1 /* 2 * Copyright (c) 2003, 2024, Oracle and/or its affiliates. All rights reserved. 3 * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved. 4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 5 * 6 * This code is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 only, as 8 * published by the Free Software Foundation. 9 * 10 * This code is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 13 * version 2 for more details (a copy is included in the LICENSE file that 14 * accompanied this code). 15 * 16 * You should have received a copy of the GNU General Public License version 17 * 2 along with this work; if not, write to the Free Software Foundation, 18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 19 * 20 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 21 * or visit www.oracle.com if you need additional information or have any 22 * questions. 23 * 24 */ 25 26 #include "precompiled.hpp" 27 #include "asm/macroAssembler.inline.hpp" 28 #include "classfile/javaClasses.hpp" 29 #include "compiler/compiler_globals.hpp" 30 #include "gc/shared/barrierSetAssembler.hpp" 31 #include "interpreter/bytecodeHistogram.hpp" 32 #include "interpreter/interpreter.hpp" 33 #include "interpreter/interpreterRuntime.hpp" 34 #include "interpreter/interp_masm.hpp" 35 #include "interpreter/templateInterpreterGenerator.hpp" 36 #include "interpreter/templateTable.hpp" 37 #include "interpreter/bytecodeTracer.hpp" 38 #include "memory/resourceArea.hpp" 39 #include "oops/arrayOop.hpp" 40 #include "oops/method.hpp" 41 #include "oops/methodCounters.hpp" 42 #include "oops/methodData.hpp" 43 #include "oops/oop.inline.hpp" 44 #include "oops/resolvedIndyEntry.hpp" 45 #include "oops/resolvedMethodEntry.hpp" 46 #include "prims/jvmtiExport.hpp" 47 #include "prims/jvmtiThreadState.hpp" 48 #include "runtime/arguments.hpp" 49 #include "runtime/deoptimization.hpp" 50 #include "runtime/frame.inline.hpp" 51 #include "runtime/globals.hpp" 52 #include "runtime/jniHandles.hpp" 53 #include "runtime/sharedRuntime.hpp" 54 #include "runtime/stubRoutines.hpp" 55 #include "runtime/synchronizer.hpp" 56 #include "runtime/timer.hpp" 57 #include "runtime/vframeArray.hpp" 58 #include "utilities/checkedCast.hpp" 59 #include "utilities/debug.hpp" 60 #include "utilities/powerOfTwo.hpp" 61 #include <sys/types.h> 62 63 // Size of interpreter code. Increase if too small. Interpreter will 64 // fail with a guarantee ("not enough space for interpreter generation"); 65 // if too small. 66 // Run with +PrintInterpreter to get the VM to print out the size. 67 // Max size with JVMTI 68 int TemplateInterpreter::InterpreterCodeSize = 200 * 1024; 69 70 #define __ _masm-> 71 72 address TemplateInterpreterGenerator::generate_slow_signature_handler() { 73 address entry = __ pc(); 74 75 __ andr(esp, esp, -16); 76 __ mov(c_rarg3, esp); 77 // rmethod 78 // rlocals 79 // c_rarg3: first stack arg - wordSize 80 81 // adjust sp 82 __ sub(sp, c_rarg3, 18 * wordSize); 83 __ str(lr, Address(__ pre(sp, -2 * wordSize))); 84 __ call_VM(noreg, 85 CAST_FROM_FN_PTR(address, 86 InterpreterRuntime::slow_signature_handler), 87 rmethod, rlocals, c_rarg3); 88 89 // r0: result handler 90 91 // Stack layout: 92 // rsp: return address <- sp 93 // 1 garbage 94 // 8 integer args (if static first is unused) 95 // 1 float/double identifiers 96 // 8 double args 97 // stack args <- esp 98 // garbage 99 // expression stack bottom 100 // bcp (null) 101 // ... 102 103 // Restore LR 104 __ ldr(lr, Address(__ post(sp, 2 * wordSize))); 105 106 // Do FP first so we can use c_rarg3 as temp 107 __ ldrw(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers 108 109 for (int i = 0; i < Argument::n_float_register_parameters_c; i++) { 110 const FloatRegister r = as_FloatRegister(i); 111 112 Label d, done; 113 114 __ tbnz(c_rarg3, i, d); 115 __ ldrs(r, Address(sp, (10 + i) * wordSize)); 116 __ b(done); 117 __ bind(d); 118 __ ldrd(r, Address(sp, (10 + i) * wordSize)); 119 __ bind(done); 120 } 121 122 // c_rarg0 contains the result from the call of 123 // InterpreterRuntime::slow_signature_handler so we don't touch it 124 // here. It will be loaded with the JNIEnv* later. 125 __ ldr(c_rarg1, Address(sp, 1 * wordSize)); 126 for (int i = c_rarg2->encoding(); i <= c_rarg7->encoding(); i += 2) { 127 Register rm = as_Register(i), rn = as_Register(i+1); 128 __ ldp(rm, rn, Address(sp, i * wordSize)); 129 } 130 131 __ add(sp, sp, 18 * wordSize); 132 __ ret(lr); 133 134 return entry; 135 } 136 137 138 // 139 // Various method entries 140 // 141 142 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) { 143 // rmethod: Method* 144 // r19_sender_sp: sender sp 145 // esp: args 146 147 // These don't need a safepoint check because they aren't virtually 148 // callable. We won't enter these intrinsics from compiled code. 149 // If in the future we added an intrinsic which was virtually callable 150 // we'd have to worry about how to safepoint so that this code is used. 151 152 // mathematical functions inlined by compiler 153 // (interpreter must provide identical implementation 154 // in order to avoid monotonicity bugs when switching 155 // from interpreter to compiler in the middle of some 156 // computation) 157 // 158 // stack: 159 // [ arg ] <-- esp 160 // [ arg ] 161 // retaddr in lr 162 163 address entry_point = nullptr; 164 Register continuation = lr; 165 switch (kind) { 166 case Interpreter::java_lang_math_abs: 167 entry_point = __ pc(); 168 __ ldrd(v0, Address(esp)); 169 __ fabsd(v0, v0); 170 __ mov(sp, r19_sender_sp); // Restore caller's SP 171 break; 172 case Interpreter::java_lang_math_sqrt: 173 entry_point = __ pc(); 174 __ ldrd(v0, Address(esp)); 175 __ fsqrtd(v0, v0); 176 __ mov(sp, r19_sender_sp); 177 break; 178 case Interpreter::java_lang_math_sin : 179 case Interpreter::java_lang_math_cos : 180 case Interpreter::java_lang_math_tan : 181 case Interpreter::java_lang_math_log : 182 case Interpreter::java_lang_math_log10 : 183 case Interpreter::java_lang_math_exp : 184 entry_point = __ pc(); 185 __ ldrd(v0, Address(esp)); 186 __ mov(sp, r19_sender_sp); 187 __ mov(r23, lr); 188 continuation = r23; // The first free callee-saved register 189 generate_transcendental_entry(kind, 1); 190 break; 191 case Interpreter::java_lang_math_pow : 192 entry_point = __ pc(); 193 __ mov(r23, lr); 194 continuation = r23; 195 __ ldrd(v0, Address(esp, 2 * Interpreter::stackElementSize)); 196 __ ldrd(v1, Address(esp)); 197 __ mov(sp, r19_sender_sp); 198 generate_transcendental_entry(kind, 2); 199 break; 200 case Interpreter::java_lang_math_fmaD : 201 if (UseFMA) { 202 entry_point = __ pc(); 203 __ ldrd(v0, Address(esp, 4 * Interpreter::stackElementSize)); 204 __ ldrd(v1, Address(esp, 2 * Interpreter::stackElementSize)); 205 __ ldrd(v2, Address(esp)); 206 __ fmaddd(v0, v0, v1, v2); 207 __ mov(sp, r19_sender_sp); // Restore caller's SP 208 } 209 break; 210 case Interpreter::java_lang_math_fmaF : 211 if (UseFMA) { 212 entry_point = __ pc(); 213 __ ldrs(v0, Address(esp, 2 * Interpreter::stackElementSize)); 214 __ ldrs(v1, Address(esp, Interpreter::stackElementSize)); 215 __ ldrs(v2, Address(esp)); 216 __ fmadds(v0, v0, v1, v2); 217 __ mov(sp, r19_sender_sp); // Restore caller's SP 218 } 219 break; 220 default: 221 ; 222 } 223 if (entry_point) { 224 __ br(continuation); 225 } 226 227 return entry_point; 228 } 229 230 // double trigonometrics and transcendentals 231 // static jdouble dsin(jdouble x); 232 // static jdouble dcos(jdouble x); 233 // static jdouble dtan(jdouble x); 234 // static jdouble dlog(jdouble x); 235 // static jdouble dlog10(jdouble x); 236 // static jdouble dexp(jdouble x); 237 // static jdouble dpow(jdouble x, jdouble y); 238 239 void TemplateInterpreterGenerator::generate_transcendental_entry(AbstractInterpreter::MethodKind kind, int fpargs) { 240 address fn; 241 switch (kind) { 242 case Interpreter::java_lang_math_sin : 243 if (StubRoutines::dsin() == nullptr) { 244 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin); 245 } else { 246 fn = CAST_FROM_FN_PTR(address, StubRoutines::dsin()); 247 } 248 break; 249 case Interpreter::java_lang_math_cos : 250 if (StubRoutines::dcos() == nullptr) { 251 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos); 252 } else { 253 fn = CAST_FROM_FN_PTR(address, StubRoutines::dcos()); 254 } 255 break; 256 case Interpreter::java_lang_math_tan : 257 if (StubRoutines::dtan() == nullptr) { 258 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan); 259 } else { 260 fn = CAST_FROM_FN_PTR(address, StubRoutines::dtan()); 261 } 262 break; 263 case Interpreter::java_lang_math_log : 264 if (StubRoutines::dlog() == nullptr) { 265 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog); 266 } else { 267 fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog()); 268 } 269 break; 270 case Interpreter::java_lang_math_log10 : 271 if (StubRoutines::dlog10() == nullptr) { 272 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); 273 } else { 274 fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog10()); 275 } 276 break; 277 case Interpreter::java_lang_math_exp : 278 if (StubRoutines::dexp() == nullptr) { 279 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp); 280 } else { 281 fn = CAST_FROM_FN_PTR(address, StubRoutines::dexp()); 282 } 283 break; 284 case Interpreter::java_lang_math_pow : 285 if (StubRoutines::dpow() == nullptr) { 286 fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); 287 } else { 288 fn = CAST_FROM_FN_PTR(address, StubRoutines::dpow()); 289 } 290 break; 291 default: 292 ShouldNotReachHere(); 293 fn = nullptr; // unreachable 294 } 295 __ mov(rscratch1, fn); 296 __ blr(rscratch1); 297 } 298 299 address TemplateInterpreterGenerator::generate_Float_float16ToFloat_entry() { 300 assert(VM_Version::supports_float16(), "this intrinsic is not supported"); 301 // r19_sender_sp: sender sp 302 // stack: 303 // [ arg ] <-- esp 304 // [ arg ] 305 // retaddr in lr 306 // result in v0 307 308 address entry_point = __ pc(); 309 __ ldrw(c_rarg0, Address(esp)); 310 __ flt16_to_flt(v0, c_rarg0, v1); 311 __ mov(sp, r19_sender_sp); // Restore caller's SP 312 __ br(lr); 313 return entry_point; 314 } 315 316 address TemplateInterpreterGenerator::generate_Float_floatToFloat16_entry() { 317 assert(VM_Version::supports_float16(), "this intrinsic is not supported"); 318 // r19_sender_sp: sender sp 319 // stack: 320 // [ arg ] <-- esp 321 // [ arg ] 322 // retaddr in lr 323 // result in c_rarg0 324 325 address entry_point = __ pc(); 326 __ ldrs(v0, Address(esp)); 327 __ flt_to_flt16(c_rarg0, v0, v1); 328 __ mov(sp, r19_sender_sp); // Restore caller's SP 329 __ br(lr); 330 return entry_point; 331 } 332 333 // Abstract method entry 334 // Attempt to execute abstract method. Throw exception 335 address TemplateInterpreterGenerator::generate_abstract_entry(void) { 336 // rmethod: Method* 337 // r19_sender_sp: sender SP 338 339 address entry_point = __ pc(); 340 341 // abstract method entry 342 343 // pop return address, reset last_sp to null 344 __ empty_expression_stack(); 345 __ restore_bcp(); // bcp must be correct for exception handler (was destroyed) 346 __ restore_locals(); // make sure locals pointer is correct as well (was destroyed) 347 348 // throw exception 349 __ call_VM(noreg, CAST_FROM_FN_PTR(address, 350 InterpreterRuntime::throw_AbstractMethodErrorWithMethod), 351 rmethod); 352 // the call_VM checks for exception, so we should never return here. 353 __ should_not_reach_here(); 354 355 return entry_point; 356 } 357 358 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() { 359 address entry = __ pc(); 360 361 #ifdef ASSERT 362 { 363 Label L; 364 __ ldr(rscratch1, Address(rfp, 365 frame::interpreter_frame_monitor_block_top_offset * 366 wordSize)); 367 __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 368 __ mov(rscratch2, sp); 369 __ cmp(rscratch1, rscratch2); // maximal rsp for current rfp (stack 370 // grows negative) 371 __ br(Assembler::HS, L); // check if frame is complete 372 __ stop ("interpreter frame not set up"); 373 __ bind(L); 374 } 375 #endif // ASSERT 376 // Restore bcp under the assumption that the current frame is still 377 // interpreted 378 __ restore_bcp(); 379 380 // expression stack must be empty before entering the VM if an 381 // exception happened 382 __ empty_expression_stack(); 383 // throw exception 384 __ call_VM(noreg, 385 CAST_FROM_FN_PTR(address, 386 InterpreterRuntime::throw_StackOverflowError)); 387 return entry; 388 } 389 390 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() { 391 address entry = __ pc(); 392 // expression stack must be empty before entering the VM if an 393 // exception happened 394 __ empty_expression_stack(); 395 // setup parameters 396 397 // ??? convention: expect aberrant index in register r1 398 __ movw(c_rarg2, r1); 399 // ??? convention: expect array in register r3 400 __ mov(c_rarg1, r3); 401 __ call_VM(noreg, 402 CAST_FROM_FN_PTR(address, 403 InterpreterRuntime:: 404 throw_ArrayIndexOutOfBoundsException), 405 c_rarg1, c_rarg2); 406 return entry; 407 } 408 409 address TemplateInterpreterGenerator::generate_ClassCastException_handler() { 410 address entry = __ pc(); 411 412 // object is at TOS 413 __ pop(c_rarg1); 414 415 // expression stack must be empty before entering the VM if an 416 // exception happened 417 __ empty_expression_stack(); 418 419 __ call_VM(noreg, 420 CAST_FROM_FN_PTR(address, 421 InterpreterRuntime:: 422 throw_ClassCastException), 423 c_rarg1); 424 return entry; 425 } 426 427 address TemplateInterpreterGenerator::generate_exception_handler_common( 428 const char* name, const char* message, bool pass_oop) { 429 assert(!pass_oop || message == nullptr, "either oop or message but not both"); 430 address entry = __ pc(); 431 if (pass_oop) { 432 // object is at TOS 433 __ pop(c_rarg2); 434 } 435 // expression stack must be empty before entering the VM if an 436 // exception happened 437 __ empty_expression_stack(); 438 // setup parameters 439 __ lea(c_rarg1, Address((address)name)); 440 if (pass_oop) { 441 __ call_VM(r0, CAST_FROM_FN_PTR(address, 442 InterpreterRuntime:: 443 create_klass_exception), 444 c_rarg1, c_rarg2); 445 } else { 446 // kind of lame ExternalAddress can't take null because 447 // external_word_Relocation will assert. 448 if (message != nullptr) { 449 __ lea(c_rarg2, Address((address)message)); 450 } else { 451 __ mov(c_rarg2, NULL_WORD); 452 } 453 __ call_VM(r0, 454 CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), 455 c_rarg1, c_rarg2); 456 } 457 // throw exception 458 __ b(address(Interpreter::throw_exception_entry())); 459 return entry; 460 } 461 462 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) { 463 address entry = __ pc(); 464 465 // Restore stack bottom in case i2c adjusted stack 466 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 467 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 468 // and null it as marker that esp is now tos until next java call 469 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 470 __ restore_bcp(); 471 __ restore_locals(); 472 __ restore_constant_pool_cache(); 473 __ get_method(rmethod); 474 475 if (state == atos) { 476 Register obj = r0; 477 Register mdp = r1; 478 Register tmp = r2; 479 __ profile_return_type(mdp, obj, tmp); 480 } 481 482 const Register cache = r1; 483 const Register index = r2; 484 485 if (index_size == sizeof(u4)) { 486 __ load_resolved_indy_entry(cache, index); 487 __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedIndyEntry::num_parameters_offset()))); 488 __ add(esp, esp, cache, Assembler::LSL, 3); 489 } else { 490 // Pop N words from the stack 491 assert(index_size == sizeof(u2), "Can only be u2"); 492 __ load_method_entry(cache, index); 493 __ load_unsigned_short(cache, Address(cache, in_bytes(ResolvedMethodEntry::num_parameters_offset()))); 494 __ add(esp, esp, cache, Assembler::LSL, 3); 495 } 496 497 // Restore machine SP 498 __ restore_sp_after_call(); 499 500 __ check_and_handle_popframe(rthread); 501 __ check_and_handle_earlyret(rthread); 502 503 __ get_dispatch(); 504 __ dispatch_next(state, step); 505 506 return entry; 507 } 508 509 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, 510 int step, 511 address continuation) { 512 address entry = __ pc(); 513 __ restore_bcp(); 514 __ restore_locals(); 515 __ restore_constant_pool_cache(); 516 __ get_method(rmethod); 517 __ get_dispatch(); 518 519 __ restore_sp_after_call(); // Restore SP to extended SP 520 521 // Restore expression stack pointer 522 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 523 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 524 // null last_sp until next java call 525 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 526 527 #if INCLUDE_JVMCI 528 // Check if we need to take lock at entry of synchronized method. This can 529 // only occur on method entry so emit it only for vtos with step 0. 530 if (EnableJVMCI && state == vtos && step == 0) { 531 Label L; 532 __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset())); 533 __ cbz(rscratch1, L); 534 // Clear flag. 535 __ strb(zr, Address(rthread, JavaThread::pending_monitorenter_offset())); 536 // Take lock. 537 lock_method(); 538 __ bind(L); 539 } else { 540 #ifdef ASSERT 541 if (EnableJVMCI) { 542 Label L; 543 __ ldrb(rscratch1, Address(rthread, JavaThread::pending_monitorenter_offset())); 544 __ cbz(rscratch1, L); 545 __ stop("unexpected pending monitor in deopt entry"); 546 __ bind(L); 547 } 548 #endif 549 } 550 #endif 551 // handle exceptions 552 { 553 Label L; 554 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 555 __ cbz(rscratch1, L); 556 __ call_VM(noreg, 557 CAST_FROM_FN_PTR(address, 558 InterpreterRuntime::throw_pending_exception)); 559 __ should_not_reach_here(); 560 __ bind(L); 561 } 562 563 if (continuation == nullptr) { 564 __ dispatch_next(state, step); 565 } else { 566 __ jump_to_entry(continuation); 567 } 568 return entry; 569 } 570 571 address TemplateInterpreterGenerator::generate_result_handler_for( 572 BasicType type) { 573 address entry = __ pc(); 574 switch (type) { 575 case T_BOOLEAN: __ c2bool(r0); break; 576 case T_CHAR : __ uxth(r0, r0); break; 577 case T_BYTE : __ sxtb(r0, r0); break; 578 case T_SHORT : __ sxth(r0, r0); break; 579 case T_INT : __ uxtw(r0, r0); break; // FIXME: We almost certainly don't need this 580 case T_LONG : /* nothing to do */ break; 581 case T_VOID : /* nothing to do */ break; 582 case T_FLOAT : /* nothing to do */ break; 583 case T_DOUBLE : /* nothing to do */ break; 584 case T_OBJECT : 585 // retrieve result from frame 586 __ ldr(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); 587 // and verify it 588 __ verify_oop(r0); 589 break; 590 default : ShouldNotReachHere(); 591 } 592 __ ret(lr); // return from result handler 593 return entry; 594 } 595 596 address TemplateInterpreterGenerator::generate_safept_entry_for( 