1 /*
   2  * Copyright (c) 1997, 2024, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2014, 2024, Red Hat Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  27 #define CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP
  28 
  29 #include "asm/assembler.inline.hpp"
  30 #include "code/vmreg.hpp"
  31 #include "metaprogramming/enableIf.hpp"
  32 #include "oops/compressedOops.hpp"
  33 #include "oops/compressedKlass.hpp"
  34 #include "runtime/vm_version.hpp"
  35 #include "utilities/powerOfTwo.hpp"
  36 
  37 class OopMap;
  38 
  39 // MacroAssembler extends Assembler by frequently used macros.
  40 //
  41 // Instructions for which a 'better' code sequence exists depending
  42 // on arguments should also go in here.
  43 
  44 class MacroAssembler: public Assembler {
  45   friend class LIR_Assembler;
  46 
  47  public:
  48   using Assembler::mov;
  49   using Assembler::movi;
  50 
  51  protected:
  52 
  53   // Support for VM calls
  54   //
  55   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  56   // may customize this version by overriding it for its purposes (e.g., to save/restore
  57   // additional registers when doing a VM call).
  58   virtual void call_VM_leaf_base(
  59     address entry_point,               // the entry point
  60     int     number_of_arguments,        // the number of arguments to pop after the call
  61     Label *retaddr = nullptr
  62   );
  63 
  64   virtual void call_VM_leaf_base(
  65     address entry_point,               // the entry point
  66     int     number_of_arguments,        // the number of arguments to pop after the call
  67     Label &retaddr) {
  68     call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
  69   }
  70 
  71   // This is the base routine called by the different versions of call_VM. The interpreter
  72   // may customize this version by overriding it for its purposes (e.g., to save/restore
  73   // additional registers when doing a VM call).
  74   //
  75   // If no java_thread register is specified (noreg) than rthread will be used instead. call_VM_base
  76   // returns the register which contains the thread upon return. If a thread register has been
  77   // specified, the return value will correspond to that register. If no last_java_sp is specified
  78   // (noreg) than rsp will be used instead.
  79   virtual void call_VM_base(           // returns the register containing the thread upon return
  80     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  81     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  82     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  83     address  entry_point,              // the entry point
  84     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  85     bool     check_exceptions          // whether to check for pending exceptions after return
  86   );
  87 
  88   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  89 
  90   enum KlassDecodeMode {
  91     KlassDecodeNone,
  92     KlassDecodeZero,
  93     KlassDecodeXor,
  94     KlassDecodeMovk
  95   };
  96 
  97   KlassDecodeMode klass_decode_mode();
  98 
  99  private:
 100   static KlassDecodeMode _klass_decode_mode;
 101 
 102  public:
 103   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
 104 
 105  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
 106  // The implementation is only non-empty for the InterpreterMacroAssembler,
 107  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
 108  virtual void check_and_handle_popframe(Register java_thread);
 109  virtual void check_and_handle_earlyret(Register java_thread);
 110 
 111   void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod, Register tmp = rscratch1);
 112   void rt_call(address dest, Register tmp = rscratch1);
 113 
 114   // Load Effective Address
 115   void lea(Register r, const Address &a) {
 116     InstructionMark im(this);
 117     a.lea(this, r);
 118   }
 119 
 120   /* Sometimes we get misaligned loads and stores, usually from Unsafe
 121      accesses, and these can exceed the offset range. */
 122   Address legitimize_address(const Address &a, int size, Register scratch) {
 123     if (a.getMode() == Address::base_plus_offset) {
 124       if (! Address::offset_ok_for_immed(a.offset(), exact_log2(size))) {
 125         block_comment("legitimize_address {");
 126         lea(scratch, a);
 127         block_comment("} legitimize_address");
 128         return Address(scratch);
 129       }
 130     }
 131     return a;
 132   }
 133 
 134   void addmw(Address a, Register incr, Register scratch) {
 135     ldrw(scratch, a);
 136     addw(scratch, scratch, incr);
 137     strw(scratch, a);
 138   }
 139 
 140   // Add constant to memory word
 141   void addmw(Address a, int imm, Register scratch) {
 142     ldrw(scratch, a);
 143     if (imm > 0)
 144       addw(scratch, scratch, (unsigned)imm);
 145     else
 146       subw(scratch, scratch, (unsigned)-imm);
 147     strw(scratch, a);
 148   }
 149 
 150   void bind(Label& L) {
 151     Assembler::bind(L);
 152     code()->clear_last_insn();
 153     code()->set_last_label(pc());
 154   }
 155 
 156   void membar(Membar_mask_bits order_constraint);
 157 
 158   using Assembler::ldr;
 159   using Assembler::str;
 160   using Assembler::ldrw;
 161   using Assembler::strw;
 162 
 163   void ldr(Register Rx, const Address &adr);
 164   void ldrw(Register Rw, const Address &adr);
 165   void str(Register Rx, const Address &adr);
 166   void strw(Register Rx, const Address &adr);
 167 
 168   // Frame creation and destruction shared between JITs.
 169   void build_frame(int framesize);
 170   void remove_frame(int framesize);
 171 
 172   virtual void _call_Unimplemented(address call_site) {
 173     mov(rscratch2, call_site);
 174   }
 175 
 176 // Microsoft's MSVC team thinks that the __FUNCSIG__ is approximately (sympathy for calling conventions) equivalent to __PRETTY_FUNCTION__
 177 // Also, from Clang patch: "It is very similar to GCC's PRETTY_FUNCTION, except it prints the calling convention."
 178 // https://reviews.llvm.org/D3311
 179 
 180 #ifdef _WIN64
 181 #define call_Unimplemented() _call_Unimplemented((address)__FUNCSIG__)
 182 #else
 183 #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
 184 #endif
 185 
 186   // aliases defined in AARCH64 spec
 187 
 188   template<class T>
 189   inline void cmpw(Register Rd, T imm)  { subsw(zr, Rd, imm); }
 190 
 191   inline void cmp(Register Rd, unsigned char imm8)  { subs(zr, Rd, imm8); }
 192   inline void cmp(Register Rd, unsigned imm) = delete;
 193 
 194   template<class T>
 195   inline void cmnw(Register Rd, T imm) { addsw(zr, Rd, imm); }
 196 
 197   inline void cmn(Register Rd, unsigned char imm8)  { adds(zr, Rd, imm8); }
 198   inline void cmn(Register Rd, unsigned imm) = delete;
 199 
 200   void cset(Register Rd, Assembler::Condition cond) {
 201     csinc(Rd, zr, zr, ~cond);
 202   }
 203   void csetw(Register Rd, Assembler::Condition cond) {
 204     csincw(Rd, zr, zr, ~cond);
 205   }
 206 
 207   void cneg(Register Rd, Register Rn, Assembler::Condition cond) {
 208     csneg(Rd, Rn, Rn, ~cond);
 209   }
 210   void cnegw(Register Rd, Register Rn, Assembler::Condition cond) {
 211     csnegw(Rd, Rn, Rn, ~cond);
 212   }
 213 
 214   inline void movw(Register Rd, Register Rn) {
 215     if (Rd == sp || Rn == sp) {
 216       Assembler::addw(Rd, Rn, 0U);
 217     } else {
 218       orrw(Rd, zr, Rn);
 219     }
 220   }
 221   inline void mov(Register Rd, Register Rn) {
 222     assert(Rd != r31_sp && Rn != r31_sp, "should be");
 223     if (Rd == Rn) {
 224     } else if (Rd == sp || Rn == sp) {
 225       Assembler::add(Rd, Rn, 0U);
 226     } else {
 227       orr(Rd, zr, Rn);
 228     }
 229   }
 230 
 231   inline void moviw(Register Rd, unsigned imm) { orrw(Rd, zr, imm); }
 232   inline void movi(Register Rd, unsigned imm) { orr(Rd, zr, imm); }
 233 
 234   inline void tstw(Register Rd, Register Rn) { andsw(zr, Rd, Rn); }
 235   inline void tst(Register Rd, Register Rn) { ands(zr, Rd, Rn); }
 236 
 237   inline void tstw(Register Rd, uint64_t imm) { andsw(zr, Rd, imm); }
 238   inline void tst(Register Rd, uint64_t imm) { ands(zr, Rd, imm); }
 239 
 240   inline void bfiw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 241     bfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 242   }
 243   inline void bfi(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 244     bfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 245   }
