570 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 3571 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 3572 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 3573 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 3574 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 3575 3576 #undef ATOMIC_XCHG 3577 3578 #ifndef PRODUCT 3579 extern "C" void findpc(intptr_t x); 3580 #endif 3581 3582 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 3583 { 3584 // In order to get locks to work, we need to fake a in_VM state 3585 if (ShowMessageBoxOnError ) { 3586 JavaThread* thread = JavaThread::current(); 3587 JavaThreadState saved_state = thread->thread_state(); 3588 thread->set_thread_state(_thread_in_vm); 3589 #ifndef PRODUCT 3590 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 3591 ttyLocker ttyl; 3592 BytecodeCounter::print(); 3593 } 3594 #endif 3595 if (os::message_box(msg, "Execution stopped, print registers?")) { 3596 ttyLocker ttyl; 3597 tty->print_cr(" pc = 0x%016" PRIx64, pc); 3598 #ifndef PRODUCT 3599 tty->cr(); 3600 findpc(pc); 3601 tty->cr(); 3602 #endif 3603 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 3604 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 3605 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 3606 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 3607 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 3608 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 3609 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 3610 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 3611 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 3612 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 3613 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 3614 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 3615 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 3616 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 3617 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 3618 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 3619 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 3620 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3621 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3622 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3623 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3624 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3625 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3626 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3627 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3628 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3629 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3630 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3631 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3632 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3633 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3634 BREAKPOINT; 3635 } 3636 } 3637 fatal("DEBUG MESSAGE: %s", msg); 3638 } 3639 3640 RegSet MacroAssembler::call_clobbered_gp_registers() { 3641 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3642 #ifndef R18_RESERVED 3643 regs += r18_tls; 3644 #endif 3645 return regs; 3646 } 3647 3648 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3649 int step = 4 * wordSize; 3650 push(call_clobbered_gp_registers() - exclude, sp); 3651 sub(sp, sp, step); 3652 mov(rscratch1, -step); 3653 // Push v0-v7, v16-v31. 3654 for (int i = 31; i>= 4; i -= 4) { 3655 if (i <= v7->encoding() || i >= v16->encoding()) 3656 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3657 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3658 } 3659 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3660 as_FloatRegister(3), T1D, Address(sp)); 3661 } 3662 3663 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3664 for (int i = 0; i < 32; i += 4) { 3665 if (i <= v7->encoding() || i >= v16->encoding()) 3666 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3667 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3668 } 3669 3670 reinitialize_ptrue(); 3671 3672 pop(call_clobbered_gp_registers() - exclude, sp); 3673 } 3674 3675 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3676 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3677 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3678 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3679 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3680 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3681 sve_str(as_FloatRegister(i), Address(sp, i)); 3682 } 3683 } else { 3684 int step = (save_vectors ? 8 : 4) * wordSize; 3685 mov(rscratch1, -step); 3686 sub(sp, sp, step); 3687 for (int i = 28; i >= 4; i -= 4) { 3688 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3689 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3690 } 3691 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3692 } 3693 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3694 sub(sp, sp, total_predicate_in_bytes); 3695 for (int i = 0; i < PRegister::number_of_registers; i++) { 3696 sve_str(as_PRegister(i), Address(sp, i)); 3697 } 3698 } 3699 } 3700 3701 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3702 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3703 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3704 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3705 sve_ldr(as_PRegister(i), Address(sp, i)); 3706 } 3707 add(sp, sp, total_predicate_in_bytes); 3708 } 3709 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3710 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3711 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3712 } 3713 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3714 } else { 3715 int step = (restore_vectors ? 8 : 4) * wordSize; 3716 for (int i = 0; i <= 28; i += 4) 3717 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3718 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3719 } 3720 3721 // We may use predicate registers and rely on ptrue with SVE, 3722 // regardless of wide vector (> 8 bytes) used or not. 3723 if (use_sve) { 3724 reinitialize_ptrue(); 3725 } 3726 3727 // integer registers except lr & sp 3728 pop(RegSet::range(r0, r17), sp); 3729 #ifdef R18_RESERVED 3730 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3731 pop(RegSet::range(r20, r29), sp); 3732 #else 3733 pop(RegSet::range(r18_tls, r29), sp); 3734 #endif 3735 } 3736 3737 /** 3738 * Helpers for multiply_to_len(). 3739 */ 3740 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3741 Register src1, Register src2) { 3742 adds(dest_lo, dest_lo, src1); 3743 adc(dest_hi, dest_hi, zr); 3744 adds(dest_lo, dest_lo, src2); 3745 adc(final_dest_hi, dest_hi, zr); 3746 } 3747 3748 // Generate an address from (r + r1 extend offset). "size" is the 3749 // size of the operand. The result may be in rscratch2. 3750 Address MacroAssembler::offsetted_address(Register r, Register r1, 3751 Address::extend ext, int offset, int size) { 3752 if (offset || (ext.shift() % size != 0)) { 3753 lea(rscratch2, Address(r, r1, ext)); 3754 return Address(rscratch2, offset); 3755 } else { 3756 return Address(r, r1, ext); 3757 } 3758 } 3759 3760 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3761 { 3762 assert(offset >= 0, "spill to negative address?"); 3763 // Offset reachable ? 3764 // Not aligned - 9 bits signed offset 3765 // Aligned - 12 bits unsigned offset shifted 3766 Register base = sp; 3767 if ((offset & (size-1)) && offset >= (1<<8)) { 3768 add(tmp, base, offset & ((1<<12)-1)); 3769 base = tmp; 3770 offset &= -1u<<12; 3771 } 3772 3773 if (offset >= (1<<12) * size) { 3774 add(tmp, base, offset & (((1<<12)-1)<<12)); 3775 base = tmp; 3776 offset &= ~(((1<<12)-1)<<12); 3777 } 3778 3779 return Address(base, offset); 3780 } 3781 3782 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3783 assert(offset >= 0, "spill to negative address?"); 3784 3785 Register base = sp; 3786 3787 // An immediate offset in the range 0 to 255 which is multiplied 3788 // by the current vector or predicate register size in bytes. 3789 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3790 return Address(base, offset / sve_reg_size_in_bytes); 3791 } 3792 3793 add(tmp, base, offset); 3794 return Address(tmp); 3795 } 3796 3797 // Checks whether offset is aligned. 3798 // Returns true if it is, else false. 3799 bool MacroAssembler::merge_alignment_check(Register base, 3800 size_t size, 3801 int64_t cur_offset, 3802 int64_t prev_offset) const { 3803 if (AvoidUnalignedAccesses) { 3804 if (base == sp) { 3805 // Checks whether low offset if aligned to pair of registers. 3806 int64_t pair_mask = size * 2 - 1; 3807 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3808 return (offset & pair_mask) == 0; 3809 } else { // If base is not sp, we can't guarantee the access is aligned. 3810 return false; 3811 } 3812 } else { 3813 int64_t mask = size - 1; 3814 // Load/store pair instruction only supports element size aligned offset. 3815 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3816 } 3817 } 3818 3819 // Checks whether current and previous loads/stores can be merged. 3820 // Returns true if it can be merged, else false. 3821 bool MacroAssembler::ldst_can_merge(Register rt, 3822 const Address &adr, 3823 size_t cur_size_in_bytes, 3824 bool is_store) const { 3825 address prev = pc() - NativeInstruction::instruction_size; 3826 address last = code()->last_insn(); 3827 3828 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3829 return false; 3830 } 3831 3832 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3833 return false; 3834 } 3835 3836 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3837 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3838 3839 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3840 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3841 3842 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3843 return false; 3844 } 3845 3846 int64_t max_offset = 63 * prev_size_in_bytes; 3847 int64_t min_offset = -64 * prev_size_in_bytes; 3848 3849 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3850 3851 // Only same base can be merged. 3852 if (adr.base() != prev_ldst->base()) { 3853 return false; 3854 } 3855 3856 int64_t cur_offset = adr.offset(); 3857 int64_t prev_offset = prev_ldst->offset(); 3858 size_t diff = abs(cur_offset - prev_offset); 3859 if (diff != prev_size_in_bytes) { 3860 return false; 3861 } 3862 3863 // Following cases can not be merged: 3864 // ldr x2, [x2, #8] 3865 // ldr x3, [x2, #16] 3866 // or: 3867 // ldr x2, [x3, #8] 3868 // ldr x2, [x3, #16] 3869 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3870 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3871 return false; 3872 } 3873 3874 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3875 // Offset range must be in ldp/stp instruction's range. 3876 if (low_offset > max_offset || low_offset < min_offset) { 3877 return false; 3878 } 3879 3880 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3881 return true; 3882 } 3883 3884 return false; 3885 } 3886 3887 // Merge current load/store with previous load/store into ldp/stp. 3888 void MacroAssembler::merge_ldst(Register rt, 3889 const Address &adr, 3890 size_t cur_size_in_bytes, 3891 bool is_store) { 3892 3893 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3894 3895 Register rt_low, rt_high; 3896 address prev = pc() - NativeInstruction::instruction_size; 3897 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3898 3899 int64_t offset; 3900 3901 if (adr.offset() < prev_ldst->offset()) { 3902 offset = adr.offset(); 3903 rt_low = rt; 3904 rt_high = prev_ldst->target(); 3905 } else { 3906 offset = prev_ldst->offset(); 3907 rt_low = prev_ldst->target(); 3908 rt_high = rt; 3909 } 3910 3911 Address adr_p = Address(prev_ldst->base(), offset); 3912 // Overwrite previous generated binary. 3913 code_section()->set_end(prev); 3914 3915 const size_t sz = prev_ldst->size_in_bytes(); 3916 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 3917 if (!is_store) { 3918 BLOCK_COMMENT("merged ldr pair"); 3919 if (sz == 8) { 3920 ldp(rt_low, rt_high, adr_p); 3921 } else { 3922 ldpw(rt_low, rt_high, adr_p); 3923 } 3924 } else { 3925 BLOCK_COMMENT("merged str pair"); 3926 if (sz == 8) { 3927 stp(rt_low, rt_high, adr_p); 3928 } else { 3929 stpw(rt_low, rt_high, adr_p); 3930 } 3931 } 3932 } 3933 3934 /** 3935 * Multiply 64 bit by 64 bit first loop. 3936 */ 3937 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 3938 Register y, Register y_idx, Register z, 3939 Register carry, Register product, 3940 Register idx, Register kdx) { 3941 // 3942 // jlong carry, x[], y[], z[]; 3943 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3944 // huge_128 product = y[idx] * x[xstart] + carry; 3945 // z[kdx] = (jlong)product; 3946 // carry = (jlong)(product >>> 64); 3947 // } 3948 // z[xstart] = carry; 3949 // 3950 3951 Label L_first_loop, L_first_loop_exit; 3952 Label L_one_x, L_one_y, L_multiply; 3953 3954 subsw(xstart, xstart, 1); 3955 br(Assembler::MI, L_one_x); 3956 3957 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 3958 ldr(x_xstart, Address(rscratch1)); 3959 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 3960 3961 bind(L_first_loop); 3962 subsw(idx, idx, 1); 3963 br(Assembler::MI, L_first_loop_exit); 3964 subsw(idx, idx, 1); 3965 br(Assembler::MI, L_one_y); 3966 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3967 ldr(y_idx, Address(rscratch1)); 3968 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 3969 bind(L_multiply); 3970 3971 // AArch64 has a multiply-accumulate instruction that we can't use 3972 // here because it has no way to process carries, so we have to use 3973 // separate add and adc instructions. Bah. 3974 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 3975 mul(product, x_xstart, y_idx); 3976 adds(product, product, carry); 3977 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 3978 3979 subw(kdx, kdx, 2); 3980 ror(product, product, 32); // back to big-endian 3981 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 3982 3983 b(L_first_loop); 3984 3985 bind(L_one_y); 3986 ldrw(y_idx, Address(y, 0)); 3987 b(L_multiply); 3988 3989 bind(L_one_x); 3990 ldrw(x_xstart, Address(x, 0)); 3991 b(L_first_loop); 3992 3993 bind(L_first_loop_exit); 3994 } 3995 3996 /** 3997 * Multiply 128 bit by 128. Unrolled inner loop. 3998 * 3999 */ 4000 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 4001 Register carry, Register carry2, 4002 Register idx, Register jdx, 4003 Register yz_idx1, Register yz_idx2, 4004 Register tmp, Register