597 TosState state, 598 address runtime_entry) { 599 address entry = __ pc(); 600 __ push(state); 601 __ push_cont_fastpath(rthread); 602 __ call_VM(noreg, runtime_entry); 603 __ pop_cont_fastpath(rthread); 604 __ membar(Assembler::AnyAny); 605 __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos)); 606 return entry; 607 } 608 609 address TemplateInterpreterGenerator::generate_cont_resume_interpreter_adapter() { 610 if (!Continuations::enabled()) return nullptr; 611 address start = __ pc(); 612 613 // Restore rfp first since we need it to restore rest of registers 614 __ leave(); 615 616 // Restore constant pool cache 617 __ ldr(rcpool, Address(rfp, frame::interpreter_frame_cache_offset * wordSize)); 618 619 // Restore Java expression stack pointer 620 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 621 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 622 // and NULL it as marker that esp is now tos until next java call 623 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 624 625 // Restore machine SP 626 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize)); 627 __ lea(sp, Address(rfp, rscratch1, Address::lsl(LogBytesPerWord))); 628 629 // Prepare for adjustment on return to call_VM_leaf_base() 630 __ ldr(rmethod, Address(rfp, frame::interpreter_frame_method_offset * wordSize)); 631 __ stp(rscratch1, rmethod, Address(__ pre(sp, -2 * wordSize))); 632 633 // Restore dispatch 634 uint64_t offset; 635 __ adrp(rdispatch, ExternalAddress((address)Interpreter::dispatch_table()), offset); 636 __ add(rdispatch, rdispatch, offset); 637 638 __ ret(lr); 639 640 return start; 641 } 642 643 644 // Helpers for commoning out cases in the various type of method entries. 645 // 646 647 648 // increment invocation count & check for overflow 649 // 650 // Note: checking for negative value instead of overflow 651 // so we have a 'sticky' overflow test 652 // 653 // rmethod: method 654 // 655 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) { 656 Label done; 657 // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not. 658 int increment = InvocationCounter::count_increment; 659 Label no_mdo; 660 if (ProfileInterpreter) { 661 // Are we profiling? 662 __ ldr(r0, Address(rmethod, Method::method_data_offset())); 663 __ cbz(r0, no_mdo); 664 // Increment counter in the MDO 665 const Address mdo_invocation_counter(r0, in_bytes(MethodData::invocation_counter_offset()) + 666 in_bytes(InvocationCounter::counter_offset())); 667 const Address mask(r0, in_bytes(MethodData::invoke_mask_offset())); 668 __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, rscratch1, rscratch2, false, Assembler::EQ, overflow); 669 __ b(done); 670 } 671 __ bind(no_mdo); 672 // Increment counter in MethodCounters 673 const Address invocation_counter(rscratch2, 674 MethodCounters::invocation_counter_offset() + 675 InvocationCounter::counter_offset()); 676 __ get_method_counters(rmethod, rscratch2, done); 677 const Address mask(rscratch2, in_bytes(MethodCounters::invoke_mask_offset())); 678 __ increment_mask_and_jump(invocation_counter, increment, mask, rscratch1, r1, false, Assembler::EQ, overflow); 679 __ bind(done); 680 } 681 682 void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) { 683 684 // Asm interpreter on entry 685 // On return (i.e. jump to entry_point) [ back to invocation of interpreter ] 686 // Everything as it was on entry 687 688 // InterpreterRuntime::frequency_counter_overflow takes two 689 // arguments, the first (thread) is passed by call_VM, the second 690 // indicates if the counter overflow occurs at a backwards branch 691 // (null bcp). We pass zero for it. The call returns the address 692 // of the verified entry point for the method or null if the 693 // compilation did not complete (either went background or bailed 694 // out). 695 __ mov(c_rarg1, 0); 696 __ call_VM(noreg, 697 CAST_FROM_FN_PTR(address, 698 InterpreterRuntime::frequency_counter_overflow), 699 c_rarg1); 700 701 __ b(do_continue); 702 } 703 704 // See if we've got enough room on the stack for locals plus overhead 705 // below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError 706 // without going through the signal handler, i.e., reserved and yellow zones 707 // will not be made usable. The shadow zone must suffice to handle the 708 // overflow. 709 // The expression stack grows down incrementally, so the normal guard 710 // page mechanism will work for that. 711 // 712 // NOTE: Since the additional locals are also always pushed (wasn't 713 // obvious in generate_method_entry) so the guard should work for them 714 // too. 715 // 716 // Args: 717 // r3: number of additional locals this frame needs (what we must check) 718 // rmethod: Method* 719 // 720 // Kills: 721 // r0 722 void TemplateInterpreterGenerator::generate_stack_overflow_check(void) { 723 724 // monitor entry size: see picture of stack set 725 // (generate_method_entry) and frame_amd64.hpp 726 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 727 728 // total overhead size: entry_size + (saved rbp through expr stack 729 // bottom). be sure to change this if you add/subtract anything 730 // to/from the overhead area 731 const int overhead_size = 732 -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size; 733 734 const size_t page_size = os::vm_page_size(); 735 736 Label after_frame_check; 737 738 // see if the frame is greater than one page in size. If so, 739 // then we need to verify there is enough stack space remaining 740 // for the additional locals. 741 // 742 // Note that we use SUBS rather than CMP here because the immediate 743 // field of this instruction may overflow. SUBS can cope with this 744 // because it is a macro that will expand to some number of MOV 745 // instructions and a register operation. 746 __ subs(rscratch1, r3, (page_size - overhead_size) / Interpreter::stackElementSize); 747 __ br(Assembler::LS, after_frame_check); 748 749 // compute rsp as if this were going to be the last frame on 750 // the stack before the red zone 751 752 // locals + overhead, in bytes 753 __ mov(r0, overhead_size); 754 __ add(r0, r0, r3, Assembler::LSL, Interpreter::logStackElementSize); // 2 slots per parameter. 755 756 const Address stack_limit(rthread, JavaThread::stack_overflow_limit_offset()); 757 __ ldr(rscratch1, stack_limit); 758 759 #ifdef ASSERT 760 Label limit_okay; 761 // Verify that thread stack limit is non-zero. 762 __ cbnz(rscratch1, limit_okay); 763 __ stop("stack overflow limit is zero"); 764 __ bind(limit_okay); 765 #endif 766 767 // Add stack limit to locals. 768 __ add(r0, r0, rscratch1); 769 770 // Check against the current stack bottom. 771 __ cmp(sp, r0); 772 __ br(Assembler::HI, after_frame_check); 773 774 // Remove the incoming args, peeling the machine SP back to where it 775 // was in the caller. This is not strictly necessary, but unless we 776 // do so the stack frame may have a garbage FP; this ensures a 777 // correct call stack that we can always unwind. The ANDR should be 778 // unnecessary because the sender SP in r19 is always aligned, but 779 // it doesn't hurt. 780 __ andr(sp, r19_sender_sp, -16); 781 782 // Note: the restored frame is not necessarily interpreted. 783 // Use the shared runtime version of the StackOverflowError. 784 assert(SharedRuntime::throw_StackOverflowError_entry() != nullptr, "stub not yet generated"); 785 __ far_jump(RuntimeAddress(SharedRuntime::throw_StackOverflowError_entry())); 786 787 // all done with frame size check 788 __ bind(after_frame_check); 789 } 790 791 // Allocate monitor and lock method (asm interpreter) 792 // 793 // Args: 794 // rmethod: Method* 795 // rlocals: locals 796 // 797 // Kills: 798 // r0 799 // c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs) 800 // rscratch1, rscratch2 (scratch regs) 801 void TemplateInterpreterGenerator::lock_method() { 802 // synchronize method 803 const Address access_flags(rmethod, Method::access_flags_offset()); 804 const Address monitor_block_top( 805 rfp, 806 frame::interpreter_frame_monitor_block_top_offset * wordSize); 807 const int entry_size = frame::interpreter_frame_monitor_size_in_bytes(); 808 809 #ifdef ASSERT 810 { 811 Label L; 812 __ ldrw(r0, access_flags); 813 __ tst(r0, JVM_ACC_SYNCHRONIZED); 814 __ br(Assembler::NE, L); 815 __ stop("method doesn't need synchronization"); 816 __ bind(L); 817 } 818 #endif // ASSERT 819 820 // get synchronization object 821 { 822 Label done; 823 __ ldrw(r0, access_flags); 824 __ tst(r0, JVM_ACC_STATIC); 825 // get receiver (assume this is frequent case) 826 __ ldr(r0, Address(rlocals, Interpreter::local_offset_in_bytes(0))); 827 __ br(Assembler::EQ, done); 828 __ load_mirror(r0, rmethod, r5, rscratch2); 829 830 #ifdef ASSERT 831 { 832 Label L; 833 __ cbnz(r0, L); 834 __ stop("synchronization object is null"); 835 __ bind(L); 836 } 837 #endif // ASSERT 838 839 __ bind(done); 840 } 841 842 // add space for monitor & lock 843 __ check_extended_sp(); 844 __ sub(sp, sp, entry_size); // add space for a monitor entry 845 __ sub(esp, esp, entry_size); 846 __ sub(rscratch1, sp, rfp); 847 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 848 __ str(rscratch1, Address(rfp, frame::interpreter_frame_extended_sp_offset * wordSize)); 849 __ sub(rscratch1, esp, rfp); 850 __ asr(rscratch1, rscratch1, Interpreter::logStackElementSize); 851 __ str(rscratch1, monitor_block_top); // set new monitor block top 852 853 // store