1 /*
2 * Copyright (c) 2003, 2025, Oracle and/or its affiliates. All rights reserved.
3 * Copyright (c) 2014, 2021, Red Hat Inc. All rights reserved.
4 * Copyright (c) 2021, Azul Systems, Inc. All rights reserved.
5 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
6 *
7 * This code is free software; you can redistribute it and/or modify it
8 * under the terms of the GNU General Public License version 2 only, as
9 * published by the Free Software Foundation.
10 *
11 * This code is distributed in the hope that it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 * version 2 for more details (a copy is included in the LICENSE file that
15 * accompanied this code).
16 *
17 * You should have received a copy of the GNU General Public License version
18 * 2 along with this work; if not, write to the Free Software Foundation,
19 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
20 *
21 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
22 * or visit www.oracle.com if you need additional information or have any
23 * questions.
24 *
25 */
26
27 #include "asm/macroAssembler.hpp"
28 #include "asm/macroAssembler.inline.hpp"
29 #include "code/aotCodeCache.hpp"
30 #include "code/codeCache.hpp"
31 #include "code/compiledIC.hpp"
32 #include "code/debugInfoRec.hpp"
33 #include "code/vtableStubs.hpp"
34 #include "compiler/oopMap.hpp"
35 #include "gc/shared/barrierSetAssembler.hpp"
36 #include "interpreter/interpreter.hpp"
37 #include "interpreter/interp_masm.hpp"
38 #include "logging/log.hpp"
39 #include "memory/resourceArea.hpp"
40 #include "nativeInst_aarch64.hpp"
41 #include "oops/klass.inline.hpp"
42 #include "oops/method.inline.hpp"
43 #include "prims/methodHandles.hpp"
44 #include "runtime/continuation.hpp"
45 #include "runtime/continuationEntry.inline.hpp"
46 #include "runtime/globals.hpp"
47 #include "runtime/jniHandles.hpp"
48 #include "runtime/safepointMechanism.hpp"
49 #include "runtime/sharedRuntime.hpp"
50 #include "runtime/signature.hpp"
51 #include "runtime/stubRoutines.hpp"
52 #include "runtime/timerTrace.hpp"
53 #include "runtime/vframeArray.hpp"
54 #include "utilities/align.hpp"
55 #include "utilities/formatBuffer.hpp"
56 #include "vmreg_aarch64.inline.hpp"
57 #ifdef COMPILER1
58 #include "c1/c1_Runtime1.hpp"
59 #endif
60 #ifdef COMPILER2
61 #include "adfiles/ad_aarch64.hpp"
62 #include "opto/runtime.hpp"
63 #endif
64 #if INCLUDE_JVMCI
65 #include "jvmci/jvmciJavaClasses.hpp"
66 #endif
67
68 #define __ masm->
69
70 #ifdef PRODUCT
71 #define BLOCK_COMMENT(str) /* nothing */
72 #else
73 #define BLOCK_COMMENT(str) __ block_comment(str)
74 #endif
75
76 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
77
78 // FIXME -- this is used by C1
79 class RegisterSaver {
80 const bool _save_vectors;
81 public:
82 RegisterSaver(bool save_vectors) : _save_vectors(save_vectors) {}
83
84 OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
85 void restore_live_registers(MacroAssembler* masm);
86
87 // Offsets into the register save area
88 // Used by deoptimization when it is managing result register
89 // values on its own
90
91 int reg_offset_in_bytes(Register r);
92 int r0_offset_in_bytes() { return reg_offset_in_bytes(r0); }
93 int rscratch1_offset_in_bytes() { return reg_offset_in_bytes(rscratch1); }
94 int v0_offset_in_bytes();
95
96 // Total stack size in bytes for saving sve predicate registers.
97 int total_sve_predicate_in_bytes();
98
99 // Capture info about frame layout
100 // Note this is only correct when not saving full vectors.
101 enum layout {
102 fpu_state_off = 0,
103 fpu_state_end = fpu_state_off + FPUStateSizeInWords - 1,
104 // The frame sender code expects that rfp will be in
105 // the "natural" place and will override any oopMap
106 // setting for it. We must therefore force the layout
107 // so that it agrees with the frame sender code.
108 r0_off = fpu_state_off + FPUStateSizeInWords,
109 rfp_off = r0_off + (Register::number_of_registers - 2) * Register::max_slots_per_register,
110 return_off = rfp_off + Register::max_slots_per_register, // slot for return address
111 reg_save_size = return_off + Register::max_slots_per_register};
112
113 };
114
115 int RegisterSaver::reg_offset_in_bytes(Register r) {
116 // The integer registers are located above the floating point
117 // registers in the stack frame pushed by save_live_registers() so the
118 // offset depends on whether we are saving full vectors, and whether
119 // those vectors are NEON or SVE.
120
121 int slots_per_vect = FloatRegister::save_slots_per_register;
122
123 #if COMPILER2_OR_JVMCI
124 if (_save_vectors) {
125 slots_per_vect = FloatRegister::slots_per_neon_register;
126
127 #ifdef COMPILER2
128 if (Matcher::supports_scalable_vector()) {
129 slots_per_vect = Matcher::scalable_vector_reg_size(T_FLOAT);
130 }
131 #endif
132 }
133 #endif
134
135 int r0_offset = v0_offset_in_bytes() + (slots_per_vect * FloatRegister::number_of_registers) * BytesPerInt;
136 return r0_offset + r->encoding() * wordSize;
137 }
138
139 int RegisterSaver::v0_offset_in_bytes() {
140 // The floating point registers are located above the predicate registers if
141 // they are present in the stack frame pushed by save_live_registers(). So the
142 // offset depends on the saved total predicate vectors in the stack frame.
143 return (total_sve_predicate_in_bytes() / VMRegImpl::stack_slot_size) * BytesPerInt;
144 }
145
146 int RegisterSaver::total_sve_predicate_in_bytes() {
147 #ifdef COMPILER2
148 if (_save_vectors && Matcher::supports_scalable_vector()) {
149 return (Matcher::scalable_vector_reg_size(T_BYTE) >> LogBitsPerByte) *
150 PRegister::number_of_registers;
151 }
152 #endif
153 return 0;
154 }
155
156 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
157 bool use_sve = false;
158 int sve_vector_size_in_bytes = 0;
159 int sve_vector_size_in_slots = 0;
160 int sve_predicate_size_in_slots = 0;
161 int total_predicate_in_bytes = total_sve_predicate_in_bytes();
162 int total_predicate_in_slots = total_predicate_in_bytes / VMRegImpl::stack_slot_size;
163
164 #ifdef COMPILER2
165 use_sve = Matcher::supports_scalable_vector();
166 if (use_sve) {
167 sve_vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
168 sve_vector_size_in_slots = Matcher::scalable_vector_reg_size(T_FLOAT);
169 sve_predicate_size_in_slots = Matcher::scalable_predicate_reg_slots();
170 }
171 #endif
172
173 #if COMPILER2_OR_JVMCI
174 if (_save_vectors) {
175 int extra_save_slots_per_register = 0;
176 // Save upper half of vector registers
177 if (use_sve) {
178 extra_save_slots_per_register = sve_vector_size_in_slots - FloatRegister::save_slots_per_register;
179 } else {
180 extra_save_slots_per_register = FloatRegister::extra_save_slots_per_neon_register;
181 }
182 int extra_vector_bytes = extra_save_slots_per_register *
183 VMRegImpl::stack_slot_size *
184 FloatRegister::number_of_registers;
185 additional_frame_words += ((extra_vector_bytes + total_predicate_in_bytes) / wordSize);
186 }
187 #else
188 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI");
189 #endif
190
191 int frame_size_in_bytes = align_up(additional_frame_words * wordSize +
192 reg_save_size * BytesPerInt, 16);
193 // OopMap frame size is in compiler stack slots (jint's) not bytes or words
194 int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
195 // The caller will allocate additional_frame_words
196 int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt;
197 // CodeBlob frame size is in words.
198 int frame_size_in_words = frame_size_in_bytes / wordSize;
199 *total_frame_words = frame_size_in_words;
200
201 // Save Integer and Float registers.
202 __ enter();
203 __ push_CPU_state(_save_vectors, use_sve, sve_vector_size_in_bytes, total_predicate_in_bytes);
204
205 // Set an oopmap for the call site. This oopmap will map all
206 // oop-registers and debug-info registers as callee-saved. This
207 // will allow deoptimization at this safepoint to find all possible
208 // debug-info recordings, as well as let GC find all oops.
209
210 OopMapSet *oop_maps = new OopMapSet();
211 OopMap* oop_map = new OopMap(frame_size_in_slots, 0);
212
213 for (int i = 0; i < Register::number_of_registers; i++) {
214 Register r = as_Register(i);
215 if (i <= rfp->encoding() && r != rscratch1 && r != rscratch2) {
216 // SP offsets are in 4-byte words.
217 // Register slots are 8 bytes wide, 32 floating-point registers.
218 int sp_offset = Register::max_slots_per_register * i +
219 FloatRegister::save_slots_per_register * FloatRegister::number_of_registers;
220 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset + additional_frame_slots), r->as_VMReg());
221 }
222 }
223
224 for (int i = 0; i < FloatRegister::number_of_registers; i++) {
225 FloatRegister r = as_FloatRegister(i);
226 int sp_offset = 0;
227 if (_save_vectors) {
228 sp_offset = use_sve ? (total_predicate_in_slots + sve_vector_size_in_slots * i) :
229 (FloatRegister::slots_per_neon_register * i);
230 } else {
231 sp_offset = FloatRegister::save_slots_per_register * i;
232 }
233 oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset), r->as_VMReg());
234 }
235
236 return oop_map;
237 }
238
239 void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
240 #ifdef COMPILER2
241 __ pop_CPU_state(_save_vectors, Matcher::supports_scalable_vector(),
242 Matcher::scalable_vector_reg_size(T_BYTE), total_sve_predicate_in_bytes());
243 #else
244 #if !INCLUDE_JVMCI
245 assert(!_save_vectors, "vectors are generated only by C2 and JVMCI");
246 #endif
247 __ pop_CPU_state(_save_vectors);
248 #endif
249 __ ldp(rfp, lr, Address(__ post(sp, 2 * wordSize)));
250 __ authenticate_return_address();
251 }
252
253 // Is vector's size (in bytes) bigger than a size saved by default?
254 // 8 bytes vector registers are saved by default on AArch64.
255 // The SVE supported min vector size is 8 bytes and we need to save
256 // predicate registers when the vector size is 8 bytes as well.
257 bool SharedRuntime::is_wide_vector(int size) {
258 return size > 8 || (UseSVE > 0 && size >= 8);
259 }
260
261 // ---------------------------------------------------------------------------
262 // Read the array of BasicTypes from a signature, and compute where the
263 // arguments should go. Values in the VMRegPair regs array refer to 4-byte
264 // quantities. Values less than VMRegImpl::stack0 are registers, those above
265 // refer to 4-byte stack slots. All stack slots are based off of the stack pointer
266 // as framesizes are fixed.
267 // VMRegImpl::stack0 refers to the first slot 0(sp).
268 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.
269 // Register up to Register::number_of_registers are the 64-bit
270 // integer registers.
271
272 // Note: the INPUTS in sig_bt are in units of Java argument words,
273 // which are 64-bit. The OUTPUTS are in 32-bit units.
274
275 // The Java calling convention is a "shifted" version of the C ABI.
276 // By skipping the first C ABI register we can call non-static jni
277 // methods with small numbers of arguments without having to shuffle
278 // the arguments at all. Since we control the java ABI we ought to at
279 // least get some advantage out of it.
280
281 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
282 VMRegPair *regs,
283 int total_args_passed) {
284
285 // Create the mapping between argument positions and
286 // registers.
287 static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
288 j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7
289 };
290 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
291 j_farg0, j_farg1, j_farg2, j_farg3,
292 j_farg4, j_farg5, j_farg6, j_farg7
293 };
294
295
296 uint int_args = 0;
297 uint fp_args = 0;
298 uint stk_args = 0;
299
300 for (int i = 0; i < total_args_passed; i++) {
301 switch (sig_bt[i]) {
302 case T_BOOLEAN:
303 case T_CHAR:
304 case T_BYTE:
305 case T_SHORT:
306 case T_INT:
307 if (int_args < Argument::n_int_register_parameters_j) {
308 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
309 } else {
310 stk_args = align_up(stk_args, 2);
311 regs[i].set1(VMRegImpl::stack2reg(stk_args));
312 stk_args += 1;
313 }
314 break;
315 case T_VOID:
316 // halves of T_LONG or T_DOUBLE
317 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
318 regs[i].set_bad();
319 break;
320 case T_LONG:
321 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
322 // fall through
323 case T_OBJECT:
324 case T_ARRAY:
325 case T_ADDRESS:
326 if (int_args < Argument::n_int_register_parameters_j) {
327 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
328 } else {
329 stk_args = align_up(stk_args, 2);
330 regs[i].set2(VMRegImpl::stack2reg(stk_args));
331 stk_args += 2;
332 }
333 break;
334 case T_FLOAT:
335 if (fp_args < Argument::n_float_register_parameters_j) {
336 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
337 } else {
338 stk_args = align_up(stk_args, 2);
339 regs[i].set1(VMRegImpl::stack2reg(stk_args));
340 stk_args += 1;
341 }
342 break;
343 case T_DOUBLE:
344 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
345 if (fp_args < Argument::n_float_register_parameters_j) {
346 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
347 } else {
348 stk_args = align_up(stk_args, 2);
349 regs[i].set2(VMRegImpl::stack2reg(stk_args));
350 stk_args += 2;
351 }
352 break;
353 default:
354 ShouldNotReachHere();
355 break;
356 }
357 }
358
359 return stk_args;
360 }
361
362 // Patch the callers callsite with entry to compiled code if it exists.
