1 /* 2 * Copyright (c) 1997, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "asm/assembler.hpp" 27 #include "asm/assembler.inline.hpp" 28 #include "ci/ciEnv.hpp" 29 #include "code/compiledIC.hpp" 30 #include "compiler/compileTask.hpp" 31 #include "compiler/disassembler.hpp" 32 #include "compiler/oopMap.hpp" 33 #include "gc/shared/barrierSet.hpp" 34 #include "gc/shared/barrierSetAssembler.hpp" 35 #include "gc/shared/cardTableBarrierSet.hpp" 36 #include "gc/shared/cardTable.hpp" 37 #include "gc/shared/collectedHeap.hpp" 38 #include "gc/shared/tlab_globals.hpp" 39 #include "interpreter/bytecodeHistogram.hpp" 40 #include "interpreter/interpreter.hpp" 41 #include "interpreter/interpreterRuntime.hpp" 42 #include "jvm.h" 43 #include "memory/resourceArea.hpp" 44 #include "memory/universe.hpp" 45 #include "nativeInst_aarch64.hpp" 46 #include "oops/accessDecorators.hpp" 47 #include "oops/compressedKlass.inline.hpp" 48 #include "oops/compressedOops.inline.hpp" 49 #include "oops/klass.inline.hpp" 50 #include "runtime/continuation.hpp" 51 #include "runtime/icache.hpp" 52 #include "runtime/interfaceSupport.inline.hpp" 53 #include "runtime/javaThread.hpp" 54 #include "runtime/jniHandles.inline.hpp" 55 #include "runtime/sharedRuntime.hpp" 56 #include "runtime/stubRoutines.hpp" 57 #include "utilities/globalDefinitions.hpp" 58 #include "utilities/powerOfTwo.hpp" 59 #ifdef COMPILER1 60 #include "c1/c1_LIRAssembler.hpp" 61 #endif 62 #ifdef COMPILER2 63 #include "oops/oop.hpp" 64 #include "opto/compile.hpp" 65 #include "opto/node.hpp" 66 #include "opto/output.hpp" 67 #endif 68 69 #include <sys/types.h> 70 71 #ifdef PRODUCT 72 #define BLOCK_COMMENT(str) /* nothing */ 73 #else 74 #define BLOCK_COMMENT(str) block_comment(str) 75 #endif 76 #define STOP(str) stop(str); 77 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":") 78 79 #ifdef ASSERT 80 extern "C" void disnm(intptr_t p); 81 #endif 82 // Target-dependent relocation processing 83 // 84 // Instruction sequences whose target may need to be retrieved or 85 // patched are distinguished by their leading instruction, sorting 86 // them into three main instruction groups and related subgroups. 87 // 88 // 1) Branch, Exception and System (insn count = 1) 89 // 1a) Unconditional branch (immediate): 90 // b/bl imm19 91 // 1b) Compare & branch (immediate): 92 // cbz/cbnz Rt imm19 93 // 1c) Test & branch (immediate): 94 // tbz/tbnz Rt imm14 95 // 1d) Conditional branch (immediate): 96 // b.cond imm19 97 // 98 // 2) Loads and Stores (insn count = 1) 99 // 2a) Load register literal: 100 // ldr Rt imm19 101 // 102 // 3) Data Processing Immediate (insn count = 2 or 3) 103 // 3a) PC-rel. addressing 104 // adr/adrp Rx imm21; ldr/str Ry Rx #imm12 105 // adr/adrp Rx imm21; add Ry Rx #imm12 106 // adr/adrp Rx imm21; movk Rx #imm16<<32; ldr/str Ry, [Rx, #offset_in_page] 107 // adr/adrp Rx imm21 108 // adr/adrp Rx imm21; movk Rx #imm16<<32 109 // adr/adrp Rx imm21; movk Rx #imm16<<32; add Ry, Rx, #offset_in_page 110 // The latter form can only happen when the target is an 111 // ExternalAddress, and (by definition) ExternalAddresses don't 112 // move. Because of that property, there is never any need to 113 // patch the last of the three instructions. However, 114 // MacroAssembler::target_addr_for_insn takes all three 115 // instructions into account and returns the correct address. 116 // 3b) Move wide (immediate) 117 // movz Rx #imm16; movk Rx #imm16 << 16; movk Rx #imm16 << 32; 118 // 119 // A switch on a subset of the instruction's bits provides an 120 // efficient dispatch to these subcases. 121 // 122 // insn[28:26] -> main group ('x' == don't care) 123 // 00x -> UNALLOCATED 124 // 100 -> Data Processing Immediate 125 // 101 -> Branch, Exception and System 126 // x1x -> Loads and Stores 127 // 128 // insn[30:25] -> subgroup ('_' == group, 'x' == don't care). 129 // n.b. in some cases extra bits need to be checked to verify the 130 // instruction is as expected 131 // 132 // 1) ... xx101x Branch, Exception and System 133 // 1a) 00___x Unconditional branch (immediate) 134 // 1b) 01___0 Compare & branch (immediate) 135 // 1c) 01___1 Test & branch (immediate) 136 // 1d) 10___0 Conditional branch (immediate) 137 // other Should not happen 138 // 139 // 2) ... xxx1x0 Loads and Stores 140 // 2a) xx1__00 Load/Store register (insn[28] == 1 && insn[24] == 0) 141 // 2aa) x01__00 Load register literal (i.e. requires insn[29] == 0) 142 // strictly should be 64 bit non-FP/SIMD i.e. 143 // 0101_000 (i.e. requires insn[31:24] == 01011000) 144 // 145 // 3) ... xx100x Data Processing Immediate 146 // 3a) xx___00 PC-rel. addressing (n.b. requires insn[24] == 0) 147 // 3b) xx___101 Move wide (immediate) (n.b. requires insn[24:23] == 01) 148 // strictly should be 64 bit movz #imm16<<0 149 // 110___10100 (i.e. requires insn[31:21] == 11010010100) 150 // 151 class RelocActions { 152 protected: 153 typedef int (*reloc_insn)(address insn_addr, address &target); 154 155 virtual reloc_insn adrpMem() = 0; 156 virtual reloc_insn adrpAdd() = 0; 157 virtual reloc_insn adrpMovk() = 0; 158 159 const address _insn_addr; 160 const uint32_t _insn; 161 162 static uint32_t insn_at(address insn_addr, int n) { 163 return ((uint32_t*)insn_addr)[n]; 164 } 165 uint32_t insn_at(int n) const { 166 return insn_at(_insn_addr, n); 167 } 168 169 public: 170 171 RelocActions(address insn_addr) : _insn_addr(insn_addr), _insn(insn_at(insn_addr, 0)) {} 172 RelocActions(address insn_addr, uint32_t insn) 173 : _insn_addr(insn_addr), _insn(insn) {} 174 175 virtual int unconditionalBranch(address insn_addr, address &target) = 0; 176 virtual int conditionalBranch(address insn_addr, address &target) = 0; 177 virtual int testAndBranch(address insn_addr, address &target) = 0; 178 virtual int loadStore(address insn_addr, address &target) = 0; 179 virtual int adr(address insn_addr, address &target) = 0; 180 virtual int adrp(address insn_addr, address &target, reloc_insn inner) = 0; 181 virtual int immediate(address insn_addr, address &target) = 0; 182 virtual void verify(address insn_addr, address &target) = 0; 183 184 int ALWAYSINLINE run(address insn_addr, address &target) { 185 int instructions = 1; 186 187 uint32_t dispatch = Instruction_aarch64::extract(_insn, 30, 25); 188 switch(dispatch) { 189 case 0b001010: 190 case 0b001011: { 191 instructions = unconditionalBranch(insn_addr, target); 192 break; 193 } 194 case 0b101010: // Conditional branch (immediate) 195 case 0b011010: { // Compare & branch (immediate) 196 instructions = conditionalBranch(insn_addr, target); 197 break; 198 } 199 case 0b011011: { 200 instructions = testAndBranch(insn_addr, target); 201 break; 202 } 203 case 0b001100: 204 case 0b001110: 205 case 0b011100: 206 case 0b011110: 207 case 0b101100: 208 case 0b101110: 209 case 0b111100: 210 case 0b111110: { 211 // load/store 212 if ((Instruction_aarch64::extract(_insn, 29, 24) & 0b111011) == 0b011000) { 213 // Load register (literal) 214 instructions = loadStore(insn_addr, target); 215 break; 216 } else { 217 // nothing to do 218 assert(target == nullptr, "did not expect to relocate target for polling page load"); 219 } 220 break; 221 } 222 case 0b001000: 223 case 0b011000: 224 case 0b101000: 225 case 0b111000: { 226 // adr/adrp 227 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 228 int shift = Instruction_aarch64::extract(_insn, 31, 31); 229 if (shift) { 230 uint32_t insn2 = insn_at(1); 231 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 232 Instruction_aarch64::extract(_insn, 4, 0) == 233 Instruction_aarch64::extract(insn2, 9, 5)) { 234 instructions = adrp(insn_addr, target, adrpMem()); 235 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 236 Instruction_aarch64::extract(_insn, 4, 0) == 237 Instruction_aarch64::extract(insn2, 4, 0)) { 238 instructions = adrp(insn_addr, target, adrpAdd()); 239 } else if (Instruction_aarch64::extract(insn2, 31, 21) == 0b11110010110 && 240 Instruction_aarch64::extract(_insn, 4, 0) == 241 Instruction_aarch64::extract(insn2, 4, 0)) { 242 instructions = adrp(insn_addr, target, adrpMovk()); 243 } else { 244 ShouldNotReachHere(); 245 } 246 } else { 247 instructions = adr(insn_addr, target); 248 } 249 break; 250 } 251 case 0b001001: 252 case 0b011001: 253 case 0b101001: 254 case 0b111001: { 255 instructions = immediate(insn_addr, target); 256 break; 257 } 258 default: { 259 ShouldNotReachHere(); 260 } 261 } 262 263 verify(insn_addr, target); 264 return instructions * NativeInstruction::instruction_size; 265 } 266 }; 267 268 class Patcher : public RelocActions { 269 virtual reloc_insn adrpMem() { return &Patcher::adrpMem_impl; } 270 virtual reloc_insn adrpAdd() { return &Patcher::adrpAdd_impl; } 271 virtual reloc_insn adrpMovk() { return &Patcher::adrpMovk_impl; } 272 273 public: 274 Patcher(address insn_addr) : RelocActions(insn_addr) {} 275 276 virtual int unconditionalBranch(address insn_addr, address &target) { 277 intptr_t offset = (target - insn_addr) >> 2; 278 Instruction_aarch64::spatch(insn_addr, 25, 0, offset); 279 return 1; 280 } 281 virtual int conditionalBranch(address insn_addr, address &target) { 282 intptr_t offset = (target - insn_addr) >> 2; 283 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 284 return 1; 285 } 286 virtual int testAndBranch(address insn_addr, address &target) { 287 intptr_t offset = (target - insn_addr) >> 2; 288 Instruction_aarch64::spatch(insn_addr, 18, 5, offset); 289 return 1; 290 } 291 virtual int loadStore(address insn_addr, address &target) { 292 intptr_t offset = (target - insn_addr) >> 2; 293 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 294 return 1; 295 } 296 virtual int adr(address insn_addr, address &target) { 297 #ifdef ASSERT 298 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 299 #endif 300 // PC-rel. addressing 301 ptrdiff_t offset = target - insn_addr; 302 int offset_lo = offset & 3; 303 offset >>= 2; 304 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 305 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 306 return 1; 307 } 308 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 309 int instructions = 1; 310 #ifdef ASSERT 311 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 312 #endif 313 ptrdiff_t offset = target - insn_addr; 314 instructions = 2; 315 precond(inner != nullptr); 316 // Give the inner reloc a chance to modify the target. 317 address adjusted_target = target; 318 instructions = (*inner)(insn_addr, adjusted_target); 319 uintptr_t pc_page = (uintptr_t)insn_addr >> 12; 320 uintptr_t adr_page = (uintptr_t)adjusted_target >> 12; 321 offset = adr_page - pc_page; 322 int offset_lo = offset & 3; 323 offset >>= 2; 324 Instruction_aarch64::spatch(insn_addr, 23, 5, offset); 325 Instruction_aarch64::patch(insn_addr, 30, 29, offset_lo); 326 return instructions; 327 } 328 static int adrpMem_impl(address insn_addr, address &target) { 329 uintptr_t dest = (uintptr_t)target; 330 int offset_lo = dest & 0xfff; 331 uint32_t insn2 = insn_at(insn_addr, 1); 332 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 333 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo >> size); 334 guarantee(((dest >> size) << size) == dest, "misaligned target"); 335 return 2; 336 } 337 static int adrpAdd_impl(address insn_addr, address &target) { 338 uintptr_t dest = (uintptr_t)target; 339 int offset_lo = dest & 0xfff; 340 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 21, 10, offset_lo); 341 return 2; 342 } 343 static int adrpMovk_impl(address insn_addr, address &target) { 344 uintptr_t dest = uintptr_t(target); 345 Instruction_aarch64::patch(insn_addr + sizeof (uint32_t), 20, 5, (uintptr_t)target >> 32); 346 dest = (dest & 0xffffffffULL) | (uintptr_t(insn_addr) & 0xffff00000000ULL); 347 target = address(dest); 348 return 2; 349 } 350 virtual int immediate(address insn_addr, address &target) { 351 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 352 uint64_t dest = (uint64_t)target; 353 // Move wide constant 354 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 355 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 356 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 357 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 358 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 359 return 3; 360 } 361 virtual void verify(address insn_addr, address &target) { 362 #ifdef ASSERT 363 address address_is = MacroAssembler::target_addr_for_insn(insn_addr); 364 if (!(address_is == target)) { 365 tty->print_cr("%p at %p should be %p", address_is, insn_addr, target); 366 disnm((intptr_t)insn_addr); 367 assert(address_is == target, "should be"); 368 } 369 #endif 370 } 371 }; 372 373 // If insn1 and insn2 use the same register to form an address, either 374 // by an offsetted LDR or a simple ADD, return the offset. If the 375 // second instruction is an LDR, the offset may be scaled. 376 static bool offset_for(uint32_t insn1, uint32_t insn2, ptrdiff_t &byte_offset) { 377 if (Instruction_aarch64::extract(insn2, 29, 24) == 0b111001 && 378 Instruction_aarch64::extract(insn1, 4, 0) == 379 Instruction_aarch64::extract(insn2, 9, 5)) { 380 // Load/store register (unsigned immediate) 381 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 382 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 383 byte_offset <<= size; 384 return true; 385 } else if (Instruction_aarch64::extract(insn2, 31, 22) == 0b1001000100 && 386 Instruction_aarch64::extract(insn1, 4, 0) == 387 Instruction_aarch64::extract(insn2, 4, 0)) { 388 // add (immediate) 389 byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 390 return true; 391 } 392 return false; 393 } 394 395 class AArch64Decoder : public RelocActions { 396 virtual reloc_insn adrpMem() { return &AArch64Decoder::adrpMem_impl; } 397 virtual reloc_insn adrpAdd() { return &AArch64Decoder::adrpAdd_impl; } 398 virtual reloc_insn adrpMovk() { return &AArch64Decoder::adrpMovk_impl; } 399 400 public: 401 AArch64Decoder(address insn_addr, uint32_t insn) : RelocActions(insn_addr, insn) {} 402 403 virtual int loadStore(address insn_addr, address &target) { 404 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 405 target = insn_addr + (offset << 2); 406 return 1; 407 } 408 virtual int unconditionalBranch(address insn_addr, address &target) { 409 intptr_t offset = Instruction_aarch64::sextract(_insn, 25, 0); 410 target = insn_addr + (offset << 2); 411 return 1; 412 } 413 virtual int conditionalBranch(address insn_addr, address &target) { 414 intptr_t offset = Instruction_aarch64::sextract(_insn, 23, 5); 415 target = address(((uint64_t)insn_addr + (offset << 2))); 416 return 1; 417 } 418 virtual int testAndBranch(address insn_addr, address &target) { 419 intptr_t offset = Instruction_aarch64::sextract(_insn, 18, 5); 420 target = address(((uint64_t)insn_addr + (offset << 2))); 421 return 1; 422 } 423 virtual int adr(address insn_addr, address &target) { 424 // PC-rel. addressing 425 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 426 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 427 target = address((uint64_t)insn_addr + offset); 428 return 1; 429 } 430 virtual int adrp(address insn_addr, address &target, reloc_insn inner) { 431 assert(Instruction_aarch64::extract(_insn, 28, 24) == 0b10000, "must be"); 432 intptr_t offset = Instruction_aarch64::extract(_insn, 30, 29); 433 offset |= Instruction_aarch64::sextract(_insn, 23, 5) << 2; 434 int shift = 12; 435 offset <<= shift; 436 uint64_t target_page = ((uint64_t)insn_addr) + offset; 437 target_page &= ((uint64_t)-1) << shift; 438 uint32_t insn2 = insn_at(1); 439 target = address(target_page); 440 precond(inner != nullptr); 441 (*inner)(insn_addr, target); 442 return 2; 443 } 444 static int adrpMem_impl(address insn_addr, address &target) { 445 uint32_t insn2 = insn_at(insn_addr, 1); 446 // Load/store register (unsigned immediate) 447 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 448 uint32_t size = Instruction_aarch64::extract(insn2, 31, 30); 449 byte_offset <<= size; 450 target += byte_offset; 451 return 2; 452 } 453 static int adrpAdd_impl(address insn_addr, address &target) { 454 uint32_t insn2 = insn_at(insn_addr, 1); 455 // add (immediate) 456 ptrdiff_t byte_offset = Instruction_aarch64::extract(insn2, 21, 10); 457 target += byte_offset; 458 return 2; 459 } 460 static int adrpMovk_impl(address insn_addr, address &target) { 461 uint32_t insn2 = insn_at(insn_addr, 1); 462 uint64_t dest = uint64_t(target); 463 dest = (dest & 0xffff0000ffffffff) | 464 ((uint64_t)Instruction_aarch64::extract(insn2, 20, 5) << 32); 465 target = address(dest); 466 467 // We know the destination 4k page. Maybe we have a third 468 // instruction. 469 uint32_t insn = insn_at(insn_addr, 0); 470 uint32_t insn3 = insn_at(insn_addr, 2); 471 ptrdiff_t byte_offset; 472 if (offset_for(insn, insn3, byte_offset)) { 473 target += byte_offset; 474 return 3; 475 } else { 476 return 2; 477 } 478 } 479 virtual int immediate(address insn_addr, address &target) { 480 uint32_t *insns = (uint32_t *)insn_addr; 481 assert(Instruction_aarch64::extract(_insn, 31, 21) == 0b11010010100, "must be"); 482 // Move wide constant: movz, movk, movk. See movptr(). 483 assert(nativeInstruction_at(insns+1)->is_movk(), "wrong insns in patch"); 484 assert(nativeInstruction_at(insns+2)->is_movk(), "wrong insns in patch"); 485 target = address(uint64_t(Instruction_aarch64::extract(_insn, 20, 5)) 486 + (uint64_t(Instruction_aarch64::extract(insns[1], 20, 5)) << 16) 487 + (uint64_t(Instruction_aarch64::extract(insns[2], 20, 5)) << 32)); 488 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 489 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 490 return 3; 491 } 492 virtual void verify(address insn_addr, address &target) { 493 } 494 }; 495 496 address MacroAssembler::target_addr_for_insn(address insn_addr, uint32_t insn) { 497 AArch64Decoder decoder(insn_addr, insn); 498 address target; 499 decoder.run(insn_addr, target); 500 return target; 501 } 502 503 // Patch any kind of instruction; there may be several instructions. 504 // Return the total length (in bytes) of the instructions. 505 int MacroAssembler::pd_patch_instruction_size(address insn_addr, address target) { 506 Patcher patcher(insn_addr); 507 return patcher.run(insn_addr, target); 508 } 509 510 int MacroAssembler::patch_oop(address insn_addr, address o) { 511 int instructions; 512 unsigned insn = *(unsigned*)insn_addr; 513 assert(nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 514 515 // OOPs are either narrow (32 bits) or wide (48 bits). We encode 516 // narrow OOPs by setting the upper 16 bits in the first 517 // instruction. 518 if (Instruction_aarch64::extract(insn, 31, 21) == 0b11010010101) { 519 // Move narrow OOP 520 uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o)); 521 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 522 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 523 instructions = 2; 524 } else { 525 // Move wide OOP 526 assert(nativeInstruction_at(insn_addr+8)->is_movk(), "wrong insns in patch"); 527 uintptr_t dest = (uintptr_t)o; 528 Instruction_aarch64::patch(insn_addr, 20, 5, dest & 0xffff); 529 Instruction_aarch64::patch(insn_addr+4, 20, 5, (dest >>= 16) & 0xffff); 530 Instruction_aarch64::patch(insn_addr+8, 20, 5, (dest >>= 16) & 0xffff); 531 instructions = 3; 532 } 533 return instructions * NativeInstruction::instruction_size; 534 } 535 536 int MacroAssembler::patch_narrow_klass(address insn_addr, narrowKlass n) { 537 // Metadata pointers are either narrow (32 bits) or wide (48 bits). 538 // We encode narrow ones by setting the upper 16 bits in the first 539 // instruction. 540 NativeInstruction *insn = nativeInstruction_at(insn_addr); 541 assert(Instruction_aarch64::extract(insn->encoding(), 31, 21) == 0b11010010101 && 542 nativeInstruction_at(insn_addr+4)->is_movk(), "wrong insns in patch"); 543 544 Instruction_aarch64::patch(insn_addr, 20, 5, n >> 16); 545 Instruction_aarch64::patch(insn_addr+4, 20, 5, n & 0xffff); 546 return 2 * NativeInstruction::instruction_size; 547 } 548 549 address MacroAssembler::target_addr_for_insn_or_null(address insn_addr, unsigned insn) { 550 if (NativeInstruction::is_ldrw_to_zr(address(&insn))) { 551 return nullptr; 552 } 553 return MacroAssembler::target_addr_for_insn(insn_addr, insn); 554 } 555 556 void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp) { 557 if (acquire) { 558 lea(tmp, Address(rthread, JavaThread::polling_word_offset())); 559 ldar(tmp, tmp); 560 } else { 561 ldr(tmp, Address(rthread, JavaThread::polling_word_offset())); 562 } 563 if (at_return) { 564 // Note that when in_nmethod is set, the stack pointer is incremented before the poll. Therefore, 565 // we may safely use the sp instead to perform the stack watermark check. 566 cmp(in_nmethod ? sp : rfp, tmp); 567 br(Assembler::HI, slow_path); 568 } else { 569 tbnz(tmp, log2i_exact(SafepointMechanism::poll_bit()), slow_path); 570 } 571 } 572 573 void MacroAssembler::rt_call(address dest, Register tmp) { 574 CodeBlob *cb = CodeCache::find_blob(dest); 575 if (cb) { 576 far_call(RuntimeAddress(dest)); 577 } else { 578 lea(tmp, RuntimeAddress(dest)); 579 blr(tmp); 580 } 581 } 582 583 void MacroAssembler::push_cont_fastpath(Register java_thread) { 584 if (!Continuations::enabled()) return; 585 Label done; 586 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 587 cmp(sp, rscratch1); 588 br(Assembler::LS, done); 589 mov(rscratch1, sp); // we can't use sp as the source in str 590 str(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 591 bind(done); 592 } 593 594 void MacroAssembler::pop_cont_fastpath(Register java_thread) { 595 if (!Continuations::enabled()) return; 596 Label done; 597 ldr(rscratch1, Address(java_thread, JavaThread::cont_fastpath_offset())); 598 cmp(sp, rscratch1); 599 br(Assembler::LO, done); 600 str(zr, Address(java_thread, JavaThread::cont_fastpath_offset())); 601 bind(done); 602 } 603 604 void MacroAssembler::reset_last_Java_frame(bool clear_fp) { 605 // we must set sp to zero to clear frame 606 str(zr, Address(rthread, JavaThread::last_Java_sp_offset())); 607 608 // must clear fp, so that compiled frames are not confused; it is 609 // possible that we need it only for debugging 610 if (clear_fp) { 611 str(zr, Address(rthread, JavaThread::last_Java_fp_offset())); 612 } 613 614 // Always clear the pc because it could have been set by make_walkable() 615 str(zr, Address(rthread, JavaThread::last_Java_pc_offset())); 616 } 617 618 // Calls to C land 619 // 620 // When entering C land, the rfp, & resp of the last Java frame have to be recorded 621 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp 622 // has to be reset to 0. This is required to allow proper stack traversal. 623 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 624 Register last_java_fp, 625 Register last_java_pc, 626 Register scratch) { 627 628 if (last_java_pc->is_valid()) { 629 str(last_java_pc, Address(rthread, 630 JavaThread::frame_anchor_offset() 631 + JavaFrameAnchor::last_Java_pc_offset())); 632 } 633 634 // determine last_java_sp register 635 if (last_java_sp == sp) { 636 mov(scratch, sp); 637 last_java_sp = scratch; 638 } else if (!last_java_sp->is_valid()) { 639 last_java_sp = esp; 640 } 641 642 str(last_java_sp, Address(rthread, JavaThread::last_Java_sp_offset())); 643 644 // last_java_fp is optional 645 if (last_java_fp->is_valid()) { 646 str(last_java_fp, Address(rthread, JavaThread::last_Java_fp_offset())); 647 } 648 } 649 650 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 651 Register last_java_fp, 652 address last_java_pc, 653 Register scratch) { 654 assert(last_java_pc != nullptr, "must provide a valid PC"); 655 656 adr(scratch, last_java_pc); 657 str(scratch, Address(rthread, 658 JavaThread::frame_anchor_offset() 659 + JavaFrameAnchor::last_Java_pc_offset())); 660 661 set_last_Java_frame(last_java_sp, last_java_fp, noreg, scratch); 662 } 663 664 void MacroAssembler::set_last_Java_frame(Register last_java_sp, 665 Register last_java_fp, 666 Label &L, 667 Register scratch) { 668 if (L.is_bound()) { 669 set_last_Java_frame(last_java_sp, last_java_fp, target(L), scratch); 670 } else { 671 InstructionMark im(this); 672 L.add_patch_at(code(), locator()); 673 set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, scratch); 674 } 675 } 676 677 static inline bool target_needs_far_branch(address addr) { 678 if (AOTCodeCache::is_on_for_dump()) { 679 return true; 680 } 681 // codecache size <= 128M 682 if (!MacroAssembler::far_branches()) { 683 return false; 684 } 685 // codecache size > 240M 686 if (MacroAssembler::codestub_branch_needs_far_jump()) { 687 return true; 688 } 689 // codecache size: 128M..240M 690 return !CodeCache::is_non_nmethod(addr); 691 } 692 693 void MacroAssembler::far_call(Address entry, Register tmp) { 694 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 695 assert(CodeCache::find_blob(entry.target()) != nullptr, 696 "destination of far call not found in code cache"); 697 assert(entry.rspec().type() == relocInfo::external_word_type 698 || entry.rspec().type() == relocInfo::runtime_call_type 699 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 700 if (target_needs_far_branch(entry.target())) { 701 uint64_t offset; 702 // We can use ADRP here because we know that the total size of 703 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 704 adrp(tmp, entry, offset); 705 add(tmp, tmp, offset); 706 blr(tmp); 707 } else { 708 bl(entry); 709 } 710 } 711 712 int MacroAssembler::far_jump(Address entry, Register tmp) { 713 assert(ReservedCodeCacheSize < 4*G, "branch out of range"); 714 assert(CodeCache::find_blob(entry.target()) != nullptr, 715 "destination of far call not found in code cache"); 716 assert(entry.rspec().type() == relocInfo::external_word_type 717 || entry.rspec().type() == relocInfo::runtime_call_type 718 || entry.rspec().type() == relocInfo::none, "wrong entry relocInfo type"); 719 address start = pc(); 720 if (target_needs_far_branch(entry.target())) { 721 uint64_t offset; 722 // We can use ADRP here because we know that the total size of 723 // the code cache cannot exceed 2Gb (ADRP limit is 4GB). 724 adrp(tmp, entry, offset); 725 add(tmp, tmp, offset); 726 br(tmp); 727 } else { 728 b(entry); 729 } 730 return pc() - start; 731 } 732 733 void MacroAssembler::reserved_stack_check() { 734 // testing if reserved zone needs to be enabled 735 Label no_reserved_zone_enabling; 736 737 ldr(rscratch1, Address(rthread, JavaThread::reserved_stack_activation_offset())); 738 cmp(sp, rscratch1); 739 br(Assembler::LO, no_reserved_zone_enabling); 740 741 enter(); // LR and FP are live. 742 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone))); 743 mov(c_rarg0, rthread); 744 blr(rscratch1); 745 leave(); 746 747 // We have already removed our own frame. 748 // throw_delayed_StackOverflowError will think that it's been 749 // called by our caller. 750 lea(rscratch1, RuntimeAddress(SharedRuntime::throw_delayed_StackOverflowError_entry())); 751 br(rscratch1); 752 should_not_reach_here(); 753 754 bind(no_reserved_zone_enabling); 755 } 756 757 static void pass_arg0(MacroAssembler* masm, Register arg) { 758 if (c_rarg0 != arg ) { 759 masm->mov(c_rarg0, arg); 760 } 761 } 762 763 static void pass_arg1(MacroAssembler* masm, Register arg) { 764 if (c_rarg1 != arg ) { 765 masm->mov(c_rarg1, arg); 766 } 767 } 768 769 static void pass_arg2(MacroAssembler* masm, Register arg) { 770 if (c_rarg2 != arg ) { 771 masm->mov(c_rarg2, arg); 772 } 773 } 774 775 static void pass_arg3(MacroAssembler* masm, Register arg) { 776 if (c_rarg3 != arg ) { 777 masm->mov(c_rarg3, arg); 778 } 779 } 780 781 static bool is_preemptable(address entry_point) { 782 return entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter) || 783 entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache) || 784 entry_point == CAST_FROM_FN_PTR(address, InterpreterRuntime::_new); 785 } 786 787 void MacroAssembler::call_VM_base(Register oop_result, 788 Register java_thread, 789 Register last_java_sp, 790 address entry_point, 791 int number_of_arguments, 792 bool check_exceptions) { 793 // determine java_thread register 794 if (!java_thread->is_valid()) { 795 java_thread = rthread; 796 } 797 798 // determine last_java_sp register 799 if (!last_java_sp->is_valid()) { 800 last_java_sp = esp; 801 } 802 803 // debugging support 804 assert(number_of_arguments >= 0 , "cannot have negative number of arguments"); 805 assert(java_thread == rthread, "unexpected register"); 806 #ifdef ASSERT 807 // TraceBytecodes does not use r12 but saves it over the call, so don't verify 808 // if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?"); 809 #endif // ASSERT 810 811 assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result"); 812 assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp"); 813 814 // push java thread (becomes first argument of C function) 815 816 mov(c_rarg0, java_thread); 817 818 // set last Java frame before call 819 assert(last_java_sp != rfp, "can't use rfp"); 820 821 Label l; 822 if (is_preemptable(entry_point)) { 823 // skip setting last_pc since we already set it to desired value. 824 set_last_Java_frame(last_java_sp, rfp, noreg, rscratch1); 825 } else { 826 set_last_Java_frame(last_java_sp, rfp, l, rscratch1); 827 } 828 829 // do the call, remove parameters 830 MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l); 831 832 // lr could be poisoned with PAC signature during throw_pending_exception 833 // if it was tail-call optimized by compiler, since lr is not callee-saved 834 // reload it with proper value 835 adr(lr, l); 836 837 // reset last Java frame 838 // Only interpreter should have to clear fp 839 reset_last_Java_frame(true); 840 841 // C++ interp handles this in the interpreter 842 check_and_handle_popframe(java_thread); 843 check_and_handle_earlyret(java_thread); 844 845 if (check_exceptions) { 846 // check for pending exceptions (java_thread is set upon return) 847 ldr(rscratch1, Address(java_thread, in_bytes(Thread::pending_exception_offset()))); 848 Label ok; 849 cbz(rscratch1, ok); 850 lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 851 br(rscratch1); 852 bind(ok); 853 } 854 855 // get oop result if there is one and reset the value in the thread 856 if (oop_result->is_valid()) { 857 get_vm_result_oop(oop_result, java_thread); 858 } 859 } 860 861 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) { 862 call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions); 863 } 864 865 // Check the entry target is always reachable from any branch. 