object 854 __ str(r0, Address(esp, BasicObjectLock::obj_offset())); 855 __ mov(c_rarg1, esp); // object address 856 __ lock_object(c_rarg1); 857 } 858 859 // Generate a fixed interpreter frame. This is identical setup for 860 // interpreted methods and for native methods hence the shared code. 861 // 862 // Args: 863 // lr: return address 864 // rmethod: Method* 865 // rlocals: pointer to locals 866 // rcpool: cp cache 867 // stack_pointer: previous sp 868 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) { 869 // initialize fixed part of activation frame 870 if (native_call) { 871 __ sub(esp, sp, 14 * wordSize); 872 __ mov(rbcp, zr); 873 __ mov(rscratch1, frame::interpreter_frame_initial_sp_offset); 874 __ stp(rscratch1, zr, Address(__ pre(sp, -14 * wordSize))); 875 // add 2 zero-initialized slots for native calls 876 __ stp(zr, zr, Address(sp, 12 * wordSize)); 877 } else { 878 __ sub(esp, sp, 12 * wordSize); 879 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); // get ConstMethod 880 __ add(rbcp, rscratch1, in_bytes(ConstMethod::codes_offset())); // get codebase 881 __ mov(rscratch1, frame::interpreter_frame_initial_sp_offset); 882 __ stp(rscratch1, rbcp, Address(__ pre(sp, -12 * wordSize))); 883 } 884 885 if (ProfileInterpreter) { 886 Label method_data_continue; 887 __ ldr(rscratch1, Address(rmethod, Method::method_data_offset())); 888 __ cbz(rscratch1, method_data_continue); 889 __ lea(rscratch1, Address(rscratch1, in_bytes(MethodData::data_offset()))); 890 __ bind(method_data_continue); 891 __ stp(rscratch1, rmethod, Address(sp, 6 * wordSize)); // save Method* and mdp (method data pointer) 892 } else { 893 __ stp(zr, rmethod, Address(sp, 6 * wordSize)); // save Method* (no mdp) 894 } 895 896 __ protect_return_address(); 897 __ stp(rfp, lr, Address(sp, 10 * wordSize)); 898 __ lea(rfp, Address(sp, 10 * wordSize)); 899 900 __ ldr(rcpool, Address(rmethod, Method::const_offset())); 901 __ ldr(rcpool, Address(rcpool, ConstMethod::constants_offset())); 902 __ ldr(rcpool, Address(rcpool, ConstantPool::cache_offset())); 903 __ sub(rscratch1, rlocals, rfp); 904 __ lsr(rscratch1, rscratch1, Interpreter::logStackElementSize); // rscratch1 = rlocals - fp(); 905 // Store relativized rlocals, see frame::interpreter_frame_locals(). 906 __ stp(rscratch1, rcpool, Address(sp, 2 * wordSize)); 907 908 // set sender sp 909 // leave last_sp as null 910 __ stp(zr, r19_sender_sp, Address(sp, 8 * wordSize)); 911 912 // Get mirror 913 __ load_mirror(r10, rmethod, r5, rscratch2); 914 if (! native_call) { 915 __ ldr(rscratch1, Address(rmethod, Method::const_offset())); 916 __ ldrh(rscratch1, Address(rscratch1, ConstMethod::max_stack_offset())); 917 __ add(rscratch1, rscratch1, MAX2(3, Method::extra_stack_entries())); 918 __ sub(rscratch1, sp, rscratch1, ext::uxtw, 3); 919 __ andr(rscratch1, rscratch1, -16); 920 __ sub(rscratch2, rscratch1, rfp); 921 __ asr(rscratch2, rscratch2, Interpreter::logStackElementSize); 922 // Store extended SP and mirror 923 __ stp(r10, rscratch2, Address(sp, 4 * wordSize)); 924 // Move SP out of the way 925 __ mov(sp, rscratch1); 926 } else { 927 // Make sure there is room for the exception oop pushed in case method throws 928 // an exception (see TemplateInterpreterGenerator::generate_throw_exception()) 929 __ sub(rscratch1, sp, 2 * wordSize); 930 __ sub(rscratch2, rscratch1, rfp); 931 __ asr(rscratch2, rscratch2, Interpreter::logStackElementSize); 932 __ stp(r10, rscratch2, Address(sp, 4 * wordSize)); 933 __ mov(sp, rscratch1); 934 } 935 } 936 937 // End of helpers 938 939 // Various method entries 940 //------------------------------------------------------------------------------------------------------------------------ 941 // 942 // 943 944 // Method entry for java.lang.ref.Reference.get. 945 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) { 946 // Code: _aload_0, _getfield, _areturn 947 // parameter size = 1 948 // 949 // The code that gets generated by this routine is split into 2 parts: 950 // 1. The "intrinsified" code for G1 (or any SATB based GC), 951 // 2. The slow path - which is an expansion of the regular method entry. 952 // 953 // Notes:- 954 // * In the G1 code we do not check whether we need to block for 955 // a safepoint. If G1 is enabled then we must execute the specialized 956 // code for Reference.get (except when the Reference object is null) 957 // so that we can log the value in the referent field with an SATB 958 // update buffer. 959 // If the code for the getfield template is modified so that the 960 // G1 pre-barrier code is executed when the current method is 961 // Reference.get() then going through the normal method entry 962 // will be fine. 963 // * The G1 code can, however, check the receiver object (the instance 964 // of java.lang.Reference) and jump to the slow path if null. If the 965 // Reference object is null then we obviously cannot fetch the referent 966 // and so we don't need to call the G1 pre-barrier. Thus we can use the 967 // regular method entry code to generate the NPE. 968 // 969 // This code is based on generate_accessor_entry. 970 // 971 // rmethod: Method* 972 // r19_sender_sp: senderSP must preserve for slow path, set SP to it on fast path 973 974 // LR is live. It must be saved around calls. 975 976 address entry = __ pc(); 977 978 const int referent_offset = java_lang_ref_Reference::referent_offset(); 979 980 Label slow_path; 981 const Register local_0 = c_rarg0; 982 // Check if local 0 != null 983 // If the receiver is null then it is OK to jump to the slow path. 984 __ ldr(local_0, Address(esp, 0)); 985 __ cbz(local_0, slow_path); 986 987 // Load the value of the referent field. 988 const Address field_address(local_0, referent_offset); 989 BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler(); 990 bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ rscratch1, /*tmp2*/ rscratch2); 991 992 // areturn 993 __ andr(sp, r19_sender_sp, -16); // done with stack 994 __ ret(lr); 995 996 // generate a vanilla interpreter entry as the slow path 997 __ bind(slow_path); 998 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals)); 999 return entry; 1000 1001 } 1002 1003 /** 1004 * Method entry for static native methods: 1005 * int java.util.zip.CRC32.update(int crc, int b) 1006 */ 1007 address TemplateInterpreterGenerator::generate_CRC32_update_entry() { 1008 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 1009 address entry = __ pc(); 1010 1011 // rmethod: Method* 1012 // r19_sender_sp: senderSP must preserved for slow path 1013 // esp: args 1014 1015 Label slow_path; 1016 // If we need a safepoint check, generate full interpreter entry. 1017 __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */); 1018 1019 // We don't generate local frame and don't align stack because 1020 // we call stub code and there is no safepoint on this path. 1021 1022 // Load parameters 1023 const Register crc = c_rarg0; // crc 1024 const Register val = c_rarg1; // source java byte value 1025 const Register tbl = c_rarg2; // scratch 1026 1027 // Arguments are reversed on java expression stack 1028 __ ldrw(val, Address(esp, 0)); // byte value 1029 __ ldrw(crc, Address(esp, wordSize)); // Initial CRC 1030 1031 uint64_t offset; 1032 __ adrp(tbl, ExternalAddress(StubRoutines::crc_table_addr()), offset); 1033 __ add(tbl, tbl, offset); 1034 1035 __ mvnw(crc, crc); // ~crc 1036 __ update_byte_crc32(crc, val, tbl); 1037 __ mvnw(crc, crc); // ~crc 1038 1039 // result in c_rarg0 1040 1041 __ andr(sp, r19_sender_sp, -16); 1042 __ ret(lr); 1043 1044 // generate a vanilla native entry as the slow path 1045 __ bind(slow_path); 1046 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native)); 1047 return entry; 1048 } 1049 1050 /** 1051 * Method entry for static native methods: 1052 * int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len) 1053 * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len) 1054 */ 1055 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1056 assert(UseCRC32Intrinsics, "this intrinsic is not supported"); 1057 address entry = __ pc(); 1058 1059 // rmethod,: Method* 1060 // r19_sender_sp: senderSP must preserved for slow path 1061 1062 Label slow_path; 1063 // If we need a safepoint check, generate full interpreter entry. 