tmp3, Register tmp4, 4005 Register tmp6, Register product_hi) { 4006 4007 // jlong carry, x[], y[], z[]; 4008 // int kdx = ystart+1; 4009 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 4010 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 4011 // jlong carry2 = (jlong)(tmp3 >>> 64); 4012 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 4013 // carry = (jlong)(tmp4 >>> 64); 4014 // z[kdx+idx+1] = (jlong)tmp3; 4015 // z[kdx+idx] = (jlong)tmp4; 4016 // } 4017 // idx += 2; 4018 // if (idx > 0) { 4019 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 4020 // z[kdx+idx] = (jlong)yz_idx1; 4021 // carry = (jlong)(yz_idx1 >>> 64); 4022 // } 4023 // 4024 4025 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 4026 4027 lsrw(jdx, idx, 2); 4028 4029 bind(L_third_loop); 4030 4031 subsw(jdx, jdx, 1); 4032 br(Assembler::MI, L_third_loop_exit); 4033 subw(idx, idx, 4); 4034 4035 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4036 4037 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 4038 4039 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4040 4041 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 4042 ror(yz_idx2, yz_idx2, 32); 4043 4044 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 4045 4046 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4047 umulh(tmp4, product_hi, yz_idx1); 4048 4049 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 4050 ror(rscratch2, rscratch2, 32); 4051 4052 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 4053 umulh(carry2, product_hi, yz_idx2); 4054 4055 // propagate sum of both multiplications into carry:tmp4:tmp3 4056 adds(tmp3, tmp3, carry); 4057 adc(tmp4, tmp4, zr); 4058 adds(tmp3, tmp3, rscratch1); 4059 adcs(tmp4, tmp4, tmp); 4060 adc(carry, carry2, zr); 4061 adds(tmp4, tmp4, rscratch2); 4062 adc(carry, carry, zr); 4063 4064 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 4065 ror(tmp4, tmp4, 32); 4066 stp(tmp4, tmp3, Address(tmp6, 0)); 4067 4068 b(L_third_loop); 4069 bind (L_third_loop_exit); 4070 4071 andw (idx, idx, 0x3); 4072 cbz(idx, L_post_third_loop_done); 4073 4074 Label L_check_1; 4075 subsw(idx, idx, 2); 4076 br(Assembler::MI, L_check_1); 4077 4078 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4079 ldr(yz_idx1, Address(rscratch1, 0)); 4080 ror(yz_idx1, yz_idx1, 32); 4081 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4082 umulh(tmp4, product_hi, yz_idx1); 4083 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4084 ldr(yz_idx2, Address(rscratch1, 0)); 4085 ror(yz_idx2, yz_idx2, 32); 4086 4087 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 4088 4089 ror(tmp3, tmp3, 32); 4090 str(tmp3, Address(rscratch1, 0)); 4091 4092 bind (L_check_1); 4093 4094 andw (idx, idx, 0x1); 4095 subsw(idx, idx, 1); 4096 br(Assembler::MI, L_post_third_loop_done); 4097 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4098 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 4099 umulh(carry2, tmp4, product_hi); 4100 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4101 4102 add2_with_carry(carry2, tmp3, tmp4, carry); 4103 4104 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4105 extr(carry, carry2, tmp3, 32); 4106 4107 bind(L_post_third_loop_done); 4108 } 4109 4110 /** 4111 * Code for BigInteger::multiplyToLen() intrinsic. 4112 * 4113 * r0: x 4114 * r1: xlen 4115 * r2: y 4116 * r3: ylen 4117 * r4: z 4118 * r5: tmp0 4119 * r10: tmp1 4120 * r11: tmp2 4121 * r12: tmp3 4122 * r13: tmp4 4123 * r14: tmp5 4124 * r15: tmp6 4125 * r16: tmp7 4126 * 4127 */ 4128 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 4129 Register z, Register tmp0, 4130 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 4131 Register tmp5, Register tmp6, Register product_hi) { 4132 4133 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi); 4134 4135 const Register idx = tmp1; 4136 const Register kdx = tmp2; 4137 const Register xstart = tmp3; 4138 4139 const Register y_idx = tmp4; 4140 const Register carry = tmp5; 4141 const Register product = xlen; 4142 const Register x_xstart = tmp0; 4143 4144 // First Loop. 4145 // 4146 // final static long LONG_MASK = 0xffffffffL; 4147 // int xstart = xlen - 1; 4148 // int ystart = ylen - 1; 4149 // long carry = 0; 4150 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4151 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 4152 // z[kdx] = (int)product; 4153 // carry = product >>> 32; 4154 // } 4155 // z[xstart] = (int)carry; 4156 // 4157 4158 movw(idx, ylen); // idx = ylen; 4159 addw(kdx, xlen, ylen); // kdx = xlen+ylen; 4160 mov(carry, zr); // carry = 0; 4161 4162 Label L_done; 4163 4164 movw(xstart, xlen); 4165 subsw(xstart, xstart, 1); 4166 br(Assembler::MI, L_done); 4167 4168 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 4169 4170 Label L_second_loop; 4171 cbzw(kdx, L_second_loop); 4172 4173 Label L_carry; 4174 subw(kdx, kdx, 1); 4175 cbzw(kdx, L_carry); 4176 4177 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4178 lsr(carry, carry, 32); 4179 subw(kdx, kdx, 1); 4180 4181 bind(L_carry); 4182 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4183 4184 // Second and third (nested) loops. 4185 // 4186 // for (int i = xstart-1; i >= 0; i--) { // Second loop 4187 // carry = 0; 4188 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 4189 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 4190 // (z[k] & LONG_MASK) + carry; 4191 // z[k] = (int)product; 4192 // carry = product >>> 32; 4193 // } 4194 // z[i] = (int)carry; 4195 // } 4196 // 4197 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 4198 4199 const Register jdx = tmp1; 4200 4201 bind(L_second_loop); 4202 mov(carry, zr); // carry = 0; 4203 movw(jdx, ylen); // j = ystart+1 4204 4205 subsw(xstart, xstart, 1); // i = xstart-1; 4206 br(Assembler::MI, L_done); 4207 4208 str(z, Address(pre(sp, -4 * wordSize))); 4209 4210 Label L_last_x; 4211 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 4212 subsw(xstart, xstart, 1); // i = xstart-1; 4213 br(Assembler::MI, L_last_x); 4214 4215 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 4216 ldr(product_hi, Address(rscratch1)); 4217 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 4218 4219 Label L_third_loop_prologue; 4220 bind(L_third_loop_prologue); 4221 4222 str(ylen, Address(sp, wordSize)); 4223 stp(x, xstart, Address(sp, 2 * wordSize)); 4224 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 4225 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 4226 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 4227 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 4228 4229 addw(tmp3, xlen, 1); 4230 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4231 subsw(tmp3, tmp3, 1); 4232 br(Assembler::MI, L_done); 4233 4234 lsr(carry, carry, 32); 4235 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4236 b(L_second_loop); 4237 4238 // Next infrequent code is moved outside loops. 4239 bind(L_last_x); 4240 ldrw(product_hi, Address(x, 0)); 4241 b(L_third_loop_prologue); 4242 4243 bind(L_done); 4244 } 4245 4246 // Code for BigInteger::mulAdd intrinsic 4247 // out = r0 4248 // in = r1 4249 // offset = r2 (already out.length-offset) 4250 // len = r3 4251 // k = r4 4252 // 4253 // pseudo code from java implementation: 4254 // carry = 0; 4255 // offset = out.length-offset - 1; 4256 // for (int j=len-1; j >= 0; j--) { 4257 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 4258 // out[offset--] = (int)product; 4259 // carry = product >>> 32; 4260 // } 4261 // return (int)carry; 4262 void MacroAssembler::mul_add(Register out, Register in, Register offset, 4263 Register len, Register k) { 4264 Label LOOP, END; 4265 // pre-loop 4266 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 4267 csel(out, zr, out, Assembler::EQ); 4268 br(Assembler::EQ, END); 4269 add(in, in, len, LSL, 2); // in[j+1] address 4270 add(offset, out, offset, LSL, 2); // out[offset + 1] address 4271 mov(out, zr); // used to keep carry now 4272 BIND(LOOP); 4273 ldrw(rscratch1, Address(pre(in, -4))); 4274 madd(rscratch1, rscratch1, k, out); 4275 ldrw(rscratch2, Address(pre(offset, -4))); 4276 add(rscratch1, rscratch1, rscratch2); 4277 strw(rscratch1, Address(offset)); 4278 lsr(out, rscratch1, 32); 4279 subs(len, len, 1); 4280 br(Assembler::NE, LOOP); 4281 BIND(END); 4282 } 4283 4284 /** 4285 * Emits code to update CRC-32 with a byte value according to constants in table 4286 * 4287 * @param [in,out]crc Register containing the crc. 4288 * @param [in]val Register containing the byte to fold into the CRC. 4289 * @param [in]table Register containing the table of crc constants. 4290 * 4291 * uint32_t crc; 4292 * val = crc_table[(val ^ crc) & 0xFF]; 4293 * crc = val ^ (crc >> 8); 4294 * 4295 */ 4296 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 4297 eor(val, val, crc); 4298 andr(val, val, 0xff); 4299 ldrw(val, Address(table, val, Address::lsl(2))); 4300 eor(crc, val, crc, Assembler::LSR, 8); 4301 } 4302 4303 /** 4304 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 4305 * 4306 * @param [in,out]crc Register containing the crc. 4307 * @param [in]v Register containing the 32-bit to fold into the CRC. 4308 * @param [in]table0 Register containing table 0 of crc constants. 4309 * @param [in]table1 Register containing table 1 of crc constants. 4310 * @param [in]table2 Register containing table 2 of crc constants. 4311 * @param [in]table3 Register containing table 3 of crc constants. 4312 * 4313 * uint32_t crc; 4314 * v = crc ^ v 4315 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 4316 * 4317 */ 4318 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 4319 Register table0, Register table1, Register table2, Register table3, 4320 bool upper) { 4321 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 4322 uxtb(tmp, v); 4323 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 4324 ubfx(tmp, v, 8, 8); 4325 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 4326 eor(crc, crc, tmp); 4327 ubfx(tmp, v, 16, 8); 4328 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 4329 eor(crc, crc, tmp); 4330 ubfx(tmp, v, 24, 8); 4331 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 4332 eor(crc, crc, tmp); 4333 } 4334 4335 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 4336 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4337 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4338 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4339 4340 subs(tmp0, len, 384); 4341 mvnw(crc, crc); 4342 br(Assembler::GE, CRC_by128_pre); 4343 BIND(CRC_less128); 4344 subs(len, len, 32); 4345 br(Assembler::GE, CRC_by32_loop); 4346 BIND(CRC_less32); 4347 adds(len, len, 32 - 4); 4348 br(Assembler::GE, CRC_by4_loop); 4349 adds(len, len, 4); 4350 br(Assembler::GT, CRC_by1_loop); 4351 b(L_exit); 4352 4353 BIND(CRC_by32_loop); 4354 ldp(tmp0, tmp1, Address(buf)); 4355 crc32x(crc, crc, tmp0); 4356 ldp(tmp2, tmp3, Address(buf, 16)); 4357 crc32x(crc, crc, tmp1); 4358 add(buf, buf, 32); 4359 crc32x(crc, crc, tmp2); 4360 subs(len, len, 32); 4361 crc32x(crc, crc, tmp3); 4362 br(Assembler::GE, CRC_by32_loop); 4363 cmn(len, (u1)32); 4364 br(Assembler::NE, CRC_less32); 4365 b(L_exit); 4366 4367 BIND(CRC_by4_loop); 4368 ldrw(tmp0, Address(post(buf, 4))); 4369 subs(len, len, 4); 4370 crc32w(crc, crc, tmp0); 4371 br(Assembler::GE, CRC_by4_loop); 4372 adds(len, len, 4); 4373 br(Assembler::LE, L_exit); 4374 BIND(CRC_by1_loop); 4375 ldrb(tmp0, Address(post(buf, 1))); 4376 subs(len, len, 1); 4377 crc32b(crc, crc, tmp0); 4378 br(Assembler::GT, CRC_by1_loop); 4379 b(L_exit); 4380 4381 BIND(CRC_by128_pre); 4382 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4383 4*256*sizeof(juint) + 8*sizeof(juint)); 4384 mov(crc, 0); 4385 crc32x(crc, crc, tmp0); 4386 crc32x(crc, crc, tmp1); 4387 4388 cbnz(len, CRC_less128); 4389 4390 BIND(L_exit); 4391 mvnw(crc, crc); 4392 } 4393 4394 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 4395 Register len, Register tmp0, Register tmp1, Register tmp2, 4396 Register tmp3) { 4397 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4398 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4399 4400 mvnw(crc, crc); 4401 4402 subs(len, len, 128); 4403 br(Assembler::GE, CRC_by64_pre); 4404 BIND(CRC_less64); 4405 adds(len, len, 128-32); 4406 br(Assembler::GE, CRC_by32_loop); 4407 BIND(CRC_less32); 4408 adds(len, len, 32-4); 4409 br(Assembler::GE, CRC_by4_loop); 4410 adds(len, len, 4); 4411 br(Assembler::GT, CRC_by1_loop); 4412 b(L_exit); 4413 4414 BIND(CRC_by32_loop); 4415 ldp(tmp0, tmp1, Address(post(buf, 16))); 4416 subs(len, len, 32); 4417 crc32x(crc, crc, tmp0); 4418 ldr(tmp2, Address(post(buf, 8))); 4419 crc32x(crc, crc, tmp1); 4420 ldr(tmp3, Address(post(buf, 8))); 4421 crc32x(crc, crc, tmp2); 4422 crc32x(crc, crc, tmp3); 4423 br(Assembler::GE, CRC_by32_loop); 4424 cmn(len, (u1)32); 4425 br(Assembler::NE, CRC_less32); 4426 b(L_exit); 4427 4428 BIND(CRC_by4_loop); 4429 ldrw(tmp0, Address(post(buf, 4))); 4430 subs(len, len, 4); 4431 crc32w(crc, crc, tmp0); 4432 br(Assembler::GE, CRC_by4_loop); 4433 adds(len, len, 4); 4434 br(Assembler::LE, L_exit); 4435 BIND(CRC_by1_loop); 4436 ldrb(tmp0, Address(post(buf, 1))); 4437 subs(len, len, 1); 4438 crc32b(crc, crc, tmp0); 4439 br(Assembler::GT, CRC_by1_loop); 4440 b(L_exit); 4441 4442 BIND(CRC_by64_pre); 4443 sub(buf, buf, 8); 4444 ldp(tmp0, tmp1, Address(buf, 8)); 4445 crc32x(crc, crc, tmp0); 4446 ldr(tmp2, Address(buf, 24)); 4447 crc32x(crc, crc, tmp1); 4448 ldr(tmp3, Address(buf, 32)); 4449 crc32x(crc, crc, tmp2); 4450 ldr(tmp0, Address(buf, 40)); 4451 crc32x(crc, crc, tmp3); 4452 ldr(tmp1, Address(buf, 48)); 4453 crc32x(crc, crc, tmp0); 4454 ldr(tmp2, Address(buf, 56)); 4455 crc32x(crc, crc, tmp1); 4456 ldr(tmp3, Address(pre(buf, 64))); 4457 4458 b(CRC_by64_loop); 4459 4460 align(CodeEntryAlignment); 4461 BIND(CRC_by64_loop); 4462 subs(len, len, 64); 4463 crc32x(crc, crc, tmp2); 4464 ldr(tmp0, Address(buf, 8)); 4465 crc32x(crc, crc, tmp3); 4466 ldr(tmp1, Address(buf, 16)); 4467 crc32x(crc, crc, tmp0); 4468 ldr(tmp2, Address(buf, 24)); 4469 crc32x(crc, crc, tmp1); 4470 ldr(tmp3, Address(buf, 32)); 4471 crc32x(crc, crc, tmp2); 4472 ldr(tmp0, Address(buf, 40)); 4473 crc32x(crc, crc, tmp3); 4474 ldr(tmp1, Address(buf, 48)); 4475 crc32x(crc, crc, tmp0); 4476 ldr(tmp2, Address(buf, 56)); 4477 crc32x(crc, crc, tmp1); 4478 ldr(tmp3, Address(pre(buf, 64))); 4479 br(Assembler::GE, CRC_by64_loop); 4480 4481 // post-loop 4482 crc32x(crc, crc, tmp2); 4483 crc32x(crc, crc, tmp3); 4484 4485 sub(len, len, 64); 4486 add(buf, buf, 8); 4487 cmn(len, (u1)128); 4488 br(Assembler::NE, CRC_less64); 4489 BIND(L_exit); 