866 static bool is_always_within_branch_range(Address entry) { 867 if (AOTCodeCache::is_on_for_dump()) { 868 return false; 869 } 870 const address target = entry.target(); 871 872 if (!CodeCache::contains(target)) { 873 // We always use trampolines for callees outside CodeCache. 874 assert(entry.rspec().type() == relocInfo::runtime_call_type, "non-runtime call of an external target"); 875 return false; 876 } 877 878 if (!MacroAssembler::far_branches()) { 879 return true; 880 } 881 882 if (entry.rspec().type() == relocInfo::runtime_call_type) { 883 // Runtime calls are calls of a non-compiled method (stubs, adapters). 884 // Non-compiled methods stay forever in CodeCache. 885 // We check whether the longest possible branch is within the branch range. 886 assert(CodeCache::find_blob(target) != nullptr && 887 !CodeCache::find_blob(target)->is_nmethod(), 888 "runtime call of compiled method"); 889 const address right_longest_branch_start = CodeCache::high_bound() - NativeInstruction::instruction_size; 890 const address left_longest_branch_start = CodeCache::low_bound(); 891 const bool is_reachable = Assembler::reachable_from_branch_at(left_longest_branch_start, target) && 892 Assembler::reachable_from_branch_at(right_longest_branch_start, target); 893 return is_reachable; 894 } 895 896 return false; 897 } 898 899 // Maybe emit a call via a trampoline. If the code cache is small 900 // trampolines won't be emitted. 901 address MacroAssembler::trampoline_call(Address entry) { 902 assert(entry.rspec().type() == relocInfo::runtime_call_type 903 || entry.rspec().type() == relocInfo::opt_virtual_call_type 904 || entry.rspec().type() == relocInfo::static_call_type 905 || entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type"); 906 907 address target = entry.target(); 908 909 if (!is_always_within_branch_range(entry)) { 910 if (!in_scratch_emit_size()) { 911 // We don't want to emit a trampoline if C2 is generating dummy 912 // code during its branch shortening phase. 913 if (entry.rspec().type() == relocInfo::runtime_call_type) { 914 assert(CodeBuffer::supports_shared_stubs(), "must support shared stubs"); 915 code()->share_trampoline_for(entry.target(), offset()); 916 } else { 917 address stub = emit_trampoline_stub(offset(), target); 918 if (stub == nullptr) { 919 postcond(pc() == badAddress); 920 return nullptr; // CodeCache is full 921 } 922 } 923 } 924 target = pc(); 925 } 926 927 address call_pc = pc(); 928 relocate(entry.rspec()); 929 bl(target); 930 931 postcond(pc() != badAddress); 932 return call_pc; 933 } 934 935 // Emit a trampoline stub for a call to a target which is too far away. 936 // 937 // code sequences: 938 // 939 // call-site: 940 // branch-and-link to <destination> or <trampoline stub> 941 // 942 // Related trampoline stub for this call site in the stub section: 943 // load the call target from the constant pool 944 // branch (LR still points to the call site above) 945 946 address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset, 947 address dest) { 948 // Max stub size: alignment nop, TrampolineStub. 949 address stub = start_a_stub(max_trampoline_stub_size()); 950 if (stub == nullptr) { 951 return nullptr; // CodeBuffer::expand failed 952 } 953 954 // Create a trampoline stub relocation which relates this trampoline stub 955 // with the call instruction at insts_call_instruction_offset in the 956 // instructions code-section. 957 align(wordSize); 958 relocate(trampoline_stub_Relocation::spec(code()->insts()->start() 959 + insts_call_instruction_offset)); 960 const int stub_start_offset = offset(); 961 962 // Now, create the trampoline stub's code: 963 // - load the call 964 // - call 965 Label target; 966 ldr(rscratch1, target); 967 br(rscratch1); 968 bind(target); 969 assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset, 970 "should be"); 971 emit_int64((int64_t)dest); 972 973 const address stub_start_addr = addr_at(stub_start_offset); 974 975 assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline"); 976 977 end_a_stub(); 978 return stub_start_addr; 979 } 980 981 int MacroAssembler::max_trampoline_stub_size() { 982 // Max stub size: alignment nop, TrampolineStub. 983 return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size; 984 } 985 986 void MacroAssembler::emit_static_call_stub() { 987 // CompiledDirectCall::set_to_interpreted knows the 988 // exact layout of this stub. 989 990 isb(); 991 mov_metadata(rmethod, nullptr); 992 993 // Jump to the entry point of the c2i stub. 994 movptr(rscratch1, 0); 995 br(rscratch1); 996 } 997 998 int MacroAssembler::static_call_stub_size() { 999 // isb; movk; movz; movz; movk; movz; movz; br 1000 return 8 * NativeInstruction::instruction_size; 1001 } 1002 1003 void MacroAssembler::c2bool(Register x) { 1004 // implements x == 0 ? 0 : 1 1005 // note: must only look at least-significant byte of x 1006 // since C-style booleans are stored in one byte 1007 // only! (was bug) 1008 tst(x, 0xff); 1009 cset(x, Assembler::NE); 1010 } 1011 1012 address MacroAssembler::ic_call(address entry, jint method_index) { 1013 RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index); 1014 movptr(rscratch2, (intptr_t)Universe::non_oop_word()); 1015 return trampoline_call(Address(entry, rh)); 1016 } 1017 1018 int MacroAssembler::ic_check_size() { 1019 int extra_instructions = UseCompactObjectHeaders ? 1 : 0; 1020 if (target_needs_far_branch(CAST_FROM_FN_PTR(address, SharedRuntime::get_ic_miss_stub()))) { 1021 return NativeInstruction::instruction_size * (7 + extra_instructions); 1022 } else { 1023 return NativeInstruction::instruction_size * (5 + extra_instructions); 1024 } 1025 } 1026 1027 int MacroAssembler::ic_check(int end_alignment) { 1028 Register receiver = j_rarg0; 1029 Register data = rscratch2; 1030 Register tmp1 = rscratch1; 1031 Register tmp2 = r10; 1032 1033 // The UEP of a code blob ensures that the VEP is padded. However, the padding of the UEP is placed 1034 // before the inline cache check, so we don't have to execute any nop instructions when dispatching 1035 // through the UEP, yet we can ensure that the VEP is aligned appropriately. That's why we align 1036 // before the inline cache check here, and not after 1037 align(end_alignment, offset() + ic_check_size()); 1038 1039 int uep_offset = offset(); 1040 1041 if (UseCompactObjectHeaders) { 1042 load_narrow_klass_compact(tmp1, receiver); 1043 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1044 cmpw(tmp1, tmp2); 1045 } else if (UseCompressedClassPointers) { 1046 ldrw(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1047 ldrw(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1048 cmpw(tmp1, tmp2); 1049 } else { 1050 ldr(tmp1, Address(receiver, oopDesc::klass_offset_in_bytes())); 1051 ldr(tmp2, Address(data, CompiledICData::speculated_klass_offset())); 1052 cmp(tmp1, tmp2); 1053 } 1054 1055 Label dont; 1056 br(Assembler::EQ, dont); 1057 far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 1058 bind(dont); 1059 assert((offset() % end_alignment) == 0, "Misaligned verified entry point"); 1060 1061 return uep_offset; 1062 } 1063 1064 // Implementation of call_VM versions 1065 1066 void MacroAssembler::call_VM(Register oop_result, 1067 address entry_point, 1068 bool check_exceptions) { 1069 call_VM_helper(oop_result, entry_point, 0, check_exceptions); 1070 } 1071 1072 void MacroAssembler::call_VM(Register oop_result, 1073 address entry_point, 1074 Register arg_1, 1075 bool check_exceptions) { 1076 pass_arg1(this, arg_1); 1077 call_VM_helper(oop_result, entry_point, 1, check_exceptions); 1078 } 1079 1080 void MacroAssembler::call_VM(Register oop_result, 1081 address entry_point, 1082 Register arg_1, 1083 Register arg_2, 1084 bool check_exceptions) { 1085 assert_different_registers(arg_1, c_rarg2); 1086 pass_arg2(this, arg_2); 1087 pass_arg1(this, arg_1); 1088 call_VM_helper(oop_result, entry_point, 2, check_exceptions); 1089 } 1090 1091 void MacroAssembler::call_VM(Register oop_result, 1092 address entry_point, 1093 Register arg_1, 1094 Register arg_2, 1095 Register arg_3, 1096 bool check_exceptions) { 1097 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1098 assert_different_registers(arg_2, c_rarg3); 1099 pass_arg3(this, arg_3); 1100 1101 pass_arg2(this, arg_2); 1102 1103 pass_arg1(this, arg_1); 1104 call_VM_helper(oop_result, entry_point, 3, check_exceptions); 1105 } 1106 1107 void MacroAssembler::call_VM(Register oop_result, 1108 Register last_java_sp, 1109 address entry_point, 1110 int number_of_arguments, 1111 bool check_exceptions) { 1112 call_VM_base(oop_result, rthread, last_java_sp, entry_point, number_of_arguments, check_exceptions); 1113 } 1114 1115 void MacroAssembler::call_VM(Register oop_result, 1116 Register last_java_sp, 1117 address entry_point, 1118 Register arg_1, 1119 bool check_exceptions) { 1120 pass_arg1(this, arg_1); 1121 call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions); 1122 } 1123 1124 void MacroAssembler::call_VM(Register oop_result, 1125 Register last_java_sp, 1126 address entry_point, 1127 Register arg_1, 1128 Register arg_2, 1129 bool check_exceptions) { 1130 1131 assert_different_registers(arg_1, c_rarg2); 1132 pass_arg2(this, arg_2); 1133 pass_arg1(this, arg_1); 1134 call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions); 1135 } 1136 1137 void MacroAssembler::call_VM(Register oop_result, 1138 Register last_java_sp, 1139 address entry_point, 1140 Register arg_1, 1141 Register arg_2, 1142 Register arg_3, 1143 bool check_exceptions) { 1144 assert_different_registers(arg_1, c_rarg2, c_rarg3); 1145 assert_different_registers(arg_2, c_rarg3); 1146 pass_arg3(this, arg_3); 1147 pass_arg2(this, arg_2); 1148 pass_arg1(this, arg_1); 1149 call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions); 1150 } 1151 1152 1153 void MacroAssembler::get_vm_result_oop(Register oop_result, Register java_thread) { 1154 ldr(oop_result, Address(java_thread, JavaThread::vm_result_oop_offset())); 1155 str(zr, Address(java_thread, JavaThread::vm_result_oop_offset())); 1156 verify_oop_msg(oop_result, "broken oop in call_VM_base"); 1157 } 1158 1159 void MacroAssembler::get_vm_result_metadata(Register metadata_result, Register java_thread) { 1160 ldr(metadata_result, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1161 str(zr, Address(java_thread, JavaThread::vm_result_metadata_offset())); 1162 } 1163 1164 void MacroAssembler::align(int modulus) { 1165 align(modulus, offset()); 1166 } 1167 1168 // Ensure that the code at target bytes offset from the current offset() is aligned 1169 // according to modulus. 1170 void MacroAssembler::align(int modulus, int target) { 1171 int delta = target - offset(); 1172 while ((offset() + delta) % modulus != 0) nop(); 1173 } 1174 1175 void MacroAssembler::post_call_nop() { 1176 if (!Continuations::enabled()) { 1177 return; 1178 } 1179 InstructionMark im(this); 1180 relocate(post_call_nop_Relocation::spec()); 1181 InlineSkippedInstructionsCounter skipCounter(this); 1182 nop(); 1183 movk(zr, 0); 1184 movk(zr, 0); 1185 } 1186 1187 // these are no-ops overridden by InterpreterMacroAssembler 1188 1189 void MacroAssembler::check_and_handle_earlyret(Register java_thread) { } 1190 1191 void MacroAssembler::check_and_handle_popframe(Register java_thread) { } 1192 1193 // Look up the method for a megamorphic invokeinterface call. 1194 // The target method is determined by <intf_klass, itable_index>. 1195 // The receiver klass is in recv_klass. 1196 // On success, the result will be in method_result, and execution falls through. 1197 // On failure, execution transfers to the given label. 1198 void MacroAssembler::lookup_interface_method(Register recv_klass, 1199 Register intf_klass, 1200 RegisterOrConstant itable_index, 1201 Register method_result, 1202 Register scan_temp, 1203 Label& L_no_such_interface, 1204 bool return_method) { 1205 assert_different_registers(recv_klass, intf_klass, scan_temp); 1206 assert_different_registers(method_result, intf_klass, scan_temp); 1207 assert(recv_klass != method_result || !return_method, 1208 "recv_klass can be destroyed when method isn't needed"); 1209 assert(itable_index.is_constant() || itable_index.as_register() == method_result, 1210 "caller must use same register for non-constant itable index as for method"); 1211 1212 // Compute start of first itableOffsetEntry (which is at the end of the vtable) 1213 int vtable_base = in_bytes(Klass::vtable_start_offset()); 1214 int itentry_off = in_bytes(itableMethodEntry::method_offset()); 1215 int scan_step = itableOffsetEntry::size() * wordSize; 1216 int vte_size = vtableEntry::size_in_bytes(); 1217 assert(vte_size == wordSize, "else adjust times_vte_scale"); 1218 1219 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1220 1221 // Could store the aligned, prescaled offset in the klass. 1222 // lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base)); 1223 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(3))); 1224 add(scan_temp, scan_temp, vtable_base); 1225 1226 if (return_method) { 1227 // Adjust recv_klass by scaled itable_index, so we can free itable_index. 1228 assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below"); 1229 // lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off)); 1230 lea(recv_klass, Address(recv_klass, itable_index, Address::lsl(3))); 1231 if (itentry_off) 1232 add(recv_klass, recv_klass, itentry_off); 1233 } 1234 1235 // for (scan = klass->itable(); scan->interface() != nullptr; scan += scan_step) { 1236 // if (scan->interface() == intf) { 1237 // result = (klass + scan->offset() + itable_index); 1238 // } 1239 // } 1240 Label search, found_method; 1241 1242 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1243 cmp(intf_klass, method_result); 1244 br(Assembler::EQ, found_method); 1245 bind(search); 1246 // Check that the previous entry is non-null. A null entry means that 1247 // the receiver class doesn't implement the interface, and wasn't the 1248 // same as when the caller was compiled. 1249 cbz(method_result, L_no_such_interface); 1250 if (itableOffsetEntry::interface_offset() != 0) { 1251 add(scan_temp, scan_temp, scan_step); 1252 ldr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset())); 1253 } else { 1254 ldr(method_result, Address(pre(scan_temp, scan_step))); 1255 } 1256 cmp(intf_klass, method_result); 1257 br(Assembler::NE, search); 1258 1259 bind(found_method); 1260 1261 // Got a hit. 1262 if (return_method) { 1263 ldrw(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset())); 1264 ldr(method_result, Address(recv_klass, scan_temp, Address::uxtw(0))); 1265 } 1266 } 1267 1268 // Look up the method for a megamorphic invokeinterface call in a single pass over itable: 1269 // - check recv_klass (actual object class) is a subtype of resolved_klass from CompiledICData 1270 // - find a holder_klass (class that implements the method) vtable offset and get the method from vtable by index 1271 // The target method is determined by <holder_klass, itable_index>. 1272 // The receiver klass is in recv_klass. 1273 // On success, the result will be in method_result, and execution falls through. 1274 // On failure, execution transfers to the given label. 1275 void MacroAssembler::lookup_interface_method_stub(Register recv_klass, 1276 Register holder_klass, 1277 Register resolved_klass, 1278 Register method_result, 1279 Register temp_itbl_klass, 1280 Register scan_temp, 1281 int itable_index, 1282 Label& L_no_such_interface) { 1283 // 'method_result' is only used as output register at the very end of this method. 1284 // Until then we can reuse it as 'holder_offset'. 1285 Register holder_offset = method_result; 1286 assert_different_registers(resolved_klass, recv_klass, holder_klass, temp_itbl_klass, scan_temp, holder_offset); 1287 1288 int vtable_start_offset = in_bytes(Klass::vtable_start_offset()); 1289 int itable_offset_entry_size = itableOffsetEntry::size() * wordSize; 1290 int ioffset = in_bytes(itableOffsetEntry::interface_offset()); 1291 int ooffset = in_bytes(itableOffsetEntry::offset_offset()); 1292 1293 Label L_loop_search_resolved_entry, L_resolved_found, L_holder_found; 1294 1295 ldrw(scan_temp, Address(recv_klass, Klass::vtable_length_offset())); 1296 add(recv_klass, recv_klass, vtable_start_offset + ioffset); 1297 // itableOffsetEntry[] itable = recv_klass + Klass::vtable_start_offset() + sizeof(vtableEntry) * recv_klass->_vtable_len; 1298 // temp_itbl_klass = itable[0]._interface; 1299 int vtblEntrySize = vtableEntry::size_in_bytes(); 1300 assert(vtblEntrySize == wordSize, "ldr lsl shift amount must be 3"); 1301 ldr(temp_itbl_klass, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1302 mov(holder_offset, zr); 1303 // scan_temp = &(itable[0]._interface) 1304 lea(scan_temp, Address(recv_klass, scan_temp, Address::lsl(exact_log2(vtblEntrySize)))); 1305 1306 // Initial checks: 1307 // - if (holder_klass != resolved_klass), go to "scan for resolved" 1308 // - if (itable[0] == holder_klass), shortcut to "holder found" 1309 // - if (itable[0] == 0), no such interface 1310 cmp(resolved_klass, holder_klass); 1311 br(Assembler::NE, L_loop_search_resolved_entry); 1312 cmp(holder_klass, temp_itbl_klass); 1313 br(Assembler::EQ, L_holder_found); 1314 cbz(temp_itbl_klass, L_no_such_interface); 1315 1316 // Loop: Look for holder_klass record in itable 1317 // do { 1318 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1319 // if (temp_itbl_klass == holder_klass) { 1320 // goto L_holder_found; // Found! 1321 // } 1322 // } while (temp_itbl_klass != 0); 1323 // goto L_no_such_interface // Not found. 1324 Label L_search_holder; 1325 bind(L_search_holder); 1326 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1327 cmp(holder_klass, temp_itbl_klass); 1328 br(Assembler::EQ, L_holder_found); 1329 cbnz(temp_itbl_klass, L_search_holder); 1330 1331 b(L_no_such_interface); 1332 1333 // Loop: Look for resolved_class record in itable 1334 // while (true) { 1335 // temp_itbl_klass = *(scan_temp += itable_offset_entry_size); 1336 // if (temp_itbl_klass == 0) { 1337 // goto L_no_such_interface; 1338 // } 1339 // if (temp_itbl_klass == resolved_klass) { 1340 // goto L_resolved_found; // Found! 1341 // } 1342 // if (temp_itbl_klass == holder_klass) { 1343 // holder_offset = scan_temp; 1344 // } 1345 // } 1346 // 1347 Label L_loop_search_resolved; 1348 bind(L_loop_search_resolved); 1349 ldr(temp_itbl_klass, Address(pre(scan_temp, itable_offset_entry_size))); 1350 bind(L_loop_search_resolved_entry); 1351 cbz(temp_itbl_klass, L_no_such_interface); 1352 cmp(resolved_klass, temp_itbl_klass); 1353 br(Assembler::EQ, L_resolved_found); 1354 cmp(holder_klass, temp_itbl_klass); 1355 br(Assembler::NE, L_loop_search_resolved); 1356 mov(holder_offset, scan_temp); 1357 b(L_loop_search_resolved); 1358 1359 // See if we already have a holder klass. If not, go and scan for it. 1360 bind(L_resolved_found); 1361 cbz(holder_offset, L_search_holder); 1362 mov(scan_temp, holder_offset); 1363 1364 // Finally, scan_temp contains holder_klass vtable offset 1365 bind(L_holder_found); 1366 ldrw(method_result, Address(scan_temp, ooffset - ioffset)); 1367 add(recv_klass, recv_klass, itable_index * wordSize + in_bytes(itableMethodEntry::method_offset()) 1368 - vtable_start_offset - ioffset); // substract offsets to restore the original value of recv_klass 1369 ldr(method_result, Address(recv_klass, method_result, Address::uxtw(0))); 1370 } 1371 1372 // virtual method calling 1373 void MacroAssembler::lookup_virtual_method(Register recv_klass, 1374 RegisterOrConstant vtable_index, 1375 Register method_result) { 1376 assert(vtableEntry::size() * wordSize == 8, 1377 "adjust the scaling in the code below"); 1378 int64_t vtable_offset_in_bytes = in_bytes(Klass::vtable_start_offset() + vtableEntry::method_offset()); 1379 1380 if (vtable_index.is_register()) { 1381 lea(method_result, Address(recv_klass, 1382 vtable_index.as_register(), 1383 Address::lsl(LogBytesPerWord))); 1384 ldr(method_result, Address(method_result, vtable_offset_in_bytes)); 1385 } else { 1386 vtable_offset_in_bytes += vtable_index.as_constant() * wordSize; 1387 ldr(method_result, 1388 form_address(rscratch1, recv_klass, vtable_offset_in_bytes, 0)); 1389 } 1390 } 1391 1392 void MacroAssembler::check_klass_subtype(Register sub_klass, 1393 Register super_klass, 1394 Register temp_reg, 1395 Label& L_success) { 1396 Label L_failure; 1397 check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg, &L_success, &L_failure, nullptr); 1398 check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, nullptr); 1399 bind(L_failure); 1400 } 1401 1402 1403 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass, 1404 Register super_klass, 1405 Register temp_reg, 1406 Label* L_success, 1407 Label* L_failure, 1408 Label* L_slow_path, 1409 Register super_check_offset) { 1410 assert_different_registers(sub_klass, super_klass, temp_reg, super_check_offset); 1411 bool must_load_sco = ! super_check_offset->is_valid(); 1412 if (must_load_sco) { 1413 assert(temp_reg != noreg, "supply either a temp or a register offset"); 1414 } 1415 1416 Label L_fallthrough; 1417 int label_nulls = 0; 1418 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1419 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1420 if (L_slow_path == nullptr) { L_slow_path = &L_fallthrough; label_nulls++; } 1421 assert(label_nulls <= 1, "at most one null in the batch"); 1422 1423 int sco_offset = in_bytes(Klass::super_check_offset_offset()); 1424 Address super_check_offset_addr(super_klass, sco_offset); 1425 1426 // Hacked jmp, which may only be used just before L_fallthrough. 1427 #define final_jmp(label) \ 1428 if (&(label) == &L_fallthrough) { /*do nothing*/ } \ 1429 else b(label) /*omit semi*/ 1430 1431 // If the pointers are equal, we are done (e.g., String[] elements). 1432 // This self-check enables sharing of secondary supertype arrays among 1433 // non-primary types such as array-of-interface. Otherwise, each such 1434 // type would need its own customized SSA. 1435 // We move this check to the front of the fast path because many 1436 // type checks are in fact trivially successful in this manner, 1437 // so we get a nicely predicted branch right at the start of the check. 1438 cmp(sub_klass, super_klass); 1439 br(Assembler::EQ, *L_success); 1440 1441 // Check the supertype display: 1442 if (must_load_sco) { 1443 ldrw(temp_reg, super_check_offset_addr); 1444 super_check_offset = temp_reg; 1445 } 1446 1447 Address super_check_addr(sub_klass, super_check_offset); 1448 ldr(rscratch1, super_check_addr); 1449 cmp(super_klass, rscratch1); // load displayed supertype 1450 br(Assembler::EQ, *L_success); 1451 1452 // This check has worked decisively for primary supers. 1453 // Secondary supers are sought in the super_cache ('super_cache_addr'). 1454 // (Secondary supers are interfaces and very deeply nested subtypes.) 1455 // This works in the same check above because of a tricky aliasing 1456 // between the super_cache and the primary super display elements. 1457 // (The 'super_check_addr' can address either, as the case requires.) 1458 // Note that the cache is updated below if it does not help us find 1459 // what we need immediately. 1460 // So if it was a primary super, we can just fail immediately. 1461 // Otherwise, it's the slow path for us (no success at this point). 1462 1463 sub(rscratch1, super_check_offset, in_bytes(Klass::secondary_super_cache_offset())); 1464 if (L_failure == &L_fallthrough) { 1465 cbz(rscratch1, *L_slow_path); 1466 } else { 1467 cbnz(rscratch1, *L_failure); 1468 final_jmp(*L_slow_path); 1469 } 1470 1471 bind(L_fallthrough); 1472 1473 #undef final_jmp 1474 } 1475 1476 // These two are taken from x86, but they look generally useful 1477 1478 // scans count pointer sized words at [addr] for occurrence of value, 1479 // generic 1480 void MacroAssembler::repne_scan(Register addr, Register value, Register count, 1481 Register scratch) { 1482 Label Lloop, Lexit; 1483 cbz(count, Lexit); 1484 bind(Lloop); 1485 ldr(scratch, post(addr, wordSize)); 1486 cmp(value, scratch); 1487 br(EQ, Lexit); 1488 sub(count, count, 1); 1489 cbnz(count, Lloop); 1490 bind(Lexit); 1491 } 1492 1493 // scans count 4 byte words at [addr] for occurrence of value, 1494 // generic 1495 void MacroAssembler::repne_scanw(Register addr, Register value, Register count, 1496 Register scratch) { 1497 Label Lloop, Lexit; 1498 cbz(count, Lexit); 1499 bind(Lloop); 1500 ldrw(scratch, post(addr, wordSize)); 1501 cmpw(value, scratch); 1502 br(EQ, Lexit); 1503 sub(count, count, 1); 1504 cbnz(count, Lloop); 1505 bind(Lexit); 1506 } 1507 1508 void MacroAssembler::check_klass_subtype_slow_path_linear(Register sub_klass, 1509 Register super_klass, 1510 Register temp_reg, 1511 Register temp2_reg, 1512 Label* L_success, 1513 Label* L_failure, 1514 bool set_cond_codes) { 1515 // NB! Callers may assume that, when temp2_reg is a valid register, 1516 // this code sets it to a nonzero value. 1517 1518 assert_different_registers(sub_klass, super_klass, temp_reg); 1519 if (temp2_reg != noreg) 1520 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1521 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg) 1522 1523 Label L_fallthrough; 1524 int label_nulls = 0; 1525 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1526 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1527 assert(label_nulls <= 1, "at most one null in the batch"); 1528 1529 // a couple of useful fields in sub_klass: 1530 int ss_offset = in_bytes(Klass::secondary_supers_offset()); 1531 int sc_offset = in_bytes(Klass::secondary_super_cache_offset()); 1532 Address secondary_supers_addr(sub_klass, ss_offset); 1533 Address super_cache_addr( sub_klass, sc_offset); 1534 1535 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1536 1537 // Do a linear scan of the secondary super-klass chain. 1538 // This code is rarely used, so simplicity is a virtue here. 1539 // The repne_scan instruction uses fixed registers, which we must spill. 1540 // Don't worry too much about pre-existing connections with the input regs. 1541 1542 assert(sub_klass != r0, "killed reg"); // killed by mov(r0, super) 1543 assert(sub_klass != r2, "killed reg"); // killed by lea(r2, &pst_counter) 1544 1545 RegSet pushed_registers; 1546 if (!IS_A_TEMP(r2)) pushed_registers += r2; 1547 if (!IS_A_TEMP(r5)) pushed_registers += r5; 1548 1549 if (super_klass != r0) { 1550 if (!IS_A_TEMP(r0)) pushed_registers += r0; 1551 } 1552 1553 push(pushed_registers, sp); 1554 1555 // Get super_klass value into r0 (even if it was in r5 or r2). 1556 if (super_klass != r0) { 1557 mov(r0, super_klass); 1558 } 1559 1560 #ifndef PRODUCT 1561 incrementw(ExternalAddress((address)&SharedRuntime::_partial_subtype_ctr)); 1562 #endif //PRODUCT 1563 1564 // We will consult the secondary-super array. 1565 ldr(r5, secondary_supers_addr); 1566 // Load the array length. 1567 ldrw(r2, Address(r5, Array<Klass*>::length_offset_in_bytes())); 1568 // Skip to start of data. 1569 add(r5, r5, Array<Klass*>::base_offset_in_bytes()); 1570 1571 cmp(sp, zr); // Clear Z flag; SP is never zero 1572 // Scan R2 words at [R5] for an occurrence of R0. 1573 // Set NZ/Z based on last compare. 1574 repne_scan(r5, r0, r2, rscratch1); 1575 1576 // Unspill the temp. registers: 1577 pop(pushed_registers, sp); 1578 1579 br(Assembler::NE, *L_failure); 1580 1581 // Success. Cache the super we found and proceed in triumph. 1582 1583 if (UseSecondarySupersCache) { 1584 str(super_klass, super_cache_addr); 1585 } 1586 1587 if (L_success != &L_fallthrough) { 1588 b(*L_success); 1589 } 1590 1591 #undef IS_A_TEMP 1592 1593 bind(L_fallthrough); 1594 } 1595 1596 // If Register r is invalid, remove a new register from 1597 // available_regs, and add new register to regs_to_push. 1598 Register MacroAssembler::allocate_if_noreg(Register r, 1599 RegSetIterator<Register> &available_regs, 1600 RegSet ®s_to_push) { 1601 if (!r->is_valid()) { 1602 r = *available_regs++; 1603 regs_to_push += r; 1604 } 1605 return r; 1606 } 1607 1608 // check_klass_subtype_slow_path_table() looks for super_klass in the 1609 // hash table belonging to super_klass, branching to L_success or 1610 // L_failure as appropriate. This is essentially a shim which 1611 // allocates registers as necessary then calls 1612 // lookup_secondary_supers_table() to do the work. Any of the temp 1613 // regs may be noreg, in which case this logic will chooses some 1614 // registers push and pop them from the stack. 1615 void MacroAssembler::check_klass_subtype_slow_path_table(Register sub_klass, 1616 Register super_klass, 1617 Register temp_reg, 1618 Register temp2_reg, 1619 Register temp3_reg, 1620 Register result_reg, 1621 FloatRegister vtemp, 1622 Label* L_success, 1623 Label* L_failure, 1624 bool set_cond_codes) { 1625 RegSet temps = RegSet::of(temp_reg, temp2_reg, temp3_reg); 1626 1627 assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg, rscratch1); 1628 1629 Label L_fallthrough; 1630 int label_nulls = 0; 1631 if (L_success == nullptr) { L_success = &L_fallthrough; label_nulls++; } 1632 if (L_failure == nullptr) { L_failure = &L_fallthrough; label_nulls++; } 1633 assert(label_nulls <= 1, "at most one null in the batch"); 1634 1635 BLOCK_COMMENT("check_klass_subtype_slow_path"); 1636 1637 RegSetIterator<Register> available_regs 1638 = (RegSet::range(r0, r15) - temps - sub_klass - super_klass).begin(); 1639 1640 RegSet pushed_regs; 1641 1642 temp_reg = allocate_if_noreg(temp_reg, available_regs, pushed_regs); 1643 temp2_reg = allocate_if_noreg(temp2_reg, available_regs, pushed_regs); 1644 temp3_reg = allocate_if_noreg(temp3_reg, available_regs, pushed_regs); 1645 result_reg = allocate_if_noreg(result_reg, available_regs, pushed_regs); 1646 1647 push(pushed_regs, sp); 1648 1649 lookup_secondary_supers_table_var(sub_klass, 1650 super_klass, 1651 temp_reg, temp2_reg, temp3_reg, vtemp, result_reg, 1652 nullptr); 1653 cmp(result_reg, zr); 1654 1655 // Unspill the temp. registers: 1656 pop(pushed_regs, sp); 1657 1658 // NB! Callers may assume that, when set_cond_codes is true, this 1659 // code sets temp2_reg to a nonzero value. 