363 static void patch_callers_callsite(MacroAssembler *masm) {
364 Label L;
365 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
366 __ cbz(rscratch1, L);
367
368 __ enter();
369 __ push_CPU_state();
370
371 // VM needs caller's callsite
372 // VM needs target method
373 // This needs to be a long call since we will relocate this adapter to
374 // the codeBuffer and it may not reach
375
376 #ifndef PRODUCT
377 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
378 #endif
379
380 __ mov(c_rarg0, rmethod);
381 __ mov(c_rarg1, lr);
382 __ authenticate_return_address(c_rarg1);
383 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
384 __ blr(rscratch1);
385
386 // Explicit isb required because fixup_callers_callsite may change the code
387 // stream.
388 __ safepoint_isb();
389
390 __ pop_CPU_state();
391 // restore sp
392 __ leave();
393 __ bind(L);
394 }
395
396 static void gen_c2i_adapter(MacroAssembler *masm,
397 int total_args_passed,
398 int comp_args_on_stack,
399 const BasicType *sig_bt,
400 const VMRegPair *regs,
401 Label& skip_fixup) {
402 // Before we get into the guts of the C2I adapter, see if we should be here
403 // at all. We've come from compiled code and are attempting to jump to the
404 // interpreter, which means the caller made a static call to get here
405 // (vcalls always get a compiled target if there is one). Check for a
406 // compiled target. If there is one, we need to patch the caller's call.
407 patch_callers_callsite(masm);
408
409 __ bind(skip_fixup);
410
411 int words_pushed = 0;
412
413 // Since all args are passed on the stack, total_args_passed *
414 // Interpreter::stackElementSize is the space we need.
415
416 int extraspace = total_args_passed * Interpreter::stackElementSize;
417
418 __ mov(r19_sender_sp, sp);
419
420 // stack is aligned, keep it that way
421 extraspace = align_up(extraspace, 2*wordSize);
422
423 if (extraspace)
424 __ sub(sp, sp, extraspace);
425
426 // Now write the args into the outgoing interpreter space
427 for (int i = 0; i < total_args_passed; i++) {
428 if (sig_bt[i] == T_VOID) {
429 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
430 continue;
431 }
432
433 // offset to start parameters
434 int st_off = (total_args_passed - i - 1) * Interpreter::stackElementSize;
435 int next_off = st_off - Interpreter::stackElementSize;
436
437 // Say 4 args:
438 // i st_off
439 // 0 32 T_LONG
440 // 1 24 T_VOID
441 // 2 16 T_OBJECT
442 // 3 8 T_BOOL
443 // - 0 return address
444 //
445 // However to make thing extra confusing. Because we can fit a Java long/double in
446 // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
447 // leaves one slot empty and only stores to a single slot. In this case the
448 // slot that is occupied is the T_VOID slot. See I said it was confusing.
449
450 VMReg r_1 = regs[i].first();
451 VMReg r_2 = regs[i].second();
452 if (!r_1->is_valid()) {
453 assert(!r_2->is_valid(), "");
454 continue;
455 }
456 if (r_1->is_stack()) {
457 // memory to memory use rscratch1
458 int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size
459 + extraspace
460 + words_pushed * wordSize);
461 if (!r_2->is_valid()) {
462 // sign extend??
463 __ ldrw(rscratch1, Address(sp, ld_off));
464 __ str(rscratch1, Address(sp, st_off));
465
466 } else {
467
468 __ ldr(rscratch1, Address(sp, ld_off));
469
470 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
471 // T_DOUBLE and T_LONG use two slots in the interpreter
472 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
473 // ld_off == LSW, ld_off+wordSize == MSW
474 // st_off == MSW, next_off == LSW
475 __ str(rscratch1, Address(sp, next_off));
476 #ifdef ASSERT
477 // Overwrite the unused slot with known junk
478 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaaaull);
479 __ str(rscratch1, Address(sp, st_off));
480 #endif /* ASSERT */
481 } else {
482 __ str(rscratch1, Address(sp, st_off));
483 }
484 }
485 } else if (r_1->is_Register()) {
486 Register r = r_1->as_Register();
487 if (!r_2->is_valid()) {
488 // must be only an int (or less ) so move only 32bits to slot
489 // why not sign extend??
490 __ str(r, Address(sp, st_off));
491 } else {
492 // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
493 // T_DOUBLE and T_LONG use two slots in the interpreter
494 if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
495 // jlong/double in gpr
496 #ifdef ASSERT
497 // Overwrite the unused slot with known junk
498 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaabull);
499 __ str(rscratch1, Address(sp, st_off));
500 #endif /* ASSERT */
501 __ str(r, Address(sp, next_off));
502 } else {
503 __ str(r, Address(sp, st_off));
504 }
505 }
506 } else {
507 assert(r_1->is_FloatRegister(), "");
508 if (!r_2->is_valid()) {
509 // only a float use just part of the slot
510 __ strs(r_1->as_FloatRegister(), Address(sp, st_off));
511 } else {
512 #ifdef ASSERT
513 // Overwrite the unused slot with known junk
514 __ mov(rscratch1, (uint64_t)0xdeadffffdeadaaacull);
515 __ str(rscratch1, Address(sp, st_off));
516 #endif /* ASSERT */
517 __ strd(r_1->as_FloatRegister(), Address(sp, next_off));
518 }
519 }
520 }
521
522 __ mov(esp, sp); // Interp expects args on caller's expression stack
523
524 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::interpreter_entry_offset())));
525 __ br(rscratch1);
526 }
527
528
529 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
530 int total_args_passed,
531 int comp_args_on_stack,
532 const BasicType *sig_bt,
533 const VMRegPair *regs) {
534
535 // Note: r19_sender_sp contains the senderSP on entry. We must
536 // preserve it since we may do a i2c -> c2i transition if we lose a
537 // race where compiled code goes non-entrant while we get args
538 // ready.
539
540 // Adapters are frameless.
541
542 // An i2c adapter is frameless because the *caller* frame, which is
543 // interpreted, routinely repairs its own esp (from
544 // interpreter_frame_last_sp), even if a callee has modified the
545 // stack pointer. It also recalculates and aligns sp.
546
547 // A c2i adapter is frameless because the *callee* frame, which is
548 // interpreted, routinely repairs its caller's sp (from sender_sp,
549 // which is set up via the senderSP register).
550
551 // In other words, if *either* the caller or callee is interpreted, we can
552 // get the stack pointer repaired after a call.
553
554 // This is why c2i and i2c adapters cannot be indefinitely composed.
555 // In particular, if a c2i adapter were to somehow call an i2c adapter,
556 // both caller and callee would be compiled methods, and neither would
557 // clean up the stack pointer changes performed by the two adapters.
558 // If this happens, control eventually transfers back to the compiled
559 // caller, but with an uncorrected stack, causing delayed havoc.
560
561 // Cut-out for having no stack args.
562 int comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
563 if (comp_args_on_stack) {
564 __ sub(rscratch1, sp, comp_words_on_stack * wordSize);
565 __ andr(sp, rscratch1, -16);
566 }
567
568 // Will jump to the compiled code just as if compiled code was doing it.
569 // Pre-load the register-jump target early, to schedule it better.
570 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::from_compiled_offset())));
571
572 #if INCLUDE_JVMCI
573 if (EnableJVMCI) {
574 // check if this call should be routed towards a specific entry point
575 __ ldr(rscratch2, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
576 Label no_alternative_target;
577 __ cbz(rscratch2, no_alternative_target);
578 __ mov(rscratch1, rscratch2);
579 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
580 __ bind(no_alternative_target);
581 }
582 #endif // INCLUDE_JVMCI
583
584 // Now generate the shuffle code.
585 for (int i = 0; i < total_args_passed; i++) {
586 if (sig_bt[i] == T_VOID) {
587 assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
588 continue;
589 }
590
591 // Pick up 0, 1 or 2 words from SP+offset.
592
593 assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
594 "scrambled load targets?");
595 // Load in argument order going down.
596 int ld_off = (total_args_passed - i - 1)*Interpreter::stackElementSize;
597 // Point to interpreter value (vs. tag)
598 int next_off = ld_off - Interpreter::stackElementSize;
599 //
600 //
601 //
602 VMReg r_1 = regs[i].first();
603 VMReg r_2 = regs[i].second();
604 if (!r_1->is_valid()) {
605 assert(!r_2->is_valid(), "");
606 continue;
607 }
608 if (r_1->is_stack()) {
609 // Convert stack slot to an SP offset (+ wordSize to account for return address )
610 int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size;
611 if (!r_2->is_valid()) {
612 // sign extend???
613 __ ldrsw(rscratch2, Address(esp, ld_off));
614 __ str(rscratch2, Address(sp, st_off));
615 } else {
616 //
617 // We are using two optoregs. This can be either T_OBJECT,
618 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
619 // two slots but only uses one for thr T_LONG or T_DOUBLE case
620 // So we must adjust where to pick up the data to match the
621 // interpreter.
622 //
623 // Interpreter local[n] == MSW, local[n+1] == LSW however locals
624 // are accessed as negative so LSW is at LOW address
625
626 // ld_off is MSW so get LSW
627 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
628 next_off : ld_off;
629 __ ldr(rscratch2, Address(esp, offset));
630 // st_off is LSW (i.e. reg.first())
631 __ str(rscratch2, Address(sp, st_off));
632 }
633 } else if (r_1->is_Register()) { // Register argument
634 Register r = r_1->as_Register();
635 if (r_2->is_valid()) {
636 //
637 // We are using two VMRegs. This can be either T_OBJECT,
638 // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
639 // two slots but only uses one for thr T_LONG or T_DOUBLE case
640 // So we must adjust where to pick up the data to match the
641 // interpreter.
642
643 const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
644 next_off : ld_off;
645
646 // this can be a misaligned move
647 __ ldr(r, Address(esp, offset));
648 } else {
649 // sign extend and use a full word?
650 __ ldrw(r, Address(esp, ld_off));
651 }
652 } else {
653 if (!r_2->is_valid()) {
654 __ ldrs(r_1->as_FloatRegister(), Address(esp, ld_off));
655 } else {
656 __ ldrd(r_1->as_FloatRegister(), Address(esp, next_off));
657 }
658 }
659 }
660
661 __ mov(rscratch2, rscratch1);
662 __ push_cont_fastpath(rthread); // Set JavaThread::_cont_fastpath to the sp of the oldest interpreted frame we know about; kills rscratch1
663 __ mov(rscratch1, rscratch2);
664
665 // 6243940 We might end up in handle_wrong_method if
666 // the callee is deoptimized as we race thru here. If that
667 // happens we don't want to take a safepoint because the
668 // caller frame will look interpreted and arguments are now
669 // "compiled" so it is much better to make this transition
670 // invisible to the stack walking code. Unfortunately if
671 // we try and find the callee by normal means a safepoint
672 // is possible. So we stash the desired callee in the thread
673 // and the vm will find there should this case occur.
674
675 __ str(rmethod, Address(rthread, JavaThread::callee_target_offset()));
676
677 __ br(rscratch1);
678 }
679
680 // ---------------------------------------------------------------
681 void SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
682 int total_args_passed,
683 int comp_args_on_stack,
684 const BasicType *sig_bt,
685 const VMRegPair *regs,
686 AdapterHandlerEntry* handler) {
687 address i2c_entry = __ pc();
688
689 gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
690
691 address c2i_unverified_entry = __ pc();
692 Label skip_fixup;
693
694 Register data = rscratch2;
695 Register receiver = j_rarg0;
696 Register tmp = r10; // A call-clobbered register not used for arg passing
697
698 // -------------------------------------------------------------------------
699 // Generate a C2I adapter. On entry we know rmethod holds the Method* during calls
700 // to the interpreter. The args start out packed in the compiled layout. They
701 // need to be unpacked into the interpreter layout. This will almost always
702 // require some stack space. We grow the current (compiled) stack, then repack
703 // the args. We finally end in a jump to the generic interpreter entry point.
704 // On exit from the interpreter, the interpreter will restore our SP (lest the
705 // compiled code, which relies solely on SP and not FP, get sick).
706
707 {
708 __ block_comment("c2i_unverified_entry {");
709 // Method might have been compiled since the call site was patched to
710 // interpreted; if that is the case treat it as a miss so we can get
711 // the call site corrected.
712 __ ic_check(1 /* end_alignment */);
713 __ ldr(rmethod, Address(data, CompiledICData::speculated_method_offset()));
714
715 __ ldr(rscratch1, Address(rmethod, in_bytes(Method::code_offset())));
716 __ cbz(rscratch1, skip_fixup);
717 __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
718 __ block_comment("} c2i_unverified_entry");
719 }
720
721 address c2i_entry = __ pc();
722
723 // Class initialization barrier for static methods
724 address c2i_no_clinit_check_entry = nullptr;
725 if (VM_Version::supports_fast_class_init_checks()) {
726 Label L_skip_barrier;
727
728 { // Bypass the barrier for non-static methods
729 __ ldrh(rscratch1, Address(rmethod, Method::access_flags_offset()));
730 __ andsw(zr, rscratch1, JVM_ACC_STATIC);
731 __ br(Assembler::EQ, L_skip_barrier); // non-static
732 }
733
734 __ load_method_holder(rscratch2, rmethod);
735 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
736 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
737
738 __ bind(L_skip_barrier);
739 c2i_no_clinit_check_entry = __ pc();
740 }
741
742 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
743 bs->c2i_entry_barrier(masm);
744
745 gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
746
747 handler->set_entry_points(i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
748 return;
749 }
750
751 static int c_calling_convention_priv(const BasicType *sig_bt,
752 VMRegPair *regs,
753 int total_args_passed) {
754
755 // We return the amount of VMRegImpl stack slots we need to reserve for all
756 // the arguments NOT counting out_preserve_stack_slots.
757
758 static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
759 c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, c_rarg6, c_rarg7
760 };
761 static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
762 c_farg0, c_farg1, c_farg2, c_farg3,
763 c_farg4, c_farg5, c_farg6, c_farg7
764 };
765
766 uint int_args = 0;
767 uint fp_args = 0;
768 uint stk_args = 0; // inc by 2 each time
769
770 for (int i = 0; i < total_args_passed; i++) {
771 switch (sig_bt[i]) {
772 case T_BOOLEAN:
773 case T_CHAR:
774 case T_BYTE:
775 case T_SHORT:
776 case T_INT:
777 if (int_args < Argument::n_int_register_parameters_c) {
778 regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
779 } else {
780 #ifdef __APPLE__
781 // Less-than word types are stored one after another.