1064 __ safepoint_poll(slow_path, false /* at_return */, false /* acquire */, false /* in_nmethod */); 1065 1066 // We don't generate local frame and don't align stack because 1067 // we call stub code and there is no safepoint on this path. 1068 1069 // Load parameters 1070 const Register crc = c_rarg0; // crc 1071 const Register buf = c_rarg1; // source java byte array address 1072 const Register len = c_rarg2; // length 1073 const Register off = len; // offset (never overlaps with 'len') 1074 1075 // Arguments are reversed on java expression stack 1076 // Calculate address of start element 1077 if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { 1078 __ ldr(buf, Address(esp, 2*wordSize)); // long buf 1079 __ ldrw(off, Address(esp, wordSize)); // offset 1080 __ add(buf, buf, off); // + offset 1081 __ ldrw(crc, Address(esp, 4*wordSize)); // Initial CRC 1082 } else { 1083 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] array 1084 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size 1085 __ ldrw(off, Address(esp, wordSize)); // offset 1086 __ add(buf, buf, off); // + offset 1087 __ ldrw(crc, Address(esp, 3*wordSize)); // Initial CRC 1088 } 1089 // Can now load 'len' since we're finished with 'off' 1090 __ ldrw(len, Address(esp, 0x0)); // Length 1091 1092 __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP 1093 1094 // We are frameless so we can just jump to the stub. 1095 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32())); 1096 1097 // generate a vanilla native entry as the slow path 1098 __ bind(slow_path); 1099 __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native)); 1100 return entry; 1101 } 1102 1103 /** 1104 * Method entry for intrinsic-candidate (non-native) methods: 1105 * int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end) 1106 * int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end) 1107 * Unlike CRC32, CRC32C does not have any methods marked as native 1108 * CRC32C also uses an "end" variable instead of the length variable CRC32 uses 1109 */ 1110 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) { 1111 assert(UseCRC32CIntrinsics, "this intrinsic is not supported"); 1112 address entry = __ pc(); 1113 1114 // Prepare jump to stub using parameters from the stack 1115 const Register crc = c_rarg0; // initial crc 1116 const Register buf = c_rarg1; // source java byte array address 1117 const Register len = c_rarg2; // len argument to the kernel 1118 1119 const Register end = len; // index of last element to process 1120 const Register off = crc; // offset 1121 1122 __ ldrw(end, Address(esp)); // int end 1123 __ ldrw(off, Address(esp, wordSize)); // int offset 1124 __ sub(len, end, off); 1125 __ ldr(buf, Address(esp, 2*wordSize)); // byte[] buf | long buf 1126 __ add(buf, buf, off); // + offset 1127 if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { 1128 __ ldrw(crc, Address(esp, 4*wordSize)); // long crc 1129 } else { 1130 __ add(buf, buf, arrayOopDesc::base_offset_in_bytes(T_BYTE)); // + header size 1131 __ ldrw(crc, Address(esp, 3*wordSize)); // long crc 1132 } 1133 1134 __ andr(sp, r19_sender_sp, -16); // Restore the caller's SP 1135 1136 // Jump to the stub. 1137 __ b(CAST_FROM_FN_PTR(address, StubRoutines::updateBytesCRC32C())); 1138 1139 return entry; 1140 } 1141 1142 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) { 1143 // See more discussion in stackOverflow.hpp. 1144 1145 const int shadow_zone_size = checked_cast<int>(StackOverflow::stack_shadow_zone_size()); 1146 const int page_size = (int)os::vm_page_size(); 1147 const int n_shadow_pages = shadow_zone_size / page_size; 1148 1149 #ifdef ASSERT 1150 Label L_good_limit; 1151 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit())); 1152 __ cbnz(rscratch1, L_good_limit); 1153 __ stop("shadow zone safe limit is not initialized"); 1154 __ bind(L_good_limit); 1155 1156 Label L_good_watermark; 1157 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1158 __ cbnz(rscratch1, L_good_watermark); 1159 __ stop("shadow zone growth watermark is not initialized"); 1160 __ bind(L_good_watermark); 1161 #endif 1162 1163 Label L_done; 1164 1165 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1166 __ cmp(sp, rscratch1); 1167 __ br(Assembler::HI, L_done); 1168 1169 for (int p = 1; p <= n_shadow_pages; p++) { 1170 __ sub(rscratch2, sp, p*page_size); 1171 __ str(zr, Address(rscratch2)); 1172 } 1173 1174 // Record the new watermark, but only if the update is above the safe limit. 1175 // Otherwise, the next time around the check above would pass the safe limit. 1176 __ ldr(rscratch1, Address(rthread, JavaThread::shadow_zone_safe_limit())); 1177 __ cmp(sp, rscratch1); 1178 __ br(Assembler::LS, L_done); 1179 __ mov(rscratch1, sp); 1180 __ str(rscratch1, Address(rthread, JavaThread::shadow_zone_growth_watermark())); 1181 1182 __ bind(L_done); 1183 } 1184 1185 // Interpreter stub for calling a native method. (asm interpreter) 1186 // This sets up a somewhat different looking stack for calling the 1187 // native method than the typical interpreter frame setup. 1188 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) { 1189 // determine code generation flags 1190 bool inc_counter = UseCompiler || CountCompiledCalls; 1191 1192 // r1: Method* 1193 // rscratch1: sender sp 1194 1195 address entry_point = __ pc(); 1196 1197 const Address constMethod (rmethod, Method::const_offset()); 1198 const Address access_flags (rmethod, Method::access_flags_offset()); 1199 const Address size_of_parameters(r2, ConstMethod:: 1200 size_of_parameters_offset()); 1201 1202 // get parameter size (always needed) 1203 __ ldr(r2, constMethod); 1204 __ load_unsigned_short(r2, size_of_parameters); 1205 1206 // Native calls don't need the stack size check since they have no 1207 // expression stack and the arguments are already on the stack and 1208 // we only add a handful of words to the stack. 1209 1210 // rmethod: Method* 1211 // r2: size of parameters 1212 // rscratch1: sender sp 1213 1214 // for natives the size of locals is zero 1215 1216 // compute beginning of parameters (rlocals) 1217 __ add(rlocals, esp, r2, ext::uxtx, 3); 1218 __ add(rlocals, rlocals, -wordSize); 1219 1220 // Pull SP back to minimum size: this avoids holes in the stack 1221 __ andr(sp, esp, -16); 1222 1223 // initialize fixed part of activation frame 1224 generate_fixed_frame(true); 1225 1226 // make sure method is native & not abstract 1227 #ifdef ASSERT 1228 __ ldrw(r0, access_flags); 1229 { 1230 Label L; 1231 __ tst(r0, JVM_ACC_NATIVE); 1232 __ br(Assembler::NE, L); 1233 __ stop("tried to execute non-native method as native"); 1234 __ bind(L); 1235 } 1236 { 1237 Label L; 1238 __ tst(r0, JVM_ACC_ABSTRACT); 1239 __ br(Assembler::EQ, L); 1240 __ stop("tried to execute abstract method in interpreter"); 1241 __ bind(L); 1242 } 1243 #endif 1244 1245 // Since at this point in the method invocation the exception 1246 // handler would try to exit the monitor of synchronized methods 1247 // which hasn't been entered yet, we set the thread local variable 1248 // _do_not_unlock_if_synchronized to true. The remove_activation 1249 // will check this flag. 1250 1251 const Address do_not_unlock_if_synchronized(rthread, 1252 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1253 __ mov(rscratch2, true); 1254 __ strb(rscratch2, do_not_unlock_if_synchronized); 1255 1256 // increment invocation count & check for overflow 1257 Label invocation_counter_overflow; 1258 if (inc_counter) { 1259 generate_counter_incr(&invocation_counter_overflow); 1260 } 1261 1262 Label continue_after_compile; 1263 __ bind(continue_after_compile); 1264 1265 bang_stack_shadow_pages(true); 1266 1267 // reset the _do_not_unlock_if_synchronized flag 1268 __ strb(zr, do_not_unlock_if_synchronized); 1269 1270 // check for synchronized methods 1271 // Must happen AFTER invocation_counter check and stack overflow check, 1272 // so method is not locked if overflows. 1273 if (synchronized) { 1274 lock_method(); 1275 } else { 1276 // no synchronization necessary 1277 #ifdef ASSERT 1278 { 1279 Label L; 1280 __ ldrw(r0, access_flags); 1281 __ tst(r0, JVM_ACC_SYNCHRONIZED); 1282 __ br(Assembler::EQ, L); 1283 __ stop("method needs synchronization"); 1284 __ bind(L); 1285 } 1286 #endif 1287 } 1288 1289 // start execution 1290 #ifdef ASSERT 1291 { 1292 Label L; 1293 const Address monitor_block_top(rfp, 1294 frame::interpreter_frame_monitor_block_top_offset * wordSize); 1295 __ ldr(rscratch1, monitor_block_top); 1296 __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 1297 __ cmp(esp, rscratch1); 1298 __ br(Assembler::EQ, L); 1299 __ stop("broken stack frame setup in interpreter 1"); 1300 __ bind(L); 1301 } 1302 #endif 1303 1304 // jvmti support 1305 __ notify_method_entry(); 1306 1307 // work registers 1308 const Register t = r17; 1309 const Register result_handler = r19; 1310 1311 // allocate space for parameters 1312 __ ldr(t, Address(rmethod, Method::const_offset())); 1313 __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset())); 1314 1315 __ sub(rscratch1, esp, t, ext::uxtx, Interpreter::logStackElementSize); 1316 __ andr(sp, rscratch1, -16); 1317 __ mov(esp, rscratch1); 1318 1319 // get signature handler 1320 { 1321 Label L; 1322 __ ldr(t, Address(rmethod, Method::signature_handler_offset())); 1323 __ cbnz(t, L); 1324 __ call_VM(noreg, 1325 CAST_FROM_FN_PTR(address, 1326 InterpreterRuntime::prepare_native_call), 1327 rmethod); 1328 __ ldr(t, Address(rmethod, Method::signature_handler_offset())); 1329 __ bind(L); 1330 } 1331 1332 // call signature handler 1333 assert(InterpreterRuntime::SignatureHandlerGenerator::from() == rlocals, 1334 "adjust this code"); 1335 assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp, 1336 "adjust this code"); 1337 assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == rscratch1, 1338 "adjust this code"); 1339 1340 // The generated handlers do not touch rmethod (the method). 