 246 
 247   inline void bfxilw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 248     bfmw(Rd, Rn, lsb, (lsb + width - 1));
 249   }
 250   inline void bfxil(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 251     bfm(Rd, Rn, lsb , (lsb + width - 1));
 252   }
 253 
 254   inline void sbfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 255     sbfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 256   }
 257   inline void sbfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 258     sbfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 259   }
 260 
 261   inline void sbfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 262     sbfmw(Rd, Rn, lsb, (lsb + width - 1));
 263   }
 264   inline void sbfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 265     sbfm(Rd, Rn, lsb , (lsb + width - 1));
 266   }
 267 
 268   inline void ubfizw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 269     ubfmw(Rd, Rn, ((32 - lsb) & 31), (width - 1));
 270   }
 271   inline void ubfiz(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 272     ubfm(Rd, Rn, ((64 - lsb) & 63), (width - 1));
 273   }
 274 
 275   inline void ubfxw(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 276     ubfmw(Rd, Rn, lsb, (lsb + width - 1));
 277   }
 278   inline void ubfx(Register Rd, Register Rn, unsigned lsb, unsigned width) {
 279     ubfm(Rd, Rn, lsb , (lsb + width - 1));
 280   }
 281 
 282   inline void asrw(Register Rd, Register Rn, unsigned imm) {
 283     sbfmw(Rd, Rn, imm, 31);
 284   }
 285 
 286   inline void asr(Register Rd, Register Rn, unsigned imm) {
 287     sbfm(Rd, Rn, imm, 63);
 288   }
 289 
 290   inline void lslw(Register Rd, Register Rn, unsigned imm) {
 291     ubfmw(Rd, Rn, ((32 - imm) & 31), (31 - imm));
 292   }
 293 
 294   inline void lsl(Register Rd, Register Rn, unsigned imm) {
 295     ubfm(Rd, Rn, ((64 - imm) & 63), (63 - imm));
 296   }
 297 
 298   inline void lsrw(Register Rd, Register Rn, unsigned imm) {
 299     ubfmw(Rd, Rn, imm, 31);
 300   }
 301 
 302   inline void lsr(Register Rd, Register Rn, unsigned imm) {
 303     ubfm(Rd, Rn, imm, 63);
 304   }
 305 
 306   inline void rorw(Register Rd, Register Rn, unsigned imm) {
 307     extrw(Rd, Rn, Rn, imm);
 308   }
 309 
 310   inline void ror(Register Rd, Register Rn, unsigned imm) {
 311     extr(Rd, Rn, Rn, imm);
 312   }
 313 
 314   inline void sxtbw(Register Rd, Register Rn) {
 315     sbfmw(Rd, Rn, 0, 7);
 316   }
 317   inline void sxthw(Register Rd, Register Rn) {
 318     sbfmw(Rd, Rn, 0, 15);
 319   }
 320   inline void sxtb(Register Rd, Register Rn) {
 321     sbfm(Rd, Rn, 0, 7);
 322   }
 323   inline void sxth(Register Rd, Register Rn) {
 324     sbfm(Rd, Rn, 0, 15);
 325   }
 326   inline void sxtw(Register Rd, Register Rn) {
 327     sbfm(Rd, Rn, 0, 31);
 328   }
 329 
 330   inline void uxtbw(Register Rd, Register Rn) {
 331     ubfmw(Rd, Rn, 0, 7);
 332   }
 333   inline void uxthw(Register Rd, Register Rn) {
 334     ubfmw(Rd, Rn, 0, 15);
 335   }
 336   inline void uxtb(Register Rd, Register Rn) {
 337     ubfm(Rd, Rn, 0, 7);
 338   }
 339   inline void uxth(Register Rd, Register Rn) {
 340     ubfm(Rd, Rn, 0, 15);
 341   }
 342   inline void uxtw(Register Rd, Register Rn) {
 343     ubfm(Rd, Rn, 0, 31);
 344   }
 345 
 346   inline void cmnw(Register Rn, Register Rm) {
 347     addsw(zr, Rn, Rm);
 348   }
 349   inline void cmn(Register Rn, Register Rm) {
 350     adds(zr, Rn, Rm);
 351   }
 352 
 353   inline void cmpw(Register Rn, Register Rm) {
 354     subsw(zr, Rn, Rm);
 355   }
 356   inline void cmp(Register Rn, Register Rm) {
 357     subs(zr, Rn, Rm);
 358   }
 359 
 360   inline void negw(Register Rd, Register Rn) {
 361     subw(Rd, zr, Rn);
 362   }
 363 
 364   inline void neg(Register Rd, Register Rn) {
 365     sub(Rd, zr, Rn);
 366   }
 367 
 368   inline void negsw(Register Rd, Register Rn) {
 369     subsw(Rd, zr, Rn);
 370   }
 371 
 372   inline void negs(Register Rd, Register Rn) {
 373     subs(Rd, zr, Rn);
 374   }
 375 
 376   inline void cmnw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 377     addsw(zr, Rn, Rm, kind, shift);
 378   }
 379   inline void cmn(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 380     adds(zr, Rn, Rm, kind, shift);
 381   }
 382 
 383   inline void cmpw(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 384     subsw(zr, Rn, Rm, kind, shift);
 385   }
 386   inline void cmp(Register Rn, Register Rm, enum shift_kind kind, unsigned shift = 0) {
 387     subs(zr, Rn, Rm, kind, shift);
 388   }
 389 
 390   inline void negw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 391     subw(Rd, zr, Rn, kind, shift);
 392   }
 393 
 394   inline void neg(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 395     sub(Rd, zr, Rn, kind, shift);
 396   }
 397 
 398   inline void negsw(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 399     subsw(Rd, zr, Rn, kind, shift);
 400   }
 401 
 402   inline void negs(Register Rd, Register Rn, enum shift_kind kind, unsigned shift = 0) {
 403     subs(Rd, zr, Rn, kind, shift);
 404   }
 405 
 406   inline void mnegw(Register Rd, Register Rn, Register Rm) {
 407     msubw(Rd, Rn, Rm, zr);
 408   }
 409   inline void mneg(Register Rd, Register Rn, Register Rm) {
 410     msub(Rd, Rn, Rm, zr);
 411   }
 412 
 413   inline void mulw(Register Rd, Register Rn, Register Rm) {
 414     maddw(Rd, Rn, Rm, zr);
 415   }
 416   inline void mul(Register Rd, Register Rn, Register Rm) {
 417     madd(Rd, Rn, Rm, zr);
 418   }
 419 
 420   inline void smnegl(Register Rd, Register Rn, Register Rm) {
 421     smsubl(Rd, Rn, Rm, zr);
 422   }
 423   inline void smull(Register Rd, Register Rn, Register Rm) {
 424     smaddl(Rd, Rn, Rm, zr);
 425   }
 426 
 427   inline void umnegl(Register Rd, Register Rn, Register Rm) {
 428     umsubl(Rd, Rn, Rm, zr);
 429   }
 430   inline void umull(Register Rd, Register Rn, Register Rm) {
 431     umaddl(Rd, Rn, Rm, zr);
 432   }
 433 
 434 #define WRAP(INSN)                                                            \
 435   void INSN(Register Rd, Register Rn, Register Rm, Register Ra) {             \
 436     if (VM_Version::supports_a53mac() && Ra != zr)                            \
 437       nop();                                                                  \
 438     Assembler::INSN(Rd, Rn, Rm, Ra);                                          \
 439   }
 440 
 441   WRAP(madd) WRAP(msub) WRAP(maddw) WRAP(msubw)
 442   WRAP(smaddl) WRAP(smsubl) WRAP(umaddl) WRAP(umsubl)
 443 #undef WRAP
 444 
 445 
 446   // macro assembly operations needed for aarch64
 447 
 448 public:
 449 
 450   enum FpPushPopMode {
 451     PushPopFull,
 452     PushPopSVE,
 453     PushPopNeon,
 454     PushPopFp
 455   };
 456 
 457   // first two private routines for loading 32 bit or 64 bit constants
 458 private:
 459 
 460   void mov_immediate64(Register dst, uint64_t imm64);
 461   void mov_immediate32(Register dst, uint32_t imm32);
 462 
 463   int push(unsigned int bitset, Register stack);
 464   int pop(unsigned int bitset, Register stack);
 465 
 466   int push_fp(unsigned int bitset, Register stack, FpPushPopMode mode);
 467   int pop_fp(unsigned int bitset, Register stack, FpPushPopMode mode);
 468 
 469   int push_p(unsigned int bitset, Register stack);
 470   int pop_p(unsigned int bitset, Register stack);
 471 
 472   void mov(Register dst, Address a);
 473 
 474 public:
 475 
 476   void push(RegSet regs, Register stack) { if (regs.bits()) push(regs.bits(), stack); }
 477   void pop(RegSet regs, Register stack) { if (regs.bits()) pop(regs.bits(), stack); }
 478 
 479   void push_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) push_fp(regs.bits(), stack, mode); }
 480   void pop_fp(FloatRegSet regs, Register stack, FpPushPopMode mode = PushPopFull) { if (regs.bits()) pop_fp(regs.bits(), stack, mode); }
 481 
 482   static RegSet call_clobbered_gp_registers();
 483 
 484   void push_p(PRegSet regs, Register stack) { if (regs.bits()) push_p(regs.bits(), stack); }
 485   void pop_p(PRegSet regs, Register stack) { if (regs.bits()) pop_p(regs.bits(), stack); }
 486 
 487   // Push and pop everything that might be clobbered by a native
 488   // runtime call except rscratch1 and rscratch2.  (They are always
 489   // scratch, so we don't have to protect them.)  Only save the lower
 490   // 64 bits of each vector register. Additional registers can be excluded
 491   // in a passed RegSet.