782 // The code is unable to handle this so bailout.
783 return -1;
784 #endif
785 regs[i].set1(VMRegImpl::stack2reg(stk_args));
786 stk_args += 2;
787 }
788 break;
789 case T_LONG:
790 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
791 // fall through
792 case T_OBJECT:
793 case T_ARRAY:
794 case T_ADDRESS:
795 case T_METADATA:
796 if (int_args < Argument::n_int_register_parameters_c) {
797 regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
798 } else {
799 regs[i].set2(VMRegImpl::stack2reg(stk_args));
800 stk_args += 2;
801 }
802 break;
803 case T_FLOAT:
804 if (fp_args < Argument::n_float_register_parameters_c) {
805 regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
806 } else {
807 #ifdef __APPLE__
808 // Less-than word types are stored one after another.
809 // The code is unable to handle this so bailout.
810 return -1;
811 #endif
812 regs[i].set1(VMRegImpl::stack2reg(stk_args));
813 stk_args += 2;
814 }
815 break;
816 case T_DOUBLE:
817 assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
818 if (fp_args < Argument::n_float_register_parameters_c) {
819 regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
820 } else {
821 regs[i].set2(VMRegImpl::stack2reg(stk_args));
822 stk_args += 2;
823 }
824 break;
825 case T_VOID: // Halves of longs and doubles
826 assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
827 regs[i].set_bad();
828 break;
829 default:
830 ShouldNotReachHere();
831 break;
832 }
833 }
834
835 return stk_args;
836 }
837
838 int SharedRuntime::vector_calling_convention(VMRegPair *regs,
839 uint num_bits,
840 uint total_args_passed) {
841 // More than 8 argument inputs are not supported now.
842 assert(total_args_passed <= Argument::n_float_register_parameters_c, "unsupported");
843 assert(num_bits >= 64 && num_bits <= 2048 && is_power_of_2(num_bits), "unsupported");
844
845 static const FloatRegister VEC_ArgReg[Argument::n_float_register_parameters_c] = {
846 v0, v1, v2, v3, v4, v5, v6, v7
847 };
848
849 // On SVE, we use the same vector registers with 128-bit vector registers on NEON.
850 int next_reg_val = num_bits == 64 ? 1 : 3;
851 for (uint i = 0; i < total_args_passed; i++) {
852 VMReg vmreg = VEC_ArgReg[i]->as_VMReg();
853 regs[i].set_pair(vmreg->next(next_reg_val), vmreg);
854 }
855 return 0;
856 }
857
858 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
859 VMRegPair *regs,
860 int total_args_passed)
861 {
862 int result = c_calling_convention_priv(sig_bt, regs, total_args_passed);
863 guarantee(result >= 0, "Unsupported arguments configuration");
864 return result;
865 }
866
867
868 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
869 // We always ignore the frame_slots arg and just use the space just below frame pointer
870 // which by this time is free to use
871 switch (ret_type) {
872 case T_FLOAT:
873 __ strs(v0, Address(rfp, -wordSize));
874 break;
875 case T_DOUBLE:
876 __ strd(v0, Address(rfp, -wordSize));
877 break;
878 case T_VOID: break;
879 default: {
880 __ str(r0, Address(rfp, -wordSize));
881 }
882 }
883 }
884
885 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
886 // We always ignore the frame_slots arg and just use the space just below frame pointer
887 // which by this time is free to use
888 switch (ret_type) {
889 case T_FLOAT:
890 __ ldrs(v0, Address(rfp, -wordSize));
891 break;
892 case T_DOUBLE:
893 __ ldrd(v0, Address(rfp, -wordSize));
894 break;
895 case T_VOID: break;
896 default: {
897 __ ldr(r0, Address(rfp, -wordSize));
898 }
899 }
900 }
901 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
902 RegSet x;
903 for ( int i = first_arg ; i < arg_count ; i++ ) {
904 if (args[i].first()->is_Register()) {
905 x = x + args[i].first()->as_Register();
906 } else if (args[i].first()->is_FloatRegister()) {
907 __ strd(args[i].first()->as_FloatRegister(), Address(__ pre(sp, -2 * wordSize)));
908 }
909 }
910 __ push(x, sp);
911 }
912
913 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
914 RegSet x;
915 for ( int i = first_arg ; i < arg_count ; i++ ) {
916 if (args[i].first()->is_Register()) {
917 x = x + args[i].first()->as_Register();
918 } else {
919 ;
920 }
921 }
922 __ pop(x, sp);
923 for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
924 if (args[i].first()->is_Register()) {
925 ;
926 } else if (args[i].first()->is_FloatRegister()) {
927 __ ldrd(args[i].first()->as_FloatRegister(), Address(__ post(sp, 2 * wordSize)));
928 }
929 }
930 }
931
932 static void verify_oop_args(MacroAssembler* masm,
933 const methodHandle& method,
934 const BasicType* sig_bt,
935 const VMRegPair* regs) {
936 Register temp_reg = r19; // not part of any compiled calling seq
937 if (VerifyOops) {
938 for (int i = 0; i < method->size_of_parameters(); i++) {
939 if (sig_bt[i] == T_OBJECT ||
940 sig_bt[i] == T_ARRAY) {
941 VMReg r = regs[i].first();
942 assert(r->is_valid(), "bad oop arg");
943 if (r->is_stack()) {
944 __ ldr(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
945 __ verify_oop(temp_reg);
946 } else {
947 __ verify_oop(r->as_Register());
948 }
949 }
950 }
951 }
952 }
953
954 // on exit, sp points to the ContinuationEntry
955 static OopMap* continuation_enter_setup(MacroAssembler* masm, int& stack_slots) {
956 assert(ContinuationEntry::size() % VMRegImpl::stack_slot_size == 0, "");
957 assert(in_bytes(ContinuationEntry::cont_offset()) % VMRegImpl::stack_slot_size == 0, "");
958 assert(in_bytes(ContinuationEntry::chunk_offset()) % VMRegImpl::stack_slot_size == 0, "");
959
960 stack_slots += (int)ContinuationEntry::size()/wordSize;
961 __ sub(sp, sp, (int)ContinuationEntry::size()); // place Continuation metadata
962
963 OopMap* map = new OopMap(((int)ContinuationEntry::size() + wordSize)/ VMRegImpl::stack_slot_size, 0 /* arg_slots*/);
964
965 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
966 __ str(rscratch1, Address(sp, ContinuationEntry::parent_offset()));
967 __ mov(rscratch1, sp); // we can't use sp as the source in str
968 __ str(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
969
970 return map;
971 }
972
973 // on entry c_rarg1 points to the continuation
974 // sp points to ContinuationEntry
975 // c_rarg3 -- isVirtualThread
976 static void fill_continuation_entry(MacroAssembler* masm) {
977 #ifdef ASSERT
978 __ movw(rscratch1, ContinuationEntry::cookie_value());
979 __ strw(rscratch1, Address(sp, ContinuationEntry::cookie_offset()));
980 #endif
981
982 __ str (c_rarg1, Address(sp, ContinuationEntry::cont_offset()));
983 __ strw(c_rarg3, Address(sp, ContinuationEntry::flags_offset()));
984 __ str (zr, Address(sp, ContinuationEntry::chunk_offset()));
985 __ strw(zr, Address(sp, ContinuationEntry::argsize_offset()));
986 __ strw(zr, Address(sp, ContinuationEntry::pin_count_offset()));
987
988 __ ldr(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset()));
989 __ str(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset()));
990 __ ldr(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset()));
991 __ str(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset()));
992
993 __ str(zr, Address(rthread, JavaThread::cont_fastpath_offset()));
994 __ str(zr, Address(rthread, JavaThread::held_monitor_count_offset()));
995 }
996
997 // on entry, sp points to the ContinuationEntry
998 // on exit, rfp points to the spilled rfp in the entry frame
999 static void continuation_enter_cleanup(MacroAssembler* masm) {
1000 #ifndef PRODUCT
1001 Label OK;
1002 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
1003 __ cmp(sp, rscratch1);
1004 __ br(Assembler::EQ, OK);
1005 __ stop("incorrect sp1");
1006 __ bind(OK);
1007 #endif
1008 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_cont_fastpath_offset()));
1009 __ str(rscratch1, Address(rthread, JavaThread::cont_fastpath_offset()));
1010
1011 if (CheckJNICalls) {
1012 // Check if this is a virtual thread continuation
1013 Label L_skip_vthread_code;
1014 __ ldrw(rscratch1, Address(sp, ContinuationEntry::flags_offset()));
1015 __ cbzw(rscratch1, L_skip_vthread_code);
1016
1017 // If the held monitor count is > 0 and this vthread is terminating then
1018 // it failed to release a JNI monitor. So we issue the same log message
1019 // that JavaThread::exit does.
1020 __ ldr(rscratch1, Address(rthread, JavaThread::jni_monitor_count_offset()));
1021 __ cbz(rscratch1, L_skip_vthread_code);
1022
1023 // Save return value potentially containing the exception oop in callee-saved R19.
1024 __ mov(r19, r0);
1025 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::log_jni_monitor_still_held));
1026 // Restore potential return value.
1027 __ mov(r0, r19);
1028
1029 // For vthreads we have to explicitly zero the JNI monitor count of the carrier
1030 // on termination. The held count is implicitly zeroed below when we restore from
1031 // the parent held count (which has to be zero).
1032 __ str(zr, Address(rthread, JavaThread::jni_monitor_count_offset()));
1033
1034 __ bind(L_skip_vthread_code);
1035 }
1036 #ifdef ASSERT
1037 else {
1038 // Check if this is a virtual thread continuation
1039 Label L_skip_vthread_code;
1040 __ ldrw(rscratch1, Address(sp, ContinuationEntry::flags_offset()));
1041 __ cbzw(rscratch1, L_skip_vthread_code);
1042
1043 // See comment just above. If not checking JNI calls the JNI count is only
1044 // needed for assertion checking.
1045 __ str(zr, Address(rthread, JavaThread::jni_monitor_count_offset()));
1046
1047 __ bind(L_skip_vthread_code);
1048 }
1049 #endif
1050
1051 __ ldr(rscratch1, Address(sp, ContinuationEntry::parent_held_monitor_count_offset()));
1052 __ str(rscratch1, Address(rthread, JavaThread::held_monitor_count_offset()));
1053
1054 __ ldr(rscratch2, Address(sp, ContinuationEntry::parent_offset()));
1055 __ str(rscratch2, Address(rthread, JavaThread::cont_entry_offset()));
1056 __ add(rfp, sp, (int)ContinuationEntry::size());
1057 }
1058
1059 // enterSpecial(Continuation c, boolean isContinue, boolean isVirtualThread)
1060 // On entry: c_rarg1 -- the continuation object
1061 // c_rarg2 -- isContinue
1062 // c_rarg3 -- isVirtualThread
1063 static void gen_continuation_enter(MacroAssembler* masm,
1064 const methodHandle& method,
1065 const BasicType* sig_bt,
1066 const VMRegPair* regs,
1067 int& exception_offset,
1068 OopMapSet*oop_maps,
1069 int& frame_complete,
1070 int& stack_slots,
1071 int& interpreted_entry_offset,
1072 int& compiled_entry_offset) {
1073 //verify_oop_args(masm, method, sig_bt, regs);
1074 Address resolve(SharedRuntime::get_resolve_static_call_stub(), relocInfo::static_call_type);
1075
1076 address start = __ pc();
1077
1078 Label call_thaw, exit;
1079
1080 // i2i entry used at interp_only_mode only
1081 interpreted_entry_offset = __ pc() - start;
1082 {
1083
1084 #ifdef ASSERT
1085 Label is_interp_only;
1086 __ ldrw(rscratch1, Address(rthread, JavaThread::interp_only_mode_offset()));
1087 __ cbnzw(rscratch1, is_interp_only);
1088 __ stop("enterSpecial interpreter entry called when not in interp_only_mode");
1089 __ bind(is_interp_only);
1090 #endif
1091
1092 // Read interpreter arguments into registers (this is an ad-hoc i2c adapter)
1093 __ ldr(c_rarg1, Address(esp, Interpreter::stackElementSize*2));
1094 __ ldr(c_rarg2, Address(esp, Interpreter::stackElementSize*1));
1095 __ ldr(c_rarg3, Address(esp, Interpreter::stackElementSize*0));
1096 __ push_cont_fastpath(rthread);
1097
1098 __ enter();
1099 stack_slots = 2; // will be adjusted in setup
1100 OopMap* map = continuation_enter_setup(masm, stack_slots);
1101 // The frame is complete here, but we only record it for the compiled entry, so the frame would appear unsafe,
1102 // but that's okay because at the very worst we'll miss an async sample, but we're in interp_only_mode anyway.