4490 mvnw(crc, crc); 4491 } 4492 4493 /** 4494 * @param crc register containing existing CRC (32-bit) 4495 * @param buf register pointing to input byte buffer (byte*) 4496 * @param len register containing number of bytes 4497 * @param table register that will contain address of CRC table 4498 * @param tmp scratch register 4499 */ 4500 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 4501 Register table0, Register table1, Register table2, Register table3, 4502 Register tmp, Register tmp2, Register tmp3) { 4503 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 4504 4505 if (UseCryptoPmullForCRC32) { 4506 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4507 return; 4508 } 4509 4510 if (UseCRC32) { 4511 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 4512 return; 4513 } 4514 4515 mvnw(crc, crc); 4516 4517 { 4518 uint64_t offset; 4519 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4520 add(table0, table0, offset); 4521 } 4522 add(table1, table0, 1*256*sizeof(juint)); 4523 add(table2, table0, 2*256*sizeof(juint)); 4524 add(table3, table0, 3*256*sizeof(juint)); 4525 4526 { // Neon code start 4527 cmp(len, (u1)64); 4528 br(Assembler::LT, L_by16); 4529 eor(v16, T16B, v16, v16); 4530 4531 Label L_fold; 4532 4533 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 4534 4535 ld1(v0, v1, T2D, post(buf, 32)); 4536 ld1r(v4, T2D, post(tmp, 8)); 4537 ld1r(v5, T2D, post(tmp, 8)); 4538 ld1r(v6, T2D, post(tmp, 8)); 4539 ld1r(v7, T2D, post(tmp, 8)); 4540 mov(v16, S, 0, crc); 4541 4542 eor(v0, T16B, v0, v16); 4543 sub(len, len, 64); 4544 4545 BIND(L_fold); 4546 pmull(v22, T8H, v0, v5, T8B); 4547 pmull(v20, T8H, v0, v7, T8B); 4548 pmull(v23, T8H, v0, v4, T8B); 4549 pmull(v21, T8H, v0, v6, T8B); 4550 4551 pmull2(v18, T8H, v0, v5, T16B); 4552 pmull2(v16, T8H, v0, v7, T16B); 4553 pmull2(v19, T8H, v0, v4, T16B); 4554 pmull2(v17, T8H, v0, v6, T16B); 4555 4556 uzp1(v24, T8H, v20, v22); 4557 uzp2(v25, T8H, v20, v22); 4558 eor(v20, T16B, v24, v25); 4559 4560 uzp1(v26, T8H, v16, v18); 4561 uzp2(v27, T8H, v16, v18); 4562 eor(v16, T16B, v26, v27); 4563 4564 ushll2(v22, T4S, v20, T8H, 8); 4565 ushll(v20, T4S, v20, T4H, 8); 4566 4567 ushll2(v18, T4S, v16, T8H, 8); 4568 ushll(v16, T4S, v16, T4H, 8); 4569 4570 eor(v22, T16B, v23, v22); 4571 eor(v18, T16B, v19, v18); 4572 eor(v20, T16B, v21, v20); 4573 eor(v16, T16B, v17, v16); 4574 4575 uzp1(v17, T2D, v16, v20); 4576 uzp2(v21, T2D, v16, v20); 4577 eor(v17, T16B, v17, v21); 4578 4579 ushll2(v20, T2D, v17, T4S, 16); 4580 ushll(v16, T2D, v17, T2S, 16); 4581 4582 eor(v20, T16B, v20, v22); 4583 eor(v16, T16B, v16, v18); 4584 4585 uzp1(v17, T2D, v20, v16); 4586 uzp2(v21, T2D, v20, v16); 4587 eor(v28, T16B, v17, v21); 4588 4589 pmull(v22, T8H, v1, v5, T8B); 4590 pmull(v20, T8H, v1, v7, T8B); 4591 pmull(v23, T8H, v1, v4, T8B); 4592 pmull(v21, T8H, v1, v6, T8B); 4593 4594 pmull2(v18, T8H, v1, v5, T16B); 4595 pmull2(v16, T8H, v1, v7, T16B); 4596 pmull2(v19, T8H, v1, v4, T16B); 4597 pmull2(v17, T8H, v1, v6, T16B); 4598 4599 ld1(v0, v1, T2D, post(buf, 32)); 4600 4601 uzp1(v24, T8H, v20, v22); 4602 uzp2(v25, T8H, v20, v22); 4603 eor(v20, T16B, v24, v25); 4604 4605 uzp1(v26, T8H, v16, v18); 4606 uzp2(v27, T8H, v16, v18); 4607 eor(v16, T16B, v26, v27); 4608 4609 ushll2(v22, T4S, v20, T8H, 8); 4610 ushll(v20, T4S, v20, T4H, 8); 4611 4612 ushll2(v18, T4S, v16, T8H, 8); 4613 ushll(v16, T4S, v16, T4H, 8); 4614 4615 eor(v22, T16B, v23, v22); 4616 eor(v18, T16B, v19, v18); 4617 eor(v20, T16B, v21, v20); 4618 eor(v16, T16B, v17, v16); 4619 4620 uzp1(v17, T2D, v16, v20); 4621 uzp2(v21, T2D, v16, v20); 4622 eor(v16, T16B, v17, v21); 4623 4624 ushll2(v20, T2D, v16, T4S, 16); 4625 ushll(v16, T2D, v16, T2S, 16); 4626 4627 eor(v20, T16B, v22, v20); 4628 eor(v16, T16B, v16, v18); 4629 4630 uzp1(v17, T2D, v20, v16); 4631 uzp2(v21, T2D, v20, v16); 4632 eor(v20, T16B, v17, v21); 4633 4634 shl(v16, T2D, v28, 1); 4635 shl(v17, T2D, v20, 1); 4636 4637 eor(v0, T16B, v0, v16); 4638 eor(v1, T16B, v1, v17); 4639 4640 subs(len, len, 32); 4641 br(Assembler::GE, L_fold); 4642 4643 mov(crc, 0); 4644 mov(tmp, v0, D, 0); 4645 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4646 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4647 mov(tmp, v0, D, 1); 4648 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4649 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4650 mov(tmp, v1, D, 0); 4651 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4652 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4653 mov(tmp, v1, D, 1); 4654 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4655 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4656 4657 add(len, len, 32); 4658 } // Neon code end 4659 4660 BIND(L_by16); 4661 subs(len, len, 16); 4662 br(Assembler::GE, L_by16_loop); 4663 adds(len, len, 16-4); 4664 br(Assembler::GE, L_by4_loop); 4665 adds(len, len, 4); 4666 br(Assembler::GT, L_by1_loop); 4667 b(L_exit); 4668 4669 BIND(L_by4_loop); 4670 ldrw(tmp, Address(post(buf, 4))); 4671 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4672 subs(len, len, 4); 4673 br(Assembler::GE, L_by4_loop); 4674 adds(len, len, 4); 4675 br(Assembler::LE, L_exit); 4676 BIND(L_by1_loop); 4677 subs(len, len, 1); 4678 ldrb(tmp, Address(post(buf, 1))); 4679 update_byte_crc32(crc, tmp, table0); 4680 br(Assembler::GT, L_by1_loop); 4681 b(L_exit); 4682 4683 align(CodeEntryAlignment); 4684 BIND(L_by16_loop); 4685 subs(len, len, 16); 4686 ldp(tmp, tmp3, Address(post(buf, 16))); 4687 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4688 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4689 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4690 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4691 br(Assembler::GE, L_by16_loop); 4692 adds(len, len, 16-4); 4693 br(Assembler::GE, L_by4_loop); 4694 adds(len, len, 4); 4695 br(Assembler::GT, L_by1_loop); 4696 BIND(L_exit); 4697 mvnw(crc, crc); 4698 } 4699 4700 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4701 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4702 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4703 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4704 4705 subs(tmp0, len, 384); 4706 br(Assembler::GE, CRC_by128_pre); 4707 BIND(CRC_less128); 4708 subs(len, len, 32); 4709 br(Assembler::GE, CRC_by32_loop); 4710 BIND(CRC_less32); 4711 adds(len, len, 32 - 4); 4712 br(Assembler::GE, CRC_by4_loop); 4713 adds(len, len, 4); 4714 br(Assembler::GT, CRC_by1_loop); 4715 b(L_exit); 4716 4717 BIND(CRC_by32_loop); 4718 ldp(tmp0, tmp1, Address(buf)); 4719 crc32cx(crc, crc, tmp0); 4720 ldr(tmp2, Address(buf, 16)); 4721 crc32cx(crc, crc, tmp1); 4722 ldr(tmp3, Address(buf, 24)); 4723 crc32cx(crc, crc, tmp2); 4724 add(buf, buf, 32); 4725 subs(len, len, 32); 4726 crc32cx(crc, crc, tmp3); 4727 br(Assembler::GE, CRC_by32_loop); 4728 cmn(len, (u1)32); 4729 br(Assembler::NE, CRC_less32); 4730 b(L_exit); 4731 4732 BIND(CRC_by4_loop); 4733 ldrw(tmp0, Address(post(buf, 4))); 4734 subs(len, len, 4); 4735 crc32cw(crc, crc, tmp0); 4736 br(Assembler::GE, CRC_by4_loop); 4737 adds(len, len, 4); 4738 br(Assembler::LE, L_exit); 4739 BIND(CRC_by1_loop); 4740 ldrb(tmp0, Address(post(buf, 1))); 4741 subs(len, len, 1); 4742 crc32cb(crc, crc, tmp0); 4743 br(Assembler::GT, CRC_by1_loop); 4744 b(L_exit); 4745 4746 BIND(CRC_by128_pre); 4747 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4748 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4749 mov(crc, 0); 4750 crc32cx(crc, crc, tmp0); 4751 crc32cx(crc, crc, tmp1); 4752 4753 cbnz(len, CRC_less128); 4754 4755 BIND(L_exit); 4756 } 4757 4758 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4759 Register len, Register tmp0, Register tmp1, Register tmp2, 4760 Register tmp3) { 4761 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4762 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4763 4764 subs(len, len, 128); 4765 br(Assembler::GE, CRC_by64_pre); 4766 BIND(CRC_less64); 4767 adds(len, len, 128-32); 4768 br(Assembler::GE, CRC_by32_loop); 4769 BIND(CRC_less32); 4770 adds(len, len, 32-4); 4771 br(Assembler::GE, CRC_by4_loop); 4772 adds(len, len, 4); 4773 br(Assembler::GT, CRC_by1_loop); 4774 b(L_exit); 4775 4776 BIND(CRC_by32_loop); 4777 ldp(tmp0, tmp1, Address(post(buf, 16))); 4778 subs(len, len, 32); 4779 crc32cx(crc, crc, tmp0); 4780 ldr(tmp2, Address(post(buf, 8))); 4781 crc32cx(crc, crc, tmp1); 4782 ldr(tmp3, Address(post(buf, 8))); 4783 crc32cx(crc, crc, tmp2); 4784 crc32cx(crc, crc, tmp3); 4785 br(Assembler::GE, CRC_by32_loop); 4786 cmn(len, (u1)32); 4787 br(Assembler::NE, CRC_less32); 4788 b(L_exit); 4789 4790 BIND(CRC_by4_loop); 4791 ldrw(tmp0, Address(post(buf, 4))); 4792 subs(len, len, 4); 4793 crc32cw(crc, crc, tmp0); 4794 br(Assembler::GE, CRC_by4_loop); 4795 adds(len, len, 4); 4796 br(Assembler::LE, L_exit); 4797 BIND(CRC_by1_loop); 4798 ldrb(tmp0, Address(post(buf, 1))); 4799 subs(len, len, 1); 4800 crc32cb(crc, crc, tmp0); 4801 br(Assembler::GT, CRC_by1_loop); 4802 b(L_exit); 4803 4804 BIND(CRC_by64_pre); 4805 sub(buf, buf, 8); 4806 ldp(tmp0, tmp1, Address(buf, 8)); 4807 crc32cx(crc, crc, tmp0); 4808 ldr(tmp2, Address(buf, 24)); 4809 crc32cx(crc, crc, tmp1); 4810 ldr(tmp3, Address(buf, 32)); 4811 crc32cx(crc, crc, tmp2); 4812 ldr(tmp0, Address(buf, 40)); 4813 crc32cx(crc, crc, tmp3); 4814 ldr(tmp1, Address(buf, 48)); 4815 crc32cx(crc, crc, tmp0); 4816 ldr(tmp2, Address(buf, 56)); 4817 crc32cx(crc, crc, tmp1); 4818 ldr(tmp3, Address(pre(buf, 64))); 4819 4820 b(CRC_by64_loop); 4821 4822 align(CodeEntryAlignment); 4823 BIND(CRC_by64_loop); 4824 subs(len, len, 64); 4825 crc32cx(crc, crc, tmp2); 4826 ldr(tmp0, Address(buf, 8)); 4827 crc32cx(crc, crc, tmp3); 4828 ldr(tmp1, Address(buf, 16)); 4829 crc32cx(crc, crc, tmp0); 4830 ldr(tmp2, Address(buf, 24)); 4831 crc32cx(crc, crc, tmp1); 4832 ldr(tmp3, Address(buf, 32)); 4833 crc32cx(crc, crc, tmp2); 4834 ldr(tmp0, Address(buf, 40)); 4835 crc32cx(crc, crc, tmp3); 4836 ldr(tmp1, Address(buf, 48)); 4837 crc32cx(crc, crc, tmp0); 4838 ldr(tmp2, Address(buf, 56)); 4839 crc32cx(crc, crc, tmp1); 4840 ldr(tmp3, Address(pre(buf, 64))); 4841 br(Assembler::GE, CRC_by64_loop); 4842 4843 // post-loop 4844 crc32cx(crc, crc, tmp2); 4845 crc32cx(crc, crc, tmp3); 4846 4847 sub(len, len, 64); 4848 add(buf, buf, 8); 4849 cmn(len, (u1)128); 4850 br(Assembler::NE, CRC_less64); 4851 BIND(L_exit); 4852 } 4853 4854 /** 4855 * @param crc register containing existing CRC (32-bit) 4856 * @param buf register pointing to input byte buffer (byte*) 4857 * @param len register containing number of bytes 4858 * @param table register that will contain address of CRC table 4859 * @param tmp scratch register 4860 */ 4861 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4862 Register table0, Register table1, Register table2, Register table3, 4863 Register tmp, Register tmp2, Register tmp3) { 4864 if (UseCryptoPmullForCRC32) { 4865 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4866 } else { 4867 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4868 } 4869 } 4870 4871 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4872 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4873 Label CRC_by128_loop; 4874 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4875 4876 sub(len, len, 256); 4877 Register table = tmp0; 4878 { 4879 uint64_t offset; 4880 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4881 add(table, table, offset); 4882 } 4883 add(table, table, table_offset); 4884 4885 // Registers v0..v7 are used as data registers. 4886 // Registers v16..v31 are used as tmp registers. 4887 sub(buf, buf, 0x10); 4888 ldrq(v0, Address(buf, 0x10)); 4889 ldrq(v1, Address(buf, 0x20)); 4890 ldrq(v2, Address(buf, 0x30)); 4891 ldrq(v3, Address(buf, 0x40)); 4892 ldrq(v4, Address(buf, 0x50)); 4893 ldrq(v5, Address(buf, 0x60)); 4894 ldrq(v6, Address(buf, 0x70)); 4895 ldrq(v7, Address(pre(buf, 0x80))); 4896 4897 movi(v31, T4S, 0); 4898 mov(v31, S, 0, crc); 4899 eor(v0, T16B, v0, v31); 4900 4901 // Register v16 contains constants from the crc table. 4902 ldrq(v16, Address(table)); 4903 b(CRC_by128_loop); 4904 4905 align(OptoLoopAlignment); 4906 BIND(CRC_by128_loop); 4907 pmull (v17, T1Q, v0, v16, T1D); 4908 pmull2(v18, T1Q, v0, v16, T2D); 4909 ldrq(v0, Address(buf, 0x10)); 4910 eor3(v0, T16B, v17, v18, v0); 4911 4912 pmull (v19, T1Q, v1, v16, T1D); 4913 pmull2(v20, T1Q, v1, v16, T2D); 4914 ldrq(v1, Address(buf, 0x20)); 4915 eor3(v1, T16B, v19, v20, v1); 4916 4917 pmull (v21, T1Q, v2, v16, T1D); 4918 pmull2(v22, T1Q, v2, v16, T2D); 4919 ldrq(v2, Address(buf, 0x30)); 4920 eor3(v2, T16B, v21, v22, v2); 4921 4922 pmull (v23, T1Q, v3, v16, T1D); 4923 pmull2(v24, T1Q, v3, v16, T2D); 4924 ldrq(v3, Address(buf, 0x40)); 4925 eor3(v3, T16B, v23, v24, v3); 4926 4927 pmull (v25, T1Q, v4, v16, T1D); 4928 pmull2(v26, T1Q, v4, v16, T2D); 4929 ldrq(v4, Address(buf, 0x50)); 4930 eor3(v4, T16B, v25, v26, v4); 4931 4932 pmull (v27, T1Q, v5, v16, T1D); 4933 pmull2(v28, T1Q, v5, v16, T2D); 4934 ldrq(v5, Address(buf, 0x60)); 4935 eor3(v5, T16B, v27, v28, v5); 4936 4937 pmull (v29, T1Q, v6, v16, T1D); 4938 pmull2(v30, T1Q, v6, v16, T2D); 4939 ldrq(v6, Address(buf, 0x70)); 4940 eor3(v6, T16B, v29, v30, v6); 4941 4942 // Reuse registers v23, v24. 4943 // Using them won't block the first instruction of the next iteration. 4944 pmull (v23, T1Q, v7, v16, T1D); 4945 pmull2(v24, T1Q, v7, v16, T2D); 4946 ldrq(v7, Address(pre(buf, 0x80))); 4947 eor3(v7, T16B, v23, v24, v7); 4948 4949 subs(len, len, 0x80); 4950 br(Assembler::GE, CRC_by128_loop); 4951 4952 // fold into 512 bits 4953 // Use v31 for constants because v16 can be still in use. 4954 ldrq(v31, Address(table, 0x10)); 4955 4956 pmull (v17, T1Q, v0, v31, T1D); 4957 pmull2(v18, T1Q, v0, v31, T2D); 4958 eor3(v0, T16B, v17, v18, v4); 4959 4960 pmull (v19, T1Q, v1, v31, T1D); 4961 pmull2(v20, T1Q, v1, v31, T2D); 4962 eor3(v1, T16B, v19, v20, v5); 4963 4964 pmull (v21, T1Q, v2, v31, T1D); 4965 pmull2(v22, T1Q, v2, v31, T2D); 4966 eor3(v2, T16B, v21, v22, v6); 4967 4968 pmull (v23, T1Q, v3, v31, T1D); 4969 pmull2(v24, T1Q, v3, v31, T2D); 4970 eor3(v3, T16B, v23, v24, v7); 4971 4972 // fold into 128 bits 4973 // Use v17 for constants because v31 can be still in use. 4974 ldrq(v17, Address(table, 0x20)); 4975 pmull (v25, T1Q, v0, v17, T1D); 4976 pmull2(v26, T1Q, v0, v17, T2D); 4977 eor3(v3, T16B, v3, v25, v26); 4978 4979 // Use v18 for constants because v17 can be still in use. 4980 ldrq(v18, Address(table, 0x30)); 4981 pmull (v27, T1Q, v1, v18, T1D); 4982 pmull2(v28, T1Q, v1, v18, T2D); 4983 eor3(v3, T16B, v3, v27, v28); 4984 4985 // Use v19 for constants because v18 can be still in use. 4986 ldrq(v19, Address(table, 0x40)); 4987 pmull (v29, T1Q, v2, v19, T1D); 4988 pmull2(v30, T1Q, v2, v19, T2D); 4989 eor3(v0, T16B, v3, v29, v30); 4990 4991 add(len, len, 0x80); 4992 add(buf, buf, 0x10); 4993 4994 mov(tmp0, v0, D, 0); 4995 mov(tmp1, v0, D, 1); 4996 } 4997 4998 void MacroAssembler::addptr(const Address &dst, int32_t src) { 4999 Address adr; 5000 switch(dst.getMode()) { 5001 case Address::base_plus_offset: 5002 // This is the expected mode, although we allow all the other 5003 // forms below. 