1660 if (set_cond_codes) { 1661 mov(temp2_reg, 1); 1662 } 1663 1664 br(Assembler::NE, *L_failure); 1665 1666 if (L_success != &L_fallthrough) { 1667 b(*L_success); 1668 } 1669 1670 bind(L_fallthrough); 1671 } 1672 1673 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass, 1674 Register super_klass, 1675 Register temp_reg, 1676 Register temp2_reg, 1677 Label* L_success, 1678 Label* L_failure, 1679 bool set_cond_codes) { 1680 if (UseSecondarySupersTable) { 1681 check_klass_subtype_slow_path_table 1682 (sub_klass, super_klass, temp_reg, temp2_reg, /*temp3*/noreg, /*result*/noreg, 1683 /*vtemp*/fnoreg, 1684 L_success, L_failure, set_cond_codes); 1685 } else { 1686 check_klass_subtype_slow_path_linear 1687 (sub_klass, super_klass, temp_reg, temp2_reg, L_success, L_failure, set_cond_codes); 1688 } 1689 } 1690 1691 1692 // Ensure that the inline code and the stub are using the same registers. 1693 #define LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS \ 1694 do { \ 1695 assert(r_super_klass == r0 && \ 1696 r_array_base == r1 && \ 1697 r_array_length == r2 && \ 1698 (r_array_index == r3 || r_array_index == noreg) && \ 1699 (r_sub_klass == r4 || r_sub_klass == noreg) && \ 1700 (r_bitmap == rscratch2 || r_bitmap == noreg) && \ 1701 (result == r5 || result == noreg), "registers must match aarch64.ad"); \ 1702 } while(0) 1703 1704 bool MacroAssembler::lookup_secondary_supers_table_const(Register r_sub_klass, 1705 Register r_super_klass, 1706 Register temp1, 1707 Register temp2, 1708 Register temp3, 1709 FloatRegister vtemp, 1710 Register result, 1711 u1 super_klass_slot, 1712 bool stub_is_near) { 1713 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1714 1715 Label L_fallthrough; 1716 1717 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1718 1719 const Register 1720 r_array_base = temp1, // r1 1721 r_array_length = temp2, // r2 1722 r_array_index = temp3, // r3 1723 r_bitmap = rscratch2; 1724 1725 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1726 1727 u1 bit = super_klass_slot; 1728 1729 // Make sure that result is nonzero if the TBZ below misses. 1730 mov(result, 1); 1731 1732 // We're going to need the bitmap in a vector reg and in a core reg, 1733 // so load both now. 1734 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1735 if (bit != 0) { 1736 ldrd(vtemp, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1737 } 1738 // First check the bitmap to see if super_klass might be present. If 1739 // the bit is zero, we are certain that super_klass is not one of 1740 // the secondary supers. 1741 tbz(r_bitmap, bit, L_fallthrough); 1742 1743 // Get the first array index that can contain super_klass into r_array_index. 1744 if (bit != 0) { 1745 shld(vtemp, vtemp, Klass::SECONDARY_SUPERS_TABLE_MASK - bit); 1746 cnt(vtemp, T8B, vtemp); 1747 addv(vtemp, T8B, vtemp); 1748 fmovd(r_array_index, vtemp); 1749 } else { 1750 mov(r_array_index, (u1)1); 1751 } 1752 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1753 1754 // We will consult the secondary-super array. 1755 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1756 1757 // The value i in r_array_index is >= 1, so even though r_array_base 1758 // points to the length, we don't need to adjust it to point to the 1759 // data. 1760 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1761 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1762 1763 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1764 eor(result, result, r_super_klass); 1765 cbz(result, L_fallthrough); // Found a match 1766 1767 // Is there another entry to check? Consult the bitmap. 1768 tbz(r_bitmap, (bit + 1) & Klass::SECONDARY_SUPERS_TABLE_MASK, L_fallthrough); 1769 1770 // Linear probe. 1771 if (bit != 0) { 1772 ror(r_bitmap, r_bitmap, bit); 1773 } 1774 1775 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1776 // The next slot to be inspected, by the stub we're about to call, 1777 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1778 // have been checked. 1779 Address stub = RuntimeAddress(StubRoutines::lookup_secondary_supers_table_slow_path_stub()); 1780 if (stub_is_near) { 1781 bl(stub); 1782 } else { 1783 address call = trampoline_call(stub); 1784 if (call == nullptr) { 1785 return false; // trampoline allocation failed 1786 } 1787 } 1788 1789 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1790 1791 bind(L_fallthrough); 1792 1793 if (VerifySecondarySupers) { 1794 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1795 temp1, temp2, result); // r1, r2, r5 1796 } 1797 return true; 1798 } 1799 1800 // At runtime, return 0 in result if r_super_klass is a superclass of 1801 // r_sub_klass, otherwise return nonzero. Use this version of 1802 // lookup_secondary_supers_table() if you don't know ahead of time 1803 // which superclass will be searched for. Used by interpreter and 1804 // runtime stubs. It is larger and has somewhat greater latency than 1805 // the version above, which takes a constant super_klass_slot. 1806 void MacroAssembler::lookup_secondary_supers_table_var(Register r_sub_klass, 1807 Register r_super_klass, 1808 Register temp1, 1809 Register temp2, 1810 Register temp3, 1811 FloatRegister vtemp, 1812 Register result, 1813 Label *L_success) { 1814 assert_different_registers(r_sub_klass, temp1, temp2, temp3, result, rscratch1, rscratch2); 1815 1816 Label L_fallthrough; 1817 1818 BLOCK_COMMENT("lookup_secondary_supers_table {"); 1819 1820 const Register 1821 r_array_index = temp3, 1822 slot = rscratch1, 1823 r_bitmap = rscratch2; 1824 1825 ldrb(slot, Address(r_super_klass, Klass::hash_slot_offset())); 1826 1827 // Make sure that result is nonzero if the test below misses. 1828 mov(result, 1); 1829 1830 ldr(r_bitmap, Address(r_sub_klass, Klass::secondary_supers_bitmap_offset())); 1831 1832 // First check the bitmap to see if super_klass might be present. If 1833 // the bit is zero, we are certain that super_klass is not one of 1834 // the secondary supers. 1835 1836 // This next instruction is equivalent to: 1837 // mov(tmp_reg, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1838 // sub(temp2, tmp_reg, slot); 1839 eor(temp2, slot, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 1)); 1840 lslv(temp2, r_bitmap, temp2); 1841 tbz(temp2, Klass::SECONDARY_SUPERS_TABLE_SIZE - 1, L_fallthrough); 1842 1843 bool must_save_v0 = (vtemp == fnoreg); 1844 if (must_save_v0) { 1845 // temp1 and result are free, so use them to preserve vtemp 1846 vtemp = v0; 1847 mov(temp1, vtemp, D, 0); 1848 mov(result, vtemp, D, 1); 1849 } 1850 1851 // Get the first array index that can contain super_klass into r_array_index. 1852 mov(vtemp, D, 0, temp2); 1853 cnt(vtemp, T8B, vtemp); 1854 addv(vtemp, T8B, vtemp); 1855 mov(r_array_index, vtemp, D, 0); 1856 1857 if (must_save_v0) { 1858 mov(vtemp, D, 0, temp1 ); 1859 mov(vtemp, D, 1, result); 1860 } 1861 1862 // NB! r_array_index is off by 1. It is compensated by keeping r_array_base off by 1 word. 1863 1864 const Register 1865 r_array_base = temp1, 1866 r_array_length = temp2; 1867 1868 // The value i in r_array_index is >= 1, so even though r_array_base 1869 // points to the length, we don't need to adjust it to point to the 1870 // data. 1871 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, "Adjust this code"); 1872 assert(Array<Klass*>::length_offset_in_bytes() == 0, "Adjust this code"); 1873 1874 // We will consult the secondary-super array. 1875 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 1876 1877 ldr(result, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1878 eor(result, result, r_super_klass); 1879 cbz(result, L_success ? *L_success : L_fallthrough); // Found a match 1880 1881 // Is there another entry to check? Consult the bitmap. 1882 rorv(r_bitmap, r_bitmap, slot); 1883 // rol(r_bitmap, r_bitmap, 1); 1884 tbz(r_bitmap, 1, L_fallthrough); 1885 1886 // The slot we just inspected is at secondary_supers[r_array_index - 1]. 1887 // The next slot to be inspected, by the logic we're about to call, 1888 // is secondary_supers[r_array_index]. Bits 0 and 1 in the bitmap 1889 // have been checked. 1890 lookup_secondary_supers_table_slow_path(r_super_klass, r_array_base, r_array_index, 1891 r_bitmap, r_array_length, result, /*is_stub*/false); 1892 1893 BLOCK_COMMENT("} lookup_secondary_supers_table"); 1894 1895 bind(L_fallthrough); 1896 1897 if (VerifySecondarySupers) { 1898 verify_secondary_supers_table(r_sub_klass, r_super_klass, // r4, r0 1899 temp1, temp2, result); // r1, r2, r5 1900 } 1901 1902 if (L_success) { 1903 cbz(result, *L_success); 1904 } 1905 } 1906 1907 // Called by code generated by check_klass_subtype_slow_path 1908 // above. This is called when there is a collision in the hashed 1909 // lookup in the secondary supers array. 1910 void MacroAssembler::lookup_secondary_supers_table_slow_path(Register r_super_klass, 1911 Register r_array_base, 1912 Register r_array_index, 1913 Register r_bitmap, 1914 Register temp1, 1915 Register result, 1916 bool is_stub) { 1917 assert_different_registers(r_super_klass, r_array_base, r_array_index, r_bitmap, temp1, result, rscratch1); 1918 1919 const Register 1920 r_array_length = temp1, 1921 r_sub_klass = noreg; // unused 1922 1923 if (is_stub) { 1924 LOOKUP_SECONDARY_SUPERS_TABLE_REGISTERS; 1925 } 1926 1927 Label L_fallthrough, L_huge; 1928 1929 // Load the array length. 1930 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 1931 // And adjust the array base to point to the data. 1932 // NB! Effectively increments current slot index by 1. 1933 assert(Array<Klass*>::base_offset_in_bytes() == wordSize, ""); 1934 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 1935 1936 // The bitmap is full to bursting. 1937 // Implicit invariant: BITMAP_FULL implies (length > 0) 1938 assert(Klass::SECONDARY_SUPERS_BITMAP_FULL == ~uintx(0), ""); 1939 cmpw(r_array_length, (u1)(Klass::SECONDARY_SUPERS_TABLE_SIZE - 2)); 1940 br(GT, L_huge); 1941 1942 // NB! Our caller has checked bits 0 and 1 in the bitmap. The 1943 // current slot (at secondary_supers[r_array_index]) has not yet 1944 // been inspected, and r_array_index may be out of bounds if we 1945 // wrapped around the end of the array. 1946 1947 { // This is conventional linear probing, but instead of terminating 1948 // when a null entry is found in the table, we maintain a bitmap 1949 // in which a 0 indicates missing entries. 1950 // As long as the bitmap is not completely full, 1951 // array_length == popcount(bitmap). The array_length check above 1952 // guarantees there are 0s in the bitmap, so the loop eventually 1953 // terminates. 1954 Label L_loop; 1955 bind(L_loop); 1956 1957 // Check for wraparound. 1958 cmp(r_array_index, r_array_length); 1959 csel(r_array_index, zr, r_array_index, GE); 1960 1961 ldr(rscratch1, Address(r_array_base, r_array_index, Address::lsl(LogBytesPerWord))); 1962 eor(result, rscratch1, r_super_klass); 1963 cbz(result, L_fallthrough); 1964 1965 tbz(r_bitmap, 2, L_fallthrough); // look-ahead check (Bit 2); result is non-zero 1966 1967 ror(r_bitmap, r_bitmap, 1); 1968 add(r_array_index, r_array_index, 1); 1969 b(L_loop); 1970 } 1971 1972 { // Degenerate case: more than 64 secondary supers. 1973 // FIXME: We could do something smarter here, maybe a vectorized 1974 // comparison or a binary search, but is that worth any added 1975 // complexity? 1976 bind(L_huge); 1977 cmp(sp, zr); // Clear Z flag; SP is never zero 1978 repne_scan(r_array_base, r_super_klass, r_array_length, rscratch1); 1979 cset(result, NE); // result == 0 iff we got a match. 1980 } 1981 1982 bind(L_fallthrough); 1983 } 1984 1985 // Make sure that the hashed lookup and a linear scan agree. 1986 void MacroAssembler::verify_secondary_supers_table(Register r_sub_klass, 1987 Register r_super_klass, 1988 Register temp1, 1989 Register temp2, 1990 Register result) { 1991 assert_different_registers(r_sub_klass, r_super_klass, temp1, temp2, result, rscratch1); 1992 1993 const Register 1994 r_array_base = temp1, 1995 r_array_length = temp2, 1996 r_array_index = noreg, // unused 1997 r_bitmap = noreg; // unused 1998 1999 BLOCK_COMMENT("verify_secondary_supers_table {"); 2000 2001 // We will consult the secondary-super array. 2002 ldr(r_array_base, Address(r_sub_klass, in_bytes(Klass::secondary_supers_offset()))); 2003 2004 // Load the array length. 2005 ldrw(r_array_length, Address(r_array_base, Array<Klass*>::length_offset_in_bytes())); 2006 // And adjust the array base to point to the data. 2007 add(r_array_base, r_array_base, Array<Klass*>::base_offset_in_bytes()); 2008 2009 cmp(sp, zr); // Clear Z flag; SP is never zero 2010 // Scan R2 words at [R5] for an occurrence of R0. 2011 // Set NZ/Z based on last compare. 2012 repne_scan(/*addr*/r_array_base, /*value*/r_super_klass, /*count*/r_array_length, rscratch2); 2013 // rscratch1 == 0 iff we got a match. 2014 cset(rscratch1, NE); 2015 2016 Label passed; 2017 cmp(result, zr); 2018 cset(result, NE); // normalize result to 0/1 for comparison 2019 2020 cmp(rscratch1, result); 2021 br(EQ, passed); 2022 { 2023 mov(r0, r_super_klass); // r0 <- r0 2024 mov(r1, r_sub_klass); // r1 <- r4 2025 mov(r2, /*expected*/rscratch1); // r2 <- r8 2026 mov(r3, result); // r3 <- r5 2027 mov(r4, (address)("mismatch")); // r4 <- const 2028 rt_call(CAST_FROM_FN_PTR(address, Klass::on_secondary_supers_verification_failure), rscratch2); 2029 should_not_reach_here(); 2030 } 2031 bind(passed); 2032 2033 BLOCK_COMMENT("} verify_secondary_supers_table"); 2034 } 2035 2036 void MacroAssembler::clinit_barrier(Register klass, Register scratch, Label* L_fast_path, Label* L_slow_path) { 2037 assert(L_fast_path != nullptr || L_slow_path != nullptr, "at least one is required"); 2038 assert_different_registers(klass, rthread, scratch); 2039 2040 Label L_fallthrough, L_tmp; 2041 if (L_fast_path == nullptr) { 2042 L_fast_path = &L_fallthrough; 2043 } else if (L_slow_path == nullptr) { 2044 L_slow_path = &L_fallthrough; 2045 } 2046 // Fast path check: class is fully initialized 2047 lea(scratch, Address(klass, InstanceKlass::init_state_offset())); 2048 ldarb(scratch, scratch); 2049 cmp(scratch, InstanceKlass::fully_initialized); 2050 br(Assembler::EQ, *L_fast_path); 2051 2052 // Fast path check: current thread is initializer thread 2053 ldr(scratch, Address(klass, InstanceKlass::init_thread_offset())); 2054 cmp(rthread, scratch); 2055 2056 if (L_slow_path == &L_fallthrough) { 2057 br(Assembler::EQ, *L_fast_path); 2058 bind(*L_slow_path); 2059 } else if (L_fast_path == &L_fallthrough) { 2060 br(Assembler::NE, *L_slow_path); 2061 bind(*L_fast_path); 2062 } else { 2063 Unimplemented(); 2064 } 2065 } 2066 2067 void MacroAssembler::_verify_oop(Register reg, const char* s, const char* file, int line) { 2068 if (!VerifyOops) return; 2069 2070 // Pass register number to verify_oop_subroutine 2071 const char* b = nullptr; 2072 { 2073 ResourceMark rm; 2074 stringStream ss; 2075 ss.print("verify_oop: %s: %s (%s:%d)", reg->name(), s, file, line); 2076 b = code_string(ss.as_string()); 2077 } 2078 BLOCK_COMMENT("verify_oop {"); 2079 2080 strip_return_address(); // This might happen within a stack frame. 2081 protect_return_address(); 2082 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2083 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2084 2085 mov(r0, reg); 2086 movptr(rscratch1, (uintptr_t)(address)b); 2087 2088 // call indirectly to solve generation ordering problem 2089 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2090 ldr(rscratch2, Address(rscratch2)); 2091 blr(rscratch2); 2092 2093 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2094 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2095 authenticate_return_address(); 2096 2097 BLOCK_COMMENT("} verify_oop"); 2098 } 2099 2100 void MacroAssembler::_verify_oop_addr(Address addr, const char* s, const char* file, int line) { 2101 if (!VerifyOops) return; 2102 2103 const char* b = nullptr; 2104 { 2105 ResourceMark rm; 2106 stringStream ss; 2107 ss.print("verify_oop_addr: %s (%s:%d)", s, file, line); 2108 b = code_string(ss.as_string()); 2109 } 2110 BLOCK_COMMENT("verify_oop_addr {"); 2111 2112 strip_return_address(); // This might happen within a stack frame. 2113 protect_return_address(); 2114 stp(r0, rscratch1, Address(pre(sp, -2 * wordSize))); 2115 stp(rscratch2, lr, Address(pre(sp, -2 * wordSize))); 2116 2117 // addr may contain sp so we will have to adjust it based on the 2118 // pushes that we just did. 2119 if (addr.uses(sp)) { 2120 lea(r0, addr); 2121 ldr(r0, Address(r0, 4 * wordSize)); 2122 } else { 2123 ldr(r0, addr); 2124 } 2125 movptr(rscratch1, (uintptr_t)(address)b); 2126 2127 // call indirectly to solve generation ordering problem 2128 lea(rscratch2, RuntimeAddress(StubRoutines::verify_oop_subroutine_entry_address())); 2129 ldr(rscratch2, Address(rscratch2)); 2130 blr(rscratch2); 2131 2132 ldp(rscratch2, lr, Address(post(sp, 2 * wordSize))); 2133 ldp(r0, rscratch1, Address(post(sp, 2 * wordSize))); 2134 authenticate_return_address(); 2135 2136 BLOCK_COMMENT("} verify_oop_addr"); 2137 } 2138 2139 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot, 2140 int extra_slot_offset) { 2141 // cf. TemplateTable::prepare_invoke(), if (load_receiver). 2142 int stackElementSize = Interpreter::stackElementSize; 2143 int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0); 2144 #ifdef ASSERT 2145 int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1); 2146 assert(offset1 - offset == stackElementSize, "correct arithmetic"); 2147 #endif 2148 if (arg_slot.is_constant()) { 2149 return Address(esp, arg_slot.as_constant() * stackElementSize 2150 + offset); 2151 } else { 2152 add(rscratch1, esp, arg_slot.as_register(), 2153 ext::uxtx, exact_log2(stackElementSize)); 2154 return Address(rscratch1, offset); 2155 } 2156 } 2157 2158 void MacroAssembler::call_VM_leaf_base(address entry_point, 2159 int number_of_arguments, 2160 Label *retaddr) { 2161 Label E, L; 2162 2163 stp(rscratch1, rmethod, Address(pre(sp, -2 * wordSize))); 2164 2165 mov(rscratch1, RuntimeAddress(entry_point)); 2166 blr(rscratch1); 2167 if (retaddr) 2168 bind(*retaddr); 2169 2170 ldp(rscratch1, rmethod, Address(post(sp, 2 * wordSize))); 2171 } 2172 2173 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) { 2174 call_VM_leaf_base(entry_point, number_of_arguments); 2175 } 2176 2177 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) { 2178 pass_arg0(this, arg_0); 2179 call_VM_leaf_base(entry_point, 1); 2180 } 2181 2182 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2183 assert_different_registers(arg_1, c_rarg0); 2184 pass_arg0(this, arg_0); 2185 pass_arg1(this, arg_1); 2186 call_VM_leaf_base(entry_point, 2); 2187 } 2188 2189 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, 2190 Register arg_1, Register arg_2) { 2191 assert_different_registers(arg_1, c_rarg0); 2192 assert_different_registers(arg_2, c_rarg0, c_rarg1); 2193 pass_arg0(this, arg_0); 2194 pass_arg1(this, arg_1); 2195 pass_arg2(this, arg_2); 2196 call_VM_leaf_base(entry_point, 3); 2197 } 2198 2199 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) { 2200 pass_arg0(this, arg_0); 2201 MacroAssembler::call_VM_leaf_base(entry_point, 1); 2202 } 2203 2204 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) { 2205 2206 assert_different_registers(arg_0, c_rarg1); 2207 pass_arg1(this, arg_1); 2208 pass_arg0(this, arg_0); 2209 MacroAssembler::call_VM_leaf_base(entry_point, 2); 2210 } 2211 2212 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) { 2213 assert_different_registers(arg_0, c_rarg1, c_rarg2); 2214 assert_different_registers(arg_1, c_rarg2); 2215 pass_arg2(this, arg_2); 2216 pass_arg1(this, arg_1); 2217 pass_arg0(this, arg_0); 2218 MacroAssembler::call_VM_leaf_base(entry_point, 3); 2219 } 2220 2221 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) { 2222 assert_different_registers(arg_0, c_rarg1, c_rarg2, c_rarg3); 2223 assert_different_registers(arg_1, c_rarg2, c_rarg3); 2224 assert_different_registers(arg_2, c_rarg3); 2225 pass_arg3(this, arg_3); 2226 pass_arg2(this, arg_2); 2227 pass_arg1(this, arg_1); 2228 pass_arg0(this, arg_0); 2229 MacroAssembler::call_VM_leaf_base(entry_point, 4); 2230 } 2231 2232 void MacroAssembler::null_check(Register reg, int offset) { 2233 if (needs_explicit_null_check(offset)) { 2234 // provoke OS null exception if reg is null by 2235 // accessing M[reg] w/o changing any registers 2236 // NOTE: this is plenty to provoke a segv 2237 ldr(zr, Address(reg)); 2238 } else { 2239 // nothing to do, (later) access of M[reg + offset] 2240 // will provoke OS null exception if reg is null 2241 } 2242 } 2243 2244 // MacroAssembler protected routines needed to implement 2245 // public methods 2246 2247 void MacroAssembler::mov(Register r, Address dest) { 2248 code_section()->relocate(pc(), dest.rspec()); 2249 uint64_t imm64 = (uint64_t)dest.target(); 2250 movptr(r, imm64); 2251 } 2252 2253 // Move a constant pointer into r. In AArch64 mode the virtual 2254 // address space is 48 bits in size, so we only need three 2255 // instructions to create a patchable instruction sequence that can 2256 // reach anywhere. 2257 void MacroAssembler::movptr(Register r, uintptr_t imm64) { 2258 #ifndef PRODUCT 2259 { 2260 char buffer[64]; 2261 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, (uint64_t)imm64); 2262 block_comment(buffer); 2263 } 2264 #endif 2265 assert(imm64 < (1ull << 48), "48-bit overflow in address constant"); 2266 movz(r, imm64 & 0xffff); 2267 imm64 >>= 16; 2268 movk(r, imm64 & 0xffff, 16); 2269 imm64 >>= 16; 2270 movk(r, imm64 & 0xffff, 32); 2271 } 2272 2273 // Macro to mov replicated immediate to vector register. 2274 // imm64: only the lower 8/16/32 bits are considered for B/H/S type. That is, 2275 // the upper 56/48/32 bits must be zeros for B/H/S type. 2276 // Vd will get the following values for different arrangements in T 2277 // imm64 == hex 000000gh T8B: Vd = ghghghghghghghgh 2278 // imm64 == hex 000000gh T16B: Vd = ghghghghghghghghghghghghghghghgh 2279 // imm64 == hex 0000efgh T4H: Vd = efghefghefghefgh 2280 // imm64 == hex 0000efgh T8H: Vd = efghefghefghefghefghefghefghefgh 2281 // imm64 == hex abcdefgh T2S: Vd = abcdefghabcdefgh 2282 // imm64 == hex abcdefgh T4S: Vd = abcdefghabcdefghabcdefghabcdefgh 2283 // imm64 == hex abcdefgh T1D: Vd = 00000000abcdefgh 2284 // imm64 == hex abcdefgh T2D: Vd = 00000000abcdefgh00000000abcdefgh 2285 // Clobbers rscratch1 2286 void MacroAssembler::mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64) { 2287 assert(T != T1Q, "unsupported"); 2288 if (T == T1D || T == T2D) { 2289 int imm = operand_valid_for_movi_immediate(imm64, T); 2290 if (-1 != imm) { 2291 movi(Vd, T, imm); 2292 } else { 2293 mov(rscratch1, imm64); 2294 dup(Vd, T, rscratch1); 2295 } 2296 return; 2297 } 2298 2299 #ifdef ASSERT 2300 if (T == T8B || T == T16B) assert((imm64 & ~0xff) == 0, "extraneous bits (T8B/T16B)"); 2301 if (T == T4H || T == T8H) assert((imm64 & ~0xffff) == 0, "extraneous bits (T4H/T8H)"); 2302 if (T == T2S || T == T4S) assert((imm64 & ~0xffffffff) == 0, "extraneous bits (T2S/T4S)"); 2303 #endif 2304 int shift = operand_valid_for_movi_immediate(imm64, T); 2305 uint32_t imm32 = imm64 & 0xffffffffULL; 2306 if (shift >= 0) { 2307 movi(Vd, T, (imm32 >> shift) & 0xff, shift); 2308 } else { 2309 movw(rscratch1, imm32); 2310 dup(Vd, T, rscratch1); 2311 } 2312 } 2313 2314 void MacroAssembler::mov_immediate64(Register dst, uint64_t imm64) 2315 { 2316 #ifndef PRODUCT 2317 { 2318 char buffer[64]; 2319 snprintf(buffer, sizeof(buffer), "0x%" PRIX64, imm64); 2320 block_comment(buffer); 2321 } 2322 #endif 2323 if (operand_valid_for_logical_immediate(false, imm64)) { 2324 orr(dst, zr, imm64); 2325 } else { 2326 // we can use a combination of MOVZ or MOVN with 2327 // MOVK to build up the constant 2328 uint64_t imm_h[4]; 2329 int zero_count = 0; 2330 int neg_count = 0; 2331 int i; 2332 for (i = 0; i < 4; i++) { 2333 imm_h[i] = ((imm64 >> (i * 16)) & 0xffffL); 2334 if (imm_h[i] == 0) { 2335 zero_count++; 2336 } else if (imm_h[i] == 0xffffL) { 2337 neg_count++; 2338 } 2339 } 2340 if (zero_count == 4) { 2341 // one MOVZ will do 2342 movz(dst, 0); 2343 } else if (neg_count == 4) { 2344 // one MOVN will do 2345 movn(dst, 0); 2346 } else if (zero_count == 3) { 2347 for (i = 0; i < 4; i++) { 2348 if (imm_h[i] != 0L) { 2349 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2350 break; 2351 } 2352 } 2353 } else if (neg_count == 3) { 2354 // one MOVN will do 2355 for (int i = 0; i < 4; i++) { 2356 if (imm_h[i] != 0xffffL) { 2357 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2358 break; 2359 } 2360 } 2361 } else if (zero_count == 2) { 2362 // one MOVZ and one MOVK will do 2363 for (i = 0; i < 3; i++) { 2364 if (imm_h[i] != 0L) { 2365 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2366 i++; 2367 break; 2368 } 2369 } 2370 for (;i < 4; i++) { 2371 if (imm_h[i] != 0L) { 2372 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2373 } 2374 } 2375 } else if (neg_count == 2) { 2376 // one MOVN and one MOVK will do 2377 for (i = 0; i < 4; i++) { 2378 if (imm_h[i] != 0xffffL) { 2379 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2380 i++; 2381 break; 2382 } 2383 } 2384 for (;i < 4; i++) { 2385 if (imm_h[i] != 0xffffL) { 2386 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2387 } 2388 } 2389 } else if (zero_count == 1) { 2390 // one MOVZ and two MOVKs will do 2391 for (i = 0; i < 4; i++) { 2392 if (imm_h[i] != 0L) { 2393 movz(dst, (uint32_t)imm_h[i], (i << 4)); 2394 i++; 2395 break; 2396 } 2397 } 2398 for (;i < 4; i++) { 2399 if (imm_h[i] != 0x0L) { 2400 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2401 } 2402 } 2403 } else if (neg_count == 1) { 2404 // one MOVN and two MOVKs will do 2405 for (i = 0; i < 4; i++) { 2406 if (imm_h[i] != 0xffffL) { 2407 movn(dst, (uint32_t)imm_h[i] ^ 0xffffL, (i << 4)); 2408 i++; 2409 break; 2410 } 2411 } 2412 for (;i < 4; i++) { 2413 if (imm_h[i] != 0xffffL) { 2414 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2415 } 2416 } 2417 } else { 2418 // use a MOVZ and 3 MOVKs (makes it easier to debug) 2419 movz(dst, (uint32_t)imm_h[0], 0); 2420 for (i = 1; i < 4; i++) { 2421 movk(dst, (uint32_t)imm_h[i], (i << 4)); 2422 } 2423 } 2424 } 2425 } 2426 2427 void MacroAssembler::mov_immediate32(Register dst, uint32_t imm32) 2428 { 2429 #ifndef PRODUCT 2430 { 2431 char buffer[64]; 2432 snprintf(buffer, sizeof(buffer), "0x%" PRIX32, imm32); 2433 block_comment(buffer); 2434 } 2435 #endif 2436 if (operand_valid_for_logical_immediate(true, imm32)) { 2437 orrw(dst, zr, imm32); 2438 } else { 2439 // we can use MOVZ, MOVN or two calls to MOVK to build up the 2440 // constant 2441 uint32_t imm_h[2]; 2442 imm_h[0] = imm32 & 0xffff; 2443 imm_h[1] = ((imm32 >> 16) & 0xffff); 2444 if (imm_h[0] == 0) { 2445 movzw(dst, imm_h[1], 16); 2446 } else if (imm_h[0] == 0xffff) { 2447 movnw(dst, imm_h[1] ^ 0xffff, 16); 2448 } else if (imm_h[1] == 0) { 2449 movzw(dst, imm_h[0], 0); 2450 } else if (imm_h[1] == 0xffff) { 2451 movnw(dst, imm_h[0] ^ 0xffff, 0); 2452 } else { 2453 // use a MOVZ and MOVK (makes it easier to debug) 2454 movzw(dst, imm_h[0], 0); 2455 movkw(dst, imm_h[1], 16); 2456 } 2457 } 2458 } 2459 2460 // Form an address from base + offset in Rd. Rd may or may 2461 // not actually be used: you must use the Address that is returned. 2462 // It is up to you to ensure that the shift provided matches the size 2463 // of your data. 2464 Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset, int shift) { 2465 if (Address::offset_ok_for_immed(byte_offset, shift)) 2466 // It fits; no need for any heroics 2467 return Address(base, byte_offset); 2468 2469 // Don't do anything clever with negative or misaligned offsets 2470 unsigned mask = (1 << shift) - 1; 2471 if (byte_offset < 0 || byte_offset & mask) { 2472 mov(Rd, byte_offset); 2473 add(Rd, base, Rd); 2474 return Address(Rd); 2475 } 2476 2477 // See if we can do this with two 12-bit offsets 2478 { 2479 uint64_t word_offset = byte_offset >> shift; 2480 uint64_t masked_offset = word_offset & 0xfff000; 2481 if (Address::offset_ok_for_immed(word_offset - masked_offset, 0) 2482 && Assembler::operand_valid_for_add_sub_immediate(masked_offset << shift)) { 2483 add(Rd, base, masked_offset << shift); 2484 word_offset -= masked_offset; 2485 return Address(Rd, word_offset << shift); 2486 } 2487 } 2488 2489 // Do it the hard way 2490 mov(Rd, byte_offset); 2491 add(Rd, base, Rd); 2492 return Address(Rd); 2493 } 2494 2495 int MacroAssembler::corrected_idivl(Register result, Register ra, Register rb, 2496 bool want_remainder, Register scratch) 2497 { 2498 // Full implementation of Java idiv and irem. The function 2499 // returns the (pc) offset of the div instruction - may be needed 2500 // for implicit exceptions. 2501 // 2502 // constraint : ra/rb =/= scratch 2503 // normal case 2504 // 2505 // input : ra: dividend 2506 // rb: divisor 2507 // 2508 // result: either 2509 // quotient (= ra idiv rb) 2510 // remainder (= ra irem rb) 2511 2512 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2513 2514 int idivl_offset = offset(); 2515 if (! want_remainder) { 2516 sdivw(result, ra, rb); 2517 } else { 2518 sdivw(scratch, ra, rb); 2519 Assembler::msubw(result, scratch, rb, ra); 2520 } 2521 2522 return idivl_offset; 2523 } 2524 2525 int MacroAssembler::corrected_idivq(Register result, Register ra, Register rb, 2526 bool want_remainder, Register scratch) 2527 { 2528 // Full implementation of Java ldiv and lrem. The function 2529 // returns the (pc) offset of the div instruction - may be needed 2530 // for implicit exceptions. 