1 /* 2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved. 4 * Copyright (c) 2021, Azul Systems, Inc. All rights reserved. 5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 6 * 7 * This code is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 only, as 9 * published by the Free Software Foundation. 10 * 11 * This code is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 14 * version 2 for more details (a copy is included in the LICENSE file that 15 * accompanied this code). 16 * 17 * You should have received a copy of the GNU General Public License version 18 * 2 along with this work; if not, write to the Free Software Foundation, 19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 20 * 21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 22 * or visit www.oracle.com if you need additional information or have any 23 * questions. 24 * 25 */ 26 27 #include "asm/macroAssembler.hpp" 28 #include "asm/macroAssembler.inline.hpp" 29 #include "code/aotCodeCache.hpp" 30 #include "code/codeCache.hpp" 31 #include "code/compiledIC.hpp" 32 #include "code/debugInfoRec.hpp" 33 #include "code/vtableStubs.hpp" 34 #include "compiler/oopMap.hpp" 35 #include "gc/shared/barrierSetAssembler.hpp" 36 #include "interpreter/interpreter.hpp" 37 #include "interpreter/interp_masm.hpp" 38 #include "logging/log.hpp" 39 #include "memory/resourceArea.hpp" 40 #include "nativeInst_aarch64.hpp" 41 #include "oops/klass.inline.hpp" 42 #include "oops/method.inline.hpp" 43 #include "prims/methodHandles.hpp" 44 #include "runtime/continuation.hpp" 45 #include "runtime/continuationEntry.inline.hpp" 46 #include "runtime/globals.hpp" 47 #include "runtime/jniHandles.hpp" 48 #include "runtime/safepointMechanism.hpp" 49 #include "runtime/sharedRuntime.hpp" 50 #include "runtime/signature.hpp" 51 #include "runtime/stubRoutines.hpp" 52 #include "runtime/timerTrace.hpp" 53 #include "runtime/vframeArray.hpp" 54 #include "utilities/align.hpp" 55 #include "utilities/formatBuffer.hpp" 56 #include "vmreg_aarch64.inline.hpp" 57 #ifdef COMPILER1 58 #include "c1/c1_Runtime1.hpp" 59 #endif 60 #ifdef COMPILER2 61 #include "adfiles/ad_aarch64.hpp" 62 #include "opto/runtime.hpp" 63 #endif 64 #if INCLUDE_JVMCI 65 #include "jvmci/jvmciJavaClasses.hpp" 66 #endif 67 68 #define __ masm-> 69 70 #ifdef PRODUCT 71 #define BLOCK_COMMENT(str) /* nothing */ 72 #else 73 #define BLOCK_COMMENT(str) __ block_comment(str) 74 #endif 75 76 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size; 77 78 // FIXME -- this is used by C1 79 class RegisterSaver { 80 const bool _save_vectors; 81 public: 82 RegisterSaver(bool save_vectors) : _save_vectors(save_vectors) {} 83 84 OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words); 85 void restore_live_registers(MacroAssembler* masm); 86 87 // Offsets into the register save area 88 // Used by deoptimization when it is managing result register 89 // values on its own 90 91 int reg_offset_in_bytes(Register r); 92 int r0_offset_in_bytes() { return reg_offset_in_bytes(r0); } 93 int rscratch1_offset_in_bytes() { return reg_offset_in_bytes(rscratch1); } 94 int v0_offset_in_bytes(); 95 96 // Total stack size in bytes for saving sve predicate registers. 97 int total_sve_predicate_in_bytes(); 98 99 // Capture info about frame layout 100 // Note this is only correct when not saving full vectors. 101 enum layout { 102 fpu_state_off = 0, 103 fpu_state_end = fpu_state_off + FPUStateSizeInWords - 1, 104 // The frame sender code expects that rfp will be in 105 // the "natural" place and will override any oopMap 106 // setting for it. We must therefore force the layout 107 // so that it agrees with the frame sender code. 108 r0_off = fpu_state_off + FPUStateSizeInWords, 109 rfp_off = r0_off + (Register::number_of_registers - 2) * Register::max_slots_per_register, 110 return_off = rfp_off + Register::max_slots_per_register, // slot for return address 111 reg_save_size = return_off + Register::max_slots_per_register}; 112 113 }; 114 115 int RegisterSaver::reg_offset_in_bytes(Register r) { 116 // The integer registers are located above the floating point 117 // registers in the stack frame pushed by save_live_registers() so the 118 // offset depends on whether we are saving full vectors, and whether 119 // those vectors are NEON or SVE. 120 121 int slots_per_vect = FloatRegister::save_slots_per_register; 122 123 #if COMPILER2_OR_JVMCI 124 if (_save_vectors) { 125 slots_per_vect = FloatRegister::slots_per_neon_register; 126 127 #ifdef COMPILER2 128 if (Matcher::supports_scalable_vector()) { 129 slots_per_vect = Matcher::scalable_vector_reg_size(T_FLOAT); 130 } 131 #endif 132 } 133 #endif 134 135 int r0_offset = v0_offset_in_bytes() + (slots_per_vect * FloatRegister::number_of_registers) * BytesPerInt; 136 return r0_offset + r->encoding() * wordSize; 137 } 138 139 int RegisterSaver::v0_offset_in_bytes() { 140 // The floating point registers are located above the predicate registers if 141 // they are present in the stack frame pushed by save_live_registers(). So the 142 // offset depends on the saved total predicate vectors in the stack frame. 143 return (total_sve_predicate_in_bytes() / VMRegImpl::stack_slot_size) * BytesPerInt; 144 } 145 146 int RegisterSaver::total_sve_predicate_in_bytes() { 147 #ifdef COMPILER2 148 if (_save_vectors && Matcher::supports_scalable_vector()) { 149 return (Matcher::scalable_vector_reg_size(T_BYTE) >> LogBitsPerByte) * 150 PRegister::number_of_registers; 151 } 152 #endif 153 return 0; 154 } 155 156 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) { 157 bool use_sve = false; 158 int sve_vector_size_in_bytes = 0; 159 int sve_vector_size_in_slots = 0; 160 int sve_predicate_size_in_slots = 0; 161 int total_predicate_in_bytes = total_sve_predicate_in_bytes(); 162 int total_predicate_in_slots = total_predicate_in_bytes / VMRegImpl::stack_slot_size; 163 164 #ifdef COMPILER2 165 use_sve = Matcher::supports_scalable_vector(); 166 if (use_sve) { 167 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE); 168 sve_vector_size_in_slots = Matcher::scalable_vector_reg_size(T_FLOAT); 169 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots(); 170 } 171 #endif 172 173 #if COMPILER2_OR_JVMCI 174 if (_save_vectors) { 175 int extra_save_slots_per_register = 0; 176 // Save upper half of vector registers 177 if (use_sve) { 178 extra_save_slots_per_register = sve_vector_size_in_slots - FloatRegister::save_slots_per_register; 179 } else { 180 extra_save_slots_per_register = FloatRegister::extra_save_slots_per_neon_register; 181 } 182 int extra_vector_bytes = extra_save_slots_per_register * 183 VMRegImpl::stack_slot_size * 184 FloatRegister::number_of_registers; 185 additional_frame_words += ((extra_vector_bytes + total_predicate_in_bytes) / wordSize); 186 } 187 #else 188 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 189 #endif 190 191 int frame_size_in_bytes = align_up(additional_frame_words * wordSize + 192 reg_save_size * BytesPerInt, 16); 193 // OopMap frame size is in compiler stack slots (jint's) not bytes or words 194 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt; 195 // The caller will allocate additional_frame_words 196 int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt; 197 // CodeBlob frame size is in words. 198 int frame_size_in_words = frame_size_in_bytes / wordSize; 199 *total_frame_words = frame_size_in_words; 200 201 // Save Integer and Float registers. 202 __ enter(); 203 __ push_CPU_state(_save_vectors, use_sve, sve_vector_size_in_bytes, total_predicate_in_bytes); 204 205 // Set an oopmap for the call site. This oopmap will map all 206 // oop-registers and debug-info registers as callee-saved. This 207 // will allow deoptimization at this safepoint to find all possible 208 // debug-info recordings, as well as let GC find all oops. 209 210 OopMapSet *oop_maps = new OopMapSet(); 211 OopMap* oop_map = new OopMap(frame_size_in_slots, 0); 212 213 for (int i = 0; i < Register::number_of_registers; i++) { 214 Register r = as_Register(i); 215 if (i <= rfp->encoding() && r != rscratch1 && r != rscratch2) { 216 // SP offsets are in 4-byte words. 217 // Register slots are 8 bytes wide, 32 floating-point registers. 218 int sp_offset = Register::max_slots_per_register * i + 219 FloatRegister::save_slots_per_register * FloatRegister::number_of_registers; 220 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots), r->as_VMReg()); 221 } 222 } 223 224 for (int i = 0; i < FloatRegister::number_of_registers; i++) { 225 FloatRegister r = as_FloatRegister(i); 226 int sp_offset = 0; 227 if (_save_vectors) { 228 sp_offset = use_sve ? (total_predicate_in_slots + sve_vector_size_in_slots * i) : 229 (FloatRegister::slots_per_neon_register * i); 230 } else { 231 sp_offset = FloatRegister::save_slots_per_register * i; 232 } 233 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg()); 234 } 235 236 return oop_map; 237 } 238 239 void RegisterSaver::restore_live_registers(MacroAssembler* masm) { 240 #ifdef COMPILER2 241 __ pop_CPU_state(_save_vectors, Matcher::supports_scalable_vector(), 242 Matcher::scalable_vector_reg_size(T_BYTE), total_sve_predicate_in_bytes()); 243 #else 244 #if !INCLUDE_JVMCI 245 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI"); 246 #endif 247 __ pop_CPU_state(_save_vectors); 248 #endif 249 __ ldp(rfp, lr, Address(__ post(sp, 2 * wordSize))); 250 __ authenticate_return_address(); 251 } 252 253 // Is vector's size (in bytes) bigger than a size saved by default? 254 // 8 bytes vector registers are saved by default on AArch64. 255 // The SVE supported min vector size is 8 bytes and we need to save 256 // predicate registers when the vector size is 8 bytes as well. 257 bool SharedRuntime::is_wide_vector(int size) { 258 return size > 8 || (UseSVE > 0 && size >= 8); 259 } 260 261 // --------------------------------------------------------------------------- 262 // Read the array of BasicTypes from a signature, and compute where the 263 // arguments should go. Values in the VMRegPair regs array refer to 4-byte 264 // quantities. Values less than VMRegImpl::stack0 are registers, those above 265 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer 266 // as framesizes are fixed. 267 // VMRegImpl::stack0 refers to the first slot 0(sp). 268 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. 269 // Register up to Register::number_of_registers are the 64-bit 270 // integer registers. 271 272 // Note: the INPUTS in sig_bt are in units of Java argument words, 273 // which are 64-bit. The OUTPUTS are in 32-bit units. 274 275 // The Java calling convention is a "shifted" version of the C ABI. 276 // By skipping the first C ABI register we can call non-static jni 277 // methods with small numbers of arguments without having to shuffle 278 // the arguments at all. Since we control the java ABI we ought to at 279 // least get some advantage out of it. 280 281 int SharedRuntime::java_calling_convention(const BasicType *sig_bt, 282 VMRegPair *regs, 283 int total_args_passed) { 284 285 // Create the mapping between argument positions and 286 // registers. 287 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = { 288 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7 289 }; 290 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = { 291 j_farg0, j_farg1, j_farg2, j_farg3, 292 j_farg4, j_farg5, j_farg6, j_farg7 293 }; 294 295 296 uint int_args = 0; 297 uint fp_args = 0; 298 uint stk_args = 0; 299 300 for (int i = 0; i < total_args_passed; i++) { 301 switch (sig_bt[i]) { 302 case T_BOOLEAN: 303 case T_CHAR: 304 case T_BYTE: 305 case T_SHORT: 306 case T_INT: 307 if (int_args < Argument::n_int_register_parameters_j) { 308 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 309 } else { 310 stk_args = align_up(stk_args, 2); 311 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 312 stk_args += 1; 313 } 314 break; 315 case T_VOID: 316 // halves of T_LONG or T_DOUBLE 317 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 318 regs[i].set_bad(); 319 break; 320 case T_LONG: 321 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 322 // fall through 323 case T_OBJECT: 324 case T_ARRAY: 325 case T_ADDRESS: 326 if (int_args < Argument::n_int_register_parameters_j) { 327 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 328 } else { 329 stk_args = align_up(stk_args, 2); 330 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 331 stk_args += 2; 332 } 333 break; 334 case T_FLOAT: 335 if (fp_args < Argument::n_float_register_parameters_j) { 336 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 337 } else { 338 stk_args = align_up(stk_args, 2); 339 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 340 stk_args += 1; 341 } 342 break; 343 case T_DOUBLE: 344 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 345 if (fp_args < Argument::n_float_register_parameters_j) { 346 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 347 } else { 348 stk_args = align_up(stk_args, 2); 349 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 350 stk_args += 2; 351 } 352 break; 353 default: 354 ShouldNotReachHere(); 355 break; 356 } 357 } 358 359 return stk_args; 360 } 361 362 // Patch the callers callsite with entry to compiled code if it exists. 