5004 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 5005 break; 5006 default: 5007 lea(rscratch2, dst); 5008 adr = Address(rscratch2); 5009 break; 5010 } 5011 ldr(rscratch1, adr); 5012 add(rscratch1, rscratch1, src); 5013 str(rscratch1, adr); 5014 } 5015 5016 void MacroAssembler::cmpptr(Register src1, Address src2) { 5017 uint64_t offset; 5018 adrp(rscratch1, src2, offset); 5019 ldr(rscratch1, Address(rscratch1, offset)); 5020 cmp(src1, rscratch1); 5021 } 5022 5023 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 5024 cmp(obj1, obj2); 5025 } 5026 5027 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5028 load_method_holder(rresult, rmethod); 5029 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5030 } 5031 5032 void MacroAssembler::load_method_holder(Register holder, Register method) { 5033 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 5034 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5035 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5036 } 5037 5038 // Loads the obj's Klass* into dst. 5039 // Preserves all registers (incl src, rscratch1 and rscratch2). 5040 // Input: 5041 // src - the oop we want to load the klass from. 5042 // dst - output narrow klass. 5043 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5044 assert(UseCompactObjectHeaders, "expects UseCompactObjectHeaders"); 5045 ldr(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5046 lsr(dst, dst, markWord::klass_shift); 5047 } 5048 5049 void MacroAssembler::load_klass(Register dst, Register src) { 5050 if (UseCompactObjectHeaders) { 5051 load_narrow_klass_compact(dst, src); 5052 decode_klass_not_null(dst); 5053 } else if (UseCompressedClassPointers) { 5054 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5055 decode_klass_not_null(dst); 5056 } else { 5057 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5058 } 5059 } 5060 5061 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) { 5062 if (RestoreMXCSROnJNICalls) { 5063 Label OK; 5064 get_fpcr(tmp1); 5065 mov(tmp2, tmp1); 5066 // Set FPCR to the state we need. We do want Round to Nearest. We 5067 // don't want non-IEEE rounding modes or floating-point traps. 5068 bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode 5069 bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12) 5070 bfi(tmp1, zr, 0, 2); // Clear AH:FIZ 5071 eor(tmp2, tmp1, tmp2); 5072 cbz(tmp2, OK); // Only reset FPCR if it's wrong 5073 set_fpcr(tmp1); 5074 bind(OK); 5075 } 5076 } 5077 5078 // ((OopHandle)result).resolve(); 5079 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 5080 // OopHandle::resolve is an indirection. 5081 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 5082 } 5083 5084 // ((WeakHandle)result).resolve(); 5085 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 5086 assert_different_registers(result, tmp1, tmp2); 5087 Label resolved; 5088 5089 // A null weak handle resolves to null. 5090 cbz(result, resolved); 5091 5092 // Only 64 bit platforms support GCs that require a tmp register 5093 // WeakHandle::resolve is an indirection like jweak. 5094 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5095 result, Address(result), tmp1, tmp2); 5096 bind(resolved); 5097 } 5098 5099 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 5100 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5101 ldr(dst, Address(rmethod, Method::const_offset())); 5102 ldr(dst, Address(dst, ConstMethod::constants_offset())); 5103 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 5104 ldr(dst, Address(dst, mirror_offset)); 5105 resolve_oop_handle(dst, tmp1, tmp2); 5106 } 5107 5108 void MacroAssembler::cmp_klass(Register obj, Register klass, Register tmp) { 5109 assert_different_registers(obj, klass, tmp); 5110 if (UseCompressedClassPointers) { 5111 if (UseCompactObjectHeaders) { 5112 load_narrow_klass_compact(tmp, obj); 5113 } else { 5114 ldrw(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5115 } 5116 if (CompressedKlassPointers::base() == nullptr) { 5117 cmp(klass, tmp, LSL, CompressedKlassPointers::shift()); 5118 return; 5119 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 5120 && CompressedKlassPointers::shift() == 0) { 5121 // Only the bottom 32 bits matter 5122 cmpw(klass, tmp); 5123 return; 5124 } 5125 decode_klass_not_null(tmp); 5126 } else { 5127 ldr(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5128 } 5129 cmp(klass, tmp); 5130 } 5131 5132 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 5133 if (UseCompactObjectHeaders) { 5134 load_narrow_klass_compact(tmp1, obj1); 5135 load_narrow_klass_compact(tmp2, obj2); 5136 cmpw(tmp1, tmp2); 5137 } else if (UseCompressedClassPointers) { 5138 ldrw(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5139 ldrw(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5140 cmpw(tmp1, tmp2); 5141 } else { 5142 ldr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5143 ldr(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5144 cmp(tmp1, tmp2); 5145 } 5146 } 5147 5148 void MacroAssembler::store_klass(Register dst, Register src) { 5149 // FIXME: Should this be a store release? concurrent gcs assumes 5150 // klass length is valid if klass field is not null. 5151 assert(!UseCompactObjectHeaders, "not with compact headers"); 5152 if (UseCompressedClassPointers) { 5153 encode_klass_not_null(src); 5154 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5155 } else { 5156 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5157 } 5158 } 5159 5160 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5161 assert(!UseCompactObjectHeaders, "not with compact headers"); 5162 if (UseCompressedClassPointers) { 5163 // Store to klass gap in destination 5164 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 5165 } 5166 } 5167 5168 // Algorithm must match CompressedOops::encode. 5169 void MacroAssembler::encode_heap_oop(Register d, Register s) { 5170 #ifdef ASSERT 5171 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5172 #endif 5173 verify_oop_msg(s, "broken oop in encode_heap_oop"); 5174 if (CompressedOops::base() == nullptr) { 5175 if (CompressedOops::shift() != 0) { 5176 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5177 lsr(d, s, LogMinObjAlignmentInBytes); 5178 } else { 5179 mov(d, s); 5180 } 5181 } else { 5182 subs(d, s, rheapbase); 5183 csel(d, d, zr, Assembler::HS); 5184 lsr(d, d, LogMinObjAlignmentInBytes); 5185 5186 /* Old algorithm: is this any worse? 5187 Label nonnull; 5188 cbnz(r, nonnull); 5189 sub(r, r, rheapbase); 5190 bind(nonnull); 5191 lsr(r, r, LogMinObjAlignmentInBytes); 5192 */ 5193 } 5194 } 5195 5196 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5197 #ifdef ASSERT 5198 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5199 if (CheckCompressedOops) { 5200 Label ok; 5201 cbnz(r, ok); 5202 stop("null oop passed to encode_heap_oop_not_null"); 5203 bind(ok); 5204 } 5205 #endif 5206 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5207 if (CompressedOops::base() != nullptr) { 5208 sub(r, r, rheapbase); 5209 } 5210 if (CompressedOops::shift() != 0) { 5211 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5212 lsr(r, r, LogMinObjAlignmentInBytes); 5213 } 5214 } 5215 5216 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5217 #ifdef ASSERT 5218 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5219 if (CheckCompressedOops) { 5220 Label ok; 5221 cbnz(src, ok); 5222 stop("null oop passed to encode_heap_oop_not_null2"); 5223 bind(ok); 5224 } 5225 #endif 5226 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5227 5228 Register data = src; 5229 if (CompressedOops::base() != nullptr) { 5230 sub(dst, src, rheapbase); 5231 data = dst; 5232 } 5233 if (CompressedOops::shift() != 0) { 5234 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5235 lsr(dst, data, LogMinObjAlignmentInBytes); 5236 data = dst; 5237 } 5238 if (data == src) 5239 mov(dst, src); 5240 } 5241 5242 void MacroAssembler::decode_heap_oop(Register d, Register s) { 5243 #ifdef ASSERT 5244 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5245 #endif 5246 if (CompressedOops::base() == nullptr) { 5247 if (CompressedOops::shift() != 0) { 5248 lsl(d, s, CompressedOops::shift()); 5249 } else if (d != s) { 5250 mov(d, s); 5251 } 5252 } else { 5253 Label done; 5254 if (d != s) 5255 mov(d, s); 5256 cbz(s, done); 5257 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 5258 bind(done); 5259 } 5260 verify_oop_msg(d, "broken oop in decode_heap_oop"); 5261 } 5262 5263 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5264 assert (UseCompressedOops, "should only be used for compressed headers"); 5265 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5266 // Cannot assert, unverified entry point counts instructions (see .ad file) 5267 // vtableStubs also counts instructions in pd_code_size_limit. 5268 // Also do not verify_oop as this is called by verify_oop. 5269 if (CompressedOops::shift() != 0) { 5270 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5271 if (CompressedOops::base() != nullptr) { 5272 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5273 } else { 5274 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5275 } 5276 } else { 5277 assert (CompressedOops::base() == nullptr, "sanity"); 5278 } 5279 } 5280 5281 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5282 assert (UseCompressedOops, "should only be used for compressed headers"); 5283 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5284 // Cannot assert, unverified entry point counts instructions (see .ad file) 5285 // vtableStubs also counts instructions in pd_code_size_limit. 5286 // Also do not verify_oop as this is called by verify_oop. 5287 if (CompressedOops::shift() != 0) { 5288 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5289 if (CompressedOops::base() != nullptr) { 5290 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5291 } else { 5292 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5293 } 5294 } else { 5295 assert (CompressedOops::base() == nullptr, "sanity"); 5296 if (dst != src) { 5297 mov(dst, src); 5298 } 5299 } 5300 } 5301 5302 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 5303 5304 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 5305 assert(Metaspace::initialized(), "metaspace not initialized yet"); 5306 assert(_klass_decode_mode != KlassDecodeNone, "should be initialized"); 5307 return _klass_decode_mode; 5308 } 5309 5310 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode(address base, int shift, const size_t range) { 5311 assert(UseCompressedClassPointers, "not using compressed class pointers"); 5312 5313 // KlassDecodeMode shouldn't be set already. 5314 assert(_klass_decode_mode == KlassDecodeNone, "set once"); 5315 5316 if (base == nullptr) { 5317 return KlassDecodeZero; 5318 } 5319 5320 if (operand_valid_for_logical_immediate( 5321 /*is32*/false, (uint64_t)base)) { 5322 const uint64_t range_mask = right_n_bits(log2i_ceil(range)); 5323 if (((uint64_t)base & range_mask) == 0) { 5324 return KlassDecodeXor; 5325 } 5326 } 5327 5328 const uint64_t shifted_base = 5329 (uint64_t)base >> shift; 5330 if ((shifted_base & 0xffff0000ffffffff) == 0) { 5331 return KlassDecodeMovk; 5332 } 5333 5334 // No valid encoding. 5335 return KlassDecodeNone; 5336 } 5337 5338 // Check if one of the above decoding modes will work for given base, shift and range. 5339 bool MacroAssembler::check_klass_decode_mode(address base, int shift, const size_t range) { 5340 return klass_decode_mode(base, shift, range) != KlassDecodeNone; 5341 } 5342 5343 bool MacroAssembler::set_klass_decode_mode(address base, int shift, const size_t range) { 5344 _klass_decode_mode = klass_decode_mode(base, shift, range); 5345 return _klass_decode_mode != KlassDecodeNone; 5346 } 5347 5348 static Register pick_different_tmp(Register dst, Register src) { 5349 auto tmps = RegSet::of(r0, r1, r2) - RegSet::of(src, dst); 5350 return *tmps.begin(); 5351 } 5352 5353 void MacroAssembler::encode_klass_not_null_for_aot(Register dst, Register src) { 5354 // we have to load the klass base from the AOT constants area but 5355 // not the shift because it is not allowed to change 5356 int shift = CompressedKlassPointers::shift(); 5357 assert(shift >= 0 && shift <= CompressedKlassPointers::max_shift(), "unexpected compressed klass shift!"); 5358 if (dst != src) { 5359 // we can load the base into dst, subtract it formthe src and shift down 5360 lea(dst, ExternalAddress(CompressedKlassPointers::base_addr())); 5361 ldr(dst, dst); 5362 sub(dst, src, dst); 5363 lsr(dst, dst, shift); 5364 } else { 5365 // we need an extra register in order to load the coop base 5366 Register tmp = pick_different_tmp(dst, src); 5367 RegSet regs = RegSet::of(tmp); 5368 push(regs, sp); 5369 lea(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5370 ldr(tmp, tmp); 5371 sub(dst, src, tmp); 5372 lsr(dst, dst, shift); 5373 pop(regs, sp); 5374 } 5375 } 5376 5377 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 5378 if (AOTCodeCache::is_on_for_dump()) { 5379 encode_klass_not_null_for_aot(dst, src); 5380 return; 5381 } 5382 5383 switch (klass_decode_mode()) { 5384 case KlassDecodeZero: 5385 if (CompressedKlassPointers::shift() != 0) { 5386 lsr(dst, src, CompressedKlassPointers::shift()); 5387 } else { 5388 if (dst != src) mov(dst, src); 5389 } 5390 break; 5391 5392 case KlassDecodeXor: 5393 if (CompressedKlassPointers::shift() != 0) { 5394 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5395 lsr(dst, dst, CompressedKlassPointers::shift()); 5396 } else { 5397 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5398 } 5399 break; 5400 5401 case KlassDecodeMovk: 5402 if (CompressedKlassPointers::shift() != 0) { 5403 ubfx(dst, src, CompressedKlassPointers::shift(), 32); 5404 } else { 5405 movw(dst, src); 5406 } 5407 break; 5408 5409 case KlassDecodeNone: 5410 ShouldNotReachHere(); 5411 break; 5412 } 5413 } 5414 5415 void MacroAssembler::encode_klass_not_null(Register r) { 5416 encode_klass_not_null(r, r); 5417 } 5418 5419 void MacroAssembler::decode_klass_not_null_for_aot(Register