 492   void push_call_clobbered_registers_except(RegSet exclude);
 493   void pop_call_clobbered_registers_except(RegSet exclude);
 494 
 495   void push_call_clobbered_registers() {
 496     push_call_clobbered_registers_except(RegSet());
 497   }
 498   void pop_call_clobbered_registers() {
 499     pop_call_clobbered_registers_except(RegSet());
 500   }
 501 
 502 
 503   // now mov instructions for loading absolute addresses and 32 or
 504   // 64 bit integers
 505 
 506   inline void mov(Register dst, address addr)             { mov_immediate64(dst, (uint64_t)addr); }
 507 
 508   template<typename T, ENABLE_IF(std::is_integral<T>::value)>
 509   inline void mov(Register dst, T o)                      { mov_immediate64(dst, (uint64_t)o); }
 510 
 511   inline void movw(Register dst, uint32_t imm32)          { mov_immediate32(dst, imm32); }
 512 
 513   void mov(Register dst, RegisterOrConstant src) {
 514     if (src.is_register())
 515       mov(dst, src.as_register());
 516     else
 517       mov(dst, src.as_constant());
 518   }
 519 
 520   void movptr(Register r, uintptr_t imm64);
 521 
 522   void mov(FloatRegister Vd, SIMD_Arrangement T, uint64_t imm64);
 523 
 524   void mov(FloatRegister Vd, SIMD_Arrangement T, FloatRegister Vn) {
 525     orr(Vd, T, Vn, Vn);
 526   }
 527 
 528   void flt_to_flt16(Register dst, FloatRegister src, FloatRegister tmp) {
 529     fcvtsh(tmp, src);
 530     smov(dst, tmp, H, 0);
 531   }
 532 
 533   void flt16_to_flt(FloatRegister dst, Register src, FloatRegister tmp) {
 534     mov(tmp, H, 0, src);
 535     fcvths(dst, tmp);
 536   }
 537 
 538   // Generalized Test Bit And Branch, including a "far" variety which
 539   // spans more than 32KiB.
 540   void tbr(Condition cond, Register Rt, int bitpos, Label &dest, bool isfar = false) {
 541     assert(cond == EQ || cond == NE, "must be");
 542 
 543     if (isfar)
 544       cond = ~cond;
 545 
 546     void (Assembler::* branch)(Register Rt, int bitpos, Label &L);
 547     if (cond == Assembler::EQ)
 548       branch = &Assembler::tbz;
 549     else
 550       branch = &Assembler::tbnz;
 551 
 552     if (isfar) {
 553       Label L;
 554       (this->*branch)(Rt, bitpos, L);
 555       b(dest);
 556       bind(L);
 557     } else {
 558       (this->*branch)(Rt, bitpos, dest);
 559     }
 560   }
 561 
 562   // macro instructions for accessing and updating floating point
 563   // status register
 564   //
 565   // FPSR : op1 == 011
 566   //        CRn == 0100
 567   //        CRm == 0100
 568   //        op2 == 001
 569 
 570   inline void get_fpsr(Register reg)
 571   {
 572     mrs(0b11, 0b0100, 0b0100, 0b001, reg);
 573   }
 574 
 575   inline void set_fpsr(Register reg)
 576   {
 577     msr(0b011, 0b0100, 0b0100, 0b001, reg);
 578   }
 579 
 580   inline void clear_fpsr()
 581   {
 582     msr(0b011, 0b0100, 0b0100, 0b001, zr);
 583   }
 584 
 585   // FPCR : op1 == 011
 586   //        CRn == 0100
 587   //        CRm == 0100
 588   //        op2 == 000
 589 
 590   inline void get_fpcr(Register reg) {
 591     mrs(0b11, 0b0100, 0b0100, 0b000, reg);
 592   }
 593 
 594   inline void set_fpcr(Register reg) {
 595     msr(0b011, 0b0100, 0b0100, 0b000, reg);
 596   }
 597 
 598   // DCZID_EL0: op1 == 011
 599   //            CRn == 0000
 600   //            CRm == 0000
 601   //            op2 == 111
 602   inline void get_dczid_el0(Register reg)
 603   {
 604     mrs(0b011, 0b0000, 0b0000, 0b111, reg);
 605   }
 606 
 607   // CTR_EL0:   op1 == 011
 608   //            CRn == 0000
 609   //            CRm == 0000
 610   //            op2 == 001
 611   inline void get_ctr_el0(Register reg)
 612   {
 613     mrs(0b011, 0b0000, 0b0000, 0b001, reg);
 614   }
 615 
 616   inline void get_nzcv(Register reg) {
 617     mrs(0b011, 0b0100, 0b0010, 0b000, reg);
 618   }
 619 
 620   inline void set_nzcv(Register reg) {
 621     msr(0b011, 0b0100, 0b0010, 0b000, reg);
 622   }
 623 
 624   // idiv variant which deals with MINLONG as dividend and -1 as divisor
 625   int corrected_idivl(Register result, Register ra, Register rb,
 626                       bool want_remainder, Register tmp = rscratch1);
 627   int corrected_idivq(Register result, Register ra, Register rb,
 628                       bool want_remainder, Register tmp = rscratch1);
 629 
 630   // Support for null-checks
 631   //
 632   // Generates code that causes a null OS exception if the content of reg is null.
 633   // If the accessed location is M[reg + offset] and the offset is known, provide the
 634   // offset. No explicit code generation is needed if the offset is within a certain
 635   // range (0 <= offset <= page_size).
 636 
 637   virtual void null_check(Register reg, int offset = -1);
 638   static bool needs_explicit_null_check(intptr_t offset);
 639   static bool uses_implicit_null_check(void* address);
 640 
 641   static address target_addr_for_insn(address insn_addr, unsigned insn);
 642   static address target_addr_for_insn_or_null(address insn_addr, unsigned insn);
 643   static address target_addr_for_insn(address insn_addr) {
 644     unsigned insn = *(unsigned*)insn_addr;
 645     return target_addr_for_insn(insn_addr, insn);
 646   }
 647   static address target_addr_for_insn_or_null(address insn_addr) {
 648     unsigned insn = *(unsigned*)insn_addr;
 649     return target_addr_for_insn_or_null(insn_addr, insn);
 650   }
 651 
 652   // Required platform-specific helpers for Label::patch_instructions.
 653   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 654   static int pd_patch_instruction_size(address branch, address target);
 655   static void pd_patch_instruction(address branch, address target, const char* file = nullptr, int line = 0) {
 656     pd_patch_instruction_size(branch, target);
 657   }
 658   static address pd_call_destination(address branch) {
 659     return target_addr_for_insn(branch);
 660   }
 661 #ifndef PRODUCT
 662   static void pd_print_patched_instruction(address branch);
 663 #endif
 664 
 665   static int patch_oop(address insn_addr, address o);
 666   static int patch_narrow_klass(address insn_addr, narrowKlass n);
 667 
 668   // Return whether code is emitted to a scratch blob.