363 static void patch_callers_callsite(MacroAssembler *masm) { 364 Label L; 365 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 366 __ cbz(rscratch1, L); 367 368 __ enter(); 369 __ push_CPU_state(); 370 371 // VM needs caller's callsite 372 // VM needs target method 373 // This needs to be a long call since we will relocate this adapter to 374 // the codeBuffer and it may not reach 375 376 #ifndef PRODUCT 377 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 378 #endif 379 380 __ mov(c_rarg0, rmethod); 381 __ mov(c_rarg1, lr); 382 __ authenticate_return_address(c_rarg1); 383 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite))); 384 __ blr(rscratch1); 385 386 // Explicit isb required because fixup_callers_callsite may change the code 387 // stream. 388 __ safepoint_isb(); 389 390 __ pop_CPU_state(); 391 // restore sp 392 __ leave(); 393 __ bind(L); 394 } 395 396 static void gen_c2i_adapter(MacroAssembler *masm, 397 int total_args_passed, 398 int comp_args_on_stack, 399 const BasicType *sig_bt, 400 const VMRegPair *regs, 401 Label& skip_fixup) { 402 // Before we get into the guts of the C2I adapter, see if we should be here 403 // at all. We've come from compiled code and are attempting to jump to the 404 // interpreter, which means the caller made a static call to get here 405 // (vcalls always get a compiled target if there is one). Check for a 406 // compiled target. If there is one, we need to patch the caller's call. 407 patch_callers_callsite(masm); 408 409 __ bind(skip_fixup); 410 411 int words_pushed = 0; 412 413 // Since all args are passed on the stack, total_args_passed * 414 // Interpreter::stackElementSize is the space we need. 415 416 int extraspace = total_args_passed * Interpreter::stackElementSize; 417 418 __ mov(r19_sender_sp, sp); 419 420 // stack is aligned, keep it that way 421 extraspace = align_up(extraspace, 2*wordSize); 422 423 if (extraspace) 424 __ sub(sp, sp, extraspace); 425 426 // Now write the args into the outgoing interpreter space 427 for (int i = 0; i < total_args_passed; i++) { 428 if (sig_bt[i] == T_VOID) { 429 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 430 continue; 431 } 432 433 // offset to start parameters 434 int st_off = (total_args_passed - i - 1) * Interpreter::stackElementSize; 435 int next_off = st_off - Interpreter::stackElementSize; 436 437 // Say 4 args: 438 // i st_off 439 // 0 32 T_LONG 440 // 1 24 T_VOID 441 // 2 16 T_OBJECT 442 // 3 8 T_BOOL 443 // - 0 return address 444 // 445 // However to make thing extra confusing. Because we can fit a Java long/double in 446 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter 447 // leaves one slot empty and only stores to a single slot. In this case the 448 // slot that is occupied is the T_VOID slot. See I said it was confusing. 449 450 VMReg r_1 = regs[i].first(); 451 VMReg r_2 = regs[i].second(); 452 if (!r_1->is_valid()) { 453 assert(!r_2->is_valid(), ""); 454 continue; 455 } 456 if (r_1->is_stack()) { 457 // memory to memory use rscratch1 458 int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size 459 + extraspace 460 + words_pushed * wordSize); 461 if (!r_2->is_valid()) { 462 // sign extend?? 463 __ ldrw(rscratch1, Address(sp, ld_off)); 464 __ str(rscratch1, Address(sp, st_off)); 465 466 } else { 467 468 __ ldr(rscratch1, Address(sp, ld_off)); 469 470 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 471 // T_DOUBLE and T_LONG use two slots in the interpreter 472 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 473 // ld_off == LSW, ld_off+wordSize == MSW 474 // st_off == MSW, next_off == LSW 475 __ str(rscratch1, Address(sp, next_off)); 476 #ifdef ASSERT 477 // Overwrite the unused slot with known junk 478 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaaaull); 479 __ str(rscratch1, Address(sp, st_off)); 480 #endif /* ASSERT */ 481 } else { 482 __ str(rscratch1, Address(sp, st_off)); 483 } 484 } 485 } else if (r_1->is_Register()) { 486 Register r = r_1->as_Register(); 487 if (!r_2->is_valid()) { 488 // must be only an int (or less ) so move only 32bits to slot 489 // why not sign extend?? 490 __ str(r, Address(sp, st_off)); 491 } else { 492 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG 493 // T_DOUBLE and T_LONG use two slots in the interpreter 494 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) { 495 // jlong/double in gpr 496 #ifdef ASSERT 497 // Overwrite the unused slot with known junk 498 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaabull); 499 __ str(rscratch1, Address(sp, st_off)); 500 #endif /* ASSERT */ 501 __ str(r, Address(sp, next_off)); 502 } else { 503 __ str(r, Address(sp, st_off)); 504 } 505 } 506 } else { 507 assert(r_1->is_FloatRegister(), ""); 508 if (!r_2->is_valid()) { 509 // only a float use just part of the slot 510 __ strs(r_1->as_FloatRegister(), Address(sp, st_off)); 511 } else { 512 #ifdef ASSERT 513 // Overwrite the unused slot with known junk 514 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaacull); 515 __ str(rscratch1, Address(sp, st_off)); 516 #endif /* ASSERT */ 517 __ strd(r_1->as_FloatRegister(), Address(sp, next_off)); 518 } 519 } 520 } 521 522 __ mov(esp, sp); // Interp expects args on caller's expression stack 523 524 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset()))); 525 __ br(rscratch1); 526 } 527 528 529 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm, 530 int total_args_passed, 531 int comp_args_on_stack, 532 const BasicType *sig_bt, 533 const VMRegPair *regs) { 534 535 // Note: r19_sender_sp contains the senderSP on entry. We must 536 // preserve it since we may do a i2c -> c2i transition if we lose a 537 // race where compiled code goes non-entrant while we get args 538 // ready. 539 540 // Adapters are frameless. 541 542 // An i2c adapter is frameless because the *caller* frame, which is 543 // interpreted, routinely repairs its own esp (from 544 // interpreter_frame_last_sp), even if a callee has modified the 545 // stack pointer. It also recalculates and aligns sp. 546 547 // A c2i adapter is frameless because the *callee* frame, which is 548 // interpreted, routinely repairs its caller's sp (from sender_sp, 549 // which is set up via the senderSP register). 550 551 // In other words, if *either* the caller or callee is interpreted, we can 552 // get the stack pointer repaired after a call. 553 554 // This is why c2i and i2c adapters cannot be indefinitely composed. 555 // In particular, if a c2i adapter were to somehow call an i2c adapter, 556 // both caller and callee would be compiled methods, and neither would 557 // clean up the stack pointer changes performed by the two adapters. 558 // If this happens, control eventually transfers back to the compiled 559 // caller, but with an uncorrected stack, causing delayed havoc. 560 561 // Cut-out for having no stack args. 562 int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord; 563 if (comp_args_on_stack) { 564 __ sub(rscratch1, sp, comp_words_on_stack * wordSize); 565 __ andr(sp, rscratch1, -16); 566 } 567 568 // Will jump to the compiled code just as if compiled code was doing it. 569 // Pre-load the register-jump target early, to schedule it better. 570 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_offset()))); 571 572 #if INCLUDE_JVMCI 573 if (EnableJVMCI) { 574 // check if this call should be routed towards a specific entry point 575 __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 576 Label no_alternative_target; 577 __ cbz(rscratch2, no_alternative_target); 578 __ mov(rscratch1, rscratch2); 579 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset()))); 580 __ bind(no_alternative_target); 581 } 582 #endif // INCLUDE_JVMCI 583 584 // Now generate the shuffle code. 585 for (int i = 0; i < total_args_passed; i++) { 586 if (sig_bt[i] == T_VOID) { 587 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half"); 588 continue; 589 } 590 591 // Pick up 0, 1 or 2 words from SP+offset. 592 593 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(), 594 "scrambled load targets?"); 595 // Load in argument order going down. 596 int ld_off = (total_args_passed - i - 1)*Interpreter::stackElementSize; 597 // Point to interpreter value (vs. tag) 598 int next_off = ld_off - Interpreter::stackElementSize; 599 // 600 // 601 // 602 VMReg r_1 = regs[i].first(); 603 VMReg r_2 = regs[i].second(); 604 if (!r_1->is_valid()) { 605 assert(!r_2->is_valid(), ""); 606 continue; 607 } 608 if (r_1->is_stack()) { 609 // Convert stack slot to an SP offset (+ wordSize to account for return address ) 610 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size; 611 if (!r_2->is_valid()) { 612 // sign extend??? 613 __ ldrsw(rscratch2, Address(esp, ld_off)); 614 __ str(rscratch2, Address(sp, st_off)); 615 } else { 616 // 617 // We are using two optoregs. This can be either T_OBJECT, 618 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 619 // two slots but only uses one for thr T_LONG or T_DOUBLE case 620 // So we must adjust where to pick up the data to match the 621 // interpreter. 622 // 623 // Interpreter local[n] == MSW, local[n+1] == LSW however locals 624 // are accessed as negative so LSW is at LOW address 625 626 // ld_off is MSW so get LSW 627 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 628 next_off : ld_off; 629 __ ldr(rscratch2, Address(esp, offset)); 630 // st_off is LSW (i.e. reg.first()) 631 __ str(rscratch2, Address(sp, st_off)); 632 } 633 } else if (r_1->is_Register()) { // Register argument 634 Register r = r_1->as_Register(); 635 if (r_2->is_valid()) { 636 // 637 // We are using two VMRegs. This can be either T_OBJECT, 638 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates 639 // two slots but only uses one for thr T_LONG or T_DOUBLE case 640 // So we must adjust where to pick up the data to match the 641 // interpreter. 642 643 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)? 644 next_off : ld_off; 645 646 // this can be a misaligned move 647 __ ldr(r, Address(esp, offset)); 648 } else { 649 // sign extend and use a full word? 650 __ ldrw(r, Address(esp, ld_off)); 651 } 652 } else { 653 if (!r_2->is_valid()) { 654 __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off)); 655 } else { 656 __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off)); 657 } 658 } 659 } 660 661 __ mov(rscratch2, rscratch1); 662 __ push_cont_fastpath(rthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about; kills rscratch1 663 __ mov(rscratch1, rscratch2); 664 665 // 6243940 We might end up in handle_wrong_method if 666 // the callee is deoptimized as we race thru here. If that 667 // happens we don't want to take a safepoint because the 668 // caller frame will look interpreted and arguments are now 669 // "compiled" so it is much better to make this transition 670 // invisible to the stack walking code. Unfortunately if 671 // we try and find the callee by normal means a safepoint 672 // is possible. So we stash the desired callee in the thread 673 // and the vm will find there should this case occur. 674 675 __ str(rmethod, Address(rthread, JavaThread::callee_target_offset())); 676 677 __ br(rscratch1); 678 } 679 680 // --------------------------------------------------------------- 681 void SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm, 682 int total_args_passed, 683 int comp_args_on_stack, 684 const BasicType *sig_bt, 685 const VMRegPair *regs, 686 address entry_address[AdapterBlob::ENTRY_COUNT]) { 687 entry_address[AdapterBlob::I2C] = __ pc(); 688 689 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs); 690 691 entry_address[AdapterBlob::C2I_Unverified] = __ pc(); 692 Label skip_fixup; 693 694 Register data = rscratch2; 695 Register receiver = j_rarg0; 696 Register tmp = r10; // A call-clobbered register not used for arg passing 697 698 // ------------------------------------------------------------------------- 699 // Generate a C2I adapter. On entry we know rmethod holds the Method* during calls 700 // to the interpreter. The args start out packed in the compiled layout. They 701 // need to be unpacked into the interpreter layout. This will almost always 702 // require some stack space. We grow the current (compiled) stack, then repack 703 // the args. We finally end in a jump to the generic interpreter entry point. 704 // On exit from the interpreter, the interpreter will restore our SP (lest the 705 // compiled code, which relies solely on SP and not FP, get sick). 706 707 { 708 __ block_comment("c2i_unverified_entry {"); 709 // Method might have been compiled since the call site was patched to 710 // interpreted; if that is the case treat it as a miss so we can get 711 // the call site corrected. 