dst, Register src) { 5420 // we have to load the klass base from the AOT constants area but 5421 // not the shift because it is not allowed to change 5422 int shift = CompressedKlassPointers::shift(); 5423 assert(shift >= 0 && shift <= CompressedKlassPointers::max_shift(), "unexpected compressed klass shift!"); 5424 if (dst != src) { 5425 // we can load the base into dst then add the offset with a suitable shift 5426 lea(dst, ExternalAddress(CompressedKlassPointers::base_addr())); 5427 ldr(dst, dst); 5428 add(dst, dst, src, LSL, shift); 5429 } else { 5430 // we need an extra register in order to load the coop base 5431 Register tmp = pick_different_tmp(dst, src); 5432 RegSet regs = RegSet::of(tmp); 5433 push(regs, sp); 5434 lea(tmp, ExternalAddress(CompressedKlassPointers::base_addr())); 5435 ldr(tmp, tmp); 5436 add(dst, tmp, src, LSL, shift); 5437 pop(regs, sp); 5438 } 5439 } 5440 5441 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 5442 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5443 5444 if (AOTCodeCache::is_on_for_dump()) { 5445 decode_klass_not_null_for_aot(dst, src); 5446 return; 5447 } 5448 5449 switch (klass_decode_mode()) { 5450 case KlassDecodeZero: 5451 if (CompressedKlassPointers::shift() != 0) { 5452 lsl(dst, src, CompressedKlassPointers::shift()); 5453 } else { 5454 if (dst != src) mov(dst, src); 5455 } 5456 break; 5457 5458 case KlassDecodeXor: 5459 if (CompressedKlassPointers::shift() != 0) { 5460 lsl(dst, src, CompressedKlassPointers::shift()); 5461 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 5462 } else { 5463 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5464 } 5465 break; 5466 5467 case KlassDecodeMovk: { 5468 const uint64_t shifted_base = 5469 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5470 5471 if (dst != src) movw(dst, src); 5472 movk(dst, shifted_base >> 32, 32); 5473 5474 if (CompressedKlassPointers::shift() != 0) { 5475 lsl(dst, dst, CompressedKlassPointers::shift()); 5476 } 5477 5478 break; 5479 } 5480 5481 case KlassDecodeNone: 5482 ShouldNotReachHere(); 5483 break; 5484 } 5485 } 5486 5487 void MacroAssembler::decode_klass_not_null(Register r) { 5488 decode_klass_not_null(r, r); 5489 } 5490 5491 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5492 #ifdef ASSERT 5493 { 5494 ThreadInVMfromUnknown tiv; 5495 assert (UseCompressedOops, "should only be used for compressed oops"); 5496 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5497 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5498 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5499 } 5500 #endif 5501 int oop_index = oop_recorder()->find_index(obj); 5502 InstructionMark im(this); 5503 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5504 code_section()->relocate(inst_mark(), rspec); 5505 movz(dst, 0xDEAD, 16); 5506 movk(dst, 0xBEEF); 5507 } 5508 5509 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5510 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5511 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5512 int index = oop_recorder()->find_index(k); 5513 assert(! Universe::heap()->is_in(k), "should not be an oop"); 5514 5515 InstructionMark im(this); 5516 RelocationHolder rspec = metadata_Relocation::spec(index); 5517 code_section()->relocate(inst_mark(), rspec); 5518 narrowKlass nk = CompressedKlassPointers::encode(k); 5519 movz(dst, (nk >> 16), 16); 5520 movk(dst, nk & 0xffff); 5521 } 5522 5523 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 5524 Register dst, Address src, 5525 Register tmp1, Register tmp2) { 5526 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5527 decorators = AccessInternal::decorator_fixup(decorators, type); 5528 bool as_raw = (decorators & AS_RAW) != 0; 5529 if (as_raw) { 5530 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 5531 } else { 5532 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 5533 } 5534 } 5535 5536 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 5537 Address dst, Register val, 5538 Register tmp1, Register tmp2, Register tmp3) { 5539 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5540 decorators = AccessInternal::decorator_fixup(decorators, type); 5541 bool as_raw = (decorators & AS_RAW) != 0; 5542 if (as_raw) { 5543 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5544 } else { 5545 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5546 } 5547 } 5548 5549 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5550 Register tmp2, DecoratorSet decorators) { 5551 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 5552 } 5553 5554 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5555 Register tmp2, DecoratorSet decorators) { 5556 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 5557 } 5558 5559 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5560 Register tmp2, Register tmp3, DecoratorSet decorators) { 5561 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5562 } 5563 5564 // Used for storing nulls. 5565 void MacroAssembler::store_heap_oop_null(Address dst) { 5566 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5567 } 5568 5569 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 5570 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 5571 int index = oop_recorder()->allocate_metadata_index(obj); 5572 RelocationHolder rspec = metadata_Relocation::spec(index); 5573 return Address((address)obj, rspec); 5574 } 5575 5576 // Move an oop into a register. 5577 void MacroAssembler::movoop(Register dst, jobject obj) { 5578 int oop_index; 5579 if (obj == nullptr) { 5580 oop_index = oop_recorder()->allocate_oop_index(obj); 5581 } else { 5582 #ifdef ASSERT 5583 { 5584 ThreadInVMfromUnknown tiv; 5585 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5586 } 5587 #endif 5588 oop_index = oop_recorder()->find_index(obj); 5589 } 5590 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5591 5592 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 5593 mov(dst, Address((address)obj, rspec)); 5594 } else { 5595 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 5596 ldr(dst, Address(dummy, rspec)); 5597 } 5598 } 5599 5600 // Move a metadata address into a register. 5601 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 5602 int oop_index; 5603 if (obj == nullptr) { 5604 oop_index = oop_recorder()->allocate_metadata_index(obj); 5605 } else { 5606 oop_index = oop_recorder()->find_index(obj); 5607 } 5608 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 5609 mov(dst, Address((address)obj, rspec)); 5610 } 5611 5612 Address MacroAssembler::constant_oop_address(jobject obj) { 5613 #ifdef ASSERT 5614 { 5615 ThreadInVMfromUnknown tiv; 5616 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5617 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 5618 } 5619 #endif 5620 int oop_index = oop_recorder()->find_index(obj); 5621 return Address((address)obj, oop_Relocation::spec(oop_index)); 5622 } 5623 5624 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 5625 void MacroAssembler::tlab_allocate(Register obj, 5626 Register var_size_in_bytes, 5627 int con_size_in_bytes, 5628 Register t1, 5629 Register t2, 5630 Label& slow_case) { 5631 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5632 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 5633 } 5634 5635 void MacroAssembler::inc_held_monitor_count(Register tmp) { 5636 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5637 #ifdef ASSERT 5638 ldr(tmp, dst); 5639 increment(tmp); 5640 str(tmp, dst); 5641 Label ok; 5642 tbz(tmp, 63, ok); 5643 STOP("assert(held monitor count underflow)"); 5644 should_not_reach_here(); 5645 bind(ok); 5646 #else 5647 increment(dst); 5648 #endif 5649 } 5650 5651 void MacroAssembler::dec_held_monitor_count(Register tmp) { 5652 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5653 #ifdef ASSERT 5654 ldr(tmp, dst); 5655 decrement(tmp); 5656 str(tmp, dst); 5657 Label ok; 5658 tbz(tmp, 63, ok); 5659 STOP("assert(held monitor count underflow)"); 5660 should_not_reach_here(); 5661 bind(ok); 5662 #else 5663 decrement(dst); 5664 #endif 5665 } 5666 5667 void MacroAssembler::verify_tlab() { 5668 #ifdef ASSERT 5669 if (UseTLAB && VerifyOops) { 5670 Label next, ok; 5671 5672 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 5673 5674 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5675 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 5676 cmp(rscratch2, rscratch1); 5677 br(Assembler::HS, next); 5678 STOP("assert(top >= start)"); 5679 should_not_reach_here(); 5680 5681 bind(next); 5682 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 5683 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5684 cmp(rscratch2, rscratch1); 5685 br(Assembler::HS, ok); 5686 STOP("assert(top <= end)"); 5687 should_not_reach_here(); 5688 5689 bind(ok); 5690 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 5691 } 5692 #endif 5693 } 5694 5695 // Writes to stack successive pages until offset reached to check for 5696 // stack overflow + shadow pages. This clobbers tmp. 5697 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 5698 assert_different_registers(tmp, size, rscratch1); 5699 mov(tmp, sp); 5700 // Bang stack for total size given plus shadow page size. 5701 // Bang one page at a time because large size can bang beyond yellow and 5702 // red zones. 5703 Label loop; 5704 mov(rscratch1, (int)os::vm_page_size()); 5705 bind(loop); 5706 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5707 subsw(size, size, rscratch1); 5708 str(size, Address(tmp)); 5709 br(Assembler::GT, loop); 5710 5711 // Bang down shadow pages too. 5712 // At this point, (tmp-0) is the last address touched, so don't 5713 // touch it again. (It was touched as (tmp-pagesize) but then tmp 5714 // was post-decremented.) Skip this address by starting at i=1, and 5715 // touch a few more pages below. N.B. It is important to touch all 5716 // the way down to and including i=StackShadowPages. 5717 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 5718 // this could be any sized move but this is can be a debugging crumb 5719 // so the bigger the better. 5720 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5721 str(size, Address(tmp)); 5722 } 5723 } 5724 5725 // Move the address of the polling page into dest. 5726 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 5727 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 5728 } 5729 5730 // Read the polling page. The address of the polling page must 5731 // already be in r. 5732 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 5733 address mark; 5734 { 5735 InstructionMark im(this); 5736 code_section()->relocate(inst_mark(), rtype); 5737 ldrw(zr, Address(r, 0)); 5738 mark = inst_mark(); 5739 } 5740 verify_cross_modify_fence_not_required(); 5741 return mark; 5742 } 5743 5744 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 5745 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 5746 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 5747 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 5748 uint64_t dest_page = (uint64_t)dest.target() >> 12; 5749 int64_t offset_low = dest_page - low_page; 5750 int64_t offset_high = dest_page - high_page; 5751 5752 assert(is_valid_AArch64_address(dest.target()), "bad address"); 5753 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 5754 5755 InstructionMark im(this); 5756 code_section()->relocate(inst_mark(), dest.rspec()); 5757 // 8143067: Ensure that the adrp can reach the dest from anywhere within 5758 // the code cache so that if it is relocated we know it will still reach 5759 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 5760 _adrp(reg1, dest.target()); 5761 } else { 5762 uint64_t target = (uint64_t)dest.target(); 5763 uint64_t adrp_target 5764 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5765 5766 _adrp(reg1, (address)adrp_target); 5767 movk(reg1, target >> 32, 32); 5768 } 5769 byte_offset = (uint64_t)dest.target() & 0xfff; 5770 } 5771 5772 void MacroAssembler::load_byte_map_base(Register reg) { 5773 CardTable::CardValue* byte_map_base = 5774 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5775 5776 // Strictly speaking the byte_map_base isn't an address at all, and it might 5777 // even be negative. It is thus materialised as a constant. 5778 mov(reg, (uint64_t)byte_map_base); 5779 } 5780 5781 void MacroAssembler::build_frame(int framesize) { 5782 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5783 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5784 protect_return_address(); 5785 if (framesize < ((1 << 9) + 2 * wordSize)) { 5786 sub(sp, sp, framesize); 5787 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5788 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 5789 } else { 5790 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 5791 if (PreserveFramePointer) mov(rfp, sp); 5792 if (framesize < ((1 << 12) + 2 * wordSize)) 5793 sub(sp, sp, framesize - 2 * wordSize); 5794 else { 5795 mov(rscratch1, framesize - 2 * wordSize); 5796 sub(sp, sp, rscratch1); 5797 } 5798 } 5799 verify_cross_modify_fence_not_required(); 5800 } 5801 5802 void MacroAssembler::remove_frame(int framesize) { 5803 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5804 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5805 if (framesize < ((1 << 9) + 2 * wordSize)) { 5806 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5807 add(sp, sp, framesize); 5808 } else { 5809 if (framesize < ((1 << 12) + 2 * wordSize)) 5810 add(sp, sp, framesize - 2 * wordSize); 5811 else { 5812 mov(rscratch1, framesize - 2 * wordSize); 5813 add(sp, sp, rscratch1); 5814 } 5815 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5816 } 5817 authenticate_return_address(); 5818 } 5819 5820 5821 // This method counts leading positive bytes (highest bit not set) in provided byte array 5822 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 5823 // Simple and most common case of aligned small array which is not at the 5824 // end of memory page is placed here. All other cases are in stub. 5825 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 5826 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 5827 assert_different_registers(ary1, len, result); 5828 5829 mov(result, len); 5830 cmpw(len, 0); 5831 br(LE, DONE); 5832 cmpw(len, 4 * wordSize); 5833 br(GE, STUB_LONG); // size > 32 then go to stub 5834 5835 int shift = 64 - exact_log2(os::vm_page_size()); 5836 lsl(rscratch1, ary1, shift); 5837 mov(rscratch2, (size_t)(4 * wordSize) << shift); 5838 adds(rscratch2, rscratch1, rscratch2); // At end of page? 5839 br(CS, STUB); // at the end of page