 669   virtual bool in_scratch_emit_size() {
 670     return false;
 671   }
 672   address emit_trampoline_stub(int insts_call_instruction_offset, address target);
 673   static int max_trampoline_stub_size();
 674   void emit_static_call_stub();
 675   static int static_call_stub_size();
 676 
 677   // The following 4 methods return the offset of the appropriate move instruction
 678 
 679   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 680   int load_unsigned_byte(Register dst, Address src);
 681   int load_unsigned_short(Register dst, Address src);
 682 
 683   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 684   int load_signed_byte(Register dst, Address src);
 685   int load_signed_short(Register dst, Address src);
 686 
 687   int load_signed_byte32(Register dst, Address src);
 688   int load_signed_short32(Register dst, Address src);
 689 
 690   // Support for sign-extension (hi:lo = extend_sign(lo))
 691   void extend_sign(Register hi, Register lo);
 692 
 693   // Load and store values by size and signed-ness
 694   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed);
 695   void store_sized_value(Address dst, Register src, size_t size_in_bytes);
 696 
 697   // Support for inc/dec with optimal instruction selection depending on value
 698 
 699   // x86_64 aliases an unqualified register/address increment and
 700   // decrement to call incrementq and decrementq but also supports
 701   // explicitly sized calls to incrementq/decrementq or
 702   // incrementl/decrementl
 703 
 704   // for aarch64 the proper convention would be to use
 705   // increment/decrement for 64 bit operations and
 706   // incrementw/decrementw for 32 bit operations. so when porting
 707   // x86_64 code we can leave calls to increment/decrement as is,
 708   // replace incrementq/decrementq with increment/decrement and
 709   // replace incrementl/decrementl with incrementw/decrementw.
 710 
 711   // n.b. increment/decrement calls with an Address destination will
 712   // need to use a scratch register to load the value to be
 713   // incremented. increment/decrement calls which add or subtract a
 714   // constant value greater than 2^12 will need to use a 2nd scratch
 715   // register to hold the constant. so, a register increment/decrement
 716   // may trash rscratch2 and an address increment/decrement trash
 717   // rscratch and rscratch2
 718 
 719   void decrementw(Address dst, int value = 1);
 720   void decrementw(Register reg, int value = 1);
 721 
 722   void decrement(Register reg, int value = 1);
 723   void decrement(Address dst, int value = 1);
 724 
 725   void incrementw(Address dst, int value = 1);
 726   void incrementw(Register reg, int value = 1);
 727 
 728   void increment(Register reg, int value = 1);
 729   void increment(Address dst, int value = 1);
 730 
 731 
 732   // Alignment
 733   void align(int modulus);
 734   void align(int modulus, int target);
 735 
 736   // nop
 737   void post_call_nop();
 738 
 739   // Stack frame creation/removal
 740   void enter(bool strip_ret_addr = false);
 741   void leave();
 742 
 743   // ROP Protection
 744   void protect_return_address();
 745   void protect_return_address(Register return_reg);
 746   void authenticate_return_address();
 747   void authenticate_return_address(Register return_reg);
 748   void strip_return_address();
 749   void check_return_address(Register return_reg=lr) PRODUCT_RETURN;
 750 
 751   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 752   // The pointer will be loaded into the thread register.
 753   void get_thread(Register thread);
 754 
 755   // support for argument shuffling
 756   void move32_64(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 757   void float_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 758   void long_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 759   void double_move(VMRegPair src, VMRegPair dst, Register tmp = rscratch1);
 760   void object_move(
 761                    OopMap* map,
 762                    int oop_handle_offset,
 763                    int framesize_in_slots,
 764                    VMRegPair src,
 765                    VMRegPair dst,
 766                    bool is_receiver,
 767                    int* receiver_offset);
 768 
 769 
 770   // Support for VM calls
 771   //
 772   // It is imperative that all calls into the VM are handled via the call_VM macros.
 773   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 774   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 775 
 776 
 777   void call_VM(Register oop_result,
 778                address entry_point,
 779                bool check_exceptions = true);
 780   void call_VM(Register oop_result,
 781                address entry_point,
 782                Register arg_1,
 783                bool check_exceptions = true);
 784   void call_VM(Register oop_result,
 785                address entry_point,
 786                Register arg_1, Register arg_2,
 787                bool check_exceptions = true);
 788   void call_VM(Register oop_result,
 789                address entry_point,
 790                Register arg_1, Register arg_2, Register arg_3,
 791                bool check_exceptions = true);
 792 
 793   // Overloadings with last_Java_sp
 794   void call_VM(Register oop_result,
 795                Register last_java_sp,
 796                address entry_point,
 797                int number_of_arguments = 0,
 798                bool check_exceptions = true);
 799   void call_VM(Register oop_result,
 800                Register last_java_sp,
 801                address entry_point,
 802                Register arg_1, bool
 803                check_exceptions = true);
 804   void call_VM(Register oop_result,
 805                Register last_java_sp,
 806                address entry_point,
 807                Register arg_1, Register arg_2,
 808                bool check_exceptions = true);
 809   void call_VM(Register oop_result,
 810                Register last_java_sp,
 811                address entry_point,
 812                Register arg_1, Register arg_2, Register arg_3,
 813                bool check_exceptions = true);
 814 
 815   void get_vm_result  (Register oop_result, Register thread);
 816   void get_vm_result_2(Register metadata_result, Register thread);
 817 
 818   // These always tightly bind to MacroAssembler::call_VM_base
 819   // bypassing the virtual implementation
 820   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 821   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 822   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 823   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 824   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 825 
 826   void call_VM_leaf(address entry_point,
 827                     int number_of_arguments = 0);
 828   void call_VM_leaf(address entry_point,
 829                     Register arg_1);
 830   void call_VM_leaf(address entry_point,
 831                     Register arg_1, Register arg_2);
 832   void call_VM_leaf(address entry_point,
 833                     Register arg_1, Register arg_2, Register arg_3);
 834 
 835   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 836   // bypassing the virtual implementation
 837   void super_call_VM_leaf(address entry_point);
 838   void super_call_VM_leaf(address entry_point, Register arg_1);
 839   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 840   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 841   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 842 
 843   // last Java Frame (fills frame anchor)
 844   void set_last_Java_frame(Register last_java_sp,
 845                            Register last_java_fp,
 846                            address last_java_pc,
 847                            Register scratch);
 848 
 849   void set_last_Java_frame(Register last_java_sp,
 850                            Register last_java_fp,
 851                            Label &last_java_pc,
 852                            Register scratch);
 853 
 854   void set_last_Java_frame(Register last_java_sp,
 855                            Register last_java_fp,
 856                            Register last_java_pc,
 857                            Register scratch);
 858 
 859   void reset_last_Java_frame(Register thread);
 860 
 861   // thread in the default location (rthread)
 862   void reset_last_Java_frame(bool clear_fp);
 863 
 864   // Stores
 865   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 866   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 867 
 868   void resolve_jobject(Register value, Register tmp1, Register tmp2);
 869   void resolve_global_jobject(Register value, Register tmp1, Register tmp2);
 870 
 871   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 872   void c2bool(Register x);
 873 
 874   void load_method_holder_cld(Register rresult, Register rmethod);
 875   void load_method_holder(Register holder, Register method);
 876 
 877   // oop manipulations
 878   void load_klass(Register dst, Register src);
 879   void store_klass(Register dst, Register src);
 880   void cmp_klass(Register oop, Register trial_klass, Register tmp);
 881 
 882   void resolve_weak_handle(Register result, Register tmp1, Register tmp2);
 883   void resolve_oop_handle(Register result, Register tmp1, Register tmp2);
 884   void load_mirror(Register dst, Register method, Register tmp1, Register tmp2);
 885 
 886   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 887                       Register tmp1, Register tmp2);
 888 
 889   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register val,
 890                        Register tmp1, Register tmp2, Register tmp3);
 891 
 892   void load_heap_oop(Register dst, Address src, Register tmp1,
 893                      Register tmp2, DecoratorSet decorators = 0);
 894 
 895   void load_heap_oop_not_null(Register dst, Address src, Register tmp1,
 896                               Register tmp2, DecoratorSet decorators = 0);
 897   void store_heap_oop(Address dst, Register val, Register tmp1,
 898                       Register tmp2, Register tmp3, DecoratorSet decorators = 0);
 899 
 900   // currently unimplemented
 901   // Used for storing null. All other oop constants should be
 902   // stored using routines that take a jobject.