2531 // 2532 // constraint : ra/rb =/= scratch 2533 // normal case 2534 // 2535 // input : ra: dividend 2536 // rb: divisor 2537 // 2538 // result: either 2539 // quotient (= ra idiv rb) 2540 // remainder (= ra irem rb) 2541 2542 assert(ra != scratch && rb != scratch, "reg cannot be scratch"); 2543 2544 int idivq_offset = offset(); 2545 if (! want_remainder) { 2546 sdiv(result, ra, rb); 2547 } else { 2548 sdiv(scratch, ra, rb); 2549 Assembler::msub(result, scratch, rb, ra); 2550 } 2551 2552 return idivq_offset; 2553 } 2554 2555 void MacroAssembler::membar(Membar_mask_bits order_constraint) { 2556 address prev = pc() - NativeMembar::instruction_size; 2557 address last = code()->last_insn(); 2558 if (last != nullptr && nativeInstruction_at(last)->is_Membar() && prev == last) { 2559 NativeMembar *bar = NativeMembar_at(prev); 2560 if (AlwaysMergeDMB) { 2561 bar->set_kind(bar->get_kind() | order_constraint); 2562 BLOCK_COMMENT("merged membar(always)"); 2563 return; 2564 } 2565 // Don't promote DMB ST|DMB LD to DMB (a full barrier) because 2566 // doing so would introduce a StoreLoad which the caller did not 2567 // intend 2568 if (bar->get_kind() == order_constraint 2569 || bar->get_kind() == AnyAny 2570 || order_constraint == AnyAny) { 2571 // We are merging two memory barrier instructions. On AArch64 we 2572 // can do this simply by ORing them together. 2573 bar->set_kind(bar->get_kind() | order_constraint); 2574 BLOCK_COMMENT("merged membar"); 2575 return; 2576 } else { 2577 // A special case like "DMB ST;DMB LD;DMB ST", the last DMB can be skipped 2578 // We need check the last 2 instructions 2579 address prev2 = prev - NativeMembar::instruction_size; 2580 if (last != code()->last_label() && nativeInstruction_at(prev2)->is_Membar()) { 2581 NativeMembar *bar2 = NativeMembar_at(prev2); 2582 assert(bar2->get_kind() == order_constraint, "it should be merged before"); 2583 BLOCK_COMMENT("merged membar(elided)"); 2584 return; 2585 } 2586 } 2587 } 2588 code()->set_last_insn(pc()); 2589 dmb(Assembler::barrier(order_constraint)); 2590 } 2591 2592 bool MacroAssembler::try_merge_ldst(Register rt, const Address &adr, size_t size_in_bytes, bool is_store) { 2593 if (ldst_can_merge(rt, adr, size_in_bytes, is_store)) { 2594 merge_ldst(rt, adr, size_in_bytes, is_store); 2595 code()->clear_last_insn(); 2596 return true; 2597 } else { 2598 assert(size_in_bytes == 8 || size_in_bytes == 4, "only 8 bytes or 4 bytes load/store is supported."); 2599 const uint64_t mask = size_in_bytes - 1; 2600 if (adr.getMode() == Address::base_plus_offset && 2601 (adr.offset() & mask) == 0) { // only supports base_plus_offset. 2602 code()->set_last_insn(pc()); 2603 } 2604 return false; 2605 } 2606 } 2607 2608 void MacroAssembler::ldr(Register Rx, const Address &adr) { 2609 // We always try to merge two adjacent loads into one ldp. 2610 if (!try_merge_ldst(Rx, adr, 8, false)) { 2611 Assembler::ldr(Rx, adr); 2612 } 2613 } 2614 2615 void MacroAssembler::ldrw(Register Rw, const Address &adr) { 2616 // We always try to merge two adjacent loads into one ldp. 2617 if (!try_merge_ldst(Rw, adr, 4, false)) { 2618 Assembler::ldrw(Rw, adr); 2619 } 2620 } 2621 2622 void MacroAssembler::str(Register Rx, const Address &adr) { 2623 // We always try to merge two adjacent stores into one stp. 2624 if (!try_merge_ldst(Rx, adr, 8, true)) { 2625 Assembler::str(Rx, adr); 2626 } 2627 } 2628 2629 void MacroAssembler::strw(Register Rw, const Address &adr) { 2630 // We always try to merge two adjacent stores into one stp. 2631 if (!try_merge_ldst(Rw, adr, 4, true)) { 2632 Assembler::strw(Rw, adr); 2633 } 2634 } 2635 2636 // MacroAssembler routines found actually to be needed 2637 2638 void MacroAssembler::push(Register src) 2639 { 2640 str(src, Address(pre(esp, -1 * wordSize))); 2641 } 2642 2643 void MacroAssembler::pop(Register dst) 2644 { 2645 ldr(dst, Address(post(esp, 1 * wordSize))); 2646 } 2647 2648 // Note: load_unsigned_short used to be called load_unsigned_word. 2649 int MacroAssembler::load_unsigned_short(Register dst, Address src) { 2650 int off = offset(); 2651 ldrh(dst, src); 2652 return off; 2653 } 2654 2655 int MacroAssembler::load_unsigned_byte(Register dst, Address src) { 2656 int off = offset(); 2657 ldrb(dst, src); 2658 return off; 2659 } 2660 2661 int MacroAssembler::load_signed_short(Register dst, Address src) { 2662 int off = offset(); 2663 ldrsh(dst, src); 2664 return off; 2665 } 2666 2667 int MacroAssembler::load_signed_byte(Register dst, Address src) { 2668 int off = offset(); 2669 ldrsb(dst, src); 2670 return off; 2671 } 2672 2673 int MacroAssembler::load_signed_short32(Register dst, Address src) { 2674 int off = offset(); 2675 ldrshw(dst, src); 2676 return off; 2677 } 2678 2679 int MacroAssembler::load_signed_byte32(Register dst, Address src) { 2680 int off = offset(); 2681 ldrsbw(dst, src); 2682 return off; 2683 } 2684 2685 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed) { 2686 switch (size_in_bytes) { 2687 case 8: ldr(dst, src); break; 2688 case 4: ldrw(dst, src); break; 2689 case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break; 2690 case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break; 2691 default: ShouldNotReachHere(); 2692 } 2693 } 2694 2695 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes) { 2696 switch (size_in_bytes) { 2697 case 8: str(src, dst); break; 2698 case 4: strw(src, dst); break; 2699 case 2: strh(src, dst); break; 2700 case 1: strb(src, dst); break; 2701 default: ShouldNotReachHere(); 2702 } 2703 } 2704 2705 void MacroAssembler::decrementw(Register reg, int value) 2706 { 2707 if (value < 0) { incrementw(reg, -value); return; } 2708 if (value == 0) { return; } 2709 if (value < (1 << 12)) { subw(reg, reg, value); return; } 2710 /* else */ { 2711 guarantee(reg != rscratch2, "invalid dst for register decrement"); 2712 movw(rscratch2, (unsigned)value); 2713 subw(reg, reg, rscratch2); 2714 } 2715 } 2716 2717 void MacroAssembler::decrement(Register reg, int value) 2718 { 2719 if (value < 0) { increment(reg, -value); return; } 2720 if (value == 0) { return; } 2721 if (value < (1 << 12)) { sub(reg, reg, value); return; } 2722 /* else */ { 2723 assert(reg != rscratch2, "invalid dst for register decrement"); 2724 mov(rscratch2, (uint64_t)value); 2725 sub(reg, reg, rscratch2); 2726 } 2727 } 2728 2729 void MacroAssembler::decrementw(Address dst, int value) 2730 { 2731 assert(!dst.uses(rscratch1), "invalid dst for address decrement"); 2732 if (dst.getMode() == Address::literal) { 2733 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2734 lea(rscratch2, dst); 2735 dst = Address(rscratch2); 2736 } 2737 ldrw(rscratch1, dst); 2738 decrementw(rscratch1, value); 2739 strw(rscratch1, dst); 2740 } 2741 2742 void MacroAssembler::decrement(Address dst, int value) 2743 { 2744 assert(!dst.uses(rscratch1), "invalid address for decrement"); 2745 if (dst.getMode() == Address::literal) { 2746 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2747 lea(rscratch2, dst); 2748 dst = Address(rscratch2); 2749 } 2750 ldr(rscratch1, dst); 2751 decrement(rscratch1, value); 2752 str(rscratch1, dst); 2753 } 2754 2755 void MacroAssembler::incrementw(Register reg, int value) 2756 { 2757 if (value < 0) { decrementw(reg, -value); return; } 2758 if (value == 0) { return; } 2759 if (value < (1 << 12)) { addw(reg, reg, value); return; } 2760 /* else */ { 2761 assert(reg != rscratch2, "invalid dst for register increment"); 2762 movw(rscratch2, (unsigned)value); 2763 addw(reg, reg, rscratch2); 2764 } 2765 } 2766 2767 void MacroAssembler::increment(Register reg, int value) 2768 { 2769 if (value < 0) { decrement(reg, -value); return; } 2770 if (value == 0) { return; } 2771 if (value < (1 << 12)) { add(reg, reg, value); return; } 2772 /* else */ { 2773 assert(reg != rscratch2, "invalid dst for register increment"); 2774 movw(rscratch2, (unsigned)value); 2775 add(reg, reg, rscratch2); 2776 } 2777 } 2778 2779 void MacroAssembler::incrementw(Address dst, int value) 2780 { 2781 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2782 if (dst.getMode() == Address::literal) { 2783 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2784 lea(rscratch2, dst); 2785 dst = Address(rscratch2); 2786 } 2787 ldrw(rscratch1, dst); 2788 incrementw(rscratch1, value); 2789 strw(rscratch1, dst); 2790 } 2791 2792 void MacroAssembler::increment(Address dst, int value) 2793 { 2794 assert(!dst.uses(rscratch1), "invalid dst for address increment"); 2795 if (dst.getMode() == Address::literal) { 2796 assert(abs(value) < (1 << 12), "invalid value and address mode combination"); 2797 lea(rscratch2, dst); 2798 dst = Address(rscratch2); 2799 } 2800 ldr(rscratch1, dst); 2801 increment(rscratch1, value); 2802 str(rscratch1, dst); 2803 } 2804 2805 // Push lots of registers in the bit set supplied. Don't push sp. 2806 // Return the number of words pushed 2807 int MacroAssembler::push(unsigned int bitset, Register stack) { 2808 int words_pushed = 0; 2809 2810 // Scan bitset to accumulate register pairs 2811 unsigned char regs[32]; 2812 int count = 0; 2813 for (int reg = 0; reg <= 30; reg++) { 2814 if (1 & bitset) 2815 regs[count++] = reg; 2816 bitset >>= 1; 2817 } 2818 regs[count++] = zr->raw_encoding(); 2819 count &= ~1; // Only push an even number of regs 2820 2821 if (count) { 2822 stp(as_Register(regs[0]), as_Register(regs[1]), 2823 Address(pre(stack, -count * wordSize))); 2824 words_pushed += 2; 2825 } 2826 for (int i = 2; i < count; i += 2) { 2827 stp(as_Register(regs[i]), as_Register(regs[i+1]), 2828 Address(stack, i * wordSize)); 2829 words_pushed += 2; 2830 } 2831 2832 assert(words_pushed == count, "oops, pushed != count"); 2833 2834 return count; 2835 } 2836 2837 int MacroAssembler::pop(unsigned int bitset, Register stack) { 2838 int words_pushed = 0; 2839 2840 // Scan bitset to accumulate register pairs 2841 unsigned char regs[32]; 2842 int count = 0; 2843 for (int reg = 0; reg <= 30; reg++) { 2844 if (1 & bitset) 2845 regs[count++] = reg; 2846 bitset >>= 1; 2847 } 2848 regs[count++] = zr->raw_encoding(); 2849 count &= ~1; 2850 2851 for (int i = 2; i < count; i += 2) { 2852 ldp(as_Register(regs[i]), as_Register(regs[i+1]), 2853 Address(stack, i * wordSize)); 2854 words_pushed += 2; 2855 } 2856 if (count) { 2857 ldp(as_Register(regs[0]), as_Register(regs[1]), 2858 Address(post(stack, count * wordSize))); 2859 words_pushed += 2; 2860 } 2861 2862 assert(words_pushed == count, "oops, pushed != count"); 2863 2864 return count; 2865 } 2866 2867 // Push lots of registers in the bit set supplied. Don't push sp. 2868 // Return the number of dwords pushed 2869 int MacroAssembler::push_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2870 int words_pushed = 0; 2871 bool use_sve = false; 2872 int sve_vector_size_in_bytes = 0; 2873 2874 #ifdef COMPILER2 2875 use_sve = Matcher::supports_scalable_vector(); 2876 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2877 #endif 2878 2879 // Scan bitset to accumulate register pairs 2880 unsigned char regs[32]; 2881 int count = 0; 2882 for (int reg = 0; reg <= 31; reg++) { 2883 if (1 & bitset) 2884 regs[count++] = reg; 2885 bitset >>= 1; 2886 } 2887 2888 if (count == 0) { 2889 return 0; 2890 } 2891 2892 if (mode == PushPopFull) { 2893 if (use_sve && sve_vector_size_in_bytes > 16) { 2894 mode = PushPopSVE; 2895 } else { 2896 mode = PushPopNeon; 2897 } 2898 } 2899 2900 #ifndef PRODUCT 2901 { 2902 char buffer[48]; 2903 if (mode == PushPopSVE) { 2904 snprintf(buffer, sizeof(buffer), "push_fp: %d SVE registers", count); 2905 } else if (mode == PushPopNeon) { 2906 snprintf(buffer, sizeof(buffer), "push_fp: %d Neon registers", count); 2907 } else { 2908 snprintf(buffer, sizeof(buffer), "push_fp: %d fp registers", count); 2909 } 2910 block_comment(buffer); 2911 } 2912 #endif 2913 2914 if (mode == PushPopSVE) { 2915 sub(stack, stack, sve_vector_size_in_bytes * count); 2916 for (int i = 0; i < count; i++) { 2917 sve_str(as_FloatRegister(regs[i]), Address(stack, i)); 2918 } 2919 return count * sve_vector_size_in_bytes / 8; 2920 } 2921 2922 if (mode == PushPopNeon) { 2923 if (count == 1) { 2924 strq(as_FloatRegister(regs[0]), Address(pre(stack, -wordSize * 2))); 2925 return 2; 2926 } 2927 2928 bool odd = (count & 1) == 1; 2929 int push_slots = count + (odd ? 1 : 0); 2930 2931 // Always pushing full 128 bit registers. 2932 stpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize * 2))); 2933 words_pushed += 2; 2934 2935 for (int i = 2; i + 1 < count; i += 2) { 2936 stpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 2937 words_pushed += 2; 2938 } 2939 2940 if (odd) { 2941 strq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 2942 words_pushed++; 2943 } 2944 2945 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 2946 return count * 2; 2947 } 2948 2949 if (mode == PushPopFp) { 2950 bool odd = (count & 1) == 1; 2951 int push_slots = count + (odd ? 1 : 0); 2952 2953 if (count == 1) { 2954 // Stack pointer must be 16 bytes aligned 2955 strd(as_FloatRegister(regs[0]), Address(pre(stack, -push_slots * wordSize))); 2956 return 1; 2957 } 2958 2959 stpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(pre(stack, -push_slots * wordSize))); 2960 words_pushed += 2; 2961 2962 for (int i = 2; i + 1 < count; i += 2) { 2963 stpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 2964 words_pushed += 2; 2965 } 2966 2967 if (odd) { 2968 // Stack pointer must be 16 bytes aligned 2969 strd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 2970 words_pushed++; 2971 } 2972 2973 assert(words_pushed == count, "oops, pushed != count"); 2974 2975 return count; 2976 } 2977 2978 return 0; 2979 } 2980 2981 // Return the number of dwords popped 2982 int MacroAssembler::pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode) { 2983 int words_pushed = 0; 2984 bool use_sve = false; 2985 int sve_vector_size_in_bytes = 0; 2986 2987 #ifdef COMPILER2 2988 use_sve = Matcher::supports_scalable_vector(); 2989 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 2990 #endif 2991 // Scan bitset to accumulate register pairs 2992 unsigned char regs[32]; 2993 int count = 0; 2994 for (int reg = 0; reg <= 31; reg++) { 2995 if (1 & bitset) 2996 regs[count++] = reg; 2997 bitset >>= 1; 2998 } 2999 3000 if (count == 0) { 3001 return 0; 3002 } 3003 3004 if (mode == PushPopFull) { 3005 if (use_sve && sve_vector_size_in_bytes > 16) { 3006 mode = PushPopSVE; 3007 } else { 3008 mode = PushPopNeon; 3009 } 3010 } 3011 3012 #ifndef PRODUCT 3013 { 3014 char buffer[48]; 3015 if (mode == PushPopSVE) { 3016 snprintf(buffer, sizeof(buffer), "pop_fp: %d SVE registers", count); 3017 } else if (mode == PushPopNeon) { 3018 snprintf(buffer, sizeof(buffer), "pop_fp: %d Neon registers", count); 3019 } else { 3020 snprintf(buffer, sizeof(buffer), "pop_fp: %d fp registers", count); 3021 } 3022 block_comment(buffer); 3023 } 3024 #endif 3025 3026 if (mode == PushPopSVE) { 3027 for (int i = count - 1; i >= 0; i--) { 3028 sve_ldr(as_FloatRegister(regs[i]), Address(stack, i)); 3029 } 3030 add(stack, stack, sve_vector_size_in_bytes * count); 3031 return count * sve_vector_size_in_bytes / 8; 3032 } 3033 3034 if (mode == PushPopNeon) { 3035 if (count == 1) { 3036 ldrq(as_FloatRegister(regs[0]), Address(post(stack, wordSize * 2))); 3037 return 2; 3038 } 3039 3040 bool odd = (count & 1) == 1; 3041 int push_slots = count + (odd ? 1 : 0); 3042 3043 if (odd) { 3044 ldrq(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize * 2)); 3045 words_pushed++; 3046 } 3047 3048 for (int i = 2; i + 1 < count; i += 2) { 3049 ldpq(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize * 2)); 3050 words_pushed += 2; 3051 } 3052 3053 ldpq(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize * 2))); 3054 words_pushed += 2; 3055 3056 assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count); 3057 3058 return count * 2; 3059 } 3060 3061 if (mode == PushPopFp) { 3062 bool odd = (count & 1) == 1; 3063 int push_slots = count + (odd ? 1 : 0); 3064 3065 if (count == 1) { 3066 ldrd(as_FloatRegister(regs[0]), Address(post(stack, push_slots * wordSize))); 3067 return 1; 3068 } 3069 3070 if (odd) { 3071 ldrd(as_FloatRegister(regs[count - 1]), Address(stack, (count - 1) * wordSize)); 3072 words_pushed++; 3073 } 3074 3075 for (int i = 2; i + 1 < count; i += 2) { 3076 ldpd(as_FloatRegister(regs[i]), as_FloatRegister(regs[i+1]), Address(stack, i * wordSize)); 3077 words_pushed += 2; 3078 } 3079 3080 ldpd(as_FloatRegister(regs[0]), as_FloatRegister(regs[1]), Address(post(stack, push_slots * wordSize))); 3081 words_pushed += 2; 3082 3083 assert(words_pushed == count, "oops, pushed != count"); 3084 3085 return count; 3086 } 3087 3088 return 0; 3089 } 3090 3091 // Return the number of dwords pushed 3092 int MacroAssembler::push_p(unsigned int bitset, Register stack) { 3093 bool use_sve = false; 3094 int sve_predicate_size_in_slots = 0; 3095 3096 #ifdef COMPILER2 3097 use_sve = Matcher::supports_scalable_vector(); 3098 if (use_sve) { 3099 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3100 } 3101 #endif 3102 3103 if (!use_sve) { 3104 return 0; 3105 } 3106 3107 unsigned char regs[PRegister::number_of_registers]; 3108 int count = 0; 3109 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3110 if (1 & bitset) 3111 regs[count++] = reg; 3112 bitset >>= 1; 3113 } 3114 3115 if (count == 0) { 3116 return 0; 3117 } 3118 3119 int total_push_bytes = align_up(sve_predicate_size_in_slots * 3120 VMRegImpl::stack_slot_size * count, 16); 3121 sub(stack, stack, total_push_bytes); 3122 for (int i = 0; i < count; i++) { 3123 sve_str(as_PRegister(regs[i]), Address(stack, i)); 3124 } 3125 return total_push_bytes / 8; 3126 } 3127 3128 // Return the number of dwords popped 3129 int MacroAssembler::pop_p(unsigned int bitset, Register stack) { 3130 bool use_sve = false; 3131 int sve_predicate_size_in_slots = 0; 3132 3133 #ifdef COMPILER2 3134 use_sve = Matcher::supports_scalable_vector(); 3135 if (use_sve) { 3136 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 3137 } 3138 #endif 3139 3140 if (!use_sve) { 3141 return 0; 3142 } 3143 3144 unsigned char regs[PRegister::number_of_registers]; 3145 int count = 0; 3146 for (int reg = 0; reg < PRegister::number_of_registers; reg++) { 3147 if (1 & bitset) 3148 regs[count++] = reg; 3149 bitset >>= 1; 3150 } 3151 3152 if (count == 0) { 3153 return 0; 3154 } 3155 3156 int total_pop_bytes = align_up(sve_predicate_size_in_slots * 3157 VMRegImpl::stack_slot_size * count, 16); 3158 for (int i = count - 1; i >= 0; i--) { 3159 sve_ldr(as_PRegister(regs[i]), Address(stack, i)); 3160 } 3161 add(stack, stack, total_pop_bytes); 3162 return total_pop_bytes / 8; 3163 } 3164 3165 #ifdef ASSERT 3166 void MacroAssembler::verify_heapbase(const char* msg) { 3167 #if 0 3168 assert (UseCompressedOops || UseCompressedClassPointers, "should be compressed"); 3169 assert (Universe::heap() != nullptr, "java heap should be initialized"); 3170 if (!UseCompressedOops || Universe::ptr_base() == nullptr) { 3171 // rheapbase is allocated as general register 3172 return; 3173 } 3174 if (CheckCompressedOops) { 3175 Label ok; 3176 push(1 << rscratch1->encoding(), sp); // cmpptr trashes rscratch1 3177 cmpptr(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3178 br(Assembler::EQ, ok); 3179 stop(msg); 3180 bind(ok); 3181 pop(1 << rscratch1->encoding(), sp); 3182 } 3183 #endif 3184 } 3185 #endif 3186 3187 void MacroAssembler::resolve_jobject(Register value, Register tmp1, Register tmp2) { 3188 assert_different_registers(value, tmp1, tmp2); 3189 Label done, tagged, weak_tagged; 3190 3191 cbz(value, done); // Use null as-is. 3192 tst(value, JNIHandles::tag_mask); // Test for tag. 3193 br(Assembler::NE, tagged); 3194 3195 // Resolve local handle 3196 access_load_at(T_OBJECT, IN_NATIVE | AS_RAW, value, Address(value, 0), tmp1, tmp2); 3197 verify_oop(value); 3198 b(done); 3199 3200 bind(tagged); 3201 STATIC_ASSERT(JNIHandles::TypeTag::weak_global == 0b1); 3202 tbnz(value, 0, weak_tagged); // Test for weak tag. 3203 3204 // Resolve global handle 3205 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3206 verify_oop(value); 3207 b(done); 3208 3209 bind(weak_tagged); 3210 // Resolve jweak. 3211 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 3212 value, Address(value, -JNIHandles::TypeTag::weak_global), tmp1, tmp2); 3213 verify_oop(value); 3214 3215 bind(done); 3216 } 3217 3218 void MacroAssembler::resolve_global_jobject(Register value, Register tmp1, Register tmp2) { 3219 assert_different_registers(value, tmp1, tmp2); 3220 Label done; 3221 3222 cbz(value, done); // Use null as-is. 3223 3224 #ifdef ASSERT 3225 { 3226 STATIC_ASSERT(JNIHandles::TypeTag::global == 0b10); 3227 Label valid_global_tag; 3228 tbnz(value, 1, valid_global_tag); // Test for global tag 3229 stop("non global jobject using resolve_global_jobject"); 3230 bind(valid_global_tag); 3231 } 3232 #endif 3233 3234 // Resolve global handle 3235 access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, -JNIHandles::TypeTag::global), tmp1, tmp2); 3236 verify_oop(value); 3237 3238 bind(done); 3239 } 3240 3241 void MacroAssembler::stop(const char* msg) { 3242 // Skip AOT caching C strings in scratch buffer. 3243 const char* str = (code_section()->scratch_emit()) ? msg : AOTCodeCache::add_C_string(msg); 3244 BLOCK_COMMENT(str); 3245 // load msg into r0 so we can access it from the signal handler 3246 // ExternalAddress enables saving and restoring via the code cache 3247 lea(c_rarg0, ExternalAddress((address) str)); 3248 dcps1(0xdeae); 3249 } 3250 3251 void MacroAssembler::unimplemented(const char* what) { 3252 const char* buf = nullptr; 3253 { 3254 ResourceMark rm; 3255 stringStream ss; 3256 ss.print("unimplemented: %s", what); 3257 buf = code_string(ss.as_string()); 3258 } 3259 stop(buf); 3260 } 3261 3262 void MacroAssembler::_assert_asm(Assembler::Condition cc, const char* msg) { 3263 #ifdef ASSERT 3264 Label OK; 3265 br(cc, OK); 3266 stop(msg); 3267 bind(OK); 3268 #endif 3269 } 3270 3271 // If a constant does not fit in an immediate field, generate some 3272 // number of MOV instructions and then perform the operation. 3273 void MacroAssembler::wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm, 3274 add_sub_imm_insn insn1, 3275 add_sub_reg_insn insn2, 3276 bool is32) { 3277 assert(Rd != zr, "Rd = zr and not setting flags?"); 3278 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3279 if (fits) { 3280 (this->*insn1)(Rd, Rn, imm); 3281 } else { 3282 if (g_uabs(imm) < (1 << 24)) { 3283 (this->*insn1)(Rd, Rn, imm & -(1 << 12)); 3284 (this->*insn1)(Rd, Rd, imm & ((1 << 12)-1)); 3285 } else { 3286 assert_different_registers(Rd, Rn); 3287 mov(Rd, imm); 3288 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3289 } 3290 } 3291 } 3292 3293 // Separate vsn which sets the flags. Optimisations are more restricted 3294 // because we must set the flags correctly. 3295 void MacroAssembler::wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm, 3296 add_sub_imm_insn insn1, 3297 add_sub_reg_insn insn2, 3298 bool is32) { 3299 bool fits = operand_valid_for_add_sub_immediate(is32 ? (int32_t)imm : imm); 3300 if (fits) { 3301 (this->*insn1)(Rd, Rn, imm); 3302 } else { 3303 assert_different_registers(Rd, Rn); 3304 assert(Rd != zr, "overflow in immediate operand"); 3305 mov(Rd, imm); 3306 (this->*insn2)(Rd, Rn, Rd, LSL, 0); 3307 } 3308 } 3309 3310 3311 void MacroAssembler::add(Register Rd, Register Rn, RegisterOrConstant increment) { 3312 if (increment.is_register()) { 3313 add(Rd, Rn, increment.as_register()); 3314 } else { 3315 add(Rd, Rn, increment.as_constant()); 3316 } 3317 } 3318 3319 void MacroAssembler::addw(Register Rd, Register Rn, RegisterOrConstant increment) { 3320 if (increment.is_register()) { 3321 addw(Rd, Rn, increment.as_register()); 3322 } else { 3323 addw(Rd, Rn, increment.as_constant()); 3324 } 3325 } 3326 3327 void MacroAssembler::sub(Register Rd, Register Rn, RegisterOrConstant decrement) { 3328 if (decrement.is_register()) { 3329 sub(Rd, Rn, decrement.as_register()); 3330 } else { 3331 sub(Rd, Rn, decrement.as_constant()); 3332 } 3333 } 3334 3335 void MacroAssembler::subw(Register Rd, Register Rn, RegisterOrConstant decrement) { 3336 if (decrement.is_register()) { 3337 subw(Rd, Rn, decrement.as_register()); 3338 } else { 3339 subw(Rd, Rn, decrement.as_constant()); 3340 } 3341 } 3342 3343 void MacroAssembler::reinit_heapbase() 3344 { 3345 if (UseCompressedOops) { 3346 if (Universe::is_fully_initialized()) { 3347 mov(rheapbase, CompressedOops::base()); 3348 } else { 3349 lea(rheapbase, ExternalAddress(CompressedOops::base_addr())); 3350 ldr(rheapbase, Address(rheapbase)); 3351 } 3352 } 3353 } 3354 3355 // this simulates the behaviour of the x86 cmpxchg instruction using a 3356 // load linked/store conditional pair. we use the acquire/release 3357 // versions of these instructions so that we flush pending writes as 3358 // per Java semantics. 3359 3360 // n.b the x86 version assumes the old value to be compared against is 3361 // in rax and updates rax with the value located in memory if the 3362 // cmpxchg fails. we supply a register for the old value explicitly 3363 3364 // the aarch64 load linked/store conditional instructions do not 3365 // accept an offset. so, unlike x86, we must provide a plain register 3366 // to identify the memory word to be compared/exchanged rather than a 3367 // register+offset Address. 3368 3369 void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, 3370 Label &succeed, Label *fail) { 3371 // oldv holds comparison value 3372 // newv holds value to write in exchange 3373 // addr identifies memory word to compare against/update 3374 if (UseLSE) { 3375 mov(tmp, oldv); 3376 casal(Assembler::xword, oldv, newv, addr); 3377 cmp(tmp, oldv); 3378 br(Assembler::EQ, succeed); 3379 membar(AnyAny); 3380 } else { 3381 Label retry_load, nope; 3382 prfm(Address(addr), PSTL1STRM); 3383 bind(retry_load); 3384 // flush and load exclusive from the memory location 3385 // and fail if it is not what we expect 3386 ldaxr(tmp, addr); 3387 cmp(tmp, oldv); 3388 br(Assembler::NE, nope); 3389 // if we store+flush with no intervening write tmp will be zero 3390 stlxr(tmp, newv, addr); 3391 cbzw(tmp, succeed); 3392 // retry so we only ever return after a load fails to compare 3393 // ensures we don't return a stale value after a failed write. 3394 b(retry_load); 3395 // if the memory word differs we return it in oldv and signal a fail 3396 bind(nope); 3397 membar(AnyAny); 3398 mov(oldv, tmp); 3399 } 3400 if (fail) 3401 b(*fail); 3402 } 3403 3404 void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, 3405 Label &succeed, Label *fail) { 3406 assert(oopDesc::mark_offset_in_bytes() == 0, "assumption"); 3407 cmpxchgptr(oldv, newv, obj, tmp, succeed, fail); 3408 } 3409 3410 void MacroAssembler::cmpxchgw(Register oldv, Register newv, Register addr, Register tmp, 3411 Label &succeed, Label *fail) { 3412 // oldv holds comparison value 3413 // newv holds value to write in exchange 3414 // addr identifies memory word to compare against/update 3415 // tmp returns 0/1 for success/failure 3416 if (UseLSE) { 3417 mov(tmp, oldv); 3418 casal(Assembler::word, oldv, newv, addr); 3419 cmp(tmp, oldv); 3420 br(Assembler::EQ, succeed); 3421 membar(AnyAny); 3422 } else { 3423 Label retry_load, nope; 3424 prfm(Address(addr), PSTL1STRM); 3425 bind(retry_load); 3426 // flush and load exclusive from the memory location 3427 // and fail if it is not what we expect 3428 ldaxrw(tmp, addr); 3429 cmp(tmp, oldv); 3430 br(Assembler::NE, nope); 3431 // if we store+flush with no intervening write tmp will be zero 3432 stlxrw(tmp, newv, addr); 3433 cbzw(tmp, succeed); 3434 // retry so we only ever return after a load fails to compare 3435 // ensures we don't return a stale value after a failed write. 3436 b(retry_load); 3437 // if the memory word differs we return it in oldv and signal a fail 3438 bind(nope); 3439 membar(AnyAny); 3440 mov(oldv, tmp); 3441 } 3442 if (fail) 3443 b(*fail); 3444 } 3445 3446 // A generic CAS; success or failure is in the EQ flag. A weak CAS 3447 // doesn't retry and may fail spuriously. If the oldval is wanted, 3448 // Pass a register for the result, otherwise pass noreg. 3449 3450 // Clobbers rscratch1 3451 void MacroAssembler::cmpxchg(Register addr, Register expected, 3452 Register new_val, 3453 enum operand_size size, 3454 bool acquire, bool release, 3455 bool weak, 3456 Register result) { 3457 if (result == noreg) result = rscratch1; 3458 BLOCK_COMMENT("cmpxchg {"); 3459 if (UseLSE) { 3460 mov(result, expected); 3461 lse_cas(result, new_val, addr, size, acquire, release, /*not_pair*/ true); 3462 compare_eq(result, expected, size); 3463 #ifdef ASSERT 3464 // Poison rscratch1 which is written on !UseLSE branch 3465 mov(rscratch1, 0x1f1f1f1f1f1f1f1f); 3466 #endif 3467 } else { 3468 Label retry_load, done; 3469 prfm(Address(addr), PSTL1STRM); 3470 bind(retry_load); 3471 load_exclusive(result, addr, size, acquire); 3472 compare_eq(result, expected, size); 3473 br(Assembler::NE, done); 3474 store_exclusive(rscratch1, new_val, addr, size, release); 3475 if (weak) { 3476 cmpw(rscratch1, 0u); // If the store fails, return NE to our caller. 3477 } else { 3478 cbnzw(rscratch1, retry_load); 3479 } 3480 bind(done); 3481 } 3482 BLOCK_COMMENT("} cmpxchg"); 3483 } 3484 3485 // A generic comparison. Only compares for equality, clobbers rscratch1. 