1103
1104 fill_continuation_entry(masm);
1105
1106 __ cbnz(c_rarg2, call_thaw);
1107
1108 const address tr_call = __ trampoline_call(resolve);
1109 if (tr_call == nullptr) {
1110 fatal("CodeCache is full at gen_continuation_enter");
1111 }
1112
1113 oop_maps->add_gc_map(__ pc() - start, map);
1114 __ post_call_nop();
1115
1116 __ b(exit);
1117
1118 address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call);
1119 if (stub == nullptr) {
1120 fatal("CodeCache is full at gen_continuation_enter");
1121 }
1122 }
1123
1124 // compiled entry
1125 __ align(CodeEntryAlignment);
1126 compiled_entry_offset = __ pc() - start;
1127
1128 __ enter();
1129 stack_slots = 2; // will be adjusted in setup
1130 OopMap* map = continuation_enter_setup(masm, stack_slots);
1131 frame_complete = __ pc() - start;
1132
1133 fill_continuation_entry(masm);
1134
1135 __ cbnz(c_rarg2, call_thaw);
1136
1137 const address tr_call = __ trampoline_call(resolve);
1138 if (tr_call == nullptr) {
1139 fatal("CodeCache is full at gen_continuation_enter");
1140 }
1141
1142 oop_maps->add_gc_map(__ pc() - start, map);
1143 __ post_call_nop();
1144
1145 __ b(exit);
1146
1147 __ bind(call_thaw);
1148
1149 ContinuationEntry::_thaw_call_pc_offset = __ pc() - start;
1150 __ rt_call(CAST_FROM_FN_PTR(address, StubRoutines::cont_thaw()));
1151 oop_maps->add_gc_map(__ pc() - start, map->deep_copy());
1152 ContinuationEntry::_return_pc_offset = __ pc() - start;
1153 __ post_call_nop();
1154
1155 __ bind(exit);
1156 ContinuationEntry::_cleanup_offset = __ pc() - start;
1157 continuation_enter_cleanup(masm);
1158 __ leave();
1159 __ ret(lr);
1160
1161 /// exception handling
1162
1163 exception_offset = __ pc() - start;
1164 {
1165 __ mov(r19, r0); // save return value contaning the exception oop in callee-saved R19
1166
1167 continuation_enter_cleanup(masm);
1168
1169 __ ldr(c_rarg1, Address(rfp, wordSize)); // return address
1170 __ authenticate_return_address(c_rarg1);
1171 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), rthread, c_rarg1);
1172
1173 // see OptoRuntime::generate_exception_blob: r0 -- exception oop, r3 -- exception pc
1174
1175 __ mov(r1, r0); // the exception handler
1176 __ mov(r0, r19); // restore return value contaning the exception oop
1177 __ verify_oop(r0);
1178
1179 __ leave();
1180 __ mov(r3, lr);
1181 __ br(r1); // the exception handler
1182 }
1183
1184 address stub = CompiledDirectCall::emit_to_interp_stub(masm, tr_call);
1185 if (stub == nullptr) {
1186 fatal("CodeCache is full at gen_continuation_enter");
1187 }
1188 }
1189
1190 static void gen_continuation_yield(MacroAssembler* masm,
1191 const methodHandle& method,
1192 const BasicType* sig_bt,
1193 const VMRegPair* regs,
1194 OopMapSet* oop_maps,
1195 int& frame_complete,
1196 int& stack_slots,
1197 int& compiled_entry_offset) {
1198 enum layout {
1199 rfp_off1,
1200 rfp_off2,
1201 lr_off,
1202 lr_off2,
1203 framesize // inclusive of return address
1204 };
1205 // assert(is_even(framesize/2), "sp not 16-byte aligned");
1206 stack_slots = framesize / VMRegImpl::slots_per_word;
1207 assert(stack_slots == 2, "recheck layout");
1208
1209 address start = __ pc();
1210
1211 compiled_entry_offset = __ pc() - start;
1212 __ enter();
1213
1214 __ mov(c_rarg1, sp);
1215
1216 frame_complete = __ pc() - start;
1217 address the_pc = __ pc();
1218
1219 __ post_call_nop(); // this must be exactly after the pc value that is pushed into the frame info, we use this nop for fast CodeBlob lookup
1220
1221 __ mov(c_rarg0, rthread);
1222 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
1223 __ call_VM_leaf(Continuation::freeze_entry(), 2);
1224 __ reset_last_Java_frame(true);
1225
1226 Label pinned;
1227
1228 __ cbnz(r0, pinned);
1229
1230 // We've succeeded, set sp to the ContinuationEntry
1231 __ ldr(rscratch1, Address(rthread, JavaThread::cont_entry_offset()));
1232 __ mov(sp, rscratch1);
1233 continuation_enter_cleanup(masm);
1234
1235 __ bind(pinned); // pinned -- return to caller
1236
1237 // handle pending exception thrown by freeze
1238 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
1239 Label ok;
1240 __ cbz(rscratch1, ok);
1241 __ leave();
1242 __ lea(rscratch1, RuntimeAddress(StubRoutines::forward_exception_entry()));
1243 __ br(rscratch1);
1244 __ bind(ok);
1245
1246 __ leave();
1247 __ ret(lr);
1248
1249 OopMap* map = new OopMap(framesize, 1);
1250 oop_maps->add_gc_map(the_pc - start, map);
1251 }
1252
1253 void SharedRuntime::continuation_enter_cleanup(MacroAssembler* masm) {
1254 ::continuation_enter_cleanup(masm);
1255 }
1256
1257 static void gen_special_dispatch(MacroAssembler* masm,
1258 const methodHandle& method,
1259 const BasicType* sig_bt,
1260 const VMRegPair* regs) {
1261 verify_oop_args(masm, method, sig_bt, regs);
1262 vmIntrinsics::ID iid = method->intrinsic_id();
1263
1264 // Now write the args into the outgoing interpreter space
1265 bool has_receiver = false;
1266 Register receiver_reg = noreg;
1267 int member_arg_pos = -1;
1268 Register member_reg = noreg;
1269 int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1270 if (ref_kind != 0) {
1271 member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument
1272 member_reg = r19; // known to be free at this point
1273 has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1274 } else if (iid == vmIntrinsics::_invokeBasic) {
1275 has_receiver = true;
1276 } else if (iid == vmIntrinsics::_linkToNative) {
1277 member_arg_pos = method->size_of_parameters() - 1; // trailing NativeEntryPoint argument
1278 member_reg = r19; // known to be free at this point
1279 } else {
1280 fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
1281 }
1282
1283 if (member_reg != noreg) {
1284 // Load the member_arg into register, if necessary.
1285 SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1286 VMReg r = regs[member_arg_pos].first();
1287 if (r->is_stack()) {
1288 __ ldr(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1289 } else {
1290 // no data motion is needed
1291 member_reg = r->as_Register();
1292 }
1293 }
1294
1295 if (has_receiver) {
1296 // Make sure the receiver is loaded into a register.
1297 assert(method->size_of_parameters() > 0, "oob");
1298 assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1299 VMReg r = regs[0].first();
1300 assert(r->is_valid(), "bad receiver arg");
1301 if (r->is_stack()) {
1302 // Porting note: This assumes that compiled calling conventions always
1303 // pass the receiver oop in a register. If this is not true on some
1304 // platform, pick a temp and load the receiver from stack.
1305 fatal("receiver always in a register");
1306 receiver_reg = r2; // known to be free at this point
1307 __ ldr(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
1308 } else {
1309 // no data motion is needed
1310 receiver_reg = r->as_Register();
1311 }
1312 }
1313
1314 // Figure out which address we are really jumping to:
1315 MethodHandles::generate_method_handle_dispatch(masm, iid,
1316 receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1317 }
1318
1319 // ---------------------------------------------------------------------------
1320 // Generate a native wrapper for a given method. The method takes arguments
1321 // in the Java compiled code convention, marshals them to the native
1322 // convention (handlizes oops, etc), transitions to native, makes the call,
1323 // returns to java state (possibly blocking), unhandlizes any result and
1324 // returns.
1325 //
1326 // Critical native functions are a shorthand for the use of
1327 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1328 // functions. The wrapper is expected to unpack the arguments before
1329 // passing them to the callee. Critical native functions leave the state _in_Java,
1330 // since they block out GC.
1331 // Some other parts of JNI setup are skipped like the tear down of the JNI handle
1332 // block and the check for pending exceptions it's impossible for them
1333 // to be thrown.
1334 //
1335 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1336 const methodHandle& method,
1337 int compile_id,
1338 BasicType* in_sig_bt,
1339 VMRegPair* in_regs,
1340 BasicType ret_type) {
1341 if (method->is_continuation_native_intrinsic()) {
1342 int exception_offset = -1;
1343 OopMapSet* oop_maps = new OopMapSet();
1344 int frame_complete = -1;
1345 int stack_slots = -1;
1346 int interpreted_entry_offset = -1;
1347 int vep_offset = -1;
1348 if (method->is_continuation_enter_intrinsic()) {
1349 gen_continuation_enter(masm,
1350 method,
1351 in_sig_bt,
1352 in_regs,
1353 exception_offset,
1354 oop_maps,
1355 frame_complete,
1356 stack_slots,
1357 interpreted_entry_offset,
1358 vep_offset);
1359 } else if (method->is_continuation_yield_intrinsic()) {
1360 gen_continuation_yield(masm,
1361 method,
1362 in_sig_bt,
1363 in_regs,
1364 oop_maps,
1365 frame_complete,
1366 stack_slots,
1367 vep_offset);
1368 } else {
1369 guarantee(false, "Unknown Continuation native intrinsic");
1370 }
1371
1372 #ifdef ASSERT
1373 if (method->is_continuation_enter_intrinsic()) {
1374 assert(interpreted_entry_offset != -1, "Must be set");
1375 assert(exception_offset != -1, "Must be set");
1376 } else {
1377 assert(interpreted_entry_offset == -1, "Must be unset");
1378 assert(exception_offset == -1, "Must be unset");
1379 }
1380 assert(frame_complete != -1, "Must be set");
1381 assert(stack_slots != -1, "Must be set");
1382 assert(vep_offset != -1, "Must be set");
1383 #endif
1384
1385 __ flush();
1386 nmethod* nm = nmethod::new_native_nmethod(method,
1387 compile_id,
1388 masm->code(),
1389 vep_offset,
1390 frame_complete,
1391 stack_slots,
1392 in_ByteSize(-1),
1393 in_ByteSize(-1),
1394 oop_maps,
1395 exception_offset);
1396 if (nm == nullptr) return nm;
1397 if (method->is_continuation_enter_intrinsic()) {
1398 ContinuationEntry::set_enter_code(nm, interpreted_entry_offset);
1399 } else if (method->is_continuation_yield_intrinsic()) {
1400 _cont_doYield_stub = nm;
1401 } else {
1402 guarantee(false, "Unknown Continuation native intrinsic");
1403 }
1404 return nm;
1405 }
1406
1407 if (method->is_method_handle_intrinsic()) {
1408 vmIntrinsics::ID iid = method->intrinsic_id();
1409 intptr_t start = (intptr_t)__ pc();
1410 int vep_offset = ((intptr_t)__ pc()) - start;
1411
1412 // First instruction must be a nop as it may need to be patched on deoptimisation
1413 __ nop();
1414 gen_special_dispatch(masm,
1415 method,
1416 in_sig_bt,
1417 in_regs);
1418 int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
1419 __ flush();
1420 int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
1421 return nmethod::new_native_nmethod(method,
1422 compile_id,
1423 masm->code(),
1424 vep_offset,
1425 frame_complete,
1426 stack_slots / VMRegImpl::slots_per_word,
1427 in_ByteSize(-1),
1428 in_ByteSize(-1),
1429 nullptr);
1430 }
1431 address native_func = method->native_function();
1432 assert(native_func != nullptr, "must have function");
1433
1434 // An OopMap for lock (and class if static)
1435 OopMapSet *oop_maps = new OopMapSet();
1436 intptr_t start = (intptr_t)__ pc();
1437
1438 // We have received a description of where all the java arg are located
1439 // on entry to the wrapper. We need to convert these args to where
1440 // the jni function will expect them. To figure out where they go
1441 // we convert the java signature to a C signature by inserting
1442 // the hidden arguments as arg[0] and possibly arg[1] (static method)
1443
1444 const int total_in_args = method->size_of_parameters();
1445 int total_c_args = total_in_args + (method->is_static() ? 2 : 1);
1446
1447 BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1448 VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1449
1450 int argc = 0;
1451 out_sig_bt[argc++] = T_ADDRESS;
1452 if (method->is_static()) {
1453 out_sig_bt[argc++] = T_OBJECT;
1454 }
1455
1456 for (int i = 0; i < total_in_args ; i++ ) {
1457 out_sig_bt[argc++] = in_sig_bt[i];
1458 }
1459
1460 // Now figure out where the args must be stored and how much stack space
1461 // they require.
1462 int out_arg_slots;
1463 out_arg_slots = c_calling_convention_priv(out_sig_bt, out_regs, total_c_args);
1464
1465 if (out_arg_slots < 0) {
1466 return nullptr;
1467 }
1468
1469 // Compute framesize for the wrapper. We need to handlize all oops in
1470 // incoming registers
1471
1472 // Calculate the total number of stack slots we will need.
1473
1474 // First count the abi requirement plus all of the outgoing args
1475 int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
1476
1477 // Now the space for the inbound oop handle area
1478 int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers
1479
1480 int oop_handle_offset = stack_slots;
1481 stack_slots += total_save_slots;
1482
1483 // Now any space we need for handlizing a klass if static method
1484
1485 int klass_slot_offset = 0;
1486 int klass_offset = -1;
1487 int lock_slot_offset = 0;
1488 bool is_static = false;
1489
1490 if (method->is_static()) {
1491 klass_slot_offset = stack_slots;
1492 stack_slots += VMRegImpl::slots_per_word;
1493 klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
1494 is_static = true;
1495 }
1496
1497 // Plus a lock if needed
1498
1499 if (method->is_synchronized()) {
1500 lock_slot_offset = stack_slots;
1501 stack_slots += VMRegImpl::slots_per_word;
1502 }
1503
1504 // Now a place (+2) to save return values or temp during shuffling
1505 // + 4 for return address (which we own) and saved rfp
1506 stack_slots += 6;
1507
1508 // Ok The space we have allocated will look like:
1509 //
1510 //
1511 // FP-> | |
1512 // |---------------------|
1513 // | 2 slots for moves |
1514 // |---------------------|
1515 // | lock box (if sync) |
1516 // |---------------------| <- lock_slot_offset
1517 // | klass (if static) |
1518 // |---------------------| <- klass_slot_offset
1519 // | oopHandle area |
1520 // |---------------------| <- oop_handle_offset (8 java arg registers)
1521 // | outbound memory |
1522 // | based arguments |
1523 // | |
1524 // |---------------------|
1525 // | |
1526 // SP-> | out_preserved_slots |
1527 //
1528 //
1529
1530
1531 // Now compute actual number of stack words we need rounding to make
1532 // stack properly aligned.
1533 stack_slots = align_up(stack_slots, StackAlignmentInSlots);
1534
1535 int stack_size = stack_slots * VMRegImpl::stack_slot_size;
1536
1537 // First thing make an ic check to see if we should even be here
1538
1539 // We are free to use all registers as temps without saving them and
1540 // restoring them except rfp. rfp is the only callee save register
1541 // as far as the interpreter and the compiler(s) are concerned.