1341 // However, large signatures cannot be cached and are generated 1342 // each time here. The slow-path generator can do a GC on return, 1343 // so we must reload it after the call. 1344 __ blr(t); 1345 __ get_method(rmethod); // slow path can do a GC, reload rmethod 1346 1347 1348 // result handler is in r0 1349 // set result handler 1350 __ mov(result_handler, r0); 1351 __ str(r0, Address(rfp, frame::interpreter_frame_result_handler_offset * wordSize)); 1352 1353 // pass mirror handle if static call 1354 { 1355 Label L; 1356 __ ldrw(t, Address(rmethod, Method::access_flags_offset())); 1357 __ tbz(t, exact_log2(JVM_ACC_STATIC), L); 1358 // get mirror 1359 __ load_mirror(t, rmethod, r10, rscratch2); 1360 // copy mirror into activation frame 1361 __ str(t, Address(rfp, frame::interpreter_frame_oop_temp_offset * wordSize)); 1362 // pass handle to mirror 1363 __ add(c_rarg1, rfp, frame::interpreter_frame_oop_temp_offset * wordSize); 1364 __ bind(L); 1365 } 1366 1367 // get native function entry point in r10 1368 { 1369 Label L; 1370 __ ldr(r10, Address(rmethod, Method::native_function_offset())); 1371 ExternalAddress unsatisfied(SharedRuntime::native_method_throw_unsatisfied_link_error_entry()); 1372 __ lea(rscratch2, unsatisfied); 1373 __ ldr(rscratch2, rscratch2); 1374 __ cmp(r10, rscratch2); 1375 __ br(Assembler::NE, L); 1376 __ call_VM(noreg, 1377 CAST_FROM_FN_PTR(address, 1378 InterpreterRuntime::prepare_native_call), 1379 rmethod); 1380 __ get_method(rmethod); 1381 __ ldr(r10, Address(rmethod, Method::native_function_offset())); 1382 __ bind(L); 1383 } 1384 1385 // pass JNIEnv 1386 __ add(c_rarg0, rthread, in_bytes(JavaThread::jni_environment_offset())); 1387 1388 // Set the last Java PC in the frame anchor to be the return address from 1389 // the call to the native method: this will allow the debugger to 1390 // generate an accurate stack trace. 1391 Label native_return; 1392 __ set_last_Java_frame(esp, rfp, native_return, rscratch1); 1393 1394 // change thread state 1395 #ifdef ASSERT 1396 { 1397 Label L; 1398 __ ldrw(t, Address(rthread, JavaThread::thread_state_offset())); 1399 __ cmp(t, (u1)_thread_in_Java); 1400 __ br(Assembler::EQ, L); 1401 __ stop("Wrong thread state in native stub"); 1402 __ bind(L); 1403 } 1404 #endif 1405 1406 // Change state to native 1407 __ mov(rscratch1, _thread_in_native); 1408 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1409 __ stlrw(rscratch1, rscratch2); 1410 1411 __ push_cont_fastpath(); 1412 1413 // Call the native method. 1414 __ blr(r10); 1415 1416 __ pop_cont_fastpath(); 1417 1418 __ get_method(rmethod); 1419 // result potentially in r0 or v0 1420 1421 // Restore cpu control state after JNI call 1422 __ restore_cpu_control_state_after_jni(rscratch1, rscratch2); 1423 1424 // make room for the pushes we're about to do 1425 __ sub(rscratch1, esp, 4 * wordSize); 1426 __ andr(sp, rscratch1, -16); 1427 1428 // NOTE: The order of these pushes is known to frame::interpreter_frame_result 1429 // in order to extract the result of a method call. If the order of these 1430 // pushes change or anything else is added to the stack then the code in 1431 // interpreter_frame_result must also change. 1432 __ push(dtos); 1433 __ push(ltos); 1434 1435 __ verify_sve_vector_length(); 1436 1437 // change thread state 1438 __ mov(rscratch1, _thread_in_native_trans); 1439 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1440 __ stlrw(rscratch1, rscratch2); 1441 1442 // Force this write out before the read below 1443 if (!UseSystemMemoryBarrier) { 1444 __ dmb(Assembler::ISH); 1445 } 1446 1447 // check for safepoint operation in progress and/or pending suspend requests 1448 { 1449 Label L, Continue; 1450 1451 // No need for acquire as Java threads always disarm themselves. 1452 __ safepoint_poll(L, true /* at_return */, false /* acquire */, false /* in_nmethod */); 1453 __ ldrw(rscratch2, Address(rthread, JavaThread::suspend_flags_offset())); 1454 __ cbz(rscratch2, Continue); 1455 __ bind(L); 1456 1457 // Don't use call_VM as it will see a possible pending exception 1458 // and forward it and never return here preventing us from 1459 // clearing _last_native_pc down below. So we do a runtime call by 1460 // hand. 1461 // 1462 __ mov(c_rarg0, rthread); 1463 __ lea(rscratch2, RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans))); 1464 __ blr(rscratch2); 1465 __ get_method(rmethod); 1466 __ reinit_heapbase(); 1467 __ bind(Continue); 1468 } 1469 1470 // change thread state 1471 __ mov(rscratch1, _thread_in_Java); 1472 __ lea(rscratch2, Address(rthread, JavaThread::thread_state_offset())); 1473 __ stlrw(rscratch1, rscratch2); 1474 1475 if (LockingMode != LM_LEGACY) { 1476 // Check preemption for Object.wait() 1477 Label not_preempted; 1478 __ ldr(rscratch1, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1479 __ cbz(rscratch1, not_preempted); 1480 __ str(zr, Address(rthread, JavaThread::preempt_alternate_return_offset())); 1481 __ br(rscratch1); 1482 __ bind(native_return); 1483 // On resume we need to set up stack as expected 1484 __ push(dtos); 1485 __ push(ltos); 1486 __ bind(not_preempted); 1487 } else { 1488 // any pc will do so just use this one for LM_LEGACY to keep code together. 1489 __ bind(native_return); 1490 } 1491 1492 // reset_last_Java_frame 1493 __ reset_last_Java_frame(true); 1494 1495 if (CheckJNICalls) { 1496 // clear_pending_jni_exception_check 1497 __ str(zr, Address(rthread, JavaThread::pending_jni_exception_check_fn_offset())); 1498 } 1499 1500 // reset handle block 1501 __ ldr(t, Address(rthread, JavaThread::active_handles_offset())); 1502 __ str(zr, Address(t, JNIHandleBlock::top_offset())); 1503 1504 // If result is an oop unbox and store it in frame where gc will see it 1505 // and result handler will pick it up 1506 1507 { 1508 Label no_oop; 1509 __ adr(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT))); 1510 __ ldr(result_handler, Address(rfp, frame::interpreter_frame_result_handler_offset*wordSize)); 1511 __ cmp(t, result_handler); 1512 __ br(Assembler::NE, no_oop); 1513 // Unbox oop result, e.g. JNIHandles::resolve result. 1514 __ pop(ltos); 1515 __ resolve_jobject(r0, t, rscratch2); 1516 __ str(r0, Address(rfp, frame::interpreter_frame_oop_temp_offset*wordSize)); 1517 // keep stack depth as expected by pushing oop which will eventually be discarded 1518 __ push(ltos); 1519 __ bind(no_oop); 1520 } 1521 1522 { 1523 Label no_reguard; 1524 __ lea(rscratch1, Address(rthread, in_bytes(JavaThread::stack_guard_state_offset()))); 1525 __ ldrw(rscratch1, Address(rscratch1)); 1526 __ cmp(rscratch1, (u1)StackOverflow::stack_guard_yellow_reserved_disabled); 1527 __ br(Assembler::NE, no_reguard); 1528 1529 __ push_call_clobbered_registers(); 1530 __ mov(c_rarg0, rthread); 1531 __ lea(rscratch2, RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages))); 1532 __ blr(rscratch2); 1533 __ pop_call_clobbered_registers(); 1534 1535 __ bind(no_reguard); 1536 } 1537 1538 // The method register is junk from after the thread_in_native transition 1539 // until here. Also can't call_VM until the bcp has been 1540 // restored. Need bcp for throwing exception below so get it now. 1541 __ get_method(rmethod); 1542 1543 // restore bcp to have legal interpreter frame, i.e., bci == 0 <=> 1544 // rbcp == code_base() 1545 __ ldr(rbcp, Address(rmethod, Method::const_offset())); // get ConstMethod* 1546 __ add(rbcp, rbcp, in_bytes(ConstMethod::codes_offset())); // get codebase 1547 // handle exceptions (exception handling will handle unlocking!) 1548 { 1549 Label L; 1550 __ ldr(rscratch1, Address(rthread, Thread::pending_exception_offset())); 1551 __ cbz(rscratch1, L); 1552 // Note: At some point we may want to unify this with the code 1553 // used in call_VM_base(); i.e., we should use the 1554 // StubRoutines::forward_exception code. For now this doesn't work 1555 // here because the rsp is not correctly set at this point. 1556 __ MacroAssembler::call_VM(noreg, 1557 CAST_FROM_FN_PTR(address, 1558 InterpreterRuntime::throw_pending_exception)); 1559 __ should_not_reach_here(); 1560 __ bind(L); 1561 } 1562 1563 // do unlocking if necessary 1564 { 1565 Label L; 1566 __ ldrw(t, Address(rmethod, Method::access_flags_offset())); 1567 __ tbz(t, exact_log2(JVM_ACC_SYNCHRONIZED), L); 1568 // the code below should be shared with interpreter macro 1569 // assembler implementation 1570 { 1571 Label unlock; 1572 // BasicObjectLock will be first in list, since this is a 1573 // synchronized method. However, need to check that the object 1574 // has not been unlocked by an explicit monitorexit bytecode. 1575 1576 // monitor expect in c_rarg1 for slow unlock path 1577 __ lea (c_rarg1, Address(rfp, // address of first monitor 1578 (intptr_t)(frame::interpreter_frame_initial_sp_offset * 1579 wordSize - sizeof(BasicObjectLock)))); 1580 1581 __ ldr(t, Address(c_rarg1, BasicObjectLock::obj_offset())); 1582 __ cbnz(t, unlock); 1583 1584 // Entry already unlocked, need to throw exception 1585 __ MacroAssembler::call_VM(noreg, 1586 CAST_FROM_FN_PTR(address, 1587 InterpreterRuntime::throw_illegal_monitor_state_exception)); 1588 __ should_not_reach_here(); 1589 1590 __ bind(unlock); 1591 __ unlock_object(c_rarg1); 1592 } 1593 __ bind(L); 1594 } 1595 1596 // jvmti support 1597 // Note: This must happen _after_ handling/throwing any exceptions since 1598 // the exception handler code notifies the runtime of method exits 1599 // too. If this happens before, method entry/exit notifications are 1600 // not properly paired (was bug - gri 11/22/99). 