3486 void MacroAssembler::compare_eq(Register rm, Register rn, enum operand_size size) { 3487 if (size == xword) { 3488 cmp(rm, rn); 3489 } else if (size == word) { 3490 cmpw(rm, rn); 3491 } else if (size == halfword) { 3492 eorw(rscratch1, rm, rn); 3493 ands(zr, rscratch1, 0xffff); 3494 } else if (size == byte) { 3495 eorw(rscratch1, rm, rn); 3496 ands(zr, rscratch1, 0xff); 3497 } else { 3498 ShouldNotReachHere(); 3499 } 3500 } 3501 3502 3503 static bool different(Register a, RegisterOrConstant b, Register c) { 3504 if (b.is_constant()) 3505 return a != c; 3506 else 3507 return a != b.as_register() && a != c && b.as_register() != c; 3508 } 3509 3510 #define ATOMIC_OP(NAME, LDXR, OP, IOP, AOP, STXR, sz) \ 3511 void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \ 3512 if (UseLSE) { \ 3513 prev = prev->is_valid() ? prev : zr; \ 3514 if (incr.is_register()) { \ 3515 AOP(sz, incr.as_register(), prev, addr); \ 3516 } else { \ 3517 mov(rscratch2, incr.as_constant()); \ 3518 AOP(sz, rscratch2, prev, addr); \ 3519 } \ 3520 return; \ 3521 } \ 3522 Register result = rscratch2; \ 3523 if (prev->is_valid()) \ 3524 result = different(prev, incr, addr) ? prev : rscratch2; \ 3525 \ 3526 Label retry_load; \ 3527 prfm(Address(addr), PSTL1STRM); \ 3528 bind(retry_load); \ 3529 LDXR(result, addr); \ 3530 OP(rscratch1, result, incr); \ 3531 STXR(rscratch2, rscratch1, addr); \ 3532 cbnzw(rscratch2, retry_load); \ 3533 if (prev->is_valid() && prev != result) { \ 3534 IOP(prev, rscratch1, incr); \ 3535 } \ 3536 } 3537 3538 ATOMIC_OP(add, ldxr, add, sub, ldadd, stxr, Assembler::xword) 3539 ATOMIC_OP(addw, ldxrw, addw, subw, ldadd, stxrw, Assembler::word) 3540 ATOMIC_OP(addal, ldaxr, add, sub, ldaddal, stlxr, Assembler::xword) 3541 ATOMIC_OP(addalw, ldaxrw, addw, subw, ldaddal, stlxrw, Assembler::word) 3542 3543 #undef ATOMIC_OP 3544 3545 #define ATOMIC_XCHG(OP, AOP, LDXR, STXR, sz) \ 3546 void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \ 3547 if (UseLSE) { \ 3548 prev = prev->is_valid() ? prev : zr; \ 3549 AOP(sz, newv, prev, addr); \ 3550 return; \ 3551 } \ 3552 Register result = rscratch2; \ 3553 if (prev->is_valid()) \ 3554 result = different(prev, newv, addr) ? prev : rscratch2; \ 3555 \ 3556 Label retry_load; \ 3557 prfm(Address(addr), PSTL1STRM); \ 3558 bind(retry_load); \ 3559 LDXR(result, addr); \ 3560 STXR(rscratch1, newv, addr); \ 3561 cbnzw(rscratch1, retry_load); \ 3562 if (prev->is_valid() && prev != result) \ 3563 mov(prev, result); \ 3564 } 3565 3566 ATOMIC_XCHG(xchg, swp, ldxr, stxr, Assembler::xword) 3567 ATOMIC_XCHG(xchgw, swp, ldxrw, stxrw, Assembler::word) 3568 ATOMIC_XCHG(xchgl, swpl, ldxr, stlxr, Assembler::xword) 3569 ATOMIC_XCHG(xchglw, swpl, ldxrw, stlxrw, Assembler::word) 3570 ATOMIC_XCHG(xchgal, swpal, ldaxr, stlxr, Assembler::xword) 3571 ATOMIC_XCHG(xchgalw, swpal, ldaxrw, stlxrw, Assembler::word) 3572 3573 #undef ATOMIC_XCHG 3574 3575 #ifndef PRODUCT 3576 extern "C" void findpc(intptr_t x); 3577 #endif 3578 3579 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) 3580 { 3581 // In order to get locks to work, we need to fake a in_VM state 3582 if (ShowMessageBoxOnError ) { 3583 JavaThread* thread = JavaThread::current(); 3584 JavaThreadState saved_state = thread->thread_state(); 3585 thread->set_thread_state(_thread_in_vm); 3586 #ifndef PRODUCT 3587 if (CountBytecodes || TraceBytecodes || StopInterpreterAt) { 3588 ttyLocker ttyl; 3589 BytecodeCounter::print(); 3590 } 3591 #endif 3592 if (os::message_box(msg, "Execution stopped, print registers?")) { 3593 ttyLocker ttyl; 3594 tty->print_cr(" pc = 0x%016" PRIx64, pc); 3595 #ifndef PRODUCT 3596 tty->cr(); 3597 findpc(pc); 3598 tty->cr(); 3599 #endif 3600 tty->print_cr(" r0 = 0x%016" PRIx64, regs[0]); 3601 tty->print_cr(" r1 = 0x%016" PRIx64, regs[1]); 3602 tty->print_cr(" r2 = 0x%016" PRIx64, regs[2]); 3603 tty->print_cr(" r3 = 0x%016" PRIx64, regs[3]); 3604 tty->print_cr(" r4 = 0x%016" PRIx64, regs[4]); 3605 tty->print_cr(" r5 = 0x%016" PRIx64, regs[5]); 3606 tty->print_cr(" r6 = 0x%016" PRIx64, regs[6]); 3607 tty->print_cr(" r7 = 0x%016" PRIx64, regs[7]); 3608 tty->print_cr(" r8 = 0x%016" PRIx64, regs[8]); 3609 tty->print_cr(" r9 = 0x%016" PRIx64, regs[9]); 3610 tty->print_cr("r10 = 0x%016" PRIx64, regs[10]); 3611 tty->print_cr("r11 = 0x%016" PRIx64, regs[11]); 3612 tty->print_cr("r12 = 0x%016" PRIx64, regs[12]); 3613 tty->print_cr("r13 = 0x%016" PRIx64, regs[13]); 3614 tty->print_cr("r14 = 0x%016" PRIx64, regs[14]); 3615 tty->print_cr("r15 = 0x%016" PRIx64, regs[15]); 3616 tty->print_cr("r16 = 0x%016" PRIx64, regs[16]); 3617 tty->print_cr("r17 = 0x%016" PRIx64, regs[17]); 3618 tty->print_cr("r18 = 0x%016" PRIx64, regs[18]); 3619 tty->print_cr("r19 = 0x%016" PRIx64, regs[19]); 3620 tty->print_cr("r20 = 0x%016" PRIx64, regs[20]); 3621 tty->print_cr("r21 = 0x%016" PRIx64, regs[21]); 3622 tty->print_cr("r22 = 0x%016" PRIx64, regs[22]); 3623 tty->print_cr("r23 = 0x%016" PRIx64, regs[23]); 3624 tty->print_cr("r24 = 0x%016" PRIx64, regs[24]); 3625 tty->print_cr("r25 = 0x%016" PRIx64, regs[25]); 3626 tty->print_cr("r26 = 0x%016" PRIx64, regs[26]); 3627 tty->print_cr("r27 = 0x%016" PRIx64, regs[27]); 3628 tty->print_cr("r28 = 0x%016" PRIx64, regs[28]); 3629 tty->print_cr("r30 = 0x%016" PRIx64, regs[30]); 3630 tty->print_cr("r31 = 0x%016" PRIx64, regs[31]); 3631 BREAKPOINT; 3632 } 3633 } 3634 fatal("DEBUG MESSAGE: %s", msg); 3635 } 3636 3637 RegSet MacroAssembler::call_clobbered_gp_registers() { 3638 RegSet regs = RegSet::range(r0, r17) - RegSet::of(rscratch1, rscratch2); 3639 #ifndef R18_RESERVED 3640 regs += r18_tls; 3641 #endif 3642 return regs; 3643 } 3644 3645 void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) { 3646 int step = 4 * wordSize; 3647 push(call_clobbered_gp_registers() - exclude, sp); 3648 sub(sp, sp, step); 3649 mov(rscratch1, -step); 3650 // Push v0-v7, v16-v31. 3651 for (int i = 31; i>= 4; i -= 4) { 3652 if (i <= v7->encoding() || i >= v16->encoding()) 3653 st1(as_FloatRegister(i-3), as_FloatRegister(i-2), as_FloatRegister(i-1), 3654 as_FloatRegister(i), T1D, Address(post(sp, rscratch1))); 3655 } 3656 st1(as_FloatRegister(0), as_FloatRegister(1), as_FloatRegister(2), 3657 as_FloatRegister(3), T1D, Address(sp)); 3658 } 3659 3660 void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) { 3661 for (int i = 0; i < 32; i += 4) { 3662 if (i <= v7->encoding() || i >= v16->encoding()) 3663 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3664 as_FloatRegister(i+3), T1D, Address(post(sp, 4 * wordSize))); 3665 } 3666 3667 reinitialize_ptrue(); 3668 3669 pop(call_clobbered_gp_registers() - exclude, sp); 3670 } 3671 3672 void MacroAssembler::push_CPU_state(bool save_vectors, bool use_sve, 3673 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3674 push(RegSet::range(r0, r29), sp); // integer registers except lr & sp 3675 if (save_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3676 sub(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3677 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 3678 sve_str(as_FloatRegister(i), Address(sp, i)); 3679 } 3680 } else { 3681 int step = (save_vectors ? 8 : 4) * wordSize; 3682 mov(rscratch1, -step); 3683 sub(sp, sp, step); 3684 for (int i = 28; i >= 4; i -= 4) { 3685 st1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3686 as_FloatRegister(i+3), save_vectors ? T2D : T1D, Address(post(sp, rscratch1))); 3687 } 3688 st1(v0, v1, v2, v3, save_vectors ? T2D : T1D, sp); 3689 } 3690 if (save_vectors && use_sve && total_predicate_in_bytes > 0) { 3691 sub(sp, sp, total_predicate_in_bytes); 3692 for (int i = 0; i < PRegister::number_of_registers; i++) { 3693 sve_str(as_PRegister(i), Address(sp, i)); 3694 } 3695 } 3696 } 3697 3698 void MacroAssembler::pop_CPU_state(bool restore_vectors, bool use_sve, 3699 int sve_vector_size_in_bytes, int total_predicate_in_bytes) { 3700 if (restore_vectors && use_sve && total_predicate_in_bytes > 0) { 3701 for (int i = PRegister::number_of_registers - 1; i >= 0; i--) { 3702 sve_ldr(as_PRegister(i), Address(sp, i)); 3703 } 3704 add(sp, sp, total_predicate_in_bytes); 3705 } 3706 if (restore_vectors && use_sve && sve_vector_size_in_bytes > 16) { 3707 for (int i = FloatRegister::number_of_registers - 1; i >= 0; i--) { 3708 sve_ldr(as_FloatRegister(i), Address(sp, i)); 3709 } 3710 add(sp, sp, sve_vector_size_in_bytes * FloatRegister::number_of_registers); 3711 } else { 3712 int step = (restore_vectors ? 8 : 4) * wordSize; 3713 for (int i = 0; i <= 28; i += 4) 3714 ld1(as_FloatRegister(i), as_FloatRegister(i+1), as_FloatRegister(i+2), 3715 as_FloatRegister(i+3), restore_vectors ? T2D : T1D, Address(post(sp, step))); 3716 } 3717 3718 // We may use predicate registers and rely on ptrue with SVE, 3719 // regardless of wide vector (> 8 bytes) used or not. 3720 if (use_sve) { 3721 reinitialize_ptrue(); 3722 } 3723 3724 // integer registers except lr & sp 3725 pop(RegSet::range(r0, r17), sp); 3726 #ifdef R18_RESERVED 3727 ldp(zr, r19, Address(post(sp, 2 * wordSize))); 3728 pop(RegSet::range(r20, r29), sp); 3729 #else 3730 pop(RegSet::range(r18_tls, r29), sp); 3731 #endif 3732 } 3733 3734 /** 3735 * Helpers for multiply_to_len(). 3736 */ 3737 void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo, 3738 Register src1, Register src2) { 3739 adds(dest_lo, dest_lo, src1); 3740 adc(dest_hi, dest_hi, zr); 3741 adds(dest_lo, dest_lo, src2); 3742 adc(final_dest_hi, dest_hi, zr); 3743 } 3744 3745 // Generate an address from (r + r1 extend offset). "size" is the 3746 // size of the operand. The result may be in rscratch2. 3747 Address MacroAssembler::offsetted_address(Register r, Register r1, 3748 Address::extend ext, int offset, int size) { 3749 if (offset || (ext.shift() % size != 0)) { 3750 lea(rscratch2, Address(r, r1, ext)); 3751 return Address(rscratch2, offset); 3752 } else { 3753 return Address(r, r1, ext); 3754 } 3755 } 3756 3757 Address MacroAssembler::spill_address(int size, int offset, Register tmp) 3758 { 3759 assert(offset >= 0, "spill to negative address?"); 3760 // Offset reachable ? 3761 // Not aligned - 9 bits signed offset 3762 // Aligned - 12 bits unsigned offset shifted 3763 Register base = sp; 3764 if ((offset & (size-1)) && offset >= (1<<8)) { 3765 add(tmp, base, offset & ((1<<12)-1)); 3766 base = tmp; 3767 offset &= -1u<<12; 3768 } 3769 3770 if (offset >= (1<<12) * size) { 3771 add(tmp, base, offset & (((1<<12)-1)<<12)); 3772 base = tmp; 3773 offset &= ~(((1<<12)-1)<<12); 3774 } 3775 3776 return Address(base, offset); 3777 } 3778 3779 Address MacroAssembler::sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp) { 3780 assert(offset >= 0, "spill to negative address?"); 3781 3782 Register base = sp; 3783 3784 // An immediate offset in the range 0 to 255 which is multiplied 3785 // by the current vector or predicate register size in bytes. 3786 if (offset % sve_reg_size_in_bytes == 0 && offset < ((1<<8)*sve_reg_size_in_bytes)) { 3787 return Address(base, offset / sve_reg_size_in_bytes); 3788 } 3789 3790 add(tmp, base, offset); 3791 return Address(tmp); 3792 } 3793 3794 // Checks whether offset is aligned. 3795 // Returns true if it is, else false. 3796 bool MacroAssembler::merge_alignment_check(Register base, 3797 size_t size, 3798 int64_t cur_offset, 3799 int64_t prev_offset) const { 3800 if (AvoidUnalignedAccesses) { 3801 if (base == sp) { 3802 // Checks whether low offset if aligned to pair of registers. 3803 int64_t pair_mask = size * 2 - 1; 3804 int64_t offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3805 return (offset & pair_mask) == 0; 3806 } else { // If base is not sp, we can't guarantee the access is aligned. 3807 return false; 3808 } 3809 } else { 3810 int64_t mask = size - 1; 3811 // Load/store pair instruction only supports element size aligned offset. 3812 return (cur_offset & mask) == 0 && (prev_offset & mask) == 0; 3813 } 3814 } 3815 3816 // Checks whether current and previous loads/stores can be merged. 3817 // Returns true if it can be merged, else false. 3818 bool MacroAssembler::ldst_can_merge(Register rt, 3819 const Address &adr, 3820 size_t cur_size_in_bytes, 3821 bool is_store) const { 3822 address prev = pc() - NativeInstruction::instruction_size; 3823 address last = code()->last_insn(); 3824 3825 if (last == nullptr || !nativeInstruction_at(last)->is_Imm_LdSt()) { 3826 return false; 3827 } 3828 3829 if (adr.getMode() != Address::base_plus_offset || prev != last) { 3830 return false; 3831 } 3832 3833 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3834 size_t prev_size_in_bytes = prev_ldst->size_in_bytes(); 3835 3836 assert(prev_size_in_bytes == 4 || prev_size_in_bytes == 8, "only supports 64/32bit merging."); 3837 assert(cur_size_in_bytes == 4 || cur_size_in_bytes == 8, "only supports 64/32bit merging."); 3838 3839 if (cur_size_in_bytes != prev_size_in_bytes || is_store != prev_ldst->is_store()) { 3840 return false; 3841 } 3842 3843 int64_t max_offset = 63 * prev_size_in_bytes; 3844 int64_t min_offset = -64 * prev_size_in_bytes; 3845 3846 assert(prev_ldst->is_not_pre_post_index(), "pre-index or post-index is not supported to be merged."); 3847 3848 // Only same base can be merged. 3849 if (adr.base() != prev_ldst->base()) { 3850 return false; 3851 } 3852 3853 int64_t cur_offset = adr.offset(); 3854 int64_t prev_offset = prev_ldst->offset(); 3855 size_t diff = abs(cur_offset - prev_offset); 3856 if (diff != prev_size_in_bytes) { 3857 return false; 3858 } 3859 3860 // Following cases can not be merged: 3861 // ldr x2, [x2, #8] 3862 // ldr x3, [x2, #16] 3863 // or: 3864 // ldr x2, [x3, #8] 3865 // ldr x2, [x3, #16] 3866 // If t1 and t2 is the same in "ldp t1, t2, [xn, #imm]", we'll get SIGILL. 3867 if (!is_store && (adr.base() == prev_ldst->target() || rt == prev_ldst->target())) { 3868 return false; 3869 } 3870 3871 int64_t low_offset = prev_offset > cur_offset ? cur_offset : prev_offset; 3872 // Offset range must be in ldp/stp instruction's range. 3873 if (low_offset > max_offset || low_offset < min_offset) { 3874 return false; 3875 } 3876 3877 if (merge_alignment_check(adr.base(), prev_size_in_bytes, cur_offset, prev_offset)) { 3878 return true; 3879 } 3880 3881 return false; 3882 } 3883 3884 // Merge current load/store with previous load/store into ldp/stp. 3885 void MacroAssembler::merge_ldst(Register rt, 3886 const Address &adr, 3887 size_t cur_size_in_bytes, 3888 bool is_store) { 3889 3890 assert(ldst_can_merge(rt, adr, cur_size_in_bytes, is_store) == true, "cur and prev must be able to be merged."); 3891 3892 Register rt_low, rt_high; 3893 address prev = pc() - NativeInstruction::instruction_size; 3894 NativeLdSt* prev_ldst = NativeLdSt_at(prev); 3895 3896 int64_t offset; 3897 3898 if (adr.offset() < prev_ldst->offset()) { 3899 offset = adr.offset(); 3900 rt_low = rt; 3901 rt_high = prev_ldst->target(); 3902 } else { 3903 offset = prev_ldst->offset(); 3904 rt_low = prev_ldst->target(); 3905 rt_high = rt; 3906 } 3907 3908 Address adr_p = Address(prev_ldst->base(), offset); 3909 // Overwrite previous generated binary. 3910 code_section()->set_end(prev); 3911 3912 const size_t sz = prev_ldst->size_in_bytes(); 3913 assert(sz == 8 || sz == 4, "only supports 64/32bit merging."); 3914 if (!is_store) { 3915 BLOCK_COMMENT("merged ldr pair"); 3916 if (sz == 8) { 3917 ldp(rt_low, rt_high, adr_p); 3918 } else { 3919 ldpw(rt_low, rt_high, adr_p); 3920 } 3921 } else { 3922 BLOCK_COMMENT("merged str pair"); 3923 if (sz == 8) { 3924 stp(rt_low, rt_high, adr_p); 3925 } else { 3926 stpw(rt_low, rt_high, adr_p); 3927 } 3928 } 3929 } 3930 3931 /** 3932 * Multiply 64 bit by 64 bit first loop. 3933 */ 3934 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart, 3935 Register y, Register y_idx, Register z, 3936 Register carry, Register product, 3937 Register idx, Register kdx) { 3938 // 3939 // jlong carry, x[], y[], z[]; 3940 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 3941 // huge_128 product = y[idx] * x[xstart] + carry; 3942 // z[kdx] = (jlong)product; 3943 // carry = (jlong)(product >>> 64); 3944 // } 3945 // z[xstart] = carry; 3946 // 3947 3948 Label L_first_loop, L_first_loop_exit; 3949 Label L_one_x, L_one_y, L_multiply; 3950 3951 subsw(xstart, xstart, 1); 3952 br(Assembler::MI, L_one_x); 3953 3954 lea(rscratch1, Address(x, xstart, Address::lsl(LogBytesPerInt))); 3955 ldr(x_xstart, Address(rscratch1)); 3956 ror(x_xstart, x_xstart, 32); // convert big-endian to little-endian 3957 3958 bind(L_first_loop); 3959 subsw(idx, idx, 1); 3960 br(Assembler::MI, L_first_loop_exit); 3961 subsw(idx, idx, 1); 3962 br(Assembler::MI, L_one_y); 3963 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 3964 ldr(y_idx, Address(rscratch1)); 3965 ror(y_idx, y_idx, 32); // convert big-endian to little-endian 3966 bind(L_multiply); 3967 3968 // AArch64 has a multiply-accumulate instruction that we can't use 3969 // here because it has no way to process carries, so we have to use 3970 // separate add and adc instructions. Bah. 3971 umulh(rscratch1, x_xstart, y_idx); // x_xstart * y_idx -> rscratch1:product 3972 mul(product, x_xstart, y_idx); 3973 adds(product, product, carry); 3974 adc(carry, rscratch1, zr); // x_xstart * y_idx + carry -> carry:product 3975 3976 subw(kdx, kdx, 2); 3977 ror(product, product, 32); // back to big-endian 3978 str(product, offsetted_address(z, kdx, Address::uxtw(LogBytesPerInt), 0, BytesPerLong)); 3979 3980 b(L_first_loop); 3981 3982 bind(L_one_y); 3983 ldrw(y_idx, Address(y, 0)); 3984 b(L_multiply); 3985 3986 bind(L_one_x); 3987 ldrw(x_xstart, Address(x, 0)); 3988 b(L_first_loop); 3989 3990 bind(L_first_loop_exit); 3991 } 3992 3993 /** 3994 * Multiply 128 bit by 128. Unrolled inner loop. 3995 * 3996 */ 3997 void MacroAssembler::multiply_128_x_128_loop(Register y, Register z, 3998 Register carry, Register carry2, 3999 Register idx, Register jdx, 4000 Register yz_idx1, Register yz_idx2, 4001 Register tmp, Register tmp3, Register tmp4, 4002 Register tmp6, Register product_hi) { 4003 4004 // jlong carry, x[], y[], z[]; 4005 // int kdx = ystart+1; 4006 // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop 4007 // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry; 4008 // jlong carry2 = (jlong)(tmp3 >>> 64); 4009 // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2; 4010 // carry = (jlong)(tmp4 >>> 64); 4011 // z[kdx+idx+1] = (jlong)tmp3; 4012 // z[kdx+idx] = (jlong)tmp4; 4013 // } 4014 // idx += 2; 4015 // if (idx > 0) { 4016 // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry; 4017 // z[kdx+idx] = (jlong)yz_idx1; 4018 // carry = (jlong)(yz_idx1 >>> 64); 4019 // } 4020 // 4021 4022 Label L_third_loop, L_third_loop_exit, L_post_third_loop_done; 4023 4024 lsrw(jdx, idx, 2); 4025 4026 bind(L_third_loop); 4027 4028 subsw(jdx, jdx, 1); 4029 br(Assembler::MI, L_third_loop_exit); 4030 subw(idx, idx, 4); 4031 4032 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4033 4034 ldp(yz_idx2, yz_idx1, Address(rscratch1, 0)); 4035 4036 lea(tmp6, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4037 4038 ror(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian 4039 ror(yz_idx2, yz_idx2, 32); 4040 4041 ldp(rscratch2, rscratch1, Address(tmp6, 0)); 4042 4043 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4044 umulh(tmp4, product_hi, yz_idx1); 4045 4046 ror(rscratch1, rscratch1, 32); // convert big-endian to little-endian 4047 ror(rscratch2, rscratch2, 32); 4048 4049 mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp 4050 umulh(carry2, product_hi, yz_idx2); 4051 4052 // propagate sum of both multiplications into carry:tmp4:tmp3 4053 adds(tmp3, tmp3, carry); 4054 adc(tmp4, tmp4, zr); 4055 adds(tmp3, tmp3, rscratch1); 4056 adcs(tmp4, tmp4, tmp); 4057 adc(carry, carry2, zr); 4058 adds(tmp4, tmp4, rscratch2); 4059 adc(carry, carry, zr); 4060 4061 ror(tmp3, tmp3, 32); // convert little-endian to big-endian 4062 ror(tmp4, tmp4, 32); 4063 stp(tmp4, tmp3, Address(tmp6, 0)); 4064 4065 b(L_third_loop); 4066 bind (L_third_loop_exit); 4067 4068 andw (idx, idx, 0x3); 4069 cbz(idx, L_post_third_loop_done); 4070 4071 Label L_check_1; 4072 subsw(idx, idx, 2); 4073 br(Assembler::MI, L_check_1); 4074 4075 lea(rscratch1, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4076 ldr(yz_idx1, Address(rscratch1, 0)); 4077 ror(yz_idx1, yz_idx1, 32); 4078 mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3 4079 umulh(tmp4, product_hi, yz_idx1); 4080 lea(rscratch1, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4081 ldr(yz_idx2, Address(rscratch1, 0)); 4082 ror(yz_idx2, yz_idx2, 32); 4083 4084 add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2); 4085 4086 ror(tmp3, tmp3, 32); 4087 str(tmp3, Address(rscratch1, 0)); 4088 4089 bind (L_check_1); 4090 4091 andw (idx, idx, 0x1); 4092 subsw(idx, idx, 1); 4093 br(Assembler::MI, L_post_third_loop_done); 4094 ldrw(tmp4, Address(y, idx, Address::uxtw(LogBytesPerInt))); 4095 mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3 4096 umulh(carry2, tmp4, product_hi); 4097 ldrw(tmp4, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4098 4099 add2_with_carry(carry2, tmp3, tmp4, carry); 4100 4101 strw(tmp3, Address(z, idx, Address::uxtw(LogBytesPerInt))); 4102 extr(carry, carry2, tmp3, 32); 4103 4104 bind(L_post_third_loop_done); 4105 } 4106 4107 /** 4108 * Code for BigInteger::multiplyToLen() intrinsic. 4109 * 4110 * r0: x 4111 * r1: xlen 4112 * r2: y 4113 * r3: ylen 4114 * r4: z 4115 * r5: tmp0 4116 * r10: tmp1 4117 * r11: tmp2 4118 * r12: tmp3 4119 * r13: tmp4 4120 * r14: tmp5 4121 * r15: tmp6 4122 * r16: tmp7 4123 * 4124 */ 4125 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, 4126 Register z, Register tmp0, 4127 Register tmp1, Register tmp2, Register tmp3, Register tmp4, 4128 Register tmp5, Register tmp6, Register product_hi) { 4129 4130 assert_different_registers(x, xlen, y, ylen, z, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, product_hi); 4131 4132 const Register idx = tmp1; 4133 const Register kdx = tmp2; 4134 const Register xstart = tmp3; 4135 4136 const Register y_idx = tmp4; 4137 const Register carry = tmp5; 4138 const Register product = xlen; 4139 const Register x_xstart = tmp0; 4140 4141 // First Loop. 4142 // 4143 // final static long LONG_MASK = 0xffffffffL; 4144 // int xstart = xlen - 1; 4145 // int ystart = ylen - 1; 4146 // long carry = 0; 4147 // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) { 4148 // long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry; 4149 // z[kdx] = (int)product; 4150 // carry = product >>> 32; 4151 // } 4152 // z[xstart] = (int)carry; 4153 // 4154 4155 movw(idx, ylen); // idx = ylen; 4156 addw(kdx, xlen, ylen); // kdx = xlen+ylen; 4157 mov(carry, zr); // carry = 0; 4158 4159 Label L_done; 4160 4161 movw(xstart, xlen); 4162 subsw(xstart, xstart, 1); 4163 br(Assembler::MI, L_done); 4164 4165 multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx); 4166 4167 Label L_second_loop; 4168 cbzw(kdx, L_second_loop); 4169 4170 Label L_carry; 4171 subw(kdx, kdx, 1); 4172 cbzw(kdx, L_carry); 4173 4174 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4175 lsr(carry, carry, 32); 4176 subw(kdx, kdx, 1); 4177 4178 bind(L_carry); 4179 strw(carry, Address(z, kdx, Address::uxtw(LogBytesPerInt))); 4180 4181 // Second and third (nested) loops. 4182 // 4183 // for (int i = xstart-1; i >= 0; i--) { // Second loop 4184 // carry = 0; 4185 // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop 4186 // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) + 4187 // (z[k] & LONG_MASK) + carry; 4188 // z[k] = (int)product; 4189 // carry = product >>> 32; 4190 // } 4191 // z[i] = (int)carry; 4192 // } 4193 // 4194 // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi 4195 4196 const Register jdx = tmp1; 4197 4198 bind(L_second_loop); 4199 mov(carry, zr); // carry = 0; 4200 movw(jdx, ylen); // j = ystart+1 4201 4202 subsw(xstart, xstart, 1); // i = xstart-1; 4203 br(Assembler::MI, L_done); 4204 4205 str(z, Address(pre(sp, -4 * wordSize))); 4206 4207 Label L_last_x; 4208 lea(z, offsetted_address(z, xstart, Address::uxtw(LogBytesPerInt), 4, BytesPerInt)); // z = z + k - j 4209 subsw(xstart, xstart, 1); // i = xstart-1; 4210 br(Assembler::MI, L_last_x); 4211 4212 lea(rscratch1, Address(x, xstart, Address::uxtw(LogBytesPerInt))); 4213 ldr(product_hi, Address(rscratch1)); 4214 ror(product_hi, product_hi, 32); // convert big-endian to little-endian 4215 4216 Label L_third_loop_prologue; 4217 bind(L_third_loop_prologue); 4218 4219 str(ylen, Address(sp, wordSize)); 4220 stp(x, xstart, Address(sp, 2 * wordSize)); 4221 multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product, 4222 tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi); 4223 ldp(z, ylen, Address(post(sp, 2 * wordSize))); 4224 ldp(x, xlen, Address(post(sp, 2 * wordSize))); // copy old xstart -> xlen 4225 4226 addw(tmp3, xlen, 1); 4227 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4228 subsw(tmp3, tmp3, 1); 4229 br(Assembler::MI, L_done); 4230 4231 lsr(carry, carry, 32); 4232 strw(carry, Address(z, tmp3, Address::uxtw(LogBytesPerInt))); 4233 b(L_second_loop); 4234 4235 // Next infrequent code is moved outside loops. 4236 bind(L_last_x); 4237 ldrw(product_hi, Address(x, 0)); 4238 b(L_third_loop_prologue); 4239 4240 bind(L_done); 4241 } 4242 4243 // Code for BigInteger::mulAdd intrinsic 4244 // out = r0 4245 // in = r1 4246 // offset = r2 (already out.length-offset) 4247 // len = r3 4248 // k = r4 4249 // 4250 // pseudo code from java implementation: 4251 // carry = 0; 4252 // offset = out.length-offset - 1; 4253 // for (int j=len-1; j >= 0; j--) { 4254 // product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry; 4255 // out[offset--] = (int)product; 4256 // carry = product >>> 32; 4257 // } 4258 // return (int)carry; 4259 void MacroAssembler::mul_add(Register out, Register in, Register offset, 4260 Register len, Register k) { 4261 Label LOOP, END; 4262 // pre-loop 4263 cmp(len, zr); // cmp, not cbz/cbnz: to use condition twice => less branches 4264 csel(out, zr, out, Assembler::EQ); 4265 br(Assembler::EQ, END); 4266 add(in, in, len, LSL, 2); // in[j+1] address 4267 add(offset, out, offset, LSL, 2); // out[offset + 1] address 4268 mov(out, zr); // used to keep carry now 4269 BIND(LOOP); 4270 ldrw(rscratch1, Address(pre(in, -4))); 4271 madd(rscratch1, rscratch1, k, out); 4272 ldrw(rscratch2, Address(pre(offset, -4))); 4273 add(rscratch1, rscratch1, rscratch2); 4274 strw(rscratch1, Address(offset)); 4275 lsr(out, rscratch1, 32); 4276 subs(len, len, 1); 4277 br(Assembler::NE, LOOP); 4278 BIND(END); 4279 } 4280 4281 /** 4282 * Emits code to update CRC-32 with a byte value according to constants in table 4283 * 4284 * @param [in,out]crc Register containing the crc. 4285 * @param [in]val Register containing the byte to fold into the CRC. 4286 * @param [in]table Register containing the table of crc constants. 4287 * 4288 * uint32_t crc; 4289 * val = crc_table[(val ^ crc) & 0xFF]; 4290 * crc = val ^ (crc >> 8); 4291 * 4292 */ 4293 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) { 4294 eor(val, val, crc); 4295 andr(val, val, 0xff); 4296 ldrw(val, Address(table, val, Address::lsl(2))); 4297 eor(crc, val, crc, Assembler::LSR, 8); 4298 } 4299 4300 /** 4301 * Emits code to update CRC-32 with a 32-bit value according to tables 0 to 3 4302 * 4303 * @param [in,out]crc Register containing the crc. 4304 * @param [in]v Register containing the 32-bit to fold into the CRC. 4305 * @param [in]table0 Register containing table 0 of crc constants. 4306 * @param [in]table1 Register containing table 1 of crc constants. 4307 * @param [in]table2 Register containing table 2 of crc constants. 4308 * @param [in]table3 Register containing table 3 of crc constants. 4309 * 4310 * uint32_t crc; 4311 * v = crc ^ v 4312 * crc = table3[v&0xff]^table2[(v>>8)&0xff]^table1[(v>>16)&0xff]^table0[v>>24] 4313 * 4314 */ 4315 void MacroAssembler::update_word_crc32(Register crc, Register v, Register tmp, 4316 Register table0, Register table1, Register table2, Register table3, 4317 bool upper) { 4318 eor(v, crc, v, upper ? LSR:LSL, upper ? 