712 __ ic_check(1 /* end_alignment */); 713 __ ldr(rmethod, Address(data, CompiledICData::speculated_method_offset())); 714 715 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset()))); 716 __ cbz(rscratch1, skip_fixup); 717 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub())); 718 __ block_comment("} c2i_unverified_entry"); 719 } 720 721 entry_address[AdapterBlob::C2I] = __ pc(); 722 723 // Class initialization barrier for static methods 724 entry_address[AdapterBlob::C2I_No_Clinit_Check] = nullptr; 725 if (VM_Version::supports_fast_class_init_checks()) { 726 Label L_skip_barrier; 727 728 { // Bypass the barrier for non-static methods 729 __ ldrh(rscratch1, Address(rmethod, Method::access_flags_offset())); 730 __ andsw(zr, rscratch1, JVM_ACC_STATIC); 731 __ br(Assembler::EQ, L_skip_barrier); // non-static 732 } 733 734 __ load_method_holder(rscratch2, rmethod); 735 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 736 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 737 738 __ bind(L_skip_barrier); 739 entry_address[AdapterBlob::C2I_No_Clinit_Check] = __ pc(); 740 } 741 742 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 743 bs->c2i_entry_barrier(masm); 744 745 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup); 746 return; 747 } 748 749 static int c_calling_convention_priv(const BasicType *sig_bt, 750 VMRegPair *regs, 751 int total_args_passed) { 752 753 // We return the amount of VMRegImpl stack slots we need to reserve for all 754 // the arguments NOT counting out_preserve_stack_slots. 755 756 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = { 757 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, c_rarg6, c_rarg7 758 }; 759 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = { 760 c_farg0, c_farg1, c_farg2, c_farg3, 761 c_farg4, c_farg5, c_farg6, c_farg7 762 }; 763 764 uint int_args = 0; 765 uint fp_args = 0; 766 uint stk_args = 0; // inc by 2 each time 767 768 for (int i = 0; i < total_args_passed; i++) { 769 switch (sig_bt[i]) { 770 case T_BOOLEAN: 771 case T_CHAR: 772 case T_BYTE: 773 case T_SHORT: 774 case T_INT: 775 if (int_args < Argument::n_int_register_parameters_c) { 776 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg()); 777 } else { 778 #ifdef __APPLE__ 779 // Less-than word types are stored one after another. 780 // The code is unable to handle this so bailout. 781 return -1; 782 #endif 783 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 784 stk_args += 2; 785 } 786 break; 787 case T_LONG: 788 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 789 // fall through 790 case T_OBJECT: 791 case T_ARRAY: 792 case T_ADDRESS: 793 case T_METADATA: 794 if (int_args < Argument::n_int_register_parameters_c) { 795 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg()); 796 } else { 797 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 798 stk_args += 2; 799 } 800 break; 801 case T_FLOAT: 802 if (fp_args < Argument::n_float_register_parameters_c) { 803 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg()); 804 } else { 805 #ifdef __APPLE__ 806 // Less-than word types are stored one after another. 807 // The code is unable to handle this so bailout. 808 return -1; 809 #endif 810 regs[i].set1(VMRegImpl::stack2reg(stk_args)); 811 stk_args += 2; 812 } 813 break; 814 case T_DOUBLE: 815 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half"); 816 if (fp_args < Argument::n_float_register_parameters_c) { 817 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg()); 818 } else { 819 regs[i].set2(VMRegImpl::stack2reg(stk_args)); 820 stk_args += 2; 821 } 822 break; 823 case T_VOID: // Halves of longs and doubles 824 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half"); 825 regs[i].set_bad(); 826 break; 827 default: 828 ShouldNotReachHere(); 829 break; 830 } 831 } 832 833 return stk_args; 834 } 835 836 int SharedRuntime::vector_calling_convention(VMRegPair *regs, 837 uint num_bits, 838 uint total_args_passed) { 839 // More than 8 argument inputs are not supported now. 840 assert(total_args_passed <= Argument::n_float_register_parameters_c, "unsupported"); 841 assert(num_bits >= 64 && num_bits <= 2048 && is_power_of_2(num_bits), "unsupported"); 842 843 static const FloatRegister VEC_ArgReg[Argument::n_float_register_parameters_c] = { 844 v0, v1, v2, v3, v4, v5, v6, v7 845 }; 846 847 // On SVE, we use the same vector registers with 128-bit vector registers on NEON. 848 int next_reg_val = num_bits == 64 ? 1 : 3; 849 for (uint i = 0; i < total_args_passed; i++) { 850 VMReg vmreg = VEC_ArgReg[i]->as_VMReg(); 851 regs[i].set_pair(vmreg->next(next_reg_val), vmreg); 852 } 853 return 0; 854 } 855 856 int SharedRuntime::c_calling_convention(const BasicType *sig_bt, 857 VMRegPair *regs, 858 int total_args_passed) 859 { 860 int result = c_calling_convention_priv(sig_bt, regs, total_args_passed); 861 guarantee(result >= 0, "Unsupported arguments configuration"); 862 return result; 863 } 864 865 866 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 867 // We always ignore the frame_slots arg and just use the space just below frame pointer 868 // which by this time is free to use 869 switch (ret_type) { 870 case T_FLOAT: 871 __ strs(v0, Address(rfp, -wordSize)); 872 break; 873 case T_DOUBLE: 874 __ strd(v0, Address(rfp, -wordSize)); 875 break; 876 case T_VOID: break; 877 default: { 878 __ str(r0, Address(rfp, -wordSize)); 879 } 880 } 881 } 882 883 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) { 884 // We always ignore the frame_slots arg and just use the space just below frame pointer 885 // which by this time is free to use 886 switch (ret_type) { 887 case T_FLOAT: 888 __ ldrs(v0, Address(rfp, -wordSize)); 889 break; 890 case T_DOUBLE: 891 __ ldrd(v0, Address(rfp, -wordSize)); 892 break; 893 case T_VOID: break; 894 default: { 895 __ ldr(r0, Address(rfp, -wordSize)); 896 } 897 } 898 } 899 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 900 RegSet x; 901 for ( int i = first_arg ; i < arg_count ; i++ ) { 902 if (args[i].first()->is_Register()) { 903 x = x + args[i].first()->as_Register(); 904 } else if (args[i].first()->is_FloatRegister()) { 905 __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize))); 906 } 907 } 908 __ push(x, sp); 909 } 910 911 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) { 912 RegSet x; 913 for ( int i = first_arg ; i < arg_count ; i++ ) { 914 if (args[i].first()->is_Register()) { 915 x = x + args[i].first()->as_Register(); 916 } else { 917 ; 918 } 919 } 920 __ pop(x, sp); 921 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) { 922 if (args[i].first()->is_Register()) { 923 ; 924 } else if (args[i].first()->is_FloatRegister()) { 925 __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize))); 926 } 927 } 928 } 929 930 static void verify_oop_args(MacroAssembler* masm, 931 const methodHandle& method, 932 const BasicType* sig_bt, 933 const VMRegPair* regs) { 934 Register temp_reg = r19; // not part of any compiled calling seq 935 if (VerifyOops) { 936 for (int i = 0; i < method->size_of_parameters(); i++) { 937 if (sig_bt[i] == T_OBJECT || 938 sig_bt[i] == T_ARRAY) { 939 VMReg r = regs[i].first(); 940 assert(r->is_valid(), "bad oop arg"); 941 if (r->is_stack()) { 942 __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 943 __ verify_oop(temp_reg); 944 } else { 945 __ verify_oop(r->as_Register()); 946 } 947 } 948 } 949 } 950 } 951 952 // on exit, sp points to the ContinuationEntry 953 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) { 954 assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, ""); 955 assert(in_bytes(ContinuationEntry::cont_offset()) % VMRegImpl::stack_slot_size == 0, ""); 956 assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, ""); 957 958 stack_slots += (int)ContinuationEntry::size()/wordSize; 959 __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata 960 961 OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize)/ VMRegImpl::stack_slot_size, 0 /* arg_slots*/); 962 963 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 964 __ str(rscratch1, Address(sp, ContinuationEntry::parent_offset())); 965 __ mov(rscratch1, sp); // we can't use sp as the source in str 966 __ str(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 967 968 return map; 969 } 970 971 // on entry c_rarg1 points to the continuation 972 // sp points to ContinuationEntry 973 // c_rarg3 -- isVirtualThread 974 static void fill_continuation_entry(MacroAssembler* masm) { 975 #ifdef ASSERT 976 __ movw(rscratch1, ContinuationEntry::cookie_value()); 977 __ strw(rscratch1, Address(sp, ContinuationEntry::cookie_offset())); 978 #endif 979 980 __ str (c_rarg1, Address(sp, ContinuationEntry::cont_offset())); 981 __ strw(c_rarg3, Address(sp, ContinuationEntry::flags_offset())); 982 __ str (zr, Address(sp, ContinuationEntry::chunk_offset())); 983 __ strw(zr, Address(sp, ContinuationEntry::argsize_offset())); 984 __ strw(zr, Address(sp, ContinuationEntry::pin_count_offset())); 985 986 __ ldr(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 987 __ str(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 988 __ ldr(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 989 __ str(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 990 991 __ str(zr, Address(rthread, JavaThread::cont_fastpath_offset())); 992 __ str(zr, Address(rthread, JavaThread::held_monitor_count_offset())); 993 } 994 995 // on entry, sp points to the ContinuationEntry 996 // on exit, rfp points to the spilled rfp in the entry frame 997 static void continuation_enter_cleanup(MacroAssembler* masm) { 998 #ifndef PRODUCT 999 Label OK; 1000 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1001 __ cmp(sp, rscratch1); 1002 __ br(Assembler::EQ, OK); 1003 __ stop("incorrect sp1"); 1004 __ bind(OK); 1005 #endif 1006 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset())); 1007 __ str(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset())); 1008 1009 if (CheckJNICalls) { 1010 // Check if this is a virtual thread continuation 1011 Label L_skip_vthread_code; 1012 __ ldrw(rscratch1, Address(sp, ContinuationEntry::flags_offset())); 1013 __ cbzw(rscratch1, L_skip_vthread_code); 1014 1015 // If the held monitor count is > 0 and this vthread is terminating then 1016 // it failed to release a JNI monitor. So we issue the same log message 1017 // that JavaThread::exit does. 1018 __ ldr(rscratch1, Address(rthread, JavaThread::jni_monitor_count_offset())); 1019 __ cbz(rscratch1, L_skip_vthread_code); 1020 1021 // Save return value potentially containing the exception oop in callee-saved R19. 1022 __ mov(r19, r0); 1023 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::log_jni_monitor_still_held)); 1024 // Restore potential return value. 1025 __ mov(r0, r19); 1026 1027 // For vthreads we have to explicitly zero the JNI monitor count of the carrier 1028 // on termination. The held count is implicitly zeroed below when we restore from 1029 // the parent held count (which has to be zero). 1030 __ str(zr, Address(rthread, JavaThread::jni_monitor_count_offset())); 1031 1032 __ bind(L_skip_vthread_code); 1033 } 1034 #ifdef ASSERT 1035 else { 1036 // Check if this is a virtual thread continuation 1037 Label L_skip_vthread_code; 1038 __ ldrw(rscratch1, Address(sp, ContinuationEntry::flags_offset())); 1039 __ cbzw(rscratch1, L_skip_vthread_code); 1040 1041 // See comment just above. If not checking JNI calls the JNI count is only 1042 // needed for assertion checking. 1043 __ str(zr, Address(rthread, JavaThread::jni_monitor_count_offset())); 1044 1045 __ bind(L_skip_vthread_code); 1046 } 1047 #endif 1048 1049 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset())); 1050 __ str(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset())); 1051 1052 __ ldr(rscratch2, Address(sp, ContinuationEntry::parent_offset())); 1053 __ str(rscratch2, Address(rthread, JavaThread::cont_entry_offset())); 1054 __ add(rfp, sp, (int)ContinuationEntry::size()); 1055 } 1056 1057 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread) 1058 // On entry: c_rarg1 -- the continuation object 1059 // c_rarg2 -- isContinue 1060 // c_rarg3 -- isVirtualThread 1061 static void gen_continuation_enter(MacroAssembler* masm, 1062 const methodHandle& method, 1063 const BasicType* sig_bt, 1064 const VMRegPair* regs, 1065 int& exception_offset, 1066 OopMapSet*oop_maps, 1067 int& frame_complete, 1068 int& stack_slots, 1069 int& interpreted_entry_offset, 1070 int& compiled_entry_offset) { 1071 //verify_oop_args(masm, method, sig_bt, regs); 1072 Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type); 1073 1074 address start = __ pc(); 1075 1076 Label call_thaw, exit; 1077 1078 // i2i entry used at interp_only_mode only 1079 interpreted_entry_offset = __ pc() - start; 1080 { 1081 1082 #ifdef ASSERT 1083 Label is_interp_only; 1084 __ ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset())); 1085 __ cbnzw(rscratch1, is_interp_only); 1086 __ stop("enterSpecial interpreter entry called when not in interp_only_mode"); 1087 __ bind(is_interp_only); 1088 #endif 1089 1090 // Read interpreter arguments into registers (this is an ad-hoc i2c adapter) 1091 __ ldr(c_rarg1, Address(esp, Interpreter::stackElementSize*2)); 1092 __ ldr(c_rarg2, Address(esp, Interpreter::stackElementSize*1)); 1093 __ ldr(c_rarg3, Address(esp, Interpreter::stackElementSize*0)); 1094 __ push_cont_fastpath(rthread); 1095 1096 __ enter(); 1097 stack_slots = 2; // will be adjusted in setup 1098 OopMap* map = continuation_enter_setup(masm, stack_slots); 1099 // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe, 1100 // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway. 1101 1102 fill_continuation_entry(masm); 1103 1104 __ cbnz(c_rarg2, call_thaw); 1105 1106 const address tr_call = __ trampoline_call(resolve); 1107 if (tr_call == nullptr) { 1108 fatal("CodeCache is full at gen_continuation_enter"); 1109 } 1110 1111 oop_maps->add_gc_map(__ pc() - start, map); 1112 __ post_call_nop(); 1113 1114 __ b(exit); 1115 1116 address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call); 1117 if (stub == nullptr) { 1118 fatal("CodeCache is full at gen_continuation_enter"); 1119 } 1120 } 1121 1122 // compiled entry 1123 __ align(CodeEntryAlignment); 1124 compiled_entry_offset = __ pc() - start; 1125 1126 __ enter(); 1127 stack_slots = 2; // will be adjusted in setup 1128 OopMap* map = continuation_enter_setup(masm, stack_slots); 1129 frame_complete = __ pc() - start; 1130 1131 fill_continuation_entry(masm); 1132 1133 __ cbnz(c_rarg2, call_thaw); 1134 1135 const address tr_call = __ trampoline_call(resolve); 1136 if (tr_call == nullptr) { 1137 fatal("CodeCache is full at gen_continuation_enter"); 1138 } 1139 1140 oop_maps->add_gc_map(__ pc() - start, map); 1141 __ post_call_nop(); 1142 1143 __ b(exit); 1144 1145 __ bind(call_thaw); 1146 1147 ContinuationEntry::_thaw_call_pc_offset = __ pc() - start; 1148 __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw())); 1149 oop_maps->add_gc_map(__ pc() - start, map->deep_copy()); 1150 ContinuationEntry::_return_pc_offset = __ pc() - start; 1151 __ post_call_nop(); 1152 1153 __ bind(exit); 1154 ContinuationEntry::_cleanup_offset = __ pc() - start; 1155 continuation_enter_cleanup(masm); 1156 __ leave(); 1157 __ ret(lr); 1158 1159 /// exception handling 1160 1161 exception_offset = __ pc() - start; 1162 { 1163 __ mov(r19, r0); // save return value contaning the exception oop in callee-saved R19 1164 1165 continuation_enter_cleanup(masm); 1166 1167 __ ldr(c_rarg1, Address(rfp, wordSize)); // return address 1168 __ authenticate_return_address(c_rarg1); 1169 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, c_rarg1); 1170 1171 // see OptoRuntime::generate_exception_blob: r0 -- exception oop, r3 -- exception pc 1172 1173 __ mov(r1, r0); // the exception handler 1174 __ mov(r0, r19); // restore return value contaning the exception oop 1175 __ verify_oop(r0); 1176 1177 __ leave(); 1178 __ mov(r3, lr); 1179 __ br(r1); // the exception handler 1180 } 1181 1182 address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call); 1183 if (stub == nullptr) { 1184 fatal("CodeCache is full at gen_continuation_enter"); 1185 } 1186 } 1187 1188 static void gen_continuation_yield(MacroAssembler* masm, 1189 const methodHandle& method, 1190 const BasicType* sig_bt, 1191 const VMRegPair* regs, 1192 OopMapSet* oop_maps, 1193 int& frame_complete, 1194 int& stack_slots, 1195 int& compiled_entry_offset) { 1196 enum layout { 1197 rfp_off1, 1198 rfp_off2, 1199 lr_off, 1200 lr_off2, 1201 framesize // inclusive of return address 1202 }; 1203 // assert(is_even(framesize/2), "sp not 16-byte aligned"); 1204 stack_slots = framesize / VMRegImpl::slots_per_word; 1205 assert(stack_slots == 2, "recheck layout"); 1206 1207 address start = __ pc(); 1208 1209 compiled_entry_offset = __ pc() - start; 1210 __ enter(); 1211 1212 __ mov(c_rarg1, sp); 1213 1214 frame_complete = __ pc() - start; 1215 address the_pc = __ pc(); 1216 1217 __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup 1218 1219 __ mov(c_rarg0, rthread); 1220 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 1221 __ call_VM_leaf(Continuation::freeze_entry(), 2); 1222 __ reset_last_Java_frame(true); 1223 1224 Label pinned; 1225 1226 __ cbnz(r0, pinned); 1227 1228 // We've succeeded, set sp to the ContinuationEntry 1229 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset())); 1230 __ mov(sp, rscratch1); 1231 continuation_enter_cleanup(masm); 1232 1233 __ bind(pinned); // pinned -- return to caller 1234 1235 // handle pending exception thrown by freeze 1236 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 1237 Label ok; 1238 __ cbz(rscratch1, ok); 1239 __ leave(); 1240 __ lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry())); 1241 __ br(rscratch1); 1242 __ bind(ok); 1243 1244 __ leave(); 1245 __ ret(lr); 1246 1247 OopMap* map = new OopMap(framesize, 1); 1248 oop_maps->add_gc_map(the_pc - start, map); 1249 } 1250 1251 void SharedRuntime::continuation_enter_cleanup(MacroAssembler* masm) { 1252 ::continuation_enter_cleanup(masm); 1253 } 1254 1255 static void gen_special_dispatch(MacroAssembler* masm, 1256 const methodHandle& method, 1257 const BasicType* sig_bt, 1258 const VMRegPair* regs) { 1259 verify_oop_args(masm, method, sig_bt, regs); 1260 vmIntrinsics::ID iid = method->intrinsic_id(); 1261 1262 // Now write the args into the outgoing interpreter space 1263 bool has_receiver = false; 1264 Register receiver_reg = noreg; 1265 int member_arg_pos = -1; 1266 Register member_reg = noreg; 1267 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid); 1268 if (ref_kind != 0) { 1269 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument 1270 member_reg = r19; // known to be free at this point 1271 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind); 1272 } else if (iid == vmIntrinsics::_invokeBasic) { 1273 has_receiver = true; 1274 } else if (iid == vmIntrinsics::_linkToNative) { 1275 member_arg_pos = method->size_of_parameters() - 1; // trailing NativeEntryPoint argument 1276 member_reg = r19; // known to be free at this point 1277 } else { 1278 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid)); 1279 } 1280 1281 if (member_reg != noreg) { 1282 // Load the member_arg into register, if necessary. 1283 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs); 1284 VMReg r = regs[member_arg_pos].first(); 1285 if (r->is_stack()) { 1286 __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1287 } else { 1288 // no data motion is needed 1289 member_reg = r->as_Register(); 1290 } 1291 } 1292 1293 if (has_receiver) { 1294 // Make sure the receiver is loaded into a register. 1295 assert(method->size_of_parameters() > 0, "oob"); 1296 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object"); 1297 VMReg r = regs[0].first(); 1298 assert(r->is_valid(), "bad receiver arg"); 1299 if (r->is_stack()) { 1300 // Porting note: This assumes that compiled calling conventions always 1301 // pass the receiver oop in a register. If this is not true on some 1302 // platform, pick a temp and load the receiver from stack. 1303 fatal("receiver always in a register"); 1304 receiver_reg = r2; // known to be free at this point 1305 __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size)); 1306 } else { 1307 // no data motion is needed 1308 receiver_reg = r->as_Register(); 1309 } 1310 } 1311 1312 // Figure out which address we are really jumping to: 1313 MethodHandles::generate_method_handle_dispatch(masm, iid, 1314 receiver_reg, member_reg, /*for_compiler_entry:*/ true); 1315 } 1316 1317 // --------------------------------------------------------------------------- 1318 // Generate a native wrapper for a given method. The method takes arguments 1319 // in the Java compiled code convention, marshals them to the native 1320 // convention (handlizes oops, etc), transitions to native, makes the call, 1321 // returns to java state (possibly blocking), unhandlizes any result and 1322 // returns. 1323 // 1324 // Critical native functions are a shorthand for the use of 1325 // GetPrimtiveArrayCritical and disallow the use of any other JNI 1326 // functions. The wrapper is expected to unpack the arguments before 1327 // passing them to the callee. Critical native functions leave the state _in_Java, 1328 // since they block out GC. 1329 // Some other parts of JNI setup are skipped like the tear down of the JNI handle 1330 // block and the check for pending exceptions it's impossible for them 1331 // to be thrown. 1332 // 1333 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm, 1334 const methodHandle& method, 1335 int compile_id, 1336 BasicType* in_sig_bt, 1337 VMRegPair* in_regs, 1338 BasicType ret_type) { 1339 if (method->is_continuation_native_intrinsic()) { 1340 int exception_offset = -1; 1341 OopMapSet* oop_maps = new OopMapSet(); 1342 int frame_complete = -1; 1343 int stack_slots = -1; 1344 int interpreted_entry_offset = -1; 1345 int vep_offset = -1; 1346 if (method->is_continuation_enter_intrinsic()) { 1347 gen_continuation_enter(masm, 1348 method, 1349 in_sig_bt, 1350 in_regs, 1351 exception_offset, 1352 oop_maps, 1353 frame_complete, 1354 stack_slots, 1355 interpreted_entry_offset, 1356 vep_offset); 1357 } else if (method->is_continuation_yield_intrinsic()) { 1358 gen_continuation_yield(masm, 1359 method, 1360 in_sig_bt, 1361 in_regs, 1362 oop_maps, 1363 frame_complete, 1364 stack_slots, 1365 vep_offset); 1366 } else { 1367 guarantee(false, "Unknown Continuation native intrinsic"); 1368 } 1369 1370 #ifdef ASSERT 1371 if (method->is_continuation_enter_intrinsic()) { 1372 assert(interpreted_entry_offset != -1, "Must be set"); 1373 assert(exception_offset != -1, "Must be set"); 1374 } else { 1375 assert(interpreted_entry_offset == -1, "Must be unset"); 1376 assert(exception_offset == -1, "Must be unset"); 1377 } 1378 assert(frame_complete != -1, "Must be set"); 1379 assert(stack_slots != -1, "Must be set"); 1380 assert(vep_offset != -1, "Must be set"); 1381 #endif 1382 1383 __ flush(); 1384 nmethod* nm = nmethod::new_native_nmethod(method, 1385 compile_id, 1386 masm->code(), 1387 vep_offset, 1388 frame_complete, 1389 stack_slots, 1390 in_ByteSize(-1), 1391 in_ByteSize(-1), 1392 oop_maps, 1393 exception_offset); 1394 if (nm == nullptr) return nm; 1395 if (method->is_continuation_enter_intrinsic()) { 1396 ContinuationEntry::set_enter_code(nm, interpreted_entry_offset); 1397 } else if (method->is_continuation_yield_intrinsic()) { 1398 _cont_doYield_stub = nm; 1399 } else { 1400 guarantee(false, "Unknown Continuation native intrinsic"); 1401 } 1402 return nm; 1403 } 1404 1405 if (method->is_method_handle_intrinsic()) { 1406 vmIntrinsics::ID iid = method->intrinsic_id(); 1407 intptr_t start = (intptr_t)__ pc(); 1408 int vep_offset = ((intptr_t)__ pc()) - start; 1409 1410 // First instruction must be a nop as it may need to be patched on deoptimisation 1411 __ nop(); 1412 gen_special_dispatch(masm, 1413 method, 1414 in_sig_bt, 1415 in_regs); 1416 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period 1417 __ flush(); 1418 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually 1419 return nmethod::new_native_nmethod(method, 1420 compile_id, 1421 masm->code(), 1422 vep_offset, 1423 frame_complete, 1424 stack_slots / VMRegImpl::slots_per_word, 1425 in_ByteSize(-1), 1426 in_ByteSize(-1), 1427 nullptr); 1428 } 1429 address native_func = method->native_function(); 1430 assert(native_func != nullptr, "must have function"); 1431 1432 // An OopMap for lock (and class if static) 1433 OopMapSet *oop_maps = new OopMapSet(); 1434 intptr_t start = (intptr_t)__ pc(); 1435 1436 // We have received a description of where all the java arg are located 1437 // on entry to the wrapper. We need to convert these args to where 1438 // the jni function will expect them. To figure out where they go 1439 // we convert the java signature to a C signature by inserting 1440 // the hidden arguments as arg[0] and possibly arg[1] (static method) 1441 1442 const int total_in_args = method->size_of_parameters(); 1443 int total_c_args = total_in_args + (method->is_static() ? 2 : 1); 1444 1445 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args); 1446 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args); 1447 1448 int argc = 0; 1449 out_sig_bt[argc++] = T_ADDRESS; 1450 if (method->is_static()) { 1451 out_sig_bt[argc++] = T_OBJECT; 1452 } 1453 1454 for (int i = 0; i < total_in_args ; i++ ) { 1455 out_sig_bt[argc++] = in_sig_bt[i]; 1456 } 1457 1458 // Now figure out where the args must be stored and how much stack space 1459 // they require. 1460 int out_arg_slots; 1461 out_arg_slots = c_calling_convention_priv(out_sig_bt, out_regs, total_c_args); 1462 1463 if (out_arg_slots < 0) { 1464 return nullptr; 1465 } 1466 1467 // Compute framesize for the wrapper. We need to handlize all oops in 1468 // incoming registers 1469 1470 // Calculate the total number of stack slots we will need. 1471 1472 // First count the abi requirement plus all of the outgoing args 1473 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots; 1474 1475 // Now the space for the inbound oop handle area 1476 int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers 1477 1478 int oop_handle_offset = stack_slots; 1479 stack_slots += total_save_slots; 1480 1481 // Now any space we need for handlizing a klass if static method 1482 1483 int klass_slot_offset = 0; 1484 int klass_offset = -1; 1485 int lock_slot_offset = 0; 1486 bool is_static = false; 1487 1488 if (method->is_static()) { 1489 klass_slot_offset = stack_slots; 1490 stack_slots += VMRegImpl::slots_per_word; 1491 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size; 1492 is_static = true; 1493 } 1494 1495 // Plus a lock if needed 1496 1497 if (method->is_synchronized()) { 1498 lock_slot_offset = stack_slots; 1499 stack_slots += VMRegImpl::slots_per_word; 1500 } 1501 1502 // Now a place (+2) to save return values or temp during shuffling 1503 // + 4 for return address (which we own) and saved rfp 1504 stack_slots += 6; 1505 1506 // Ok The space we have allocated will look like: 1507 // 1508 // 1509 // FP-> | | 1510 // |---------------------| 1511 // | 2 slots for moves | 1512 // |---------------------| 1513 // | lock box (if sync) | 1514 // |---------------------| <- lock_slot_offset 1515 // | klass (if static) | 1516 // |---------------------| <- klass_slot_offset 1517 // | oopHandle area | 1518 // |---------------------| <- oop_handle_offset (8 java arg registers) 1519 // | outbound memory | 1520 // | based arguments | 1521 // | | 1522 // |---------------------| 1523 // | | 1524 // SP-> | out_preserved_slots | 1525 // 1526 // 1527 1528 1529 // Now compute actual number of stack words we need rounding to make 1530 // stack properly aligned. 