then go to stub 5840 subs(len, len, wordSize); 5841 br(LT, END); 5842 5843 BIND(LOOP); 5844 ldr(rscratch1, Address(post(ary1, wordSize))); 5845 tst(rscratch1, UPPER_BIT_MASK); 5846 br(NE, SET_RESULT); 5847 subs(len, len, wordSize); 5848 br(GE, LOOP); 5849 cmpw(len, -wordSize); 5850 br(EQ, DONE); 5851 5852 BIND(END); 5853 ldr(rscratch1, Address(ary1)); 5854 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 5855 lslv(rscratch1, rscratch1, rscratch2); 5856 tst(rscratch1, UPPER_BIT_MASK); 5857 br(NE, SET_RESULT); 5858 b(DONE); 5859 5860 BIND(STUB); 5861 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 5862 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 5863 address tpc1 = trampoline_call(count_pos); 5864 if (tpc1 == nullptr) { 5865 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 5866 postcond(pc() == badAddress); 5867 return nullptr; 5868 } 5869 b(DONE); 5870 5871 BIND(STUB_LONG); 5872 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 5873 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 5874 address tpc2 = trampoline_call(count_pos_long); 5875 if (tpc2 == nullptr) { 5876 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 5877 postcond(pc() == badAddress); 5878 return nullptr; 5879 } 5880 b(DONE); 5881 5882 BIND(SET_RESULT); 5883 5884 add(len, len, wordSize); 5885 sub(result, result, len); 5886 5887 BIND(DONE); 5888 postcond(pc() != badAddress); 5889 return pc(); 5890 } 5891 5892 // Clobbers: rscratch1, rscratch2, rflags 5893 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 5894 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 5895 Register tmp4, Register tmp5, Register result, 5896 Register cnt1, int elem_size) { 5897 Label DONE, SAME; 5898 Register tmp1 = rscratch1; 5899 Register tmp2 = rscratch2; 5900 int elem_per_word = wordSize/elem_size; 5901 int log_elem_size = exact_log2(elem_size); 5902 int klass_offset = arrayOopDesc::klass_offset_in_bytes(); 5903 int length_offset = arrayOopDesc::length_offset_in_bytes(); 5904 int base_offset 5905 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 5906 // When the length offset is not aligned to 8 bytes, 5907 // then we align it down. This is valid because the new 5908 // offset will always be the klass which is the same 5909 // for type arrays. 5910 int start_offset = align_down(length_offset, BytesPerWord); 5911 int extra_length = base_offset - start_offset; 5912 assert(start_offset == length_offset || start_offset == klass_offset, 5913 "start offset must be 8-byte-aligned or be the klass offset"); 5914 assert(base_offset != start_offset, "must include the length field"); 5915 extra_length = extra_length / elem_size; // We count in elements, not bytes. 5916 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 5917 5918 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 5919 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5920 5921 #ifndef PRODUCT 5922 { 5923 const char kind = (elem_size == 2) ? 'U' : 'L'; 5924 char comment[64]; 5925 snprintf(comment, sizeof comment, "array_equals%c{", kind); 5926 BLOCK_COMMENT(comment); 5927 } 5928 #endif 5929 5930 // if (a1 == a2) 5931 // return true; 5932 cmpoop(a1, a2); // May have read barriers for a1 and a2. 5933 br(EQ, SAME); 5934 5935 if (UseSimpleArrayEquals) { 5936 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 5937 // if (a1 == nullptr || a2 == nullptr) 5938 // return false; 5939 // a1 & a2 == 0 means (some-pointer is null) or 5940 // (very-rare-or-even-probably-impossible-pointer-values) 5941 // so, we can save one branch in most cases 5942 tst(a1, a2); 5943 mov(result, false); 5944 br(EQ, A_MIGHT_BE_NULL); 5945 // if (a1.length != a2.length) 5946 // return false; 5947 bind(A_IS_NOT_NULL); 5948 ldrw(cnt1, Address(a1, length_offset)); 5949 // Increase loop counter by diff between base- and actual start-offset. 5950 addw(cnt1, cnt1, extra_length); 5951 lea(a1, Address(a1, start_offset)); 5952 lea(a2, Address(a2, start_offset)); 5953 // Check for short strings, i.e. smaller than wordSize. 5954 subs(cnt1, cnt1, elem_per_word); 5955 br(Assembler::LT, SHORT); 5956 // Main 8 byte comparison loop. 5957 bind(NEXT_WORD); { 5958 ldr(tmp1, Address(post(a1, wordSize))); 5959 ldr(tmp2, Address(post(a2, wordSize))); 5960 subs(cnt1, cnt1, elem_per_word); 5961 eor(tmp5, tmp1, tmp2); 5962 cbnz(tmp5, DONE); 5963 } br(GT, NEXT_WORD); 5964 // Last longword. In the case where length == 4 we compare the 5965 // same longword twice, but that's still faster than another 5966 // conditional branch. 5967 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5968 // length == 4. 5969 if (log_elem_size > 0) 5970 lsl(cnt1, cnt1, log_elem_size); 5971 ldr(tmp3, Address(a1, cnt1)); 5972 ldr(tmp4, Address(a2, cnt1)); 5973 eor(tmp5, tmp3, tmp4); 5974 cbnz(tmp5, DONE); 5975 b(SAME); 5976 bind(A_MIGHT_BE_NULL); 5977 // in case both a1 and a2 are not-null, proceed with loads 5978 cbz(a1, DONE); 5979 cbz(a2, DONE); 5980 b(A_IS_NOT_NULL); 5981 bind(SHORT); 5982 5983 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 5984 { 5985 ldrw(tmp1, Address(post(a1, 4))); 5986 ldrw(tmp2, Address(post(a2, 4))); 5987 eorw(tmp5, tmp1, tmp2); 5988 cbnzw(tmp5, DONE); 5989 } 5990 bind(TAIL03); 5991 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 5992 { 5993 ldrh(tmp3, Address(post(a1, 2))); 5994 ldrh(tmp4, Address(post(a2, 2))); 5995 eorw(tmp5, tmp3, tmp4); 5996 cbnzw(tmp5, DONE); 5997 } 5998 bind(TAIL01); 5999 if (elem_size == 1) { // Only needed when comparing byte arrays. 6000 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6001 { 6002 ldrb(tmp1, a1); 6003 ldrb(tmp2, a2); 6004 eorw(tmp5, tmp1, tmp2); 6005 cbnzw(tmp5, DONE); 6006 } 6007 } 6008 } else { 6009 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 6010 CSET_EQ, LAST_CHECK; 6011 mov(result, false); 6012 cbz(a1, DONE); 6013 ldrw(cnt1, Address(a1, length_offset)); 6014 cbz(a2, DONE); 6015 // Increase loop counter by diff between base- and actual start-offset. 6016 addw(cnt1, cnt1, extra_length); 6017 6018 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 6019 // faster to perform another branch before comparing a1 and a2 6020 cmp(cnt1, (u1)elem_per_word); 6021 br(LE, SHORT); // short or same 6022 ldr(tmp3, Address(pre(a1, start_offset))); 6023 subs(zr, cnt1, stubBytesThreshold); 6024 br(GE, STUB); 6025 ldr(tmp4, Address(pre(a2, start_offset))); 6026 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6027 6028 // Main 16 byte comparison loop with 2 exits 6029 bind(NEXT_DWORD); { 6030 ldr(tmp1, Address(pre(a1, wordSize))); 6031 ldr(tmp2, Address(pre(a2, wordSize))); 6032 subs(cnt1, cnt1, 2 * elem_per_word); 6033 br(LE, TAIL); 6034 eor(tmp4, tmp3, tmp4); 6035 cbnz(tmp4, DONE); 6036 ldr(tmp3, Address(pre(a1, wordSize))); 6037 ldr(tmp4, Address(pre(a2, wordSize))); 6038 cmp(cnt1, (u1)elem_per_word); 6039 br(LE, TAIL2); 6040 cmp(tmp1, tmp2); 6041 } br(EQ, NEXT_DWORD); 6042 b(DONE); 6043 6044 bind(TAIL); 6045 eor(tmp4, tmp3, tmp4); 6046 eor(tmp2, tmp1, tmp2); 6047 lslv(tmp2, tmp2, tmp5); 6048 orr(tmp5, tmp4, tmp2); 6049 cmp(tmp5, zr); 6050 b(CSET_EQ); 6051 6052 bind(TAIL2); 6053 eor(tmp2, tmp1, tmp2); 6054 cbnz(tmp2, DONE); 6055 b(LAST_CHECK); 6056 6057 bind(STUB); 6058 ldr(tmp4, Address(pre(a2, start_offset))); 6059 if (elem_size == 2) { // convert to byte counter 6060 lsl(cnt1, cnt1, 1); 6061 } 6062 eor(tmp5, tmp3, tmp4); 6063 cbnz(tmp5, DONE); 6064 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 6065 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 6066 address tpc = trampoline_call(stub); 6067 if (tpc == nullptr) { 6068 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 6069 postcond(pc() == badAddress); 6070 return nullptr; 6071 } 6072 b(DONE); 6073 6074 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 6075 // so, if a2 == null => return false(0), else return true, so we can return a2 6076 mov(result, a2); 6077 b(DONE); 6078 bind(SHORT); 6079 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6080 ldr(tmp3, Address(a1, start_offset)); 6081 ldr(tmp4, Address(a2, start_offset)); 6082 bind(LAST_CHECK); 6083 eor(tmp4, tmp3, tmp4); 6084 lslv(tmp5, tmp4, tmp5); 6085 cmp(tmp5, zr); 6086 bind(CSET_EQ); 6087 cset(result, EQ); 6088 b(DONE); 6089 } 6090 6091 bind(SAME); 6092 mov(result, true); 6093 // That's it. 6094 bind(DONE); 6095 6096 BLOCK_COMMENT("} array_equals"); 6097 postcond(pc() != badAddress); 6098 return pc(); 6099 } 6100 6101 // Compare Strings 6102 6103 // For Strings we're passed the address of the first characters in a1 6104 // and a2 and the length in cnt1. 6105 // There are two implementations. For arrays >= 8 bytes, all 6106 // comparisons (including the final one, which may overlap) are 6107 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 6108 // halfword, then a short, and then a byte. 6109 6110 void MacroAssembler::string_equals(Register a1, Register a2, 6111 Register result, Register cnt1) 6112 { 6113 Label SAME, DONE, SHORT, NEXT_WORD; 6114 Register tmp1 = rscratch1; 6115 Register tmp2 = rscratch2; 6116 Register cnt2 = tmp2; // cnt2 only used in array length compare 6117 6118 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6119 6120 #ifndef PRODUCT 6121 { 6122 char comment[64]; 6123 snprintf(comment, sizeof comment, "{string_equalsL"); 6124 BLOCK_COMMENT(comment); 6125 } 6126 #endif 6127 6128 mov(result, false); 6129 6130 // Check for short strings, i.e. smaller than wordSize. 6131 subs(cnt1, cnt1, wordSize); 6132 br(Assembler::LT, SHORT); 6133 // Main 8 byte comparison loop. 6134 bind(NEXT_WORD); { 6135 ldr(tmp1, Address(post(a1, wordSize))); 6136 ldr(tmp2, Address(post(a2, wordSize))); 6137 subs(cnt1, cnt1, wordSize); 6138 eor(tmp1, tmp1, tmp2); 6139 cbnz(tmp1, DONE); 6140 } br(GT, NEXT_WORD); 6141 // Last longword. In the case where length == 4 we compare the 6142 // same longword twice, but that's still faster than another 6143 // conditional branch. 6144 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6145 // length == 4. 6146 ldr(tmp1, Address(a1, cnt1)); 6147 ldr(tmp2, Address(a2, cnt1)); 6148 eor(tmp2, tmp1, tmp2); 6149 cbnz(tmp2, DONE); 6150 b(SAME); 6151 6152 bind(SHORT); 6153 Label TAIL03, TAIL01; 6154 6155 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 6156 { 6157 ldrw(tmp1, Address(post(a1, 4))); 6158 ldrw(tmp2, Address(post(a2, 4))); 6159 eorw(tmp1, tmp1, tmp2); 6160 cbnzw(tmp1, DONE); 6161 } 6162 bind(TAIL03); 6163 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 6164 { 6165 ldrh(tmp1, Address(post(a1, 2))); 6166 ldrh(tmp2, Address(post(a2, 2))); 6167 eorw(tmp1, tmp1, tmp2); 6168 cbnzw(tmp1, DONE); 6169 } 6170 bind(TAIL01); 6171 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6172 { 6173 ldrb(tmp1, a1); 6174 ldrb(tmp2, a2); 6175 eorw(tmp1, tmp1, tmp2); 6176 cbnzw(tmp1, DONE); 6177 } 6178 // Arrays are equal. 6179 bind(SAME); 6180 mov(result, true); 6181 6182 // That's it. 6183 bind(DONE); 6184 BLOCK_COMMENT("} string_equals"); 6185 } 6186 6187 6188 // The size of the blocks erased by the zero_blocks stub. We must 6189 // handle anything smaller than this ourselves in zero_words(). 6190 const int MacroAssembler::zero_words_block_size = 8; 6191 6192 // zero_words() is used by C2 ClearArray patterns and by 6193 // C1_MacroAssembler. It is as small as possible, handling small word 6194 // counts locally and delegating anything larger to the zero_blocks 6195 // stub. It is expanded many times in compiled code, so it is 6196 // important to keep it short. 6197 6198 // ptr: Address of a buffer to be zeroed. 6199 // cnt: Count in HeapWords. 6200 // 6201 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 6202 address MacroAssembler::zero_words(Register ptr, Register cnt) 6203 { 6204 assert(is_power_of_2(zero_words_block_size), "adjust this"); 6205 6206 BLOCK_COMMENT("zero_words {"); 6207 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 6208 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6209 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6210 6211 subs(rscratch1, cnt, zero_words_block_size); 6212 Label around; 6213 br(LO, around); 6214 { 6215 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6216 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6217 // Make sure this is a C2 compilation. C1 allocates space only for 6218 // trampoline stubs generated by Call LIR ops, and in any case it 6219 // makes sense for a C1 compilation task to proceed as quickly as 6220 // possible. 6221 CompileTask* task; 6222 if (StubRoutines::aarch64::complete() 6223 && Thread::current()->is_Compiler_thread() 6224 && (task = ciEnv::current()->task()) 6225 && is_c2_compile(task->comp_level())) { 6226 address tpc = trampoline_call(zero_blocks); 6227 if (tpc == nullptr) { 6228 DEBUG_ONLY(reset_labels(around)); 6229 return nullptr; 6230 } 6231 } else { 6232 far_call(zero_blocks); 6233 } 6234 } 6235 bind(around); 6236 6237 // We have a few words left to do. zero_blocks has adjusted r10 and r11 6238 // for us. 6239 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 6240 Label l; 6241 tbz(cnt, exact_log2(i), l); 6242 for (int j = 0; j < i; j += 2) { 6243 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 6244 } 6245 bind(l); 6246 } 6247 { 6248 Label l; 6249 tbz(cnt, 0, l); 6250 str(zr, Address(ptr)); 6251 bind(l); 6252 } 6253 6254 BLOCK_COMMENT("} zero_words"); 6255 return pc(); 6256 } 6257 6258 // base: Address of a buffer to be zeroed, 8 bytes aligned. 6259 // cnt: Immediate count in HeapWords. 6260 // 6261 // r10, r11, rscratch1, and rscratch2 are clobbered. 6262 address MacroAssembler::zero_words(Register base, uint64_t cnt) 6263 { 6264 assert(wordSize <= BlockZeroingLowLimit, 6265 "increase BlockZeroingLowLimit"); 6266 address result = nullptr; 6267 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 6268 #ifndef PRODUCT 6269 { 6270 char buf[64]; 6271 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 6272 BLOCK_COMMENT(buf); 6273 } 6274 #endif 6275 if (cnt >= 16) { 6276 uint64_t loops = cnt/16; 6277 if (loops > 1) { 6278 mov(rscratch2, loops - 1); 6279 } 6280 { 6281 Label loop; 6282 bind(loop); 6283 for (int i = 0; i < 16; i += 2) { 6284 stp(zr, zr, Address(base, i * BytesPerWord)); 6285 } 6286 add(base, base, 16 * BytesPerWord); 6287 if (loops > 1) { 6288 subs(rscratch2, rscratch2, 1); 6289 br(GE, loop); 6290 } 6291 } 6292 } 6293 cnt %= 16; 6294 int i = cnt & 1; // store any odd word to start 6295 if (i) str(zr, Address(base)); 6296 for (; i < (int)cnt; i += 2) { 6297 stp(zr, zr, Address(base, i * wordSize)); 6298 } 6299 BLOCK_COMMENT("} zero_words"); 6300 result = pc(); 6301 } else { 6302 mov(r10, base); mov(r11, cnt); 6303 result = zero_words(r10, r11); 6304 } 6305 return result; 6306 } 6307 6308 // Zero blocks of memory by using DC ZVA. 6309 // 6310 // Aligns the base address first sufficiently for DC ZVA, then uses 6311 // DC ZVA repeatedly for every full block. cnt is the size to be 6312 // zeroed in HeapWords. Returns the count of words left to be zeroed 6313 // in cnt. 6314 // 6315 // NOTE: This is intended to be used in the zero_blocks() stub. If 6316 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 6317 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 6318 Register tmp = rscratch1; 6319 Register tmp2 = rscratch2; 6320 int zva_length = VM_Version::zva_length(); 6321 Label initial_table_end, loop_zva; 6322 Label fini; 6323 6324 // Base must be 16 byte aligned. If not just return and let caller handle it 6325 tst(base, 0x0f); 6326 br(Assembler::NE, fini); 6327 // Align base with ZVA length. 