32:0); 4319 uxtb(tmp, v); 4320 ldrw(crc, Address(table3, tmp, Address::lsl(2))); 4321 ubfx(tmp, v, 8, 8); 4322 ldrw(tmp, Address(table2, tmp, Address::lsl(2))); 4323 eor(crc, crc, tmp); 4324 ubfx(tmp, v, 16, 8); 4325 ldrw(tmp, Address(table1, tmp, Address::lsl(2))); 4326 eor(crc, crc, tmp); 4327 ubfx(tmp, v, 24, 8); 4328 ldrw(tmp, Address(table0, tmp, Address::lsl(2))); 4329 eor(crc, crc, tmp); 4330 } 4331 4332 void MacroAssembler::kernel_crc32_using_crypto_pmull(Register crc, Register buf, 4333 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4334 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4335 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4336 4337 subs(tmp0, len, 384); 4338 mvnw(crc, crc); 4339 br(Assembler::GE, CRC_by128_pre); 4340 BIND(CRC_less128); 4341 subs(len, len, 32); 4342 br(Assembler::GE, CRC_by32_loop); 4343 BIND(CRC_less32); 4344 adds(len, len, 32 - 4); 4345 br(Assembler::GE, CRC_by4_loop); 4346 adds(len, len, 4); 4347 br(Assembler::GT, CRC_by1_loop); 4348 b(L_exit); 4349 4350 BIND(CRC_by32_loop); 4351 ldp(tmp0, tmp1, Address(buf)); 4352 crc32x(crc, crc, tmp0); 4353 ldp(tmp2, tmp3, Address(buf, 16)); 4354 crc32x(crc, crc, tmp1); 4355 add(buf, buf, 32); 4356 crc32x(crc, crc, tmp2); 4357 subs(len, len, 32); 4358 crc32x(crc, crc, tmp3); 4359 br(Assembler::GE, CRC_by32_loop); 4360 cmn(len, (u1)32); 4361 br(Assembler::NE, CRC_less32); 4362 b(L_exit); 4363 4364 BIND(CRC_by4_loop); 4365 ldrw(tmp0, Address(post(buf, 4))); 4366 subs(len, len, 4); 4367 crc32w(crc, crc, tmp0); 4368 br(Assembler::GE, CRC_by4_loop); 4369 adds(len, len, 4); 4370 br(Assembler::LE, L_exit); 4371 BIND(CRC_by1_loop); 4372 ldrb(tmp0, Address(post(buf, 1))); 4373 subs(len, len, 1); 4374 crc32b(crc, crc, tmp0); 4375 br(Assembler::GT, CRC_by1_loop); 4376 b(L_exit); 4377 4378 BIND(CRC_by128_pre); 4379 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4380 4*256*sizeof(juint) + 8*sizeof(juint)); 4381 mov(crc, 0); 4382 crc32x(crc, crc, tmp0); 4383 crc32x(crc, crc, tmp1); 4384 4385 cbnz(len, CRC_less128); 4386 4387 BIND(L_exit); 4388 mvnw(crc, crc); 4389 } 4390 4391 void MacroAssembler::kernel_crc32_using_crc32(Register crc, Register buf, 4392 Register len, Register tmp0, Register tmp1, Register tmp2, 4393 Register tmp3) { 4394 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4395 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4396 4397 mvnw(crc, crc); 4398 4399 subs(len, len, 128); 4400 br(Assembler::GE, CRC_by64_pre); 4401 BIND(CRC_less64); 4402 adds(len, len, 128-32); 4403 br(Assembler::GE, CRC_by32_loop); 4404 BIND(CRC_less32); 4405 adds(len, len, 32-4); 4406 br(Assembler::GE, CRC_by4_loop); 4407 adds(len, len, 4); 4408 br(Assembler::GT, CRC_by1_loop); 4409 b(L_exit); 4410 4411 BIND(CRC_by32_loop); 4412 ldp(tmp0, tmp1, Address(post(buf, 16))); 4413 subs(len, len, 32); 4414 crc32x(crc, crc, tmp0); 4415 ldr(tmp2, Address(post(buf, 8))); 4416 crc32x(crc, crc, tmp1); 4417 ldr(tmp3, Address(post(buf, 8))); 4418 crc32x(crc, crc, tmp2); 4419 crc32x(crc, crc, tmp3); 4420 br(Assembler::GE, CRC_by32_loop); 4421 cmn(len, (u1)32); 4422 br(Assembler::NE, CRC_less32); 4423 b(L_exit); 4424 4425 BIND(CRC_by4_loop); 4426 ldrw(tmp0, Address(post(buf, 4))); 4427 subs(len, len, 4); 4428 crc32w(crc, crc, tmp0); 4429 br(Assembler::GE, CRC_by4_loop); 4430 adds(len, len, 4); 4431 br(Assembler::LE, L_exit); 4432 BIND(CRC_by1_loop); 4433 ldrb(tmp0, Address(post(buf, 1))); 4434 subs(len, len, 1); 4435 crc32b(crc, crc, tmp0); 4436 br(Assembler::GT, CRC_by1_loop); 4437 b(L_exit); 4438 4439 BIND(CRC_by64_pre); 4440 sub(buf, buf, 8); 4441 ldp(tmp0, tmp1, Address(buf, 8)); 4442 crc32x(crc, crc, tmp0); 4443 ldr(tmp2, Address(buf, 24)); 4444 crc32x(crc, crc, tmp1); 4445 ldr(tmp3, Address(buf, 32)); 4446 crc32x(crc, crc, tmp2); 4447 ldr(tmp0, Address(buf, 40)); 4448 crc32x(crc, crc, tmp3); 4449 ldr(tmp1, Address(buf, 48)); 4450 crc32x(crc, crc, tmp0); 4451 ldr(tmp2, Address(buf, 56)); 4452 crc32x(crc, crc, tmp1); 4453 ldr(tmp3, Address(pre(buf, 64))); 4454 4455 b(CRC_by64_loop); 4456 4457 align(CodeEntryAlignment); 4458 BIND(CRC_by64_loop); 4459 subs(len, len, 64); 4460 crc32x(crc, crc, tmp2); 4461 ldr(tmp0, Address(buf, 8)); 4462 crc32x(crc, crc, tmp3); 4463 ldr(tmp1, Address(buf, 16)); 4464 crc32x(crc, crc, tmp0); 4465 ldr(tmp2, Address(buf, 24)); 4466 crc32x(crc, crc, tmp1); 4467 ldr(tmp3, Address(buf, 32)); 4468 crc32x(crc, crc, tmp2); 4469 ldr(tmp0, Address(buf, 40)); 4470 crc32x(crc, crc, tmp3); 4471 ldr(tmp1, Address(buf, 48)); 4472 crc32x(crc, crc, tmp0); 4473 ldr(tmp2, Address(buf, 56)); 4474 crc32x(crc, crc, tmp1); 4475 ldr(tmp3, Address(pre(buf, 64))); 4476 br(Assembler::GE, CRC_by64_loop); 4477 4478 // post-loop 4479 crc32x(crc, crc, tmp2); 4480 crc32x(crc, crc, tmp3); 4481 4482 sub(len, len, 64); 4483 add(buf, buf, 8); 4484 cmn(len, (u1)128); 4485 br(Assembler::NE, CRC_less64); 4486 BIND(L_exit); 4487 mvnw(crc, crc); 4488 } 4489 4490 /** 4491 * @param crc register containing existing CRC (32-bit) 4492 * @param buf register pointing to input byte buffer (byte*) 4493 * @param len register containing number of bytes 4494 * @param table register that will contain address of CRC table 4495 * @param tmp scratch register 4496 */ 4497 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, 4498 Register table0, Register table1, Register table2, Register table3, 4499 Register tmp, Register tmp2, Register tmp3) { 4500 Label L_by16, L_by16_loop, L_by4, L_by4_loop, L_by1, L_by1_loop, L_exit; 4501 4502 if (UseCryptoPmullForCRC32) { 4503 kernel_crc32_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4504 return; 4505 } 4506 4507 if (UseCRC32) { 4508 kernel_crc32_using_crc32(crc, buf, len, table0, table1, table2, table3); 4509 return; 4510 } 4511 4512 mvnw(crc, crc); 4513 4514 { 4515 uint64_t offset; 4516 adrp(table0, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4517 add(table0, table0, offset); 4518 } 4519 add(table1, table0, 1*256*sizeof(juint)); 4520 add(table2, table0, 2*256*sizeof(juint)); 4521 add(table3, table0, 3*256*sizeof(juint)); 4522 4523 { // Neon code start 4524 cmp(len, (u1)64); 4525 br(Assembler::LT, L_by16); 4526 eor(v16, T16B, v16, v16); 4527 4528 Label L_fold; 4529 4530 add(tmp, table0, 4*256*sizeof(juint)); // Point at the Neon constants 4531 4532 ld1(v0, v1, T2D, post(buf, 32)); 4533 ld1r(v4, T2D, post(tmp, 8)); 4534 ld1r(v5, T2D, post(tmp, 8)); 4535 ld1r(v6, T2D, post(tmp, 8)); 4536 ld1r(v7, T2D, post(tmp, 8)); 4537 mov(v16, S, 0, crc); 4538 4539 eor(v0, T16B, v0, v16); 4540 sub(len, len, 64); 4541 4542 BIND(L_fold); 4543 pmull(v22, T8H, v0, v5, T8B); 4544 pmull(v20, T8H, v0, v7, T8B); 4545 pmull(v23, T8H, v0, v4, T8B); 4546 pmull(v21, T8H, v0, v6, T8B); 4547 4548 pmull2(v18, T8H, v0, v5, T16B); 4549 pmull2(v16, T8H, v0, v7, T16B); 4550 pmull2(v19, T8H, v0, v4, T16B); 4551 pmull2(v17, T8H, v0, v6, T16B); 4552 4553 uzp1(v24, T8H, v20, v22); 4554 uzp2(v25, T8H, v20, v22); 4555 eor(v20, T16B, v24, v25); 4556 4557 uzp1(v26, T8H, v16, v18); 4558 uzp2(v27, T8H, v16, v18); 4559 eor(v16, T16B, v26, v27); 4560 4561 ushll2(v22, T4S, v20, T8H, 8); 4562 ushll(v20, T4S, v20, T4H, 8); 4563 4564 ushll2(v18, T4S, v16, T8H, 8); 4565 ushll(v16, T4S, v16, T4H, 8); 4566 4567 eor(v22, T16B, v23, v22); 4568 eor(v18, T16B, v19, v18); 4569 eor(v20, T16B, v21, v20); 4570 eor(v16, T16B, v17, v16); 4571 4572 uzp1(v17, T2D, v16, v20); 4573 uzp2(v21, T2D, v16, v20); 4574 eor(v17, T16B, v17, v21); 4575 4576 ushll2(v20, T2D, v17, T4S, 16); 4577 ushll(v16, T2D, v17, T2S, 16); 4578 4579 eor(v20, T16B, v20, v22); 4580 eor(v16, T16B, v16, v18); 4581 4582 uzp1(v17, T2D, v20, v16); 4583 uzp2(v21, T2D, v20, v16); 4584 eor(v28, T16B, v17, v21); 4585 4586 pmull(v22, T8H, v1, v5, T8B); 4587 pmull(v20, T8H, v1, v7, T8B); 4588 pmull(v23, T8H, v1, v4, T8B); 4589 pmull(v21, T8H, v1, v6, T8B); 4590 4591 pmull2(v18, T8H, v1, v5, T16B); 4592 pmull2(v16, T8H, v1, v7, T16B); 4593 pmull2(v19, T8H, v1, v4, T16B); 4594 pmull2(v17, T8H, v1, v6, T16B); 4595 4596 ld1(v0, v1, T2D, post(buf, 32)); 4597 4598 uzp1(v24, T8H, v20, v22); 4599 uzp2(v25, T8H, v20, v22); 4600 eor(v20, T16B, v24, v25); 4601 4602 uzp1(v26, T8H, v16, v18); 4603 uzp2(v27, T8H, v16, v18); 4604 eor(v16, T16B, v26, v27); 4605 4606 ushll2(v22, T4S, v20, T8H, 8); 4607 ushll(v20, T4S, v20, T4H, 8); 4608 4609 ushll2(v18, T4S, v16, T8H, 8); 4610 ushll(v16, T4S, v16, T4H, 8); 4611 4612 eor(v22, T16B, v23, v22); 4613 eor(v18, T16B, v19, v18); 4614 eor(v20, T16B, v21, v20); 4615 eor(v16, T16B, v17, v16); 4616 4617 uzp1(v17, T2D, v16, v20); 4618 uzp2(v21, T2D, v16, v20); 4619 eor(v16, T16B, v17, v21); 4620 4621 ushll2(v20, T2D, v16, T4S, 16); 4622 ushll(v16, T2D, v16, T2S, 16); 4623 4624 eor(v20, T16B, v22, v20); 4625 eor(v16, T16B, v16, v18); 4626 4627 uzp1(v17, T2D, v20, v16); 4628 uzp2(v21, T2D, v20, v16); 4629 eor(v20, T16B, v17, v21); 4630 4631 shl(v16, T2D, v28, 1); 4632 shl(v17, T2D, v20, 1); 4633 4634 eor(v0, T16B, v0, v16); 4635 eor(v1, T16B, v1, v17); 4636 4637 subs(len, len, 32); 4638 br(Assembler::GE, L_fold); 4639 4640 mov(crc, 0); 4641 mov(tmp, v0, D, 0); 4642 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4643 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4644 mov(tmp, v0, D, 1); 4645 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4646 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4647 mov(tmp, v1, D, 0); 4648 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4649 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4650 mov(tmp, v1, D, 1); 4651 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4652 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4653 4654 add(len, len, 32); 4655 } // Neon code end 4656 4657 BIND(L_by16); 4658 subs(len, len, 16); 4659 br(Assembler::GE, L_by16_loop); 4660 adds(len, len, 16-4); 4661 br(Assembler::GE, L_by4_loop); 4662 adds(len, len, 4); 4663 br(Assembler::GT, L_by1_loop); 4664 b(L_exit); 4665 4666 BIND(L_by4_loop); 4667 ldrw(tmp, Address(post(buf, 4))); 4668 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3); 4669 subs(len, len, 4); 4670 br(Assembler::GE, L_by4_loop); 4671 adds(len, len, 4); 4672 br(Assembler::LE, L_exit); 4673 BIND(L_by1_loop); 4674 subs(len, len, 1); 4675 ldrb(tmp, Address(post(buf, 1))); 4676 update_byte_crc32(crc, tmp, table0); 4677 br(Assembler::GT, L_by1_loop); 4678 b(L_exit); 4679 4680 align(CodeEntryAlignment); 4681 BIND(L_by16_loop); 4682 subs(len, len, 16); 4683 ldp(tmp, tmp3, Address(post(buf, 16))); 4684 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, false); 4685 update_word_crc32(crc, tmp, tmp2, table0, table1, table2, table3, true); 4686 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, false); 4687 update_word_crc32(crc, tmp3, tmp2, table0, table1, table2, table3, true); 4688 br(Assembler::GE, L_by16_loop); 4689 adds(len, len, 16-4); 4690 br(Assembler::GE, L_by4_loop); 4691 adds(len, len, 4); 4692 br(Assembler::GT, L_by1_loop); 4693 BIND(L_exit); 4694 mvnw(crc, crc); 4695 } 4696 4697 void MacroAssembler::kernel_crc32c_using_crypto_pmull(Register crc, Register buf, 4698 Register len, Register tmp0, Register tmp1, Register tmp2, Register tmp3) { 4699 Label CRC_by4_loop, CRC_by1_loop, CRC_less128, CRC_by128_pre, CRC_by32_loop, CRC_less32, L_exit; 4700 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4701 4702 subs(tmp0, len, 384); 4703 br(Assembler::GE, CRC_by128_pre); 4704 BIND(CRC_less128); 4705 subs(len, len, 32); 4706 br(Assembler::GE, CRC_by32_loop); 4707 BIND(CRC_less32); 4708 adds(len, len, 32 - 4); 4709 br(Assembler::GE, CRC_by4_loop); 4710 adds(len, len, 4); 4711 br(Assembler::GT, CRC_by1_loop); 4712 b(L_exit); 4713 4714 BIND(CRC_by32_loop); 4715 ldp(tmp0, tmp1, Address(buf)); 4716 crc32cx(crc, crc, tmp0); 4717 ldr(tmp2, Address(buf, 16)); 4718 crc32cx(crc, crc, tmp1); 4719 ldr(tmp3, Address(buf, 24)); 4720 crc32cx(crc, crc, tmp2); 4721 add(buf, buf, 32); 4722 subs(len, len, 32); 4723 crc32cx(crc, crc, tmp3); 4724 br(Assembler::GE, CRC_by32_loop); 4725 cmn(len, (u1)32); 4726 br(Assembler::NE, CRC_less32); 4727 b(L_exit); 4728 4729 BIND(CRC_by4_loop); 4730 ldrw(tmp0, Address(post(buf, 4))); 4731 subs(len, len, 4); 4732 crc32cw(crc, crc, tmp0); 4733 br(Assembler::GE, CRC_by4_loop); 4734 adds(len, len, 4); 4735 br(Assembler::LE, L_exit); 4736 BIND(CRC_by1_loop); 4737 ldrb(tmp0, Address(post(buf, 1))); 4738 subs(len, len, 1); 4739 crc32cb(crc, crc, tmp0); 4740 br(Assembler::GT, CRC_by1_loop); 4741 b(L_exit); 4742 4743 BIND(CRC_by128_pre); 4744 kernel_crc32_common_fold_using_crypto_pmull(crc, buf, len, tmp0, tmp1, tmp2, 4745 4*256*sizeof(juint) + 8*sizeof(juint) + 0x50); 4746 mov(crc, 0); 4747 crc32cx(crc, crc, tmp0); 4748 crc32cx(crc, crc, tmp1); 4749 4750 cbnz(len, CRC_less128); 4751 4752 BIND(L_exit); 4753 } 4754 4755 void MacroAssembler::kernel_crc32c_using_crc32c(Register crc, Register buf, 4756 Register len, Register tmp0, Register tmp1, Register tmp2, 4757 Register tmp3) { 4758 Label CRC_by64_loop, CRC_by4_loop, CRC_by1_loop, CRC_less64, CRC_by64_pre, CRC_by32_loop, CRC_less32, L_exit; 4759 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2, tmp3); 4760 4761 subs(len, len, 128); 4762 br(Assembler::GE, CRC_by64_pre); 4763 BIND(CRC_less64); 4764 adds(len, len, 128-32); 4765 br(Assembler::GE, CRC_by32_loop); 4766 BIND(CRC_less32); 4767 adds(len, len, 32-4); 4768 br(Assembler::GE, CRC_by4_loop); 4769 adds(len, len, 4); 4770 br(Assembler::GT, CRC_by1_loop); 4771 b(L_exit); 4772 4773 BIND(CRC_by32_loop); 4774 ldp(tmp0, tmp1, Address(post(buf, 16))); 4775 subs(len, len, 32); 4776 crc32cx(crc, crc, tmp0); 4777 ldr(tmp2, Address(post(buf, 8))); 4778 crc32cx(crc, crc, tmp1); 4779 ldr(tmp3, Address(post(buf, 8))); 4780 crc32cx(crc, crc, tmp2); 4781 crc32cx(crc, crc, tmp3); 4782 br(Assembler::GE, CRC_by32_loop); 4783 cmn(len, (u1)32); 4784 br(Assembler::NE, CRC_less32); 4785 b(L_exit); 4786 4787 BIND(CRC_by4_loop); 4788 ldrw(tmp0, Address(post(buf, 4))); 4789 subs(len, len, 4); 4790 crc32cw(crc, crc, tmp0); 4791 br(Assembler::GE, CRC_by4_loop); 4792 adds(len, len, 4); 4793 br(Assembler::LE, L_exit); 4794 BIND(CRC_by1_loop); 4795 ldrb(tmp0, Address(post(buf, 1))); 4796 subs(len, len, 1); 4797 crc32cb(crc, crc, tmp0); 4798 br(Assembler::GT, CRC_by1_loop); 4799 b(L_exit); 4800 4801 BIND(CRC_by64_pre); 4802 sub(buf, buf, 8); 4803 ldp(tmp0, tmp1, Address(buf, 8)); 4804 crc32cx(crc, crc, tmp0); 4805 ldr(tmp2, Address(buf, 24)); 4806 crc32cx(crc, crc, tmp1); 4807 ldr(tmp3, Address(buf, 32)); 4808 crc32cx(crc, crc, tmp2); 4809 ldr(tmp0, Address(buf, 40)); 4810 crc32cx(crc, crc, tmp3); 4811 ldr(tmp1, Address(buf, 48)); 4812 crc32cx(crc, crc, tmp0); 4813 ldr(tmp2, Address(buf, 56)); 4814 crc32cx(crc, crc, tmp1); 4815 ldr(tmp3, Address(pre(buf, 64))); 4816 4817 b(CRC_by64_loop); 4818 4819 align(CodeEntryAlignment); 4820 BIND(CRC_by64_loop); 4821 subs(len, len, 64); 4822 crc32cx(crc, crc, tmp2); 4823 ldr(tmp0, Address(buf, 8)); 4824 crc32cx(crc, crc, tmp3); 4825 ldr(tmp1, Address(buf, 16)); 4826 crc32cx(crc, crc, tmp0); 4827 ldr(tmp2, Address(buf, 24)); 4828 crc32cx(crc, crc, tmp1); 4829 ldr(tmp3, Address(buf, 32)); 4830 crc32cx(crc, crc, tmp2); 4831 ldr(tmp0, Address(buf, 40)); 4832 crc32cx(crc, crc, tmp3); 4833 ldr(tmp1, Address(buf, 48)); 4834 crc32cx(crc, crc, tmp0); 4835 ldr(tmp2, Address(buf, 56)); 4836 crc32cx(crc, crc, tmp1); 4837 ldr(tmp3, Address(pre(buf, 64))); 4838 br(Assembler::GE, CRC_by64_loop); 4839 4840 // post-loop 4841 crc32cx(crc, crc, tmp2); 4842 crc32cx(crc, crc, tmp3); 4843 4844 sub(len, len, 64); 4845 add(buf, buf, 8); 4846 cmn(len, (u1)128); 4847 br(Assembler::NE, CRC_less64); 4848 BIND(L_exit); 4849 } 4850 4851 /** 4852 * @param crc register containing existing CRC (32-bit) 4853 * @param buf register pointing to input byte buffer (byte*) 4854 * @param len register containing number of bytes 4855 * @param table register that will contain address of CRC table 4856 * @param tmp scratch register 4857 */ 4858 void MacroAssembler::kernel_crc32c(Register crc, Register buf, Register len, 4859 Register table0, Register table1, Register table2, Register table3, 4860 Register tmp, Register tmp2, Register tmp3) { 4861 if (UseCryptoPmullForCRC32) { 4862 kernel_crc32c_using_crypto_pmull(crc, buf, len, table0, table1, table2, table3); 4863 } else { 4864 kernel_crc32c_using_crc32c(crc, buf, len, table0, table1, table2, table3); 4865 } 4866 } 4867 4868 void MacroAssembler::kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf, 4869 Register len, Register tmp0, Register tmp1, Register tmp2, size_t table_offset) { 4870 Label CRC_by128_loop; 4871 assert_different_registers(crc, buf, len, tmp0, tmp1, tmp2); 4872 4873 sub(len, len, 256); 4874 Register table = tmp0; 4875 { 4876 uint64_t offset; 4877 adrp(table, ExternalAddress(StubRoutines::crc_table_addr()), offset); 4878 add(table, table, offset); 4879 } 4880 add(table, table, table_offset); 4881 4882 // Registers v0..v7 are used as data registers. 4883 // Registers v16..v31 are used as tmp registers. 4884 sub(buf, buf, 0x10); 4885 ldrq(v0, Address(buf, 0x10)); 4886 ldrq(v1, Address(buf, 0x20)); 4887 ldrq(v2, Address(buf, 0x30)); 4888 ldrq(v3, Address(buf, 0x40)); 4889 ldrq(v4, Address(buf, 0x50)); 4890 ldrq(v5, Address(buf, 0x60)); 4891 ldrq(v6, Address(buf, 0x70)); 4892 ldrq(v7, Address(pre(buf, 0x80))); 4893 4894 movi(v31, T4S, 0); 4895 mov(v31, S, 0, crc); 4896 eor(v0, T16B, v0, v31); 4897 4898 // Register v16 contains constants from the crc table. 4899 ldrq(v16, Address(table)); 4900 b(CRC_by128_loop); 4901 4902 align(OptoLoopAlignment); 4903 BIND(CRC_by128_loop); 4904 pmull (v17, T1Q, v0, v16, T1D); 4905 pmull2(v18, T1Q, v0, v16, T2D); 4906 ldrq(v0, Address(buf, 0x10)); 4907 eor3(v0, T16B, v17, v18, v0); 4908 4909 pmull (v19, T1Q, v1, v16, T1D); 4910 pmull2(v20, T1Q, v1, v16, T2D); 4911 ldrq(v1, Address(buf, 0x20)); 4912 eor3(v1, T16B, v19, v20, v1); 4913 4914 pmull (v21, T1Q, v2, v16, T1D); 4915 pmull2(v22, T1Q, v2, v16, T2D); 4916 ldrq(v2, Address(buf, 0x30)); 4917 eor3(v2, T16B, v21, v22, v2); 4918 4919 pmull (v23, T1Q, v3, v16, T1D); 4920 pmull2(v24, T1Q, v3, v16, T2D); 4921 ldrq(v3, Address(buf, 0x40)); 4922 eor3(v3, T16B, v23, v24, v3); 4923 4924 pmull (v25, T1Q, v4, v16, T1D); 4925 pmull2(v26, T1Q, v4, v16, T2D); 4926 ldrq(v4, Address(buf, 0x50)); 4927 eor3(v4, T16B, v25, v26, v4); 4928 4929 pmull (v27, T1Q, v5, v16, T1D); 4930 pmull2(v28, T1Q, v5, v16, T2D); 4931 ldrq(v5, Address(buf, 0x60)); 4932 eor3(v5, T16B, v27, v28, v5); 4933 4934 pmull (v29, T1Q, v6, v16, T1D); 4935 pmull2(v30, T1Q, v6, v16, T2D); 4936 ldrq(v6, Address(buf, 0x70)); 4937 eor3(v6, T16B, v29, v30, v6); 4938 4939 // Reuse registers v23, v24. 4940 // Using them won't block the first instruction of the next iteration. 4941 pmull (v23, T1Q, v7, v16, T1D); 4942 pmull2(v24, T1Q, v7, v16, T2D); 4943 ldrq(v7, Address(pre(buf, 0x80))); 4944 eor3(v7, T16B, v23, v24, v7); 4945 4946 subs(len, len, 0x80); 4947 br(Assembler::GE, CRC_by128_loop); 4948 4949 // fold into 512 bits 4950 // Use v31 for constants because v16 can be still in use. 4951 ldrq(v31, Address(table, 0x10)); 4952 4953 pmull (v17, T1Q, v0, v31, T1D); 4954 pmull2(v18, T1Q, v0, v31, T2D); 4955 eor3(v0, T16B, v17, v18, v4); 4956 4957 pmull (v19, T1Q, v1, v31, T1D); 4958 pmull2(v20, T1Q, v1, v31, T2D); 4959 eor3(v1, T16B, v19, v20, v5); 4960 4961 pmull (v21, T1Q, v2, v31, T1D); 4962 pmull2(v22, T1Q, v2, v31, T2D); 4963 eor3(v2, T16B, v21, v22, v6); 4964 4965 pmull (v23, T1Q, v3, v31, T1D); 4966 pmull2(v24, T1Q, v3, v31, T2D); 4967 eor3(v3, T16B, v23, v24, v7); 4968 4969 // fold into 128 bits 4970 // Use v17 for constants because v31 can be still in use. 4971 ldrq(v17, Address(table, 0x20)); 4972 pmull (v25, T1Q, v0, v17, T1D); 4973 pmull2(v26, T1Q, v0, v17, T2D); 4974 eor3(v3, T16B, v3, v25, v26); 4975 4976 // Use v18 for constants because v17 can be still in use. 4977 ldrq(v18, Address(table, 0x30)); 4978 pmull (v27, T1Q, v1, v18, T1D); 4979 pmull2(v28, T1Q, v1, v18, T2D); 4980 eor3(v3, T16B, v3, v27, v28); 4981 4982 // Use v19 for constants because v18 can be still in use. 4983 ldrq(v19, Address(table, 0x40)); 4984 pmull (v29, T1Q, v2, v19, T1D); 4985 pmull2(v30, T1Q, v2, v19, T2D); 4986 eor3(v0, T16B, v3, v29, v30); 4987 4988 add(len, len, 0x80); 4989 add(buf, buf, 0x10); 4990 4991 mov(tmp0, v0, D, 0); 4992 mov(tmp1, v0, D, 1); 4993 } 4994 4995 void MacroAssembler::addptr(const Address &dst, int32_t src) { 4996 Address adr; 4997 switch(dst.getMode()) { 4998 case Address::base_plus_offset: 4999 // This is the expected mode, although we allow all the other 5000 // forms below. 5001 adr = form_address(rscratch2, dst.base(), dst.offset(), LogBytesPerWord); 5002 break; 5003 default: 5004 lea(rscratch2, dst); 5005 adr = Address(rscratch2); 5006 break; 5007 } 5008 ldr(rscratch1, adr); 5009 add(rscratch1, rscratch1, src); 5010 str(rscratch1, adr); 5011 } 5012 5013 void MacroAssembler::cmpptr(Register src1, Address src2) { 5014 uint64_t offset; 5015 adrp(rscratch1, src2, offset); 5016 ldr(rscratch1, Address(rscratch1, offset)); 5017 cmp(src1, rscratch1); 5018 } 5019 5020 void MacroAssembler::cmpoop(Register obj1, Register obj2) { 5021 cmp(obj1, obj2); 5022 } 5023 5024 void MacroAssembler::load_method_holder_cld(Register rresult, Register rmethod) { 5025 load_method_holder(rresult, rmethod); 5026 ldr(rresult, Address(rresult, InstanceKlass::class_loader_data_offset())); 5027 } 5028 5029 void MacroAssembler::load_method_holder(Register holder, Register method) { 5030 ldr(holder, Address(method, Method::const_offset())); // ConstMethod* 5031 ldr(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool* 5032 ldr(holder, Address(holder, ConstantPool::pool_holder_offset())); // InstanceKlass* 5033 } 5034 5035 // Loads the obj's Klass* into dst. 5036 // Preserves all registers (incl src, rscratch1 and rscratch2). 5037 // Input: 5038 // src - the oop we want to load the klass from. 5039 // dst - output narrow klass. 5040 void MacroAssembler::load_narrow_klass_compact(Register dst, Register src) { 5041 assert(UseCompactObjectHeaders, "expects UseCompactObjectHeaders"); 5042 ldr(dst, Address(src, oopDesc::mark_offset_in_bytes())); 5043 lsr(dst, dst, markWord::klass_shift); 5044 } 5045 5046 void MacroAssembler::load_klass(Register dst, Register src) { 5047 if (UseCompactObjectHeaders) { 5048 load_narrow_klass_compact(dst, src); 5049 decode_klass_not_null(dst); 5050 } else if (UseCompressedClassPointers) { 5051 ldrw(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5052 decode_klass_not_null(dst); 5053 } else { 5054 ldr(dst, Address(src, oopDesc::klass_offset_in_bytes())); 5055 } 5056 } 5057 5058 void MacroAssembler::restore_cpu_control_state_after_jni(Register tmp1, Register tmp2) { 5059 if (RestoreMXCSROnJNICalls) { 5060 Label OK; 5061 get_fpcr(tmp1); 5062 mov(tmp2, tmp1); 5063 // Set FPCR to the state we need. We do want Round to Nearest. We 5064 // don't want non-IEEE rounding modes or floating-point traps. 5065 bfi(tmp1, zr, 22, 4); // Clear DN, FZ, and Rmode 5066 bfi(tmp1, zr, 8, 5); // Clear exception-control bits (8-12) 5067 bfi(tmp1, zr, 0, 2); // Clear AH:FIZ 5068 eor(tmp2, tmp1, tmp2); 5069 cbz(tmp2, OK); // Only reset FPCR if it's wrong 5070 set_fpcr(tmp1); 5071 bind(OK); 5072 } 5073 } 5074 5075 // ((OopHandle)result).resolve(); 5076 void MacroAssembler::resolve_oop_handle(Register result, Register tmp1, Register tmp2) { 5077 // OopHandle::resolve is an indirection. 5078 access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp1, tmp2); 5079 } 5080 5081 // ((WeakHandle)result).resolve(); 5082 void MacroAssembler::resolve_weak_handle(Register result, Register tmp1, Register tmp2) { 5083 assert_different_registers(result, tmp1, tmp2); 5084 Label resolved; 5085 5086 // A null weak handle resolves to null. 5087 cbz(result, resolved); 5088 5089 // Only 64 bit platforms support GCs that require a tmp register 5090 // WeakHandle::resolve is an indirection like jweak. 5091 access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, 5092 result, Address(result), tmp1, tmp2); 5093 bind(resolved); 5094 } 5095 5096 void MacroAssembler::load_mirror(Register dst, Register method, Register tmp1, Register tmp2) { 5097 const int mirror_offset = in_bytes(Klass::java_mirror_offset()); 5098 ldr(dst, Address(rmethod, Method::const_offset())); 5099 ldr(dst, Address(dst, ConstMethod::constants_offset())); 5100 ldr(dst, Address(dst, ConstantPool::pool_holder_offset())); 5101 ldr(dst, Address(dst, mirror_offset)); 5102 resolve_oop_handle(dst, tmp1, tmp2); 5103 } 5104 5105 void MacroAssembler::cmp_klass(Register obj, Register klass, Register tmp) { 5106 assert_different_registers(obj, klass, tmp); 5107 if (UseCompressedClassPointers) { 5108 if (UseCompactObjectHeaders) { 5109 load_narrow_klass_compact(tmp, obj); 5110 } else { 5111 ldrw(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5112 } 5113 if (CompressedKlassPointers::base() == nullptr) { 5114 cmp(klass, tmp, LSL, CompressedKlassPointers::shift()); 5115 return; 5116 } else if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 5117 && CompressedKlassPointers::shift() == 0) { 5118 // Only the bottom 32 bits matter 5119 cmpw(klass, tmp); 5120 return; 5121 } 5122 decode_klass_not_null(tmp); 5123 } else { 5124 ldr(tmp, Address(obj, oopDesc::klass_offset_in_bytes())); 5125 } 5126 cmp(klass, tmp); 5127 } 5128 5129 void MacroAssembler::cmp_klasses_from_objects(Register obj1, Register obj2, Register tmp1, Register tmp2) { 5130 if (UseCompactObjectHeaders) { 5131 load_narrow_klass_compact(tmp1, obj1); 5132 load_narrow_klass_compact(tmp2, obj2); 5133 cmpw(tmp1, tmp2); 5134 } else if (UseCompressedClassPointers) { 5135 ldrw(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5136 ldrw(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5137 cmpw(tmp1, tmp2); 5138 } else { 5139 ldr(tmp1, Address(obj1, oopDesc::klass_offset_in_bytes())); 5140 ldr(tmp2, Address(obj2, oopDesc::klass_offset_in_bytes())); 5141 cmp(tmp1, tmp2); 5142 } 5143 } 5144 5145 void MacroAssembler::store_klass(Register dst, Register src) { 5146 // FIXME: Should this be a store release? concurrent gcs assumes 5147 // klass length is valid if klass field is not null. 5148 assert(!UseCompactObjectHeaders, "not with compact headers"); 5149 if (UseCompressedClassPointers) { 5150 encode_klass_not_null(src); 5151 strw(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5152 } else { 5153 str(src, Address(dst, oopDesc::klass_offset_in_bytes())); 5154 } 5155 } 5156 5157 void MacroAssembler::store_klass_gap(Register dst, Register src) { 5158 assert(!UseCompactObjectHeaders, "not with compact headers"); 5159 if (UseCompressedClassPointers) { 5160 // Store to klass gap in destination 5161 strw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes())); 5162 } 5163 } 5164 5165 // Algorithm must match CompressedOops::encode. 5166 void MacroAssembler::encode_heap_oop(Register d, Register s) { 5167 #ifdef ASSERT 5168 verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?"); 5169 #endif 5170 verify_oop_msg(s, "broken oop in encode_heap_oop"); 5171 if (CompressedOops::base() == nullptr) { 5172 if (CompressedOops::shift() != 0) { 5173 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5174 lsr(d, s, LogMinObjAlignmentInBytes); 5175 } else { 5176 mov(d, s); 5177 } 5178 } else { 5179 subs(d, s, rheapbase); 5180 csel(d, d, zr, Assembler::HS); 5181 lsr(d, d, LogMinObjAlignmentInBytes); 5182 5183 /* Old algorithm: is this any worse? 5184 Label nonnull; 5185 cbnz(r, nonnull); 5186 sub(r, r, rheapbase); 5187 bind(nonnull); 5188 lsr(r, r, LogMinObjAlignmentInBytes); 5189 */ 5190 } 5191 } 5192 5193 void MacroAssembler::encode_heap_oop_not_null(Register r) { 5194 #ifdef ASSERT 5195 verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?"); 5196 if (CheckCompressedOops) { 5197 Label ok; 5198 cbnz(r, ok); 5199 stop("null oop passed to encode_heap_oop_not_null"); 5200 bind(ok); 5201 } 5202 #endif 5203 verify_oop_msg(r, "broken oop in encode_heap_oop_not_null"); 5204 if (CompressedOops::base() != nullptr) { 5205 sub(r, r, rheapbase); 5206 } 5207 if (CompressedOops::shift() != 0) { 5208 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5209 lsr(r, r, LogMinObjAlignmentInBytes); 5210 } 5211 } 5212 5213 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) { 5214 #ifdef ASSERT 5215 verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?"); 5216 if (CheckCompressedOops) { 5217 Label ok; 5218 cbnz(src, ok); 5219 stop("null oop passed to encode_heap_oop_not_null2"); 5220 bind(ok); 5221 } 5222 #endif 5223 verify_oop_msg(src, "broken oop in encode_heap_oop_not_null2"); 5224 5225 Register data = src; 5226 if (CompressedOops::base() != nullptr) { 5227 sub(dst, src, rheapbase); 5228 data = dst; 5229 } 5230 if (CompressedOops::shift() != 0) { 5231 assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5232 lsr(dst, data, LogMinObjAlignmentInBytes); 5233 data = dst; 5234 } 5235 if (data == src) 5236 mov(dst, src); 5237 } 5238 5239 void MacroAssembler::decode_heap_oop(Register d, Register s) { 5240 #ifdef ASSERT 5241 verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?"); 5242 #endif 5243 if (CompressedOops::base() == nullptr) { 5244 if (CompressedOops::shift() != 0) { 5245 lsl(d, s, CompressedOops::shift()); 5246 } else if (d != s) { 5247 mov(d, s); 5248 } 5249 } else { 5250 Label done; 5251 if (d != s) 5252 mov(d, s); 5253 cbz(s, done); 5254 add(d, rheapbase, s, Assembler::LSL, LogMinObjAlignmentInBytes); 5255 bind(done); 5256 } 5257 verify_oop_msg(d, "broken oop in decode_heap_oop"); 5258 } 5259 5260 void MacroAssembler::decode_heap_oop_not_null(Register r) { 5261 assert (UseCompressedOops, "should only be used for compressed headers"); 5262 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5263 // Cannot assert, unverified entry point counts instructions (see .ad file) 5264 // vtableStubs also counts instructions in pd_code_size_limit. 5265 // Also do not verify_oop as this is called by verify_oop. 5266 if (CompressedOops::shift() != 0) { 5267 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5268 if (CompressedOops::base() != nullptr) { 5269 add(r, rheapbase, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5270 } else { 5271 add(r, zr, r, Assembler::LSL, LogMinObjAlignmentInBytes); 5272 } 5273 } else { 5274 assert (CompressedOops::base() == nullptr, "sanity"); 5275 } 5276 } 5277 5278 void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) { 5279 assert (UseCompressedOops, "should only be used for compressed headers"); 5280 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5281 // Cannot assert, unverified entry point counts instructions (see .ad file) 5282 // vtableStubs also counts instructions in pd_code_size_limit. 5283 // Also do not verify_oop as this is called by verify_oop. 5284 if (CompressedOops::shift() != 0) { 5285 assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong"); 5286 if (CompressedOops::base() != nullptr) { 5287 add(dst, rheapbase, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5288 } else { 5289 add(dst, zr, src, Assembler::LSL, LogMinObjAlignmentInBytes); 5290 } 5291 } else { 5292 assert (CompressedOops::base() == nullptr, "sanity"); 5293 if (dst != src) { 5294 mov(dst, src); 5295 } 5296 } 5297 } 5298 5299 MacroAssembler::KlassDecodeMode MacroAssembler::_klass_decode_mode(KlassDecodeNone); 5300 5301 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode() { 5302 assert(Metaspace::initialized(), "metaspace not initialized yet"); 5303 assert(_klass_decode_mode != KlassDecodeNone, "should be initialized"); 5304 return _klass_decode_mode; 5305 } 5306 5307 MacroAssembler::KlassDecodeMode MacroAssembler::klass_decode_mode(address base, int shift, const size_t range) { 5308 assert(UseCompressedClassPointers, "not using compressed class pointers"); 5309 5310 // KlassDecodeMode shouldn't be set already. 5311 assert(_klass_decode_mode == KlassDecodeNone, "set once"); 5312 5313 if (base == nullptr) { 5314 return KlassDecodeZero; 5315 } 5316 5317 if (operand_valid_for_logical_immediate( 5318 /*is32*/false, (uint64_t)base)) { 5319 const uint64_t range_mask = right_n_bits(log2i_ceil(range)); 5320 if (((uint64_t)base & range_mask) == 0) { 5321 return KlassDecodeXor; 5322 } 5323 } 5324 5325 const uint64_t shifted_base = 5326 (uint64_t)base >> shift; 5327 if ((shifted_base & 0xffff0000ffffffff) == 0) { 5328 return KlassDecodeMovk; 5329 } 5330 5331 // No valid encoding. 5332 return KlassDecodeNone; 5333 } 5334 5335 // Check if one of the above decoding modes will work for given base, shift and range. 