 903   void store_heap_oop_null(Address dst);
 904 
 905   void store_klass_gap(Register dst, Register src);
 906 
 907   // This dummy is to prevent a call to store_heap_oop from
 908   // converting a zero (like null) into a Register by giving
 909   // the compiler two choices it can't resolve
 910 
 911   void store_heap_oop(Address dst, void* dummy);
 912 
 913   void encode_heap_oop(Register d, Register s);
 914   void encode_heap_oop(Register r) { encode_heap_oop(r, r); }
 915   void decode_heap_oop(Register d, Register s);
 916   void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
 917   void encode_heap_oop_not_null(Register r);
 918   void decode_heap_oop_not_null(Register r);
 919   void encode_heap_oop_not_null(Register dst, Register src);
 920   void decode_heap_oop_not_null(Register dst, Register src);
 921 
 922   void set_narrow_oop(Register dst, jobject obj);
 923 
 924   void encode_klass_not_null(Register r);
 925   void decode_klass_not_null(Register r);
 926   void encode_klass_not_null(Register dst, Register src);
 927   void decode_klass_not_null(Register dst, Register src);
 928 
 929   void set_narrow_klass(Register dst, Klass* k);
 930 
 931   // if heap base register is used - reinit it with the correct value
 932   void reinit_heapbase();
 933 
 934   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 935 
 936   void push_CPU_state(bool save_vectors = false, bool use_sve = false,
 937                       int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
 938   void pop_CPU_state(bool restore_vectors = false, bool use_sve = false,
 939                      int sve_vector_size_in_bytes = 0, int total_predicate_in_bytes = 0);
 940 
 941   void push_cont_fastpath(Register java_thread);
 942   void pop_cont_fastpath(Register java_thread);
 943 
 944   // Round up to a power of two
 945   void round_to(Register reg, int modulus);
 946 
 947   // java.lang.Math::round intrinsics
 948   void java_round_double(Register dst, FloatRegister src, FloatRegister ftmp);
 949   void java_round_float(Register dst, FloatRegister src, FloatRegister ftmp);
 950 
 951   // allocation
 952   void tlab_allocate(
 953     Register obj,                      // result: pointer to object after successful allocation
 954     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 955     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 956     Register t1,                       // temp register
 957     Register t2,                       // temp register
 958     Label&   slow_case                 // continuation point if fast allocation fails
 959   );
 960   void verify_tlab();
 961 
 962   // interface method calling
 963   void lookup_interface_method(Register recv_klass,
 964                                Register intf_klass,
 965                                RegisterOrConstant itable_index,
 966                                Register method_result,
 967                                Register scan_temp,
 968                                Label& no_such_interface,
 969                    bool return_method = true);
 970 
 971   void lookup_interface_method_stub(Register recv_klass,
 972                                     Register holder_klass,
 973                                     Register resolved_klass,
 974                                     Register method_result,
 975                                     Register temp_reg,
 976                                     Register temp_reg2,
 977                                     int itable_index,
 978                                     Label& L_no_such_interface);
 979 
 980   // virtual method calling
 981   // n.b. x86 allows RegisterOrConstant for vtable_index
 982   void lookup_virtual_method(Register recv_klass,
 983                              RegisterOrConstant vtable_index,
 984                              Register method_result);
 985 
 986   // Test sub_klass against super_klass, with fast and slow paths.
 987 
 988   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 989   // One of the three labels can be null, meaning take the fall-through.
 990   // If super_check_offset is -1, the value is loaded up from super_klass.
 991   // No registers are killed, except temp_reg.
 992   void check_klass_subtype_fast_path(Register sub_klass,
 993                                      Register super_klass,
 994                                      Register temp_reg,
 995                                      Label* L_success,
 996                                      Label* L_failure,
 997                                      Label* L_slow_path,
 998                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 999 
1000   // The rest of the type check; must be wired to a corresponding fast path.
1001   // It does not repeat the fast path logic, so don't use it standalone.
1002   // The temp_reg and temp2_reg can be noreg, if no temps are available.
1003   // Updates the sub's secondary super cache as necessary.
1004   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
1005   void check_klass_subtype_slow_path(Register sub_klass,
1006                                      Register super_klass,
1007                                      Register temp_reg,
1008                                      Register temp2_reg,
1009                                      Label* L_success,
1010                                      Label* L_failure,
1011                                      bool set_cond_codes = false);
1012 
1013   // As above, but with a constant super_klass.
1014   // The result is in Register result, not the condition codes.
1015   bool lookup_secondary_supers_table(Register r_sub_klass,
1016                                      Register r_super_klass,
1017                                      Register temp1,
1018                                      Register temp2,
1019                                      Register temp3,
1020                                      FloatRegister vtemp,
1021                                      Register result,
1022                                      u1 super_klass_slot,
1023                                      bool stub_is_near = false);
1024 
1025   void verify_secondary_supers_table(Register r_sub_klass,
1026                                      Register r_super_klass,
1027                                      Register temp1,
1028                                      Register temp2,
1029                                      Register result);
1030 
1031   void lookup_secondary_supers_table_slow_path(Register r_super_klass,
1032                                                Register r_array_base,
1033                                                Register r_array_index,
1034                                                Register r_bitmap,
1035                                                Register temp1,
1036                                                Register result);
1037 
1038   // Simplified, combined version, good for typical uses.
1039   // Falls through on failure.
1040   void check_klass_subtype(Register sub_klass,
1041                            Register super_klass,
1042                            Register temp_reg,
1043                            Label& L_success);
1044 
1045   void clinit_barrier(Register klass,
1046                       Register thread,
1047                       Label* L_fast_path = nullptr,
1048                       Label* L_slow_path = nullptr);
1049 
1050   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
1051 
1052   void verify_sve_vector_length(Register tmp = rscratch1);
1053   void reinitialize_ptrue() {
1054     if (UseSVE > 0) {
1055       sve_ptrue(ptrue, B);
1056     }
1057   }
1058   void verify_ptrue();
1059 
1060   // Debugging
1061 
1062   // only if +VerifyOops
1063   void _verify_oop(Register reg, const char* s, const char* file, int line);
1064   void _verify_oop_addr(Address addr, const char * s, const char* file, int line);
1065 
1066   void _verify_oop_checked(Register reg, const char* s, const char* file, int line) {
1067     if (VerifyOops) {
1068       _verify_oop(reg, s, file, line);
1069     }
1070   }
1071   void _verify_oop_addr_checked(Address reg, const char* s, const char* file, int line) {
1072     if (VerifyOops) {
1073       _verify_oop_addr(reg, s, file, line);
1074     }
1075   }
1076 
1077 // TODO: verify method and klass metadata (compare against vptr?)
1078   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
1079   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
1080 
1081 #define verify_oop(reg) _verify_oop_checked(reg, "broken oop " #reg, __FILE__, __LINE__)
1082 #define verify_oop_msg(reg, msg) _verify_oop_checked(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
1083 #define verify_oop_addr(addr) _verify_oop_addr_checked(addr, "broken oop addr " #addr, __FILE__, __LINE__)
1084 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
1085 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
1086 
1087   // Restore cpu control state after JNI call
1088   void restore_cpu_control_state_after_jni(Register tmp1, Register tmp2);
1089 
1090   // prints msg, dumps registers and stops execution
1091   void stop(const char* msg);
1092 
1093   static void debug64(char* msg, int64_t pc, int64_t regs[]);
1094 
1095   void untested()                                { stop("untested"); }
1096 
1097   void unimplemented(const char* what = "");
1098 
1099   void should_not_reach_here()                   { stop("should not reach here"); }
1100 
1101   void _assert_asm(Condition cc, const char* msg);
1102 #define assert_asm0(cc, msg) _assert_asm(cc, FILE_AND_LINE ": " msg)
1103 #define assert_asm(masm, command, cc, msg) DEBUG_ONLY(command; (masm)->_assert_asm(cc, FILE_AND_LINE ": " #command " " #cc ": " msg))
1104 
1105   // Stack overflow checking
1106   void bang_stack_with_offset(int offset) {
1107     // stack grows down, caller passes positive offset
1108     assert(offset > 0, "must bang with negative offset");
1109     sub(rscratch2, sp, offset);
1110     str(zr, Address(rscratch2));
1111   }
1112 
1113   // Writes to stack successive pages until offset reached to check for
1114   // stack overflow + shadow pages.  Also, clobbers tmp
1115   void bang_stack_size(Register size, Register tmp);
1116 
1117   // Check for reserved stack access in method being exited (for JIT)
1118   void reserved_stack_check();
1119 
1120   // Arithmetics
1121 
1122   void addptr(const Address &dst, int32_t src);
1123   void cmpptr(Register src1, Address src2);
1124 
1125   void cmpoop(Register obj1, Register obj2);
1126 
1127   // Various forms of CAS
1128 
1129   void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
1130                           Label &succeed, Label *fail);
1131   void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
1132                   Label &succeed, Label *fail);
1133 
1134   void cmpxchgw(Register oldv, Register newv, Register addr, Register tmp,
1135                   Label &succeed, Label *fail);
1136 
1137   void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
1138   void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
1139   void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
1140   void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
1141 
1142   void atomic_xchg(Register prev, Register newv, Register addr);
1143   void atomic_xchgw(Register prev, Register newv, Register addr);
1144   void atomic_xchgl(Register prev, Register newv, Register addr);
1145   void atomic_xchglw(Register prev, Register newv, Register addr);
1146   void atomic_xchgal(Register prev, Register newv, Register addr);
1147   void atomic_xchgalw(Register prev, Register newv, Register addr);
1148 
1149   void orptr(Address adr, RegisterOrConstant src) {
1150     ldr(rscratch1, adr);
1151     if (src.is_register())
1152       orr(rscratch1, rscratch1, src.as_register());
1153     else
1154       orr(rscratch1, rscratch1, src.as_constant());
1155     str(rscratch1, adr);
1156   }
1157 
1158   // A generic CAS; success or failure is in the EQ flag.