6328 neg(tmp, base); 6329 andr(tmp, tmp, zva_length - 1); 6330 6331 // tmp: the number of bytes to be filled to align the base with ZVA length. 6332 add(base, base, tmp); 6333 sub(cnt, cnt, tmp, Assembler::ASR, 3); 6334 adr(tmp2, initial_table_end); 6335 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 6336 br(tmp2); 6337 6338 for (int i = -zva_length + 16; i < 0; i += 16) 6339 stp(zr, zr, Address(base, i)); 6340 bind(initial_table_end); 6341 6342 sub(cnt, cnt, zva_length >> 3); 6343 bind(loop_zva); 6344 dc(Assembler::ZVA, base); 6345 subs(cnt, cnt, zva_length >> 3); 6346 add(base, base, zva_length); 6347 br(Assembler::GE, loop_zva); 6348 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 6349 bind(fini); 6350 } 6351 6352 // base: Address of a buffer to be filled, 8 bytes aligned. 6353 // cnt: Count in 8-byte unit. 6354 // value: Value to be filled with. 6355 // base will point to the end of the buffer after filling. 6356 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 6357 { 6358 // Algorithm: 6359 // 6360 // if (cnt == 0) { 6361 // return; 6362 // } 6363 // if ((p & 8) != 0) { 6364 // *p++ = v; 6365 // } 6366 // 6367 // scratch1 = cnt & 14; 6368 // cnt -= scratch1; 6369 // p += scratch1; 6370 // switch (scratch1 / 2) { 6371 // do { 6372 // cnt -= 16; 6373 // p[-16] = v; 6374 // p[-15] = v; 6375 // case 7: 6376 // p[-14] = v; 6377 // p[-13] = v; 6378 // case 6: 6379 // p[-12] = v; 6380 // p[-11] = v; 6381 // // ... 6382 // case 1: 6383 // p[-2] = v; 6384 // p[-1] = v; 6385 // case 0: 6386 // p += 16; 6387 // } while (cnt); 6388 // } 6389 // if ((cnt & 1) == 1) { 6390 // *p++ = v; 6391 // } 6392 6393 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 6394 6395 Label fini, skip, entry, loop; 6396 const int unroll = 8; // Number of stp instructions we'll unroll 6397 6398 cbz(cnt, fini); 6399 tbz(base, 3, skip); 6400 str(value, Address(post(base, 8))); 6401 sub(cnt, cnt, 1); 6402 bind(skip); 6403 6404 andr(rscratch1, cnt, (unroll-1) * 2); 6405 sub(cnt, cnt, rscratch1); 6406 add(base, base, rscratch1, Assembler::LSL, 3); 6407 adr(rscratch2, entry); 6408 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 6409 br(rscratch2); 6410 6411 bind(loop); 6412 add(base, base, unroll * 16); 6413 for (int i = -unroll; i < 0; i++) 6414 stp(value, value, Address(base, i * 16)); 6415 bind(entry); 6416 subs(cnt, cnt, unroll * 2); 6417 br(Assembler::GE, loop); 6418 6419 tbz(cnt, 0, fini); 6420 str(value, Address(post(base, 8))); 6421 bind(fini); 6422 } 6423 6424 // Intrinsic for 6425 // 6426 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 6427 // return the number of characters copied. 6428 // - java/lang/StringUTF16.compress 6429 // return index of non-latin1 character if copy fails, otherwise 'len'. 6430 // 6431 // This version always returns the number of characters copied, and does not 6432 // clobber the 'len' register. A successful copy will complete with the post- 6433 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 6434 // post-condition: 0 <= 'res' < 'len'. 6435 // 6436 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 6437 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 6438 // beyond the acceptable, even though the footprint would be smaller. 6439 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 6440 // avoid additional bloat. 6441 // 6442 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 6443 void MacroAssembler::encode_iso_array(Register src, Register dst, 6444 Register len, Register res, bool ascii, 6445 FloatRegister vtmp0, FloatRegister vtmp1, 6446 FloatRegister vtmp2, FloatRegister vtmp3, 6447 FloatRegister vtmp4, FloatRegister vtmp5) 6448 { 6449 Register cnt = res; 6450 Register max = rscratch1; 6451 Register chk = rscratch2; 6452 6453 prfm(Address(src), PLDL1STRM); 6454 movw(cnt, len); 6455 6456 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 6457 6458 Label LOOP_32, DONE_32, FAIL_32; 6459 6460 BIND(LOOP_32); 6461 { 6462 cmpw(cnt, 32); 6463 br(LT, DONE_32); 6464 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 6465 // Extract lower bytes. 6466 FloatRegister vlo0 = vtmp4; 6467 FloatRegister vlo1 = vtmp5; 6468 uzp1(vlo0, T16B, vtmp0, vtmp1); 6469 uzp1(vlo1, T16B, vtmp2, vtmp3); 6470 // Merge bits... 6471 orr(vtmp0, T16B, vtmp0, vtmp1); 6472 orr(vtmp2, T16B, vtmp2, vtmp3); 6473 // Extract merged upper bytes. 6474 FloatRegister vhix = vtmp0; 6475 uzp2(vhix, T16B, vtmp0, vtmp2); 6476 // ISO-check on hi-parts (all zero). 6477 // ASCII-check on lo-parts (no sign). 6478 FloatRegister vlox = vtmp1; // Merge lower bytes. 6479 ASCII(orr(vlox, T16B, vlo0, vlo1)); 6480 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 6481 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 6482 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 6483 ASCII(orr(chk, chk, max)); 6484 cbnz(chk, FAIL_32); 6485 subw(cnt, cnt, 32); 6486 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 6487 b(LOOP_32); 6488 } 6489 BIND(FAIL_32); 6490 sub(src, src, 64); 6491 BIND(DONE_32); 6492 6493 Label LOOP_8, SKIP_8; 6494 6495 BIND(LOOP_8); 6496 { 6497 cmpw(cnt, 8); 6498 br(LT, SKIP_8); 6499 FloatRegister vhi = vtmp0; 6500 FloatRegister vlo = vtmp1; 6501 ld1(vtmp3, T8H, src); 6502 uzp1(vlo, T16B, vtmp3, vtmp3); 6503 uzp2(vhi, T16B, vtmp3, vtmp3); 6504 // ISO-check on hi-parts (all zero). 6505 // ASCII-check on lo-parts (no sign). 6506 ASCII(cm(LT, vtmp2, T16B, vlo)); 6507 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 6508 ASCII(umov(max, vtmp2, B, 0)); 6509 ASCII(orr(chk, chk, max)); 6510 cbnz(chk, SKIP_8); 6511 6512 strd(vlo, Address(post(dst, 8))); 6513 subw(cnt, cnt, 8); 6514 add(src, src, 16); 6515 b(LOOP_8); 6516 } 6517 BIND(SKIP_8); 6518 6519 #undef ASCII 6520 6521 Label LOOP, DONE; 6522 6523 cbz(cnt, DONE); 6524 BIND(LOOP); 6525 { 6526 Register chr = rscratch1; 6527 ldrh(chr, Address(post(src, 2))); 6528 tst(chr, ascii ? 0xff80 : 0xff00); 6529 br(NE, DONE); 6530 strb(chr, Address(post(dst, 1))); 6531 subs(cnt, cnt, 1); 6532 br(GT, LOOP); 6533 } 6534 BIND(DONE); 6535 // Return index where we stopped. 6536 subw(res, len, cnt); 6537 } 6538 6539 // Inflate byte[] array to char[]. 6540 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 6541 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 6542 FloatRegister vtmp1, FloatRegister vtmp2, 6543 FloatRegister vtmp3, Register tmp4) { 6544 Label big, done, after_init, to_stub; 6545 6546 assert_different_registers(src, dst, len, tmp4, rscratch1); 6547 6548 fmovd(vtmp1, 0.0); 6549 lsrw(tmp4, len, 3); 6550 bind(after_init); 6551 cbnzw(tmp4, big); 6552 // Short string: less than 8 bytes. 6553 { 6554 Label loop, tiny; 6555 6556 cmpw(len, 4); 6557 br(LT, tiny); 6558 // Use SIMD to do 4 bytes. 6559 ldrs(vtmp2, post(src, 4)); 6560 zip1(vtmp3, T8B, vtmp2, vtmp1); 6561 subw(len, len, 4); 6562 strd(vtmp3, post(dst, 8)); 6563 6564 cbzw(len, done); 6565 6566 // Do the remaining bytes by steam. 6567 bind(loop); 6568 ldrb(tmp4, post(src, 1)); 6569 strh(tmp4, post(dst, 2)); 6570 subw(len, len, 1); 6571 6572 bind(tiny); 6573 cbnz(len, loop); 6574 6575 b(done); 6576 } 6577 6578 if (SoftwarePrefetchHintDistance >= 0) { 6579 bind(to_stub); 6580 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 6581 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 6582 address tpc = trampoline_call(stub); 6583 if (tpc == nullptr) { 6584 DEBUG_ONLY(reset_labels(big, done)); 6585 postcond(pc() == badAddress); 6586 return nullptr; 6587 } 6588 b(after_init); 6589 } 6590 6591 // Unpack the bytes 8 at a time. 6592 bind(big); 6593 { 6594 Label loop, around, loop_last, loop_start; 6595 6596 if (SoftwarePrefetchHintDistance >= 0) { 6597 const int large_loop_threshold = (64 + 16)/8; 6598 ldrd(vtmp2, post(src, 8)); 6599 andw(len, len, 7); 6600 cmp(tmp4, (u1)large_loop_threshold); 6601 br(GE, to_stub); 6602 b(loop_start); 6603 6604 bind(loop); 6605 ldrd(vtmp2, post(src, 8)); 6606 bind(loop_start); 6607 subs(tmp4, tmp4, 1); 6608 br(EQ, loop_last); 6609 zip1(vtmp2, T16B, vtmp2, vtmp1); 6610 ldrd(vtmp3, post(src, 8)); 6611 st1(vtmp2, T8H, post(dst, 16)); 6612 subs(tmp4, tmp4, 1); 6613 zip1(vtmp3, T16B, vtmp3, vtmp1); 6614 st1(vtmp3, T8H, post(dst, 16)); 6615 br(NE, loop); 6616 b(around); 6617 bind(loop_last); 6618 zip1(vtmp2, T16B, vtmp2, vtmp1); 6619 st1(vtmp2, T8H, post(dst, 16)); 6620 bind(around); 6621 cbz(len, done); 6622 } else { 6623 andw(len, len, 7); 6624 bind(loop); 6625 ldrd(vtmp2, post(src, 8)); 6626 sub(tmp4, tmp4, 1); 6627 zip1(vtmp3, T16B, vtmp2, vtmp1); 6628 st1(vtmp3, T8H, post(dst, 16)); 6629 cbnz(tmp4, loop); 6630 } 6631 } 6632 6633 // Do the tail of up to 8 bytes. 6634 add(src, src, len); 6635 ldrd(vtmp3, Address(src, -8)); 6636 add(dst, dst, len, ext::uxtw, 1); 6637 zip1(vtmp3, T16B, vtmp3, vtmp1); 6638 strq(vtmp3, Address(dst, -16)); 6639 6640 bind(done); 6641 postcond(pc() != badAddress); 6642 return pc(); 6643 } 6644 6645 // Compress char[] array to byte[]. 6646 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 6647 // Return the array length if every element in array can be encoded, 6648 // otherwise, the index of first non-latin1 (> 0xff) character. 6649 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 6650 Register res, 6651 FloatRegister tmp0, FloatRegister tmp1, 6652 FloatRegister tmp2, FloatRegister tmp3, 6653 FloatRegister tmp4, FloatRegister tmp5) { 6654 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 6655 } 6656 6657 // java.math.round(double a) 6658 // Returns the closest long to the argument, with ties rounding to 6659 // positive infinity. This requires some fiddling for corner 6660 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 6661 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 6662 FloatRegister ftmp) { 6663 Label DONE; 6664 BLOCK_COMMENT("java_round_double: { "); 6665 fmovd(rscratch1, src); 6666 // Use RoundToNearestTiesAway unless src small and -ve. 6667 fcvtasd(dst, src); 6668 // Test if src >= 0 || abs(src) >= 0x1.0p52 6669 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 6670 mov(rscratch2, julong_cast(0x1.0p52)); 6671 cmp(rscratch1, rscratch2); 6672 br(HS, DONE); { 6673 // src < 0 && abs(src) < 0x1.0p52 6674 // src may have a fractional part, so add 0.5 6675 fmovd(ftmp, 0.5); 6676 faddd(ftmp, src, ftmp); 6677 // Convert double to jlong, use RoundTowardsNegative 6678 fcvtmsd(dst, ftmp); 6679 } 6680 bind(DONE); 6681 BLOCK_COMMENT("} java_round_double"); 6682 } 6683 6684 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 6685 FloatRegister ftmp) { 6686 Label DONE; 6687 BLOCK_COMMENT("java_round_float: { "); 6688 fmovs(rscratch1, src); 6689 // Use RoundToNearestTiesAway unless src small and -ve. 6690 fcvtassw(dst, src); 6691 // Test if src >= 0 || abs(src) >= 0x1.0p23 6692 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 6693 mov(rscratch2, jint_cast(0x1.0p23f)); 6694 cmp(rscratch1, rscratch2); 6695 br(HS, DONE); { 6696 // src < 0 && |src| < 0x1.0p23 6697 // src may have a fractional part, so add 0.5 6698 fmovs(ftmp, 0.5f); 6699 fadds(ftmp, src, ftmp); 6700 // Convert float to jint, use RoundTowardsNegative 6701 fcvtmssw(dst, ftmp); 6702 } 6703 bind(DONE); 6704 BLOCK_COMMENT("} java_round_float"); 6705 } 6706 6707 // get_thread() can be called anywhere inside generated code so we 6708 // need to save whatever non-callee save context might get clobbered 6709 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 6710 // the call setup code. 6711 // 6712 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 6713 // On other systems, the helper is a usual C function. 6714 // 6715 void MacroAssembler::get_thread(Register dst) { 6716 RegSet saved_regs = 6717 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 6718 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 6719 6720 protect_return_address(); 6721 push(saved_regs, sp); 6722 6723 mov(lr, ExternalAddress(CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper))); 6724 blr(lr); 6725 if (dst != c_rarg0) { 6726 mov(dst, c_rarg0); 6727 } 6728 6729 pop(saved_regs, sp); 6730 authenticate_return_address(); 6731 } 6732 6733 void MacroAssembler::cache_wb(Address line) { 6734 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 6735 assert(line.index() == noreg, "index should be noreg"); 6736 assert(line.offset() == 0, "offset should be 0"); 6737 // would like to assert this 6738 // assert(line._ext.shift == 0, "shift should be zero"); 6739 if (VM_Version::supports_dcpop()) { 6740 // writeback using clear virtual address to point of persistence 6741 dc(Assembler::CVAP, line.base()); 6742 } else { 6743 // no need to generate anything as Unsafe.writebackMemory should 6744 // never invoke this stub 6745 } 6746 } 6747 6748 void MacroAssembler::cache_wbsync(bool is_pre) { 6749 // we only need a barrier post sync 6750 if (!is_pre) { 6751 membar(Assembler::AnyAny); 6752 } 6753 } 6754 6755 void MacroAssembler::verify_sve_vector_length(Register tmp) { 6756 if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) { 6757 return; 6758 } 6759 // Make sure that native code does not change SVE vector length. 6760 Label verify_ok; 6761 movw(tmp, zr); 6762 sve_inc(tmp, B); 6763 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 6764 br(EQ, verify_ok); 6765 stop("Error: SVE vector length has changed since jvm startup"); 6766 bind(verify_ok); 6767 } 6768 6769 void MacroAssembler::verify_ptrue() { 6770 Label verify_ok; 6771 if (!UseSVE) { 6772 return; 6773 } 6774 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 6775 sve_dec(rscratch1, B); 6776 cbz(rscratch1, verify_ok); 6777 stop("Error: the preserved predicate register (p7) elements are not all true"); 6778 bind(verify_ok); 6779 } 6780 6781 void MacroAssembler::safepoint_isb() { 6782 isb(); 6783 #ifndef PRODUCT 6784 if (VerifyCrossModifyFence) { 6785 // Clear the thread state. 