1531 stack_slots = align_up(stack_slots, StackAlignmentInSlots); 1532 1533 int stack_size = stack_slots * VMRegImpl::stack_slot_size; 1534 1535 // First thing make an ic check to see if we should even be here 1536 1537 // We are free to use all registers as temps without saving them and 1538 // restoring them except rfp. rfp is the only callee save register 1539 // as far as the interpreter and the compiler(s) are concerned. 1540 1541 const Register receiver = j_rarg0; 1542 1543 Label exception_pending; 1544 1545 assert_different_registers(receiver, rscratch1); 1546 __ verify_oop(receiver); 1547 __ ic_check(8 /* end_alignment */); 1548 1549 // Verified entry point must be aligned 1550 int vep_offset = ((intptr_t)__ pc()) - start; 1551 1552 // If we have to make this method not-entrant we'll overwrite its 1553 // first instruction with a jump. For this action to be legal we 1554 // must ensure that this first instruction is a B, BL, NOP, BKPT, 1555 // SVC, HVC, or SMC. Make it a NOP. 1556 __ nop(); 1557 1558 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) { 1559 Label L_skip_barrier; 1560 __ mov_metadata(rscratch2, method->method_holder()); // InstanceKlass* 1561 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier); 1562 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub())); 1563 1564 __ bind(L_skip_barrier); 1565 } 1566 1567 // Generate stack overflow check 1568 __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size())); 1569 1570 // Generate a new frame for the wrapper. 1571 __ enter(); 1572 // -2 because return address is already present and so is saved rfp 1573 __ sub(sp, sp, stack_size - 2*wordSize); 1574 1575 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler(); 1576 bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */); 1577 1578 // Frame is now completed as far as size and linkage. 1579 int frame_complete = ((intptr_t)__ pc()) - start; 1580 1581 // We use r20 as the oop handle for the receiver/klass 1582 // It is callee save so it survives the call to native 1583 1584 const Register oop_handle_reg = r20; 1585 1586 // 1587 // We immediately shuffle the arguments so that any vm call we have to 1588 // make from here on out (sync slow path, jvmti, etc.) we will have 1589 // captured the oops from our caller and have a valid oopMap for 1590 // them. 1591 1592 // ----------------- 1593 // The Grand Shuffle 1594 1595 // The Java calling convention is either equal (linux) or denser (win64) than the 1596 // c calling convention. However the because of the jni_env argument the c calling 1597 // convention always has at least one more (and two for static) arguments than Java. 1598 // Therefore if we move the args from java -> c backwards then we will never have 1599 // a register->register conflict and we don't have to build a dependency graph 1600 // and figure out how to break any cycles. 1601 // 1602 1603 // Record esp-based slot for receiver on stack for non-static methods 1604 int receiver_offset = -1; 1605 1606 // This is a trick. We double the stack slots so we can claim 1607 // the oops in the caller's frame. Since we are sure to have 1608 // more args than the caller doubling is enough to make 1609 // sure we can capture all the incoming oop args from the 1610 // caller. 1611 // 1612 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/); 1613 1614 // Mark location of rfp (someday) 1615 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp)); 1616 1617 1618 int float_args = 0; 1619 int int_args = 0; 1620 1621 #ifdef ASSERT 1622 bool reg_destroyed[Register::number_of_registers]; 1623 bool freg_destroyed[FloatRegister::number_of_registers]; 1624 for ( int r = 0 ; r < Register::number_of_registers ; r++ ) { 1625 reg_destroyed[r] = false; 1626 } 1627 for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) { 1628 freg_destroyed[f] = false; 1629 } 1630 1631 #endif /* ASSERT */ 1632 1633 // For JNI natives the incoming and outgoing registers are offset upwards. 1634 GrowableArray<int> arg_order(2 * total_in_args); 1635 1636 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) { 1637 arg_order.push(i); 1638 arg_order.push(c_arg); 1639 } 1640 1641 for (int ai = 0; ai < arg_order.length(); ai += 2) { 1642 int i = arg_order.at(ai); 1643 int c_arg = arg_order.at(ai + 1); 1644 __ block_comment(err_msg("move %d -> %d", i, c_arg)); 1645 assert(c_arg != -1 && i != -1, "wrong order"); 1646 #ifdef ASSERT 1647 if (in_regs[i].first()->is_Register()) { 1648 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!"); 1649 } else if (in_regs[i].first()->is_FloatRegister()) { 1650 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!"); 1651 } 1652 if (out_regs[c_arg].first()->is_Register()) { 1653 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true; 1654 } else if (out_regs[c_arg].first()->is_FloatRegister()) { 1655 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true; 1656 } 1657 #endif /* ASSERT */ 1658 switch (in_sig_bt[i]) { 1659 case T_ARRAY: 1660 case T_OBJECT: 1661 __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg], 1662 ((i == 0) && (!is_static)), 1663 &receiver_offset); 1664 int_args++; 1665 break; 1666 case T_VOID: 1667 break; 1668 1669 case T_FLOAT: 1670 __ float_move(in_regs[i], out_regs[c_arg]); 1671 float_args++; 1672 break; 1673 1674 case T_DOUBLE: 1675 assert( i + 1 < total_in_args && 1676 in_sig_bt[i + 1] == T_VOID && 1677 out_sig_bt[c_arg+1] == T_VOID, "bad arg list"); 1678 __ double_move(in_regs[i], out_regs[c_arg]); 1679 float_args++; 1680 break; 1681 1682 case T_LONG : 1683 __ long_move(in_regs[i], out_regs[c_arg]); 1684 int_args++; 1685 break; 1686 1687 case T_ADDRESS: assert(false, "found T_ADDRESS in java args"); 1688 1689 default: 1690 __ move32_64(in_regs[i], out_regs[c_arg]); 1691 int_args++; 1692 } 1693 } 1694 1695 // point c_arg at the first arg that is already loaded in case we 1696 // need to spill before we call out 1697 int c_arg = total_c_args - total_in_args; 1698 1699 // Pre-load a static method's oop into c_rarg1. 1700 if (method->is_static()) { 1701 1702 // load oop into a register 1703 __ movoop(c_rarg1, 1704 JNIHandles::make_local(method->method_holder()->java_mirror())); 1705 1706 // Now handlize the static class mirror it's known not-null. 1707 __ str(c_rarg1, Address(sp, klass_offset)); 1708 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset)); 1709 1710 // Now get the handle 1711 __ lea(c_rarg1, Address(sp, klass_offset)); 1712 // and protect the arg if we must spill 1713 c_arg--; 1714 } 1715 1716 // Change state to native (we save the return address in the thread, since it might not 1717 // be pushed on the stack when we do a stack traversal). It is enough that the pc() 1718 // points into the right code segment. It does not have to be the correct return pc. 1719 // We use the same pc/oopMap repeatedly when we call out. 1720 1721 Label native_return; 1722 if (method->is_object_wait0()) { 1723 // For convenience we use the pc we want to resume to in case of preemption on Object.wait. 1724 __ set_last_Java_frame(sp, noreg, native_return, rscratch1); 1725 } else { 1726 intptr_t the_pc = (intptr_t) __ pc(); 1727 oop_maps->add_gc_map(the_pc - start, map); 1728 1729 __ set_last_Java_frame(sp, noreg, __ pc(), rscratch1); 1730 } 1731 1732 Label dtrace_method_entry, dtrace_method_entry_done; 1733 if (DTraceMethodProbes) { 1734 __ b(dtrace_method_entry); 1735 __ bind(dtrace_method_entry_done); 1736 } 1737 1738 // RedefineClasses() tracing support for obsolete method entry 1739 if (log_is_enabled(Trace, redefine, class, obsolete)) { 1740 // protect the args we've loaded 1741 save_args(masm, total_c_args, c_arg, out_regs); 1742 __ mov_metadata(c_rarg1, method()); 1743 __ call_VM_leaf( 1744 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry), 1745 rthread, c_rarg1); 1746 restore_args(masm, total_c_args, c_arg, out_regs); 1747 } 1748 1749 // Lock a synchronized method 1750 1751 // Register definitions used by locking and unlocking 1752 1753 const Register swap_reg = r0; 1754 const Register obj_reg = r19; // Will contain the oop 1755 const Register lock_reg = r13; // Address of compiler lock object (BasicLock) 1756 const Register old_hdr = r13; // value of old header at unlock time 1757 const Register lock_tmp = r14; // Temporary used by lightweight_lock/unlock 1758 const Register tmp = lr; 1759 1760 Label slow_path_lock; 1761 Label lock_done; 1762 1763 if (method->is_synchronized()) { 1764 // Get the handle (the 2nd argument) 1765 __ mov(oop_handle_reg, c_rarg1); 1766 1767 // Get address of the box 1768 1769 __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1770 1771 // Load the oop from the handle 1772 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 1773 1774 __ lightweight_lock(lock_reg, obj_reg, swap_reg, tmp, lock_tmp, slow_path_lock); 1775 1776 // Slow path will re-enter here 1777 __ bind(lock_done); 1778 } 1779 1780 1781 // Finally just about ready to make the JNI call 1782 1783 // get JNIEnv* which is first argument to native 1784 __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset()))); 1785 1786 // Now set thread in native 1787 __ mov(rscratch1, _thread_in_native); 1788 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1789 __ stlrw(rscratch1, rscratch2); 1790 1791 __ rt_call(native_func); 1792 1793 // Verify or restore cpu control state after JNI call 1794 __ restore_cpu_control_state_after_jni(rscratch1, rscratch2); 1795 1796 // Unpack native results. 1797 switch (ret_type) { 1798 case T_BOOLEAN: __ c2bool(r0); break; 1799 case T_CHAR : __ ubfx(r0, r0, 0, 16); break; 1800 case T_BYTE : __ sbfx(r0, r0, 0, 8); break; 1801 case T_SHORT : __ sbfx(r0, r0, 0, 16); break; 1802 case T_INT : __ sbfx(r0, r0, 0, 32); break; 1803 case T_DOUBLE : 1804 case T_FLOAT : 1805 // Result is in v0 we'll save as needed 1806 break; 1807 case T_ARRAY: // Really a handle 1808 case T_OBJECT: // Really a handle 1809 break; // can't de-handlize until after safepoint check 1810 case T_VOID: break; 1811 case T_LONG: break; 1812 default : ShouldNotReachHere(); 1813 } 1814 1815 Label safepoint_in_progress, safepoint_in_progress_done; 1816 1817 // Switch thread to "native transition" state before reading the synchronization state. 1818 // This additional state is necessary because reading and testing the synchronization 1819 // state is not atomic w.r.t. GC, as this scenario demonstrates: 1820 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted. 1821 // VM thread changes sync state to synchronizing and suspends threads for GC. 1822 // Thread A is resumed to finish this native method, but doesn't block here since it 1823 // didn't see any synchronization is progress, and escapes. 1824 __ mov(rscratch1, _thread_in_native_trans); 1825 1826 __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset())); 1827 1828 // Force this write out before the read below 1829 if (!UseSystemMemoryBarrier) { 1830 __ dmb(Assembler::ISH); 1831 } 1832 1833 __ verify_sve_vector_length(); 1834 1835 // Check for safepoint operation in progress and/or pending suspend requests. 1836 { 1837 // No need for acquire as Java threads always disarm themselves. 