1542
1543 const Register receiver = j_rarg0;
1544
1545 Label exception_pending;
1546
1547 assert_different_registers(receiver, rscratch1);
1548 __ verify_oop(receiver);
1549 __ ic_check(8 /* end_alignment */);
1550
1551 // Verified entry point must be aligned
1552 int vep_offset = ((intptr_t)__ pc()) - start;
1553
1554 // If we have to make this method not-entrant we'll overwrite its
1555 // first instruction with a jump. For this action to be legal we
1556 // must ensure that this first instruction is a B, BL, NOP, BKPT,
1557 // SVC, HVC, or SMC. Make it a NOP.
1558 __ nop();
1559
1560 if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
1561 Label L_skip_barrier;
1562 __ mov_metadata(rscratch2, method->method_holder()); // InstanceKlass*
1563 __ clinit_barrier(rscratch2, rscratch1, &L_skip_barrier);
1564 __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
1565
1566 __ bind(L_skip_barrier);
1567 }
1568
1569 // Generate stack overflow check
1570 __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size()));
1571
1572 // Generate a new frame for the wrapper.
1573 __ enter();
1574 // -2 because return address is already present and so is saved rfp
1575 __ sub(sp, sp, stack_size - 2*wordSize);
1576
1577 BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
1578 bs->nmethod_entry_barrier(masm, nullptr /* slow_path */, nullptr /* continuation */, nullptr /* guard */);
1579
1580 // Frame is now completed as far as size and linkage.
1581 int frame_complete = ((intptr_t)__ pc()) - start;
1582
1583 // We use r20 as the oop handle for the receiver/klass
1584 // It is callee save so it survives the call to native
1585
1586 const Register oop_handle_reg = r20;
1587
1588 //
1589 // We immediately shuffle the arguments so that any vm call we have to
1590 // make from here on out (sync slow path, jvmti, etc.) we will have
1591 // captured the oops from our caller and have a valid oopMap for
1592 // them.
1593
1594 // -----------------
1595 // The Grand Shuffle
1596
1597 // The Java calling convention is either equal (linux) or denser (win64) than the
1598 // c calling convention. However the because of the jni_env argument the c calling
1599 // convention always has at least one more (and two for static) arguments than Java.
1600 // Therefore if we move the args from java -> c backwards then we will never have
1601 // a register->register conflict and we don't have to build a dependency graph
1602 // and figure out how to break any cycles.
1603 //
1604
1605 // Record esp-based slot for receiver on stack for non-static methods
1606 int receiver_offset = -1;
1607
1608 // This is a trick. We double the stack slots so we can claim
1609 // the oops in the caller's frame. Since we are sure to have
1610 // more args than the caller doubling is enough to make
1611 // sure we can capture all the incoming oop args from the
1612 // caller.
1613 //
1614 OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1615
1616 // Mark location of rfp (someday)
1617 // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rfp));
1618
1619
1620 int float_args = 0;
1621 int int_args = 0;
1622
1623 #ifdef ASSERT
1624 bool reg_destroyed[Register::number_of_registers];
1625 bool freg_destroyed[FloatRegister::number_of_registers];
1626 for ( int r = 0 ; r < Register::number_of_registers ; r++ ) {
1627 reg_destroyed[r] = false;
1628 }
1629 for ( int f = 0 ; f < FloatRegister::number_of_registers ; f++ ) {
1630 freg_destroyed[f] = false;
1631 }
1632
1633 #endif /* ASSERT */
1634
1635 // For JNI natives the incoming and outgoing registers are offset upwards.
1636 GrowableArray<int> arg_order(2 * total_in_args);
1637
1638 for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1639 arg_order.push(i);
1640 arg_order.push(c_arg);
1641 }
1642
1643 for (int ai = 0; ai < arg_order.length(); ai += 2) {
1644 int i = arg_order.at(ai);
1645 int c_arg = arg_order.at(ai + 1);
1646 __ block_comment(err_msg("move %d -> %d", i, c_arg));
1647 assert(c_arg != -1 && i != -1, "wrong order");
1648 #ifdef ASSERT
1649 if (in_regs[i].first()->is_Register()) {
1650 assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
1651 } else if (in_regs[i].first()->is_FloatRegister()) {
1652 assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!");
1653 }
1654 if (out_regs[c_arg].first()->is_Register()) {
1655 reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
1656 } else if (out_regs[c_arg].first()->is_FloatRegister()) {
1657 freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true;
1658 }
1659 #endif /* ASSERT */
1660 switch (in_sig_bt[i]) {
1661 case T_ARRAY:
1662 case T_OBJECT:
1663 __ object_move(map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
1664 ((i == 0) && (!is_static)),
1665 &receiver_offset);
1666 int_args++;
1667 break;
1668 case T_VOID:
1669 break;
1670
1671 case T_FLOAT:
1672 __ float_move(in_regs[i], out_regs[c_arg]);
1673 float_args++;
1674 break;
1675
1676 case T_DOUBLE:
1677 assert( i + 1 < total_in_args &&
1678 in_sig_bt[i + 1] == T_VOID &&
1679 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
1680 __ double_move(in_regs[i], out_regs[c_arg]);
1681 float_args++;
1682 break;
1683
1684 case T_LONG :
1685 __ long_move(in_regs[i], out_regs[c_arg]);
1686 int_args++;
1687 break;
1688
1689 case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
1690
1691 default:
1692 __ move32_64(in_regs[i], out_regs[c_arg]);
1693 int_args++;
1694 }
1695 }
1696
1697 // point c_arg at the first arg that is already loaded in case we
1698 // need to spill before we call out
1699 int c_arg = total_c_args - total_in_args;
1700
1701 // Pre-load a static method's oop into c_rarg1.
1702 if (method->is_static()) {
1703
1704 // load oop into a register
1705 __ movoop(c_rarg1,
1706 JNIHandles::make_local(method->method_holder()->java_mirror()));
1707
1708 // Now handlize the static class mirror it's known not-null.
1709 __ str(c_rarg1, Address(sp, klass_offset));
1710 map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
1711
1712 // Now get the handle
1713 __ lea(c_rarg1, Address(sp, klass_offset));
1714 // and protect the arg if we must spill
1715 c_arg--;
1716 }
1717
1718 // Change state to native (we save the return address in the thread, since it might not
1719 // be pushed on the stack when we do a stack traversal). It is enough that the pc()
1720 // points into the right code segment. It does not have to be the correct return pc.
1721 // We use the same pc/oopMap repeatedly when we call out.
1722
1723 Label native_return;
1724 if (LockingMode != LM_LEGACY && method->is_object_wait0()) {
1725 // For convenience we use the pc we want to resume to in case of preemption on Object.wait.
1726 __ set_last_Java_frame(sp, noreg, native_return, rscratch1);
1727 } else {
1728 intptr_t the_pc = (intptr_t) __ pc();
1729 oop_maps->add_gc_map(the_pc - start, map);
1730
1731 __ set_last_Java_frame(sp, noreg, __ pc(), rscratch1);
1732 }
1733
1734 Label dtrace_method_entry, dtrace_method_entry_done;
1735 if (DTraceMethodProbes) {
1736 __ b(dtrace_method_entry);
1737 __ bind(dtrace_method_entry_done);
1738 }
1739
1740 // RedefineClasses() tracing support for obsolete method entry
1741 if (log_is_enabled(Trace, redefine, class, obsolete)) {
1742 // protect the args we've loaded
1743 save_args(masm, total_c_args, c_arg, out_regs);
1744 __ mov_metadata(c_rarg1, method());
1745 __ call_VM_leaf(
1746 CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1747 rthread, c_rarg1);
1748 restore_args(masm, total_c_args, c_arg, out_regs);
1749 }
1750
1751 // Lock a synchronized method
1752
1753 // Register definitions used by locking and unlocking
1754
1755 const Register swap_reg = r0;
1756 const Register obj_reg = r19; // Will contain the oop
1757 const Register lock_reg = r13; // Address of compiler lock object (BasicLock)
1758 const Register old_hdr = r13; // value of old header at unlock time
1759 const Register lock_tmp = r14; // Temporary used by lightweight_lock/unlock
1760 const Register tmp = lr;
1761
1762 Label slow_path_lock;
1763 Label lock_done;
1764
1765 if (method->is_synchronized()) {
1766 Label count;
1767 const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
1768
1769 // Get the handle (the 2nd argument)
1770 __ mov(oop_handle_reg, c_rarg1);
1771
1772 // Get address of the box
1773
1774 __ lea(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1775
1776 // Load the oop from the handle
1777 __ ldr(obj_reg, Address(oop_handle_reg, 0));
1778
1779 if (LockingMode == LM_MONITOR) {
1780 __ b(slow_path_lock);
1781 } else if (LockingMode == LM_LEGACY) {
1782 // Load (object->mark() | 1) into swap_reg %r0
1783 __ ldr(rscratch1, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1784 __ orr(swap_reg, rscratch1, 1);
1785
1786 // Save (object->mark() | 1) into BasicLock's displaced header
1787 __ str(swap_reg, Address(lock_reg, mark_word_offset));
1788
1789 // src -> dest iff dest == r0 else r0 <- dest
1790 __ cmpxchg_obj_header(r0, lock_reg, obj_reg, rscratch1, count, /*fallthrough*/nullptr);
1791
1792 // Hmm should this move to the slow path code area???
1793
1794 // Test if the oopMark is an obvious stack pointer, i.e.,
1795 // 1) (mark & 3) == 0, and
1796 // 2) sp <= mark < mark + os::pagesize()
1797 // These 3 tests can be done by evaluating the following
1798 // expression: ((mark - sp) & (3 - os::vm_page_size())),
1799 // assuming both stack pointer and pagesize have their
1800 // least significant 2 bits clear.
1801 // NOTE: the oopMark is in swap_reg %r0 as the result of cmpxchg
1802
1803 __ sub(swap_reg, sp, swap_reg);
1804 __ neg(swap_reg, swap_reg);
1805 __ ands(swap_reg, swap_reg, 3 - (int)os::vm_page_size());
1806
1807 // Save the test result, for recursive case, the result is zero
1808 __ str(swap_reg, Address(lock_reg, mark_word_offset));
1809 __ br(Assembler::NE, slow_path_lock);
1810
1811 __ bind(count);
1812 __ inc_held_monitor_count(rscratch1);
1813 } else {
1814 assert(LockingMode == LM_LIGHTWEIGHT, "must be");
1815 __ lightweight_lock(lock_reg, obj_reg, swap_reg, tmp, lock_tmp, slow_path_lock);
1816 }
1817
1818 // Slow path will re-enter here
1819 __ bind(lock_done);
1820 }
1821
1822
1823 // Finally just about ready to make the JNI call
1824
1825 // get JNIEnv* which is first argument to native
1826 __ lea(c_rarg0, Address(rthread, in_bytes(JavaThread::jni_environment_offset())));
1827
1828 // Now set thread in native
1829 __ mov(rscratch1, _thread_in_native);
1830 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1831 __ stlrw(rscratch1, rscratch2);
1832
1833 __ rt_call(native_func);
1834
1835 // Verify or restore cpu control state after JNI call
1836 __ restore_cpu_control_state_after_jni(rscratch1, rscratch2);
1837
1838 // Unpack native results.
1839 switch (ret_type) {
1840 case T_BOOLEAN: __ c2bool(r0); break;
1841 case T_CHAR : __ ubfx(r0, r0, 0, 16); break;
1842 case T_BYTE : __ sbfx(r0, r0, 0, 8); break;
1843 case T_SHORT : __ sbfx(r0, r0, 0, 16); break;
1844 case T_INT : __ sbfx(r0, r0, 0, 32); break;
1845 case T_DOUBLE :
1846 case T_FLOAT :
1847 // Result is in v0 we'll save as needed
1848 break;
1849 case T_ARRAY: // Really a handle
1850 case T_OBJECT: // Really a handle
1851 break; // can't de-handlize until after safepoint check
1852 case T_VOID: break;
1853 case T_LONG: break;
1854 default : ShouldNotReachHere();
1855 }
1856
1857 Label safepoint_in_progress, safepoint_in_progress_done;
1858
1859 // Switch thread to "native transition" state before reading the synchronization state.
1860 // This additional state is necessary because reading and testing the synchronization
1861 // state is not atomic w.r.t. GC, as this scenario demonstrates:
1862 // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
1863 // VM thread changes sync state to synchronizing and suspends threads for GC.
1864 // Thread A is resumed to finish this native method, but doesn't block here since it
1865 // didn't see any synchronization is progress, and escapes.
1866 __ mov(rscratch1, _thread_in_native_trans);
1867
1868 __ strw(rscratch1, Address(rthread, JavaThread::thread_state_offset()));
1869
1870 // Force this write out before the read below
1871 if (!UseSystemMemoryBarrier) {
1872 __ dmb(Assembler::ISH);
1873 }
1874
1875 __ verify_sve_vector_length();
1876
1877 // Check for safepoint operation in progress and/or pending suspend requests.
1878 {
1879 // No need for acquire as Java threads always disarm themselves.
1880 __ safepoint_poll(safepoint_in_progress, true /* at_return */, false /* in_nmethod */);
1881 __ ldrw(rscratch1, Address(rthread, JavaThread::suspend_flags_offset()));
1882 __ cbnzw(rscratch1, safepoint_in_progress);
1883 __ bind(safepoint_in_progress_done);
1884 }
1885
1886 // change thread state
1887 __ mov(rscratch1, _thread_in_Java);
1888 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset()));
1889 __ stlrw(rscratch1, rscratch2);
1890
1891 if (LockingMode != LM_LEGACY && method->is_object_wait0()) {
1892 // Check preemption for Object.wait()
1893 __ ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1894 __ cbz(rscratch1, native_return);
1895 __ str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset()));
1896 __ br(rscratch1);
1897 __ bind(native_return);
1898
1899 intptr_t the_pc = (intptr_t) __ pc();
1900 oop_maps->add_gc_map(the_pc - start, map);
1901 }
1902
1903 Label reguard;
1904 Label reguard_done;
1905 __ ldrb(rscratch1, Address(rthread, JavaThread::stack_guard_state_offset()));
1906 __ cmpw(rscratch1, StackOverflow::stack_guard_yellow_reserved_disabled);
1907 __ br(Assembler::EQ, reguard);
1908 __ bind(reguard_done);
1909
1910 // native result if any is live
1911
1912 // Unlock
1913 Label unlock_done;
1914 Label slow_path_unlock;
1915 if (method->is_synchronized()) {
1916
1917 // Get locked oop from the handle we passed to jni
1918 __ ldr(obj_reg, Address(oop_handle_reg, 0));
1919
1920 Label done, not_recursive;
1921
1922 if (LockingMode == LM_LEGACY) {
1923 // Simple recursive lock?