6786 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6787 } 6788 #endif 6789 } 6790 6791 #ifndef PRODUCT 6792 void MacroAssembler::verify_cross_modify_fence_not_required() { 6793 if (VerifyCrossModifyFence) { 6794 // Check if thread needs a cross modify fence. 6795 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6796 Label fence_not_required; 6797 cbz(rscratch1, fence_not_required); 6798 // If it does then fail. 6799 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure))); 6800 mov(c_rarg0, rthread); 6801 blr(rscratch1); 6802 bind(fence_not_required); 6803 } 6804 } 6805 #endif 6806 6807 void MacroAssembler::spin_wait() { 6808 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 6809 switch (VM_Version::spin_wait_desc().inst()) { 6810 case SpinWait::NOP: 6811 nop(); 6812 break; 6813 case SpinWait::ISB: 6814 isb(); 6815 break; 6816 case SpinWait::YIELD: 6817 yield(); 6818 break; 6819 default: 6820 ShouldNotReachHere(); 6821 } 6822 } 6823 } 6824 6825 // Stack frame creation/removal 6826 6827 void MacroAssembler::enter(bool strip_ret_addr) { 6828 if (strip_ret_addr) { 6829 // Addresses can only be signed once. If there are multiple nested frames being created 6830 // in the same function, then the return address needs stripping first. 6831 strip_return_address(); 6832 } 6833 protect_return_address(); 6834 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6835 mov(rfp, sp); 6836 } 6837 6838 void MacroAssembler::leave() { 6839 mov(sp, rfp); 6840 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6841 authenticate_return_address(); 6842 } 6843 6844 // ROP Protection 6845 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 6846 // destroying stack frames or whenever directly loading/storing the LR to memory. 6847 // If ROP protection is not set then these functions are no-ops. 6848 // For more details on PAC see pauth_aarch64.hpp. 6849 6850 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 6851 // Uses value zero as the modifier. 6852 // 6853 void MacroAssembler::protect_return_address() { 6854 if (VM_Version::use_rop_protection()) { 6855 check_return_address(); 6856 paciaz(); 6857 } 6858 } 6859 6860 // Sign the return value in the given register. Use before updating the LR in the existing stack 6861 // frame for the current function. 6862 // Uses value zero as the modifier. 6863 // 6864 void MacroAssembler::protect_return_address(Register return_reg) { 6865 if (VM_Version::use_rop_protection()) { 6866 check_return_address(return_reg); 6867 paciza(return_reg); 6868 } 6869 } 6870 6871 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 6872 // Uses value zero as the modifier. 6873 // 6874 void MacroAssembler::authenticate_return_address() { 6875 if (VM_Version::use_rop_protection()) { 6876 autiaz(); 6877 check_return_address(); 6878 } 6879 } 6880 6881 // Authenticate the return value in the given register. Use before updating the LR in the existing 6882 // stack frame for the current function. 6883 // Uses value zero as the modifier. 6884 // 6885 void MacroAssembler::authenticate_return_address(Register return_reg) { 6886 if (VM_Version::use_rop_protection()) { 6887 autiza(return_reg); 6888 check_return_address(return_reg); 6889 } 6890 } 6891 6892 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 6893 // there is no guaranteed way of authenticating the LR. 6894 // 6895 void MacroAssembler::strip_return_address() { 6896 if (VM_Version::use_rop_protection()) { 6897 xpaclri(); 6898 } 6899 } 6900 6901 #ifndef PRODUCT 6902 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 6903 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 6904 // it is difficult to debug back to the callee function. 6905 // This function simply loads from the address in the given register. 6906 // Use directly after authentication to catch authentication failures. 6907 // Also use before signing to check that the pointer is valid and hasn't already been signed. 6908 // 6909 void MacroAssembler::check_return_address(Register return_reg) { 6910 if (VM_Version::use_rop_protection()) { 6911 ldr(zr, Address(return_reg)); 6912 } 6913 } 6914 #endif 6915 6916 // The java_calling_convention describes stack locations as ideal slots on 6917 // a frame with no abi restrictions. Since we must observe abi restrictions 6918 // (like the placement of the register window) the slots must be biased by 6919 // the following value. 6920 static int reg2offset_in(VMReg r) { 6921 // Account for saved rfp and lr 6922 // This should really be in_preserve_stack_slots 6923 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 6924 } 6925 6926 static int reg2offset_out(VMReg r) { 6927 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 6928 } 6929 6930 // On 64bit we will store integer like items to the stack as 6931 // 64bits items (AArch64 ABI) even though java would only store 6932 // 32bits for a parameter. On 32bit it will simply be 32bits 6933 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 6934 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 6935 if (src.first()->is_stack()) { 6936 if (dst.first()->is_stack()) { 6937 // stack to stack 6938 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6939 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6940 } else { 6941 // stack to reg 6942 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6943 } 6944 } else if (dst.first()->is_stack()) { 6945 // reg to stack 6946 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6947 } else { 6948 if (dst.first() != src.first()) { 6949 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 6950 } 6951 } 6952 } 6953 6954 // An oop arg. Must pass a handle not the oop itself 6955 void MacroAssembler::object_move( 6956 OopMap* map, 6957 int oop_handle_offset, 6958 int framesize_in_slots, 6959 VMRegPair src, 6960 VMRegPair dst, 6961 bool is_receiver, 6962 int* receiver_offset) { 6963 6964 // must pass a handle. First figure out the location we use as a handle 6965 6966 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 6967 6968 // See if oop is null if it is we need no handle 6969 6970 if (src.first()->is_stack()) { 6971 6972 // Oop is already on the stack as an argument 6973 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 6974 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 6975 if (is_receiver) { 6976 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 6977 } 6978 6979 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 6980 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 6981 // conditionally move a null 6982 cmp(rscratch1, zr); 6983 csel(rHandle, zr, rHandle, Assembler::EQ); 6984 } else { 6985 6986 // Oop is in an a register we must store it to the space we reserve 6987 // on the stack for oop_handles and pass a handle if oop is non-null 6988 6989 const Register rOop = src.first()->as_Register(); 6990 int oop_slot; 6991 if (rOop == j_rarg0) 6992 oop_slot = 0; 6993 else if (rOop == j_rarg1) 6994 oop_slot = 1; 6995 else if (rOop == j_rarg2) 6996 oop_slot = 2; 6997 else if (rOop == j_rarg3) 6998 oop_slot = 3; 6999 else if (rOop == j_rarg4) 7000 oop_slot = 4; 7001 else if (rOop == j_rarg5) 7002 oop_slot = 5; 7003 else if (rOop == j_rarg6) 7004 oop_slot = 6; 7005 else { 7006 assert(rOop == j_rarg7, "wrong register"); 7007 oop_slot = 7; 7008 } 7009 7010 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 7011 int offset = oop_slot*VMRegImpl::stack_slot_size; 7012 7013 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 7014 // Store oop in handle area, may be null 7015 str(rOop, Address(sp, offset)); 7016 if (is_receiver) { 7017 *receiver_offset = offset; 7018 } 7019 7020 cmp(rOop, zr); 7021 lea(rHandle, Address(sp, offset)); 7022 // conditionally move a null 7023 csel(rHandle, zr, rHandle, Assembler::EQ); 7024 } 7025 7026 // If arg is on the stack then place it otherwise it is already in correct reg. 7027 if (dst.first()->is_stack()) { 7028 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 7029 } 7030 } 7031 7032 // A float arg may have to do float reg int reg conversion 7033 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 7034 if (src.first()->is_stack()) { 7035 if (dst.first()->is_stack()) { 7036 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 7037 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 7038 } else { 7039 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7040 } 7041 } else if (src.first() != dst.first()) { 7042 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7043 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7044 else 7045 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7046 } 7047 } 7048 7049 // A long move 7050 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 7051 if (src.first()->is_stack()) { 7052 if (dst.first()->is_stack()) { 7053 // stack to stack 7054 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7055 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7056 } else { 7057 // stack to reg 7058 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 7059 } 7060 } else if (dst.first()->is_stack()) { 7061 // reg to stack 7062 // Do we really have to sign extend??? 7063 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 7064 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 7065 } else { 7066 if (dst.first() != src.first()) { 7067 mov(dst.first()->as_Register(), src.first()->as_Register()); 7068 } 7069 } 7070 } 7071 7072 7073 // A double move 7074 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 7075 if (src.first()->is_stack()) { 7076 if (dst.first()->is_stack()) { 7077 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7078 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7079 } else { 7080 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7081 } 7082 } else if (src.first() != dst.first()) { 7083 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7084 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7085 else 7086 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7087 } 7088 } 7089 7090 // Implements lightweight-locking. 7091 // 7092 // - obj: the object to be locked 7093 // - t1, t2, t3: temporary registers, will be destroyed 7094 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 7095 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) { 7096 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7097 assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1); 7098 7099 Label push; 7100 const Register top = t1; 7101 const Register mark = t2; 7102 const Register t = t3; 7103 7104 // Preload the markWord. It is important that this is the first 7105 // instruction emitted as it is part of C1's null check semantics. 7106 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7107 7108 if (UseObjectMonitorTable) { 7109 // Clear cache in case fast locking succeeds or we need to take the slow-path. 7110 str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes())))); 7111 } 7112 7113 if (DiagnoseSyncOnValueBasedClasses != 0) { 7114 load_klass(t1, obj); 7115 ldrb(t1, Address(t1, Klass::misc_flags_offset())); 7116 tst(t1, KlassFlags::_misc_is_value_based_class); 7117 br(Assembler::NE, slow); 7118 } 7119 7120 // Check if the lock-stack is full. 7121 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7122 cmpw(top, (unsigned)LockStack::end_offset()); 7123 br(Assembler::GE, slow); 7124 7125 // Check for recursion. 7126 subw(t, top, oopSize); 7127 ldr(t, Address(rthread, t)); 7128 cmp(obj, t); 7129 br(Assembler::EQ, push); 7130 7131 // Check header for monitor (0b10). 7132 tst(mark, markWord::monitor_value); 7133 br(Assembler::NE, slow); 7134 7135 // Try to lock. Transition lock bits 0b01 => 0b00 7136 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7137 orr(mark, mark, markWord::unlocked_value); 7138 eor(t, mark, markWord::unlocked_value); 7139 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 7140 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 7141 br(Assembler::NE, slow); 7142 7143 bind(push); 7144 // After successful lock, push object on lock-stack. 7145 str(obj, Address(rthread, top)); 7146 addw(top, top, oopSize); 7147 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7148 } 7149 7150 // Implements lightweight-unlocking. 7151 // 7152 // - obj: the object to be unlocked 7153 // - t1, t2, t3: temporary registers 7154 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 7155 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 7156 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7157 // cmpxchg clobbers rscratch1. 7158 assert_different_registers(obj, t1, t2, t3, rscratch1); 7159 7160 #ifdef ASSERT 7161 { 7162 // Check for lock-stack underflow. 7163 Label stack_ok; 7164 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 7165 cmpw(t1, (unsigned)LockStack::start_offset()); 7166 br(Assembler::GE, stack_ok); 7167 STOP("Lock-stack underflow"); 7168 bind(stack_ok); 7169 } 7170 #endif 7171 7172 Label unlocked, push_and_slow; 7173 const Register top = t1; 7174 const Register mark = t2; 7175 const Register t = t3; 7176 7177 // Check if obj is top of lock-stack. 7178 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7179 subw(top, top, oopSize); 7180 ldr(t, Address(rthread, top)); 7181 cmp(obj, t); 7182 br(Assembler::NE, slow); 7183 7184 // Pop lock-stack. 7185 DEBUG_ONLY(str(zr, Address(rthread, top));) 7186 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7187 7188 // Check if recursive. 7189 subw(t, top, oopSize); 7190 ldr(t, Address(rthread, t)); 7191 cmp(obj, t); 7192 br(Assembler::EQ, unlocked); 7193 7194 // Not recursive. Check header for monitor (0b10). 7195 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7196 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 7197 7198 #ifdef ASSERT 7199 // Check header not unlocked (0b01). 7200 Label not_unlocked; 7201 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 7202 stop("lightweight_unlock already unlocked"); 7203 bind(not_unlocked); 7204 #endif 7205 7206 // Try to unlock. Transition lock bits 0b00 => 0b01 7207 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7208 orr(t, mark, markWord::unlocked_value); 7209 cmpxchg(obj, mark, t, Assembler::xword, 7210 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 7211 br(Assembler::EQ, unlocked); 7212 7213 bind(push_and_slow); 7214 // Restore lock-stack and handle the unlock in runtime. 7215 DEBUG_ONLY(str(obj, Address(rthread, top));) 7216 addw(top, top, oopSize); 7217 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7218 b(slow); 7219 7220 bind(unlocked); 7221 }