1601 __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI); 1602 1603 // restore potential result in r0:d0, call result handler to 1604 // restore potential result in ST0 & handle result 1605 1606 __ pop(ltos); 1607 __ pop(dtos); 1608 1609 __ blr(result_handler); 1610 1611 // remove activation 1612 __ ldr(esp, Address(rfp, 1613 frame::interpreter_frame_sender_sp_offset * 1614 wordSize)); // get sender sp 1615 // remove frame anchor 1616 __ leave(); 1617 1618 // restore sender sp 1619 __ mov(sp, esp); 1620 1621 __ ret(lr); 1622 1623 if (inc_counter) { 1624 // Handle overflow of counter and compile method 1625 __ bind(invocation_counter_overflow); 1626 generate_counter_overflow(continue_after_compile); 1627 } 1628 1629 return entry_point; 1630 } 1631 1632 // 1633 // Generic interpreted method entry to (asm) interpreter 1634 // 1635 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) { 1636 // determine code generation flags 1637 bool inc_counter = UseCompiler || CountCompiledCalls; 1638 1639 // rscratch1: sender sp 1640 address entry_point = __ pc(); 1641 1642 const Address constMethod(rmethod, Method::const_offset()); 1643 const Address access_flags(rmethod, Method::access_flags_offset()); 1644 const Address size_of_parameters(r3, 1645 ConstMethod::size_of_parameters_offset()); 1646 const Address size_of_locals(r3, ConstMethod::size_of_locals_offset()); 1647 1648 // get parameter size (always needed) 1649 // need to load the const method first 1650 __ ldr(r3, constMethod); 1651 __ load_unsigned_short(r2, size_of_parameters); 1652 1653 // r2: size of parameters 1654 1655 __ load_unsigned_short(r3, size_of_locals); // get size of locals in words 1656 __ sub(r3, r3, r2); // r3 = no. of additional locals 1657 1658 // see if we've got enough room on the stack for locals plus overhead. 1659 generate_stack_overflow_check(); 1660 1661 // compute beginning of parameters (rlocals) 1662 __ add(rlocals, esp, r2, ext::uxtx, 3); 1663 __ sub(rlocals, rlocals, wordSize); 1664 1665 __ mov(rscratch1, esp); 1666 1667 // r3 - # of additional locals 1668 // allocate space for locals 1669 // explicitly initialize locals 1670 // Initializing memory allocated for locals in the same direction as 1671 // the stack grows to ensure page initialization order according 1672 // to windows-aarch64 stack page growth requirement (see 1673 // https://docs.microsoft.com/en-us/cpp/build/arm64-windows-abi-conventions?view=msvc-160#stack) 1674 { 1675 Label exit, loop; 1676 __ ands(zr, r3, r3); 1677 __ br(Assembler::LE, exit); // do nothing if r3 <= 0 1678 __ bind(loop); 1679 __ str(zr, Address(__ pre(rscratch1, -wordSize))); 1680 __ sub(r3, r3, 1); // until everything initialized 1681 __ cbnz(r3, loop); 1682 __ bind(exit); 1683 } 1684 1685 // Padding between locals and fixed part of activation frame to ensure 1686 // SP is always 16-byte aligned. 1687 __ andr(sp, rscratch1, -16); 1688 1689 // And the base dispatch table 1690 __ get_dispatch(); 1691 1692 // initialize fixed part of activation frame 1693 generate_fixed_frame(false); 1694 1695 // make sure method is not native & not abstract 1696 #ifdef ASSERT 1697 __ ldrw(r0, access_flags); 1698 { 1699 Label L; 1700 __ tst(r0, JVM_ACC_NATIVE); 1701 __ br(Assembler::EQ, L); 1702 __ stop("tried to execute native method as non-native"); 1703 __ bind(L); 1704 } 1705 { 1706 Label L; 1707 __ tst(r0, JVM_ACC_ABSTRACT); 1708 __ br(Assembler::EQ, L); 1709 __ stop("tried to execute abstract method in interpreter"); 1710 __ bind(L); 1711 } 1712 #endif 1713 1714 // Since at this point in the method invocation the exception 1715 // handler would try to exit the monitor of synchronized methods 1716 // which hasn't been entered yet, we set the thread local variable 1717 // _do_not_unlock_if_synchronized to true. The remove_activation 1718 // will check this flag. 1719 1720 const Address do_not_unlock_if_synchronized(rthread, 1721 in_bytes(JavaThread::do_not_unlock_if_synchronized_offset())); 1722 __ mov(rscratch2, true); 1723 __ strb(rscratch2, do_not_unlock_if_synchronized); 1724 1725 Register mdp = r3; 1726 __ profile_parameters_type(mdp, r1, r2); 1727 1728 // increment invocation count & check for overflow 1729 Label invocation_counter_overflow; 1730 if (inc_counter) { 1731 generate_counter_incr(&invocation_counter_overflow); 1732 } 1733 1734 Label continue_after_compile; 1735 __ bind(continue_after_compile); 1736 1737 bang_stack_shadow_pages(false); 1738 1739 // reset the _do_not_unlock_if_synchronized flag 1740 __ strb(zr, do_not_unlock_if_synchronized); 1741 1742 // check for synchronized methods 1743 // Must happen AFTER invocation_counter check and stack overflow check, 1744 // so method is not locked if overflows. 1745 if (synchronized) { 1746 // Allocate monitor and lock method 1747 lock_method(); 1748 } else { 1749 // no synchronization necessary 1750 #ifdef ASSERT 1751 { 1752 Label L; 1753 __ ldrw(r0, access_flags); 1754 __ tst(r0, JVM_ACC_SYNCHRONIZED); 1755 __ br(Assembler::EQ, L); 1756 __ stop("method needs synchronization"); 1757 __ bind(L); 1758 } 1759 #endif 1760 } 1761 1762 // start execution 1763 #ifdef ASSERT 1764 { 1765 Label L; 1766 const Address monitor_block_top (rfp, 1767 frame::interpreter_frame_monitor_block_top_offset * wordSize); 1768 __ ldr(rscratch1, monitor_block_top); 1769 __ lea(rscratch1, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 1770 __ cmp(esp, rscratch1); 1771 __ br(Assembler::EQ, L); 1772 __ stop("broken stack frame setup in interpreter 2"); 1773 __ bind(L); 1774 } 1775 #endif 1776 1777 // jvmti support 1778 __ notify_method_entry(); 1779 1780 __ dispatch_next(vtos); 1781 1782 // invocation counter overflow 1783 if (inc_counter) { 1784 // Handle overflow of counter and compile method 1785 __ bind(invocation_counter_overflow); 1786 generate_counter_overflow(continue_after_compile); 1787 } 1788 1789 return entry_point; 1790 } 1791 1792 // Method entry for java.lang.Thread.currentThread 1793 address TemplateInterpreterGenerator::generate_currentThread() { 1794 address entry_point = __ pc(); 1795 1796 __ ldr(r0, Address(rthread, JavaThread::vthread_offset())); 1797 __ resolve_oop_handle(r0, rscratch1, rscratch2); 1798 __ ret(lr); 1799 1800 return entry_point; 1801 } 1802 1803 // Not supported 1804 address TemplateInterpreterGenerator::generate_Float_intBitsToFloat_entry() { return nullptr; } 1805 address TemplateInterpreterGenerator::generate_Float_floatToRawIntBits_entry() { return nullptr; } 1806 address TemplateInterpreterGenerator::generate_Double_longBitsToDouble_entry() { return nullptr; } 1807 address TemplateInterpreterGenerator::generate_Double_doubleToRawLongBits_entry() { return nullptr; } 1808 1809 //----------------------------------------------------------------------------- 1810 // Exceptions 1811 1812 void TemplateInterpreterGenerator::generate_throw_exception() { 1813 // Entry point in previous activation (i.e., if the caller was 1814 // interpreted) 1815 Interpreter::_rethrow_exception_entry = __ pc(); 1816 // Restore sp to interpreter_frame_last_sp even though we are going 1817 // to empty the expression stack for the exception processing. 1818 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1819 // r0: exception 1820 // r3: return address/pc that threw exception 1821 __ restore_bcp(); // rbcp points to call/send 1822 __ restore_locals(); 1823 __ restore_constant_pool_cache(); 1824 __ reinit_heapbase(); // restore rheapbase as heapbase. 1825 __ get_dispatch(); 1826 1827 // Entry point for exceptions thrown within interpreter code 1828 Interpreter::_throw_exception_entry = __ pc(); 1829 // If we came here via a NullPointerException on the receiver of a 1830 // method, rmethod may be corrupt. 1831 __ get_method(rmethod); 1832 // expression stack is undefined here 1833 // r0: exception 1834 // rbcp: exception bcp 1835 __ verify_oop(r0); 1836 __ mov(c_rarg1, r0); 1837 1838 // expression stack must be empty before entering the VM in case of 1839 // an exception 1840 __ empty_expression_stack(); 1841 // find exception handler address and preserve exception oop 1842 __ call_VM(r3, 1843 CAST_FROM_FN_PTR(address, 1844 InterpreterRuntime::exception_handler_for_exception), 1845 c_rarg1); 1846 1847 // Restore machine SP 1848 __ restore_sp_after_call(); 1849 1850 // r0: exception handler entry point 1851 // r3: preserved exception oop 1852 // rbcp: bcp for exception handler 1853 __ push_ptr(r3); // push exception which is now the only value on the stack 1854 __ br(r0); // jump to exception handler (may be _remove_activation_entry!) 1855 1856 // If the exception is not handled in the current frame the frame is 1857 // removed and the exception is rethrown (i.e. exception 1858 // continuation is _rethrow_exception). 1859 // 1860 // Note: At this point the bci is still the bxi for the instruction 1861 // which caused the exception and the expression stack is 1862 // empty. Thus, for any VM calls at this point, GC will find a legal 1863 // oop map (with empty expression stack). 1864 1865 // 1866 // JVMTI PopFrame support 1867 // 1868 1869 Interpreter::_remove_activation_preserving_args_entry = __ pc(); 1870 __ empty_expression_stack(); 1871 // Set the popframe_processing bit in pending_popframe_condition 1872 // indicating that we are currently handling popframe, so that 1873 // call_VMs that may happen later do not trigger new popframe 1874 // handling cycles. 1875 __ ldrw(r3, Address(rthread, JavaThread::popframe_condition_offset())); 1876 __ orr(r3, r3, JavaThread::popframe_processing_bit); 1877 __ strw(r3, Address(rthread, JavaThread::popframe_condition_offset())); 1878 1879 { 1880 // Check to see whether we are returning to a deoptimized frame. 1881 // (The PopFrame call ensures that the caller of the popped frame is 1882 // either interpreted or compiled and deoptimizes it if compiled.) 