1838 __ safepoint_poll(safepoint_in_progress, true /* at_return */, false /* in_nmethod */); 1839 __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset())); 1840 __ cbnzw(rscratch1, safepoint_in_progress); 1841 __ bind(safepoint_in_progress_done); 1842 } 1843 1844 // change thread state 1845 __ mov(rscratch1, _thread_in_Java); 1846 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1847 __ stlrw(rscratch1, rscratch2); 1848 1849 if (method->is_object_wait0()) { 1850 // Check preemption for Object.wait() 1851 __ ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1852 __ cbz(rscratch1, native_return); 1853 __ str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1854 __ br(rscratch1); 1855 __ bind(native_return); 1856 1857 intptr_t the_pc = (intptr_t) __ pc(); 1858 oop_maps->add_gc_map(the_pc - start, map); 1859 } 1860 1861 Label reguard; 1862 Label reguard_done; 1863 __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset())); 1864 __ cmpw(rscratch1, StackOverflow::stack_guard_yellow_reserved_disabled); 1865 __ br(Assembler::EQ, reguard); 1866 __ bind(reguard_done); 1867 1868 // native result if any is live 1869 1870 // Unlock 1871 Label unlock_done; 1872 Label slow_path_unlock; 1873 if (method->is_synchronized()) { 1874 1875 // Get locked oop from the handle we passed to jni 1876 __ ldr(obj_reg, Address(oop_handle_reg, 0)); 1877 1878 // Must save r0 if if it is live now because cmpxchg must use it 1879 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1880 save_native_result(masm, ret_type, stack_slots); 1881 } 1882 1883 __ lightweight_unlock(obj_reg, old_hdr, swap_reg, lock_tmp, slow_path_unlock); 1884 1885 // slow path re-enters here 1886 __ bind(unlock_done); 1887 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) { 1888 restore_native_result(masm, ret_type, stack_slots); 1889 } 1890 } 1891 1892 Label dtrace_method_exit, dtrace_method_exit_done; 1893 if (DTraceMethodProbes) { 1894 __ b(dtrace_method_exit); 1895 __ bind(dtrace_method_exit_done); 1896 } 1897 1898 __ reset_last_Java_frame(false); 1899 1900 // Unbox oop result, e.g. JNIHandles::resolve result. 1901 if (is_reference_type(ret_type)) { 1902 __ resolve_jobject(r0, r1, r2); 1903 } 1904 1905 if (CheckJNICalls) { 1906 // clear_pending_jni_exception_check 1907 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1908 } 1909 1910 // reset handle block 1911 __ ldr(r2, Address(rthread, JavaThread::active_handles_offset())); 1912 __ str(zr, Address(r2, JNIHandleBlock::top_offset())); 1913 1914 __ leave(); 1915 1916 #if INCLUDE_JFR 1917 // We need to do a poll test after unwind in case the sampler 1918 // managed to sample the native frame after returning to Java. 1919 Label L_return; 1920 __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset())); 1921 address poll_test_pc = __ pc(); 1922 __ relocate(relocInfo::poll_return_type); 1923 __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), L_return); 1924 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr, 1925 "polling page return stub not created yet"); 1926 address stub = SharedRuntime::polling_page_return_handler_blob()->entry_point(); 1927 __ adr(rscratch1, InternalAddress(poll_test_pc)); 1928 __ str(rscratch1, Address(rthread, JavaThread::saved_exception_pc_offset())); 1929 __ far_jump(RuntimeAddress(stub)); 1930 __ bind(L_return); 1931 #endif // INCLUDE_JFR 1932 1933 // Any exception pending? 1934 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 1935 __ cbnz(rscratch1, exception_pending); 1936 1937 // We're done 1938 __ ret(lr); 1939 1940 // Unexpected paths are out of line and go here 1941 1942 // forward the exception 1943 __ bind(exception_pending); 1944 1945 // and forward the exception 1946 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 1947 1948 // Slow path locking & unlocking 1949 if (method->is_synchronized()) { 1950 1951 __ block_comment("Slow path lock {"); 1952 __ bind(slow_path_lock); 1953 1954 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM 1955 // args are (oop obj, BasicLock* lock, JavaThread* thread) 1956 1957 // protect the args we've loaded 1958 save_args(masm, total_c_args, c_arg, out_regs); 1959 1960 __ mov(c_rarg0, obj_reg); 1961 __ mov(c_rarg1, lock_reg); 1962 __ mov(c_rarg2, rthread); 1963 1964 // Not a leaf but we have last_Java_frame setup as we want. 1965 // We don't want to unmount in case of contention since that would complicate preserving 1966 // the arguments that had already been marshalled into the native convention. So we force 1967 // the freeze slow path to find this native wrapper frame (see recurse_freeze_native_frame()) 1968 // and pin the vthread. Otherwise the fast path won't find it since we don't walk the stack. 1969 __ push_cont_fastpath(); 1970 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3); 1971 __ pop_cont_fastpath(); 1972 restore_args(masm, total_c_args, c_arg, out_regs); 1973 1974 #ifdef ASSERT 1975 { Label L; 1976 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 1977 __ cbz(rscratch1, L); 1978 __ stop("no pending exception allowed on exit from monitorenter"); 1979 __ bind(L); 1980 } 1981 #endif 1982 __ b(lock_done); 1983 1984 __ block_comment("} Slow path lock"); 1985 1986 __ block_comment("Slow path unlock {"); 1987 __ bind(slow_path_unlock); 1988 1989 // If we haven't already saved the native result we must save it now as xmm registers 1990 // are still exposed. 1991 1992 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 1993 save_native_result(masm, ret_type, stack_slots); 1994 } 1995 1996 __ mov(c_rarg2, rthread); 1997 __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size)); 1998 __ mov(c_rarg0, obj_reg); 1999 2000 // Save pending exception around call to VM (which contains an EXCEPTION_MARK) 2001 // NOTE that obj_reg == r19 currently 2002 __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2003 __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2004 2005 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)); 2006 2007 #ifdef ASSERT 2008 { 2009 Label L; 2010 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2011 __ cbz(rscratch1, L); 2012 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C"); 2013 __ bind(L); 2014 } 2015 #endif /* ASSERT */ 2016 2017 __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset()))); 2018 2019 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) { 2020 restore_native_result(masm, ret_type, stack_slots); 2021 } 2022 __ b(unlock_done); 2023 2024 __ block_comment("} Slow path unlock"); 2025 2026 } // synchronized 2027 2028 // SLOW PATH Reguard the stack if needed 2029 2030 __ bind(reguard); 2031 save_native_result(masm, ret_type, stack_slots); 2032 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)); 2033 restore_native_result(masm, ret_type, stack_slots); 2034 // and continue 2035 __ b(reguard_done); 2036 2037 // SLOW PATH safepoint 2038 { 2039 __ block_comment("safepoint {"); 2040 __ bind(safepoint_in_progress); 2041 2042 // Don't use call_VM as it will see a possible pending exception and forward it 2043 // and never return here preventing us from clearing _last_native_pc down below. 2044 // 2045 save_native_result(masm, ret_type, stack_slots); 2046 __ mov(c_rarg0, rthread); 2047 #ifndef PRODUCT 2048 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area"); 2049 #endif 2050 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 2051 __ blr(rscratch1); 2052 2053 // Restore any method result value 2054 restore_native_result(masm, ret_type, stack_slots); 2055 2056 __ b(safepoint_in_progress_done); 2057 __ block_comment("} safepoint"); 2058 } 2059 2060 // SLOW PATH dtrace support 2061 if (DTraceMethodProbes) { 2062 { 2063 __ block_comment("dtrace entry {"); 2064 __ bind(dtrace_method_entry); 2065 2066 // We have all of the arguments setup at this point. We must not touch any register 2067 // argument registers at this point (what if we save/restore them there are no oop? 2068 2069 save_args(masm, total_c_args, c_arg, out_regs); 2070 __ mov_metadata(c_rarg1, method()); 2071 __ call_VM_leaf( 2072 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), 2073 rthread, c_rarg1); 2074 restore_args(masm, total_c_args, c_arg, out_regs); 2075 __ b(dtrace_method_entry_done); 2076 __ block_comment("} dtrace entry"); 2077 } 2078 2079 { 2080 __ block_comment("dtrace exit {"); 2081 __ bind(dtrace_method_exit); 2082 save_native_result(masm, ret_type, stack_slots); 2083 __ mov_metadata(c_rarg1, method()); 2084 __ call_VM_leaf( 2085 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), 2086 rthread, c_rarg1); 2087 restore_native_result(masm, ret_type, stack_slots); 2088 __ b(dtrace_method_exit_done); 2089 __ block_comment("} dtrace exit"); 2090 } 2091 } 2092 2093 __ flush(); 2094 2095 nmethod *nm = nmethod::new_native_nmethod(method, 2096 compile_id, 2097 masm->code(), 2098 vep_offset, 2099 frame_complete, 2100 stack_slots / VMRegImpl::slots_per_word, 2101 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)), 2102 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size), 2103 oop_maps); 2104 2105 return nm; 2106 } 2107 2108 // this function returns the adjust size (in number of words) to a c2i adapter 2109 // activation for use during deoptimization 2110 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) { 2111 assert(callee_locals >= callee_parameters, 2112 "test and remove; got more parms than locals"); 2113 if (callee_locals < callee_parameters) 2114 return 0; // No adjustment for negative locals 2115 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords; 2116 // diff is counted in stack words 2117 return align_up(diff, 2); 2118 } 2119 2120 2121 //------------------------------generate_deopt_blob---------------------------- 2122 void SharedRuntime::generate_deopt_blob() { 2123 // Allocate space for the code 2124 ResourceMark rm; 2125 // Setup code generation tools 2126 int pad = 0; 2127 #if INCLUDE_JVMCI 2128 if (EnableJVMCI) { 2129 pad += 512; // Increase the buffer size when compiling for JVMCI 2130 } 2131 #endif 2132 const char* name = SharedRuntime::stub_name(StubId::shared_deopt_id); 2133 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, BlobId::shared_deopt_id); 2134 if (blob != nullptr) { 2135 _deopt_blob = blob->as_deoptimization_blob(); 2136 return; 2137 } 2138 2139 CodeBuffer buffer(name, 2048+pad, 1024); 2140 MacroAssembler* masm = new MacroAssembler(&buffer); 2141 int frame_size_in_words; 2142 OopMap* map = nullptr; 2143 OopMapSet *oop_maps = new OopMapSet(); 2144 RegisterSaver reg_save(COMPILER2_OR_JVMCI != 0); 2145 2146 // ------------- 2147 // This code enters when returning to a de-optimized nmethod. A return 2148 // address has been pushed on the stack, and return values are in 2149 // registers. 2150 // If we are doing a normal deopt then we were called from the patched 2151 // nmethod from the point we returned to the nmethod. So the return 2152 // address on the stack is wrong by NativeCall::instruction_size 2153 // We will adjust the value so it looks like we have the original return 2154 // address on the stack (like when we eagerly deoptimized). 2155 // In the case of an exception pending when deoptimizing, we enter 2156 // with a return address on the stack that points after the call we patched 2157 // into the exception handler. We have the following register state from, 2158 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp). 2159 // r0: exception oop 2160 // r19: exception handler 2161 // r3: throwing pc 2162 // So in this case we simply jam r3 into the useless return address and 2163 // the stack looks just like we want. 2164 // 2165 // At this point we need to de-opt. We save the argument return 2166 // registers. We call the first C routine, fetch_unroll_info(). This 2167 // routine captures the return values and returns a structure which 2168 // describes the current frame size and the sizes of all replacement frames. 2169 // The current frame is compiled code and may contain many inlined 2170 // functions, each with their own JVM state. We pop the current frame, then 2171 // push all the new frames. Then we call the C routine unpack_frames() to 2172 // populate these frames. Finally unpack_frames() returns us the new target 2173 // address. Notice that callee-save registers are BLOWN here; they have 2174 // already been captured in the vframeArray at the time the return PC was 2175 // patched. 2176 address start = __ pc(); 2177 Label cont; 2178 2179 // Prolog for non exception case! 2180 2181 // Save everything in sight. 2182 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2183 2184 // Normal deoptimization. Save exec mode for unpack_frames. 2185 __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved 2186 __ b(cont); 2187 2188 int reexecute_offset = __ pc() - start; 2189 #if INCLUDE_JVMCI && !defined(COMPILER1) 2190 if (UseJVMCICompiler) { 2191 // JVMCI does not use this kind of deoptimization 2192 __ should_not_reach_here(); 2193 } 2194 #endif 2195 2196 // Reexecute case 2197 // return address is the pc describes what bci to do re-execute at 2198 2199 // No need to update map as each call to save_live_registers will produce identical oopmap 2200 (void) reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2201 2202 __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved 2203 __ b(cont); 2204 2205 #if INCLUDE_JVMCI 2206 Label after_fetch_unroll_info_call; 2207 int implicit_exception_uncommon_trap_offset = 0; 2208 int uncommon_trap_offset = 0; 2209 2210 if (EnableJVMCI) { 2211 implicit_exception_uncommon_trap_offset = __ pc() - start; 2212 2213 __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2214 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset()))); 2215 2216 uncommon_trap_offset = __ pc() - start; 2217 2218 // Save everything in sight. 