1924 __ ldr(rscratch1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1925 __ cbnz(rscratch1, not_recursive);
1926 __ dec_held_monitor_count(rscratch1);
1927 __ b(done);
1928 }
1929
1930 __ bind(not_recursive);
1931
1932 // Must save r0 if if it is live now because cmpxchg must use it
1933 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1934 save_native_result(masm, ret_type, stack_slots);
1935 }
1936
1937 if (LockingMode == LM_MONITOR) {
1938 __ b(slow_path_unlock);
1939 } else if (LockingMode == LM_LEGACY) {
1940 // get address of the stack lock
1941 __ lea(r0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
1942 // get old displaced header
1943 __ ldr(old_hdr, Address(r0, 0));
1944
1945 // Atomic swap old header if oop still contains the stack lock
1946 Label count;
1947 __ cmpxchg_obj_header(r0, old_hdr, obj_reg, rscratch1, count, &slow_path_unlock);
1948 __ bind(count);
1949 __ dec_held_monitor_count(rscratch1);
1950 } else {
1951 assert(LockingMode == LM_LIGHTWEIGHT, "");
1952 __ lightweight_unlock(obj_reg, old_hdr, swap_reg, lock_tmp, slow_path_unlock);
1953 }
1954
1955 // slow path re-enters here
1956 __ bind(unlock_done);
1957 if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
1958 restore_native_result(masm, ret_type, stack_slots);
1959 }
1960
1961 __ bind(done);
1962 }
1963
1964 Label dtrace_method_exit, dtrace_method_exit_done;
1965 if (DTraceMethodProbes) {
1966 __ b(dtrace_method_exit);
1967 __ bind(dtrace_method_exit_done);
1968 }
1969
1970 __ reset_last_Java_frame(false);
1971
1972 // Unbox oop result, e.g. JNIHandles::resolve result.
1973 if (is_reference_type(ret_type)) {
1974 __ resolve_jobject(r0, r1, r2);
1975 }
1976
1977 if (CheckJNICalls) {
1978 // clear_pending_jni_exception_check
1979 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset()));
1980 }
1981
1982 // reset handle block
1983 __ ldr(r2, Address(rthread, JavaThread::active_handles_offset()));
1984 __ str(zr, Address(r2, JNIHandleBlock::top_offset()));
1985
1986 __ leave();
1987
1988 #if INCLUDE_JFR
1989 // We need to do a poll test after unwind in case the sampler
1990 // managed to sample the native frame after returning to Java.
1991 Label L_return;
1992 __ ldr(rscratch1, Address(rthread, JavaThread::polling_word_offset()));
1993 address poll_test_pc = __ pc();
1994 __ relocate(relocInfo::poll_return_type);
1995 __ tbz(rscratch1, log2i_exact(SafepointMechanism::poll_bit()), L_return);
1996 assert(SharedRuntime::polling_page_return_handler_blob() != nullptr,
1997 "polling page return stub not created yet");
1998 address stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
1999 __ adr(rscratch1, InternalAddress(poll_test_pc));
2000 __ str(rscratch1, Address(rthread, JavaThread::saved_exception_pc_offset()));
2001 __ far_jump(RuntimeAddress(stub));
2002 __ bind(L_return);
2003 #endif // INCLUDE_JFR
2004
2005 // Any exception pending?
2006 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2007 __ cbnz(rscratch1, exception_pending);
2008
2009 // We're done
2010 __ ret(lr);
2011
2012 // Unexpected paths are out of line and go here
2013
2014 // forward the exception
2015 __ bind(exception_pending);
2016
2017 // and forward the exception
2018 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2019
2020 // Slow path locking & unlocking
2021 if (method->is_synchronized()) {
2022
2023 __ block_comment("Slow path lock {");
2024 __ bind(slow_path_lock);
2025
2026 // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2027 // args are (oop obj, BasicLock* lock, JavaThread* thread)
2028
2029 // protect the args we've loaded
2030 save_args(masm, total_c_args, c_arg, out_regs);
2031
2032 __ mov(c_rarg0, obj_reg);
2033 __ mov(c_rarg1, lock_reg);
2034 __ mov(c_rarg2, rthread);
2035
2036 // Not a leaf but we have last_Java_frame setup as we want.
2037 // We don't want to unmount in case of contention since that would complicate preserving
2038 // the arguments that had already been marshalled into the native convention. So we force
2039 // the freeze slow path to find this native wrapper frame (see recurse_freeze_native_frame())
2040 // and pin the vthread. Otherwise the fast path won't find it since we don't walk the stack.
2041 __ push_cont_fastpath();
2042 __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2043 __ pop_cont_fastpath();
2044 restore_args(masm, total_c_args, c_arg, out_regs);
2045
2046 #ifdef ASSERT
2047 { Label L;
2048 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2049 __ cbz(rscratch1, L);
2050 __ stop("no pending exception allowed on exit from monitorenter");
2051 __ bind(L);
2052 }
2053 #endif
2054 __ b(lock_done);
2055
2056 __ block_comment("} Slow path lock");
2057
2058 __ block_comment("Slow path unlock {");
2059 __ bind(slow_path_unlock);
2060
2061 // If we haven't already saved the native result we must save it now as xmm registers
2062 // are still exposed.
2063
2064 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2065 save_native_result(masm, ret_type, stack_slots);
2066 }
2067
2068 __ mov(c_rarg2, rthread);
2069 __ lea(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
2070 __ mov(c_rarg0, obj_reg);
2071
2072 // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2073 // NOTE that obj_reg == r19 currently
2074 __ ldr(r19, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2075 __ str(zr, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2076
2077 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C));
2078
2079 #ifdef ASSERT
2080 {
2081 Label L;
2082 __ ldr(rscratch1, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2083 __ cbz(rscratch1, L);
2084 __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2085 __ bind(L);
2086 }
2087 #endif /* ASSERT */
2088
2089 __ str(r19, Address(rthread, in_bytes(Thread::pending_exception_offset())));
2090
2091 if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2092 restore_native_result(masm, ret_type, stack_slots);
2093 }
2094 __ b(unlock_done);
2095
2096 __ block_comment("} Slow path unlock");
2097
2098 } // synchronized
2099
2100 // SLOW PATH Reguard the stack if needed
2101
2102 __ bind(reguard);
2103 save_native_result(masm, ret_type, stack_slots);
2104 __ rt_call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
2105 restore_native_result(masm, ret_type, stack_slots);
2106 // and continue
2107 __ b(reguard_done);
2108
2109 // SLOW PATH safepoint
2110 {
2111 __ block_comment("safepoint {");
2112 __ bind(safepoint_in_progress);
2113
2114 // Don't use call_VM as it will see a possible pending exception and forward it
2115 // and never return here preventing us from clearing _last_native_pc down below.
2116 //
2117 save_native_result(masm, ret_type, stack_slots);
2118 __ mov(c_rarg0, rthread);
2119 #ifndef PRODUCT
2120 assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
2121 #endif
2122 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2123 __ blr(rscratch1);
2124
2125 // Restore any method result value
2126 restore_native_result(masm, ret_type, stack_slots);
2127
2128 __ b(safepoint_in_progress_done);
2129 __ block_comment("} safepoint");
2130 }
2131
2132 // SLOW PATH dtrace support
2133 if (DTraceMethodProbes) {
2134 {
2135 __ block_comment("dtrace entry {");
2136 __ bind(dtrace_method_entry);
2137
2138 // We have all of the arguments setup at this point. We must not touch any register
2139 // argument registers at this point (what if we save/restore them there are no oop?
2140
2141 save_args(masm, total_c_args, c_arg, out_regs);
2142 __ mov_metadata(c_rarg1, method());
2143 __ call_VM_leaf(
2144 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2145 rthread, c_rarg1);
2146 restore_args(masm, total_c_args, c_arg, out_regs);
2147 __ b(dtrace_method_entry_done);
2148 __ block_comment("} dtrace entry");
2149 }
2150
2151 {
2152 __ block_comment("dtrace exit {");
2153 __ bind(dtrace_method_exit);
2154 save_native_result(masm, ret_type, stack_slots);
2155 __ mov_metadata(c_rarg1, method());
2156 __ call_VM_leaf(
2157 CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2158 rthread, c_rarg1);
2159 restore_native_result(masm, ret_type, stack_slots);
2160 __ b(dtrace_method_exit_done);
2161 __ block_comment("} dtrace exit");
2162 }
2163 }
2164
2165 __ flush();
2166
2167 nmethod *nm = nmethod::new_native_nmethod(method,
2168 compile_id,
2169 masm->code(),
2170 vep_offset,
2171 frame_complete,
2172 stack_slots / VMRegImpl::slots_per_word,
2173 (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2174 in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2175 oop_maps);
2176
2177 return nm;
2178 }
2179
2180 // this function returns the adjust size (in number of words) to a c2i adapter
2181 // activation for use during deoptimization
2182 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
2183 assert(callee_locals >= callee_parameters,
2184 "test and remove; got more parms than locals");
2185 if (callee_locals < callee_parameters)
2186 return 0; // No adjustment for negative locals
2187 int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2188 // diff is counted in stack words
2189 return align_up(diff, 2);
2190 }
2191
2192
2193 //------------------------------generate_deopt_blob----------------------------
2194 void SharedRuntime::generate_deopt_blob() {
2195 // Allocate space for the code
2196 ResourceMark rm;
2197 // Setup code generation tools
2198 int pad = 0;
2199 #if INCLUDE_JVMCI
2200 if (EnableJVMCI) {
2201 pad += 512; // Increase the buffer size when compiling for JVMCI
2202 }
2203 #endif
2204 const char* name = SharedRuntime::stub_name(SharedStubId::deopt_id);
2205 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, (uint)SharedStubId::deopt_id, name);
2206 if (blob != nullptr) {
2207 _deopt_blob = blob->as_deoptimization_blob();
2208 return;
2209 }
2210
2211 CodeBuffer buffer(name, 2048+pad, 1024);
2212 MacroAssembler* masm = new MacroAssembler(&buffer);
2213 int frame_size_in_words;
2214 OopMap* map = nullptr;
2215 OopMapSet *oop_maps = new OopMapSet();
2216 RegisterSaver reg_save(COMPILER2_OR_JVMCI != 0);
2217
2218 // -------------
2219 // This code enters when returning to a de-optimized nmethod. A return
2220 // address has been pushed on the stack, and return values are in
2221 // registers.
2222 // If we are doing a normal deopt then we were called from the patched
2223 // nmethod from the point we returned to the nmethod. So the return
2224 // address on the stack is wrong by NativeCall::instruction_size
2225 // We will adjust the value so it looks like we have the original return
2226 // address on the stack (like when we eagerly deoptimized).
2227 // In the case of an exception pending when deoptimizing, we enter
2228 // with a return address on the stack that points after the call we patched
2229 // into the exception handler. We have the following register state from,
2230 // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2231 // r0: exception oop
2232 // r19: exception handler
2233 // r3: throwing pc
2234 // So in this case we simply jam r3 into the useless return address and
2235 // the stack looks just like we want.
2236 //
2237 // At this point we need to de-opt. We save the argument return
2238 // registers. We call the first C routine, fetch_unroll_info(). This
2239 // routine captures the return values and returns a structure which
2240 // describes the current frame size and the sizes of all replacement frames.
2241 // The current frame is compiled code and may contain many inlined
2242 // functions, each with their own JVM state. We pop the current frame, then
2243 // push all the new frames. Then we call the C routine unpack_frames() to
2244 // populate these frames. Finally unpack_frames() returns us the new target
2245 // address. Notice that callee-save registers are BLOWN here; they have
2246 // already been captured in the vframeArray at the time the return PC was
2247 // patched.
2248 address start = __ pc();
2249 Label cont;
2250
2251 // Prolog for non exception case!
2252
2253 // Save everything in sight.
2254 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2255
2256 // Normal deoptimization. Save exec mode for unpack_frames.
2257 __ movw(rcpool, Deoptimization::Unpack_deopt); // callee-saved
2258 __ b(cont);
2259
2260 int reexecute_offset = __ pc() - start;
2261 #if INCLUDE_JVMCI && !defined(COMPILER1)
2262 if (UseJVMCICompiler) {
2263 // JVMCI does not use this kind of deoptimization
2264 __ should_not_reach_here();
2265 }
2266 #endif
2267
2268 // Reexecute case
2269 // return address is the pc describes what bci to do re-execute at
2270
2271 // No need to update map as each call to save_live_registers will produce identical oopmap
2272 (void) reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2273
2274 __ movw(rcpool, Deoptimization::Unpack_reexecute); // callee-saved
2275 __ b(cont);
2276
2277 #if INCLUDE_JVMCI
2278 Label after_fetch_unroll_info_call;
2279 int implicit_exception_uncommon_trap_offset = 0;
2280 int uncommon_trap_offset = 0;
2281
2282 if (EnableJVMCI) {
2283 implicit_exception_uncommon_trap_offset = __ pc() - start;
2284
2285 __ ldr(lr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2286 __ str(zr, Address(rthread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2287
2288 uncommon_trap_offset = __ pc() - start;
2289
2290 // Save everything in sight.