1159   // Clobbers rscratch1
1160   void cmpxchg(Register addr, Register expected, Register new_val,
1161                enum operand_size size,
1162                bool acquire, bool release, bool weak,
1163                Register result);
1164 
1165 #ifdef ASSERT
1166   // Template short-hand support to clean-up after a failed call to trampoline
1167   // call generation (see trampoline_call() below),  when a set of Labels must
1168   // be reset (before returning).
1169   template<typename Label, typename... More>
1170   void reset_labels(Label &lbl, More&... more) {
1171     lbl.reset(); reset_labels(more...);
1172   }
1173   template<typename Label>
1174   void reset_labels(Label &lbl) {
1175     lbl.reset();
1176   }
1177 #endif
1178 
1179 private:
1180   void compare_eq(Register rn, Register rm, enum operand_size size);
1181 
1182 public:
1183   // AArch64 OpenJDK uses four different types of calls:
1184   //   - direct call: bl pc_relative_offset
1185   //     This is the shortest and the fastest, but the offset has the range:
1186   //     +/-128MB for the release build, +/-2MB for the debug build.
1187   //
1188   //   - far call: adrp reg, pc_relative_offset; add; bl reg
1189   //     This is longer than a direct call. The offset has
1190   //     the range +/-4GB. As the code cache size is limited to 4GB,
1191   //     far calls can reach anywhere in the code cache. If a jump is
1192   //     needed rather than a call, a far jump 'b reg' can be used instead.
1193   //     All instructions are embedded at a call site.
1194   //
1195   //   - trampoline call:
1196   //     This is only available in C1/C2-generated code (nmethod). It is a combination
1197   //     of a direct call, which is used if the destination of a call is in range,
1198   //     and a register-indirect call. It has the advantages of reaching anywhere in
1199   //     the AArch64 address space and being patchable at runtime when the generated
1200   //     code is being executed by other threads.
1201   //
1202   //     [Main code section]
1203   //       bl trampoline
1204   //     [Stub code section]
1205   //     trampoline:
1206   //       ldr reg, pc + 8
1207   //       br reg
1208   //       <64-bit destination address>
1209   //
1210   //     If the destination is in range when the generated code is moved to the code
1211   //     cache, 'bl trampoline' is replaced with 'bl destination' and the trampoline
1212   //     is not used.
1213   //     The optimization does not remove the trampoline from the stub section.
1214   //     This is necessary because the trampoline may well be redirected later when
1215   //     code is patched, and the new destination may not be reachable by a simple BR
1216   //     instruction.
1217   //
1218   //   - indirect call: move reg, address; blr reg
1219   //     This too can reach anywhere in the address space, but it cannot be
1220   //     patched while code is running, so it must only be modified at a safepoint.
1221   //     This form of call is most suitable for targets at fixed addresses, which
1222   //     will never be patched.
1223   //
1224   // The patching we do conforms to the "Concurrent modification and
1225   // execution of instructions" section of the Arm Architectural
1226   // Reference Manual, which only allows B, BL, BRK, HVC, ISB, NOP, SMC,
1227   // or SVC instructions to be modified while another thread is
1228   // executing them.
1229   //
1230   // To patch a trampoline call when the BL can't reach, we first modify
1231   // the 64-bit destination address in the trampoline, then modify the
1232   // BL to point to the trampoline, then flush the instruction cache to
1233   // broadcast the change to all executing threads. See
1234   // NativeCall::set_destination_mt_safe for the details.
1235   //
1236   // There is a benign race in that the other thread might observe the
1237   // modified BL before it observes the modified 64-bit destination
1238   // address. That does not matter because the destination method has been
1239   // invalidated, so there will be a trap at its start.
1240   // For this to work, the destination address in the trampoline is
1241   // always updated, even if we're not using the trampoline.
1242 
1243   // Emit a direct call if the entry address will always be in range,
1244   // otherwise a trampoline call.
1245   // Supported entry.rspec():
1246   // - relocInfo::runtime_call_type
1247   // - relocInfo::opt_virtual_call_type
1248   // - relocInfo::static_call_type
1249   // - relocInfo::virtual_call_type
1250   //
1251   // Return: the call PC or null if CodeCache is full.
1252   // Clobbers: rscratch1
1253   address trampoline_call(Address entry);
1254 
1255   static bool far_branches() {
1256     return ReservedCodeCacheSize > branch_range;
1257   }
1258 
1259   // Check if branches to the non nmethod section require a far jump
1260   static bool codestub_branch_needs_far_jump() {
1261     return CodeCache::max_distance_to_non_nmethod() > branch_range;
1262   }
1263 
1264   // Emit a direct call/jump if the entry address will always be in range,
1265   // otherwise a far call/jump.
1266   // The address must be inside the code cache.
1267   // Supported entry.rspec():
1268   // - relocInfo::external_word_type
1269   // - relocInfo::runtime_call_type
1270   // - relocInfo::none
1271   // In the case of a far call/jump, the entry address is put in the tmp register.
1272   // The tmp register is invalidated.
1273   //
1274   // Far_jump returns the amount of the emitted code.
1275   void far_call(Address entry, Register tmp = rscratch1);
1276   int far_jump(Address entry, Register tmp = rscratch1);
1277 
1278   static int far_codestub_branch_size() {
1279     if (codestub_branch_needs_far_jump()) {
1280       return 3 * 4;  // adrp, add, br
1281     } else {
1282       return 4;
1283     }
1284   }
1285 
1286   // Emit the CompiledIC call idiom
1287   address ic_call(address entry, jint method_index = 0);
1288   static int ic_check_size();
1289   int ic_check(int end_alignment);
1290 
1291 public:
1292 
1293   // Data
1294 
1295   void mov_metadata(Register dst, Metadata* obj);
1296   Address allocate_metadata_address(Metadata* obj);
1297   Address constant_oop_address(jobject obj);
1298 
1299   void movoop(Register dst, jobject obj);
1300 
1301   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1302   void kernel_crc32(Register crc, Register buf, Register len,
1303         Register table0, Register table1, Register table2, Register table3,
1304         Register tmp, Register tmp2, Register tmp3);
1305   // CRC32 code for java.util.zip.CRC32C::updateBytes() intrinsic.