2219 reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2220 // fetch_unroll_info needs to call last_java_frame() 2221 Label retaddr; 2222 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2223 2224 __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2225 __ movw(rscratch1, -1); 2226 __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset()))); 2227 2228 __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute); 2229 __ mov(c_rarg0, rthread); 2230 __ movw(c_rarg2, rcpool); // exec mode 2231 __ lea(rscratch1, 2232 RuntimeAddress(CAST_FROM_FN_PTR(address, 2233 Deoptimization::uncommon_trap))); 2234 __ blr(rscratch1); 2235 __ bind(retaddr); 2236 oop_maps->add_gc_map( __ pc()-start, map->deep_copy()); 2237 2238 __ reset_last_Java_frame(false); 2239 2240 __ b(after_fetch_unroll_info_call); 2241 } // EnableJVMCI 2242 #endif // INCLUDE_JVMCI 2243 2244 int exception_offset = __ pc() - start; 2245 2246 // Prolog for exception case 2247 2248 // all registers are dead at this entry point, except for r0, and 2249 // r3 which contain the exception oop and exception pc 2250 // respectively. Set them in TLS and fall thru to the 2251 // unpack_with_exception_in_tls entry point. 2252 2253 __ str(r3, Address(rthread, JavaThread::exception_pc_offset())); 2254 __ str(r0, Address(rthread, JavaThread::exception_oop_offset())); 2255 2256 int exception_in_tls_offset = __ pc() - start; 2257 2258 // new implementation because exception oop is now passed in JavaThread 2259 2260 // Prolog for exception case 2261 // All registers must be preserved because they might be used by LinearScan 2262 // Exceptiop oop and throwing PC are passed in JavaThread 2263 // tos: stack at point of call to method that threw the exception (i.e. only 2264 // args are on the stack, no return address) 2265 2266 // The return address pushed by save_live_registers will be patched 2267 // later with the throwing pc. The correct value is not available 2268 // now because loading it from memory would destroy registers. 2269 2270 // NB: The SP at this point must be the SP of the method that is 2271 // being deoptimized. Deoptimization assumes that the frame created 2272 // here by save_live_registers is immediately below the method's SP. 2273 // This is a somewhat fragile mechanism. 2274 2275 // Save everything in sight. 2276 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2277 2278 // Now it is safe to overwrite any register 2279 2280 // Deopt during an exception. Save exec mode for unpack_frames. 2281 __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved 2282 2283 // load throwing pc from JavaThread and patch it as the return address 2284 // of the current frame. Then clear the field in JavaThread 2285 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2286 __ protect_return_address(r3); 2287 __ str(r3, Address(rfp, wordSize)); 2288 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2289 2290 #ifdef ASSERT 2291 // verify that there is really an exception oop in JavaThread 2292 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2293 __ verify_oop(r0); 2294 2295 // verify that there is no pending exception 2296 Label no_pending_exception; 2297 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2298 __ cbz(rscratch1, no_pending_exception); 2299 __ stop("must not have pending exception here"); 2300 __ bind(no_pending_exception); 2301 #endif 2302 2303 __ bind(cont); 2304 2305 // Call C code. Need thread and this frame, but NOT official VM entry 2306 // crud. We cannot block on this call, no GC can happen. 2307 // 2308 // UnrollBlock* fetch_unroll_info(JavaThread* thread) 2309 2310 // fetch_unroll_info needs to call last_java_frame(). 2311 2312 Label retaddr; 2313 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2314 #ifdef ASSERT 2315 { Label L; 2316 __ ldr(rscratch1, Address(rthread, JavaThread::last_Java_fp_offset())); 2317 __ cbz(rscratch1, L); 2318 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared"); 2319 __ bind(L); 2320 } 2321 #endif // ASSERT 2322 __ mov(c_rarg0, rthread); 2323 __ mov(c_rarg1, rcpool); 2324 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info))); 2325 __ blr(rscratch1); 2326 __ bind(retaddr); 2327 2328 // Need to have an oopmap that tells fetch_unroll_info where to 2329 // find any register it might need. 2330 oop_maps->add_gc_map(__ pc() - start, map); 2331 2332 __ reset_last_Java_frame(false); 2333 2334 #if INCLUDE_JVMCI 2335 if (EnableJVMCI) { 2336 __ bind(after_fetch_unroll_info_call); 2337 } 2338 #endif 2339 2340 // Load UnrollBlock* into r5 2341 __ mov(r5, r0); 2342 2343 __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset())); 2344 Label noException; 2345 __ cmpw(rcpool, Deoptimization::Unpack_exception); // Was exception pending? 2346 __ br(Assembler::NE, noException); 2347 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset())); 2348 // QQQ this is useless it was null above 2349 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset())); 2350 __ str(zr, Address(rthread, JavaThread::exception_oop_offset())); 2351 __ str(zr, Address(rthread, JavaThread::exception_pc_offset())); 2352 2353 __ verify_oop(r0); 2354 2355 // Overwrite the result registers with the exception results. 2356 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2357 // I think this is useless 2358 // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2359 2360 __ bind(noException); 2361 2362 // Only register save data is on the stack. 2363 // Now restore the result registers. Everything else is either dead 2364 // or captured in the vframeArray. 2365 2366 // Restore fp result register 2367 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2368 // Restore integer result register 2369 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2370 2371 // Pop all of the register save area off the stack 2372 __ add(sp, sp, frame_size_in_words * wordSize); 2373 2374 // All of the register save area has been popped of the stack. Only the 2375 // return address remains. 2376 2377 // Pop all the frames we must move/replace. 2378 // 2379 // Frame picture (youngest to oldest) 2380 // 1: self-frame (no frame link) 2381 // 2: deopting frame (no frame link) 2382 // 3: caller of deopting frame (could be compiled/interpreted). 2383 // 2384 // Note: by leaving the return address of self-frame on the stack 2385 // and using the size of frame 2 to adjust the stack 2386 // when we are done the return to frame 3 will still be on the stack. 2387 2388 // Pop deoptimized frame 2389 __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset())); 2390 __ sub(r2, r2, 2 * wordSize); 2391 __ add(sp, sp, r2); 2392 __ ldp(rfp, zr, __ post(sp, 2 * wordSize)); 2393 2394 #ifdef ASSERT 2395 // Compilers generate code that bang the stack by as much as the 2396 // interpreter would need. So this stack banging should never 2397 // trigger a fault. Verify that it does not on non product builds. 2398 __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset())); 2399 __ bang_stack_size(r19, r2); 2400 #endif 2401 // Load address of array of frame pcs into r2 2402 __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset())); 2403 2404 // Trash the old pc 2405 // __ addptr(sp, wordSize); FIXME ???? 2406 2407 // Load address of array of frame sizes into r4 2408 __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset())); 2409 2410 // Load counter into r3 2411 __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset())); 2412 2413 // Now adjust the caller's stack to make up for the extra locals 2414 // but record the original sp so that we can save it in the skeletal interpreter 2415 // frame and the stack walking of interpreter_sender will get the unextended sp 2416 // value and not the "real" sp value. 2417 2418 const Register sender_sp = r6; 2419 2420 __ mov(sender_sp, sp); 2421 __ ldrw(r19, Address(r5, 2422 Deoptimization::UnrollBlock:: 2423 caller_adjustment_offset())); 2424 __ sub(sp, sp, r19); 2425 2426 // Push interpreter frames in a loop 2427 __ mov(rscratch1, (uint64_t)0xDEADDEAD); // Make a recognizable pattern 2428 __ mov(rscratch2, rscratch1); 2429 Label loop; 2430 __ bind(loop); 2431 __ ldr(r19, Address(__ post(r4, wordSize))); // Load frame size 2432 __ sub(r19, r19, 2*wordSize); // We'll push pc and fp by hand 2433 __ ldr(lr, Address(__ post(r2, wordSize))); // Load pc 2434 __ enter(); // Save old & set new fp 2435 __ sub(sp, sp, r19); // Prolog 2436 // This value is corrected by layout_activation_impl 2437 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 2438 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable 2439 __ mov(sender_sp, sp); // Pass sender_sp to next frame 2440 __ sub(r3, r3, 1); // Decrement counter 2441 __ cbnz(r3, loop); 2442 2443 // Re-push self-frame 2444 __ ldr(lr, Address(r2)); 2445 __ enter(); 2446 2447 // Allocate a full sized register save area. We subtract 2 because 2448 // enter() just pushed 2 words 2449 __ sub(sp, sp, (frame_size_in_words - 2) * wordSize); 2450 2451 // Restore frame locals after moving the frame 2452 __ strd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2453 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2454 2455 // Call C code. Need thread but NOT official VM entry 2456 // crud. We cannot block on this call, no GC can happen. Call should 2457 // restore return values to their stack-slots with the new SP. 2458 // 2459 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode) 2460 2461 // Use rfp because the frames look interpreted now 2462 // Don't need the precise return PC here, just precise enough to point into this code blob. 2463 address the_pc = __ pc(); 2464 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2465 2466 __ mov(c_rarg0, rthread); 2467 __ movw(c_rarg1, rcpool); // second arg: exec_mode 2468 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames))); 2469 __ blr(rscratch1); 2470 2471 // Set an oopmap for the call site 2472 // Use the same PC we used for the last java frame 2473 oop_maps->add_gc_map(the_pc - start, 2474 new OopMap( frame_size_in_words, 0 )); 2475 2476 // Clear fp AND pc 2477 __ reset_last_Java_frame(true); 2478 2479 // Collect return values 2480 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes())); 2481 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes())); 2482 // I think this is useless (throwing pc?) 2483 // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes())); 2484 2485 // Pop self-frame. 2486 __ leave(); // Epilog 2487 2488 // Jump to interpreter 2489 __ ret(lr); 2490 2491 // Make sure all code is generated 2492 masm->flush(); 2493 2494 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words); 2495 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset); 2496 #if INCLUDE_JVMCI 2497 if (EnableJVMCI) { 2498 _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset); 2499 _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset); 2500 } 2501 #endif 2502 2503 AOTCodeCache::store_code_blob(*_deopt_blob, AOTCodeEntry::SharedBlob, BlobId::shared_deopt_id); 2504 } 2505 2506 // Number of stack slots between incoming argument block and the start of 2507 // a new frame. The PROLOG must add this many slots to the stack. The 2508 // EPILOG must remove this many slots. aarch64 needs two slots for 2509 // return address and fp. 2510 // TODO think this is correct but check 2511 uint SharedRuntime::in_preserve_stack_slots() { 2512 return 4; 2513 } 2514 2515 uint SharedRuntime::out_preserve_stack_slots() { 2516 return 0; 2517 } 2518 2519 2520 VMReg SharedRuntime::thread_register() { 2521 return rthread->as_VMReg(); 2522 } 2523 2524 //------------------------------generate_handler_blob------ 2525 // 2526 // Generate a special Compile2Runtime blob that saves all registers, 2527 // and setup oopmap. 2528 // 2529 SafepointBlob* SharedRuntime::generate_handler_blob(StubId id, address call_ptr) { 2530 assert(is_polling_page_id(id), "expected a polling page stub id"); 2531 2532 // Allocate space for the code. Setup code generation tools. 2533 const char* name = SharedRuntime::stub_name(id); 2534 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, StubInfo::blob(id)); 2535 if (blob != nullptr) { 2536 return blob->as_safepoint_blob(); 2537 } 2538 2539 ResourceMark rm; 2540 OopMapSet *oop_maps = new OopMapSet(); 2541 OopMap* map; 2542 CodeBuffer buffer(name, 2048, 1024); 2543 MacroAssembler* masm = new MacroAssembler(&buffer); 2544 2545 address start = __ pc(); 2546 address call_pc = nullptr; 2547 int frame_size_in_words; 2548 bool cause_return = (id == StubId::shared_polling_page_return_handler_id); 2549 RegisterSaver reg_save(id == StubId::shared_polling_page_vectors_safepoint_handler_id /* save_vectors */); 2550 2551 // When the signal occurred, the LR was either signed and stored on the stack (in which 2552 // case it will be restored from the stack before being used) or unsigned and not stored 2553 // on the stack. Stipping ensures we get the right value. 2554 __ strip_return_address(); 2555 2556 // Save Integer and Float registers. 2557 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2558 2559 // The following is basically a call_VM. However, we need the precise 2560 // address of the call in order to generate an oopmap. Hence, we do all the 2561 // work ourselves. 