2291 reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2292 // fetch_unroll_info needs to call last_java_frame()
2293 Label retaddr;
2294 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2295
2296 __ ldrw(c_rarg1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset())));
2297 __ movw(rscratch1, -1);
2298 __ strw(rscratch1, Address(rthread, in_bytes(JavaThread::pending_deoptimization_offset())));
2299
2300 __ movw(rcpool, (int32_t)Deoptimization::Unpack_reexecute);
2301 __ mov(c_rarg0, rthread);
2302 __ movw(c_rarg2, rcpool); // exec mode
2303 __ lea(rscratch1,
2304 RuntimeAddress(CAST_FROM_FN_PTR(address,
2305 Deoptimization::uncommon_trap)));
2306 __ blr(rscratch1);
2307 __ bind(retaddr);
2308 oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
2309
2310 __ reset_last_Java_frame(false);
2311
2312 __ b(after_fetch_unroll_info_call);
2313 } // EnableJVMCI
2314 #endif // INCLUDE_JVMCI
2315
2316 int exception_offset = __ pc() - start;
2317
2318 // Prolog for exception case
2319
2320 // all registers are dead at this entry point, except for r0, and
2321 // r3 which contain the exception oop and exception pc
2322 // respectively. Set them in TLS and fall thru to the
2323 // unpack_with_exception_in_tls entry point.
2324
2325 __ str(r3, Address(rthread, JavaThread::exception_pc_offset()));
2326 __ str(r0, Address(rthread, JavaThread::exception_oop_offset()));
2327
2328 int exception_in_tls_offset = __ pc() - start;
2329
2330 // new implementation because exception oop is now passed in JavaThread
2331
2332 // Prolog for exception case
2333 // All registers must be preserved because they might be used by LinearScan
2334 // Exceptiop oop and throwing PC are passed in JavaThread
2335 // tos: stack at point of call to method that threw the exception (i.e. only
2336 // args are on the stack, no return address)
2337
2338 // The return address pushed by save_live_registers will be patched
2339 // later with the throwing pc. The correct value is not available
2340 // now because loading it from memory would destroy registers.
2341
2342 // NB: The SP at this point must be the SP of the method that is
2343 // being deoptimized. Deoptimization assumes that the frame created
2344 // here by save_live_registers is immediately below the method's SP.
2345 // This is a somewhat fragile mechanism.
2346
2347 // Save everything in sight.
2348 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2349
2350 // Now it is safe to overwrite any register
2351
2352 // Deopt during an exception. Save exec mode for unpack_frames.
2353 __ mov(rcpool, Deoptimization::Unpack_exception); // callee-saved
2354
2355 // load throwing pc from JavaThread and patch it as the return address
2356 // of the current frame. Then clear the field in JavaThread
2357 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset()));
2358 __ protect_return_address(r3);
2359 __ str(r3, Address(rfp, wordSize));
2360 __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
2361
2362 #ifdef ASSERT
2363 // verify that there is really an exception oop in JavaThread
2364 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
2365 __ verify_oop(r0);
2366
2367 // verify that there is no pending exception
2368 Label no_pending_exception;
2369 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2370 __ cbz(rscratch1, no_pending_exception);
2371 __ stop("must not have pending exception here");
2372 __ bind(no_pending_exception);
2373 #endif
2374
2375 __ bind(cont);
2376
2377 // Call C code. Need thread and this frame, but NOT official VM entry
2378 // crud. We cannot block on this call, no GC can happen.
2379 //
2380 // UnrollBlock* fetch_unroll_info(JavaThread* thread)
2381
2382 // fetch_unroll_info needs to call last_java_frame().
2383
2384 Label retaddr;
2385 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2386 #ifdef ASSERT
2387 { Label L;
2388 __ ldr(rscratch1, Address(rthread, JavaThread::last_Java_fp_offset()));
2389 __ cbz(rscratch1, L);
2390 __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
2391 __ bind(L);
2392 }
2393 #endif // ASSERT
2394 __ mov(c_rarg0, rthread);
2395 __ mov(c_rarg1, rcpool);
2396 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
2397 __ blr(rscratch1);
2398 __ bind(retaddr);
2399
2400 // Need to have an oopmap that tells fetch_unroll_info where to
2401 // find any register it might need.
2402 oop_maps->add_gc_map(__ pc() - start, map);
2403
2404 __ reset_last_Java_frame(false);
2405
2406 #if INCLUDE_JVMCI
2407 if (EnableJVMCI) {
2408 __ bind(after_fetch_unroll_info_call);
2409 }
2410 #endif
2411
2412 // Load UnrollBlock* into r5
2413 __ mov(r5, r0);
2414
2415 __ ldrw(rcpool, Address(r5, Deoptimization::UnrollBlock::unpack_kind_offset()));
2416 Label noException;
2417 __ cmpw(rcpool, Deoptimization::Unpack_exception); // Was exception pending?
2418 __ br(Assembler::NE, noException);
2419 __ ldr(r0, Address(rthread, JavaThread::exception_oop_offset()));
2420 // QQQ this is useless it was null above
2421 __ ldr(r3, Address(rthread, JavaThread::exception_pc_offset()));
2422 __ str(zr, Address(rthread, JavaThread::exception_oop_offset()));
2423 __ str(zr, Address(rthread, JavaThread::exception_pc_offset()));
2424
2425 __ verify_oop(r0);
2426
2427 // Overwrite the result registers with the exception results.
2428 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2429 // I think this is useless
2430 // __ str(r3, Address(sp, RegisterSaver::r3_offset_in_bytes()));
2431
2432 __ bind(noException);
2433
2434 // Only register save data is on the stack.
2435 // Now restore the result registers. Everything else is either dead
2436 // or captured in the vframeArray.
2437
2438 // Restore fp result register
2439 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes()));
2440 // Restore integer result register
2441 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2442
2443 // Pop all of the register save area off the stack
2444 __ add(sp, sp, frame_size_in_words * wordSize);
2445
2446 // All of the register save area has been popped of the stack. Only the
2447 // return address remains.
2448
2449 // Pop all the frames we must move/replace.
2450 //
2451 // Frame picture (youngest to oldest)
2452 // 1: self-frame (no frame link)
2453 // 2: deopting frame (no frame link)
2454 // 3: caller of deopting frame (could be compiled/interpreted).
2455 //
2456 // Note: by leaving the return address of self-frame on the stack
2457 // and using the size of frame 2 to adjust the stack
2458 // when we are done the return to frame 3 will still be on the stack.
2459
2460 // Pop deoptimized frame
2461 __ ldrw(r2, Address(r5, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset()));
2462 __ sub(r2, r2, 2 * wordSize);
2463 __ add(sp, sp, r2);
2464 __ ldp(rfp, zr, __ post(sp, 2 * wordSize));
2465
2466 #ifdef ASSERT
2467 // Compilers generate code that bang the stack by as much as the
2468 // interpreter would need. So this stack banging should never
2469 // trigger a fault. Verify that it does not on non product builds.
2470 __ ldrw(r19, Address(r5, Deoptimization::UnrollBlock::total_frame_sizes_offset()));
2471 __ bang_stack_size(r19, r2);
2472 #endif
2473 // Load address of array of frame pcs into r2
2474 __ ldr(r2, Address(r5, Deoptimization::UnrollBlock::frame_pcs_offset()));
2475
2476 // Trash the old pc
2477 // __ addptr(sp, wordSize); FIXME ????
2478
2479 // Load address of array of frame sizes into r4
2480 __ ldr(r4, Address(r5, Deoptimization::UnrollBlock::frame_sizes_offset()));
2481
2482 // Load counter into r3
2483 __ ldrw(r3, Address(r5, Deoptimization::UnrollBlock::number_of_frames_offset()));
2484
2485 // Now adjust the caller's stack to make up for the extra locals
2486 // but record the original sp so that we can save it in the skeletal interpreter
2487 // frame and the stack walking of interpreter_sender will get the unextended sp
2488 // value and not the "real" sp value.
2489
2490 const Register sender_sp = r6;
2491
2492 __ mov(sender_sp, sp);
2493 __ ldrw(r19, Address(r5,
2494 Deoptimization::UnrollBlock::
2495 caller_adjustment_offset()));
2496 __ sub(sp, sp, r19);
2497
2498 // Push interpreter frames in a loop
2499 __ mov(rscratch1, (uint64_t)0xDEADDEAD); // Make a recognizable pattern
2500 __ mov(rscratch2, rscratch1);
2501 Label loop;
2502 __ bind(loop);
2503 __ ldr(r19, Address(__ post(r4, wordSize))); // Load frame size
2504 __ sub(r19, r19, 2*wordSize); // We'll push pc and fp by hand
2505 __ ldr(lr, Address(__ post(r2, wordSize))); // Load pc
2506 __ enter(); // Save old & set new fp
2507 __ sub(sp, sp, r19); // Prolog
2508 // This value is corrected by layout_activation_impl
2509 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize));
2510 __ str(sender_sp, Address(rfp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable
2511 __ mov(sender_sp, sp); // Pass sender_sp to next frame
2512 __ sub(r3, r3, 1); // Decrement counter
2513 __ cbnz(r3, loop);
2514
2515 // Re-push self-frame
2516 __ ldr(lr, Address(r2));
2517 __ enter();
2518
2519 // Allocate a full sized register save area. We subtract 2 because
2520 // enter() just pushed 2 words
2521 __ sub(sp, sp, (frame_size_in_words - 2) * wordSize);
2522
2523 // Restore frame locals after moving the frame
2524 __ strd(v0, Address(sp, reg_save.v0_offset_in_bytes()));
2525 __ str(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2526
2527 // Call C code. Need thread but NOT official VM entry
2528 // crud. We cannot block on this call, no GC can happen. Call should
2529 // restore return values to their stack-slots with the new SP.
2530 //
2531 // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
2532
2533 // Use rfp because the frames look interpreted now
2534 // Don't need the precise return PC here, just precise enough to point into this code blob.
2535 address the_pc = __ pc();
2536 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
2537
2538 __ mov(c_rarg0, rthread);
2539 __ movw(c_rarg1, rcpool); // second arg: exec_mode
2540 __ lea(rscratch1, RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
2541 __ blr(rscratch1);
2542
2543 // Set an oopmap for the call site
2544 // Use the same PC we used for the last java frame
2545 oop_maps->add_gc_map(the_pc - start,
2546 new OopMap( frame_size_in_words, 0 ));
2547
2548 // Clear fp AND pc
2549 __ reset_last_Java_frame(true);
2550
2551 // Collect return values
2552 __ ldrd(v0, Address(sp, reg_save.v0_offset_in_bytes()));
2553 __ ldr(r0, Address(sp, reg_save.r0_offset_in_bytes()));
2554 // I think this is useless (throwing pc?)
2555 // __ ldr(r3, Address(sp, RegisterSaver::r3_offset_in_bytes()));
2556
2557 // Pop self-frame.
2558 __ leave(); // Epilog
2559
2560 // Jump to interpreter
2561 __ ret(lr);
2562
2563 // Make sure all code is generated
2564 masm->flush();
2565
2566 _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
2567 _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
2568 #if INCLUDE_JVMCI
2569 if (EnableJVMCI) {
2570 _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
2571 _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
2572 }
2573 #endif
2574
2575 AOTCodeCache::store_code_blob(*_deopt_blob, AOTCodeEntry::SharedBlob, (uint)SharedStubId::deopt_id, name);
2576 }
2577
2578 // Number of stack slots between incoming argument block and the start of
2579 // a new frame. The PROLOG must add this many slots to the stack. The
2580 // EPILOG must remove this many slots. aarch64 needs two slots for
2581 // return address and fp.
2582 // TODO think this is correct but check
2583 uint SharedRuntime::in_preserve_stack_slots() {
2584 return 4;
2585 }
2586
2587 uint SharedRuntime::out_preserve_stack_slots() {
2588 return 0;
2589 }
2590
2591
2592 VMReg SharedRuntime::thread_register() {
2593 return rthread->as_VMReg();
2594 }
2595
2596 //------------------------------generate_handler_blob------
2597 //
2598 // Generate a special Compile2Runtime blob that saves all registers,
2599 // and setup oopmap.
2600 //
2601 SafepointBlob* SharedRuntime::generate_handler_blob(SharedStubId id, address call_ptr) {
2602 assert(is_polling_page_id(id), "expected a polling page stub id");
2603
2604 // Allocate space for the code. Setup code generation tools.
2605 const char* name = SharedRuntime::stub_name(id);
2606 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, (uint)id, name);
2607 if (blob != nullptr) {
2608 return blob->as_safepoint_blob();
2609 }
2610
2611 ResourceMark rm;
2612 OopMapSet *oop_maps = new OopMapSet();
2613 OopMap* map;
2614 CodeBuffer buffer(name, 2048, 1024);
2615 MacroAssembler* masm = new MacroAssembler(&buffer);
2616
2617 address start = __ pc();
2618 address call_pc = nullptr;
2619 int frame_size_in_words;
2620 bool cause_return = (id == SharedStubId::polling_page_return_handler_id);
2621 RegisterSaver reg_save(id == SharedStubId::polling_page_vectors_safepoint_handler_id /* save_vectors */);
2622
2623 // When the signal occurred, the LR was either signed and stored on the stack (in which
2624 // case it will be restored from the stack before being used) or unsigned and not stored
2625 // on the stack. Stipping ensures we get the right value.
2626 __ strip_return_address();
2627
2628 // Save Integer and Float registers.
2629 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2630
2631 // The following is basically a call_VM. However, we need the precise
2632 // address of the call in order to generate an oopmap. Hence, we do all the
2633 // work ourselves.
2634
2635 Label retaddr;
2636 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2637
2638 // The return address must always be correct so that frame constructor never
2639 // sees an invalid pc.
2640
2641 if (!cause_return) {
2642 // overwrite the return address pushed by save_live_registers
2643 // Additionally, r20 is a callee-saved register so we can look at
2644 // it later to determine if someone changed the return address for
2645 // us!
2646 __ ldr(r20, Address(rthread, JavaThread::saved_exception_pc_offset()));
2647 __ protect_return_address(r20);
2648 __ str(r20, Address(rfp, wordSize));
2649 }
2650
2651 // Do the call
2652 __ mov(c_rarg0, rthread);
2653 __ lea(rscratch1, RuntimeAddress(call_ptr));
2654 __ blr(rscratch1);
2655 __ bind(retaddr);
2656
2657 // Set an oopmap for the call site. This oopmap will map all
2658 // oop-registers and debug-info registers as callee-saved. This
2659 // will allow deoptimization at this safepoint to find all possible
2660 // debug-info recordings, as well as let GC find all oops.