1306   void kernel_crc32c(Register crc, Register buf, Register len,
1307         Register table0, Register table1, Register table2, Register table3,
1308         Register tmp, Register tmp2, Register tmp3);
1309 
1310   // Stack push and pop individual 64 bit registers
1311   void push(Register src);
1312   void pop(Register dst);
1313 
1314   void repne_scan(Register addr, Register value, Register count,
1315                   Register scratch);
1316   void repne_scanw(Register addr, Register value, Register count,
1317                    Register scratch);
1318 
1319   typedef void (MacroAssembler::* add_sub_imm_insn)(Register Rd, Register Rn, unsigned imm);
1320   typedef void (MacroAssembler::* add_sub_reg_insn)(Register Rd, Register Rn, Register Rm, enum shift_kind kind, unsigned shift);
1321 
1322   // If a constant does not fit in an immediate field, generate some
1323   // number of MOV instructions and then perform the operation
1324   void wrap_add_sub_imm_insn(Register Rd, Register Rn, uint64_t imm,
1325                              add_sub_imm_insn insn1,
1326                              add_sub_reg_insn insn2, bool is32);
1327   // Separate vsn which sets the flags
1328   void wrap_adds_subs_imm_insn(Register Rd, Register Rn, uint64_t imm,
1329                                add_sub_imm_insn insn1,
1330                                add_sub_reg_insn insn2, bool is32);
1331 
1332 #define WRAP(INSN, is32)                                                \
1333   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1334     wrap_add_sub_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1335   }                                                                     \
1336                                                                         \
1337   void INSN(Register Rd, Register Rn, Register Rm,                      \
1338              enum shift_kind kind, unsigned shift = 0) {                \
1339     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1340   }                                                                     \
1341                                                                         \
1342   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1343     Assembler::INSN(Rd, Rn, Rm);                                        \
1344   }                                                                     \
1345                                                                         \
1346   void INSN(Register Rd, Register Rn, Register Rm,                      \
1347            ext::operation option, int amount = 0) {                     \
1348     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1349   }
1350 
1351   WRAP(add, false) WRAP(addw, true) WRAP(sub, false) WRAP(subw, true)
1352 
1353 #undef WRAP
1354 #define WRAP(INSN, is32)                                                \
1355   void INSN(Register Rd, Register Rn, uint64_t imm) {                   \
1356     wrap_adds_subs_imm_insn(Rd, Rn, imm, &Assembler::INSN, &Assembler::INSN, is32); \
1357   }                                                                     \
1358                                                                         \
1359   void INSN(Register Rd, Register Rn, Register Rm,                      \
1360              enum shift_kind kind, unsigned shift = 0) {                \
1361     Assembler::INSN(Rd, Rn, Rm, kind, shift);                           \
1362   }                                                                     \
1363                                                                         \
1364   void INSN(Register Rd, Register Rn, Register Rm) {                    \
1365     Assembler::INSN(Rd, Rn, Rm);                                        \
1366   }                                                                     \
1367                                                                         \
1368   void INSN(Register Rd, Register Rn, Register Rm,                      \
1369            ext::operation option, int amount = 0) {                     \
1370     Assembler::INSN(Rd, Rn, Rm, option, amount);                        \
1371   }
1372 
1373   WRAP(adds, false) WRAP(addsw, true) WRAP(subs, false) WRAP(subsw, true)
1374 
1375   void add(Register Rd, Register Rn, RegisterOrConstant increment);
1376   void addw(Register Rd, Register Rn, RegisterOrConstant increment);
1377   void sub(Register Rd, Register Rn, RegisterOrConstant decrement);
1378   void subw(Register Rd, Register Rn, RegisterOrConstant decrement);
1379 
1380   void adrp(Register reg1, const Address &dest, uint64_t &byte_offset);
1381 
1382   void tableswitch(Register index, jint lowbound, jint highbound,
1383                    Label &jumptable, Label &jumptable_end, int stride = 1) {
1384     adr(rscratch1, jumptable);
1385     subsw(rscratch2, index, lowbound);
1386     subsw(zr, rscratch2, highbound - lowbound);
1387     br(Assembler::HS, jumptable_end);
1388     add(rscratch1, rscratch1, rscratch2,
1389         ext::sxtw, exact_log2(stride * Assembler::instruction_size));
1390     br(rscratch1);
1391   }
1392 
1393   // Form an address from base + offset in Rd.  Rd may or may not
1394   // actually be used: you must use the Address that is returned.  It
1395   // is up to you to ensure that the shift provided matches the size
1396   // of your data.
1397   Address form_address(Register Rd, Register base, int64_t byte_offset, int shift);
1398 
1399   // Return true iff an address is within the 48-bit AArch64 address
1400   // space.
1401   bool is_valid_AArch64_address(address a) {
1402     return ((uint64_t)a >> 48) == 0;
1403   }
1404 
1405   // Load the base of the cardtable byte map into reg.
1406   void load_byte_map_base(Register reg);
1407 
1408   // Prolog generator routines to support switch between x86 code and
1409   // generated ARM code
1410 
1411   // routine to generate an x86 prolog for a stub function which
1412   // bootstraps into the generated ARM code which directly follows the
1413   // stub
1414   //
1415 
1416   public:
1417 
1418   void ldr_constant(Register dest, const Address &const_addr) {
1419     if (NearCpool) {
1420       ldr(dest, const_addr);
1421     } else {
1422       uint64_t offset;
1423       adrp(dest, InternalAddress(const_addr.target()), offset);
1424       ldr(dest, Address(dest, offset));
1425     }
1426   }
1427 
1428   address read_polling_page(Register r, relocInfo::relocType rtype);
1429   void get_polling_page(Register dest, relocInfo::relocType rtype);
1430 
1431   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1432   void update_byte_crc32(Register crc, Register val, Register table);
1433   void update_word_crc32(Register crc, Register v, Register tmp,
1434         Register table0, Register table1, Register table2, Register table3,
1435         bool upper = false);
1436 
1437   address count_positives(Register ary1, Register len, Register result);
1438 
1439   address arrays_equals(Register a1, Register a2, Register result, Register cnt1,
1440                         Register tmp1, Register tmp2, Register tmp3, int elem_size);
1441 
1442   void string_equals(Register a1, Register a2, Register result, Register cnt1);
1443 
1444   void fill_words(Register base, Register cnt, Register value);
1445   address zero_words(Register base, uint64_t cnt);
1446   address zero_words(Register ptr, Register cnt);
1447   void zero_dcache_blocks(Register base, Register cnt);
1448 
1449   static const int zero_words_block_size;
1450 
1451   address byte_array_inflate(Register src, Register dst, Register len,
1452                              FloatRegister vtmp1, FloatRegister vtmp2,
1453                              FloatRegister vtmp3, Register tmp4);
1454 
1455   void char_array_compress(Register src, Register dst, Register len,
1456                            Register res,
1457                            FloatRegister vtmp0, FloatRegister vtmp1,
1458                            FloatRegister vtmp2, FloatRegister vtmp3,
1459                            FloatRegister vtmp4, FloatRegister vtmp5);
1460 
1461   void encode_iso_array(Register src, Register dst,
1462                         Register len, Register res, bool ascii,
1463                         FloatRegister vtmp0, FloatRegister vtmp1,
1464                         FloatRegister vtmp2, FloatRegister vtmp3,
1465                         FloatRegister vtmp4, FloatRegister vtmp5);
1466 
1467   void generate_dsin_dcos(bool isCos, address npio2_hw, address two_over_pi,
1468       address pio2, address dsin_coef, address dcos_coef);
1469  private:
1470   // begin trigonometric functions support block
1471   void generate__ieee754_rem_pio2(address npio2_hw, address two_over_pi, address pio2);
1472   void generate__kernel_rem_pio2(address two_over_pi, address pio2);
1473   void generate_kernel_sin(FloatRegister x, bool iyIsOne, address dsin_coef);
1474   void generate_kernel_cos(FloatRegister x, address dcos_coef);
1475   // end trigonometric functions support block
1476   void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
1477                        Register src1, Register src2);
1478   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
1479     add2_with_carry(dest_hi, dest_hi, dest_lo, src1, src2);
1480   }
1481   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1482                              Register y, Register y_idx, Register z,
1483                              Register carry, Register product,