2562 2563 Label retaddr; 2564 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2565 2566 // The return address must always be correct so that frame constructor never 2567 // sees an invalid pc. 2568 2569 if (!cause_return) { 2570 // overwrite the return address pushed by save_live_registers 2571 // Additionally, r20 is a callee-saved register so we can look at 2572 // it later to determine if someone changed the return address for 2573 // us! 2574 __ ldr(r20, Address(rthread, JavaThread::saved_exception_pc_offset())); 2575 __ protect_return_address(r20); 2576 __ str(r20, Address(rfp, wordSize)); 2577 } 2578 2579 // Do the call 2580 __ mov(c_rarg0, rthread); 2581 __ lea(rscratch1, RuntimeAddress(call_ptr)); 2582 __ blr(rscratch1); 2583 __ bind(retaddr); 2584 2585 // Set an oopmap for the call site. This oopmap will map all 2586 // oop-registers and debug-info registers as callee-saved. This 2587 // will allow deoptimization at this safepoint to find all possible 2588 // debug-info recordings, as well as let GC find all oops. 2589 2590 oop_maps->add_gc_map( __ pc() - start, map); 2591 2592 Label noException; 2593 2594 __ reset_last_Java_frame(false); 2595 2596 __ membar(Assembler::LoadLoad | Assembler::LoadStore); 2597 2598 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2599 __ cbz(rscratch1, noException); 2600 2601 // Exception pending 2602 2603 reg_save.restore_live_registers(masm); 2604 2605 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2606 2607 // No exception case 2608 __ bind(noException); 2609 2610 Label no_adjust, bail; 2611 if (!cause_return) { 2612 // If our stashed return pc was modified by the runtime we avoid touching it 2613 __ ldr(rscratch1, Address(rfp, wordSize)); 2614 __ cmp(r20, rscratch1); 2615 __ br(Assembler::NE, no_adjust); 2616 __ authenticate_return_address(r20); 2617 2618 #ifdef ASSERT 2619 // Verify the correct encoding of the poll we're about to skip. 2620 // See NativeInstruction::is_ldrw_to_zr() 2621 __ ldrw(rscratch1, Address(r20)); 2622 __ ubfx(rscratch2, rscratch1, 22, 10); 2623 __ cmpw(rscratch2, 0b1011100101); 2624 __ br(Assembler::NE, bail); 2625 __ ubfx(rscratch2, rscratch1, 0, 5); 2626 __ cmpw(rscratch2, 0b11111); 2627 __ br(Assembler::NE, bail); 2628 #endif 2629 // Adjust return pc forward to step over the safepoint poll instruction 2630 __ add(r20, r20, NativeInstruction::instruction_size); 2631 __ protect_return_address(r20); 2632 __ str(r20, Address(rfp, wordSize)); 2633 } 2634 2635 __ bind(no_adjust); 2636 // Normal exit, restore registers and exit. 2637 reg_save.restore_live_registers(masm); 2638 2639 __ ret(lr); 2640 2641 #ifdef ASSERT 2642 __ bind(bail); 2643 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected"); 2644 #endif 2645 2646 // Make sure all code is generated 2647 masm->flush(); 2648 2649 // Fill-out other meta info 2650 SafepointBlob* sp_blob = SafepointBlob::create(&buffer, oop_maps, frame_size_in_words); 2651 2652 AOTCodeCache::store_code_blob(*sp_blob, AOTCodeEntry::SharedBlob, StubInfo::blob(id)); 2653 return sp_blob; 2654 } 2655 2656 // 2657 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss 2658 // 2659 // Generate a stub that calls into vm to find out the proper destination 2660 // of a java call. All the argument registers are live at this point 2661 // but since this is generic code we don't know what they are and the caller 2662 // must do any gc of the args. 2663 // 2664 RuntimeStub* SharedRuntime::generate_resolve_blob(StubId id, address destination) { 2665 assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before"); 2666 assert(is_resolve_id(id), "expected a resolve stub id"); 2667 2668 const char* name = SharedRuntime::stub_name(id); 2669 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, StubInfo::blob(id)); 2670 if (blob != nullptr) { 2671 return blob->as_runtime_stub(); 2672 } 2673 2674 // allocate space for the code 2675 ResourceMark rm; 2676 CodeBuffer buffer(name, 1000, 512); 2677 MacroAssembler* masm = new MacroAssembler(&buffer); 2678 2679 int frame_size_in_words; 2680 RegisterSaver reg_save(false /* save_vectors */); 2681 2682 OopMapSet *oop_maps = new OopMapSet(); 2683 OopMap* map = nullptr; 2684 2685 int start = __ offset(); 2686 2687 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words); 2688 2689 int frame_complete = __ offset(); 2690 2691 { 2692 Label retaddr; 2693 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1); 2694 2695 __ mov(c_rarg0, rthread); 2696 __ lea(rscratch1, RuntimeAddress(destination)); 2697 2698 __ blr(rscratch1); 2699 __ bind(retaddr); 2700 } 2701 2702 // Set an oopmap for the call site. 2703 // We need this not only for callee-saved registers, but also for volatile 2704 // registers that the compiler might be keeping live across a safepoint. 2705 2706 oop_maps->add_gc_map( __ offset() - start, map); 2707 2708 // r0 contains the address we are going to jump to assuming no exception got installed 2709 2710 // clear last_Java_sp 2711 __ reset_last_Java_frame(false); 2712 // check for pending exceptions 2713 Label pending; 2714 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2715 __ cbnz(rscratch1, pending); 2716 2717 // get the returned Method* 2718 __ get_vm_result_metadata(rmethod, rthread); 2719 __ str(rmethod, Address(sp, reg_save.reg_offset_in_bytes(rmethod))); 2720 2721 // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch 2722 __ str(r0, Address(sp, reg_save.rscratch1_offset_in_bytes())); 2723 reg_save.restore_live_registers(masm); 2724 2725 // We are back to the original state on entry and ready to go. 2726 2727 __ br(rscratch1); 2728 2729 // Pending exception after the safepoint 2730 2731 __ bind(pending); 2732 2733 reg_save.restore_live_registers(masm); 2734 2735 // exception pending => remove activation and forward to exception handler 2736 2737 __ str(zr, Address(rthread, JavaThread::vm_result_oop_offset())); 2738 2739 __ ldr(r0, Address(rthread, Thread::pending_exception_offset())); 2740 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2741 2742 // ------------- 2743 // make sure all code is generated 2744 masm->flush(); 2745 2746 // return the blob 2747 // frame_size_words or bytes?? 2748 RuntimeStub* rs_blob = RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true); 2749 2750 AOTCodeCache::store_code_blob(*rs_blob, AOTCodeEntry::SharedBlob, StubInfo::blob(id)); 2751 return rs_blob; 2752 } 2753 2754 // Continuation point for throwing of implicit exceptions that are 2755 // not handled in the current activation. Fabricates an exception 2756 // oop and initiates normal exception dispatching in this 2757 // frame. Since we need to preserve callee-saved values (currently 2758 // only for C2, but done for C1 as well) we need a callee-saved oop 2759 // map and therefore have to make these stubs into RuntimeStubs 2760 // rather than BufferBlobs. If the compiler needs all registers to 2761 // be preserved between the fault point and the exception handler 2762 // then it must assume responsibility for that in 2763 // AbstractCompiler::continuation_for_implicit_null_exception or 2764 // continuation_for_implicit_division_by_zero_exception. All other 2765 // implicit exceptions (e.g., NullPointerException or 2766 // AbstractMethodError on entry) are either at call sites or 2767 // otherwise assume that stack unwinding will be initiated, so 2768 // caller saved registers were assumed volatile in the compiler. 2769 2770 RuntimeStub* SharedRuntime::generate_throw_exception(StubId id, address runtime_entry) { 2771 assert(is_throw_id(id), "expected a throw stub id"); 2772 2773 const char* name = SharedRuntime::stub_name(id); 2774 2775 // Information about frame layout at time of blocking runtime call. 2776 // Note that we only have to preserve callee-saved registers since 2777 // the compilers are responsible for supplying a continuation point 2778 // if they expect all registers to be preserved. 2779 // n.b. aarch64 asserts that frame::arg_reg_save_area_bytes == 0 2780 enum layout { 2781 rfp_off = 0, 2782 rfp_off2, 2783 return_off, 2784 return_off2, 2785 framesize // inclusive of return address 2786 }; 2787 2788 int insts_size = 512; 2789 int locs_size = 64; 2790 2791 const char* timer_msg = "SharedRuntime generate_throw_exception"; 2792 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime)); 2793 2794 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, StubInfo::blob(id)); 2795 if (blob != nullptr) { 2796 return blob->as_runtime_stub(); 2797 } 2798 2799 ResourceMark rm; 2800 CodeBuffer code(name, insts_size, locs_size); 2801 OopMapSet* oop_maps = new OopMapSet(); 2802 MacroAssembler* masm = new MacroAssembler(&code); 2803 2804 address start = __ pc(); 2805 2806 // This is an inlined and slightly modified version of call_VM 2807 // which has the ability to fetch the return PC out of 2808 // thread-local storage and also sets up last_Java_sp slightly 2809 // differently than the real call_VM 2810 2811 __ enter(); // Save FP and LR before call 2812 2813 assert(is_even(framesize/2), "sp not 16-byte aligned"); 2814 2815 // lr and fp are already in place 2816 __ sub(sp, rfp, ((uint64_t)framesize-4) << LogBytesPerInt); // prolog 2817 2818 int frame_complete = __ pc() - start; 2819 2820 // Set up last_Java_sp and last_Java_fp 2821 address the_pc = __ pc(); 2822 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2823 2824 __ mov(c_rarg0, rthread); 2825 BLOCK_COMMENT("call runtime_entry"); 2826 __ lea(rscratch1, RuntimeAddress(runtime_entry)); 2827 __ blr(rscratch1); 2828 2829 // Generate oop map 2830 OopMap* map = new OopMap(framesize, 0); 2831 2832 oop_maps->add_gc_map(the_pc - start, map); 2833 2834 __ reset_last_Java_frame(true); 2835 2836 // Reinitialize the ptrue predicate register, in case the external runtime 2837 // call clobbers ptrue reg, as we may return to SVE compiled code. 2838 __ reinitialize_ptrue(); 2839 2840 __ leave(); 2841 2842 // check for pending exceptions 2843 #ifdef ASSERT 2844 Label L; 2845 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 2846 __ cbnz(rscratch1, L); 2847 __ should_not_reach_here(); 2848 __ bind(L); 2849 #endif // ASSERT 2850 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry())); 2851 2852 // codeBlob framesize is in words (not VMRegImpl::slot_size) 2853 RuntimeStub* stub = 2854 RuntimeStub::new_runtime_stub(name, 2855 &code, 2856 frame_complete, 2857 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 2858 oop_maps, false); 2859 AOTCodeCache::store_code_blob(*stub, AOTCodeEntry::SharedBlob, StubInfo::blob(id)); 2860 2861 return stub; 2862 } 2863 2864 #if INCLUDE_JFR 2865 2866 static void jfr_prologue(address the_pc, MacroAssembler* masm, Register thread) { 2867 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1); 2868 __ mov(c_rarg0, thread); 2869 } 2870 2871 // The handle is dereferenced through a load barrier. 2872 static void jfr_epilogue(MacroAssembler* masm) { 2873 __ reset_last_Java_frame(true); 2874 } 2875 2876 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint. 2877 // It returns a jobject handle to the event writer. 2878 // The handle is dereferenced and the return value is the event writer oop. 2879 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() { 2880 enum layout { 2881 rbp_off, 2882 rbpH_off, 2883 return_off, 2884 return_off2, 2885 framesize // inclusive of return address 2886 }; 2887 2888 int insts_size = 1024; 2889 int locs_size = 64; 2890 const char* name = SharedRuntime::stub_name(StubId::shared_jfr_write_checkpoint_id); 2891 CodeBuffer code(name, insts_size, locs_size); 2892 OopMapSet* oop_maps = new OopMapSet(); 2893 MacroAssembler* masm = new MacroAssembler(&code); 2894 2895 address start = __ pc(); 2896 __ enter(); 2897 int frame_complete = __ pc() - start; 2898 address the_pc = __ pc(); 2899 jfr_prologue(the_pc, masm, rthread); 2900 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1); 2901 jfr_epilogue(masm); 2902 __ resolve_global_jobject(r0, rscratch1, rscratch2); 2903 __ leave(); 2904 __ ret(lr); 2905 2906 OopMap* map = new OopMap(framesize, 1); // rfp 2907 oop_maps->add_gc_map(the_pc - start, map); 2908 2909 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 2910 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 2911 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 2912 oop_maps, false); 2913 return stub; 2914 } 2915 2916 // For c2: call to return a leased buffer. 2917 RuntimeStub* SharedRuntime::generate_jfr_return_lease() { 2918 enum layout { 2919 rbp_off, 2920 rbpH_off, 2921 return_off, 2922 return_off2, 2923 framesize // inclusive of return address 2924 }; 2925 2926 int insts_size = 1024; 2927 int locs_size = 64; 2928 2929 const char* name = SharedRuntime::stub_name(StubId::shared_jfr_return_lease_id); 2930 CodeBuffer code(name, insts_size, locs_size); 2931 OopMapSet* oop_maps = new OopMapSet(); 2932 MacroAssembler* masm = new MacroAssembler(&code); 2933 2934 address start = __ pc(); 2935 __ enter(); 2936 int frame_complete = __ pc() - start; 2937 address the_pc = __ pc(); 2938 jfr_prologue(the_pc, masm, rthread); 2939 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1); 2940 jfr_epilogue(masm); 2941 2942 __ leave(); 2943 __ ret(lr); 2944 2945 OopMap* map = new OopMap(framesize, 1); // rfp 2946 oop_maps->add_gc_map(the_pc - start, map); 2947 2948 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size) 2949 RuntimeStub::new_runtime_stub(name, &code, frame_complete, 2950 (framesize >> (LogBytesPerWord - LogBytesPerInt)), 2951 oop_maps, false); 2952 return stub; 2953 } 2954 2955 #endif // INCLUDE_JFR