2661
2662 oop_maps->add_gc_map( __ pc() - start, map);
2663
2664 Label noException;
2665
2666 __ reset_last_Java_frame(false);
2667
2668 __ membar(Assembler::LoadLoad | Assembler::LoadStore);
2669
2670 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2671 __ cbz(rscratch1, noException);
2672
2673 // Exception pending
2674
2675 reg_save.restore_live_registers(masm);
2676
2677 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2678
2679 // No exception case
2680 __ bind(noException);
2681
2682 Label no_adjust, bail;
2683 if (!cause_return) {
2684 // If our stashed return pc was modified by the runtime we avoid touching it
2685 __ ldr(rscratch1, Address(rfp, wordSize));
2686 __ cmp(r20, rscratch1);
2687 __ br(Assembler::NE, no_adjust);
2688 __ authenticate_return_address(r20);
2689
2690 #ifdef ASSERT
2691 // Verify the correct encoding of the poll we're about to skip.
2692 // See NativeInstruction::is_ldrw_to_zr()
2693 __ ldrw(rscratch1, Address(r20));
2694 __ ubfx(rscratch2, rscratch1, 22, 10);
2695 __ cmpw(rscratch2, 0b1011100101);
2696 __ br(Assembler::NE, bail);
2697 __ ubfx(rscratch2, rscratch1, 0, 5);
2698 __ cmpw(rscratch2, 0b11111);
2699 __ br(Assembler::NE, bail);
2700 #endif
2701 // Adjust return pc forward to step over the safepoint poll instruction
2702 __ add(r20, r20, NativeInstruction::instruction_size);
2703 __ protect_return_address(r20);
2704 __ str(r20, Address(rfp, wordSize));
2705 }
2706
2707 __ bind(no_adjust);
2708 // Normal exit, restore registers and exit.
2709 reg_save.restore_live_registers(masm);
2710
2711 __ ret(lr);
2712
2713 #ifdef ASSERT
2714 __ bind(bail);
2715 __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
2716 #endif
2717
2718 // Make sure all code is generated
2719 masm->flush();
2720
2721 // Fill-out other meta info
2722 SafepointBlob* sp_blob = SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
2723
2724 AOTCodeCache::store_code_blob(*sp_blob, AOTCodeEntry::SharedBlob, (uint)id, name);
2725 return sp_blob;
2726 }
2727
2728 //
2729 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
2730 //
2731 // Generate a stub that calls into vm to find out the proper destination
2732 // of a java call. All the argument registers are live at this point
2733 // but since this is generic code we don't know what they are and the caller
2734 // must do any gc of the args.
2735 //
2736 RuntimeStub* SharedRuntime::generate_resolve_blob(SharedStubId id, address destination) {
2737 assert (StubRoutines::forward_exception_entry() != nullptr, "must be generated before");
2738 assert(is_resolve_id(id), "expected a resolve stub id");
2739
2740 const char* name = SharedRuntime::stub_name(id);
2741 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, (uint)id, name);
2742 if (blob != nullptr) {
2743 return blob->as_runtime_stub();
2744 }
2745
2746 // allocate space for the code
2747 ResourceMark rm;
2748 CodeBuffer buffer(name, 1000, 512);
2749 MacroAssembler* masm = new MacroAssembler(&buffer);
2750
2751 int frame_size_in_words;
2752 RegisterSaver reg_save(false /* save_vectors */);
2753
2754 OopMapSet *oop_maps = new OopMapSet();
2755 OopMap* map = nullptr;
2756
2757 int start = __ offset();
2758
2759 map = reg_save.save_live_registers(masm, 0, &frame_size_in_words);
2760
2761 int frame_complete = __ offset();
2762
2763 {
2764 Label retaddr;
2765 __ set_last_Java_frame(sp, noreg, retaddr, rscratch1);
2766
2767 __ mov(c_rarg0, rthread);
2768 __ lea(rscratch1, RuntimeAddress(destination));
2769
2770 __ blr(rscratch1);
2771 __ bind(retaddr);
2772 }
2773
2774 // Set an oopmap for the call site.
2775 // We need this not only for callee-saved registers, but also for volatile
2776 // registers that the compiler might be keeping live across a safepoint.
2777
2778 oop_maps->add_gc_map( __ offset() - start, map);
2779
2780 // r0 contains the address we are going to jump to assuming no exception got installed
2781
2782 // clear last_Java_sp
2783 __ reset_last_Java_frame(false);
2784 // check for pending exceptions
2785 Label pending;
2786 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2787 __ cbnz(rscratch1, pending);
2788
2789 // get the returned Method*
2790 __ get_vm_result_metadata(rmethod, rthread);
2791 __ str(rmethod, Address(sp, reg_save.reg_offset_in_bytes(rmethod)));
2792
2793 // r0 is where we want to jump, overwrite rscratch1 which is saved and scratch
2794 __ str(r0, Address(sp, reg_save.rscratch1_offset_in_bytes()));
2795 reg_save.restore_live_registers(masm);
2796
2797 // We are back to the original state on entry and ready to go.
2798
2799 __ br(rscratch1);
2800
2801 // Pending exception after the safepoint
2802
2803 __ bind(pending);
2804
2805 reg_save.restore_live_registers(masm);
2806
2807 // exception pending => remove activation and forward to exception handler
2808
2809 __ str(zr, Address(rthread, JavaThread::vm_result_oop_offset()));
2810
2811 __ ldr(r0, Address(rthread, Thread::pending_exception_offset()));
2812 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2813
2814 // -------------
2815 // make sure all code is generated
2816 masm->flush();
2817
2818 // return the blob
2819 // frame_size_words or bytes??
2820 RuntimeStub* rs_blob = RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
2821
2822 AOTCodeCache::store_code_blob(*rs_blob, AOTCodeEntry::SharedBlob, (uint)id, name);
2823 return rs_blob;
2824 }
2825
2826 // Continuation point for throwing of implicit exceptions that are
2827 // not handled in the current activation. Fabricates an exception
2828 // oop and initiates normal exception dispatching in this
2829 // frame. Since we need to preserve callee-saved values (currently
2830 // only for C2, but done for C1 as well) we need a callee-saved oop
2831 // map and therefore have to make these stubs into RuntimeStubs
2832 // rather than BufferBlobs. If the compiler needs all registers to
2833 // be preserved between the fault point and the exception handler
2834 // then it must assume responsibility for that in
2835 // AbstractCompiler::continuation_for_implicit_null_exception or
2836 // continuation_for_implicit_division_by_zero_exception. All other
2837 // implicit exceptions (e.g., NullPointerException or
2838 // AbstractMethodError on entry) are either at call sites or
2839 // otherwise assume that stack unwinding will be initiated, so
2840 // caller saved registers were assumed volatile in the compiler.
2841
2842 RuntimeStub* SharedRuntime::generate_throw_exception(SharedStubId id, address runtime_entry) {
2843 assert(is_throw_id(id), "expected a throw stub id");
2844
2845 const char* name = SharedRuntime::stub_name(id);
2846
2847 // Information about frame layout at time of blocking runtime call.
2848 // Note that we only have to preserve callee-saved registers since
2849 // the compilers are responsible for supplying a continuation point
2850 // if they expect all registers to be preserved.
2851 // n.b. aarch64 asserts that frame::arg_reg_save_area_bytes == 0
2852 enum layout {
2853 rfp_off = 0,
2854 rfp_off2,
2855 return_off,
2856 return_off2,
2857 framesize // inclusive of return address
2858 };
2859
2860 int insts_size = 512;
2861 int locs_size = 64;
2862
2863 const char* timer_msg = "SharedRuntime generate_throw_exception";
2864 TraceTime timer(timer_msg, TRACETIME_LOG(Info, startuptime));
2865
2866 CodeBlob* blob = AOTCodeCache::load_code_blob(AOTCodeEntry::SharedBlob, (uint)id, name);
2867 if (blob != nullptr) {
2868 return blob->as_runtime_stub();
2869 }
2870
2871 ResourceMark rm;
2872 CodeBuffer code(name, insts_size, locs_size);
2873 OopMapSet* oop_maps = new OopMapSet();
2874 MacroAssembler* masm = new MacroAssembler(&code);
2875
2876 address start = __ pc();
2877
2878 // This is an inlined and slightly modified version of call_VM
2879 // which has the ability to fetch the return PC out of
2880 // thread-local storage and also sets up last_Java_sp slightly
2881 // differently than the real call_VM
2882
2883 __ enter(); // Save FP and LR before call
2884
2885 assert(is_even(framesize/2), "sp not 16-byte aligned");
2886
2887 // lr and fp are already in place
2888 __ sub(sp, rfp, ((uint64_t)framesize-4) << LogBytesPerInt); // prolog
2889
2890 int frame_complete = __ pc() - start;
2891
2892 // Set up last_Java_sp and last_Java_fp
2893 address the_pc = __ pc();
2894 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
2895
2896 __ mov(c_rarg0, rthread);
2897 BLOCK_COMMENT("call runtime_entry");
2898 __ lea(rscratch1, RuntimeAddress(runtime_entry));
2899 __ blr(rscratch1);
2900
2901 // Generate oop map
2902 OopMap* map = new OopMap(framesize, 0);
2903
2904 oop_maps->add_gc_map(the_pc - start, map);
2905
2906 __ reset_last_Java_frame(true);
2907
2908 // Reinitialize the ptrue predicate register, in case the external runtime
2909 // call clobbers ptrue reg, as we may return to SVE compiled code.
2910 __ reinitialize_ptrue();
2911
2912 __ leave();
2913
2914 // check for pending exceptions
2915 #ifdef ASSERT
2916 Label L;
2917 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset()));
2918 __ cbnz(rscratch1, L);
2919 __ should_not_reach_here();
2920 __ bind(L);
2921 #endif // ASSERT
2922 __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2923
2924 // codeBlob framesize is in words (not VMRegImpl::slot_size)
2925 RuntimeStub* stub =
2926 RuntimeStub::new_runtime_stub(name,
2927 &code,
2928 frame_complete,
2929 (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2930 oop_maps, false);
2931 AOTCodeCache::store_code_blob(*stub, AOTCodeEntry::SharedBlob, (uint)id, name);
2932
2933 return stub;
2934 }
2935
2936 #if INCLUDE_JFR
2937
2938 static void jfr_prologue(address the_pc, MacroAssembler* masm, Register thread) {
2939 __ set_last_Java_frame(sp, rfp, the_pc, rscratch1);
2940 __ mov(c_rarg0, thread);
2941 }
2942
2943 // The handle is dereferenced through a load barrier.
2944 static void jfr_epilogue(MacroAssembler* masm) {
2945 __ reset_last_Java_frame(true);
2946 }
2947
2948 // For c2: c_rarg0 is junk, call to runtime to write a checkpoint.
2949 // It returns a jobject handle to the event writer.
2950 // The handle is dereferenced and the return value is the event writer oop.
2951 RuntimeStub* SharedRuntime::generate_jfr_write_checkpoint() {
2952 enum layout {
2953 rbp_off,
2954 rbpH_off,
2955 return_off,
2956 return_off2,
2957 framesize // inclusive of return address
2958 };
2959
2960 int insts_size = 1024;
2961 int locs_size = 64;
2962 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_write_checkpoint_id);
2963 CodeBuffer code(name, insts_size, locs_size);
2964 OopMapSet* oop_maps = new OopMapSet();
2965 MacroAssembler* masm = new MacroAssembler(&code);
2966
2967 address start = __ pc();
2968 __ enter();
2969 int frame_complete = __ pc() - start;
2970 address the_pc = __ pc();
2971 jfr_prologue(the_pc, masm, rthread);
2972 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::write_checkpoint), 1);
2973 jfr_epilogue(masm);
2974 __ resolve_global_jobject(r0, rscratch1, rscratch2);
2975 __ leave();
2976 __ ret(lr);
2977
2978 OopMap* map = new OopMap(framesize, 1); // rfp
2979 oop_maps->add_gc_map(the_pc - start, map);
2980
2981 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
2982 RuntimeStub::new_runtime_stub(name, &code, frame_complete,
2983 (framesize >> (LogBytesPerWord - LogBytesPerInt)),
2984 oop_maps, false);
2985 return stub;
2986 }
2987
2988 // For c2: call to return a leased buffer.
2989 RuntimeStub* SharedRuntime::generate_jfr_return_lease() {
2990 enum layout {
2991 rbp_off,
2992 rbpH_off,
2993 return_off,
2994 return_off2,
2995 framesize // inclusive of return address
2996 };
2997
2998 int insts_size = 1024;
2999 int locs_size = 64;
3000
3001 const char* name = SharedRuntime::stub_name(SharedStubId::jfr_return_lease_id);
3002 CodeBuffer code(name, insts_size, locs_size);
3003 OopMapSet* oop_maps = new OopMapSet();
3004 MacroAssembler* masm = new MacroAssembler(&code);
3005
3006 address start = __ pc();
3007 __ enter();
3008 int frame_complete = __ pc() - start;
3009 address the_pc = __ pc();
3010 jfr_prologue(the_pc, masm, rthread);
3011 __ call_VM_leaf(CAST_FROM_FN_PTR(address, JfrIntrinsicSupport::return_lease), 1);
3012 jfr_epilogue(masm);
3013
3014 __ leave();
3015 __ ret(lr);
3016
3017 OopMap* map = new OopMap(framesize, 1); // rfp
3018 oop_maps->add_gc_map(the_pc - start, map);
3019
3020 RuntimeStub* stub = // codeBlob framesize is in words (not VMRegImpl::slot_size)
3021 RuntimeStub::new_runtime_stub(name, &code, frame_complete,
3022 (framesize >> (LogBytesPerWord - LogBytesPerInt)),
3023 oop_maps, false);
3024 return stub;
3025 }
3026
3027 #endif // INCLUDE_JFR
--- EOF ---