5336 bool MacroAssembler::check_klass_decode_mode(address base, int shift, const size_t range) { 5337 return klass_decode_mode(base, shift, range) != KlassDecodeNone; 5338 } 5339 5340 bool MacroAssembler::set_klass_decode_mode(address base, int shift, const size_t range) { 5341 _klass_decode_mode = klass_decode_mode(base, shift, range); 5342 return _klass_decode_mode != KlassDecodeNone; 5343 } 5344 5345 void MacroAssembler::encode_klass_not_null(Register dst, Register src) { 5346 switch (klass_decode_mode()) { 5347 case KlassDecodeZero: 5348 if (CompressedKlassPointers::shift() != 0) { 5349 lsr(dst, src, CompressedKlassPointers::shift()); 5350 } else { 5351 if (dst != src) mov(dst, src); 5352 } 5353 break; 5354 5355 case KlassDecodeXor: 5356 if (CompressedKlassPointers::shift() != 0) { 5357 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5358 lsr(dst, dst, CompressedKlassPointers::shift()); 5359 } else { 5360 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5361 } 5362 break; 5363 5364 case KlassDecodeMovk: 5365 if (CompressedKlassPointers::shift() != 0) { 5366 ubfx(dst, src, CompressedKlassPointers::shift(), 32); 5367 } else { 5368 movw(dst, src); 5369 } 5370 break; 5371 5372 case KlassDecodeNone: 5373 ShouldNotReachHere(); 5374 break; 5375 } 5376 } 5377 5378 void MacroAssembler::encode_klass_not_null(Register r) { 5379 encode_klass_not_null(r, r); 5380 } 5381 5382 void MacroAssembler::decode_klass_not_null(Register dst, Register src) { 5383 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5384 5385 switch (klass_decode_mode()) { 5386 case KlassDecodeZero: 5387 if (CompressedKlassPointers::shift() != 0) { 5388 lsl(dst, src, CompressedKlassPointers::shift()); 5389 } else { 5390 if (dst != src) mov(dst, src); 5391 } 5392 break; 5393 5394 case KlassDecodeXor: 5395 if (CompressedKlassPointers::shift() != 0) { 5396 lsl(dst, src, CompressedKlassPointers::shift()); 5397 eor(dst, dst, (uint64_t)CompressedKlassPointers::base()); 5398 } else { 5399 eor(dst, src, (uint64_t)CompressedKlassPointers::base()); 5400 } 5401 break; 5402 5403 case KlassDecodeMovk: { 5404 const uint64_t shifted_base = 5405 (uint64_t)CompressedKlassPointers::base() >> CompressedKlassPointers::shift(); 5406 5407 if (dst != src) movw(dst, src); 5408 movk(dst, shifted_base >> 32, 32); 5409 5410 if (CompressedKlassPointers::shift() != 0) { 5411 lsl(dst, dst, CompressedKlassPointers::shift()); 5412 } 5413 5414 break; 5415 } 5416 5417 case KlassDecodeNone: 5418 ShouldNotReachHere(); 5419 break; 5420 } 5421 } 5422 5423 void MacroAssembler::decode_klass_not_null(Register r) { 5424 decode_klass_not_null(r, r); 5425 } 5426 5427 void MacroAssembler::set_narrow_oop(Register dst, jobject obj) { 5428 #ifdef ASSERT 5429 { 5430 ThreadInVMfromUnknown tiv; 5431 assert (UseCompressedOops, "should only be used for compressed oops"); 5432 assert (Universe::heap() != nullptr, "java heap should be initialized"); 5433 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5434 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5435 } 5436 #endif 5437 int oop_index = oop_recorder()->find_index(obj); 5438 InstructionMark im(this); 5439 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5440 code_section()->relocate(inst_mark(), rspec); 5441 movz(dst, 0xDEAD, 16); 5442 movk(dst, 0xBEEF); 5443 } 5444 5445 void MacroAssembler::set_narrow_klass(Register dst, Klass* k) { 5446 assert (UseCompressedClassPointers, "should only be used for compressed headers"); 5447 assert (oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5448 int index = oop_recorder()->find_index(k); 5449 assert(! Universe::heap()->is_in(k), "should not be an oop"); 5450 5451 InstructionMark im(this); 5452 RelocationHolder rspec = metadata_Relocation::spec(index); 5453 code_section()->relocate(inst_mark(), rspec); 5454 narrowKlass nk = CompressedKlassPointers::encode(k); 5455 movz(dst, (nk >> 16), 16); 5456 movk(dst, nk & 0xffff); 5457 } 5458 5459 void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators, 5460 Register dst, Address src, 5461 Register tmp1, Register tmp2) { 5462 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5463 decorators = AccessInternal::decorator_fixup(decorators, type); 5464 bool as_raw = (decorators & AS_RAW) != 0; 5465 if (as_raw) { 5466 bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, tmp2); 5467 } else { 5468 bs->load_at(this, decorators, type, dst, src, tmp1, tmp2); 5469 } 5470 } 5471 5472 void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators, 5473 Address dst, Register val, 5474 Register tmp1, Register tmp2, Register tmp3) { 5475 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5476 decorators = AccessInternal::decorator_fixup(decorators, type); 5477 bool as_raw = (decorators & AS_RAW) != 0; 5478 if (as_raw) { 5479 bs->BarrierSetAssembler::store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5480 } else { 5481 bs->store_at(this, decorators, type, dst, val, tmp1, tmp2, tmp3); 5482 } 5483 } 5484 5485 void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1, 5486 Register tmp2, DecoratorSet decorators) { 5487 access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, tmp2); 5488 } 5489 5490 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1, 5491 Register tmp2, DecoratorSet decorators) { 5492 access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL | decorators, dst, src, tmp1, tmp2); 5493 } 5494 5495 void MacroAssembler::store_heap_oop(Address dst, Register val, Register tmp1, 5496 Register tmp2, Register tmp3, DecoratorSet decorators) { 5497 access_store_at(T_OBJECT, IN_HEAP | decorators, dst, val, tmp1, tmp2, tmp3); 5498 } 5499 5500 // Used for storing nulls. 5501 void MacroAssembler::store_heap_oop_null(Address dst) { 5502 access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg, noreg); 5503 } 5504 5505 Address MacroAssembler::allocate_metadata_address(Metadata* obj) { 5506 assert(oop_recorder() != nullptr, "this assembler needs a Recorder"); 5507 int index = oop_recorder()->allocate_metadata_index(obj); 5508 RelocationHolder rspec = metadata_Relocation::spec(index); 5509 return Address((address)obj, rspec); 5510 } 5511 5512 // Move an oop into a register. 5513 void MacroAssembler::movoop(Register dst, jobject obj) { 5514 int oop_index; 5515 if (obj == nullptr) { 5516 oop_index = oop_recorder()->allocate_oop_index(obj); 5517 } else { 5518 #ifdef ASSERT 5519 { 5520 ThreadInVMfromUnknown tiv; 5521 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop"); 5522 } 5523 #endif 5524 oop_index = oop_recorder()->find_index(obj); 5525 } 5526 RelocationHolder rspec = oop_Relocation::spec(oop_index); 5527 5528 if (BarrierSet::barrier_set()->barrier_set_assembler()->supports_instruction_patching()) { 5529 mov(dst, Address((address)obj, rspec)); 5530 } else { 5531 address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address 5532 ldr(dst, Address(dummy, rspec)); 5533 } 5534 } 5535 5536 // Move a metadata address into a register. 5537 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) { 5538 int oop_index; 5539 if (obj == nullptr) { 5540 oop_index = oop_recorder()->allocate_metadata_index(obj); 5541 } else { 5542 oop_index = oop_recorder()->find_index(obj); 5543 } 5544 RelocationHolder rspec = metadata_Relocation::spec(oop_index); 5545 mov(dst, Address((address)obj, rspec)); 5546 } 5547 5548 Address MacroAssembler::constant_oop_address(jobject obj) { 5549 #ifdef ASSERT 5550 { 5551 ThreadInVMfromUnknown tiv; 5552 assert(oop_recorder() != nullptr, "this assembler needs an OopRecorder"); 5553 assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "not an oop"); 5554 } 5555 #endif 5556 int oop_index = oop_recorder()->find_index(obj); 5557 return Address((address)obj, oop_Relocation::spec(oop_index)); 5558 } 5559 5560 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes. 5561 void MacroAssembler::tlab_allocate(Register obj, 5562 Register var_size_in_bytes, 5563 int con_size_in_bytes, 5564 Register t1, 5565 Register t2, 5566 Label& slow_case) { 5567 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 5568 bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); 5569 } 5570 5571 void MacroAssembler::inc_held_monitor_count(Register tmp) { 5572 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5573 #ifdef ASSERT 5574 ldr(tmp, dst); 5575 increment(tmp); 5576 str(tmp, dst); 5577 Label ok; 5578 tbz(tmp, 63, ok); 5579 STOP("assert(held monitor count underflow)"); 5580 should_not_reach_here(); 5581 bind(ok); 5582 #else 5583 increment(dst); 5584 #endif 5585 } 5586 5587 void MacroAssembler::dec_held_monitor_count(Register tmp) { 5588 Address dst(rthread, JavaThread::held_monitor_count_offset()); 5589 #ifdef ASSERT 5590 ldr(tmp, dst); 5591 decrement(tmp); 5592 str(tmp, dst); 5593 Label ok; 5594 tbz(tmp, 63, ok); 5595 STOP("assert(held monitor count underflow)"); 5596 should_not_reach_here(); 5597 bind(ok); 5598 #else 5599 decrement(dst); 5600 #endif 5601 } 5602 5603 void MacroAssembler::verify_tlab() { 5604 #ifdef ASSERT 5605 if (UseTLAB && VerifyOops) { 5606 Label next, ok; 5607 5608 stp(rscratch2, rscratch1, Address(pre(sp, -16))); 5609 5610 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5611 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_start_offset()))); 5612 cmp(rscratch2, rscratch1); 5613 br(Assembler::HS, next); 5614 STOP("assert(top >= start)"); 5615 should_not_reach_here(); 5616 5617 bind(next); 5618 ldr(rscratch2, Address(rthread, in_bytes(JavaThread::tlab_end_offset()))); 5619 ldr(rscratch1, Address(rthread, in_bytes(JavaThread::tlab_top_offset()))); 5620 cmp(rscratch2, rscratch1); 5621 br(Assembler::HS, ok); 5622 STOP("assert(top <= end)"); 5623 should_not_reach_here(); 5624 5625 bind(ok); 5626 ldp(rscratch2, rscratch1, Address(post(sp, 16))); 5627 } 5628 #endif 5629 } 5630 5631 // Writes to stack successive pages until offset reached to check for 5632 // stack overflow + shadow pages. This clobbers tmp. 5633 void MacroAssembler::bang_stack_size(Register size, Register tmp) { 5634 assert_different_registers(tmp, size, rscratch1); 5635 mov(tmp, sp); 5636 // Bang stack for total size given plus shadow page size. 5637 // Bang one page at a time because large size can bang beyond yellow and 5638 // red zones. 5639 Label loop; 5640 mov(rscratch1, (int)os::vm_page_size()); 5641 bind(loop); 5642 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5643 subsw(size, size, rscratch1); 5644 str(size, Address(tmp)); 5645 br(Assembler::GT, loop); 5646 5647 // Bang down shadow pages too. 5648 // At this point, (tmp-0) is the last address touched, so don't 5649 // touch it again. (It was touched as (tmp-pagesize) but then tmp 5650 // was post-decremented.) Skip this address by starting at i=1, and 5651 // touch a few more pages below. N.B. It is important to touch all 5652 // the way down to and including i=StackShadowPages. 5653 for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / (int)os::vm_page_size()) - 1; i++) { 5654 // this could be any sized move but this is can be a debugging crumb 5655 // so the bigger the better. 5656 lea(tmp, Address(tmp, -(int)os::vm_page_size())); 5657 str(size, Address(tmp)); 5658 } 5659 } 5660 5661 // Move the address of the polling page into dest. 5662 void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) { 5663 ldr(dest, Address(rthread, JavaThread::polling_page_offset())); 5664 } 5665 5666 // Read the polling page. The address of the polling page must 5667 // already be in r. 5668 address MacroAssembler::read_polling_page(Register r, relocInfo::relocType rtype) { 5669 address mark; 5670 { 5671 InstructionMark im(this); 5672 code_section()->relocate(inst_mark(), rtype); 5673 ldrw(zr, Address(r, 0)); 5674 mark = inst_mark(); 5675 } 5676 verify_cross_modify_fence_not_required(); 5677 return mark; 5678 } 5679 5680 void MacroAssembler::adrp(Register reg1, const Address &dest, uint64_t &byte_offset) { 5681 relocInfo::relocType rtype = dest.rspec().reloc()->type(); 5682 uint64_t low_page = (uint64_t)CodeCache::low_bound() >> 12; 5683 uint64_t high_page = (uint64_t)(CodeCache::high_bound()-1) >> 12; 5684 uint64_t dest_page = (uint64_t)dest.target() >> 12; 5685 int64_t offset_low = dest_page - low_page; 5686 int64_t offset_high = dest_page - high_page; 5687 5688 assert(is_valid_AArch64_address(dest.target()), "bad address"); 5689 assert(dest.getMode() == Address::literal, "ADRP must be applied to a literal address"); 5690 5691 InstructionMark im(this); 5692 code_section()->relocate(inst_mark(), dest.rspec()); 5693 // 8143067: Ensure that the adrp can reach the dest from anywhere within 5694 // the code cache so that if it is relocated we know it will still reach 5695 if (offset_high >= -(1<<20) && offset_low < (1<<20)) { 5696 _adrp(reg1, dest.target()); 5697 } else { 5698 uint64_t target = (uint64_t)dest.target(); 5699 uint64_t adrp_target 5700 = (target & 0xffffffffULL) | ((uint64_t)pc() & 0xffff00000000ULL); 5701 5702 _adrp(reg1, (address)adrp_target); 5703 movk(reg1, target >> 32, 32); 5704 } 5705 byte_offset = (uint64_t)dest.target() & 0xfff; 5706 } 5707 5708 void MacroAssembler::load_byte_map_base(Register reg) { 5709 CardTable::CardValue* byte_map_base = 5710 ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base(); 5711 5712 // Strictly speaking the byte_map_base isn't an address at all, and it might 5713 // even be negative. It is thus materialised as a constant. 5714 mov(reg, (uint64_t)byte_map_base); 5715 } 5716 5717 void MacroAssembler::build_frame(int framesize) { 5718 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5719 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5720 protect_return_address(); 5721 if (framesize < ((1 << 9) + 2 * wordSize)) { 5722 sub(sp, sp, framesize); 5723 stp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5724 if (PreserveFramePointer) add(rfp, sp, framesize - 2 * wordSize); 5725 } else { 5726 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 5727 if (PreserveFramePointer) mov(rfp, sp); 5728 if (framesize < ((1 << 12) + 2 * wordSize)) 5729 sub(sp, sp, framesize - 2 * wordSize); 5730 else { 5731 mov(rscratch1, framesize - 2 * wordSize); 5732 sub(sp, sp, rscratch1); 5733 } 5734 } 5735 verify_cross_modify_fence_not_required(); 5736 } 5737 5738 void MacroAssembler::remove_frame(int framesize) { 5739 assert(framesize >= 2 * wordSize, "framesize must include space for FP/LR"); 5740 assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment"); 5741 if (framesize < ((1 << 9) + 2 * wordSize)) { 5742 ldp(rfp, lr, Address(sp, framesize - 2 * wordSize)); 5743 add(sp, sp, framesize); 5744 } else { 5745 if (framesize < ((1 << 12) + 2 * wordSize)) 5746 add(sp, sp, framesize - 2 * wordSize); 5747 else { 5748 mov(rscratch1, framesize - 2 * wordSize); 5749 add(sp, sp, rscratch1); 5750 } 5751 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 5752 } 5753 authenticate_return_address(); 5754 } 5755 5756 5757 // This method counts leading positive bytes (highest bit not set) in provided byte array 5758 address MacroAssembler::count_positives(Register ary1, Register len, Register result) { 5759 // Simple and most common case of aligned small array which is not at the 5760 // end of memory page is placed here. All other cases are in stub. 5761 Label LOOP, END, STUB, STUB_LONG, SET_RESULT, DONE; 5762 const uint64_t UPPER_BIT_MASK=0x8080808080808080; 5763 assert_different_registers(ary1, len, result); 5764 5765 mov(result, len); 5766 cmpw(len, 0); 5767 br(LE, DONE); 5768 cmpw(len, 4 * wordSize); 5769 br(GE, STUB_LONG); // size > 32 then go to stub 5770 5771 int shift = 64 - exact_log2(os::vm_page_size()); 5772 lsl(rscratch1, ary1, shift); 5773 mov(rscratch2, (size_t)(4 * wordSize) << shift); 5774 adds(rscratch2, rscratch1, rscratch2); // At end of page? 5775 br(CS, STUB); // at the end of page then go to stub 5776 subs(len, len, wordSize); 5777 br(LT, END); 5778 5779 BIND(LOOP); 5780 ldr(rscratch1, Address(post(ary1, wordSize))); 5781 tst(rscratch1, UPPER_BIT_MASK); 5782 br(NE, SET_RESULT); 5783 subs(len, len, wordSize); 5784 br(GE, LOOP); 5785 cmpw(len, -wordSize); 5786 br(EQ, DONE); 5787 5788 BIND(END); 5789 ldr(rscratch1, Address(ary1)); 5790 sub(rscratch2, zr, len, LSL, 3); // LSL 3 is to get bits from bytes 5791 lslv(rscratch1, rscratch1, rscratch2); 5792 tst(rscratch1, UPPER_BIT_MASK); 5793 br(NE, SET_RESULT); 5794 b(DONE); 5795 5796 BIND(STUB); 5797 RuntimeAddress count_pos = RuntimeAddress(StubRoutines::aarch64::count_positives()); 5798 assert(count_pos.target() != nullptr, "count_positives stub has not been generated"); 5799 address tpc1 = trampoline_call(count_pos); 5800 if (tpc1 == nullptr) { 5801 DEBUG_ONLY(reset_labels(STUB_LONG, SET_RESULT, DONE)); 5802 postcond(pc() == badAddress); 5803 return nullptr; 5804 } 5805 b(DONE); 5806 5807 BIND(STUB_LONG); 5808 RuntimeAddress count_pos_long = RuntimeAddress(StubRoutines::aarch64::count_positives_long()); 5809 assert(count_pos_long.target() != nullptr, "count_positives_long stub has not been generated"); 5810 address tpc2 = trampoline_call(count_pos_long); 5811 if (tpc2 == nullptr) { 5812 DEBUG_ONLY(reset_labels(SET_RESULT, DONE)); 5813 postcond(pc() == badAddress); 5814 return nullptr; 5815 } 5816 b(DONE); 5817 5818 BIND(SET_RESULT); 5819 5820 add(len, len, wordSize); 5821 sub(result, result, len); 5822 5823 BIND(DONE); 5824 postcond(pc() != badAddress); 5825 return pc(); 5826 } 5827 5828 // Clobbers: rscratch1, rscratch2, rflags 5829 // May also clobber v0-v7 when (!UseSimpleArrayEquals && UseSIMDForArrayEquals) 5830 address MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3, 5831 Register tmp4, Register tmp5, Register result, 5832 Register cnt1, int elem_size) { 5833 Label DONE, SAME; 5834 Register tmp1 = rscratch1; 5835 Register tmp2 = rscratch2; 5836 int elem_per_word = wordSize/elem_size; 5837 int log_elem_size = exact_log2(elem_size); 5838 int klass_offset = arrayOopDesc::klass_offset_in_bytes(); 5839 int length_offset = arrayOopDesc::length_offset_in_bytes(); 5840 int base_offset 5841 = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE); 5842 // When the length offset is not aligned to 8 bytes, 5843 // then we align it down. This is valid because the new 5844 // offset will always be the klass which is the same 5845 // for type arrays. 5846 int start_offset = align_down(length_offset, BytesPerWord); 5847 int extra_length = base_offset - start_offset; 5848 assert(start_offset == length_offset || start_offset == klass_offset, 5849 "start offset must be 8-byte-aligned or be the klass offset"); 5850 assert(base_offset != start_offset, "must include the length field"); 5851 extra_length = extra_length / elem_size; // We count in elements, not bytes. 5852 int stubBytesThreshold = 3 * 64 + (UseSIMDForArrayEquals ? 0 : 16); 5853 5854 assert(elem_size == 1 || elem_size == 2, "must be char or byte"); 5855 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 5856 5857 #ifndef PRODUCT 5858 { 5859 const char kind = (elem_size == 2) ? 'U' : 'L'; 5860 char comment[64]; 5861 snprintf(comment, sizeof comment, "array_equals%c{", kind); 5862 BLOCK_COMMENT(comment); 5863 } 5864 #endif 5865 5866 // if (a1 == a2) 5867 // return true; 5868 cmpoop(a1, a2); // May have read barriers for a1 and a2. 5869 br(EQ, SAME); 5870 5871 if (UseSimpleArrayEquals) { 5872 Label NEXT_WORD, SHORT, TAIL03, TAIL01, A_MIGHT_BE_NULL, A_IS_NOT_NULL; 5873 // if (a1 == nullptr || a2 == nullptr) 5874 // return false; 5875 // a1 & a2 == 0 means (some-pointer is null) or 5876 // (very-rare-or-even-probably-impossible-pointer-values) 5877 // so, we can save one branch in most cases 5878 tst(a1, a2); 5879 mov(result, false); 5880 br(EQ, A_MIGHT_BE_NULL); 5881 // if (a1.length != a2.length) 5882 // return false; 5883 bind(A_IS_NOT_NULL); 5884 ldrw(cnt1, Address(a1, length_offset)); 5885 // Increase loop counter by diff between base- and actual start-offset. 5886 addw(cnt1, cnt1, extra_length); 5887 lea(a1, Address(a1, start_offset)); 5888 lea(a2, Address(a2, start_offset)); 5889 // Check for short strings, i.e. smaller than wordSize. 5890 subs(cnt1, cnt1, elem_per_word); 5891 br(Assembler::LT, SHORT); 5892 // Main 8 byte comparison loop. 5893 bind(NEXT_WORD); { 5894 ldr(tmp1, Address(post(a1, wordSize))); 5895 ldr(tmp2, Address(post(a2, wordSize))); 5896 subs(cnt1, cnt1, elem_per_word); 5897 eor(tmp5, tmp1, tmp2); 5898 cbnz(tmp5, DONE); 5899 } br(GT, NEXT_WORD); 5900 // Last longword. In the case where length == 4 we compare the 5901 // same longword twice, but that's still faster than another 5902 // conditional branch. 5903 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 5904 // length == 4. 5905 if (log_elem_size > 0) 5906 lsl(cnt1, cnt1, log_elem_size); 5907 ldr(tmp3, Address(a1, cnt1)); 5908 ldr(tmp4, Address(a2, cnt1)); 5909 eor(tmp5, tmp3, tmp4); 5910 cbnz(tmp5, DONE); 5911 b(SAME); 5912 bind(A_MIGHT_BE_NULL); 5913 // in case both a1 and a2 are not-null, proceed with loads 5914 cbz(a1, DONE); 5915 cbz(a2, DONE); 5916 b(A_IS_NOT_NULL); 5917 bind(SHORT); 5918 5919 tbz(cnt1, 2 - log_elem_size, TAIL03); // 0-7 bytes left. 5920 { 5921 ldrw(tmp1, Address(post(a1, 4))); 5922 ldrw(tmp2, Address(post(a2, 4))); 5923 eorw(tmp5, tmp1, tmp2); 5924 cbnzw(tmp5, DONE); 5925 } 5926 bind(TAIL03); 5927 tbz(cnt1, 1 - log_elem_size, TAIL01); // 0-3 bytes left. 5928 { 5929 ldrh(tmp3, Address(post(a1, 2))); 5930 ldrh(tmp4, Address(post(a2, 2))); 5931 eorw(tmp5, tmp3, tmp4); 5932 cbnzw(tmp5, DONE); 5933 } 5934 bind(TAIL01); 5935 if (elem_size == 1) { // Only needed when comparing byte arrays. 5936 tbz(cnt1, 0, SAME); // 0-1 bytes left. 5937 { 5938 ldrb(tmp1, a1); 5939 ldrb(tmp2, a2); 5940 eorw(tmp5, tmp1, tmp2); 5941 cbnzw(tmp5, DONE); 5942 } 5943 } 5944 } else { 5945 Label NEXT_DWORD, SHORT, TAIL, TAIL2, STUB, 5946 CSET_EQ, LAST_CHECK; 5947 mov(result, false); 5948 cbz(a1, DONE); 5949 ldrw(cnt1, Address(a1, length_offset)); 5950 cbz(a2, DONE); 5951 // Increase loop counter by diff between base- and actual start-offset. 5952 addw(cnt1, cnt1, extra_length); 5953 5954 // on most CPUs a2 is still "locked"(surprisingly) in ldrw and it's 5955 // faster to perform another branch before comparing a1 and a2 5956 cmp(cnt1, (u1)elem_per_word); 5957 br(LE, SHORT); // short or same 5958 ldr(tmp3, Address(pre(a1, start_offset))); 5959 subs(zr, cnt1, stubBytesThreshold); 5960 br(GE, STUB); 5961 ldr(tmp4, Address(pre(a2, start_offset))); 5962 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 5963 5964 // Main 16 byte comparison loop with 2 exits 5965 bind(NEXT_DWORD); { 5966 ldr(tmp1, Address(pre(a1, wordSize))); 5967 ldr(tmp2, Address(pre(a2, wordSize))); 5968 subs(cnt1, cnt1, 2 * elem_per_word); 5969 br(LE, TAIL); 5970 eor(tmp4, tmp3, tmp4); 5971 cbnz(tmp4, DONE); 5972 ldr(tmp3, Address(pre(a1, wordSize))); 5973 ldr(tmp4, Address(pre(a2, wordSize))); 5974 cmp(cnt1, (u1)elem_per_word); 5975 br(LE, TAIL2); 5976 cmp(tmp1, tmp2); 5977 } br(EQ, NEXT_DWORD); 5978 b(DONE); 5979 5980 bind(TAIL); 5981 eor(tmp4, tmp3, tmp4); 5982 eor(tmp2, tmp1, tmp2); 5983 lslv(tmp2, tmp2, tmp5); 5984 orr(tmp5, tmp4, tmp2); 5985 cmp(tmp5, zr); 5986 b(CSET_EQ); 5987 5988 bind(TAIL2); 5989 eor(tmp2, tmp1, tmp2); 5990 cbnz(tmp2, DONE); 5991 b(LAST_CHECK); 5992 5993 bind(STUB); 5994 ldr(tmp4, Address(pre(a2, start_offset))); 5995 if (elem_size == 2) { // convert to byte counter 5996 lsl(cnt1, cnt1, 1); 5997 } 5998 eor(tmp5, tmp3, tmp4); 5999 cbnz(tmp5, DONE); 6000 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_array_equals()); 6001 assert(stub.target() != nullptr, "array_equals_long stub has not been generated"); 6002 address tpc = trampoline_call(stub); 6003 if (tpc == nullptr) { 6004 DEBUG_ONLY(reset_labels(SHORT, LAST_CHECK, CSET_EQ, SAME, DONE)); 6005 postcond(pc() == badAddress); 6006 return nullptr; 6007 } 6008 b(DONE); 6009 6010 // (a1 != null && a2 == null) || (a1 != null && a2 != null && a1 == a2) 6011 // so, if a2 == null => return false(0), else return true, so we can return a2 6012 mov(result, a2); 6013 b(DONE); 6014 bind(SHORT); 6015 sub(tmp5, zr, cnt1, LSL, 3 + log_elem_size); 6016 ldr(tmp3, Address(a1, start_offset)); 6017 ldr(tmp4, Address(a2, start_offset)); 6018 bind(LAST_CHECK); 6019 eor(tmp4, tmp3, tmp4); 6020 lslv(tmp5, tmp4, tmp5); 6021 cmp(tmp5, zr); 6022 bind(CSET_EQ); 6023 cset(result, EQ); 6024 b(DONE); 6025 } 6026 6027 bind(SAME); 6028 mov(result, true); 6029 // That's it. 6030 bind(DONE); 6031 6032 BLOCK_COMMENT("} array_equals"); 6033 postcond(pc() != badAddress); 6034 return pc(); 6035 } 6036 6037 // Compare Strings 6038 6039 // For Strings we're passed the address of the first characters in a1 6040 // and a2 and the length in cnt1. 6041 // There are two implementations. For arrays >= 8 bytes, all 6042 // comparisons (including the final one, which may overlap) are 6043 // performed 8 bytes at a time. For strings < 8 bytes, we compare a 6044 // halfword, then a short, and then a byte. 6045 6046 void MacroAssembler::string_equals(Register a1, Register a2, 6047 Register result, Register cnt1) 6048 { 6049 Label SAME, DONE, SHORT, NEXT_WORD; 6050 Register tmp1 = rscratch1; 6051 Register tmp2 = rscratch2; 6052 Register cnt2 = tmp2; // cnt2 only used in array length compare 6053 6054 assert_different_registers(a1, a2, result, cnt1, rscratch1, rscratch2); 6055 6056 #ifndef PRODUCT 6057 { 6058 char comment[64]; 6059 snprintf(comment, sizeof comment, "{string_equalsL"); 6060 BLOCK_COMMENT(comment); 6061 } 6062 #endif 6063 6064 mov(result, false); 6065 6066 // Check for short strings, i.e. smaller than wordSize. 6067 subs(cnt1, cnt1, wordSize); 6068 br(Assembler::LT, SHORT); 6069 // Main 8 byte comparison loop. 6070 bind(NEXT_WORD); { 6071 ldr(tmp1, Address(post(a1, wordSize))); 6072 ldr(tmp2, Address(post(a2, wordSize))); 6073 subs(cnt1, cnt1, wordSize); 6074 eor(tmp1, tmp1, tmp2); 6075 cbnz(tmp1, DONE); 6076 } br(GT, NEXT_WORD); 6077 // Last longword. In the case where length == 4 we compare the 6078 // same longword twice, but that's still faster than another 6079 // conditional branch. 6080 // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when 6081 // length == 4. 6082 ldr(tmp1, Address(a1, cnt1)); 6083 ldr(tmp2, Address(a2, cnt1)); 6084 eor(tmp2, tmp1, tmp2); 6085 cbnz(tmp2, DONE); 6086 b(SAME); 6087 6088 bind(SHORT); 6089 Label TAIL03, TAIL01; 6090 6091 tbz(cnt1, 2, TAIL03); // 0-7 bytes left. 6092 { 6093 ldrw(tmp1, Address(post(a1, 4))); 6094 ldrw(tmp2, Address(post(a2, 4))); 6095 eorw(tmp1, tmp1, tmp2); 6096 cbnzw(tmp1, DONE); 6097 } 6098 bind(TAIL03); 6099 tbz(cnt1, 1, TAIL01); // 0-3 bytes left. 6100 { 6101 ldrh(tmp1, Address(post(a1, 2))); 6102 ldrh(tmp2, Address(post(a2, 2))); 6103 eorw(tmp1, tmp1, tmp2); 6104 cbnzw(tmp1, DONE); 6105 } 6106 bind(TAIL01); 6107 tbz(cnt1, 0, SAME); // 0-1 bytes left. 6108 { 6109 ldrb(tmp1, a1); 6110 ldrb(tmp2, a2); 6111 eorw(tmp1, tmp1, tmp2); 6112 cbnzw(tmp1, DONE); 6113 } 6114 // Arrays are equal. 6115 bind(SAME); 6116 mov(result, true); 6117 6118 // That's it. 6119 bind(DONE); 6120 BLOCK_COMMENT("} string_equals"); 6121 } 6122 6123 6124 // The size of the blocks erased by the zero_blocks stub. We must 6125 // handle anything smaller than this ourselves in zero_words(). 6126 const int MacroAssembler::zero_words_block_size = 8; 6127 6128 // zero_words() is used by C2 ClearArray patterns and by 6129 // C1_MacroAssembler. It is as small as possible, handling small word 6130 // counts locally and delegating anything larger to the zero_blocks 6131 // stub. It is expanded many times in compiled code, so it is 6132 // important to keep it short. 6133 6134 // ptr: Address of a buffer to be zeroed. 6135 // cnt: Count in HeapWords. 6136 // 6137 // ptr, cnt, rscratch1, and rscratch2 are clobbered. 6138 address MacroAssembler::zero_words(Register ptr, Register cnt) 6139 { 6140 assert(is_power_of_2(zero_words_block_size), "adjust this"); 6141 6142 BLOCK_COMMENT("zero_words {"); 6143 assert(ptr == r10 && cnt == r11, "mismatch in register usage"); 6144 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6145 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6146 6147 subs(rscratch1, cnt, zero_words_block_size); 6148 Label around; 6149 br(LO, around); 6150 { 6151 RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::aarch64::zero_blocks()); 6152 assert(zero_blocks.target() != nullptr, "zero_blocks stub has not been generated"); 6153 // Make sure this is a C2 compilation. C1 allocates space only for 6154 // trampoline stubs generated by Call LIR ops, and in any case it 6155 // makes sense for a C1 compilation task to proceed as quickly as 6156 // possible. 6157 CompileTask* task; 6158 if (StubRoutines::aarch64::complete() 6159 && Thread::current()->is_Compiler_thread() 6160 && (task = ciEnv::current()->task()) 6161 && is_c2_compile(task->comp_level())) { 6162 address tpc = trampoline_call(zero_blocks); 6163 if (tpc == nullptr) { 6164 DEBUG_ONLY(reset_labels(around)); 6165 return nullptr; 6166 } 6167 } else { 6168 far_call(zero_blocks); 6169 } 6170 } 6171 bind(around); 6172 6173 // We have a few words left to do. zero_blocks has adjusted r10 and r11 6174 // for us. 6175 for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) { 6176 Label l; 6177 tbz(cnt, exact_log2(i), l); 6178 for (int j = 0; j < i; j += 2) { 6179 stp(zr, zr, post(ptr, 2 * BytesPerWord)); 6180 } 6181 bind(l); 6182 } 6183 { 6184 Label l; 6185 tbz(cnt, 0, l); 6186 str(zr, Address(ptr)); 6187 bind(l); 6188 } 6189 6190 BLOCK_COMMENT("} zero_words"); 6191 return pc(); 6192 } 6193 6194 // base: Address of a buffer to be zeroed, 8 bytes aligned. 6195 // cnt: Immediate count in HeapWords. 6196 // 6197 // r10, r11, rscratch1, and rscratch2 are clobbered. 6198 address MacroAssembler::zero_words(Register base, uint64_t cnt) 6199 { 6200 assert(wordSize <= BlockZeroingLowLimit, 6201 "increase BlockZeroingLowLimit"); 6202 address result = nullptr; 6203 if (cnt <= (uint64_t)BlockZeroingLowLimit / BytesPerWord) { 6204 #ifndef PRODUCT 6205 { 6206 char buf[64]; 6207 snprintf(buf, sizeof buf, "zero_words (count = %" PRIu64 ") {", cnt); 6208 BLOCK_COMMENT(buf); 6209 } 6210 #endif 6211 if (cnt >= 16) { 6212 uint64_t loops = cnt/16; 6213 if (loops > 1) { 6214 mov(rscratch2, loops - 1); 6215 } 6216 { 6217 Label loop; 6218 bind(loop); 6219 for (int i = 0; i < 16; i += 2) { 6220 stp(zr, zr, Address(base, i * BytesPerWord)); 6221 } 6222 add(base, base, 16 * BytesPerWord); 6223 if (loops > 1) { 6224 subs(rscratch2, rscratch2, 1); 6225 br(GE, loop); 6226 } 6227 } 6228 } 6229 cnt %= 16; 6230 int i = cnt & 1; // store any odd word to start 6231 if (i) str(zr, Address(base)); 6232 for (; i < (int)cnt; i += 2) { 6233 stp(zr, zr, Address(base, i * wordSize)); 6234 } 6235 BLOCK_COMMENT("} zero_words"); 6236 result = pc(); 6237 } else { 6238 mov(r10, base); mov(r11, cnt); 6239 result = zero_words(r10, r11); 6240 } 6241 return result; 6242 } 6243 6244 // Zero blocks of memory by using DC ZVA. 6245 // 6246 // Aligns the base address first sufficiently for DC ZVA, then uses 6247 // DC ZVA repeatedly for every full block. cnt is the size to be 6248 // zeroed in HeapWords. Returns the count of words left to be zeroed 6249 // in cnt. 6250 // 6251 // NOTE: This is intended to be used in the zero_blocks() stub. If 6252 // you want to use it elsewhere, note that cnt must be >= 2*zva_length. 