1883 // In this case, we can't call dispatch_next() after the frame is 1884 // popped, but instead must save the incoming arguments and restore 1885 // them after deoptimization has occurred. 1886 // 1887 // Note that we don't compare the return PC against the 1888 // deoptimization blob's unpack entry because of the presence of 1889 // adapter frames in C2. 1890 Label caller_not_deoptimized; 1891 __ ldr(c_rarg1, Address(rfp, frame::return_addr_offset * wordSize)); 1892 // This is a return address, so requires authenticating for PAC. 1893 __ authenticate_return_address(c_rarg1); 1894 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1895 InterpreterRuntime::interpreter_contains), c_rarg1); 1896 __ cbnz(r0, caller_not_deoptimized); 1897 1898 // Compute size of arguments for saving when returning to 1899 // deoptimized caller 1900 __ get_method(r0); 1901 __ ldr(r0, Address(r0, Method::const_offset())); 1902 __ load_unsigned_short(r0, Address(r0, in_bytes(ConstMethod:: 1903 size_of_parameters_offset()))); 1904 __ lsl(r0, r0, Interpreter::logStackElementSize); 1905 __ restore_locals(); // XXX do we need this? 1906 __ sub(rlocals, rlocals, r0); 1907 __ add(rlocals, rlocals, wordSize); 1908 // Save these arguments 1909 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 1910 Deoptimization:: 1911 popframe_preserve_args), 1912 rthread, r0, rlocals); 1913 1914 __ remove_activation(vtos, 1915 /* throw_monitor_exception */ false, 1916 /* install_monitor_exception */ false, 1917 /* notify_jvmdi */ false); 1918 1919 // Inform deoptimization that it is responsible for restoring 1920 // these arguments 1921 __ mov(rscratch1, JavaThread::popframe_force_deopt_reexecution_bit); 1922 __ strw(rscratch1, Address(rthread, JavaThread::popframe_condition_offset())); 1923 1924 // Continue in deoptimization handler 1925 __ ret(lr); 1926 1927 __ bind(caller_not_deoptimized); 1928 } 1929 1930 __ remove_activation(vtos, 1931 /* throw_monitor_exception */ false, 1932 /* install_monitor_exception */ false, 1933 /* notify_jvmdi */ false); 1934 1935 // Restore the last_sp and null it out 1936 __ ldr(rscratch1, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1937 __ lea(esp, Address(rfp, rscratch1, Address::lsl(Interpreter::logStackElementSize))); 1938 __ str(zr, Address(rfp, frame::interpreter_frame_last_sp_offset * wordSize)); 1939 1940 __ restore_bcp(); 1941 __ restore_locals(); 1942 __ restore_constant_pool_cache(); 1943 __ get_method(rmethod); 1944 __ get_dispatch(); 1945 1946 // The method data pointer was incremented already during 1947 // call profiling. We have to restore the mdp for the current bcp. 1948 if (ProfileInterpreter) { 1949 __ set_method_data_pointer_for_bcp(); 1950 } 1951 1952 // Clear the popframe condition flag 1953 __ strw(zr, Address(rthread, JavaThread::popframe_condition_offset())); 1954 assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive"); 1955 1956 #if INCLUDE_JVMTI 1957 { 1958 Label L_done; 1959 1960 __ ldrb(rscratch1, Address(rbcp, 0)); 1961 __ cmpw(rscratch1, Bytecodes::_invokestatic); 1962 __ br(Assembler::NE, L_done); 1963 1964 // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call. 1965 // Detect such a case in the InterpreterRuntime function and return the member name argument, or null. 1966 1967 __ ldr(c_rarg0, Address(rlocals, 0)); 1968 __ call_VM(r0, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), c_rarg0, rmethod, rbcp); 1969 1970 __ cbz(r0, L_done); 1971 1972 __ str(r0, Address(esp, 0)); 1973 __ bind(L_done); 1974 } 1975 #endif // INCLUDE_JVMTI 1976 1977 // Restore machine SP 1978 __ restore_sp_after_call(); 1979 1980 __ dispatch_next(vtos); 1981 // end of PopFrame support 1982 1983 Interpreter::_remove_activation_entry = __ pc(); 1984 1985 // preserve exception over this code sequence 1986 __ pop_ptr(r0); 1987 __ str(r0, Address(rthread, JavaThread::vm_result_offset())); 1988 // remove the activation (without doing throws on illegalMonitorExceptions) 1989 __ remove_activation(vtos, false, true, false); 1990 // restore exception 1991 __ get_vm_result(r0, rthread); 1992 1993 // In between activations - previous activation type unknown yet 1994 // compute continuation point - the continuation point expects the 1995 // following registers set up: 1996 // 1997 // r0: exception 1998 // lr: return address/pc that threw exception 1999 // esp: expression stack of caller 2000 // rfp: fp of caller 2001 __ stp(r0, lr, Address(__ pre(sp, -2 * wordSize))); // save exception & return address 2002 __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, 2003 SharedRuntime::exception_handler_for_return_address), 2004 rthread, lr); 2005 __ mov(r1, r0); // save exception handler 2006 __ ldp(r0, lr, Address(__ post(sp, 2 * wordSize))); // restore exception & return address 2007 // We might be returning to a deopt handler that expects r3 to 2008 // contain the exception pc 2009 __ mov(r3, lr); 2010 // Note that an "issuing PC" is actually the next PC after the call 2011 __ br(r1); // jump to exception 2012 // handler of caller 2013 } 2014 2015 2016 // 2017 // JVMTI ForceEarlyReturn support 2018 // 2019 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) { 2020 address entry = __ pc(); 2021 2022 __ restore_bcp(); 2023 __ restore_locals(); 2024 __ empty_expression_stack(); 2025 __ load_earlyret_value(state); 2026 2027 __ ldr(rscratch1, Address(rthread, JavaThread::jvmti_thread_state_offset())); 2028 Address cond_addr(rscratch1, JvmtiThreadState::earlyret_state_offset()); 2029 2030 // Clear the earlyret state 2031 assert(JvmtiThreadState::earlyret_inactive == 0, "should be"); 2032 __ str(zr, cond_addr); 2033 2034 __ remove_activation(state, 2035 false, /* throw_monitor_exception */ 2036 false, /* install_monitor_exception */ 2037 true); /* notify_jvmdi */ 2038 __ ret(lr); 2039 2040 return entry; 2041 } // end of ForceEarlyReturn support 2042 2043 2044 2045 //----------------------------------------------------------------------------- 2046 // Helper for vtos entry point generation 2047 2048 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t, 2049 address& bep, 2050 address& cep, 2051 address& sep, 2052 address& aep, 2053 address& iep, 2054 address& lep, 2055 address& fep, 2056 address& dep, 2057 address& vep) { 2058 assert(t->is_valid() && t->tos_in() == vtos, "illegal template"); 2059 Label L; 2060 aep = __ pc(); __ push_ptr(); __ b(L); 2061 fep = __ pc(); __ push_f(); __ b(L); 2062 dep = __ pc(); __ push_d(); __ b(L); 2063 lep = __ pc(); __ push_l(); __ b(L); 2064 bep = cep = sep = 2065 iep = __ pc(); __ push_i(); 2066 vep = __ pc(); 2067 __ bind(L); 2068 generate_and_dispatch(t); 2069 } 2070 2071 //----------------------------------------------------------------------------- 2072 2073 // Non-product code 2074 #ifndef PRODUCT 2075 address TemplateInterpreterGenerator::generate_trace_code(TosState state) { 2076 address entry = __ pc(); 2077 2078 __ protect_return_address(); 2079 __ push(lr); 2080 __ push(state); 2081 __ push(RegSet::range(r0, r15), sp); 2082 __ mov(c_rarg2, r0); // Pass itos 2083 __ call_VM(noreg, 2084 CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), 2085 c_rarg1, c_rarg2, c_rarg3); 2086 __ pop(RegSet::range(r0, r15), sp); 2087 __ pop(state); 2088 __ pop(lr); 2089 __ authenticate_return_address(); 2090 __ ret(lr); // return from result handler 2091 2092 return entry; 2093 } 2094 2095 void TemplateInterpreterGenerator::count_bytecode() { 2096 __ mov(r10, (address) &BytecodeCounter::_counter_value); 2097 __ atomic_addw(noreg, 1, r10); 2098 } 2099 2100 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { 2101 __ mov(r10, (address) &BytecodeHistogram::_counters[t->bytecode()]); 2102 __ atomic_addw(noreg, 1, r10); 2103 } 2104 2105 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { 2106 // Calculate new index for counter: 2107 // _index = (_index >> log2_number_of_codes) | 2108 // (bytecode << log2_number_of_codes); 2109 Register index_addr = rscratch1; 2110 Register index = rscratch2; 2111 __ mov(index_addr, (address) &BytecodePairHistogram::_index); 2112 __ ldrw(index, index_addr); 2113 __ mov(r10, 2114 ((int)t->bytecode()) << BytecodePairHistogram::log2_number_of_codes); 2115 __ orrw(index, r10, index, Assembler::LSR, 2116 BytecodePairHistogram::log2_number_of_codes); 2117 __ strw(index, index_addr); 2118 2119 // Bump bucket contents: 2120 // _counters[_index] ++; 2121 Register counter_addr = rscratch1; 2122 __ mov(r10, (address) &BytecodePairHistogram::_counters); 2123 __ lea(counter_addr, Address(r10, index, Address::lsl(LogBytesPerInt))); 2124 __ atomic_addw(noreg, 1, counter_addr); 2125 } 2126 2127 void TemplateInterpreterGenerator::trace_bytecode(Template* t) { 2128 // Call a little run-time stub to avoid blow-up for each bytecode. 2129 // The run-time runtime saves the right registers, depending on 2130 // the tosca in-state for the given template. 2131 2132 assert(Interpreter::trace_code(t->tos_in()) != nullptr, 2133 "entry must have been generated"); 2134 __ bl(RuntimeAddress(Interpreter::trace_code(t->tos_in()))); 2135 __ reinit_heapbase(); 2136 } 2137 2138 2139 void TemplateInterpreterGenerator::stop_interpreter_at() { 2140 Label L; 2141 __ push(rscratch1); 2142 __ mov(rscratch1, (address) &BytecodeCounter::_counter_value); 2143 __ ldr(rscratch1, Address(rscratch1)); 2144 __ mov(rscratch2, StopInterpreterAt); 2145 __ cmpw(rscratch1, rscratch2); 2146 __ br(Assembler::NE, L); 2147 __ brk(0); 2148 __ bind(L); 2149 __ pop(rscratch1); 2150 } 2151 2152 #endif // !PRODUCT