1484                              Register idx, Register kdx);
1485   void multiply_128_x_128_loop(Register y, Register z,
1486                                Register carry, Register carry2,
1487                                Register idx, Register jdx,
1488                                Register yz_idx1, Register yz_idx2,
1489                                Register tmp, Register tmp3, Register tmp4,
1490                                Register tmp7, Register product_hi);
1491   void kernel_crc32_using_crypto_pmull(Register crc, Register buf,
1492         Register len, Register tmp0, Register tmp1, Register tmp2,
1493         Register tmp3);
1494   void kernel_crc32_using_crc32(Register crc, Register buf,
1495         Register len, Register tmp0, Register tmp1, Register tmp2,
1496         Register tmp3);
1497   void kernel_crc32c_using_crypto_pmull(Register crc, Register buf,
1498         Register len, Register tmp0, Register tmp1, Register tmp2,
1499         Register tmp3);
1500   void kernel_crc32c_using_crc32c(Register crc, Register buf,
1501         Register len, Register tmp0, Register tmp1, Register tmp2,
1502         Register tmp3);
1503   void kernel_crc32_common_fold_using_crypto_pmull(Register crc, Register buf,
1504         Register len, Register tmp0, Register tmp1, Register tmp2,
1505         size_t table_offset);
1506 
1507   void ghash_modmul (FloatRegister result,
1508                      FloatRegister result_lo, FloatRegister result_hi, FloatRegister b,
1509                      FloatRegister a, FloatRegister vzr, FloatRegister a1_xor_a0, FloatRegister p,
1510                      FloatRegister t1, FloatRegister t2, FloatRegister t3);
1511   void ghash_load_wide(int index, Register data, FloatRegister result, FloatRegister state);
1512 public:
1513   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z,
1514                        Register tmp0, Register tmp1, Register tmp2, Register tmp3,
1515                        Register tmp4, Register tmp5, Register tmp6, Register tmp7);
1516   void mul_add(Register out, Register in, Register offs, Register len, Register k);
1517   void ghash_multiply(FloatRegister result_lo, FloatRegister result_hi,
1518                       FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1519                       FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1520   void ghash_multiply_wide(int index,
1521                            FloatRegister result_lo, FloatRegister result_hi,
1522                            FloatRegister a, FloatRegister b, FloatRegister a1_xor_a0,
1523                            FloatRegister tmp1, FloatRegister tmp2, FloatRegister tmp3);
1524   void ghash_reduce(FloatRegister result, FloatRegister lo, FloatRegister hi,
1525                     FloatRegister p, FloatRegister z, FloatRegister t1);
1526   void ghash_reduce_wide(int index, FloatRegister result, FloatRegister lo, FloatRegister hi,
1527                     FloatRegister p, FloatRegister z, FloatRegister t1);
1528   void ghash_processBlocks_wide(address p, Register state, Register subkeyH,
1529                                 Register data, Register blocks, int unrolls);
1530 
1531 
1532   void aesenc_loadkeys(Register key, Register keylen);
1533   void aesecb_encrypt(Register from, Register to, Register keylen,
1534                       FloatRegister data = v0, int unrolls = 1);
1535   void aesecb_decrypt(Register from, Register to, Register key, Register keylen);
1536   void aes_round(FloatRegister input, FloatRegister subkey);
1537 
1538   // ChaCha20 functions support block
1539   void cc20_quarter_round(FloatRegister aVec, FloatRegister bVec,
1540           FloatRegister cVec, FloatRegister dVec, FloatRegister scratch,
1541           FloatRegister tbl);
1542   void cc20_shift_lane_org(FloatRegister bVec, FloatRegister cVec,
1543           FloatRegister dVec, bool colToDiag);
1544 
1545   // Place an ISB after code may have been modified due to a safepoint.
1546   void safepoint_isb();
1547 
1548 private:
1549   // Return the effective address r + (r1 << ext) + offset.
1550   // Uses rscratch2.
1551   Address offsetted_address(Register r, Register r1, Address::extend ext,
1552                             int offset, int size);
1553 
1554 private:
1555   // Returns an address on the stack which is reachable with a ldr/str of size
1556   // Uses rscratch2 if the address is not directly reachable
1557   Address spill_address(int size, int offset, Register tmp=rscratch2);
1558   Address sve_spill_address(int sve_reg_size_in_bytes, int offset, Register tmp=rscratch2);
1559 
1560   bool merge_alignment_check(Register base, size_t size, int64_t cur_offset, int64_t prev_offset) const;
1561 
1562   // Check whether two loads/stores can be merged into ldp/stp.
1563   bool ldst_can_merge(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store) const;
1564 
1565   // Merge current load/store with previous load/store into ldp/stp.
1566   void merge_ldst(Register rx, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1567 
1568   // Try to merge two loads/stores into ldp/stp. If success, returns true else false.
1569   bool try_merge_ldst(Register rt, const Address &adr, size_t cur_size_in_bytes, bool is_store);
1570 
1571 public:
1572   void spill(Register Rx, bool is64, int offset) {
1573     if (is64) {
1574       str(Rx, spill_address(8, offset));
1575     } else {
1576       strw(Rx, spill_address(4, offset));
1577     }
1578   }
1579   void spill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1580     str(Vx, T, spill_address(1 << (int)T, offset));
1581   }
1582 
1583   void spill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1584     sve_str(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1585   }
1586   void spill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1587     sve_str(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1588   }
1589 
1590   void unspill(Register Rx, bool is64, int offset) {
1591     if (is64) {
1592       ldr(Rx, spill_address(8, offset));
1593     } else {
1594       ldrw(Rx, spill_address(4, offset));
1595     }
1596   }
1597   void unspill(FloatRegister Vx, SIMD_RegVariant T, int offset) {
1598     ldr(Vx, T, spill_address(1 << (int)T, offset));
1599   }
1600 
1601   void unspill_sve_vector(FloatRegister Zx, int offset, int vector_reg_size_in_bytes) {
1602     sve_ldr(Zx, sve_spill_address(vector_reg_size_in_bytes, offset));
1603   }
1604   void unspill_sve_predicate(PRegister pr, int offset, int predicate_reg_size_in_bytes) {
1605     sve_ldr(pr, sve_spill_address(predicate_reg_size_in_bytes, offset));
1606   }
1607 
1608   void spill_copy128(int src_offset, int dst_offset,
1609                      Register tmp1=rscratch1, Register tmp2=rscratch2) {
1610     if (src_offset < 512 && (src_offset & 7) == 0 &&
1611         dst_offset < 512 && (dst_offset & 7) == 0) {
1612       ldp(tmp1, tmp2, Address(sp, src_offset));
1613       stp(tmp1, tmp2, Address(sp, dst_offset));
1614     } else {
1615       unspill(tmp1, true, src_offset);
1616       spill(tmp1, true, dst_offset);
1617       unspill(tmp1, true, src_offset+8);
1618       spill(tmp1, true, dst_offset+8);
1619     }
1620   }
1621   void spill_copy_sve_vector_stack_to_stack(int src_offset, int dst_offset,
1622                                             int sve_vec_reg_size_in_bytes) {
1623     assert(sve_vec_reg_size_in_bytes % 16 == 0, "unexpected sve vector reg size");
1624     for (int i = 0; i < sve_vec_reg_size_in_bytes / 16; i++) {
1625       spill_copy128(src_offset, dst_offset);
1626       src_offset += 16;
1627       dst_offset += 16;
1628     }
1629   }
1630   void spill_copy_sve_predicate_stack_to_stack(int src_offset, int dst_offset,
1631                                                int sve_predicate_reg_size_in_bytes) {
1632     sve_ldr(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, src_offset));
1633     sve_str(ptrue, sve_spill_address(sve_predicate_reg_size_in_bytes, dst_offset));
1634     reinitialize_ptrue();
1635   }
1636   void cache_wb(Address line);
1637   void cache_wbsync(bool is_pre);
1638 
1639   // Code for java.lang.Thread::onSpinWait() intrinsic.
1640   void spin_wait();
1641 
1642   void lightweight_lock(Register obj, Register t1, Register t2, Register t3, Label& slow);
1643   void lightweight_unlock(Register obj, Register t1, Register t2, Register t3, Label& slow);
1644 
1645 private:
1646   // Check the current thread doesn't need a cross modify fence.
1647   void verify_cross_modify_fence_not_required() PRODUCT_RETURN;
1648 
1649 };
1650 
1651 #ifdef ASSERT
1652 inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
1653 #endif
1654 
1655 /**
1656  * class SkipIfEqual:
1657  *
1658  * Instantiating this class will result in assembly code being output that will
1659  * jump around any code emitted between the creation of the instance and it's
1660  * automatic destruction at the end of a scope block, depending on the value of
1661  * the flag passed to the constructor, which will be checked at run-time.
1662  */
1663 class SkipIfEqual {
1664  private:
1665   MacroAssembler* _masm;
1666   Label _label;
1667 
1668  public:
1669    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1670    ~SkipIfEqual();
1671 };
1672 
1673 struct tableswitch {
1674   Register _reg;
1675   int _insn_index; jint _first_key; jint _last_key;
1676   Label _after;
1677   Label _branches;
1678 };
1679 
1680 #endif // CPU_AARCH64_MACROASSEMBLER_AARCH64_HPP