6253 void MacroAssembler::zero_dcache_blocks(Register base, Register cnt) { 6254 Register tmp = rscratch1; 6255 Register tmp2 = rscratch2; 6256 int zva_length = VM_Version::zva_length(); 6257 Label initial_table_end, loop_zva; 6258 Label fini; 6259 6260 // Base must be 16 byte aligned. If not just return and let caller handle it 6261 tst(base, 0x0f); 6262 br(Assembler::NE, fini); 6263 // Align base with ZVA length. 6264 neg(tmp, base); 6265 andr(tmp, tmp, zva_length - 1); 6266 6267 // tmp: the number of bytes to be filled to align the base with ZVA length. 6268 add(base, base, tmp); 6269 sub(cnt, cnt, tmp, Assembler::ASR, 3); 6270 adr(tmp2, initial_table_end); 6271 sub(tmp2, tmp2, tmp, Assembler::LSR, 2); 6272 br(tmp2); 6273 6274 for (int i = -zva_length + 16; i < 0; i += 16) 6275 stp(zr, zr, Address(base, i)); 6276 bind(initial_table_end); 6277 6278 sub(cnt, cnt, zva_length >> 3); 6279 bind(loop_zva); 6280 dc(Assembler::ZVA, base); 6281 subs(cnt, cnt, zva_length >> 3); 6282 add(base, base, zva_length); 6283 br(Assembler::GE, loop_zva); 6284 add(cnt, cnt, zva_length >> 3); // count not zeroed by DC ZVA 6285 bind(fini); 6286 } 6287 6288 // base: Address of a buffer to be filled, 8 bytes aligned. 6289 // cnt: Count in 8-byte unit. 6290 // value: Value to be filled with. 6291 // base will point to the end of the buffer after filling. 6292 void MacroAssembler::fill_words(Register base, Register cnt, Register value) 6293 { 6294 // Algorithm: 6295 // 6296 // if (cnt == 0) { 6297 // return; 6298 // } 6299 // if ((p & 8) != 0) { 6300 // *p++ = v; 6301 // } 6302 // 6303 // scratch1 = cnt & 14; 6304 // cnt -= scratch1; 6305 // p += scratch1; 6306 // switch (scratch1 / 2) { 6307 // do { 6308 // cnt -= 16; 6309 // p[-16] = v; 6310 // p[-15] = v; 6311 // case 7: 6312 // p[-14] = v; 6313 // p[-13] = v; 6314 // case 6: 6315 // p[-12] = v; 6316 // p[-11] = v; 6317 // // ... 6318 // case 1: 6319 // p[-2] = v; 6320 // p[-1] = v; 6321 // case 0: 6322 // p += 16; 6323 // } while (cnt); 6324 // } 6325 // if ((cnt & 1) == 1) { 6326 // *p++ = v; 6327 // } 6328 6329 assert_different_registers(base, cnt, value, rscratch1, rscratch2); 6330 6331 Label fini, skip, entry, loop; 6332 const int unroll = 8; // Number of stp instructions we'll unroll 6333 6334 cbz(cnt, fini); 6335 tbz(base, 3, skip); 6336 str(value, Address(post(base, 8))); 6337 sub(cnt, cnt, 1); 6338 bind(skip); 6339 6340 andr(rscratch1, cnt, (unroll-1) * 2); 6341 sub(cnt, cnt, rscratch1); 6342 add(base, base, rscratch1, Assembler::LSL, 3); 6343 adr(rscratch2, entry); 6344 sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 1); 6345 br(rscratch2); 6346 6347 bind(loop); 6348 add(base, base, unroll * 16); 6349 for (int i = -unroll; i < 0; i++) 6350 stp(value, value, Address(base, i * 16)); 6351 bind(entry); 6352 subs(cnt, cnt, unroll * 2); 6353 br(Assembler::GE, loop); 6354 6355 tbz(cnt, 0, fini); 6356 str(value, Address(post(base, 8))); 6357 bind(fini); 6358 } 6359 6360 // Intrinsic for 6361 // 6362 // - sun/nio/cs/ISO_8859_1$Encoder.implEncodeISOArray 6363 // return the number of characters copied. 6364 // - java/lang/StringUTF16.compress 6365 // return index of non-latin1 character if copy fails, otherwise 'len'. 6366 // 6367 // This version always returns the number of characters copied, and does not 6368 // clobber the 'len' register. A successful copy will complete with the post- 6369 // condition: 'res' == 'len', while an unsuccessful copy will exit with the 6370 // post-condition: 0 <= 'res' < 'len'. 6371 // 6372 // NOTE: Attempts to use 'ld2' (and 'umaxv' in the ISO part) has proven to 6373 // degrade performance (on Ampere Altra - Neoverse N1), to an extent 6374 // beyond the acceptable, even though the footprint would be smaller. 6375 // Using 'umaxv' in the ASCII-case comes with a small penalty but does 6376 // avoid additional bloat. 6377 // 6378 // Clobbers: src, dst, res, rscratch1, rscratch2, rflags 6379 void MacroAssembler::encode_iso_array(Register src, Register dst, 6380 Register len, Register res, bool ascii, 6381 FloatRegister vtmp0, FloatRegister vtmp1, 6382 FloatRegister vtmp2, FloatRegister vtmp3, 6383 FloatRegister vtmp4, FloatRegister vtmp5) 6384 { 6385 Register cnt = res; 6386 Register max = rscratch1; 6387 Register chk = rscratch2; 6388 6389 prfm(Address(src), PLDL1STRM); 6390 movw(cnt, len); 6391 6392 #define ASCII(insn) do { if (ascii) { insn; } } while (0) 6393 6394 Label LOOP_32, DONE_32, FAIL_32; 6395 6396 BIND(LOOP_32); 6397 { 6398 cmpw(cnt, 32); 6399 br(LT, DONE_32); 6400 ld1(vtmp0, vtmp1, vtmp2, vtmp3, T8H, Address(post(src, 64))); 6401 // Extract lower bytes. 6402 FloatRegister vlo0 = vtmp4; 6403 FloatRegister vlo1 = vtmp5; 6404 uzp1(vlo0, T16B, vtmp0, vtmp1); 6405 uzp1(vlo1, T16B, vtmp2, vtmp3); 6406 // Merge bits... 6407 orr(vtmp0, T16B, vtmp0, vtmp1); 6408 orr(vtmp2, T16B, vtmp2, vtmp3); 6409 // Extract merged upper bytes. 6410 FloatRegister vhix = vtmp0; 6411 uzp2(vhix, T16B, vtmp0, vtmp2); 6412 // ISO-check on hi-parts (all zero). 6413 // ASCII-check on lo-parts (no sign). 6414 FloatRegister vlox = vtmp1; // Merge lower bytes. 6415 ASCII(orr(vlox, T16B, vlo0, vlo1)); 6416 umov(chk, vhix, D, 1); ASCII(cm(LT, vlox, T16B, vlox)); 6417 fmovd(max, vhix); ASCII(umaxv(vlox, T16B, vlox)); 6418 orr(chk, chk, max); ASCII(umov(max, vlox, B, 0)); 6419 ASCII(orr(chk, chk, max)); 6420 cbnz(chk, FAIL_32); 6421 subw(cnt, cnt, 32); 6422 st1(vlo0, vlo1, T16B, Address(post(dst, 32))); 6423 b(LOOP_32); 6424 } 6425 BIND(FAIL_32); 6426 sub(src, src, 64); 6427 BIND(DONE_32); 6428 6429 Label LOOP_8, SKIP_8; 6430 6431 BIND(LOOP_8); 6432 { 6433 cmpw(cnt, 8); 6434 br(LT, SKIP_8); 6435 FloatRegister vhi = vtmp0; 6436 FloatRegister vlo = vtmp1; 6437 ld1(vtmp3, T8H, src); 6438 uzp1(vlo, T16B, vtmp3, vtmp3); 6439 uzp2(vhi, T16B, vtmp3, vtmp3); 6440 // ISO-check on hi-parts (all zero). 6441 // ASCII-check on lo-parts (no sign). 6442 ASCII(cm(LT, vtmp2, T16B, vlo)); 6443 fmovd(chk, vhi); ASCII(umaxv(vtmp2, T16B, vtmp2)); 6444 ASCII(umov(max, vtmp2, B, 0)); 6445 ASCII(orr(chk, chk, max)); 6446 cbnz(chk, SKIP_8); 6447 6448 strd(vlo, Address(post(dst, 8))); 6449 subw(cnt, cnt, 8); 6450 add(src, src, 16); 6451 b(LOOP_8); 6452 } 6453 BIND(SKIP_8); 6454 6455 #undef ASCII 6456 6457 Label LOOP, DONE; 6458 6459 cbz(cnt, DONE); 6460 BIND(LOOP); 6461 { 6462 Register chr = rscratch1; 6463 ldrh(chr, Address(post(src, 2))); 6464 tst(chr, ascii ? 0xff80 : 0xff00); 6465 br(NE, DONE); 6466 strb(chr, Address(post(dst, 1))); 6467 subs(cnt, cnt, 1); 6468 br(GT, LOOP); 6469 } 6470 BIND(DONE); 6471 // Return index where we stopped. 6472 subw(res, len, cnt); 6473 } 6474 6475 // Inflate byte[] array to char[]. 6476 // Clobbers: src, dst, len, rflags, rscratch1, v0-v6 6477 address MacroAssembler::byte_array_inflate(Register src, Register dst, Register len, 6478 FloatRegister vtmp1, FloatRegister vtmp2, 6479 FloatRegister vtmp3, Register tmp4) { 6480 Label big, done, after_init, to_stub; 6481 6482 assert_different_registers(src, dst, len, tmp4, rscratch1); 6483 6484 fmovd(vtmp1, 0.0); 6485 lsrw(tmp4, len, 3); 6486 bind(after_init); 6487 cbnzw(tmp4, big); 6488 // Short string: less than 8 bytes. 6489 { 6490 Label loop, tiny; 6491 6492 cmpw(len, 4); 6493 br(LT, tiny); 6494 // Use SIMD to do 4 bytes. 6495 ldrs(vtmp2, post(src, 4)); 6496 zip1(vtmp3, T8B, vtmp2, vtmp1); 6497 subw(len, len, 4); 6498 strd(vtmp3, post(dst, 8)); 6499 6500 cbzw(len, done); 6501 6502 // Do the remaining bytes by steam. 6503 bind(loop); 6504 ldrb(tmp4, post(src, 1)); 6505 strh(tmp4, post(dst, 2)); 6506 subw(len, len, 1); 6507 6508 bind(tiny); 6509 cbnz(len, loop); 6510 6511 b(done); 6512 } 6513 6514 if (SoftwarePrefetchHintDistance >= 0) { 6515 bind(to_stub); 6516 RuntimeAddress stub = RuntimeAddress(StubRoutines::aarch64::large_byte_array_inflate()); 6517 assert(stub.target() != nullptr, "large_byte_array_inflate stub has not been generated"); 6518 address tpc = trampoline_call(stub); 6519 if (tpc == nullptr) { 6520 DEBUG_ONLY(reset_labels(big, done)); 6521 postcond(pc() == badAddress); 6522 return nullptr; 6523 } 6524 b(after_init); 6525 } 6526 6527 // Unpack the bytes 8 at a time. 6528 bind(big); 6529 { 6530 Label loop, around, loop_last, loop_start; 6531 6532 if (SoftwarePrefetchHintDistance >= 0) { 6533 const int large_loop_threshold = (64 + 16)/8; 6534 ldrd(vtmp2, post(src, 8)); 6535 andw(len, len, 7); 6536 cmp(tmp4, (u1)large_loop_threshold); 6537 br(GE, to_stub); 6538 b(loop_start); 6539 6540 bind(loop); 6541 ldrd(vtmp2, post(src, 8)); 6542 bind(loop_start); 6543 subs(tmp4, tmp4, 1); 6544 br(EQ, loop_last); 6545 zip1(vtmp2, T16B, vtmp2, vtmp1); 6546 ldrd(vtmp3, post(src, 8)); 6547 st1(vtmp2, T8H, post(dst, 16)); 6548 subs(tmp4, tmp4, 1); 6549 zip1(vtmp3, T16B, vtmp3, vtmp1); 6550 st1(vtmp3, T8H, post(dst, 16)); 6551 br(NE, loop); 6552 b(around); 6553 bind(loop_last); 6554 zip1(vtmp2, T16B, vtmp2, vtmp1); 6555 st1(vtmp2, T8H, post(dst, 16)); 6556 bind(around); 6557 cbz(len, done); 6558 } else { 6559 andw(len, len, 7); 6560 bind(loop); 6561 ldrd(vtmp2, post(src, 8)); 6562 sub(tmp4, tmp4, 1); 6563 zip1(vtmp3, T16B, vtmp2, vtmp1); 6564 st1(vtmp3, T8H, post(dst, 16)); 6565 cbnz(tmp4, loop); 6566 } 6567 } 6568 6569 // Do the tail of up to 8 bytes. 6570 add(src, src, len); 6571 ldrd(vtmp3, Address(src, -8)); 6572 add(dst, dst, len, ext::uxtw, 1); 6573 zip1(vtmp3, T16B, vtmp3, vtmp1); 6574 strq(vtmp3, Address(dst, -16)); 6575 6576 bind(done); 6577 postcond(pc() != badAddress); 6578 return pc(); 6579 } 6580 6581 // Compress char[] array to byte[]. 6582 // Intrinsic for java.lang.StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) 6583 // Return the array length if every element in array can be encoded, 6584 // otherwise, the index of first non-latin1 (> 0xff) character. 6585 void MacroAssembler::char_array_compress(Register src, Register dst, Register len, 6586 Register res, 6587 FloatRegister tmp0, FloatRegister tmp1, 6588 FloatRegister tmp2, FloatRegister tmp3, 6589 FloatRegister tmp4, FloatRegister tmp5) { 6590 encode_iso_array(src, dst, len, res, false, tmp0, tmp1, tmp2, tmp3, tmp4, tmp5); 6591 } 6592 6593 // java.math.round(double a) 6594 // Returns the closest long to the argument, with ties rounding to 6595 // positive infinity. This requires some fiddling for corner 6596 // cases. We take care to avoid double rounding in e.g. (jlong)(a + 0.5). 6597 void MacroAssembler::java_round_double(Register dst, FloatRegister src, 6598 FloatRegister ftmp) { 6599 Label DONE; 6600 BLOCK_COMMENT("java_round_double: { "); 6601 fmovd(rscratch1, src); 6602 // Use RoundToNearestTiesAway unless src small and -ve. 6603 fcvtasd(dst, src); 6604 // Test if src >= 0 || abs(src) >= 0x1.0p52 6605 eor(rscratch1, rscratch1, UCONST64(1) << 63); // flip sign bit 6606 mov(rscratch2, julong_cast(0x1.0p52)); 6607 cmp(rscratch1, rscratch2); 6608 br(HS, DONE); { 6609 // src < 0 && abs(src) < 0x1.0p52 6610 // src may have a fractional part, so add 0.5 6611 fmovd(ftmp, 0.5); 6612 faddd(ftmp, src, ftmp); 6613 // Convert double to jlong, use RoundTowardsNegative 6614 fcvtmsd(dst, ftmp); 6615 } 6616 bind(DONE); 6617 BLOCK_COMMENT("} java_round_double"); 6618 } 6619 6620 void MacroAssembler::java_round_float(Register dst, FloatRegister src, 6621 FloatRegister ftmp) { 6622 Label DONE; 6623 BLOCK_COMMENT("java_round_float: { "); 6624 fmovs(rscratch1, src); 6625 // Use RoundToNearestTiesAway unless src small and -ve. 6626 fcvtassw(dst, src); 6627 // Test if src >= 0 || abs(src) >= 0x1.0p23 6628 eor(rscratch1, rscratch1, 0x80000000); // flip sign bit 6629 mov(rscratch2, jint_cast(0x1.0p23f)); 6630 cmp(rscratch1, rscratch2); 6631 br(HS, DONE); { 6632 // src < 0 && |src| < 0x1.0p23 6633 // src may have a fractional part, so add 0.5 6634 fmovs(ftmp, 0.5f); 6635 fadds(ftmp, src, ftmp); 6636 // Convert float to jint, use RoundTowardsNegative 6637 fcvtmssw(dst, ftmp); 6638 } 6639 bind(DONE); 6640 BLOCK_COMMENT("} java_round_float"); 6641 } 6642 6643 // get_thread() can be called anywhere inside generated code so we 6644 // need to save whatever non-callee save context might get clobbered 6645 // by the call to JavaThread::aarch64_get_thread_helper() or, indeed, 6646 // the call setup code. 6647 // 6648 // On Linux, aarch64_get_thread_helper() clobbers only r0, r1, and flags. 6649 // On other systems, the helper is a usual C function. 6650 // 6651 void MacroAssembler::get_thread(Register dst) { 6652 RegSet saved_regs = 6653 LINUX_ONLY(RegSet::range(r0, r1) + lr - dst) 6654 NOT_LINUX (RegSet::range(r0, r17) + lr - dst); 6655 6656 protect_return_address(); 6657 push(saved_regs, sp); 6658 6659 mov(lr, CAST_FROM_FN_PTR(address, JavaThread::aarch64_get_thread_helper)); 6660 blr(lr); 6661 if (dst != c_rarg0) { 6662 mov(dst, c_rarg0); 6663 } 6664 6665 pop(saved_regs, sp); 6666 authenticate_return_address(); 6667 } 6668 6669 void MacroAssembler::cache_wb(Address line) { 6670 assert(line.getMode() == Address::base_plus_offset, "mode should be base_plus_offset"); 6671 assert(line.index() == noreg, "index should be noreg"); 6672 assert(line.offset() == 0, "offset should be 0"); 6673 // would like to assert this 6674 // assert(line._ext.shift == 0, "shift should be zero"); 6675 if (VM_Version::supports_dcpop()) { 6676 // writeback using clear virtual address to point of persistence 6677 dc(Assembler::CVAP, line.base()); 6678 } else { 6679 // no need to generate anything as Unsafe.writebackMemory should 6680 // never invoke this stub 6681 } 6682 } 6683 6684 void MacroAssembler::cache_wbsync(bool is_pre) { 6685 // we only need a barrier post sync 6686 if (!is_pre) { 6687 membar(Assembler::AnyAny); 6688 } 6689 } 6690 6691 void MacroAssembler::verify_sve_vector_length(Register tmp) { 6692 if (!UseSVE || VM_Version::get_max_supported_sve_vector_length() == FloatRegister::sve_vl_min) { 6693 return; 6694 } 6695 // Make sure that native code does not change SVE vector length. 6696 Label verify_ok; 6697 movw(tmp, zr); 6698 sve_inc(tmp, B); 6699 subsw(zr, tmp, VM_Version::get_initial_sve_vector_length()); 6700 br(EQ, verify_ok); 6701 stop("Error: SVE vector length has changed since jvm startup"); 6702 bind(verify_ok); 6703 } 6704 6705 void MacroAssembler::verify_ptrue() { 6706 Label verify_ok; 6707 if (!UseSVE) { 6708 return; 6709 } 6710 sve_cntp(rscratch1, B, ptrue, ptrue); // get true elements count. 6711 sve_dec(rscratch1, B); 6712 cbz(rscratch1, verify_ok); 6713 stop("Error: the preserved predicate register (p7) elements are not all true"); 6714 bind(verify_ok); 6715 } 6716 6717 void MacroAssembler::safepoint_isb() { 6718 isb(); 6719 #ifndef PRODUCT 6720 if (VerifyCrossModifyFence) { 6721 // Clear the thread state. 6722 strb(zr, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6723 } 6724 #endif 6725 } 6726 6727 #ifndef PRODUCT 6728 void MacroAssembler::verify_cross_modify_fence_not_required() { 6729 if (VerifyCrossModifyFence) { 6730 // Check if thread needs a cross modify fence. 6731 ldrb(rscratch1, Address(rthread, in_bytes(JavaThread::requires_cross_modify_fence_offset()))); 6732 Label fence_not_required; 6733 cbz(rscratch1, fence_not_required); 6734 // If it does then fail. 6735 lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::verify_cross_modify_fence_failure))); 6736 mov(c_rarg0, rthread); 6737 blr(rscratch1); 6738 bind(fence_not_required); 6739 } 6740 } 6741 #endif 6742 6743 void MacroAssembler::spin_wait() { 6744 for (int i = 0; i < VM_Version::spin_wait_desc().inst_count(); ++i) { 6745 switch (VM_Version::spin_wait_desc().inst()) { 6746 case SpinWait::NOP: 6747 nop(); 6748 break; 6749 case SpinWait::ISB: 6750 isb(); 6751 break; 6752 case SpinWait::YIELD: 6753 yield(); 6754 break; 6755 default: 6756 ShouldNotReachHere(); 6757 } 6758 } 6759 } 6760 6761 // Stack frame creation/removal 6762 6763 void MacroAssembler::enter(bool strip_ret_addr) { 6764 if (strip_ret_addr) { 6765 // Addresses can only be signed once. If there are multiple nested frames being created 6766 // in the same function, then the return address needs stripping first. 6767 strip_return_address(); 6768 } 6769 protect_return_address(); 6770 stp(rfp, lr, Address(pre(sp, -2 * wordSize))); 6771 mov(rfp, sp); 6772 } 6773 6774 void MacroAssembler::leave() { 6775 mov(sp, rfp); 6776 ldp(rfp, lr, Address(post(sp, 2 * wordSize))); 6777 authenticate_return_address(); 6778 } 6779 6780 // ROP Protection 6781 // Use the AArch64 PAC feature to add ROP protection for generated code. Use whenever creating/ 6782 // destroying stack frames or whenever directly loading/storing the LR to memory. 6783 // If ROP protection is not set then these functions are no-ops. 6784 // For more details on PAC see pauth_aarch64.hpp. 6785 6786 // Sign the LR. Use during construction of a stack frame, before storing the LR to memory. 6787 // Uses value zero as the modifier. 6788 // 6789 void MacroAssembler::protect_return_address() { 6790 if (VM_Version::use_rop_protection()) { 6791 check_return_address(); 6792 paciaz(); 6793 } 6794 } 6795 6796 // Sign the return value in the given register. Use before updating the LR in the existing stack 6797 // frame for the current function. 6798 // Uses value zero as the modifier. 6799 // 6800 void MacroAssembler::protect_return_address(Register return_reg) { 6801 if (VM_Version::use_rop_protection()) { 6802 check_return_address(return_reg); 6803 paciza(return_reg); 6804 } 6805 } 6806 6807 // Authenticate the LR. Use before function return, after restoring FP and loading LR from memory. 6808 // Uses value zero as the modifier. 6809 // 6810 void MacroAssembler::authenticate_return_address() { 6811 if (VM_Version::use_rop_protection()) { 6812 autiaz(); 6813 check_return_address(); 6814 } 6815 } 6816 6817 // Authenticate the return value in the given register. Use before updating the LR in the existing 6818 // stack frame for the current function. 6819 // Uses value zero as the modifier. 6820 // 6821 void MacroAssembler::authenticate_return_address(Register return_reg) { 6822 if (VM_Version::use_rop_protection()) { 6823 autiza(return_reg); 6824 check_return_address(return_reg); 6825 } 6826 } 6827 6828 // Strip any PAC data from LR without performing any authentication. Use with caution - only if 6829 // there is no guaranteed way of authenticating the LR. 6830 // 6831 void MacroAssembler::strip_return_address() { 6832 if (VM_Version::use_rop_protection()) { 6833 xpaclri(); 6834 } 6835 } 6836 6837 #ifndef PRODUCT 6838 // PAC failures can be difficult to debug. After an authentication failure, a segfault will only 6839 // occur when the pointer is used - ie when the program returns to the invalid LR. At this point 6840 // it is difficult to debug back to the callee function. 6841 // This function simply loads from the address in the given register. 6842 // Use directly after authentication to catch authentication failures. 6843 // Also use before signing to check that the pointer is valid and hasn't already been signed. 6844 // 6845 void MacroAssembler::check_return_address(Register return_reg) { 6846 if (VM_Version::use_rop_protection()) { 6847 ldr(zr, Address(return_reg)); 6848 } 6849 } 6850 #endif 6851 6852 // The java_calling_convention describes stack locations as ideal slots on 6853 // a frame with no abi restrictions. Since we must observe abi restrictions 6854 // (like the placement of the register window) the slots must be biased by 6855 // the following value. 6856 static int reg2offset_in(VMReg r) { 6857 // Account for saved rfp and lr 6858 // This should really be in_preserve_stack_slots 6859 return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size; 6860 } 6861 6862 static int reg2offset_out(VMReg r) { 6863 return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size; 6864 } 6865 6866 // On 64bit we will store integer like items to the stack as 6867 // 64bits items (AArch64 ABI) even though java would only store 6868 // 32bits for a parameter. On 32bit it will simply be 32bits 6869 // So this routine will do 32->32 on 32bit and 32->64 on 64bit 6870 void MacroAssembler::move32_64(VMRegPair src, VMRegPair dst, Register tmp) { 6871 if (src.first()->is_stack()) { 6872 if (dst.first()->is_stack()) { 6873 // stack to stack 6874 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6875 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6876 } else { 6877 // stack to reg 6878 ldrsw(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6879 } 6880 } else if (dst.first()->is_stack()) { 6881 // reg to stack 6882 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 6883 } else { 6884 if (dst.first() != src.first()) { 6885 sxtw(dst.first()->as_Register(), src.first()->as_Register()); 6886 } 6887 } 6888 } 6889 6890 // An oop arg. Must pass a handle not the oop itself 6891 void MacroAssembler::object_move( 6892 OopMap* map, 6893 int oop_handle_offset, 6894 int framesize_in_slots, 6895 VMRegPair src, 6896 VMRegPair dst, 6897 bool is_receiver, 6898 int* receiver_offset) { 6899 6900 // must pass a handle. First figure out the location we use as a handle 6901 6902 Register rHandle = dst.first()->is_stack() ? rscratch2 : dst.first()->as_Register(); 6903 6904 // See if oop is null if it is we need no handle 6905 6906 if (src.first()->is_stack()) { 6907 6908 // Oop is already on the stack as an argument 6909 int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots(); 6910 map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots)); 6911 if (is_receiver) { 6912 *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size; 6913 } 6914 6915 ldr(rscratch1, Address(rfp, reg2offset_in(src.first()))); 6916 lea(rHandle, Address(rfp, reg2offset_in(src.first()))); 6917 // conditionally move a null 6918 cmp(rscratch1, zr); 6919 csel(rHandle, zr, rHandle, Assembler::EQ); 6920 } else { 6921 6922 // Oop is in an a register we must store it to the space we reserve 6923 // on the stack for oop_handles and pass a handle if oop is non-null 6924 6925 const Register rOop = src.first()->as_Register(); 6926 int oop_slot; 6927 if (rOop == j_rarg0) 6928 oop_slot = 0; 6929 else if (rOop == j_rarg1) 6930 oop_slot = 1; 6931 else if (rOop == j_rarg2) 6932 oop_slot = 2; 6933 else if (rOop == j_rarg3) 6934 oop_slot = 3; 6935 else if (rOop == j_rarg4) 6936 oop_slot = 4; 6937 else if (rOop == j_rarg5) 6938 oop_slot = 5; 6939 else if (rOop == j_rarg6) 6940 oop_slot = 6; 6941 else { 6942 assert(rOop == j_rarg7, "wrong register"); 6943 oop_slot = 7; 6944 } 6945 6946 oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset; 6947 int offset = oop_slot*VMRegImpl::stack_slot_size; 6948 6949 map->set_oop(VMRegImpl::stack2reg(oop_slot)); 6950 // Store oop in handle area, may be null 6951 str(rOop, Address(sp, offset)); 6952 if (is_receiver) { 6953 *receiver_offset = offset; 6954 } 6955 6956 cmp(rOop, zr); 6957 lea(rHandle, Address(sp, offset)); 6958 // conditionally move a null 6959 csel(rHandle, zr, rHandle, Assembler::EQ); 6960 } 6961 6962 // If arg is on the stack then place it otherwise it is already in correct reg. 6963 if (dst.first()->is_stack()) { 6964 str(rHandle, Address(sp, reg2offset_out(dst.first()))); 6965 } 6966 } 6967 6968 // A float arg may have to do float reg int reg conversion 6969 void MacroAssembler::float_move(VMRegPair src, VMRegPair dst, Register tmp) { 6970 if (src.first()->is_stack()) { 6971 if (dst.first()->is_stack()) { 6972 ldrw(tmp, Address(rfp, reg2offset_in(src.first()))); 6973 strw(tmp, Address(sp, reg2offset_out(dst.first()))); 6974 } else { 6975 ldrs(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 6976 } 6977 } else if (src.first() != dst.first()) { 6978 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 6979 fmovs(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 6980 else 6981 strs(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 6982 } 6983 } 6984 6985 // A long move 6986 void MacroAssembler::long_move(VMRegPair src, VMRegPair dst, Register tmp) { 6987 if (src.first()->is_stack()) { 6988 if (dst.first()->is_stack()) { 6989 // stack to stack 6990 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 6991 str(tmp, Address(sp, reg2offset_out(dst.first()))); 6992 } else { 6993 // stack to reg 6994 ldr(dst.first()->as_Register(), Address(rfp, reg2offset_in(src.first()))); 6995 } 6996 } else if (dst.first()->is_stack()) { 6997 // reg to stack 6998 // Do we really have to sign extend??? 6999 // __ movslq(src.first()->as_Register(), src.first()->as_Register()); 7000 str(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first()))); 7001 } else { 7002 if (dst.first() != src.first()) { 7003 mov(dst.first()->as_Register(), src.first()->as_Register()); 7004 } 7005 } 7006 } 7007 7008 7009 // A double move 7010 void MacroAssembler::double_move(VMRegPair src, VMRegPair dst, Register tmp) { 7011 if (src.first()->is_stack()) { 7012 if (dst.first()->is_stack()) { 7013 ldr(tmp, Address(rfp, reg2offset_in(src.first()))); 7014 str(tmp, Address(sp, reg2offset_out(dst.first()))); 7015 } else { 7016 ldrd(dst.first()->as_FloatRegister(), Address(rfp, reg2offset_in(src.first()))); 7017 } 7018 } else if (src.first() != dst.first()) { 7019 if (src.is_single_phys_reg() && dst.is_single_phys_reg()) 7020 fmovd(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister()); 7021 else 7022 strd(src.first()->as_FloatRegister(), Address(sp, reg2offset_out(dst.first()))); 7023 } 7024 } 7025 7026 // Implements lightweight-locking. 7027 // 7028 // - obj: the object to be locked 7029 // - t1, t2, t3: temporary registers, will be destroyed 7030 // - slow: branched to if locking fails, absolute offset may larger than 32KB (imm14 encoding). 7031 void MacroAssembler::lightweight_lock(Register basic_lock, Register obj, Register t1, Register t2, Register t3, Label& slow) { 7032 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7033 assert_different_registers(basic_lock, obj, t1, t2, t3, rscratch1); 7034 7035 Label push; 7036 const Register top = t1; 7037 const Register mark = t2; 7038 const Register t = t3; 7039 7040 // Preload the markWord. It is important that this is the first 7041 // instruction emitted as it is part of C1's null check semantics. 7042 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7043 7044 if (UseObjectMonitorTable) { 7045 // Clear cache in case fast locking succeeds or we need to take the slow-path. 7046 str(zr, Address(basic_lock, BasicObjectLock::lock_offset() + in_ByteSize((BasicLock::object_monitor_cache_offset_in_bytes())))); 7047 } 7048 7049 if (DiagnoseSyncOnValueBasedClasses != 0) { 7050 load_klass(t1, obj); 7051 ldrb(t1, Address(t1, Klass::misc_flags_offset())); 7052 tst(t1, KlassFlags::_misc_is_value_based_class); 7053 br(Assembler::NE, slow); 7054 } 7055 7056 // Check if the lock-stack is full. 7057 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7058 cmpw(top, (unsigned)LockStack::end_offset()); 7059 br(Assembler::GE, slow); 7060 7061 // Check for recursion. 7062 subw(t, top, oopSize); 7063 ldr(t, Address(rthread, t)); 7064 cmp(obj, t); 7065 br(Assembler::EQ, push); 7066 7067 // Check header for monitor (0b10). 7068 tst(mark, markWord::monitor_value); 7069 br(Assembler::NE, slow); 7070 7071 // Try to lock. Transition lock bits 0b01 => 0b00 7072 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7073 orr(mark, mark, markWord::unlocked_value); 7074 eor(t, mark, markWord::unlocked_value); 7075 cmpxchg(/*addr*/ obj, /*expected*/ mark, /*new*/ t, Assembler::xword, 7076 /*acquire*/ true, /*release*/ false, /*weak*/ false, noreg); 7077 br(Assembler::NE, slow); 7078 7079 bind(push); 7080 // After successful lock, push object on lock-stack. 7081 str(obj, Address(rthread, top)); 7082 addw(top, top, oopSize); 7083 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7084 } 7085 7086 // Implements lightweight-unlocking. 7087 // 7088 // - obj: the object to be unlocked 7089 // - t1, t2, t3: temporary registers 7090 // - slow: branched to if unlocking fails, absolute offset may larger than 32KB (imm14 encoding). 7091 void MacroAssembler::lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow) { 7092 assert(LockingMode == LM_LIGHTWEIGHT, "only used with new lightweight locking"); 7093 // cmpxchg clobbers rscratch1. 7094 assert_different_registers(obj, t1, t2, t3, rscratch1); 7095 7096 #ifdef ASSERT 7097 { 7098 // Check for lock-stack underflow. 7099 Label stack_ok; 7100 ldrw(t1, Address(rthread, JavaThread::lock_stack_top_offset())); 7101 cmpw(t1, (unsigned)LockStack::start_offset()); 7102 br(Assembler::GE, stack_ok); 7103 STOP("Lock-stack underflow"); 7104 bind(stack_ok); 7105 } 7106 #endif 7107 7108 Label unlocked, push_and_slow; 7109 const Register top = t1; 7110 const Register mark = t2; 7111 const Register t = t3; 7112 7113 // Check if obj is top of lock-stack. 7114 ldrw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7115 subw(top, top, oopSize); 7116 ldr(t, Address(rthread, top)); 7117 cmp(obj, t); 7118 br(Assembler::NE, slow); 7119 7120 // Pop lock-stack. 7121 DEBUG_ONLY(str(zr, Address(rthread, top));) 7122 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7123 7124 // Check if recursive. 7125 subw(t, top, oopSize); 7126 ldr(t, Address(rthread, t)); 7127 cmp(obj, t); 7128 br(Assembler::EQ, unlocked); 7129 7130 // Not recursive. Check header for monitor (0b10). 7131 ldr(mark, Address(obj, oopDesc::mark_offset_in_bytes())); 7132 tbnz(mark, log2i_exact(markWord::monitor_value), push_and_slow); 7133 7134 #ifdef ASSERT 7135 // Check header not unlocked (0b01). 7136 Label not_unlocked; 7137 tbz(mark, log2i_exact(markWord::unlocked_value), not_unlocked); 7138 stop("lightweight_unlock already unlocked"); 7139 bind(not_unlocked); 7140 #endif 7141 7142 // Try to unlock. Transition lock bits 0b00 => 0b01 7143 assert(oopDesc::mark_offset_in_bytes() == 0, "required to avoid lea"); 7144 orr(t, mark, markWord::unlocked_value); 7145 cmpxchg(obj, mark, t, Assembler::xword, 7146 /*acquire*/ false, /*release*/ true, /*weak*/ false, noreg); 7147 br(Assembler::EQ, unlocked); 7148 7149 bind(push_and_slow); 7150 // Restore lock-stack and handle the unlock in runtime. 7151 DEBUG_ONLY(str(obj, Address(rthread, top));) 7152 addw(top, top, oopSize); 7153 strw(top, Address(rthread, JavaThread::lock_stack_top_offset())); 7154 b(slow); 7155 7156 bind(unlocked); 7157 }